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ABSTRACT 

Digital image forgery is becoming easier to perform because of the rapid development 

of various manipulation tools. Image splicing is one of the most common image forgery 

techniques. It is achieved simply by cutting a region from one or more images and pasting 

it, or them, into another image. This technique can cause inconsistencies in many features, 

such as an abnormally sharp transient at the splicing edges, and these inconsistencies are 

used to detect the forgery. To detect the spliced images several methods proposed 

utilizing the statistical features of the digital images. In this research, two efficient SVD-

based feature extraction methods for image splicing detection are presented. In the first 

method, the natural Logarithm of inverse of each singular value is calculated. In the 

second method the concept of roughness measure is applied which is inversely 

proportional with condition number. Kernel Principal Component Analysis (PCA) is also 

applied as classifier feature selector to improve the classification process. And finally, 

support vector machine is used to distinguish between the authenticated and spliced 

images. The proposed methods are evaluated by applying three standard image datasets 

(DVMM v1, DVMM v2, and CASIA) in spatial and frequency domains. The first image 

dataset was the Columbia Image Splicing Detection Evaluation Dataset. This dataset 

contained 1845 gray-scale images (933 authentic images and 912 spliced images) in BMP 

format. The second image dataset is the Chinese Academy of Sciences, Institute of 

Automation (CASIA) with 1721 color images (800 authentic images and 921 spliced 

images). The third image dataset is DVMM v2, which contains 363 color images (183 

authentic images and 180 spliced images). For the DVMM v1 image dataset, proposed 

method-1 shows an average accuracy of 98.78%. On the other hand, for CASIA image 

dataset, method-2 shows an average accuracy of 99.62%. Finally, with the DVMM v2 

image dataset, both methods obtain an average accuracy of 100%, but in different color 

channels. These results outperform several current detection methods. 
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ABSTRAK 

Pemalsuan digital imej menjadi lebih senang untuk dilaksanakan kerana terdapatnya 

penciptaan yang pesat bagi pelbagai jenis alatan manipulasi. Potongan imej adalah salah 

satu teknik pemalsuan yang biasa. Potongan imej mudah diperolehi dengan memotong 

sebahagian kawasan atau lebih pada gambar dan menampal padanya, atau menampal pada 

imej yang lain. Teknik ini boleh menyebabkan ketidakstabilan dalam pelbagai ciri, 

terutamanya keadaan yang tidak normal pada sisi potongan dan ketidakstabilan ini 

digunakan untuk mengesan pemalsuan. Bagi mengesan imej yang dipotong, beberapa 

kaedah dicadangkan seperti menggunakan ciri-ciri statistic pada digital imej. Di dalam 

kajian ini, dua kaedah pengekstrakan berasaskan SVD bagi mengesan pemotongan imej 

diebentangkan. Di dalam kaedah pertama, pengukuran nilai tunggal songsang dikira pada 

logaritma semujadi. Di dalam kaedah kedua, konsep ukuran kekasaran yang berkadar 

songsang dengan bilangan keadaan digunakan. Kernel Principal Component Analysis 

(PCA) juga digunakan sebagai ciri pengelas pra-pemprosesan untuk meningkatkan proses 

pengelasan. Akhir sekali, mesin sokongan vektor digunakan untuk membezakan antara 

imej yang sah dan imej yang terpotong. Kaedah yang dicadangkan dinilai dengan 

menggunakan tiga piawai set data iaitu (DVMM v1, v2 DVMM dan Casia) bagi bidang 

ruang dan kekerapan. Set data pertama ialah penilaian pengesanan imej Columbia. Data 

set ini mengandungi 1845 imej skala kelabu iaitu (933 imej sahih dan 912 imej 

disambungkan) dalam format BMP. Bagi set data kedua ialah dari Akademi Sains China, 

Institut Automation (Casia) dengan 1721 imej warna (800 imej sahih dan 921 imej 

disambungkan). Data set ketiga adalah adalah DVMM v2, yang mengandungi 363 imej 

warna (183 imej sahih dan 180 imej disambung). Bagi set data imej DVMM v1, kaedah-

1 yang dicadangkan menunjukkan ketepatan purata 98,78%. Sebaliknya, untuk Casia set 

data imej, menunjukkan kaedah-2 mendapat ketepatan purata 99,62%. Akhir sekali, 

dengan set data imej DVMM v2, kedua-dua kaedah mendapat ketepatan purata 100%, 
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tetapi didalam saluran warna yang berbeza. Keputusan ini mengatasi beberapa kaedah 

pengesanan semasa. 
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CHAPTER 1: INTRODUCTION 

1.1 Research Inspiration and Background 

For many decades, photography has served a vital function in people’s lives, and is 

considered as being one of the most important revolutions in terms of recording moments. 

However, people have begun to lose trust in photographs, because of the increasing use 

of manipulation tools, which have made photographs less trustworthy. The history of 

image tampering (i.e. creating photographs that never happened in real life) is as old as 

the art of photography itself. Images have been manipulated for malicious purposes in 

many instances. 

In 1939, a photo (Figure 1.1) of Queen Elizabeth, Canadian Prime Minister William 

Lyon Mackenzie and King George VI was taken in Banff, Alberta. However, on an 

election poster for the Prime Minister which made use of the photo, King George VI was 

removed. It has been assumed that the Prime Minister had the photo modified, since a 

photo of him alone with the Queen could portray him in a stronger position (Farid, 2008).  

 

Figure 1.1: Montage (1939) of Queen Elizabeth and Canadian Prime Minister 
William Lyon Mackenzie King photo in Banff, Alberta, King George VI was removed 

from the original photograph. 
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In 2003, the Los Angeles Times printed an image from photojournalist Brian Walski 

on its front cover, which showed a British soldier in Iraq trying to control a crowd of 

civilians in a compassionate manner. However, the moment as depicted never happened. 

The photograph was a composite of two different photographs, which had been merged 

to create an appealing image (Figure 1.2). The image tampering was discovered, and 

Walski was fired (Rocha et al., 2011).  

 

Figure 1.2: Montage (2003) of a British soldier in Iraq trying to control a crowd of 
civilians in a passionate manner. Credits to Brian Walski. 

 

In the 2004 US presidential campaign, many allies of John Kerry were surprised to see 

a photo-montage which was published in many newspapers, showing Jane Fonda and 

Kerry together at the podium of an anti-Vietnam War rally back in 1970. In fact, all of 

the photos were fake. The photo of Kerry has been taken at an anti-war rally in 1971, in 

Mineola, New York, by a photographer named Ken Light. The picture of Fonda came 

from a speech in 1972, in Miami Beach, Florida, and was taken by different photographer 

named Owen Franken (Figure 1.3)  (Rocha et al., 2011). 
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Figure 1.3: Montage (2004) of John Kerry and Jane Fonda standing together at a 
podium during a 1970s anti-war rally. Credits to Ken Light (top-left), Associated Press 

(bottom), and Owen Franken (top-right). 

 

In 2009, Brazilian newspaper Folha de Sao Paulo published an article, including one 

spliced image generated from various greyscale images, to illustrate how the Brazilian 

Chief of Staff had actively contributed in the resistance against the military regime (Rocha 

et al., 2011).  

Such episodes helped to generate many questions regarding the use of digital photos 

as evidence. According to the Wall Street Journal, 10% of all color photos appearing in 

the U.S had in fact been retouched or otherwise modified (Amsberry, 1989). Additionally, 

the scientific community is an interesting field in terms of forgeries (Farid, 2006b) 

(Pearson, 2005). A confirmation of an image’s authenticity is often required, before the 

contents of the image can be relied upon. Due to this, images have popularly been utilized 

as evidence and also as historical records. The number and range of photography’s 

applications in forensic investigation, criminal investigation, journalism, law 
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enforcement, medical imaging and insurance claims has expanded considerably over time 

(Birajdar & Mankar, 2013). 

An innovative research area called image forgery detection emerged from the necessity 

to regain the trustworthiness of photographs. This field aims to verify the authenticity of 

a digital image. Image forgery detection is generally categorized into two basic groups: 

active methods and passive methods. The methods of active forgery detection, for 

example digital signatures and digital watermarking, employ a known code of 

authentication inserted into the photo content before the photos are sent through 

unreliable public channels. By confirming the existence of such authentication codes, the 

authentication can be verified by making comparisons with the code which was inserted 

originally. However, this approach needs specific software or hardware to insert 

authentication code within the photo before it is published. 

The approach of blind or passive forgery detection employs the received photo only 

for evaluating its integrity or authenticity, with no watermark or signature of the original 

photo from the senders. It works according to the consideration that, even though digital 

forgeries might not display any visual signs of being tampered with, the image 

consistency or underlying statistical properties of a natural photo may have been 

manipulated, presenting new artifacts leading to various types of inconsistencies. Such 

inconsistencies could therefore be used to search for forgery. This method is in common 

use, since it does not require any prior image information. The existing methods in this 

field identify different tampering traces and detect them separately, along with the 

tampered region’s location (Birajdar & Mankar, 2013). 

Basically, these passive methods respond to two main questions regarding the image 

history:  
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a. Was the photo captured by the device which it was claimed to be captured 

with?  

b. Does the photo still depict all of its original content? 

The first question is one of the most significant points of interest when the image 

source is itself a piece of evidence – for example when the ownership of the camera is 

compromising or whether the content has been uniquely recorded by a certain device, for 

example in video surveillance. The other question is more interesting in general and could 

be applied directly to cases of image forgery. Providing answers to such questions is 

easiest when the original photo is readily available. Regarding a potentially fake image, 

the availability of the original image is enough to demonstrate forgery. In practice, 

however, there is often little or no information about the original image. Thus, 

investigators are usually forced to authenticate the history of images with a blind approach 

(Redi et al., 2011).  

The goal of digital image forensics (DIF) is to provide supporting tools for blind study. 

Such new disciplines come from current security-related multimedia study domains, such 

as Steganography and Watermarking, and also exploit photo-processing and analysis 

devices to recover information regarding the image history. 

Two main study approaches are utilized in Digital Image Forensics. The first one 

contains the approaches which try to answer the question (a) above. Through applying 

certain analysis, the aim is to recognize the specific image-capturing device or to 

determine which device(s) could not have captured it. 

These approaches are considered to be the image-source tool identification methods. 

The other group of techniques attempts instead to show traces of semantic modification 

(Forgeries) through reviewing the inconsistencies in the natural statistics of the image. 
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Such approaches are known as tampering detection methods. Both the DIF domain and 

these fields are generally attracting a rising interest from scientific researchers (Redi et 

al., 2011).  

The content of the image can be modified in two main operations: first, by omitting 

information, or by adding it. Usually in order to remove information, forgers will not need 

to use another image. In contrast, a usual method to add more information to an image is 

by utilizing the extracted material from one or more separate images. However, it should 

be noted that such operations are not always essential, since simple image processing can 

provide relevant modification of both the pragmatics and semantics of a photo.  

Tampering approaches and their intentions, therefore, can be categorized into two 

groups: those that create forgery by working on one particular image, such as copy-move; 

and those which access the content of further images, such as splicing. In fact, image 

splicing is considered one of the most popular and simple schemes for image tampering. 

It includes the replacement of photo fragments from one or more various images into 

other images. The detection of image splicing is also very important in image forgery 

detection (Redi et al., 2011).  

Studies were conducted on this topic, and several image splicing detection methods 

have been proposed and developed. They usually follow a general framework that 

includes the following main phases:  
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1. Image preprocessing: before feature extraction, different operations will be 

performed over all of the images, for example RGB image transformation into 

grayscale, cropping, or DWT or DCT transformation to improve the classification 

performance. 

2. Feature Extraction: a group of features are extracted for each single class, which 

helps to differentiate it from other existing classes. In particular, informative 

features of the images are extracted and selected which are highly sensitive to 

image manipulation. One of the preferred attributes of the chosen features and the 

constructed vector is to be low-dimensional, which can minimize the complexity 

level of training computation, as well as classification. 

3. Feature selection and classifier selection: according to the extracted group of 

features, an appropriate classifier should be selected or designed. A broad 

category of images should be selected in order to train the classifiers and achieve 

some critical classifier parameters that can be used for classification. Also, feature 

selection is utilized to minimize feature dimensionality without reducing the based 

classification performance of machine learning in parallel with computational 

complexity reduction (Sutthiwan et al., 2009). 

4. Classification: the goal of classification is to distinguish the images and then 

categorize them as two different groups: authentic and forged images (Birajdar & 

Mankar, 2013). 

Consequently, an image splicing detection model that can better reflect image splicing 

artifacts with lower dimensionality and higher detection accuracy in different image 

datasets will be more efficient. Existing methods mainly concentrate on the feature 

extraction step and develop different high-dimensional image splicing detection 

techniques. However, handling the extracted high-dimensional and redundant features 

Univ
ers

ity
 of

 M
ala

ya



8 

can be a difficult and time-consuming process. The detection accuracy obtained is also 

very low in some of the algorithms or is high in only one image dataset or in specific 

color channels. 

Ng et al. (Tian-Tsong Ng et al., 2004a) developed an image-splicing detection model 

based on the use of bicoherence magnitude and phase features, with the assumption that 

the image splicing procedure is nonlinear and that the image involved is non-stationary. 

Their expanded method had 768 dimensions and achieved an unsatisfactory detection 

performance of 72%, since more recent methods can detect spliced images with higher 

detection accuracy. 

To improve detection rate, Fu et al. (Fu et al., 2006) proposed an image splicing 

detection approach using the Hilbert–Huang transform (HHT). They considered the high 

nonlinearity and non-stationary nature of the image splicing operation and merged this 

technique with a statistical natural image model on the basis of moments of characteristic 

functions with wavelet decomposition. Their method, with only 110 dimensions obtained 

an accuracy rate of 80.15%.  

Due to unsatisfactory detection rates obtained from proposed splicing detection 

methods, in 2007, Shi et al. (Shi et al., 2007b) proposed a blind, passive, and natural 

image splicing detection model based on statistical feature extraction methods. Their 

model includes Markov transition probabilities and moments of characteristic functions 

of wavelet sub-bands applied to different 2D arrays and to the 2D arrays of multi-size 

block discrete cosine transform. Their model achieved a detection accuracy rate of 91.8% 

with 266 dimensions, which was a promising improvement in image splicing detection. 

He et al. (He et al., 2012) expanded the natural Markov-based model applied in (Shi 

et al., 2007b) by capturing the inter-block and intra-block correlation between the block 
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DCT coefficients proposed in (C. Chen & Shi, 2008) and merging it with the features 

generated from the DWT domain. Their model has a very high-dimensionality of 6966. 

They reduced their features by applying a feature selection method called support vector 

machine recursive feature elimination (SVM-RFE), which achieved a detection rate of 

93.55% over a digital video multimedia (DVMM) image dataset (Tian-Tsong Ng et al., 

2004c).  

Previous image splicing detection methods were mostly developed for greyscale 

images, though in 2011 Zhao et al. (Zhao et al., 2011) proposed applying the run-length 

run-number (RLRN) vectors in four directions of the chroma spaces, since detecting 

spliced images in one color space is difficult. Their results showed that the features 

extracted from the chroma channels (94.7%) were more accurate than those extracted 

from the R, G, B, and Y channels. Their feature extraction model with only 60-D was 

very simple, but their model is only applicable for colored images; the detection accuracy 

in grayscale images is very low. 

It has been declared by established practices that an efficient splicing detection system 

should satisfy some specific criteria. The aim of this research is to come up with new 

splicing detection methods which enhance the detection accuracy of the spliced images 

with a low-dimensional feature extraction method. 

 

1.2 Problem Statement 

Image splicing is a common process that is used to produce digital image forgery (T-

T Ng & Chang, 2004); it is achieved simply by cutting a region from one or more images 

and pasting it, or them, into another image (Dong et al., 2008). This technique can cause 

inconsistencies in many features, such as an abnormally sharp transient boundary at the 
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splicing edges (Fang et al., 2010), and these inconsistencies are used to detect the forgery. 

In recent years, several splicing detection methods have been proposed that are discussed 

in next chapter. However, these detection methods struggle with the following problems: 

 High-dimensionality 

The existing methods concentrate only on the actual image splicing detection 

techniques, and handling the extracted high-dimensional and redundant features 

can be a difficult and time-consuming process. A large number of features 

exponentially increases the computational time. Humans and machine learning 

methods find it difficult to interpret high-dimensional data. Therefore, there is a 

need for low-dimensional image splicing detection approaches. 

 Low detection rate 

Detection rate is one of the most important factors for splicing detection methods. 

The accuracy rate should be high enough to detect a spliced image accurately. In 

fact, if the detection rate is low, then determining the authenticity of the image 

will be problematic issue because original images will be detected as spliced by 

mistake, and vice versa. Thus, the accuracy rate of the detection method is 

significant. 

 High computation time 

The feature extraction computation time of the authentic or spliced image should 

be reasonable for a system. In some cases, the features of more than 1000 images 

need to be extracted and classified. Accordingly, detection algorithms with a high 

time consumption are a fundamental systemic drawback. 
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 Feature selection 

Most of the features extracted from the images have redundancy. In the 

classification process, the redundant features reduce the accuracy of the classifier 

and thus the detection rate of the approach is decreased. Therefore, feature 

selection should be carried out to remove redundant information from the 

extracted features and to obtain the most discriminative information with less 

dimensionality. Consequently, the method applied as feature selector should be 

selected appropriately to provide a set of important features with a smaller size. 

 

1.3 Research Questions 

In order to overcome the challenges identified, there are some research questions that 

need to be considered: 

1. How to develop new image splicing detection methods to detect spliced images 

more accurately? 

2. How to develop new methods with low dimensionality? 

3. How to apply SVD as a feature extraction method in image splicing detection? 

4. How to preprocess features to improve the classification performance? 

5. How to test and evaluate the performance of the splicing detection approach?  

 

1.4 Research Aim and Objectives 

This research aims to come out with two low-dimensional SVD-based image splicing 

detection methods which enhance accuracy rate within an acceptable computational time. 
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To meet the above aim, the following objectives should be achieved: 

1. To investigate different image splicing detection methods. 

2. To select an appropriate image preprocessing methods to prepare the image for 

feature extraction. 

3. To propose two image splicing detection methods (SVD-Log and SVD-CN) based 

on Singular Value Decomposition (SVD) with low dimensionality. 

4. To select appropriate feature selector to improve the classification performance. 

5. To test and evaluate the two proposed methods (SVD-Log and SVD-CN) by 

measuring the detection rate using three standard image datasets DVMM v1 & v2, 

and CASIA, and evaluate them using the true positive (TP), true negative (TN), 

and accuracy rates which represent the average detection rate. 

 

1.5 Scope of Work 

This research consists of a number of stages: 

i. Research investigation: Based on the results of the literature review, the 

limitations of image splicing detectors are identified. Information is collected 

from various publications including journals and conference papers. Finally, 

a decision is made as to propose two image splicing detection approaches with 

low dimensionality, and high detection rate in every available image dataset.  

ii. Methodology: The second phase of the research consists of the design and 

implementation of the two splicing detection schemes. Its structure consists of 

two methods, which are SVD-based splicing detection methods. 

iii. Data collection: The data for this research, namely three standard image 

datasets (DVMM v1 & 2, and CASIA), is prepared based on image splicing 
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operation. The selected image datasets are in standard use for evaluating 

image splicing detection techniques. 

iv. Experimental Results: experimental results on the selected datasets are 

designed and achieved. The performance of the proposed methods is evaluated 

and compared with existing methods in terms of true negative, true positive, 

and average detection rates. 

 

1.6 Research Contributions 

By concentrating on the existing methods for image splicing detection techniques 

some issues were identified as follows, low detection rate, high dimensionality, and high 

computation time. However, by considering the concept of SVD and its applications in 

image processing, using SVD in image splicing detection technique will improve the 

mentioned issues promisingly.  

This thesis presents the major research contributions. Several concepts are applied for 

image splicing detection throughout this research while most of them are general and can 

be applied in different fields, such as forgery detection and object recognition. The basic 

contributions of this research are briefly as follows: 

 Proposing two low dimensional methods for splicing detection: 

The major contribution of this research is proposing two efficient SVD-based 

splicing detection techniques in which the second proposed method (SVD-CN) 

has less computation complexity than the first proposed method (SVD-Log). 

These techniques are able to distinguish authentic images from spliced ones with 

a high enough accuracy rate within a reasonable time. The research conducts 

comprehensive comparisons with the existing algorithms to ensure the high 
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accuracy of the results. The results demonstrate the proposed schemes have high 

enough accuracy rate in DVMM v1 & v2, and CASIA (98.78, 100, and 99.62 

respectively) compared to other techniques. 

 Proposing two efficient SVD-based feature extraction techniques to extract 

useful features of the image:  

Two new SVD-based feature extraction techniques (SVD-Log and SVD-CN) are 

proposed as image splicing detection approaches. SVD is a mathematical concept 

applied widely in image processing applications. This research presents how this 

concept can be utilized efficiently in feature extraction for detecting spliced 

images. Therefore, the main contribution of this research is how to define feature 

extraction methods based on SVD to detect spliced images accurately.  

 Selecting an appropriate feature selector to improve classification 

performance: 

The extracted features might have redundancy of a linear or nonlinear nature 

which decreases classification performance. Thus, the features should be 

preprocessed before the classification phase. Selecting an appropriate feature 

selector that results in the best set of features with maximum classification 

performance is another major contribution of this research. 

 

1.7 Thesis Outline 

This research contains seven chapters. All of the chapters are developed based on 

suggested splicing detection schemes. The foundation of each chapter is explained as 

follows: 

Univ
ers

ity
 of

 M
ala

ya



15 

Chapter Two starts by defining state-of-the-art passive detection methods for image 

splicing. In this chapter, a comprehensive review of current schemes is provided. In 

addition, various aspects of the most recently developed algorithms for splicing detection, 

for example low dimensionality and detection rate, are examined.  

Chapter Three then covers the methodology of the suggested image splicing detection 

schemes in each stage of the research. In this chapter the methodologies of various stages 

of the two suggested methods (SVD-Based Image Splicing Detection) are explained. 

Chapter Four describes the detailed design of the proposed image splicing detection 

techniques. The implementation of each technique will also be elaborated in detail. 

Chapter Five reveals the results of image splicing detection, highlighting the outcomes 

of the proposed algorithms. Also, this chapter analyzes and evaluates the results achieved 

by the methods in comparison to other splicing detection methods. 

Finally, Chapter Six presents a summary of the thesis and the two proposed image 

splicing detection schemes. It explains the conclusion, as well as containing many 

technical suggestions for future study directions. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The current chapter explains the state-of-the-art techniques for splicing forgery 

detection according to statistical feature extraction approaches. During the past few 

decades, the ideas of digital image manipulation and forgery detection both attracted 

many companies which have attempted to appropriately counter and solve the problems 

mentioned in the previous chapter. The critical role of keeping the integrity and privacy 

of digital data has also had a large influence on different investigations. 

In this chapter, many concepts regarding image forgery detection and current methods 

of splicing forgery detection will be examined. Various aspects of current algorithms for 

forgery detection including detection rate, complexity and dimensionality are studied in 

the current chapter, which contains the following parts: Section 2.2 explains digital image 

formation and its different domains (spatial and frequency). In section 2.3, different 

digital image concepts, digital forensics, and the detection and creation of digital image 

forgery, which are utilized for the aim of splicing forgery detection, are all reviewed. In 

addition, a number of recently proposed methods for splicing forgery detection are 

presented in Tables 2.1-2.4. 

 

2.2 Digital Image Formation 

Generally, an image can be explained as a function g(x, y) with two dimensions i.e. x 

and y, in which x and y are both spatial coordinates and the value of g(x, y) in any x and 

y location indicates the grey level intensity of that image in that point. For instance, a 

greyscale image could be defined as (Cao, 2006): 
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    𝑔𝑖𝑗 𝑤ℎ𝑒𝑟𝑒 𝑔𝑖𝑗 = 𝑔(𝑥𝑖 ‚ 𝑦𝑖) (2.1) 

                                                   

When x and y and g(x, y) are discrete and finite quantities, this image is known as “a 

digital image”. In addition, the finite set regarding the digital values are known as pixels 

or picture elements 

 (Cao, 2006). 

Every pixel value in the digital image is related to the brightness of that point in that 

image: usually its value is obtained from analog to digital converter output. The image, 

as a matrix of pixels, (if it is square) is defined as N * N m-bit pixels, in which N is the 

amount of points and the axes, as well as m, which controls the brightness values. 

Utilizing the m bits provides a range of 2m values between 0 and 2m – 1 (Nixon, 2008).  

Here, if m equals 8, it provides levels of brightness from 0 to 255, which are mainly 

shown as black and white respectively, along with shades of grey between them, since 

they are relevant to the greyscale image presented in Figure 2.1 (Thompson & Shure, 

1995). 

 

Figure 2.1: Sample of Gray-scale image 

Univ
ers

ity
 of

 M
ala

ya



18 

 

In general, all of the pixels are maintained in the memory of a computer as an array 

with two dimensions or a real number matrix. A group of single 2-D images shapes the 

colored images. Various techniques of image processing regarding the monochrome 

images could be developed as color images (3-D) by processing the individual three 

component images (Gonzalez, 2010). 

In the case of color images, rather than utilizing only one single image plane, the color 

images are shown through three key intensity components. In general, such components 

are red, green and blue (RGB Model) even though there are other color models. For 

instance, the CMYK color model is described with components including black, yellow, 

cyan and magenta. In the case of different color models, the color of the pixels could be 

defined by two key methods. 

Firstly, there is ability to relate each pixel with an integer value, which could be applied 

as the index for a table which stores the intensity of different color components. The index 

is utilized in order to repair the actual color from this table while pixels are being 

processed or displayed. In this regard, the table is considered as the palette for the image, 

and such display can be done by color mapping. The key reason for utilizing such color 

representation is to minimize memory requirements. This means that one image plane, as 

well as a palette, are stored. This uses less memory than storing blue, green and red 

components specifically, and reduces the cost of the hardware, as well as having other 

benefits, such as in image transmission. The key disadvantage is the fact that the image 

quality will be minimized due to a narrowed set of available colors. Figure 2.2 shows a 

sample of an indexed digital image (Thompson & Shure, 1995). 
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Figure 2.2: Sample of Indexed image 

 

Another way to show the color is to utilize many image planes to keep the pixel color 

components. Such a scheme is considered as true color, and it shows the image more 

appropriately, specifically by using more colors. One of the most popular formats 

employs 8 bits for each of these three components of RGB. Such images are called 24-bit 

true color, and they can include 16777216 various colors at the same time. Regardless of 

the specific need for more memory, the image quality also the continued reduction in 

memory cost makes the format a good choice, even for selected still frames from a video 

recording. In practice, a suitable compression algorithm is often useful in such situations, 

specifically when images need to be transmitted within a network (Nixon, 2008). Figure 

2.3 presents an example of a true color image (Thompson & Shure, 1995).   Univ
ers

ity
 of

 M
ala

ya



20 

 

Figure 2.3: Sample of true color image 

 

Images can also be considered in a representation other than the spatial domain, such 

as the frequency domain. According to its name, images are assumed to be frequency 

collection constructs. This can be performed in cases of the frequency domain, and 

additionally assumes various processes of transformation. It will provide various 

perspectives toward both image processing and the image itself which will be utilized in 

various kinds of applications, not just as a tool to extend methods but also to allow quick 

computer processing. Different transformations, including Discrete Wavelet Transform 

(DWT), Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT), are 

broadly used in image processing applications. A summarized description of these 

transformation approaches is provided here. 
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2.2.1 Discrete Fourier Transform (DFT) 

The basic and first transform would be DFT – Discrete Fourier Transform. The 

images’ Fourier transform can also be achieved through optically transmitting a laser via 

photographic forming and the slides of an image by means of a lens (Nixon, 2008). 

However, it is limited to transmissive systems while the reflective formation can 

potentially broaden its application remarkably (due to the fact that optical calculation is 

only a little quicker than its digital counterparts). The 2-D DFT magnitude to a specific 

image for vertical bars is demonstrated in Fig 2.4 (b) (Nixon, 2008). It suggests that there 

are only spatial horizontal frequencies; the image will be consistent within the vertical 

axis, so there will be no spatial vertical frequencies. 

 
Figure 2.4: Applying the 2D discrete Fourier transform 

 

The image’s Fourier transform provides frequency constructs. Each single 

component’s position demonstrates its own frequency: components with low frequency 

are close to the origin, while components with high frequency are further away. The 

component with the lowest frequency - zero – is a D.C. component which shows the 

sample average value. 

 

(a) Image of vertical bars 

 

(b) Fourier transform of bars 
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The 2-D Fourier transform arrangement puts components with low frequency at the 

corner side of the transforms. The square image in Fig 2.5(a) demonstrates this within its 

transform in Fig 2.5(b) (Nixon, 2008). In fact, a spatial transform is more convenient to 

be visualized with D.C or zero frequency components in the center, along with increasing 

frequency on the image edge. This can be adjusted either through rotation of each of the 

four existing quadrants in Fourier transform by 180 degrees. 

The other option is to reorder the original image to provide a transform that moves the 

transform toward the center. These operations both lead to an image as presented in Figure 

2.5(c), in which the transformation is easier than what it seems. Notice that it is supposed 

to improve visualization, and will not modify any information in the frequency domain, 

just the way it is demonstrated. 

 

(a) Image of square 

 

(b) Original DFT 

 

(c) Reordered DFT 

Figure 2.5: Rearranging the 2D DFT for display purposes  

 

In order to rearrange this image and put the D.C component in the center, the frequency 

components must be recorded. These can be obtained by multiplying each single image 

point’s g(x, y) by –1(x + y).  
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Another DFT property is called a shift invariant. Decomposition as spatial frequency 

is not dependent on the features of the positions inside an image. If all of the features shift 

by a certain value, or obtain the image from another position, the magnitude of the 

image’s Fourier transform will not change. Such a property is considered as shift 

invariance. However, although the Fourier transform magnitude will remain fixed, the 

phase will not remain constant. 

The differed phase shows that in case of application, the Fourier transform magnitude 

of a face could be similar regardless of the face position in images (subject or camera 

could move down or up), considering that the face is bigger than the version in the image. 

It demonstrates that while Fourier transform is utilized to examine the human face image, 

to define it through its spatial frequency, we should not control the camera position or the 

face exactly. 

The image’s Fourier transform will rotate while image source is rotating. This can be 

considered as due to decomposition as spatial frequency demonstrates the feature 

orientation inside an image. Thus, an orientation dependency is constructed towards the 

process of Fourier transform. It reveals that if the properties of frequency domain should 

be utilized in image analysis, through the Fourier transform, the original image’s 

orientation should be fixed or known. Usually it is possible to fix the orientation as well 

as estimating its value, while the orientation of a feature cannot be fixed. In addition, there 

are many methods to bring invariance in rotation, for example translation to some polar 

representation, so the process can be complicated.  

The superposition principle is highly critical in system analysis. Remarkably, there is 

a property which means that a system is linear if its reaction to two joined signals is the 

total of responses to individual signals. In practice, it shows that the images can be divided 

by considering their components in the frequency domain. For example, in an image of 
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bloody fingerprints on cloth, it is not easy to separate the cloth from the fingerprints 

through analyzing the image. However, through transmitting it into the frequency domain, 

its Fourier transform demonstrates powerful components because of their texture and 

shows the inverse Fourier transform, meaning that the cloth can be excluded from the 

original picture. The fingerprint now can be observed in the final image. 

Since DFT is widely applied in facial detection methods (Lai et al., 2001; J. Li et al., 

2004), it is also applied in this research to investigate its effects in image splicing 

detection applications. 

 

2.2.2 Discrete Cosine Transform (DCT) 

DCT is the most popular block-based transform. It decorrelates the image data and 

then each transformed coefficient can be freely encoded without sacrificing compression 

efficiency. The two-dimensional DCT that is used in image processing is as follows 

(Khayam, 2003): 

 𝑆(𝑢‚ 𝑣) =  
2

𝑁
 𝐶(𝑢)𝐶(𝑣) ∑ ∑ 𝑠(𝑥‚𝑦) cos (

𝜋𝑢(2𝑥 + 1)

2𝑁
) cos (

𝜋𝑣(2𝑦 + 1)

2𝑁
)

𝑁−1

𝑦=0

𝑁−1

𝑥=0

   (2.2) 

    𝑓(𝑥‚ 𝑦) =  
2

𝑁
 ∑ ∑ 𝐶(𝑢)𝐶(𝑣)𝑆(𝑢‚𝑣) cos (

𝜋𝑢(2𝑥+1)

2𝑁
) cos (

𝜋𝑣(2𝑦+1)

2𝑁
)𝑁−1

𝑣=0
𝑁−1
𝑢=0  (2.3) 

    𝐶(𝑘) = {

1

√2
          𝑓𝑜𝑟 𝑘 = 0

1             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

Where u, v, x, y = 0, 1, 2, …, N-1. Here are some of the most important properties of 

DCT: 
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2.2.2.1 Decorrelation 

The main objective of DCT is that it eliminates the correlation between adjacent pixels. 

In fact, DCT is a kind of transformation that maps the correlated data called spatial data 

into uncorrelated coefficients referred as transformation. This makes the resulting 

coefficients unrelated, which can be encoded separately. Figure 2.6 shows that the 

amplitude of the autocorrelation for the transformed image is very small, which exposes 

the decorrelation characteristics (Khayam, 2003).  

 

 

 

 

 

 

2.2.2.2 Separability 

The DCT Equation (2.3) can be also expressed as follows: 

 𝑆(𝑢‚ 𝑣) =  
2

𝑁
 𝐶(𝑢)𝐶(𝑣) ∑ cos (

𝜋𝑢(2𝑥 + 1)

2𝑁
) ∑ 𝑠(𝑥‚ 𝑦)

𝑁−1

𝑣=0

𝑁−1

𝑢=0

cos (
𝜋𝑣(2𝑦 + 1)

2𝑁
) (2.4) 

 

This gives an advantage whereby S(u, v) can be calculated in two steps by using 1-D 

operation on the rows and columns of an image. This property also exists in inverse DCT. 

Figure 2.7 shows this property (Khayam, 2003):  

 

 

Figure 2.6: Normalized autocorrelation of an image before and after DCT 

Univ
ers

ity
 of

 M
ala

ya



26 

 

 

2.2.2.3 Symmetry 

Symmetry is another property of DCT which is expressed as (Khayam, 2003):                                               

    T = M s M (2.5) 

                                                               

Where M is a N × N matrix and m(i, j) is computed as (Khayam, 2003):                                 

    𝑚(𝑖‚ 𝑗) =  𝛼(𝑗) ∑ cos (
𝜋𝑖(2𝑗 + 1)

2𝑁
)

𝑁−1

𝑗=0

 2.6) 

 

and s is the N × N image matrix. 

This is a practical property due to inferring that the transformation matrix can be pre-

calculated offline and then applied to the image to provide enhancements in computation 

efficiency in terms of orders of magnitude (Khayam, 2003). DCT has been widely applied 

in different forensics techniques including steganalysis, copy-move, splicing, etc. (He et 

al., 2012; Shi et al., 2007b; J. Zhang et al., 2009). It is also applied in this work to evaluate 

the performance of SVD-based features on DCT transformed images. 

It is also applied in this work to evaluate the performance of SVD-based features on 

DCT transformed images. 

 

Figure 2.7: 2-D DCT computation using separability property 
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2.2.3 Discrete Wavelet Transform (DWT) 

Discrete Wavelet Transform is another method which decomposes the input signal into 

four non-overlapping multi-resolution sub-bands LL1, LH1, HL1 and HH1 (Al-haj & 

Abu-errub, 2008). LL1 is the low frequency sub-band which its statistical characteristic 

is similar to the original image and HL1, LH1, and HH1 are the high frequency sub-bands. 

LL1 can be more further decomposed into another four sub-bands, because it has the most 

similarity with the original image (Al-haj & Abu-errub, 2008; Mitra & Acharya, 2005). 

The total information of the image (energy of the image) is presented in the low 

frequency sub-band. The high frequency sub-bands consists of the edges and texture of 

the image, meaning that the human eye remains insensitive to the changes in these sub-

bands. Figure 2.8 shows the two-level decomposition of image according to discrete 

wavelet transform (Al-haj & Abu-errub, 2008). 

Broadly, DWT is utilized in field of image processing due to its great benefits in space-

frequency and multi-resolution analysis, and its ability to show localized and transient 

modifications in frequency or spatial domains. Thus DWT is a proper method to be used 

in different fields of image forensics. 

From Gabor wavelets applications, measurement of the iris texture can be realized to 

provide a high strength security system (Daugman, 1993), the extraction of face feature 

regarding automatic face recognition (Lades et al., 1993) and also the recognition of 

Figure 2.8: Two level multi-resolution wavelet decomposition of an image  
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image forgery. The wavelets are developing promisingly (Daubechies, 1990) and also 

have applications in analysis, coding, image restoration and image texture (Laine & Fan, 

1993) (Silva & Ghanbari, 1996) (Banham & Katsaggelos, 1996).  

In general, DIP, or digital image processing, means to process a single digital image 

through using a digital computer using algorithms for specific transformations. Due to 

digital image data, which is in the form of a matrix, DIP can use many mathematical 

methods. The critical areas include integral transforms, computational linear algebra, 

statistics, as well as other numerical analysis methods. A lot of DIP algorithms could be 

written as matrix equations, thus, computational techniques in linear algebra can be a 

critical dimension of this subject (Jähne, 2005).  

The process of digital image includes a broad range of applications, for example image 

compression and operation, image analysis and computer vision. In fact, there is an 

assumption of three kinds of digital processing: first, low-level processing, which is 

detectable by the fact that both its outputs and inputs are images. Second is the mid-level 

processing, which is determined by the idea that the inputs are images, but its outputs are 

extracted attributes from such images; and finally higher-level processes, including “to 

make sense” of the ensemble of identified objects as in the case of image analysis, as well 

as conducting the cognitive function which is related to human vision (Jähne, 2005). 

In fact, the processing of digital images is a practical technology in several fields such 

as: Classification, Image compression, Pattern recognition, Feature extraction, Multi-

scale signal analysis and projection (Cao, 2006).  

In this research we apply the digital images in grey and true color to perform feature 

extract and image analysis based on singular value decomposition concepts. 
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2.3 Forensics 

The technology of communication and information has developed a digital revolution 

that is fundamentally altering the world. The digital information stored in computing 

systems describes tangible assets of our lives in detail, and continues to become an even 

bigger part of reality. In addition, existing counterparts within the field of 

communications, since they are computer-mediated, are changing a lot of real-world or 

social interactions. As a result, the processes of law must develop and evolve in the digital 

sphere, for example in terms of prosecution and enforcement of crimes.  

This will increase the necessity to reconstruct, in a reliable and scientific way, 

sequences of actions conducted within the digital sphere to identify (or at least approach), 

facts regarding causal relationships. It should be known that perpetrators can be 

potentially held accountable for actions, in order to deter any kind of imitators. Those 

efforts to utilize scientific approaches to achieve probative facts in criminal studies are 

known as forensics. This concept is rooted in the Latin word “Forum” which means “the 

main square” or a place in which public court hearings occurred during ancient times.  

The term “computer forensics” has been used to define the same sort of efforts when 

computers are involved in criminal activities (Kruse II & Heiser, 2001). Somehow, the 

definition of computer forensics is blurred somehow, since computers are able to 

represent manifold relations with regard to crimes: they can be used as devices to commit 

crimes within the real world, or tools that generate a digital sphere through which crimes 

are committed. In both situations, forensic scholars can strive to reveal probative facts 

from the computers involved. 

Such situations can be even more sophisticated when sensors are provided to different 

scenarios. The sensors are able to capture parts of reality and transform them into digital 
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representations, for example, audio files or images that are later stored and/or processed 

in many computers. These kinds of digital representations regarding parts of the real 

world could be interesting for forensic scholars; however, they can only be used as 

probative facts when they are both authentic and reliable. Understanding such objectives 

explains the scope of multimedia forensics. According to Figure 2.9, it can be observed 

how all of the forensics sciences can be subdivided via their evidence domain. By this 

domain, we can find the facts: analog or classical forensics will identify physical evidence 

traces while digital forensics are limited to showing digital evidence. In this part, all of 

these concepts are defined briefly (Böhme et al., 2009).  

Forensics

Analogue 
Forensics

Digital     
Forensics

Computer 
Forensics

Multimedia 
Forensics  

Figure 2.9: Domains of Forensics Science 

 

2.3.1 Analog Forensics 

Classical forensics means the effort to demonstrate probative facts from physical proof 

in real context. It was discussed that the discipline is based on two key principles: 1) 

divisibility and 2) transfer (Inman & Rudin, 2002). The first one refers to the fact that 

matter can be divided into smaller parts when the proper force is used. Such smaller parts 
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will maintain the features of original matter, and also obtain the features provided by this 

separation. 

The other principle, which is also called the exchange principle, mentions that while 

two subjects are interacting in reality, each of them will pick up some physical matter 

from the other one  (Inman & Rudin, 2000; Saferstein, 2001). This kind of exchange 

might include footprints and fingerprints, clothes fibers, hair, wounds, scratches and oil 

stains. This example reveals that the transfer should not just be minimized to a transfer 

on some microscopic scale. According to Inman and Rudin (Inman & Rudin, 2002), the 

transfer even covers the exchange of patterns, such as footprints. Thus, transfer is not just 

transferring to matter but transferring its traits as well. If a person accepts the given 

principles, so it is, according to Kirk’s statement (Kirk, 1974):  

“In fact, physical evidence could not be wrong, it could not be absent wholly or it 

could not perjure. Its value can only be diminished by human failure in order to realize it, 

study and recognize it.”  

This means that a scholar of unconstrained forensics can freely investigate reality from 

many other infinite perspectives (though not simultaneously). Hence, they will have no 

possible chance to even identify the subtlest trace. However, in case of modern 

epistemology, it is acceptable to agree that human understanding of reality is limited in 

many different ways. In addition, the organs of human sense and perception provide an 

inaccurate image of reality. At the time that it might be assumed as a filter that could be 

compensated for at some point through technical tools (a microscope improves the human 

visual system resolution), the uncertainty principle presented by Heisenberg provides 

more barriers: an observer is usually a part of similar reality, and the fact that they are 

interacting with it will alter the object which should be observed. 
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Also, it is consistent with reflections of Inman and Rudin on the transfer and division 

of physical matter (Inman & Rudin, 2000) which do not differentiate between forensic 

scholars and perpetrators as the subjects who are participating in the exchange process. 

The important fact about such an insight is that it is reliable for probative facts initiating 

from physical evidence. In addition, if it is difficult for a perpetrator to understand all of 

these traces, is there a possibility for them to forge other traces which can result in false 

accusations? It will correspond to their efforts to alter reality in order to generate a very 

different image of their actions. 

Due to both perpetrators and forensic investigators being involved in a similar reality 

and thus subject to the same cognitive and physical barriers, even the most highly 

sophisticated perpetrator could not make sure that their “alteration of reality” is totally 

consistent with reality. Thus, in reality committing an “excellent crime” and creating a 

consistent image of reality, which can hide all of the traces, is a challenging issue. Hence, 

the exact study of physical proofs can be used to find either reliable probative evidence 

or zero (Böhme et al., 2009). 

 

2.3.2 Computer Forensics 

Also computers are more than physical tools, they also shape part of the real world. 

Thus, at first glance, if a person accepts the transfer and divisibility principles, they need 

to hold equally for computer forensics. However, while individuals talk about computer 

forensics, they usually have the implicit consideration that such forensic analysis is only 

limited to digital evidence maintained in finite automata represented by each computer. 

This suggests an observer model, together with a dramatically minimized view on reality: 

only bits are the theoretical constructs, which include no information regarding their 

history. For instance, the usual practice in order to copy digital evidence available in a 
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computer and to base more studies on this copy exclusively implements such a model for 

the observer (Casey et al., 2014; Group, 2006). This observer model additionally shows 

that, in case of computer forensics, the question of divisibility is not important. The traits’ 

transfer will be the possible basis for computer forensics theory.  

This comes together with the consequences of the reliability of facts initiating from 

digital evidence. Due to the fact that the amount of states within a closed system is limited, 

there is often a non-negligible possibility that a complex perpetrator puts a computer in a 

state that suitably removes all of the traces. Considering that the whole states for a 

computer are recorded on hard disk, these states could be obtained, for instance by 

utilizing the computer after being booted from live-CD and so not modifying the contents 

of a disk. 

It will contribute to develop a plausible and valid state with logical effort and time, as 

just a minor fraction of all probable states is in fact relevant for identifying a certain 

system state. But this provides an observer model which only considered parts of the 

whole state space; so the observer will ignore additional used technology to generate a 

certain state. Practically, it is usually not easy for researchers to show the systems’ borders 

to be examined, specifically if it utilizes network wireless links. 

Also with an observer model, which shows the whole system, it follows from the 

analysis limitations of digital evidence, which can never neglect the probability that a 

perpetrator has dealt with all of the digital traces appropriately. While these kinds of 

sophisticated perpetrators might be rare, some skepticism is due in case of the residual 

probability of error while digital proof is utilized in court in order to judge things like 

capital crimes. 
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So, is the transfer principle suitable for computer forensics? A lot of practitioners these 

days do not agree, since based on their knowledge, each perpetrator might make mistakes 

and then will leave traces of criminal activity on the evidence. Nevertheless, the nature 

of evidence (i.e. digital) will make it possible to include traces appropriately. In addition, 

unlike the practical barriers of the observer in analog forensics, the perpetrator is aware 

of the “blind spot” of the researcher beforehand, so can modify his actions and create 

misleading or false facts. There are benefits of cheap and easy computer forensics due to 

automation, meaning many studies can be carried out from offices of forensic scholars, 

which leads to lower costs of probative force. Since social relationships are shifting 

toward the digital sphere, the offices of state-funded studies should make precise 

decisions on resource allocation among the exploitation of digital and physical evidence. 

A very different condition comes if computer forensics is realized in a wider sense 

which compromises digital and physical evidence. This kind of physical evidence, even 

though it is often expensive to achieve, could be highly indicative of side-information. 

Some attributes, for example wear and tear, electromagnetic emanations recording (Kuhn, 

2002), temperatures (Zander & Murdoch, 2008), and also all types of analog directions 

on storage tools (Wright & Kleiman, 2008) may provide some information regarding past 

states of the target computer, and therefore of effort made to conceal traces. Also, the 

digitized or digital evidence maintained in other tools could shape this additional 

information when there is a secured integrity, such as through secure logging (Schneier 

& Kelsey, 1998). For instance, United States agent Oliver L. North was convicted in 1986 

over the Iran-Contra affair because he failed to deal with evidence kept on backup tapes 

(Böhme et al., 2009). 
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2.3.3 Multimedia Forensics 

A critical group of digital data that is usually identified and studied on storage devices 

is called digital multimedia data, including image, audio and video. At the same time that 

digitalized and digital media currently influence and empower our daily lives in 

remarkable ways, some critics have revealed concerns that it is not easy to alter media 

data. Thus, the questions on the authenticity of media are of high relevance and of specific 

interest in court that consequential decisions can be made based on digital media 

evidence.  

During recent years, the scope of multimedia forensics has grown significantly and 

currently includes scholars from various communities (Böhme et al., 2009; Popejoy, 

2015).  

Multimedia forensics could be explained as science which attempts, through studying 

digital assets, to conduct an evaluation of these contents and to also obtain information 

which can be helpful in supporting and mentioning the material connected to a scene 

provided by a certain digital document. In fact, multimedia forensics should provide 

appropriate tools to cope with disparate digital tools which will provide images and also 

with various processing devices, which lets the unskilled user modify the digital products 

(Caldelli et al., 2009). The methods of multimedia forensics, nowadays, highly emphasize 

the study of digital images. 

 

2.4 Digital Image Forgery Creation 

Within decades of photography’s emergence, different approaches had been suggested 

to alter the images. For example, combination print was among the first methods of image 

forgery, in which darkroom skills were utilized to print many image fragments on a 
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unique photograph paper. One of the first famous combination prints was named Oscar 

G., as well as The Two Ways of Life (1857) by Reijlander, which employed almost 30 

images. Then, during the 20th Century, photomontage which is a cut and paste composite 

of image fragments, became popular in political satire, surreal art and other forms. 

Photomontage and combination print both are time-consuming and technically 

demanding, and their usage is usually detectable.  

Due to high availability of strong editing tools, for example Adobe Photoshop, several 

image modification functions can be done in the digital domain with a more convenient 

process, leading to higher verisimilitude. Generally, the process of image forgery creation 

includes transformation, selection and composition, as well as final image retouching. 

The creators of the forgery can thus fuse the transformed fragment of image or generated 

image portion from transformed 3D model toward other image utilizing methods, for 

example matting for coherent-looking composition. Lastly, a composite image is 

retouched to omit the remaining artefact. This phase might include the removal of specific 

items from an image, which is sometimes considered as reverse cropping (Tian-Tsong 

Ng et al., 2006). 

 

2.5 Digital Image Forgery Detection 

Traditionally, the photographer shows the truth. However, the same faith in digital 

photos has faded, because of their ease of manipulation. Images, as compared to texts, 

offer natural and influential communication media for people, since often people require 

no specific training to create an image. Hence, the ability to confirm the digital images’ 

credibility and conduct image forgery detection could support digital image 

trustworthiness. Currently, digital images already have been employed for reporting the 

news, insurance claims, criminal or forensic studies, national intelligence investigations 
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and legal proceedings. Thus, this kind of image forgery detection can highly influence 

the application domain mentioned above. 

The key performance of image forgery detection is to evaluate both the origin and 

authenticity of an image. Thus, the trustworthiness of the digital images is a core concern 

for the process of image forgery detection. In 1993, the camera concept of authenticity 

(Friedman, 1993) was suggested in order to increase accountability of digital images. In 

fact, a trustworthy camera puts a digital watermark on images when it is acquired, and 

later image tampering can be traced according to modifications on the digital watermark. 

However, the identification of a trustworthy camera needs the camera producers to follow 

a popular standard protocol, when the customers should accept reduced quality of images 

because of that embedded digital watermark. 

The most common concern about digital watermark security was shown in SDMI, 

Secure Digital Music Initiative fiasco (Craver et al., 2001), in which the suggested audio 

system of watermarking was hacked swiftly by scholars of watermarking and 

cryptography of Princeton University, Rice University and Xerox PARC. In order to 

detect forgery images, a lot of approaches were introduced. These techniques are widely 

classified as two groups: Passive and Active techniques. This categorization is according 

to the idea that is the original image existed or not. Figure 2.10 shows classification of 

image forgery detection techniques (Tian-Tsong Ng et al., 2006). Univ
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Figure 2.10: Classification of image forgery detection technique 

 

2.5.1 Active Methods 

In methods of active authentication, prior knowledge of an image is in fact essential to 

the authentication process. It is related to data, in which many codes exist in an image at 

the generation time. Such code verification will authenticate the images’ originality. The 

techniques of active authentication are also categorized into two kinds: digital signatures 

and digital watermarking (Cox et al., 2002; Katzenbeisser & Petitcolas, 2000; Z. Zhang, 

Ren, et al., 2008). The digital watermarks are embedded in images at the time of image 

acquisition, or in the processing phase (Mushtaq & Mir, 2014). 

There are two key sides for designing a typical system of watermarking (Hartung & 

Kutter, 1999). The source side is to prepare the watermark data D to be embedded into 

the original image M, in order to achieve the watermarked image N. Another side is 

watermark D extraction and provision of the confidence assessment for the image. Here, 
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Figure 2.11 demonstrates the generic watermark system at the source side. There is a 

watermarked image N = f1(M, D, K), in which K will denote the key (Luo et al., 2007). 

Digital Watermarking

Watermark

Original Image

Key

Watermarked 
Image

 

Figure 2.11: Generic Watermark insertion 

 

Figure 2.12 demonstrates the extraction of watermark at the receiver side. The 

extracted watermark could be denoted as D´ = f2(N, K), in which N is known as the 

authentic image (Luo et al., 2007).  
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Figure 2.12: Watermark Extraction 
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As noted before, the basic watermark-based technique for authentication of images is 

adding a watermark to original images in the source side as well as recovering partly or 

fully the watermark at the receiving side in order to understand if the image was modified. 

Thus, any kind of manipulation before embedding the watermark could not be detected 

by means of such a technique (Birajdar & Mankar, 2013). 

The method of digital signature has the same features and characteristics, in that it 

includes secondary information, mostly drawn from the image at the acquisition step, into 

the image. Many studies have been conducted in digital signatures (Lin & Chang, 1998; 

C.-S. Lu & Liao, 2003; Sengupta & Mandal, 2013; X. Wang et al., 2012; H.-B. Zhang et 

al., 2004) as well as digital watermarking (Chamlawi et al., 2010; Y.-S. Chen & Wang, 

2011; Rosales-Roldan et al., 2013; Shieh et al., 2006; Spagnolo & De Santis, 2011). The 

key drawback of such methods asserts that they should embed into images at the recording 

time utilizing specific equipment, so prior knowledge regarding the image remains 

indispensable (Mushtaq & Mir, 2014). 

 

2.5.2 Passive Methods 

Also the passive authentication known as image forensics is the authentication process 

of images with no need for prior information from the image (Tian-Tsong Ng et al., 2006; 

Zhou & Zhang, 2010). The passive methods are based on the idea that, although 

tampering might not have visual traces, it will possibly modify underlying statistics 

(Mushtaq & Mir, 2014). It is in fact such inconsistencies which are employed to detect 

tampering images. Moreover, exhaustive studies have been done in the passive image 

forensics field (Farid, 2009; Luo et al., 2007; Tian-Tsong Ng et al., 2006).  

There are two questions in case of passive authentication (Caldelli et al., 2009):  
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a. What is the digital content source? (Authentication of source device) 

b. Is this kind of digital content authentic? (Tamper detection) 

2.5.2.1 Source device authentication 

A digital image might be captured from different devices such as scanners, cameras, 

technology, and computer graphics. The concern from this issue is toward source 

identification (Birajdar & Mankar, 2013). 

In a law court, the origin of a specific image could demonstrate key evidence; the 

evidence’s validity may be based on logical doubt that this image was captured from the 

device that it was supposed/claimed to be captured with, such as covert videos or video-

surveillance materials (Redi et al., 2011). 

Thus, the process within the devices is almost known. However, various imaging 

devices have various features due to their physical apparatus, various image processing 

techniques, as well as various parameters used in those devices. This will result in various 

patterns from the output images. Such patterns can be employed as “fingerprints” of those 

devices to trace their image sources.  

Figure 2.13 demonstrates the general identification pattern of image-source (Luo et 

al., 2007). Consider that M is the image to be detected. It might be captured from many 

candidate imaging devices. The process of identification includes: first, the M features 

and schemes from image devices are mainly being extracted by applying knowledge of 

the model for image acquisition. Later, the existed similarities among such patterns and 

the features are evaluated. Finally, a confidence measure for the image devices will be 

given in order to recognize the source of image M  (Luo et al., 2007).  
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Figure 2.13: General Identification Pattern 

 

2.5.2.2 Tamper Detection 

Referring to the Oxford Dictionary (Dictionary, 2004), literally, the verb tamper means 

“to interfere with something for causing damage or do unauthorized modifications”. In 

case of digital image processing, the tampering shows the intentional modification of 

images because of malicious objectives: since images are natural information carriers, 

image modification is known as tampering while it specifically attempts to alter semantic 

meaning of those visual messages (Redi et al., 2011). 

A digital image might be modified by image processing after it is captured by a certain 

imaging device. The subject considers the issue if it is possible to define an image that is 

modified by a specific operation or not. In fact, original images usually include many 

consistent features, for example light condition, consistent noise distribution, etc. 

However, these features have to be modified by applying some post-processing 

operations on the image. In addition, some characteristics of the modified images will 

become more or less inconsistent at some point. Realizing the differences before and after 

the modification operations is a critical factor to distinguish the authentic images. It is 
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mentioned that many operations include malicious tampering while others do not alter the 

image contents, such as contrast or color adjustment.  

Figure 2.14 demonstrates a general detection scheme of image modification (Luo et 

al., 2007). The image M is tested to see if it is original or has been modified through 

specific operations. According to Figure 2.14, first the features are extracted from image 

M and achieve original or modified patterns, significantly utilizing the information of the 

model of image manipulation or, on some occasions, joining with statistical features in 

natural scenes and the model for image acquisition. Later, patterns and features are 

compared to decide if image M was modified or not. 

 

Feature 
Extrction

Image M Features

Pattern 
Extraction

Original/Altered 
Image

Patterns

Knowledge of 
Image 

Manipulation 
Model

Confidence 
Measure

 

Figure 2.14: General Image Detection Schemes 

On most occasions, passive forensics could be converted as a pattern identification 

problem. An appropriate solution to this problem is realizing various patterns based on 

knowledge from different imaging devices, or alteration, or natural scene barriers. The 

patterns chosen with distinguishing capability are critical for such newly developed 

technology (Luo et al., 2007). 
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There are different operations to modify the original image. Generally, the semantic 

content of an image can be modified in two main directions: through omitting information 

or through adding it. In order to exclude information, often forgers do not require access 

to other image content according to the top row in Figure 2.15(a). On the other hand, one 

common way to add some extraneous data to image is using material obtained from some 

specific images. The techniques of tampering, as well as their malicious intentions, can 

be categorized into two groups: those that create forgery in just one image and those 

which access the contents of multiple images (composite) (Redi et al., 2011). 

 Image copy-move: Usually the attack named copy-move is utilized to conceal 

different parts of images or omit unwanted portions of it. So a portion from image 

is copied and then pasted over those unwanted portions in that image. Figure 2.15 

provides an example for such copy-move forgery (Granty et al., 2010). 

 

(a) 

 

(b) 

 

(c) 

Figure 2.15: Sample of image copy-move, (a) original image, (b) image after copy-
move attack, (c) copied portions 
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 Image retouching: Image retouching is performed in a lot of magazine covers in 

order to give poor quality images an improved appeal through altering its 

background or via making modifications in the hue of that image so it will have a 

better feeling. In Figure 2.16 a retouched image is presented (Granty et al., 2010). 

 

 

(a) 

 

(b) 

Figure 2.16: Sample of Image Retouching (a) Original Image, (b) Retouched Image 

 

 Geometrical transformation: Some pictures have a part of the image modified 

by many popular geometric transformations for example rotation, scaling and 

translation. The forgers will copy a portion of the image and then make 

modifications to it through changing that specific portion geometrically. This 

operation is presented in Figure 2.17 (Granty et al., 2010). Image (a) shows only 

one cartridge while the second image (image (b)) demonstrates the image with 

two cartridges in which the second cartridge has been made by scaling and 

transformation operations.  
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(a) 

 

(b) 

Figure 2.17: Sample of Geometrical Transformation. (a) Original Image, (b) Image 
after geometrical transformation 

 

 Image splicing: This is a technique of tampering with photos through combining 

two different sources in order to generate a new picture that has most portions of 

one picture in details. Figure 2.18 shows an example of a spliced picture (Farid, 

2006a). 

 

                     (a) 

 

                     (b) 

 

                                                     (c) 

Figure 2.18: Sample of image splicing. (a) first original image, (b) second original 
image, (c) spliced image 
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2.6 Feature Extraction 

Image splicing operations modify the smoothness and continuity of the image content. 

Thus image splicing detection methods needs some features to find the modification done 

during the splicing process. In section 2.9, different statistical feature extraction methods 

are presented and discussed. Features of the image contain local and global assets of a 

picture, for example average grey levels, intensity histogram circles, shapes, texels as 

well as the counter shapes are captured from the image to show the digital images within 

abstract or real mathematical presentations (Jin et al., 2009). 

The image features are employed as critical assets which can be employed in the 

image-matching process; such image features should include proper assets in order to 

make them useful for identifying discontinuities within image contents.  

The feature extraction could be possible using various algorithms. The most 

appropriate algorithms for feature extracting should bring exact feature recognition, 

which has low computational extraction costs. One asset of a useful algorithm is the 

extraction’s low cost. Generally, there should be a balance between detection accuracy, 

dimensionality, and computation time.  

Actually, image feature extraction is carried out to understand premise features. 

Currently, major types to extract features of an image are: 1) intuitive features including 

contour, edge of image, texture etc.; 2) grey demographic features, for example 

histograms; 3) transforming features domain for example Haar transform, Walsh 

transform and Fourier transform. Moreover, algebra features are usually employed to 

solve the image recognition issue. Also, SVD algebra is an efficient method for feature 

extraction which was broadly used, due to having the best properties for signal processing, 
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data compression and pattern recognition (Jin et al., 2009). Since SVD is applied in this 

research, its concepts and properties are discussed in this section. 

 

2.6.1 Singular Value Decomposition 

Regarding the linear algebra, SVD is in fact the factorization of the rectangular 

complex or real matrix analogous toward symmetric diagonalization or Hermitian square 

matrices utilizing the eigenvectors basis. SVD is an effective and consistent approach to 

splitting a system into a group of linearly independent aspects, each of them providing 

their own contribution to energy (Andrews & Patterson, 1976; Moonen et al., 1992). For 

one digital Image M with size equal to m × n together with m ≥ n, a decomposition of this 

matrix could be as below (Sadek, 2012): 

 

  M = USVT                                                                  (2.7) 

 Sv = diagonal of (S)                                                                  (2.8) 

 

where U and V (VT is transpose of V) are two square orthogonal matrices in sizes of m 

× m and n × n respectively, and S is a rectangular matrix of m × n in which its diagonal 

factors demonstrate the singular values, Svi for M. The orthogonal matrix U columns are 

known as left singular vectors while orthogonal matrix V columns are known as right 

singular vectors. The LSCs, left singular vectors for M are MMT eigenvectors and RSCs, 

right singular vectors, for M are MTM eigenvectors. Any singular value (SV) demonstrates 

the image luminance layer and the singular vectors’ corresponding pair (SCs) shows the 

image geometry (Ganic et al., 2003). In addition, V and U are orthogonal unitary matrices 

(total of squares for each single column is unity and all of the columns are not correlated) 

so S will be a diagonal matrix (only a leading diagonal includes non-zero values) with the 
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singular values sorted in descending order. The singular value for each specific eigen 

image is simply 2-norm (Sadek, 2012). As SVD increases the biggest singular values, the 

first eigen image will be a pattern which covers the biggest portion of covariance-variance 

structure (Andrews & Patterson, 1976; Kamm, 1998) . 

 

2.6.2 SVD Image Properties 

SVD would be an optimal decomposition of a matrix within a least square sense, 

whereby only a few coefficients contain the highest possible signal energy (Konda & 

Nakamura, 2009; Moonen et al., 1992). The singular value decomposition, SVD, would 

therefore be the effective and fixed approach to split a system into two groups of linearly 

independent factors, each of them having their own proportion of energy. 

The singular value decomposition is considered as a numerical method utilized to 

identify numerical analysis matrices (Andrews & Patterson, 1976; Kamm, 1998). This 

would be an interesting algebraic transform regarding image processing, due to its 

numerous benefits, for example maximum packing of energy that is usually employed in 

compression (Xu et al., 2004; Yang & Lu, 1995), its capability to handle the image based 

on two separate subspaces: noise and data subspaces (Konstantinides et al., 1996; 

Sverdlov et al., 2006; Xu et al., 2004), which is mainly employed in case of noise filtering. 

Moreover, it has been employed in watermarking processes (Gorodetski et al., 2001; Xu 

et al., 2004). All of the applications mentioned can exploit the main SVD properties.   

In addition, it is often employed to solve least squares issues, multivariate analysis and 

matrix computing pseudo-inverse. The SVD is both a reliable and robust orthogonal 

matrix decomposition approach, which, because of its stability and conceptual properties, 

is becoming highly common in the field of signal processing (Andrews & Patterson, 1976; 

Kamm, 1998). The SVD can adapt to differences in domestic statistics of a digital photo 

Univ
ers

ity
 of

 M
ala

ya



50 

(Yang & Lu, 1995). A lot of SVD properties are interesting but are not yet wholly 

employed.  

This part investigates key SVD properties which might be used in image processing. 

Even though many of these properties are totally used in image processing, other ones 

still require further study. Different SVD properties are remarkably beneficial for images, 

for example its full energy packing, calculating pseudo-inverse of the matrix, solving least 

squares issues, as well as multivariate analysis (Konda & Nakamura, 2009; Moonen et 

al., 1992). One of the main SVD properties is its relationship to matrix rank and its 

capability to approximate matrices of a certain rank. Often the digital images are 

introduced by low rank matrices and so can be defined in total by a small group of 

eigenimages. This structure can increase the alteration of signal into two specific 

subspaces (Andrews & Patterson, 1976; Kamm, 1998).  

 

2.6.2.1 SVD Subspaces 

The SVD consists of two subspaces (orthogonal subdominant and dominant). It shows 

the partition of vector space for M-dimensional toward both subdominant and dominant 

spaces (Moonen et al., 1992; Sverdlov et al., 2006). This useful attribute of SVD is used 

in both watermarking and noise filtering (Gorodetski et al., 2001; Konstantinides et al., 

1996).  

2.6.2.2 SVD architecture 

In case of SVD image decomposition, the singular values will define the luminance of 

the image layer and the corresponding pair singular vectors show the image layer 

geometry. The biggest object feature in an image is identified by means of SVD in general 

corresponding to associated eigenimage with the biggest singular value, and the image 
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noise is related to an eigenimage that is related to SVs (Andrews & Patterson, 1976; 

Kamm, 1998). 

 

2.6.2.3 PCA versus SVD 

The PCA, principle component analysis, is also known as Karhunen-Loéve transform 

(KLT) or the Hotelling transform. The PCA is utilized to calculate the dominant vectors 

shown as a specific data set and brings the appropriate basis for reconstruction of the 

lowest mean squared for a set of data. The computational foundation of the PCA is the 

computation of SVD, or similarly the eigenvalues decomposition for SVD data 

covariance matrix is relevant to the spectral decomposition of the square matrix M or 

standard eigenvector-eigenvalues toward VLVT in which V is in fact orthogonal and L is 

also diagonal. In addition, U and V from SVD represent respectively the eigenvectors for 

MMT and MTM. If M is symmetrical, the singular values of M are known as the 

eigenvalues for absolute value of M (Andrews & Patterson, 1976; Kamm, 1998). 

 

2.6.2.4 SVD Multiresolution 

SVD has the most efficient energy packing compared to other types of transform. In 

various applications, it would be helpful to achieve the statistical characterization of a 

certain image at many different resolutions. The SVD is capable to decompose a matrix 

as its orthogonal components by which proper sub-rank approximations might be 

achieved. Through the multiresolution SVD, the below critical features of an image could 

be evaluated, at each single level of many resolution levels: principle components  

spercity, isotropy, mean squared error as some meaningful components and self-similarity 

under scaling (Kakarala & Ogunbona, 2001; Yang & Lu, 1995). 
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2.6.2.5 SVD Oriented Energy  

In the case of SVD oriented energy analysis, both rank of signal space and problem 

orientation can be defined, so SVD can be considered a proper and efficient technique to 

split a single system into a group of linearly independent features, with each one of them 

having its own contribution to energy (Sadek, 2012). The SVD is shown as the linear 

combination of its key components, and a few dominant features including a rank of 

observation system, could be minimized dramatically. The oriented energy notion is an 

appropriate method to divide signals from various sources or choosing signal subspaces 

of the maximal signal integrity and activity (Moonen et al., 1992; Sadek, 2008). It should 

be noted that singular values show the energy square root in the relevant principal 

direction. The dominant direction can also be equal to the first singular vector V1 in SVD. 

The accuracy of the dominance estimate can be evaluated by calculating the normalized 

difference or simply the difference among first two SVs (Bigun et al., 1991).  

 

2.6.2.6 SVD and Linear Independence 

The other utilization of SVD brings a measure known as the condition number, which 

is relevant to the linear independence measure among matrix column vectors. The matrix 

M condition number, considering the Euclidean norm is (Leach, 1995): 

 𝐶𝑜𝑛𝑑(𝑀) =  
𝑠𝑚𝑎𝑥

𝑠𝑚𝑖𝑛
 (2.9) 

 

where smin and smax means the minimum and maximum singular values of matrix M. 

Matrix M is rank deficient, so if smin = 0, it is assumed cond(M) = ∞. By means of 

condition number, the column’s independency can be determined. Thus, for all matrices 

cond(M) ≥ 1, the columns are highly independent when cond(M) is very close to 1.  
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Referring to singular values geometric interpretation, it is clear that the condition 

number is relevant to the hyperellipsoid axes related to the matrix. Because cond(M) is 

presented by a set of singular values, and such values show the length of axes with a 

maximum and minimum range, the condition number will define the hyperellipsoid 

eccentricity (Leach, 1995). 

If the condition number is larger, the matrix is closer to being singular. Thus the 

identity matrix condition number equals 1. The singular matrix has an infinite condition 

number (Renkjumnong, 2007). 

 

2.6.2.7 SVD-based orthogonal subspaces and rank approximation 

In fact, SVD can decompose the matrix as some orthogonal features with which 

approximations of optimal sub rank might be calculated. The biggest object features in 

images identified utilizing SVD will in general correspond to those associated 

eigenimages with biggest singular values, and when image noise is related to those 

associated eigenimages, with small singular values. In addition, SVD is utilized to 

approximate the matrix, which decomposes the data as the optimal estimate of noise and 

signal components. This attribute is one of the critical aspects of SVD decomposition in 

case of compression, forensic and noise filtering, which also can be treated as adding 

more noise in an appropriate detectable manner (Sadek, 2012). 

 

2.6.3 Feature Extraction Based on SVD 

The SVD decomposition is able to transform any matrix to a diagonal matrix form. In 

the case of image processing, the below are the key theoretical reasons to apply SVD: 1) 

the image singular values stability are more efficient. Since the image is being imposed 

on some small disturbance, the singular values of the image will not have any specific 
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changes; 2) the image singular values are demonstrated instead of the intrinsic attributes 

of visual characteristics. From the linear algebra point of view, a grey image could be 

considered as a non-negative matrix, if the image is defined as M and expressed as M ∈ 

Rn×n. Thus, SVD decomposition definition regarding the matrix M is the equation below 

(Wensheng WANG et al., 2006): 

 𝑀 = 𝑈𝑆𝑉𝑇 = (𝑢1‚ 𝑢2‚ … ‚ 𝑢𝑛) [
√𝛼1 ⋯ 0

⋮ ⋱ ⋮

0 … √𝛼𝑛

] (𝑣1‚ 𝑣2‚ … ‚𝑣𝑛) (2.10) 

                      

Both U ∈ Rn×n  and V ∈ Rn×n  are real matrices, α1≥ α2≥ …≥ αn, √𝛼𝑖 is singular value of 

M that could be defined specifically through formula (4) and √𝛼𝑖 would be the square 

root of the MMT eigenvalue (Fu-bing & Jing-yu, 2005).  

For any kind of real matrix M, decomposition of singular value is totally unique in α1≥ 

α2≥ …≥ αk limitations. Based on the idea that SVD decomposition of the image matrix is 

totally unique, the singular value eigenvector can be utilized for the image matrix in order 

to define a 2-D grey image. The singular vectors via dimensional transformation have a 

lot of critical properties as image features: 

1) The stability of displacement and image dimensional transformation, which is a 

technique according to dimensional transformation to show that a matrix of an image of 

the same object includes good and accepted immutability. Specifically, it has to fulfill the 

condition below for dimensional transformation and image movement (Jin et al., 2009):  

 ‖𝑀 − 𝐿‖𝐹  <  𝜀 (2.11) 

                                                                

M is the dimensional transformation matrix to original image and so L is the 

dimensional matrix via zoom or movement transformation to the original image. Based 
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on this theory, it can be confirmed whether the SVD of a matrix is stable. With small 

modifications in the matrix, SV eigenvectors will not have any specific changes. The 

definition below shows this matter (Jin et al., 2009; J. Lu & Wang, 2005). 

Hypothesis: M, L ∈ Rn×n with singular values of α1≥ α2≥ …≥ αn and β1≥ β 2≥ …≥ β n 

respectively, and M – L = δ, so the equation below is justifiable to any immutable norm 

on Rn×n (Jin et al., 2009): 

 ‖𝑑𝑖𝑎𝑔(𝛼1 −  𝛽1‚ … ‚ 𝛼𝑛 −  𝛽𝑛)‖  ≤  ‖𝐿 − 𝑀‖ =  𝛿 (2.12) 

                                  

When the norm is ‖𝑀‖𝐹 =  √∑ |𝑎𝑖𝑗|
2

𝑖𝑗 , then Equation (2.12) will be as follows (Jin et 

al., 2009): 

 √∑(𝛽𝑖 −  𝛼𝑖)2

𝑛

𝑖=1

 ≤  ‖𝐿 − 𝑀‖𝐹  (2.13) 

                                           

Moreover, to calculate dimensional transformation and image movement, the 

following equation can be derived from Equations (2.12) and (2.13) (Jin et al., 2009): 

 √∑(𝛽𝑖 −  𝛼𝑖)2

𝑛

𝑖=1

 ≤  𝜀  
(2.14) 

2) The rotation transformation stability for an image based on new matrix technique 

according to dimensional transformation is utilized to provide an image, any kind of 

rotation transformation is similar to the relevant row replacement for the image matrix. 

Based on matrix theory, i and j rows of A switching matrix are as same as left side of 

matrix that are being multiplied through below equation (Jin et al., 2009):  

 𝐴𝑖𝑗 =  𝐴 − (𝑎𝑖 − 𝑎𝑗)(𝑎𝑖 −  𝑎𝑗)𝑇 (2.15) 
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where ai and aj are the ith and jth elements of matrix A respectively. If M is considered 

as the original image, Aij. M shows the image when rotation transformation is performed, 

thus (Aij.M)( Aij.M)T  will be (Jin et al., 2009): 

 |(𝐴𝑖𝑗 . 𝑀)(𝐴𝑖𝑗. 𝑀)
𝑇

−  𝛼𝐴| = 0 (2.16) 

Since Aij = Aij
T = Aij

T , thus Equation (2.16) can be written as follows (Jin et al., 2009): 

 |𝐴𝑖𝑗 . 𝑀𝑀𝑇 . 𝐴𝑖𝑗
𝑇 −  𝛼𝐴| =  |𝑀𝑀𝑇 −  𝛼𝐴| = 0 (2.17) 

 
According to this point, original image M and after rotation have same Aij. Thus an 

eigenvector has the property of rotation transformation immutability. 

It is understood that the extracted features must have geometry and algebra 

invariability for the extracted techniques of image recognition (Jin et al., 2009). The 

above analysis demonstrates that Sv features have such stability for a matrix according to 

dimensional transformation to introduce a single image (JING et al., 1999). 

 

2.6.4 Why SVD? 

Based on the brief explanation of SVD in section 2.6, SVD is a strong method in 

various matrix analyses and calculations. Employing SVD of the matrix in calculations, 

instead of the original matrix, includes the benefit of robustness to numerical error. In 

addition, SVD exposes the matrix geometric structure, a critical dimension of a lot of 

matrix computations. The matrix could be defined as a transformation from one correlated 

vector space to an uncorrelated one. The SVD components can quantify the changes 

among the underlying geometry of such vector spaces. 
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SVD can be used in many applications such as least-square issues to solving the linear 

equations of systems, image processing and signal processing. Each of them uses main 

SVD properties – its relationships to matrix rank and its capability to approximate the 

matrices of a specific rank. A lot of critical linear algebra dimensions rely on defining the 

matrix rank, making SVD a highly used and important method. Therefore, SVD is applied 

in this research as a feature extraction technique in an image splicing detection method to 

investigate its effectiveness in this area of image application (Leach, 1995). 

 

2.7 Feature Selection 

The detection step in image splicing detection is performed by classifying the authentic 

and spliced images. Before starting the actual data classification, it is essential to process 

the data extracted from the images for various reasons, including redundancy, missing 

values, data outliers, inappropriate format, and data inconsistency. This step is called 

feature selection.  

In many real-world applications suitable preprocessing transformations of input data 

can increase overall performance of algorithms (Rosipal et al., 2001). In general, there 

are some correlations and redundancies among input variables; thus feature selection 

restricts the input data by eliminating redundant features and keeping important 

dimensions in the feature vector. Humans and machine learning methods find it difficult 

to interpret raw data. Given that a feature matrix has rows which each represent a specific 

instance of an object, a large number of features exponentially increases the 

computational time. Thus, transforming the information into smaller sizes enhances 

method analysis and improves the training and testing phases during classification 

(Anusudha et al., 2010). Several experiments were conducted to test and analyze this idea.  
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Different approaches such as finding the linear or nonlinear manifold that lies within 

the high-dimensional data space can simplify interpretation. In this section, the PCA and 

kernel PCA are presented to improve the features extracted by the proposed SVD-based 

feature extraction techniques. Moreover, linearity (PCA) and nonlinearity (kernel PCA) 

were considered in selecting the feature selection techniques, in order to investigate their 

effects on the extracted features. 

 

2.7.1 PCA 

PCA is the most common and popular linear feature selection approach (Ghodsi, 2006; 

Jackson; Jolliffe, 1986). It has been used for years because of its conceptual simplicity 

and computational efficiency. The approach is applied in many areas such as noise 

reduction, pattern recognition, regression estimation, and image indexing (Schölkopf et 

al., 1997). It maps a dataset of n dimensions to a linear subspace with d dimensions, where 

d < n, and attempts to maintain most of the variability in the mapped dimensions. PCA is 

considered a second-order approach depending on the covariance matrix of the variables. 

The approach has different names in different fields such as singular value decomposition, 

Karhunen–Love transform, Hotelling transform, and the empirical orthogonal function 

method (Fodor, 2002).  

PCA is based on finding the d orthogonal linear vectors, known as principal 

components, of n dimensions with maximum variance. Therefore, the number of selected 

features is not more than n. The approach works well if the most significant modes of 

variability are almost linear. Hence, high dimensional samples are best remade from their 

low dimensional linear projections. Otherwise, PCA becomes ineffective if the most vital 

significant modes of variability are nonlinear (Ghodsi, 2006). In mathematical terms, 
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PCA finds Y as the new feature vector set with d dimension (d ≤ D), in which X is the 

original feature vector set with D dimension (van der Maaten et al., 2009).                                                   

    Y = XM (2.18) 

 

To find linear mapping M, PCA attempts to maximize the following function:     

                               

    MTcov(X)M (2.19) 

 

where cov(X) is the covariance of the original feature vector set X. However, M 

consists of d principal eigenvectors of the sample covariance matrix of the zero-mean 

data (van der Maaten et al., 2009). Therefore, the following eigen problem must be solved 

for the d principal components λ: 

                                                     cov(X)M = λM (2.20) 

 

2.7.2 Kernel PCA 

PCA is a linear feature selection method. Some datasets have a nonlinear nature, and 

PCA cannot select the features of these datasets efficiently. Thus, kernel PCA was 

designed to address this problem. Kernel PCA was applied in some pattern recognition 

experiments (Schölkopf et al., 1997) and exhibited better recognition rates than linear 

PCA. Kernel PCA is a nonlinear form of PCA that attempts to identify complicated 

correlations between given features. It computes principal components in the original 

dataset through nonlinear mapping. It also discovers major components that are nonlinear 

in relation to the input space by running, which results from nonlinear mapping in which 

the low-dimensional hidden structures are likely to be simple (Ghodsi, 2006).  
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Kernel PCA locates the principal eigenvectors of the kernel matrix instead of the 

covariance matrix (van der Maaten et al., 2009). Thus, the computational complexity of 

kernel PCA is independent of the dimensionality of the feature set, which allows it to 

work on feature sets with different possible dimensionalities. Kernel PCA does not 

require any nonlinear optimization; it only needs to solve an eigenvalue problem as in the 

case of standard PCA. Thus, kernel PCA is free of local minima trap during training. The 

original feature set must be mapped to a higher dimensional feature set to calculate kernel 

PCA (Schölkopf et al., 1997):                                                

                                                     Φ ∶  RN → F, x → X (2.21) 

 

Then, the covariance matrix of data is calculated to obtain the principal components 

by solving the eigenvalue problem using the following equations (Schölkopf et al., 1997): 

                                                     CF =  
1

N
 ∑ Φ(xi)Φ(xi)

T

N

1

 (2.22) 

 

                                                     CFv =  λv (2.23) 

Subsequently, the eigenvector can be expressed as a linear combination of features 

(Schölkopf et al., 1997): 

                                                     v =  ∑ αiΦ(xi) 

N

1

 (2.24) 

                                                     αi =  
1

λN
v (2.25) 

Therefore, the kernel matrix is defined as follows:                     

                                                     kij = 𝒦(xi, xj) = (Φ(xi). Φ(xj)) =  Φ(xi)
TΦ(xj)  (2.26) 
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where k_ij represents the elements of kernel matrix K, x is the feature set, and 𝒦 is the 

kernel function with conditions that result in a positive semi-definite kernel K (van der 

Maaten et al., 2009). Φ(x_i) may not be zero-mean, such that the features must be 

centered. The corresponding kernel is obtained using the following equation (van der 

Maaten et al., 2009):                       

                                                     kij
c =  kij −  

1

N
 ∑ kik

N

i=1

−  
1

N
 ∑ kjk

N

j=1

+  
1

N2
∑ kik

N

i,k

 (2.27) 

Consequently, the following equation represents the low-dimensional feature set y_i: 

                                                                                               yi =  ∑ αji𝒦(x, xi)

N

i=1

 (2.28) 

where α_ji represents the jth value in the vector α_i. 

 

2.8 Classification 

Image splicing detection is a two-class classification procedure. It needs an appropriate 

binary classifier in order to differentiate between spliced and authentic images. SVMs, 

Support Vector Machines, are initiated from Statistical Learning Theory (Vladimir & 

Vapnik, 1995). They have been broadly used in fields of machine vision, for example 

handwriting digits, character and text recognition (Joachims, 1998; Vladimir & Vapnik, 

1995), classifications of satellite image (C. Huang et al., 2002; Mather & Koch, 2011) as 

well as image forgery detection (Shi et al., 2007b; Zhao et al., 2011). Some SVMs such 

as Artificial Neural Networks, as well as other classifiers which are nonparametric, are 

well-known for their robustness (Foody & Mathur, 2004a, 2004b). The functionality of 

SVMs is through nonlinearly projecting the training data inside the input space to have 

an infinite space dimension using kernel function. These outcomes in linearly specific 
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datasets can be divided through linear classifiers. Such a process makes the classification 

able to remote those sensing datasets that are often nonlinearly separable in input spaces. 

In a lot of examples, classification in feature spaces of high dimensionality leads to 

over-fitting within an input space, but, in over-fitting of SVMs, it is monitored by a 

structural risk minimization principle (Vladimir & Vapnik, 1995). The misclassification 

risks are empirically reduced through increasing the margin among decision boundaries 

and data points (Mashao, 2003). In practice, such criteria will be softened to reduce cost 

factors, including both classifiers’ complexity and the extent to which marginal points are 

being misclassified. The existing trade-off among such variables can be managed via an 

error parameter of margins (mainly the designated C) that is appropriately tuned via a 

cross-validation processes (Mashao, 2003). Those functions which are projecting the data 

from input space into the feature space are known as kernel machines or simply kernels, 

including Gaussian (generally known as radial basis functions), polynomial and quadratic 

functions. These functions have specific parameters that must be defined before 

classification, and they are often defined via a process of cross-validation. A more in-

depth SVMs mathematical treatise can be identified in (Anthony et al., 2007; Campbell, 

2001; Cristianini & Shawe-Taylor, 2000; Vladimir & Vapnik, 1995). In this study, SVM 

is applied as a classifier to distinguish the authentic and spliced images. 

 

2.9 Image Splicing detection methods 

An insertion of material from other sources into an image is one of the most well-

known methods to overturn the contained message in visual media. Modern methods and 

new editing software provide us with convenient composite image creation tools, 

resulting in outcomes that are not easily detectable by the human eye. The matting and 

blending methods are useful to mask all of the boundaries of spliced areas and to grant 
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the image highly uniform dimensions. Moreover, the composite image creation may need 

geometric transformations. Scaling, rotation and also translation are usually required to 

ensure that spliced object is in line with the original image scale and perspective. 

Typically, the geometric transforms include re-sampling, which requires interpolation in 

turn (bicubic, bilinear and closest neighbor). The process of re-sampling generates some 

artifacts in the image histogram, and so gives an appropriate clue for the detection of 

composites.  

It should also be considered that inserted material does not necessarily have to initiate 

from natural pictures. Since computer graphics are evolving, more realisitc objects in 3D 

can be rendered and modeled to be spliced as image composite. In addition, the 3D scene 

structure extraction from images lets us alter objects through a morphing process, and 

here the splicing includes an artificial or remodeled version of a portion of an original 

image (Redi et al., 2011). Such methods are used while the forger attempts to manipulate 

a facial expression as examined in the rewriting of videos (Bregler et al., 1997).  

So far, several blind (passive) image splicing detection methods have been proposed 

and developed, and their number is still rising. These different methods have similar 

procedures, including preprocessing, feature extraction, and classification. The main 

differences between the existing methods are in the preprocessing and feature extraction 

phases. The extracted features have different sizes and algorithms. Therefore, this section 

classifies the existing approaches based on the preprocessing and feature extraction 

algorithms applied. In next parts of this section, some of the most influential methods for 

image splicing detection will be reviewed. 

 

 

Univ
ers

ity
 of

 M
ala

ya



64 

2.9.1 Markov-based algorithms 

This category describes the features extracted by the Markov algorithm. Markov 

features reflect the statistical changes caused by image splicing. In fact, it characterizes 

the correlation between image pixels that are changed by the image splicing process. Shi 

et al. (Shi et al., 2007b) proposed a natural image model by combining moments of 

characteristic functions of wavelet sub-bands and the Markov transition probabilities of 

the difference between 2-D arrays and 2-D arrays of multi-size block discrete cosine 

transform (MBDCT). They applied the Markov process on the difference 2-D arrays that 

were computed along horizontal, vertical, diagonal, and minor diagonal directions instead 

of applying it to the image/coefficient 2-D arrays directly.  

Their model is based on probability theory (Viniotis, 1998), which assumes the spliced 

process to be an additive noise to the original image and thus the spliced image is a 

convolution of distribution of the original image and the splicing noise. According to the 

shape of the distribution of additive splicing noise, the concentration along specific 

directions in a Markov transition probability matrix could be found and indicate image 

splicing. The equations to compute the elements of transition probability matrix (features) 

are as follows (He et al., 2012; Shi et al., 2007b):                    

                                                                                               𝑃1ℎ(𝑖, 𝑗) =  
∑ ∑ 𝛿(𝐸ℎ(𝑢, 𝑣) = 𝑖, 𝐸ℎ(𝑢 + 1, 𝑣) = 𝑗)

𝑆𝑣
𝑣=1

𝑆𝑢−2
𝑢=1

∑ ∑ 𝛿(𝐸ℎ(𝑢, 𝑣) = 𝑖)
𝑆𝑣
𝑣=1

𝑆𝑢−2
𝑢=1

 (2.29) 

                                                                                                               P1v(i, j) =  
∑ ∑ δ(Eh(u, v) = i, Eh(u, v + 1) = j)

Sv−1
v=1

Su−1
u=1

∑ ∑ δ(Eh(u, v) = i)
Sv−1
v=1

Su−1
u=1

 (2.30) 

                                                                                                                    P2h(i, j) =  
∑ ∑ δ(Ev(u, v) = i, Ev(u + 1, v) = j)

Sv−1
v=1

Su−1
u=1

∑ ∑ δ(Ev(u, v) = i)
Sv−1
v=1

Su−1
u=1

 (2.31) 

                                                                                                                    P2v(i, j) =  
∑ ∑ δ(Ev(u, v) = i, Ev(u, v + 1) = j)

Sv−2
v=1

Su
u=1

∑ ∑ δ(Ev(u, v) = i)
Sv−2
v=1

Su
u=1

 (2.32) 
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Zhang et al. (J. Zhang et al., 2009) developed a splicing detection method by merging 

the Markov features applied in (Shi et al., 2007a) and DCT features. Their detection 

method achieved an accuracy rate of 91.5%, with the use of the 109-D feature vector. 

Sutthiwan et al. (Sutthiwan et al., 2010) developed an image splicing detection method 

for color images based on MBDCT, moment-based and Markov-based features. They 

extracted features from the Cr channel in the chroma channel space, which is the most 

sensitive channel in the YCbCr during color image tampering. Their natural image model 

is based on the one developed in (Shi et al., 2007b). It took the advantage of the de-

correlation which exists between block discrete cosine transform (BDCT) coefficients. 

At the end, they applied boosting feature selection (BFS) to make an optimal selection 

between dimensions and to increase the accuracy rate. 

Zhao et al. (Zhao et al., 2012) proposed an image splicing detection method using the 

third-order statistical feature extraction method. They applied the conditional co-

occurrence probability matrix (CCPM) and combined it with Markov transition 

probability matrix and co-occurrence matrix. The Markov chain reflects the dependences 

between two neighboring states. They expanded the basic Markov chain features to third 

order statistical features by considering the correlations between three neighboring states 

which shows the future state by determining the current state and previous state. Since 

the dimensionality increases by increasing the number of orders in the features, they also 

applied principle component analysis (PCA) to reduce dimensionality. 

He et al. (He et al., 2012) proposed a Markov-based image splicing detection 

algorithm, which expands the DCT Markov approach developed in (Shi et al., 2007b) and 

combines it with Markov features extracted from the DWT domain. The expanded DCT 

Markov has the advantage of capturing both the intra-block and inter-block correlations 
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between the DCT coefficients as proposed in (C. Chen & Shi, 2008). The equations for 

the expanded parts are as follows (He et al., 2012):  

                                                                                                                    Gh(i, j) = x(i, j) −  x(i + 8, j) (2.33) 

                                                                                                                    Gv(i, j) = x(i, j) −  x(i, j + 8) (232.)  

                                                                                                                    P3h(i, j) =  
∑ ∑ δ(Gh(u, v) = i, Gh(u + 8, v) = j)

Sv
v=1

Su−16
u=1

∑ ∑ δ(Gh(u, v) = i)
Sv
v=1

Su−16
u=1

 (2.34) 

                                                                                                                    P3v(i, j) =  
∑ ∑ δ(Gh(u, v) = i, Gh(u, v + 8) = j)

Sv−8
v=1

Su−8
u=1

∑ ∑ δ(Gh(u, v) = i)
Sv−8
v=1

Su−8
u=1

 (2.35) 

                                                                                                                    P4h(i, j) =  
∑ ∑ δ(Gv(u, v) = i, Gv(u + 8, v) = j)

Sv−8
v=1

Su−8
u=1

∑ ∑ δ(Gv(u, v) = i)
Sv−8
v=1

Su−8
u=1

 (2.36) 

                                                                                                                    P4v(i, j) =  
∑ ∑ δ(Gv(u, v) = i, Gv(u, v + 8) = j)

Sv−16
v=1

Su
u=1

∑ ∑ δ(Gv(u, v) = i)
Sv−16
v=1

Su
u=1

 (2.37) 

 

where 𝑖, 𝑗 𝜖 [−𝑇, −𝑇 + 1, … , 0, … , 𝑇 − 1, 𝑇], Su, and Sv are the dimensions of the 

original image and    

                                                                                                                    δ(A = i, B = j) = {
1, if A = i and B = n
0,                otherwise

  (2.38) 

In addition, they took advantage of multi-resolution analysis in the DWT domain to 

characterize the residual correlation by modeling the three kinds of dependency among 

wavelet coefficients across positions, scales and orientations. Many of the approaches 

usually apply wavelet sub-bands independently, while dependencies exist across 

positions, scales and orientations (Srivastava et al., 2003). In (He et al., 2012), this 

property was merged with Markov features to produce an efficient tool for image splicing 

detection. Subsequently a feature selection method (SVM-RFE) was implemented to 

reduce the computational cost. 
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Markov features have been verified as one of the most effective features for image 

splicing detection methods. However, its dimensionality is very high and depends on the 

threshold that is determined in the feature extraction. 

 

2.9.2 Moment-based algorithms 

Moment-based algorithms are other image splicing detection algorithms. Similar to 

Markov-based methods, moment-based algorithms reflect the statistical changes caused 

by image splicing methods. They are based on moments of characteristic function using 

prediction-error 2-D array and wavelet decomposition. One advantage of using 

prediction-error 2-D array is to decrease the effects caused by diversity of the image 

content and concurrently to enhance the statistical artifacts introduced by splicing. 

Furthermore, the moment-based methods take the advantage of decorrelated coefficients 

of the same level in different wavelet subbands.  

An example of applying moment-based algorithms in detecting image splicing is the 

method proposed in (Fu et al., 2006) and (X. Li et al., 2010). They extracted the features 

using Hilbert-Huang Transform (HHT) and a moment-based model to distinguish the 

authentic images from the spliced ones. 

Shi et al. (Shi et al., 2007b) also proposed an image splicing detection method based 

on natural image model. Their statistical features consisted of moments of characteristic 

functions of wavelet sub-bands and Markov transition probabilities of difference 2-D 

arrays. The moment features are basically extracted from the 1-D characteristic functions 

(discrete Fourier transform (DFT) of the first-order histograms), as well as from the 2-D 

characteristic functions (2-D DFT of the second-order histograms). The second-order 

histogram contains more information than the first-order in detecting splicing in an image 
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as it includes two pixels at a time. They followed the block diagram indicated in Figure 

2.19 to extract the moment features: 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.19: Moment extraction feature, (a) general block diagram, (b) prediction 
context, (c) prediction error 2-D array generation 
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The first diagram contains capturing statistical moments from DWT sub-bands. As 

mentioned earlier, DWT is applied in image forensics getting an advantage in reflecting 

transient or localized changes in spatial and frequency domain. They applied DWT to the 

image pixel 2-D array, and prediction-error 2-D arrays to get the statistical moments (Shi 

et al., 2007b). A prediction-error 2-D array is applied to decrease the diversity of image 

content by predicting the value of a pixel using its three neighboring pixels. The equations 

to calculate the prediction-error 2-D array are as follow (Shi et al., 2007b): 

 

 �̅�  = 𝑠𝑖𝑔𝑛(𝑥) ∙  {|𝑎| +  |𝑏| +  |𝑐|} (2.39) 

      ∆𝑥 = 𝑥 − �̅�  = 𝑥 − 𝑠𝑖𝑔𝑛(𝑥) ∙  {|𝑎| +  |𝑏| +  |𝑐|} (2.40) 

                                     

To calculate the statistical moments, the 1-D characteristics function (CF), which is 

the DFT of the first-order histogram of each wavelet sub-band is needed. The histogram 

of every image is considered as probability mass function (pmf) as it is determined by 

discrete values. If pmf is multiplied by a correspondingly shifted unit impulse results in 

a probability density function (pdf). Now, if unit impulses in DFT are ignored, then pdf 

could be considered as pmf and therefore the histogram of an image. Therefore, CF is 

simply the Fourier transform of the pdf (with a reversal in the sign of the exponent). The 

absolute moments of the 1-D CF are defined as follows (Shi et al., 2007b): 

 𝑀𝑙 =  
∑ 𝑥𝑖

𝑙|𝐻(𝑥𝑖)|𝐾/2
𝑖=1

∑ |𝐻(𝑥𝑖)|𝐾/2
𝑖=1

 (2.41) 

                                                                                                                   

where H(xi) is the CF component at frequency xi, K is the total number of different 

values assumed by all of coefficients in a sub-band under consideration, i.e., the tap length 

of DFT, and l is an integer representing the order of moment. 
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Furthermore, Shi et al. (Shi et al., 2007b) enhanced the splicing detection capability 

by applying second-order statistics into their natural image model, since they are more 

efficient than first-order ones, which consider one pixel at a time and do not reflect the 

intensity/position correlation among neighboring pixels.  

It is considered that a second-order histogram (Pratt, 1991) is a joint occurrence 

measure for pairs of separated pixels through a certain orientation and distance. Such 

separation is denoted via the existing distance between two pixels ρ, at a line angle which 

links the two pixels regarding the horizontal axis, θ. Hence, the second-order histogram 

is calculated as (Shi et al., 2007b):  

 ℎ𝑑(𝑗1, 𝑗2;  𝜌, 𝜃) =  
𝑁(𝑗1, 𝑗2;  𝜌, 𝜃)

𝑁𝑇(𝜌, 𝜃)
 (2.42) 

                                                                                                    

where N( j1 , j2, ρ, θ ) equals the number of pixel pairs and the value of the first pixel 

is j1 and the value of the second pixel is j2 , and also NT(ρ, θ) equals the total amount of 

pixel pairs in the picture with a separation (ρ, θ). In addition, the second-order histogram 

is known as the co-occurrence matrix or dependency matrix.  

After using 2-D DFT for the second-order histogram, the 2-D CF is achieved. The two 

marginal moments regarding 2-D CF so are computed by (Shi et al., 2007b): 

 𝑀𝑢,𝑙 =  
∑ ∑ 𝑢𝑖

𝑙|𝐻(𝑢𝑖 , 𝑣𝑗)|
𝐾/2
𝑖=1

𝐾/2
𝑗=1

∑ ∑ |𝐻(𝑢𝑖 , 𝑣𝑗)|
𝐾/2
𝑖=1

𝐾/2
𝑗=1

 (2.43) 

 𝑀𝑣,𝑙 =  
∑ ∑ 𝑣𝑖

𝑙|𝐻(𝑢𝑖, 𝑣𝑗)|
𝐾/2
𝑖=1

𝐾/2
𝑗=1

∑ ∑ |𝐻(𝑢𝑖 , 𝑣𝑗)|
𝐾/2
𝑖=1

𝐾/2
𝑗=1

 (2.44) 

                                                                                                                                                                                                          

where H(ui , vj) is a component of 2-D CF at DFT frequency (ui , vj) as well as l being 

the integer demonstrating the moment order. 
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Zhang et al. (Z. Zhang, Zhou, et al., 2008) proposed an innovative splicing detection 

method applying image quality metrics and moment features. They obtained 42-D 

moment features on MBDCT (2, 4, and 8) arrays. Then combined these features with 

those extracted from seven image quality measures (IQM). The IQMs applied in their 

method are the ones most sensitive to splicing detection. The advantage of using IQMs is 

to reliably predict either perceived quality across different scenes and distortion types or 

to predict algorithmic performance.  

Anusudha et al. (Anusudha et al., 2010) also developed an image splicing detection 

method by combining first-order moment-based with phase congruency, which is more 

sensitive to sharp transitions than feature extraction methods. They also applied a neural 

network as their classifier, and their results show a detection accuracy of 91.70%.  

Generally, accuracy based on moment features is almost low and not satisfying. 

Moment-based features are usually applied in combination with other methods, and are 

therefore difficult to be analyzed individually. 

 

2.9.3 Hilbert-Huang Transfer (HHT) 

Another category of image splicing detection algorithm belongs to Hilbert-Huang 

Transfer based algorithms. Since image splicing detection process is a time shifting, 

nonlinear and non-stationary procedure, HHT is a suitable tool to analyze it. One example 

of the work related to HHT-based image splicing detection algorithm is used in (Fu et al., 

2006). They combined HHT-based and moment-based feature extraction methods to 

detect the spliced images from the original ones.  

HHT comprises of two parts, Empirical Mode Decomposition (EMD) and Hilbert 

Transform (N. E. Huang et al., 1998). Then the characteristics of the Intrinsic Mode 
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Functions (IMFs) are extracted from Hilbert spectral analysis (HAS). An intrinsic mode 

function (IMF) is a function that satisfies the following two conditions (N. E. Huang et 

al., 1998):  

 In the whole data set, the number of extrema and the number of zero crossings 

must either equal or differ at most by one.  

 At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

The sifting algorithm is applied to extract the IMFs of a signal (N. E. Huang et al., 

1998). Then the data is divided into several IMF components and Hilbert transform is 

performed on each component. For a given signal x(t), the Hilbert transform can be 

expressed as follows (Fu et al., 2006): 

 𝑦(𝑡) =  
1

𝜋
 𝑃 ∫

𝑥(�́�)

𝑡 − �́�

∞

−∞

𝑑�́� (2.45) 
 

                                                                                                             

where P indicates the Cauchy principal value. With this definition, x(t) and y(t) can be 

used to define an analytic signal z(t) (Fu et al., 2006): 

 𝑧𝑖(𝑡) =  𝑥𝑖(𝑡) + 𝑗𝑦[𝑥𝑖(𝑡)] =  𝑎𝑖(𝑡)𝑒𝑗𝜑𝑖(𝑡) (2.46) 
 

 

where ai(t) and φi(t) are the amplitude and phase of this analytical signal, which can 

be expressed as follows (Fu et al., 2006): 

 𝑎𝑖(𝑡) =  √𝑥𝑖
2 (𝑡) +  𝑦2[𝑥𝑖  (𝑡)] (2.47) 

 𝜑𝑖(𝑡) = arctan
𝑦[𝑥𝑖(𝑡)]

𝑥𝑖(𝑡)
 (2.48) 

Furthermore, the instantaneous frequency is defined as (Fu et al., 2006; X. Li et al., 

2010): 
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 𝑓(𝑡) =  
1

2𝜋

𝑑𝜑𝑖  (𝑡)

𝑑𝑡
 (2.49) 

 

                                                     

HHT is mostly applied in signal processing. This method was not a promising one in 

image splicing detection, though. Its detection rate is only 85.87%. However, the 

proposed algorithm is low-dimensional with only 72-D. 

 

2.9.4 Run-Length (RL) Algorithms 

Run-Length is not applied extensively as a feature extraction method, but the results 

obtained in (Zhao et al., 2011) show that this method can be used as an image splicing 

detection approach. While the run length of an image represents its structure and texture, 

the splicing procedure modifies the pixel correlations and the structure of the image. 

Therefore, the RL feature extraction method can represent discontinuities and 

nonconformity and can be efficiently used as an image splicing detection method (Dong 

et al., 2009; Zhao et al., 2011).  

This method was first used by (Galloway, 1975) in texture analysis to classify a set of 

terrain samples. Later, (Tang, 1998) developed a new run-length algorithm for the 

extraction of texture features based on the multi-level dominant eigenvector estimation 

method that improves classification accuracy.  

The early work in this category was performed by (Dong et al., 2009) which applied 

RL histograms based on a similar method used in steganalysis algorithms (Dong & Tan, 

2008). The first three moments of characteristic functions are extracted from RL 

histograms in each of four directions. They also combined the RL features with an edge-

based statistics moment as a feature extraction method to reflect the inconsistencies of 

global pixel correlations made by image splicing techniques.  
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Zhao et al. (Zhao et al., 2011) studied run-length as a single feature extraction method 

for detecting image splicing in color images. A run in an image is defined as the number 

of pixels with the same grey-level value in a specific direction. For a given image, a run-

length matrix 𝑝𝜃(𝑖, 𝑗) is defined as the number of runs with grey level i and run length j 

along a specific direction. Hence, the run-length vector is defined as follows (Zhao et al., 

2011):   

 𝑝𝜃𝑟(𝑗) =  ∑ 𝑝𝜃(𝑖, 𝑗)

𝑀

𝑖=1

     1 ≤  𝑗 ≤ 𝑁 
                                                             

(2.50)  

 

where M shows the number of grey levels and N is the maximum value of the run 

lengths. Vector 𝑝𝜃𝑟(𝑗) demonstrates the sum distribution of runs with length j in a given 

image. In Equation (2.50), the run length represents the spread of the structure and the 

texture of the image. For example, the image with a long run length is smoother than that 

with a short run length because the latter consists of different regions with different 

structures. To equally emphasize all run lengths, a grey level run-length pixel number 

matrix is used, which is defined as follows (Tang, 1998; Zhao et al., 2011):  

 

 𝑝𝜃𝑝𝑟(𝑗) =  ∑ 𝑝𝜃𝑝(𝑖, 𝑗)

𝑀

𝑖=1

     1 ≤  𝑗 ≤ 𝑁 
                                                                                                            

(2.51) 
 

where 

 𝑝𝜃𝑝(𝑖, 𝑗) =  𝑝𝜃(𝑖, 𝑗) . 𝑗 (2.52) 
 

 

𝑝𝜃𝑝𝑟(𝑗) is the feature vector applied in (Zhao et al., 2011) and is referred to as RLRN. 

Four RLRN vectors are captured in four directions (0◦, 45◦, 90◦, and 135◦) to distinguish 

the spliced images from the authentic ones.  
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He et al. (He et al., 2011) improved the original RL method by applying approximate 

RL with higher accuracy and fewer features. Their proposed method was based on the 

idea that all the run lengths are not affected in the splicing procedure. Thus, only the run 

lengths captured from the edge pixels can be used in the detection procedure as the 

splicing methods modify the extra edges by making them sharper than the original ones. 

They also compute the runs along respective gradient directions of each edge pixel.  

The RLRN method is simply computed and its detection accuracy is high in chroma 

channels (94.7%). However, the detection rate of RLRN is only high in colored images 

(chroma channels), while for greyscale images it has very low accuracy. 

In 2014, Moghaddasi et al. (Moghaddasi, Jalab, Md Noor, et al., 2014) improved the 

RLRN image splicing detection method  (Zhao et al., 2011) by applying a dimension 

reduction method such as Kernel PCA on the features extracted from RLRN method. 

Kernel PCA removes redundant features and thus the detection performance is increased. 

Their experimental results show an improvement of approximately 29.5% in the detection 

accuracy compared to original work (88.74% vs. 68.50%) respectively.  

 

2.9.5 Co-occurrence Matrix 

Co-occurrence matrix is another feature extraction method applied in detecting spliced 

images. This matrix is defined as a distribution of co-occurring values at a given offset 

over an image. The following equations show how the second-order matrix is calculated 

(Albregtsen, 2008; Haralick & Shanmugam, 1973): 

 

 𝐶∆𝑥,∆𝑦(𝑖, 𝑗) =  ∑ ∑ {
1,    𝑖𝑓 𝐼(𝑝 , 𝑞) = 𝑖 𝑎𝑛𝑑 𝐼(𝑝 +  ∆𝑥, 𝑞 +  ∆𝑦) = 𝑗
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           

𝑚

𝑞=1

𝑛

𝑝=1

 (2.53) 
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where n and m are the dimensions of image I, i and j are the image intensity values, p 

and q are the image spatial positions and the offset (Δx, Δy) depends on the direction (θ) 

used and the distance (d) at which the matrix is computed.  

Grey Level Co-occurrence Matrix (GLCM) is a kind of co-occurrence matrix applied 

in image splicing detection. Since the splicing procedure modifies image edges by making 

them sharper, one of the clues which could be used in image splicing detection is studying 

the image edges. GLCM serves the image edges to extract second-order texture 

information from the spliced images.  

An example of splicing detection methods using GLCM can be seen in (Wei Wang et 

al., 2009). They applied GLCM to edge images along four directions to extract the 

features from the image chroma component. According to their method, the edges 

introduced by Cb and Cr components are sharper than those in Y component. Thus they 

applied the predict-error method to reduce the diversity in image contents and obtain the 

edge image. Then GLCM was applied on edge images to extract the features. Finally, the 

features were reduced using boosting feature selection. Their results show acceptable 

detection accuracy. Similar to RLRN method, GLCM is only applicable for colored 

images and its results in chroma channels are more than 88%. 

 

2.9.6 Phase Congruency 

Phase Congruency is a sensitive measure that captures sharp transitions including 

lines, edges, and corners that are left behind in the spliced images. It detects the edges 

based on the changes in illumination and contrast. A wide range of feature types could be 

captured by applying phase congruency.  
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The model presented by Morrone et al. named the Local Energy Model. (Morrone et 

al., 1986) explains that sharp characteristics are considered at the points of highest phase 

congruency in a picture. The phase congruency or PC was first described by Morrone and 

Owens (Morrone & Burr, 1988) in terms of expansion for Fourier series of a single signal 

at location x:  

 𝑃𝐶1(𝑥) =  𝑚𝑎𝑥∅̅(𝑥)∈[0,2𝜋]

∑ 𝐴𝑛  cos (∅𝑛(𝑥) −  ∅̅(𝑥))𝑛

∑ 𝐴𝑛𝑛
 (2.54) 

                                       

where An is considered as the amplitude of nth Fourier component and ∅(𝑥) is assumed 

as the local phase for the nth Fourier component in position x, ∅̅(𝑥) is in fact amplitude 

weighted mean local phase angle for position x. If PC equals the maximal value of 1, all 

of the frequency components are considered in phase or PC will have values from 0 to 1. 

Kovesi (Kovesi, 1999) extended the 1-D phase congruency equation to 2-D, one that 

is able to be applied to image processing. 2-D phase congruency can be calculated by 

applying a 1-D equation over several orientations and combining the results in some way. 

In fact, Kovesi solved the calculation problems of phase congruency according to 

Equation (2.4), and made a new and more sensitive measure from it.  

Due to the properties of phase congruency in detecting sharp transitions Chen, W. et 

al. (W. Chen et al., 2007) proposed a phase congruency-based image splicing detection 

method. They merged the phase congruency-based features with the statistical moments 

of characteristic functions of four wavelet sub-bands in three levels. However, the result 

obtained from their proposed method shows only a comparable accuracy of 82.32%.  

Phase congruency as a feature extraction method can be applied in image splicing 

detection, since it reflects the inconsistencies caused by effective splicing process. 
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However, calculating the phase congruency map of an image is computationally intensive 

and thus this method has not commonly been applied in this field. 

 

2.9.7 Three order methods 

Since image splicing presents sharp edges on the tampered image, finding these 

artifacts is a key detection task. While second order statistical features have been 

confirmed as effective characteristics, statistics with higher orders have been suggested 

to find the splicing artifacts in (Tian-Tsong Ng et al., 2004b) as well as (W. Chen et al., 

2007) , but the rate of detection is unsatisfactory. Also Zhao, X. et al. (Zhao et al., 2012) 

demonstrated the relationships between three neighboring factors in block DCT domain 

as third order features statistically, which consists of second order Markov transition 

probability matrix (2nd Markov), conditional co-occurrence probability matrix (CCPM), 

as well as second order co-occurrence probability matrix (2nd CPM). 

The third order characteristics are highly informative compared to lower order ones, 

but feature dimensionality is exponentially dependent on the order. Based on their 

investigations, the CCPM outperforms 2nd Markov, 2nd CPM, 1st Markov as well as first 

order co-occurrence matrix of probability (1st CPM) characteristics.  

Markov chain is usually employed to present the existing dependencies among 

neighboring states. The first order features of Markov were confirmed to be the most 

influential characteristics for image splicing detection (Shi et al., 2007b). In the first order 

features of Markov, the dependency is limited in two different neighboring states. In 

addition, Zhao, X. et al. (Zhao et al., 2012) enhanced the first order characteristics of 

Markov to third order statistical characteristics through assuming the relationship 

between three neighboring states .  
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    𝐶𝐶𝑃𝑀 ≡  [
𝑃(𝜔1, 𝜔1|𝜔1) 𝑃(𝜔2, 𝜔1|𝜔1)  … 𝑃(𝜔1, 𝜔1|𝜔1)

⋮ ⋮ ⋮
𝑃(𝜔1, 𝜔1|𝜔𝑁) ⋮ 𝑃(𝜔2, 𝜔1|𝜔𝑁)  … 𝑃(𝜔𝑁, 𝜔𝑁|𝜔𝑁)

] 

2𝑛𝑑𝑀𝑎𝑟𝑘𝑜𝑣 ≡ [
𝑃(𝜔1|𝜔1, 𝜔1) 𝑃(𝜔1|𝜔1, 𝜔2)  … 𝑃(𝜔1|𝜔𝑁, 𝜔𝑁)

⋮ ⋮ ⋮
𝑃(𝜔𝑁|𝜔1, 𝜔1) ⋮ 𝑃(𝜔𝑁|𝜔1, 𝜔2)  … 𝑃(𝜔𝑁|𝜔𝑁 , 𝜔𝑁)

] 

 2𝑛𝑑𝐶𝑃𝑀 ≡ [
𝑃(𝜔1, 𝜔1, 𝜔1) 𝑃(𝜔1, 𝜔1, 𝜔2)  … 𝑃(𝜔1, 𝜔𝑁, 𝜔𝑁)

⋮ ⋮ ⋮
𝑃(𝜔𝑁, 𝜔1, 𝜔1) 𝑃(𝜔𝑁 , 𝜔1, 𝜔2)  … 𝑃(𝜔𝑁 , 𝜔𝑁 , 𝜔𝑁)

] 

(2.55) 

                              

Here, 𝑃(𝜔𝑖𝑘, 𝜔𝑖𝑘−1|𝜔𝑖𝑘−2) is the co-occurrence probability for (𝜔𝑖𝑘, 𝜔𝑖𝑘−1) of state 

𝜔𝑖𝑘−2, 𝑃(𝜔𝑖𝑘|𝜔𝑖𝑘−1, 𝜔𝑖𝑘−2) demonstrates the second order transition probability of 

Markov, feature state is defined via previous and current state, 𝑃(𝜔𝑖𝑘, 𝜔𝑖𝑘−1, 𝜔𝑖𝑘−2) is in 

fact the joint probability of these three states.  

The third order feature matrices statistically are all-directional, which means they 

could be utilized to show the relationship among three adjacent phases in eight different 

directions. In their research, CCPM, 2nd Markov, as well as 2nd CPM are used for 

modeling the vertical down and horizontal right directional relations of three neighboring 

states. In their findings presented for third order statistical features, CCPM (88.8%) will 

outperform 2nd CPM (85.5%) and Markov (86.8%). 

However, the dimensionality of features exponentially depends on order (686-D); for 

modern supervised machine learning algorithms, high-dimensionality usually causes 

computational complexity and over-fitting (Bengio et al., 2005). Therefore, PCA is 

employed in their work to reduce the higher order introduced problems. 
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2.9.8 Local Binary Pattern (LBP) 

The Local Binary Pattern was utilized by Ojala, Pietikäinen, & Harwood (1996) for 

classification of texture since its invariance to universal intensity variations. The original 

operator of LBP (G. Zhang et al., 2004), explains a LBP code of each single pixel of a 

picture. To calculate LBP code, the 3×3 pixels neighboring is in fact thresholded through 

its value of intensity. When the pixel value of neighbors is lower than center, it would 

have binary digit equal to 0, otherwise it is 1. The binary digits of the neighbors are 

combined to create a binary code. The LBP code in fact is a decimal value of that specific 

binary code. Figure 2.20 demonstrates the LBP code calculation process. Then, the 

neighborhood LBP operator size is expanded (Jabid et al., 2010). 

 

 

Figure 2.20: LBP Computation Process 

 

The LBP operator can also be denoted via LBPP,R and is calculated as below (Alahmadi 

et al., 2013): 

 

 𝐿𝐵𝑃𝑃,𝑅 =  ∑ 𝑆(𝑝𝑖 − 𝑝𝑐)2𝑖
𝑝−1

𝑖=1
 (2.56) 
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while P is the number of neighborhood pixels and R would be its radius, pc would be 

the value of the center pixel and so the thresholding equation is known as below 

(Alahmadi et al., 2013): 

 

 𝑆(𝑝𝑖 − 𝑝𝑐) = {
0, 𝑝𝑖 − 𝑝𝑐 < 0
1, 𝑝𝑖 − 𝑝𝑐 ≥ 0

 (2.57) 

 

When the tampering is performed, the original image texture will be distorted. Since 

the LBP has the capability to show differences among textures, it is an effective tool to 

identify forgeries (Alahmadi et al., 2013). 

Several LBP variants have been utilized. Zhang et al, (Y. Zhang et al., 2012) developed 

a splicing detection technique according to LBP operator using multi-size block DCT 

achieved from images. The coefficients of BDCT can demonstrate such modifications to 

a specific degree. The LBP method essence is that each single factor of a specific 2-D 

array is compared with neighboring factors and later binarized. Thus, the LBP records all 

of the occurrences of different patterns. LBP could be used in order to model whole 

magnitude components of 2-D arrays which are achieved through using MBDCT to 

testing images. It will consider that LBP operator is able to demonstrate local frequency 

distribution modification of host images appropriately. Their experimental outcomes 

demonstrate a detection accuracy of almost 89.93% for LBP8,1. 

Muhammad. G et al. (Muhammad et al., 2014) developed an image forgery detection 

approach based on SPT, steerable pyramid transform, and also LBP. Firstly, they 

converted a colored image to YCbCr color space and used SPT transform on the 

chrominance channels Cr and Cb, resulting in many multi-scale and also multi-oriented 

sub-bands. Later, features are extracted for each single SPT sub-band utilizing LBP 
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algorithms. The histograms from these sub-bands are then combined to generate feature 

vectors. Since their method is high-dimensional, they used a feature selection method to 

reduce the dimensionality of their method. Their experimental results show detection 

accuracy rates of 94.89%, 97.33% and 96.39% on chrominance channels. However, the 

detection rate for greyscale images is very low, at only 64.65%.  

Hakimi. F et al. (Hakimi et al., 2015) enhanced the technique developed in (Y. Zhang 

et al., 2012) through using modified LBP rather than usual LBP, and also applied k-

nearest neighbor algorithm (KNN) as a classifier. Such findings revealed detection 

accuracy rates of 96% and 98% on color images. 

Generally, a summarized overview of the image splicing detection methods discussed 

is presented in Tables 2.1-2.4. The methods are reviewed and discussed from different 

aspects, including the nature of feature extraction methods, detection accuracy, and 

dimensionality. 

 

2.9.9 Fractional Differential Texture Descriptors 

Fractional calculus is widely applied in physical and engineering sciences. Fractional 

differentiation is also excellent in describing the general properties of various materials 

and processes. The fractional approach preserves low-frequency features in smooth areas 

and enhances texture details in areas where the grey level does not clearly change (Jalab 

& Ibrahim, 2012, 2013, 2015). Texture features represent high-level information that can 

be used to describe the objects and structure of images.  

Rabha, W. I. et al. (Ibrahim et al., 2015) developed a new fractional differential 

approach for texture feature descriptors by focusing on the types of texture parameters 

used for image splicing detection. In their study, first they increased the quality of the 
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images by applying Machado entropy for texture enhancement as follows (Ibrahim et al., 

2015; Machado, 2014): 

 𝑆𝛼(𝑃) =  ∑
−𝑃𝑖

−𝛼

Γ(𝛼 + 1)
[ln(𝑃𝑖) +  𝜓(1) −  𝜓(1 − 𝛼)]𝑃𝑖 (2.58) 

 

where Pi is the probability of occurrence, and Γ(.) and 𝜓(.) refer to the gamma and 

digamma functions, respectively. Accordingly, Pi is the probability distribution of the 

image pixel’s intensity. 

Then, they built a generalized fractional mask (Φ) by using the following generalized 

fractional differential operator (Ibrahim, 2011; Ibrahim et al., 2015): 

 𝐷𝛼,𝜇ℎ(𝑥) ∶=  
(𝜇 + 1)𝛼

Γ(1 − 𝛼)
 

𝑑

𝑑𝑥
 ∫

𝜁𝜇ℎ(𝜁)

(𝑥𝜇+1 − 𝜁𝜇+1)𝛼
𝑑𝜁; 0 < 𝛼 ≤ 1

𝑥

0

 (2.59) 

 

where h(x) is an analytic function. Finally, the value of the fractional differential 

operator (2.26) is computed through a numerical calculation that references the discrete 

form. Thus, the non-zero fractional differential coefficients (∅𝑖) are obtained (Ibrahim et 

al., 2015) as:  

 

 ∅0 =  
(𝜇 + 1)𝛼

(2𝜇+1 − 1)2Γ(1 − 𝛼)(1 − (𝜇 + 1)𝛼)
 

∅1 =  ∅0(21−(𝜇+1)𝛼 − 1) 

⋮ 

∅𝑛−1 =  ∅0[(𝑛 + 1)1−(𝜇+1)𝛼 − 𝑛1−(𝜇+1)𝛼] 

(2.60) 

 

By convoluting ∅𝑖 with Sα(Pi), the following equation is achieved: 
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 Φ1 =  ∅1  ×  𝑆𝛼(𝑃1), … , Φ𝑛−1 =  ∅𝑛−1  ×  𝑆𝛼(𝑃𝑛−1) (2.61) 

 

The 2-D fractional mask coefficients of all images can be obtained in eight directions 

including 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. This algorithm primarily aims 

to split the image into non-overlapping blocks and to apply Equation (2.61) with 

optimally different values of α and µ to extract the texture features. After texture 

enhancement utilizing fractional calculus, the GLCM is applied to extract the texture 

features from each image block, after using fractional texture enhancement based on 

fractional differential masks. 

Generally, the features extracted from this method have high-dimensionality (1764-

D), although a feature reduction method (i.e. Kernel PCA) can be applied to decrease the 

dimensionality of the extracted features. Their results show a best detection accuracy of 

91.88% with only 40 dimensions. Although their results are not high enough, the method 

they proposed show how various mathematical concepts could be promisingly applied to 

develop a new image splicing detection scheme. 

 

2.10 Summary 

Throughout the chapter, the most recent image splicing detection schemes have been 

reviewed and discussed. The methods have been investigated based on various aspects 

such as feature extraction scheme, detection rate, computational complexity, and 

dimensionality. In addition, different concepts regarding image forgery detection have 

been presented to clarify various parts of the research. Tables 2.1-2.4 show a summarized 

view of the image splicing detection methods discussed, based on their detection rate, 

dimensionality, some advantages and drawbacks. 
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Table 2.1: Comparison between the reviewed image splicing detection methods 

Method Detection Rate Dimensionality 
Dimension 

Reduction Method Comment 

Fu et al. (Fu et al., 2006) 
Moment + HHT-based Features 

85.87% (DVMM v1) 72 N/A N/A 

Shi et al. (Shi et al., 2007b) 
Moment-based + Markov-based 
features 

91.8% (DVMM v1) 266 N/A 
Dimensionality is high and time-
consuming. 

Chen, W. et al. (W. Chen et al., 2007) 
Moment-based + 2-D  
phase congruency 

82.32% (DVMM v1) 120 N/A N/A 

Zhang et al. (Z. Zhang, Zhou, et al., 
2008) 
Image quality metrics + moment 
features 

88.8% (DVMM v1) 196 N/A N/A 

Dong et al. (Dong et al., 2009) 
Run-Length and Edge Statistics 
Based Approach 

84.36% (DVMM v1) 163 N/A N/A 
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Table 2.2: Continued, comparison between the reviewed image splicing detection methods 

Method Detection Rate Dimensionality Dimension 
Reduction Method Comment 

Wang et al. (Wei Wang et al., 2009) 
Gray Level Co-occurrence Matrix 
(GLCM) 

90.5% (Custom) 400 
boosting feature 

selection (BFS) 50-
D 

Only for colored images. 

Zhang et al. (J. Zhang et al., 2009) 
Markov + DCT features 

91.5% (DVMM v1) 109 N/A N/A 

Anusudha et al. (Anusudha et al., 
2010) 
First-order moment-based + phase 
congruency 

91.7% (DVMM v1) 198 N/A N/A 

Sutthiwan et al. (Sutthiwan et al., 
2010) 
Moment-based + Markov-based 
features 

98% (CASIA v1) 266 
boosting feature 
selection (BFS) 

Accuracy rate is very high. 
However, the dimensionality is 
also high. 

He et al. (He et al., 2011) 
Approximate run length + DWT 

80.58% (DVMM v1) 30 N/A N/A 
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Table 2.3: Continued, comparison between the reviewed image splicing detection methods 

Method Detection Rate Dimensionality Dimension 
Reduction Method Comment 

Zhao et al. (Zhao et al., 2011) 
Run length Run number  

94.7% (CASIA v1) 
85% (DVMM v2) 

60 N/A 
An efficient tool for colored 
images not gray scale ones. 

He et al. (He et al., 2012) 
DCT Markov approach + DWT 
Markov approach 

93.55% (DVMM v1) 7290 
SVM recursive 

feature elimination 
(SVM-RFE) 100-D 

It is an effective tool for image 
splicing detection. However its 
dimensionality is very high. 

Zhao et al. (Zhao et al., 2012) 
-conditional co-occurrence 
probability matrix (CCPM) 
-second order Markov transition 
probability matrix (2nd Markov)  
-second order co-occurrence 
probability matrix (2nd CPM) 

88.8% (DVMM v1) 
 

86.8% (DVMM v1) 
 

85.5% (DVMM v1) 

686 PCA 100-D 

Dimensionality of features 
exponentially increases by 
increasing the order.  
The algorithms are high 
dimensional. 
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Table 2.4: Continued, comparison between the reviewed image splicing detection methods 

Method Detection Rate Dimensionality Dimension 
Reduction Method Comment 

Zhang et al. (Y. Zhang et al., 2012)  
LBP + MBDCT 

89.93% (DVMM v1) 945 PCA N/A 

Muhammad. G et al. (Muhammad et 
al., 2014) 
LBP + SPT 

94.89% (CASIA v1) 
97.33% (CASIA v2) 
96.39% (DVMM v2) 

3584 Feature Selection 
It is only for colored images and 
also the method is very high 
dimensional. 

Moghaddasi. Z et al. (Moghaddasi, 
Jalab, Md Noor, et al., 2014) 
Improved RLRN 

88. 28% (DVMM1) 
88.74% (CASIA) 

50 Kernel PCA N/A 

Hakimi. F et al. (Hakimi et al., 2015) 
Improved LBP 

97.21% (CASIA v1) 
95.13% (DVMM v2) 

N/A PCA N/A 

Ibrahim et al. (Ibrahim et al., 2015) 
Fractional Differential Texture 
Descriptors 

91.88% (DVMM1) 40 Kernel PCA 
It is in high dimension and only 
done on gray-scale images. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

The methodology defines what should be done during the life-cycle of system 

development, and also how such a system can be managed. In addition, it shows each 

phase of the system to be developed during its life-cycle as well as tasks which should be 

accomplished in each single phase by a specific time. The methodology for system 

development guides systems into the goals and objectives, and during development, sets 

it in an appropriate direction. 

There are various methodologies to develop a system and each of them have their own 

tasks and phases, as well as characteristics. In the current chapter, the methodology will 

describe the development of the proposed image splicing detection systems, their core 

phases and those tasks which should be accomplished in each phase. Phase one explores 

the requirements and their analysis, and the other two phases include designing and 

implementing the two proposed methods. Each of these methods have been implemented 

in order to improve the detection rate. 

 

3.2 Research Phases 

The applied methodology for this research is according to the Waterfall model which 

contains several fundamental phases to develop a system. This sort of software 

development model has many phases, for example requirement collection and analysis, 

design and implementation, and also test and evaluation (Parekh, 2016). All of the 

activities which should be accomplished are briefly mentioned as follows: 
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i. Requirement Collection and Analysis 

In this stage all of the necessary requirements to develop a system are collected. 

Such requirements consist of setting the goals and objectives, as well as the scope 

of this system. It also includes defining the development schedule, specifying the 

needed terms and gathering whatever the system requires to develop.  

 

ii. System Design 

Before the system is implemented, it should be clarified what is going to be 

created and what it looks like. Hence, in this level, the steps and the first-level 

design of the proposed methods will be presented.  

 

iii. Implementation 

At this level, the system is constructed and the proposed algorithms in the design 

phase will be translated to programming code or could be simulated. Then the 

system will be created 

 

iv. Test and Evaluation 

After constructing the system, it should be tested and evaluated in order to make 

sure it can provide the essential requirements. In this research, the output of 

system is examined through many test cases. 

Thus, referring to the methodology discussed, this research also covers collecting the 

requirements and their analysis, design and construction, test and evaluation. Figure 3.1 

illustrates the key processes to be performed in development of the proposed image 

splicing detection methods.   
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Start

Review and evaluation of existing techniques, 
scope  determination and data collection 

Requirement collection and analysis

Design of the SVD-based image splicing 
detection methods

Design of the proposed methods

Implementation of the SVD-based image 
splicing detection methods

Implementation of the proposed methods

Test and evaluation of the proposed methods

Test and evaluation

End

 

Figure 3.1: Operational Framework 

 

3.3 Requirement Collection and Analysis 

The first phase to establish splicing detection schemes is to assess previous methods, 

analyze them all in order to identify a gap and so define the system requirements. In 

addition, this phase contains many activities for example:  
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i. Assessment and study of existing methods 

ii. Definition of system scope 

iii. Assumptions and hypothesis 

 

3.3.1 Assessment and study of existing methods 

To identify the problem statement and objectives of the research, there is a need to 

evaluate and analyze the existing splicing detection methods. A comprehensive literature 

review is focused on discovering the problems of past splicing detection schemes. This 

literature review, presented in the second chapter, discusses the advantages and 

drawbacks of different existing splicing detection techniques (Objective no. 1). Analyzing 

such literature leads to proposing two SVD-based splicing detection approaches. 

 

3.3.2 Scope of System 

According to our problem statement mentioned in the first chapter and by evaluating 

the existing methods, the scope of the proposed systems is defined as follows: 

3.3.2.1 Software 

The software used for constructing the proposed methods is MATLAB R2016a which 

stands for Matrix Laboratory. This product can be applied in different areas such as math 

and computation, algorithm development, modeling simulation and prototyping, 

scientific and engineering graphics. It also provides an easy-to-use environment for 

programming, in addition to its various prepared components used in the mentioned areas 
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(The MathWorks, 2012). Because of these advantages MATLAB can be an appropriate 

choice in implementing our algorithm. 

Since MATLAB R2016a can be run on Windows 10 operating systems, the selected 

operating system for implementing the proposed algorithm is Windows 10. 

 

3.3.2.2 Hardware  

The hardware used for implementing this research should be able to support any 

version of MATLAB. Our hardware consists of: 

 CPU: 2.40 GHz Intel (R) Core™ i3 

 HD: SATA 500 GB 

 RAM: 4.00 GB 

3.3.2.3 Data  

Three standard image datasets (grey and color) have been applied to evaluate the 

proposed methods. The first image dataset was the Columbia Image Splicing Detection 

Evaluation Dataset provided by the Digital Video MultiMedia (DVMM) Laboratory, 

Columbia University (2007) (Tian-Tsong Ng et al., 2004c). This dataset contains 1845 

greyscale images (933 authentic images and 912 spliced images) in BMP format. DVMM 

v1 was the only greyscale image dataset designed for image splicing detection evaluation. 

Almost all splicing detection methods were applied to DVMM v1, and so it was also used 

in this research for better comparison with other methods. 

The second image dataset was designed by the Chinese Academy of Sciences, Institute 

of Automation (CASIA), with high resolution images. The CASIA tampered image 
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detection evaluation database (Dong & Wang, 2011) is another image dataset designed to 

evaluate image splicing detection methods. Version 1.0 of this dataset includes 1721 color 

images (800 authentic images and 921 spliced images) of 384 × 256 pixels in JPEG 

format, and was used in our experiments to evaluate the proposed approaches.  

The second version of DVMM is the third image dataset applied in this research. 

DVMM v2 (Tian-Tsong Ng et al., 2009) contains 363 color images (183 authentic images 

and 180 spliced images). The authentic images were taken by four different cameras. All 

the images are in high resolution in uncompressed RAW or TIFF formats with dimensions 

ranging from 757 × 568 to 1152 × 768.   

Examples of the three image datasets are presented in Figure 3.2 (DVMM v1), Figure 

3.3 (CASIA) and Figure 3.4 (DVMM v2) in which the first row is for authentic images 

and the second row includes the spliced images (Dong & Wang, 2011; Tian-Tsong Ng et 

al., 2004c; Tian-Tsong Ng et al., 2009).  

 

Figure 3.2: Example of DVMM v1 Image Dataset 
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Figure 3.3: Example of CASIA Image Dataset 

 

 

Figure 3.4: Example of DVMM v2 Image Dataset 

 

3.3.3 Assumptions and Hypothesis 

SVD is an effective feature extraction method widely applied in different image 

processing applications. In this study, it is considered that the application of SVD as 

feature extraction method in image splicing detection method would be likely to 

distinguish between the authentic images and spliced ones with an acceptably high 

accuracy rate. Consequently, this hypothesis was investigated and two SVD-based image 

splicing methods were proposed and developed (see Chapter 4). 
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3.4 Structures of the proposed methods 

In this section, the overall design of the proposed methods is explained briefly. As 

mentioned previously, this research proposes two SVD-based image splicing detection 

methods, one with Logarithm (Log) and the other one with condition number (CN). The 

general design framework of image splicing detection schemes comprises image 

preprocessing, feature extraction, feature selection and classification. This general 

structure of the proposed methods is presented in this section. Figure 3.5 demonstrates 

the general structure, the activities that are accomplished and the objectives that are 

achieved in each phase. 

In the preprocessing step, the given image is prepared for feature extraction. This 

preparation includes image multi-blocking, greyscale conversion, channel separation 

(RGB or YCbCr), and frequency domain transformation (DCT). The preparation phase is 

performed to specify which image attributes best reflect the splicing operation in a spliced 

image. 

In the second phase, features are extracted from the prepared images and it is essential 

to find a proper method to extract the best features from those images. In this research, 

the concept of SVD is being used to propose feature extraction methods for the spliced 

images. The design of these two feature extraction techniques is presented in Figure 3.6.  

When the features are extracted from the images, they should be prepared for 

classification to distinguish the authentic images from the spliced ones. The extracted 

features might be in high dimension and also contain some redundancies that could be 

removed to improve the detection rate. Therefore, it is essential to determine the nature 

of the features (linear and non-linear) and select an appropriate feature selector to prepare 
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the extracted features for classification. Subsequently, this step is performed by the 

application of PCA and Kernel PCA as the feature selectors. 

To identify the authentic images and the spliced ones, there is a need to classify the 

prepared features, which makes the last step in every image splicing detection method. 

This step is also of major importance, since it separates original and forged images. 

Therefore, a suitable classifier (SVM) should be selected. All these steps are performed 

in sequence to construct the image splicing detection schemes. 

The proposed SVD-based image splicing detection approaches are same in their 

general design process but differ in the core calculation (Log and CN), which is described 

in next chapter. Figure 3.6 illustrates the first-level design of the proposed methods. First 

the given image in Grey, R, G, B, Y, Cb, or Cr channel is divided into n × n blocks in 

which n = 3, 4, ..., 27. Then the SVD-based features are extracted from the blocks in 

spatial or frequency domains. Subsequently, non-linear combinations of data are 

generated applying 1st-4th order statistics, i.e. mean, variance, skew, and kurtosis to better 

present the distribution of the extracted values. Finally, SVM is used to classify the 

authentic and spliced images and calculate the average detection rate. All these steps are 

explained in detail in next chapter. 
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Figure 3.5: General Steps of The Proposed Methods 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

99 

 

 

 

Figure 3.6: First Level Design of the Proposed Methods in Spatial (a) and Frequency 
(b) domains 

 

Given image
Gray/R/G/B/

Y/Cb/Cr 
channels

Divide the image 
into n*n blocks 

(n=3..27)

SVD-Based splicing 
detection methods

Average-Variance-
Skewness-Kurtosis 
(100-D SVD-based 

Features)

Feature selection by 
PCA and Kernel PCA 

(n-D features)

Classification by 
SVM

n*n block DCT

SVD-Based splicing 
detection methods

Average-Variance-
Skewness-Kurtosis 
(100-D SVD-based 

Features)

Feature selection by 
PCA and Kernel PCA 

(n-D features)

Classification by 
SVM

 

                  (a)                                                    (b) 
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3.5 Summary 

The methodology applied in this research for the proposed splicing detection methods 

has been explained throughout this chapter. Then the general structure of the proposed 

methods with their first-level design has been presented and described. Generally, the 

phases followed in this research are: requirement collection and analysis, system design, 

implementation, test and evaluation. However, the details of the proposed methods are 

explained in detail in the design and implementation chapter (Chapter 4). 
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CHAPTER 4: RESEARCH DESIGN AND IMPLEMENTATION 

4.1 Introduction 

In this chapter, the detailed design and implementation of the proposed image splicing 

detection methods are elaborated. Both of these proposed methods are based on SVD 

(SVD-Log and SVD-CN), which is able to detect authentic images from spliced ones with 

a high detection rate and reasonable computational complexity. The main goal of the 

proposed schemes is to apply SVD in feature extraction for detecting spliced images 

leading to low-dimensionality, high detection accuracy within a good enough time. 

This chapter is organized as follows. First, the image preprocessing phase is presented 

and the image is prepared for feature extraction. Then the feature extraction for both 

proposed methods is presented and elaborated. Consequently, section 4.4 discusses the 

selection of the appropriate feature selector to prepare the features for classification, and 

finally the selected features are classified to obtain the detection rate in section 4.5. 

 

4.2 Image Preprocessing 

As demonstrated in overall design flow in chapter 3, the given image from three 

datasets is preprocessed first. Preprocessing improves image content by reducing 

undesired distortions and/or enhancing image features relevant for further processing. In 

this study, some common preprocessing operations performed include conversion 

between color channels, frequency domains transformation, and image blocking – all of 

which are presented in this section. 
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4.2.1 Color Spaces 

According to the image formation described in second chapter (Section 2.2), each color 

image is presented based on a color model (usually 3D or 4D). The image splicing 

operation causes some inconsistencies in the statistical features of an image, such as 

abnormally sharp transience at the splicing edges. These inconsistencies are reflected in 

each color model or color channel differently. However, some splicing information might 

not be clear in one of the color models or channels. Therefore, selection of an appropriate 

color model or color channel is of great importance in image splicing detection methods.  

Several color models (e.g., RGB, HSV, YCbCr, CMY, YIQ, YUV, CIEL ∗ a ∗ b ∗, 

XYZ, etc.) are now available for different applications including feature extraction, object 

recognition, tracking, etc (Stokman & Gevers, 2007). RGB is the most common color 

model applied in image splicing detection methods. The components of the RGB color 

model have high correlation with each other. To reduce the correlation between these 

three color components, the RGB color model can be converted to another Luminance-

Chrominance (L-C) color space including CIELAB, YUV, YCbCr, and so on. Since 

another color model, YCbCr, is commonly applied in image splicing detection 

approaches, it is also selected as one of the color models applied in this research. Figure 

4.1 shows the relationship between RGB color space and YCbCr color model (Curtis, 

1994). 

 

Univ
ers

ity
 of

 M
ala

ya



 

103 

 

Figure 4.1: RGB and YCbCr color spaces 

 

YCbCr values can be obtained by linear transform from R, G, and B channels which 

is formulated as follows (Mitra & Acharya, 2005): 

 (
𝑌

𝐶𝑏
𝐶𝑟

) =  (
0.29900 0.58700 0.11400

−0.16874 −0.33126 0.50000
0.50000 −0.41869 −0.08131

) (
𝑅
𝐺
𝐵

) (4.1) 

 
 

Y is the linear combination of R, G, and B channels; Cb and Cr channels are the blue-

difference and red difference chroma components, respectively. Y channel keeps most of 

the edges compared to Cb and Cr channels. From Equation (6.1) it can be observed that 

G and B channels have the maximum and minimum weights in Y channel (with the 

coefficients 0.587 and 0.114 respectively). Thus, the edges in green areas are more likely 

to be bolder than the edges in red and blue portions. This remark is illustrated in an 

example presented in Figures 4.2 and 4.3. It is observed from Figures 4.2 and 4.3 that the 

edges in green areas are more visible in the Y channel than those in red and blue. It also 

can be noticed from Figure 4.3 that some edges which are not displayed properly in Y 
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channels are visible in Cb and Cr channels. Another point in these Figures is that some 

edges might not be clear in a single channel i.e. the edges caused by splicing are invisible 

in one channel but clear in another one. Therefore, it is essential to consider all the 

channels in image splicing detection methods. 

Since each color channel preserves some specific information in each channel, R, G, 

B, Y, Cb, and Cr channels are tested in our proposed SVD-based image splicing detection 

approaches. Furthermore, greyscale image is also the most basic and simple image which 

only shows one value for each pixel. Since some of the image datasets are in greyscale 

and almost all the image splicing detection algorithms apply the images in greyscale, 

some of this study’s experiments were also designed for application to greyscale images. 

 
            (a)                             (b)                           (c)                          (d) 

 
            (e)                           (f)                             (g)                            (h) 

Figure 4.2: Image in RGB and its edges in different channels, (a) RGB Image, (b) 
Red channel, (c) Green channel, (d) Blue channel, (e) RGB Image, (f) edges in Red 

channel, (g) edges in Green channel, (h) edges in Blue channel 
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            (a)                            (b)                             (c)                           (d) 

 
            (e)                            (f)                             (g)                             (h) 

Figure 4.3: Image in YCbCr and its edges in different channels, (a) YCbCr Image, 
(b) Y channel, (c) Cb channel, (d) Cr channel, (e) YCbCr Image, (f) edges in Y channel, 

(g) edges in Cb channel, (h) edges in Cr channel 

 

4.2.2 Multi-Size Blocking 

Splicing operations modify the correlation between the pixels in the spliced images 

applying various patterns that make capturing these changes much more complicated. On 

the other side, digital images have strong dependency between their pixels in the spatial 

domain and the features captured from sub-blocks represent locality in the spatial domain 

rather than the whole image. Therefore, it is not effective to capture the features of images 

using one single-block-size approach. With various block sizes, the changes in spatial or 

frequency distribution of the images can be captured in different ways, which  leads to 

better detection accuracy.  

The idea of applying a multi-block-size approach was previously utilized in (Shi et al., 

2007b). This idea is also used in this research to capture the features from different areas 

of the given images. By increasing the size of blocks, the number of blocks to capture the 

features is decreased. To select an appropriate set of block sizes, a balance between 

detection accuracy, feature extraction time and number of dimensions has been 

considered. With small block sizes, the elements of SVD cannot capture enough artifacts 
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caused by splicing. On the other hand, when the block size increases, the dimensionality 

also goes up, which does not improve detection performance. According to the 

experimental results presented in chapter 5, the suitable block size set for our features is 

[3, 4, 5, …, 27]. Figure 4.4 indicates a multi-block size diagram with N size (Shi et al., 

2007b).  

 

Figure 4.4: Mulit-Block diagram with N × N Block sizes, N  [3…27] 

 

4.2.3 Frequency Domain 

In the last few decades, transform coding has become one of the most essential parts 

of signal processing applications. It uses the assumption that adjacent pixels (frames) in 

image (video) have a certain level of correlation. A transformation is mapping the 

correlated data called spatial data into uncorrelated coefficients referred as transformation 

(Khayam, 2003). DCT is the most popular block-based transform. It de-correlates the 
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image data, then each transformed coefficient can be encoded freely without missing 

important information (Moghaddasi, Jalab, & Noor, 2014; Moghaddasi et al., 2015).  

The splicing process modifies the local frequency distribution of the host images. 

Applying multi-block sizing DCT can reflect the changes made by the splicing process. 

Therefore, DCT is used in our methods to make use of its benefits in splicing detection 

schema. DCT is calculated for every sub-block in size n and then the features of every 

DCT sub-block are captured. 

Figure 4.5 indicates the preprocessing phase applied in this research. The given image 

from the image datasets is in greyscale or color. The color image is converted to greyscale, 

R, G, B, Y, Cb, Cr channels. Every channel is divided into n × n blocks using multi-block 

size approach, and every block is converted to spatial and DCT. Then the image is ready 

for feature extraction.  
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Figure 4.5: Flowchart of image preprocessing phase 

 

Figure 4.6 illustrates the pseudo-code for image preprocessing phase. As already 

explained first different channels are captured from the given image, then the image is 

blocked and transformed. After that, the features are extracted from every block in spatial 

or frequency domain.  
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4.3 Feature Extraction 

Image features include the global and local properties of an image such as average 

grey levels, intensity histogram shapes, circles, lines, texels, and contour shapes. 

Different methods have been developed to extract these features, and these methods have 

been applied in various image processing fields. Features extracted from images serve an 

important function in the detection and classification process, which aims to distinguish 

authentic images from spliced ones. In this section two proposed SVD-based feature 

extraction methods (SVD-Log and SVD-CN) for image splicing detection are presented. 

 

1. read Img  Image 
2. Img  Gray(Img)/RGB(Img, R)/RGB(Img, G)/RGB(Img, B)/ 
3.              YCbCr(Img, Y)/YCbCr(Img, Cb)/YCbCr(Img, Cr) 
4. //multi-blocking 
5. For W  3..27 
6.      (row, col)  size(Img) 
7.      m  floor(row/W) 
8.      n  floor(col/W) 
9.      For i  1..m 
10.           For j  1..n 
11.                Bi,j  Pixels(Bi,j) or Freq(Bi,j) 
12.                SvBW  Feature_Extraction(Bi,j) 
13.           End for 
14.      End for 
15.      SvBW  mean(SvBW), variance(SvBW),  
16.                     skewness(SvBW), kurtosis(SvBW) 
17. End for  
18. Features  (SvB1, SvB2, …, SvB25) 

 Figure 4.6: Pseudo-code for Image Preprocessing 
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4.3.1 Proposed Method 1: SVD-Log 

As described in section 2.6, SVD is a method that transforms the correlated variables 

in a dataset into a set of uncorrelated ones to better demonstrate the different relationships 

among the original dataset (Baker, 2005). It can model the soft relationship between the 

image rows and columns which is modified by the splicing process. Therefore, the 

singular values could be applied as the features in image splicing detection to capture the 

modified correlation among the image pixels. Since the splicing process has various 

effects on the singular values, there is a need for a function to equally emphasize all 

singular values. Thus, the Logarithm of the inverse power of the singular values is 

proposed in (Gul & Kurugollu, 2010) to extract the features from the images for 

staganalysis. Due to the similarities between image steganography and image splicing 

operation, the Logarithm of the inverse power of the singular values is also applied in the 

first proposed method (Moghaddasi, Jalab, & Noor, 2014). Since there is a high 

dependency between the image pixels, the proposed method divides the image into 

subblocks with different block sizes (as described in section 4.2.2) to capture the 

interblock correlations. The following steps explain the SVD-Log feature extraction 

method: 

Step 1: The image is divided into n × n blocks (n = 3, 4, 5, …, 27) according to the 

multi-size blocking approach described in section 4.2.2. 

Step 2: For each block size n, calculate the singular value (Sv) vector for every 

subblock j (Gul & Kurugollu, 2010): 

 𝑆𝑣𝑗 = [𝛼1𝑗 ‚ 𝛼2𝑗‚ … ‚ 𝛼𝑛𝑗] (4.2) 
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Step 3: In this step, first the natural inverse Logarithm of each singular value is 

calculated, then the results are summed for each sub-block j (Gul & Kurugollu, 2010):  

 𝑆𝑉𝐵𝑗 =  ∑ log (
1

𝛼
)

𝑛

𝑖=1

 (4.3) 

                                                  

Step 4: Calculate 1st to 4th order statistics (average, variance, skewness, and kurtosis) 

to get various distributions of the values obtained from step 3 for each block size n: 

 

𝐹𝑛   = [𝑎𝑣𝑔(𝑆𝑣𝐵1‚ … ‚ 𝑆𝑣𝐵𝑛)‚ 𝑣𝑎𝑟(𝑆𝑣𝐵1‚ … ‚ 𝑆𝑣𝐵𝑛)‚ 

                                   𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑆𝑣𝐵1‚ … ‚ 𝑆𝑣𝐵𝑛)‚ 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑆𝑣𝐵1‚ … ‚ 𝑆𝑣𝐵𝑛)] 

𝑛 = 3‚4‚ … ‚ 27 

(4.4) 

 

There are 25 block sizes and for every block that is obtained from step 3, four numbers 

(average, variance, skewness, and kurtosis) are calculated. 1st to 4th order statistics have 

been applied to better reflect the distribution of the values captured in step 3. Therefore, 

the dimensionality of the proposed method is 100-D, (27 - 3 + 1 = 25) × 4 = 100. Figure 

4.7 indicates the pseudo-code for feature extraction, applying the first proposed method 

(SVD-Log) in the same way as explained in steps 1 to 4. 

 

 

1. Feature_Extraction(Bi,j) 
2. (USV)i,j  SVD(Bi,j) 
3. Svi,j  diag(Si,j) 
4. Svi,j  log(1/Svi,j) 
5. SvBW  sum(Svi,j) 
6. End 

 Figure 4.7: Pseudo-code for the proposed method 1 (SVD-Log) feature 
extraction  
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4.3.2 Proposed Method 2: SVD-CN 

In the second proposed method (SVD-CN), the concept of roughness measurement is 

applied instead of Logarithm. SVD-CN method has been proposed to simplify the 

calculation of Logarithm applied in the SVD-Log method, since CN only needs the 

maximum and minimum singular values instead of their distribution. CN also captures 

the splicing artifacts inside the image effectively. Roughness measure is inversely 

proportional to condition number. As explained in SVD properties (Section 2.6.2.6), CN 

is related to linear independence between the column vectors of a matrix. It is the ratio 

between the largest and smallest singular values of a matrix (Sadek, 2012).  

 𝐶𝑜𝑛𝑑(𝑀) =  
𝑠𝑚𝑎𝑥

𝑠𝑚𝑖𝑛
 (4.5) 

                                      

Sensitivity to changes increases with the increasing of the condition number. Random 

images (blocks) have low CNs (the lowest value is 1), while smooth images show high 

CNs (the highest value is ). In this algorithm, CN is calculated for every block in the 

process. To obtain a better emphasis on the CNs, the inverse of the CNs (roughness) is 

applied as follows (Sadek, 2012): 

 

 𝑅(𝑀) =  
1

𝑐𝑜𝑛𝑑(𝑀)
 (4.6) 

                                                    

Roughness measurement could be applied in different applications related to the 

human visual system (HVS) such as perceptual coding and perceptual data embedding 

(Sadek, 2012). It shows the rapid decreasing of singular values in the smooth images 

compared to those of random images. Therefore, roughness measurement can reflect the 

changes made in spliced images versus original images. Figure 4.8 (c) shows a graph of 
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singular values for the two images presented in Figures 4.8 (a) and 4.8 (b) (authentic and 

spliced) respectively. According to the graph (Figure 4.8 (c)), the singular values of the 

authentic image decreased rapidly in comparison with those of the spliced image. 

 

 

The steps applied in the SVD-CN feature extraction method are as follows: 

Step 1: The given image is blocked into n × n blocks (n = 3, 4, 5, …, 27) according to 

the multi-size blocking approach described in section 4.2.2. 

Step 2: For each block size n calculate the singular value (Sv) vector for every 

subblock j applying Equation (6.2). 

 
                          (a)                                                        (b) 

 
(c) 

 
Figure 4.8: (a) Original Image, (b) Spliced Image, (c) Graph of singular values for images (a) 

and (b) 
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Step 3: In this step the inverse of condition number (roughness measure) is calculated 

for the set of singular values obtained from second step for each subblock j: 

 𝑆𝑣𝐵𝑗 =  
min ([𝛼1𝑗‚ 𝛼2𝑗‚ … ‚ 𝛼𝑛𝑗])

max ([𝛼1𝑗‚ 𝛼2𝑗‚ … ‚ 𝛼𝑛𝑗])
  (4.7) 

 
                                                   

Step 4: In this step the 1st to 4th order statistics (average, variance, skewness, and 

kurtosis) are calculated for the set of SvB, according to Equation (6.4). 

Since the number of sub-blocks in size n is variable, different values are obtained from 

both methods; the 1st to 4th moments of values are calculated to be able to characterize 

the values and capture four numbers for every set of blocks in size n. Therefore, both 

methods have 100 dimensions for every given image. Figure 4.9 demonstrates the pseudo-

code for the second proposed method (SVD-CN), as explained in steps 1 to 4. 

 

 

Figure 4.10 illustrates the feature extraction phase for both proposed methods. All the 

steps and equations are explained completely in this section. All the features extracted by 

applying the first two phases are the input of the feature selection phase to be prepared 

for the classification phase. 

 

1. Feature_Extraction(Bi,j) 
2. (USV)i,j  SVD(Bi,j) 
3. Svi,j  diag(Si,j) 
4. Mxi,j  maximum(Svi,j) 
5. Mni,j  minimum(Svi,j) 
6. CNi,j  Mxi,j / Mni,j 
7. SvBW  sum(1/CNi,j) 
8. End 

 Figure 4.9: Pseudo-code for the proposed method 2 (SVD-CN) feature 
extraction Univ
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Calculate singular value for every sub-block j in size n

Calculate 1st to 4th order statistics (average, variance, skewness, and kurtosis) for set of sub-blocks in size n

Feature Selection

Image Preprocessing

Calculate inverse of condition No.
Calculate sum of natural logarithm of inverse of each 

Sv

Method 2 Method 1

 

Figure 4.10: Flowchart of feature extraction phase 

 

4.4 Feature Selection 

When the features are extracted, it is the time to preprocess the extracted features 

before their classification. Feature selection is performed since the data might be 

redundant, not in appropriate format, contain outliers, and values might be missing or 

appear inconsistent. There are different approaches to make such data suitable for data 

mining, such as sampling, feature transformation, feature creation, feature reduction, etc. 

Generally, the data mining procedure can appropriately interpret the concepts in 

preprocessed data compared to the raw one. 
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The feature selection step is also performed in this study. As explained in section 2.7, 

two different feature selector methods (i.e. PCA and KPCA) are applied on both proposed 

SVD-based methods to make the extracted features ready for classification. The idea of 

selecting PCA and KPCA as feature processors is to examine the effect of two different 

methods (linear and non-linear) on the extracted features. However, high correlations are 

generally found among the extracted features using the proposed SVD-based image 

splicing detection methods. PCA and kernel PCA are applied to reduce the correlations 

by eliminating the information redundancies from the features.  

Figure 4.11 shows the standard deviation distribution of the features extracted from 

greyscale images in DVMM v1 dataset, Figure 4.12 in R channels of CASIA v1 and 

Figure 4.13 the red channel of DVMM v2 before and after application of PCA and kernel 

PCA, respectively. The standard deviation measures show how data are spread out from 

the mean. In this case, a high standard deviation implies a high correlation between the 

features.  

Figures 4.11-4.13 indicate that the original features are highly correlated and their 

standard deviations are spread over a wide range in 100-D. After applying PCA, the 

standard deviations mostly concentrate on the first few features and decrease as 

dimensionality increases. However, the standard deviations are higher than those in the 

original features, which indicates that PCA is not an appropriate preprocessor for the 

proposed features. The experimental results in chapter 5 also show the same outcome. In 

contrast, the standard deviations were greatly reduced after applying kernel PCA on the 

original features. The features after applying kernel PCA were obviously highly 

uncorrelated. 
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Figure 4.11: Standard deviation of the extracted features for image dataset DVMM 
v1 

 

 

Figure 4.12: Standard deviation of the extracted features for image dataset CASIA, 
Red channel 
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Figure 4.13: Standard deviation of the extracted features for image dataset DVMM 
v2, Red channel 

 

Figure 4.14 illustrates the steps in preprocessing after the features are extracted by 

applying SVD-based splicing detection methods. MATLAB toolbox was utilized for 

dimensionality reduction (van der Maaten et al., 2009) to obtain features with different 

dimensions (10, 20, …, 90) from the extracted features using both proposed methods. 

Features with different dimensionalities are considered to obtain the optimal features with 

highest detection rate. Figure 4.15 shows the pseudo-code for feature selection phase. 
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10, 20, 30,  , 90-D feature vectors

Classification

Feature Extraction

Application of PCA (linear) Application of Kernel PCA (non-linear)

 

Figure 4.14: Flowchart of feature selection phase 

  

 

4.5 Classification 

The last phase in image splicing detection is classification. Image splicing detection is 

a binary classification to classify the images into authentic and spliced ones. In this 

research, LIBSVM (Chang & Lin, 2011) is applied as a classifier, which is a complete 

SVM toolbox in MATLAB. Radial Basis Function (RBF) is the selected kernel in the 

1. Feature_Preprocessing(Features) 
2. For D  [10, 20, 30, …, 90] 
3.      //calculate features with D dimension applying PCA or  
4.        Kernel PCA 
5.      Features  Feature_Reduction(Features, D, KPCA/PCA) 
6. End For 

 
Figure 4.15: Pseudo-code for feature selection phase 
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experimental results. In addition, a grid search is employed to select the best parameters 

C and γ for classification (Hsu et al., 2010). To evaluate the performance of the 

classification the following concepts are applied (Kohl, 2012): 

 TP: number of correctly detected authentic images 

 TN: number of correctly detected spliced images  

 FP: number of incorrectly detected authentic images 

 FN: number of incorrectly detected spliced images 

Sensitivity and specificity are statistical measures of the performance of a binary 

classification test, also known in statistics as classification function: 

 Sensitivity (also called the true positive rate: TPR) measures the proportion of 

authentic images that are correctly detected. 

 Specificity (also called the true negative rate: TNR) measures the proportion of 

spliced images that are correctly detected. 

 The following equations calculate sensitivity, specificity, and total accuracy of the 

classification results (Q. Gu et al., 2009; Kohl, 2012; X. Li et al., 2010): 

 

 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (4.8) 

                                                  

 𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.9) 

 

 (𝑡𝑜𝑡𝑎𝑙)𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.10) 
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LIBSVM produces a model based on the input training set and then predicts the spliced 

features based on the input test set. The process of classification to get the best results is 

as follows (Hsu et al., 2010):  

1. The data is first converted to feature vectors with labels to distinguish the 

authentic and spliced images.   

2. A simple scaling is performed on the data to put the data in (-1, +1) range. The 

scaling process is very important, because it prevents the large numbers among 

the data dominating the ones with smaller values. In addition, scaling makes the 

kernel calculation much easier. 

3. A kernel function for SVM is selected. Radial basis function (RBF) is one of the 

most common selected kernel. It is usually used when the class labels and the 

features are non-linearly interrelated.    

4. RBF has two parameters: C and γ. SVM needs the optimal (C, γ) to be able to 

predict the testing data accurately.  

5. Cross-validation is applied to look for the parameters (C, γ). Cross-validation 

divides the dataset into two subsets; one with known labels and the other one with 

unknown labels. The prediction rate obtained from the second dataset (unknown 

labels) will improve the performance of classification for the other datasets.  The 

best recommendation is to apply grid-search on the parameters (C, γ) with cross-

validation.  

6. The parameters (C, γ) are applied to train the training dataset and makes the model. 

7. Test the testing dataset by applying the model from the previous step. 

Figures 4.16 and 4.17 show the flowchart of the classification phase and pseudo-code 

of this phase as elaborated in this section, respectively.  
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Grid search to find optimum parameters (C, g)

Training Dataset Applying (C, g)

Feature Selection

Preparing Train set Preparing Test set

Testing trained model

Calculating TPR, TNR, and Accuray

 

Figure 4.16: Flowchart of classification phase 
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4.6 Computational Complexity of the Proposed Methods 

Calculating the complexity of an algorithm is a way to ensure that the algorithm is 

practical and feasible. Due to this declaration, the complexity of the proposed methods as 

calculated approximately is expressed in this section. To evaluate the complexity of the 

proposed schemes, a mathematical concept i.e. Big-O is applied. 

1. Multi-Blocking: 

 𝑂(𝑀𝐵) = (25 × 𝑚) (4.11) 

where 25 is the number of block sizes (27 – 3 + 1) = 25, m is number of sub-blocks 

with size N. 

2. Frequency Transformation: 

 𝑂(𝐷𝐶𝑇) ≤  (𝑁2) (4.12) 

  where N  [3…27]. 

1. Classification(Features) 
2. Train_set  5/6 * Feature vectors 
3. Test_set  1/6 * Feature vectors 
4. Train_set  scale(Train_set) 
5. Test_set  scale(Test_set) 
6. For Iteration  (1, 2, …, 30) 
7.      //Training the train data in SVM  
8.      Model  svmtrain(train_set) 
9.      //Testing the test data using the trained model in SVM  
10.      Prediction  svmpredict(test_set, model) 
11. End For 
12. Accuracy  average(Prediction) 

Figure 4.17: Pseudo-code for classification phase 
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3. SVD Time Complexity: 

For a matrix with size a × b the time complexity is as follows (Cline & Dhillon, 

2006; M. Gu & Eisenstat, 1995; Holmes et al., 2007): 

 𝑂(𝑆𝑉𝐷) = (min(𝑎𝑏2‚ 𝑎2𝑏)) (4.13) 

                                               

Since all the matrices are square i.e. a = b in this research thus O(SVD) can be 

rewritten as follows: 

 𝑂(𝑆𝑉𝐷) = (𝑁3) (4.14) 

 

where N  [3…27]. Since the size of matrices are small (i.e. [3, 4, … 27]), SVD 

is feasible in the proposed algorithms. 

4. SVD-Log and SVD-CN Time Complexity: 

The first proposed method utilizes Logarithm in its calculation and thus its time 

complexity is as follows: 

 𝑂(𝑆𝑉𝐷 − 𝐿𝑜𝑔) = (𝑁𝐿𝑜𝑔(𝑁)) (4.15) 

 

However, the second proposed method applies condition number in its calculation 

which only focuses on the maximum and minimum Singular values. Therefore, 

its time complexity will be as: 

 𝑂(𝑆𝑉𝐷 − 𝐶𝑁) = (𝑁) (4.16) 

 

Where N  [3…27] in Equations (4.15) and (4.16). 

Univ
ers

ity
 of

 M
ala

ya



 

125 

5. Feature Selection: 

For a matrix with size r × l the time complexity of PCA and Kernel PCA are as 

follows (Günter et al., 2007): 

 𝑂(𝑃𝐶𝐴 & 𝐾𝑃𝐶𝐴) = 𝑂(𝑟 × 𝑙) (4.17) 

 

Therefore, the total complexity of the proposed algorithms is: 

 𝑂(𝑇𝑜𝑡𝑎𝑙𝑆𝑉𝐷−𝐿𝑜𝑔) =  25𝑚 [𝑁2 +  𝑁3 + 𝑁𝑙𝑜𝑔𝑁] +  𝑂(𝑟 × 𝑙) (4.18) 

 

 𝑂(𝑇𝑜𝑡𝑎𝑙𝑆𝑉𝐷−𝐶𝑁) =  25𝑚 [𝑁2 +  𝑁3 + 𝑁] +  𝑂(𝑟 × 𝑙) (4.19) 

                       

Based on the total time complexities presented in Equations (4.18) and (4.19), the 

most time-consuming part is 25mN3. Table 4.1 indicates the runtime of feature 

extraction for different applied image datasets (i.e. DVMM v1, DVMM v2 and 

CASIA) utilizing the proposed methods. The results show that the runtime for 

method 2 (SVD-CN) is generally less than that for method 1 (SVD-Log) in all 

image datasets, due to applying CN instead of a Logarithm function, which was 

also verified by Equations (4.18) and (4.19). Moreover, DCT takes more time 

compared to spatial ones, due to the calculation time of DCT. 
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Table 4.1: Runtime of feature extraction applying the proposed methods 

Methods Time(s) 

 DVMM v1 CASIA DVMM v2 

SVD-Log (Spatial) 0.2158 1.2025 8.7383 

SVD-Log (DCT) 0.2192 1.2877 9.1271 

SVD-CN (Spatial) 0.2098 1.1396 7.7813 

SVD-CN (DCT) 0.2227 1.1579 8.2538 

 

4.7 Summary 

In this chapter, the structural design of the two proposed image splicing detection 

methods have been presented. Each phase of the proposed schemes has been elaborated 

step by step. In addition, for every phase a flowchart has been drawn to illustrate the 

proposed schemes visually. There are four main phases (i.e. image preprocessing, feature 

extraction, feature selection and classification). The pseudo-code presented in each phase 

shows how the algorithms are implemented by applying different tools and toolboxes 

such as MATLAB, LIBSVM, and drtoolbx. The first SVD-based proposed method 

applies Logarithm (SVD-Log) in its core calculation, while the second one utilizes the 

concept of image roughness (SVD-CN). To improve the classification performance, two 

dimension reduction methods (i.e. PCA and Kernel PCA) are applied on the features. 

Finally, the TPR, TNR and detection accuracy have been calculated during the 

classification phase. Furthermore, the computational complexity of the proposed schemes 

has been presented to show the feasibility of the proposed detection algorithms. 
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CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 

5.1 Introduction 

In this chapter, various experiments are designed and conducted to test and evaluate 

the two proposed SVD-based image splicing methods. The experimental results are 

presented based on TPR, TNR, accuracy, and Receiver Operating Characteristic (ROC) 

curves. The true positive rate (TPR) measures the proportion of positives that are correctly 

identified, while the true negative rate (TNR) measures the proportion of negatives that 

are correctly identified. Larger values of TPR, and TNR indicate better detection results. 

The classification performance of the proposed schemes is evaluated on three available 

image datasets – DVMM v1, DVMM v2, and CASIA – as explained in section 3.3.2. The 

classification system was implemented using MATLAB R2016a on a 3.30 GHz Intel (R) 

Core™ i3 processor with 4 GB RAM on a Windows 10 platform.  

The Support Vector Machine (SVM) was the classifier applied in this research. SVM 

is a well-known supervised machine-learning applied in different methods, including 

pattern recognition. MATLAB codes for SVM are accessible in (Chang & Lin, 2011). 

LIBSVM is a known library that implements SVM. In this research, LIBSVM was used 

under the following conditions: 

 Radial basis function (RBF) is used as a kernel function 

 Grid search method is applied to obtain the best value for c and γ parameters so 

that the SVM classifier can accurately predict unknown data. 

This chapter is divided into four sections, the first three sections are to evaluate the 

three available image datasets (DVMM v1, CASIA, and DVMM v2). In every section, 

the detection results are presented in different color models, with their channels separate 

in both spatial and frequency (DCT) domains. The results are also improved by applying 
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two-dimensional reduction methods (PCA and Kernel PCA). The last section presents a 

comprehensive comparison between the proposed schemes and the most recent developed 

image splicing detection methods.  

 

5.2 Classification Performance of DVMM v1.0 Image Dataset 

The first evaluated image dataset is DVMM v1.0. As explained in section 3.3, all the 

images in this dataset are in grayscale. In this section the classification rates of the features 

extracted from this image dataset using both proposed methods are presented.  

 

5.2.1 Classification Performance of SVD-Log (Grayscale) 

Table 5.1 illustrates the results from the original dimension of the extracted feature for 

the proposed SVD-Log with 100-D obtained from the DVMM v1.0 grayscale image 

dataset. A detection accuracy of 77.65% was achieved from the images in spatial domain, 

proving that a high correlation exists among the features, as indicated in Figure 4.11. Thus 

PCA and Kernel PCA are applied to remove the redundant features and improve SVM 

performance.   

Table 5.1: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 77.24 78.05 77.65 80.49 81.10 80.79 

 

Table 5.2 presents the detection accuracy results after the application of PCA on SVD-

Log with 10-90 dimensions in spatial and frequency domains. The results indicate that 
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applying PCA on the features before classification does not improve the classification 

performance. Thus PCA cannot remove the redundant dimensions from these feature 

vectors. The results presented in Table 5.2 indicate there is a high correlation between the 

features after PCA application, which also proven in (Figure 4.11). 

Table 5.2: Detection accuracy of SVD-Log with PCA in different dimensions in 
Spatial and Frequency Domains 

PCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100 0 50 31.71 90.24 60.98 

20-D 100 0 50 40.65 91.46 66.06 

30-D 100 0 50 66.67 78.66 72.66 

40-D 100 0 50 69.11 78.05 73.58 

50-D 100 0 50 78.86 78.66 78.76 

60-D 100 0 50 78.86 76.83 77.85 

70-D 100 0 50 83.74 76.22 79.98 

80-D 100 0 50 82.93 77.44 80.18 

90-D 100 0 50 82.11 78.66 80.39 

 

Table 5.3 indicates the detection accuracy that resulted from applying Kernel PCA on 

the extracted features from SVD-Log. The same result with Table 5.2 is demonstrated in 

Table 5.3, which shows that Kernel PCA also cannot improve the classification process.  

The results from Tables 5.1, 5.2, and 5.3 show the highest accuracy for SVD-Log in 

the spatial domain is for the original feature vectors (100-D) with 77.65% which is not a 

satisfactory result. Therefore, the other transforms (DCT) are investigated to obtain a 

better detection rate.  
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The results obtained from the features in DCT and SVD-Log are also presented in 

Tables 5.1, 5.2, and 5.3. Table 5.1 indicates the result from the original dimension of 100 

as being 80.79%. Although the result shows an increase compared to the detection rate 

presented for the spatial domain in 100-D, the accuracy is still not high enough. Thus, the 

features are normalized to improve the classification performance. Tables 5.2 and 5.3 

demonstrate the detection rates in different dimensions after applying PCA and Kernel 

PCA on the extracted features from SVD-Log in DCT. 

The results after applying the PCA dimension reduction method are presented in Table 

5.2, and indicate a great decrease from 80.39% to 60.98% when the dimension is reduced 

(90-D to 10-D).  

However, the detection rates after the application of Kernel PCA are promisingly 

increased. These results show that greyscale images with 50-D exhibit a considerable 

increase in detection accuracy compared with those from the original dimension (80.79% 

vs. 98.78%), respectively. Figure 5.1 illustrates the receiver operating characteristic 

(ROC) curves of the original features, after the application of PCA in 90 dimensions and 

Kernel PCA in 50 dimensions, respectively. According to this Figure, Kernel PCA has 

the best effect on the features, while PCA has approximately the same result as the 

original features.  

The area under the curve (AUC) of 1.00 also verifies that the best classification 

performance for the features is with Kernel PCA. This area measures discrimination, 

which identifies the classification performance (Sokolova et al., 2006).  
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Table 5.3: Detection accuracy of SVD-Log with Kernel PCA in different dimensions 
in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100 0 50 0.00 100 50 

20-D 100 0 50 91.06 88.41 89.74 

30-D 100 0 50 100.00 96.95 98.48 

40-D 100 0 50 100.00 96.95 98.48 

50-D 100 0 50 100.00 97.56 98.78 

60-D 100 0 50 98.37 96.95 97.66 

70-D 100 0 50 99.19 96.95 98.07 

80-D 100 0 50 99.19 96.95 98.07 

90-D 100 0 50 99.19 96.95 98.07 

 

 

Figure 5.1: Comparison of Detection Performance between features in 100-D, with 
PCA in 90-D, and Kernel PCA in 50-D using SVD-Log 
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5.2.2 Classification Performance of SVD-CN (Gray-Scale) 

Table 5.4 indicates the result for the second proposed method with the original 

dimensionality of 100 in spatial and frequency domains. The result shows a low detection 

rate of 65.28% was achieved in spatial domain, which is 12% less than the detection rate 

obtained from the first method with same conditions. Therefore, the extracted features 

need to be normalized by removing redundant features utilizing PCA and Kernel PCA. 

Table 5.4: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 67.11 63.46 65.28 59.35 68.90 64.13 

 

The application of PCA on the extracted features using SVD-CN results in a detection 

accuracy of the range 54.79-66.20, which is very similar to the one achieved from the 

original dimensionality in Table 5.4. The results demonstrate that a high correlation exists 

among the extracted features, even after the application of PCA. Thus PCA as a linear 

dimension reduction method cannot efficiently increase the detection rate of the extracted 

features. 
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Table 5.5: Detection accuracy of SVD-Log with PCA in different dimensions in 
Spatial and Frequency Domains 

PCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 59.87 63.46 61.67 40.65 79.88 60.26 

20-D 56.58 62.18 59.38 30.89 83.54 57.22 

30-D 59.87 55.13 57.50 33.33 82.93 58.13 

40-D 62.50 51.92 57.21 39.84 76.83 58.33 

50-D 48.68 60.90 54.79 37.40 76.83 57.11 

60-D 63.82 53.21 58.51 39.84 71.95 55.89 

70-D 55.26 62.82 59.04 43.90 73.78 58.84 

80-D 64.47 64.74 64.61 53.66 71.95 62.80 

90-D 63.82 68.59 66.20 52.85 73.78 63.31 

 

Unlike PCA, Kernel PCA improves the classification performance incredibly. Table 

5.6 indicates the results for the application of Kernel PCA on the extracted features from 

SVD-CN.  The results vary in a wide range from 49.49% to 96.04%, which shows how 

dimensionality affects the detection rate. The highest detection rate is for 90 dimensions, 

with 96.04%. Thus, by applying Kernel PCA, the detection rate increased about 30%, 

which is a remarkable rise.  

For the frequency domain (DCT), the results show almost same trend for original 

dimensionality, and also after PCA (Tables 5.4 and 5.5) as the results obtained from the 

spatial domain. Thus, the detection rates demonstrate that a high correlation still exists 

between the extracted features. 
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Table 5.6 indicates other results than Tables 5.4 and 5.5. Kernel PCA improves the 

classification rate to 97.15% for 90 dimensions for the features extracted from DCT. It 

also shows that Kernel PCA (as a non-linear dimension reduction method) efficiently 

normalizes the extracted features and decreases the correlation among the features, which 

is also proven in Figure 4.11.  

Table 5.6: Detection accuracy of SVD-Log with Kernel PCA in different dimensions 
in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 0.00 100.00 50.00 0.00 100.00 50.00 

20-D 0.00 100.00 50.00 0.81 100.00 50.41 

30-D 0.81 99.39 50.10 0.81 100.00 50.41 

40-D 0.81 99.39 50.10 0.81 99.39 50.10 

50-D 0.81 98.17 49.49 0.81 98.78 49.80 

60-D 92.68 83.54 88.11 96.75 95.73 96.24 

70-D 95.12 94.51 94.82 97.56 96.34 96.95 

80-D 96.75 94.51 95.63 96.75 94.51 95.63 

90-D 97.56 94.51 96.04 96.75 97.56 97.15 

 

A comparison of ROC curves for original features, after PCA (90-D) and after Kernel 

PCA (90-D) using SVD-CN are demonstrated in Figure 5.2. The curves in this Figure 

show that the performance of features after the application of Kernel PCA is the best 

among the three curves. 
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Figure 5.2: Comparison of Detection Performance between features in 100-D, with 
PCA in 90-D, and Kernel PCA in 90-D using SVD-CN 

 

5.3 Classification Performance of CASIA Image Dataset 

As explained in section 4.2.1, splicing operation makes some modification in the 

statistical features of the spliced image. These modifications have different reflections in 

each color channel or model. Therefore, it is important to find the color channel or model 

that best reflects the splicing artifacts.  

The second image dataset applied to evaluate the proposed methods is the CASIA 

image dataset. CASIA, as mentioned in section 3.3, is a colored dataset and thus the 

features are extracted from the images in grey, R, G, B, Y, Cb, and Cr channels to 

investigate how the proposed image splicing detection schemes affect the images in 

different channels. Moreover, the individual channels are combined together to inspect 

their performance without considering any individual channels in both proposed methods. 
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5.3.1 Classification Performance of SVD-Log (Grayscale) 

First of all, the images are converted to greyscale and their classification results are 

presented. Table 5.7 indicates the accuracy rate in spatial and frequency domains 

(greyscale) for the first proposed method with original dimensions of 100. Just like the 

DVMM v1 dataset, the accuracy rate of 59.06% shows that the features need some feature 

selection methods (i.e. PCA and Kernel PCA) to improve the classification process.  

Table 5.7: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 66.23 51.88 59.06 68.18 63.16 65.67 

 

Tables 5.8 and 5.9 demonstrate the detection accuracies of the features extracted using 

SVD-Log after applying PCA and Kernel PCA in different dimensions. PCA and Kernel 

PCA again cannot improve the classification performance for these extracted features in 

the spatial domain. The results show the same trend as DVMM v1, in which the detection 

rates from the extracted features using SVD-Log in the spatial domain are not improved 

by applying PCA and KPCA. 

After obtaining unsatisfactory results in the spatial domain, the features are extracted 

in DCT using SVD-Log. The detection rates for these features are generally higher than 

the detection rates in the spatial domain (greyscale). Table 5.9 indicates the highest 

detection accuracy of 95.47% for these features in 90-D after the application of Kernel 

PCA.   
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Table 5.8: Detection accuracy of SVD-Log with PCA in different dimensions in 
Spatial and Frequency Domains 

PCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 77.27 28.57 52.92 

20-D 100.00 0.00 50.00 83.12 27.82 55.47 

30-D 100.00 0.00 50.00 70.13 60.15 65.14 

40-D 100.00 0.00 50.00 67.53 63.91 65.72 

50-D 100.00 0.00 50.00 68.18 61.65 64.92 

60-D 100.00 0.00 50.00 66.23 64.66 65.45 

70-D 100.00 0.00 50.00 66.23 60.90 63.57 

80-D 100.00 0.00 50.00 68.83 64.66 66.75 

90-D 100.00 0.00 50.00 67.53 62.41 64.97 

 

Table 5.9: Detection accuracy of SVD-Log with Kernel PCA in different dimensions 
in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 100.00 0.00 50.00 

20-D 100.00 0.00 50.00 100.00 0.00 50.00 

30-D 100.00 0.00 50.00 100.00 0.75 50.38 

40-D 100.00 0.00 50.00 100.00 0.75 50.38 

50-D 100.00 0.00 50.00 99.35 0.75 50.05 

60-D 100.00 0.00 50.00 94.81 89.47 92.14 

70-D 100.00 0.00 50.00 96.75 90.98 93.87 

80-D 100.00 0.00 50.00 96.75 92.48 94.62 

90-D 100.00 0.00 50.00 95.45 95.49 95.47 
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5.3.2 Classification Performance of SVD-CN (Grayscale) 

The same experimental processes have been conducted for SVD-CN in different 

channels of CASIA image dataset (i.e. Grey, R, G, B, Y, Cb, and Cr). Tables 5.10, 5.11, 

and 5.12 show the detection rates for the features extracted from SVD-CN in spatial and 

frequency domains (greyscale). Table 5.12 demonstrates the highest result of 92.41% for 

70-D after the application of Kernel PCA. Compared to SVD-Log, the features extracted 

from SVD-CN in the spatial domain have higher detection rates after the application of 

Kernel PCA, which shows the nonlinear nature of these features. However, like the results 

presented for DVMM v1, Table 5.11 shows that the extracted features from both methods 

do not have linear natures, and thus PCA cannot improve their performance.    

For the frequency domain results it is observed that only the results presented in Table 

5.12 are considerable. According to this table the highest accuracy rate is for the features 

with only 50 dimensions (95.32%). Generally, the results in grayscale images show that 

some splicing artifacts are missing when the color image is converted to grayscale. 

However, the detection accuracies for both proposed methods are more than 95% which 

is a considerable rate. 

Table 5.10: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 59.21 66.67 62.94 58.44 60.90 59.67 
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Table 5.11: Detection accuracy of SVD-CN with PCA in different dimensions in 
Spatial and Frequency Domains 

PCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 79.22 32.33 55.78 

20-D 100.00 0.00 50.00 66.88 35.34 51.11 

30-D 100.00 0.00 50.00 83.12 22.56 52.84 

40-D 100.00 0.00 50.00 66.23 50.38 58.30 

50-D 100.00 0.00 50.00 81.82 26.32 54.07 

60-D 100.00 0.00 50.00 76.62 40.60 58.61 

70-D 100.00 0.00 50.00 73.38 51.13 62.25 

80-D 100.00 0.00 50.00 74.68 53.38 64.03 

90-D 100.00 0.00 50.00 73.38 54.14 63.76 

 

Table 5.12: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 100.00 0.00 50.00 

20-D 100.00 0.75 50.38 100.00 0.00 50.00 

30-D 98.70 1.50 50.10 100.00 0.75 50.38 

40-D 92.21 82.71 87.46 86.36 95.49 90.93 

50-D 92.21 91.73 91.97 97.40 93.23 95.32 

60-D 90.26 87.22 88.74 98.05 89.47 93.76 

70-D 96.10 88.72 92.41 92.21 90.23 91.22 

80-D 93.51 87.22 90.36 92.21 92.48 92.34 

90-D 94.16 89.47 91.81 91.56 90.23 90.89 
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Figure 5.3 shows the ROC curves for detection performance of original features and 

after the application of Kernel PCA with 90 and 50 dimensions as the best results using 

SVD-Log and SVD-CN respectively. According to this Figure, the highest detection 

accuracy is for SVD-Log, with more than 98%, which is a remarkable detection rate.  

 

Figure 5.3: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 90-D, and Kernel PCA in 50-D using SVD-Log & SVD-CN (Gray-

scale) 

 

5.3.3 Classification Performance of SVD-Log (Red Channel) 

Table 5.13 shows the detection accuracy for the features extracted in red channel 

utilizing SVD-Log. The detection accuracy of 59.18% again indicates the necessity of a 

method such as PCA and Kernel PCA to improve the classification performance. These 

results are presented in Table 5.14 and 5.15. However, the detection rates obtained from 

applying PCA and Kernel PCA on the extracted features in spatial domain of red channel 

are not compatible with these dimension reduction methods, and thus the classification 

decreased dramatically.  
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Due to unsatisfactory results from spatial domain, the features extracted from red 

channel of the images in DCT are tested to investigate whether DCT can reflect the 

splicing artifacts in the images or not. The results for the original dimensions in Table 

5.13 show an increase in the detection rate from 59.18 to 68.64. Furthermore, applying 

Kernel PCA on the extracted features in different dimensions (Table 5.15) indicates a 

promising increase in accuracy to 96.60% in 80 dimensions. In addition, the results 

demonstrate how dimensionality can affect the classification performance.    

Table 5.13: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 69.48 48.87 59.18 73.38 63.91 68.64 

 

Table 5.14: Detection accuracy of SVD-Log with PCA in different dimensions in 
Spatial and Frequency Domains 

PCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 76.62 32.33 54.48 

20-D 100.00 0.00 50.00 72.73 46.62 59.67 

30-D 100.00 0.00 50.00 72.73 54.14 63.43 

40-D 100.00 0.00 50.00 74.03 56.39 65.21 

50-D 100.00 0.00 50.00 70.13 55.64 62.88 

60-D 100.00 0.00 50.00 68.18 59.40 63.79 

70-D 100.00 0.00 50.00 70.78 69.92 70.35 

80-D 100.00 0.00 50.00 67.53 64.66 66.10 

90-D 100.00 0.00 50.00 68.83 64.66 66.75 
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Table 5.15: Detection accuracy of SVD-Log with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 100.00 0.00 50.00 

20-D 100.00 0.00 50.00 100.00 0.00 50.00 

30-D 100.00 0.00 50.00 99.35 0.75 50.05 

40-D 100.00 0.00 50.00 100.00 0.75 50.38 

50-D 100.00 0.00 50.00 7.14 100.00 53.57 

60-D 100.00 0.00 50.00 87.66 88.72 88.19 

70-D 100.00 0.00 50.00 88.31 93.98 91.15 

80-D 100.00 0.00 50.00 95.45 97.74 96.60 

90-D 100.00 0.00 50.00 95.45 96.24 95.85 

 

5.3.4 Classification Performance of SVD-CN (Red Channel) 

The same experimental result with SVD-Log in red channel was also conducted for 

SVD-CN. Table 5.16 indicates the detection accuracy for the original features in spatial 

domain. The result demonstrates a detection accuracy of 69.34%, which is similar to the 

one obtained from SVD-Log in Table 5.13 (68.64%). However, the detection accuracy 

shows the need to apply Kernel PCA on the extracted features before the classification 

process. These detection rates are presented in Table 5.18, which shows an incredible 

increase compared to the rate from the original dimension.  Except for 10 and 20 

dimensions, the other dimensions have a detection accuracy of more than 95.92%, and 

the highest one is 97.62% for only 40-D.  
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Moreover, the results after the application of Kernel PCA in DCT also show rates of 

more than 90% for most of the dimensions. The highest accuracy is 93.92% for 50 

dimensions. Generally, compared to SVD-Log, SVD-CN is more stable in Red channel 

since its experimental results in spatial and frequency domains are both satisfactory, thus 

it reflects the splicing artifacts in better way. 

Table 5.16: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 62.99 50.38 56.68 74.03 64.66 69.34 

 

Table 5.17: Detection accuracy of SVD-CN with PCA in different dimensions in 
Spatial and Frequency Domains 

PCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 74.03 42.11 58.07 62.34 55.64 58.99 

20-D 56.49 54.89 55.69 66.88 43.61 55.25 

30-D 72.08 42.11 57.09 64.94 52.63 58.78 

40-D 46.10 76.69 61.40 46.75 74.44 60.59 

50-D 64.94 44.36 54.65 64.94 44.36 54.65 

60-D 70.13 40.60 55.37 66.88 44.36 55.62 

70-D 74.68 51.88 63.28 70.78 52.63 61.71 

80-D 74.68 57.89 66.29 75.97 56.39 66.18 

90-D 74.03 63.91 68.97 73.38 60.15 66.76 
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Table 5.18: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 0.00 50.00 0.00 

20-D 100.00 0.00 50.00 0.00 50.00 0.00 

30-D 96.10 96.99 96.55 48.87 73.14 48.87 

40-D 96.75 98.50 97.62 90.23 93.16 90.23 

50-D 98.05 96.99 97.52 91.73 93.92 91.73 

60-D 98.70 94.74 96.72 86.47 90.31 86.47 

70-D 97.40 96.24 96.82 85.71 90.91 85.71 

80-D 98.70 93.98 96.34 90.98 92.57 90.98 

90-D 99.35 92.48 95.92 93.23 93.69 93.23 

 

Figure 5.4 illustrates a comparison between the detection performance of SVD-Log 

and SVD-CN in Red channel, utilizing ROC concept. The curves indicate that both 

methods have almost the same performance (only 1% difference) in Red channel.  
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Figure 5.4: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 80-D, and Kernel PCA in 50-D using SVD-Log & SVD-CN (Red 

Channel) 

 

Since the detection accuracy for all aforementioned experimental results only became 

acceptable after the application of Kernel PCA on the extracted features, the other 

experimental results (application of PCA) are omitted from this chapter to have more 

concentration on the valuable results.  

Furthermore, the experimental results from the extracted features in the spatial domain 

applying SVD-Log do not indicate any promising improvement after the application of 

Kernel PCA. Thus these experimental results are also eliminated from the presented 

results for SVD-Log method. 

 

5.3.5 Classification Performance of SVD-Log (Green Channel) 

The second channel tested is the green channel. The detection accuracy from the green 

channel for the first proposed method in the spatial domain and in original dimensionality 
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of 100 is 59.52% (Table 5.19), which is very similar to the detection rates obtained from 

Red, Blue and grey channels with the same conditions (59.18, 58.94, and 59.06). This 

similarity verifies the strong correlation among the three channels because of the color 

filter array interpolation process. However, the accuracy result presented in Table 5.19 is 

an unsatisfactory rate and must be improved by applying Kernel PCA. Table 5.20 

indicates a substantial increase in the accuracy of the features extracted in the frequency 

domain (DCT) from 65.77 to 97.57 with only 30 dimensions. Thus Kernel PCA can 

improve these kinds of features due to their nonlinear nature.   

Table 5.19: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 60.39 58.65 59.52 66.88 64.66 65.77 

 

Table 5.20: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 

20-D 97.40 93.98 95.69 

30-D 97.40 97.74 97.57 

40-D 98.70 95.49 97.10 

50-D 96.10 93.23 94.67 

60-D 97.40 93.98 95.69 

70-D 95.45 95.49 95.47 

80-D 95.45 96.24 95.85 

90-D 94.81 90.98 92.89 
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5.3.6 Classification Performance of SVD-CN (Green Channel) 

The same experimental results were also conducted for SVD-CN in Green channel. 

Table 5.22 demonstrates an incredible detection rate of 99.17% with 60 dimensions 

compared to the original dimension of 64.92%. It also indicates that the individual 

channels in the RGB color model can effectively reflect the splicing artifacts in the 

proposed SVD-based schemes. 

Furthermore, Table 5.22 shows the highest accuracy for 60 dimensions with 96.67% 

for features in DCT. Compared to the detection rates obtained from the features in the 

spatial domain, there is a 2.5% decrease in the features extracted from SVD-CN in DCT.  

In comparison with SVD-Log, Kernel PCA improves the classification for SVD-CN in 

both domains (DCT vs. spatial and DCT) respectively.  

Table 5.21: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 61.54 68.31 64.92 64.42 70.42 67.42 
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Table 5.22: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 4.81 100.00 52.40 

20-D 5.77 100.00 52.88 5.77 100.00 52.88 

30-D 98.08 97.18 97.63 73.08 50.00 61.54 

40-D 98.08 98.59 98.33 100.00 92.48 96.24 

50-D 98.08 99.30 98.69 98.05 93.23 95.64 

60-D 99.04 99.30 99.17 99.35 93.98 96.67 

70-D 99.04 99.30 99.17 98.05 86.47 92.26 

80-D 96.15 99.30 97.72 97.40 90.23 93.81 

90-D 98.08 99.30 98.69 93.27 92.96 93.11 

 

The ROC curves for best detection performance of methods 1 & 2 and the curves for 

their original feature are presented in Figure 5.5. The black curve shows the incredible 

detection performance for SVD-CN. 
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Figure 5.5: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 30-D, and Kernel PCA in 60-D using SVD-Log & SVD-CN (Green 

Channel) 

 

5.3.7 Classification Performance of SVD-Log (Blue Channel) 

The third channel is Blue channel. Tables 5.23 and 5.24 show the detection rates for 

the features extracted from SVD-Log in the spatial domain and DCT, before and after 

application of Kernel PCA respectively. The detection rate of 70.66% shows the same 

trend with those from Grayscale, red, and green channels, which shows that a high 

correlation exists among these channels. Table 5.24 demonstrates an increase of 25.24% 

after the application of Kernel PCA in 70 dimensions. 

Table 5.23: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 62.99 54.89 58.94 70.19 71.13 70.66 
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Table 5.24: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 3.85 100.00 51.92 

20-D 3.85 100.00 51.92 

30-D 4.81 100.00 52.40 

40-D 8.65 100.00 54.33 

50-D 96.10 95.49 95.80 

60-D 92.21 98.50 95.35 

70-D 94.81 96.99 95.90 

80-D 95.45 95.49 95.47 

90-D 94.81 95.49 95.15 

 

5.3.8 Classification Performance of SVD-CN (Blue Channel) 

However, SVD-CN shows a different detection result in the spatial domain of Blue 

channel, compared to the result from SVD-Log. A considerable detection rate of 97.20% 

is derived from the features in Blue channel and spatial domain with only 40 dimensions 

(Table 5.26).  

Moreover, Table 5.26 shows an improvement in the detection rate for SVD-CN in Blue 

channel and frequency domain (DCT), with 99.30% in 40 dimensions. Since DCT has the 

capability to decorrelate the pixels in an image, thus this decorrelation better reflects the 

splicing artifacts and the detection rate is increased.   
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Table 5.25: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 65.58 62.41 64.00 71.15 69.72 70.44 

 

Table 5.26: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 2.88 100.00 51.44 3.85 100.00 51.92 

20-D 3.85 99.30 51.57 5.77 99.30 52.53 

30-D 91.35 95.07 93.21 96.15 94.37 95.26 

40-D 97.40 96.99 97.20 100.00 98.59 99.30 

50-D 94.16 95.49 94.82 99.04 98.59 98.82 

60-D 93.51 89.47 91.49 100.00 97.18 98.59 

70-D 94.16 90.23 92.19 98.08 97.89 97.98 

80-D 92.86 93.23 93.05 99.04 97.89 98.46 

90-D 91.56 94.74 93.15 98.08 97.18 97.63 

 

Figure 5.6 shows a comparison between the highest detection rates for both methods 

in Blue channel based on ROC curves. According to the curves, the best detection 

performance is for features from SVD-CN in 40 dimensions.  
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Figure 5.6: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 70-D, and Kernel PCA in 40-D using SVD-Log & SVD-CN (Blue 

Channel) 

 

5.3.9 Classification Performance of SVD-Log (Y Channel) 

The second color image model applied in our experimental results is the YCbCr model 

as explained in section 5.2.1. Tables 5.27 and 5.28 show the detection results for the 

features in Y channel after applying SVD-Log. According to these Tables, the accuracy 

rates in Y channel also indicate the same trend with those from the RGB channels, which 

verifies the correlation between the luminance channel (Y) and the RGB channels (i.e., Y 

is a linear combination of the R, G, and B channels). For DCT, as anticipated, the luma 

channel has a very similar detection accuracy with R, G, and B channels of 98.22% in 40 

dimensions, after the application of Kernel PCA.  
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Table 5.27: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 62.99 54.14 58.56 68.27 71.83 70.05 

 

Table 5.28: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 

20-D 98.05 94.74 96.39 

30-D 98.70 95.49 97.10 

40-D 98.70 97.74 98.22 

50-D 97.40 94.74 96.07 

60-D 96.75 93.23 94.99 

70-D 96.75 93.23 94.99 

80-D 96.75 93.23 94.99 

90-D 96.75 91.73 94.24 

 

5.3.10 Classification Performance of SVD-CN (Y Channel) 

Tables 5.29 and 5.30 demonstrate the results obtained from the Y channel of the 

images in the spatial domain after applying SVD-CN. The results exhibited a lower 

detection rate (95.71) for the luma channel compared to the ones from R, G, and B 

channels (95.71 vs 97.62, 99.17, and 97.20 respectively). It can be observed that some 

splicing information has been missed in Y channel for SVD-CN, and thus the distribution 

of singular values (SVD-Log) is more informative than only the maximum and minimum 

singular values (SVD-CN). 
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Even the results obtained from luma channel in the frequency domain (DCT) follow 

the same trend as spatial domain, and show a detection accuracy of 92.89% derived from 

the features after the application of Kernel PCA, which is less than the results of R, G, 

and B channels (93.92, 96.67, and 98.82) respectively. Therefore, the results show that 

the linear independency between the image columns still remains high in luma channel. 

Table 5.29: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 65.58 51.13 58.36 71.15 66.20 68.68 

 

Table 5.30: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 3.85 100.00 51.92 2.88 100.00 51.44 

20-D 5.77 99.30 52.53 6.73 100.00 53.37 

30-D 4.81 100.00 52.40 6.73 100.00 53.37 

40-D 99.04 85.92 92.48 93.27 92.25 92.76 

50-D 94.23 97.18 95.71 94.23 91.55 92.89 

60-D 92.31 97.18 94.75 94.23 90.85 92.54 

70-D 92.31 90.85 91.58 94.23 88.73 91.48 

80-D 92.31 92.96 92.63 90.38 92.96 91.67 

90-D 92.31 95.77 94.04 92.31 90.14 91.22 

 

Figure 5.7 also illustrates the best detection accuracy of more than 98% for SVD-CN 

in luma channel, based on ROC curves.  
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Figure 5.7: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 40-D, and Kernel PCA in 50-D using SVD-Log & SVD-CN (Y 

Channel) 

 

5.3.11 Classification Performance of SVD-Log (Cb Channel) 

In order to investigate the effectiveness of chroma channels in detecting spliced 

images, the features extracted in both methods in spatial and frequency domains are 

evaluated. Table 5.31 shows the detection accuracy of Cb channel in original 

dimensionality in both domains for SVD-Log. Unlike the detection performance in other 

channels which ranged from 55% to 70% in original dimensionality, an accuracy of 

80.65% was derived from the features in the spatial domain of the Cb channel.  

For the frequency domain, Table 5.31 indicates a detection rate of 89.56%, which is a 

substantial increase compared to the rate obtained from spatial domain (80.65%). 

However, the highest accuracy for Cb channel applying SVD-Log is 93.24% in 90 

dimensions, which shows a substantial reduction compared to other aforementioned 

channels.  
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Table 5.31: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 81.73 79.58 80.65 90.38 88.73 89.56 

 

Table 5.32: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 82.69 88.03 85.36 

20-D 81.73 78.87 80.30 

30-D 89.42 83.80 86.61 

40-D 95.19 80.28 87.74 

50-D 89.42 83.10 86.26 

60-D 95.19 90.85 93.02 

70-D 93.27 90.85 92.06 

80-D 94.23 89.44 91.83 

90-D 94.23 92.25 93.24 

 

5.3.12 Classification Performance of SVD-CN (Cb Channel) 

Tables 5.33 and 5.34 demonstrate the detection rates for SVD-CN in the Cb channel 

of the images (both domains) with original and different dimensions respectively. Table 

5.33 shows that, unlike SVD-Log, the Cb channel in SVD-CN has similar trends with 

other channels. However, after the application of Kernel PCA, a considerable accuracy 

of 98.22 is obtained for only 20 dimensions. This shows that the Cb features vectors have 

too much redundancy and thus Kernel PCA improved the detection accuracy by removing 

them from the features set.   
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Furthermore, for the frequency domain, the highest rate is achieved in 80 dimensions 

with 98.46%. Compared to SVD-Log, the Cb channel shows better performance in SVD-

CN and thus it verifies that condition number better reflects the splicing artifacts in the 

images. Figure 5.8 also illustrates a comparative view of the maximum detection 

performance of SVD-Log and SVD-CN with original, 40 and 50 dimensions based on 

ROC curves. 

Table 5.33: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 63.46 66.90 65.18 26.92 92.96 59.94 

 

Table 5.34: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 2.88 100.00 51.44 1.92 100.00 50.96 

20-D 98.70 97.74 98.22 3.85 100.00 51.92 

30-D 96.10 92.48 94.29 96.15 97.18 96.67 

40-D 96.10 91.73 93.92 92.31 96.48 94.39 

50-D 98.05 90.98 94.51 96.15 97.18 96.67 

60-D 97.40 90.98 94.19 96.15 95.77 95.96 

70-D 96.75 90.23 93.49 93.27 96.48 94.87 

80-D 97.40 90.98 94.19 99.04 97.89 98.46 

90-D 94.81 90.98 92.89 96.15 95.07 95.61 
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Figure 5.8: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 90-D, and Kernel PCA in 80-D using SVD-Log & SVD-CN (Cb 

Channel) 

 

5.3.13 Classification Performance of SVD-Log (Cr Channel) 

The last channel tested is the chroma channel, called Cr. Tables 5.35 and 5.36 indicate 

the detection results for features extracted from Cr channels using SVD-Log with original 

and different dimensions respectively. The highest detection accuracy of 84.21% was 

obtained from the original dimensions in the spatial domain, which compared to Cb 

channel (80.65) is an increase of 3.56%.  

In the frequency domain (DCT), Cr channel using SVD-Log showed the highest 

accuracy of 92.46% in its original dimension. However, after the application of Kernel 

PCA, the accuracy rate is decreased according to Table 5.36. This verifies that the features 

vectors in Cr channel are all informative, and that there is no redundant feature to be 

eliminated from the features.  
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Table 5.35: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 84.62 83.80 84.21 95.45 89.47 92.46 

 

Table 5.36: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 80.52 90.98 85.75 

20-D 77.92 86.47 82.19 

30-D 89.42 83.80 86.61 

40-D 95.19 80.28 87.74 

50-D 92.31 79.58 85.94 

60-D 98.08 82.39 90.24 

70-D 97.12 80.28 88.70 

80-D 98.08 78.17 88.12 

90-D 97.12 78.87 87.99 

 

5.3.14 Classification Performance of SVD-CN (Cr Channel) 

The same experimental results were also conducted for SVD-CN in both domains for 

the Cr channel. Unlike SVD-Log, the detection accuracy obtained from the original 

dimensions was very low, at only 63.21% (Table 5.37). However, Kernel PCA improves 

this accuracy to 91.06% for 30 dimensions, which verifies that a high correlation exists 

among the image columns. 
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Since the results from the spatial domain of the images in the Cr channel using SVD-

CN were not high enough, the images are transformed to the frequency domain using 

DCT to check the effectiveness of DCT on the Cr channel. Table 5.37 shows a detection 

rate of 81.72% for the original dimension, which exhibits a substantial growth compared 

to one from the spatial domain (63.21%). However, after the application of Kernel PCA, 

a considerable accuracy of 99.30% for 60 dimensions was obtained (Table 5.38). It also 

shows that SVD-CN is more sensitive to the chroma channel than luma channel. These 

observations are also illustrated in Figure 5.9, based on ROC curves for both proposed 

methods.  

Table 5.37: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 70.78 55.64 63.21 79.22 84.21 81.72 

 

Table 5.38: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 0.00 50.00 4.81 100.00 52.40 

20-D 93.51 84.21 88.86 5.77 100.00 52.88 

30-D 94.16 87.97 91.06 77.88 95.77 86.83 

40-D 94.16 84.21 89.18 98.08 99.30 98.69 

50-D 91.56 80.45 86.00 99.04 98.59 98.82 

60-D 90.91 83.46 87.18 100.00 98.59 99.30 

70-D 90.91 90.98 90.94 93.27 97.89 95.58 

80-D 90.26 88.72 89.49 95.19 97.89 96.54 

90-D 88.31 86.47 87.39 93.27 98.59 95.93 
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Figure 5.9: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 60-D, and Kernel PCA in 60-D using SVD-Log & SVD-CN (Cr 

Channel) 

 

5.3.15 Classification Performance of SVD-Log (RGB color model) 

The other experimental result conducted is to investigate the effectiveness of one color 

space, such as RGB or YCbCr, on both proposed methods. Thus the R, G, and B channel 

are combined as one feature set, and its classification performance is presented in Tables 

5.39 and 5.40. The reason behind this kind of experimental procedure is that if the results 

are satisfactory, then there is no need to find an optimal channel. According to Table 5.39, 

the highest detection rate in the spatial domain is 68.87% for the original dimensions, 

which shows a similar trend with the results from each channel individually. 

Thus the images are transformed to the frequency domain (DCT) to check how SVD-

Log behaves in RGB and the frequency domain. Both tables indicate a considerable 

growth in detection accuracies. The highest detection rate is 95.45% for only 20 

dimensions after the application of Kernel PCA. 
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Table 5.39: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 67.31 70.42 68.87 69.23 76.06 72.64 

 

Table 5.40: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 1.92 100.00 50.96 

20-D 92.31 98.59 95.45 

30-D 95.19 92.25 93.72 

40-D 94.23 94.37 94.30 

50-D 97.12 92.25 94.68 

60-D 94.23 93.66 93.95 

70-D 91.35 92.25 91.80 

80-D 92.31 92.96 92.63 

90-D 94.23 92.96 93.59 

 

5.3.16 Classification Performance of SVD-CN (RGB Color model) 

The same results in combining RGB channels are obtained for SVD-CN. Table 5.41 

shows the accuracy of the images using SVD-CN in the original dimension. Table 5.42 

improves the detection rate by applying Kernel PCA from 66.88% to 98.59% in 60 

dimensions, which is an acceptable result compared to other experimental results 

obtained.  
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For the frequency domain, the highest accuracy is for 60 dimensions, with 93.47%, 

which is less than the one obtained from the spatial domain (98.59%). Generally, some 

of the individual channels have better detection rates compared to the combined one, and 

it demonstrates that all of the individual channels affect the performance of the combined 

channels. Figure 5.10 shows the ROC curves for the best detection rates in original, 20 

and 60 dimensionality using both methods.  

Table 5.41: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 68.27 65.49 66.88 74.04 66.20 70.12 

 

Table 5.42: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 3.85 100.00 51.92 5.77 100.00 52.88 

20-D 4.81 99.30 52.05 6.73 100.00 53.37 

30-D 97.12 94.37 95.74 60.58 50.70 55.64 

40-D 96.15 97.89 97.02 93.27 86.62 89.94 

50-D 99.04 95.77 97.41 90.38 90.14 90.26 

60-D 100.00 97.18 98.59 93.27 93.66 93.47 

70-D 97.12 96.48 96.80 93.27 91.55 92.41 

80-D 99.04 96.48 97.76 90.38 90.85 90.61 

90-D 97.12 95.77 96.45 87.50 93.66 90.58 
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Figure 5.10: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 20-D, and Kernel PCA in 60-D using SVD-Log & SVD-CN (RGB 

Channel) 

 

5.3.17 Classification Performance of SVD-Log (YCbCr Color Model) 

Now luma and chroma channels (Y, Cb, and Cr) are combined to examine how the 

proposed methods behave in these combined channels. The detection results are presented 

in Tables 5.43 and 5.44 for the images in YCbCr color space using SVD-Log, before and 

after application of Kernel PCA, respectively. The maximum rate obtained is 79.85% for 

the original dimension in the spatial domain (Table 5.43). According to the results, 

YCbCr color space is not very informative in the spatial domain of the images, and thus 

the SVD contribution cannot reflect the splicing artifacts in the image dataset. 

Due to unsatisfactory results in the spatial domain, YCbCr features are tested in the 

frequency domain (DCT). The original dimension exhibits a good result of 90.29%, which 

indicates a considerable growth compared to the one from spatial domain (79.85%). 

However, the maximum detection accuracy obtained for SVD-Log in combination of 
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YCbCr channels is 91.35% with 70 dimensions.  Generally, compared to RGB channels, 

SVD distribution as applied in SVD-Log cannot effectively reflect the splicing artifacts 

in the YCbCr color model, and thus the detection rates are not very acceptable in this 

color space.  

Table 5.43: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 83.77 75.94 79.85 89.61 90.98 90.29 

 

Table 5.44: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 89.42 84.51 86.97 

20-D 85.58 84.51 85.04 

30-D 86.54 83.10 84.82 

40-D 85.58 85.92 85.75 

50-D 94.23 85.92 90.07 

60-D 87.50 86.62 87.06 

70-D 93.27 89.44 91.35 

80-D 91.35 89.44 90.39 

90-D 91.35 89.44 90.39 
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5.3.18 Classification Performance of SVD-CN (YCbCr Color Model) 

Luma and chroma channels are also combined to obtain the experimental results for 

SVD-CN. Table 5.46 shows incredible detection rates for the YCbCr color model in the 

spatial domain of the tested images. All the accuracy rates in different dimensions are 

higher than 97%, and the highest one is 99.62% with only 10 dimensions. It is observed 

that the combined channels have a better detection rate than the individual ones, and thus 

the columns in YCbCr color channels are highly independent.  

Unlike the spatial domain, the combined channels in the frequency domain (DCT) of 

the images do not exhibit considerable detection rates. Table 5.46 shows the detection 

accuracies in different dimensions ranged from 80.17 to 86.19 which is not acceptable. 

Thus Y, Cb, and Cr channels have a negative impact when combined together in DCT 

transform. 

Table 5.45: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 32.69 93.66 63.18 29.81 81.69 55.75 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

167 

Table 5.46: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 99.25 99.62 92.31 78.17 85.24 

20-D 99.35 97.74 98.55 90.38 79.58 84.98 

30-D 99.35 97.74 98.55 85.58 76.06 80.82 

40-D 100.00 96.99 98.50 80.77 79.58 80.17 

50-D 100.00 96.99 98.50 81.73 83.10 82.41 

60-D 99.35 95.49 97.42 77.88 88.03 82.96 

70-D 99.35 96.24 97.80 74.04 89.44 81.74 

80-D 98.70 95.49 97.10 84.62 89.44 87.03 

90-D 99.35 94.74 97.04 83.65 88.73 86.19 

 

Figure 5.11 shows a comparison between the best detection rates in the YCbCr feature 

set using both methods based on ROC curves. According to the displayed curves, YCbCr 

has the best reflection among all the aforementioned accuracies in the CASIA image 

dataset. 
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Figure 5.11: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 70-D, and Kernel PCA in 10-D using SVD-Log & SVD-CN (YCbCr 

Channel) 

 

5.4 DVMM v2.0 Image Dataset 

The third image dataset is DVMM v2. As mentioned in section 3.3, the images in this 

image dataset are in high resolution and thus the splicing artifacts are likely to be less 

detectable. To evaluate this image dataset, the same experimental procedures are 

conducted as were carried out on the CASIA dataset, and the results are presented in this 

section. 

 

5.4.1 Classification Performance of SVD-Log (Grayscale) 

Tables 5.47 and 5.48 show the detection rate of the images in greyscale for SVD-Log. 

Similar to the results in the other evaluated image datasets, the detection rates of the 

features extracted from the spatial domain of the images using SVD-Log are very low 
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(67.20%). This indicates that SVD-Log alone cannot capture the splicing modifications 

in the spatial domain of the images. 

Unlike the spatial domain, the features extracted from the images in DCT form show 

considerable detection rates. It verifies that DCT can effectively reflect the splicing 

artifacts by de-correlating the data inside the image. Table 5.48 indicates a perfect 

detection rate of 100% with only 10 and 20 dimensions. The other dimensions also have 

a good accuracy of 96.77%, which is an acceptable enough detection rate. 

Table 5.47: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 66.67 67.74 67.20 76.67 74.19 75.43 

 

Table 5.48: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 100.00 100.00 100.00 

20-D 100.00 100.00 100.00 

30-D 100.00 93.55 96.77 

40-D 100.00 90.32 95.16 

50-D 100.00 93.55 96.77 

60-D 100.00 93.55 96.77 

70-D 100.00 93.55 96.77 

80-D 100.00 93.55 96.77 

90-D 100.00 90.32 95.16 
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5.4.2 Classification Performance of SVD-CN (Grayscale) 

Table 5.49 demonstrates the accuracies for the features in the spatial and frequency 

domains after applying SVD-CN. Unlike SVD-Log, SVD-CN can capture the splicing 

clues in the spatial domain of the images. According to Table 5.50, the highest detection 

accuracy for greyscale images in the spatial domain is 96.72% with 10 dimensions, which 

is still a considerable detection accuracy. 

However, according to Table 5.50, the accuracy of the greyscale features in DCT after 

applying SVD-CN decrease to 90.16%, compared with the spatial domain rates. The 

results show that SVD-Log and SVD-CN have inverse behavior in spatial and DCT 

domain for greyscale images, in which the former is better in the frequency domain and 

the latter in the spatial domain.  

Table 5.49: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 66.67 67.74 67.20 60.00 70.97 65.48 
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Table 5.50: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 96.67 96.77 96.72 93.33 70.97 82.15 

20-D 96.67 90.32 93.49 90.00 90.32 90.16 

30-D 100.00 74.19 87.10 83.33 87.10 85.22 

40-D 96.67 83.87 90.27 86.67 77.42 82.04 

50-D 93.33 96.77 95.05 86.67 77.42 82.04 

60-D 96.67 90.32 93.49 80.00 80.65 80.32 

70-D 96.67 93.55 95.11 93.33 67.74 80.54 

80-D 93.33 87.10 90.22 86.67 74.19 80.43 

90-D 93.33 93.55 93.44 90.00 74.19 82.10 

 

A comparative view of the best detection rates in the original and 10 dimensions for 

both methods is illustrated in Figure 5.12, based on ROC curves. According to this Figure, 

the true positive rate is always high against the false positive rate.  
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Figure 5.12: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 70-D, and Kernel PCA in 10-D using SVD-Log & SVD-CN (Gray-

scale) 

 

5.4.3 Classification Performance of SVD-Log (Red Channel) 

The first color model examined by the proposed methods in DVMM v2 image dataset 

is the RGB color model. Table 5.51 shows a detection rate of 83.49% for Red channel 

images in the spatial domain using SVD-Log.  

Table 5.52 indicates the results for Red channel of the images in the frequency domain 

(DCT). As anticipated, from SVD-Log a considerable accuracy of 96.72% is also 

obtained for Red channel. However, the rates for Red channel decreased incredibly 

compared to the rates from greyscale features.  
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Table 5.51: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 76.67 90.32 83.49 70.00 78.79 74.39 

 

Table 5.52: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 96.67 96.77 96.72 

20-D 93.33 96.77 95.05 

30-D 86.67 87.10 86.88 

40-D 90.00 96.77 93.39 

50-D 80.00 90.32 85.16 

60-D 86.67 87.10 86.88 

70-D 96.67 83.87 90.27 

80-D 93.33 74.19 83.76 

90-D 83.33 80.65 81.99 

 

5.4.4 Classification Performance of SVD-CN (Red Channel) 

Similarly, the accuracies obtained from the features in Red channel after applying 

SVD-CN, as demonstrated in Tables 5.53 and 5.54, are not high enough compared with 

those achieved from greyscale features. The detection rates ranges among 68.48% and 

93.55% in spatial and frequency domains. The overall results from SVD-CN in Red 
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channel shows that this channel of image dataset does not effectively reflect the splicing 

traces left in the images. 

Table 5.53: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 30.00 78.79 54.39 60.00 70.97 65.48 

 

Table 5.54: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 90.00 81.82 85.91 90.00 90.32 90.16 

20-D 80.00 93.94 86.97 96.67 87.10 91.88 

30-D 70.00 96.97 83.48 100.00 87.10 93.55 

40-D 90.00 93.94 91.97 96.67 87.10 91.88 

50-D 80.00 93.94 86.97 93.33 87.10 90.22 

60-D 85.00 96.97 90.98 90.00 96.77 93.39 

70-D 60.00 96.97 78.48 93.33 93.55 93.44 

80-D 55.00 96.97 75.98 90.00 93.55 91.77 

90-D 40.00 96.97 68.48 86.67 87.10 86.88 

 

Figure 5.13 shows the ROC curves for best results of both proposed methods in Red 

channel. According to these curves, SVD-Log has the best detection accuracy among the 

others.  
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Figure 5.13: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 70-D, and Kernel PCA in 10-D using SVD-Log & SVD-CN (Red 

Channel) 

 

5.4.5 Classification Performance of SVD-Log (Green Channel) 

The second channel in the RGB color model is Green channel. Table 5.56 shows that 

all the accuracy rates for Green channel images in the frequency domain (DCT) after 

applying SVD-Log are all more than 95.11% and grow to achieve 98.33% with only 20 

dimensions, which is a promising result compared to Red channel. However, the detection 

rate is still less than the one in greyscale features (98.33% vs. 100% respectively).    

Table 5.55: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 75.00 78.79 76.89 70.00 75.76 72.88 
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Table 5.56: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 93.33 100.00 96.67 

20-D 96.67 100.00 98.33 

30-D 96.67 96.77 96.72 

40-D 96.67 96.77 96.72 

50-D 96.67 93.55 95.11 

60-D 96.67 93.55 95.11 

70-D 96.67 93.55 95.11 

80-D 96.67 93.55 95.11 

90-D 96.67 93.55 95.11 

 

5.4.6 Classification Performance of SVD-CN (Green Channel) 

The Green channel for the SVD-CN also shows higher detection rates compared to the 

ones achieved in Red channel. Table 5.57 indicates an accuracy of 85.91% for 10 

dimensions and it increases to reach a maximum amount of 95.45% with 90 dimensions. 

However, the results are still less than the ones from greyscale features (95.45 vs. 96.72 

respectively). Generally, the detection rates show that the Green channel is more 

informative than the Red one in the DVMM v2 image dataset.  
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Table 5.57: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 15.00 100.00 57.50 56.67 74.19 65.43 

 

Table 5.58: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 90.00 81.82 85.91 93.33 90.32 91.83 

20-D 95.00 90.91 92.95 85.00 93.94 89.47 

30-D 95.00 90.91 92.95 90.00 90.91 90.45 

40-D 100.00 87.88 93.94 90.00 87.10 88.55 

50-D 95.00 87.88 91.44 90.00 90.91 90.45 

60-D 85.00 93.94 89.47 90.00 87.88 88.94 

70-D 100.00 81.82 90.91 95.00 81.82 88.41 

80-D 100.00 87.88 93.94 90.00 87.88 88.94 

90-D 100.00 90.91 95.45 90.00 87.88 88.94 
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Figure 5.14: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 20-D, and Kernel PCA in 90-D using SVD-Log & SVD-CN (Green 

Channel) 

 

5.4.7 Classification Performance of SVD-Log (Blue Channel) 

Table 5.60 shows the accuracy rates for Blue channel of the images in the frequency 

domain after applying SVD-Log. The results indicate lower detection rates than those 

from greyscale, Red and Green channels, with a maximum percentage of 91.83 with only 

20 dimensions. Moreover, the trend of detection results is similar to the CASIA image 

dataset, in which the Green channel had the best detection performance over the other 

two channels. It also verifies that SVD-Log is less sensitive to Blue channel than Red and 

Green channels. 

Table 5.59: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 70 84.85 77.42 80.00 77.42 78.71 
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Table 5.60: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 86.67 96.77 91.72 

20-D 93.33 90.32 91.83 

30-D 96.67 80.65 88.66 

40-D 90.00 77.42 83.71 

50-D 93.33 70.97 82.15 

60-D 96.67 70.97 83.82 

70-D 93.33 70.97 82.15 

80-D 93.33 67.74 80.54 

90-D 100.00 67.74 83.87 

 

5.4.8 Classification Performance of SVD-CN (Blue Channel) 

Table 5.62 demonstrates the maximum detection accuracy of 94.47% for the Blue 

channel images in the frequency domain using SVD-CN. Generally, the detection 

performance of the three R, G, and B channels in SVD-CN varies in a close range (93.55-

95.45). The overall results show the Blue channel is also not highly informative in this 

kind of image dataset, and so far the best results were for greyscale images with both 

proposed methods. 
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Table 5.61: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 55.00 69.70 62.35 50.00 75.76 62.88 

 

Table 5.62: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 96.67 77.42 87.04 95.00 93.94 94.47 

20-D 93.33 90.32 91.83 90.00 87.88 88.94 

30-D 95.00 87.88 91.44 90.00 93.94 91.97 

40-D 95.00 75.76 85.38 85.00 90.91 87.95 

50-D 100.00 81.82 90.91 95.00 93.94 94.47 

60-D 100.00 81.82 90.91 90.00 90.91 90.45 

70-D 86.67 90.32 88.49 90.00 96.97 93.48 

80-D 90.00 80.65 85.32 80.00 93.94 86.97 

90-D 95.00 78.79 86.89 80.00 90.91 85.45 

 

Figure 5.15 shows a comparison between the best accuracy rates of the original, and 

of other dimensions for both proposed methods, based on ROC curves. As this Figure 

indicates, the further the curve is from the 45-degree diagonal of ROC space, the higher 

the detection accuracy is. Thus these curves also verify the best detection rates are for 

both methods after the application of Kernel PCA. 
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Figure 5.15: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 20-D, and Kernel PCA in 10-D using SVD-Log & SVD-CN (Blue 

Channel) 

 

5.4.9 Classification Performance of SVD-Log (Y Channel) 

The second evaluated color model is YCbCr. The detection rates of the luminance 

channel (Y) are presented in Tables 5.63 and 5.64 for SVD-Log in spatial and frequency 

(DCT) domains, before and after application of Kernel PCA. According to Table 5.64, 

the highest detection accuracy of 95% is for features with 10 dimensions, which is very 

close to the one achieved in Red channel (96.72). After that the detection rate is decreased 

dramatically to 91.88.  

Table 5.63: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 60.00 67.74 63.87 76.67 70.97 73.82 
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Table 5.64: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 90.00 100.00 95.00 

20-D 93.33 90.32 91.83 

30-D 96.67 87.10 91.88 

40-D 93.33 83.87 88.60 

50-D 96.67 80.65 88.66 

60-D 93.33 87.10 90.22 

70-D 93.33 80.65 86.99 

80-D 90.00 90.32 90.16 

90-D 90.00 90.32 90.16 

 

5.4.10 Classification Performance of SVD-CN (Y Channel) 

Tables 5.65 and 5.66 demonstrate the detection accuracy rates for the features 

extracted from Y channel of the images in spatial and frequency domains using SVD-CN. 

Generally, the detection rates in DCT are higher than those in the spatial domain for Y 

channel, which reaches a maximum of 95.45% for 10 and 30 dimensions as indicated in 

Table 5.66. However, for SVD-CN, the best result is still for greyscale images, and thus 

it shows that SVD-CN cannot capture the splicing traces left in the images from the 

individual channels.  
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Moreover, the results indicate that the luminance channel, which is a linear 

combination of R, G, and B channels, shows results in approximately same range of those 

from the individual R, G, and B channels (93.55, 95.45, and 94.47). 

Table 5.65: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 60.00 70.97 65.48 53.33 77.42 65.38 

 

Table 5.66: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 90.00 93.94 91.97 100.00 90.91 95.45 

20-D 95.00 93.94 94.47 90.00 84.85 87.42 

30-D 95.00 90.91 92.95 100.00 90.91 95.45 

40-D 100.00 84.85 92.42 100.00 84.85 92.42 

50-D 100.00 75.76 87.88 100.00 87.88 93.94 

60-D 100.00 78.79 89.39 100.00 87.88 93.94 

70-D 95.00 75.76 85.38 100.00 81.82 90.91 

80-D 85.00 84.85 84.92 100.00 81.82 90.91 

90-D 90.00 84.85 87.42 100.00 75.76 87.88 

 

Figure 5.16 illustrates the ROC curves for performance classification of original 

features and after application of Kernel PCA, with the best rates achieved in both methods 
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in the luma channel. For the features with 10 dimensions extracted from SVD-Log, the 

true negative rate is 90% and the true positive rate reaches 100%, whereas conversely for 

features with 10 dimensions extracted from SVD-CN, the true negative rate is 100% and 

then the true positive rate gets 90% which is clearly depicted in the curves. 

 

Figure 5.16: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 10-D, and Kernel PCA in 10-D using SVD-Log & SVD-CN (Y 

Channel) 

 

5.4.11 Classification Performance of SVD-Log (Cb Channel) 

The detection accuracies of the Chroma channel (Cb) is presented in Tables 5.67 and 

5.68 using SVD-Log. The results indicated in Table 5.68 show almost the same trend as 

the Y channel obtained from Cb channel, with a maximum accuracy of 95.11% obtained 

for the features with 10 dimensions in DCT.  
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Table 5.67: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 73.33 83.87 78.60 73.33 70.97 72.15 

 

Table 5.68: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 96.67 93.55 95.11 

20-D 93.33 83.87 88.60 

30-D 86.67 80.65 83.66 

40-D 96.67 80.65 88.66 

50-D 90.00 80.65 85.32 

60-D 96.67 77.42 87.04 

70-D 96.67 80.65 88.66 

80-D 90.00 100.00 95.00 

90-D 86.67 100.00 93.33 

 

5.4.12 Classification Performance of SVD-CN (Cb Channel) 

However, the detection performance of Cb channel for SVD-CN is different from that 

for SVD-Log. Table 5.70 shows an incredible increase in classification rates of features 

extracted in Cb channel, which reaches a peak rate of 98.38% with 10 dimensions. The 

results indicate that Cb channel has much more information than R, G, B, and Y channels 

able to be captured by SVD-CN.   
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Table 5.69: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 40.00 75.76 57.88 83.33 67.74 75.54 

 

Table 5.70: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 90.00 100.00 95.00 75.00 90.91 82.95 

20-D 100.00 96.97 98.48 80.00 93.94 86.97 

30-D 100.00 93.94 96.97 60.00 93.94 76.97 

40-D 100.00 93.94 96.97 75.00 81.82 78.41 

50-D 100.00 93.94 96.97 80.00 87.88 83.94 

60-D 100.00 93.94 96.97 80.00 84.85 82.42 

70-D 95.00 96.97 95.98 80.00 90.91 85.45 

80-D 100.00 78.79 89.39 90.00 75.76 82.88 

90-D 100.00 81.82 90.91 85.00 75.76 80.38 

 

A comparative view of the classification performance for both methods is presented in 

Figure 5.17, which shows the considerable detection accuracies achieved by both 

proposed methods.   
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Figure 5.17: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 10-D, and Kernel PCA in 20-D using SVD-Log & SVD-CN (Cb 

Channel) 

 

5.4.13 Classification Performance of SVD-Log (Cr Channel) 

The last evaluated channel is Cr channel. Table 5.72 shows a classification 

performance of 96.67% obtained from Cr channel using SVD-Log with 10 and 20 

dimensions in DCT. The results indicate that Cr channel is superior in SVD-Log 

compared to Y and Cb channels (95% and 95.11%). 

Table 5.71: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 86.67 77.42 82.04 76.67 80.65 78.66 
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Table 5.72: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 93.33 100.00 96.67 

20-D 93.33 100.00 96.67 

30-D 90.00 100.00 95.00 

40-D 93.33 93.55 93.44 

50-D 96.67 83.87 90.27 

60-D 93.33 87.10 90.22 

70-D 93.33 87.10 90.22 

80-D 93.33 83.87 88.60 

90-D 96.67 77.42 87.04 

 

5.4.14 Classification Performance of SVD-CN (Cr Channel) 

The features extracted from Cr channel using SVD-CN are also evaluated. Tables 5.73 

and 5.74 demonstrate the classification performance of the features in Cr channel. There 

is a remarkable increase in detection rates to more than 93.94%, as shown in Table 5.74, 

which reaches a maximum score of 100% for 90 dimensions. It also verifies that SVD-

CN is more sensitive to chroma channels than the other ones investigated, since both Cb 

and Cr channels have the best accuracies (100% and 98.48%) among the other evaluated 

channels.  
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Table 5.73: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 65.00 75.76 70.38 70.00 83.87 76.94 

 

Table 5.74: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 100.00 93.94 96.97 93.33 96.77 95.05 

20-D 100.00 93.94 96.97 93.33 96.77 95.05 

30-D 100.00 93.94 96.97 95.00 93.94 94.47 

40-D 100.00 90.91 95.45 85.00 87.88 86.44 

50-D 100.00 87.88 93.94 80.00 93.94 86.97 

60-D 100.00 93.94 96.97 90.00 83.87 86.94 

70-D 100.00 93.94 96.97 75.00 96.97 85.98 

80-D 100.00 93.94 96.97 86.67 77.42 82.04 

90-D 100.00 100.00 100.00 65.00 100.00 82.50 

 

Figure 5.18 indicates the ROC curves for the best detection rates of Cr channel in both 

proposed methods. Classification performance of features with 90 dimensions, as 

extracted from SVD-CN, is the best compared to other ROC curves. 
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Figure 5.18: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 10-D, and Kernel PCA in 90-D using SVD-Log & SVD-CN (Cr 

Channel) 

 

5.4.15 Classification Performance of SVD-Log (RGB color model) 

Similar to the CASIA image dataset, the combination of R, G, and B channels are also 

evaluated for both proposed methods. Tables 5.75 and 5.76 show the detection rates for 

SVD-Log in true color images (RGB). According to Table 5.76, the accuracies range 

between 86.99% and 95.05% for 90 and 30 dimensions respectively. The results from the 

individual channels and the combined one show that the best detection performance is for 

Greyscale images, with 100%.  

Table 5.75: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 63.33 64.52 63.92 73.33 74.19 73.76 
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Table 5.76: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 90.00 100.00 95.00 

20-D 90.00 96.77 93.39 

30-D 93.33 96.77 95.05 

40-D 93.33 90.32 91.83 

50-D 93.33 90.32 91.83 

60-D 93.33 87.10 90.22 

70-D 93.33 87.10 90.22 

80-D 93.33 80.65 86.99 

90-D 93.33 80.65 86.99 

 

5.4.16 Classification Performance of SVD-CN (RGB Color model) 

The combined RGB channels are also evaluated for SVD-CN. Table 5.78 shows a 

considerable accuracy of 96.97% achieved from the features in the frequency domain 

with 30 dimensions. Unlike SVD-Log, the combination of R, G, and B channels 

effectively increases the detection performance in SVD-CN. It verifies that in comparison 

between Greyscale, R, G, B channels and their combination, SVD-CN can better capture 

the splicing traces in the combination and greyscale forms (96.97% and 96.72%) 

respectively.  
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Table 5.77: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 60.00 69.70 64.85 63.33 74.19 68.76 

 

Table 5.78: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 85.00 66.67 75.83 85.00 93.94 89.47 

20-D 90.00 83.87 86.94 95.00 93.94 94.47 

30-D 93.33 87.10 90.22 100.00 93.94 96.97 

40-D 90.00 83.87 86.94 95.00 90.91 92.95 

50-D 86.67 80.65 83.66 100.00 87.88 93.94 

60-D 90.00 87.10 88.55 95.00 87.88 91.44 

70-D 90.00 90.32 90.16 95.00 84.85 89.92 

80-D 90.00 93.55 91.77 90.00 87.88 88.94 

90-D 83.33 96.77 90.05 90.00 84.85 87.42 

 

Therefore, the best detection performance for the RGB model is for the features with 

30 dimensions extracted from SVD-Log, which also is depicted in Figure 5.19 based on 

the ROC curve.    
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Figure 5.19: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 30-D, and Kernel PCA in 30-D using SVD-Log & SVD-CN (RGB 

Color Model) 

 

5.4.17 Classification Performance of SVD-Log (YCbCr Color Model) 

The last channel evaluated is the combination of Y, Cb, and Cr channels. Table 5.80 

shows that a considerable detection rate is achieved in 20 dimensions, with 96.77% in 

SVD-Log; this is almost the same as the Cr channel but higher than the Y and Cb channels 

individually. Therefore, it can be observed that the combination of the channels can also 

effectively reflect the splicing artifacts in the third image dataset for SVD-Log.  

Table 5.79: Detection accuracy of SVD-Log with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 83.33 77.42 80.38 80.00 70.97 75.48 
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Table 5.80: Detection accuracy of SVD-Log with Kernel PCA in Frequency Domain 

KPCA Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) 

10-D 93.33 100.00 96.67 

20-D 100.00 93.55 96.77 

30-D 96.67 93.55 95.11 

40-D 93.33 93.55 93.44 

50-D 100.00 93.55 96.77 

60-D 100.00 87.10 93.55 

70-D 100.00 87.10 93.55 

80-D 100.00 83.87 91.94 

90-D 100.00 83.87 91.94 

 

5.4.18 Classification Performance of SVD-CN (YCbCr Color Model) 

Similarly, Table 5.81 demonstrates a detection rate of 96.72% with 10 dimensions for 

the combination of luma and chroma channels utilizing SVD-CN. However, compared to 

the individual channels in the YCbCr color model, this rate is not the best (100 and 98.48 

for chroma channels) but is still an acceptable detection performance. In addition, the 

overall results show that SVD-CN is more sensitive to chroma channels than the other 

ones mentioned.  
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Table 5.81: Detection accuracy of SVD-CN with the original dimension of 100 in 
Spatial and Frequency Domains 

Original Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

100-D 65.00 84.85 74.92 96.67 35.48 66.08 

 

Table 5.82: Detection accuracy of SVD-CN with Kernel PCA in different 
dimensions in Spatial and Frequency Domains 

KPCA Spatial Domain Frequency Domain (DCT) 

 TNR(%) TPR(%) ACC(%) TNR(%) TPR(%) ACC(%) 

10-D 90.00 96.77 93.39 96.67 96.77 96.72 

20-D 90.00 93.55 91.77 96.67 90.32 93.49 

30-D 90.00 80.65 85.32 96.67 83.87 90.27 

40-D 90.00 87.10 88.55 86.67 80.65 83.66 

50-D 90.00 93.55 91.77 96.67 77.42 87.04 

60-D 96.67 87.10 91.88 93.33 80.65 86.99 

70-D 86.67 100.00 93.33 100.00 74.19 87.10 

80-D 96.67 90.32 93.49 95.00 72.73 83.86 

90-D 93.33 80.65 86.99 95.00 75.76 85.38 

 

Figure 5.29 indicates the ROC curves for best detection performance of both methods 

in the combination of Y, Cb, and Cr channels. It is observed from the curves that both 

methods have remarkable detection accuracy in the combination of mentioned channels, 

since they are very far from the diagonal of ROC space.  
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Figure 5.20: Comparison of Detection Performance between features in 100-D, 
Kernel PCA in 20-D, and Kernel PCA in 10-D using SVD-Log & SVD-CN (YCbCr 

Color Model) 

 

5.5 Comparison between detection performance of SVD-Log and SVD-CN 

In this section, a comparison between the best detection performance of both proposed 

methods in the examined channels for every image dataset is presented. Figure 5.21 shows 

the detection accuracy for SVD-Log and SVD-CN in the DVMM v1 image dataset. 

Accordingly, both SVD-Log and SVD-CN demonstrate considerable detection rates 

(98.78 and 97.15) in this image dataset, with a superiority for SVD-Log.  
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Figure 5.21: Comparison between best detection accuracies of SVD-Log and SVD-
CN in DVMM v1 image dataset 

 

Figure 5.22 illustrates the trend of detection rates for SVD-Log and SVD-CN in the 

CASIA image dataset in the examined channels. Generally, SVD-CN compared to SVD-

Log has better performance in all channels except the Luma channels.  

 

 

Figure 5.22: Comparison between best detection accuracies of SVD-Log and SVD-
CN in CASIA image dataset 
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However, Figure 5.23 indicates different trends for both proposed methods in DVMM 

v2 image dataset. SVD-Log shows higher detection accuracy in the Grey, R, and G 

channels while SVD-CN achieves higher accuracy in YCbCr channels. Generally, SVD-

Log has better performance in Grey channels compared to SVD-CN. However, the overall 

performance of SVD-CN is higher than that of SVD-Log, which verifies that condition 

number can effectively reflect the splicing artifacts in the tested image datasets. 

 

 

Figure 5.23: Comparison between best detection accuracies of SVD-Log and SVD-
CN in DVMM v2 image dataset 

 

5.6 Comparison with Conventional Image Splicing Methods 

A comparison of some state-of-the-art image splicing detection methods was 

conducted for a comprehensive evaluation of the entire systems. Tables 5.83-5.85 show 

a comparison between the existing image splicing detection methods and our proposed 

schemes based on dimensionality, TPR, TNR and accuracy in different image datasets 

including DVMM v1, DVMM v2 and CASIA. It is observed from the tables that the best 
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dimensions and 97.15% in 90 dimensions respectively. Thus SVD-Log achieved the best 

detection accuracy among all of the recently developed techniques.  

The third and the last image dataset is DVMM v2. The results indicate some valuable 

detection rates (95.13 and 96.39) recorded for DVMM v2, which reaches the maximum 

amount of 100% for proposed methods 1 & 2 in 10 and 90 dimensions, respectively. 

Generally, it can be observed from the comparison tables that the SVD-based proposed 

methods achieved the best detection performances with low enough dimensionality, 

compared to other recently developed image splicing detection techniques. Thus, SVD 

can be effectively applied in the detection of spliced images. 
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Table 5.83: Comparison of the proposed methods with the existing image splicing detection methods based on DVMM v1 

Methods Image Dataset Dimensionality TPR (%) TNR (%) Accuracy (%) 

Shi et al. (Shi et al., 2007b) DVMM v1 266 92.76 91.00 91.87 

Dong et al. (Dong et al., 2009) DVMM v1 163 83.23 85.53 84.36 

Anusudha et al. (Anusudha et al., 2010) DVMM v1 198 91.78 91.64 91.7 

He et al. (He et al., 2012) DVMM v1 100 93.28 93.83 93.55 

Rabha et al. (Ibrahim et al., 2015) DVMM v1 40 92.31 91.45 91.88 

SVD-Log DVMM v1 50 97.56 100 98.78 

SVD-CN DVMM v1 90 97.53 96.75 97.15 
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Table 5.84: Continued, comparison of the proposed methods with the existing image splicing detection methods based on CASIA 

Methods Image Dataset Dimensionality TPR (%) TNR (%) Accuracy (%) 

Zhao et al. (Zhao et al., 2011) CASIA 60 91.80 97.10 94.7 

Muhammad. G et al. (Muhammad et al., 2014) CASIA 475 95.15 93.91 94.89 

Hakimi. F et al. (Hakimi et al., 2015) CASIA    97.21 

SVD-Log CASIA 40 97.74 98.70 98.22 

SVD-CN CASIA 10 99.25 100 99.62 
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Table 5.85: Continued, comparison of the proposed methods with the existing image splicing detection methods based on DVMM v2 

Methods Image Dataset Dimensionality TPR (%) TNR (%) Accuracy (%) 

Zhao et al. (Zhao et al., 2011) DVMM v2 60 80.20 89.80 85 

Muhammad. G et al. (Muhammad et al., 2014) DVMM v2 359 97.92 95.53 96.39 

Hakimi. F et al. (Hakimi et al., 2015) DVMM v2    95.13 

SVD-Log DVMM v2 10 100 100 100 

SVD-CN DVMM v2 90 100 100 100 
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5.7 Summary 

Throughout this chapter, the two proposed SVD-based detection methods evaluated 

by applying different available image datasets (DVMM v1, DVMM v2, and CASIA) in 

spatial and frequency i.e. DCT domains. For the colored image datasets, Gray-scale, R, 

G, B, Y, Cb, and Cr channels are considered separately. These conditions have been 

provided (different domains and color channels) to investigate their effectiveness on the 

detection performance of the proposed detection schemes. 

However, the observed detection results indicate that the original extracted features 

are not high enough. For satisfactory results, two dimension reduction methods namely, 

PCA and Kernel PCA have been applied to reduce feature dimensionality by eliminating 

redundant features and maintaining important dimensions in the feature vector. To 

evaluate the efficiency of the mentioned dimension reduction methods on the detection 

performance, the dimensionality of the reduced feature vector was set to different values 

(10, 20, 30 … 90-D) to find out which dimensionality is the best in that feature set.  

The detection results show that after application of Kernel PCA, remarkable accuracies 

have been obtained from both proposed methods in different color channels and 

dimensionality. Furthermore, the overall results demonstrate that the proposed image 

splicing detection schemes outperform the recently developed techniques in low 

dimensionality and high detection rate. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Introduction 

The last chapter concludes and summarizes the previous chapters and reviews the 

entire study. This chapter is organized in three different sections. The first section refers 

to the research findings and achievements of this research and explains how the 

mentioned objectives were met throughout the research. The second section is about the 

contributions of the research, what this study has achieved. Lastly, the final section covers 

future works of this study for those who are interested in the topic and want to do further 

research in this field. 

 

6.2 Research Findings and Achievements 

Digital image technology has been rapidly developing in recent decades due to its 

special place in people’s lives. However, various digital image processing tools have been 

created to easily modify and improve captured digital images. However, these tools are 

not only applied for ethical purposes. There are many instances that show how digital 

images are forged and fake ones created. Therefore, the authentication of digital images 

has become a substantial concern for different organizations. 

There are several approaches (image copy-move, image splicing, etc.) that can be used 

to modify a digital image and create a tampered one. All these approaches leave different 

kind of traces, such as statistical ones, in the forged images. It is important for researchers 

to find a way that captures such traces in the tampered images efficiently and detects them 

as accurately as possible. Various aspects should be considered when developing new 

image forgery detection methods. These aspects vary for different image forgery 

techniques. For example, for image splicing detection techniques, it is essential to detect 
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the spliced images accurately and within a reasonable computational complexity. It is also 

important to detect the images in different formats, sizes and color models. 

The main goal of this study is to develop image splicing detection methods to 

accurately detect and distinguish authentic images from spliced ones. In this research, two 

SVD-based image splicing detection methods (SVD-Log and SVD-CN) are proposed, 

designed, and implemented with remarkably high detection performance. The study was 

conducted in line with its objectives stated in section 1.4. The following is the explanation 

how those objectives are achieved throughout the research: 

i. To investigate different image splicing detection methods: The first objective 

of this research is in evaluating and comparing recently developed image splicing 

detection algorithms. This was carried out in chapter 2 with the “Literature 

Review”. In that chapter, various concepts were presented and several works 

related to this research were investigated and analyzed. Afterwards, all of the 

methods were summarized in a table to give the reader a comprehensive 

understanding of different related techniques. 

ii. To select appropriate image preprocessing methods to prepare the image for 

feature extraction: One important phase in designing image splicing detection 

algorithms is to prepare the image to better reflect the splicing traces left in the 

image. The image preprocessing methods are selected in such a way as to be 

compatible with the feature extraction technique. Section 4.2 presents and 

discusses the image preprocessing techniques applied in this research. 

Accordingly, the techniques applied include multi-blocking, image domain 

transformation and color models.  
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iii. To propose two splicing detection methods based on Singular Value 

Decomposition (SVD) with low dimensionality: The most important part of this 

research is the design and development of efficient image splicing detection 

frameworks with the capability to capture the splicing artifacts inside the images 

with higher detection accuracy. To do this, the Singular Value Decomposition 

concept has been applied to develop the splicing detection methods. Thus, two 

different splicing detection methods (namely SVD-Log and SVD-CN) were 

proposed to detect the spliced images from the original ones with a high enough 

detection rate and with reasonable computation complexity. All the steps, 

flowcharts and pseudo-codes for the proposed techniques are presented in Section 

4.3. 

iv. To select an appropriate feature selector to improve the classification 

performance: Since the last phase of the proposed methods is classification, the 

extracted features from the proposed schemes should be prepared for this phase. 

Thus, one more phase is required, which is called the feature selection phase in 

this paper.  In this phase, the features are prepared for classification by removing 

some redundancy from the feature set. The issue in this phase is to select an 

appropriate feature selector to efficiently improve classification performance. The 

best dimension reduction method has been selected as Kernel PCA, which 

achieves the best results in the proposed methods (see Section 4.4). 

v. To test and evaluate the two proposed methods by measuring the detection 

rate using three standard image datasets DVMM v1 & v2, and CASIA: All 

the experimental results and their analyses have been presented in chapter 5. The 

proposed methods were tested on three available datasets in different domains and 

color models. The obtained results were presented based on ROC curves, AUC, 
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TPR, TNR, and their average (i.e. detection accuracy). At the end, a comparison 

with other state-of-the-art splicing techniques has been provided to give a 

comprehensive evaluation of both entire systems. The comparison states that our 

SVD-based proposed schemes outperform the recently developed methods over 

all three datasets. 

Images, in comparison with other media, offer a natural and influential communication 

approach for people, since often people require no specific training to realize the contents 

of an image. However, the ability to distinguish original images from tampered ones is of 

high importance. Currently, digital images already have been widely employed for 

reporting the news, studies on insurance claims, criminal or forensic studies, national 

intelligence investigations and legal proceedings. Thus, this kind of image forgery 

detection can strongly influence the application domain mentioned above.  

A good image splicing detection algorithm should be able to detect spliced images 

with a high enough detection rate and within an acceptable computational complexity. 

These two aspects are essential in each image splicing detection method. Since our 

proposed methods provide both of these aspects, it can be effectively applied in many 

commercial and governmental organizations for security purposes. The organizations are 

only required to provide a complete training model and then the digital images can be 

tested, based on the training model, for authenticity.   

 

6.3 Conclusion 

Image splicing is a common process that can cause inconsistencies in many features, 

such as an abnormally sharp transient at the splicing edges. These inconsistencies are used 

to detect the forged image. Several splicing detection techniques have been proposed that 
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suffer from various problems, such as high-dimensionality, low detection rate and high 

computational complexity. In order to overcome the aforementioned problems, it is 

necessary to have an efficient image splicing detection method with the ability to detect 

spliced images accurately and within reasonable computation complexity. Thus, two 

splicing detection methods (SVD-Log and SVD-CN) are proposed and developed to help 

solve the above-mentioned problems and achieve the ultimate goal. Based on the existing 

splicing detection problems and the experimental results conducted in chapter 5, the 

following statements make up the study’s conclusions: 

 In this study, various challenges encountered by current splicing detection 

methods are discussed. It is difficult for recently proposed methods to 

overcome all the issues in splicing detection methods, since there are several 

factors which affect the detection rate, such as color channels, transformation 

domains, etc. 

 The performance of the two proposed methods has been widely analyzed 

(based on detection accuracy) in the experimental results, and their advantages 

and drawbacks discussed. The proposed methods showed different behaviors 

in different image datasets, color channels, and transformation domains. In the 

DVMM v1 image dataset, SVD-Log had a better detection result, while in the 

CASIA image dataset, the best detection rate was for SVD-CN. For the 

DVMM v2, both methods show remarkable detection rates, but in different 

color channels. In terms of feature extraction time, SVD-CN takes less time to 

extract the features, since it is based on the condition number instead of the 

Logarithm function. This statement answers research question 5.  
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 To develop a new image splicing detection method with low-dimensionality 

and high detection rates, several factors should be considered. In this research 

different properties of SVD in the images have been presented and discussed 

(see section 2.6). Based on these properties, SVD can effectively capture the 

splicing artifacts left in the images. Thus, the SVD-based splicing detection 

methods have been designed, developed and tested to meet the ultimate goal 

of this research. This covers the answer to research questions 1-3. 

 According to our previous research (Moghaddasi, Jalab, Md Noor, et al., 2014) 

on improving classification performance by removing redundancies from the 

extracted features, many of the extracted features are not in an appropriate 

format for classification and thus it is essential to prepare the features before 

the classification is performed. Another point is that, since the features have 

different natures such as linearity and nonlinearity, the applied feature selector 

must be suitable for the extracted features. To do this, different dimension 

reduction methods are tested on the extracted features and Kernel PCA was the 

best, as illustrated in the experimental results. This item answers research 

question 4. 

 Generally, it can be concluded that the proposed methods have the following 

properties: 1) In the first image dataset (DVMM v1, which is a grayscale image 

dataset), both methods have good detection rates (98.78% and 97.15%) with 

SVD-Log showing superior rates. 2)  In the CASIA image dataset, both 

methods display their best detection rates in YCbCr channels (98.22% and 

99.62%), which indicates that the proposed methods are more sensitive to luma 

and chroma channels than R, G, and B channels. 3) In the DVMM v2 dataset, 

SVD-Log has the best possible detection rate of 100% in grayscale images and 
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SVD-CN achieves this accuracy in Cr channel, which shows the sensitivity of 

this method to chroma channels. 

 

6.4 Future Work and Directions 

According to the conclusions and contributions provided in this chapter, there are some 

recommendations for researchers who are interested in image forgery detection schema. 

The future directions of this research can be conducted as follows: 

 Enhancing the proposed methods to locate the spliced regions inside the 

spliced images.  

 Modifying the methods to detect other types of forgeries, such as copy-move, 

retouching, etc. 

 Improving the overall performance of the methods to be independent of the 

separate channels and feature selectors. 
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