Chapter 4 RESULTS

4. RESULTS

4.1 USE OF O.D. MEASUREMENTS TO DETERMINE CELL COUNTS

4.1.1 Correlation and regression between O.D. and cell counts

The results of the initial experiment carried out to determine the correlation and regression between the optical density (O.D.) measured by the Multiskan MCC/340 MK II and the UV-VIS Spectrophotometer, and the cell counts of the four species of marine phytoplankton to be used as test organisms, shows that O.D. measurements correlated very well with cell counts, with r values of 0.99 and regressions as in Table 4.1 (see Appendix 7). Due to the good correlation, the cell counts of all toxicity test samples in this study were determined from the O.D measured by the Multiskan, by calculation via the regression equations (Table 4.1). A good correlation was also observed between the O.D measured by the Multiskan MCC/340 MK II and by the UV-VIS Spectrophotometer (Table 4.2).

4.1.2 Correlation between O.D. and actual cell counts on random test samples

The quality control tests done by subjecting random samples of each treatment in each test to actual cell counts showed that there were also good correlations (see r values in Tables 4.11 to 4.18) between the O.D.measurements and direct cell counts, in all range-finding and definitive tests.

4.2 RANGE-FINDING TESTS

•

The results of the range-finding tests with cadmium, copper, manganese and arsenic, in the presence and absence of EDTA, with the four test species are summarised Table 4.1 : Correlations, r, (P<0.05) and regressions between the culture optical density (OD₆₂₀) measured using the Multiskan MCC/340 MKII (x₁) and the UV-VIS Spectrophotometer (x₂) and cell counts (y; cells X 10⁴ mL⁻¹), determined using an improved Neubauer brightline haemocytometer.

	Correlation and Regression between OD and Direct Cell Count							
Microalgae	. 1	Aultiskan	Spectrophotometer					
	r	y=ax1+b	r	y=ax ₂ +b				
Chaetoceros calcitrans	0.9988	y=1735.0x1- 6.9	0.9997	$y=824.9x_2-7.6$				
Isochrysis galbana	0.9997	y=3989.4x1-22.0	0.9998	y=1764.3x ₂ - 25.4				
Tetraselmis tetrahele	0.9998	$y = 647.4x_1 - 3.8$	0.9999	$y= 312.7x_2-0.6$				
Tetraselmis sp.	0.9992	y= 761.0x ₁ -9.2	0.9995	$y= 390.3x_2-6.8$				

Note : See Appendix 7 for raw data

•

Table 4.2 : Correlations, r, (p=0.05) and regressions between OD measurements done with the Multiskan MCC/340 MKII (x) and the UV-VIS Spectrophotometer (y).

Microalgae	r	y=ax+b
Chaetoceros calcitrans	0.9991	y=2.1x
Isochrysis galbana	0.9996	y=2.3x
Tetraselmis tetrahele	0.9994	y=2.1x
Tetraselmis sp.	0.9999	y=2x

Note : See Appendix 7 for raw data

in Tables 4.3 to 4.10 (See Appendices 8(1) - 8(8) for raw data). Some stimulation were observed in tests with manganese and arsenic, both in the presence and absence of EDTA. Based on the percentages of inhibition obtained in the range tests, the suitable test series was chosen for the definitive tests of each heavy metal with each test species.

4.3 DEFINITIVE TESTS

The NOEC, LOEC, LC_{25} and LC_{50} values derived from definitive tests of cadmium, copper, manganese and arsenic conducted in the multiwell plates and flasks, in the presence and absence of EDTA, with the four test species are summarised in Tables 4.11 to 4.18.

4.3.1 Cadmium

Toxicity data from cadmium toxicity tests with the four test species in the presence and absence of EDTA are presented in Tables 4.11 and 4.12 respectively.

4.3.2 Copper

Toxicity data from copper toxicity tests with the four test species in the presence and absence of EDTA are presented in Tables 4.13 and 4.14 respectively.

4.3.3 Manganese

Toxicity data from manganese toxicity tests with the four test species in the presence and absence of EDTA are presented in Tables 4.15 and 4.16 respectively.

4.3.4 Arsenic

•

Toxicity data from arsenic toxicity tests with the four test species in the presence and absence of EDTA are presented in Tables 4.17 and 4.18 respectively.

	Exp	Р	ercentage	of growth	inhibitio	n (%)	Selected test	
Test algae	No.	0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹	series in definitive tests (mgL ⁻¹)	r
Chaetoceros calcitrans	Al	7.7%	15.5%	18.1%	25.8%	96.5%	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9983
Isochrysis galbana	A2	3.8%	5.7%	9.6%	74.3%	98.5%	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9972
Tetraselmis tetrahele	A3	3.0%	6.1%	9.1%	22.7%	97.9%	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9967
Tetraselmis sp.	A4	3.6%	4.8%	7.3%	27.7%	97.6%	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9968

Table 4.3 : Range-finding tests results of cadmium (Cd) with four selected marine phytoplankton in the presence of EDTA

Note : See Appendix 8 (1a-1d) for raw data

r =correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

Table 4.4 : Range-finding tests results of cadmium (Cd) with four selected marine phytoplankton in the absence of EDTA

	Exp	P	ercentage	of growth	inhibitio	n (%)	Selected test	
Test algae	No.	0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹	series in definitive tests (mgL ⁻¹)	г
Chaetoceros calcitrans	B1	20.0%	69.8%	79.9%	95.3%	94.4%	0, 0.10, 0.18, 0.32, 0.56, 1.0	1.0000
Isochrysis galbana	B2	26.1%	87.0%	94.8%	97.7%	97.7%	0, 0.10, 0.18, 0.32, 0.56, 1.0	0.9980
Tetraselmis tetrahele	B3	7.1%	9.1%	29.4%	68.3%	96.9%	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9961
Tetraselmis sp.	B4	5.7%	7.8%	19.6%	70.8%	94.8%	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9971

Note : See Appendix 8 (2a-2d) for raw data

•

and the second sec	Exp	Pe	ercentage	of growth	inhibition	n (%)	Selected test	
Test algae No.		0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 -mgL ⁻¹	100.0 mgL ⁻¹	series in definitive tests (mgL ⁻¹)	r
Chaetoceros calcitrans	Cl	4.1%	8.3%	11.6%	97.5%	99.1%	0, 1.0, 1.8, 3.2, 5.6, 10.0	1.0000
Isochrysis galbana	C2	2.0%	6.1%	8.1%	95.6%	98.4%	0, 1.0, 1.8, 3.2, 5.6, 10.0	1.0000
Tetraselmis tetrahele	C3	6.52%	10.9%	17.0%	90.6%	98.9%	0, 1.0, 1.8, 3.2, 5.6, 10.0	0.9980
Tetraselmis sp.	C4	7.8%	9.4%	34.3%	90.7%	98.9%	0, 1.0, 1.8, 3.2, 5.6, 10.0	0.9997

Table 4.5 : Range-finding tests results of copp	er (Cu) with four selected marine phytoplankton
in the presence of EDTA	

Note : See Appendix 8 (3a-3d) for raw data

r =correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

Table 4.6 : Range-finding tests results of copper (Cu) with four selected marine phytoplankton in the absence of EDTA

	Exp	P	ercentage	of growth	inhibition	n (%)	Selected test	
Test algae	No.	0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹	series in definitive tests (mgL ⁻¹)	г
Chaetoceros calcitrans	Dl	31.7%	63.2%	93.7%	98.7%	98.7%	0, 0.10, 0.18, 0.32, 0.56, 1.0	0.9991
Isochrysis galbana	D2	30.3%	64.8%	94.5%	98.0%	98.0%	0, 0.10, 0.18, 0.32, 0.56, 1.0	0.9997
Tetraselmis tetrahele	D3	20.3%	40.6%	88.6%	94.3%	96.0%	0, 0.10, 0.18, 0.32, 0.56, 1.0	0.9997
Tetraselmis sp.	D4	8.9%	19.2%	84.7%	96.3%	97.5%	0, 0.10, 0.18, 0.32, 0.56, 1.0	0.9996

Note : See Appendix 8 (4a-4d) for raw data

•

Test algae	Exp		Percentage stir	of growth nulation ^S	Selected test series in definitive tests			
	No.	0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹	(mgL ⁻¹)	
Chaetoceros calcitrans	E1	7.8% ^s	18.0% ^s	1.2% ^s	12.0% ¹	69.9% ¹	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9992
Isochrysis galbana	E2	5.3% ^s	11.9% ^s	2.6% ^I	22.5% ^I	82.1% ¹	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9993
Tetraselmis tetrahele	E3	5.4% ^s	14.3% ^s	1.0% ^I	9.5% ^I	61.6% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9957
Tetraselmis sp.	E4	7.9% ^s	20.1% ^s	1. 7% ¹	3.4% ^I	68.8% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9990

Table 4.7: Range-finding tests results of manganese (Mn) with four selected marine phytoplankton in the presence of EDTA

Note : See Appendix 8 (5a-5d) for raw data

r =correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

Table 4.8 : Range-finding tests results of manganese (Mn) with four selected marine phytoplankton in the absence of EDTA

Test algae	Exp		Percentage stir	e of growt nulation ^s		n ¹ or	Selected test series in definitive tests	
No		0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹	(mgL ⁻¹)	1
Chaetoceros calcitrans	F1	5.1% ^s	10.1% ^s	4.1% ¹	29.3% ^I	78.8% ¹	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9993
Isochrysis galbana	F2	3.9% ^s	7.9% ^s	7.9% ¹	62.8% ¹	91.5% ¹	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9968
Tetraselmis tetrahele	F3	4.2% ^s	8.6% ^s	2.9% ^I	18.5% ^I	81.3% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9979
Tetraselmis sp.	F4	5.3% ^s	12.2% ^s	3.5% ^I	10.6% ¹	87.8% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9992

Note : See Appendix 8 (6a-6d) for raw data

•

Test algae	Exp			e of growt mulation ^s	n ¹ or	Selected test series in definitive	r	
No.		0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹		tests (mgL ⁻¹)
Chaetoceros calcitrans	G1	5.2% ^s	12 . 5% ^s	65.6% ^s	79.2% ^s	30.2% ^s	0, 100, 200, 400, 800, 1600	0.9984
Isochrysis galbana	G2	2.6% ^s	7.8% ^s	57.2% ^s	70.2% ^s	13.0% ¹	0, 100, 200, 400, 800, 1600	0.9993
Tetraselmis tetrahele	G3	3.6% ^s	7.1% ^s	5.1% ¹	23.0% ^I	61.8% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9917
Tetraselmis sp.	G4	5.4% ^s	8.2% ^s	1.8% ¹	16.5% ¹	66.1% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9939

Table 4.9 : Range-finding tests results of arsenic (As) with four selected marine phytoplankton in the presence of EDTA

Note : See Appendix 8 (7a-7d) for raw data

r =correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

Table 4.10 : Range-finding	tests	results	of	arsenic	(As)	with	four	selected	marine
phytoplankton	in the a	bsence of	EDT	A					

Test algae	Exp			ge of grown	Selected test series in definitive			
No.	No.	0.01 mgL ⁻¹	0.1 mgL ⁻¹	1.0 mgL ⁻¹	10.0 mgL ⁻¹	100.0 mgL ⁻¹	tests (mgL ⁻¹)	
Chaetoceros calcitrans	H1	7.0% ^s	9.9% ^s	45.0% ^s	50.7% ^s	9.8% ¹	0, 100, 200, 400, 800, 1600	0.9970
Isochrysis galbana	H2	5.4% ^s	8.2% ^s	41.1% ^s	57.5% ^s	13.7% ¹	0, 100, 200, 400, 800, 1600	0.9981
Tetraselmis tetrahele	H3	3.8% ^s	7.6% ^s	4.7% ¹	39.6% ^I	65.9% ¹	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9940
Tetraselmis sp.	H4	2.6% ^s	6.7% ^s	3.5% ¹	28.1% ¹	88.1% ^I	0, 6.25, 12.5, 25.0, 50.0, 100.0	0.9985

Note : See Appendix 8 (8a-8d) for raw data

•

Test	Exp.	Test		Cd (with EDTA)	mgL ⁻¹	
Algae	No.	Vessel	NOEC	LOEC	IC25 '	IC50 "	r
	A1.1	Multiwell	5.80	11.80	6.46 (3.83-8.64)	12.30 (9.90-14.37)	0.9995
Chaetoceros	A1.2	Multiwell	5.00	5.00 12.50 (- 12.50 22.60 (1		16.34 (15.53-17.13)	0.9995
calcitrans	A1.3	Flask	12.50			16.97 (16.02-18.05)	0.9996
	A1.4	Flask	6 25 12 50		5.78 (4.10-7.99)	9.95 (8.39-11.99)	0.9947
	A2.1	Multiwell	<5.80	5.80	2.01 (1.85-2.28)	4.02 (3.73-4.49)	0.9992
Isochrysis galbana	A2.2	Flask	5.00	12.50	2.65 (2.35-2.93)	5.46 (4.39-6.25)	0.9989
-	A2.3*	Flask	6.25	12.50	5.70 (2.66-7.83)	8.37 (7.22-9.48)	0.9996
	A3.1*	Multiwell	<6.20	6.20	3.32 (1.91-6.46)	8.12 (2.53-20.90)	0.9997
Tetraselmis tetrahele	A3.2	Multiwell	11.80	23.70	13.72 (10.94-16.08)	18.69 (17.16-19.93)	0.9937
	A3.3	Flask	12.50	25.00	11.57 (10.46-12.76)	17.58 (16.31-18.72)	0.9975
	A4.1	Multiwell	6.20	12.50	4.00 (2.34-7.00)	11.58 (3.75-16.08)	0.9960
<i>Tetraselmis</i> sp.	A4.2	Multiwell	11.80	23.70	12.46 (6.20-16.14)	16.51 (13.55-18.97)	0.9927
	A4.3	Flask	12.50	25.00	14.62 (12.15-16.05)	18.34 (16.52-19.54)	0.9975

Table 4.11 : 96h chronic toxicity data from	cadmium toxicity	tests	with	4 selected	marine
phytoplankton, in the presence	of EDTA				

Note : See Appendices 9 (1a - 4b) for corresponding raw data.

* : Rejected experiment (s);

٠

: numbers in parentheses are the 95% expanded confidence limits

Test	Exp.	Test		Cd (w	ithout EDTA) mgL ⁻¹	
Algae	No.	Vessel	NOEC	LOEC	IC25 '	IC50 *	r
	B1.1	Multiwell	<0.09	0.09	0.027 (0.025-0.028)	0.053 (0.050-0.058)	0.9999
Chaetoceros calcitrans	B1.2*	Multiwell	<0.10	0.10	0.059 (0.040-0.117)	0.126 (0.079-0.521)	0.9984
	B1.3	Multiwell	< 0.08	0.08	0.037 (0.033-0.044)	0.074 (0.068-0.232)	0.9990
	B2.1*	Multiwell	<0.09	0.09	0.051 (0.033-0.083)	0.148 (0.015-0.261)	0.9998
	B2.2*	Multiwell	0.10	0.15	0.051 (0.045-0.063)	0.104 (0.084-0.124)	0.9992
Isochrysis galbana	B2.3	Multiwell	<0.08	0.08	0.025 (0.022-0.029)	0.051 (0.045-0.059)	0.9987
	B2.4	Multiwell	<0.12	0.12	0.034 (0.033-0.036)	0.069 (0.066-0.072)	0.9992
	B2.5	Flask	<0.12	0.12	0.032 (0.031-0.033)	0.064 (0.062-0.065)	0.9998
	B3.1	Multiwell	<6.10	6.10	2.90 (2.16-3.87)	5.80 (4.40-8.56)	0.9976
Tetraselmis	B3.2*	Multiwell	<6.70	6.70	3.73 (2.62-6.28)	16.53 (-4.79-22.21)	0.9984
tetrahele	B3.3	Multiwell	<5.80	5.80	2.18 (1.99-2.33)	4.36 (3.99-4.66)	0.9970
	B3.4	Flask	<6.11	6.11	3.27 (2.34-5.19)	6.88 (3.60-10.11)	0.9979
	B4.1	Multiwell	<6.10	6.10	2.25 (1.55-4.64)	4.51 (3.18-6.76)	0.9997
	B4.2	Multiwell	<6.70	6.70	3.50 (2.42-5.08)	7.46 (4.43-11.95)	0.9980
<i>Tetraselmis</i> sp.	B4.3	Multiwell	<5.80	5.80	1.94 (1.83-2.10)	3.89 (3.46-4.74)	0.9996
-	B4.4	Multiwell	<6.11	6.11	3.42 (2.44-4.82)	7.16 (4.52-9.43)	0.9941
	B4.5	Flask	<6.11	6.11	2.61 (2.28-3.06)	5.23 (4.55-6.44)	0.9989

Table 4.12 : 96h chronic toxicity data from cadmium toxicity tests with 4 selected marine phytoplankton, in the absence of EDTA.

Note : See Appendices 10 (1a - 4b) for corresponding raw data.

* : Rejected experiment (s);

•

: numbers in parentheses are the 95% expanded confidence limits

Test	Exp.	Test		Cu (with EDTA)	th EDTA) mgL ⁻¹		
Algae	No.	Vessel	NOEC	LOEC	IC25*	IC50 '	r	
	C1.1	Multiwell	0.90	1.60	2.44 (0.86-3.54)	6.66 (6.44-6.98)	0.9988	
Chaetoceros calcitrans	C1.2	Multiwell	4.50	8.10	5.29 (4.80-5.57)	6.26 (5.84-6.46)	0.9985	
_	C1.3	Flask	4.50		4.60 (-0.11-5.15)	5.81 (5.05-6.12)	0.9975	
	C2.1	Multiwell	5.40	9.90	5.56 (-0.05-5.92)	7.03 (6.73-7.24)	0.9994	
Isochrysis galbana	C2.2	Multiwell	4.50	8.10	5.45 (5.24-5.47)	6.41 (6.31-6.44)	0.9967	
	C2.3	Flask	4.50	8.10	5.25 (4.93-5.64)	6.25 (5.97-6.48)	0.9989	
Tetraselmis	C3.1	Multiwell	4.50	8.10	5.00 (4.08-5.52)	6.30 (5.66-6.58)	0.9968	
tetrahele	C3.2	Flask	1.80	3.20	3.35 (2.30-4.50)	6.01 (4.93-6.91)	0.9959	
	C4.1	Multiwell	<0.90	0.90	0.57 (0.46-0.85)	5.35 (1.50-6.20)	0.9934	
Tetraselmis	C4.2	Multiwell	1.60	3.00	0.75 (0.58-1.56)	6.38 (5.86-6.76)	0.9964	
sp.	C4.3	Multiwell	<0.80	0.80	0.58 (0.35-7.42)	5.74 (4.63-7.01)	0.9992	
	C4.4	Flask	3.20	5.60	3.66 (1.26-4.94)	6.38 (5.91-6.95)	0.9941	

Table 4.13 : 96h chronic toxicity data from	copper toxicity tests with 4 selected marine
phytoplankton, in the presence	of EDTA.

Note : See Appendices 11 (1a - 4b) for corresponding raw data.

* : Rejected experiment (s);

٠

: numbers in parentheses are the 95% expanded confidence limits

Test	Exp.	Test		Cu (w	ithout EDTA) mgL ⁻¹	
Algae	No.	Vessel	NOEC	LOEC	IC25'	IC50 '	r
	D1.1	Multiwell	0.02	0.10	0.016 (0.014-0.020)	0.055 (0.048-0.065)	0.9958
Chaetoceros calcitrans	D1.2	Multiwell	<0.13	0.13	0.038 (0.037-0.039)	0.077 (0.075-0.079)	0.9996
	D1.3	Flask	<0.13	0.13	0.033 (0.033-0.034)	0.067 (0.066-0.068)	0.9999
Isochrysis	D2.1	Multiwell	0.02	0.10	0.012 (0.007-0.021)	0.034 (0.005-0.065)	0.9999
galbana	D2.2	Multiwell	<0.07	0.07	0.018 (0.018-0.019)	0.037 (0.036-0.037)	0.9999
Tetraselmis	D3.1	Multiwell	< 0.02	0.10	0.017 (0.009-0.064)	0.122 (0.042-0.126)	0.9938
tetrahele	D3.2	Flask	<0.13	0.13	0.063 (0.050-0.088)	0.126 (0.103-0.314)	0.9972
	D4.1	Multiwell	0.20	0.30	0.183 (0.180-0.187)	0.366 (0.360-0.373)	0.9973
<i>Tetraselmis</i> sp.	D4.2	Multiwell	0.07	0.15	0.124 (0.010-0.152)	0.342 (0.219-0.439)	0.9987
	D4.3	Multiwell	<0.13	0.13	0.077 (0.067-0.104)	0.405 (0.240-0.509)	0.9996

Table 4.14 : 96h	chronic	toxicity	data	from	copper	toxicity	tests	with 4 selected marine
phy	toplankto	n, in the	absen	ice of	EDTA.			

Note : See Appendices 12 (1a - 4) for corresponding raw data.

* : Rejected experiment (s);

٠

- # : numbers in parentheses are the 95% expanded confidence limits
- r = correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

Test	Exp.	Test		Mn (with EDTA) r	ngL ⁻¹	
Algae	No.	Vessel	NOEC	LOEC	IC25"	IC50 "	r
	E1.1	Multiwell	<5.70	5.70	31.52 (22.90-39.58)	62.19 (53.25-71.36)	0.9991
Chaetoceros calcitrans	E1.2	Multiwell	23.00	45.90	34.05 (17.72-56.46)	65.93 (50.23-81.39)	0.9971
	E1.3	Multiwell	4.50	12.20	41.04 (26.77-52.82)	72.62 (63.80-78.94)	0.9978
Isochrysis	E2.1	Multiwell	12.00	23.70	15.02 (-6.18-20.73)	31.36 (19.86-53.27)	0.9990
galbana	E2.2	Multiwell	5.80	11.50	24.73 (-4.92-29.31)	44.86 (43.26-47.99)	0.9985
Tetraselmis	E3.1	Multiwell	4.50	12.20	9.93 (5.40-9.54)	73.65 (65.59-83.84)	0.9892
tetrahele	E3.2	Flask	4.50	12.20	53.68 (-8.84-67.55)	86.50 (NA)	0.9978
	E4.1	Multiwell	45.90	89.20	51.92 (-44.50-69.16)	82.01 (NA)	0.9940
Tetraselmis sp.	E4.2	Multiwell	<4.50	4.50	8.76 (7.33-10.10)	55.31 (50.94-60.66)	0.9989
	E4.3	Flask	4.50	12.20	27.43 (-4.63-45.57)	70.31 (64.46-75.99)	0.9918

Table 4.15 : 96h chronic toxicity data from manganese toxicity tests with 4 selected marine	
phytoplankton, in the presence of EDTA.	

Note : See Appendices 13 (1-4b) for corresponding raw data

* : Rejected experiment (s)

•

: numbers in parentheses are the 95% expanded confidence limits

r = correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

NA : Not available; No confidence limits could be produced by ICPIN

Test	Exp.	Test		Mn (w	vithout EDTA) mgL ⁻¹	
Algae	No.	Vessel	NOEC	LOEC	IC25*	IC50 '	r
Chaetoceros	F1.1	Multiwell	<5.70	5.70	4.59 (3.59-6.20)	18.59 (14.67-21.56)	0.9986
calcitrans	F1.2	Flåsks	4.90	11.90	6.97 (2.07-10.30)	19.21 (15.91-22.92)	0.9959
	F2.1	Multiwell	<5.90	5.90	2.77 (2.25-3.40)	5.53 (4.64-6.98)	0.9988
Isochrysis galbana	F2.2	Multiwell	<4.90	4.90	2.54 (1.92-3.47)	9.14 (-0.47-29.06)	0.9991
	F2.3	Flask	<4.90	4.90	2.65 (1.35-4.04)	6.87 (0.83-11.62)	0.9985
	F3.1	Multiwell	5.90	11.80	6.01 (1.75-20.16)	17.81 (5.62-24.32)	0.9988
Tetraselmis tetrahele	F3.2	Multiwell	5.20	14.90	16.75 (15.44-18.08)	22.04 (21.34-22.75)	0.9964
	F3.3	Flask	<5.20	5.20	4.70 (3.08-27.90)	20.77 (17.07-23.04)	0.9933
Tetraselmis	F4.1	Multiwell	<5.20	5.20	6.36 (1.72-23.85)	19.13 (17.78-20.21)	0.9989
sp.	F4.2	Flask	14.90	25.60	19.26 (18.91-19.67)	23.61 (23.14-24.38)	0.9958

Table 4.16 : 96h chronic toxicity data from	manganese	toxicity	tests with 4 selected marine
phytoplankton, in the absence	of EDTA.		

Note : See Appendices 14 (1a -4a) for corresponding raw data

* : Rejected experiment (s)

٠

: numbers in parentheses are the 95% expanded confidence limits

Results

Test	Exp.	Test		As ((with EDTA)	mgL ⁻¹	
Algae	No.	Vessel	NOEC	LOEC	IC25"	IC50 '	r
	G1.1	Multiwell	<100.00	100.00	110.38 (65.73-189.45)	300.21 (248.36-354.99)	0.9970
	G1.2	Multiwell	<100.00	100.00	133.29 (110.02-178.46)	327.86 (291.46-373.76)	0.9993
Chaetoceros	G1.3	Multiwell	200.00	400.00	168.27 (149.08-185.06)	272.75 (236.04-297.90)	0.9980
calcitrans	G1.4	Multiwell	200.00	400.00	200.15 (179.24-231.93)	325.72 (294.74-344.71)	0.9997
	G1.5	Multiwell	200.00	400.00	184.11 (140.55-225.69)	306.53 (268.57-327.21)	0.9990
	G1.6	Flask	100.00	200.00	206.40 (170.26-236.46)	309.38 (289.79-326.27)	0.9972
	G2.1	Multiwell	200.00	400.00	146.25 (107.53-189.73)	309.88 (221.43-345.59)	0.9972
Isochrysis galbana	G2.2	Multiwell	100.00	200.00	205.59 (178.00-243.26)	320.63 (294.85-345.43)	0.9988
0	G2.3	Multiwell	133.50	200.00	160.26 (137.82-190.53)	258.01 (194.61-301.87)	0.9994
	G3.1	Multiwell	<6.25	6.25	22.89 (10.64-34.69)	78.48	0.9993
Tetraselmis	G3.2	Multiwell	25.00	50.00	39.44 (33.05-48.94)	68.86 (59.93-77.13)	0.9993
tetrahele	G3.3	Multiwell	<6.25	6.25	5.89 (3.71-15.96)	53.69 (44.84-62.66)	0.9975
	G3.4	Flask	6.25	12.50	9.89 (5.28-14.11)	96.57 (NA)	0.9973
	G4.1	Multiwell	25.00	50.00	44.70 (41.19-49.67)	90.24 (78.06-105.48)	0.9955
<i>Tetraselmis</i> sp.	G4.2	Multiwell	6.25	12.50	50.37 (-8.52-56.88)	76.45 (73,94-79,56)	0.9977
-11	G4.3	Flask	<6.25	6.25	9.12 (4.16-13.79)	60.65 (50.98-70.09)	0.9922

Table 4.17 : 96h	chronic toxicity	data	from	arsenic	toxicity	tests	with 4 selected marine
phyte	oplankton, in the	prese	nce o	f EDTA.			

Note : See Appendices 15 (1a - 4b) for corresponding raw data

* : Rejected experiment (s)

•

: numbers in parentheses are the 95% expanded confidence limits

r = correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

NA : Not available; No confidence limits could be produced by ICPIN

Test	Exp.	Test	As (without EDTA) mgL ⁻¹				
Algae	No.	Vessel	NOEC	LOEC	IC25'	IC50 "	r
	H1.1	Multiwell	<100.0 0	100.00	69.55 (47.99-110.59)	274.09 (189.02-355.69)	0.9926
Chaetoceros calcitrans	H1.2	Multiwell	150.00	225.00	219.60 (201.23-243.15)	324.28 (287.70-409.96)	0.9953
	H1.3	Flask	<100.0 0	100.00	228.95 (214.36-243.90)	302.86 (291.63-314.20)	0.9994
	H2.1	Multiwell	100.00	200.00	168.99 (56.74-271.45)	312.80 (262.93-370.05)	0.9990
Isochrysis	H2.2	Multiwell	225.00	337.50	220.83 (185.27-247.31)	336.46 (308.13-381.76)	0.9902
galbana	H2.3	Multiwell	200.00	300.00	211.34 (120.75-265.91)	292.30 (252.62-358.81)	0.9986
	H2.4	Flask	200.00	400.00	96.55 (63.93-355.29)	335.60 (292.87-373.59)	0.9993
	H3.1	Multiwell	<6.25	6.25	5.2 (3.60-15.65)	46.43 (5.80-111.51)	0.9905
	H3.2	Multiwell	<6.25	6.25	7.59 (2.88-13.89)	44.75 (28.89-67.95)	0.9994
Tetraselmis	H3.3	Multiwell	<6.25	6.25	6.96 (3.40-10.42)	28.26 (19.16-40.45)	0.9993
tetrahele	H3.4	Multiwell	<6.25	6.25	4.61 (3.24-6.62)	29.12 (13.04-48.34)	0.9984
	H3.5	Multiwell	6.25	12.50	9.93 (9.34-10.86)	36.50 (19.93-46.25)	0.9976
	H3.6	Flask	6.25	12.50	9.70 (9.46-9.93)	40.28 (25.55-101.17)	0.9967
	H4.1	Multiwell	12.50	25.00	11.01 (-1.93-25.36)	26.20 (1.84-39.92)	0.9952
	H4.2	Multiwell	<6.25	6.25	3.54 (2.69-5.18)	31.70 (-22.79-42.84)	0.9985
Tetraselmis sp.	H4.3	Multiwell	6.25	12.50	11.61 (1.89-38.51)	49.02 (26.21-71.12)	0.9997
	H4.4	Multiwell	12.50	25.00	13.52 (9.03-25.27)	33.41 (22.90-44.51)	0.9981
	H4.5	Flask	6.25	12.50	9.57 (8.96-10.77)	29.33 (-6.30-41.98)	0.9987

Table 4.18 : 96h chronic toxicity data from arsenic toxicity tests with 4 selected marine phytoplankton, in the absence of EDTA.

Note : See Appendices 16 (1a - 4b) for corresponding raw data

* : Rejected experiment (s)

٠

: numbers in parentheses are the 95% expanded confidence limits

r = correlation (P<0.05) between O.D. readings of randomly selected test samples and actual cell counts

NA : Not available; No confidence limits could be produced by ICPIN

4.4 MULTIWELL EXPERIMENTS VS FLASK EXPERIMENTS

Results obtained from toxicity tests conducted in multiwell plates were similar to those carried out in shake-flasks (Tables 4.11- 4.18), where the IC_{50} values were also reproducible. The similarity between results of multiwell tests and flask tests is further shown in the summarised results in Tables 4.19 (with EDTA) and 4.20 (without EDTA).

4.5 HEAVY METAL TOXICITY

Generally, in the presence of EDTA, Cu was the most toxic metal for all test species with the exception of *Isochrysis galbana* where Cd was the most toxic. Mn was relatively less toxic than these two metals. Meanwhile As was the least toxic metal for all phytoplankton tested except *Tetraselmis tetrahele* where As was slightly more toxic than Mn.

In experiments without EDTA, Cu was also the most toxic metal to all test species but it was as toxic as Cd to *Chaetoceros calcitrans*. Mn was relatively less toxic than Cd and Cu while As was the least toxic to all test species. Tables 4.21 (a-d) summarise the toxicity of each heavy metal, in the presence and absence of EDTA, to each test species.

4.5.1 Cadmium

•

4.5.1.1 Cadmium with EDTA

Among the test species, cadmium was most toxic to *I. galbana* (Table 4.21b) at an average IC_{50} value of 4.7 mgL⁻¹ in the presence of EDTA. Cd was about three to four times less toxic to *C. calcitrans, T. tetrahele* and *T.* sp. (Tables 4.21a, c and d respectively).

Heavy metal- Test vessel (with EDTA)	Chaetoceros calcitrans	Isochrysis galbana	Tetraselmis tetrahele	Tetraselmis sp.
Cd-Multiwell	14.3 ± 2.9 (2)	4.0(1)	18.7 (1)	14.0 ± 3.5 (2)
Cd-Flask	13.5 ± 5.0 (2)	5.5(1)	17.6 (1)	18.3 (1)
Cu-Multiwell	6.5 ± 0.3 (2)	6.7 ± 0.4 (2)	6.3 (1)	5.8 ± 0.5 (3)
Cu-Flask	5.8(1)	6.3 (1)	6.0(1)	6.4 (1)
Mn-Multiwell	66.9 ± 5.3 (3)	38.1 ± 9.6 (2)	73.7 (1)	68.7 ± 18.9 (2)
Mn-Flask	NA	NA	86.5 (1)	70.3 (1)
As-Multiwell	306.6±22.4(5)	296.2 ± 33.5 (3)	67.0 ± 12.5 (3)	83.4 ± 9.8 (2)
As-Flask	309.4 (1)	NA	96.6 (1)	60.7(1)

Table 4.19 : Comparison of $IC_{50}~(mgL^{-1})$ values between experiments conducted in multiwells and shake-flasks, in the presence of EDTA

Note : NA : not available for comparison

(): number of experiments

Table 4.20 : Comparison of $IC_{50}~(mgL^{\text{-}1})$ values between experiments conducted in multiwells and shake-flasks, in the absence of EDTA

Heavy metal -Test vessel (without EDTA)	Chaetoceros calcitrans	Isochrysis galbana	Tetraselmis tetrahele	<i>Tetraselmis</i> sp.
Cd-Multiwell	0.06 ± 0.01 (2)	$0.06 \pm 0.01 (2)$	5.1 ± 1.0 (2)	5.8 ± 1.8 (5)
Cd-Flask	NA	0.06 (1)	6.9 (1)	5.2 (1)
Cu-Multiwell	0.07 ± 0.01 (2)	0.04 ± 0.01 (2)	0.12 (1)	0.37 ± 0.04(3)
Cu-Flask	0.07 (1)	NA	0.13 (1)	NA
Mn-Multiwell	18.6 (1)	7.3 ± 2.6 (2)	19.9 ± 3.0 (2)	19.1 (1)
Mn-Flask	19.2 (1)	6.9 (1)	20.8 (1)	23.6 (1)
As-Multiwell	299.2±35.5 (2)	319.3 ± 21.1 (4)	37.0 ± 8.5 (5)	35.1 ± 9.8 (4)
As-Flask	302.9 (1)	NA	40.3 (1)	29.3 (1)

Note : NA : not available for comparison

(): number of experiments

٠

Table 4.21 : Summary of IC₅₀ values (mgL³) from the 96h chronic toxicity tests with the four selected marine phytoplankton in the presence and absence of EDTA.

	Cd	Cu	Mn	As
+ EDTA	13.9 ± 3.3 (4)	6.2 ± 0.4 (3)	66.9 ± 5.3 (3)	307.1 ± 20.1 (6)
- EDTA	0.06 ± 0.01 (2)	0.0 7 ± 0.01 (3)	18.9 ± 0.4 (2)	300.4 ± 25.8 (3)

(a) Chaetoceros calcitrans

(b) Isochrysis galbana

	Cd	Cu	Mn	As
+ EDTA	4.7 ± 1.0 (2)	6.6 ± 0.4 (3)	38.1 ± 9.6 (2)	296.2 ± 33.5 (6)
- EDTA	0.06 ± 0.01 (3)	0.04 ± 0.01 (2)	7.2 ± 1.8 (3)	319.3 ± 21.1 (4)

(c) Tetraselmis tetrahele

	Cd	Cu	Mn	As
+ EDTA	18.1 ± 0.8 (2)	6.2 ± 0.2 (2)	80.1 ± 9.1 (2)	74.4 ± 18.0 (4)
- EDTA	5.4 ± 1.3 (3)	0.13 ± 0.01 (2)	20.2 ± 2.2 (3)	35.6 ± 7.7 (6)

(d) Tetraselmis sp.

	Cd	Cu	Mn	As
+ EDTA	15.5 ± 3.5 (3)	6.0 ± 0.5 (4)	69.2 ± 13.4 (3)	75.8 ± 14.8 (3)
- EDTA	5.7 ± 1.6 (5)	0.37 ± 0.04 (3)	21.4 ± 3.2 (2)	33.9 ± 8.9 (5)

Note :

٠

()= number of experiments; + EDTA : with EDTA; -EDTA : without EDTA

4.5.1.2 Cadmium without EDTA

Cd in the absence of EDTA which was as toxic to *C. calcitrans* as it was to *I. galbana*, was also most toxic to both *C. calcitrans* and *I. galbana*, each with IC_{50} values of 0.06 mgL⁻¹ (Tables 4.21 a and b respectively). Meanwhile, Cd was less toxic to *T. tetrahele* and *T.* sp. with IC_{50} values 2 degrees of magnitude higher (Tables 4.21c and d respectively) than the two former species.

In the absence of EDTA, Cd was approximately 200, 100, four and three times more toxic to *C. calcitrans*, *I. galbana*, *T. tetrahele* and *T.* sp. respectively, than in the presence of EDTA.

4.5.2 Copper

•

4.5.2.1 Copper with EDTA

In the presence of EDTA, copper was similarly toxic to *C. calcitrans*, *I. galbana*, *T. tetrahele* and *T.* sp. with an average IC_{50} value of 6.3 mgL⁻¹ (Tables 4.21a,b, c and d).

4.5.2.2 Copper without EDTA

Copper was most toxic to *I. galbana* at the average IC_{50} value of 0.04 mgL⁻¹ (Table 4.21b) in the absence of EDTA. It was also quite toxic to *C. calcitrans* with IC_{50} value of 0.07 mgL⁻¹ (Table 4.21a). However Cu was a degree of magnitude less toxic to *T. tetrahele* and *T.* sp. at IC_{50} values 0.13 and 0.37 mgL⁻¹ respectively (Tables 4.21c and d).

Generally, Cu in the absence of EDTA was more toxic to the four species at concentrations one to two degrees of magnitude lower than Cu in tests with EDTA.

4.5.3 Manganese

4.5.3.1 Manganese with EDTA

Among the test algae, Mn was most toxic to *I. galbana* at an average IC_{50} value of 38.1 mgL⁻¹ (Table 4.21b) and least toxic to *T. tetrahele* at IC_{50} 80.1 mgL⁻¹ (Table 4.21c) in tests with EDTA. It was moderately and almost similarly toxic to *C. calcitrans* and *T.* sp. at an average IC_{50} of 68.1 mgL⁻¹.

4.5.3.2 Manganese without EDTA

Manganese was approximately three to five times more toxic to the four test species in the absence than in the presence of EDTA.

As in the tests with EDTA, Mn was also most toxic to *I. galbana*, with an average IC_{50} value of 7.2 mgL⁻¹ (Table 4.21b) in the absence of EDTA. Meanwhile it was relatively less toxic to the three other test species at an average IC_{50} value of 20.2 mgL⁻¹.

4.5.4 Arsenic

•

4.5.4.1 Arsenic with EDTA

Among the four microalgae tested, arsenic was least toxic to *C. calcitrans* and *I. galbana* in the presence of EDTA at the average IC_{50} value of 301.7 mgL⁻¹ (Tables 4.21a and 4.21b). It was approximately four times more toxic to *T. tetrahele* and *T.* sp than the two former species, at an average IC_{50} of 75.1 mgL⁻¹ (Tables 4.21c and d).

4.5.4.2 Arsenic without EDTA

Toxicity of arsenic to *C. calcitrans* and *I. galbana* in the absence of EDTA was similar as in the presence of EDTA at an average IC_{50} of 309.9 mgL⁻¹ (Tables 4.21a and

4.21b). However, arsenic in the absence of EDTA was two times more toxic to *T. tetrahele* and *T.* sp. (Tables 4.21c and 4.21d) than in the presence of EDTA with an average IC_{50} of 34.8 mgL⁻¹.

4.6 MICROALGAL SENSITIVITY AND TOLERANCE TO HEAVY METALS

The toxicity data obtained may also be discussed in terms of the sensitivity and tolerance of the test species, which varied among the organisms. In general, all test species were quite sensitive to Cd and Cu, relatively tolerant to Mn and quite tolerant to As.

4.6.1 Sensitivity to heavy metals in experiments with EDTA

I. galbana was the test species most sensitive to Cd and Mn (Table 4.21b) while *T. tetrahele* was the most tolerant to both metals in the presence of EDTA (Table 4.21c). The former species was approximately four and two times more sensitive to Cd and Mn respectively, than the latter species. Meanwhile *C. calcitrans* was as sensitive as *T.* sp. to the two metals (Tables 4.21a and d respectively), where both species were four to five times more sensitive to Cd than to Mn.

In the presence of EDTA the four test species exhibited similar sensitivity levels to Cu, where with the exception of *I. galbana*, all species were more sensitive to Cu than to Cd. *T. tetrahele* and *T.* sp. were about 4 times more sensitive to As than *C. calcitrans* and *I. galbana* which were quite tolerant to the metal in experiments with EDTA.

4.6.2 Sensitivity to heavy metals in experiments without EDTA

•

C. calcitrans was as sensitive as I. galbana to Cd where the two were the most sensitive test species to Cd in experiments without EDTA, while T. tetrahele and T. sp.

were about 100 times more tolerant to the metal than the two former algae. *C. calcitrans* and *I. galbana* were also both as sensitive to Cd as they were to Cu. However *I. galbana* was approximately two times more sensitive to Cu than *C. calcitrans*, being the species most sensitive to Cu while *T.* sp was the least.

All test species were relatively more tolerant to Mn. *I. galbana* was the species most sensitive to Mn while the other three were approximately 3 times more tolerant. *T. tetrahele* and *T.* sp. were both about ten times more sensitive to As than *C. calcitrans* and *I. galbana* in the absence of EDTA.

4.7 REFERENCE TOXICANT (CADMIUM) CONTROL CHARTS

In this study, cadmium which represented one of the test metals also functioned as the reference toxicant. Based on the IC_{50} values obtained from cadmium definitive tests with the four species, in the presence and absence of EDTA, separate reference toxicant control charts were constructed for cadmium and each test species. Figures 4.1 to 4.8 present the final control charts for each marine phytoplankton (See Appendix 17 for control chart data). The means presented in the charts were based only on results which were acceptable. Eventhough the outliers were not acceptable and therefore not considered in the calculation of the mean, they were still presented in the control charts.

4.7.1 Cadmium with EDTA

•

4.7.1.1 Chaetoceros calcitrans

The reference toxicant results for *C. calcitrans* were all acceptable as they remained within the 95% Confidence limits (Figure 4.1) with the data distributed on both sides of the mean (13.9 mgL⁻¹).

175

Figure 4.1 : Chaetoceros calcitrans reference toxicant (Cd with EDTA) control chart

Figure 4.2 : Isochrysis galbana reference toxicant (Cd with EDTA) control chart

•

4.7.1.2 Isochrysis galbana

The first two reference toxicant results for *I. galbana* were within the 95% confidence limits (Figure 4.2). However the third value obtained lay out-of-range (test A2.3), above the upper confidence limit. Therefore it was not accounted for in the final mean (4.7 mgL⁻¹) of this control chart.

4.7.1.3 Tetraselmis tetrahele

The first reference toxicant result for *T. tetrahele* was out-of-range (A3.1), while the two last experiments were acceptable with mean 18.1 mgL^{-1} (Figure 4.3).

4.7.1.4 Tetraselmis sp.

All reference toxicant results for T. sp. were within 95% Confidence limits and therefore acceptable with mean value 15.5 mgL⁻¹ (Figure 4.4).

4.7.2 Cadmium without EDTA

4.7.2.1 Chaetoceros calcitrans

Figure 4.5 shows that two of the reference toxicant results were within the acceptable limits (mean 0.06 mgL⁻¹) with an outlying result (test B1.2) above the upper confidence limits.

4.7.2.2 Isochrysis galbana

•

The first two reference toxicant results (tests B2.1 and B2.2) were not acceptable as they lay out-of-range (Figure 4.6). However, the results of the following experiments were all within the 95% confidence limits, with values on both sides of the mean (0.06 mgL⁻¹).

Figure 4.3 : Tetraselmis tetrahele reference toxicant (Cd with EDTA) control chart

Figure 4.4 : Tetraselmis sp. reference toxicant (Cd with EDTA) control chart

•

Figure 4.5 : Chaetoceros calcitrans reference toxicant (Cd without EDTA) control chart

Figure 4.6 : Isochrysis galbana reference toxicant (Cd without EDTA) control chart

lest No.

•

4.7.2.3 Tetraselmis tetrahele

All of the reference toxicant results were within the 95% confidence limits (mean 5.7 mgL⁻¹) with the exception of the second test (B3.2) which was out-of range (Figure 4.7).

4.7.2.4 Tetraselmis sp.

.

All of the *T*. sp. reference toxicant results (Figure 4.8) were acceptable with the results evenly scattered on both sides of the mean (5.7 mgL^{-1}) .

Figure 4.7 : Tetraselmis tetrahele reference toxicant (Cd without EDTA) control chart

Figure 4.8 : Tetraselmis sp. reference toxicant (Cd without EDTA) control chart

•