
A PIPELINED MULTIPLIER

ACCUMULATOR

FOCUSING ON PIPELINE

ARCHITECTURE

·rpus nlraan 'KT

By

LAlLI ERNI HITAM

WEK000336

A final year project submitted to the
Faculty of Computer Science and Information Technology

University of Malaya
In fulfillment of the requirements for the degree of

Bachelor of Computer Science

Session 2002/2003

Univ
ers

ity
 of

 M
ala

ya

A PIPELINED MULTIPLIER ACCUMULATOR
FOCUSING ON PIPELINE ARCHITECTURE

BY:

LAlLI ERNI HITAM

DEPARTMENT OF SYSTEM AND COMPUTER TECHNOLOGY

SESSION 2002/2003

FACULTY OF COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Multiplier J\<;ctnnulator: Pipeline

ABSTRACT

The Pipelined Multiplier Accumulator has brought many approaches and changes to the

conventional MAC. The Pipelined MAC is believe can speed up the operations of the

previous conventional MAC plus it can reduce the time and cost. The effectiveness of

pipelining concept in the system's implementation is undeniable as the performance of

the system is improved where the multiplication process is pipelined with the addition

process. Pipelining reduces cycle time but does not reduce the total time required for

multiplication. One way to speed up multiplication is Booth Algorithm, which perform

several steps of the multiplication at once. Booth's algorithm takes advantage ofthe fact

that an adder-subtractor is nearly as fast and small as a simple adder. The implementation

of Accumulator _using Carry Look-ahead Adder (CLA) technique has brought to fast

operation achieved in addition process of 8-bit data. The pipeline MAC is designed to

increase the speed of MAC operations, decrease the cycle time and to avoid the delay in

the conventional MAC.

Faculty of Computer Science & fnt(um.ation Technology
Session 2002-'2003

Univ
ers

ity
 of

 M
ala

ya

,.:\ PipeJined Multiplier Accumulator: Pipeline

ACKNOWLEDGEMENT

First and foremost 'Alhamdulillah' to Allah, my supervisor Encik Mohd. Yamani Idna

Idris for the guidance, advices, tolerant and consideration given in making this project a

success. I also would like to thank you my moderator, Encik Zaidi Razak for his

comments and evaluation on this project. Not forget my colleagues, Rabiatul Adawiyah

Jamil and Norfadilah Khalil for the endurance, tolerant and time spent in making this

project. In the way morale support from family deeply appreciated, roommates (for laugh

and jokes) and all my friends. In the end, all of this cannot be true if not all the support

that I get in making this project success. Last but not least, I want to thank you all

members of Faculty of Computer Science and Information Technology for all the

information given to complete this course.

Faculty· of Computer Scienc~ & Information Technology
Session 2002:"2003

11

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipeline

TABLE OF CONTENTS

Abstract

Acknowledgement

Table of Contents

List of Figures

List of Tables

1.0 Introduction

1.1 Introduction

1.2 Problems Definition

1.3 Scope

1.4 Objective

1.5 Constraints

1.6 Works Plan and Scheduling

Faculty of Computer Science & lnf()rmation Technology
Ses~ion 2002:'2003

ll

lll

VI

Vll

2

4

5

6

7

8

lll

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier A.ccumul.ator : Pipeli.ne

2.0 Literature Review

2.1 Introduction

2.2 Pipeline

2.2.1 Pipeline Overview

2.2.2 Operations of Pipeline

2.2.3 Pipeline Concept in System's Arithmetic Operations

2.2.4 Advantages ofPipeline

2.2.5 Conventional MAC

2.2.6 Why Pipelined MAC?

2.3 Multiplier

2.3.1 Multiplier Overview

2.3.2 Algorithms in Multiplier Unit

2.3.3 Booth Algorithm

2.4 Accumulator

2.4.1 Accumulator Overview

2.4.2 Approach in Accumulator Unit

2.4.3 Carry Look-ahead Adder

2.5 Conclusion

Faculty of Computer Scienc~ & fnformation Technology
Session 2002/2003

~

10

10

11

11

13

15

17

18

19

20

21

22

22

23

24

IV

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Multiplier Accumulator : Pipeline

3.0 Methodology

3.1 Introduction

3.2 Method of Design

3.3 VHDL

3.3.1 What is VHDL?

3.3.2 The Advantages

3.3.3 New Design Methodology

J.3.4 Hardware Abstraction

3.3.5 Basic Concept

3.3.5.1 Timing

3.3.5.2 Concurrency

3.3.6 VHDL vs. Verilog

3.4 ASIC, CPLD and FPGA

3.4.1 ASIC

3.4.2 CPLD

3.4.3 FPGA

3.4.4 CPLD vs. FPGA

3.5 Conclusion

Faculty of Computer Scienct; & rnformation Technology
Session 2002/2003

~

27

27

29

29

30

32

32

33

34

35

35

36

37

39

v

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipehne

4.0 System's Design

4.1 Introduction

4.2 System Overview

4.3 Top-Level Design

4.4 Pipeline in MAC

4.5 Multiplier in MAC

4.6 Accumulator in MAC

4.7 Signal Controller

4.8 Conclusion

5.0 System Implementation

5.1 5.1 Introduction

5.2 PeakFPGA Designer Suite FPGA Synthesis Edition

5.3 Pin Description

5.4 System Coding

5.4.1 The Behavioral Model

5.4.1.1 To_fpo Module

5.4.1.2 To vector Module

5.4.1.3 MAC Module

5.4.2 The Register-Transfer-Level Model

5.4.2.1 Pipeline register Module

5.4.2.2 Set/Reset Flipflop Module

5.5 Conclusion

Faculty of Computer Science & fnformation Technolob:rY
Session 2002:"2003

~

41

41

43

44

47

48

49

50

53

53

57

58

59

60

61

62

63

64

65

65

VI

Univ
ers

ity
 of

 M
ala

ya

A Pipe!ined Multiplier Accumulator: Pipeline

6.0 Testing

6.1 Introduction

6.2 Simulation Using PeakFPGA

6.2.1 Compiled Selected

6.2.2 Link Selected

6.2.3 Load Selected

6.2.4 Options

6.3 Unit Testing

6.3.1 Pipeline Register Module

6.3.2 Set/Reset Flipflop Module

6.4 System and Integration Testing

6.5 Conclusion

7.0 System Evaluation

7.1 Introduction

7.2 Discussion

7.3 System Strengths

7.4 System Constraints

Faculty of Computer Scienc~ & fnformation Technolob')'
Session 2002:'2003

69

70

71

71

72

73

75

75

76

77

78

80

80

83

85

Vll

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator • Pipehne

7.5 Future Enhancements

7.5.1 Module Changing 86

7.5.2 Implementation ofPipelined MAC 89

7.6 Knowledge And Experience Gained 89

7.7 Conclusion 91

Appendix

Appendix 1: Pipelined Mac Pins Description 94

Appendix 2: Pipeline 96

Appendix 3: Carry Look-Ahead Adder 99

Appendix 4: Booth Algorithm 101

Appendix 5: The Behavioral Model Of The Pipelined Mac 102

Appendix 6: The Register-Transfer-Level Model Of The Pipelined MAC 106

Appendix 7: PeakFPGA Designer Suite FPGA Synthesis Edition 110

References

Faculty of Computer Science & fnformation Technology
~cssion 2002/2003

Vlll

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier .A.ccwnulator ~Pipeline

LIST OF FIGURES

Figure 2.1 An arithmetic pipeline with N units 15

Figure 2.2 Dataflow diagrams showing order of operations
by the conventional MAC 18

Figure 2.3 Pipelined concept in system's operation 19

Figure 3.1 Top-down design and bottom-up implementation 28

Figure 3.2 CPLD Architecture 36

Figure 4.1 System's block diagram 42

Figure 4.2 Black box for top-level design 43

Figure 4.3 Dataflow diagrams showing order of operations by
the pipelined MAC 44

Figure 4.4 Black box for pipelined in MAC 46

Figure 4.5 Black box for multiplier in MAC 47

Figure 4.6 Black box for multiplier in MAC 48

Figure 5.1 Main Application Window for PeakFPGA 54

Figure 5.2 Hierarchy Browser Window for PeakFPGA 54

Figure 5.3 Transcript Window for PeakFPGA 55

Faculty· of Computer Scienc~ & lnt(Hmation TechnoiOb''Y lX
Session 2002:'2003

Univ
ers

ity
 of

 M
ala

ya

,:.-\ Pipelined Multiplier Accumulator • Pipeline

Figure 5.4 Pipelined MAC Top Level Design Symbol

Figure 5.5 Hierarchy tree for Pipelined MAC behavioral model

Figure 5.6 Coding to convert input to a bit vector

Figure 5. 7 Loop to get the final result

Figure 5.8 Coding to convert input into the correct range

Figure 5.9 Loop to bet the floating-point result

Figure 5.10 Hierarchy tree for Pipelined MAC Register-Transfer-Level model

Figure 5.11 Architecture Body for a Pipeline Register Module

Figure 5.12 Architecture for Set/Reset Flipflop Module

Figure 6.1 Window show the simulate menu options for PeakFPGA

Figure 6.2 Waveform from test bench for pipeline register

Figure 6.3 Waveform from test bench for set/reset flipflop

Faculty of Computer Science & l"nformation Technology
Session 2002.:'2003

57

59

60

60

61

62

64

64

65

70

76

76

X

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier .A.ccumul.ator • Pipeline

LIST OF TABLES

Table 1.1 Work plan and scheduling for Pipelined MAC

Table 2.1 Comparison between algorithms in multiplier unit

Table 2.2 Comparison between adders in Accumulator

Table 3.1 Comparison between VHDL and Verilog

Table 3.2 Comparison between CPLD and FPGA

Table 5.1 Pipelined MAC Pins Description

Faculty of Computer Scienct: & Information TechnoiOb'Y
Sc%ion 2002:'2003

8

20

22

34

38

58

XI

Univ
ers

ity
 of

 M
ala

ya

Chapter 1

INTRODUCTION

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipeline

CHAPTER 1 INTRODUCTION

1.1 Introduction

Multiplier Accurtlulator also known as MAC is design for a stream of

complex numbers. The MAC Unit can be broken up into two distinct units: a data

storage path and a data processing path. The data storage path consists of a set of

registers that hold data values. The data processing path consists of multiplier

unit and adder unit, which perform data multiplication and accumulation

sequentially. The control signals provided by the i-unit (instruction unit)

designate what process the MAC will perform to get the desired data in one clock

cycle.

In the MAC design, both the multiplier and adder are complete custom

designs. The multiplier uses the combination of a Booth bit pair encoding

algorithm, a sign extension technique, and a carry look-ahead adder with two

levels of look-ahead. The Booth encoding algorithm is a technique that will

reduce the number of partial products generated. Using the booth-encoding

algorithm, fewer partial products will have to be added and therefore the overall

speed of the multiplication will be faster.

Faculty of Computer Science & Jntormacion Technology
Session 2002/2003

2

Univ
ers

ity
 of

 M
ala

ya

A Pipelined tv1u1tip1ier Accu:nulator : Pipeline

A complex MAC operates on two sequences of complex numbers, {x;}

and {y;}. The MAC multiples corresponding elements of the sequences and

accumulates the sum of the products. The result is

i=l

Where N is the length of the sequences. Each complex number is represented in

Cartesian form, consisting of a real and an imaginary part. If we are given two

complex numbers x andy, their product is a complex number p, calculated as

follows:

p _real = x _real x y _real- x _imag x y _imag

p _ imag = x _real x y _imag + x _ imag x y _imag

The sum of x andy is a complex numbers calculated as follows :

s real = x real + y real - - -

s _ imag = x _ imag + y _ imag

MAC calculates its results by taking successive pairs of complex numbers, one

each from the two input sequences, forming their complex product and adding it

to an accumulator register. The accumulator is initially cleared to zero and is reset

after each pair of sequences has been processed.

Fa cult)• of Computer Science & Information T;.;;chnolob,.Y
Session 2002/2003

3

Univ
ers

ity
 of

 M
ala

ya

A Pipelined .t\-1u1tip1ier Accumulator: Pipeline

If we count the operations required for each pair of input numbers, the

MAC must perform four multiplications to form partial products, then a

subtraction and an addition to form the full product and finally two additions to

accumulate the result. Since the operations must be performed in this order, the

time taken to complete processing one pair of inputs is the sums of the delays for

the three steps.

In a high-performance digital signal processing application, this delay may

cause the bandwidth of the system to be reduced below a required minimum.

Because of that, the Pipelined Multiplier Accumulator is design by pipe lining the

MAC to avoid the delay at non-pipelined MAC. The pipelining allows the

overlapped of the task in multiplier operations.

1.2 Problems Definition

The problem that occurs in this project is time delay. Before pipeline is

used, to finish a complete instruction in MAC takes 3 clock cycles. Therefore,

CPU must wait for 3 clock cycles to run the complete instruction before it will be

used in additions operation in accumulator. The delay can be avoided by

pipelining the MAC.

Faculty· of Computer Science & Information Technolo.t:.')'
Session 2002/2003

4

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accwnulator: Pipeline

The other problem is in the multiplier part, pipelining reduces cycle time

but does not reduce the time required for multiplication. The design of multiplier

is important since it determines the overall performance (in term of speed) of the

whole system. In adder part, the problem is overflow case. It occurs when the sum

of the product is out of the range. Possibility of overflow is high and the system

does not work correctly when it happen.

1.3 Scope

The researches will mainly concentrate on the problem that occurs in

pipelined part besides the problem in multiplier part and accumulator part. In case

to avoid delay, the pipeline method is used in the multiplier accumulator. But,

pipelining only reduces cycle time but does not reduce the total time required for

multiplication. So, another method is needed as a solution for this problem. For

overflow condition, instead of the possibility of overflow is low, one solution is

needed to make sure the overflow cannot affects the system. This project will be

finished by the simulation part only because there is no implementation part. The

topics that covered for every chapter is describe below:

Chapter 1 of Pipelined Multiplier Accumulator project is about the

introduction of this project. This chapter will be discussing about problems

definition in this project, objective of the Pipelined Multiplier Accumulator, scope

of project and works plan and scheduling.

Faculty of Computer Science & Information T~;;chnology
Session 2002/2003

5

Univ
ers

ity
 of

 M
ala

ya

A. PipeJined Multiplier Accmnulator : Pipehne

Chapter 2 is about the literatures review. This chapter will de discussing

about problem researches that has been occurred before this project will be

implement. The discussion will include the researches and analysis for the

methods and technique that will be used in this project. There is a comparison

between some methods. The most important thing in pipeline MAC is pipeline

method.

Chapter 3 will be discussing about the methodology that will be used in

this project. Some of the method that will be discuss in this chapter is VHDL,

FPGA, CPLD and ASIC. All the method will be discuss but only the best method

will be used for this project.

Chapter 4 will be discussing about system analysis and design. The

functional, hardware and software requirement will also be discussed in this

chapter. Besides that, in this chapter, combinational of the Pipelined Multiplier

Accumulator will also be represented.

1.4 Objective

The main goal of this project is to reduce time delays in MAC. In a high-

performance digital signal processing application, this delay may cause the

bandwidth of the system to be reduced below a required minimum. Because of

that, the Pipelined Multiplier Accumulator is design by pipelining the MAC to

avoid the delay at non-pipelined MAC.

Faculty of Computer Science & Information T;;chnoJOb'Y
Ses~ion 2002/2003

6

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier .A.ccumul.ator • Pipeline

In order to operate the system under a fast, continuous stream of data, the

concept of pipelining these multiplication and addition process is implemented in

the design of the system units. Pipe lining reduces cycle time but doesn't reduce

the total time required for multiplication. One way to speed up multiplication is

Booth Algorithm, which performs several steps of the multiplication at once.

[Wayne, 98] Booth Algorithm will be discussed later in next chapter (Chapter 3:

Literature Reviews).

As a conclusion, the goals of Pipeline Multiplier Accumulator design is:

•!• A void the delay

•!• Speed up multiplication

•!• Easy for stream of complex numbers

1.5 Constraints

Some limitation can be expected in designing this pipelined multiplier

accumulator, because some standard need to be familiarize so it can be

implemented. Pipeline in MAC only reduces the cycle time but do not reduce the

total time required for multiplication. It means, besides pipelining the MAC

another algorithm is needed to speed up the multiplication. Beside that, the needs

for development tools are limited. Tools such as VHDL simulator and test or

demo board to download the design are hard to obtain. Hence, due to these

limitations the some of the feature maybe can't be implemented fully.

Faculty of Computer Sl:ience & Information Tt:chnology
Session 2002/2003

7

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipehne

1.6 Works Plan and Scheduling

The works will be based on the planning and timetable that has been

created earlier. This important because each work must be done in time and

careful planning will make it possible.

~

~
:>-- Cl)

TOPIC § ~ ~
'

Research

Analysis "' I·'·
,. " l~jf{S"+ ·"'

Design
.

Simulation
1' ...

Report

Table 1.1 Work plan and scheduling for Pipelined MAC

Faculty of Computer S\:icnce & Information Technology
Session 2002/2003

~ ~
~ ~

~
~

~ ~ -~ ~ g; ~
~ ~ u u fu 0 ~ ~ Cl)

~

·~' ''. '

8

:>--

~

~

. .

Univ
ers

ity
 of

 M
ala

ya

Chapter 2

LITERATURE REVIEW

Univ
ers

ity
 of

 M
ala

ya

A Pipdincd rvtulti.pher Accumulator • Pipeline

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This chapter will be discussing about the technique and algorithm that

used in this project and why it is chosen. There are three parts, which is

literature review in pipeline, multiplier and accumulator. In pipeline, it

will discuss about the basic concept of pipeline, why pipelining is needed

in multiplier accumulator, pipeline operation and pipeline concept in

system's arithmetic operations. In multiplier, there will be a comparison

between some of the method. But Booth Algorithm will be used with the

purpose to speed up multiplication rather than other method. Besides that,

in adder part, a few method of adder will also be discussed. But the best

adder will be used in this project is Carry Look-Ahead Adder (CLA).

2.2 Pipeline

Pipelined Multiplier Accumulator will be designed to avoid the delay in

conventional MAC. This method is based on the concept of the pipe lining,

which is can make the cycle time become faster. Discussion below will be

discussed about the concept of pipe lining and how it will reduces the cycle

time.

Faculty of Computer Science & Jnformation Technology
Session 2002:'2003

10

Univ
ers

ity
 of

 M
ala

ya

A Pi pd i ned I\1u ltipher i-\ccum ulator • Pi pehne

2.2.1 Pipeline Overview

Pipeline is an implementation technique in which multiple

instructions are overlapped in execution. Today, pipelining is the key to

make fast processors. The pipeline approach will take much less time.

Pipelining is a logic design technique that adds ranks of memory elements

to reduce clock cycle time at the cost of added latency. Pipelining is

organizational approach is quite common used to reduces cycle time but

doesn't reduce the total time required for multiplication. That's why

pipeline is suitable to use in Multiplier Accumulator (MAC).

2.2.2 Operations of Pipeline

Most of the complex arithmetic functions encountered in

computation can, m principle, be implemented by pipelining. Basic

operation on fixed point and floating point numbers can be efficiently

partitioned into sub-operations suitable for pipelining.

Pipelining is a method, which can be used to increase the speed of

operation of the control processor on arithmetic function operations

circuitry. They are often applied to the internal design of high speed

computers, including advanced microprocessors as a type of

multiprocessing.

Faculty of Computer Science & Information 'l'echnology
Session 2002:'2003

11

Univ
ers

ity
 of

 M
ala

ya

A Pipd i ned .rv1u1tipher AccmuuJator: Pipeline

Pipelining is a technique in which a task or operation is divided

into a number of subtasks that are perform in sequence. Its own logic unit

performs each subtask, rather than by a single unit, which performs

subtasks. The units are connected tugether in a serial fashion with the

output of the connecting to the input of the next and all the units operate

simultaneously. While one unit is performing a subtask of the ith task, the

proceeding unit in the chain is performing a different subtask on the

(i+ 1)th task. [Barry, 91]

In pipelining, a task is presented to the first unit. Once the first

subtask of this task is completed, the results are presented to the second

unit and another task can be presented to the fust unit. Results from one

subtask are passed to the next unit as required and a task is completed

when all the units have processed the subtasks.

Suppose each unit in the pipeline has the same operating time to

complete a subtask and that the first task is completed and a series of task

is presented. The time to perform one complete task is same as the time

for one unit to perform one subtask of the task, rather than summation of

all the unit times. Ideally, each subtask should take the same time, but if

this is not the case, the overall processing time will be that of the slowest

unit with the faster units being delayed. It may be advantages to equalize

stage-operating times with the insertion of extra delays.

Facult:y of Computer Sc1encc & Information Technology
Session 2002:'2003

12

Univ
ers

ity
 of

 M
ala

ya

A Pipdined .rv1ultipher Accmnul.ator: Pipeline

2.2.3 Pipelined Concept In System's Arithmetic Operations

During the design of the arithmetic circuitry, speed improvement is

considered, as a continuous data stream is processed. The technique of

pipeline process is recommended due to the increase speed achieved,

compared with other conventional methods.

In conventional arithmetic design, most increase in the number of

tasks that could be executed in a unit time interval by arithmetic processor

have been achieved by reducing the length of time required to perform a

single task, using faster logic circuitry. For instance, faster adders are

designed to allow simultaneous addition of many numbers.

However, the circuit technology has almost reached its ultimate

limit of light speed. Furthermore, when dueling with large processing

works, it could not provide significant increases in computing speed. This

problem of speed improvement could be solved through allowing

simultaneous execution of many tasks by multiple arithmetic units, which

is referred as pipelining operation.

Pipelined approach is a type of architectural design, which

significantly increases the number of task that can be executed in a unit

time interval, with only a moderate increase in hard ware investment

compared with conventional design.

Faculty of Computer Science & £nformation TedmolO!;.'}'
Session 2002/2003

13

Univ
ers

ity
 of

 M
ala

ya

A Pipdined I'V1ultiplier Accmnulator: Pipeline

Pipelining arithmetic operation refers to the subdivisions of the

total computation workload into individual tasks, so that they can be

executed in an overlapped fashion by each own logical unit or segment

rather than by a single unit, which performs the whole workload. This

overlapped executions are often used in central processor design, in which

the fetch, decode, effective address calculation and operand fetch of the

next instruction can be overlapped with execution of the current

instructio~. In this case, when the instruction overhead and the execution

times are nearly equal, the overlapped processor will be twice as fast as

the conventional design.

A pipelined arithmetic operating unit is defined as a collection of

senes of hardware resources (units of task), which are arranged as a

pipeline with synchronized timing control (for synchronous pipeline data

transfer), such that a flow of subdivided tasks can be simultaneously

executed by. the successive units of the pipeline, as illustrated in Figure

2.1.

In this pipelined arithmetic operation, each operational unit is a

special purpose combinational arithmetic logic circuitry with delay T, such

as an adder, a multiplier etc. data latches are used as synchronized

registers, in order to hold the input and output data of successive units.

Each of these latches will latch its data to the next unit when triggered by

its external clock signal. In the normal cases, two additional latches are

Faculty of Computer Sc1encc & Information Technolob')'
Session 2002:'2003

14

Univ
ers

ity
 of

 M
ala

ya

A PipdineJ .rvtultipher AccmnuJator: P1peline

added to the two end units, which handle the inputs and outputs of the

entire pipelined system.

INPUTS

CLOCK LATCH

ARITHMETIC LOGIC UNIT 1
.........

LATCH
.........

ARITHMETIC LOGIC UNIT2

.........

f---e===~=====~==:::::J LATCH

ARITHMETIC LOGIC UNITN

LATCH

OUTPUTS

Figure 2.1 An arithmetic pipeline with N units

2.2.4 Advantages of Pipelined

There are many advantages of pipeline that make it suitable to use

m MAC to reduces the latency and time delays problem. The most

important advantage of pipeline is it increasing the speed of the system. It

makes time to finished the clock cycle become more faster than not the

time to finished without it. The cycle time T of an instruction pipeline is

Faculty· of Computer Sc1enc-:: & rnformation Technology
Session 2002:'2003

15

Univ
ers

ity
 of

 M
ala

ya

A Pipdined IVi.ultipher Accumulator • Pipehne

the time needed to advance a set of instruction one stage through the

pipeline. The cycle time can be determined as

t = max [ti] + d = tm + d i, 1 <=I <= k

where

tm = maximum stage delay (delay through stage which experiences the

largest delay)

k = number of stages in the instruction pipeline

d = time delay of a latch, needed to advance signals and data from one

stage to t~e next.

In general, the time delay d is equivalent to a clock pulse and

tm>>d. Now suppose that n instructions are processed, with no branches.

The total time required Tk to execute all n instruction is

A total of k cycles are required to complete the execution of the

first instruction and the remaining n-1 cycles.

The speedup factor for the instruction pipeline compared to

execution without pipeline is defined as

Sk = T/ Tk = nkt / [k + (n-1)]t = nk / k + (n-1)

Besides increasing the speed of system, in some cases, the

pipe lining technique has the advantage of requiring less logic than a non-

pipelined system. Obviously, it could be seen that, the rate of the pipelined

system depends on the unit with maximum delay time. [William, 96]

Faculty of Computer Sc1enc~ & Jnf()rmation Technolog)'
Session 2002:'2003

16

Univ
ers

ity
 of

 M
ala

ya

A Pi pd i ned .rvtultip1 ier Accmn u.lator • Pipeline

2.2.5 Conventional MAC

In conventional MAC, a complex MAC operates on two sequences

of complex numbers, {xi} and {yj}. The MAC multiples corresponding

elements of the sequences and accumulates the sum of the products. The

result is

i=l

where N is the length of the sequences. Each complex number is

represented in Cartesian form, consisting of a real and an imaginary part.

If we are given two complex numbers x andy, their product is a complex

number p, calculated as follows :

p _real = x _real x y _real- x _imag x y _imag

p _imag = x _real x y _imag + x _imag x y _imag

The sum of x andy is a complex number s calculated as follows :

s _real = x _real + y _real

s _imag = x _imag + y _imag

MAC calculates its results by taking successive pairs of complex numbers,

one each from the two input sequences, forming their complex product

and adding it to an accumulator register. The accumulator is initially

cleared to zero and is reset after each pair of sequences has been

processed.

Faculty of Computer Science & rnformation 'fechnology
~es$iOn 2CHLU2003

17

Univ
ers

ity
 of

 M
ala

ya

A Pi pd i ned Iv1 ul hpl ier Accum ulutor • P 1 pehne

To count the operations required for each pair of input numbers,

the MAC must perform four multiplications to form partial products, then

a subtraction and an addition to form the full product and finally two

additions to accumulate the result, this is shown in Figure 2.2. Since the

operations must be performed in this order, the time taken to complete

processing one pair of inputs is the sums of the delays for the three steps.

p

accumulator

Figure 2.2 Dataflow diagrams showing order of operations by the
conventional MAC

2.2.6 Why Pipelined MAC?

The previous research done by many researches have pointed out

the issue to create a MAC with higher execution speed and decrease cycle

time. Therefore, the best solution is used pipeline technique in

multiplication unit. MAC is pipelining to avoid the delay in the process.

This design of pipelined multiplier accumulator (MAC) is for a stream of

complex number.

In order to operate the system under a fast, continuous stream of

data, the concept pipelining these multiplication and addition process is

Faculty of Computer Sc1encc & lnt()rmation Technolom·
Session 2002/2003

18

Univ
ers

ity
 of

 M
ala

ya

A Pipd i ned .tv1ultlplier Accmnulator • Pipeline

implemented in the design of the system units, as shown in a block

diagram below in Figure 2.3.

Two data
bytes .. MULTIPLIER 16;:bit ACCUMULATOR

UNIT dafa UNIT
...

output

Figure 2.3 Pipelined concept in system's operation

In the system's operation, two 8-bit signed fixed-point binary

numbers (data) are multiplied by a multiplier block, while simultaneously

two 16-bit signed fixed-point binary numbers are added together in an

accumulator block which proceeds the multiplier block. It is in such way

that a multiplication result is passed to the accumulator block (which is

feedback to the block for next additional operation); in order to obtain the

next output result.

2.3 Multiplier

2.3.1 Multiplier Overview

Multiplier is one part of Pipelined Multiplier Accumulator.

Multiplier design starts with the elementary school algorithm for

multiplication. The computation of partial products and their accumulation

into the complete product can be optimized in many ways, but an

understanding of the basic steps in multiplication is important to a full

Faculty of Computer Sc1encc & Jnf()rmation ·rechnology
Session 2002/2003

19

Univ
ers

ity
 of

 M
ala

ya

l\- Pipd i ned _Multipher Accumulator : Pipeline

appreciation of those improvement. One approach to speed up the

operation of speed up multiplication is Booth Algorithm [Boo, 51], which

performs several steps of the multiplication at once.

2.3.2 Algorithms in Multiplier Unit

Approach
Bit-Pair Recording

Add-Shift Sequential
Multiplication

2's Complement
Modular Arrays
Multiplication
Technique

Booth Algorithm

Characteristic
-Multiplication speed up technique that guarantees that
an n-bit multiplier will generate at most n/2 summands
and will uniformly handle the signed- operand case
(Cavanagh, 84).
-The total number of clock pulses needed is small.
-This technique can multiply the products two times
than the Booth Algorithm.
-In this technique, three data bits are checked in each
time.
-Only required positive multiplier. If negative
multiplier is used, both multiplicands had to be in 2's
complement before the multiplication is performed.
-Method becomes complex when perform negative
multiplier because it need to change the binary
representation to 2's complement.
-Inflexible due to the need to exchange the circuit to
execute certain task.
-Using general multiply algorithm with special feature
where the whole operation is modularized into section.
-Used Carry-Save and Carry Look-Ahead adders
approach to sum up these module outputs to get the
final product.
- This technique leads to delay where it need more
time to perform the local multiplication~ speed of
overall operation is increased.
-Generates 2n-bit product with n-bit input.
-Direct algorithm. Treats positive and negative
numbers equally (in the same manner).

Table 2.1 Comparison between algorithms in multiplier unit

Faculty of Computer Science & Information TechnoiOb'J'
Session 2002:'2003

20

Univ
ers

ity
 of

 M
ala

ya

A Pi pd i ned .lv1ultipl ier Accum uJator : P 1 pehne

In Pipe lined MAC, the speed of multiplier in performing its task is

essentially important. Therefore, a fast multiplication technique is needed.

In multiplication, four algorithms have been considered to implement in

the design. Each of every algorithm pas own characteristic as shown in

Table 2.1.

2.3.3 Booth Algorithm

The Booth Algorithm is chosen for its speed up operations and

simplicity. This algorithm is believed can achieve certain goals that have

been highlighted earlier. Booth' s algorithm takes advantage of the fact that

an adder-subtractor is nearly as fast and small as a simple adder. It treats

the negative and positive number uniformly. With this technique, system

can multiply operand to get the partial products more quickly with the

decoding method. With streams of bit 0 's instead of the alternate streams

ofO's and 1 's, doing multiplication is not a nightmare anymore.

The implementation of this approach in hardware is the most

consideration for choosing this method. The simplicity and ease

understanding the hardware suits the design purposes. The components

can be used more than once and this approach can save the cost in

developing the system.

Faculty· of Computer Sc1enc~ & Inf{lrmation Technolom·
Session 2002:'2003

21

Univ
ers

ity
 of

 M
ala

ya

A Pipdined f'v1ultipher Accumulator: Pipeline

2.4 Accumulator

2.4.1 Accumulator Overview

As for the design requirement where synchronous type of pipeline

data transfer is used, only synchronous adders are considered in the

construction of the Accumulator unit. In order to select the most suitable

adders which meet the requirements, a good understanding of the carry

speed-up techniques used in these adders is essential. Therefore, a

thorough study on these adders 's hardware organization is needed.

2.4.2 Approach in Accumulator Unit

Approach Characteristic

Ripple-Carry Adder - Get the name due to the result of an addition of two bits
depends on the carry generated by the addition of the
previous two bits.
- Has considerably low speed due to large propagation delay
in its operation.
- It limits the frequency rate of data stream to be processed,
although its implementation is rather simpler than other type
of adders being discussed later.

Carry-Select Adder -Using the carry in assumption technique which can increase
the speed of operation.
- This technique is implemented for each of partition of four
bit groups or section adders which consist of the same
design.

Conditional Sum -Using the carry in assumption technique but for individual
Adder bit.
Carry Look-Ahead -Solves the slow speed problem by calculating the carry
Adder signals in advance, based on the input signals.

Table 2.2 Comparison between adders in Accumulator

Faculty of Computer Sc1encc & lnt(lrmatlon Technology
Session 2002:'2003

22

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Iv1ultiplier Accumulator • Pipel.ine

2.4.3 Carry Look-ahead Adder

Based on the comparison above, Carry Look-ahead Adder is the

best choice to use in Accumulator unit. Using Carry Look-ahead Adder

will solve the slow speed problem that occurs when many bits need to add.

Carry Look Ahead solves this problem by calculating the carry signals in

advance, based on the input signals. It is based on the fact that a carry

signal will be generated in two cases:

1. when both bits Ai and Bi are 1, or

2. when one of two bits is 1 and the carry-m (carry of the

previous stage) is 1.

The Carry Look-ahead Adder can be broken up in two modules:

1. the Partial Full Adder, PF A, which generates Si, Pi and Gi as

defined by equations below:

Gi = Ai. Bi
Pi = (Ai$Bi)
si = Ai $ Bi $ ci = Pi$ ci

2. the Carry Look ahead Logic, which generates the carry-out bits

according to equations below:

C1 = Go+ Po Co
C4 = G3+ P3 G2 + P3 .P2.G1 + P3.P2.P1 .Go + P3.P2.P1.Po.Go

The 4-bit adder can then be built by using 4 PF As and the

Carry Look-ahead Logic.

Faculty of Computer Science & Jnf(Hmation Technology
Session 2002:'2003

23

Univ
ers

ity
 of

 M
ala

ya

A Pipd i ned .rv1ultiplier Accmnulutor: Pipeline

2.5 Conclusion

From all the topics that discuss above, that's why pipelined multiplier

accumulator (MAC) is designed. It supposes to make the operation in the

multiplier accumulator (MAC) faster and avoid the delay and latency in that

operation. Pipelining will increase the system speed up by allow the overlapped of

the tasks. Pipelined MAC makes the operation of conventional MAC become

more faster. This is because the pipelined MAC has pipeline register that will

store the input temporarily before it is used in summation, while the system will

fetch the next input. As mentioned earlier, with pipeline, three steps delay have

been reduced. This will make the process more faster because the system didn't

need to wait for the first input to finished it summation before the second input

will entered.

The another approach to boost or speed up the operation of Pipelined

MAC is .Booth Algorithm and Carry Look-Ahead Adder make the operation of

Pipeline MAC become more faster than the conventional one. Besides that, the

pipelined MAC also has the overflow status signal to control or reduce any

possibilities of the overflow to happen in summation.

The Multiplier unit mainly determines the overall performance of the

system. The multiplier design is much emphasized in order to select a suitable

method for its construction. Although Bit-Pair Recoiling is faster than Booth

Algorithm technique, the complexity of its design is very much higher than the

ladder. With large data processing, the overall operation's performance of Booth

Faculty of Computer Scienct! & Information Technology
Session 2002/2003

24

Univ
ers

ity
 of

 M
ala

ya

A Pipdined l'v1ultiplier Accumulator: Pipeline

Algorithm is considerably high compared with Bit-Pair Recoding. Furthermore,

the improvement in speed of the Multiplier unit could be achieved.

As a conclusion, the effectiveness of pipelining concept in the system' s

implementation is undeniable as the performance of the system is improved where

the multiplication process is pipelined with the addition process. The pipelined

MAC has been increased the conventional execution' s speed and decrease the

cycle time but doesn' t reduce the total time required for multiplication.

The next chapter will cover about the methodology that will be used in

designing a Pipelined multiplier Accumulator. In the chapter, methods of design

that will be used in this project will be discussed. Hardware description language

(VHDL) that will be used in simulation and testing will also be discussed later, in

chapter 3. Furthermore, the chapter also will be discuss about ASIC and

programmable devices, which is CPLD and FPGA and the comparison between

these two devices will also be presented.

Faculty of Computer Scienc~ & Jnformation Technology
Session 2002:'2003

25

Univ
ers

ity
 of

 M
ala

ya

Chapter 3

METHODOLOGY

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeline
~ ·

CHAPTER 3 METHODOLOGY

3.1 INTRODUCTION

This chapter will be discussing about the methodology that will be used in

designing a Pipelined Multiplier Accumulator. There are two methods of design

used in this project, which are top-down design and bottom-up design. Hardware

description language (VHDL) that will be used in simulation and testing will also

be discussed in this chapter. Besides that, this chapter also will discuss about

ASIC and programmable devices, which is CPLD and FPGA and the comparison

between these two devices will also be presented.

3.2 Method of Design

There are two design method will be used in this project, top-down

design and bottom-up design. Top-down design technique is recursively

partitions a system into its sub-component until all sub-components

become manageable design parts. Design became manageable when the

component is available as part of the library. It can be implemented by

modifYing an already available part.

Facu.lty of Compmcr Science & Information Technology
Session 2002/2003

27

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier AccumuLator: Pipeline

Mapping to hardware depends on target the technology, available

libraries and tools. Generally, a system can be further partitioned into its

simpler components. Figure 3.1 shows the implementation of top-down

design and bottom-up design.

lmpleme tation
Design

SUD - system under design
sse - system sub-component
Shaded areas designate sub-component with hardware implementation

Figure 3.1 Top-down design and bottom-up implementation

Faculty of Computer Science & Information TcchnoiOb'Y
Session 2002/2tl03

28

Univ
ers

ity
 of

 M
ala

ya

A Pi pel i ned Mu 1 tip 1 ier Accumulator : Pipe 1 i.ne

3.3 ~~

In this project, all the design will be usmg a hardware description

language or better known as VHDL. VHDL stand for Very High-speed integrated

circuit Hardware Description Language. This language now is the most used

design and modeling language for digital systems. This leads to systems design

and synthesis. VHDL is useful for describing hardware for simulation, testing,

design, modeling and documentation.

3.3.1 What is~~?

VHDL it is language that can be used for modeling a digital system

at many level of abstraction, from algorithm level to the gate level. The

complexity could vary from simple gate to a complete digital electronic

system, or anything in between. VHDL always regarded as integrated

amalgamation of some language, which is:

•!• Sequentiallanguage

•!• Concurrent language

•!• Net-list language

•!• Time specification

•!• Waveform generation language

Faculty of Computer Science & Information TcchnoiOg}'
Session 2002.!2003

29

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipeline

The language has feature or constructs that enables users to express

the concurrent or sequential behavior of a digital system as an

interconnection of components. By using this constructs, test waveforms

can be generated. In the end, the constructs can provide a comprehensive

description of system in a single model.

3.3.2 The Advantages

The advantages that VHDL offers are :

•:• Portability

Because of the code used can be simulated and used in

many design tools and in different stages, it reduces

dependency for the set of tools whose limited in capability.

The VHDL standard also transform design data much

easier than a design database of a proprietary design tool.

•!• Modeling capability

It is developed to model all level of designs, from

electronic boxes to transistors. It can accommodate

behavioral constructs and mathematical routines that

describe complex models. It allows use of multiple

architectures and associates with the same design during

various stages of the design process.

Faculty of Computer Science & Information Technology
Ses~ion 2002/2003

30

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier A.ccumuiator: Pipeline

•!• Reusability

Design can be describes, verified and modified for future

use. This eliminates reading and marking changes to

schematic pages that are time consuming beside subject to

error.

•!• Documentation

VHDL IS a description language, which allows

documentation to be located in single place by embedding

it in the code. The combining of comments and the code

actually dictates what the design should do reduces the

ambiguity between specification and implementation.

•!• New design methodology

Using VHDL and synthesis creates a new methodology that

increases the design productivity, shortens the design cycle

and lower costs.

•!• Technology and foundry independence

The functionality and behavior of the design can be

described with VHDL and verified, making it foundry and

technology independent. This frees the designer to proceed

without having to wait for the foundry and technology to be

selected.

Faculty of Computer Science & Informatjon Technology
Ses~ion 2002/2(!03

31

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipehne

3.3.3 New Design Methodology

The introduction of VHDL and synthesis enables the design

community to explore a new design methodology. With the traditional

approach, starts with schematics drawmg and then performs functional and

timing simulation based on the same schematics. If occur errors it back to

update the schematics again. After the layout, function and back-annotated

timing are verified again with the same schematics. With VHDL, the

design is functionally describe.

3.3.4 Hardware Abstraction

VHDL is used to describe a model for a digital hardware device,

which specifies the external view of the device and one or more internal

views. The internal view specifies the functionality or structure, while the

external view specifies the interface of the device through which it

communicates with the other model in its environment.

The device-to-device model mapping is strictly one-to-many. For

example, a device modeled at high level of abstraction may not have been

used in the description. Also, the data transfer at the interface may be

treated in terms of integer values, instead of logical values. In VHDL,

each device model is treated as a distinct representation of a unique

device, called an entity in this text.

Faculty of Computer Science & In1ormation Technology
Ses:>.ion 2002/2003

32

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Multiplier Accumulator: Pipeline

3.3.5 Basic Concept

Since VHDL is a hardware description language, it has features,

which are conceptually different than other languages. These represents

special characteristic of hardware components and carries. These are:

Timing is associated with the values that are assigned to the

hardware carriers. Signal represent real wires, where the delays of

the transfer through wire are concern, thus assignment to signal in

VHDL, involve timing.

•!• Concurrency

The terms refer to the simultaneous operation of vanous

components. The VHDL has constructs that allow a virtually

concurrent environment to be created. These constructs satisfy

concurrency required for the description of the hardware. Through

the use of concurrent constructs, timing of the interconnecting

signals and order of the simulation construct or components, a

VHDL simulator makes us think that the execution is being done

concurrently.

Faculty of Computer Science & Information Technology
Session 2002/2003

33

Univ
ers

ity
 of

 M
ala

ya

A. Pipelined Multiplier Accumulator • Pipeline

3.3.6 VHDL vs. Verilog

The table below is shown about the comparison between VHDL

and Verilog.

VHDL Verilog

Data Types A multitude of language or user Very simple, easy to use and very

defined data types can be used. much geared towards modeling

hardware structure as opposed to

abstract hardware modeling

Design Procedures and functions may be There is no concept of packages.

reusability placed in a package so that they are Functions and procedures used

avail able to any design-unit that within a model must be defined in

wishes to use them. the module.

Managing large Configuration, generate, generic and There are no statements that help

designs package statements all help manage manage large designs.

large design structures.

Procedures and Allows concurrent procedure calls Does not allow concurrent task calls.

tasks

Libraries A library is a store for compiled There is no concept of a library. This

entities, architectures, packages and IS due to it's ongms as an

configurations. Useful for managing interpretive language

multiple design projects.

Table 3.1 Comparison between VHDL and Verilog

From all the advantages and specification of VHDL that discuss

above, VHDL is choosing to be used in this project. From the comparison

above, it shows that VHDL is better than Verilog to use in this project.

Faculty of Computer Science & Informatjon Technology
Session 2002/2003

34

Univ
ers

ity
 of

 M
ala

ya

A. Pipelined Multiplier Accwnulator • Pipeline

3.4 ASIC, CPLD and FPGA

Application Specific Integrated Circuit, or ASIC, is a chip that can be

designed by an engineer with no particular knowledge of semiconductor physics

or semiconductor processes. Ideally, the hardware designer wanted something that

gave the flexibility and complexity of and ASIC but with the shorter turn-around

time of a programmable device. The solution came in the form of two new

devices - the Complex Programmable Logic Device (CPLD) and Field

Programmable Gate Array (FPGA). CPLD are as fast as Programmable Array

Logic (PAL) but more complex. FPGA approach the complexity of Gate Arrays

but are still programmable.

3.4.1 ASIC

The Application Specific Integrated Circuit (ASIC) vendor has

created a library of cells and functions that the designer can use without

needing to know precisely how these functions are implemented in silicon.

The vendor then lays out the chip, creates the masks and manufactures the

Asics.

The gate array is an ASIC with a particular architecture that

consists of rows and columns of regular transistor structures. Each basic

cells or gate consists of the same small number of transistors, which are

not connected. In fact, none of the transistors on the gate array are initially

FacuJty of Computer Science & Information Technology
Session 2002/2003

35

Univ
ers

ity
 of

 M
ala

ya

A Pipdined .Multiplier Accumulator • Pipeltne

connected at all. The reason for this is that the connection is determined

completely by the design that wi11 implement.

3.4.2 CPLD

Complex Programmable Logic Device (CPLD) is exactly what

they claim to be. Essentially CPLD are designed to appear just like a large

number of Pals in a single chip, connected to each other through a cross

point switch. The CPLD use the same development tools and

programmers and based on the same technologies but they can handle

much more complex logic and more of it.

3.4.2.1 CPLD Architecture

The diagram in Figure 3.1 shows the internal architecture

of a typical CPLD. While each manufacturer has a different

variation, m general they are similar m that they consists of

Figure 3.2 CPLD Architecture

Faculty ofCompmer S\.:icnce & Information Technolob1Y
Ses~ion 2002/2003

36

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Multiplier Accumulator • Pipeline

3.4.3 FPGA

Field Programmable Gate Array (FPGA) are called this because

rather than having a structure similar to a PAL or other programmable

device, they are structured very much like a gate array ASIC. This makes

FPGA very nice for use in prototyping ASIC or in places where and ASIC

will eventually used. For example, an FPGA maybe used in designs that

need to get to market quickly regardless of the cost. Later an ASIC can be

used in place of the FPGA when the production volume increases, in order

to reduce cost.

3.4.3.1 FPGA Architectures

Each FPGA vendor has its own FPGA architecture, but in

general terms they are all a variation. The architecture consists of

configurable logic blocks, configurable I/0 blocks and

programmable interconnect. Also, there will be clock circuitry for

driving the clock signals to each logic block and additional logic

resources such as ALU, memory and decoders may be available.

•:• Configurable Logic Blocks

Configurable Logic Blocks contain the logic for the FPGA. In

large grain architecture, these CLB will contain enough logic to

create a small state machine. In fine grain architecture, more

Faculty of Compmcr Science & Information Technology
Session 2002/2003

37

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Multiplier Accwnuiator: Pipehne

like a true gate array ASIC, the CLB will contain only very

basic logic.

•!• Configurable VO Blocks

A Configurable VO Block is used to bring signals onto the chip

and send them back off again. It consists of an input buffer and

output buffer with three state and open collector output controls.

3.4.4 CPLD vs. FPGA

The table below is shown the comparison between FPGA and

CPLD.

CPLD FPGA

Complex Programmable Logic Device Field Programmable Gate Array

PALs Gate Arrays

Short lead rime High density

Programmable Can implement many logic

functions

No NRE charges Relatively fast

Table 3.2 Comparison between CPLD and FPGA

From all the specification of ASIC, CPLD and FPGA that discuss

above, it shows that there are many advantages of FPGA compared to the

others. That is why the FPGA is choosing for implement this project.

Faculty ofCompULcr Science & Information T~:::chnoJogy
Session 2002/2003

38

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accwnulator • Pipeline

3.5 Conclusion

The discussion above is including the methodology that will be used in

designing a Pipelined Multiplier Accumulator. There are two methods of design

will be used in this project, which are top-down design and bottom-up design.

Top-down design will be used in design part, meanwhile the bottom-up design

will be used in implementation part. This chapter also discuss about the hardware

description language that will be used in simulation and testing. VHDL is

choosing considered on the comparison that had been discussed above. ASIC and

programmable devices, which is CPLD and FPGA and the comparison of this two

devices also discussed in this chapter. From all the fact above, FPGA is choosing

to be used in this project.

The next chapter (Chapter 4) will discuss about Pipelined Multiplier

Accumulator Analysis and Design. That chapter will discuss about system

analysis and design for a pipelined MAC. The discussion will include discussion

about the system overviews, conventional MAC and pipelined MAC. Besides

that, the comparison between conventional MAC and pipelined MAC also will

discuss in that chapter. That chapter also will discuss about signals controller that

used in the pipeline multiplier accumulator and also the top-level design of this

system.

Faculty of Computer S(;icnce & Information Technology
Session 2002/2003

39

Univ
ers

ity
 of

 M
ala

ya

Chapter 4

SYSTEM DESIGN

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier .Accumulator • Pipeline

CHAPTER 4 SYSTEM DESIGN

4.1 Introduction

This chapter will be discussing about system analysis and design for a

pipelined MAC. That discussion will be included with the pipelined MAC

overview and design of the pipe lined MAC. Furthermore, this chapter also will be

investigated about the design of multip1ier, accumulator and pipeline design in

pipelined multiplier accumulator. The description of top-level design, black box

and system' s block diagram wi11 also be presented to show in this chapter.

4.2 System Overview

The Pipelined MuJtiplier Accumulator, which is implemented, will

facilitate the arithmetic operations of multiplying pairs of 8-bit binary number and

adding 16-bit binary numbers that is initia11y the multiplication result obtained.

In order to operate the system under a fast, continuous stream of data, the

concept pipe lining these multiplication and addition process is implemented in the

design of the system unit (Refer Figure 2.3: Pipelined concept in system's

operation~ Chapter 2: Literature review~ pg 19). Each stage of system is pipelined,

so that it can perform on a continuous data. A control unit controls each stages of

Faculty of Compmcr Science & Information Technology
Se-;sion 2002/2003

41

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipeline

the pipelined unit. The details of the control unit will be discussed in the

following sections. (Section 4.6 : Signal Controller).

In the system's operation, two 8-bit signed fixed-point binary numbers

(data) are multiplied by a multiplier block, while simultaneously two 16-bit

signed fixed-point binary numbers are added together in an accumulator block

which proceeds the multiplier block. It is in such way that a multiplication result

is passed to the accumulator block (which is feedback to the block for next

additional operation); in order to obtain the next output result.

Signal
Controller

Signal4

SignalS

Signal1

8 Bit
Signal2

8 Bit Common Dat

8 x 8 Bit Multiplier

16 Bit Accumulator

16 Bit Output

16 Bit Latch

16 Bit Output

16 Bit Latch

16 Bit Final Results

Figure 4.1 System's block diagram

Faculty of Computer S\.:icnce & Information Tcchnolob'Y
Session 2002/2003

42

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier .Accwnulator: Pipeline

For this design, synchronous transfer of data bit between the multiplier

and accumulator blocks is used, where latches are used for latching data bits in

and out of those block in order to synchronize the multiplication and addition

operations. The clocking rates to these latches are controlled by a signal controller

block, from which different rates of clock pulsing are generated and channeled to

the respective latches. The system's block diagram is shown in Figure 4.1.

4.3 Top Level Design

Figure 4.2 is shown the black box for top- level design ofPipelined MAC.

Top-level design of pipelined multiplier accumulator consists of six inputs and

three outputs. The inputs are x _real, x _imag, y _real, y _imag, elk and clr. All of

the inputs are used in the system in both of multiplier and accumulator unit.

x real
x_tmag

y_real
y_tmag

clr
elk

..

..

... Black Box
(Top Level Design)

... ...

.. ...

Figure 4.2 Black box for top-level design

Faculty of Com puLer S\.:iencc & Information Technology
Se%ion 2002/2003

... s real

.... overflow

s_tmag

43

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier A.ccumulator: Pipeline

The x _real, x _imag, y _real and y _1mag inputs will be used in

multiplication operation of multiplier part and addition operation in accumulator

part in the pipelined MAC. The 'clr' input only use in accumulator part to clear

the pipeline register to zero and reset the overflow condition. Meanwhile the 'elk'

will be used to control the clock signal.

The outputs are s_real, s_imag and overflow. All ofthis output except for

overflow will appeared as a final sum of all operation in multiplier and

accumulator. Overflow happened only in the certain case.

4.4 Pipeline in MAC

The main purpose of designing pipelined MAC is to avoid delay that

occurs in multiplication operations. The pipelining process in pipelined MAC is

organizing like an assembly line as shown in Figure 4.3. The process of the

pipelined MAC will be discussed below.

X

y

Input
register

Pipeline
register

Pipeline
register

accumulator

Figure 4.3 Dataflow diagrams showing order of operations by the
pipelined MAC

Faculty of Computer Science & Information Technology
Se<>~ion 2002/2003

44

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumul.ator: Pipeline

Firstly, the first pair of input numbers is stored in the input register on the

first clock edge. During the first clock cycle, the multipliers calculate the partial

products, while the system prepares the next pair of inputs. On the second clock

edge the partial product are stored in the first pipeline register and the second pair

of inputs numbers is entered into the input register. During the second clock

cycle, the subtracter and adder produce the full product for the first input pair; the

multipliers produce the partial products for the second input pair, while the

system prepares the third input pair.

On the third clock edge, all input is stored in the second pipeline register,

the first pipeline register and the input register. Then in the third clock cycle, the

address accumulate the product of the first pair with the previous sum and the

preceding stage operates on the second and third pairs, while the system prepares

the fourth pair.

The sum in the accumulator is updated on the fourth clock edge. Thus,

three clock cycles after the first input pair was entered into the input latch, the

sum including this pair is available at the output of MAC. Thereafter, successive

sums are available each clock cycle. The approach can reduces the clock period to

the slowest ofthe pipeline stages, rather than the total of pipeline delay. [Ash, 96]

In pipeline case, initializing and restarting the pipeline should be

considered. It is important to do this to accumulate sums of product of a number

of an input sequences, one after another. The simplest approach is to include a

'clear' input to the accumulator register that forces its content to zero on the next

Faculty of Computer Science & Information Technology
Session 2002/2003

45

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipeline

clock edge. It' s mean, for each pair of sequences to be multiplied and

accumulated, the number start entering the input register on successive clock

edge. Then, two clock cycles after the first pair input is entered, the clear input is

asserts.

This causes the accumulator to reset at the same time as the product of the

first pair of numbers reaches the second pipeline register. On the following cycle,

this product will be added to the zero value forced into the accumulator. Three

clock cycles after the last pair in the input sequence has been entered, the final

sums will appears at the output of the MAC. Successive input sequences must

separate by at least one idle cycle and reset the accumulator between summations.

It is important to reset all values to zero before the next summation will be

operates.

x real

.. Black Box ... -":._tmag

(Pipeline) y_real

_.. ... y_imag

elk i
Figure 4.4 Black box for pipelined in MAC

Faculty· of Computer S~..:icnce & Information Technology
Session 2002/2003

.
... p_real

• p_1mag

46

Univ
ers

ity
 of

 M
ala

ya

A. Pipelined Multiplier .Accumulator: Pipehne

4.5 Multiplier in MAC

To form a partial product, MAC must perform four multiplications. Then,

a subtraction and addition is executed to form the full product and finally two

additions to accumulate the result. Since the operations must be performed in this

order, the time taken to complete processing one pair of inputs is the sum of the

delays for the three steps.

This delay may cause the bandwidth of the system to be reduced below a

required minimum, in a high-performance digital signal processing application.

Figure 4.5 is shown the black box for multiplier in MAC. The multiplier unit is

consisting of five inputs and two outputs.

x real ...
~

...
x_Imag ... Black Box

(Multiplier) ..
~

_.. ... y_1mag

elk i

Figure 4.5 Black box for multiplier in MAC

Faculty· of Computer Science & Information Technology
Session 2002/2003

p_real

p_Imag

47

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipehne

4.6 Accumulator in MAC

MAC calculates its result by taking successive pairs of complex number

(that have been discussed in Chapter 2, Section 2.2.5), one of each from the two

input sequences, forming their complex product and adding it to an accumulator

register. Accumulator is initially cleared to zero and is reset after each pair of

sequences has been processed. Refer Figure 2.2: Dataflow diagrams showing

order of operations by the conventional MAC in Chapter 2: Literature review (pg

18) to look for dataflow in accumulator unit of Pipelined MAC. Figure 4.6 is

shown the black box for accumulator in MAC. The multiplier unit is consisting of

four inputs and three outputs.

p_real

p_tmag

clr
elk

...

...

...
...

Black Box
(Accumulator)

Figure 4.6 Black box for multiplier in MAC

Faculty of Computer S~.:ience & Information Technology
Ses:'-.ion 2002/2003

... s real

~ -.,.. overflow

~ s_tmag

48

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier .Accumulator: Pipehne

4. 7 Signals Controller

It is an essential part of the whole system to generate clock pulse signals,

which synchronize the processes in the multiplier and accumulator units, besides

providing interrupt signal for the printer port. Signals controller is important to

control stages of pipeline and the continuous of input data in pipeline MAC.

Signals controller will work in both of multiplier and accumulator units.

In the multiplier unit, signals controller in the system will take the new

input value when the clock is '1 '. It is because at the time clock is '1 '; latch is

opened to allow data entered into the system. When the clock is '0 ', latch is

closed and data cannot enter into the system. The process will operate at this time.

In the accumulator unit, after operation in multiplier is finished, data is stored in

pipeline register. Signals contro1ler will stores a copy of the data on each rising

edge of the clock.

' Clear' signal is used to clear the pipeline register to zero and reset the

overflow condition. 'Clock' signal is used to synchronize the MAC and control

the clock. It must know when multiplier and accumulator wi11 take the input. Data

entered when the clock is '1 ' .

Efficiency of signals controller part is greatly affects the reliability of the

overall system. The design has been done carefully through the use of GateSim

simulator, in order to obtain correct and stable output control signals for the entire

system's operation. The simulator has been as essential supporting tool in

Faculty of Computer Science & Information TcchnoiOb'}'.
Session 2002/2003

49

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeline

detecting the weak points of the design. The weaknesses are fundamental basis for

improvement ofthe design, although there are differences between the simulation

and actual design. Basically, it operates in the same manner as the actual

operation. As long as the differences are well defined and understood, the use of

simulator is obvious, to be an important reference for the actual work.

4.8 Conclusion

The design and construction of the system is done in the way where

simplicity and fast speed criterions are emphasized. Selections of construction

method of Accumulator and Multiplier have been done through analyzing few

method which are commonly used.

The Multiplier unit mainly determines the overall performance of the

system. The multiplier design is much emphasized in order to select a suitable

method for its construction. Besides that, efficiency of signals controller part is

also greatly affects the reliability of the overall system.

The effectiveness of pipe lining concept in the system's implementation is

underuabJe as the performance of the system is improved where the multiplication

process is pipelined with the addition process.

Faculty of CPrnputcr St::icnce & Information TcchnoJo.t,'Y
Se'>sion 1002/1003

50

Univ
ers

ity
 of

 M
ala

ya

A PipeJin~d Multiplier Accumulator: Pipeline

The next chapter (Chapter 5) will discuss about systems implementation.

That chapter will discuss about system implementation for a pipelined MAC. The

discussion wilJ include discussion about the system implementation, description

of PeakFPGA Designer Suite FPGA Synthesis Edition and the system coding.

Besides that, the behavioral model also will discuss in that chapter.

Faculty of (\nnputcr Science & Information Technology
Se<.;sion 2002/2003

51

Univ
ers

ity
 of

 M
ala

ya

Chapter 5

SYSTEM

·IMPLEMENTATION

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator : Pipeline

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1 INTRODUCTION

To bring forward on designing a logic device for Pipelined Multiplier

Accumulator, this chapter will take the reader to the description of PeakFPGA

Designer Suite FPGA Synthesis Edition. These tools will be extensively used

throughout the , design implementation process. The coding for the system's

modules is developed using the VHISC Hardware Description Language (VHDL)

programming language (discussed before in Chapter 3.3 page 29). This chapter

also will discuss about system development, the description of all pins in top-level

design and system coding for Pipelined Multiplier Accumulator.

5.2 PeakFPGA DESIGNER SUITE FPGA SYNTHESIS EDITION

PeakVHDL is an advanced software product intended to help you use

VHDL for digital design projects. PeakVHDL includes an integrated VHDL

simulator, VHDL source file editor, Hierarchy Browser and other resources for

VHDL users. To get started using PeakVHDL, we should load one of the sample

projects included in the Examples subdirectory of PeakVHDL installation. The

examples provided are intended to demonstrate a variety of useful VHDL

Facultv of Computer Science & Information TechnolOb'Y
Session 2002/2003

53

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accwnulator: Pipeline

concepts, including various methods of writing test benches. These examples will

also help us to understand how to create and manage a PeakVHDL project.

Figure 5.1 : Main Application Window

To load a sample project, select Open Project from the PeakVHDL File

menu, and navigate to the Examples subdirectory of the PeakVHDL installation

directory. Select one of the sample projects and open the .ACC file associated

with that project. When we have opened a sample project, we will see two or

more . VHD source files listed in the Hierarchy Browser window. We can double

click on any file name listed to open a VHDL source file-editing window.

~ ,i_:. .:..:_:.:::..__:::_..:.. .. _;"
' r;J MODULE TEST_TO_FP.VHD

l?jl MODULE TO_VECTOR.VHD

. l?jl MODULE TEST_TO_VECTOR.VHL>

: (r;l MODULE MALVHD
1€3 MODULE MA(_TEST.VHD

IJjl MODULE RTL VHD

Figure 5.2 : Hierarchy Browser Window

Faculty of CPmputcr Sci.;.:ncc & Information Technology
Ses:'--.i on 2002/2003

54

Univ
ers

ity
 of

 M
ala

ya

i\ PipeJined Multiplier Accumulator: Pipeline

To process the project and start the PeakVHDL simulator (PeakSIM),

select the top-most VHDL source file (the test bench) by clicking on it then

choose Load Selected from the Simulate menu or click on the Load Selected

button from the PeakVHDL toolbar. When we highlight the top-most module and

choose Load Selected, the following occurs:

1) All VHDL source file modules in the project are compiled in bottom-up

order as determined by the Hierarchy Browser.

2) The compiled source file modules are linked together (elaborated), and a

. VX simulation executable is generated.

3) The .VX simulation executable is loaded into the PeakSIM simulation

application.

Figure 5.3: Transcript Window

Faculty of CompuLt:r Science & Information Technology
Ses:'.ion 2002/2003

55

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeline

If there are any errors during this process, they are reported to the

PeakVHDL transcript window. If there are no errors, the PeakSIM application

appears with your project loaded, ready for simulation. Refer to the PeakSIM on-

line help for information about how to control simulation, monitor signals and

debug your design.

The main application window includes 13 toolbar buttons. These buttons,

which can be toggled on or off are summarized below, from left to right. Note that

as we move our cursor over a toolbar button, a tip appears that explains the

function of that button.

• Create New Project - same as File I New Project

• Open Existing Project - same as File I Open Project

• Save Project - same as File I Save Project

• Create New Module - same as File I New Module

• Open Module or Text File- same as File I Open Module

• Add Module to Project- same as File I Add Module

• Compile Selected Module - same as Compile I Compile Selected

• Link Selected Module - same as Link I Link Selected

• Load Selected Simulation Executable- same as Simulation

I Load Selected

• Synthesize Selected Module - same as Synthesize I Synthesize Selected

• Display or Change Program Options - opens the Options dialogue with the

Compile folder active (same as Compile I Options ... or Options I

Compile ...)

Faculty of CPmput~r Sci~ncc & Information Technology
Se-;sion 2002/2003

56

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipehne

• Search Project- same as Edit I Search Project

• Help Contents - same as Help I Contents

5.3 PIN DESCRIPTION

To describe the behavior of digital systems in VHDL code, a designer

must plan the specification of each pin and register. Therefore, the following

discussion will be concentrated on the design specification of the Pipelined

Multiplier Accumulator pins and registers. The function of each pin and register

will also be discussed in this section .

x re al
.... s_real

x im ag
Black Box

y_re al (Top Level Design) overflow

y_im ag

clr s_imag

elk I

Figure 5.4 : Pipelined MAC Top Level Design Symbol

Table 5.1 will describe the function and the description of all Pipelined

MAC pins available at the top-level design (Figure 5.4) of the VHDL

implementation. The 9 pins Pipelined MAC are describe as follows:

Faculty of Computer S~icncc & Information Technology
Se'>sion 2002/2003

57

Univ
ers

ity
 of

 M
ala

ya

/-\ PipeJined Multiplier Accumulator: Pipeline

Pin In/out Description
x real IN X Real Number

-
8 bit input for first real number

x_imag IN X Imaginary Number
8 bit input for first imaginary number

y_real IN Y Real Number
8 bit input for second real number

y_tmag IN Y Imaginary Number
8 bit input for second imaginary number

clr IN Clear
Reset the input in register

elk IN Clock
Input in at each rising edge

s real OUT Sum Real
-

Produce 16 bit real product (output)

s_ tmag OUT Sum Imaginary
Produce 16 bit imaginary product (output)

Overflow OUT Overflow Control
Produce overflow value from the system

Table 5.1 Pipelined MAC Pins Description

5.4 SYSTEM CODING

For the Pipelined MAC system itself, there are many modules being

developed. There are two modules need to be integrated in order to form the

behavioral model that are the to_ fpo module (converter from fixed-point to

floating-point representation) and to_ vector module (converter from floating-

point to fixed-point representation). The behavioral model allows us to focus on

the algorithm without being distracted by other details at this early stage of the

design. When we have the behavioral model working, we will be able to use it to

generate test data for more detailed implementations.

Faculty ofCPmputcr Science & Information Technology
Session 2002/2003

58

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accmnulator • Pipeline

To form the Register-Transfer-Level, there are eight modules to be

integrated which is pipeline register module for 8-bit and 16-bit, multiplier

module, accumulator adder module, set/reset flipflop module, adder/subtracter

module, accumulator register module and overflow logic block module. This

chapter only will discuss about two models, 8-bit and 16-bit pipeline register

module for and set/reset flipflop module.

5.4.1 The Behavioral Model

There are two modules need to be integrated in order to form the

behavioral model that are the to_ fpo module (converter from fixed-point

to floating-point representation) and to_ vector module (converter from

floating-point to fixed-point representation). Figure 5.5 is shown the

hierarchy to develop the MAC behavioral model.

MAC.vhd

To_fp.vhd To vector.vhd -

Figure 5.5 : Hierarchy tree for Pipelined MAC behavioral model

Faculty of CPmputcr Science & Information Technology
Session 2002/2003

59

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipeline

5.4.1.1 To_fpo Module

The process to convert from fixed-point binary representation to

floating-point representation is sensitive to the input vector. Whenever the

vector changes value, the process first converts it from std _ ulogic _vector

type to a bit vector in the variable temp. Figure 5.6 is shown the coding

for this process.

temp : = to_bitvector(vec) ;
negative : = temp(temp ' left) ' 1 ';

if negative then
temp : = not temp ;

end if ;

Figure 5.6 :Coding to convert input to a bit vector

The process then treats the bit vector as a signed binary number

and converts it to an integer in the variable int_result. The process

computes the final result by converting the integer to the predefined

real_ type and scaling it into the range - 1 to + 1. This final value is

assigned to the output port r, with delta delay.

for index in vec ' range loop sign bit of temp= ' 0 '
int result int result* 2 + bit ' pos(temp(index)) ;

end loop ;

if negative then
int result (- int_result) - 1 ;

end i f ;

convert to floating point and scale to [- 1 , +1)
r <= real(int_result) I real(2**7) ;

Figure 5.7: Loop to get the final result

Faculty of Computer Science & Information TechnoiOb')'
Session 2002/2003

60

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeline

5.4.1.2 To_ vector Module

The process to convert from floating-point to fixed-point

representation is sensitive to changes. in the floating-point input port. The

number is assumed in the range - 1.0 (inclusive) to + 1.0 (exclusive). If it is

outside of this range, the entity will not convert the number correctly.

Figure 5.8 is shown the coding for this process.

When the number changes, the new value is scaled to an integer in

the range - 27 to +27-1 in the variable temp. This is then converted into

signed binary form in the standard-logic vector result and then assigned to

the output with delta delay. Lastly, temp is dividing by two to move the

next most-significant bit to the least-significant bit position, in preparation

for the next iteration of the loop. Figure 5.9 is shown the coding for this

process.

scale to [-2**7 , +2**7) and convert to integer
if r*real(2**15) < real(-2**7) then

temp : = - 2**7 ;
elsif r*real(2**7) >= real(2**7 - 1) then

temp · = 2**7 - 1 ;
else

temp : = integer(r*real(2**7)) ;
end if ;

negative : = temp < 0 ;
if negative then

temp : =-(temp+ 1) ;
end if ;

result : = (others=> ' 0 ') ;

Figure 5.8: Coding to convert input into the correct range

FacuJty of Computer Science & Informat:ion Technology
Ses:-.ion 2002/2003

61

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator : Pipeline

for index in result ' reverse_range loop
if ((temp mod 2) = 1) then

result(index) ' 1 ';
else

result(index) . - ' 0 ';
end if ;
temp : = temp I 2 ;

--result(index) : = to_X01(bit ' val(temp rem 2)) ;
-- temp : = temp I 2 ;

exit when temp = 0 ;
end loop ;

if negative then
result : = not result ;
result(result ' left) . - ' 1 ';

end if ;

return result ;
vee <= result ;

Figure 5.9 : Loop to bet the floating-point result

5.4.1.3 MAC Module

The behavioral architecture module is shown in Appendix. The

process behavior implements the MAC algorithm. This process is sensitive

to the elk signal and performs a new calculation on each rising edge. It

~orks from the output end of the pipeline back towards the input end to

avoid overwriting intermediates results from the previous clock cycle

before they have been used in the current cycle.

The process first calculates the new sum and overflow status. If clr

input is ' 1 ', both the accumulator and overflow variables are reset.

Otherwise the process accumulates a new complex sum, based on the

previous complex sum an the contents of the product registers and stores it

in the accumulator register variables. The output data signals are assigned

Faculty of Comput~r Science & Information Technology
Session 2002/2003

62

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accwuulator • Pipeline

the new contents of the accumulators and the overflow signal is set if

either of the overflow register variables is set or if either of data outputs

falls outside the range - 1.0 to + 1.0. Next, the process updates the partial

products using the previously stored input values and finally stores the

new input data values in the input register variables.

5.4.2 The Register-Transfer-Level Model

To form the Register-Transfer-Level model, there are eight modules to be

integrated which is pipeline register module for 8-bit and 1 6-bit, multiplier

module, accumulator adder module, set/reset flipflop module, adder/subtracter

module, accumulator register module and overflow logic block module. Figure

5.10 is shown the hierarchy to develop the Pipelined MAC Register-Transfer-

Level model.

All the modules in the hierarchy will integrate to form the Register-

Transfer-Level model. is shown in Appendix. The system coding for this process

and the design for the Register-Transfer-Level model is included in Appendix

(please refer to Appendix 6).

Faculty of Computer Science & Information Technology
Session 2002/2003

63

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator :Pipeline

Register-Transfer-
Level.vhd

I I I I
Reg.vhd Adder and Accumulator Overflow

sub.vhd _reg.vhd logic.vhd

Booth mul Cia real. Synch_sr_
.vhd vhd ffvhd

Figure 5.10: Hierarchy tree for Pipelined MAC Register-Transfer-Level model

5.4.2.1 Pipeline register Module

The description of the pipeline register module is shown in Figure

5. 7. The register has a clock input port, elk and stores a copy of the input

data on each rising edge of the clock. The behavioral architecture body for

register module contains a single process that is sensitive to changes on

the elk port.

if rlslng_edge(clk) then
q <= d ;
end if;

Figure 5.11 :Architecture Body for a Pipeline Register Module

Faculty of Computer Science & Intormation Technology
Session .2002/.2003

64

Univ
ers

ity
 of

 M
ala

ya

A PipeJined !'v1u1tip1ier A.ccumulator • Pipeline

5.4.2.2 Set/Reset Flipflop Module

The set/reset flipflop module is shown in Figure 5.12. The purpose

of this module is to set a pair of flipflops for each of the real and

imaginary parts of the sum according to overflow flags from the

accumulators.

if rlslng edge (clk) then
on each rising edge of the clock input , the process
in the architecture body tests the clr and set inputs

if ~lr = ' 1 ' then
q <= ' 0 ' after Tpd_clk_out ;
-- If clr ' 1 ', the flipflop output is cleared to ' 0 '

elsif set= ' 1 ' then
q <= ' 1 ' after Tpd_clk_out ;
-- if set is ' 1 ', the output is set to ' 1 '
-- If neither input ' 1 ', flipflop state is unchanged

end if ;
end if ;

Figure 5.12 : Architecture for Set/Reset Flipflop Module

5.5 CONCLUSION

In developing the Pipelined Multiplier Accumulator system, the software

based system development is chosen to use. The system development is comprises

of describing the behavioral of the digital design of the system, this behavioral

description can be used for at least two purposes, the first is for the simulation of

the digital circuits. A simulator uses the VHDL description to conduct a

simulation that behaves like the physical system. Such simulation can be used to

verity the behavior of the digital circuit prior to expensive fabrication. The

Facult): of Computer Science & Information TcchnolohrY
Se!:'sion 2002/2003

65

Univ
ers

ity
 of

 M
ala

ya

A Pipelined I\-1ultiplier AccumuLator • Pipeline

simulation can in fact serves as a virtual prototype in making and evaluating

design trade-offs prior to finalizing the design. The VHDL simulation serves as a

basis for testing complex designs and validating the design prior to fabrication.

The overall effect is that of reducing redesign, shortening the design cycle,

reducing the probability of design error, and bringing the product to market

sooner.

The second purpose is for the synthesis of digital circuits. Design tools

analyze the VHDL description and produce digital circuits that implements the

behavior captured in the VHDL description. The resulting circuit descriptions can

be processed rapidly to produce custom hardware and can be used to configure re-

programmable hardware components to implement the design.

Thus the VHDL descriptions can in fact be used to support two

complementary processes found in the design of digital systems : simulation and

synthesis.

The next chapter (Chapter 6) will discuss about testing the VHDL model

for Pipelined Multiplier Accumulator. That chapter also will discuss about testing

that have been done to the Pipelined Multiplier Accumulator. The testing will be

dividing to two sections that is unit testing and system integration testing.

Faculty of Computer Science & Informatjon TechnolOb'Y
Session 2002/2003

66

Univ
ers

ity
 of

 M
ala

ya

Chapter 6

TESTING

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Multiplier Accumulator: Pipeline

CHAPTER 6 TESTING

6.1 INTRODUCTION

This chapter will discuss how to testing the VHDL model for Pipelined

Multiplier Accumulator. We will use test benches to test this model. The test

bench is a structural model with two components that is a tester and a model

under test. The model under test may be a behavioral or structural VHDL model

of a digital system. The tester is usually a behavioral model written using the

constructs described below. Typical segments of VHDL code that can be found in

the tester modules include :

• Processes to generate waveforms

• VHDL statements to read test vectors from input files and apply them to

the model under test, and

• VHDL statements to record the outputs that are produced by the model

under test in response to the test vectors.

For the Pipelined MAC system itself, there are test benches being

constructed for each of the modules being developed. Each of the modules has

their own test benches to test the input and also the output for each module.

This chapter also will discuss about testing that have been done to the

Pipelined Multiplier Accumulator. The testing will be dividing to two sections

that is unit testing and system integration testing. Each section has different type

Faculty of Computer Science & Information Tt:::chnology
Session 2002/2003

69

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accmnulator: Pipeline

of testing but still use the same testing method that is test bench. Firstly, testing

will be done in unit testing then it will continue with the system integration

testing.

6.2 Simulation Using PeakFPGA

To test the test benches, we will use the Peak:FPGA software. In

PeakFPGA, there, are four options to simuJate the test benches that are compiled

selected, link selected, load selected and options.

I I •

file £dit)iiew .Simulate S~thesize

/ lffl ~ Q .(ompile Selected

fLIP HOP(

·-·
/Done-reading project file

.link Selected
Load .Selected

Figure 6.1 : Window show the simulate menu options

Faculty of Comptller Scii:.!ncc & InJorrnation Technology
Se.,:'-ion 2002/2003

70

Univ
ers

ity
 of

 M
ala

ya

A Pi pel i ned Multi p 1 icr Accum uiator : Pipe 1 i ne

6.2.1 Compiled Selected

To compile selected VHDL modules, do the following :

• Select the module to be compiled by clicking on it once in the

Hierarchy Browser.

• Select Options I Compile ... from the menu bar to bring up the

Compile Options dialog. Alternatively, you can bring up the dialog

by clicking on the Display-or-Change-Program-Options toolbar

button. Set compile options as needed. Click on the Close button to

close the dialog.

• Select the Simulate I Compile Selected option from the menu bar

or click on the Compile Selected Module toolbar button. The

selected module is then compiled.

6.2.2 Link Selected

To link modules, do the foJiowing :

• Select the module, entity, or architecture representing the top level

for the link operation by clicking on the appropriate item once in

the Hierarchy Browser.

• Select Options I Link. .. from the menu bar to bring up the Link

Options dialog. Alternatively, you can bring up the dialog by

clicking on the Display-or-Change-Program-Options toolbar

Faculty of Ct1mputcr St:icncc & Information 1 cchnology 71

Session 2002/2003

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accwnulator • Pipeline

button and then clicking on the Link folder tab .. Once the dialog is

displayed, set link options as needed. Click on the Close button to

close the dialog.

• Select the Simulate I Link Selected option from the menu bar or

click on the Link Selected Module toolbar button. The link

operation then takes place.

6.2.3 Load selected

To load a selected simulation executable, do the following:

• Select the module, entity, or architecture you wish to load by

clicking on the appropriate item once in the Hierarchy Browser.

• Select Options I Simulation .. . from the menu bar to bring up the

Simulation Options dialog. Alternatively, you can bring up the

dialog by clicking on the Display-or-Change-Program-Options

toolbar button and then clicking on the Simulation folder tab .. Once

the dialog is displayed, set simulation options as needed. Click on

the Close button to close the dialog.

• Select the Simulate I Load Selected option from the menu bar or

click on the Load Selected Simulation Executable toolbar button.

The PeakSIM application is then invoked and the selected

simulation executable is loaded.

Faculty of Computer Science & Information TechnoiOb'}'

Session 2002/.2003

72

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accwnulator: Pipeline

6.2.4 Options

To set Simulation options, select Options I Simulation ... from the

menu bar to bring up the Simulation Options dialog. AJtematively, you

can bring up the dialog by clicking on the Display-or-Change-Program-

Options toolbar button and then clicking on the Simulation folder

tab .. Once the dialog is displayed, set simulation options as needed. The

various simulation options are discussed below :

• Update simulation executable before loading - If this option is

checked, the Link process will be invoked if the simulation

executable is out of date (as determined by checking the date and

time stamps of the object files).

• Vector display format - This pull-down list allows you to specify

the vector data display format for the waveform. Use the list to

select binary, octal, decimal, or hexadecimal.

• Run to time - This field shows the default duration for the

simulation run. You can reset this value by clicking on the Run to

Time field and typing in a new value. This value can be overridden

for individual simulation runs as needed by changing the value in

the GO field in the Waveform Display.

• Step value - This field shows the default step time interval for a

step simulation run. You can reset this value by clicking on the

Faculty of CPmputer Science & Information Technology
Session 2002/2003

73

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator • Pipeline

Step Value field and typing in a new value. This value can be

overridden for individual step simulation runs as needed by

changing the value in the Step field in the Waveform Display.

• Unit - This field shows the unit of time to be used during

simulation. To select a different unit of time, click on the Unit field

to display the various options. Then click on the desired unit to

select it. Valid units of time are those units defined by the VHDL

language are fs (femtosecond), ps (picosecond), ns (nanosecond),

us (microsecond), ms (millisecond), sec (second), min (minute)

and hr (hour).

• Max signal depth - This field specifies the depth of signals to be

loaded for into the Available Signals list in the Waveform Display.

The depth of a signal is determined by its position in the design

hierarchy. For example, a signal DUT.Cik has a signal depth of 2,

while signal DUT.Ul.ControlSM.Varl has a depth of 4. You can

use this option to reduce the number of signals and speed

simulation loading when simulating large structural models.

• When you are finished setting options, click on the Close button to

close the dialog.

Faculty· of Computer Sci~nce & Information Tcchnolob'}'

se--~ion 2002/2003

74

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accwnulator: Pipeline

6.3 Unit Testing

Unit testing is a process of testing the individual modules in the Pipelined

Multiplier Accumulator. The testing conducted to ensure that the lowest levels of

code are ready to assemble into the final sy_stem and that all necessary logic is

present works properly.

The test bench that has been created will check the output for the input.

From the waveform that has been generated by PeakFPGA, we will know either

the output is correct or not. This subchapter will discuss about unjt testing that

have been done to pipeline register module and set/reset flipflop module.

6.3.1 Pipeline Register Module

The process for pipeline register is sensitive to changes of the elk

input. The register can be test either for 8 bits or 16 bits. The process uses

the rising edge to test whether the change is from a '0' state to ' 1' state. If

so, the process updates the output using the input data. So, if the input (d)

is set to "000000 1 0" at the rising edge, the output is also "000000 1 O".

From the output, we can know that the theory for this process is correct.

FacuJty of Computt::r Science & InJormation Tt::chnolot."Y
Session 2002/2003

75

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier AccumuLator: Pipeline

l~jVHDL Simulator - [fEST _ RE6] rising_ edge
~ file ~ietro 2imulation

~jj Q I 1!1 Sl l

Figure 6.2 : Waveform from test bench for pipeline register

6.3.2 Set/Reset Flipflop Module

The process for set/reset flipflop will test the clr and set input on

clk='1'
clr='D'
set='D'
q='D'

each rising edge of the clock input. The flipflop output is cleared to '0' on

each rising edge of the clock input. Otherwise, if set is ' 1 ', the output is set

to '1 '. If neither input is set to ' 1 ', the flipflop state is unchanged. So, if

the value for clr is ' 1 ',the output is '0' (cleared to zero).

·u· L--------____j

Figure 6. 3: Waveform from test bench for set/reset flipflop

Faculty of C\m1putcr Science & Information Technology

Session 2002/2003

76

Univ
ers

ity
 of

 M
ala

ya

A Pipelined MultiplierAccumulator: Pipeline

6.4 System and Integration Testing

System testing is a series of different tests whose primary purpose is to

fully exercise the system to uncover its limitations and measure its fuJI

capabilities. The objective of the system tes~ is to integrate the system to verify

that it meets specified requirement.

Integration system is an orderly progression of testing in which software

and/or hardware elements are combined and tested until the entire system has

been integrated. The purpose is to measure the correctness of each program 's unit

behavior once the program has been combining with other programs.

There are two models that develop for the Pipelined Multiplier

Accumulator project that is behavioral model and Register Transfer Level model.

Each model has own module to develop and also has specified test bench to test.

We also can simulate the test bench and compare the result between both of the

models . . However, a better approach is to modify the test bench to include

instances of each model. With this approach, we can easier to compare the result

between behavioral model and Register Transfer Level model.

Faculty of Computer Science & Jntormarion Tcchnolo.b:rY
Session 2002/2003

77

Univ
ers

ity
 of

 M
ala

ya

i\ Pi pel ined tv1ultipl icr Accumulator : Pipeline

6.5 Conclusion

The method that use for testing in Pipelined Multiplier project is test

benches. The test bench is a structural model with two components that is a tester

and a model under test. The model under test may be a behavioral or structural

VHDL model of a digital system.

PeakFPGA is used to create the test benches for each module and also

each model. The test bench that has been created will check the output for the

input. Then, each test bench is simulating to make sure the output is correct for

the process in each module.

Testing will be done in two steps that are unit testing and system

integration testing. Firstly, testing will test by unit or module. Then, it will

integrate to test as a system. It is easier to find error in unit testing compare to

system integration testing.

Fa cult):. of Computer Science & JnJormation Technology

Se~~ion 21102/2003

78

Univ
ers

ity
 of

 M
ala

ya

Chapter 7
)

SYSTEM

EVALUATION

Univ
ers

ity
 of

 M
ala

ya

l\ Pipdincd l\·1ulup1H.:r Accumulator: Pipeline

CHAPTER 7 SYSTEM EVALUATION

7.1 INTRODUCTION

This chapter will be discussing about the evaluation of the Pipelined

Multiplier Accumulator system and the problems encountered in developing this

system. The discussion will be included with the system strengths, system

constraints and future enhancements for Pipelined Multiplier Accumulator. The

future enhancement part will be discussed about the method that will use to

improve the performance of Pipelined Multiplier Accumulator and the use of

Pipelined MAC in digital processing algorithm such as filtering and equalization.

The knowledge and experience gained in developing this system also included in

this chapter.

7.2 DISCUSSIONS

The simulation and unit tests have shown and ensured the capability and

reliability of the pipelined MAC. However, as discussed before, the reasons for

the pipelined MAC is to avoid the delay in the process. In order to operate the

system under a fast, continuous stream of data, the concept pipelining these

multiplication and addition process is implemented in the design of the system

units. The conventional MAC calculates its results by taking successive pairs of

FacuJt\ of Com puler Scienc~ & lnformanon Tcchnolubr:-·
Ses:-.ion 2002i2P03

80

Univ
ers

ity
 of

 M
ala

ya

A Pipdincd !\1u1tip1ier Accumulator: Pipdine

complex numbers, one each from the two input sequences, forming their complex

product and adding it to an accumulator register. The accumulator is initially

cleared to zero and is reset after each pair of sequences has been processed. This

process takes more time than use the pipelining technique.

In the pipelined MAC operation, two 8-bit signed fixed-point binary

numbers (data) are multiplied by a multiplier block, while simultaneously two 16-

bit signed fixed-point binary numbers are added together in an accumulator block

which proceeds the multiplier block. It is in such way that a multiplication result

is passed to the accumulator block (which is feedback to the block for next

additional operation); in order to obtain the next output result. This process wiJI

take least time than the conventional process.

The implementation of pipeline concept in this system makes the

operation in the faster multiplier accumulator and avoids the delay in operation.

Pipelining will increase the system speed up by allow the overlapped of the tasks.

The pipelined MAC has been increased the conventional execution's speed and

decrease the cycle time but doesn ' t reduce the total time required for

multiplication.

The important part in developing Pipelined MAC system is to integrate all

the modules becomes a system model. There are two models in this system, which

is behavioral model and Register-Transfer-Level model. Both of these models

have their own module to integrate to make a complete model and system. When

F<icnlty o1 (ornpuLcr Sl:wncc & Informauon Technology

sc ... :-.Jon 200~:2003

81

Univ
ers

ity
 of

 M
ala

ya

A P1p •It ned rv1ulupl11 . .:r Accumulator· Pipc1me

problem encountered in one of the module, either the model will run with the

false result or the model cannot be run.

The behavioral model is including the module to convert from fixed-point

to floating-point representation and the module to convert from floating-point to

fixed-point representation. The problem that encountered in module to convert

from floating-point to fixed-point representation makes the problem to the

behavioral model. The problem is the value of the converter is false according to

the manual calculation. As the solution, we have to do a lot of reading on floating

point and vector, which are the two main data types being used in the Pipelined

MAC system implementation and the representation exchange between them. We

also maximize the understanding of the process flow of the system. From the

understanding about the flow of this system, the module has been changed and the

new module for this process is created When the problem is solve, the behavioral

model can run successfully and the exactly result appear in the simulation test.

In Register-Transfer-Level model, there are seven modules must be

integrate to develop the complete model. All the modules must be test before it

will integrate. There no problem encountered in the Register-Transfer-Level

(R1L) module or any module but the R1L module cannot be test. The problem in

the simulation test is no object is available for display. The problem cannot be

solving because of some reason. So, this model cannot be ensuring either can

produce the exact output or not. Theoretically, the Pipelined MAC system can be

82 · • II r C' t•r (. -1 •r1c··. Jntormauon ··r echnology .. ~. \ 0 (lJnfJll c.:; .,~,; _; " •

1e • Jon 2002.'2(OJ

Univ
ers

ity
 of

 M
ala

ya

A Pip•lined tvtultipltl.!r Accumulator: Pi reline

developed faster but due to the complexity in creating the VHDL module for the

vector data representation, the system take more time to be complete.

7.3 SYSTEM STRENGTHS

The Pipelined MAC is able to increase the speed of the digital signal

processing by implementing the following techniques:

• Pipelining of the Multiplier Accumulator

The previous research done by many researches have pointed out

the issue to create a MAC with higher execution speed and decrease cycle

time. Therefore, the best solution is used pipeline technique in

multiplication unit. MAC is pipelining to avoid the delay in the process.

This design of pipelined multiplier accumulator (MAC) is for a stream of

complex number.

In the conventional MAC, a complex MAC operates on two

sequences of complex numbers, {x;} and {y;}. The MAC multiples

corresponding elements of the sequences and accumulates the sum of the

products. The result is

i= l

racull~ oi'Compulcr '-,4,.;11-!nc~ & lnformauon Technology

Ses~JOn 200~.'2003

83

Univ
ers

ity
 of

 M
ala

ya

where N is the length of the sequences. Each complex number is

represented in Cartesian form, consisting of a real and an imaginary part.

If we are given two complex numbers x and y, their product is a complex

number p , calculated as follows :

p _real - x _real x y _real - x _imag x y _imag

p _imag = x _real x y _imag + x _imag x y _imag

The sum of x and y is a complex numbers calculated as follows :

s _real = x _real + y _real

s _imag = x _imag + y _imag

MAC calculates its results by taking successive pairs of complex numbers,

one each from the two input sequences, forming their complex product

and adding it to an accumulator register. The accumulator is initially

cleared to zero and is reset after each pair of sequences has been

processed.

To count the operations required for each pair of input numbers,

the MAC must perform four multiplications to form partial products, then

a subtraction and an addition to form the full product and finally two

additions to accumulate the result, this is shown in Figure 2.2 (please refer

to page 18). Since the operations must be performed in this order, the time

taken to complete processing one pair of inputs is the sums of the delays

for the three steps.

1 <!c.ult\ of (tHnpuLer t:t~nc~ &, Intormauon Technology

Ses. 1on :wo_:2nO"'

84

Univ
ers

ity
 of

 M
ala

ya

\ Pipdm..:J l'v1ultipli~r 1\<.:cumulator Pirclin~

language, as the knowledge gained increases, the writer also had the chance to

improve on skills using the PeakFPGA software, for example while using the

tools provided in the software such as the compiler and the simulator.

The other constraints in develop the Pipelined Multiplier Accumulator

system is time constraints. According to proposal, this system will use Booth

AJgorithm as the algorithm for multiplier unit and Carry Look-ahead Adder as the

algorithm for accumulator unit. However, lack of time makes both of the

algorithm cannot be implement and only multiplier module and accumulator

adder is used in this system.

7.5 FUTURE ENHANCEMENTS

7.5.1 Module Changing

For the future enhancement, the Pipelined MAC system will

upgrade by using more efficient algorithm. In the Register-Transfer-Level

model, the multiplier module can change to Booth Algorithm. In Pipelined

MAC, the speed of multiplier in performing its task is essentially

important. Therefore, a fast multiplication technique is needed. Booth

Algorithm is one approach to speed up the operation of speed up

multiplication, which performs several steps of the multiplication at once.

Multiplier is one part of Pipelined Multiplier Accumulator. Multiplier

design starts with the elementary school algorithm for multiplication. The

Fucullj ol (tnnpuL~;;t ~l:1enct;; &. lnformauon T~::chnology
S · ~ion 2002:2003

86

Univ
ers

ity
 of

 M
ala

ya

\ Pipelint:d l\·1ultiplier Accumulator· Pirclinc

computation of partial products and their accumulation into the complete

product can be optimized in many ways, but an understanding of the basic

steps in multiplication is important to a full appreciation of those

improvement.

The Booth Algorithm is chosen for its speed up operations and

simplicity. This algorithm is believed can achieve certain goals that have

been highlighted earlier. Booth's algorithm takes advantage of the fact that

an adder-subtracter is nearly as fast and small as a simple adder. It treats

the negative and positive number unifonnly. With this technique, system

can multiply operand to get the partial products more quickly with the

decoding method. With streams of bit O's instead of the alternate streams

ofO's and 1 's, doing multiplication is not a nightmare anymore.

The implementation of this approach in hardware is the most

consideration for choosing this method. The simplicity and ease

understanding the hardware suits the design purposes. The components

can be used more than once and this approach can save the cost in

developing the system.

Besides, the accumulator module also can change to Carry Look-

ahead Adder. The Carry Look-ahead Adder will solves the slow speed

problem by calculating the carry signals in advance, based on the input

signals. Simplicity of the designed CLA adder is obvious as the hardware

construction is direct and straightforward.

Fa cult\ of (\m1 puL~.:r Sci~nce & I ntormauon Technology

. e ~Jon 2t ()::!. 2< 03

87

Univ
ers

ity
 of

 M
ala

ya

A P1pd1ncJ tv1ulllpli~r Accumulator: Pipclin~

Using Carry Look-ahead Adder will solve the slow speed problem

that occurs when many bits need to add. Carry Look Ahead solves this

problem by calculating the carry signals in advance, based on the input

signals. It is based on the fact that a carry signal will be generated in two

cases:

1. when both bits Ai and Bi are 1, or

2. when one of two bits is 1 and the carry-in (carry of the previous

stage) is 1.

The Carry Look-ahead Adder can be broken up in two modules:

1. the Partial Full Adder, PF A, which generates Si, Pi and Gi as

defined by equations below:

Gi= Ai. Bi
Pi=(Ai$Bi)

s i = Ai $ Bi $ c i = Pi$ c i

2. the Carry Look ahead Logic, which generates the carry-out bits

according to equations below:

C1 = Go+ Po Co
C4 = G3+ P3 G2 + P3.P2.G1 + P3.P2.P1.Go + P3.P2.P1.Po.G0

The 4-bit adder can then be built by using 4 PF As and the Carry Look-

ahead Logic.

Both Booth Algorithm and Carry Look-ahead Adder will boost or

speed up the operation of Pipelined MAC compare the system, which is

use the multiplier and accumulator module. The Multiplier unit mainly

Fa cull; of (\1rnpnt\:r ~~h.:nc~ & I nformauon rf echnolog~
Scs.ton _oo~::wo

88

Univ
ers

ity
 of

 M
ala

ya

\ P1pdincd l\·fulupl1cr Accumulator: Pipeline

detennines the overall perfonnance of the system. The multiplier design is

much emphasized in order to select a suitable method for its construction.

7.5.2 Implementation ofPipelined MAC

Pipelined Multiplier Accumulator will implement in the digital

processing algorithm such as filtering and equalization. DSP In tructions

and Execution may specify multiple operations in a single instruction and

it also must support Multiplier Accumulator (MAC). DSP usually have

special loop support to reduce branch overhead that is loop an instruction

or sequence. The 0 value in register usually means loop maximum number

of times. If calculate loop count, must be sure that 0 does not mean 0. DSP

has a specialized and complex instruction and it also has multiple

operations per instruction such as mac xO,yO,a x: (rO) ,xO y: (r-1) + ,yO.

7.6 KNOWLEDGE AND EXPERIENCE GAINED

The most important experience being gained is the exposure to the real

world of doing programming especially in developing a system using the VHDL

programming language. The lectures about VDHL solely could not contribute

anything much than experiencing doing the programming itself The writer has to

deal with a lot of stages before being able to master the VHDL programming

raculty of (\mtpulcr s~il;.!nCC & fnformalion Technology
Ses~1on 2002.'2003

89

Univ
ers

ity
 of

 M
ala

ya

'\ Pi pel incd !\·1u1up1 icr i\(;Clltnlllator : Pi reline

language. The exposure to the latest software being used to do the programming is

also an advantage since the software offers a lot of newly added tools that can

assist in doing the programming.

The other experience in doing this project is able to learn thoroughly about

the VHDL programming language while developing the module for the system.

The knowledge gained on the process of designing the digital system is one of the

most precious experiences that can be implemented in the working world.

Knowledge about cooperation among team members, to be an interactive

communicator, to be a team player and also to be creative as in the programming

world there is no fixed method in creating the VHDL model, there is always some

other techniques can be used to create certain models.

The most meaningful knowledge from this project IS learnt about

determination and also to be strong in facing a lot of obstacles in completing the

system. The failure while creating the VHDL model for each module is one of the

most frustrating parts in developing this system. However, with full determination

and support from the advisor, the writer managed to get through all the

difficulties.

F<icuiL\ ofCornputt:r ~~t.;.:nc~ & Information Tt:chnolog)

S •s. 10n 2002.'2003

90

Univ
ers

ity
 of

 M
ala

ya

A Pipelined !Vfultiplier Accumulator: Pipeline

7.7 CONCLUSION

The Pipelined Multiplier Accumulator system has been successfully

completed and had some improvement compare to the system before. In the view

of the results obtained throughout the testing and analysis done to the system, the

actual perfonnance of the Pipelined Multiplier Accumulator could be figured out,

as discussed in this report. The design and construction of the system is done in

the way where simplicity and fast speed criterions are emphasized.

The thesis has proved that the implementation of pipeline concept in this

system make the operation in the multiplier accumulator (MAC) faster and avoid

the delay and latency in that operation. Pipelining wiiJ increase the system speed

up by allow the overlapped of the tasks. Pipe lined MAC makes the operation of

conventional MAC become more faster. This is because the pipelined MAC has

pipeline register that will store the input temporarily before it is used in

summation, while the system will fetch the next input. As mentioned earlier, with

pipeline, three steps delay have been reduced. This will make the process more

faster because the system didn't need to wait for the first input to finished it

summation before the second input will entered.

The effectiveness of pipelining concept in the system's implementation is

undeniable as the perfonnance of the system is improved where the multiplication

process is pipelined with the addition process. This concept should be introduced

into deeper level in which internal operation of respective units could be

pipelined, in order to fully implement the pipelined concept in this system. The

Faculty· of Computer Science & Information Technology
Ses~ion 200112003

91

Univ
ers

ity
 of

 M
ala

ya

.:\ Pipelin..:d J\.1ultiplier Accumulator: Pipeline

pipelined MAC has been increased the conventional execution's speed and

decrease the cycle time but doesn ' t reduce the total time required for

multiplication.

The Multiplier unit mainly determines the overall performance of the

Pipelined Multiplier Accumulator system. Its design is much emphasized in order

to select a suitable method for its construction. VHDL is also proven to be one of

the most dominant language-based-tools, which allowed quick design-entry suites

to describe the structure and behavior of digital electronic hardware designs.

Fa cult: of Com puLa ~ci..-.:ncc & Jnformanon Technology

Ses:-..10n 2002."2003

92

Univ
ers

ity
 of

 M
ala

ya

APPENDIX

Univ
ers

ity
 of

 M
ala

ya

::-\ Pi peJ i ned .Mu 1 tip 1 ier Accum ul.ator : Pipe 1 i.ne

Appendix 1 : Pipelined MAC Pins Description

To describe the behavior of digital systems in VHDL code, a designer must plan

the specification of each pin and register. Therefore, the following discussion will

be concentrated on the design specification of the Pipelined Multiplier

Accumulator pins and registers. The function of each pin and register will also be

discussed in this section.

x re a! ~
~ s real

x tm ag • Black Box
y_re a! ~ (Top Level Design) ~ overflow

y_im ag
~

clr ~ ... s_tmag

elk I

Pipelined MAC Top Level Design Symbol

m, ·,, 94

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier A.ccmnui.ator • Pipehne

Table below will describe the function and the description of all Pipelined MAC

pins available at the top-level design of the VHDL implementation. The 9 pins

Pipelined MAC are describe as follows:

Pin In/out Description
x real IN X Real Number -

8 bit input for first real number
x_tmag IN X Imaginary Number

8 bit input for first imaginary number
y_real IN Y Real Number

8 bit input for second real number
y_tmag IN Y Imaginary Number

8 bit input for second imaginary number
clr IN Clear

Reset the input in register
elk IN Clock

Input in at each rising edge
s real OUT Sum Real -

Produce 16 bit real product (output)
s_tmag OUT Sum Imaginary

Produce 16 bit imaginary product (output)
Overflow OUT Overflow Control

Produce overflow value from the system

Pipelined MAC Pins Description

95

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier .A.ccmnulator: Pipeline

Appendix 2 : Pipeline

Pipeline is an implementation technique in which multiple instructions are

overlapped in execution. Today, pipelining is the key to make fast processors. The

pipeline approach will take much less time. Pipelining is a logic design technique

that adds ranks of memory elements to reduce clock cycle time at the cost of

added latency. Pipelining is organizational approach is quite common used to

reduces cycle time but doesn't reduce the total time required for multiplication.

That's why pipeline is suitable to use in Multiplier Accumulator (MAC). Basic

operation on fixed point and floating point numbers can be efficiently partitioned

into sub-operations suitable for pipelining.

Pipelining is a method, which can be used to increase the speed of operation of

the control processor on arithmetic function operations circuitry. They are often

applied to the internal design of .high speed computers, including advanced

microprocessors as a type of multiprocessing. Pipelining is a technique in which a

task or operation is divided into a number of subtasks that are perform in

sequence. Its own logic unit performs each subtask, rather than by a single unit,

which performs subtasks. The units are connected together in a serial fashion with

the output of the connecting to the input of the next and all the units operate

simultaneously. While one unit is performing a subtask of the ith task, the

proceeding unit in the chain is performing a different subtask on the (i+ 1)th task.

[Barry, 91]

96

Univ
ers

ity
 of

 M
ala

ya

A Pi peJ i ned Mu 1 tip 1 ier Accumulator : Pipe 1 i ne

There are many advantages of pipeline that make it suitable to use in MAC to

reduces the latency and time delays problem. The most important advantage of

pipeline is it increasing the speed of the system. It makes time. to finjshed the

clock cycle become more faster than not the time to finished without it. The cycle

time T of an instruction pipeline is the time needed to advance a set of instruction

one stage through the pipeline. The cycle time can be determined as

t = max (ti] + d = tm +'d i , 1 <= I <= k

where

tm = maximum stage delay (delay through stage which experiences the largest

delay)

k = number of stages in the instruction pipeline

d = time delay of a latch, needed to advance signals and data from one stage to

the next.

In general, the time delay d is equivalent to a clock pulse and tm>>d. Now

suppose that n instructions are processed, with no branches. The total time

required Tk to execute all n instruction is

Tk= [k + (n-1)]t

A total of k cycles are required to complete the execution of the first instruction

and the remaining n-1 cycles.

The speedup factor for the instruction pipeline compared to execution without

pipeline is defined as

Sk = T/ Tk = nkt I [k + (n-1)]t = nk I k + (n-1)

97

Univ
ers

ity
 of

 M
ala

ya

A Pi peJi ned Mu 1 tip 1 ier Accumulator : Pipe 1i ne

Besides increasing the speed of system, in some cases, the pipelining technique

has the advantage of requiring less logic than a non-pipe lined system. Obviously,

it could be seen that, the rate of the pipelined system depends on the .unit with

maximum delay time. [William, 96]

+ +

p

accumulator

Dataflow diagrams showing order of operations by the conventional MAC

Compare to conventional MAC, Pipelined MAC has pipeline register that can

store the value for current process and the system will take the new input.

X

y

Input
register

Pipeline
register

Pipeline
register

accumulator

Dataflow diagrams showing order of operations by the pipelined MAC

98

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeline

Appendix 3 : Carry Look-Ahead Adder

Carry Look-ahead Adder is method that can be use in Accumulator unit. Carry

. .
Look Ahead solves slow speed problem by calculating the carry signals in

advance, based on the input signals. It is based on the fact that a carry signal will

be generated in two cases:

1. when both bits Ai and Bi are 1, or

2. when one of two bits is 1 and the carry-in(carry of the previous stage) is 1.

The Carry Look-ahead Adder can be broken up in two modules:

1. the Partial Full Adder (PF A), which generates Si, Pi and Gi as defined by

equations below:

Gi= Ai. Bi

Pi = (A$Bi)
si = Ai $ Bi $ ci = Pi$ c i

2. the Carry Look ahead· Logic, which generates the carry-out bits

according to equations below:

C1= Go+ Po Co

C4 = G3+ P3 G2 + P3.P2.G1 + P3.P2.P1.Go + P3.P2.P1.Po.Go

PFA PFA PFA PFA

CARRY LOOKAHEAD LOGIC GG PG Co

Block Diagram of a 4-bit CLA

99

Univ
ers

ity
 of

 M
ala

ya

A Pipdined Mu1tip1 ier A.ccumulator: Pipeline

The 4-bit adder can then be built by using 4 PFAs and the Carry Look-ahead

Logic.

4-bit
Adder

4-bit
Adder

4-bit
Adder

4-bit
Adder

GG3 PG3 cl2 GG2 PG2 Cs GGI PGI c4 GGo PGo

CARRY LOOKAHEAD LOGIC

GG PG

Block Diagram of 16-bit CLA Adder

100

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeli.ne

Appendix 4 : BOOTH ALGORITHM

Booth Algorithm is method that can be use in Multiplier unit. Booth's algorithm

takes advantage of the fact that an adder-subtracter is nearly as fast and small as a

simple adder Booth algorithm is a multiplication algorithm which works for two' s

complement numbers. It is similar to the conventional paper-pencil method,

except that it looks for the current as well as the previous bit in order to decide the

next step to be taken.

• If the current multiplier digit is 1 and earlier digit is 0 (i.e. a 10 pair) shift

and extend the multiplicand, subtract with previous result.

• If it is a 01 pair, add to the previous result

• If it is a 00 pair, do nothing.

Based on the example given below, if the multiplicand and multiplier are n-bit

two's complement numbers, the result is considered as 2n-bit two's complement

value. The overflow bit (outside 2n bits) is ignored.

4 bits
.- 0110 6
.- X 0010 2

00000000
0110

11110100
+ 0110

(1) .- 00001100 12
8 bits

(overflow bit ignored)

Shown below is the proper way of the above computation:

0110 X 0010 = 0110 X(- 0010 + 0100) = - 01100 + 011000 = 1100

101

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier .A.ccmnulator: Pipeline

Appendix 5 : The Behavioral Model Of The Pipelined MAC

There are two modules need to be integrated in order to form the behavioral

model that are the to_ fpo module (converter from fixed-point to floating-point

representation) and to_ vector module (converter from floating-point to fixed-point

representation). Figure below is shown the hierarchy to develop the MAC

behavioral model.

MAC.vhd

To_fp.vhd To vector. vhd

Hierarchy tree for Pipelined MAC behavioral model

102

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator • Pipeline

The process behavior implements the MAC algorithm. This process is sensitive to

the elk signal and performs a new calculation on each rising edge. It works from

the output end of the pipeline back towards the input end to avoid pverwriting

intermediates results from the previous clock cycle before they have been used in

the current cycle. The input flow of this model is describe below.

The process first calculates the new sum and overflow status. If clr input is '1 ',

both the accumulator and overflow variables are reset. Otherwise the process

accumulates a new complex sum, based on the previous complex sum and the

contents of the product registers and stores it in the accumulator register variables.

The output data signals are assigned the new contents of the accumulators and the

overflow signal is set if either of the overflow register variables is set or if either

of data outputs falls outside the range - 1.0 to + 1.0. Next, the process updates the

partial products using the previously stored input values and finally stores the new

input data values in the input register variables. The system coding for the

description of input flow is shown in the next page.

103

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier Accumulator: Pipeline

if rising_edge(clk) then
work from the end of the pipeline back to the start,
so as not to overwrite previous results in pipeline
r e gisters before they are used

update accUmulator and generate outputs
if clr = ' 1 ' then

real sum : = 0 . 0 ;
real accumulator ovf . - false ;
imag_sum := 0 . 0 ;
imag_accumulator_ovf : = false ;

else
real_sum : = real_product + real sum;
real accumulator ovf : = real accumulator ovf or

real sum< - 8 . 0 or real sum >= +8 . 0 ;
imag_sum : = imag_product + imag_sum;
imag_accumulator_ovf : = imag_accumulator_ovf or

imag_sum < - 8 . 0 or imag_sum >= +8 . 0 ;
end if ;

-- a s signed new contents to output data signals
fp_s_real <= real_sum;
fp_s_imag <= imag_sum;

-- set the overflow signal
ovf <= boolean_to_stdulogic(

real accumulator ovf or
imag_accumulator_ovf

so as

or real sum < -1 . 0 or real sum >= +1 . 0
or imag_sum < - 1 . 0 or imag_sum >= +1 . 0) ;

-- update product registers using partial products
real_product . - real_part_product 1 - real_part_product_2 ;
imag_product : = imag_part_product_l + imag_part_product_2 ;

-- update partial product registers using latched inputs
real_part_product_l . - input_x_real * input_y_real ;
real_part_product_2 input_x_ imag * input_y_imag ;
imag_part_product_l . - input_x_real * input_y_imag ;
imag_part_product_2 . - input_x_imag * input_y_real ;

-- update input regi sters using MAC inputs
input_x_real . - fp_x_real ;
input_x_imag : = fp_x_imag ;
input_y_real . - fp_y_real ;

input_y_imag . - fp_y_imag ;

The Input Flow for Behavioral Model of Pipelined MAC

104

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier .Accumulator: Pipeline

The result for pipelined MAC operation is :

N

LXt)lj

i=l

Based on formula above, assume that value ofN is 4. From the coding of the

previous page, the result for partial product is shown in the table below.

input x real X imag y real y imag real part1 real part2 imag part1 imag pal

1 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25

2 0.5 0.25 0.5 0.25 0.25 0.0625 0.125 0.125

3 0.25 0.5 0.25 0.5 0.0625 0.25 0.125 0.125

4 0.25 0.25 0.25 0.25 0.0625 0.0625 0.0625 0.0625

Table of input and calculation result

From the partial product, the product is calculated according to formula in the

system coding. The result of product is shown in table below.

input x real x imag y real y imag real product imag product real sum imag Sl

1 0.5 0.5 0.5 0.5 0 0.5 0 0.5

2 0.5 0.25 0.5 0.25 0.1875 0.25 0.1875 0.75

3 0.25 0.5 0.25 0.5 -0.1875 0.25 0 1

4 0.25 0.25 0.25 0.25 0 0.125 0 1.125

Table of input and calculation result

The product will add to previous sum to get the new sum for the process. As the

conclusion, the result for is 0.0 for real products and 1.125 for

imaginary product. i= l

(.; 105

Univ
ers

ity
 of

 M
ala

ya

A Pipdined M.u1tip1ier Accumulator: Pipeline

Appendix 6 : The Register-Transfer-Level model of the Pipelined MAC

To form the Register-Transfer-Level model, there are eight modules to be

integrated which is pipeline register module for 8-bit and 16-bit, multiplier

module, accumulator adder module, set/reset flipflop module, adder/subtracter

module, accumulator register module and overflow logic block module. Figure

below is shown the hierarchy to develop the Pipelined MAC Register-Transfer-

Level model.

Register-Transfer-
Level.vhd

I I I I
Reg.vhd Adder and Accumulator Overflow

sub.vhd _reg.vhd logic.vhd

multiplier Accumulator Synch_sr_
.vhd adder.vhd ff.vhd

-

Hierarchy tree for Pipelined MAC Register-Transfer-Level model

!.·
I 106

Univ
ers

ity
 of

 M
ala

ya

A Pipe.lined Multiplier Accmnul.ator: Pipeline
All the modules in the hierarchy will integrate to form the Register-Transfer-

Level model. The design for the Register-Transfer-Level model is shown in the

figure below.

t--'---+-----'-----i• s real

I
I

ovf

_unag

:------------------~~~~~:~---------~:::::~-----------~c~~w~tQ~----------------

Register transfer level organization of Pipelined MAC

For RTL, the input flow of this system start when the first pair of input numbers

entered the system, it is stored in the input register (register module). Then, the

multiplier calculates the partial products (multiplier module) and the result stored

in the first pipeline register (register module). The subtracter and adder produce

the full product according to partial product (adder subtracter module). Then the

' ... 107

Univ
ers

ity
 of

 M
ala

ya

i\ Pipelined Multiplier Accumulator: Pipeline
adders accumulate the product of the first pair with the previous sum and after

that, the sum in the accumulator is updated (accumulator adder module). The sum

including this pair is stored in the next register (accumulator r~gister). Thereafter,

successive sums are available each clock cycle. The approach can reduces the

clock period to the slowest of the pipeline stages, rather than the total of pipeline

delay. The system coding for the description of input flow is shown below.

update the input
x real input reg : entity work . reg(behavioral)

- port map-(clk => elk , d => x_real , q => pipelined_x_real) ;
x imag input reg : entity work . reg(behavioral)

- p o rt map - (clk => elk , d => x_imag , q => pipelined_x_imag) ;
y real input reg : entity work . reg(behavioral)

- port map-(clk => elk , d => y_real , q => pipelined_y_real) ;
y_imag_input_reg : entity work . reg(behavioral)

port map (elk=> elk , d => y_imag , q => pipelined_ y_ imag) ;

multiply the input to get partial product
real mult 1 : entity work . MULTIPLIER(behavioral)

port map (a => pipelined_ x_real , b => pipel i ned_y_real ,
p => real part product 1) ;

real_mult_2 : entity work . MULTIPLIER(behavioral)
port map (a => pipelined_x_imag , b => pipelined_y_imag ,

p => real_part_product_2) ;
imag_mult_l : entity work . MULTIPLIER(behavioral)

port map (a => pipelined_x_real , b => pipelined_y_imag ,
p => imag_part_ product_l) ;

imag_mult_2 : entity work . MULTIPLIER(behavioral)
port map (a => pipelined_x_imag , b => pipelined_y_real ,

p => imag_part_product_2) ;

- - update pipeline registers using partial products
real part_product_reg_l : entity work . regl6(behavioral)

port map (elk => elk , d => real_part_product_ l ,
q => pipelined_real_part_product_l) ;

real_part_product_ reg_ 2 : entity work . regl6(behavioral)
p ort map (el k => elk , d => real_ part_product_2 ,

q => pipelined real part product 2) ;
imag_part_product_reg_l : entity work . regl6(behavioral)

port map (elk => elk , d => imag_part_product_l ,
q => pipelined imag part product 1) ;

imag_part_product_reg_2 : entity w;rk . regl6(behavioral)
p ort map (elk => el k , d => imag part product 2 ,

q => pipelined_imag_part_9roduct_2) ;

-- adds and subtracts the partial products to get full products
real_product_subtracter : entity work . adder_and_sub(behavioral)

p ort ma p (mode=> ' 1 ',
a => pipelined_ real_part_product_ l ,
b => p i pelined_real_part_product_2 ,
s => real_product) ;

i mag_product_adder : entity wo r k . adder_and_sub(behavi oral)

108

Univ
ers

ity
 of

 M
ala

ya

i-\ Pipdined t'dultiplier Accumulator: Pipehne
port map (mode=> ' 0 ',

a => pipelined_ imag part product 1 ,
b => pipelined_imag_part_product_2 ,
s => imag_product) ;

-- update pipeline registers using full products
real_product_reg : entity work . reg(behavioral)

port map (elk => elk ,
d => real_product(16 downto 1) ,
q => pipelined_real_product);

imag_product_reg : entity work . reg(behavioral)
port map (elk => elk ,

d => imag_product(16 downto 1) ,
q => pipelined_imag_product) ;

- - add full products with the previous accumulated sum
real_accumulator : entity work . accumulator_adder(behavioral)

port map (a(9 downto 0)=~ pipelined_real_product(9 downto 0) ,
a(10) => pipelined_real_product(9) ,
a(11) => pipelined_real_product(9) ,
b => pipelined_real_sum,
s => real_sum ,
ovf => real_accumulator_ovf) ; -- overflow output

imag_accumulator : entity work . accumulator_adder(behavioral)
port map (a(11 downto O)=>pipelined_ imag_product(9 downto 0) ,

a(10) => pipelined_imag_product(9) ,
a(11) => pipelined_imag_ product(9) ,
b => pipelined_imag_sum,
s => imag_sum ,
ovf => imag_ accumulator_ovf) ; -- overflow out put

-- update accumulator register using new sum
real_accumulator_reg : entity work . accumulator_reg(behavioral)

port map (elk => elk , clr => clr
d => real_sum , q => pipelined_real_sum) ;

imag_accumulator_reg : entity work . accumulator_reg(behavioral)
port map (elk => elk , clr => clr ,

d => imag_sum , q => pipelined_imag_sum) ;

-- set the real and imaginary parts of the sum
real_accumulator_ovf_reg : entity work . SYNCH_SR_FF(behavioral)

port map (elk => elk , clr => clr ,
set => real_accumulator_ovf ,
q => pipelined_real_accumulator_ovf) ;

imag_accumulator_ovf_reg : entity work . SYNCH_SR_FF(behavioral)
port map (elk => elk , clr => clr ,

set => imag_accumulator_ovf ,
q => pipelined_ imag_accumulator_ovf) ;

s real <=pipelined real sum(11) & pipelined_real_sum(6 downto 1) ;
s_imag <=pipelined=imag=sum(11) & pipelined_imag_ sum(6 downto 1) ;

-- determines the overflow output
result_overflow_logic : entity work . overflow_logic(behavioral)

port map (
real accumulator ovf => pipelined real accumulator ovf ,
imag accumulator_ovf => pipelined~mag~ccumulator~ovf ,

rea l sum => p i pel i ned real sum(11 downto 7) ,
imag= sum => pipelined=imag=sum(11 downto 7) ,
ovf => ovf) ;

The Input Flow for RTL Model ofPipelined MAC

109

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier .A.ccmnulator : Pipeline
Appendix 7 : PeakFPGA DESIGNER SUITE FPGA SYNTHESIS EDITION

PeakVHDL is an advanced software product intended to help use VHDL for

digital design projects. PeakVHDL includes an integrated VHI)L simulator,

VHDL source file editor, Hierarchy Browser and other resources for VHDL users.

To get started using PeakVHDL, we should load one of the sample projects

included in the Examples subdirectory of PeakVHDL installation. The examples

provided are intended to demonstrate a variety of useful VHDL concepts,

including various methods of writing test benches. These examples will also help

us to understand how to create and manage a PeakVHDL project.

To load a sample project, select Open Project from the PeakVHDL File menu,

and navigate to the Examples subdirectory of the PeakVHDL installation

directory. Select one of the sample projects and open the .ACC ftle associated

with that project. When we have opened a sample project, we will see two or

more .VHD source files listed in the Hierarchy Browser window. We can double

click on any file name listed to open a VHDL source file-editing window.

To process the project and start the PeakVHDL simulator (PeakSIM), select the

top-most VHDL source file (the test bench) by clicking on it then choose Load

Selected from the Simulate menu or click on the Load Selected button from the

PeakVHDL toolbar. When we highlight the top-most module and choose Load

Selected, the following occurs:

110

Univ
ers

ity
 of

 M
ala

ya

A PipeJined Multiplier Accumulator: Pipehne
1) All VHDL source file modules in the project are compiled in bottom-up

order as determined by the Hierarchy Browser.

2) The compiled source file modules are linked togethe~ (elab~rated), and a

. VX simulation executable is generated.

3) The .VX simulation executable is loaded into the PeakSIM simulation

application.

If there are any errors during this process, they are reported to the PeakVHDL

transcript window. If there are no errors, the PeakSIM application appears with

your project loaded, ready for simulation. Refer to the PeakSIM on-line help for

information about how to control simulation, monitor signals and debug your

design.

If there are any errors during this process, they are reported to the PeakVHDL

transcript window. If there are no errors, the PeakSIM application appears with

your project loaded, ready for simulation. Refer to the PeakSIM on-line help for

information about how to control simulation, monitor signals and debug your

design.

m 111

Univ
ers

ity
 of

 M
ala

ya

A Pipelined Multiplier AccumuLator: Pipehne

The main application window includes 12 toolbar buttons. These buttons, which

can be toggled on or off are summarized below, from left to right. Note that as we

move our cursor over a toolbar button, a tip appears that explains the function of

that button.

Icon Icon Name

I EJ New Project

~5L Open Existing Project

Q Save Project

~ Create New Module

~ Open Module or Text File

·.·-~ Add module to project

Compile Selected Module for Simulation
CQftPILE

Link Item for Simulation
LINK -
H§J Load Selected Simulation

.... Synthesizes Selected Module
tflllfiPo

~~I: __ Display or Change Program Options

~···-·-·-··- -·-
Search Project Files

" <!> Help

-
Button in PeakFPGA Maio Window

112

Univ
ers

ity
 of

 M
ala

ya

i-\ Pipelined Multiplier Accumulator: Pipeli.ne
Menu Option for Simulation Using PeakFPGA

Compiled Selected

To compile selected VHDL modules, do the following :

• Select the module to be compiled by clicking on it once in the Hierarchy

Browser.

• Select Options I Compile. .. from' the menu bar to bring up the Compile

Options dialog. Alternatively, you can bring up the dialog by clicking on the

Display-or-Change-Program-Options toolbar button. Set compile options as

needed. Click on the Close button to close the dialog.

• Select the Simulate I Compile Selected option from the menu bar or click on

the Compile Selected Module toolbar button. The selected module is then

compiled.

Link Selected

To link modules, do the following :

• Select the module, entity, or architecture representing the top level for the link

operation by clicking on the appropriate item once in the Hierarchy Browser.

• Select Options I Link ... from the menu bar to bring up the Link Options

dialog. Alternatively, you can bring up the dialog by clicking on the Display-

or-Change-Program-Options toolbar button and then clicking on the Link

113

Univ
ers

ity
 of

 M
ala

ya

.-:-\ Pipclined l\·1ultiplier Accumulator: Pipehne
folder tab .. Once the dialog is displayed, set link options as needed. Click on

the Close button to close the dialog.

• Select the Simulate I Link Selected option from the me~u bar ~r click on the

Link Selected Module toolbar button. The link operation then takes place.

Load selected

To load a selected simulation executable, do the following:

• Select the module, entity, or architecture you wish to load by clicking on the

appropriate item once in the Hierarchy Browser.

• Select Options I Simulation ... from the menu bar to bring up the Simulation

Options dialog. Alternatively, you can bring up the dialog by clicking on the

Display-or-Change-Program-Options toolbar button and then clicking on the

Simulation folder tab .. Once the dialog is displayed, set simulation options as

needed. Click on the Close button to close the dialog.

• Select the Simulate I Load Selected option from the menu bar or click on the

Load Selected Simulation Executable toolbar button. The PeakSIM

application is then invoked and the selected simulation executable is loaded.

Options

To set Simulation options, select Options I Simulation ... from the menu bar to

bring up the Simulation Options dialog. Alternatively, you can bring up the dialog

by clicking on the Display-or-Change-Program-Options toolbar button and then

114

Univ
ers

ity
 of

 M
ala

ya

l\ Pi peJ i ned tv1u 1 tip 1 ier i\.ccum ul.ator : Pipe line
clicking on the Simulation folder tab .. Once the dialog is displayed, set simulation

options as needed. The various simulation options are discussed below :

• Update simulation executable before loading - If this option is checked, the

Link process will be invoked if the simulation executable is out of date (as

determined by checking the date and time stamps of the object files).

• Vector display format - This pull-down list allows you to specify the vector

data display format for the waveform. Use the list to select binary, octal,

decimal, or hexadecimal.

• Run to time - This field shows the default duration for the simulation run. You

can reset this value by clicking on the Run to Time field and typing in a new

value. This value can be overridden for individual simulation runs as needed

by changing the value in the GO field in the Waveform Display.

• Step value - This field shows the default step time interval for a step

simulation run. You can reset this value by clicking on the Step Value field

and typing in a new value. This value can be overridden for individual step

simulation runs as needed by changing the value in the Step field in the

Waveform Display.

• Unit- This field shows the unit of time to be used during simulation. To select

a different unit of time, click on the Unit field to display the various options.

Then click on the desired unit to select it. Valid units of time are those units

defined by the VHDL language are fs (femtosecond), ps (picosecond), ns

(nanosecond), us (microsecond), ms (millisecond), sec (second), min (minute)

and hr (hour).

115
(i· - ',.., '

Univ
ers

ity
 of

 M
ala

ya

A Pi peJ i ned Mu 1 tip 1 ier .Accmnul a tor : Pipe 1 i ne
• Max signal depth - This field specifies the depth of signals to be loaded for

into the Available Signals list in the Waveform Display. The depth of a signal

is determined by its position in the design hierarchy. Fpr exa~ple, a signal

DUT.Clk has a signal depth of2, while signal DUT.Ul.ControlSM.Varl has a

depth of 4. You can use this option to reduce the number of signals and speed

simulation loading when simulating large structural models.

• When you are finished setting opti~ns, click on the Close button to close the

dialog.

116

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

Univ
ers

ity
 of

 M
ala

ya

BOOKS REFERENCES

[Cavanagh, 84]

[Ash, 96]

[Wayne, 98]

[Boo, 51]

[William, 2000]

[Barry, 91]

[LKS, 96]

Cavanagh, Joseph J.F., Digital Computer Arithmetic Design And

Implementation, McGraw-Hill, Inc., 1984, page 98-233.

Ashenden, Peter. J., The Designer's Guide to VHDL, Morgan

Kaufmann Publishers, Inc., 1996, page 161-188.

Wayne Wolf, Modern VLSJ Design: System's on Silicon, 2nd ed.

Prentice-Hall, Inc., 1998, page 302,506.

Andrew D. Booth, "A signed binary multiplication technique,

"Quart. Journal of Mech. And Appl. Math, Vol. IV, Pt. 2, page

236-240.

William Stalling, Computer Organization And Architecture, 5th ed.

Prentice-Hall International, Inc., 2000, page 423-425.

Wilkinson, Barry, computer architecture design and performance,

Prentice-Hall International (UK) Ltd., 1991, page 102-143.

Lee Kap Soung (1996)., The Pipelined Multiplier Accumulator in

Digital Signal Processing. Undergraduate Thesis. University of

Malaya

Univ
ers

ity
 of

 M
ala

ya

WEB REFERENCES

[ACC, 02] http:/ /www.accu. org/acomsi glpublic/caugers/volume2/fixedpoint. html

[ANG, 02] http://www.angelfire.com/in/rajesh52/verilogvhdl.html

[ATM, 02] http://www.atmel.com/atmel/acrobat/doc0467 .pdf

[CID, 02] http:/ /www.chipcenter.com/Se~rchResults.jhtml

[ECE, 96] http://www-ece.rice.edu/Courses/422/1996/supafly/adder.html

[ECS, 02] http:/ /www.ecs. umass.edu/ece/koren/arith/simulator/ Add/ripple.htm

[EET, 02] http://www.eetasia.com/ART 8800132735 49948l,499485.HTM

[HOW, 02] http://www.howstuffworks.com/boolean2.htm

[MAT, 97] http:/ /www.math. toronto.edu/mathnet/answers/imaghard. html

[RES, 02] http://research.microsoft.com/-hollasch/cgindex/coding/ieeefloat.html

[SEA, 02] http://www. seas. upenn.edul-ee20 1/lab/CamLookAhead

[SYN, 02] http://www.synopsys.com/products/designware/docs/doc/dwf/datasheet

[TRA, 02] http://www. traguair. com/articles/mousetrap. pdf

[TUD, 99] http://ce.et.tudelft.nll-robbert/mac/

Univ
ers

ity
 of

 M
ala

ya

