WASTE MANAGEMENT IN PALM-OLEO SDN. BHD.

RAMESH A/L RAMASAMY

Dissertation submitted to the Institute of Postgraduate Studies and Research (IPSP), University of Malaya in partial fulfillment of the requirement for the Degree of Masters In Technology (Environmental Management)

Institute of Postgraduate Studies and Research (IPSP)
University of Malaya
50603 Kuala Lumpur

May 2001
CHAPTER 1 INTRODUCTION

1.1 Background Information on Palm-Oleo Sdn. Bhd. 1
1.2 Environmental Requirements 2
1.3 Development of Oleochemical Industry 4
1.4 Objectives 6

CHAPTER 2 LITERATURE REVIEW

2.1 Palm Oil Industry 9
2.2 Process Description 15
2.2.1 Oil Pretreatment Plant 15
2.2.2 Oil Splitting Plant 18
2.2.3 Sweetwater Pretreatment Plant 19
2.2.4 Treated Sweetwater Evaporation Plant 22
2.2.5 Glycerine Distillation 23
2.2.6 Glycerine Bleaching 25
2.2.7 Fatty Acid Distillation 26
2.2.8 Fatty Acid Fractionation 26
2.2.9 Fatty Acid Hydrogenation 28
CHAPTER 3 WASTE AUDIT

3.1 Introduction

3.2 Methodology
3.2.1 Spent Bleaching Earth
3.2.2 Filter Cake
3.2.3 Residue Fatty Acid
3.2.4 Spent Nickel Catalyst
3.2.5 Biological Sludge
3.2.6 Glycerine Pitch
3.2.7 Process Wastewater

3.3 Results and Discussion
3.3.1 Spent Bleaching Earth
3.3.2 Filter Cake
3.3.3 Residue Fatty Acid
3.3.4 Spent Nickel Catalyst
CHAPTER 4 WASTE CHARACTERIZATION

4.1 Introduction 80

4.2 Methodology
4.2.1 Spent Bleaching Earth 82
4.2.1a Moisture Content 83
4.2.1b Total Organic Carbon 83
4.2.1c Trace Metal Composition 85
4.2.2 Filter Cake 86
4.2.3 Residue Fatty Acid 86
4.2.4 Spent Nickel Catalyst 87
4.2.5 Biological Sludge 88
4.2.6 Glycerine Pitch 88
4.2.7 Process Wastewater 88
4.2.7a Chemical Oxygen Demand (COD) 89
4.2.7b Biochemical Oxygen Demand (BOD) 92
4.2.7c Total Suspended Solid (TSS) 94
4.2.7d Oil and Grease 95
4.2.7e pH 96

4.3 Results and Discussion
4.3.1 Spent Bleaching Earth 97
4.3.2 Filter Cake 98
4.3.3 Residue Fatty Acid 99
4.3.4 Spent Nickel Catalyst 100
4.3.5 Biological Sludge 101
4.3.6 Glycerine Pitch 102
4.3.7 Process Wastewater 105
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Average Productivity Of Selected Crops</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>DOE’s Standard A For Treated Effluents</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Sequential Bioreactor’s Sequence Details</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Spent Bleaching Earth Generation In Oil Pretreatment Plant</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Waste Filter Cake Generation In Sweetwater Treatment Plant</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Residue Fatty Acid Generation In Distillation Plant</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Residue Fatty Acid Generation In Fractionation Plant</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Spent Nickel Catalyst Generation In Hydrogenation Plant</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Biological Sludge Generation In Wastewater Treatment Plant</td>
<td>76</td>
</tr>
<tr>
<td>3.7</td>
<td>Glycerine Pitch Generation In Distillation Plant</td>
<td>77</td>
</tr>
<tr>
<td>3.8</td>
<td>Results Of Process Wastewater Generation</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Moisture Content and TOC Analysis Results Of Spent Bleaching Earth</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Metals In Spent Bleaching Earth</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>Moisture Content and TOC Analysis Results Of Spent Filter Cake</td>
<td>98</td>
</tr>
<tr>
<td>4.4</td>
<td>Metals In Filter Cake</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Fatty Acid Distillation and Fractionation Plants’ Residue Acid Value</td>
<td>99</td>
</tr>
<tr>
<td>4.6</td>
<td>Nickel Concentration Analysis In The Spent Catalyst</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>World Sources Of Oils and Fats Production In 1999</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Oil Yield per Hectare, 1999</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Comparative Land Requirement By Individual Crop To Meet World's Oils and Fats Demand In 1999</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Estimated of Global Supply and Demand Of Oils and Fats from 1993 and 1998</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>World's Major Producers Of Palm Oil In 1999</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Annual Production Of Oil Palm Products In Malaysia</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Oil Pretreatment Process Flow Chart</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Oil Splitting Process</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Sweetwater Pretreatment Process Flow Diagram</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Sweetwater Evaporation Process Flow Diagram</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Flow Chart Of Glycerine Distillation Process</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Flow Chart Of Glycerine Bleaching Process</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Flow Chart Of Fatty Acid Distillation and Fractionation Processes</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Process Flow Of Fatty Acid Hydrogenation Process</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Process Flow Of Fatty Acid Lipofractionation Process</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Process Flow Of Fatty Acid Flaking Process</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Process Flow Of Fatty Acid Beading Process</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Overall Process Description</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Spent Nickel Catalyst Discharged Into Drums</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Spent Bleaching Earth Discharged Into Waste Bin</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Filter Press In Operation</td>
<td>60</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

I wish to extend my greatest appreciation to my supervisor, Associate Professor Dr. P. Agamuthu for his invaluable guidance and motivation throughout the project and preparation of this dissertation.

I am very grateful to Mr. Madhev and the management of Palm-Oleo Sdn. Bhd. for allowing me to conduct this study in their factory. I would also like to thank the staffs in production and laboratory department of Palm-Oleo Sdn. Bhd. who assisted me in undertaking this project.

Finally, I would like to thank my parents, wife, family members, coursemates and friends for their support and motivation.
ABSTRACT

Oleochemical industry in Malaysia has been diversifying significantly due to the availability of raw materials (palm oil) and the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. The growth of oleochemical industries is further enhanced by fluctuations in petroleum price and regular animal diseases, which made tallow-based fats unreliable. Environmental awareness is growing rapidly in Malaysia. There is growing realization of the need to balance industrial and economic development with environmental preservation and protection, as well as, with efficient use of energy sources in order to achieve sustainable development. Extensive waste management studies were focused on palm oil mill and refinery effluents, but not on oleochemical industry. Towards meeting the increasingly stringent environmental requirements of industrial effluent controls, industries must carefully consider all available options for effluent treatment, as well as, process improvements to reduce waste generation and cleaner technologies options.

This research describes an investigation carried out on waste management in an oleochemical industry, Palm-Oleo Sdn. Bhd. The study was classified into: a) waste audit, b) waste characterization and c) cleaner technology (waste minimization) options. Palm-Oleo Sdn. Bhd. is located at a water catchment area and it has to satisfy a more stringent effluent discharge limits, as specified in Standard A, Environmental Quality Act, 1974. Among the wastes evaluated were spent bleaching earth, filter cake, spent
nickel catalyst, glycerine pitch, residue fatty acid, biological sludge and process wastewater.

Waste audit results revealed that 2.23 tonnes of spent bleaching earth, 0.78 tonnes of filter cake, 14.23 tonnes of residue fatty acid, 1.25 tonnes of spent activated carbon, 0.62 tonnes of biological sludge and 0.49 tonnes of glycerine pitch were generated daily. Spent nickel catalyst is the only hazardous waste, which was generated at an average rate of 0.17 tonnes a day. The average wastewater flow generated from the processing plants was 9.28 m3/h. The total amount of process waste generated daily in Palm-Oleo was around 20 tonnes, while processing about 364 tonnes of oil.

Due to this high quantity of waste generation, options on waste minimization possibilities were investigated. Waste characterizations were studied prior carrying out the experiments on waste minimization. The moisture content of spent bleaching earth, filter cake and biological sludge were 0.88%, 4.80% and 4.84%, respectively. Total Organic Carbon (TOC) of spent bleaching earth was higher (63.8%) than the filter cake (48.4%) and biological sludge (14.6%). The trace metals concentration in the spent earth, filter cake, biological sludge and treated wastewater effluent were within DOE's Standard A limit, which permits these wastes to be disposed at a sanitary landfill.

The loss of glycerine as moisture in the filter cake was estimated to result a production loss of RM16,330 while the loss of glycerine as a residual matter (pitch) caused a loss of RM484,575 a year. Waste minimization investigations revealed that by recycling spent nickel catalyst generated in the fatty acid hydrogenation process, an annual saving of RM924,000 can be achieved. Furthermore, the quantity of hazardous waste (spent nickel
catalyst) that need to be handled and disposed are reduced. Reduction in liability and cost of transportation for spent nickel catalyst waste off-site can also be achieved. Another investigation on cleaner technology option was carried out by extracting retained oil from the spent bleaching earth generated in the crude oil pretreatment process. Oil was extracted by liquid-liquid extraction method using hexane as the solvent. The ratios of spent earth weight to volume of hexane were varied from 1:1 to 1:2, 1:3, 1:4 and 1:5. The 1:3 ratio was found to be the optimum combination, which extracted nearly 24% of oil, while thirty minutes was the optimum contact time of spent earth and hexane for maximum oil recovery. An estimated saving of RM60,960 per year can be achieved through this oil recovery practice. Besides hexane, further research need to be carried out to substitute it with cheaper solvents or waste solvents from other industries.