UNIVERSITY OF MALAYA
Faculty of
Computer Science
And
Information Technology

ZARINA MOHAMED ALIAS
WEK 010400
PACKET SNIFFER AND ANALYZER

Supervisor: Encik Badrul Anuar Juma'at
Moderator : Mr. Ling Teck Chaw



ABSTRACT

With the proliferation of the Intranet, there is a vast amount of digital information
stored in the file server and shared within an organization, It is extremely difficult to
monitor all access and action on a network. With numerous incidents these days, the
fact that a company cannot monitor all the actions on their network can contribute to a
serious problem.

Packet sniffer and analyzer, also known as network protocol analyzer is a stand alone
system used to monitor network. It has the capability of filtering network trafﬁc based
on Internet Protocol (IP) address, port number and protocols. It behaves as a useful
tool for network administrators, network engineer and network.

Hackers use packet sniffer to obtain usernames, passwords, credit card numbers,
personal information and other information that could be damaging to a person or a
company.

When they obtain this information, hackers will use the information to do damage to
others such as send a virus using the usernames and passwords captured.

However, in this project the system is built for the purpose of monitoring network
traffic. Sniffalyzer is targeted to be implemented in a Local Area Network (LAN)
environment. Its main function is to monitor, identify and control network traffic in
real time. It helps to improve network manageability and overcome network
problems.

Sniffalyzer can be effective as security measure for the network and shared resources.
All packets passing throughout the network can be captured and analyzed and these

help to secure the network.



ACKNOWLEDGEMENT

Uttermost greatful goes to Allah the Almighty for all the confidence and patience in
the completion of this thesis, I wish to record my appreciation to everyone who has

been so helpful and supportive in this project work and brought it to success.

I would like to express deep gratitude to my supervisor, Encik Nor Badrul Annuar
Juma’at for the continuous help and useful advice he has given me during this project

and also to my examiner Mr. Ling Teck Chaw.

I would also like to take this opportunity to express my thanks to all family members
of FSKTM especially the family of Computer Systems and Technology Department

for their constructive criticism and support to face the difficulties and challenging

time.

Finally, I would like to extend my sincere thanks and love to my mother, Zubaidah
Abdul Rahman who has been very, very patience and given me invaluable support
throughout my university life. To my dear sister Azlyna, who is going through great
difficulties and for being so brave, you are my inspiration and you have given me the

courage to go through mine.

My gratefulness also goes to the rest of my family and friends who had helped me in

critical time to complete this project.

Thank you with all my heart.

i



TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION

L 0] 0T O Y T L I e s 42 b s (XL Lhs 13 1hEE A ¥y T4 TAANA YR Lo R S8 88 kALARD 0 Eas00s 1
1 P O] B O T ) T T T T S e T e T AR Ty LT T ia TR TSt aa T aat oty 1
133 R BT B0 ) B O Y B A x 1 £t 1T e s ¥ (hAsan vayes AnAnNATses8813 4848548880474 R0a1s 3
1.4 D01 B T O T I T Rt (e TA T TR bty Fa st es s aaanaNaa A TSN et T st insshsnats 3
1 S P O GO S L O e £ 13 Ta g Te T in s 3 bs s Tt e oA A (s i et sheqinasiastas 4
CHAPTER 2 - LITERATURE REVIEW
2.1 I (- (o < e R Ty vt e TV L Ph T e T PRI (e o 6
2] L AN T s e s eresatar it el a e BT Ts e T st ainess i 6
2 L2 5 WANE 5 o itiWiesisasans tatsesiihnaniantossssivsiviy PMster i 45 7
2D M AN s Ta s v e tierrestathsnnthoarressher et Maills s+ (¥iwis it 7
2.2 - e EHOIIBE SR B it atas s sarteTethsetsderhss ts VI al TN b s o0 s Va5 ersvsss 7
7 i (OB O3 ) I I R 0 . o L PP, etk L T e e 7
2 T e R ¥t (1T Tl 7127 171 ONOree, T e S I L e Trr T L 10
2:3] . I RTOTOCO] R NI o iy vateinnsssuTsarsiatins TEr s 573 b s rhaviesssvhses (v inisvies 11
A 1 JET LTt 1187 17, =00 ) e 13
PR T T e TR O h o et R A O T T e 14
2.8 UNOR-SWItCHOINOTWOTK: A TGS AN £h e vossssssnsaviseaisbpetitssssssestunbneil 15
2.9 © Switched NOtWOTK 4 Q™D v iieeisissncnssrserarsreriorssrsssrvossrssessssnnases 15
L B O T VT T I oL L84 1 ¢ 104 7ok assRrRCTsa s s TS aRs 0o Fa LTt N} 16
2.9.2 PromiscUOUEMOAE .i.iuvucisranrnracnsnssnsnsesrsnssssssassesssnsssansen 16
231 QRN ST O TR LI TTRNO A CADIETT FEs i ce rattartentes crbatsssssssevoipfsessssabtvessatsse 17
R ) T T e R e T L I T e 17
2.11.1 Packet Filtering Definition  .......ooiiiiiriiiiiiiiieiiiaenianeinnns 17
2 L WY VA LR P A KO R eI (e U b s £ VR er (T ts TReainnsanisthsassnststaetre 18
2.11,3 How Powerfill 18 Packet FItBrINZ iesveevesesesassnnsasasssssnsnsasass 18
2111540 PAOKREY RTINS D OW TR oy s as s s ennssannnsksnsnsssabastsanesasses 18
2:1135 "How:To Configure PACKet FIEIING tieesrssesssssanvrostansessnssnssssss 19
LT O R TS O T PR OOt T L O i T U ks e 46000 dntsntboasablnesnstoessrsisnsres 20
2.11.7 Basic Packet Filtering Modules  ....oivirincennsarnnncncssacassensas 20
2.11.8 Advanced Packet Filtering Characteristics..........ccovvviiiiniianinnn 21

v



2.12
2318

2.14

Z319

Network Driver Interface Specification (NDIS)  ..iiiiiiiiiiiiiiiiiiiinnanen 23

DO A T Y A TN R O 134 A N TR R S AN b $LN a5 A A SR LA KENA AT R A nd foe 23
PRARIBIRBINID,C 8 T iy a1 st L S T Ltr T LT TTe L Ty 24
2 1YV 1 CTO RO LAY STt O T P 0 (€A s b4 8 aa ahss s Naksakahsnh chunnssanns 25
Programming LANGUAZE L oiiiiiiiiiiiiiisiiasisesisaseaenenseasanenenenannenn 28
L L T 3 vha s 470 470 0T 08NN s2 9880 4aq4ananednsnsindnaiovsiansisasnass 28
L AT R o g UT ey 71710 e 0 has22034 3 5834 eaNa s suanssahunansans 28
O D L I IOTIY. o't <o 3204 s thas andnssenassdasssntoseisdsnenissssnsisdlivnanns 29
R IR IVIOTORO AV IBUAL ot O e s 4s s s k7asaa st s s i et s s ores iisns st eitsvils 30
2L Y WA IO NN 1o 5 v s sssaashsnssisosssaasessssaisssineeiiobvidubeionts 31

CHAPTER 3 - SYSTEM METHODOLOGY

3.1

System Development Life Cycle  ......ooiviiiiiiiiiiiiiciieneeaeanns 34
3.1 Requirement Analysis Phase™ & AN I L L B M. ot v venies 34
3:2dnSystem Design Phase ... ivissvivicsncsssensss o R Nae Qaslessersorsseessoions 34
SIS I O P NABCRET I vy s st inasivenstinsgshis I TN 4055 rstitrnseinsassssvoil 35
3.4  System Testing Phase ........ccovvveestnreniivrnsisrirnressrrnsnsessssissssnndd
35 umaMaintenance Phase “.ivicvvsvsillisseMecreveerssesssrersserrresivinsssrsresdd

CHAPTER 4 - SYSTEM ANALYSIS

4.1

4.2

43

4.4

4.5

RGOt AT AL VBLS R M s O ING+ 550 00 ussnssnsnsesorensenbonnsstbssasbnesossssnnsss 36
4.1.1 Functional Requirement Analysis = .........icveveererernenrnenerssrsann 36
4.1.2 Non-Functional Requirement Analysis — ......ooiiiiiiiiiiiiiiiinnn 36
R A A R R D TR BT s s s /7P T et T2 Nt s s 46748 TakRTSTAPSTErEFRERs st otndsaivess 37
SO AT R eI BNt PO ITI N o0 h s senimrssecsoesersdosisiussssrassnsis 37
4.3.1 Microsoft Visual C++ 6.0  ...ovivviiiiiiiiiniiiiniinerrnsnnernesssnenn 38
4 Y RO Y C R ON A 2 L0 st tnss ca'sat s v envaseasssnsassns diassatsssests 38
4:3:3  WinPeanvorsion B0 D IIVOTMEIS . cc sosesvirresaesnsasssirnarssnsssassooss 39
Existing Packet Sniffer and Analyzer Software ... 40
L T R O | e Y 1A NS F ey AEETRET a3 0 Urodussmnerbt R TRonkederiiiborineacns 41
I R T T N OB R FuRs 44 £ Er0a 5 )00 0000 K874 ReLTPOTRRRIANEIARAAITSH TSI 42
B e B A OO LV (s s 2 et s 0anasaase ssnrsasasnaspennanaasontnanisseanbores 43
SOftWare COMPATIBON 4. iuviviivarirnsarsnsrnerisrsrssnssnssssncesssssssnsrnsnssrsnsans 44



CHAPTER 5 - SYSTEM DESIGN

Ol Y BTN T O 0718 T S P RN A AR YL T LR At AU AR A RNRR CA R ARk Lot ses 46

R ey Ot e L Er AR LT L LI T T LT e T I oYy 46

5.1,2 Module EXplanation iuiuvivisesssssssssssssssssssasanssssssssssssssasassasns 47

512 e DAt R OW D I T T e s e Ay TS v e Lo Thas isvsas R aAN TN SN s aaTaeThsan 4T3 n5ansss 49

5.3 O It B O D) O] BT S Fe kot 145 nnnanssassnssssssnnansssssnssnntsesisinasassnsansssen 50

5.4 0 SVt R IO T R C ORI v s TR e Ve s Vo ATty ¥ a8 aas L e dAbNang Chvna st iy aivasinacinasnsis 50

A LV R TITIIVICTIUL - L Saede0ntednasansatasasssssabanssssnssssieonyeaisinnnosssssnsts 50

o2 A I TS IV OO e ¥ e e W faereseitiansatnsd taenilinieitosinscetonie, ity 51

5.4.3 Capture Filter Module.........oouiniiiiiiiiiiiiiiiiiiieeeneneeneanns 51

344 AdapterModule iiiiiiriesisscisetnesaseireaseresciorsniieisiis ool 52

545 Display Rl Module . Tt s i Tar s i tusaa ite bovs i M X Vi 52
CHAPTER 6 - SYSTEM DEVELOPMENT AND IMPLEMENTATION

0:1 L Introductionueet Mt 5, SR AV o siiaisnerinrsnn re R P55 4159981711 60s 53

6.2  DevelopmentEAVITONMENt < cuocssrerisorssssessMaeTodoosssosesssrarsrsassssivon 53

6.3 Deyelopman i OO A TR s T TS s s s 0s 50 asonsnsssratniasnssariossinee 54

6.4  Program Development 1 1011 T T i T TeTrT RIS TTTTPrRma .

0:4: 10 RevIEWAthE DrORTRITCOAC =N s ivasisnsssinsrisossesretsnrsssaatsssivasisss i

6.4.2 Design the PrOZram ....o.oivieiirineeriiiriiininsirirrieiesisinn 56

O3 GO a8 DO A I Tou T e te s s e v th 14500 Rbtssvaiseshs asersbesnyivann 56

05 S Ve OO I I . L s 2T e s heTe b ras o ehes s BV oo ehTLats svaanveassus nissihy 56

030 1 A CONTTOL S RUBTIIE™ 505t s ernsnnsissssoassostsensstbnstocsninnsnsansenssstes 56

DS A I O T RTINS, - & 320 s vovssvatabuasssnistbesatuvyeqavoveasossssiianoenssshs 57

0:5: 3 L.0BeCROriented Programming  .iiviessvsnssssasssssnsrnssssnassnsess 57

6.6  Program Coding Approach .......iiviiiiiniiiiiiiiiiiiiirssein 58

T IS D3GR AN I ATITY oy ¢y o i 0h s ki han s ds3issusr1astantrscssanthsspedssnotss 58

6.6.2 Use Meaningful Variable Names  .........cccovvvieiiiiininienncennn 58

6.6.3 Establish effective commenting conventions ..........ccooeeveiieenann 58

008 M N O R TR T T (o x s AT iR eo s avheresfaudTrensbenisonsibuvtsnsershis 58

O R N R T Y N e O o 1 POy | C i 7t TR au s a8 044 KssgaahasTeabhahnsnsvatastansnsasoss 58

B8 LR O A T T R L AV O LI BE e s (ha o s du nkennasatusessasibusnnssensianabynssadssos 59

D A T A A DL A TR AR e R pEanadnsnsdusnanssdhinvnsvenvusnnnsssiaos 59

D R G IR R D s 0o d0dvdAsansssnsidshasnasssaintssesnasesnssnancs 59

vi



6.8

6.7.4 Display packet and packet SUMMATY ......iivieiiinieneanassemnennensannns
DO I G O PR LR T U ts L T LR s At atas s NaRtNLsntatnnastansntatannsnrons
018 L O T R IS LY 8 e TRy e 33218 318 > 48 SRR N AR AR SR 48 b sas A bRR SRse
0181 i DA DT N O 0 T e e th t 33 45 448 4 AL AR 4R YR A8 S48 AR 245444800

CHAPTER 7 - SYSTEM TESTING

7.1
7.2

L At A N ST O O Oy e e e e T s T s (43s T R esa s N acshyasionsaiisisnnsnsioss
LTI O L O LI B B sS4+ % xa 38Ty s s e s raatanaksntnannsakunness
LR N OO T O T e R I L e P s o a8 b d baban dhon s bsdn s iertsint
7.2.2 Integration TeStNE  ..o.iviuiiiiiniiinieiieeeiieeeeeneneneneneneneneene
7:2.3. = System Testing 1t i i i D st s e Tl h i A Y

CHAPTER 8 ~ SYSTEM EVALUATION AND DISCUSSION

8.1 SYBLEISIIONANE "5 i 1007 ds05s eedueatasasarinsrasssssreri gl s Ny s visesssistsn
8.2  Systems Limitation and Constraint  ..............c..ouvivrviiinrierirnerieeeienn
8:3, S Problem and!SOIINON «iuisistsniss s irrunsssssess s o7 eesssiveshessiatosit
8:3.1 " Lack of Programming EXDETrIONce. Fs«sssaesssssserossssssessssssnssasss
8.3.2 Development Time Factor  ...fiec. o8 rereerssnrssorsasssssorsssnsnsssns
S mInstallation and SeTNg R e rsy i voserestverngs Frnishs s intisesssaasin
84  Future Enhancement ... @eee oo™ ssesrssrorsssssosorsssssssssssssnnsssasssase
(647 Tl 1110 TR e S T T TY o, i vhy It a i T LT e ey LTy LT T Lo TT Ty Tearunn
APPENDIX A - User Manual
APPENDIX B ~ System Code

APPENDIX C - System Interface

REFERENCE

vii



LIST OF TABLES

Tabler s L= L O AN Bl LK T O T D OTTE e (TR eRa s vas s5 21 vn s 1848 444 Eas shsaRAAAL 14 ALALAR LSS 14
1L N 2) B B e L BT e P SE e 19
Table 4.1 - Hardware Requirement (Design Phase).. .. ..viiiiiieeieeeineineeneeineenens 37
Table 4.2 - List of EXISHNEZ SOTWATE ... o0 iiititiiiiiiiiieeeteteeenenennenseneneeneenns 40
Tableidi3 = SO tWATO G OIIPATISOMME 111t atnensvrssssssssssassssssasssssnsasssenssassasssness 45
Tablel6! 1=Hatd warelRequirements o & { st et e L e niol oo v ennin 53
Table 6.2 — Development Software and TooIS ..........cc.oovviiiiniiiiiiiiiineenn 54

viii



LIST OF FIGURES

Higure ]S 1 re P 1078 C L AL (L T e 2% a'sx e *aRA KA SN e s s kst aar s dansedsssnsitais 5
Bigtire 2 L O L Ot S 1S R L Es Ero s T RN TR LA TEA T eN N IANAL T ard LR Aba s st satatasaata 8

Higure e LD L A e T e A A TR R E AT ARt e T T d e Ta TR iA s tnAahass EhALCA e Aaa SN aRaNNs Sa e arass 11
Figure 2.3 - Non-Switched Environment ......c.oouviiiiiiiiiiiiiieinieeeieeneencenennns 15
Figure 2.4 - Switched EnVIrONMENt ... .iuuiiiiiiiiiitiiesiinaneneeeneneananeneneneenenn 15
Figure 2.5 - ICMP Type Field Value of 3 (Destination Unreacheable) ................. 22
Figure 2.6 - ICMP Code Value 3 (Port Unreachable)..............cccocevviiiiniinenennnn 27
Figure 2.7 - The Final Data Pattern ...........ccciuiiiiiiniiiiiiiiiniiiininriniarineansans 22
Figure 2,8 - Operating System Control TasK «..iivuiaiusasssssssaseasssssissncesssdheToflor 23
Figure 2.9 = Compiler ATChitecire  ueets iy il er e raehstans ansnsathsnmmes Tads -0 30
Figure'3:1 - SYBtem OpeIatIoN. ... iescsersresbates st ssssasisthgsssssats e NG T T i Ts 1t 33
Figure 3.2 - Waterfall MOdel .......ccociviiniiininennionnrireriasnnssioensibnetsresssstonses 33

Figure 4.1 - WinPcap ArchiteCture  .........coovviiiininireriiniisiinnsseinssisieneseseons 39

Figure 4.2 = BIRereal SCreenshote:s /v, .o besarssis s s ghssotseMas s e s rassseansarstihoggios 41
Figure 4.3 = CommView SCTOENBIOL &.eusiasettossrsbserRuaesssborsssesssosesssssssssssssses 43

Figure 4.4 - Packet Analyzer 4.0 SCreenshot v, feeso¥ssensssssrsssssssessonsassssssasss 44

Figure 5.1 - Structure Chart for Sniffalyzer ............cooiviiiiiiiiiiiiiiiiiiiinin 47

FigureiS:2 = Capite VOIS - o in ittt Fe st A Fssafgesshentsareasertorsissesysssisssn 48

Figure'5:3 - Caphire Bilter Mol ol s "W s s cs s ten s ssssisnensressinssosrsnessssssounsions 48
Figure 5.4 - Display Filter Modle. ..o .. cociiuiiriniesssssssorsssssrssnsssosssasssssrssssse 49
et b DAt R ] O L Ty B et s 44 £s i h s §avhrssyedisne rebrasnnsesess hyatens 49
Figure 5.6 = Main MEOIWNGE. 1i1 ¢4 10caiteeriosasrrssssnssersssessnsnssnssonssrsssesensnsssasans 51
BIgureid} m CANTUPS IR AL 7! sy esssad0sreettsnsorosssriotiqseisernsisstbonssissead euns 51
Figureis | Q= Capmresi terDIalOR BOXS SPesrataress eerrehstessshaiNbnyss st tiekssrtssste 51
Higures5i9 & Auanter i8I0 BOXH TriTs o T1eLs 1163 1 YL 14 40 i sV TTIReARARSTTa0r i asaTokss 52
Figure 5.10 - Display Filter Dialog BOX .....outevuiuieiiensnsnsnsnsssisnsnsnsnsnsnsssnsones 52
Figure 6.1 — Program Development Process .........cocviiireianmsnsnsrsacesasnsasasasans 55

1X






unfamiliar or unwanted traffic wandering around the network and track down
the problem. Example, when a network normally does not broadcast
AppleTraffic, but the analyzer clearly show that AppleTalk packets traversing
the network. The network administrator could investigate into the problem
and find a solution to it.

The strength of Sniffalyzer is that it could capture traffic in real time
environment on non-switched, switched network and dial-up connection. It
has the capabilities to decode packets into a readable form and enable
examination on them for protocol and application problems. Packet
information such as source and destination address, packet length, types of

protocol is displayed for analyzing purposes.

Sniffalyzer filters are used to accept and deny packets. Any unwanted packets
can be discarded and this will help in reducing the time and amount of
packets captured. Packet filtering in Sniffalyzer will be based on protocols

and/or IP address. The system module will allow the user to key in the filter.

A graph is generated to display amount of packets being captured based on
the protocols. This function eases the monitoring activities for the network

administrator,

In addition, network administrator can analyze the network traffic based on
the information displayed in text or graph. This helps them to increase the

network performance, perform troubleshooting and these will lead to

o



1.3

1.4

reducing the number of malicious threat intended on the network and

organization.

Project Objective

The objective of this project is listed below:

13

The system should be able to monitor network activities on LAN
environment.

The system should be able to capture in real-time all traffic transport
over switched network, non-switched network and dial-up connection
network

The system should be able to filter traffic based on protocols and/or
Internet Protocol (IP) addresses.

The system should be able to display filter traffic based on protocols
and/or Internet Protocol (IP) addresses.

The system should be able to display and decode accurate packet
information for analyzing purposes.

The system should be able to provide summary report for analyzing

purposes.

Project Scope

The project scope outlines the limitations of the system. The scope of the

project is listed below:

18

The system is designed to be used by network administrator and
network engineer for the purpose of monitoring and analyzing

network traffic,



1.5

O The system is designed to increased network performances and ease
network troubleshooting.
3. The system is designed to safeguard the network from any malicious

threat and activities,

4, The packets sniffed and captured cannot be modified or altered in any
way.

-} The system is not designed to capture and read confidential network
information.

1.4.1 Target User

e Network application developers - To debug network application
and examine network protocols.

e Network administrators/engineer/analysis - To diagnose
network problems and help to ease troubleshooting.

e IT professionals - To supervise contents inside the internal
network.

e Consultants - To help solve problems for customers.

e Parents - To find out what their children are doing on the internet.

Project Schedule
In developing and completing the project, it needs proper planning to meet
the project objectives. The project schedule has to be met so that the project

would not be delayed. Project schedule are listed in figure 1.1.



Mey) puen) 33foag — 1 2ansiy

MyZ8

L4

L1

EErrTReTa g

[T et U







CHAPTER 2 - LITERATURE REVIEW

Literature review represents a demonstration and mastery of the concepts relevant to

the research problem. It provides description of background information that is

focused on the problem and represents a search of the sources and an exemplary

reference format.

The objectives of this literature review:

1%

2.1

To document facts and specification related to the project for current and
future references.
To analyze the findings in order to provide better understanding on the
system to be developed.
The assist in determining the requirements for this project.
Network
A computer network is a group of computers which are connected together
and communicate with one another, It is a tool for communication that allows
users to store and retrieve information, share printers and exchange
information.[1] This is an example of computer networking, linking millions
of computers around the world. There are three main types of computer
network as described below:
2.1.1 Local Area Network (LAN)
Most LANs are confined to a single building or group of buildings.
However, one LAN can be connected to other LAN over any distance.
A LAN connected in this way is called a wide-area network (WAN).
LAN connects workstations and personal computers. Each node in a
LLAN is able to access data and devices anywhere on the LAN. This

means that many users can share expensive devices, such as printers



2.2

2.3

as well as data. Users can also use the LAN to communicate with each
other by sending e-mail or engaging in chat sessions.
There are many different types of LANs. Ethernet being the most
common for personal computers,
2.1.2 Wide Area Network
WAN is computer network that spans a relatively large geographical
area. Typically, a WAN consists of two or more local-area networks
(LAN). The largest WAN in existence is the Internet.
2.1.3 Metropolitan Area Network
Metropolitan Area Network, a data network designed for a town or
city. MAN is larger than LAN, but smaller than WAN. MAN is
usually characterized by very high-speed connections using fiber
optical cable or other digital media.
Ethernet
Ethernet is the most widely implemented method of networking computers in
a LAN. An architecture developed by Xerox Corporation in cooperation with
DEC and Intel in 1976. [2]
Ethernet uses a bus or star topology and supports data transfer rates at 10
Mbps. Ethernet uses the CSMA/CD access method to handle simultaneous
demands.
OSI Model
Open System Interconnection (OSI) model is an ISO standard for worldwide
communications that defines a networking framework for implementing
protocols in seven layers. Control is passed from one layer to the next,

starting at the application layer in one host, proceed to the bottom layer, over



the network to the next host and back up the hierarchy. OSI model layer are

shown in figure 2.1.

2.3.1

2.3.2

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 2.1 — OSI Model
Physical Layer (Layer 1)

This layer conveys the bit stream such as electrical impulse, light or
radio signal through the network at the electrical and mechanical
level. It provides the hardware means of sending and receiving data
on a carrier including defining cables, cards and physical aspects. Fast
Ethernet, RS232, and ATM are protocols with physical layer
components.

Data Link Layer (Layer 2)

At this layer, data packets are encoded and decoded into bits. It
furnishes transmission protocol knowledge and management and
handles errors in the physical layer, flow control and frame
synchronization. The data link layer is divided into two sub layers:
The Media Access Control (MAC) layer and the Logical Link Control
(LLC) layer. The MAC sub layer controls how a computer on the

network gains access to the data and permission to transmit it. The



2.34

2.3.5

2.3.6

LLC layer controls frame synchronization, flow control and error
checking,.

Network Layer (Layer 3)

This layer provides switching and routing technologies, creating
logical paths, known as virtual circuits, for transmitting data from
node to node. Routing and forwarding are functions of this layer, as
well as addressing, internetworking, error handling, congestion
control and packet sequencing.

Transport Layer (Layer 4)

This layer provides transparent transfer of data between end systems
or hosts and is responsible for end-to-end error recovery and flow
control. It ensures complete data transfer.

Session Layer (Layer 5)

This layer establishes, manages and terminates connections between
applications. The session layer sets up, coordinates, and terminates
conversations, exchanges and dialogues between the applications at
each end. It deals with session and connection coordination.
Presentation Layer (Layer 6)

This layer provides independence from differences in data
representation (e.g., encryption) by translating from application to
network format and vice versa. The presentation layer works to
transform data into the form that the application layer can accept. This

layer formats and encrypts data to be sent across a network.



24

2.3.7 Application Layer (Layer 7)
This layer supports application and end-user processes.
Communication partners are identified, quality of service is identified,
user authentication and privacy are considered and any constraints on
data syntax are identified. Everything at this layer is application-
specific. This layer provides application services for file transfers, e-
mail and other network software services. Telnet and FTP are
applications that exist entirely in the application level.

Packet

Packet is a piece of a message transmitted over a network. One of the key

features of a packet is that it contains the source and destination address in

addition to the data.

An example, in IP networks, packets are often called datagram. A datagram is

a variable packet (size up to 65,536 bytes) consisting of two parts: header and

data. The header can be from 20 to 60 bytes and contains information

essential to routing delivery. See figure 2.2, [3]

10



2.5

Header Data

VER HLEN Service Type Total Lengths
4bits 4 bits 8 bits 16 bits
Identification Flags Fragmentation offset
16 bi 3 bits 13 bits
Time to live Protocols Header checksum
_Rbits 8 hits 16 bits
Source IP address

Destination IP address

Option

Figure 2.2 - IP datagram

Protocol

In networking, the term protocol refers to a set of rules that govern

communications. For two devices on a network to successfully communicate,

they must both understand the same protocols. In this project, the user will

determine the type of protocol in the packet they want to capture, Lists of

protocols are described below:

2.5.1 Internet Protocol (IP)
IP is responsible for moving packet of data from host to host. IP
forwards each packet based on a four byte destination IP address. The
internet authorities assign ranges of numbers to different
organizations. The organizations assign groups of their numbers to
departments. IP operates on gateway machines that move data from
department to organization to region and then around the world.

Header Field: Refer Figure 2.2

11



2.5.2

2.5.3

254

2.5.5

Address Resolution Protocol (ARP)

Because the IP layer uses a four byte Internet address, and frame
headers contain actual hardware addresses of the network cards
receiving and sending the datagrams, it is necessary to find out which
hardware address corresponds to an IP address and store this
information in the ARP table for later use. Address Resolution
Protocol (ARP) serves this purpose.

Internet Control Message Protocol (ICMP)

ICMP is designed to report error conditions to the original source of
data transmission. ICMP messages are transferred through the
network as the data portion of an IP datagram. ICMP messages
themselves can be lost but no new error messages about ICMP errors
are generated. ICMP is used by hosts and routers to send notification
of datagram problem back to sender,

Transmission Control Protocol (TCP)

TCP is responsible for verifying the correct delivery of data from
client to server and that the packets will- be delivered in the same order
in which they were sent. TCP adds support to detect errors or lost data
and to trigger retransmission until the data is correctly and completely
received.

Header Field: source and destination port address, sequence number,
control, check, HLEN, etc.

User Datagram Protocol (UDP)

UDP, like TCP, is a higher encapsulation level protocol of the IP

protocol. UDP uses IP to transport messages from one machine to

12



2.6

2.5.6

2.5.7

258

another. Unlike TCP, UDP does not provide a reliable mechanism for
data transfer. It does not require acknowledgment of received data and
does not provide a means to control data position in transmitted
datagrams. Applications using UDP as a transport must accept full
responsibility for making UDP a reliable communication process.
Header Field: source and destination port address, check sum and
UDP length

Bootstrap protocol (BOOTP) and Dynamic Host Configuration
Protocol (DHCP) — a client’s server protocol used to provide IP
address, subnet mask, router’s IP address and server’s IP address
information.

Domain Name System (DNS) — a system protocol that map a name
to an address and conversely an address to a name.

Other protocols- PPP, POP, NetBIOS, X.25, ATM, AARP, IEEE

802.11, IGRP and etc.

Internet Protocol Address (IP Address)

Networks using the TCP/IP protocol route messages based on the IP address

of the destination. IP address to as Internet protocol address, it identifies a

networked system so that it may communicate via Internet protocols.[4] TP

addresses can be divided into two parts: the network and the host on the

network. There are five IP classes:

Class A - supports 16 million hosts on each of 126 networks

Class B - supports 65,000 hosts on each of 16,000 networks

Class C - supports 254 hosts on each of 2 million networks

Class D - Used for multicasts

13



2.7

Class E - Used for experimental purposes only.

Port

A port is a logical connection place and the way a client program specifies a
particular server program on a computer in a network.

Higher-level applications that use TCP/IP such as the Web protocol,
Hypertext Transfer Protocol, have ports with preassigned numbers. These are
known as well-known ports that have been assigned by the Internet Assigned
Numbers Authority (IANA).

Other application processes are given port numbers dynamically for each
connection. When a service (server program) initially is started, it is said to
bind to its designated port number. As any client program wants to use that
server, it also must request to bind to the designated port number.

Port numbers are from 0 to 65536. Ports 0 to 1024 are reserved for use by
certain privileged services. For the HTTP service, port 80 is defined as a
default and it does not have to be specified in the Uniform Resource Locator
(URL). Some sample port numbers and the protocols with which they are
most commonly associated, are listed in table 2.1 [5]:

Table 2.1 - List of Well Known Ports

20 (TCP): FTP data

21 (TCP): FTP control

23 (TCP): Telnet

25 (TCP): SMTP

37 (UDP): Time

43 (TCP): NICNAME/whois
53 (TCP/UDP): Domain Name System (DNS)
69 (UDP): Trivial FTP (TFTP)
79 (TCP): Finger

80 (TCP): HTTP

110 (TCP): POP3

119 (TCP): NNTP

137 (TCP/UDP): NETBIOS Name Service
123 (UDP): Network Time Protocol (NTP)
138 (UDP): NETBIOS Datagram Service
139 (TCP): NETBIOS Session Service

143 (TCP): IMAP

161 (UDP): SNMP

162 (UDP): SNMP trap

179 (TCP): Border Gateway Protocol (BGP)
443 (TCP): Secure HTTP (HTTPS)

520 (UDP): RIP

1080 (TCP): SOCKS

33434 (UDP): "Invalid" port used by trace
route

14




2.8

2.9

Non-switched Network

A segment is a network architecture that resides behind a router, bridge, hub
or switch in which every node is directly addressable from every other node.
In a non-switched environment, frames are handled in a broadcast manner.
That is, when a frame is transmitting from one host, it is 'seen' by every other
active host on the segment. Each host, in turn, will briefly exam the frame to

see if it is addressed to them. If it is not intended for them, the frame will be

discarded.

Step 2 Hub Router

Figure 2.3 Non-switched Environment
Switched Network
In a switched environment, data frames are handled in a direct manner. When
a frame is transmitting from one host, it is only seen by the addressed host.
The hosts still perform the examination of the destination address even

though the host is the intended host.

Step 2 Switch Router

Figure 2.4 — Switched Environment

15



It is not difficult to sniff in a non-switched environment not difficult because

all frames are broadcasted to every active port. While in the switched

environment, since it does not broadcast most frames, in order for a host to be

used as a sniffing agent, the network interface must be set to 'promiscuous’

mode. After this mode is set, the network interface will no longer drop

network frames which are addressed to other hosts.

2.9.1

2.9.2

Port Mirroring

In switched network, monitoring traffic is difficult because each port
is isolated until it transmits data, and even then only the sending and
receiving ports are connected.

Port mirroring, is a method of monitoring network traffic that
forwards a copy of each incoming and outgoing packet from one port
of a network switch to another port where the packet can be
studied.[6] It enables the administrator to keep close track of switch
performance and alter it if necessary.

Packet sniffer and analyzer can be placed on the port receiving the
mirrored data to monitor the network traffic. The sniffer captures and
evaluates the data without affecting the client on the original port.
One example for port mirroring is SPAN (Switch Port Analyzer).
Promiscuous Mode

In packet sniffing environment, packets are captured in promiscuous
mode. Normally an Ethernet interface reads all address information
and accepts packets only destined for itself. A network card will only

capture the traffic to its own network address but when the interface is

16



in promiscuous mode, it reads all information, regardless of its

destination.

2.10 Network Interface / Adapter

2.11

Adapter is one of the essential parts in the system. It allows the system to
choose which interface (network card) will be used to capture frames from.
Packet Filtering

Packet filtering is a method of enhancing network security by examining
network packets as they pass through switch or router. Packet filter allow the
user to determine which packet to pass or to capture. Packets may be filtered
based on their protocol, sending or receiving port, sending or receiving IP
address. Filter rules or filter syntax specifies the criteria that a packet must
match.

2.11.1 Packet Filtering Definition

A host or network device, without packet filtering, looks at a packet's
destination address and decides whether or not this packet has to be routed
through the router or should remain on that interface. This is a basic principle
that routing works under. When packet filtering is added, it adds another level
of analysis for each packet. The first step is still examination of the
destination address. Then, if the router or switch has determined it has to
process the packet, it applies its filter rules.

Filter rules are a security policies implemented as approved and disapproved
services. For instance, packets destined for particular host can restricted,
based on the specific types of packets or filtering rules. The restriction can

even be done on packets leaving LAN destined for the outside world. Packet

17



filtering can be very sweeping or specific down to individual machines and
ports.

For instance, an organization running a web server on host X. Users on the
internet are allowed to access the organization’s web pages, but cannot telnet
into that host on the LAN. Packet filtering can be used for this type of
selective access to restrict their services.

2.11.2 Why Use Packet Filtering?

Packet filtering is most commonly used as a first line of defense against
attacks from machines outside the local LAN. Since most routers have built-
in filtering capabilities, packet filtering has become a common and
inexpensive method of security. Packet filtering can be very flexible and
powerful to guarantee the security of network and all the hosts and devices
connected to it.

2.11.3 How Powerful is Packet Filtering?

Packet filtering allows to explicitly denies or allow packets by machine
and/or port. One machine filtering is based on IP address. For instance, all
packets destined for port 80 on all host on the local LAN are restricted except
host X and Y.

2.11.4 Packet Filtering Downfall

The downfall of packet filtering is the lack of flexibility. Standard packet
filtering allows or restricts packets to a location or from a location. There is
no "sometimes" or "only from this person". If telnets from the outside world
is disallowed into a particular host, that’s that. No host on the across the
network can telnet into the host specified in the filter. This sort of filtering is

known as Static Filtering.

18



Dynamic Filtering is more flexible by allowing packets restriction only from
certain users. For instance, stop all incoming telnet packets except those from
user X, Y and Z. This is accomplished via an advanced security system which
challenges the incoming user to provide a passkey before the network device
will pass packets into the local LAN.
2.11.5 How to Configure Packet Filters
There are three basic steps to packet filtering [7]:
e Knowing what to permit and what to restrict.
As a first step, decision must be made on what packets are approved and
which are restricted. For example, do all the hosts on the local LAN to
accept telnet from the outside or only one central host. The best security
policy is to restrict all packets except those expressly permitted.
o Formally defining packets that should be permitted and restricted.
After knowing what to accept or deny, define a way which allows easy
translation into software syntax. A good template to work under is shown
in table 2.2 [8]:

Table 2.2 - Packets Definition Template

Action | Source Port | Destination ' Port ' Type
| | |
| |
|

|

|

deny | XXX.XXX.XXX.XXX | ##H | XXX.XXX.XXX. XXX ####i(lypc)i
|

|

|

|

|

| | |

allow | XXX XXX XXX XXX | ###H# xxx.xxx.xxx.xxx'####i(type)

R

o Translating formal definitions to software syntax.
Meaning that translation is done in such a way that it can be understood

by the network device or host running the packet sniffer software.

19



2.11.6 Types of Packet Filter

2.11.7

There are two types of packet filtering. One is static and the other is
dynamic. [9]

2.11.6.1 Static Packet Filtering

This type does not track the state of network packets and does not
know whether a packet is the first, a middle packet or the last packet.
It does not know if the traffic is associated with a response to a
request or is the start of a request.

2.11.6.2 Dynamic Packet Filtering

This type of filter tracks the state of connections to tell if someone is
trying to fool the firewall or router. It can tell if traffic is associated
with a response or request. This type of filtering is much more secure
and flexible than static packet filtering.

Dynamic filtering also allows packets restriction from certain users.
For instance, the filter could stop all incoming telnet packets except
those from user X, Y and Z.

Basic Packet Filtering Modules

2.11.7.1 MAC addresses

Packet filtering based on MAC addresses enables only certain
computers to transmit data through the filter.

Syntax : ether host 08:00:08:15:ca:fe

20



2.11.8

2.11.7.3 Internet Protocol (IP) addresses

Packet filtering based on IP address. This filter is used to permit only
traffic destined to, or originating from, specific addresses to pass
through the filter.

Syntax : host 192.168.0.10

2.11.7.3 Protocol

Protocol filtering based on the protocol field in the IP header,
enabling only certain protocols to enter the system.

2.11.7.4 Port numbers

Packet filtering based on the source or destination port number
enables it to be more specific about the types of traffic to allow into a
computer or onto a network.

Syntax : tcp port 80

Advanced Packet Filtering Characteristics

2.11.8.1 Bit and Byte Value Patterns

It is done by specifying values at exact bit and/or byte locations in a
packet. For example:

TCP headers with the SYN bit set to 1 (this statement indicates
someone attempting to make a TCP connection on the network).
2.11.8.2 Boolean Operations

By mixing two different filter command into a single filter. For
example (AND operation) [10]:

Packets with the ICMP type field value of 3 (Destination

Unreachable)

21



AND

Packets with the ICMP Code value 3 (Port Unreachable)

Data YT
Reset I E;om;IProtocol 'l Format: IHex 'I Qfiset (hex): I"
2|3|4a4|85|6]| 7|8

01 9|a|b|lc|d|e|f
03

N -

NEMER SN

Name: [ICMP: Type = 3

Figure 2.5- ICMP type field value of 3 (Destination Unreachable)

LT e
Bmtl From[Protocol ¥ ] Fomat [Hex =] Offset thex} [15
2(3|a|s5|6|7|8|9]|a

blc|d|e]| T

o1
TR 03 |

Name: [ICMP: Code = 3

Figure 2.6 - ICMP Code value 3 (Port Unreachable)

Summary | Address DﬂPM'AdvamodlBLﬂul Settings For:
is = All ICMP
ARP from Device 1
D ofault
DNS Server 1
Fish

IPZHTTP and HTTPS
IP/POP3

IP/TCP FTP Stuff
NLST from 10202

Edit Fatterr I Iwmomﬁl Toggle NOT | Dedete |

AddPoten |  AddAND/OR |  AddNOT | Evelate |

0k | Concel | Profies. |

Figure 2.7 - The final data pattern filter
2.11.8.3 Application layer Filtering (ALF)

ALF can be used to filter a packet with abnormal information in the

headers of a message and even within the data itself. This type of

22



2.12

2.13

filter modules can be set to look for specific character strings (words
or phrases) within the message body and block messages based on
that information [11]. Thus, this filter can be used to prevent receiving
particular sensitive information from outside the network.
Network Driver Interface Specification (NDIS)
NDIS is a standard that defines the communication between a network
adapter/driver and the protocol drivers. The main purpose of NDIS is to act as
a wrapper that allows protocol drivers to send and receive packets onto a
network without caring either the particular adapter or the particular Win32

operating system. NDIS supports network interface card or NIC drivers.

Operating Systems

Application @

Printer

Figure 2.8 Operating Systems Control Task
Operating systems perform basic tasks, such as recognizing input from the
keyboard, sending output to the display screen, keeping track of files and
directories on the disk, and controlling peripheral devices such as disk drives

and printers,

23



For large systems, the operating system has even greater responsibilities and
powers. It makes sure that different programs and users running at the same
time do not interfere with each other. The operating system is also
responsible for security, ensuring that unauthorized users do not access the
system.
2.13.1 UNIX
UNIX is an operating system created in the late 1960s, in an effort to
provide a multi-user, multitasking system for use by programmers.
The philosophy behind the design of UNIX was to provide simple, yet
powerful utilities that could be pieced together in a flexible manner to
perform a wide variety of tasks.
The UNIX operating system comprises three parts: The kernel, the
standard utility programs, and the system configuration files [12].
. The kernel
The kernel is the core of the UNIX operating system. Basically,
the kernel is a large program that is loaded into memory when
the machine is turned on, and it controls the allocation of
hardware resources from that point forward. The kernel knows
what hardware resources are available (like the processor, disk
drives, network interfaces, etc.) and it has the necessary
programs to talk to all the devices connected to it.
e  The standard utility programs
These programs include simple utilities like cp, which copies
files, and complex utilities, like the shell that allows you to issue

commands to the operating system.

24



e  The system configuration files
The system configuration files are read by the kernel, and some
of the standard utilities. The UNIX kernel and the utilities are
flexible programs and certain aspects of their behavior can be
controlled by changing the standard configuration files. One
example of a system configuration file is the file system table
"fstab", which tells the kernel where to find all the files on the
disk drives.
2.13.2 Microsoft Windows XP

Windows XP Professional combines the security, manageability, and

reliability of Windows 2000 with the user friendly environment of

Windows 98 and Windows Millennium Edition. This combination

creates the best computer operating system around for professional

use.

Windows XP features include [13]:

e Windows XP Professional is built on the proven code base of
Windows NT and Windows 2000, which features a 32-bit
computing architecture and a fully protected memory model.

e Building on the device driver verifier found in Windows 2000, the
Windows XP Professional will provide even greater stress tests for
device drivers.

e Protects core system files from being overwritten by application
installations. If a file is overwritten, Windows File Protection will

restore the correct version.

25



Critical kernel data structures are read only, so that drivers and
applications cannot corrupt them. All device driver code is read-
only and page protected.

A system service that helps users installs, configure, track,
upgrade, and remove software programs correctly.

Designed to allow multiple applications to run simultaneously,
while ensuring great system response and stability.

IP security (IPSec) helps protect data transmitted across a
network. It is an important part of providing security for virtual
private networks (VPN), which allow organizations to transmit
data securely over the Internet.

Easily manage security resources with single, unified view of key
settings, tools and access to resources.

Windows XP Professional has a fresh visual design. Common
tasks have been consolidated and simplified. New visual have

been added to help users navigate their computers more easily.

2.13.2.1 Advantages

Built on the new Windows engine

Windows XP Professional will provide a dependable computing
experience for all type of users.

Enhanced device driver verifier

Device drivers that pass these tests will be the most robust drivers

available, which will ensure maximum system stability.

26



Windows File Protection

By safeguarding system files, Windows XP Professional mitigates many
of the most common system failures encountered in earlier versions of
Windows.

Improved code protection

Rogue applications cannot adversely affect core operating system areas.
VWindows Installer

Will help minimize user downtime and increase system stability.
Preemptive multitasking architecture

Run your most demanding applications while still experiencing
impressive system response time.

Fresh visual design

Allows the most common tasks to be exposed easily, helping users get the
most of out of Windows XP Professional.

Adaptive user environment

A cleaner work environment allows the user to be more efficient. Users
can find the crucial data and applications they need quickly and easily.
All of these settings can be controlled using Group Policy, so IT
administrators can decide what features are most appropriate for their
environments.

Troubleshooters

Enables users to be more self-sufficient, resulting in greater productivity,

fewer help desk calls, and better customer service.

27



2.14 Programming Language

A vocabulary and set of grammatical rules for instructing a computer to

perform specific tasks. Every language has its strengths and weaknesses. The

choice of which language to use depends on the type of computer the

program is to run on, what sort of program it is, and the expertise of the

programmer,

The following are two types of programming language most commonly used:

2.14.1 Java

2.14.2

Java, formerly known as oak, is an object-oriented programming
language developed by Sun. It shares many similarities with C, C++,
and Objective C. [14]

The language was originally created because C++ proved inadequate
for certain tasks. Since the designers were not burdened with
compatibility with existing languages, they were able to learn from
the experience and mistakes of previous object-oriented languages.
Even more importantly Java was designed from the ground up to
allow for secure execution of code across a network. Most notably
there are no pointers in Java. Java programs cannot access arbitrary
addresses in memory. Java was designed not only to be cross-platform
in source form like C, but also in compiled binary form and it is easier
to write a bug free code

C and C++

C++ is an object oriented programming language created by Bjamne
Stroustrup and released in 1985. It implements data abstraction using

a concept called classes. C++ features allow object oriented

28



programming. Parts of C++ program are modifiable, reusable and
extensible, existing code is easily modifiable without having to
change the code. [15]
C++ concept called operator overloading not seen makes the creation
of libraries much cleaner. C++ maintains aspects of the C
programming language, yet has features which simplify memory
management. Additionally, some of the features of C++ allow low
level access to memory but also contain high level features. C++
could be considered a superset of C.
C programs can run on C++ compilers. C uses structured
programming concepts and techniques while C++ object oriented
programming and classes which focus on the data.
C is such a powerful tool because it can be used to write machine-
independent programs.
2.15 Compiler

Compiler transforms a program written in a high-level programming

language from source code into object code. Programmers write programs in

a form called source code. Source code then will go through several steps

before becomes an executable program (shown in figure 2.9). [16]

29



Source S-.\ur\.e Source ‘?our‘:e
File nle u e
V YL é’

Object Object Qbject QObject
Fila File File File

Runtime Executable
Library Progmam

Figure 2.9 Compiler Architecture

First step - pass the source code through a compiler, which translates the
high-level language instructions into object code.
Second step - object code is passed through a linker and the linker combines
modules and gives real values to all symbolic addresses, thereby producing
machine code.
2.15.1 Microsoft Visual C++
Microsoft Visual C++ is the most productive C++ tool for creating the
highest-performance applications for Windows and the Web. Visual
C++ is an application development tool introduced in 1993 by
Microsoft for C++ programmers. [17]
Visual C++ supports :
e  object-oriented programming of 32-bit Windows applications
with an integrated development environment (IDE). Visual C++
was introduced in 1993,
e  C/CH+ compiler

. class library called the Microsoft Foundation Classes (MFC)

30



2.15.2

Nearly all world-class software, ranging from the leading web
browsers to mission-critical corporate applications, is built using the
Microsoft Visual C++ development system. Visual C++ 6.0 provides
flexibility, performance and control.

Cygwin

Cygwin is a program that runs within Windows and emulates that
Unix API (application program interface). [18] The Cygwin tools are
ports of the popular GNU development tools and utilities for
Windows NT and 9x. They function through the use of the Cygwin
library. Meaning, it runs Unix applications within Windows. This
allows Unix commands and applications running from within
Windows. Cygwin runs under most Windows versions including
95/98/ME/NT/2000/XP.

Unlike other methods of running Unix applications on a Windows
computer such as dual-booting, cygwin allows both Windows and
Unix applications to be used simultaneously and it can be easily
installed and uninstalled without the threat of losing Windows data.
Cygwin provides a large number of Unix packages including most
basic Unix commands, several shells, programming tools, graphics
programs including ghostscript and internet tools.

Besides UNIX packages provided by cygwin, many other applications
can be compiled under cygwin. Cygwin can access Windows files.
For example, to find command to search all documents on the C drive.

The Windows system can also access cygwin files. For example, to

31



open a graphic created by a Unix application with a Windows

program,

2.15.2.1 Disadvantage

It is difficult to print from Unix applications because cygwin has no

printing system like Ip or Ipr.

e Unlike standard Unix, cygwin is case insensitive. This causes
some Unix applications not to run properly.

e While there are a large number of supported applications, some
Unix applications won't run under cygwin.

e Cygwin is not adequate for those who need a fully functional Unix
installation.

However, Cygwin provides an excellent solution for people who want

to run Unix commands and applications from within Windows

without the complications of dual booting.

32



CHARTIERSS
SUSE
VEfTitODO G



CHAPTER 3 - SYSTEMS METHODOLOGY

System methodology is method to create a system with a series of steps or operations

and can be defined as system life cycle model. Every system development process

includes system requirements (users, needs and resources) as inputs and finished

product (system) as output. [19]

System
requirement

System
Development

Evaluation

System

Figure 3.1 — System Operation

After comparing some of the system development and methodology approach, the

waterfall model is used to build the system. The waterfall model as shown in figure

3.2 is used to describe the system development activities.

Requirement
Analysis
A l

System
Design

A

=

Coding

=4

Testing

I

e

Maintenance

Figure 3.2 Waterfall Model

33



As the figure implies, the advantage of this model is that we can correct the error
during the development process without waiting for other phase to complete. To
understand further the waterfall model, we have to understand the system
development life cycle of this model.
3.1 System Development Life-Cycle
System Development Life-Cycle (SDLC) is phase that similar to System
Analysis and Design where it discusses in details how a system can be
designed using the analysis phase and user’s activities. System Development
Life Cycle is divided into five phases. Each phase is itself a process and can
be described as a set of activities. . [20] Although it is treated as a life cycle
but the phases can be implemented at the same time and the activities can be
separated as necessary. The five phases are:
3.1.1 Requirement Analysis Phase
Requirement is a feature of the system of what the system is capable
of doing in order to fulfill the system purpose.
The systems design services, constraints and goals are established and
defined in details. It will serve as the system specification.
3.1.2 System Design Phase
The system design process partitions the system requirement and
establishes overall system architecture. System design provides
guidelines before the coding phase begin involves identifying and
describing the fundamental of the system module relationship. This

phase will produce the system user interface based on the requirement

specified.

34



3.1.3

3.1.5

Coding Phase

Code programming is executed at this phase by using the appropriate
programming language to develop the system. The coding phase
transforms the system design into a form readable by the computer. If

the system design is complete and accurate, the coding can be

established efficiently.

System Testing Phase

The system testing phase focus in finding fault that could cause failure
in the system. Fault finding can increase the quality of the system.
The failure in the system may result from missing requirement,
requirement impossible to implement, fault in program design or
incomplete algorithm in the program code.

Maintenance Phase

System development is complete when the system is operational, that
is when the system is used by the user in the actual environment. Any
work done to change the system after it is in operation is called
maintenance. Maintenance phase is also implemented when changes

or new requirements are discovered.

35



SHLRER
S AALYS




4.1.2.2User friendly = Enhance and easy to use menu button and
toolbars. Display simple dialog box and message for the user.

4.1.2.2 Managability - Easy to manage, simple browsing and not
time consuming.

4.1.2.4 Performance — System speed is critical to output production.
The system transaction must process in an acceptable range

and not time consuming.

4.1.2.5 Flexible — The system developed should be able to be
executed in a multi-user environment.

4.2 Hardware Requirement

The minimum hardware requirements to build the system are stated in table

4.1.
Table 4.1 - Hardware Requirement
No. Device Information
1. CPU Intel Pentium II processor
231 Mhz, 352 RAM of RAM
2. Operating System Microsoft Windows XP
Professional Version 2002
Service Pack 2, v.2135
3. Monitor Dell D828L
4, Network Adapter 3 Com 3C905TX
Based Ethernet Adapater (Generic)

4.3  Software Requirements

Software requirements are a combination of tools to develop all the modules

specified. Listed below are the software and tools required to build

37




Sniffalyzer. The software requirements are chosen based on their

functionality, affordability, easy to use and user friendliness feature.

4.3.1

4.3.2

Miscorsoft Visual C++ 6.0 Compiler
Microsoft Visual C++ is the most productive C++ tool for creating the
highest-performance applications for Windows and the Web. Visual
C++ 6.0 brings a new level of productivity to C++, without
compromising flexibility, performance or control. Furthermore it
work support wxWidgets class library.

4.3.1.1 Advantages

Enjoy a new level of productivity with new features that
significantly reduce less development time lead to less time in
building applications, coding, compiling, and debugging,

e Better speed leads to faster code generation Visual C++ 6.0 is
tuned in a number of places so that developers can build the
fastest, smallest components and applications possible

e User interface enhancements makes navigation easier for user

e Allow creation of multimedia-based highly interactive, Dynamic
HTML pages

wxWidgets version 2.4.2

wxWidgets also known as wxWindows is an easy to use API and

sophisticated cross-platform C++ framework for writing advanced

GUI applications on multiple platform and compilers. [22] It contains

rich class of libraries ready to be use by programmer. It is also an

application framework that provides architecture for using classes in

developing complete applications.

38



The combination of the chosen compiler and programming tools will
enable the development of a system's interface.

4.3.3 WinPCap version 3.0 Driver
The purpose of WinPcap is to access to Win32 applications. It

provides facilities to capture raw packets and filter the packets

according to user specified rules.

4.3.3.1 WinPcap Structure
WinPcap is an architecture for packet capture and network
analysis for the Win32 platforms. It includes a kernel-level
packet filter, a low-level dynamic link library (packet.dll) and

a high-level and system-independent library (wpcap.dll). [23]

Packet capture is a low level mechanism that requires a strict

interaction with the network adapter and with the operating

system.
Wpcap dil '
[
Packet dil User Level
T RE T -___—_-_-—ksrnolLevel
"""""""""""" Network
Packets

Figure 4.1 - WinPcap Architecture

39



The above figure (Figure 4.1) shows the various components
of WinPcap:

Packet.dll is an application program interface (API) that can
be used to directly access the functions of the packet driver,
independent from the Operating System.

It provides functions to handle network adapters, read and
write packets from the network, set buffers and filters in the
driver and so on.

Wpcap.dil provides an application program interface (API)
that work on any operating system. These features allow

applications to capture packets on a network regardless of the

type of operating system.

4.4  Existing Packet Sniffer and Analyzer Software
Three packet sniffer software are reviewed for analysis and feature
comparison purposes. Ethereal, CommView and Packet Analyzer 4.0 as listed
in table 4.2 below are chosen as they are among the best packet sniffer
available in the market today.
Table 4.2 - List of Existing Software
No. Product Brand Company/Author Availability
1. Ethereal Gerard Combs Non-commercial
2. CommView TamoSoft Inc. Commercial
<y Packet Analyzer 4.0 Colasoft Capsa 4.0 | Commercial

40




4.4.1 Ethereal

Ethereal is still technically beta software, but it has a comprehensive

feature set and is suitable for production use.

Features:

e Data can be captured from a live network connection, or read from
a captured file.

o Ethereal read capture files from tcpdump (libpcap)

e Live data can be read from Ethernet, FDDI, PPP, Token-Ring,
IEEE 802.11

e Captured network data can be browsed via a GUIL.

e Support 530 protocols

e Output can be saved or printed as plain text.

e Data display can be refined using a display filter.

e Display TCP streams

@ <captures - Ethereal alalx)
File Edn  Coapture Display Tools Help '
No info
103 12,670000 wav,google.con testygay.chat.gov  TCP htp > 32845 (SYN, ACK] Soqe
104 12,670000 test ,chat, ", 1o, com e 22045 > mep [AEK 17010 r
M /
~ ! -

TETCITSCTON Peryy neey ooy
Sequence rusber: 1701824347
Next sequence nusber: 1701824703
Rcknovledgement rusber : 1663160324
Header length: 32 bytes

B Flags: 050018 (PSH, WCK)
Vindow size: 5840
Checkoum: Ox7%6 (correct)

@ Options: (12 bytes) _I

5] toxt Transfor Protocol
Tanmact tans Kamneft] §imhrin /

| X T

-
D40 1F 9 £
w”cu t bf be 38 20 4b b onnec tion: K
W60 0241 6 69 76 65 Od 0a 55 73 65 72 2d 41 ep-Rlive .:mn-:
2070 67 65 6o 74 35 20 44 6F 75 69 Bc 6¢c 61 2F 35 20 gent: Mo nllas,
0080 30 20 28 63 6F 64 70 61 74 69 62 6¢ 65 3 20 4b O (conpa tible: K /

Za A Resel] Apor]

Figure 4.2 — Ethereal Screenshot

41



4.4.2

Disadvantage

e documentation user guideline are too simple

CommView

CommView is a program for monitoring Internet and Local Area
Network (LAN) activity capable of capturing and analyzing network
packets. It gathers information about data passing through your dial-
up connection or Ethernet card and decodes the analyzed data.
Features

e  Monitor internet and Local Area Network (LAN) activity

e  Gathers information about data passing through dial-up

connection or Ethernet card
® Decode packet with full analysis of protocols.
e  Captured packets can be saved to log files for future analysis.
e  Provide IP protocol and Ethernet protocol filters

e  Designed for internet users and small and medium-sized

networks

° Configure alarms to notify about important events, such as

suspicious packets.
e  Monitor bandwidth utilization.
o Browse captured and decoded packets in real time.
e  Log individual or all packets to files.
. Load and view capture files offline.

o  Filter packets based on Ethernet protocols and IP protocols

42



B commView

| File Search View Took Settngs Rules Mol |
(PE|B@H-~0~ RS
™ 1P Statistics |y Packets | B Loggng | L Rules | 484 Alarms |
Local IP [remote1r | 1n | out [ Drection [Sessins| Ports | Hostame | oytes|
b 1046014111 21054125200 55 55 ow 0 300 2A054125200p. 21,249
1946014111 64200112 47 W I 2 13, adwords.google.com 41,359
1946014111 205180153103 7 7  Ow 0 4000 fes-d007.kqaolcom 944
Copy »
194.68,141,11 20471202160 16 1S Qut AlPorta m 19,846
1946014111 194237074172 0 3 Ow Show 17,081
194.60.14111 2006811237 33 P ow Data Transfer ... ~ fom 6,807
1946814111 193.0.0.129 4 14 ow = N 10,048
194.60.141,11  213.19.924 8 12 o "m SHeR L, VI 2,009
SmartWhois
Create Allas »
Clear [P Statistics
(otre: O Pockets: 2211/ 2650t | 12201 pas Akosawg OFf_ Rubesi 200 9% Ui |

Figure 4.3 CommView Screenshot

Disadvantage
e does not provide installation guide and systems requirement.
4.4.3 Packet Analyzer 4.0
Packet Analyzer is a powerful but easy to use network monitor and
analyzer designed for packet decoding and network diagnosing. It has
the ability of real time monitoring and data analyzing.
Features
e  Monitors and captures packets in real-time
e  Display the analyzed data immediately after captured

° Captures email messages, web accesses and network

transactions
e  Resolves host name and address
e  Decoding packets and packet header
e  Displays IP address and MAC address of captured hosts

e  Provide four filter types: packet filter, email filter, web® filter

and transaction filter

43



4.5

B Colasoft Copsa 2.1 [ Test.cpa]

K] ol CR Yew Doed Cutue Wndw b -®x

DEUe Ve e )@
Scope Pane W radets L TeMak o o
) tepe

AN MNNININAN0 ke Sobytes Biytes n
237 ANAM2NLNN0 WO Sdbyrer Dbytes

227 MANIUIDI0 N POA my.-w: Diptes §

<«

B racie obm(ﬂ A 00000000
R L S 1) ]
W DestMacAdh  0000D00
ﬂhmm 00000030

DMM-
< AP resds
O S ; Bii 1

Figure 4.4 Packet Analyzer 4.0 Screenshot

Disadvantage

e does not support dial-up connection
e too many dialog box for filtering

e too many window frames for display

e does not provide installation guide and system requirement

Software Comparison
Table 4.3 shows the comparison between Ethereal, CommView and Packet
Analyzer 4.0. The comparison was based on systems requirements, available

modules, packet capture driver, number of protocols it supports and filters

modules.



Table 4.3 -

Software comparison

Ethereal CommView Packet Analyzer 4.0
System Windows Windows Windows 9x/XP/NT
Requirements | 95/98/Me/NT4.0/ 95/98/Me/NT/2000/XP/ | 3.x/NT/2000.
2000/XP/Server 2003/
Modules Protocol / IP address | Protocol Filters Protocol/IP address
filters Packet Generator Filters
Adapter Alarm E-mail Filter
Adapter Web Filter
Transaction Filter
Adapter
Driver WinPCap version None None
3.1 beta3
Protocols 530 74 8
Filters Protocol IP protocol MAC address
IP address Ethernet protocol IP address
Protocol
Port
Others

45







CHAPTER 5 - SYSTEMS DESIGN

System design is the first of the three technical activities (design, code generation
and testing) that are required to build and verify a system.[24]
The design process produces the function design and user interface design.
5.1 Systems Functions
Deals with the collaboration of each module to achieve the overall system
functionality specification and interface design.
5.1.1 Structure Chart
Basically the system can be divided into four main modules as shown

in figure 5.1.

46



T

——p Choose a filter

Unrecognized syntax

f

Yes/default

ﬁ<_>%

e Choose adapter

Not available

'

Yes/default

E<_>H

Start Capture

>

Figure 5.1 = Structure Chart for Sniffalyzer

5.1.2 Module Explanation

The following section will present detailed explanation for each
module in the system.

5.1.2.1 Capture Module

There are two sub-modules in capture modules: start and stop

capture.

47



Capture
module

Start
module

module

Figure 5.2 Capture Module

Packet capturing refers to the act of recording network traffic

and saving this data to a file. It collects the packet from

network without modifying them in promiscuous mode. When

the capturing is stopped, the packet information will be

displayed in the main window frame.

5.1.2.2 Capture Filter Module

There are two filter type: protocol and IP address.

Fliter
module

Protocol
module

" IP address

module

Figure 5.3 Filter Module

5.1.2.3 Adapter Modules

A number of adapters will be displayed in the adapter module.

48



5.1.2.4 Display Filter Module

Display
module

Text Graphic
module module

Figure 5.4 — Display Filter Module
This module consists of two sub-modules. Text module will
display all or selected packet information in text and graphic

module display packets based on protocol or IP address filter.

5.2  Data Flow Diagram (DFD)

Data flow diagram depicts the flow of data through a system or processing

Capture

Figure 5.5 — Data Flow Diagram

performed by that system.

49



5.3

5.4

User Interface Design

The system designed in user friendly interface yet efficient. Areas that are
taken into consideration: general interaction, information display data input.
The following guideline is adopted in designing the interface for the system.
[26]

e Use a consistent format for menu selection, data display and other

functions.
e Ask for verification for any destructive action such deletion of file.
e Reduce amount information memorize between actions.

e Seek Simple and efficiency in dialog box.

Systems Interface

Sniffalyzer interface created are based on the four main modules. User
interface for Sniffalyzer are simple and straight forward. It does not offer too
many dialog boxes. Information displayed will be based on user input.

However, the interfaces design created in this chapter are subjected to
changes.

5.4.1 Main Menu

° The main menu contains five menu bars: File, Edit, Option,
Capture and Help.

e List view offers the following column options: Packet
numbering, Time captured, Source and Destination Address,
Protocol and packet Information.

e The window pane will display packets information and packet

decode based on selected packet.

50



File Edit Option Capture Help
No. | Time Source IP Destination IP | Bytes Protocol Information
Packet Summary

5.4.2 Capture Module

Figure 5.6 — Main Menu

Figure 5.7 Capture Menu Bar

Capture

Start Capture

Stop Capture

5.4.3 Capture Filter Module

O

L

Protocol Filter

Packet Filter

IP Address FmTL

Source

Destination

Reset

OK

Cancel

Figure 5.8 — Capture Filter Dialog Box

51



5.4.4 Adapter Module

Capture Interface

Adapters

OK

Cancel

Help

5.4.5 Display Filter Module

Display Option

O

O

Figure 5.9 — Adapter Dialog Box

Text Display

Filter

Graphic Display

Filter

Reset

OK

Cancel

Help

Figure 5.10 — Display Filter Dialog Box

52



ROE B0



CHAPTER 6 — SYSTEM DEVELOPMENT AND
IMPLEMENTATION

6.1

6.2

Introduction

[mplementation is the process of translating the detailed design in to a
program code. In this phase, the system requirement and design are being
implemented and converted into program code. However due to certain
limitations, modification are needed in order to develop the system in
accordance to the limitation of development tools chosen to develop the
system.

Each module in the system is initially being developed and tested phase by
phase until it is fully becoming a functional system, after each module is able
to run smoothly as an integrated system. The systems development involved

code generation using Java language.

Development Environment

Table 6.1 — Hardware Requirement

No. Device Information

1. CPU Intel Pentium II processor

231 Mhz, 352 RAM of RAM

2 Operating System Microsoft Windows XP

Professional Version 2002

Service Pack 2, v.2135
3. Monitor Dell D828L
4. Network Adapter 3 Com 3C905TX

Based Ethernet Adapter (Generic)

53




6.3

6.4

Development Tools

Table 6.2 - Development Software and Tools

No. Software/Tools Information

15 Java 2 Platform, development environment for building

Standard Edition, v | applications, applets, and components using

1.4.2 (J2SE) the Java programming language.
2 JCreator LE 3.5 Integrated Development Environment (IDE)
for Java
3. Jpcap set of Java classes which provide an

interface and system for network packet

capture

4, Winpcap 3.1 beta 4 open source library for packet capture and

network analysis for the Win32 platforms.

5. | Miscorsoft Visual C++ | C++ Integrated Development Environment

6.0 Compiler (IDE) for jpcap native codes

Program Development

Program development is the process of creating the programs needed to
satisfy the information system’s processing requirement. Program

development consists of the following four steps.

54



6.4.1

Review the program document

Design the program

L Code the program

Completion of program code

Figure 6.1 — Program Development Process
Review the program code
The first step in the program development is to review the program
document that was prepared during the previous phase. The program
document of consists of data flow of the system and the connection of
module. The program document is then analyzed through these
following steps:
e In written form, a complete definition of the requirements of the
program.
e Understanding the written definition well enough to produce the
desired result manually
e Defining the input required to produce the desired output.
e Identifying the source of the input.
Generally, the first area to analyze should be the output area of the
program. This comes from the written definition of the requirements.
The system’s output will be show in the layout of on the screen,

showing the information that should result from program running

correctly.

55



6.5

6.4.2

6.4.3

6.5.1

The second area to look at is input. Determine what facts are needed
to produce the require information, and where that data is going to
come from. The last step to analyze is process. To determine what to
be done to each input to turn it into output information.

Design the program

For the second level of program development, decisions have to be
made on how the program can accomplish its tasks by developing a
logical capturing solution to those program documents. The easiest
way is to break the project into small pieces so and design the logic
for each part of the problem.

Code the program

Coding programs is the process of translating the program design into
the appropriate Java language to solve the problem. The activities in
this process produce program modules that compile, build and run
smoothly. Implementation of testing and analysis on the modules is

to test its effectiveness and free of any error that could lead to system

failure and malfunction.

System Coding

In system coding, every component of the program will look into this three

aspects:

Control Structure

The control structure for the component proposed in the system

design phase is translated into code. The program design structure

56



6.5.2

6.5.3

must reflex with the control structure design. In this project the coding

is done using the bottom-up approach.

Algorithm

The system program code were designed based on a specific
algorithm. Algorithm is a detail sequence of actions to perform to
accomplish some task. An algorithm must reach a result after a finite
number of steps The system were broken into several steps, get the
device list for capturing, open the device list for capturing, loop the
incoming and outgoing packet for handling, handling the packet for
analysis, separate the packet based on the protocol and display the
packet. This sequence of steps needed to solve logical problems.
Object Oriented Programming

Object Oriented Programming supports object technology. It is an
evolutionary form of modular programming with more formal rules
that allow pieces of software to be reused and interchanged between
programs. OOP is thought to increase productivity by allowing
programmers to focus on higher-level software objects. One of
primary features of object-oriented is inheritance. In this project, the
system’s program code was written in two java source files:
SniffBase.java and Sniffajava. The device handling and packet
handling process is placed in Sniffa.java, the derived class. While the
SniffBase.java is the base class that extends the method of set() and

get(). Sniffa.java inherits this method to display the GUI and packet

capturing data and statistics.

57



6.6  Program Coding Approach

Factors to be taken into account when doing system coding:

6.6.1 Simplicity and Clarity

More than a few misguided programmers believe that the more
complex and convoluted their code, the more sophisticated their skills.
A good program is generally quite simple. The underlying meaning of
the procedure represented in programming language source code
should be easy to understand and clear for the programmer

6.6.2 Use meaningful variable names

In general, variables and data structures should be named in a manner
that enables the programmer to infer their meaning within the context
of the procedure at hand and their correlation with some real-world
object.

6.6.3 Establish effective commenting conventions

e Start with an effective prologue

e Describe blocks of code, rather than commenting every line
e Use blank lines and indenting so that comments can be readily
distinguished from code.

6.6.4 Module

Separate function structure so it can function independantly and easy
for modifications

6.7  System Module

The system’s module is divided into five: obtaining device/adapter list,

opening adapter, capturing packet, display packet and statistics.

58



6.8

6.7.1

6.7.2

6.7.3

6.7.4

Obtaining device list

The system obtain the device or adapter list by using method
getDeviceDescription() in jpcap.

Opening Adapter

The system will open the device for listening using method
openDevice() in jpcap. The user will choose which adapter they want
to use to listen to the network. The openDevice() method requires four
arguments: the device name to be opened, the maximum number of
bytes to read from the device at one time, a Boolean value specifying
whether to put the device into promiscuous mode, and a timeout value
Capture Packet

After the device is open, the system will start listening through
loopPacket() and start capturing packet. loopPacket() will capture
packets until the maximum number of packets is reached specified in
openDevice().

Display packet and packet summary

handlePacket() method is used to analyze a packet. This method is
called every time a packet is captured. Packet strings and statistics

will be processed here and send to the output area for display.

Program Coding

6.8.1

Coding Style
There are two standard methods of program design: the top-down

approach and the bottom-up approach.

59



6.8.2

e Top-down programming involves writing code that calls functions
that haven't defined and working through the general algorithm
before writing the functions that do the processing. Top-down
programming is, to a good degree, a very abstract way of writing
code because it starts out by using functions that haven't been
designed.

e The bottom-up approach to programming is the opposite: writes
the basic functions then work up to the more complex parts of the

program.

It's interesting that both of these approaches focus on the actions of
the program rather than the objects the program manipulates -
variables. Many times, the best way to write a program is to figure out
the variables that need to work. By defining variables first and then
working with functions that work on them, this always maintain a
basic foundation of what the program should be doing. Finally, the

code for each individual function is written.

Debug mechanism

Errors caused by faulty logic and coding mistakes are referred to as
bugs. Finding and correcting these mistakes and errors that prevent
the program from running and producing correct output is called
debugging. Some common mistakes which cause program bugs are:
mistakes in coding punctuation, incorrect operation codes, transposed

characters, keying errors and failure to provide a sequence of

60



instructions needed to process certain conditions. The way of

debugging the program code:

6.8.2.1 Runtime error
The program does something, but not as expected — a great
way to make sure the code is getting executed.

6.8.2.2 Debugger
Debugging is the process of correcting or modifying the code
in the program so that the program can build, run smoothly,
act as expected and be easy to maintain later.

6.8.2.3Exception Handling
An exception is an indication of a problem that occurs during a
program’s execution. Exception handling enables the creation
of application that can resolve or handle exception. Handling
exception allows a program to continue executing as if no

problem has been encountered.

61






CHAPTER 7 - SYSTEM TESTING

The main function of testing is to establish the pressure of defect. Testing is
performed to ensure that it is working correctly and efficiently. and generally focused
on two areas: internal efficiency and external effectiveness. The goal of external
effectiveness testing is to verify that the system is functioning according to system
design, and that it is performing all necessary functions or sub-functions. The goal of
internal testing is to make sure that the computer code is efficient, standardized, and

well documented. Testing can be a labor-intensive process, due to its iterative nature.

After system has been verified, it needs to be thoroughly tested to ensure that every
component of the system is operating as it should and the system is performing

exactly in accordance with the requirements.

7.1 Testing Methodology

There are two main methodologies of testing: white-box and black-box

testing.

7.1.1 White-box testing examines the internal structure of a program and
attempts to test each logical case. White-box testing can be thought of

as transparent box testing: the tester can see and test a specific section

of code.

7.1.2  Black-box testing also known input/output-driven testing in which the
tester views the program as a black box, and as such, the inner
workings of the program are unknown. The main tool used in black-

box testing is the specification of the program: attempts to determine

62



7.2

what input causes the output of the program to be different from what

the specifications would require.

Type of Testing

7.2.1

Module Testing

It is also referred to unit testing and it focuses on verification of the
smallest unit of system design - the module. Using the detailed design
specification as a guide, important control paths are tested to uncover
errors within the boundary of the module.
Module testing were done on
e Obtaining device module
to ensure that device is open and argument is passed correctly to
the receiving function.
e Packet handling module
to ensure that packets were actually captured and send to the
appropriate method for handling and display purposes.
e Packet display module
To ensure that the intended output were display correctly and at
the correct output area.
Types of error occurred during module testing:
e  Algorithm error - error in the assembly of program code
results in the output display area
e Syntax error - innocent mistakes during keying in the
program code.
. Parameter passing error - Data type of argument passed

were different from the argument in method().

63



7.2.2

7.2.3

e Event handling error — Calling method from the inner class

without declaring a new object

Integration Testing

Testing two or more modules or functions together with the intent of
finding interface defects between the modules or functions. Testing
completed at as a part of unit or functional testing, and sometimes,
becomes its own standalone test phase. Integration testing can involve
a putting together of groups of modules and functions with the goal of
completing and verifying that the system meets the system
requirements.

System Testing

It ensures that the system as a whole satisfies input and output
specifications and that interfaces between modules, programs or
subsystems are correct. Emphasis is placed on system access, security,
performance, and recovery capabilities.

The modules tested in the integration tested were tested again as a
complete system. The system testing will verify the accuracy of the
systems process, input and output to ensure it follows the design

specification and the system’s requirement.

64



SISHEN EWAI.WHOM
H@@@@@M




CHAPTER 8 - SYSTEM EVALUATION AND DISCUSSION

This chapter will cover and discuss the system strength and limitation, the system’s

problem and solution, and a few suggestions to enhance the system in the future.

8.1

System Strength

The system developed, packet sniffer has achieved its main objective. The
packet sniffer is used to listen to a live network and able to capture for
analyzing purposes. Packet can be capture under promiscuous mode either
from a dial-up connection and switched network. Throughout the
development, the system was programmed and tested using Dell computer.
Device adapter that were for capturing is Generic NdisWan Adapter and
3Com 3C90x Ethernet Adapter.

Generic NdisWan Adapter is used to listen to the network through a modem
while 3Com 3C90x Ethernet Adapter is used to listen to network though a
switched network.

Packet summary produced by the system displays the total of packets
captured, TCP and UDP packet and total length of byte captured.

Most importantly the system was successfully built to capture packet from a
live network and the function as packet sniffer.

This system uses jpcap facilities manipulated by the author based on winpcap
packet capture library. The open source code can be retrieved freely and any
programmer or user is allowed to change the coding and adding new modules

to the code.

65



8.2

8.3

Systems Limitation and Constraint

The system does not produce relevant results to help the user analyze the
packets captured from the network but it s capable of capturing the packet’s
raw data and information in the packet field.

The system was not able to decode packet header and data into a human
readable form for the purpose of analyzing. This is a major drawback for the
system,

The systems filter were setup inside the programming code. The code was
program to capture TCP, UDP and ARP packets. The user does not have the
ability to filter packet based on protocol or IP address.

The system can only display packet information in a form of raw data or
string.

Packet summary presented by the system have restricted information on the
packet detail. The statistics obtained were not enough to perform packet

analyze function.

Problem and solution

During the system requirement and analysis phase, a lot of study and research
has been carried out. The problem faced during the analysis and requirement
phase were not as crucial as during the implementation phase. A lot of
modification and work cannot be carried out due to lack of knowledge in
certain areas and time constraint. Below are some of the problems

encountered

66



8.3.1

8.3.2

Lack of programming experience

Problem:

It is a major drawback during the implementation of the project. The
initial choice of programming language, C++ has been changed to
Java, This decision was made because of the vast amount of classes
and the complexity of event handling structure in C++.

Solution:

As time was the main factor, Java was chosen due to its less
complicated programming style. Nevertheless, a lack of experience
and skills in programming has been the major obstacle from achieving
this project’s objective.

Development Time Factor

Problem:

Small prior knowledge in Java programming style and environment, a
lot of studies need to be done and learn within a short span of time,
Due to this factor also, certain features is not implemented in this
project.

Solution:

However some of the obstacles were resolved by doing personal
studies and research through the Internet.

Installation and Setting

Problem:

Lack of experience, knowledge and skills in developing a system has

turn out to be a major obstacle during the system development phase.

67



8.4

Installation and compilation of winpcap and jpcap were not done

correctly during the early stage of development.
Solution:

Problem was overcome through a lot of research in the Internet,

engagement in forum and documents available in the setup folder.

Future Enhancement

Due to time limitation, not all of the target objectives and ideas could be

incorporated in this project. Future enhancement is essential to make the

system more up-to-date, interesting and dynamic. These factors are crucial to

create an interest on the user to use the system.

Ideas for future enhancement:

e Create a graphical user interface that could interact more with the user.

o Setting up packet filters so that the user can capture packets based on
protocol, ip address or port number.

e To create more item in the packet summary such as total of received and
dropped packets, statistics and so on.

e Statistic in a form of pie chart or graph. The graph and chart will
represent then number of packets captured according to the protocol.

e Decode the packet data field into hexadecimal or ASCII for the purpose
of analyzing the nature of the data packet.

e Implement security measure such as authentication through the use of

password,

68



Jpcap provide a wide facility than can be used to build a better system. The
packages inside jpcap facility can be manipulated to produce better functions
and modules in the system.

Finally, the system can only display packets after the time passed to the

getOpenDevice() method is out, It does display packet in real time.

69



CONCLUSION

After conducting analysis and testing, it is concluded that the project has achieved its
main objective, capturing a packet from live network even though some of the

requirement and targeted objective are not fulfilled.

There are more researches to be done in developing the system. With the first step
taken, enhancement can still be made in the future to this version of system. The

system could be made more up to date, dynamic and detail.

As the project has to be done in a short period of time and a lot of technical issue
arises and need to resolve, a few problems has been encountered. Solution has been
sought during testing. Encountering with problem has been proven to be a valuable

learning experience.

I learnt that a good knowledge of software development life cycle could
accommodate a developer to manage their project smoothly. All five phases,
requirement analysis, system design phase, system coding, testing and maintenance
need to be followed accordingly in order to build a good system. To build a good
systems also require time, effort and patience. One the most essential knowledge
gained from this project is the technique on problem solving. I was also able to
practice my skill in programming Java language and gain a sufficient knowledge on
how to build a simple packet sniffer, how the packets were captured from the live

network and a lot more,

70



This project has helped me a lot in recognizing my poor skill in time management,
project management and communication. These experiences and knowledge gained
would certainly help me to manage and organize any future project and will make me

become a better programmer.

71



Al



APPENDIX A - USER MANUAL

Al.

DOWNLOAD

No.

Platform and tools

18

Java 2 Platform, Std Edition, v 1.4.2 (J2SE)
http://java.sun.com

JCreator LE 3.5
www.jcreator.com/download.htm

Jpcap
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html

Winpcap 3.1 beta 4
http://winpcap.polito.it/

Miscorsoft Visual C++ 6.0 Compiler

A2,

SETUP

Jpcap ver.0.4

1. Copy '"libUpcap.dll" into "[J2SDK directory]\bin" or "[JRE
directory]\lib\ext\x86"
2. Copy "lib\jpcap.jar" into "[J2SDK directory]\lib\ext"

Winpcap 3.8 beta 4

1. Compile packet.dll

Load the project contained in the directory PacketNTx\dll\project (or
Packet9x\dll\project) in the Visual C++ IDE. There are four project
configurations:

o PacketNT - Win32 Release: standard release configuration

o PacketNT - Win32 Debug: standard debug configuration

e PacketNT - Win32 NT4 Release: release configuration able to run on
NT4 does not include Wan and IP helper API support.

o PacketNT - Win32 NT4 Debug: debug configuration able to run on
NT4 does not include Wan and IP helper API support.

o WanPacket - Win32 Release: release version of the WanPacket library,
used to interface with NetMon API for Wan capture

o WanPacket - Win32 Debug: debug version of the WanPacket library,
used to interface with NetMon API for Wan capture




Compile wpcap.dll - winpcap\wpeap\prj of the WinPcap source code
distribution.

Load wpcap.dsw from the Visual C++ IDE and build the program. There
are six build project configurations:

Wpcap debug: no support for DAG cards and Remote capture, debug
version

Wpcap release: no support for DAG cards and Remote capture, release
version

Wpcap debug REMOTE: support for Remote capture, no support for DAG
cards, debug version

Wpcap release REMOTE: support for Remote capture, no support for DAG
cards, release version

Wpcap debug REMOTE DAG: support for both DAG cards and Remote
capture, debug version

Wpcap release REMOTE DAG: support for both DAG cards and Remote
capture, release version

Java 2 Platform, Standard Edition, v 1.4.2 (J2SE)

After installation, setup the environment variables :

For Windows XP : Control Panel/Systems/Advanced

Go to Environment Variable/User variables : include path and type C:\j2sdk
(according to the installation directory)

A3.

PROJECT EXECUTION

Open, compile and build the java source file SniffBase.java and Sniffa.java.

Execute the Sniffa.java and the packet will automatically start capturing packets.

o






APPENDIX B - SYSTEM CODE

B.1 SniffaBase.java
import java.lang, Number;

import java.awt.event.*;
import java.awt.*;
import javax.swing.*;
import jpcap.*;

public class SniffBase// implements JpcapHandler
{
public String outputl="";
public String output2="";
int h=0;
int i=0;
int j=0;
int k=0;
int 1=0;
long m=0;
int n=0;
int 0=0;

public SniffBase()
{}//end const. SniffBase

public void setDevice(String out)

{
outputl+=out;
}
public String getDevice()
{
return outputl;
}
public void setDeviceName(String g)
{
output2-+=g;
}
public String getDeviceName()
{

return " Start sniffing on device " + output2;

|



public void setPacket(Packet p)
{ hitia )

public int getPacket()
{ return h; }

public void setTcp(Packet p)
{ i+ )

public int getTep()
{ return i; }

public void setUdp(Packet p)

{ it}
public int getUdp()
{ return j; }

public void setIp(Packet p)

{ k++; }
public int getlp()
{ return k; }

public void setArp(Packet p)

{ I+ 1}
public int getArp()
{ return |; }

public void setLen(int p,int 0)

{ m+=p; n+=0;

}
public long getLen()
{ return m; }
public long getcapLen()
{ return n; }

}//end class SniffBase

o



B.2  Sniffa.java

import java.awt.event.*;
import java.awt.*;
import javax.swing.*;
import jpcap.*;

import java.io.* ;

public class Sniffa extends JFrame implements JpcapHandler
{

Box box = Box.createVerticalBox();

Container container;

JTextField textFieldl,textField2;

JTextArea textAreal, textArea2, textArea3,textAread,textAreaS;

JTextArea editor;

JMenu fileMenu, helpMenu;

JMenuBar setMenuBar;

JMenultem
exitMenultem,aboutMenultem,saveMenultem,copyMenultem,pasteMenultem;

public static String areal="";
public static String area2="";
public static String area3="";
public static String aread="";
public static String output="";
public static String output1="";
public static String outpacket="";

public static String[] device;

public Sniffa()

{
super("Sniffalyzer");

/*************#****FILE MENU************#*****/

JMenu fileMenu = new JMenu("File");
fileMenu.setMnemonic('F');

JMenultem saveMenultem = new JMenultem("Save");

saveMenultem.setMnemonic('S");

saveMenultem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent. VK_S,
ActionEvent,CTRL._MASK));

fileMenu.add(saveMenultem);
saveMenultem.addActionListener(



new java.awt.event.ActionListener()

{

public void actionPerformed(ActionEvent ¢)
{ saveFile(); }

editor = new JTextArea () ;
editor.setColumns(40) ;

JMenultem copyMenultem = new JMenultem("Copy") ;

copyMenultem.setMnemonic('C");

copyMenultem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,
ActionEvent. CTRL MASK));

fileMenu.add(copyMenultem);

copyMenultem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent )

{ copy() ; }

}

)

JMenultem pasteMenultem = new JMenultem("Paste") ;

pasteMenultem.setMnemonic('P');

pasteMenultem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent. VK_P,
ActionEvent.CTRL MASK));

fileMenu.add(pasteMenultem);

pasteMenultem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent ¢)

{ paste() ; }

}

)3

fileMenu.addSeparator();

JMenultem exitMenultem = new JMenultem("Exit");
exitMenultem.setMnemonic('E');
exitMenultem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent. VK_E,
ActionEvent.CTRL_MASK));
fileMenu.add(exitMenultem);
exitMenultem.addActionListener(
new ActionListener() {/inner
public void actionPerformed(ActionEvent event)
{ System.exit(0); }



}//end inner
);//listener

/************************HELP MENU***********************/

JMenu helpMenu = new JMenu("Help");
helpMenu.setMnemonic('H');

JMenultem aboutMenultem = new JMenultem("About");
aboutMenultem.setMnemonic('A');
helpMenu.add(aboutMenultem);
aboutMenultem.addActionListener(
new ActionListener(){//inner
public void actionPerformed(ActionEvent event)

{
JOptionPane.showMessageDialog(Sniffa.this,
"\tThis is a simple java packet sniffer",
"About",JOptionPane. PLAIN_MESSAGE);

}

}//end inner
)//listener

JMenuBar bar = new JMenuBar();
set)MenuBar(bar);
bar.add(fileMenu);
bar.add(helpMenu);

Container container = getContentPane();
container.setLayout(new FlowLayout());

JTextArea textAreal = new JTextArea("",4,10);

textAreal .setBackground(Color.BLUE);
textAreal.setForeground(Color. WHITE);
textAreal.setFont(new Font("Arial-Narrow", Font.BOLD, 12));
box.add(new JScrollPane(textAreal));

JTextArea textArea2 = new JTextArea("",2,30);
textArea2.setBackground(Color.BLACK);
textArea2.setForeground(Color, WHITE);
textArea2.setFont(new Font("Arial-Narrow", Font. BOLD, 12));
box.add(new JScrollPane(textArea2));

JTextArea textArea3 = new JTextArea("",1,60);

textArea3.setText( :
" Timestamp\t\tSourcet  Destination\t Information");

textArea3.setFont(new Font("Arial-Narrow", Font. BOLD, 10));



textArea3.setEditable(false);
box.add(new JScrollPane(textArea3));

JTextArea textAread = new JTextArea("",15,60);
textAread.setBackground(Color.PINK);
textAread.setForeground(Color.BLACK);
textArea4.setFont(new Font("Arial-Narrow", Font. BOLD, 12));
box.add(new JScrollPane(textAread));

JTextArea textArea5 = new JTextArea("",1,60);
textArea5.setText(" PACKET SUMMARY");
textArea5.setFont(new Font("Arial-Narrow", Font. BOLD, 12));
textArea5.setEditable(false);

box.add(new JScrollPane(textAreas));

JTextArea textArea6 = new JTextArea(":",7,60);
textArea6.setBackground(Color.CYAN);
textArea6.setForeground(Color. BLACK);
textArea6.setFont(new Font("Arial-Narrow", Font. BOLD, 12));

box.add(new JScrollPane(textArea6));
textAreal .setText(areal);
textArea2.setText(area2);
textAread.setText(area3);
textArea6.setText(aread);
container.add(box);
setVisible(true);
setSize(600,1000);
}//end const. Sniffa
JRAksRkoRkR sk KRk Rk kD A CKET HANDLIN G koo sk ok ko /

public void handlePacket(Packet packet)

{

it+=1;

SniffBase f = new SniffBase();
outpacket+= " "+i+", "+packet+"\n";

if(packet instanceof Packet)
f.setPacket(packet);



if(packet instanceof IPPacket)
f.setlp(packet);

if(packet instanceof TCPPacket)
{f.setTep(packet); }

if(packet instanceof UDPPacket)
f.setUdp(packet);

if(packet instanceof ARPPacket)
f.setArp(packet);

f.setLen(packet.len,packet.caplen);

}//end handlePacket()

public static void main(String args(]) throws java.io.IOException

{

SniffBase s = new SniffBase();
/**************DISPLAY DEVICE**********#/

String[] devicel= Jpcap.getDeviceDescription();
for(int i=0; i<devicel.length; i++){
outputl+=" "+(i+1)+", "+devicel [i]+"\n";

}

s.setDevice(outputl);
areal+=s.getDevice();

String deviceNamel=devicel[0];
s.setDeviceName(deviceNamel);
area2+=s.getDeviceName();

/*************OPEN DEV]CE*************##*/
String[] device = Jpcap.getDeviceList();

for(int i=0; i<device.length; i++){

output+=(i+1)+", "+device[i]+"\n";

|



String deviceName = device[1];

Jpcap jpcap = Jpcap.openDevice(deviceName, 1028, true, 1);
jpcap.loopPacket(20, new Sniffa());

/**************DISPLAY pACKET****************/
area3+=outpacket;

aread+= " Traffic\ttCapture\n"+
" \r‘l|+
" Packets\t\t" + s.getPacket() + "\n" +
' IP:" +s.getlp()+"\t\t" + "TCP: "+s.getTep()+" UDP: "+s.getUdp()+ "\n"
+
" ARP \t\t"+s.getArp() HR i et
" Bytes \t\t"+s.getLen() + "\n";

Sniffa sniff = new Sniffa();
sniff.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

{//end main

/*********#****FILE_SAVE_COPY_FASTE#***********/
private void saveFile() {

JFileChooser fc = new JFileChooser () ;

int returnVal = fc.showSaveDialog(this) ;

if (returnVal == JFileChooser. APPROVE_OPTION) {
File file = fc.getSelectedFile() ;

ty A X
editor.write(new FileWriter(file)) ;

}
catch (IOException exp) {}

}

}//end save

private void copy() {
editor.copy() ;
editor.requestFocus() ;

{//end copy

private void paste() {



editor.paste() ;
editor.requestFocus() ;
}//end paste

{//end class Sniffa



il



APPENDIX C - SYSTEM INTERFACE

C.1

THE SYSTEM’S INTERFACE BEFORE CAPTURING

1. Generic NdisWan adapler
2 WAN (PPPISLIP) Interface
3. 3Com 3C90x Ethernet Adapler (Microson's Packel Scheduler)

 Timestamp

Destination Information

PACKET SUMMARY




C.2 THE SYSTEM’S INTERFACE AFTER CAPTURING

& Sniffalyzer

1. Generic NdisWan adapler
2. WAN (PPPISLIP) Interface
3. 3Com 3C90x Ethernet Adapter (Microsoft's Packet Scheduler)

Start sniffing on device Genernc NdisWan ad: mln [

Timestamp Seurce ~ Destination . < lﬂol‘lﬂ.-

1.1110113230:748896 211.24.4.99-»64.233.189.104 protocol(6) priority(0) mnm offsel(0) ident(1778) TCP
2.1110113235:425620 211.24.4.99-»203.121.16.85 protocol(17) priority(D) hop(128) offset(0) ident{1779) UDP
3.1110113235:665966 203.121.16.85-»211.24.4.99 protocol(17) priority(0) hop(251) offset(0) ident(26109) UDP
4.1110113235:685995 211.24.4.99-»66.94.230.41 protocol(6) priority(0) hop(128) offset(0) ident(1780) TCP 11
5 1110113236:6456 66.94.230.41-»211.24.4.99 protocol(6) priority(0) hop(52) offset(D) ident(61881) TCP 80 » 1
6.1110113236:6456 211.24.4.99-»66.94.230.41 protocol(6) priority(0) hop(128) offset(D) ident(1782) TCP 1164
7.1110113236:6456 211.24.4.99->66.94.230.41 protocol(6) priority(0) hop(128) offset(D) ident(1783) TCP 1164
8.1110113236:967830 66.94.230.41->211.24.4.99 protocol(6) priority(0) hop(52) offset(D) ident(62173) TCP 80
9.1110113237:128068 211.24.4.99-»66.94.230.41 protocol(6) priority(0) hop(128) offset(0) ident(1786) TCP 116
10.1110113237:328356 66.94.230.41-»211.24.4.99 protocol(6) priority(0) hop(52) offset(D) ident(62174) TCP 80 |
11.1110113237:520644 211.24.4.99->66.94.230.41 protocol(6) priority(D) hop(128) offsel() ident(1788) TCP 11
12.1110113237-:690809 66.94.230.41->211.24.4.99 protocol(6) priority(0) hop(52) offsel(0) ident(62175) TCP 80
13.1110113237:020076 211.24.4.99-»66.94.230.41 protocol(6) priority(0) m(m) offsel(0) ident(1790) TCP 11
14.1110113238:79436 66.94.230.41-»211.24.4 ummmmm mm) md(i) ummna)'rcp 801
15 1110113::0-:2005

PACKET SUMMARY

o






REFERENCE

[1]  Forouzan, A.B. (2001). Data Communications and Networking. 2™ ed.
McGraw Hill.

[2]  Introducing Network Analysis (2004).
(URL-http://www.syngress.com/book_catalog/284_eps/sample.pdf),24/8/2004

[3] Myrom, E.S. (2000). Data Communications 4" ed.

[4]  Cisco Systems, Inc. (2001). Cisco Networking Academy Program: Second
Year Companion Guide. 2" ed. Cisco Systems, Inc.

[5]  Kesler, G.C. (2001). The Power of Packet Filtering. Windows NT Magazine

[6]  EffecTech. (2004). (URL - http://www.effetech.com/help/cisco-span.htm),
15/7/2004)

[7] [8] (URL - http://www.support.psi.com/), 22/8/2004

[9](10]
Chappell, L. (2002). Packet Filtering: Capturing The Cool Packets. 1" ed.
Podbooks.com Llc

[11]  Schinder, D.(2004). Firewalls and VPNS. http://www.windowsecurity.com/
articles/Application_Layer_Filtering. html

[12]  Blue Blazer (2004). What is Unix. http://bluelazer.netfirms.com/unixlinux.htm

[13] Microsoft Corporation. (2004). Windows XP Professional Features.
http://www.microsoft.com/windowsxp/pro/evaluation/features. mspx

[14]  Deitel, H.M & Deitel, P.J. (2003). Java How To Program. 5" ¢d. Prentice Hall
[15] Deitel, H.M & Deitel, P.J. (2000). C How To Program. 3" ed. Prentice Hall

[16] (URL - www.webopedia.com), 1/9/2004

[17] ISONET Limited Company. (2004). Microsoft Visual C++ 6.0
http://www.isonet.co.th/2/product/microsoft/c_60pro.htm.

[18] Focus On Unix (2004). Cygwin ~ Unix  Within  Windows.
http://unix.about.convlibrary/
[19](20]

Whitten, J.L., Bentley, L.D. & Dittman K.C. (2002). Systems Analysis and
Design Methods. 5" ed, McGraw Hill



[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

Han, L.C. (2003). Network Traffic Monitoring Systems. Thesis. University of
Malaya

Smart, J. (2004). What is wxWidgets. www,wxwidgets.org

Lawrence Berkeley National Laboratory. (2004). WinPcap: The Free packet
Architecture For Windows. http://winpcap.polito.it/

Sommerville, 1. (2001). Software Engineering. 6" ed. Edison Wesley

(URL - http://www.cs.uwaterloo.ca/~tmjvasig/CS134Testing.html),
22/1/2004

SourceForge. (2005).Network Capture Library For Java).
http://sourceforge.net/projects/jpcap

Mustapha, Julia. (2003). Network Game Monopoly. Thesis. University of
Malaya

Kuen, C.M. (2002). Network Game. Thesis. University of Malaya





