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RESIDUALLY FINITE PROPERTIES OF GROUPS

ABSTRACT

In this thesis, we shall study two stronger forms of residual finiteness, namely cyclic

subgroup separability and weak potency in various generalized free products and HNN

extensions. Among our results, we shall show that the generalized free products and HNN

extensions where the amalgamated or associated subgroups are finite, or central, or infinite

cyclic, or they are direct products of an infinite cyclic subgroup with a finite subgroup,

or they are finite extensions of central subgroups, are again cyclic subgroup separable or

weakly potent respectively. In order to prove our results, we shall prove a criterion each

for the weak potency of generalized free products and HNN extensions, but we shall use

previously established criterions for cyclic subgroup separability. Finally, we shall extend

our results to tree products and fundamental groups of graphs of groups.

Keywords: Residually Finite,Weak Potency, Generalized Free Products, HNNExtensions,

Fundamental Groups of Graphs of Groups.
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SIFAT-SIFAT SISA TERHINGGA BAGI KUMPULAN

ABSTRAK

Di dalam tesis ini, kami mengkaji sifat-sifat yang lebih kuat dari sisa terhingga, yang

dikenali sebagai kebolehpisahan subkumpulan kitaran dan poten lemah dalam pelbagai

hasil darab teritlak dan perluasan HNN. Antara hasil kami, kami akan menunjukkan

bahawa hasil darab teritlak dan perluasan HNN yang mana subkumpulan-subkumpulan

gabungan atau berkait adalah terhingga, atau pusat, atau kitaran takterhingga, atau hasil

darab langsung antara subkumpulan kitaran takterhingga dan subkumpulan terhingga,

atau pemanjangan terhingga bagi subkumpulan pusat, adalah masing-masing sekali lagi

subkumpulan kitaran terpisahkan atau poten lemah. Untuk membuktikan hasil kami,

kami akan membuktikan kriteria bagi poten lemah untuk hasil darab bebas teritlak dan

perluasan HNN, dan kami akan menggunakan kriteria yang telah dibina sebelum ini bagi

subkumpulan kitaran terpisahkan. Akhir sekali, kami akan memanjangkan hasil kami ke

hasil darab pokok dan kumpulan asasi bagi graf kumpulan.

Kata Kunci: Sisa Terhingga, Poten Lemah, Hasil Darab Bebas Teritlak, Perluasan HNN,

Kumpulan Asasi Bagi Graf Kumpulan..
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CHAPTER 1: INTRODUCTION

1.1 General Introduction

The aim of this thesis is to study two stronger residually finite properties, namely

cyclic subgroup separability and weak potency in generalized free products, tree products,

HNN extensions and fundamental groups of graphs of groups. These two properties,

though interesting by themselves, had played important roles in the determination of the

residual finiteness and conjugacy separability of certain generalized free products and

HNN extensions where the amalgamated or associated subgroups are cyclic (Baumslag &

Solitar 1962; Kim 1993a, 1993b, 2004; Kim & Tang 1995; Wong et al. 2010; Zhou &

Kim 2013)

Briefly, we say that a group G is cyclic subgroup separable if for any element g not in a

cyclic subgroup H, there exists a finite image Ḡ of G such that ḡ is not in H̄, where ḡ and

H̄ are the images of g and H in Ḡ respectively. We call a group G weakly potent if for any

element g of infinite order and for any positive integer n, we can find an integer r and a

finite image Ḡ of G such that ḡ has order exactly rn in Ḡ.

Residually finite groups was first introduced by Philip Hall in 1955. Then at Philip

Hall’s suggestion, Baumslag began the first systematic study of these groups. In one of his

early papers, Baumslag (1963) studied the residual finiteness of generalized free products

of two finitely generated nilpotent groups amalgamating various subgroups (Baumslag,

1963). One of the main tools in his proofs was the concept of compatible filters. When the

amalgamated subgroups are cyclic, these compatible filters contain ideas which will lead

to the concept of cyclic subgroup separability and potency.
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The weak potency concept was introduced by Evans (1974) with the name of regular

quotient to show that there exists a class of residually finite groups which is closed

under the operation of forming generalized free products with single cyclic subgroup

amalgamated (Evans, 1974). Potency was defined by Allenby and Tang (1981) in their

investigation of the residual finiteness of some one-relator groups with torsion (Allenby

& Tang, 1981). Realising that only a weaker form of potency is needed in the proofs,

Tang (1995) independently introduced the concept of weak potency and used it in the

proof of conjugacy separability of generalized free products with cyclic amalgamation

of free-by-finite or nilpotent-by-finite groups with unique root property for elements of

infinite order (Tang, 1995).

Now we give a brief outline of our chapters.

In this chapter (Chapter 1), a general introduction on generalized free products, tree

products, HNN extensions and fundamental groups of graphs of groups will be given. All

the definitions of the various group properties which are studied in this thesis are also

included.

Next, in Chapter 2, we study the cyclic subgroup separability of generalized free products

of cyclic subgroup separable groups and subgroup separable groups. First, we state a

criterion by which we will use to prove the cyclic subgroup separability of generalized

free products amalgamating various types of subgroups. Some of our results shall also be

extended to tree products of finitely many groups.

In Chapter 3, we study the cyclic subgroup separability of certain HNN extensions.

Again we state a criterion for the cyclic subgroup separability of HNN extensions, then we

apply it to certain HNN extensions with various associated subgroups.

2
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In Chapter 4, we investigate the weak potency of generalized free products of weakly

potent groups. Here, we first prove a criterion for the weak potency of certain generalized

free products. Then we apply it to certain generalized free products amalgamating various

subgroups. Finally, as in Chapter 2, some of our results shall be extended to tree products

of finitely many groups.

We continue to study about weak potency in Chapter 5. We study the weak potency

of certain HNN extensions of weakly potent groups. Again we first prove a criterion for

the weak potency of HNN extensions of weakly potent group. Then we apply it to certain

HNN extensions of weakly potent groups with various associated subgroups.

Finally, in Chapter 6, we will extend some of our results in the preceding chapters by

proving that certain fundamental groups of graphs of groups are cyclic subgroup separable.

1.2 Generalized Free Products

Now we describe the generalized free products of groups. The concept of generalized

free product (or sometimes called as free product with amalgamations) was introduced by

Schreier in 1926 (Lyndon & Schupp, 2001).

Let A and B be groups given by presentations, say A = 〈S | D〉 and B = 〈T | E〉. Here we

assume that S ∩ T = φ. Also suppose that M = 〈P |Q〉. Let σ : M → A and θ : M → B

be monomorphisms. Conveniently, we let H = σ(M) ⊆ A and K = θ(M) ⊆ B. Then

these subgroups are isomorphic via ϕ = θ ◦ σ−1 : H → K . Thus we have the following

presentation, which is commonly used:

G = 〈S ∪ T | D ∪ E, h = ϕ(h), ∀h ∈ P〉 = A ∗H�K B = A ∗H B.

Let g ∈ G. The element g is called reduced if g = a1b1a2b2 . . . anbn where each

ai ∈ A\H and each bi ∈ B\H for all i = 1, . . . , n. We denote the length of the reduced

3
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element g by ‖g‖ and defined it as:

‖g‖ =



0, if g ∈ H.

1, if g ∈ A ∪ B.

n, otherwise.

If each cyclic permutation of g is reduced, then g is said to be cyclically reduced. Note

also that if g is not cyclically reduced, then it is conjugate to a cyclically reduced element

of G or to an element of A or of B (Lyndon & Schupp, 2001, Chapter 4.2, p. 178).

1.3 Tree Products

Now suppose that we extend the generalized free product of two groups to finitely many

groups. This type of generalized free products are called tree products. Tree products were

first introduced by Karras and Solitar (1970).

A description of tree products was given by Kim and Tang (1998) as follows:

“ Let T be a tree. To each vertex v of T , assign a group Gv . To each edge e

of T , assign a group Ge together with monomorphisms αe, βe embedding

Ge into the two vertex groups at the end of the edge e. Then the tree product

G is defined to be the group generated by the generators and relations of

the vertex groups together with the additional relations αe(ge) = βe(ge) for

each ge ∈ Ge.” (Kim & Tang, 1998, p. 323)

For simplicity, we can say that G is a tree products of the (vertex) groups G1, · · · ,Gn,

for n ≥ 2, amalgamating the (edge) subgroups Hi j ≤ Gi and Hji ≤ G j and denoted by

G = 〈G1, · · · ,Gn | Hi j = Hji〉.
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1.4 HNN Extensions

The next group structure is called the Higman-Neumann-Neumann extension or HNN

extension for short and was introduced by Graham Higman, Bernhard Neumann, and

Hanna Neumann in 1949. The construction of HNN extensions with the generalized

free product are quite similar and parallel. But instead of constructing from two groups,

HNN extensions are constructed from one group such that, the group contains isomorphic

associated subgroups (Higman, Neumann, & Neuman, 1949). In very loose language,

generalized free product might be called the “disconnected case”, while HNN extension is

called the “connected case”.

Let A be a group with presentation A = 〈S | D〉 and a pair of isomorphic subgroups

H and K . HNN extensions can be regarded as a larger group containing A in which the

subgroups H and K are isomorphic via conjugation. Thus, the HNN extension G of a

group A with a stable letter t, and with associated subgroups H, K which are isomorphic

via ϕ : H → K that is defined such that t−1ht = ϕ(h) for all h ∈ H, has presentation

G = 〈S, t | D, t−1ht = ϕ(h), ∀h ∈ H〉.

Conveniently, we shall use the following presentation, which is also commonly used.

G = 〈A, t | t−1Ht = K, ϕ〉

where A is called the base group and ϕ : H → K is the isomorphism.

Let g ∈ G. The element g is said to be reduced if g = a0tε1a1tε2 . . . tεnan with εi = ±1

such that there is no consecutive terms t−1ait if ai ∈ H, or tait−1 if ai ∈ K . We denote the
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reduced length of g as ‖g‖ and defined it as follows:

‖g‖ =


0, if g = a0 ∈ A.

n, otherwise.

Similar to as the generalized free products of group, if each cyclic permutations of g is

also reduced, then g is said to be cyclically reduced . If g is not cyclically reduced, then it

is conjugate to a cyclically reduced element of G or to an element of A (Lyndon & Schupp,

2001, Chapter 4.2, p. 178).

1.5 Fundamental Group of Graphs of Groups

Kim (2004) had described the fundamental group of a graph Γ of groups as follows:

“ Let Γ = (V, E) be a graph where V is a set of vertices and E is a set

of edges. To each vertex v in V , we assign a group Gv. To each edge

e in E , we assign a group Ge together with monomorphisms αe and βe

embedding Ge into the two vertex groups at the end of the edge e. Then for

a maximal tree T of Γ, the fundamental group of the graph Γ of groups Gv

amalgamating the edge subgroups Ge is defined to be the group generated by

the generators and relations of the vertex groups and additional generators

te for each e ∈ E together with additional relations t−1
e (geαe)te = geβe for

each ge ∈ Ge where te = 1 if e is an edge of T . Each of the subgroups

Geαe and Geβe is called edge subgroup in its containing vertex group. It is

well-known that the fundamental group of a graph of groups is independent

from the choice of the maximal tree (Serre, 1980). In particular, if the

graph Γ is a tree, then the fundamental group of Γ of groups Gv is called a

tree product of the Gv.” (Kim, 2004, p. 914)
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Let Γ be a finite graph. The fundamental group G of the graph Γ of groups Gv can be

obtained by first successively performing a free product with amalgamation for each edge

in the maximal tree T . That is by taking tree product A of the Gv groups according to T

and then taking HNN extensions G = 〈A, ti, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉, where

Hi and Ki are in the vertex groups Gv. Thus, fundamental groups of graphs of groups are

generalizations of amalgamated free products and HNN extensions of groups (Kim, 2004).

1.6 Cyclic Subgroup Separability

We shall give a brief history of cyclic subgroup separability of groups.

In 1968, Stebe introduced the concept of cyclic subgroup separability and used it

to prove that the class of knot groups are residually finite (Stebe, 1968). In that same

year, Dyer (1968) showed the residual finiteness of generalized free products of two

polycyclic-by-finite groups amalgamating a cyclic subgroup. In that paper, she extended

the result of Baumslag (1967) to cyclic subgroup separability (Dyer, 1968). In 1992,

Kim has shown the cyclic subgroup separability, and hence the residual finiteness, of

polygonal products of polycyclic-by-finite groups amalgamating central subgroups (Kim,

1992). Then, Kim (1993b), and Kim and Tang (1999) gave characterizations for the cyclic

subgroup separability of HNN extensions of cyclic subgroup separable groups with cyclic

associated subgroups.

In a paper published in 2004, Kim showed the cyclic subgroup separability and residual

finiteness of fundamental groups of graphs of groups amalgamating infinite cyclic edge

subgroups (Kim, 2004). Next, Wong and Wong (2007) proved the cyclic subgroup

separability of polygonal products of certain subgroup separable groups amalgamating

finitely generated normal subgroups (Wong & Wong, 2007). Recently, they showed the

cyclic subgroup separability of HNN extensions of a non-cyclic and subgroup separable

base group associating normal infinite cyclic subgroups (Wong & Wong, 2012).

7
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1.7 Weak Potency

As we have stated above, Evans (1974) had established the concept of weak potency

with the name regular quotient and showed the weak potency of free groups and finitely

generated torsion-free nilpotent groups. Evans also used weak potency to show the cyclic

subgroup separability of certain generalized free products. In 1981, Allenby and Tang

introduced the concept of potency, to derive the residual finiteness of the generalized free

product amalgamating a cyclic subgroup (Allenby & Tang, 1981). Later, weak potency

was properly and independently defined by Tang (Tang, 1995).

Weak potency is a strong form of residual finiteness in the sense that a weakly potent

torsion-free group is residually finite. Tang (1995), and Kim and Tang (1995) used weak

potency to determine the conjugacy separability of certain generalized free products

of conjugacy separable groups (Kim & Tang, 1995; Tang, 1995). Since then, weak

potency has been used in establishing the residual finiteness and conjugacy separability

in generalized free products, tree products, polygonal products, one-relator groups and

fundamental groups of graphs of groups (see (Allenby, 1981; Allenby & Tang, 1981; Kim

& Tang, 1995; Tang, 1995; Wong & Tang, 1998; Wong & Wong, 2014)).

1.8 Definitions and Notations

Standard notations will be used in this thesis. In addition, we shall use the following,

for any group G:

• N � f G means N is a normal subgroup of finite index in G.

• Z(G) denotes the centre of G.

• If G is a generalized free product or HNN extension and g ∈ G, then ‖g‖ denotes

the usual reduced length of g.

• For h, k ∈ G, h ∼G k means h is conjugate to k in G.

• The term πc will denote cyclic subgroup separable.

8
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Definition 1.1. Let G be a group and H be a subgroup of G. G is called H–separable if,

for each g ∈ G\H, there exists N � f G such that g < HN (or gH ∩ N = φ). If H = {1},

then G is called residually finite. If G is H–separable for every finitely generated subgroup

H, then G is called subgroup separable. If G is H–separable for every finitely generated

subgroup H of Z(G), then G is called central subgroup separable. If G is 〈x〉–separable

for every cyclic subgroup 〈x〉 of G, then G is called cyclic subgroup separable.

Definition 1.2. (Tang, 1995) A group G is called weakly 〈x〉–potent, briefly, 〈x〉–wpot, if

for an element x of infinite order in G, we can find a positive integer r with the property

that, for each positive integer n, there exists Mn � f G such that xMn has order exactly rn in

the finite group G/Mn. A group G is called weakly potent if G is 〈x〉–wpot for all elements

of infinite order x ∈ G. G is called potent if for any element of infinite order x ∈ G and

every positive integer n, there exists Mn � f G such that xMn has order exactly n in G/Mn.

Remark 1.3. We note here that the subgroup Mn in Definition 1.2 depends on n. For

simplicity, when there is no confusion, we shall write M instead of Mn.

From the above definitions, finitely generated torsion-free weakly potent groups are

residually finite. Furthermore, every subgroup separable group is also cyclic subgroup

separable and residually finite. Free groups, polycyclic groups, finitely generated nilpotent

groups and their finite extensions are known to be weakly potent for elements of infinite

order and subgroup separable (hence cyclic subgroup separable and residually finite) (see

Evans, 1974; Tang, 1995; Wong & Wong, 2014). On the other hand, there are infinite

groups with elements of finite order that are weakly potent but not residually finite. For

example, let G = Z(p∞) × 〈h〉 where 〈h〉 is an infinite cyclic group and Z(p∞) is the Prüfer

group. Then G is weakly potent for elements of infinite order but G is not residually finite.

9
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CHAPTER 2: CYCLIC SUBGROUP SEPARABILITY OF GENERALIZED
FREE PRODUCTS

2.1 Introduction

In this chapter, we shall investigate the cyclic subgroup separability of certain generalized

free products of cyclic subgroup separable groups and subgroup separable groups.

First, we state a criterion (Theorem 2.1) for generalized free products of cyclic subgroup

separable groups to be again cyclic subgroup separable. We then apply the criterion to

generalized free products G = A ∗H B where (i) H ≤ Z(A) ∩ Z(B) is finitely generated

(Theorem 2.4), (ii) H = 〈h〉 × D where 〈h〉 is infinite cyclic and D is finite (Theorem 2.9)

and finally, (iii) H is a finite extension of a central subgroup (Theorem 2.14). Furthermore,

we shall extend Theorem 2.9 to tree products of finitely many groups in Theorem 2.18.

2.2 Preliminaries

Kim (1993a) has proved a criterion (Theorem 2.1 below) for the cyclic subgroup

separability of generalized free products. In this thesis, we shall use this criterion to prove

our results.

Theorem 2.1. Let G = A ∗H B be a generalized free product. Suppose that,

(a) A and B are both πc and H–separable; and

(b) for each R� f H, there exist MA� f A and MB� f B such that MA∩H = MB∩H ⊆ R,

Then G is πc.

The following lemma is known by many researchers in this area.

Lemma 2.2. Let G = A∗HB be a generalized free product where A and B are finite groups.

Then G is free-by-finite, and hence is weakly potent and subgroup separable (Karras &

Solitar, 1970; Evans, 1974; Tang, 1995).

10
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2.3 Generalized Free Products Amalgamating Various Subgroups

For this section, we prove that certain generalized free products amalgamating various

subgroups are πc. Note that Kim has proved the cyclic subgroup separability of generalized

free products amalgamating finite subgroup and amalgamating infinite cyclic subgroup

(see (Kim, 1993a)).

The following result on generalized free products amalgamating central subgroup

(Theorem 2.4 below) has been proved by Wong and Tang (1998).

Lemma 2.3. (Wong & Tang 1998) Let A be subgroup separable and let H ≤ Z(A) be

finitely generated. Then, for each R � f H, there exists N � f A such that N ∩ H = R.

Theorem 2.4. Let G = A ∗H B where A and B are subgroup separable. Suppose that

H ≤ Z(A) ∩ Z(B) is finitely generated. Then G is πc.

Proof. Since subgroup separable groups are πc and H–separable, we just need to show (b)

in Theorem 2.1. By Lemma 2.3, for each R � f H, there exist M � f A and N � f B such

that M ∩ H = R = N ∩ H. Therefore G is πc by Theorem 2.1. �

Corollary 2.5. Suppose that A and B are finitely generated abelian groups. Then

G = A ∗H B is πc.

Kim and Tang (2013) have shown the conjugacy separability of certain generalized free

products amalgamating a subgroup of the form 〈h〉 × D where D is a central subgroup of

the factor groups. Recently, Zhou and Kim (2013), showed the subgroup separability of

certain generalized free products amalgamating this type of subgroup.

In this thesis, we shall use the criterion (Theorem 2.1 above) to show that certain

generalized free products amalgamating this type of subgroup, where D is finite, are πc.

11
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Lemma 2.6. (Kim & Tang, 2013) Let A be a group with subgroup H = 〈h〉 × D such that

|h| = ∞ and D is finite. If A is 〈h〉–separable, then A is H–separable.

Proof. Let x ∈ A\H. Then x , hmd for all d ∈ D and for all m ∈ Z. Thus we have

xd−1 < 〈h〉 for all d ∈ D. Since A is 〈h〉–separable, there exists Nd � f A such that

xd−1 < 〈h〉Nd for each d ∈ D. Let

N =
⋂
d∈D

Nd .

Then N � f A and, for all d ∈ D, we have xd−1 < 〈h〉N . Suppose that x ∈ HN . Let

x = hmdn, where m ∈ Z, d ∈ D and n ∈ N . Then x = hmdnd−1d = hmn0d where

n0 = dnd−1 ∈ N for N � f A. Hence xd−1 = hmn0 ∈ 〈h〉N , a contradiction. Therefore

x < HN and A is H–separable. �

Remark 2.7. Let A and B be groups such that 〈h〉 is an infinite cyclic subgroup of A and of

B. If A and B are both 〈h〉–wpot, then there exist positive integers r1, r2 with the property

that for each positive integer n, we have Pn � f A and Qn � f B such that Pn ∩ 〈h〉 = 〈hr1n〉

and Qn ∩ 〈h〉 = 〈hr2n〉.

Lemma 2.8. Let G = A ∗H B where H = 〈h〉 × D such that |h| = ∞ and D is finite.

Suppose that A and B are 〈h〉–separable and 〈h〉–wpot. Then for each R � f H, there exist

NA � f A and NB � f B such that NA ∩ H = NB ∩ H ⊆ R.

Proof. Suppose we are given an R � f H = 〈h〉 × D. Since A and B are 〈h〉–separable,

〈h〉 ∩ D = 1 and D is finite, there exist M1 � f A and N1 � f B such that

M1〈h〉 ∩ D = 1 = N1〈h〉 ∩ D.
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Let R ∩ M1 ∩ 〈h〉 = 〈hs1〉 and R ∩ N1 ∩ 〈h〉 = 〈hs2〉 for some integers s1, s2 > 0.

By Remark 2.7, let M2 � f A and N2 � f B be such that M2 ∩ 〈h〉 = 〈hr1r2s1s2〉 and

N2 ∩ 〈h〉 = 〈hr1r2s1s2〉. Let M = M1 ∩ M2 and N = N1 ∩ N2. Then M � f A and N � f B

such that M ∩ 〈h〉 = 〈hr1r2s1s2〉 = N ∩ 〈h〉. Furthermore, M 〈h〉 ∩ D = 1 = N 〈h〉 ∩ D.

Hence we have,

M ∩ H = M ∩
(
〈h〉 × D

)
= M ∩ 〈h〉 = N ∩ 〈h〉 = N ∩

(
〈h〉 × D

)
= N ∩ H.

Thus, we have M ∩ H = N ∩ H ⊆ R. �

Theorem 2.9. Let G = A ∗H B, where H = 〈h〉 × D such that |h| = ∞ and D is finite.

Suppose that A and B are πc and 〈h〉–wpot. Then G is πc.

Proof. Since A and B are πc, hence they are 〈h〉–separable. Thus, A and B are H–separable

by Lemma 2.6. By Lemma 2.8, for each R � f H, we have NA � f A and NB � f B where

NA ∩ H = NB ∩ H ⊆ R. Therefore, G is πc by Theorem 2.1. �

Corollary 2.10. Let G = A ∗H B, where H = 〈h〉 × D such that |h| = ∞ and D is finite.

Suppose A and B are finite extensions of a finitely generated nilpotent group. Then G is πc.

Zhou et al. (2010) have shown the conjugacy separability of generalized free products

of polycyclic-by-finite groups amalgamating finite extensions of central subgroups. Here,

we shall show that certain generalized free products amalgamating finite extensions of

central subgroup is πc.

Lemma 2.11. (Lim, 2012) Let A be a group and N � A. If A is N–separable, then A/N is

residually finite.

13
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Lemma 2.12. Let A be a group and H be a subgroup of A. Suppose that there exists

C ≤ H such that C � A is finitely generated with |H : C | < ∞. If A is C–separable, then

A is H–separable.

Proof. Let x ∈ A\H. Now we form Ā = A/C. Thus x̄ < H̄ = H/C. Since A is

C–separable, then Ā is residually finite by Lemma 2.11. Since H̄ is finite, there exists

L̄ � f Ā such that L̄ ∩ x̄H̄ = φ. Let L be the preimage of L̄ in A, then L � f A and

x < HL. �

Lemma 2.13. Let A be a group and H be a subgroup of A. Suppose that there exists

R ≤ H such that R � A is finitely generated with |H : R| < ∞. If A is R–separable, then

there exists N � f A such that N ∩ H = R.

Proof. Suppose we are given such R. Since A is R–separable, then by Lemma 2.11,

Ā = A/R is residually finite. Since H̄ = H/R is finite, there is an N̄ � f Ā such that

N̄ ∩ H̄ = 1̄. Let N be the preimage of N̄ in A. Then N � f A and N ∩ H = R. �

Theorem 2.14. Let G = A ∗H B where A and B are πc and central subgroup separable.

Suppose that there exists C ≤ H such that C ⊆ Z(A) ∩ Z(B) is finitely generated with

|H : C | < ∞. Then G is πc.

Proof. We shall use Theorem 2.1. Note that A and B are C–separable for A, B are central

subgroup separable. By Lemma 2.12, A and B are H–separable. Now let R� f H be given.

Let RC = R ∩ C. Then RC � f C and since C is finitely generated, we have RC is finitely

generated. Also note that |H : RC | < ∞. Since RC ⊂ C ⊆ Z(A) ∩ Z(B), then RC � A

and RC � B. Furthermore, A and B are RC–separable. Thus, by Lemma 2.13, there exist

M � f A and N � f B such that M ∩H = N ∩H = RC ⊂ R. Therefore, by Theorem 2.1, G

is πc. �

14
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Corollary 2.15. Let G = A ∗H B where A, B are free-by-finite or polycyclic-by-finite

groups. Suppose that there exists C ≤ H such that C ⊆ Z(A) ∩ Z(B) is finitely generated

with |H : C | < ∞. Then G is πc.

2.4 Tree Products

We shall extend Theorem 2.9 to tree products of finitely many groups.

Lemma 2.16. Let G = A ∗H B where H = 〈h〉 × D such that |h| = ∞ and D is finite.

Suppose that A and B are both 〈h〉–separable and 〈h〉–wpot. Let 〈k〉 be any infinite cyclic

subgroup of B such that B is 〈k〉–wpot. Then G is 〈k〉–wpot.

Proof. Since A and B are 〈h〉–separable, 〈h〉∩D = 1 and D is finite, there exist M1� f A and

N1� f B such that M1〈h〉∩D = 1 = N1〈h〉∩D. Let M1∩〈h〉 = 〈hα1〉 and N1∩〈h〉 = 〈hα2〉

for some integers α1, α2 > 0. By Remark 2.7, there exist positive integer r1, r2 such that for

each positive integer n0, there exist M2 � f A and N2 � f B such that M2 ∩ 〈h〉 = 〈hr1n0〉

and N2 ∩ 〈h〉 = 〈hr1n0〉. Let N1 ∩ N2 ∩ 〈k〉 = 〈k s〉 for some s > 0. Since B is 〈k〉–wpot,

there exists a positive integer r with the property that for each positive integer n, we have

N3 � f B such that N3 ∩ 〈k〉 = 〈krsn〉. Let N1 ∩ N2 ∩ N3 ∩ 〈h〉 = 〈hr1n0q〉 for some q > 0.

Now we choose n0 = r2α1α2q for M2 and n0 = r1α1α2 for N2 (we can choose n0 because

for each n0, there always exists a normal subgroup of finite index that depends on which n0

we chose). Let M = M1 ∩M2 and N = N1 ∩ N2 ∩ N3. Then M � f A, N � f B and we have

M ∩ 〈h〉 = 〈hα1α2r1r2q〉 = N ∩ 〈h〉 and N ∩ 〈k〉 = 〈krsn〉. Since M ∩
(
〈h〉 × D

)
= M ∩ 〈h〉

and N ∩
(
〈h〉 × D

)
= N ∩ 〈h〉, we have M ∩ H = N ∩ H.

15
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Now we form Ḡ = A/M ∗H̄ B/N , where H̄ = 〈h̄〉 × D̄ (since 〈h̄〉 ∩ D̄ = 1). Clearly Ḡ

is a homomorphic image of G. Note that in Ḡ, | k̄ | = rsn. Since Ḡ is residually finite by

Lemma 2.2, there exists L̄ � f Ḡ such that k̄, k̄2, . . . , k̄rsn−1 < L̄. Clearly Ḡ/L̄ is a finite

group in which k̄ L̄ has order exactly rsn. Let L be the preimage of L̄ in G. Then L � f G

such that |kL | = rsn in the finite group G/L. Therefore G is 〈k〉–wpot. �

We need an additional condition that G is 〈hi j〉–separable for each i, j in order to extend

Lemma 2.16 to tree products.

Lemma 2.17. LetG = 〈G1, . . . ,Gn | Hi j = Hji〉 be a tree product of the groupsG1, . . . ,Gn

amalgamating the subgroups Hi j ≤ Gi and Hji ≤ G j where Hi j ∩ Hik = 1 for j , k.

Suppose that each Hi j = 〈hi j〉 × Di j such that |hi j | = ∞ and Di j is finite. Suppose,

furthermore, G is 〈hi j〉–separable and each Gi is 〈hi j〉–wpot for each i, j. Let 〈k〉 be any

infinite cyclic subgroup of Gr such that Gr is 〈k〉–wpot, where 1 ≤ r ≤ n. Then G is

〈k〉–wpot.

Proof. First, note that each Gi is 〈hi j〉–separable for each i, j since we assume G to be

〈hi j〉–separable for each i, j. Now we prove by induction on n. The case n = 2 will follow

from Lemma 2.16. Now for the case n ≥ 3, we can find an extremal vertex, say Gn, of the

tree product G, which is joined to a unique vertex, say Gn−1. The subgroup of G that is

generated by G1, . . . ,Gn−1 is just their tree product. Let this subgroup be denoted by G′.

Then we write

G = 〈G′,Gn | H(n−1)n = Hn(n−1)〉 = G′ ∗H Gn,

where H = H(n−1)n = Hn(n−1). This implies that G is a generalized free product of two

groups G′ and Gn with amalgamated subgroup H = 〈h〉 × D. Thus, by induction, G′ is

〈h(n−1)n〉–wpot. By our assumption, Gn is 〈hn(n−1)〉–wpot. Furthermore, since G is 〈hi j〉–

separable for each i, j, this implies G′ is 〈h(n−1)n〉–separable and Gn is 〈hn(n−1)〉–separable.

16
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Suppose 〈k〉 < G′. By induction, G′ is 〈k〉–wpot. Then by Lemma 2.16, G is 〈k〉–wpot.

Suppose 〈k〉 < Gn. By our assumption, Gn is 〈k〉–wpot. Then again, by Lemma 2.16,

G is 〈k〉–wpot. �

Now, we can extend Theorem 2.9 to tree product as follows.

Theorem 2.18. Let G = 〈G1, . . . ,Gn | Hi j = Hji〉 be a tree product of the groups

G1, . . . ,Gn amalgamating the subgroups Hi j ≤ Gi and Hji ≤ G j where Hi j ∩ Hik = 1 for

j , k. Suppose that each Hi j = 〈hi j〉 × Di j where |hi j | = ∞ and Di j is finite. Furthermore,

suppose that each Gi is πc and 〈hi j〉–wpot. Then G is πc.

Proof. The proof is by induction on n. For the case n = 2, our result follows from Theorem

2.9. For n ≥ 3, let G = G′ ∗H Gn as in the proof of Lemma 2.17. By induction, G′ is πc.

By our assumption, Gi is 〈hi j〉–wpot for each i , n. In particular, Gn−1 is 〈h(n−1)n〉–wpot.

Hence, by Lemma 2.17, G′ is 〈h(n−1)n〉–wpot. On the other hand, by our assumption, Gn

is πc and 〈hn(n−1)〉–wpot. Therefore, G is πc by Theorem 2.9. �

Corollary 2.19. Let G = 〈G1, . . . ,Gn | Hi j = Hji〉 be a tree product of finite extensions

of finitely generated nilpotent groups G1, . . . ,Gn amalgamating the subgroups Hi j ≤ Gi

and Hji ≤ G j where Hi j ∩ Hik = 1 for j , k. Suppose that each Hi j = 〈hi j〉 × Di j where

|hi j | = ∞ and Di j is finite. Then G is πc.

17
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CHAPTER 3: CYCLIC SUBGROUP SEPARABILITY OF HNN EXTENSIONS

3.1 Introduction

In this chapter, we shall study the cyclic subgroup separability of HNN extensions of

cyclic subgroup separable group and subgroup separable group. It has been shown by

Kim and Tang (1999) that the HNN extension G = 〈A, t | t−1Ht = K, ϕ〉 where A is cyclic

subgroup separable and H = 〈h〉, K = 〈k〉 are infinite cyclic, is again cyclic subgroup

separable if and only if A is quasi-regular at {h, k} (Kim & Tang, 1999). We note that the

Baumslag-Solitar group BS(2, 3) = 〈a, t | t−1a2t = a3〉 is an example of an HNN extension

which is not cyclic subgroup separable (Baumslag & Solitar, 1962).

First, we state a criterion (Theorem 3.1 below) for the cyclic subgroup separability

of HNN extensions of cyclic subgroup separable group. We then apply the criterion to

HNN extensions G = 〈A, t | t−1Ht = K, ϕ〉 where (i) H = 〈h〉, K = 〈k〉 or H = 〈h〉 × D,

K = 〈k〉 × E where 〈h〉, 〈k〉 are infinite cyclic and D, E are finite (Theorem 3.3, Theorem

3.4, Theorem 3.7 and Theorem 3.8), (ii) H,K are finite extensions of central subgroups

(Theorem 3.11 and Theorem 3.14) and finally (iii) H,K are finitely generated normal

subgroups (Theorem 3.19).

As in the previous chapter, the term πc shall be used in place of cyclic subgroup

separable.

3.2 Preliminaries

The following theorem (Theorem 3.1) has been proved by Wong and Gan (1999).

Theorem 3.1. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is πc. Suppose that

(a) A is H–separable and K–separable; and

(b) for each M � f A, there exists N � f A such that N ⊆ M and ϕ(N ∩ H) = N ∩ K .

Then G is πc.
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3.3 HNN Extensions with Various Associated Subgroups

Note that Kim has proved that the HNN extensions of cyclic subgroup separable base

group having finite associated subgroups are πc (Kim, 1993b). Here, we start by applying

the criterion to HNN extensions with infinite cyclic associated subgroups.

Lemma 3.2. Let A be a group and 〈h〉, 〈k〉 be isomorphic infinite cyclic subgroups of A.

Suppose that ϕ : 〈h〉 → 〈k〉 is an isomorphism such that ϕ(h) = k. If

(i) h ∼A k; or

(ii) hm = k±m for some m > 0 and A is 〈h〉–wpot, 〈k〉–wpot,

then for each M � f A, there exists N � f A such that N ⊆ M and ϕ(N ∩ 〈h〉) = N ∩ 〈k〉.

Proof. Let M � f A be given.

(i) Suppose that M ∩ 〈h〉 = 〈hε〉 for some integer ε > 0. Since h = aka−1 for some a ∈ A,

we have,

M ∩ 〈k〉 = M ∩ 〈a−1ha〉

= a−1Ma ∩ a−1〈h〉a

= a−1(M ∩ 〈h〉)a

= a−1〈hε〉a

= 〈(a−1ha)ε〉

= 〈kε〉.

Let N = M . Then we will have N � f A and ϕ
(
N ∩ 〈h〉

)
= N ∩ 〈k〉.
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(ii) Suppose that M ∩ 〈h〉 = 〈hs1〉 and M ∩ 〈k〉 = 〈k s2〉 for some integers s1, s2 > 0. By

Remark 2.7, for A is 〈h〉–wpot and 〈k〉–wpot, there exist positive integers r1, r2 such that for

each positive integer n, there exist M1 � f A and M2 � f A such that M1 ∩ 〈h〉 = 〈hr1n〉 and

M2 ∩ 〈k〉 = 〈kr2n〉. Choose n = r2s1s2m for M1 and n = r1s1s2m for M2 for some m > 0.

Thus we have M1 ∩ 〈h〉 = 〈hr1r2s1s2m〉 and M2 ∩ 〈k〉 = 〈kr1r2s1s2m〉. Let N = M ∩M1 ∩M2.

Then N � f A and we have

N ∩ 〈h〉 = M ∩ M1 ∩ M2 ∩ 〈h〉

= M2 ∩ 〈hr1r2s1s2m〉

= M2 ∩ 〈kr1r2s1s2m〉

= 〈kr1r2s1s2m〉 = 〈hr1r2s1s2m〉

and

N ∩ 〈k〉 = M ∩ M1 ∩ M2 ∩ 〈k〉

= M1 ∩ 〈kr1r2s1s2m〉

= M1 ∩ 〈hr1r2s1s2m〉

= 〈hr1r2s1s2m〉 = 〈kr1r2s1s2m〉.

Hence, we have ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. �

Theorem 3.3. Let G = 〈A, t | t−1Ht = K, ϕ〉 where H = 〈h〉, K = 〈k〉 are infinite cyclic

subgroups of A. Suppose that A is πc. If h ∼A k, then G is πc.

Proof. We shall prove by using Theorem 3.1. Note that A is 〈h〉–separable and 〈k〉–

separable for A is πc. By Lemma 3.2(i), for each M � f A, we have N � f A such that

N ⊆ M and ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Thus G is πc by Theorem 3.1. �
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Theorem 3.4. Let G = 〈A, t | t−1ht = k, ϕ〉 where H = 〈h〉, K = 〈k〉 are infinite cyclic

subgroups such that 〈h〉 ∩ 〈k〉 , 1. Suppose that A is πc, 〈h〉–wpot and 〈k〉–wpot. Then

G is πc if and only if hm = k±m for some m > 0.

Proof. Suppose that G is πc. Since 〈h〉 ∩ 〈k〉 , 1, let hm = k s, for some m, s > 0. Since

G is πc, there exists L � f G such that hi < L〈hm〉 for all 1 ≤ i < m. Let L ∩ 〈h〉 = 〈hεm〉

for some ε > 0. By the definition of ϕ, we have L ∩ 〈k〉 = 〈kεm〉. Hence we have

hεm = kεs ∈ L ∩ 〈k〉 = 〈kεm〉. Thus, m|s. Similarly we can show that s |m. Therefore,

hm = k±m for some m > 0.

For the converse, we shall use Theorem 3.1. Note that A is 〈h〉–separable and 〈k〉–

separable for A is πc. By Lemma 3.2(ii), for any given M � f A, there exists N � f A such

that N ⊆ M and ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Hence G is πc by Theorem 3.1. �

Next we consider the following HNN extensions.

Remark 3.5. Let G = 〈A, t | t−1Ht = K, ϕ〉. Suppose that H = 〈h〉 × D, K = 〈k〉 × E

such that |h| = ∞, |k | = ∞ and D, E are finite subgroups. Suppose that ϕ : H → K is

defined such that ϕ(〈h〉) = 〈k〉 and ϕ(D) = E . Hence note that

• 〈h〉 and 〈k〉 are isomorphic via ϕ; and

• D and E are isomorphic via ϕ.

Hence if x ∈ H, x = hαd where α ∈ Z, d ∈ D and ϕ(d) = e, for some e ∈ E , then

ϕ(x) = ϕ(hαd) = t−1(hαd)t = (t−1hαt)(t−1dt) = kαe.
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Lemma 3.6. Let A be a group with subgroups H = 〈h〉 × D, K = 〈k〉 × E such that

|h| = ∞, |k | = ∞ and D, E are finite subgroups. Suppose that A is 〈h〉–separable,

〈k〉–separable and ϕ : H → K is an isomorphism where ϕ(〈h〉) = 〈k〉 and ϕ(D) = E . If

(i) h ∼A k; or

(ii) hm = k±m for some m > 0 and A is 〈h〉–wpot, 〈k〉–wpot,

then for each M � f A, there exists N � f A such that N ⊆ M and ϕ(N ∩ H) = N ∩ K .

Proof. Let M � f A be given.

(i) Note that A is 〈h〉–separable, 〈k〉–separable, 〈h〉 ∩ D = 1 = 〈k〉 ∩ E and D, E are finite.

Thus, there is an M0 � f A such that M0〈h〉 ∩ D = 1 = M0〈k〉 ∩ E . Let N = M ∩ M0.

Then N � f A and N 〈h〉 ∩D = 1 = N 〈k〉 ∩ E . Thus we have N ∩
(
〈h〉 ×D

)
= N ∩ 〈h〉 and

N ∩
(
〈k〉 × E

)
= N ∩ 〈k〉. Suppose that N ∩ 〈h〉 = 〈hε〉 for some integer ε > 0. As we

have shown in the proof of Lemma 3.2(i), since h ∼A k, we have N ∩ 〈k〉 = 〈kε〉. Hence

ϕ
(
N ∩ 〈h〉

)
= N ∩ 〈k〉 and

ϕ(N ∩ H) = ϕ
(
N ∩ (〈h〉 × D)

)
= ϕ(N ∩ 〈h〉) = N ∩ 〈k〉 = N ∩ (〈k〉 × E) = N ∩ K .

Clearly N ⊆ M and ϕ(N ∩ H) = N ∩ K .

(ii) Again since A is 〈h〉–separable, 〈k〉–separable, 〈h〉 ∩ D = 1 = 〈k〉 ∩ E and D, E are

finite, we have M0 � f A such that M0〈h〉 ∩D = 1 = M0〈k〉 ∩E . Let M ∩M0∩ 〈h〉 = 〈hs1〉

and M ∩M0∩ 〈k〉 = 〈k s2〉 for some integers s1, s2 > 0. By Remark 2.7, there exist positive

integers r1, r2 such that for each positive integer n, there exist M1 � f A and M2 � f A such

that M1∩〈h〉 = 〈hr1n〉 and M2∩〈k〉 = 〈kr2n〉. Choose n = r2s1s2m for M1 and n = r1s1s2m

for M2 for some m > 0. Thus we have M1 ∩ 〈h〉 = 〈hr1r2s1s2m〉 and M2 ∩ 〈k〉 = 〈kr1r2s1s2m〉.

Let N = M ∩ M0 ∩ M1 ∩ M2. Then N � f A. As shown in the proof of Lemma

3.2(ii), we will have N ∩ 〈h〉 = 〈hr1r2s1s2m〉 and N ∩ 〈k〉 = 〈kr1r2s1s2m〉. This implies that
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ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Since N ∩
(
〈h〉 × D

)
= N ∩ 〈h〉 and N ∩

(
〈k〉 × E

)
= N ∩ 〈k〉,

we have ϕ(N ∩ H) = N ∩ K . �

Theorem 3.7. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is πc. If

h ∼A k, then G is πc.

Proof. We shall use Theorem 3.1. Note that A is 〈h〉–separable and 〈k〉–separable for A

is πc. Hence, by Lemma 2.6, A is H–separable and K–separable. By Lemma 3.6(i), for

any given M � f A, there exists N � f A such that N ⊆ M and ϕ(N ∩ H) = N ∩ K . Thus

by Theorem 3.1, G is πc. �

Theorem 3.8. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is

πc, 〈h〉–wpot and 〈k〉–wpot and 〈h〉 ∩ 〈k〉 , 1. Then G is πc if and only if hm = k±m for

some m > 0.

Proof. The first part of the proof is similar to Theorem 3.4. Now, suppose that hm = k±m for

some m > 0. We shall use Theorem 3.1. Note that A is 〈h〉–separable and 〈k〉–separable.

Hence A is H–separable and K–separable by Lemma 2.6. By Lemma 3.6(ii), for any given

M � f A, there exists N � f A such that N ⊆ M and ϕ(N ∩H) = N ∩ K . Therefore G is πc

by Theorem 3.1. �

Corollary 3.9. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is a

polycyclic-by-finite or a free-by-finite or a finite extension of a finitely generated nilpotent

group.

(i) If h ∼A k, then G is πc;

(ii) Then G is πc if and only if hm = k±m for some m > 0 whenever 〈h〉 ∩ 〈k〉 , 1.
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Wong and Gan(1999) have shown that the HNN extensions of subgroup separable

groups with central associated subgroups are πc (Wong & Gan, 1999). Here we show that

the HNN extensions of polycyclic-by-finite (or free-by-finite) groups and finite extensions

of finitely generated nilpotent groups where the associated subgroups are finite extensions

of central subgroups, are πc.

First, we examine the case where H ∩ K = 1.

Lemma 3.10. Let A be a group with subgroups H,K such that H ∩ K = 1. Suppose that

there exist R ≤ H and S ≤ K such that R, S ⊆ Z(A) are finitely generated with |H : R| < ∞

and |K : S | < ∞. If A is central subgroup separable, then there exists N � f A such that

N ∩ H = R and N ∩ K = S.

Proof. Suppose such R and S are given. Note that RS ⊆ Z(A) is finitely generated for

R, S ⊆ Z(A) are finitely generated. Thus, A is RS–separable for A is central subgroup

separable. Hence, by Lemma 2.11, Ā = A/RS is residually finite. Note that H̄ = HS/RS

and K̄ = KR/RS are finite. Thus, there exists N̄ � f Ā such that N̄ ∩ H̄ = 1̄ and N̄ ∩ K̄ = 1̄.

Let N be the preimage of N̄ in A. Then N � f A with N ∩ H = R and N ∩ K = S. �

Theorem3.11. LetG = 〈A, t | t−1Ht = K, ϕ〉 where A is πc and central subgroup separable

with subgroups H,K such that H ∩ K = 1. Suppose that there exist C ≤ H, D ≤ K such

that C,D ⊆ Z(A) are finitely generated with |H : C | < ∞, |K : D| < ∞ and ϕ(C) = D.

Then G is πc.

Proof. We shall prove this by using Theorem 3.1. Note that A is C–separable and D–

separable. Then by Lemma 2.12, A is H–separable and K–separable. Suppose that we are

given M � f A. Let R = M ∩C ∩ ϕ−1(M ∩D) and S = ϕ(M ∩C) ∩M ∩D. Then R� f C,

S � f D and ϕ(R) = S. Since |H : C | < ∞ and |K : D| < ∞, this implies R � f H, S � f K .

Furthermore, R, S ⊆ Z(A) are finitely generated. Then by Lemma 3.10, there exists P� f A
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such that P ∩ H = R and P ∩ K = S. Let N = M ∩ P. Then N � f A, N ⊂ M and

ϕ(N ∩ H) = ϕ(M ∩ P ∩ H) = ϕ(M ∩ R) = ϕ(R) = S = M ∩ S = M ∩ P ∩ K = N ∩ K .

Therefore G is πc. �

Corollary 3.12. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is a polycyclic-by-finite group or

a free-by-finite group or a finite extension of a finitely generated nilpotent group with

subgroups H,K such that H ∩ K = 1. Suppose that there exist C ≤ H, D ≤ K such that

C,D ⊆ Z(A) are finitely generated with |H : C | < ∞, |K : D| < ∞ and ϕ(C) = D. Then

G is πc.

Next we examine the case when H ∩ K , 1.

Lemma 3.13. Let A be central subgroup separable with subgroups H, K where H∩K , 1.

Let ϕ : H → K be an isomorphism from H onto K . Suppose that there exists Q ≤ H ∩ K

such that Q ⊆ Z(A) is finitely generated with |H : Q | < ∞, |K : Q | < ∞ and ϕ(Q) = Q.

Then for any M � f A, there exists N � f A such that N ⊆ M and ϕ(N ∩ H) = N ∩ K .

Proof. Let R = M ∩ Q. Then R � f Q. Suppose that R has index k in Q. Since Q is

finitely generated, there exist only a finite number of subgroups of index k in Q. Let

R0 be the intersection of all these subgroups. Then R0 ⊂ R and R0 is a characteristic

subgroup of finite index in Q. Since ϕ(Q) = Q, we have ϕ(R0) = R0. Note that R0 � f H

and R0 � f K . Note also that A is R0–separable for R0 ⊆ Z(A) is finitely generated and

A is central subgroup separable. Thus, by Lemma 2.13, we have M1 � f A and M2 � f A

where M1 ∩ H = R0 = M2 ∩ K . Let N = M ∩ M1 ∩ M2. Then N � f A and N ⊂ M.

Furthermore, we have N ∩ H = M ∩ M1 ∩ M2 ∩ H = R0 = M ∩ M1 ∩ M2 ∩ K = N ∩ K .

Hence ϕ(N ∩ H) = ϕ(R0) = R0 = N ∩ K . �
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Theorem 3.14. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is πc and central subgroup

separable with subgroups H,K where H ∩ K , 1. Suppose there exists Q ≤ H ∩ K such

that Q ⊆ Z(A) is finitely generated with |H : Q | < ∞, |K : Q | < ∞ and ϕ(Q) = Q. Then

G is πc.

Proof. Note that A is Q–separable for Q ⊆ Z(A) is finitely generated and A is central

subgroup separable. Hence, by Lemma 2.12, A is H–separable and K–separable. By

Lemma 3.13, for any M� f A, there exists N � f A such that N ⊆ M and ϕ(N∩H) = N∩K .

Therefore, by Theorem 3.1, G is πc. �

Corollary 3.15. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is a polycyclic-by-finite group or

a free-by-finite group or a finite extension of a finitely generated nilpotent group with

subgroups H,K where H ∩ K , 1. Suppose that there exist C ≤ H, D ≤ K such that

C,D ⊆ Z(A) are finitely generated with |H : C | < ∞ and |K : D| < ∞. Suppose that

(i) CD � f H ∩ K with |H : CD| < ∞, |K : CD| < ∞ and ϕ(CD) = CD; or

(ii) C ∩ D � f H, C ∩ D � f K and ϕ(C ∩ D) = C ∩ D.

Then G is πc.

Proof. (i) If CD � f H ∩ K and ϕ(CD) = CD, we let Q = CD. (ii) If C ∩ D � f H,

C ∩ D � f K and ϕ(C ∩ D) = C ∩ D, we let Q = C ∩ D. Then the result follows from

Theorem 3.14. �

Suppose that we let C = H and D = K in Theorems 3.11 and Corollary 3.15(b). Thus

we will have the same result as in Theorems 2 and 3 of Wong and Gan (1999). Furthermore,

if A is a finitely generated abelian group, then we have the following which are actually the

result of Wong and Gan (1999).
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Corollary 3.16. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is a finitely generated abelian

group. Suppose that

(a) H ∩ K = 1; or

(b) H = K; or

(c) H ∩ K � f H, H ∩ K � f K and ϕ(H ∩ K) = H ∩ K .

Then G is πc.

Wong andWong (2007) have shown that certain generalized free products amalgamating

finitely generated normal subgroups are πc. Here, we shall show that certain HNN

extensions associating finitely generated normal subgroups are πc. We need the following

two lemmas of Wong and Wong (2007).

Lemma 3.17. Let H be a finitely generated group and R� f H. Then there exists fH(R) ⊆ R

such that fH(R) is a characteristic subgroup of finite index in H.

Lemma 3.18. Let A be subgroup separable with H,K � A are finitely generated and

H ∩K = 1. Then for each R� f H and S� f K , there exist fH(R) ⊆ R, fK(S) ⊆ S such that

fH(R), fK(S) are characteristic subgroups of finite index in H,K respectively. Furthermore,

there exists N � f A such that N ∩ H = fH(R), N ∩ K = fK(S) and NH ∩ NK = N .

Theorem 3.19. LetG = 〈A, t | t−1Ht = K, ϕ〉 where A is subgroup separable with H,K�A

are finitely generated and H ∩ K = 1. Then G is πc.

Proof. We shall use Theorem 3.1. First, note that A is πc, H–separable, and K–separable

for A is subgroup separable. Next, let M � f A be given. Let R = M ∩ H ∩ ϕ−1(M ∩ K).

Then R � f H. By Lemma 3.17, there exists fH(R) ⊆ R such that fH(R) is a characteristic

subgroup of finite index in H. Since ϕ is an isomorphism, then S = ϕ
(
fH(R)

)
⊆ ϕ(R) is a

characteristic subgroup of finite index in K . Now by Lemma 3.18, there exists N1 � f A
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such that N1 ∩ H = fH(R), N1 ∩ K = S and N1H ∩ N1K = N1. We also have

ϕ(N1 ∩ H) = ϕ( fH(R)) = S = N1 ∩ K .

Let N = M ∩ N1. Then N � f A. Finally, we need to show that ϕ(N ∩ H) = N ∩ K . Now

N∩H = M∩N1∩H = N1∩H for N1∩H ⊂ R ⊂ M . Also N∩K = M∩N1∩K = N1∩K

for N1 ∩ K ⊂ ϕ(R) ⊂ M . Hence ϕ(N ∩ H) = N ∩ K . Therefore G is πc. �
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CHAPTER 4: WEAK POTENCY OF GENERALIZED FREE PRODUCTS

4.1 Introduction

In this chapter, we shall investigate the weak potency of certain generalized free products.

First, we shall prove a criterion (Theorem 4.1 below) for generalized free products of

weakly potent groups to be weakly potent. Then our criterion will be applied to the

generalized free products G = A ∗H B where (i) H is finite (Theorem 4.3), (ii) H = 〈h〉

or H = 〈h〉 × D where 〈h〉 is infinite cyclic and D is a finite subgroup (Theorem 4.4 and

Theorem 4.5), and finally (iii) H is a finite extension of a central subgroup (Theorem 4.8).

Furthermore, we shall extend Theorem 4.5 to tree products of finitely many groups in

Theorem 4.14.

4.2 The Criterion

In this section, we prove the following criterion.

Theorem 4.1. Let G = A ∗H B. Suppose that

(a) A and B are H–separable;

(b) for each R� f H, there exist PA� f A and PB � f B such that PA∩H = PB∩H ⊆ R;

and

(c) for any infinite order element x ∈ A (or x ∈ B), there is a positive integer r,

such that for each positive integer n, there exist M � f A and N � f B such that

M ∩ H = N ∩ H and M ∩ 〈x〉 = 〈xrn〉 (or N ∩ 〈x〉 = 〈xrn〉 if x ∈ B).

Then G is weakly potent.

Proof. Let x ∈ G such that |x | = ∞.

Case 1. Suppose that ‖x‖ ≤ 1, that is x ∈ A ∪ B. We may assume without loss of

generality that x ∈ A. Now by (c), there is a positive integer r , such that for each positive

integer n, there exist M � f A and N � f B such that M ∩H = N ∩H and M ∩ 〈x〉 = 〈xrn〉.
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Now we form Ḡ = Ā ∗H̄ B̄ such that Ā = A/M, B̄ = B/N and H̄ = HM/M = HN/N .

Clearly | x̄ | = rn in the homomorphic image Ḡ of G. Since Ā and B̄ are finite, then by

Lemma 2.2, Ḡ is residually finite. Thus, there is an L̄ � f Ḡ such that x̄, x̄2, . . . , x̄rn−1 < L̄

but x̄rn ∈ L̄. Let L be the preimage of L̄ in G. Thus, L � f G and |xL | = rn in the finite

group G/L.

Case 2. Suppose that ‖x‖ > 1, that is x < A ∪ B and x is reduced.

Subcase 2.1. Suppose that x is cyclically reduced. Without loss of generality, let

x = a1b1a2b2, . . . , anbn where ai ∈ A\H and bi ∈ B\H for all i = 1, . . . , n. By (a),

there exist P1 � f A and Q1 � f B such that ai < P1H and bi < Q1H for all i. Let

R = P1 ∩Q1. This implies R � f H. By assumption (b), we have P2 � f A and Q2 � f B

where P2 ∩H = Q2 ∩H ⊆ R. Let M = P1 ∩ P2 and N = Q1 ∩Q2. Then M � f A, N � f B

and ai < MH and bi < NH for all i. Now we show that M ∩ H = N ∩ H. First, note that

P2 ∩ H ⊆ R ⊆ P1 and Q2 ∩ H ⊆ R ⊆ Q1. So we have

M ∩ H = P1 ∩ P2 ∩ H

= P2 ∩ H

= Q2 ∩ H

= Q1 ∩Q2 ∩ H

= N ∩ H.

Now we form Ḡ as in Case 1. Note that ‖ x̄‖ = ‖x‖ in Ḡ and hence, | x̄ | = ∞. Since Ā and

B̄ are finite, then by Lemma 2.2, Ḡ is weakly potent. Then we can find a positive integer r

with the property that for each positive integer n, there exists L̄ � f Ḡ such that | x̄ L̄ | = rn

in Ḡ/L̄. Let L be the preimage of L̄ in G. Then L � f G and xL has order exactly rn in

the finite group G/L.
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Subcase 2.2. Suppose that x is not cyclically reduced. Then x is conjugate to a

cyclically reduced element x′ of G. By Case 1 or Subcase 2.1, there exists L � f G such

that x′L has order exactly rn in the finite group G/L. Note that |xL | = rn in the finite

group G/L. Thus, the proof is now complete. �

4.3 Generalized Free Products Amalgamating Various Subgroups

In this section, we shall apply our criterion to certain generalized free products. Theorem

4.3 is a known and useful result. For completeness, we give a proof. We begin with the

following obvious lemma.

Lemma 4.2. Let A be a residually finite group with a finite subgroup H. Then A is

H–separable.

Theorem 4.3. (Lim, 2012) Let G = A ∗H B where A and B are residually finite and weakly

potent. Suppose that H is finite. Then G is weakly potent.

Proof. We shall prove by using Theorem 4.1. Note that A and B are H–separable by

Lemma 4.2. This proves (a) in Theorem 4.1.

Next, suppose that we are given any R � f H. For A, B are residually finite and

H is finite, we have PA � f A and PB � f B such that PA ∩ H = 1 = PB ∩ H. Thus,

PA ∩ H = PB ∩ H = 1 ⊂ R. This proves (b) in Theorem 4.1.

Now we show (c) in Theorem 4.1. Let x ∈ A such that |x | = ∞. Again since

A, B are residually finite and H is finite, we have M1 � f A and N1 � f B such that

M1 ∩ H = 1 = N1 ∩ H. Let M1 ∩ 〈x〉 = 〈xs〉 for some integer s > 0. By the weak potency

of A, there is a positive integer r such that for each positive integer n, there exists M2 � f A

such that M2 ∩ 〈x〉 = 〈xrsn〉. Let M = M1 ∩ M2 and N = N1. Then M � f A, N � f B and

M ∩ 〈x〉 = 〈xrsn〉. Furthermore, M ∩ H = M1 ∩ M2 ∩ H = 1 = N2 ∩ H = N ∩ H. Thus,

the proof is now complete. �
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Next we prove the weak potency of generalized free products amalgamating an infinite

cyclic subgroup. The following theorem appeared in (Wong et al. 2010) but there are

some overlooked cases in the proof. Here we prove the theorem using Theorem 4.1.

Theorem 4.4. Let G = A ∗H B where H = 〈h〉 is an infinite cyclic group. Suppose that A

and B are weakly potent and 〈h〉–separable. Then G is weakly potent.

Proof. Suppose that we are given any R � f H. Then R = 〈hk〉 for some k > 0. Since A

and B are weakly potent, by Remark 2.7, there exists a positive integer r1 such that for

each positive integer n, there exists PA � f A such that PA ∩ 〈h〉 = 〈hr1n〉. For this case,

we choose n = r2k. Hence we have PA ∩ 〈h〉 = 〈hr1r2k〉. By Remark 2.7 also, we can find

a positive integer r2 such that for each positive integer n, there exists PB � f B such that

PB ∩ 〈h〉 = 〈hr2n〉. For this case, we choose n = r1k. Hence we have PB ∩ 〈h〉 = 〈hr1r2k〉.

Therefore, PA ∩ 〈h〉 = PB ∩ 〈h〉 = 〈hr1r2k〉 ⊆ R.

Next, let x ∈ A such that |x | = ∞. By Remark 2.7, we let M1 � f A be such that

M1 ∩ 〈h〉 = 〈hr1r2〉. Suppose that M1 ∩ 〈x〉 = 〈xs〉 for some integer s > 0. By weak

potency of A, there is a positive integer r such that for each positive integer n, there exists

M2� f A such that M2∩ 〈x〉 = 〈xrsn〉. Let M = M1∩M2. Then M � f A, M∩ 〈x〉 = 〈xrsn〉

and

M ∩ 〈h〉 = 〈hr1r2t〉

for some integer t > 0. By weak potency of B, again by Remark 2.7, we let N � f B be

such that

N ∩ 〈h〉 = 〈hr1r2t〉.

Thus, we have M ∩ 〈h〉 = N ∩ 〈h〉. Therefore, by Theorem 4.1, G is weakly potent. �
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Now we apply our criterion to generalized free products of weakly potent groups

amalgamating the subgroup of the form 〈h〉 × D, where D is finite.

Theorem 4.5. Let G = A ∗H B, where H = 〈h〉 × D such that |h| = ∞ and D is finite.

Suppose that A and B are weakly potent and 〈h〉–separable. Then G is weakly potent.

Proof. By Lemma 2.6, A and B are H–separable. By Lemma 2.8, for each R � f H, we

have PA � f A and PB � f B where PA ∩ H = PB ∩ H ⊆ R.

Now we show the following. Let x ∈ A such that |x | = ∞. Since A, B are 〈h〉–

separable, 〈h〉 ∩ D = 1 and D is finite, we have M1 � f A and N1 � f B such that

M1〈h〉 ∩ D = 1 = N1〈h〉 ∩ D. Let M1 ∩ 〈h〉 = 〈hs1〉 and N1 ∩ 〈h〉 = 〈hs2〉 for some

integers s1, s2 > 0. By Remark 2.7, let M2 � f A be such that M2 ∩ 〈h〉 = 〈hr1r2s1s2〉.

Suppose that M1 ∩ M2 ∩ 〈x〉 = 〈xs〉 for some integer s > 0. For A is weakly potent, there

is a positive integer r such that for each positive integer n, we have M3 � f A such that

M3 ∩ 〈x〉 = 〈xrsn〉. Let M = M1 ∩ M2 ∩ M3. Then M � f A, M ∩ 〈x〉 = 〈xrsn〉 and

M ∩ 〈h〉 = 〈hr1r2s1s2t〉

for some integer t > 0. By weak potency of B, again by Remark 2.7, we let N2 � f B be

such that N2 ∩ 〈h〉 = 〈hr1r2s1s2t〉. Let N = N1 ∩ N2. Then N � f B and

N ∩ 〈h〉 = 〈hr1r2s1s2t〉.

Thus, we have M ∩ 〈h〉 = N ∩ 〈h〉 and also M 〈h〉 ∩ D = 1 = N 〈h〉 ∩ D. Since

M ∩
(
〈h〉 × D

)
= M ∩ 〈h〉 and N ∩

(
〈h〉 × D

)
= N ∩ 〈h〉, we then have M ∩ H = N ∩ H.

Therefore, by Theorem 4.1, G is weakly potent. �
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Corollary 4.6. Let G = A ∗H B where H = 〈h〉 × D such that D is finite. Suppose that

A and B are finite extensions of a finitely generated nilpotent groups. Then G is weakly

potent.

Proof. If |h| < ∞ and since D is finite, then H is finite. Thus, by Theorem 4.3, G is

weakly potent. If |h| = ∞, then G is weakly potent by Theorem 4.5. �

Finally, we shall apply our criterion (Theorem 4.1) to certain generalized free products

of weakly potent groups amalgamating finite extensions of a central subgroup. We begin

with the following lemma of Wong and Wong (2014).

Lemma 4.7. Let C be a finitely generated abelian group and c ∈ C where |c | = ∞. Then

for any positive integer n, there exists a characteristic subgroup Rch of finite index in C

such that Rch ∩ 〈c〉 = 〈cn〉.

Theorem 4.8. Let G = A ∗H B. Suppose there exists C ≤ H such that C ⊆ Z(A) ∩ Z(B) is

finitely generated with |H : C | < ∞. Suppose that A and B are central subgroup separable

and A/C, B/C are weakly potent. Then G is weakly potent.

Proof. We shall use Theorem 4.1. Note that A and B are C–separable for A and B are

central subgroup separable. Thus, by Lemma 2.12, A and B are H–separable. Now

suppose that we are given any R � f H. Let RC = R ∩ C. Then RC � f C. Note that

RC � A and RC � B is finitely generated for RC is a subgroup of finite index in the finitely

generated subgroup C. Furthermore, |H : RC | < ∞ since |H : C | < ∞. Then by Lemma

2.13, there exist PA � f A and PB � f B such that PA ∩ H = PB ∩ H = RC ⊆ R.

Next we show the following. Let x ∈ A such that |x | = ∞. Note that C is a finitely

generated abelian group.
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Case 1. Suppose that C ∩ 〈x〉 = 1. Then |xC | = ∞. Now form Ḡ = A/C ∗H/C B/C.

Clearly, Ḡ is a homomorphic image of G. Note that Ā = A/C and B̄ = B/C are residually

finite by Lemma 2.11. Furthermore, since they are weakly potent and H/C is finite, then

by Theorem 4.3, Ḡ is weakly potent. Denote x̄ = xC. Thus, we can find a positive

integer r such that for each positive integer n, there exists L̄ � f Ḡ such that | x̄ L̄ | = rn

in Ḡ/L̄. Let L be the preimage of L̄ in G. Then L � f G and |xL | = rn in G/L. This

implies L ∩ 〈x〉 = 〈xrn〉. Now let M = L ∩ A and N = L ∩ B. This implies M � f A

and N � f B. Furthermore, we have M ∩ 〈x〉 = L ∩ A ∩ 〈x〉 = L ∩ 〈x〉 = 〈xrn〉 and

M ∩ H = L ∩ A ∩ H = L ∩ H = L ∩ B ∩ H = N ∩ H.

Case 2. Suppose that C ∩ 〈x〉 = 〈xr〉 for some integer r > 0. By Lemma 4.7, there

exists a characteristic subgroup Rch of finite index in C such that Rch ∩ 〈xr〉 = 〈xrn〉 for

any positive integer n. Hence

Rch ∩ 〈x〉 = Rch ∩ C ∩ 〈x〉 = Rch ∩ 〈xr〉 = 〈xrn〉.

Note that Rch is a finitely generated normal subgroup of A and of B. Furthermore, Rch� f H.

Now we form Ḡ = Ā ∗H̄ B̄ where Ā = A/Rch, B̄ = B/Rch and H̄ = H/Rch. Note that, in

Ḡ, | x̄ | = rn and A, B are Rch–separable for A and B are central subgroup separable and

Rch ⊂ Z(A)∩Z(B) is finitely generated. Then by Lemma 2.11, Ā and B̄ are residually finite.

Then, for H̄ is finite, Ḡ is residually finite by Theorem 3 of Baumslag (1963). Thus, there

exists L̄ � f Ḡ such that x̄, x̄2, . . . , x̄rn−1 < L̄ but x̄rn ∈ L̄. This implies L̄ ∩ 〈x̄〉 = 〈x̄rn〉.

Let L be the preimage of L̄ in G. Then L � f G and L ∩ 〈x〉 = 〈xrn〉. Now as in Case 1,

we let M = L ∩ A and N = L ∩ B. Thus, we will have M � f A, N � f B, M ∩ 〈x〉 = 〈xrn〉

and M ∩ H = N ∩ H. Therefore our result now follows from Theorem 4.1. �
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Remark 4.9. Let A be a finite extension of a finitely generated nilpotent group. Then

there exists T � f A where T is a finitely generated nilpotent group. If there exists N � A,

then T N/N � T/(T ∩ N) is finitely generated nilpotent and T N is a normal subgroup of

finite index in A. Hence, A/N is weakly potent and subgroup separable.

Thus, by Theorem 4.8, we have the following.

Corollary 4.10. Let G = A ∗H B where A and B are finite extensions of a finitely generated

nilpotent groups. Suppose there exists C ≤ H such that C ⊆ Z(A) ∩ Z(B) is finitely

generated with |H : C | < ∞. Then G is weakly potent.

4.4 Tree Products

Note that Lim (2012) and Wong et al. (2010) have proved the weak potency of the

tree products of weakly potent groups amalgamating finite subgroups and amalgamating

infinite cyclic subgroups respectively. In this section, we shall extend Theorem 4.5 to tree

products of finitely many groups. We need the following lemma of Kim (1992).

Lemma 4.11. Let G = A ∗H B, where A and B are H–separable. Suppose that for each

R � f H, there exist M � f A and N � f B such that M ∩ H = N ∩ H ⊆ R. Let K be any

subgroup of B such that B is K–separable. Then G is K–separable.

From Lemma 4.11, we can obtain the following lemma.

Lemma 4.12. Let G = A ∗H B where H = 〈h〉 × D such that |h| = ∞ and D is finite.

Suppose that A and B are weakly potent and 〈h〉–separable. Let K be any subgroup of B

such that B is K–separable. Then G is K–separable.

Proof. By Lemma 2.6, A and B are H–separable. Since A and B are 〈h〉–separable and

〈h〉–wpot, by Lemma 2.8, for each R � f H, there exist M � f A and N � f B such that

M ∩ H = N ∩ H ⊆ R. Thus, our result follows from Lemma 4.11. �
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We need an additional assumption that G is weakly potent in order to extend Lemma

4.12 to a tree product.

Lemma 4.13. Let G = 〈G1, . . . ,Gn | Hi j = Hji〉 be a tree product of G1, . . . ,Gn

amalgamating the subgroups Hi j ≤ Gi and Hji ≤ G j where Hi j ∩ Hik = 1 for j , k.

Suppose that each Hi j = 〈hi j〉 × Di j such that |hi j | = ∞ and Di j is finite. Suppose

furthermore that each Gi is 〈hi j〉–separable and G is weakly potent. Let K be any subgroup

of Gr such that Gr is K–separable where 1 ≤ r ≤ n. Then G is K–separable.

Proof. First, note that each Gi is weakly potent since we assume G to be weakly potent.

Now we prove by induction on n. The case n = 2 follows from Lemma 4.12. For the case

n ≥ 3, let G = G′ ∗H Gn as in Lemma 2.17. Now by induction, G′ is 〈h(n−1)n〉–separable.

Note that Gn is 〈hn(n−1)〉–separable by our assumption. Furthermore, G′ and Gn are weakly

potent since G is weakly potent.

Suppose K < G′. By induction, G′ is K–separable. Then by Lemma 4.12, G is

K–separable.

Suppose K < Gn. By our assumption, Gn is K–separable. Then again, by Lemma 4.12,

G is K–separable. �

Now we can extend Theorem 4.5 to tree products as follows.

Theorem 4.14. Let G = 〈G1, . . . ,Gn | Hi j = Hji〉 be a tree product of G1, . . . ,Gn

amalgamating the subgroups Hi j ≤ Gi and Hji ≤ G j where Hi j ∩ Hik = 1 for j , k.

Suppose that each Hi j = 〈hi j〉 ×Di j such that each |hi j | = ∞ and Di j is finite. Furthermore,

suppose that each Gi is 〈hi j〉–separable and weakly potent. Then G is weakly potent.

Proof. We shall proof by using induction on n. For the case n = 2, our result will follows

from Theorem 4.5. For the case n ≥ 3, let G = G′ ∗H Gn as in Lemma 2.17. By induction

hypothesis, G′ is weakly potent. By assumption, each Gi is 〈hi j〉–separable. In particular,
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Gn−1 is 〈h(n−1)n〉–separable. Then by Lemma 4.13, G′ is 〈h(n−1)n〉–separable. Next, by our

assumption, Gn is 〈hn(n−1)〉–separable and weakly potent. Therefore, by Theorem 4.5, G is

weakly potent. �
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CHAPTER 5: WEAK POTENCY OF HNN EXTENSIONS

5.1 Introduction

In this chapter, we shall investigate the weak potency of HNN extensions of weakly

potent groups. It has been shown by Wong et al. (2010) that the HNN extension G =

〈A, t | t−1Ht = K, ϕ〉 where the base group A is weakly potent and H = 〈h〉, K = 〈k〉 are

infinite cyclic with hm = k±m for some m > 0 is again weakly potent. We will expand on

this theorem.

As in the previous chapter, we first prove a criterion (Theorem 5.2 below) for the weak

potency of HNN extensions of weakly potent group. Then we apply our criterion to the

HNN extension G = 〈A, t | t−1Ht = K, ϕ〉 where (i) H, K are finite (Theorem 5.3), (ii)

H = 〈h〉, K = 〈k〉 or H = 〈h〉 × D, K = 〈k〉 × E where 〈h〉, 〈k〉 are infinite cyclic and

D, E are finite (Theorem 5.4, Theorem 5.5, Theorem 5.6 and Theorem 5.7) and finally (iii)

H,K are finite extensions of central subgroups (Theorem 5.10).

5.2 The Criterion

In this section, we prove Theorem 5.2, which is similar to Theorem 3.2 of Wong and

Wong (2014). The following lemma is known to many researchers in this area (see (Karras

& Solitar, 1970; Evans, 1974; Wong, 1993).

Lemma 5.1. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is a finite group. Then G is free-by-

finite, and hence, weakly potent and subgroup separable .
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Theorem 5.2. Let G = 〈A, t | t−1Ht = K, ϕ〉. Suppose that

(a) A is residually finite, H–separable and K–separable; and

(b) for each M � f A, there exists P � f A such that P ⊆ M and ϕ(P ∩ H) = P ∩ K .

Then G is weakly potent if and only if, for any a ∈ A of infinite order, we can find a positive

integer r such that for each positive integer n, there exists N � f A such that N ∩ 〈a〉 = 〈arn〉

and ϕ(N ∩ H) = N ∩ K .

Proof. Suppose that G is weakly potent. Let a ∈ A such that |a| = ∞. Then, we can find

a positive integer r such that for each positive integer n, there exists L � f G such that

L∩〈a〉 = 〈arn〉. Let N = L∩A. Then N� f A and N∩〈a〉 = L∩A∩〈a〉 = L∩〈a〉 = 〈arn〉.

Furthermore, we have N ∩H = L ∩ A∩H = L ∩H and hence ϕ(N ∩H) = t−1(L ∩H)t =

t−1Lt ∩ t−1Ht = L ∩ K = L ∩ A ∩ K = N ∩ K .

Conversely, let x ∈ G such that |x | = ∞.

Case 1. Suppose that ‖x‖ = 0, that is x ∈ A. By our assumption, there is a positive integer

r such that for each positive integer n, there exists N � f A such that N ∩ 〈x〉 = 〈xrn〉 and

ϕ(N∩H) = N∩K . Now we form Ḡ = 〈Ā, t | t−1H̄t = K̄, ϕ̄〉 where Ā = A/N, H̄ = HN/N ,

K̄ = KN/N and ϕ̄ is the induced homomorphism of ϕ. Clearly, | x̄ | = rn in the

homomorphic image Ḡ of G. Now since Ā is finite, by Lemma 5.1, Ḡ is residually finite.

Hence there exists L̄ � f Ḡ such that x̄, x̄2, . . . , x̄rn−1 < L̄ but x̄rn ∈ L̄. Clearly, Ḡ/L̄ is a

finite group in which | x̄ L̄ | = rn. Let L be the preimage of L̄ in G. Then L � f G and the

order of xL is exactly rn in the finite group G/L.

Case 2. Suppose that ‖x‖ ≥ 1.

Subcase 2.1. Suppose that x is cyclically reduced. We may assume without loss of

generality that x = a0tε1a1tε2 . . . tεnan, where ai ∈ A and n ≥ 1. By (a), there exists

M � f A such that ai < HM if ai < H, ai < K M if ai < K and ai < M if ai ∈ H ∩ K\{1}
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for all i = 1, . . . , n. By assumption (b), there exists P � f A such that P ⊆ M and

ϕ(P ∩ H) = P ∩ K . Let N = M ∩ P. Then N � f A and ai < HN if ai < H, ai < KN if

ai < K and ai < N if ai ∈ H ∩ K\{1} for all i = 1, . . . , n. Furthermore, we have

ϕ(N ∩ H) = ϕ(M ∩ P ∩ H) = ϕ(P ∩ H) = P ∩ K = M ∩ P ∩ K = N ∩ K .

Now as in Case 1, we form Ḡ. Then x̄ ∈ Ḡ is cyclically reduced, ‖ x̄‖ = ‖x‖ with | x̄ | = ∞.

Since Ā is finite, Ḡ is weakly potent by Lemma 5.1. Thus, we can find a positive integer r

such that for each positive integer n, there exists L̄ � f Ḡ such that | x̄ L̄ | = rn in Ḡ/L̄. Let

L be the preimage of L̄ in G. Then L � f G and xL has order exactly rn in the finite group

G/L.

Subcase 2.2. Suppose that x is not cyclically reduced. Then x is conjugate to a

cyclically reduced element x′ of G. By Case 1 or Subcase 2.1, there exists L � f G such

that x′L has order exactly rn in the finite group G/L. Note that the order of xL is exactly

rn in the finite group G/L. Thus, the proof is now complete. �

5.3 HNN Extensions with Various Associated Subgroups

We begin by proving the following useful and known result (Theorem 5.3). For

completeness, we give a proof here.

Theorem 5.3. (Lim, 2012) Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is residually finite and

weakly potent. Suppose that H and K are finite. Then G is weakly potent.

Proof. Note that A is H–separable and K–separable by Lemma 4.2. Let M � f A be

given. Since H,K are finite and A is residually finite, there exists M0 � f A such that

M0 ∩ H = 1 = M0 ∩ K . Let P = M ∩M0. Then P � f A, P ⊆ M and P ∩ H = 1 = P ∩ K .

Hence ϕ(P ∩ H) = P ∩ K .
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Now let a ∈ A such that |a| = ∞. Again, since H and K are finite, we have N0 � f A

such that N0 ∩ H = 1 = N0 ∩ K . Let N0 ∩ 〈a〉 = 〈as〉 for some integer s > 0. Since A

is weakly potent, we can find a positive integer r with the property that for each positive

integer n, there exists N1 � f A such that N1 ∩ 〈a〉 = 〈arsn〉. Let N = N0 ∩ N1. Then

N � f A, N ∩ 〈a〉 = 〈arsn〉 and N ∩H = 1 = N ∩K . Hence ϕ(N ∩H) = N ∩K . Therefore

G is weakly potent by Theorem 5.2. �

We now consider the HNN extensions G = 〈A, t | t−1Ht = K, ϕ〉, where H = 〈h〉,

K = 〈k〉 are infinite cyclic.

Theorem 5.4. Let G = 〈A, t | t−1Ht = K, ϕ〉 where H = 〈h〉, K = 〈k〉 are infinite cyclic.

Suppose that A is residually finite, weakly potent, 〈h〉–separable and 〈k〉–separable. If

h ∼A k, then G is weakly potent.

Proof. We shall prove by using Theorem 5.2. By Lemma 3.2(i), for each M � f A, there

exists P � f A such that P ⊆ M and ϕ(P ∩ 〈h〉) = P ∩ 〈k〉.

Now let any a ∈ A such that |a| = ∞. Since A is weakly potent, there is a positive

integer r such that for each positive integer n, there exists N � f A such that N ∩ 〈a〉 = 〈arn〉.

Suppose that N ∩ 〈h〉 = 〈hε〉 for some ε > 0. Since h = bkb−1 for some b ∈ A, as we have

shown in the proof of Lemma 3.2(i), we have N ∩ 〈k〉 = 〈kε〉. Thus, ϕ(N ∩ 〈h〉) = N ∩ 〈k〉.

Therefore, by Theorem 5.2, G is weakly potent. �

Wong et al. (2010) have proved that HNN extensions of weakly potent groups with

cyclic associated subgroups having non-trivial intersection are weakly potent (see Theorem

3.1 of Wong et al., 2010). But there are some overlooked cases in the proof. In this thesis,

we shall prove the theorem using the criterion.
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Theorem 5.5. (Wong et al., 2010) Let G = 〈A, t | t−1Ht = K, ϕ〉 where H = 〈h〉, K = 〈k〉

are infinite cyclic with 〈h〉 ∩ 〈k〉 , 1. Suppose that A is residually finite, weakly potent,

〈h〉–separable and 〈k〉–separable. Then G is weakly potent if and only if hm = k±m for

some m > 0.

Proof. Suppose that G is weakly potent. Since 〈h〉 ∩ 〈k〉 , 1, let hm = kp for some

non-zero integers m, p. Then, there is a positive integer r such that for each positive

integer n, we have L � f G such that h̄ = hL has order exactly rn in Ḡ = G/L. Choose

n = |p| |m|. Then | h̄m | = (r |p| |m|)/|m| = r |p| and | h̄p | = r |m|. Since h̄p is conjugate to

h̄m in Ḡ = G/L, we have r |m| = r |p|, and therefore, |m| = |p|.

For the converse, we shall use Theorem 5.2. By Lemma 3.2(ii), for each M � f A, there

exists P � f A such that P ⊆ M and ϕ(P ∩ 〈h〉) = P ∩ 〈k〉.

Next, we show the following. Let a ∈ A such that |a| = ∞. By Remark 2.7, there exist

positive integers r1, r2 such that for each positive integer n, there exist M1� f A and M2� f A

such that M1 ∩ 〈h〉 = 〈hr1n〉 and M2 ∩ 〈k〉 = 〈kr2n〉. Choose n = r2m for M1 and n = r1m

for M2 for some m > 0. Thus, we have M1 ∩ 〈h〉 = 〈hr1r2m〉 and M2 ∩ 〈k〉 = 〈kr1r2m〉.

Suppose that M1 ∩ M2 ∩ 〈a〉 = 〈as〉 for some integer s > 0. Since A is weakly potent,

there is a positive integer r such that for each positive integer n, there exists M3 � f A such

that M3 ∩ 〈a〉 = 〈arsn〉. Let N = M1 ∩ M2 ∩ M3. Then N � f A and N ∩ 〈a〉 = 〈arsn〉.

Furthermore, we have

N ∩ 〈h〉 = M1 ∩ M2 ∩ M3 ∩ 〈h〉

= M2 ∩ M3 ∩ 〈hr1r2m〉

= M2 ∩ M3 ∩ 〈kr1r2m〉

= M3 ∩ 〈kr1r2m〉

43

Univ
ers

ity
 of

 M
ala

ya



= M3 ∩ 〈hr1r2m〉,

and

N ∩ 〈k〉 = M1 ∩ M2 ∩ M3 ∩ 〈k〉

= M1 ∩ M3 ∩ 〈kr1r2m〉

= M1 ∩ M3 ∩ 〈hr1r2m〉

= M3 ∩ 〈hr1r2m〉.

This implies N ∩ 〈h〉 = N ∩ 〈k〉. Now suppose that N ∩ 〈h〉 = 〈hr1r2mq〉 for some q > 0.

Then, N ∩ 〈k〉 = 〈hr1r2mq〉. Hence, ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Therefore, by Theorem 5.2, G

is weakly potent. �

We now consider HNN extensions G = 〈A, t | t−1Ht = K, ϕ〉 as defined in Remark 3.5.

Theorem 5.6. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is

residually finite, weakly potent, 〈h〉–separable and 〈k〉–separable. If h ∼A k, then G is

weakly potent.

Proof. We shall prove by using Theorem 5.2. By Lemma 2.6, A is H–separable and

K–separable. By Lemma 3.6(i), for each M � f A, there exists P � f A such that P ⊆ M

and ϕ(P ∩ H) = P ∩ K .

Next, we show the following. Let a ∈ A such that |a| = ∞. Since A is 〈h〉–separable

and 〈k〉–separable, D, E are finite and 〈h〉 ∩ D = 1 = 〈k〉 ∩ E , there exists M′ � f A such

that M′〈h〉 ∩ D = 1 = M′〈k〉 ∩ E . Suppose that M′ ∩ 〈a〉 = 〈as〉 for some integer s > 0.

Since A is weakly potent, we can find a positive integer r such that for each positive integer

n, there exists M0 � f A such that M0 ∩ 〈a〉 = 〈arsn〉. Let N = M′ ∩ M0. Then N � f A,

44

Univ
ers

ity
 of

 M
ala

ya



N ∩ 〈a〉 = 〈arsn〉 and N 〈h〉 ∩ D = 1 = N 〈k〉 ∩ E . Suppose that N ∩ 〈h〉 = 〈hε〉 for some

ε > 0. Then, as shown in the proof of Lemma 3.2(i), we have N ∩ 〈k〉 = 〈kε〉. Hence,

ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Since N ∩
(
〈h〉 × D

)
= N ∩ 〈h〉 and N ∩

(
〈k〉 × E

)
= N ∩ 〈k〉,

we have ϕ(N ∩ H) = N ∩ K . Therefore G is weakly potent by Theorem 5.2. �

Theorem 5.7. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is

residually finite, weakly potent, 〈h〉–separable, 〈k〉–separable and 〈h〉 ∩ 〈k〉 , 1. Then G

is weakly potent if and only if hm = k±m for some m > 0.

Proof. The first part of the proof is similar to that in the proof of Theorem 5.5. Now

suppose that hm = k±m for some m > 0. We shall use Theorem 5.2. By Lemma 2.6, A is

H–separable and K–separable. By Lemma 3.6(ii), for each M � f A, there exists P � f A

such that P ⊆ M and ϕ(P ∩ H) = P ∩ K .

Next, we show the following. Let a ∈ A such that |a| = ∞. Since A is 〈h〉–separable and

〈k〉–separable, D, E are finite and 〈h〉 ∩ D = 1 = 〈k〉 ∩ E , there exists M′ � f A such that

M′〈h〉 ∩ D = 1 = M′〈k〉 ∩ E . Now, let M′ ∩ 〈h〉 = 〈hs1〉 and M′ ∩ 〈k〉 = 〈k s2〉 for some

integers s1, s2 > 0. As noted in Remark 2.7, there exist positive integers r1, r2 such that

for each positive integer n, there exist M1 � f A and M2 � f A such that M1 ∩ 〈h〉 = 〈hr1n〉

and M2 ∩ 〈k〉 = 〈kr2n〉. Choose n = r2s1s2m for M1 and n = r1s1s2m for M2 for some

m > 0. This, we have M1 ∩ 〈h〉 = 〈hr1r2s1s2m〉 and M2 ∩ 〈k〉 = 〈kr1r2s1s2m〉. Suppose that

M′ ∩ M1 ∩ M2 ∩ 〈a〉 = 〈as〉 for some integer s > 0. By weak potency of A, there is a

positive integer r such that for each positive integer n, there exists M3 � f A such that

M3 ∩ 〈a〉 = 〈arsn〉. Let N = M′ ∩ M1 ∩ M2 ∩ M3. Then N � f A, N ∩ 〈a〉 = 〈arsn〉 and

N 〈h〉 ∩ D = 1 = N 〈k〉 ∩ E . Now we show ϕ(N ∩ H) = N ∩ K . Note that we have,

N ∩ 〈h〉 = M′ ∩ M1 ∩ M2 ∩ M3 ∩ 〈h〉

= M2 ∩ M3 ∩ 〈hr1r2s1s2m〉

45

Univ
ers

ity
 of

 M
ala

ya



= M2 ∩ M3 ∩ 〈kr1r2s1s2m〉

= M3 ∩ 〈kr1r2s1s2m〉

= M3 ∩ 〈hr1r2s1s2m〉,

and

N ∩ 〈k〉 = M′ ∩ M1 ∩ M2 ∩ M3 ∩ 〈k〉

= M1 ∩ M3 ∩ 〈kr1r2s1s2m〉

= M1 ∩ M3 ∩ 〈hr1r2s1s2m〉

= M3 ∩ 〈hr1r2s1s2m〉.

This implies N ∩ 〈h〉 = N ∩ 〈k〉. Now suppose that N ∩ 〈h〉 = 〈hr1r2s1s2mq〉 for some

integer q > 0. Then, N ∩ 〈k〉 = 〈hr1r2s1s2mq〉. Hence, ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Since

N ∩
(
〈h〉 × D

)
= N ∩ 〈h〉 and N ∩

(
〈k〉 × E

)
= N ∩ 〈k〉, we have ϕ(N ∩ H) = N ∩ K .

Therefore G is weakly potent by Theorem 5.2. �

Corollary 5.8. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is a

finitely generated nilpotent group. Then G is weakly potent if h ∼A k, or if and only if

hm = k±m for some m > 0 whenever 〈h〉 ∩ 〈k〉 , 1.

Next, we shall show the weak potency of HNN extensions G = 〈A, t | t−1Ht = K, ϕ〉

where H and K are finite extensions of a central subgroup of A. We only consider the case

H ∩ K , 1.
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Lemma 5.9. Let A be a finite extension of a finitely generated nilpotent group T with

subgroups H, K such that H ∩ K , 1. Let ϕ : H → K be an isomorphism from H onto K .

Suppose there exists Q ≤ H∩K such that Q ⊆ Z(A) is finitely generated with |H : Q | < ∞,

|K : Q | < ∞ and ϕ(Q) = Q. Then, for any element a ∈ A of infinite order, there exists

a positive integer r such that for each positive integer n, there exists N � f A such that

N ∩ 〈a〉 = 〈arn〉 and ϕ(N ∩ H) = N ∩ K .

Proof. First, note that Q is finitely generated abelian. Let a ∈ A such that |a| = ∞. We

divide our proof into two cases.

Case 1. Suppose that Q ∩ 〈a〉 = 〈ar〉 for some integer r > 0. By Lemma 4.7, for

any integer n > 0, there exists a characteristic subgroup Rch of finite index in Q such

that Rch ∩ 〈ar〉 = 〈arn〉. Hence Rch ∩ 〈a〉 = Rch ∩ Q ∩ 〈a〉 = Rch ∩ 〈ar〉 = 〈arn〉 and

ϕ(Rch) = Rch since ϕ(Q) = Q. Note that Rch � A is finitely generated and Rch � f H,

Rch � f K . Now we form Ā = A/Rch. Then H̄ = H/Rch, K̄ = K/Rch are finite and |ā| = rn

in Ā. Furthermore, A is Rch–separable for A is subgroup separable. Hence, by Lemma

2.11, Ā is residually finite. Thus, there exists N̄ � f Ā such that ā, ā2, . . . , ārn−1 < N̄ but

ārn ∈ N̄ , and N̄ ∩ H̄ = 1̄ = N̄ ∩ K̄ . Let N be the preimage of N̄ in A. Then N � f A,

N ∩ 〈a〉 = 〈arn〉 and N ∩ H = Rch = N ∩ K . Hence ϕ(N ∩ H) = ϕ(Rch) = Rch = N ∩ K .

Case 2. Suppose that Q ∩ 〈a〉 = 1. We form Ā = A/Q. Then H̄ = H/Q, K̄ = K/Q are

finite and ā = aQ is of infinite order in Ā. Note that A is Q–separable since Q is finitely

generated and A is subgroup separable. Hence, by Lemma 2.11, Ā is residually finite.

Thus, for finite subgroups H̄, K̄ , there exists M̄ � f Ā such that M̄ ∩ H̄ = 1̄ = M̄ ∩ K̄ . Let

M̄ ∩ 〈ā〉 = 〈ās〉 for some integer s > 0. Note that Ā is weakly potent since Ā is a finite

extension of the finitely generated nilpotent group T̄ = TQ/Q (see Remark 4.9). Thus,

there exists a positive integer r with the property that for each positive integer n, there exists
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M̄0� f Ā such that M̄0∩〈ā〉 = 〈ārsn〉. Let N̄ = M̄∩ M̄0. Then N̄� f Ā, N̄∩ H̄ = 1̄ = N̄∩ K̄

and N̄ ∩ 〈ā〉 = 〈ārsn〉. Let N be the preimage of N̄ in A. Then N � f A, N ∩ 〈a〉 = 〈arsn〉

and N ∩ H = Q = N ∩ K . Hence ϕ(N ∩ H) = ϕ(Q) = Q = N ∩ K . �

Theorem 5.10. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is a finite extension of a finitely

generated nilpotent group with subgroups H,K such that H ∩ K , 1. Suppose that there

exists Q ≤ H ∩K such that Q ⊆ Z(A) is finitely generated with |H : Q | < ∞, |K : Q | < ∞

and ϕ(Q) = Q. Then G is weakly potent.

Proof. Let a ∈ A \ H. Now, we form the group Ā = A/Q. Then, H̄ = H/Q, K̄ = K/Q

are finite and ā = aQ < H̄. Note that Ā is residually finite for Ā is a finite extension of the

finitely generated nilpotent group T̄ = TQ/Q (see Remark 4.9). Therefore, there exists

N̄ � f Ā such that N̄ ∩ āH̄ = 1. Let N be the preimage of N̄ in A. Then a < NH. Hence,

A is H–separable. Similarly, A is K–separable. The theorem now follows from Theorem

5.2 and Lemmas 3.13 and 5.9. �

Corollary 5.11. Let G = 〈A, t | t−1Ht = K, ϕ〉 where A is a finite extension of a finitely

generated nilpotent group with subgroups H,K where H ∩ K , 1. Suppose there exists

C ≤ H and D ≤ K such that C,D ⊆ Z(A) are finitely generated with |H : C | < ∞,

|K : D| < ∞. Suppose that

(i) CD ≤ H ∩ K with |H : CD| < ∞, |K : CD| < ∞ and ϕ(CD) = CD; or

(ii) C ∩ D � f C, C ∩ D � f D and ϕ(C ∩ D) = C ∩ D.

Then G is weakly potent.

Proof. (i) If CD ≤ H ∩ K and ϕ(CD) = CD, we let Q = CD. (ii) If C ∩ D � f C,

C ∩ D � f D and ϕ(C ∩ D) = C ∩ D, we let Q = C ∩ D. Thus, the corollary follows from

Theorem 5.10. �
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CHAPTER 6: FUNDAMENTAL GROUPS OF GRAPHS OF GROUPS

6.1 Introduction

It has been shown by Kim (2004) that the fundamental group of graphs of groups

G = 〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 where each Hi = 〈hi〉, Ki = 〈ki〉 are

infinite cyclic with hmi

i = k±mi

i for some mi > 0 are cyclic subgroup separable (see Kim

(2004)). In this chapter, we shall prove the cyclic subgroup separability of fundamental

groups of graphs of groups G = 〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 where each

Hi = 〈hi〉 × Di, Ki = 〈ki〉 × Ei and each 〈hi〉, 〈ki〉 are infinite cyclic and Di, Ei are finite

(Theorem 6.6).

6.2 Cyclic Subgroup Separability

We shall begin with the following remark.

Remark 6.1. Let G = 〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 where each Hi =

〈hi〉 × Di and Ki = 〈ki〉 × Ei such that |hi | = ∞, |ki | = ∞, Di, Ei are finite subgroups and

ϕi : Hi → Ki is an isomorphism such that ϕi(〈hi〉) = 〈ki〉 and ϕi(Di) = Ei.

We define G j = 〈A, t1, . . . , t j | t−1
i Hiti = Ki, ϕi, i = 1, . . . , j〉 for each 1 ≤ j ≤ n. In

particular, we have G1 = 〈A, t1 | t−1
1 H1t1 = K1, ϕ1〉 and Gn = G. Furthermore, we note that

for each 1 < j < n,

G j = 〈A, t1, . . . , t j | t−1
i Hiti = Ki, ϕi, i = 1, . . . , j〉

= 〈G j−1, t j | t−1
j Hj t j = K j, ϕ j〉.

Hence Gn = 〈Gn−1, tn | t−1
n Hntn = Kn, ϕn〉. For ease of exposition, we shall write G as

Gn = 〈A, t, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉.
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First, we extend Theorem 3.7 to Gn.

Theorem 6.2. Let Gn = 〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 be as in Remark 6.1.

Suppose that A is πc. If hi ∼A ki for each i = 1, . . . , n, then Gn is πc.

Proof. We shall prove by induction on n. The case n = 1, that is, G1 = 〈A, t1 | t−1
1 H1t1 =

K1, ϕ1〉 follows from Theorem 3.7. Thus, G1 is πc. For n ≥ 2, by the induction hypothesis,

Gn−1 is πc. Since hi ∼A ki for each i = 1, . . . , n, we have hn ∼Gn−1 kn. Therefore, Gn is πc

by Theorem 3.7. �

Before we extend Theorem 3.8 to Gn, we need Lemmas 6.3 and 6.4.

Lemma 6.3. Let G = 〈A, t | t−1Ht = K, ϕ〉 be as in Remark 3.5. Suppose that A is

〈h〉–separable, 〈k〉–separable, 〈h〉–wpot, 〈k〉–wpot and hm = k±m for some m > 0. Let

any element a ∈ A be of infinite order such that A is 〈a〉–wpot. Then G is 〈a〉–wpot.

Proof. Since A is 〈h〉–separable, 〈k〉–separable, 〈h〉 ∩D = 1 = 〈k〉 ∩ E and D, E are both

finite, there exists M1 � f A such that M1〈h〉 ∩ D = 1 = M1〈k〉 ∩ E . Let M1 ∩ 〈h〉 = 〈hs1〉

and M1 ∩ 〈k〉 = 〈k s2〉 for some integers s1, s2 > 0. Since A is 〈h〉–wpot and 〈k〉–wpot, by

Remark 2.7, there exist positive integers r1, r2 such that for each positive integer n, there

exist M2 � f A and M3 � f A such that M2 ∩ 〈h〉 = 〈hr1n〉 and M3 ∩ 〈k〉 = 〈kr2n〉. Choose

n = r2s1s2m for M2 and n = r1s1s2m for M3 for somem > 0. Let M0 = M1∩M2∩M3. Then,

M0� f A and similarly as in the the proof of Lemma 3.2(ii), we have M0∩〈h〉 = 〈hr1r2s1s2m〉

and M0 ∩ 〈k〉 = 〈kr1r2s1s2m〉. Let M0 ∩ 〈a〉 = 〈as〉 for some s > 0. Since A is 〈a〉–wpot,

we can find a positive integer r such that for each positive integer n, there exists M4 � f A

such that M4 ∩ 〈a〉 = 〈arsn〉. Let N = M0 ∩ M4. Then N � f A with N ∩ 〈a〉 = 〈arsn〉.

Furthermore, we have

N ∩ 〈h〉 = M0 ∩ M4 ∩ 〈h〉 = M4 ∩ 〈hr1r2s1s2m〉
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and

N ∩ 〈k〉 = M0 ∩ M4 ∩ 〈k〉 = M4 ∩ 〈kr1r2s1s2m〉 = M4 ∩ 〈hr1r2s1s2m〉.

Hence N ∩ 〈h〉 = N ∩ 〈k〉. Suppose that N ∩ 〈h〉 = 〈hr1r2s1s2mq〉 for some q > 0. Then

N ∩ 〈k〉 = 〈kr1r2s1s2mq〉. Thus, we have ϕ(N ∩ 〈h〉) = N ∩ 〈k〉. Since N ∩
(
〈h〉 × D

)
=

N ∩ 〈h〉 and N ∩
(
〈k〉 × E

)
= N ∩ 〈k〉, we have ϕ(N ∩ H) = N ∩ K . Now we form

Ḡ = 〈t, Ā | t−1 h̄t = k̄, ϕ̄〉, where Ā = A/N , H̄ = 〈h̄〉 × D̄, K̄ = 〈k̄〉 × Ē and note that

|ā| = rsn. By Lemma 5.1, Ḡ is residually finite since Ā is finite. Thus, there exists L̄ � f Ḡ

such that ā, ā2, . . . , ārsn−1 < L̄ but ārsn ∈ L̄. Let L be the preimage of L̄ in G. Then we

have L � f G and |aL | = rsn in G/L. Therefore G is 〈a〉–wpot. �

We need an additional assumption that Gn is πc in order to extend Lemma 6.3 to Gn

Lemma 6.4. Let Gn = 〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 be as in Remark 6.1.

Suppose that A is 〈hi〉–wpot, 〈ki〉–wpot and hmi

i = k±mi

i for some mi > 0, for each

i = 1, . . . , n. Further suppose that Gn is πc. Let a ∈ A be any element of infinite order

such that A is 〈a〉–wpot. Then Gn is 〈a〉–wpot.

Proof. First, note that A is πc since we assume Gn is πc. Hence A is 〈hi〉–separable and

〈ki〉–separable for each i = 1, . . . , n. We shall prove by induction on n. For the case

n = 1, that is, G1 = 〈A, t1 | t−1
1 H1t1 = K1, ϕ1〉, the result follows from Lemma 6.3. Then

G1 is 〈a〉–wpot. Furthermore, since A is 〈hi〉–wpot and 〈ki〉–wpot for each i = 1, . . . , n,

by Lemma 6.3, G1 is 〈hi〉–wpot and 〈ki〉–wpot for each i = 1, . . . , n. For n ≥ 2, by the

induction hypothesis, Gn−1 is 〈a〉–wpot, 〈hi〉–wpot and 〈ki〉–wpot for each i = 1, . . . , n. In

particular, Gn−1 is 〈hn〉–wpot and 〈kn〉–wpot. Note that Gn−1 is πc since Gn−1 is a subgroup

of Gn and we assume Gn is πc. In particular, Gn−1 is 〈hn〉–separable and 〈kn〉–separable.

Thus, by Lemma 6.3, Gn in 〈a〉–wpot. �
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Now we are ready to extend Theorem 3.8 to Gn in the following theorem.

Theorem 6.5. Let Gn = 〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 be as in Remark 6.1.

Suppose that A is πc, 〈hi〉–wpot, 〈ki〉–wpot and 〈hi〉 ∩ 〈ki〉 , 1 for each i = 1, . . . , n. Then

Gn is πc if and only if hmi

i = k±mi

i for some mi > 0, for each i = 1, . . . , n.

Proof. Suppose that Gn is πc. Since each G j = 〈A, t1, . . . , t j | t−1
i Hiti = Ki, ϕi, i = 1, . . . , j〉

for each 1 ≤ j ≤ n is a subgroup of Gn, then each of them must be πc. Then by Theorem

3.8, hmi

i = k±mi

i for some mi > 0.

For the converse, we prove by induction on n. For n = 1, that is, G1 = 〈A, t1 | t−1
1 H1t1 =

K1, ϕ1〉, the result follows from Theorem 3.8. Therefore, G1 is πc. For n ≥ 2, by the

induction hypothesis, we assume Gn−1 is πc. Since A is πc, 〈hi〉–wpot and 〈ki〉–wpot

for each i = 1, . . . , n, then by Lemma 6.4, Gn−1 is 〈hi〉–wpot and 〈ki〉–wpot for each

i = 1, . . . n. In particular, Gn−1 is 〈hn〉–wpot and 〈kn〉–wpot. Therefore, by Theorem 3.8,

Gn is πc. �

Now from Theorem 2.18 with Theorems 6.2 and 6.5, we have the following main result.

Theorem 6.6. Let G be a fundamental group of a graph of groups Gv, amalgamat-

ing direct product of infinite cyclic and finite edge subgroups, presented by G =

〈A, t1, . . . , tn | t−1
i Hiti = Ki, ϕi, i = 1, . . . , n〉 where A is a tree product of groups Gv

according to a maximal tree of the graph, such that Hi = 〈hi〉 ×Di, Ki = 〈ki〉 ×Ei, |hi | = ∞,

|ki | = ∞, and Di, Ei are finite for each i = 1, . . . , n,. Suppose that each Gv is πc and weakly

potent. Then G is πc

(i) if hi ∼A ki for each i = 1, . . . , n; or

(ii) if and only if hmi

i = k±mi

i for some mi > 0 for each i = 1, . . . , n.
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CHAPTER 7: CONCLUSION

7.1 Conclusion

In conclusion, we have obtained several results on cyclic subgroup separability and

weak potency throughout this research. First, we used previously proved criterion of cyclic

subgroup separability for both generalized free products and HNN extensions to proved the

cyclic subgroup separability and weak potency of generalized free products amalgamating

certain subgroups and HNN extensions associating certain subgroups. We also have

extended our results to cyclic subgroup separability of tree products and fundamental

groups of graphs of groups.

Next, we have established several criterion in Theorems 4.1 and 5.2 which are useful

for determining the weak potency of generalized free products and HNN extensions

respectively. With these criterion, we have proved the weak potency of generalized

free products amalgamating certain subgroups and HNN extensions associating certain

subgroups.

7.2 Further Research

Note that recently Zhou and Kim have shown the abelian subgroup separability of

certain generalized free products and HNN extensions (Zhou & Kim, 2017, 2018). Hence

some of our results, especially Theorems 2.9, 2.14, 3.7, 3.8, 4.4, 4.5, 5.6 and 5.7 can serve

as useful starting points for extension to abelian subgroup separability.

The results of cyclic subgroup separability and weak potency of tree products (Theorems

2.18 and 4.14 respectively) can be further extended to polygonal products. Finally, some

further research can be done to fundamental groups of graphs of groups to be weakly

potent.
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