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Chapter 1 : Introduction

1.5 CHAPTER SUMMARY

Fuzzy relational theory is well designed and has the potential to work as a good
inference engine in a medical expert system. In the later chapters of this dissertation, the
concept of this theory will be discussed, as well as revisions and contributions to this theory.
However, the theory is useless if it cannot be proven or it is not working well as it is believed.
A system must be developed and tested to show the performance of the theory working in the

background. This is also done in the later part of this dissertation.




Chapter 2 : Fuzzy Sets And Fuzzy Relation

Chapter 2

FUZZY SETS AND FUZZY
RELATION

2.0 INTRODUCTION

In this chapter, a theoretical background of fuzzy sets theory as well as fuzzy
relational inference structures will be given. Some common symbols that will be applied

throughout this dissertation are also introduced here.

This chapter starts with a brief explanation on crisp sets theory and then a comparison
with fuzzy sets theory. Fuzzy relational product is defined in the later section of this chapter,

where application of some logical connective and their problems is discussed together.
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2.1 CRISP SETS

A set is a group of objects showing similar charactferistic [Vaught 1995]. Ordinary set
theory, or crisp sets are sets that deal with two types of membership status : member or
nonmember of the set. Examples of crisp sets are set of universities, set of natural numbers
and set of working days :

A= { UM, USM, UPM, ... } (local universities)
B=§1, 2341 (natural numbers)

C = { Monday, Tuesday, Wednesday, Thursday, Friday } = (working days)

An empty set is a set without any member, denoted by &. A universal set is denoted
by letter ¥, which represents all the possible elements of concern in each particular context or
application. To define a set in a universe, a characteristic function is used to map all
elements in the universe to element of set {0,1}. If pc is the characteristic function of set C,

we can write :

Definition 2.1
pe:c—> {01}
To map an element d to set C: If ¢ is a member of set C (¢ € C), we will get p(c) = 1.

Otherwise, if ¢ is not a member of set C' (¢ ¢ C), we will get pe(c) = 0.

Number of members in a set is represented as n. Using the example above, we can

write n(C) = 5 and n(B) = .

w10
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If all elements in set 4 are also members of set B, we say that set B is a superset of set

A, orset A is a subset of set B :

Definition 2.2

AcB

Definition 2.3
If set A and set B share the same members, i.e. every member in set 4 is also a

member in set B and vice-versa ( A € Band B € 4 ), we say that set 4 and set B are

equivalent, 4 = B. Otherwise, 4 # B.

Definition 2.4
The word proper subset refers to the situation that A is a subset of set B and 4 is not

equivalent with set B, i.e. A< B and 4 # B hold true. We write that :

AcB

Definition 2.5
The power set of a set A, P(4) is defined as the set of all subsets of set 4. Number of
members of a power set grows with increasing number of members in the set :

n( P(4) )=2""Y

Definition 2.6
Complement of a set 4, A is a set which contains all elements in the universe except

members of set 4. Whereas, relative complement (also called difference) of a set 4 with

« 1T =
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respect to set B is a set containing all members of set B that do not exist in set 4. We denote
thesetas B- A4 :

B-A={x|xeBandx g A }

Definition 2.7
A set containing all members of set 4 and set B is a union of set 4 and B :
AuB={x|xeBorxeAd}
The concept of union is also applicable to a family of sets, 4, for example, where i € /:

U}A;:{xlxeA,forsomeieI}

Definition 2.8
Another common operator for crisp sets is intersection. An intersection of two sets 4
and B is a set containing elements that are members of both sets :
AnB={x|xeBandxe A4}
This concept also can be applied to a family of sets, 4, for example, where i € [ :
QA,:{xlxeA,forallieI}
With the above operators, we can express some important properties (Table 2.1) that

are held by all crisp sets.

Table 2.1 : Properties of Crisp Sets with Union And Intersection Operators

[nvolution o
Commutative AUuB=BuAd
AnNnB=BnNnA

0
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Associative

Distributivity

[dempotence

Absorption

Law of Contradiction
Law of Excluded Middle

De Morgan's Laws

(AuB)uC=4Au(BuCC)

ANnBNC=An(BNnC)

ANnB)ulC=(AuC)Nn(BUC(C)

(AquwC=(AhC)u(BmC)

ANnA=4

AvA=4

Au(AnB)=4

ANn(AuB)=4

ANA =@
AUA =X
ANB=AUB
AUB=4NB

(Xis a universal set)

Definition 2.9

For a set of real numbers A, if there exists a number x such that x > @ for all @ € 4. we

say that x is the upper bound of 4. Furthermore, if no number less than x is an upper bound

of 4, we call x as supremum of 4. We denote this supremum as sup(4).

Definition 2.10

Similarly, we can define lower bound and infimum as follow : If x is a number such

that x < g for all @ € 4, x is the lower bound of 4. If no number greater than x is a lower

bound of A, then x is the infimum of 4 and denoted as inf(4).

~ E3
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is considered as a special case in fuzzy sets theory. Or we can say, crisp sets theory is a subset
of fuzzy sets theory. Furthermore, some concepts and operators of crisp sets are borrowed and

applied in fuzzy sets theory after alteration.

2.2.2 TERMINOLOGY AND OPERATORS
Basic terminology and operators of fuzzy sets have been discussed by [DeBaets and

Kerre 1994, George and Yuan 1995, Novak 1986] and summarized as below :

Definition 2.12
The a-cut of a fuzzy set 4 produced a crisp set where the members of this crisp set are
all the elements in A with degree of membership equals or greater then o, where oo — [0, 1] :

q={x| Axzo}

Definition 2.13

The support of a fuzzy set A is a crisp set such that all elements in fuzzy sets 4 with
degree of membership greater then zero will become a member of the crisp set. In other
words, it is equal to O-cut :

Supp(d)={x| Ax#0 }

Definition 2.14

The kernel of a fuzzy set A is another crisp set such that all elements in 4 with degree
of membership equal to one is a member of the crisp set. In other words, it is equivalence
with 1-cut (a-cut with o=1):

Ker(d)={x| Ax=1}="4

= bG
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Definition 2.15
Height of a fuzzy set 4, denoted as hgt(4) is the value of largest membership degree
obtained by members in the set, whereas the plinth, plt(A.) is the lowest membership degree

obtained by members in the set :
hgt(A) = sug A(x)
plt(4) = }2{, A(x)

We say that a set is normal if height of the set is 1, otherwise, it is subnormal.

The three basic operators in crisp sets, i.e. standard complement, standard union
and standard intersection are also applicable in fuzzy sets theory after generalization. The

standard complement of a fuzzy set with respect to universal set V' is defined as :

Definition 2.16

Ax = 1-Ax forallx e X

Zadeh [1971] has proposed that standard intersection and standard union for two set 4

and B can be defined for all elements x in the universe using MIN and MAX operators as

follow :
Definition 2.17
C=4AnB8 iff Cx = min( Ax, Bx) standard intersection
C=4U8B il Cx = max( 4x, Bx) standard union

And both can be generalized to work with a family of sets, A; whereie I :

S s
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C= Q Ai iff Cx= infAi(x)
C= U 4, iff Cx= supA4(x)
1el

fel

Although standard complement, standard intersection and standard union were
defined for fuzzy sets, some properties of crisp sets described in Table 3.1 does not hold in
fuzzy sets. Law of contradiction and law of excluded middle as defined for crisp sets theory is
violated in fuzzy sets theory, this can be proved easily :

for law of contradiction, A N A = @
But Ax = 1 - Ax

So. Ax N Ax =min( Ax, 1-Ax)#0 unless Ax €{0, 1}

Obviously, the law of contradiction only works on erisp sets.
For law of excluded middle, 4 UA = X
Similarly, with Ax = 1 - Ax

We can write Ax U Ax = max (Ax, 1-Ax ) # | unless Ax € {0, 1}

So, it is clear that both laws are only true when working with crisp sets.

2.2.3 TRIANGULAR NORMS AND CONORMS
Instead of standard intersection and standard union of fuzzy sets, Alsina et. al. [1983]
have introduced the theory of triangular norms and triangular conorms into the world of fuzzy

sets, as an alternative to the above operators. The terms “triangular norms™ and “triangular

-18-
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conorms”, now have accepted widely as equivalent to the class of “fuzzy intersection™ and

“fuzzy union” respectively [George and Yuan, 1995].

Definition 2.18

A function T : [0, 1]* = [0, 1] is called a triangular norms if these properties holds:

1) T(al)=a (boundary condition)
i) T(ab)<T(ac) ifb=sc (monotonicity)

ii1) T(a,b) = T(b,a) (commutativity)

iv) T(a, T(b,c)) = T(T(a.b),c) (associativity)

where a, b, ¢ € [0, 1]

It is clear that from the first 3 properties of the triangular norms,

7(0,1)=71(1,0)=0 ( from boundary condition and commutativiy )
T(1,1)=1 ( from boundary condition )
T(0,00=0 ( from monotonicity )

And this has shown that intersection of crisp sets is fully embedded into fuzzy
intersection, where intersection of crisp sets is a very special case that degree of membership

of both sets are 1 or 0.

Some additional properties which may hold by some triangular norms include :
i) T is a continuous function (continuity)
i) T(aa)<a (subidempotency)

iii) T(a.b) < T(cd) ifa<candb<d  (strict monotonicity)

- |9
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Definition 2.19

A function 1 : [0, 1]* — [0, 1] is called a triangle conorms if these properties hold:

i) l(@0)=a - (boundary condition)
i) L(ab)<Ll(ac) ifb<c (monotonicity)

iit) L(a,b) = L(b.a) (commutativity)

iv) L(a, L(b.c)) = L(L(ab)c) (associativity)

wherea, b. ¢ € [0, 1]

It is clear that from the first 3 properties of the triangular conorms,

10, D=1(1,0)=1 ( from boundary condition and commutativiy )
W, D=1 ( from monotonicity and boundary condition)
1(0,0)=0 ( from boundary condition)

As in the case of triangular norms, union of crisp sets is also fully embedded into
fuzzy union, where crisp sets are special cases that the degree of membership of both sets are

1 or 0.

Some additional properties which may hold by some triangular conorms include :
i) L isa continuous function (continuity)
i) L(a,a)>a (superidempotency)

iii) L(a.b) < L(c.d) ifa<candb<d (strict monotonicity)

=50
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K16 =min ( % 2(R,~Ss) , OrBot(4ndBot(R,.Sk)) )
J=1

K17 =min ( + X(R>Sx) . 5 El(AndTop(R,,,S,;)) )
s= /o

K18 = min ( + Zl(R,,—:»Sﬁ) . x EI(AndBor(Ru&)) )
J= /=

Va=19 ... 36, Ka = max ( ®:(R,—>Sk) , O(Py(R,,Sk)) )

Where
PlyTop, —
PlyBot, =
AndTop
AndBot
OrTop

OrBot

These structures should work well as the core of inference engine of an expert system.
However, defects have been found. Below, we are going to discuss some cases where sub K

inference structures show their weakness and make the result of inference not reasonable and

unreliable,

We will illustrate an example from medical diagnosis, where A is a set of patients, B
is a set of signs and symptoms and C is a set of diseases. We have R as the relation from
patients to signs and symptoms, which varies among patients. We also have S as the relation

from signs and symptoms to diseases, which are stored in the knowledge base :

Min(1,1-a+b) =1
Max(b,1-a) = Ikp
Min(a,b)

Max(0, a+b-1)
Min(1,a+b)

Max(a,b)

-50-
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RcAxB

and ScBxC

411 Case Ry < Si

Of course this could be a common case, but it brings a big challenge to those inference
structures, especially K19 to K36. In such case, the upper bound of R, — Sj ismin(l, 1 - R,
+ 84 ) = 1. Thus, for K19 to K36, which take max as the outer connective, the result will
always be 1. Surely, this is not reasonable and we should not put K19 to K36 into

consideration while designing inference engine.

Below are some examples which will result in the case :

B, B B; C
A 0.8 0.5 0.6 B, 0.9
As 0.4 0.7 0.7 B, 0.8
As 0.5 0.1 0.6 B 0.7
The bounds of the result :
AC, ACy AsC,
Upper Bound | 1 Lo 8- fied 3 o

On the following, we will only consider inference structures that take min as @,.

-51%
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AndTop(R,, Si) =min(R, , Si) = Ry, so, OxrTop(AndTop(Ry , Sy)) =1
For the upper bound of these inference structures, we take I, as implication operator :

K1 = min ( AndTop(R,—Si) , OrTop(4ndTop(R;,Sk)) )
=min(min(l), 1)=1
K7  =min ( AndBot(R,—>Sx) . OrTop(4ndTop(R,,Sk)) )

=min(1,1)=1

K13 =min(+ g(fe,,—»&,,) , OrTop(AndTop(R,.Sx)) )
“fﬂ

=min(131). =1
=

So, upper bound of all theses inference will be 1, regardless the actual value of R, and

For the lower bound, use Ixp as implication operator :

K1 =min ( AndTop(R;—>Sk) , OrTop(dndTop(R,.Sk)) )
= min(min(Si) , 1) = min(Sk )
K7 = min( AndBot(R,—>Si) , OrTop(AndTop(R;,Sk)) )

= min( AndBot(S) . 1) = AndBot(Sx)

K3 =~minfd f;m.,-nso , OrTop(AndTop(R,,S) )

= min (4 30, D=4 25
J=1 =1

-8 =
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Obviously, the result of the lower bound inferences will totally depend on Sy , which

are taken from the knowledge base.

In this case. the data taken from the real world (R,), i.e. how strong was a

sign/symptom found on a patient have no influence on the result of inferences.

These are examples that have unreasonable inference result because of this weakness:

B, B, B; C,
Ay 0.7 0.5 0.8 B, 0.8
As 0.5 0.4 0.5 B, 0.6
As 0.6 0.6 0.7 B; 0.9

The bounds of the result (K1) :

AICI AICI AJCI
Upper Bound 1 1 1
Lower Bound 0.6 0.6 0.6
The bounds of the result (K7) :
AiC A,C, AiCy
Upper Bound 1 1 1
Lower Bound 0.8 0.8 0.8
The bounds of the result (K13) :
AC, A;Cy A;Cy
Upper Bound 1 1 1
Lower Bound 0.77 0.77 0.77

-54 -
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4.1.4 Case Ry<min(Sy)and Ry + S > 1
/

This are other defects of K3, K9 and K15, which uses ®; and ®; as OrBot and
AndTop respectively.
AndTop(R; , Sy ) =min (R, , S ) =Ry

OrBot(AndTop(Ry , Sk )) = mjax (Ry)

For upper bounds,

K3  =min ( AndTop(R,—Sk) , OrBot(AndTop(R,.Sy)) )

= min (min(1) , max (R, ) ) = max (R, )

K9 = min ( AndBot(R,—>S) , OrBot(AndTop(R,,Sy)) )

= min ( AndBot(1) , max (Ry))= max (Ry)

K15 =min( % Zj(R,,—-)S}k) , OrBot(4ndTop(R,.Sy)) )
-

= min (4 3(1), max (R, ) ) =max (R, )
J=1 J J

Whereas for lower bounds :

K3  =min( AndTop(R,—>Sx) , OrBot(AndTop(R;,Sx)) )

= min (min (Sn ), max (R, ) ) = max (R, )
K9 = min( AndBot(R,—>S) , OrBot(4ndTop(R,,Sy)) )

= min ( max [0,;(5}1)-(!‘1— l)) , max (Rg))=mﬁx (Ry)

o 85
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K15 =min( % E%(R,,—a».S}k) , OrBot(AndTop(R,,Si)) )
J=

= min ( % il(S;sJ » max (Ry))= max (Ry)
J=

In this case, the result of both upper and lower bound will be the biggest value taken

from real world, i.e. mfx (R; ). Data from the knowledge base will have no influence on the

result of inferences. Furthermore, only the biggest value of the experimental data will affect
the final result, this is not reasonable because the result of inference will be based on a single

data.

These are examples that have unreasonable inference result because of this weakness:

Bl Bz B3 C;
A 0.3 0.5 0.4 B, 0.7
A; 0.7 0.2 0.1 B 0.8
Ay 0.7 0.7 0.7 B; 0.9

The bounds of the result (K3):

AC A,Cy A;C,
Upper Bound 0.5 0.7 0.7
Lower Bound 0.5 0.7 0.7
The bounds of the result (K9):
ACy A;Cy AiC,
Upper Bound 0.5 0.7 0.7
Lower Bound 0.5 0.7 0.7
The bounds of the result (K15):
A[C] AzC; A;C;
Upper Bound 0.5 0.7 0.7
Lower Bound 0.5 0.7 0.7

SEEL
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4.1.5 Case Sx<Ry

This case affects K5 and K17 in different ways, but both of them share the same

cause, i.e. AndTop( R, , Sx ) = min(R;, . Si) = Si.. We will consider both one by one.

K5 : For the caseR,;,-mex(SM) ;1-Ry;2R,-Sypand 1 - R, < Sy, we have :
Upper bound of K5,
K5  =min ( AndTop(R—~>Sy) , ljg;, (AndTop(R,,Sy)) )
= min(min (1, 1-R+S4), % 3 (59)

Since 1 -R,2R,-Sp = 1-R; +Sp2 Ry

On the other hand, R, 2 mfx(S,,,)
=1 -Ru+5}g2m§1x(Sm)
=51 -RH'I-S;*Z‘,I,‘E%(S:&)

j:

So,

For the lower bound, PlyBot = Ikp

KS  =min( AndTop(R—>Ss), & Z1 (AndTop(R,,Sp)) )
=

Since 1 - R,y SS;.E »
\ n
K3 =min ( n}jn(Sﬁ) . z}. (Sk) )

= n}in (Sik)

SR
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—

The bounds of the result (K17):

A]C] AIC 1 AJC 1
Upper Bound 0.5 0.5 0.5
Lower Bound 0.5 0.5 0.5

4.1.6 Case: AndBot ( Ry — Si ) As First Term

This case affects K7, K8, K9, K10, K11 and K12 which AndBot(R,—S):) becomes the

first term in min function and take min as the outer connective.

According to Proposition 3.1, when number of (R,—S;) increased, AndBot(R,—Sj)

Can be generalized into :

AndB;ol(a,—) = max [0, an: (a)—(n- 1))

n
When n is increasing, (n-1) will increase faster than 21 (a;), for Va, < 1.0. In another
h

Words, 2, (a;)—(n—1) will become smaller and smaller and eventually become 0 or

=1

Negative number.

Thus, And]?;ot(a,—) = max (O, ; (a)—(n—- l)J =0 while 7 is increased up to a

Certain level. For example, for all the a=0.9, n=10 is enough to make the term become 0, as

Well as the final result of inferences.

-59.
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‘I-ﬁ-___-__

It is important to have pseudo-strict monotonic property in logical connectives,

however, most existing logical connectives does not fulfill the requirement.

4.3 GENERATING PSEUDO-STRICTLY MONOTONIC

FUZZY IMPLICATION

It is rather safe to improve the original inference structures compared to reconstruct a

New theory, and this is what most scientists do since long time ago.

The basic concept of interval value inference proposed by Bandler and Kohout
“936%1, 1986b] is good, but the well known implication operators Ixp and I, do not perform
Well as expected. As an improvement, Hallam [1999] has generated a family of fuzzy

Mplication operators as a substitution of Ixp and 1.

From the checklist paradigm, it is clear that Ixp and I, are the lower and upper bound
of an inference, respectively. Bandler and Kohout also proposed that Ixp. is the expected

Value of such inference. So :

Ixp < Ik <1,

From here, 2 implication operators Ix and Iy can be generated, where Ixp < Ix < Ixpe

aﬂd IKDL < ['r < IL.

\“‘"‘-—__

e
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“"--._____-__

Using dichotomous division,

A (6)+ (1 —a+ab) (Ira)+(l-a+ab)]
Iy = max 3 s 5
—max[l_a(b;l)+b, 1_a+g2_(2]
Also,
_ [+ -a+ab) (l—a+b)+(1—a+ab)]
Iy = min 5 ; 3
8 —-b) b(1 +a)
I’l‘ll[l-—- 1——a+—2 ]

Of course, using the same method, we can have infinite number of fuzzy implication

OPerators generated in the interval [ Ixp , Ix ), [ Ix, Ixp ], [ Ixp, Iy J and [ Iy, I ].

\)\_a Between Ixp and Ix

We can have infinite number of fuzzy implication operators which stand between Ix

ad Iy, We can generalize it as :

Iy = o] 2N e DGRl o SR D
and

I'Knp=max[l—a(b+12):(2p_l)b,1 —-a+ ‘213

Where I’kp, stands between I’kp, , and Ix, whereas Ixp, stands between Ixp, , and Ikp.

I .
T another words, The increasing of p will make I'kp, move toward Ixp, and Ixp, move

towal.d Ix.

o 50
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=1
Ifp=1,
Ikp, = max[b,1—a] = Ixp
and
Pkp, = max[ 1 —a(b2+l)+b : l—a+%]= Ix
Ifp=cw
b max[l—a(b;—lhb : 1_a+%]= Iy
and

I'kp, = max[b,1-a] = Ikp

b) Between Ix and I

Similar to fuzzy implication operators between Ixp and Ix, we can have infinite

MWmber of fuzzy implication operators between Ix and Ixpy. :

by = ma] 2= DI GO, oy 7 L]
and
Pxow, = max[ (27! + 1)1 +a(b2; 1)]+@r! - l)b’(1 e (27! ;pl)(ab)

Where I'kpi, stands between I’kpi,, and Ix, whereas Ix, stands between Ix,, and

ko, In another words, the increasing of p will make I’kpr, move toward Ixpt, and Ix, move

tOWard IX-
Ifp=1,
Ix, = max [1+a(b2—1)]+b‘(l_a)+'(_gjiﬂ = Ix
and
3 I'kor, = max[(1+a(b-1))+b,(1-a)+abl=1-a+ab= IxpL
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Ifp=oco
Ix, = max[(1 +a(b-1))+b,(1 —a)+abl=1-a+ab= IxpL

and

[[l+a(b—

I’kpt, = max = Ix

_)\c Between Ixpr and Iy

Another family of fuzzy implication operators can be generated between Iy and Ixp. :

IkpL, = min[l £ 1;&“)(1 =b) (1 -y 212 = 1)+:-2 gzr' +1)a)]
and
Iy, = min[l_ (2p_1)§g)(1 -b) = b[1+(§f;-l)a]

Where Ikpi, stands between Ikpi, , and Iy, whereas Iy, stands between Iy, , and Ikpi.

In another words, the increasing of p will make Ixpr, move toward Iy, and Iy, move toward

IKDL.
Ifp=1
Ikpr, = min[1 —a(1-5), 1 —a+ab] = IkpL
and
Iy, = min l————*(a)(I =b) 241 —a)+-—~——'—b[1+a]] = Iy
' 2 2
If p=oo
IkpL., = min l—a(lT_b),(l—a) b(lz"'a) = ly
“'-\._h_____
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and

Iy, = min[l =a(1=5), 1 —a+ab] = IxpL

g-)M'een Iy and 1,

Lastly, another family of fuzzy implication operators can be generated between ly and

bl(27 - 1) +a]
2p

Iy, = min[l -—a—(lz;—b),(l —-a)+

P

and

(@ - 1;&::)(1 -b)’(1 ) B 1)+2£2P-* - 1)a)]

Iy - min[l

Where I;, stands between Ii,, and I, whereas Iy, stands between I’ and lv. In

nother words, the increasing of p will make Iy, move toward Iy, and I}, move toward I,..

Ifp=1
I, = min I—w,(l—ahw]: Iy
and
Iy, =min[l,1-a+5] = I,
Ifp=co
I, = min[l,(1-a)+b] = I,
and
I’L. = min l—a[;zﬂgl,(l -a)+£[}*2+—a] = Iy
o RIS
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9 Continuity

I is a continuous function from the unit

interval to the unit interval.

Among all properties shared by these operators, property 6° and 7’ are most

"®markable. These pseudo-strict monotonicity properties are not exhibited on traditional fuzzy

'Mplication operators Ixp, I as well as Ixor.

4.4 CONSTRUCTING PSEUDO-STRICTLY MONOTONIC

FUZZY LOGICAL CONNECTIVES

With the fuzzy implication operators generated in last section, we can generate

C » - . .
Orresponding connectives using the relation :

NOT a=a=1-a

aANDb=a—-b=1-[a—>(1-b)]

aORb=a-b=(1-a)—>b

9 Deﬁning — as Iy

AND, = max| 22, g+ 1+ aXe=1) |
OR, =max| b+ a(l;b)'a+ b(l2_ a) ]
‘\__-___
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b) Defining — as Iy

b(1-a) alb+1)
G T ]

[I ¥ (l—a)z(l _b),a-i-b-

ANDy = min

4

ORy =min 5

F) Defining — as Ikp,

b(2P -1)+a(2-b) M alb-1)

ANDgp, = min[

20 Ly 27
=l o p=l =
ORyo, = max[ (2 lzz’a(b l),a 2 lzib(l a) ]

d) Deﬁlﬁng —>as I‘KDP

27! - Dab+ (27 + l)b a(2P" -1)b-1)
27 2p

AND’kp, = min[

[ L =
ORyop = max[ alb+ l);pb(2 2) b( 12}’ a)

€) Deﬁning —>as Ix,

2P '+ 1ab+ 2P =1)b al27'(b+1)+b—-1] ]

ANDy, =m [ & : 2

ORx, =max] P il eb) 4, B = Lpl) =a) ]

f) Defining —> as I'kpt,

bla+1)-1 e a(l-b)]

AND’kpy, = min[ab - 5 5

(27" + 1)a(1 = b) P @27 +1)b(1 - a)

OR’KDLP = max[b+ 2P s 2p
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8) Defining —» as Ikor,

27 — 1)ab (1-a)b-1)
ANDKD[; —mlﬂ[( 2p)a ,ab+ azp

= - P iy
ORKDI.;- - mm[ (2p e 1)(a+b2pab)+(2 l),b_ (2 2: l)a

h) Defining — as Iy,

i - 1
ANDy, = min [(2P*'+I)ab’(2p- l)(a+b2Pl)+(2P‘ +1)ab]
(27-=1)a+b—ab)+1
2P

(22— 1)ab
2r

JNa+b)-

ORy, =min [

1) Deﬁning —asly,

[(2”—1)01) (29"+I)(a+b—1}+(2f"1—1)ab]

ANDy, = - =

P_ 27 —1)ab
ORLP—mm[z ]+§0+b ab,a+b—( 2p)a

) Defining —» as Py,

AND’L,,*-mm[zp,(a-bb “W
3 b ! I
Ry min[ @ Vathah)+ @ +1) ¢, 5y @ = Lab

Clearly, we have infinite sets of inference structures, depending on how we choose
fuzzy implication operators, fuzzy logical connective as well as the value of p for some

IMplicne:
Mplication operators.
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4.5 CHAPTER SUMMARY

Pseudo-strict monotonic property is an important property for an infercnct: structure.
hlf‘sﬂmce structures without this property may produce wrong inference results in some
SPecial cases. In this chapter, new families of fuzzy implication operators are generated using
dichotomous division. With these fuzzy implication operatdrs, new fuzzy logical connectives

% Well as inference structures are generated.
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Chapter 5

IMPLEMENTATION :
HIERARCHICAL FUZZY
INFERENCE SYSTEM

5.0 INTRODUCTION

The usefulness of a theory is greatly dependent on empirical performance. Fuzzy
inf'~‘3rv‘3nc:e structures based on sub-K triangle inference templates and fuzzy logical
®Onnectives such as I and Ixp have been deployed as inference engine of medical diagnosis
Wstems [Yew, 1995]. As the theory of sub-K inference templates have some theoretical
®thancement, it is worth while to have another experiment on the performance of these

Nference structures. Hence, an arthritic diseases diagnosis system has been setup for the

pu"PDSe.
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Sy
lx=max[ 1—-a(b;l)+b . l—a+g§b—]
lyzmin[] _a(l;b) , I~a+b(1;“)

Therefore, AND;, OR,, ANDy and ORy will be :

AND‘ =-maX[g'2‘b_,ﬂ+W]
OR, = max{b-& a(l2—b)’a+ b(l;a)

ANDy =min[a+ b(l,;"’), “(b; 1)]

ol (l—a)z(l—b),a+b_@_]

5.4 IMPLIMENTATION

Morphology of the articular lesions and their distribution in the body are amongst the
™o main clues for a radiologist to arrive at an accurate radiological diagnosis on arthritic
diseases [Resnick, 1995a]. With this "target area" approach, these two main parameters of

diagnosis can form a two-level fuzzy hierarchical inference system.

In the first level of the hierarchy, the distribution of articular lesions in hand and wrist
Will be considered. This is reasonable because most arthritic diseases will show prominent
Menifestations in hands and wrists. Arthritic diseases have a remarkable tendency to afflict

SPecific joints. For example, rheumatoid arthritis always afflicts joints in hands except distal
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Using Ix as implication operator to calculate the lower bound :
K3 = min[AndTop(Ix(.4,.1), AndTop[Ix(1,.3),1x(.9,.6)]),
OrBot(AndTop(.4,.1), OrBot[AndTop(1,.3), AndTop(.9, .6)])]

=min (0.31, 0.83) =0.31

So, the possibility of this patient to suffer from disease D, is between the range [0.42,

0'31]- The schematic diagram of this system is shown in Figure 5.6.

Knowledge Base

Level 1 E l l Level 2

Result of Inference Final
2 Rewisl =2 s

Inference

Engine } Engine
User input : E User input :
Distribution of i Signs/Symptoms
“--.._Eif disease ' of the Patient

Figure 5.6 : Work flow of the hierarchical fuzzy inference system

Shde s
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5.5 CHAPTER SUMMARY

The hierarchical system will increase the efficiency of diagnosis in two ways,
a. fewer inputs are needed for a single diagnosis,

b. decrease number of mappings between manifestations and diseases.

Systems that do not implement such a hierarchy will need to collect information of all

Signs and symptoms for each joint. In other words, Information that will be collected for

ety diagnosis, Q) can be represented with :

nlJ)
O = 2, n(M,)

b=

where n(J) and n(M)) represent number of members in set./ and M, respectively.

In contrast, O, the number of information of signs/symptoms (Table 5.3) to be

“llected if the two-level hierarchical system is represented with :
nJ') !
0: =N+ X n(M;)
J:
where n(J) < n(J) and n(M/') < n(M). Since the distribution of articular disorder is
chafacteristic, the first level of the hierarchy certainly will eliminate some impossible joints

“d diseases for further diagnosis. This will lead to n(}) < n(J), n(D') < (D) and

"MY<n().
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Chapter 6

EVALUATION AND DISCUSSION

5.0 INTRODUCTION

The proposed hierarchical fuzzy inference system has been built and has been
Yaluated. In this chapter, the results of the test are presented as well as the matrix of the
Valuation is defined. The performance of the inference structures involved in this test is

Giseysseq at the end of this chapter.
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SRS | L
Sensitivity = Tp U FN = All diseased

-y . TN
Specificity = TN+FP — All normal

These values reflect the accuracy of an inference system. However, since the method
8 based on dichotomous theorem, it is facing the same problem with traditional crisp set
lheo;-y_ Therefore, the method is not suitable for evaluating an inference system which is

dealing with fuzzy sets theory.

There are also other methods such as Bayes Theorem Methods (Table 6.1) and
Likelihood Ratios (Table 6.2) which are also popular in evaluating a medical inference
Wstem, but these methods are also useless in this case because they are also based on the

Same TP, FP, TN and FN.

Table 6.1 : Bayes Theorem Method

1P
All tested positive

Positive predictive value = TP]-?FP =

PN T TN
TN+FN — All tested negative

Negative predictive value =

-94 -
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IF accepted set does not contains actual diseases OR 4=0 THEN
FTA=0
ELSE
FTA = 1/4 :
ENDIF

FTA is not defined if C = 0.

Definition 6.2:
b) Fuzzy False Acceptance (FFA) : The proportion of wrongly accepted diagnosis and
number of incorrect diagnosis in the knowledgebase at the particular hierarchy level.
FFA = (number of wrongly accepted diagnosis) / (S - C)

FFA is not defined if the test only involve all correct diagnosis (i.e. S= C).

Definition 6.3:
¢) Fuzzy True Rejection (FTR) : The proportion of correctly rejected diagnosis and the
number of incorrect diagnosis in the knowledgebase at the particular hierarchy level.
FTR = (number of incorrect diagnoses rejected) / (S - C)

FFA is not defined if the test only involve all correct diagnosis (i.e. S= C).

Definition 6.4:
d) Fuzzy False Rejection (FFR) : The degree of rejected correct diagnosis.
FFR = Number of rejected correct diagnoses / C
FFR should be 0 or 1 unless the patient has more than 1 diseases. FFR also not

defined for the case C =0
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Example 6.1

Accepted diagnoses : RA

Undecided diagnoses : BS

Rejected diagnoses :CPPD, RS, SLE, BS
FTA=1/1=1 FFA =0/(5-1)=0

FTR = 4/(5-1) = 1 FFR = 0/(5-1) = 0

Example 6.2
Accepted diagnoses : RA, SLE
Undecided diagnoses : BS
Rejected diagnoses : CPPD, RS
FTA=1/1=1 FFA =1/(5-1)=0.25

FTR = 3/(5-1)=0.75 FFR=0/(5-1)=0

Example 6.3

Accepted diagnoses : -
Undecided diagnoses : RA, SLE, BS
Rejected diagnoses : CPPD, RS
FTA=0 FFA=0/(5-1)=0

FTR = 2/(5-1)= 0.5 FFR = 0/(5-1) =0

Q.xﬂmple 6.4

Accepted diagnoses : BS, RS
Undecided diagnoses : CPPD

Rejected diagnoses : SLE, RA
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Form table 6.4, we will get:

MTA, (K1) =0.28 -
MTR, (K1) = 0.57
MFA,(K1) = 0.03
MFR,(K1) = 0.00
MTA,(K1)=0.33
MTR(K1) = 0.74
MFA,(K1) = 0.00

MFR(K1) = 0.00

Subscript 1 and 2 denotes result of diagnosis for level 1 or level 2.
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1.00
MTA MFA
T —t—

0.80
<
% 0.60
L=
=
o
= o040
=

0.20

0.00 ; -

K1 K3 KS K7 K9 K11 K13 K15 K17
K2 K4 K& K8 K10 K12 K14 4 K16 K18
sub-K Inference Structures
Figure 6.4 : MTA and MFA in level 2
MTR MFR
o
w
=
=
=
(1]
o
=
=
KI K2 K3 K4 K5 K6 K7 K8 K9 K10 Ki1 K12 Ki3 K14 K15 Ki8 Ki7 K18
sub-K Inference Structures
Figure 6.5 : MTR and MFR in level 2
e
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6.4 CHAPTER SUMMARY

The test result of the system developed here is presented i:} this chapter. From the
result, it is clear that the performance of the system is good, especially using inference
Structure K16. With this inference structure, the mean true acceptance (MTA) of diseases can
reach a high point of 0.72. The result of the test is also contrasted with its predecessor -- the
System developed by Yew [1995] and it is proved that the improved set of inference

Structures show better performance than the old one.

-139 -



Chapter 7 : Conclusion And Further Research

—

Chapter 7

CONCLUSION AND
FURTHER RESEARCH

7.0 INTRODUCTION

After all the theory, methodology and results are presented in last few chapters, it
comes to the last part of the dissertation. A conclusion of the previous works is presented in

this chapter. Last but not least, suggestions of future research are also presented here.
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1v) It is good to test the inference system on different diseases to confirm the performance of

V)

these inference structures. Of course different knowledge base have to be designed for

different type of disease.

The combination of fuzzy relational theory and such as neural network is recomended.
There are two types of Artificial Neural Network (ANN), anmely supervised and
unsupervised neural network. Supervised neural network can be trained with suitable
input data, which could help to direct the search optimally. The fuzzy information, hance
giving better output. Where suitable training data is not available, the unsupervised neural

network can be used.

The layer of neural network built above the fuzzy layer, provides a refined, intelligent and

a more directed search and it is hoped that the performance can be enhanced.

vi) Inference engine of this system is classified as case-based reasoning inference engine. It is

interesting if this system can incorporated the advantages of rule-based reasoning

[Golding 1996].
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Appendix A

MEDICAL INFERENCE SYSTEM
FOR
ARTHRITIS

A.0 INTRODUCTION

Medical Inference System For Arthritis is a package developed for this research. This
package, which was developed using pure Java programming language, enables users to
manage patient information, run a diagnosis based on predefined inference structures and

knowledge base, and edit the contents of the knowledge base.

As described in chapter 5, the package run a diagnosis in two levels. The first level is
based on the distribution of abnormalities in hands and wrists of the patient, and the second
level is based on the signs and symptoms shown by the patient. Level 1 diagnosis short lists

possible diseases, so that level 2 diagnosis can deal with lesser signs and symptoms.
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Connective 2 = { AndTop, AndBot, Arithmetic means }
Connective 3 = {OrTop, OrBot, Arithmetic means }
Connective 4 = {AndTop, AndBot }

So, there are totally 3 X 2 X 3 X 3 X 2 = 108 inference structures in the system.

lII. Knowledge Base Editor
* Retrieve information in the knowledge base
* [Edit information about existing diseases, this includes the distribution of
abnormalities and signs/symptoms.

*  Add new diseases.

A.3 SYSTEM REQUIREMENTS

* Since the package is developed with Java, a platform independence programming
language, theoretically it runs on any machine with JRE 1.1.7B installed.

* VGA or higher resolution graphic device with at least 256 colours, 640 X 480 resolution.

* Hard disk space : 250KB (minimum), extra space is needed for patient data and new

diseases in knowledge base.
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Appendix B

“MEDICAL INFERENCE SYSTEM
FOR
ARTHRITIS”
USER GUIDES

B.0 INTRODUCTION

To start the system, simply run the Java class file Arthritis.class on a computer with

JRE 1.1.7B. The program contains the code of inference and patient management.

B.1 PATIENT MANAGEMENT

Patient management works can be performed using “Patient” menu in Arthritis class.

* Add new users : Using “Patient” pull down menu, new patients can be added. (Figure

B.1 and B.2)
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Figure B.1 : Add new patient or edit patient records using Patient menu in Arthritis.class

* Edit patient’s information : By selecting “Update Patient Data” in Patient pull down
menu (Figure B.1), the patient information dialog box (Figure A.2) will appear and

particular of a patient can be edited.

Figure B.2 : Patient information dialog box
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B.2 DIAGNOSIS

* Level 1 Diagnosis : To start level | diagnosis, either :

1. Select “Diagnosis” in “Diagnosis” pull down menu, and key in the desired
patient ID, or

2. Open the patient information dialog box for the desired patient, and select
“Medical Information™

The distribution of articular lesions of the patient will be displayed (Figure B.3).

for Asthailis
T T T

Patient RN : 11 Patient Name : Nik Abdullah

1. Distal interphalangeal -- for 2nd to 5th digits 'm
2. Proximal interphalangeal -- for 2nd to 5th digits TREETS
3. Metacarpophalangeal - for 2nd 1o Sth digits 70

4. Praximal interphalangeai - for thumbs 20

5 Metacarpophalangeal - for thumbs m__ﬂ
6. Radlocarpal compartment 10 &
7. Inferior Radioulnar compartment 20 5
8. Midcarpal compartment m
3. Common carpometacarpal compartment m
10. First carpometacarpal compartiment 10 E

Figure B.3 : The distribution of articular lesions

Use the pull down lists at the left hand side of the screen to change the score of each

joints.
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Proximal interphatangeal - for 2nd to 5th digits

synovial hypertrophy ] -
aceumulation of intra-articular fuid 1] =
softtissue edema 80 -
osteochondral destruction in inflammalory pannus 70 -
indistineiness of asseous outline 90 _;E
fusiform soft tissue swelling |80 2

o l
o
4

periarticular osteoporosis

marginal erasion 70 -
tuftal resorption in one or more terminal phalanges 0 -
extensive ostealysis in proximal segments of hands ID -

Figure B.5 : level 2 diagnosis.

tem for Arthilis

Disease
1. Rheurnatoid Arthritis 1] 84
2. Psoriatic Arthritis 49 49

Figure B.6 : Final result of a diagnosis

-153 -























