Faculty of Computer Science and Information Technology
Universiti of Malaya
50603 Kuala Lumpur

*Perpustakaan SKTM

Expert System: Mushroom Species

Nur Fuhaizah Binti Mohammad Fawzi
WEK010214

Supervisor: Dr. Rukaini Haji Abdullah
Moderator: Dr. Sameem Abd Kareem

I i

akaan Universi

m

Sesi 2003/2004

Abstract

Expert Systems are computer programs that use artificial intelligence to solve
problems within a specialized domain that ordinarily requires human expertise. A very
important aspect of helping mycologist with diagnosis of the mushroom health effects is
the identification itself by using only the visible features of the mushroom. Their
identification, although very important, is often difficult. This thesis addresses this
problem by providing an expert system that takes into consideration various factors
about the mushroom, and presents identification as a possible solution. In order to
achieve the purpose, the system uses Prolog, a logic programming. In this paper, chapter
one outlines the introduction of the system. Chapter two describes the literature review.
Chapter three discusses more details methodology. System analysis is described in
chapter four. Chapter five describes the system design. Implementations are shown in

chapter six and testing in chapter seven. Finally, chapter eight gives the conclusion.

Acknowledgement

I wish to thank all those whose help, advice, assistance and input made this thesis

possible. The long hours and hard work put in are deeply appreciated.

The completion of this project owes special thanks to the lecturers in the
Department of Artificial Intelligence, Faculty of Computer Science and Information

Technology, especially my supervisor, Dr. Rukaini Haji Abdullah and moderator, Dr.

Sameem Abd. Kareem for the invaluable support, planning and guidance.

I am also indebted to Dr. Noorlidah Abdullah from the Institute of Biological

Sciences, Faculty of Science, and also other staff there for their information and

generous assistance during the project.

My thanks and gratitude also goes to my friends and family who are Kind enough

to help during the making of this project and made the long researching hours more

enjoyable.

To these and others who may have been left out inadvertently, I wish to record
my sincere appreciation. It is hope that this report will be a fitting testimony to what |

gain from completing this task.

Table of Contents

Contents Page
Abstract ii
Acknowledgement iii
Table of Contents iv
Table List vii
Figure List viil
Chapter 1 Introduction
1.1 Project Overview
1.1.1 What is an Expert System? |
1.1.2 Why Mushrooms? 2
1.2 Objectives 3
1.3 Project Scope 4
1.4 Target User 5
1.5 Approach and Schedule
1.5.1 Project Steps 6
1.5.2 Project Schedule 7
Chapter 2 Literature Research
2.1 Domain Studies
2.1.1 Domain Background 8
2.2.2 Existing System Review 10

247

Chapter 3
3.1

3.2
815

Chapter 4
4.1

Technology Review

2.2.1 Development Models
2.2.2 System Architectures
2.2.3 Application Platforms
2.2.4 Programming Languages
2.2.5 Authoring Tools

2.2.6 Database

Methodology

Software Development Life Cycle (SDLC)
3.1.1 System Development

3.1.2 System Operation and Support
Information Gathering Methods
Conclusion on Tools and Technology
3.3.1 System Type

3.3.2 Application Platform

3.3.3 Knowledge Engineering

3.3.4 Authoring Tools

3.3.5 Knowledge-base

System Analysis

System Requirements Analysis

4.1.1 Functional Requirements
4.1.2 Non-Functional Requirements
Tools and Technology Proposed

4.2.1 Software

4.2.2 Hardware

Run Time Requirements

4.3.1 Hardware Specifications

4.3.2 Application Software Specification

13
15
16
22
27
29

32
34
35

36
37
38
39
39

40
40

Chapter 5
5.1
5.2

w34

Chapter 6
6.1
6.2
6.3

6.4

Chapter 7

7.1

1.2

7.3

System Design
System Functionality Design
Knowledge-base Design

Interface Design

System Implementations

Overview

Define the classes and instances

Define the rules and object communication

Design the interface

Testing and Evaluation
Overview

System Validation

7.2.1 Validate Results

7.2.2 Validate Reasoning
User Acceptance

7.3.1 Ease of Use

7.3.2 Clarity of Question

7.3.3 Clarity of Explanation

7.3.4 Presentation of Results

44
47

49

56
56
59

62

66

67

69

70

70

71

71

vi

Chapter 8

8.1

8.2

7.3

Appendix A

Appendix B

Appendix C

Reference

Discussions

Problems and Solutions
8.1.1 Problems

8.1.2 Solutions

Advantages and Disadvantages

8.2.1 Advantages

8.2.2 Disadvantages

Future Plans

Glossary of Expert System Terms

Glossary of Common Mycological Terms

[llustrated Figures of the Development Models

72
72

73

14
75

16

77

79

80

82

Vil

Table List

Table

Table 1.1: Comparison of Human Expert and an Expert System
Table 2.1: Existing Expert Systems

Table 2.2: Software Process Model Comparison

Table 2.3: Application Platforms Comparison

Table 2.4: Programming Language Comparison

Table 2.5: Prolog Comparison

Page

10
13
16
22

26

viii

Figure List

Figure

Figure 1.1: Expert System Block Diagram

Figure 1.2: Project Scope

Figure 1.3: Project Steps

Figure 2.1: Mushroom Features

Figure 2.2: Two-tier Architectures

Figure 2.3: Three-tier Architectures

Figure 3.1: A System Life Cycle

Figure 3.2: Incremental Development Model

Figure 5.1: System Architecture

Figure 5.2: A class

Figure 5.3: Instances of the class

Figure 5.4: Knowledge-base Architecture

Figure 5.5: System Structure of the Integrated Knowledge Base
Figure 5.6: Question Screen Template

Figure 5.7: Welcome Screen

Figure 5.8: The Order Input Dialog

Figure 5.9: The Macroscopic Features Input Dialog
Figure 5.10: The Microscopic Features Input Dialog
Figure 5.11: The Output Display Dialog

Figure 5.12: The Help Dialog

Figure 5.13: The Database Interface

Page

15
15
32
33

43

46
47
48
49
50
50
51
52
53
54

55

Figure 6.1: Table Designer
Figure 6.2: Database Designer
Figure 6.3: Table

Figure 6.4: Application Builder

Figure 6.5: ODBC Data Source Administrator

Figure 6.6: Dialog Editor

57

57

58

58

59

62

1.

1.1

Introduction

Project Overview

1.1.1 What is an Expert System?

Expert systems or knowledge-based systems are computer programs
that are derived from a branch of computer science research called Artificial
Intelligence. They allow the scarce and expensive knowledge of experts to be
explicitly stored into computer programs and made available to others who
may be less experienced. They range in scale from simple rule-based systems
with flat data to very large scale, integrated developments taking many
person-years to develop. They typically have a set of if-then rules which
forms the knowledge base, and a dedicated inference engine, which provides
the execution mechanism. This contrasts with conventional programs where
domain knowledge and execution control are closely intertwined such that the
knowledge is implicitly stored in the program. This explicit separation of the
knowledge from the control mechanism makes it easier to examine

knowledge, incorporate new knowledge and modify existing knowledge.

Knowledge Base [1
Inference
Engine

Working Memory S

User

Figure 1.1: Expert System Block Diagram

1.1.2 Why mushrooms?

A person other than a mycologist or other agricultural expert is usually

faced with two major problems:

The inability to identify many of the mushrooms because no reliable
illustrated guide exists and there are thousand of mushrooms.
The puzzling fact that sometimes seemingly identical mushrooms

pictured and described in various guide books has different names.

These two major problems will occasionally lead to mushroom poisoning
as the victim, who was attempting to identify edible species, has mistakenly
picked toadstool or poisonous mushroom. Keeping this in mind, developing a
stand-alone automated system which would encode a mycologist's knowledge
on how to identify a specific type of mushroom using only the visible features
is necessary so that any lower-level expert and also non-expert can use the

system and get reliable help for accomplishing this task.

“There are old mushroom hunters, and bold mushroom hunters, but there

are no old. bold mushroom hunters™.

1.2 Objectives

To understand the project, the author has established five main objectives,
These objectives focus on permitting users to understand why the system is build.

The five objectives are:

1. As a stand alone identification system for the specific knowledge domain
perhaps with monitoring by a human expert.
2. To provide decision support for a high-level human expert.

3. To allow a high-level expert to be replaced by a subordinate expert aided

by the expert system.
4. To provide management education for decision makers.
For distribution of up-to-date scientific information in a readily accessible

and easily understood form, to agricultural researchers and advisers.

The table below shows the advantages of building an expert system that

supports the objectives given:

Table 1.1: Comparison of Human Expert and an Expert System

Factor Human Expert

Expert System

Time availability Workday Always
Geographic Local Anywhere availability
Safety Irreplaceable] 2 Replaceable
Perishable Yes No
Performance Variable I Consistent
Speed Variable _(:\n\l\l:!\lill\un_\) faster)
Cost High | Affordable

-d

1.3 Project Scope

In order to build an effective expert system, the task domain needs to be
narrowed down significantly. Figure 1.2 shows the scope focus of the project.
The focus is on the Basidiomycotina and then Hymenomycetes branch of the
mushrooms. The project is centered only on species that are edible and with

health values that exist in Malaysia. A glossary of the terms used in this section is

given in Appendix B.

Mastigomycotina| | Zygomycotina | | Ascomycotina | | Basidiomycotma Deuteromycotina

I I

Hymenomycetes| | Gasteromycetes Teliomycetes

.
B
o
—
(2]
w
g
)
=
o
o
=
o
-~
B
m
w

T

Figure 1.2: Project Scope

The author decided to choose the mentioned scope focus because they are
commoni mushrooms, described by naturalist as the umbrella-shaped type fungus
with discoid cap supported on a central stalk. Other funguses have different
features, grow on different habitats and different climate, which are not

commonly seen or cultivated in Malaysia,

1.4 Target User

The system is designed for users who have at least basic knowledge about

mushrooms, for example:

e undergraduate students or researches of microbiology, plant science or
plant pathology
e mushroom growers, observers or collectors

o mycologist or other agricultural experts

Users with an interest in this fascinating class of microbial world but are not
familiar with mushrooms might find it hard to understand the terminologies and
acronyms mention in the system. However, they can use the user manual and

images accompanied with the system to aid their decisions.

1.5 Approach and Schedule

The following section 1.5.1 shows each major step of the research, the tasks
to be performed and the resources needed to complete the steps. The subsequent
section 1.5.2 shows the time needed for each task and a schedule for their

completion

1.5.1

Phase 1
Problem

Assessment

Phase 2
Knowledge

Acquisition

Phase 3
System

Design

Phase 4
Testing /

Evaluation

Project Steps

[dentify candidate problem

* Domain expert

» Perform feasibility study | ® Existing system

» Perform cost/benefit study | * End users

* Knowledge collection * Domain expert

» Knowledge interpretation | * Books

» Knowledge analysis = [nternet

* Knowledge design

» Select knowledge = Existing system
representation technique » Existing documentation

» Select control technique * Books

» Select expert system * Internet

development software
Develop the interface

Develop the product

Phase 5

Documentation

System validation

Testing/evaluation

Figure 1.3: Project Steps

= [nd users

* Domain expert

O

LST- SR L St) o WOSMRBEN PMOW cEEN

PPN getsoamon <] e 20 BHON

*
- comme—————— ORI Ml A WTASS TR
s el
|

<o 24830

el #wsry (8 W00

ssalcig

[Liaewng i 3d0iy e—— 553.80.g € EMON
SO WA S0 IR Ls AT L2
vanenesafuisas ¥CLc 37 1
Icepm A AT 2 1

oroed 3@ ST

weayoy ica wda e wasls padia 0w g
IR U | W0 ISWRE s
arosesw sonmuatasdu oM R0 29SS £
: ubisaQ Basig casTUSPIT -
i i “ __shea dpnmssy
_ ; ” wrlgeve Sonnoex 24

samaudana donecey

valsmos psiacey

voisnbay a6pI MOU) “ISTUS PUT

|

! o acsd 1997 51 12913 -
oS 3, WIS -iteda 5
. iome Angeey wmoJds »

wagxd aepoees I

. JUSWSISS ¥ WAQOIJ TISEYSISE =

sadads woosysnpy amas As pads3y 2

ol cclosloelozloslos]ozlos|oe

A | [T [T 14| Tom 2| few i

¥y RuEn U5

osluslus|wsivel]] bl pelwelwzliole| s 06 oS
:l.—o—_un:.vooo:—un!v-ol—u_un...u-oz.u_ 100 Ll | GwINIs vr]ewasas tol

SLEN IS L

24 Literature Research

2.1 Domain Studies

2.1.1 Domain Background

Mycology is the study of fungi. Fungi are the name given to a group of
living things called mushrooms, toadstools, moulds and yeast. The term
mushroom is given to those that are edible, while toadstools can mean
poisonous or inedible. Mushrooms have no chlorophyll, roots, stems or
leaves, so they cannot synthesis their own energy like plants but depend on
organic matter for their energy. That is why they are commonly found around
decaying vegetable matter like manure or rotting stumps. Figure 2.1 below

shows a mushroom fruit body with most of the features. However, not all

mushroom have all features.

) -\ <= Mycelum

Figure 2.1: Mushroom Features

The growth of mushrooms is favoured by cool, moist and weather, 50
sometimes they appear in yard after rainfalls. It all starts when the spores are
released from the gills. These spores are dispersed by varying methods, when
the condition are right, the spores germinate, sending out tiny threads called
hyphae or single hypia. In order for it to develop, it has to join with another
hypia to form a network of thread called mycelium. The mycelium forms a
hyphal knot which grows and develops into a pinhead. In turn the pinhead

gradually grows and develops into a full mushroom fruit body ready to

disperse new spores.

Egyptian Pharaohs considered mushroom such a delicacy that ordinary
people were forbidden to eat it. However, commercial growing has been
much more recent phenomenon when the French began to grow field
mushrooms in caves in the 17" century. From France they spread to England
and finally to Australia. In Australia, commercial production started in 1930°s
using disused railway tunnels, a far cry from today’s sophisticated and
modern facilities. Exotic mushrooms have become more available in
Australia with the increase in Asian migrants. In Malaysia itself, the major
mushroom cultivation annual production in the year 2000 is Oyster
mushrooms 1500 tonnes, Shiitake 210, Straw mushrooms 150 and other 25,
with a total of 1885 tonnes per year. The numbers are increasing and
mushroom growers in Malaysia will have to expand. Perhaps this has been so
because of the latest trend of multi level marketing where they show that

mushrooms have got medicinal and nutritional values, so as people in

Malaysia become more and more health conscious,

2.1.2

Existing System Review

Expert systems have been commercially successful since the late 1970's.

Many species identification systems existed but with different domain and

techniques, as shown in Table 2.1:

System

Table 2.1: Existing Expert Systems

Domain

Language

Platform

Douglas-fir Insect pests that | ACQUIRE®, | Seed orchard
Cone and Seed | infest douglas-fir ACQUIRE" managers, Windows
Insects cones and seeds SDK cone and seed
collectors
Whale Whales of the | ACQUIREY,
Watcher Canadian coastal | ACQUIRE" All Windows
waters SDK
An Interactive Snakes of
Guide to Massachusetts HTML All Windows
Massachusetts
Snakes
Common Conifers of the Forestry Macintosh,
Conifers of the Pacific Unknown students, IBM
Pacific Northwest resource computers
Northwest professionals

A web-based automated identification facility with mushroom as a

domain exists at http://www.agarics.org/. It comprises:

10

1.

oo

A static database of species of fungi with their sizes, colours and other
properties, plus photographs, read at site start-up from an XML file.

A property fuzzy-matching library, written in Java. This allows a
database of records, each comprising a number of property values, to
be searched for the best match to a candidate record. Wide varieties of
properties are available, such as numeric values, single and multiple
selections and colours. The way that matching operates can be
carefully tuned for each property type and each individual record.

Extensions to the above library, giving extra properties specific to

fungi. These include properties like smell, gill shape etc.

A servlet for drawing dynamic graphs and charts in a Web
application. Uses Chart2D, a free Java chart library from Source
Forge. Currently unused in the live site, due to limitations of ISP's
server.

A set of static and dynamic (JSP) Web pages to obtain input from a

Web client, drive the matching process and present the results to the

Web client.

An open-source relational database, MySQL is used to persist site
visitor tracking data but not for the fungi data.

A Fungi Data Feedback for user to add to or correct the information in
the fungi database. Information that is entered will not be added
straight away. It will be sent to the site administrator and added once
it has been checked.

Links to other related mushroom sites

I

Another related system, which demonstration is available at
http://mycosoft.co.uk/home.htm, is called An Illustrated Key for the
Identification of Fungi, Wild Mushrooms and Toadstools. The stand-alone
version is for use on PCs running Windows with the minimum specification

of 640 X 480 screen, 16MB RAM, 16 bit colours and 4X CD-ROM.

However, there is no information on how the system was build.

Research has also been made at the Department of Psychology in
University of Alberta. It is a Biological Computation project name "Of
Mushrooms and Machine Learning: Identifying Algorithms in a PDP
Network" by Michael R. W. Dawson and David A. Medler. The purpose of
the experiment was to determine if an artificial neural network could learn to
identify correctly a mushroom as edible or not. In particular, they were
interested in seeing whether after the network converged, users could

determine the rules that it used to classify mushrooms. However, the outcome

was not clearly stated.

All systems mention before in this section are web-based because the

author did not have the opportunity to experience with a stand-alone system.

2.2 Technology Review

All reviews mention in this section are based on resources (software or hardware)
that are available and accessible at the Faculty of Computer Science and

Information Technology, University of Malaya.

2.2.1 Development Models

Below are the comparisons of various development models applicable to the

system. Illustrated figures of the models is given in Appendix C.

Table 2.2: Software Process Model Comparison

Models Benefits Drawbacks
Waterfall Simple, familiar to most Does not reflect how
model developers, easy to software is really
understand developed
o Easy to associate ¢ Does not reflect the back-
measures, milestones and-forth, iterative nature
and deliverables with of problem solving
different stages * Not applicable for many
types of development
V model e Better spells out the role e [Extensive testing n_:;;“l;nlw
of different types of always be cost-effective
testing e Some of the same
e Involves user in testing drawbacks as waterfall

Prototyping/

Evolutionary

model

Promotes understanding
of problems before
trying to implement
solution

Reduces risk and
uncertainty

Involves user in

evaluating interface

Prototyping can use a lot
of resources, especially if
the prototype fails
completely and must be
scrapped

In systems where
problems are understood
or user interface is
simple and
straightforward, extra
time spent in prototyping

is not warranted

Incremental

development

Customer training can
begin early

Frequent release allows
problems to be fixed
quickly

Expertise can be applied
to different release
Reduces time when
customer receives some

product

Customer may not be
satisfied with an
incomplete product or
with frequent changes to
system

Problems may not be
easily decomposable
Changes may have to be
made to complete parts
in order to work with

new parts

Spiral

development

Risk analysis preceding
sach phase

Allows for changing
requirements

Allows prototyping

Once the risk cannot be
mitigated, the project is
terminated.

Not effective for large-

scale projects

|

A

2.2.2 System Architectures

Below are the comparisons of two major system architectures applicable.

1. Two-tier

o Simple, distributed broker, fault tolerant and flexible load balance

Tier 1 Tier 2
“"""g‘ Database
e | —
T —C&
< > |

Figure 2.2: Two-tier Architectures

2. Three-tier

e Complex, monolithic broker, single point failure and rigid /

difficult load balancing

Tier1 Tier 2 Tier 3
["Application
t Database
Ee——=1l
| : sl

Figure 2.3: Three-tier Architectures

15

2.2.3 Application Platform

Below are the feature comparisons of various application platforms

(operating systems) available.

Table 2.3: Application Platforms Comparison

Feature Description Windows Windows Windows Windows XP

Professional

95/98/Me NT 4.0 2000

Professional

Reduces Application Failure

Side-by- | Provides a = (&) D 5]
Side DLL | mechanism for
Support | multiple versions of
individual Windows
components to be
installed and run

"side by side."
Windows | Protects core system O) oD D
File files from being
Protection | overwritten by

application

installations. If a file
is overwritten,
Windows File
Protection will
restore the correct
version.

Windows | An integrated o (
Installer | service that helps
users installs,
configure, track,
upgrade, and
remove software

L programs correctly.

_______ L

. Feature included ' = Feature partly supported/included ' Feature not included

16

Stays Up and Running

Built on 32-bit computing Q) wr) O
New architecture and a
Windows fully protected
Engine memory model
System Enables users (- O O @)
Restore and administrator In
to restore a Windows
computer to a Me
previous state
without losing
data. System
Restore, by
automatically
creating
identifiable
restores points
Device When certain ®) O O 5]
Driver classes of new
Rollback device drivers are
installed, the OS
will maintain a
copy of the
previously
installed driver,
which can be
reinstalled if
problems occur.
Device Stress tests for O ® @&)
Driver device drivers.
Verifier
Dramatically | Eliminates most () ()))
Reduced scenarios that
Reboot forced users to
Scenarios reboot in
Windows NT 4.0
and Windows
95/98/Me.
Scalable Supports up to 4 () d) D
Memory and | gigabytes (GB)
Processor of RAM and up
Support to two symmetric

multiprocessors.

&) Feature included ' = Feature partly supported/included '

Feature not included

17

Enhances Windows Security

Internet
Connection
Firewall

A firewall client
that can protect
small businesses
from common
Internet attack

Encrypting
File
System
(EFS) with
Multi-user
Support

Encrypts each file
with a randomly
generated key. The
encryption and
decryption
processes are
transparent to the
user

O

©

No support
for use with
multiple
users

IP Security
(Insect)

Helps protect data
transmitted across
a network. IPSec is
an important part
of security for
virtual private
networks (VPNs),
which allow
organizations to
transmit data
securely over the
Internet

O

Kerberos
Support

Provides industry-
standard and high-
strength
authentication with
fast, single sign-on
to Windows 2000-
based enterprise
resources.

Smart Card
Support

Integrates smart
card capabilities
into the operating
system, including
support for smart
card login to
terminal server
Sess10n

. Feature included W = Feature partly supported/included Feature not included

Feature

Description

Windows
95/98/M¢

Windows
NT 4.0

Windows
2000

Windows XP
Professional

Simplifies Desktop Deployment

Professional

Increased Can specify if the N/A) O)
Application | application needs to
Compatibility | run in either a

Windows NT 4.0 or

Windows 95/98/Me

compatibility mode
User State Migrate a user’s data O O =} &)
Migration and Asa
Tool application/operating resource kit

system settings from tool with no

an old computer to a support

new computer .
Support for | Supports UDF 2.01,] O o &
Latest formatting of DVD- | Support Support for
Hardware RAM drives with the | for some some
Standards FAT32 file system. | standards standards

DirectX® 8 API listed listed

support included,

and supports IrDA,

USB and IEEE1394.
Unattended | The ability to o - - &
Installation specify greater Support | Support | Support for

number of options for subset | for subset | subset of

and allows for of of options

greater degree of options | options

security
System Clone computer O o W Q
Preparation configurations,
Tool systems, and
(SysPrep) applications
Setup A graphical wizard @ 5) D B
Manager that guides

administrators in

designing

installation scripts
Remote OS | Can be installed ' w @
Installation across the network
Multilingual | Allows users to ())] o5
Support casily create, read,

and edit documents
in many languages

‘ Feature included W = Feature partly supported/included

Feature not included

19

Improves Desktop Management

Group Policy | Simplify the @) @ o

administration

of users and

objects by

letting

administrators

organize them

and assign the

same settings
Improved Help | The Help and w O O
and Support Support Centre | Subset of
Services combines from features

previous in

versions of Windows

Windows with Me

content from the

World Wide

Web
Automatic Automatically ey QN O
Updates downloads Subset of

critical and features

security updates in

when the user is | Windows

connected to the Me

Internet .
Microsoft Provides a @) () D
Management centralized and
Console consistent
(MMC) environment for

management

tools
Windows Provides a o -
Management standard Subset of Subset of
Instrumentation | infrastructure features features
(WMI)

Safe Mode

for monitoring
and managing
system
rcsources.

Start-up
Options

| device drivers

Allows
Windows to
boot the system
at the most basic
level, using
default settings
and minimum

E R R

Feature

Description

Windows Windows
95/98/Me

Windows
2000

Windows XP

NT 4.0 Professional

Increases User Efficiency

Professional

Fresh Visual
Design

Fresh visual
design,
common tasks
have been
consolidated
and simplified,
and new visual
cues added

Adaptive User
Environment

Adapts to the
way you work

O

O

Improved
Handling of
File
Associations

If you are trying
to open a file
that is not
associated with
any program,
Windows can
send you to a
Web page from
which to
download or
purchase the
right program

O

O

Context
Sensitive Task
Menus

When a file is
selected in
Windows
Explorer, a
dynamic menu
appears

Integrated CD
Burning

Integrated
support for
burning CDs on
CD-R and CD-
RW drives

Troubleshooters

Help users and
administrators
configure,
optimize, and
troubleshoot
numerous
functions

oy
Partial
subset of
features

L
Partial
subset of
features

t

L
Partial
subset of
features

. Feature included @ = Feature partly supported/included .)

Feature not included

2.2.4 Programming Languages

Below are the feature comparisons of various programming language

available.

Table 2.4: Programming Language Comparison

Feature Desceription

Java Visual

Basic

Static / Requires or not variable

to be declared as specific
type
Generic The ability to No Yes
parameterize a class with
specific data types
Inheritance | The ability for a class or Single Multiple
object to be defined as an class,
extension or multiple
specialization of another interfaces
class or object
Feature The ability for a class or No No No
object to rename one of
its features that it
inherited from a super
class
Method Parametric Yes Yes
polymorphism, the ability
for a class, module, or
other scope to have two or
more methods with the
same name
Operator | The ability for a No Yes
programmer to define an
operator (such as +, or *)
for user-defined types
Higher Order | Functions that can be No No
treated as if they were
data objects
lexical/ static | Bundling up the static No No
scope surrounding the
function with the function
itself, so that the function
carries its surrounding
environment around with
| it wherever it may be used

Static Static

Dynamic

Classes

None

Renaming

Overloading

No
Overloading

Functions

closures

20

Garbage

Collection

A mechanism allowing a
language implementation
to free memory of unused
objects

Mark &
sweep /
generationa

None

Reference
counting

Uniform

Access

Does not exhibit any
notational differences
between accessing a
feature regardless of
whether it is an attribute
or a function

No

No

Yes

Class
Variables /
Methods

Owned by a class, and not
any particular instance of

a class

Yes

Yes

No

Reflection

The ability for a program
to determine various
pieces of information
about an object at run-

time

Yes

No

No

Access

Control

The ability for a modules
implementation to remain
hidden behind its public
interface

Public,
protected,
"package",

private

Public,
protected,
private,
"friends"

Public,
private

Design by

Contract

The ability to incorporate
important aspects of a
specification into the
software that is
implementing it

No

No

No

Multithreadin
g

Pattern matching
constructs capable of
recognizing the class of
languages known as
regular languages

Yes

No

Pointer

Arithmetic

The ability for a language
to directly manipulate
memory addresses and
their contents

No

Yes

No

Language

Integration

The ability to integrate
with other languages

C, some
CH+

C‘
Assembler

GGt

Built-In

Security

A language
implementation's ability
to determine whether or
not a piece of code comes
from a trusted source

Yes

No

No

All the languages mention above are imperative and object oriented
programming. Another type is logic programming which is more synonym
with Prolog (Programming in Logic), designed to give a practical
implementation of the language of Predicate Calculus. A common type of

Prolog available is LPA WIN-PROLOG, which is bundled with the following

functions and utilities:

« Automatic Configuration: the same files run on all Windows version
Multiple Document Interface: any number of program edit windows can
simultaneously opened in an MDI-standard development environment
Fully Programmable GUI: large library of GUI functions, providing the
creation and control of windows, dialogs, controls, menus, fonts and more
Rich Graphics Facilities: powerful graphics predicates give the ability to
create charts, diagrams, as well as graphical buttons and tools; graphics
facilities include vector, polygon, bitmap, icon, metafile and cursor
display control, together with scaling and scrolling functions

Dynamic Link Libraries: as well as the 32-bit MASM interface, WIN-
PROLOG can load and access code in DLLs written using standard
Windows development languages, like Visual C/C++ and Visual Basic
Direct Windows API interface: virtually any Windows API function. or
third-party DLL function, can be directly called from WIN-PROLOG.
without the need to resort to C/C++ programming

Dynamic Data Exchange: ready-to-go DDE interface allows direct
communication between Prolog and Visual Basic, Microsoft Word, Excel

or any other DDE-aware Windows application

Language Interfaces: Ready-built interfaces to C/C++. Visual Basic,
Databases (ODBC), Delphi and 32-bit MASM

Comprehensive Help: a fully cross-referenced version of the Technical
Reference manual is supplied as a Microsoft Help file, providing
complete on-line documentation of all system predicates and functions

True 32-bit Implementation: up to 4Gb (4096Mb) of memory is directly

addressable, without complex internal segmented addressing

Small Memory Requirements: as little as 4Mb of memory: as much

space as possible is made available for use by user's applications code
Quintus Prolog Compatibility: the system was designed from the outset
with QP compatibility as a key objective

64-bit Arithmetic: full-featured, efficient double precision built-in
floating point math library complements the 32-bit integer arithmetic
Incremental and Optimised Compilation: all the flexibility of a

traditional interpreter is combined with the runtime speed of fully

compiled code

Source Level and Box Model Debuggers: these make full use of

windows and other GUI features to make program testing and debugging

as easy as possible

Operating System Control: full featured access to the operating system

gives Prolog programs full control of files, directories, environment

variables, time and date, and allows other applications to be executed

User-definable System Hooks: many events, such as errors, spy points,

timers and messages can be directly programmed in Prolog

)
h

o Special Data Types: A true string data type supports efficient text
manipulation, and four linked data types efficiently support compound
terms.

« Sophisticated Data Compression: Lempel/Ziv data compression and
decompression routines are built in, and are used both for saving/loading
system files, and for general user-specified applications.

« Full Range of Options: as well as Programmer and Developer editions of

WIN-PROLOG, the flex expert system toolkit and Prolog++ object-

oriented toolkit options are available for use.

Other types of prolog available are briefly described in Table 2.5.

Table 2.5: Prolog Comparison

Free Operating Features
System -
SWI Yes Windows, Comprehensive built-in predicates,
Prolog Linux/Unix, machine-independent saved-states,
MacOS X, BeOS | multi-threading, small and fast
Sicstus No Solaris, Linux | Character handling, break pointing
Prolog

debugger, exception handling,
cross-reference, determinacy

checker, GNU Emacs/XEmacs

interface
Visual No | Windows, Linux | Graphical development
Prolog and SCO c:‘invironmcm. compiler linker,
ebugger
Quintus No Solaris, Linux | Embeddable, portable, debugger,
Prolog library, client/server, X windows
interface
Amzi Yes | Windows, Linux, | Internet, multiple session, database
Prolog Solaris, HP/UX | and Unicode support, portable

26

22255

Authoring Tools

Below are overviews of related authoring tools applicable to the system.

1. Microsoft® Help Workshop

Help Workshop is a program that you use to create Help (hlp)
files, edit project and contents files, and test and report on help files.
Help Workshop takes the information in the project (.hpj) file to
combine the topic (.rtf) files, bitmaps, and other sources into one Help
file that can be viewed using the Microsoft® Windows Help program.

Help Workshop includes the following files and documents:

Help Workshop (Hew.exe and Hertf.exe). Enables you to edit
project and contents files, and to compile, test, and create
reports for Help files.

Help Author's Guide (Hew.hlp). Describes how to author and
compile Help files by using Help Workshop.

Hotspot Editor Version 2.0 (Shed.exe). Enables you to create
a graphic that has multiple hotspots.

Multi-Resolution Bitmap Compiler version 1.1 (Mrbe.exe).
Enables you to create bitmaps that have different resolutions.
You can combine these bitmaps into a single graphic to
compensate for differences between the aspect ratios of the

bitmaps and the aspect ratio supported by a user's display.

2. Adobe” Photoshop%

Adobe® Photoshop® is for professional image-editing that delivers
a comprehensive environment for professional designers and graphics
producers to create sophisticated images for print, the Web, wireless

devices, and other media. Main features include:

e Work more efficiently - file Browser, layers, options bar,
history palette, customizable workspace, context-sensitive
menus

Edit images with ease - Colour correction, healing brush,
selection tools, precision masking, clipping paths, sharpening
controls, edge smoothing, contact sheet generation, web photo
display

Enjoy unlimited ereative options — Painting and drawing tools,

layer and colour effects, filters, pattern maker, transformation

tools

Create compelling Web designs - Slicing, optimization tools,
rollovers palette, transparency, quick GIF animations. link
generation

Enjoy precise typographic control - Editable text. formatting,

spelling checker, convert to Shapes

2.2.6

Database

2.2.6.1 Database Model

1. Hierarchical model

The hierarchical data model organizes data in a tree structure,
with hierarchy of parent and child data segments. Data in a series of
records, which have a set of field values attached to it. It collects all the
instances of a specific record together as a record type. These record
types are the equivalent of tables in the relational model, and with the
individual records being the equivalent of rows. To create links
between these record types, the hierarchical model uses Parent Child
Relationships. These are a 1:N mapping between record types, done by

using trees. In a hierarchical database the parent-child relationship is

one to many.
2. Network model

The basic data modelling construct in the network model is the
set construct, consisting of an owner record type, a set name, and a
member record type. A member record type can have that role in more
than one set, hence the multiparent concept is supported. An owner
record type can also be a member or owner in another set. Intersection
record types may exist, as well as sets between them. Thus. the

complete network of relationships is represented by several pair wise

29

sets; in each set some record type is owner and one or more record

types are members. Usually, a set defines a 1:M relationship, although

1:1 is permitted

3. Relational model

A relational database allows the definition of data structures,
storage and retrieval operations and integrity constraints. In such a
database the data and relations between them are organised in tables. A
table is a collection of records and each record in a table contains the
same fields. Certain fields may be designated as keys, which mean that

searches for specific values of that field will use indexing to speed

them up.
Where fields in two different tables take values from the same set, a

join operation can be performed to select related records in the two

tables by matching values in those fields. Often, but not always, the

fields will have the same name in both tables.

. w . . -4
2.2.6.2 Microsoft™ Access versus Microsoft” Visual FoxPro

The author has chosen to compare Microsoft” Access and
Microsoft” Visual FoxPro because other database such as Oracle or MS
SQL Server is used in large companies as well as on the internet for
handling multi million numbers of records. Second, the added

functionality with these larger databases makes it expensive,

Microsoft® Access is a good database for small applications such as
recipes. Microsoft® Visual FoxPro was designed for small to medium size
applications, often handling a million records. In tests with equivalent
hardware and file sizes on a Windows 98 system, FoxPro consistently
performs faster than Access 2000. Updates show the largest discrepancy in
the area of performance, with Access often requiring twice as long to
complete the same task. FoxPro also produces a much better and more
reliable backup than the Access process of simply copying the file. Even if
the FoxPro data is partially corrupted, it is much easier to restore tﬁan a

corrupted Access database file.

FoxPro can handle much larger files than Access. A 100Mb database
in FoxPro will show no signs of overload, compared to the similar database in
Access. FoxPro also features an impressive versatility that enables it to
interact with a number of interfaces, including command-line clients, web
browsers and various programming interfaces such as C++, Perl, Java, PHP,
and Python. Users can use a pre-packaged client or write a custom

application.

It is true that the Microsoft” ActiveX Data Objects Library (ADO) has
made Access more flexible in the foreign data market. ADO permits you to
retrieve data regardless of its location, and then present that data in a common
interface: the browser, On the downside, learning ADO requires much time

and effort, even for the competent developer or programmer.

3.

Methodology

31 Software Development Life Cycle (SDLC)

Life Cycle Life Cycle
Stage
System Lifetime

Development ofa

using System System
Deavelopment

Methodobogy

kﬁcnce

Figure 3.1: A System Life Cycle

t

3.1.1 System Development

General principles used to underline the system development are:

13 Use a problem solving approach

2. Establish phases and activities

8} Do not be afraid to cancel or revise scope
4, Design system for growth and change

The system development process is based on a hybrid model called incremental

development, which combines the waterfall and evolutionary model advantages.

w2
o

System hcampkte

Figure 3.2: Incremental Development Model

In an incremental development process, the services to be provided by the
system are identified in outline. A number of delivery increments are then
defined, with each increment providing a subset of the system functionality. The

allocation of services to increments depends on the service priority. The highest

priority services are delivered first.

Once the increments have been identified, the requirements for the
services to be delivered in the first increment are defined in detail and that
increment is develop using the most appropriate development process. During
that development, further requirements analysis for later increment can take

place but requirements changes for current increment are not accepted.

Once an increment is completed and delivered, it can be put into service.
Users can experiment with the system which helps them clarify their
requirements for later increments. As new increments are completed, they are

integrated with existing increment so that the system functionality improves with

cach delivered increments.

33

There is no need to use the same process for the development of each
increment. Where the services have a well-define specification, a waterfall model

is used. Where the specification is unclear, an evolutionary model may be used.

3.1.2 System Operation and Support

System operation and support consists of the following ongoing activities:

1. Assisting users, regardless of how well the users have been

trained and how good the end-user documentation is

25 Fixing software defects (bugs), that slipped through the software

testing

3. Recovering the system from failure, that is to restore a system’s
files and databases, and restarts the system

4,

Adapting the system to new requirements, which may include

new technical problem or new technology requirements,

ks Cross Life Cycle Activities

Cross life cycle activities are activities that overlap many or all phases of

the methodology. These activities include fact-finding, documentation and

presentation, feasibility analysis, and process and project management,

34

3.2

Information Gathering Methods

I. Sampling of existing documentation, files and databases

Collect and review documents that describe the problems including thesis,
research papers and other system studies and design documentation. This
documentation may include operation manual or project documentation, various
type of flowcharts and diagrams, and also design documentation such as inpht,
output and databases All documentations collected are analyzed to determine the
information currency, without discarding outdated documentation. Additional

fact finding is performed to verify and update the facts collected.

2. Research and site visits

Thoroughly research the problem domain. This includes reference books,
computer journals and also exploring the internet. These sources provide
information on how others have solved similar problems, plus to learn whether

software packages exist to solve the problems.

3. Interviews

Interviews are used to achieve any of the following goals: find facts,
verify facts, clarify facts, identify requirements, generate enthusiasm, get the

end user involves, and solicit ideas and opinions.

35

3.3 Conclusion on Tools and Technology

3.3.1 System Type

The author has chosen to develop a stand-alone system as there are some

problems related to internet development such as:

I. The dependability of the system, including security, safety and reliability
is hard to maintain as everyone in the world can access it and due to the
increasing number of cyber crimes.

2. Need to cope with emerging technology, such as new versions of
programming languages, browsers, and operating systems

3. Need to provide decentralized support and training for users, though the
internet itself can be used for this purpose

4. Problems related to communications speed encountered with the use of
multimedia and large database. Example, large files may take tens of
seconds to download over modems typically used at home, which,

although not a long time, can be frustrating when it occurs repeatedly.

A stand-alone system can also be networked so that several people at once

can have access to the files, so a web-based system is not actually necessary

3.3.2 Application Platforms

Windows 2000 Professional is the chosen platform because it is proven to
be powerful and flexible enough to perform every task that even Windows XP is
built on the proven code base on it. Additional features in Windows XP are not
actually necessary for building the system. Windows 2000 is a full 32-bit
operating system, which eliminate the problems that have plagued older system.

It is able to run most Windows 95/98/NT programs and provides compatibility

with older, 16 bit code including DOS.

Windows 2000 uses Win32, which support 32-bit flat addressing and
includes Application Programming Interface (API) functions that support thread-
based multitasking and security. The Win32 API functions are contained in
Dynamic Link Libraries (DLLs), which each program has access to when
executing. Dynamic linking has some very important benefits such as; DLLs
prevent disk space from being wasted by the significant amount of duplicated
object code and the dynamic linking approach makes the emulation of other

operating systems an easier task.

Windows 2000 also supports two form of multitasking; process based and
thread based. One other thing to know is that it support several file systems,
including FAT (File Allocation Table), FAT32 (enhanced, 32-bit FAT) and

NTFS (NT File System).

35350 Knowledge Engineering

The main language selected is Prolog as it is found to be suitable for the

development of expert system type program for several reasons:

I. Rule based — Rules can work largely with each other and can produce

some sort of sense even when incorrect. It also can be incrementally

updated.

2. Declarative — Make program design very like program specification, this
makes rules amendable to verification by inspection, any assignment of
variables is affected by unification, no explicit decision or branches.

3. Explanation — A prolog program can be made to explain its own
reasoning in a very straightforward manner.

4. First order logic ~ Mathematically sound vehicle for reasoning and
modeling problem areas, helps in formulating logically consistent rules

S

Top down design — Prolog encourages top-down design when writing
program, which is exactly the design method of conventional software
engineering. Thus, Prolog comes with a sound design methodology which

facilitates the construction of expert system rule-bases.

The type of Prolog selected is LPA WIN-PROLOG as it has numerous built-

in function as well as additional toolkits, which are not freely provided by other

type of Prolog.

38

3.34 Authoring Tools

Both of the authoring tools mention before in section 2.2.5 will be used to

aid the building of the expert system.

Microsoft® Help Workshop is essential for building Windows help file to

aid the end users. This help file can easily be access by LPA WIN-PROLOG

through the 32-bit Windows help subsystem.

Adobe® Photoshop® is not really crucial but will certainly aid the process of

editing the mushroom or any related images that will be used in the system.

3.3.5 Knowledge-base

Microsoft” Visual FoxPro will be used as the database or knowledge base
as it is proven to be more reliable and functional then Microsoft” Access, as
mention in section 2.2.6.2. The versatility of Microsoft® Visual FoxPro will also
make it easier to be integrated with LPA WIN-PROLOG. Hierarchical model

will be used as the preferred database model as it permits inheritance.

39

4.

4.1

System Analysis

System Requirement Analysis
4.1.1 Functional Requirements

e The user shall be able to search for the specific type of mushroom
according to the visible features entered.

e The system shall provide appropriate explanation for the mushrooms’
medicinal and nutritional values, if any.

e Every identification process, including the final output is accompanied by
suitable images to aid the user’s decision.

e An extra menu is available for officially authorized experts that will
enable them to key in newly found mushroom, modify or delete existing
one in the database.

4.1.2 Non-Functional Requirements

|. Product Requircnents

e The system shall be reusable and portable enough to operate on any

environment

40

e The system shall be efficient enough not too sacrifice too much
performance such as memory, speed or disk space.
e The system shall be dependant and reliable enough to operate without

catastrophic failure

2. Organisational Requirements
e The system development process and deliverable documents shall be

delivered according to the schedule, with the specified format.

3. External Requirements
e The system shall not disclose any personal information about the

users or experts that is working with the system.

4.2 Tools and Technology Proposed

4.2.1 Software

Below is the list of the software and application that is used to build the expert

system:

e Platform — Microsoft® Windows® 2000 Professional
o Knowledge engineering — LPA WIN PROLOG 4040

 Knowledge base / database — Microsoft” Visual FoxPro 6.0

41

e Help/ user manual — Microsoft” Help Workshop 4.03

o Image editing — Adobe® Photoshop® 7.0

4.2.2 Hardware

Below is the description of the components and configuration that is used to

build the system:

e Chip set and bus - Intel Pentium IIT 800 MHz, Intel Mobile 440 BX
PClset, 64 bits DRAM, 4 Mbits Flash EPROM, 66 MHz AGP, 33 MHz
PCL

e Memory —256 MB SDRAM, 66 MHz clock speed

e Connectors — parallel, IDE, SVGA, PS/2, microphone-in and headphone/
speaker jack, USB.

e Speaker — Sound Blaster, 16 bit, 2.5 ohm, 500 Mw

e Video - 256 bit, 8.0 MB

e Display - TFT, 1024 X 768, 65 536 colours maximum

42

4.3 Run Time Requirements

4.3.1 Hardware Specifications

Below is the description of the minimum components and configuration that

comprises the technical environment in which the system will operate:

e Intel Pentium 350 MHz or any AMD processor

e 64 MB RAM

e 5 MB Hard Disk space for program installation

e 24X CD ROM drive (for installation from a CD only)

e VGA monitor supporting 800x600 graphics

4.3.2 Application Software Specifications

Below is the description of the minimum software and application in which the

expert system will operate:

e Microsoft® Windows 98, Windows NT 4.0

43

~} System Design

5.1 System Functionality Design

The representation various types of mushrooms in a computer system starts
when the mycologist formulates a set of keys that identify mushrooms based on their
features. That knowledge will be incorporate into the knowledge-based system
which consists of an underlying intelligent program called the inference engine. The
inference engine examines the current knowledge in the knowledge-base and
combines it with accumulated facts to derive additional facts aﬁd ultimately, the

conclusion.

Inference Engine

AN

D, |

Working Memory : it |e——s| Knowledge Base |, |
(facts) Explanation Facility i +—|External Programs
(rules)
| User Interface Developer Interface
User Knowledge Engineer

Figure 5.1: System Architecture

44

The author chooses to represent the mushroom-identification knowledge with
the frame-based knowledge representation scheme. Frame hierarchies are similar to
object-oriented hierarchies. They allow data to be stored in an abstract manner
within a nested hierarchy with common properties automatically inherited through
the hierarchy. This avoids the unnecessary duplication of information, simplifies
code and provides a more readable and maintainable system. Each frame or instance
has a set of slots that contain attributes describing the frame's characteristics. These
slots are analogous to fields within records (using database terminology) except that
their expressive power is greatly extended. Frames inherit attribute-values from other
frames according to their position in the frame hierarchy. This inheritance of

characteristics is automatic, but can be controlled using different built-in algorithms.

CLASS: Agaricales
Common Name
Cap Shape

Cap Colour

Cap Surface

Gill Shape

Gill Colour

Additional Information

Figure 5.2: A Class

45

INSTANCE: Pleurotus ostreatus INSTANCE: Agaricus bisporus

Class: Agaricales Class: Agaricales

Common Name: Oyster mushroom Common Name: Button mushroom

Cap Shape: plane, flattened Cap Shape:

Cap Colour: grey, brown Cap Colour: white

Cap Surface: smooth Cap Surface: smooth

Gill Shape: decurrent Gill Shape: free

Gill Colour: white Gill Colour: pink, purple brown
]]

Additional Information : Additional Information:

Instance Number: 1 Instance Number: 2

Figure 5.3: Instances of the class

The inference technique chosen is backward chaining, in which it starts from an
expectation of what is going to happen (hypothesis) and then seek evidence that
supports (or contradicts) the expectations. The program will start with a goal to be
verified and then it looks for a rule that has this goal in its conclusion. It then checks
the premise of the rule in an attempt to satisfy the rule. The process continues until

all possibilities that apply are checked or until the rule initially checked is satisfied.

46

52 Knowledge-base Design

The knowledge-base contains classes and instances mention before in section 5.1

and it uses simple database architecture. The major steps involved in query

processing in such architecture are:

1. Tuples are selected by the DBMS from fact database.

While reading data in (a), the tuples are converted into Prolog assertions

stored in the main memory buffer.
3. The communication interface calls the related heuristic.

4. The Prolog program reads the assertions and by use of its rule base performs

inferences.
5 The result is written in the main memory buffers.

6. The data in (¢) are appended to the facts stored in secondary storage.

Logic
System DBMS
lnfere_nce Search
Engine Engine
L A p e 1 """ L Foos s e 4 o I‘ """ '1
'|| Rule Base Database ||
\ .
1 Knowledge Base ';

Figure 5.4: Knowledge-base Architecture

47

Figure 5.5 shows a pictorial version of the interfaces involved in realizing the

procedure outlined in Figure 5.4.

User
[0
GDBMS Shell Prolog (Logic System) 5 6 Main Memory
Query :

2P‘.

N

MUSHROOM (A)

P:- SR (READ[MUSHROOW GET-SR[8X], READ[MUSHROOM (NAME): MUSHROOM (B)
(NAME): DESCRIPTION= T™*| DESCRIPTION = X1, W
X1 [YT) MUSHROOM. Y) 3
. - 6 |l
SR PUT-SR ;

—| (8]

!

7]
=
S==

Base

Figure 5.5: System Structure of the Integrated Knowledge Base

The GDBMS shell, upon receiving the query form the user, precompiles the query
into Prolog form and activates Prolog to execute the precompiled programs (interface
sequence | and 2). The logic system and DBMS exchange data via parameter variables.
These variables are bound to constant before (i.e., query text) and after (i.e., response
data) the DBMS is called (before and after correspond to sequences 3 and 7,
respectively). In main memory, tuples (i.e., assertions) are seen at the top and bottom.
The top portions shows the Prolog predicate format that is input to the logic program
(sequence 5) to be processed after being retrieved and converted from relations in the
database (sequence 4). The query program carries out updates and writes new tuple data

(sequence 6) in the relational tuples format for DBMS, DBMS is called (sequence 7)

for appending the main memory tuples to the relation files.

48

5.3 Interface Design

Generally, each “test” describes a series of steps to perform and each “results” a
question with possible answers. Therefore, the question screen should contain
separate section for each. The design of each question screen follows the template

shows in Figure 5.6 to maintain consistency in the interface.

Title
Discussion
What
Why
Stegs
How
Question
Answer
Menu
Button area

Figure 5.6: Question Screen Template

Figure 5.7 shows the welcome screen which is use to display general information

about the program to the user. The program will start automatically when the user

clicks the 'OK' button.

49

8 N Puhaizah M F
ggxmazu

L:lcen?;&‘

Paculﬁy of Conputcr cienqe
§ Information Technology'
Uniuersity of Halaya ; i it ik

Figure 5.7: Welcome Screen

Figure 5.8 shows the 'Order' input screen which is the first question screen that

the user will see. Basic menu includes:

Welcome to Expeﬂ Sy:tem Mushtoom Species

et e e e o . S 00 ot 0 g s 1

- Discussion === ; , fi

This sacion wil help i o Kenti) tha ORIDER of mushicom thal the Uridontied mushroom bekdngs to

Steps ——— =
Examine the i body and hymerium ofthe mushioom. Cick the More Infomation’button for advanced instiuctions | -

rMuM&MmW&dwfndw&?dmioﬂnmw&hm@wW‘ bl
Fruit body usually fleshy, tdter\dusydocmqmmmmeodmhulm
of gills, ridges of within tubes > AGARICALES aphyllophorales
Frut body with ymenium smocth ot spread ou on eeth, ndoesorplatu ot within o
tubes then fruit body tough and leathery > APHYLLOPH ! o [
e - -‘y 0 - -, T ;
T SRR

OK Cancel More Information

Figure 5.8: The Order Input Dialog

50

I. Users can select the appropriate features from the list box based on the
description given.
2. Users have the option to exit or view the help file to aid the identification at any

time.

Figure 5.9 shows the most important question screen. It is use to obtain the

mushrooms' visible features from the user. Basic menu includes:

 Discussion o

The system will now check the mactoscopic [visible) charactetistics of the unidentified mushroom

rSteps i T)

E xamine the general {eatures (cap. gill, stem) of thg mushroom, Use 'More Infoimation’ for advanced instructions

- What Macroscopic Features dues the mushioom have?

]

ot

Cap Surface dy - "~ Ring none
Gl Shape | adnate v

ijil_Colou.‘._‘_h white vl
|

S e |
s

Continuo'Q:I J Caneel' Mueldamatiunl‘.-,' b

Figure 5.9: The Macroscopic Features Input Dialog

Users can select the appropriate features from the combo boxes. This approach is

easier and avoids typing errors or illegal answers.

2. Users have the option to exit or view the help file to aid the identification at any

time.

Figure 5.10 shows the final question screen. Basic menu includes:

i~ Discussion

Finally, the system will check the microscopic characteristic of the unidentified mushroom

Steps

Make a spota print and then examine the spoies using a microscope, Use 'More Information’ for advanced instructions

Spore Print [white ~| " Spote Features

After examining the spores, whal did you find QU =~ o o

Search Cancel ~ More Infarmation

Figure 5.10: The Microscopic Features Input Dialog

N
19

I. A combo box and list box is used again for selecting the appropriate features.
This approach is easier and avoids typing errors or illegal answers.

2. Users have the option to exit or view the help file to aid the identification at

any time.

Figure 5.11 shows the output display produce from the all the question screen. Basic

menu includes:

The system has identified the mushroom as;
Scientific Name : Pleurotus ostreatus Y
Common Name : Oyster mushroom ! §
Cap Shape : fiattenad, shell shaped, plane
Cap Width : 150mm
Cap Colour: deep blue grey, brownish, dark brown
Cap Swface : smooth, slightly cracked
Gill Shape: rather distant, deeply decurent
Gill Colour ; white flushing dirty yellow with age
Stem Shape: absent, very short
Stem Width : absent
Stem Height : absent
Stem Colour : absent
Stem Surface: absent
Flesh: white, soft
Veil : none
(&
Next J " Restat Modify 7 Add / Delete Ext Heb I ‘

Figure 5.11: The Output Display Dialog

I. All the features entered by the user and inferred by the system, for reference.

2. If there are two or many species that share the same features, users can view
other species by pressing the ‘Next’ button.

3. The ‘Modify/Add/Delete’ button is for opening and organizing the mushrooms
record in the database.

4. Users have the option to exit or restart the system at any time.

Figure 5.12 shows the help display produce when the 'More Information' button is
clicked. It is basically used to display related help information about the system and the

identification process to aid the user.

Hde vl Pirt Options e
Caperss | dex | goarch | Introduction to
G o A
=1) Mycologival Basics: Leaming About T €, proe
e Y A By i | \J‘{pyﬁ 1 b&)& LIS
Tools and Tips for Colectng | Y. L i t R s A0
7 vt coed g FTushresinn vpreies VRLU
How to collect :!
= () identfication Procedures “J Expert System: Mushroom Species is the award winning mushroom identifier
{) Mouse Use and Data Entty | || proram (dasigned for Windows 98 / 98SE / ME / NTA0 / 2000 / XP Home / XP Pro)
Idetffication Strategies &l that will give a brief description of the mushroom's effects on health, if any.

Secondary functions include a means for adding and deleting species in the database,
and the ability to edit and view data on selected mushrooms.

The program currently covers two order of mushroom, Agaricales (Agarics and their
relatives) and Aphylluphorales (Polypores and their relatives), The scope of the
system is expected to expand through time.

This program is best used with a good field guide with many pictures. It is desigried
with the novice in mind, but experienced mycologists may want to glance at it to get
an idea of what characteristics are considered important when using the program,
Included in this help is a tutorial on the basic of mushrooms and information on
mushroom intoxication,

¥, s

3 s

Dy S e

This system is an aid to mushroom identification and is not yet complete. Any
identification made using this program should be confirmed by consulting field guides
and persons experienced at identifying mushrooms in your area.

§
[

!
4
= () Species Database -
2] Modty
(7] Add
1?) Delote) A4
$) ¢ : G PR bt - R i) W

Figure 5.12: The Help Dialog

54

Figure 5.13 shows the database interface design. Users are accompanied with

basic menus like 'Find', 'Print', 'Add', 'Edit', 'Delete' and 'Exit' to organized the data in

the database.

'\ Mushroom

Fle Edt Tools Favorites Go Window Help

s 8]l 9]

VAGARICALES

e

2RI V]

5

Agarics and their relatives g
Scientific Nome: [Armiaria mete ; i
e)
Comemon Nome: I Honey mushroom Amillaria meflea,jpg k' i
Cap Shepe: convex, flatiened, sightly 4 | , ;
depressed e
-
Cap Colour: yalowish, olve, buff, |
send, brown
b
Cap Surface: scaly, velvety | Cop Dismeter: |50-15f) mm
i
Gl Shape: Tnule, slightly decurrent » l GAl Colour: whitish, brownish spots _‘J
= =l
Spore Print. very pale cream colour 4 | ' Spores: medium-sized, hylne, 4|
: elipsoid B
od | e
Skip to next record || I I v

Figure 5.13: The Database Interface

6.

System Implementations

6.1 Overview

When designing a frame based system, everything is tough of as an object.
Following the first meeting with the expert, the major objects involved in the
problem were listed. After identifying the objects, the next thing to do is to look for a
way of organizing them. This step involves collecting similar objects together in a

class-instance relationship, and defining various ways that object communicates with

each other.

6.2 Define the classes and instances

Classes and instances are defined within the database. Firstly, the field is
determined based on the facts of the mushrooms features. The fields are then
organized into tables using the Table Designer. The mushrooms' scientific name is

defined as the primary key to prevent duplication of the same species.

w4 Table D;signer - agaricales,dbf

Fields | -lridexes‘ ‘ "‘;l"ablo I

B

Name Type Width Decimal Index NULL
3] scientific_name Character 50 T - | 0K l
|| common_name Character 30 — " Cancel
i cap_shape Character 50 ‘
cap_diameter Character 30
[Lie] nseit
‘ cap_colour Character 50 .-l———l
| cap_surface Character 50 o Qelele l
Display - Field validation
Format: [Rule: [i __|
Input mask: | Message' l e
Caption: I Default value: I : i
~Mapﬁeldwpelo | Field comment: ,
Display Iibtavy l __‘ _‘.‘.]
Display class: ﬁefault) :J LI

wa Database Designer - Mushroom

Figure 6.1: Table Designer

L) aphyﬂoohorales
EdFields: q i

geientific_name scientific_name

common_name | common_name

cap_shape cap_shape

cap_diameter cap_diameter

cap_colour cap_colour

cap_surface cap_surface

gill_shape gil_shape

gill_colour gil_colour

stem_shape stem_shape un

stem_width stem_width

stem_height stem_height

stem_colour stem_colour

stem_swface stem_surface

flesh flesh

veil veil

fing) fing | %
| o

Relationships between tables were then defined, if any using the Database Designer

Figure 6.2: Database Designer

After refining the design, the existing data is added to the tables.

57

Scientific_name " Common_name Cap_shapa = | U Cap diameter " .|Cap d=
|| [Lactymaria velutina Weeping widow convex, expanded with obtuse central | 45-90 mm dull cla)
|| [Lepista nuda Wood blewits depressad, flattened, rounded 70-100 mm blue lile /!
| | |Lecrinum scabrum Rough stalks convex, bacoming skohtl expanded | 45-15- mm pale b
|| [Boletus badius Bay-coloured bolete hemispharical 70130 mm red bro
|| | Pavilus irnvolutus Brown rolkrim convex, deprassed 50-120mm ochre,

Cortinarius pseudosalor bell, conical 60-125mm brown, i
Russula ochroleuca Common yellow russula convex becoming flat or depressed at ¢ 50-100mm yellow 1.
Lactarius turpis Ugly milk-cap convex, depressed centre 60-200mm dark ofi
Chroogomphus rutilus Pine spike-cap, wine-cap convex, shaip umbo 30-150 mm wine-c(i
Mycena galericulata Bonnet mycena conical, bell, central umbo 2550 mm greyish
Pluteus cervinus Fawn pluteus conical, plano-convex, flattened, persis 40-100 mm dark br
Gymnopilus penetrans convex, flattened 20-50 mm golden —|
Melanoleuca melalueca convex, flattened, umbonate 40-110 mm dark br
Clitocybe infundibuliformis Common funnel-cap funnel 20-60 mm yellowis.
Hebeloma crustuliniforme Fairy-cake mushroom convex, hardly expanding 40-80 mm pale ye';
Inocybe geophylla Common white inocybe conical, bel, distinct umbo 10-25 mm silvery t
Laccaria laccata Deceiver convex, flattened, depressed 12-28 mm reddish
Mycena sanguinolenta Smal bleeding mycena conical, bell-shaped, umbonate 10-17 mm reddish
Collybia maculata Spotted tough-shank convex, flattened 80-130 mm white, ¢
Hygrocybe pratensis Butter mushroom convex, plano-convex, broad low umbe 20-80 mm tan, pa
Lepiota procera Parasol mushroom rounded, becoming bell, central umbo | 70-200 mm dull bra
Calocybe gambosum St George's mushroom plano-convex, rounded 70100 mm creamy
roanjus campestris Field/Meadow mushioom conyex. olane 30-80 mm white. j_'_

1 il ! T

Figure 6.3: Table

Forms and reports were later built using their respective designers. After all of the

components are organized, an executable version is built using the Application Builder.

A Applicatiéry.Blti!dér:-c:}doc_uh%entsa;ld écﬁings\aaminis... E] "-ﬂ@

” Credits,,l Dala l Forms I Reports l Advanced l i TP i
Name: lMushtoom jé"" N.thd
Image: _'c:.\documenlsarndset;ings\adninishe J.'_.If 3? Vv

il
~Common Dialogs
[V Splash screen [V Quick start
IV About dialog [~ Uset logins

Help l

Figure 6.4: Application Builder

6.3 Define the rules and object communication

At this point, the author has classes and instances, each with slots that describe
the various objects. The next step is to develop a way of working with this
information to satisfy the problem specification, which is to identify the mushrooms

using pattern matching rule.

Firstly, the data source will need to be configured using the ODBC Data Source
Administrator. The ODBC Data Source Administrator is reachable via the Windows

Control Panel.

urce Administrator .
B B A Y 0. oy S < A

£ 0DBC Dta,So

User DSN | System DSN | File DSN | Drivers | Tracing | Connection Paoling | About |

User Data Sources:
Name | Driver |
dBASE Files Microsoft dBase Driver (*.dbf)
Excel Files Microsoft Excel Driver (*xds)

MS Access Database Microsoft Access Driver (*.mdb)

MusHroomDatabase Microsoft Visual FoxPro Driver
Visual FoxPro Database Microsoft Visual FoxPro Driver
Visual FoxPro Tables Microsoft Visual FoxPro Driver

B

ﬂq An ODBC User data source stores information about how to connectto
(2] the indicated data provider. A User data source is only visble to you.
i and can only be used on the curent machine.

[——6K__| Cancel l Apply ' Help l

Figure 6.5: ODBC Data Source Administrator

The next step is to load the Prodata Interface using the following code:

59

ensure_loaded(system(dblink)).

Prodata allows database tables to be accessed from Prolog as though they existed
within Prolog's environment as unit ground clauses (facts). This facilitates the use of
Prolog rules over the contents of the database, with no need to download any part of
the database, as all database accesses are done 'on-the-fly'. Backtracking, cut, call,
not and all other standard Prolog mechanisms work identically over the table
accesses and the internal database, thus achieving the highest level of transparency
possible. This software architecture allows a completely different style of database
programming that leaves fourth generation languages way behind. All the benefits

inherent in Prolog development can now be transferred to the database field without

any disadvantages.

The next step is to connect to the database itself. Connection to the DBMS is
established via the db_connect/l predicate. Its first argument is the Data Source

Name (DSN) which identifies the data source as specified in the ODBC before.

db_connect('MushroomDatabase').

After that, a single rule that include variables can be used to match selected property

values of each instances of each class, as shown below.

60

db_tuple(Type, | A, B, op(C-CShape), D, op(E-CColour), op(F-CSurface), op(G-

GShape), op(H-GColour), ..., op(U-SPrint), op(V-Spore), W, X, Y, Z]) .

The db_tuple predicate will take the table name and return a tuple as a list
comprised of its fields, and will backtrack to retrieve the next record upon failure.

This rule generates an SQL query that retrieves selected information from the

database, as shown below.

SELECT scientific_name, common_name,,

main_uses, preparations, dosage, side_effects, additional information, picture

FROM agaricales
WHERE (cap_shape LIKE '"%convex%') AND (cap_colour LIKE '%white%') AND

(cap_surface LIKE "%dry%') AND (gill_shape LIKE '%adnate%') AND AND

(spore_print LIKE "%owhite%') AND (spores LIKE '%ellipsoid%")

61

6.4 Design the interface

Following the coding, the system's interface was developed. Creating a new
graphical object within the interface actually means creating a new instance of one of
these classes. The task starts by selecting from the Dialog Editor Toolkit, with a

mouse using the click-and-drag techniques, the type of object desired.

k [X New
Eﬂﬂ A D Import -
oo f |[Al]] Expot

<

v Grid 10 |10 Test g

aERER
:
§ 11

i

<

Figure 6.6: Dialog Editor

A sample of the interface created and exported from the Dialog Editor toolkit is

shown through the codes below:

62

sample_user_interface :-
~S1 =[dl g_owncdbyprolog,ws_sysmcnu,\vs_caplion.ws__border,dlg_modalframe],
82 = [ws_child,ws_visible,ss_center],
~§3 = [ws_child,ws_visible,ws_tabstop,bs_pushbutton],
wdcreate(unknown_dialog, ‘Unknown Mushroom’, 333,289, 378,224, SI),
wecereate((unknown_dialog,10000), static,

*The mushroom you search for does not exist in the database..!!

What do you want to do? °, 30, 40,310, 30, _S2),
weereate((unknown_dialog,1000),button, “Restart’, 30, 130, 70, 30, S3),
weereate((unknown_dialog,1001),button,’Open Database’,140, 130, 90, 30, RED),
weereate((unknown_dialog,1002), button, *Quit’, 270, 130, 70, 30, S3),
window_handler(unknown_dialog, unknown_handler),

show dialog(unknown_dialog).

After finishing all of the interface design, forms containing slots related to the
chosen objects are then presented. The next step is to fill in the slots values to tailor

the objects display. A sample code to fill the colour slot vaiue is presented below:

fill user_dialog :-
wibxadd((user dialog,5000), -1, *white"),
wibxadd((user_dialog,5000), -1, *black™),
wlbxadd((user _dialog,5000), -1, “yellow"),
wlbxadd((user _dialog,5000), -1, ‘red"),
wlbxadd((user _dialog,5000), -1, *blue”),
wibxadd((user _dialog,5000), -1, “green”),
wlbxsel((user _dialog,5000), 0, 1),
wfocus((user _dialog,5000)).

63

The ways the values of the slots are chosen are controlled by the following codes:

% given a combobox/listbox returns its selected item
get_selection(Lbx, Selection) :-
wlbxsel(Lbx, 0, Sel),
(Sel=1
-> wlbxget(Lbx, 0, ItemStr),
atom_string(Selection, ItemStr)
; wibxfnd(Lbx, 0, **, Nextltem),

get selection(Lbx, Nextltem, Selection)

% find the current selection

get_selection(Lbx, 0, Selection) :-
!

'

fail.

get_selection{ Lbx, Item, Selection) :-
wibxsel(Lbx, Item, Sel),
(Sel=1
-> wibxget(Lbx, Item, ItemStr),
atom_string(Selection, ItemStr)
: wibxfnd(Lbx, Item, ™', Nextltem),

get selection(Lbx, Nextltem, Selection)

Some graphical objects like buttons are used to link to predefine function like

opening the database, opening help files or popping message windows.

% on a database button open database
display_handler((display_dialog, 1002), msg_button, _,) :-

exec('database\mushroom.exe', ",).

% on a help button display help file
display_handler((display_dialog, 1004), msg_button, ,) :-
exec('help\hh.exe', 'help\mushroom.chm'’,).

9% on a exit button close the program

display_handler((display_dialog,1003), msg_button, _,) i quit.

%exit the system
quit :-
(wait(0),

wdict(Windows),
\+ member(windows, Windows),
msgbox('Expert System’, "Do you want to try again?”, 36, Yes),
(Yes=6
; halt

)
. halt(1)).

How the buttons operate are controlled by the window handler

% pass all other messages to the default window handler
display_handler(Window, Message, Data, Result) :-

window handler(Window, Message, Data, Result).

65

78

Testing and Evaluation

7.1 Overview

As the projects proceeds, the system will need to be periodically tested and
evaluated to ensure that its performence is converging towards establish goals. The
task of testing expert systems is unlke that found for conventional programs where
the verification of the software is of primary concern. Verification studies attempts
to determine whether the progran completely satisfies initial requirements.
Conventional program usually have well defined specifications that can be measured
according to some objective standarc. Expert systems on the other hand are designed
for problems that do not have a clear right or wrong answer. Therefore, a “gold
standard” does not exist that can be tompared with the system’s results. Because the
lack of gold standard, the evaluaion process is more concerned with system
validation and user acceptance. Validation efforts determine if the system
satisfactory performs the intended task — a relaxation of the stricter verification
process. User acceptance efforts are concerned with issues that impact how well the
system addresses the needs of the user. The testing and evaluation stages used are

based on MYCIN evaluation techniques.

66

7.2 System Validation

If the expert system is correctly designed, it should derive the same results as an

expert reason in a manner similar to that of the expert. Therefore, validation efforts

address the following:
e Validating the system’s results

o Validating the system’s reasoning process

7.2.1 Validate Results

Formal testing usually involves the use of a test case. There major

considerations used to validate the resuits of an expert system are:

e Test criterion

In order to judge whether the project has successfully met its goal, a
criterion is usually established against which the project is assessed. A
different approach relies on comparing the system’s performance relative

to that of the domain expert. Important points of this evaluation are:

. Relative comparison ~ Given the same test cases, the expert system

was able to do as well or faster then the human expert.

Evaluation requires judgment - In general, when evaluating the results

provided by an expert system, users need to make a judgment call on

67

the correctness of the result, Users were given a set of possible
evaluation responses to fill out. The results were ther: used to judge

the performance of the system and to decide whether further

development is necessary.

Test cases

The expert system was first tested with typical problems from the
domain, for example common everyday mushrooms, and then the ones

that are unusual. The system is proven to be worth-while in both

problems areas.

Evaluators

Evaluators are end users who are not associated with the projects. Other

experts are not included because it was difficult to obtain the cooperation

of so many individuals, Some evaluators were biased against a computer
program that is designed to model human decision making, They do not
think that the computer really knows what the mushroom looks like and
may produce inaccurate matches. Inspired by the Turing Test (Turing
1950), the author presented the evaluators responses of a computer along

with those from a human, Later, it is proven that the computer can be as

intelligent as a human, as the evaluators cannot distinguish the computer

output from that of a human.

68

7.2.2 Validate Reasoning

Besides evaluating the results, evaluators wanted to know if the system is
getting the right answers for the right reason. The main reason for this is the
limited number of test cases that might actually be used during evaluation
studies. Two approaches are used to validate the system’s reasoning.

On the macro level, the evaluators studied the results of various subissues
that led to the final result. Credibility of the system was established as the
evaluators are convinced that correct performance is a product of intelligent
reasoning.

On the micro level, the evaluators were able to trace back through all of
the rules used for the case that led to the result and verify their correctness. This
approach is similar to that used by system designer during debugging of the

knowledge base.

69

7.3 User Acceptance

Perhaps the ultimate test of an expert system is will it be used? Therefore, a
major part of any expert system evaluation study must address the needs of the user.
Important issues considered to evaluate the degree of user acceptance are:

e Ease of use

e Clarity of question

e Clarity of explanation

e Presentation of result

7.3.1 Ease of Use

Since the users are all experienced computer users, the interface design
does not seem to give them any trouble and was well understood. However, it

was redesign several times to make sure that even inexperienced computer users

are able to benefit from the system.

7.3.2 Clarity of Question

The performance of an expert system is strongly dependent on the
information it receives form the user. Though there were some hesitations in

providing the answers, the users were able to finalize the process after several

explanations,

70

7.3.3 Clarity of Explanation

The system does not include explanations of “why” some question is
being asked and “how” some conclusions were reached. However, the users were

able to trust the final result of the search based on the mushrooms’ facts itself.

7.3.4 Presentation of Results

The system’s presentation of the final results is just a single and
sometimes multiple recommendations. Though it does not provide pictures, the

result was proven to be clear and meet the user’s needs,

71

8.

8.1

Discussion

Problems and Solutions

8.1.1 Problems

During the knowledge acquisition phase, two problems were faced. First,
because of the vast experience and knowledge, the expert had given too many
information. To use all this information would result in a really complex system
that would take longer time to develop. The author had to extract the relevant
knowledge that is suitable with the skills and time available. To do this,
references like bocks and the internet were used, and this is where the second
problem occurs. Books available are mostly old publications and from overseas,
which results in inconsistent knowledge that sometimes contradicts the existing
Malaysian information. Information from the internet sometimes provides

incomplete or even incorrect knowledge.

Other problems were faced during the design phase. Too little information is
available for the frame-based knowledge representation technique, as many
existing expert system uses rule-based approach. This makes it hard to design the
system and takes longer time to build it. Interface design is also a major problem

because the author had no experience building graphical user interface with

72

Prolog before. Designing it takes more time then planned and this leaves

insufficient time for other task to be fulfilled.

8.1.2 Solutions

Although there are several problems mentioned, the author had

successfully found a way out by applying these simple steps:

For knowledge acquisition phase:

1. Books and other reference used must be proven to be reliable by
verifying the author and the publisher. References that are recently
published are preferred as the source of information is updated.

2. Any confusing knowledge is referred back to the expert for verification.
In some case where the expert cannot remember everything, step 1 is

applied again.

For design phase:

I. More references are used and more research time is put on to it.

8.2

Advantages and Disadvantages

8.2.1 Advantages

Since the system uses object communication rather then rules, it has an
efficient way of encoding procedural knowledge. This permits the use of
variables within the rules in the form of pattern matching statements that do the
work of many standard rules. A single pattern matching rule can scan all the
instances of a class. Working with only one rule enhances the maintenance and
debugging of the system. Instances can be freely add or delete from the problem

without touching the rule. The rules can aiso be modified without changing the

frames.

The system also provides a well defined help file that includes all the
relevant information of mycology. Additional information provided will benefit

those who wish to understand more about the mushroom identifications itself.

74

8.2.2 Disadvantages

Due to some misidentified information, the system cannot be turn into an
executable version because the existing Prolog version available at the faculty

does not have the application builder function. Therefore, users who wish to

evaluate the system must have Win-Prolog to run it.

Further more, the system does not have picture integrated within it,

including the final display which is suppose to give a picture of the mushroom

that the system has identified.

Also, as the knowledge base gets bigger, it can be difficult to debug a
system where actions flow through a large number of objects. When something
goes wrong, you will need to trace back through all of the actions to locate the

problems. It will also take a longer time for the system to search and identify the

mushroom.

75

8.3 Future Plans

The purpose of this project was to show the utility of the idea of developing an
expert system for mushroom identification. Having made the point, the next step is
to enhance the program for a real-life use. This involves updating the key with more
discerning features, so that not only it identifies the existing mushroom (currently
within the capability of the program) more accurately, but also identifies a larger set
of mushroom, which would make the program much more acceptable. Such
improvement of the program could be done by either re-building the key from the
scratch, or by letting real experts (mycologist) test the system and asking them to see
if some mushroom is misidentified or if some mushroom are not being identified by
it. When such situations occur, update the key and then update the program
accordingly. The incremental updating would benefit the system because there will
probably never be a really 'exhaustive' key for all possible mushroom. However, the

author expects the system to keep on improving over time.

The presentation of results can also be enhanced. For example, it can be possibly
rank ordered or accompanied with a numeric reflecting the level of believe in the
results. This is essential to provide correct identification, especially when there are

several slightly identical mushrooms found to meet the criteria.

Any useful system nowadays is also expected to have a higher level graphical

user interface with graphical/image-based explanations. The author plans to enhance

the program toward this direction for the ease of use.

76

Appendix A

Glossary of Expert System Terms

Abduction
Algorithm
Attribute

Best-first search

Branch

Breadth-first search

Class
Clause

Data driven

An uncertain inference
A set of step-by-step instruction for accomplishing task
A property of an object

Search technique that uses knowledge about the problem to guide
the search

Connection between nodes in a tree

Search technique that looks for a solution along all of the nodes
on one level of a problem space

A collection of objects that share common properties
A conditional statement held in the premise part of rule

Inference method where data is obtained and the svstem

determines what it can conciude from this information. Also
called forward chaining

Declarative knowledge Descriptive or factual knowledge

Deduction

Depth-first search

Domain

Domain expert

Fact

Fire

Frame

Coming to a conclusion by the process of reasoning deductively

Search technique that explores each branch of a search space to its
full vertical length, and then proceed using chosen rule of search

The problem area

A person who possesses the skill and knowledge to solve a
specific problem in a manner superior than others

A declarative assertion or statement that has the property of being
either true or false

To activate the conclusion of a rule if the premises are true

Knowledge representation method that associate an object with a
collection of features

77

Goals

Goal driven

Heuristic
Induction
Inference

Inference engine

A hypothesis to prove or node in search space containing solution

Inference technique that begins with a goal and works backwards
through the rules in an attempt to prove the goal. Also called
backward chaining

Knowledge, often expressed as a rule of thumb

Inducing rules from knowledge contained in a set of examples

The process of deriving new information from known information
Processor in an expert system that matches facts contained in the

working memory and the domain knowledge contained in the
knowledge base, to draw conclusion about the problem

Instance A specific object from a class of objects
Knowledge A collection of facts, rules and concept used to reason with
Knowledge acquisition Process of acquiring, organising and studying knowledge

Knowledge base

Part of an expert system that contains the domain knowledge

Knowledge engineering The process of building an expert system

Knowledge representation ~ The method used to encode knowledge

Predicate

Rule

Rule-based system

Semantic network

Shell

State space

Working memory

A statement about the subject of a proposition

A method of representing knowledge consisting of premises and a
conclusion

A computer program that processes problem-specific information
contained in the working memory with a set of ruies contained in

the knowledge base

A method of knowledge representation using a graph made up of
nodes and arcs

Development package that has all the facilities for building an
expert system

A graphic representation of all the potential problem states

Part of an expert system that contains the known facts of a given
session with an expert system

78

Appendix B

Glossary of Common Mycological Terms

Acomycotina
Ascospores
Basidioma

Basidiomycotina

Basidiomycetes
Basidiospores

Basidium

Deuteromycotina

Fruit(ing) body

Gasteromycetes
Hymenium
Hymenomycetes

Hypa

Mastigomycotina

Mycelium

Teliomycetes
Ustomycetes
Zoospore

Zygomycotina

Asci, containing ascospores, result from sexual process
Sexual spores of ascomycetes
Synonym for basidocarp (plural, basidiomata)

Fungi in which sexual process involves the production of haploid
basidiospores born on a basidium

Fungi that have fruit bodies (basidiocarps), plus a few yeast
Sexual spores of basidiomycetes

The enlarged terminal cell of a hypha which bears basidiospores,
in basidiomycetes

Fungi imperfection, classified on the basis of asexual morphology

The large spore bearing structures in Ascomycetes and
Basidiomycetes

Fungi that have basidiospores that are not actively launched
A surface of a fruit body, which sexually-produced spores is born

Fungi that have a hymenium

The tubular cell growing at one end which is the development unit
of mycelium

Fungi that have motile spores (zoopores) or gametes

The mass of hyphae, not in the form of large structures like
mushroom, of which the fungi are mainly composed

The rust, so called because the rust coloured masses of spores

The smuts, important plant pathogens
Spores whish can swim in water using one or two flagella

Fungi that have large resting spores, results from sexual process

79

Appendix C

Ilustrated Figures of the Development Models

| Requlreme
| definition

il

_ Impl emertation
: and unit test.mgi

- Irtegratmn and
system testmg

Operaxon and '
, ,,mnmtename

Waterfall Model
, OPERATION
Validot l t
Reouur::mgm = j_iifi“ e & MAIKTENANCE
\ N pceemnee
, ‘ TESTING
o
MO - *a /
N osvsren
Yarily design ~ TESTING
PROCRAM -

M] TR Mg,
oy GRATION TESTING

V Model

80

Concurrert

Evolutionary R

Model

Y 4 ey A kU
et o AR

B
e
Aoh

RIE S

‘Olltliﬁ'é"tl:iq'l i
 description

s
I

Determine objectives
alternatives and
constraints

REVIEW

Risk

analysis

analysis

i

1y

RELARIASR
Sugie!

i

|

il
il

Risk
analysis

Risk

Ev aluate altem atives
identify, resolve risks

i onal
protoype

Requirements pl an
Life-cycle plan

Development
plan

Integrati on

Plannextphase gacienpixd

Spiral Model

Conceptof

Simul ati ons, m odels, b en chmarks

Operation SIW
i t Product
requirements dosign // Denailed
Requirement design
valid ai o Code
Design Unittest
V&v Integration
Acceptance test

Service test Develop, verify

nextdevel product

81

Reference

Bratko, Ivan (2001), Prolog Programming for Artificial Intelligence. 3" Edition.
Addison-Wesley.

Carlile, Michael J. and Watkinson, Sarah C. (1996). The Fungi. Academic Press Limited
Durkin, John (1994). Expert Systems: Design and Development. Maxwell Publishing

Ingold, C.T. and Hudson, H.J (1995). The Biology of Fungi. 6™ Edition. Chapman and
Hall.

Karahan, Esen O. (1990). Database Management: Concepts, Design and Practice.
Prentice Hall.

Lucas, Robert (1993). dpplication Programming in Quintus Prolog. Alfred Walter
Limited.

Moss, Chris (1994). Prolog++: The Power of Object Oriented and Logic Programming.
Addison-Wesley.

P.Sellappan (2002). Visual FoxPro through Examples. Federal Publications Sdn. Bhd

Schildt, Herbert (2000). Windows 2000 Programming from the Ground Up. McGraw-
Hill.

Sebesta, Robert W. (2002). Concepts of Programming Languages. Addison-Wesley

Sommerville, Ian (2001). Software Engineering. 6™ Edition. Addison-Wesley.

82

Watling, Roy (1973). Identification of the Larger Fungi. Hulton sE\,dyuqational.
Publications Ltd.

Whitten, Jeffrey L., Bently, Lonnie D. and Dittman, Kevin C. (2002). System Analysis
and Design Methods. 5™ Edition. McGraw-Hill.

LPA Win-Prolog at http://www.lpa.co.uk/, accesses July 2003
Automated Fungi Identification at http://www.agarics.org/Index.jsp, accessed July 2003

An TIllustrated Key for the Identification of Fungi, Wild Mushrooms and Toadstools at
http://mycosoft.co.uk/home.htm, accessed July 2003

Of Mushrooms and Machine Learning: Identifying Algorithms in a PDP Network at

http://www.cnbe.cmu.edu/~medler/papers/mushroom.html, accessed July 2003

An Interactive Guide to Massachusetts Snakes. at

http://www.umass.edu/umext/nrec/snake pit/, accessed July 2003.

Common Conifers of the Pacific Northwest. at http:/fme.cof.orst.edu/1110a.html,
accessed July 2003.

Douglas-fir Cone and Seed Insects at http://www.for.gov.be.ca/hti/IID/index.htm,
accessed July 2003

Whale Watcher at http://www.aiinc.ca/demos/whale.html, accessed July 2003

Mushroom Expert.com at

http://www.bluewillowpages.com/mushroomexpert/index.html, accessed August 2003

83

