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OPTIMAL CONTROL OF INFORMATION IN SOCIAL NETWORK USING 

PONTRYAGIN MAXIMUM/MINIMUM PRINCIPLE 

ABSTRACT 

This study is to formulate an optimal control problem to maximize the spread of 

information’s on the constant budget.  Advertisement in a social media is the control 

signals which attempt to convert ignorants and stiflers into spreaders in this study. We 

show the existence of a solution to the optimal control problem when the campaigning 

incurs non-linear costs under the isoperimetric budget constraint. The solution employs 

Pontryagin’s Minimum Principle and a modified version of forward backward sweep 

technique for numerical computation to accommodate the isoperimetric budget 

constraint. The techniques developed in this paper are general and can be applied to 

similar optimal control problems in other areas. We have allowed the spreading rate of 

the information epidemic to vary over the campaign duration to model practical 

situations when the interest level of the population in the subject of the campaign 

changes with time. The shape of the optimal control signal is studied for different model 

parameters and spreading rate profiles. We have also studied the variation of the 

optimal campaigning costs with respect to various model parameters. Results indicate 

that, for some model parameters, significant improvements can be achieved by the 

optimal strategy compared to the static control strategy. The static strategy respects the 

same budget constraint as the optimal strategy and has a constant value throughout the 

campaign horizon. This work finds application in election and social awareness 

campaigns, product advertising, movie promotion and crowdfunding campaigns. 

Keywords: Pontryagin’s Minimum principle, forward backward sweep, cost 

constraints, optimal control, ignorant, stiflers, spreaders. Univ
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KAWALAN MAKLUMAT OPTIMAL DALAM JARINGAN SOSIAL 

MENGGUNAKAN PONTRYAGIN MAXIMUM / MINIMUM PRINSIP 

ABSTRAK 

Kajian ini adalah untuk merumuskan masalah kawalan optimum untuk 

memaksimumkan penyebaran maklumat mengenai belanjawan malar. Iklan dalam 

media sosial adalah isyarat kawalan yang cuba mengubah orang yang tidak tahu dan 

menipu kepada penyebar dalam kajian ini. Kami menunjukkan kewujudan penyelesaian 

kepada masalah kawalan optimum apabila kempen berkemungkinan tidak ada linear di 

bawah kekangan anggaran isoperimetrik. Penyelesaian ini menggunakan Prinsip 

Minimum Pontryagin dan versi modul maju ke belakang ke atas untuk pengiraan 

berangka untuk menampung kekangan anggaran isoperimetrik. Teknik-teknik yang 

dibangunkan dalam makalah ini adalah umum dan boleh digunakan untuk masalah 

kawalan optimum yang sama di kawasan lain. Kami telah membenarkan kadar 

penyebaran wabak maklumat untuk mengubah tempoh kempen untuk memodelkan 

situasi praktikal apabila tahap minat penduduk dalam subjek kempen berubah dengan 

masa. Bentuk isyarat kawalan optimum dikaji untuk parameter model yang berbeza dan 

profil kadar penyebaran. Kami juga mengkaji variasi kos kempen yang optimum 

berkenaan dengan pelbagai parameter model. Keputusan menunjukkan bahawa, untuk 

beberapa parameter model, penambahbaikan ketara dapat dicapai oleh strategi optimum 

berbanding dengan strategi kawalan statik. Strategi statik menghormati kekangan 

belanjawan yang sama sebagai strategi optimum dan mempunyai nilai tetap sepanjang 

hala kempen. Kerja ini menemui aplikasi dalam kempen kesedaran dan pemilihan 

sosial, pengiklanan produk, promosi filem dan kempen crowdfunding. 

Kata Kunci: kawalan optimum, penyebar, kawalan kos, prinsip pontryagin’s minimum 
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CHAPTER 1 : INTRODUCTION 

 

 Research Background 

Optimal control by using Pontryagin’s maximum/minimum principle is the best 

practice to control the information spreading rate and also to increase or decrease the 

spreading rate. Besides that, will find the best way to control with the presence of 

constraints. The Pontryagin’s principle can maximize the spreading rate of an 

information’s by changing the stifles into spreaders. Information model are used to 

contagion process for various purposes such as in spreading fashions, trends, and 

election manifestos in a population. The population is divided into three categories, 

stifler, spreader and ignorant. The stiflers are people who have stopped spreading the 

information’s while the spreaders for those who spreading the information’s and 

ignorant are people who does not have the information’s yet.   

 

 Problem Statement 

Most of the times an advertisement’s or manifestos or any kind of information’s are 

less spread to a population, some will ignore or stopped spreading the 

information’s.  It will give negative impacts on cost and time. The cause of stiflers 

and ignorant is, they not really exposed to the information area or they simply don’t 

want to spread the information’s. Besides that, in product marketing such as newly 

designed model or newly launched movie may decrease with times after it launched 

or released. At the same time, during elections the amount of interests will increase 

over the time, so during the first 2 weeks before the elections, all the information’s 

and manifestos will be less spread. 
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 Aim of Investigation 

 

The aim of this research is to formulate a model that can increase the spreaders rate by 

changing the ignorant and stiflers into spreaders with a fixed budget. The model will be 

formulate using Pontryagin’s minimum/maximum principle. This can minimize the 

number of stiflers and ignorants at the end of the campaign. 

 Scope of Work 

 
The parameters that used in this paper: 

Symbol Definition 

i(t) fraction of ignorants in the population at time t 

s(t) fraction of spreaders in the population at time t 

r(t) fraction of stiflers in the population at time t 

β1(t) per contact message spreading rate at time t 

γ1 per contact recovery rate 

k number of other individuals an individual is in contact at any given time 

β(t) = kβ1(t) spreading rate at time t 

γ = kγ1 recovery rate 

T campaign deadline 

u(t) control at time t (e.g. rate at which advertisements are put across in mass media) 

umax maximum allowed control, 0 ≤ u(t) ≤ umax 

c(u(t)) instantaneous cost incurred due to application of control 

B budget 

b(t) (cumulative) resource spent during [0 t] 
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CHAPTER 2 : LITERATURE REVIEW 

 

The literature review summarizes all the basic ideas of the elements involved in this 

project. All the elements are used in implementing the control to maximize the 

spreaders rate and to formulate using pontryagin’s minimum/maximum principle for 

control optimally the information spread rate with constant budget. The crucial parts are 

towards the end in which a suitable formula is modelled for the project and a suitable 

optimal control is designed to run it for the advertisement’s or during any promotions. 

Pontyragin’s Minimum and maximum principle is used in the optimal control theory to 

find the suitable and best possible control for a dynamical system from one state to 

another. Usually will be used in the presence of constraints for the input control or 

states. Initially this Pontryagin’s principle used to maximize the terminal speed of 

rocket. As time goes and needs, it also used to minimize the performance index. 

 

 

 Optimal Control Strategies depending on the interest level for the spread of 

rumor. 

 

 This article is about controlling the spread of rumor and false information’s in social 

media. Here pontryagin’s maximum principle is used. Besides that, adapted optimal 

control is used to investigate the effect of controls using isoperimetric constraints. There 

are three controls under isoperimetric constraints. The rumor model with three strategies 

of control, for preventing the spreading of rumor, deleting information of rumor and 

punishing spreaders. To prevent the spread of rumor effectively, we investigate how and 

when controls should be applied. This investigation is important because each control 

has an optimal time point of application and a different characteristic. We consider the 

optimal control problem and analyze it via.Pontryagin’s Maximum Principle to see the 

contents. We find the optimal strategy to prevent the spread of rumor by using 

numerical simulation. When the amount of controls is limited, three controls 

applications is analyzed respectively. Since costs, times and so on must be taken into 

account for implementing the strategy or the policy, the perspective is required. 
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 Optimal control of an epidemic through educational campaign 

 

  

 Simplified SIR model is described here and due to the cost constraint and the total time 

for this campaign has been reduced. There is two scenario that will undergo in this 

paper. First scenario is where the campaign is oriented to reduce the infection rate by 

stimulating susceptible to have a protective behaviour. The second scenario will have 

the campaign oriented to increase the removal rate. This is done by stimulating the 

infected to remove itself from the infected class. The tool used to determine the optimal 

strategy here is Pontryagin Maximum Principle. At the end of the optimal outbreak, 

optimality is measured by minimizing the total number of infected class. 

 

In this model, here have two problem that has been overcome. First, the model must be 

mathematically tractable and must be intuitively plausible. For the first requirement we 

assume, for mathematical simplicity, that this reduction (increase) is bounded below 

(above)and the campaigns cost are linear on the controls. With respect to the second 

requirement, the model is designed the campaign effects by reducing the rate at which 

the disease is contracted from an average individual during the campaign. For an 

example, during a flu outbreak one starts a campaign orienting susceptible to avoid the 

virus contact by assuming some protective behavior such as washing hands, avoiding 

close environments. This campaign affects the probability of a susceptible contracting 

the virus to decrease. The same reasoning applied to a campaign oriented to the infected 

such as stimulating quarantine, will be modelled to increase the rate at which an average 

individual leaves the infective rate.  

 

 

 

 

 Optimal control of epidemics in metapopulations 

This paper used combination of optimal control method together with epidemiological 

theory for metapopulations. The objective of this paper is to minimize the discounted 

number of individuals who are infected during the course of the epidemic. Here they 

used susceptible-infected-susceptible (SIS) compartmental model. Besides that, here 

come up with optimal control model under a constraint budget and under the fixed 
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budget constraints with quarantine. Optimizing the control under the limited budget for 

some of the time when the combined number of infected individuals exceeds the 

availability of the drugs for treatment. The optimization is approached is adopted based 

on the Hamilton method in Pontryagin principle. It acts as a device to minimize the 

objective function subject to the epidemiological dynamics of the model and to the 

economic constraints. 

 

 Optimal control of a delayed HIV infection model with Immune response 

using an efficient Numerical Method. 

 

The paper presents a delay-differential equation model with optimal control which 

describes the interactions between virus (HIV), human immunodeficiency, CD4+ T 

cells, and cell-mediated immune response. Both the intracellular delay and the treatment 

are incorporated into the model in order to improve the therapies to cure the HIV 

infection. The efficiency of drug treatment in inhibiting viral production and preventing 

new infections is represented by optimal controls. Existence for the optimal control pair 

is established by using Pontryagin’s maximum principle to characterize these optimal 

controls, and the optimality system is derived. This paper proposes a new algorithm 

based on the forward and backward difference approximation for the numerical method. 

There is two reason for this work. Firstly, a delay mathematical model with two controls 

that describe HIV infection of CD4+ T cells during therapy is proposed. For current 

world there is no effective therapy for HIV infection and the cost of treatment is very 

expensive. Thus, an optimal therapy in order to minimize the cost of treatment, improve 

immune response and to reduce the viral load is developed. Secondly, efficient 

numerical method based on optimal control is proposed too in this paper to identify the 

best treatment strategy of HIV infection in order to prevent viral production and to 

block new infection by using drug therapy with minimum side effects. The numerical 

results show an increase in the uninfected CD4+ T-cell count after five days of therapy 

and optimal treatment strategies reduce viral load.  
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Figure 2-1 Algorithm 1 forward and backward sweep 

 

  SIS/SIR Model 

 
This model is referring to S-susceptible, I-Infected and R-recovered/removed 

diseases status. Below are the simplest SIS Model: 
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  BSI   is an average infected individual makes contact sufficient to infect BN others per 

unit time.  S/N is the probability that a given individual that each infected individual 

comes in contact with is susceptible. Thus, each infected individual cause infection per 

unit time (BN)(S/N) = BS. Therefore,  infected individuals cause a total number of 

infections per unit time of BSI. For the  term,  is the fraction of infected 

individuals who recover and re-enter the susceptible class per unit time. 

 

 Optimal control of Epidemics Information Dissemination Over Network 

 
Controlling the information spreading is very important and this paper come up with a 

concept where epidemic model is used to picturize the collective dynamics of 

information spreading over the network. Here, the SIR model is used where S+I+R=1. 

This paper develops a model to self healing scheme in mobile network and vaccine 

spreading schemes. For the self-healing scheme, the effectiveness of control signalling 

decreases, this makes the network out of the controller region. For the vaccine spreading 

scheme, the controllable region shrinks due to the epidemic and the spread vaccine 

stimulate the state transitions of nodes so that less nodes can remain in the susceptible 

state.  This paper also used some constraints (network cost) in the model. 

 

 

 
 

 

 

Figure 2-2:  optimization problem 
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CHAPTER 3 : METHODOLOGY 

 

 Gant Chart 

 

The project was started on June 2018 and the progress chart is as shown in the Gantt 

Chart below. 

ACTIVITY JUNE JULY AUG SEPT OCT NOV DEC  JAN 

Research 

project 

        

Literature 

Review 

        

Data 

collection 

        

Project 

development 

(Calculations)   

        

Project 

development 

(Matlab) 

        

Optimizations         

Research 

Report 

        

Submission         

Presentations         

                                                  Figure 3-1: Gantt Chart 
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 System Model and problem formulation 

 
The uncontrolled Maki Thompson model is used here to formulate an optimal control 

problem for the controlled system. The definitions of all the parameters used in this 

paper are listed in Table1. 

 

 

                    Table 1: Definitions of parameters used in this paper 
 

Symbol Definition 
 

i(t) fraction of ignorants in the population at 

time t 
 

s(t) fraction of spreaders in the population at 

time t 
 

r(t) fraction of stiflers in the population at time t 
 

β1(t) per contact message spreading rate at time t 
 

γ1 per contact recovery rate 
 

k number of other individuals an individual is 

in contact at any given time 

γ = kγ1 recovery rate 

 

β(t) = kβ1(t) spreading rate at time t 

 

T campaign deadline 

 

u(t) control at time t (e.g. rate at which 

advertisements are put across in mass 

media) 

umax maximum allowed control, 0 ≤ u(t) ≤ 

umax 

 

c(u(t)) instantaneous cost incurred due to 

application of control 

 

B budget 

 

b(t) (cumulative) resource spent during [0 t] 
 

 

So, the problem is to minimize the ignorants at the end of the campaign in the fixed 

population size. By doing this, the number of individuals who aware of the spreading of 

the information’s can be maximize. 
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3.2.1 Uncontrolled Maki Thompson model 

 

By considering a system in a fixed population size, came up with this uncontrolled 

Maki Thompson model. At time t, the fractions of, spreaders, ignorant and stiflers in the 

population are represented by s(t), i(t), and r(t) respectively, where s(t) + i(t) + r(t) = 1. 

β1(t) is ‘Per contact message spreading rate’ at time t and γ1 is ‘per contact recovery 

rate’.  

 

Firstly, the rate of decrease of the fraction of ignorants in the population at time t is 

derived. Initially, at t = 0, the system starts with s(0) = s0, r(0) = 0, i(0) = 1 − s0, where 

s0 is the initial fraction of spreaders which acts as the  seed for the epidemic. ‘Per 

contact message spreading rate’, β1(t) can be interpreted as follows: the information 

passes from a spreader to an ignorant in a small time, interval dt at time t, due to a 

single ignorant-spreader contact with a probability β1(t)dt. Assumed that each member 

in the population communicate with an average of k others at any time. Thus, an 

ignorant communicate with (an average of) ks(t) spreaders at time t. The message will 

be transferred to the ignorant with probability, 1−(1−β1(t)dt)ks(t) ≈ β1(t)ks(t)dt. Since 

the fraction of ignorants at time t is i(t), thus the reduce in fraction of ignorants in small 

interval dt at time t is β1(t)ks(t)i(t)dt. By defining β(t), β1(t)k, the Eq. (1a) is obtained. 

β(t) is referred as the ‘spreading rate’.  

 

Secondly, the rate of increase of fraction of stiflers at time t is derived. A spreader 

recovers to become a stifler due to interactions and communications with other 

spreaders and stiflers. ‘Per contact recovery rate’ is interpreted as at any time t, any 

spreader in contact with any single spreader or stifler will automatically convert to a 

stifler with probability γ1dt. Any member of the population communicates with k others 

at any time. Hence, a spreader might in contact with an average of k(s(t)+r(t)) spreaders 

and stiflers, increasing the probability of recovery to 1 − (1 − γ1dt)k(s(t)+r(t)) ≈ k(s(t) + 

r(t))γ1dt, in a small interval dt at time t. Since the fraction of spreaders at time t is s(t), 

so the increase in fraction of spreaders at time t in a small interval dt is given by 

s(t)k(s(t) + r(t))γ1dt. By defining γ, γ1k, the rate of increase of stiflers in the population 

as γs(t)(s(t) + r(t)) (Eq. (1c)). γ referred as the ‘recovery rate’ in this paper. Eq. (1b) is a 

consequence of Eqs. (1a) and (1c). 
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Thus, the evolution of the spreaders, ignorants, and stiflers in the fixed population in the 

uncontrolled Maki Thompson system is given by: 

 

 Equation 1(a) 

 Equation 1(b) 

 Equation 1(c) 

 

3.2.2 The controlled system 

The sum of spreaders, ignorants and stiflers is equals to 0. r(t) = 1 − i(t) − s(t). Thus, 

this system can be controlled by this function u ∈ U which can transfers individuals 

from stiflers and ignorant class to the spreader class. Assumed that application of the 

control incurs a non-linear cost, given by c(u(t)) at time t. Also, the fixed budget, as 

mentioned in the equation 2e. The function c(.) is assumed to be continuous and 

increasing in its argument, to maximize the number of individuals who are aware of the 

information by the campaign deadline t = T. So the reward function is s(T) + r(T) = 1 − 

i(T). Hence the cost function (to be minimized) to be J = i(T) is chosen. The optimal 

control problem is: 

 

 

 Solution for the optimal control problem 

3.3.1- Pontryagin’s Minimum principle 

The solution to the Problem of equation 2 to 2e replaced by the equivalent condition 

using Pontryagin’s Minimum principle. This helps the system of ordinary differential 

equations (boundary value problem (BVP)) which are important conditions for 

optimum. The standard forward and backward sweep method used to solve the BVPs by 

optimal control problems is not directly applicable and needs to be adapted to prevent 

from isoperimetric budget constraint. 

Equation 2e 

Equation 2b 

Eqn 2c 

Equation 2d 

Equation 2a 
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Denote the adjoint variables by λi(t), λs(t) and λb(t). At time t, u∗(t) represent the 

optimal control and, i∗(t), s∗(t), b∗(t) and λ∗i (t), λ∗s(t), λ∗b(t) are the state and adjoint 

variables evaluated at the optimum respectively. 

The Hamiltonian for Problem (2), with (2e) replaced by the equivalent equations is 

given by, 

 
H(i(t), s(t), b(t), u(t), λs(t), λi(t), λb(t), t) = 

                         λi(t) [β(t)i(t)s(t) − u(t)i(t) ] 

+ λs(t) [( β(t) + γ) i(t)s(t) − γs(t) + u(t)i(t) + αu(t) (1 − i(t) − s(t))] 

+ λb(t) [c(u(t))] 

 

State equations:  i∗(t), s∗(t), b∗(t), u∗(t) 

Adjoints equations:  
 

λ∗i(t) =( −∂/∂i(t))H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)|i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗

(t),u(t)=u∗ (t),λi(t)=λ∗i (t),λs (t)=λ∗s(t),λb(t)=λ∗b (t) 

= λ∗i (t)β(t)s∗(t) + λ∗i (t)u∗(t) − λ∗s (t)β(t)s∗(t) − λ∗s (t)γs∗(t) − λ∗s(t)u∗(t) + λ∗s 

(t)αu∗(t). 

 
λ∗s(t) = (−∂/∂s(t))H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)| 

i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗(t),u(t)=u∗(t),λi(t)=λ∗i (t),λs (t)=λ∗s(t),λb(t)=λ∗b (t) 

= λ∗i (t)β(t)i∗(t) − λ∗s (t)β(t)i∗(t) − λ∗s(t)γi∗(t) + λ∗s (t)γ + λ∗s (t)αu∗(t). 
 
 

λ∗b(t) =(−∂/∂b(t))H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)|i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗

(t),u(t)=u∗(t), λi(t)=λ∗i (t),λs (t)=λ∗s (t),λb(t)=λ∗b (t)= 0. 

(∂/∂u(t))H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)|i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗(t),u(t)=u∗(t), 

λi(t)=λ∗i (t),λs (t)=λ∗s(t),λb(t)=λ∗b (t) 

= −λ∗i (t)i∗(t) + λ∗s(t)i∗(t) + λ∗s (t)α(1 − i∗(t) − s∗(t))+ λ∗b(t)c′(u∗(t)) = 0. 
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3.3.2- Numerical Solution and issues in computation 
 
 
Here have to solve the BVP involving state and adjoint equations, to solve the optimal 

control problem numerically, also called the optimality system. The state equations are 

given by (2b), (2c), (2d) and (3) and the adjoint equations are given by in the previous 

page. Note that the value of the control variable has to be substitute in the above-

mentioned differential equations to get a system entirely in terms of state variable and 

adjoint variable. 

 

The optimality system can be solved using boundary value problem by solving 

techniques such as the shooting method. But found that the naive implementation of the 

shooting algorithm stalls before converging to a correct solution due to possibly because 

of inconsistency in the numerically computed gradient values. Also, due to the 

isoperimetric constraint, b (0) = 0 and b(T) = B in (3), it is not possible to implement 

naive forward backward sweep algorithm. Hence, here briefly discussed the adaptation 

of the forward backward sweep algorithm which was used to solve the optimality 

system in the following. 

 

λ∗b(t) is an unknown value which is constant over time, 0 ≤ t ≤ T, for the optimality 

system, call it λcb∗. We have taken the approach of finding λcb∗ using bisection 

algorithm. Initialize the computation with two approximate values of λcb∗ (call them 

λcb∗−high and λcb∗−low), one for which b(T) < B, and other for which b(T) > B. Then, 

refine the value of λc∗ b using bisection method till the constraint b(T) = B is satisfied 

with desired tolerance.  

 

The values of λcb∗−low, λcb∗−high, Bth, λth and Nsweep used in all of the 

computations in this paper are 0, 100, 10−4,10−4 and 50 respectively. Since λcb∗−low 

is small, so control computed is large, hence bλc∗ b−low (T) is large (very close to 

maximum allowed budget, c(umax)T). Similarly, λcb∗−high is large, so control  is 

small, hence bλc∗ b−high (T) is small (very close to 0). These values were found to be 

suitable to initialize the bisection method. Here have implemented this algorithm in 

MATLAB and have used its initial value problem solver ode45() to evaluate the 

differential equations. The solver uses fourth order Runge-Kutta algorithm with variable 

step size for computation and is capable of integrating backwards as required by the 

adjoint equations. 
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CHAPTER 4 RESULTS & DISCUSSIONS 

 

 Results 

4.1.1- Matlab Code using Pontryagin’s principle ( Main code) 
 
%% initial definitions 
clear all;clc; 
options='';%odeset(b,i,s,r,y); 
tmax=4; 
dicretization=0.01; 
max_iter=20; 
a=0.1; 
% u=0.1; 
b=10; 
r=0.01; 
umax=20; 
tspan1=0:0.01:tmax; 
tspan2=tmax:-0.01:0; 

  
 u=0.1*ones(length(tspan1)); 
 u(1:5,1)=1; 
for j=1:max_iter 

 

[T,Y]=ode45(@(t,y) ODEsimple2(t,y,b,r,a,u(:,j),tspan1),tspan1,[0.9 1 

0],options);% solving ODE to obtain y 
x1=Y(:,1); %% ignorant first state  
x2=Y(:,2);  %% spreaders second state 
x3=Y(:,3);%% b third state 
xt=T(:,1); %% states time 

 

x11=flipud(x1); 
x22=flipud(x2); 
x33=flipud(x3); 
xtt=flipud(xt); 

 

[T1,X]=ode45(@(t,x) 

ODEcostate2(t,x,x11,x22,x33,xtt,b,r,a,u(:,j)),tspan2,[1 0 

50],options);% solving ODE to obtain ylambda 
cox1=flipud(X(:,1)); 
cox2=flipud(X(:,2)); 
cox3=flipud(X(:,3)); 

 

 

 

 

 

 

Costate ODE 

Flipped states 

State ODE 
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for k=1:length(xt) 
    %pause(); 
    S=((cox1(k)*x1(k)-cox2(k)*x1(k)-cox2(k)*(1-x1(k)-

x2(k)))/cox3(k))^-1; 
    if (S>umax) 
        S=umax; 
    elseif (S<0) 
        S=0; 
    end 
    c_p=2*u(k,j); 
    SF=-(S*c_p*cox3(k))+(cox3(k))*c_p*u(k,j); 
    if(SF<0) 
            u(k,j+1)=umax;       
    elseif(SF>0)      
            u(k,j+1)=0; 
    elseif (SF==0) 

         
            u(k,j+1)=S; 
    end 

     
end    

     
end 
  

 
%state equations 
%syms  
figure(1) 
plot(T,Y) 
legend('x1','x2','x3') 
figure(2) 
plot(xt,x1) 
figure(3) 
plot(x2) 

  
figure(4) 
plot(u(:,max_iter)) 

 

 

 

 

 

4.1.2- States ODE code 
 
function dydt = ODEsimple2(t,y,b,r,a,u,tspan1) 

  
u=u(floor(t+1)); 

  
dydt(1)=-b*y(1)*y(2)-u*y(1); 
dydt(2)=(b+r)*y(1)*y(2)-r*y(2)+u*y(1)+a*u*(1-y(1)-y(2)); 
dydt(3)=u^2; 
dydt=dydt'; 

  
%y=lambda 

  

  
end  

 

Output graphs 

Switching 
functions 
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4.1.3- Costates ODE 
 

function dxdt = ODEcostate2(t,x,x11,x22,x33,xtt,b,r,a,u) 

  
u=u(floor(t+1)); 
x11=interp1(xtt,x11,t); 
x22=interp1(xtt,x22,t); 
x33=interp1(xtt,x33,t); 

  
dxdt(1)= x(1)*b*x22+x(1)*u-x(2)*b*x22-x(2)*r*x22-x(2)*u+x(2)*a*u; 
dxdt(2)= x(1)*b*x11-x(2)*b*x11-x(2)*r*x11+x(2)*r+x(2)*a*u; 
dxdt(3)=0; 
dxdt=dxdt'; 

  

  

end  

 

 

 

 

 

4.2 – Results (output) 

4.2.1- a=0.5; b=20; r=0.03; umax=40;  
  

 

 

   

 

 

 

 

 

 

 

 

                               Figure 4-1 combination graph with x1,x2 and x3 
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                                               Figure 4-2 ignorant (x1) 

 

 

 

 

 

 

 

 

 

 

                                                    Figure 4-3 spreaders 
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4.2.2-  a=1.0; b=10; r=0.01; umax=30; 

 

 

 

 

 

 

 

 

 

 

 

                             Figure 4-4 combination of ignorant and spreaders rate 

 

 

 

 

 

 

 

 

 

 

                                                     Figure 4-5 ignorant 
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                                                    Figure 4-6 Spreaders 

 

 

 

 

 

 

 

 

 

 

                                            

                                   Figure 4-7  the range of optimal control 
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4.2.3- Optimal control with bang bang output for the maximum iterations 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 4-8: control input signal maximum iterations 

 

4.3.3- Graphs when the budget constraints are decreased 

 

 

 

 

 

 

 

 

 

  

                               Figure 4-9: when the value of b decreased 
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                                   Figure 4-10: ignorant at b= 20 

 

 

 

 

 

 

 

 

 

 

                                Figure 4-11: shows spreaders value 
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                         Figure 4-12: optimal control with maximum iteration 

 

 Discussion 

        
Depending on the application, the spreading and recovery rate of the information 

epidemic may vary a lot. This depends on interest of people in conversing about the 

topic in question. Thus, we have used different parameter values to model epidemics of 

varying virulence. The shape of the control signals varies considerably when the values 

of spreading and recovery rates are changed. Later have discuss the variation in the cost 

function (2a) with respect to various model parameters and compare the performance of 

the optimal control with the static control. In this paper we have assumed the cost of 

application of control to be, c(u(t)) = u2(t). 
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CHAPTER 5 CONCLUSION & FUTURE RECOMMENDATIONS 

 

 Conclusion 

In this work have formulated an optimal control problem to maximize the spread of 

information under a fixed campaigning budget constraint. The information spread 

dynamics is assumed to follow the Maki Thompson rumor model, which is more 

suitable in this context than SIS/SIR epidemic models used in some of the previous 

studies. The control signal converts ignorants and stiflers into spreaders. This can be 

done via strategies such as advertising in mass media, publishing manifestos, door-to-

door campaigns etc., depending upon the application election, product promotion, 

crowdfunding, social awareness campaigns, to mention a few. Assume that the general 

nonlinear campaigning costs and show the existence of a solution to the formulated 

optimal control problem.  

 

Note that the standard Filippov/Cesari theorems are not applicable in this situation. The 

optimal control problem using Pontryagin’s Minimum Principle and a modified version 

of forward backward sweep technique for numerical computation is designed, to 

accommodate the isoperimetric budget constraint in our formulation. The techniques 

developed in this paper are general and can be applied to other similar optimal control 

problems.  

 

To model practical situations, such as increasing interest of people in talking about 

elections as polling day approaches or diminishing interest in a movie after its release, 

have allowed the spreading rate profile of the information epidemic to vary during the 

campaign duration. Have studied the shape of the optimal control signal for different 

model parameters and spreading rate profiles. Variations of the optimal campaigning 

costs with respect to various model parameters are also studied and results compared 

with the static campaigning strategy. In the static strategy the control is constant 

throughout the decision horizon and respects the same budget constraint as the optimal 

strategy. Have found that the optimal strategy achieves significant performance 

improvements compared to the static strategy for a wide range of model parameters. 
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 Future Recommendations 

 

 The spreaders rate can be increases and the ignorant and stiflers can change to normal 

spreaders by using Pontryagin Maximum principle. We should increase the number of 

spreaders by maximizing it. Besides that, we should increase the cost constraint to 

develop the spreaders rate. When the recovery rate at t time is increased, then the 

optimal control of an spreading rate can be increased. 

 

  

Univ
ers

ity
 of

 M
ala

ya



 25 

 

REFERENCES 

 

 

 

Barrat, A., Barthlemy, M., Vespignani, A.. Dynamical Processes on Complex Networks. 

Cambridge University Press; 2008. 

 

Daley, D.J., Kendall, D.G.. Epidemics and rumours. Nature 1964;204:1118. 

 

Maki, D.P., Thompson, M.. Mathematical Models and Applications, with Emphasis on 

the Social, Life, and Management Sciences. Prentice-Hall; 1973. 

 

Rapoport, A.. Spread of Information Through a Population with Socio-Structural Bias: 

I. Assumption of Transitivity. The bulletin of mathematical biophysics 1953;15(4):523–

533.  

 

Goffman, W., Newill, V.A.. Generalization of epidemic theory: An application to the 

transmission of ideas. Nature 1964;204(4955):225–228. 

 

Fister, K.R., Lenhart, S., McNally, J.S.. Optimizing Chemotherapy in an HIV Model. 

Electronic Journal of Differential Equations 1998;1998(32):1–12. 

 

Grass, D., Caulkins, J., Feichtinger, G., Tragler, G., Behrens, D.. Optimal Control of 

Nonlinear Processes: With Applications in Drugs, Corruption, and Terror. Springer; 

2008. 

 

Karnik, A., Dayama, P.. Optimal Control of Information Epidemics. In: Fourth 

International Conference on Communication Systems and Networks (COMSNETS). 

IEEE; 2012, p. 1–7. 

 

Kandhway, K., Kuri, J.. How to Run a Campaign: Optimal Control of SIS and SIR 

Information Epidemics. Applied Mathematics and Computation 2014;231:79–92. 

 

 Belen, S.. The Behaviour of Stochastic Rumours. PhD dissertation, University of 

Adelaide, Australia 2008;. 

 

Belen, S., Kaya, C.Y., Pearce, C.E.M.. Impulsive Control of Rumours with Two 

Broadcasts. The ANZIAM Journal 2005;46:379–391. 

 

Sethi, S.P., A., P., He, X.. Optimal Advertising and Pricing in a New-Product Adoption 

Model. Journal of Optimization Theory and Applications 2008;139(2):351–360. 

 

Pittel, B.. On Spreading a Rumor. SIAM Journal on Applied Mathematics 

1987;47(1):213–223. 

 

Chierichetti, F., Lattanzi, S., Panconesi, A.. Rumor spreading in social networks. In: 

Automata, Languages and Programming. Springer; 2009, p. 375–386. 

 

Ledzewicz, U., Sch¨attler, H.. On Optimal Singular Controls for a General SIR Model 

With Vaccination and Treatment. Discrete and Continuous Dynamical Systems 

2011;X:981–990. 

 

Univ
ers

ity
 of

 M
ala

ya



 26 

 

Asano, E., Gross, L.J., Lenhart, S., Real, L.A.. Optimal Control of Vaccine Distribution 

in a Rabies Metapopulation Model. Mathematical Bioscience and Engineering 

2008;5(2):219–238. 

 

Castilho, C.. Optimal Control of an Epidemic Through Educational Campaigns. 

Electronic Journal of Differential Equations 2006;2006:1–11. 

 

Behncke, H.. Optimal Control of Deterministic Epidemics. Optimal Control 

Applications and Methods 2000;21(6):269–285. 

 

Gaff, H., Schaefer, E.. Optimal Control Applied to Vaccination and Treatment 

Strategies for Various Epidemiological Models. Mathematical Bioscience and 

Engineering 2009;6(3):469–492. 

 

Lashari, A.A., Zaman, G.. Optimal Control of a Vector Borne Disease with Horizontal 

Transmission. Nonlinear Analysis: Real World Applications 2012;13(1):203–212. 

 

Morton, R., Wickwire, K.H.. On the Optimal Control of a Deterministic Epidemic. 

Advances in Applied Probability 1974;X:622–635. 

 

Sethi, S.P., Staats, P.W.. Optimal Control of some Simple Deterministic Epidemic 

Models. Journal of Operational Research Society 1978;X:129–136. 

 

 Yan, X., Zou, Y.. Optimal Internet Worm Treatment Strategy Based on the Two-Factor 

Model. Electronics and TelecommunicationsResearch Institute Journal 2008;30(1). 

 

Zhu, Q., Yang, X., Yang, L.X., Zhang, C.. Optimal Control of Computer Virus Under a 

Delayed Model. Applied Mathematics and Computation 2012;218:11613–11619. 

 

Khouzani, M.H.R., Sarkar, S., Altman, E.. Optimal Control of Epidemic Evolution. In: 

Proceedings of IEEE International Conference on Computer Communications. IEEE; 

2011, p. 1683–1691. 

 

Belen, S., Kropat, E., Weber, G.W.. On the Classical Maki–Thompson Rumour Model 

in Continuous Time. Central European Journal of Operations Research 2011;19(1):1–

17. 

 

Gani, J.. The Maki–Thompson Rumour Model: a Detailed Analysis. Environmental 

Modelling & Software 2000;15:721–725. 

 

Pearce, C.E.. The Exact Solution of the General Stochastic Rumour. Mathematical and 

Computer Modelling 2000;31:289–298. 

 

Lebensztayn, E., Machado, F.P., Rodr´ıguez, P.M.. On the Behaviour of a Rumour 

Process with Random Stifling. Environmental Modelling & Software 2011;26:517–522. 

 

Univ
ers

ity
 of

 M
ala

ya




