Perpustakagp SKTM

FACULTY OF
COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

IMPLEMENTATION OF TOPOLOGY
CONVERTER INTO UM JANETSIM

ANDREW CHIAM MING JER(WEK010015)

Under the Supervision of
Mr. Phang Keat Keong

Moderator
Mr. Ang Tan Fong
SESSION 2003/2004

This project is submitted to the faculty of Computer Science and Information
Technology, University of Malaya, in partial fulfillment requirement of the Bachelor
of Computer Science.

Abstract

Abstract

This project describes and implement the approach and procedure involve in the

development of the network topology converter to be implemented in JaNetSim.

The development of topology converter will made possible the conversion of different
topology file format in Ns-2 and JaNetSim to enable wider range of simulation to be
carried out more efficiently and effectively. Ns-2 is an established network simulator
with the most active research and it can be a great and powerful reference tools to
improve and complement the functionality of UM JaNetSim. The topology converter
will incorporate several important features. The most important features lies in the
object oriented approach which provide the luxurious of manipulating inheritance and
polymorphism which provide benefits like reusability, flexibility and extendibility.
Another important feature is the friendly, intuitive and simple to use interface. The
interface provided by the topology converter will be consistent with the JaNetSim

layout. This will greatly cut the amount of time to help user to familiarize and utilize

the functionalities provided by the topology converter.

The topology converter will be helpful to translate various topology formats to

increase portability and widen the scope for various simulators.

Acknowledgement

Acknowledgement

First, [would like to express my utmost gratitude to my project supervisor, Mr. Phang
Keat Keong for being such a great and inspiring supervisor for the generous sharing
of knowledge and support when it comes to the project discussion. He had always
concerned about our work progress and readily took some time off his hectic work

schedule to listen to our problems and make things right for us.

Besides that I would like to convey my sincere gratitude to Mr. Ling Teck Chaw and
my moderator Mr. Ang Tan Fong for their kind and resourceful help and advice

during the discussion and unselfish share of knowledge and technical solutions.

I would also like to express my deepest appreciation to my family members for
providing a strong mental and moral support to me during the project development.
They had provided me with strong pillar of support in time of despair and this has

greatly motivated and inspired me to greater heights in life.

Lastly, I would like to thanks all my others project members especially to Chia Kai

Yan, Lim Lee Wen and Tang Geck Hiang for their advice, support and cooperation.

ii

Table of Contents

Table Of Contents

A D S A G e a e e secescssserseossssaserareassestostsonstesrstsses seossnnonrmatr o T i
A CKNOWIC T CTIICT L heveersetsssesoeorssresesseessorseesesrerssesosessossesreatstsiitisrsrseirr ety LT D m—— i
DA D C) L e DT LCTILS Teassesre st toreresctssersssesssersstsrestress 10essaresssataretes nosrtne Eumut ety et N i
LS L L UL S pretere e eoreseresrecearssescicastecserestsntirserestessseesssesesssisrtetieritii ittt rrit o vii
L S L0 F R Tl 1] O e st resseretee s e s er etereetarineeersarseietateassistiestsrsiii e irree oyt TupunpA L ix
AT e R T L0 LG O et e rte et tetessateescosbeatetsassesesseesserssreeesetisres st re it ey rm— 1
Tt Ot 0N O E O O T K O PO L O Y e ere bt vt tst et v sttt il L T et e —— 1

1L 220Gy e Tt N TR0 R o 0 v ety e A e e L Lttt rert (90 1. oreveveeireeey 1
k3 (O) s iRy P e e e T T T T D T Y L T L YL, T LT Tee b v 2
LG IV pe s rrr e o i e e T T T T T T T T P L Fr LY - e, P rer o e o 3
1L S T T o e A L G T I T (TP TR vveoi: S 1 & Sl B s Ly 3
1O R OO T ATTIZ AL 1O I esutatesstsrsctnastoresertstrssstsssvarssisiossessrisbadPNR It Nas tesss s nstststesrenastatrersits 4
ChanterR A e ratTE e RREY [EW it estvatectsssaestonsasoasscesesratinartsar Iharessastsocistesresria it 6
2.1 Introduction to Topology General CONCEPLS....ccvuiivirirriireiieieeiereieeereseeseereesesesissonns 6
AP e) Y oo R P Y, SO O T T L R e LT £ T P (T e br ety 6
D R R TSt O=E O1TIUE e eterseatssioassoras caasotentassiitl st (s Merssistist o corsiierstsre et iy ety 6
242 ARSI v G T L P T L (IO T L L L T O L T L L T Te e T 1o} 7

2 T A st e T o T L T B L L TSP PO 1 T R e 8
RN I T T O U CLIOTL E0 O PO O Ak s s 01 s o5 ttasstsnttsrssiettasererst ittt g 8
RN R eV BN S D LU OD0 O Y v a1 T (L e 1r e osttstnressqesrtaiintery oot ee le e e 9
A O B T T T N B 1t T T T T T L T TP e e P e T ey Ty Dl e e 9
DIVIOTR T ¢ TEaRecmlel ol be Rl ion o 7 ek L e S o vt s, ..o 10
DG Ter e van s s Sl VI it esinatreabsytnseeesiisisriasissatrisecr i ot o 11

2 A A IO iy e, TR T P e P Y LT Tr S LT IE TR TR Vi rerpmnien) o ey 12
DT L IV B S s (2015 saeassarnt eoressissesiaiEorsvohbiins linrs et i b bl syl loes i 13

A A SIS S A I O O i1 e rens rhes s sssreatbTe Ly ies (U esE rers) ooy Tt i AR ST e 13
P A A Ty ey e L T Ty L LT L TR Y T S FL Y L T e et 14
AR S 6 sttt e T e e e L et £ F T Ty s 15

2 ntrodu e O O O DU LS L 1L 8O T R ep et e r e et T T 16
2.5.1 Network Simulation APPrOACHES ...uviuiiieeiiririeriseseesessaessessereesesssessesessessensessessas 17
IS S HIGYIOLAY AT OUS EX1St R S 1M o O A e 18
2T IINS AN E i et vtvearinserresiotntesses st teret L eI i et T gL e 18
Ay N IR N U & e eyt L T T P Y s 1 e Fe b ey 19

B D Y AT S S vsitatersesssressoessisnisssesarstartiteritss il i i (h T o e 20
LS 2 ONINE TR 3, e ibiticasenihinsrenferresar o T T or LT T T 20
259:2:3 INSISIIEHS Tt isutivanritharrssiin ORI T 21

2.5.3 Advantage and Disadvantages of Various SImulatorcoveeeiriiiiinseiinens 22
21514 Comparison O LnetW oK SImIU A O e e e I T L 25
2.6 TODOIORY GEIEIALOL sierersrassersesssssssrsnssnsrsnssssssssessasshsnssnsssnssssntsssssssnsssssssntsnsssssssssssessns 25
20 L B R i s iaRevasnseaseratrersisssndssonseterehsssetiats is N O SRR IR LA LR AL I et T Lt vt oo TS 26

Table of Contents

A O I A R T TN b B T T T e e T 200 s £ R s 29
O S LN AXKITIATI S e ss o tresstssssesssssisiosasshsisiosstetsssosssriesitiny s I T o 29
A G UL e Ty L PO T D AT o £5 LA L A LT TRt o 29
O I L 1 TS e hasessisessrcisbstirssstisosesthlbissssiseinssnsissiotentests toioty toss Ly T M 30
DR AIne AN dI IR Gl i sessieretieessinstiresriissiselivasniin it T 30

2 TP BT R VA s it e LR S L T £ TR L3 LK et LR T T 1 30

T A A TPt A s Pobessbssarbhensebed bbb ovits o AP L LR N T T Fis v s T T e s it sa et e 31

N (e e iswsnismsin sttt I O e R o L e et 34
O R T CI Ban a1 LIS B e et s tteetsster i seinerersnsssiserntisessesstne ittt it 34
D) e RS CTID T AT U A e it s o tervsssncvonies i tese eI S b T el e ch et T 38

P SITTTTETRY iy o1 e (T O o A T Y X A T LT P E Lt T F T o 40
CHAD LI IN S 2 AT O R AN C L I et roresetesteesteecataeoccestasessecscssrenresssesssrers sateseosristiosentsonsssrey 41
SN TR o s ONTT WA 1y oo G s P CL T T T p e L T T it o T R L e 41
) T LA KA D T Rervetsseatis et e eseedtsssosorsss riaterterasaresioet ettt ot s erstteoind 41
3N Dual VAN eed oD T N AN U s it etessssssvansrstes s sales e esasenist 42
S S M A O B A1 ST P ey its s eatirs i voisarsiticisrsssitsrsssnsisriosss e ssssaesaiisssiinin) 44
22 1 SRR G E R GTIN i o r s S T e rert (0 o oot resreetteetaess, 44
RIS ChedUlerSTANUIEVEILS (v tisos toersacesiniiorss istsisstiioisiserassnssiodtIs Pratlsvstrresiiaisaissssrsrith 45
3BINodes AndIPacke i O WATa I Z S eetiessisisetsssnressagasssdlooglBhas thossssssesssnsssnsansssssssot] 46
P N T U T L EE L T T T EL L T TTTOIEE Y et (TP Tt FEe e Frat [V vr room i 48
3.2.5 Queue Management and Packet Scheduling. i ivucimincsissserennsnsnssssessssannns 49

S G CETILS P NTete e tears LYIIEPE e thirosseortvssanehatiscroliaposvsssteMutssslsensissssiansesssorassisorisssnssioss 50
N A IV e T ssvieva s visvaorenssagias L #7441 ks baia s il 144 essabraasbotsirses voisasirrsth 51
2}l OD{aEN N iy nr e o, e I T L (e T T T 52
B G e AT CRLODOLO TV 1808 vet s lobseselosbussst FETIs o adsissass s ehssErehssihetsissassebtsat tTFTHitsseressnets st 54
RIS AIN O TS I Al O (R A ST T Ryt ¥ erirses et e e e e L 60
A N BT AV ST T e L o it ivitiseassnbissabsntiree st b bt st cts e rsansisniiaod 61
I (CI e S At irrit LTI T, (FPP W, TP e N DR RSP SIUSCRRIS 61
AR S T BV e N e o o T e s ST T e s Wi 61
AT O NI i 1y 157 0 B, it fr s v L L T LT £ A P L T P e e e 62

Y S IS S 1 IT P AT A O e LT et U1 LTtk cdsciisueisstnasssivesassevovinsisriinsvalive oosttihos svssinsnnsiass b 64
3.6 Object Serialization and Load/Save Function...........ccceviinnninsnsinnenenensenennes 65
Chapter4’ SystemANALYSIS......cvoieisiisirinsisissssisesssnensssnssssasasssnsssssssssssssssssassssssssssssssssns 67
Al TR e v N b e e e et AL T T L L T T o e T 67
ALt VG aga i e T B L e e e 1 e L L T 1 1 1 ST T 67
b L U S a C D L8 o e 1 AT L T T Y e £ L e e T e e 67
T o) B T ooy Tty T e e A F et s e R T Y L et bt s e ey 68

O T A I T 0 e O e O s et st Pt S L e Lt e ke AL 69
7T L a e o o) BV B ST Db (e o Lo R T kbt U e P G T L L AL o 69
4L R TPl O oMY Ll L st R Rt F s sus P T A e R EOR s Or A SaL et R IAINIS (IR b e easssrh 69
251528 (BONVETILEL isissinsimstiiitons b T I s T T i 69
4,2:1.3 OULDULET s eievsssessisussaiseressesrssionsbertisnssssssssistonshiosnestiaisehssssasrsssstonssrtsssisstiis 70
4:2125Non-FunctionBliR eqUIre e Al T s T R A etttk et A il s tasetn I 70
412 LR PhysICa L B AT O s e Cxhereerseix 1 v ereRTEt b nix o EoaesRLIN (Firssavsssilth 70
4.2:2:251Usersiand NUMAN TGO iviisitatiasss st ts o 1s s ITssLrereisebirectittiRaEeisbrsetsserts Ny 71
Ai212131 i F1eXibILILY sirereinststanttsdensssitn e taeir i B s T S eI I b L heA (1x SV AT b v o ts s ren b 71
4,2,2.4 USADILILY csoiessssssnssnnssenssnnissssssaisnsssssnsasisssssissensstsnsnsssssssnsssssnsssnsnsssssssasssnsssnes 71
4100 S BV AINtAINADI I LY S ivitirisstrissssinseOTt e sseRi st ees R eI RT T o ETOTATCeL ere b citins i) 71

Table of Contents

A O R (S ONI S AN Tt s s cstsstsesssssssatiserssssssosserssissreisseisestii Ly T T S I 72
ChaplerSISYSIENTI) SION s orereerscosssrenseessesssesssrsrasssnssessarssserssessitrssiresisei it 73
S I O OT) e T e s ssstss ssitssvrsiasstssairtiattsrnrvnsiia i s I T T i e 73

O KT C I 11 IS 0 e reraetretseteseesiarassisesrtttastrstestostetst tas e rLeTEr tiTes It T eIt LT oy 73
SN IV OO ATiAECOTPOSIEIOT] Sttt reetereeitsreritettastariestissseistie it T T — 73
SRMIEvent=orientedidecompOSITION ey iririttesittersiststti i T . 74

A R Y S eI [)BT T B rea i et eaetteirebeessasinseie eieiesisateatttiseeteseitlinrerits i i T 74
I BT DT LI C 1 O T1 et ereetteeetsts e seeteteiboeeseatstiisiseinstonsesirtseettanrei e 74
S K N1 I A T e et ssrerisetrtseiserssisiaestatensesssvsess s isiiiis ot Tt e 75

S T Gl O A L YA €1 1 e et EetsaxstsesrseeteessterttsssetesissteretsieiiieeeeinietiaCit T o 76
SN EN OO B ODC T ICS et tee s st tericerraistivassesissarisnseessests I rio ittt o it e L 76

S b 2 T I R v oy e e D L O L LT T T T L e e £ T T e E R e 77

S S A T ey sty P O T O T T T O P T LT T E AL T s L LT e e T 78

Sy A 2l S O TN (et trt r rr LT T T L T Y Py T L T T LT 11 (T T LT L LT s AETeeees 79

S G M AT CIASS i st tres sttt henstssioniasssnstitrnatesiissnnitni st el el 79

S (O Y ET T T B X e DL T st rtr sttt bl et et attesisrietiatistietaribesntas eI I s st ststaniass 79

S ORISR R U (O T Py 7 4 R Bretrirtetta 79

N R N U1 BV LU T 2 T rorstarrarasseroetasisseiiTscassaestotssssarssiartissersstoiLs st s tve vt teseressssissal 80

S AT B T (L OT S LA T Rt tearts it reetetecatotstuseiravsstsasinsariraressosaat A saPAEeTs) 4ot 1eietentsssssanasrsl 81
Chapter 6 System Implementation........cooiiiiisisiicsissiniinnniissns 82
BN AN IS O N S 22 COTIY TSI O et stesstiterterietscMatssatst i T e et et Lr B e 82
6N SO AN IS I CONY EIS10TI I erertsesertstreitsciamuasasesesttiitatitsesariiritr et) 83
Chapter 7 System TeStING ..ccoureueusssssssassssssasisssssssssrsssonsasassssensasassssssssasssssssssasasasssssssnssses 87
7 LT TN E R 1) o Tes st is ress t1etuiseraeses PRl IMREIRLC1 (A1 Tusvieisotta R0sasatsasss sFarihasoteliest taeisnsonssiont 87
R R B AN LS I TOINS 2 L DL € S L A N T el tsssrstastsseatesstistisstoes sttt ertitiniit ittt 87
R IN O T AL 0NV C TSI OTT e hiite (¥ s e Fetearessrtstssistessiistiitinistin e 87
7.1.1.2 Backward Conversion from NS2 topology to JaNetSim topology......... 89
7.1.1.3 Conversion with TCP AppliCatiOn.......cccceverirrverrivesrisisrisresseeseessessersessasses 90

T AN S 2 O AN IS I Il C S LD v enstveattrttesteeters reteesettitiiistsisests st et i ks 91
TR B AN O LT Al (S QD T BABION 1 1vestir it israsiasithessatstitinssibicshT i il st e L it 91
7.1.2.2 Backward Conversion from JaNetSim topology to NS2 topology........... 93
R R (COMyA TSI NI T G R A D DL Cat O e ity est T e it i et 93

eI IRy PR v T T T L P T S L T L AT LY T e T T 95
Th I by R T AT e e T T £ D L Y T (T S L L T T e 93
A Chapteri S UIIIIATY SThitet tss1svis ettt v s RIS LI e Tearasve s tResatresseOREsn LA IV TR EE LI RRTEe lhins 96
Chapter 8 System Evaluationcocisniimsmmsssmssssssssssssessssssssssssssssssssssssssssssssssssosssssses 98
B TN rOdUCHON 3 savsatessashessssssstistiibssheersssiartrtEsts it et ierars i T Ti et i T Yt 98
Ri2 Problems Encotnterediand SolUliOnS ittt b LA, 98
A T U S Y o P e OO kLT P b L A0 T LA T e A L TR 99
8.4 System CONSLIAINES ovueriestsersessrssssssnsnsssnssssasnsssssssssssssssssssssssssssssisssssssssssssassssssssssssss 100
B EUture EnhanCemBIts isiattrsissstsssssttsrsse sy ey eesisa it iiiesEas e I LTt E L e LI P IR LT i e 100
816/ Knowledgerand EXperience G a1 et o s et et s Ex T LI IR Lt es T Ls SRR IR L e kbsibscss 100
8.6 REVIEWS 0N GOBLEissivssssssrtrivassbissssass i esstiassiasssnsantiesstonseREetrensanssssssishisbibtssinssbissis 101
8.7 SUIMIMIAIY toveerestnnennsrnsnnsnsnssnsssss s s ssssssissestseassssssssssassssiessnsssssesss st anssnssnssssssarsssssesnss 102
REFERENGE S St ettt i iteish sdnnsterasttirnseses T ITT T T T TP Y T TP 103

Table of Contents

A B D N D et ve s ossesenesvessssscersisscesertocesisesssonsossosessssssisrerssiniitrastaic il 104

Vi

List of Figures

List of Figures

Figure 1.1 : Project schedule of the task during the research and development..............c....i. 3
Higtrel2 i R8P o1nt=t0=po1ntal 0 Con I gUrati O S e ittt eIt e TR T Tt 7
Hipure i 0 N T o1 RN e CON LI SU A N ior i erssteeserstustrasstres ittt tAnth L L et T i
B g1 rel) S B IS OO O R e sriretes retatsesctesirattrtoartiriessaetiisholste Lttt e s (s 9
BRIl ret) AR R 1T O I ODOL 0Ty tettriseesetsaraseteretessiestatatesritesstioresartiptinttisisens ettt ETTITI s XI VL LN 10
BIgUre D TSt aT IO OIOZ Yt st serassaseatsatessiersoristssastorsiriianssisnsitrstraessbesssssssstess srssasanssnssstesessss 11
B U Te D O M E e fODO O VA re tisiriceertentrserbatitittsscrorsisssrisersserinsssesersssthsiasstessantisonssrestaio 12
BT RN TS I OO O gV s e taess thessettsnesibeatssetstis tstars tosatuertiestisrontsshasttorsss rstastissdas iissesqosess 13
IO E D RS TITI D] C X3 trataasesetssstascetsreitastaretsoserstsarisvestassiasrssiretastaiainatantindsitasastetnsssesssssssssssias 14
BigUre 2l OB H Al A 1IDIEX in ciestescrtresiariassninornsistionbaisararssasnsinrsenesstiiasassoesnssisenssastinssasssssssssinss 14
Biure 210 B ULl AUl e s s s ss e ibinsesnsistesssiorsnsasiastanssassissonsasaatinssssass inssisass 15
Figure 2.11 : Three Sub-Fields of Computer Simulationccccoveveveriviiciiiniinnccenscennene, 16
Bigtire 2288 chematiCistrictire 0f B R LB e el e N P vec nstsarassaasenss 26
Figure 2.13 : A Topology as seen by BRITE......ccccostisuseuscisssnissserssdfifihnsnnsissnsnssnsisssssssasisnns 27
Figtire 3 10 CHH/O Tl LinKage v it aliiea it s iietits s sssinsnssrorsosMgrsdeeaforsissssssssibstsanssssrarsns 42
Figure 3.2 : OTcl and C++ dUality.....coomeensessisssssisissississnsssssessilortihe Miressonssnssssninsssessissassanns 43
Figure 3.3 : Interaction among node, routing module, and routingccccvcvcurinnnnnnnn. 48
Figure 3.4 : Composite Construction of a Unidirectional LinKcccoooiiiiiiniiiiiininnnnn, 49
Figure 3.5 : Screenshot of Nam interfaceocuviimviiiiiiiiiiniissisisisinisiinniciiann, 52
Figure 3.6 : Basic topology script in Tcl (Part 1 of O T T T P A e e e 54
Figure 3.7 : Basic topology script in Tcl (Part 2 O) it o rva it v T L o e s 85
Figure 3.8 : Basic topology script in Tcl (Part 3 OB) fiitiins i it T s et e ey et 55
Figure 3.9 : Basic topology script in Tcl (Part 4 0f 5) c...c.cooviiiiiniiiiiniiiiiiniians 55
Figure 3.10 : Basic topology script in Tcl [0y O SN B oy et e ST e 1 PP P Lo 56
Figure 3.11 : Simple script in Tcl (Part 1.0£3) .o, 56
Figure 3.12 : Simple script in Tcl (Part2 0f 3)ccvciiisiiiiniiiiisnsssissninnsisnsnnnninninsinisssissinns 56
Figure 3.14 : Create data source between nodes (Part 1 0f5) ..o, 58
Figure 3.15 : Create data source between nodes (Part 2 0f 5) v....ccocoviiiiniiiiiiiiiiiiiiininn, 58
Figure 3.16 : Create data source between nodes (Part 3 0f5) ...ccoovviiiniiiiiiiniiiiiine, 58
Figure 3.17 : Create data source between nodes (Part 4 0f 5) ..o, 58
Figure 3.19 : JaNetSim Overall ArchiteCtureccovcuviniiiiriisnieiiiiiiissienisinns 60
Figure 3.20 : Inheritance from SimParameter Class ..., 65
Figure 3.21 : Screenshot of save format in JANetSIm....cccoovviiiiiiiiniiiiiiin, 66
Figure 4.1 : Common visual representation of a Software Object.coouvviiviiviiiniiiiicinnen, 68
Figure 5.1 : Flow chart of file reading ..., 75
Figure 5.2 : Flow chart of file WIItINg......cocovinimniiniimiiiminisisine 80
Figure 7.1 : 11 nodes in JANELSIM ciuuiiisismssissnssissiasssassiusstinssssnssisnsassssasssssstossisssssssssssasssssions 88
Figure 7.2 : Converted from JaNetSin 11 nodes.....oouviiisiniiiniinninnnn, 88
Figure 7.3 : Backward conversion from NS ORIl Oy I ity sttt rvsevecstits xIrTaEiesessitovatiess 89
Figure 7.4 : 5 nodes with 4 TCP application in JANEtSIm ..o, 90
Figure 7.6 : Converted from JaNetSim with 5 nodes with 4 TCP application 91
Figure 7.7 : 20 nodes in NS=2 ... 92
Figure 7.8 : Converted from NS=2 W1th 20 0088 Tt s I iitsetasttssbas s AT T T st ot rirseshs 92
Figure 7.9 : Backward conversion from JaNetSim topology ..., 93
Figure 7.10 : 11 nodes with 10 TCP application in JANEISIM oo, 04
Figure 7.11 : Converted from JaNetSim with 5 nodes with 4 TCP applicationc.c......, 94
Figure 7.12 : Number Of NO® 18 ZEI0 vuevsssssssisinsnsssssssissssssssssssssresnsssisssssssassrsssssssssssssssssnssons 0§

Vil

List of Figures

Figure 7.13 : Number of node exceed maximum

viil

List of Tables

List of Tables

Table 2.1 : Advantages and Disadvantages of various simulatorcccecevevrinirinnnnn, 24
iTab] 1220 MR G O DAT1S 0N 0Ly A1 OUS IS T U A O Lo or i se s s s shiousisstasren s s IR e Tt e bt IOt 25
Table 2.3 : Comparison of today popular scripting 1anguagescocoeviviiiinnnenane, 40
Table 3.1 : Methods define in SIMCOMPONENL c..iivisriruiserssesrssrsossssnssnisnsssnssaessessessessessns 63
ITabletSSIMERSNVIaOriattribife SN OUE BrODCILICS Feteittteerarnentatarietssrattiastrnrinis it ettt 76
Lablels 2N A o methodsUniNOde Prope IR ETeites fticitiesrettitvesetartier sttt tastis s 1is 76
ISR) o YRS e DRI BT SIS S o gt Sk 77
Lab] e N A o rm et O a8 K RO Ll et ra e e e TA AT T Ere Lot oatss soars 77
[TAD]E15 S R V181 O A LTl DTS STIIIN OO E R e tees ettt reaeithsiseRiabaTests ceqetsti e baoa I ittl it tety 77
Tablels RV ajonmetnodS N O e B oD It C etk e rtstas et edasseinsasss Setes 78
Table 5.7 : Major attributes in L N e P T I e T P TC T T PO IV T T T ey oo e 78
IS 5 BRI R B o e o E L O st TS eerer 78
WAIEEIE) & B T R W ot v s e etk Ve ot ity 79
Table 5.10 : Listing of all major component in JaNetSim..........coooviiviceniiiiinisiisnnnnnnnas 81

Table 5.11 :

Listing of all'major componentiniNS-2...........co ottt Sl ... 81

Chapter 1 Introduction

Chapter 1 Introduction

1.1 Introduction to Network Topology

Network topology refers to the specific physical or logical arrangement of the
elements in a network (Anon 1998). Two networks have the same topology if the
connection configuration is the same, although the networks may differ in physical
interconnections, distances between nodes, transmission rates, or signal types. The

common types of network topology will be illustrated in Chapter 2 of the thesis under

Topology.

The network topology tree plays a critical role in management of the network (Cisco

2003). It consists of four main purposes:

« Identifies key components of the network

« Organizes the settings and convention for the key components
« Defines the physical structure of network topology

« Provides building blocks for the network

. Defines the desired traffic flows across your network

1.2 Introduction to Network Simulator

With the rapid development of high-speed network, network simulator has become a

valuable tool to study and investigate the protocol and design issues regarding the

performance of the network. It allow user to make correct decision on designing a

network without the need to invest into the technology. A network simulator can be

used as a tool for network planning or as a tool for protocol performance analysis. It is

useful for modeling network behavior under different setting and conditions for the

Chapter 1 Introduction

various network components. Users are able to analyze and predict the performance
of the network design based on the generated result of network simulator. Besides
that, researchers and network planners are able to analyze networks without the
expense of building a real network with the use of a simulator. Huge saving can be
made both in terms of investment and the cost in terms of unnecessary restructuring

for experimentation. (AU-KBC 2003)

1.3 Objective

The primary objectives of this project are to study and understand the operation of
creating and generating a topology in various network environments. This involves
researching work on various network simulator topologies to enhance the
understanding of the concept behind the topology generation. In the research,

comparison of the topology generated in JaNetSim and Ns-2 are examine in details
to differentiate the approach used by various simulator to create, simulate and save the

topology format.

The goal of the project is to create a converter program that is able to convert
topology format between Ns-2 and JaNetSim. The script developed must be able to

integrate into the existing JaNetSim system

.The converter program should have the following capabilities:
« Convert Tcl script from Ns-2 to topology format in UM JaNetSim.
* Convert from topology format in UM JaNetSim to tel script in Ns-2.
» Allow topology to be saved in two format:
i) Plain topology file without the parameters

if) Topology with logging of all values at saved time,

o

Chapter 1 Introduction

1.4 Scope

This project mainly involves a lot of research work on the existing network simulator
and its functionalities. Thus the scope of the project will be covering two simulator
that will be dissect and research intensively, which is the Ns-2 and JaNetSim

simulator.

During the research, the overview ,structure and file saving method of both simulator
are explore to provide clear and unifying view of the entire system to improve
understanding on the work mechanism to ease the process of developing the

converter for the project.

1.5 Schedule

D ToskName — (Duraon | Sfat | Fnish TRTERTER:
T WIS T

011293 N3 03 Land 04 el
THEE

§ijectDeﬂnilmn 104 HonB116103. Tue 71103 &8
* UerdeFeiew | 106g Won R TS
0
f

;

3
Resthots {0 M TRE D
optmbgt 2 WnTAOY R0

| I

;

J
j
j
}

L"i!:,l:ﬂ = =3 =1 =

d
%wmmn”memmomww
Implernentalmn 118days g8y Fid

T M RN R
A Documerain 167 s Won N0 Te 2N

=3

=3

Figure 1.1 : Project schedule of the task during the research and development

Chapter 1 Introduction

1.6 Report Organization

The others chapters in the thesis are organized as follow :

Chapter 2 covers the research work done during the project to enhance the knowledge
and gathering of basic concept in network topology. The chapter mainly covers 3
sections. The first section is a review of network topology concept. The second
section covers the evaluation of current existing network simulator and the last section
reviews the programming approaches that will used to develop the converter to be

integrated into JaNetSim.

Chapter 3 will dissect both simulators, Ns-2 and JaNetSim to get more details
information on the components and operational process with regard to topology on
both system. Besides that, it will be looking on the topology and save file format on

both simulator.

Chapter 4 will be covering the development tool, functional requirements and non
functional requirements that are essential to provide information and structure to draft

a design for the topology converter program

Chapter 5 will focus on the overview design of the entire project. This include the
design proposal of object classes to be implemented in the system. Each class design

includes attributes and description of method perform by that class.

Chapter 6 covers the implementation of the topology converter. It explains in details
of all the operational work flow and programming coding to be implemented in the

converter program,

Chapter 1 Introduction

Chapter 7 will include all the systematically approach taken in order to test the
workability of the system to conform the functionalitics in the requirements that the

system had promised to deliver.

Chapter 8 will concludes the research and development of the network topology. It
summarize the findings of the project, the final product and the constraint during the

development and testing stage.

Chapter 2 Literature Review

Chapter 2 Literature Review

2.1 Introduction to Topology General Concepts

A major component of a network consists of links and nodes. The arrangement and
interconnection of the links and nodes is known as the network topology. Generally,

in network topology, there are few concepts that provide the basic for the relationship:

* Line configuration
* Topology

* Transmission mode

2.2 Line Configuration

Line configuration refers to the way two or more communication devices attach to a
link. Link is a physical communication pathway that transfers data from one device to
another device (Forouzan 2001). In order for communication to occur, two devices
must be connected in some other way to the same link at the same time. There are two

possible line configurations: point-to-point and multipoint.
2.2.1 Point-to-Point

Point -to-point is a term used to describe a data channel which connects two, and only
two, terminal by providing a dedicated link between them. During the transmission,
the entire capacity of the channel is reserved for the terminals communication. There

are two different types of point-to-point:

O

Chapter 2 Literature Review

0 Point-to-point Circuit: A communication circuit, or system
connecting two points through a telephone circuit, or line.

0 Point-to-point Network: A Point-to-point Network is one in which
exactly two stations are connected. It may be dial connection or a

leased line.

: r Circuits
ko Modem 3
Host Client
computer computer

Figure 2.1 : Point-to-point line configuration

2.2.2 Multipoint

A multipoint line configuration describes a line configuration in which a single
transmission facility is shared by several end stations. Line or circuit interconnecting
several stations are also called multipoint line Only one station can send or receive at
any time, all others must wait. If several devices can use the link simultaneously, it is
a spatially shared line configuration. If users must take turns, it is a time-shared line

configuration.

Sarver

,‘ ’,,‘,!

o p y s
Cliwnt j m e it

COrMmputer - z - SO puter

e it
T vt e e

Figure 2.2 : Multipoint line configuration

Chapter 2 Literature Review

2.3 Topology

2.3.1 Introduction to topology

Topology refers to the shape of a network, or the network's layout. The network’s
topology determined the connectivity of the nodes in the network and the

communication method. Topologies are either physical or logical.

Physical topology is the physical structure of a network that provide for the layout
that enable the workstations to connect to the network through cable to transmit data.
For physical layout of devices on a network, every LAN has a topology, or the way
that the devices on a network are arranged and how they communicate with each

other.

The logical topology, in contrast, is the way that the signals act on the network media,
or the way that the data passes through the network from one device to the next

without regard to the physical interconnection of the devices.

Chapter 2 Literature Review

2.3.2 Reviews of Topology

2.3.2.1 Bus

A bus topology is a network topology in which there is a single line called the bus or
backbone to which all nodes are connected.Nodes are connected to the bus by drop
lines and taps.A drop line is a connection running between the device and the main
cable .A tap is a connector that either splices into the main cable or punctures the

sheathing of a cable to create a contact with the metalic core (Anon 2003).

Figure 2.3 : Bus topology

Advantages
* Easy installation and uses less cabling than others topologies.
* Connectivity between dedicated nodes is not affected by failure of another

node.

Disadvantages
* Difficult reconfiguration and fault isolation.
* A faulty bus cable stops all the transmission even between devices on the

same sode of the problem

9

Chapter 2 Literature Review

2.3.2.2 Ring

Ring topology is a network topology in which every node has exactly two branches
connected to it.All devices are connected to one another in the shape of a closed loop,
so that each device is connected directly to two other devices, one on either side of it.
A signal is passed along the ring in one direction from device to device until it
reaches its destination. Each device in the ring incorporates a repeater. When a device
receives a signal intended for another destination, the repeater regenerates the bits

and passes them along the networks.

- ®

Figure 2.4 : Ring topology

Advantages
* Easy to install and reconfigure.

* All stations have equal priority for the medium access.

Disadvantages
* Shared bandwidth for the entire network

Unidirectional traffic provides no alternatives in case of network failure.

10

Chapter 2 Literature Review

2.3.2.3 Star

Star topology is a network topology in which peripheral nodes are connected to a
central hub, which rebroadcasts all transmissions received from any peripheral node
to all peripheral nodes on the network, including the originating node. All peripheral
nodes may thus communicate with all others by transmitting to, and receiving from,

the central hub only. There are three different types of hub:

Passive Hub
A passive hub serves simply as a conduit for the data, enabling it to go from one

device (or segment) to another.

Intelligent Hub
Intelligent hubs include additional features that enable an administrator to monitor the
traffic passing through the hub and to configure each port in the hub. Intelligent hubs

are also called manageable hubs.

Switching Hub
A third type of hub, called a switching hub, actually reads the destination address of

each packet and then forwards the packet to the correct port.

I ————————————————

Figure 2.5 : Star topology

11

Chapter 2 Literature Review

Advantages

* Simple expansion.

* Straightforward network management.

Disadvantages

* Single point of failure in case of failure of the central hub.

2.3.2.4 Tree

Tree topology is a network topology in which the nodes are arranged as a tree. From
a topologic viewpoint, this resembles an interconnection of star networks in that
individual peripheral nodes are required to transmit to and receive from one other
node only and are not required to act as repeaters or regenerators. Unlike the star

network, the function of the central node may be distributed.

Figure 2.6 : Tree topology
Advantages
* Easy to expand
* Failure of the superior node will only cause failure to some subsystems.
Disadvantages

* Branches can be disconnected in case of failure of a superior node

Chapter 2 Literature Review

2.3.2.5 Mesh

Mesh topology is a network topology in which there are at least two nodes with two
or more paths between them. Devices are connected with many redundant
interconnections between network nodes. In a true mesh topology every node has a

connection to every other node in the network

A\

Figure 2.7 : Mesh topology

Advantages
* Topology with the highest reliability

* Direct connectivity between all nodes

Disadvantages
* Expensive
* Difficult to expand and reconfigured

* Complex wiring

2.4 Transmission Mode
Transmission mode is used to define the direction of signal flow between two linked
devices (Forouzan 2001). There are three types of transmission modes: simplex, half-

duplex and full-duplex.

Chapter 2 Literature Review

2.4.1 Simplex

Data can flow in only one direction. Only one of the two stations on a link can

transmit; the other only can receive

Client
computer Sernver
Simplex
(=5
Figure 2.8 : Simplex
2.4.2 Half-duplex

Data flows in only one direction at a time. It is sometimes called two-way alternate.
Each station can both transmit and receive, but not at the same time. When one device

is sending, another can only receives and vice versa.

Half-duplex

Figure 2.9 : Half-duplex

Chapter 2 Literature Review

2.4.3 Full —duplex

Data flows in both directions at the same time.Most modem connections today
transmit full duplex increasing efficiency with data flowing on the same pair of wires

in both directions simultaneously.

Full-duplex

Figure 2.10 : Full-duplex

Chapter 2 Literature Review

2.5 Introduction to Computer Simulation

Computer simulation is designing of an actual or theoretical physical system,
executing the model on a digital computer, and analyzing the execution output.
Simulation embodies the principle of “learning by doing” — a model of some sort is
build and then operates the model to learn about a system. Computer simulation
serves to drive synthetic environments and virtual worlds. Within the overall tasks of

simulation, there are three primary sub-fields:

* model design
* model execution

¢ model analysis

Models are designed to provide answer at a given abstraction level — the more detailed

the model, the more detail the output.

Conceptual
MODEL DESIGN Model
Functional
Model
MODEL EXECUTION
EXECUTION ANALYSIS

Serial Input = Output

Algorithm Analysis
Experimental Design
Visualization of Data

Figure 2.11 : Three Sub-Fields of Computer Simulation

16

Chapter 2 Literature Review

Simulation is often essential in the following cases:

The model is very complex with many variables and interacting components
The underlying variables relationships are non-linear
The model contains random variates

The model output is to be visual as in a 3D computer animation

The power of simulation is that — even for easily solvable linear systems — a uniform

model execution technique can be used to solve a large variety of systems. Another

important aspects of the simulation technique are to builds a simulation model to

replicate the actual system.

2.5.1 Network Simulation Approaches

There are two approaches to modeling a network simulator. These two approaches are

as below :

Analytical modeling

Analytical modeling is a closed form approach of network modeling method
which the network is model mathematically in the form of equation. The main
disadvantage of analytical models is over simplistic view of the network and

their inability to simulate the dynamic nature of a computer network.

Discrete event modeling
The computer replicates the real world objects, which means the objects play
certain roles and changes its state at a discrete point during simulation, This

approach is more accurate but it requires more modeling time in developing

17

R e

Chapter 2 Literature Review

the system. Besides that, it need more time in processing the real world

objects.

2.5.2 Study of Various Existing Simulator

A network simulator is used to perform experiments on network without the expanses
of building a real network. It help user to perform analysis on the network and obtain

accurate information in order to plan and design the network more efficiently.

Generally, ATM network simulators are able to support network performance analysis
in varying traffic types and loads, network capacity planning, traffic aggregation
Studies and ATM network protocol research. The following are the current ATM

network simulator evaluated to analysis their strength and weakness:

* INSANE

* NIST ATM/HFC
¢« LYATS

* OMNET++

* NetSim++

2.5.2.1 INSANE

INSANE (Internet Simulated ATM Networking Environment) is designed to test
various IPover ATM algorithms with realistic traffic loads derived from empirical
traffic measurements, INSANE's ATM protocol stack provides real-time guarantees to

ATM virtual circuits by using Rate Controlled Static Priority (RCSP) queuing,

Chapter 2 Literature Review

the system. Besides that, it need more time in processing the real world

objects.

2.5.2 Study of Various Existing Simulator

A network simulator is used to perform experiments on network without the expanses
of building a real network. It help user to perform analysis on the network and obtain

accurate information in order to plan and design the network more efficiently.

Generally, ATM network simulators are able to support network performance analysis
in varying traffic types and loads, network capacity planning, traffic aggregation
studies and ATM network protocol research. The following are the current ATM

network simulator evaluated to analysis their strength and weakness:

* INSANE

* NIST ATM/HEC
* YATS

* OMNET++

* NetSim++

2.5.2.1 INSANE

INSANE (Internet Simulated ATM Networking Environment) is designed to test
various IPover ATM algorithms with realistic traffic loads derived from empirical
traffic measurements. INSANE's ATM protocol stack provides real-time guarantees to

ATM virtual circuits by using Rate Controlled Static Priority (RCSP) queuing,

Chapter 2 Literature Review

ATM signaling is performed using a protocol similar to the Real-Time Channel
Administration Protocol (RCAP). Internet protocols supported include large subsets
of IP, TCP, and UDP. In particular, the simulated TCP implementation performs
connection management, slow start, flow and congestion control, retransmission, and
fast retransmits. Various application simulators mimic the behavior of standard
Internet applications to provide a realistic workload, including: telnet, ftp, WWW,

real-time audio, and real-time video.

INSANE is designed to run large simulations whose results are processed off-line. It
works quite well on distributed computing clusters (although simulations are all

sequential processes, a large number of them can easily be run in parallel).

Although there is no graphical user interface, a (optional) Tk-based graphical
simulation monitor provides an easy way to check the progress of multiple running
simulation processes. The bulk of INSANE is written in C++. Customization and

simulation configuration is performed with Tcl scripts.

2.5.2.2 NIST ATM/HFC

This simulator was developed at the National Institute of Standards and Technology
(NIST) and it is a tool to analyze the behavior of ATM and HFC networks without the
expense of building a real network. Therefore, this simulator can conceivably be used

to plan be used to plan ATM networks as well as analyze ATM and HFC protocols,

It allows the user to interactively model the environment with a graphical user

interface. By using the NIST ATM/HEC simulator, the user can create different

19

Chapter 2 Literature Review

network topologies, adjust the parameters of each component’s operation, measure

network activity, save/load different simulation configuration and log data simulation

execution.

2.5.2.3 YATS

YATS (Yet Another Tiny Simulator) is a small cell-level simulation tool for ATM. Its
kernel comprises the event scheduler, a symbol manager and a scanner/parser front
end An input file describes the - arbitrary - model network configuration, the
simulation actions and the way to analyze the results. The input language is a simple
script language, which allows for a flexible problem description (loops, macros and
basic mathematical capabilities are provided). The discrete-time event scheduler

applies a static calendar queue and unusual event memory management, which results

in good simulation speed.

The system is written in C++. All network nodes are objects that communicate over
standardized messages. Graphical object classes are able to display the time

dependent behavior of variables and distributions inside of other model objects

(without adding complexity to these network objects).

2.5.2.4 OMNeT++

OMNeT++ (Objective Modular Network Testbed in C++) is a discrete event
simulation tool. It is primarily designed to simulate computer networks, multi-
processors and other distributed systems, but it may be useful for modeling other

systems tool. OMNeT++ has been developed on Linux, but it works just as well on

most Unix systems and on Windows platforms (NT recommended). It provides a

20

Chapter 2 Literature Review

simulation library with statistical classes and an environment that supports interactive
simulation including the visualization of collected data.The gnu plot-based GUI tool

is used for analyzing and plotting simulation results.

2.5.2.5 NetSim++

In a nutshell, NetSim++ is a software package designed to provide a comprehensive
work environment for the network modeler. It can be used in areas of communications
networks such as performance measurement for existing or future networks under a

wide range of conditions.

Besides that, it can perform analysis and simulation of queuing systems. NetSim++ is
designed specifically for the development and analysis of communications networks.
Models can be hierarchically structured, allowing their re-use in different simulations.
Specifications are entered graphically with specialized editors. The editors provide an
efficient medium for design capture via a consistent set of modern user-interface

elements.

NetSim++ follows for the hierarchy and communication model a subset of SDI-92
semantics. As with SDL, the active parts are processes; a hybrid approach is used to
embed C++ language code with a graphically specified Extended Finite State

Machine (EFSM).

Chapter 2

Literature Review

2.5.3 Advantage and Disadvantages of Various Simulator

Simulator

Advantages

Disadvantages

INSANE

The Tk-based graphical

simulation monitor enable
user to check the progress of
multiple running simulation
process. Besides that, it is able
to support the simulation on a
large network, which the

result is processed off-line.

The simulator can only
works on a few hardware
and platforms only and
this restricted the
portability of the
simulator. Furthermore,
there are a few software
requirements to run the

simulator and this will be

troublesome for the user

to use the software

NIST ATM/HEC

The user can create different
topologies and able to adjust
the parameters during the
simulation of the network.

The user can save and load

various simulation
configuration.The simulator
provides a graphical user

interface and enable user to
drag and drop the entities in

the network.

Users of the simulator

might face problems
setting up the network
topology because they
need to input a large
number of parameters.
The customization of the

simulator’s component

requires user or
programmers to have
strong foundation in C.

Besides that, it is using
procedural approach
whereby the components
have overlapped
functions between the
components. The

simulator only can run on

o
o

Chapter 2

Literature Review

limited platform that is
UNIX and LINUX

platform.,

YATS

The simulation of the network
has reasonable speed and
simple models virtually can
run in real time. The simulator
has high flexibility of
integrated model description,
simulation control, and result
analysis. The whole
simulation experiment can be
instrumented via

environment variables that in
turn allows - together with a
shell script - to easily perform
complete experiment series
over night. Although it is very
simple, the online displays are
useful to understand what's
happening in the model
network. This especially holds
for ABR,

TCP and all this protocol
stuff.

The pure slotted
operation causes some
restriction when
simulating different line
speeds in the same model.
It's only possible to
choose speeds for which
the cell transfer time is an
integer multiple of a basic
time used for the whole
model. Lower line speeds
are emulated by the
multiplexer objects
classes MuxAF/MuxDF,
the ABR multiplexer does
not yet support lower
speeds. The discrete-time
nature excludes some
useful source models like
the Poisson types. While
the language based model
description yields a high
flexibility, the input may

become a bit irritating in

case of larger networks

OMNET++

OMNeT++ has a solid and
flexible simulation kernel and
it provide powerful GUI
environment for simulation

execution, Users can build

User must use command
line to simulate the
network and posses
kKnowledge in C or Ch+

programming languages

Chapter 2

Literature Review

hierarchical and reusable
models easily. The interface is
human readable and its source

code is provided.

to use OMNet++,

automatically generates

an executable simulation. A
of
provided

set analysis tools is

to interpret and
visualize a large volume of

simulation results.

NetSim++ NetSim++ provides an | The current
efficient event-driven | implementation of
Simulation Kernel, a | NetSim++ is available
Simulation API and a Base only for UNIX/X
Models Library of | Window System
components. It takes the | platforms.
design specification and

Table 2.1 :

Advantages and Disadvantages of various simulator

Chapter 2 Literature Review

2.5.4 Comparison of network simulator

Based on the evaluation of the network simulator, the Table 2.2 below summarize the
network simulator on a few feature such as discrete-event simulator, object-oriented
GUI, multithreaded, web enabled, platform independent.

)

Simulator | Discrete Object- | GUI | Multithread | Web- | Platform
Event Oriented Enable | Independent
Simulation

INSANE |V V S\ X X

NIST Y X v X X X

ATM/HEC

YATS \ Y v X X

OMNet++ | V \/ v X X

NetSIM++ | ¥ X v v X X

Table 2.2 : Comparison of various simulator

2.6 Topology Generator

In order to engineer and design the internet, crucial issue such as the large scale
structure of its underlying physical topology, its time evolution and the contribution
of its individual components to its overall function need to be well understood.
Extensive simulations are usually performed to assess its feasibility, in terms of

efficiency and performance.

In general, Internet studies and simulations assume certain topological properties or
use synthetically generated topologies. If such studies are to give accurate guidance as

to Internet-wide behavior of the protocols and algorithms being studied, the chosen

N
n

Chapter 2 Literature Review

topologies must exhibit fundamental properties or invariants empirically found in the
actual extant structure of the Internet. Otherwise, correct conclusions cannot be

drawn.

There are several synthetic topology generators available to the networking research
community .Many of them differ significantly with respect to the characteristics of the

topologies they generate

2.6.1 BRITE

Design and implementation

BRITE was designed to be a flexible topology generator, not restricted to any
particular way of generating topologies (Medina et al. 2001). As such, it supports
multiple generation models. This section will be describing the design goal and
approach and behind BRITE implementation. Figure 2.12 depicts a schematic view of
the structure of BRITE .The different components in BRITE are labeled from (1) -
(4).

| it A d L Ay W o
. BRITE BRITE [LONS 4 b sy
Configuration o e i) :-"._I“:
File (Parameters) : L
| Enpine
i J Output formats

-
-
] 2)
B BRITE
i Analysiy ()
= Kopine e
{7
: @
=
a ',- -------- '
E 7 sker [ey
' ’‘

Figure 2.12: Schematic structure of BRITE

26

Chapter 2 Literature Review

BRITE reads the generation parameters from a configuration file (1) that can be either
hand written by the user or automatically generated by BRITE’s GUI .BRITE
provides the capability of importing topologies (2) generated by other topology
generators (GT-ITM, Inet , Tiers , BRITE 1.0) or topological data gathered directly
from the Internet (NLANR, Skitter). BRITE can be included in the “imported” file
formats, because it is possible to generate topologies using BRITE and then reusing
them to generate other topologies by combining them with BRITE models or other
imported formats. In the current distribution BRITE produces a topology in its own
file format (3), and output capabilities for producing topologies that can be used
directly by the Network Simulator (NS) and the Scalable Simulation Framework

(SSF) simulators are currently being developed.

BRITE’s Architecture

In BRITE, a topology is represented by a class Topology. This class contains a Model
(1) and a Graph (2) as data members, and among others, a set of exporting methods

and function members (3).

Tapology
e bors

I i
Ur | Atadel Granh Q Expart
o i) Methody

deriving
{.\lmld [] [Mndcll] ane

Figure 2.13 : A Topology as seen by BRITE

Nt E[\.\' ig‘ | I

Chapter 2 Literature Review

The Model class is an abstract base class from which multiple specific generation
models are derived.Each specific topology generated by BRITE can use a single
instance of one of the available generation models if the generated topology is flat, or
more than one instance if the topology is a combined hierarchical topology. The
Graph data member (2) is a Graph class with the minimal functionality required by
the generation models. The class may be extended or replaced with minimum effects

on the remaining code if the graph component is required.

Finally, the general architecture shows a set of export methods which output BRITE

topologies into specific formats.

Topology generation process
The specific details regarding how a topology is generated depend on the specific
generation model being used. The generation process can divided into a four-step
process:

1. Placing the nodes in the plane

2. Interconnecting the nodes

3. Assigning attributes to topological components (delay

and bandwidth for links, AS id for nodes, etc.)

4. Outputting the topology to a specific format.

This generation process will not fit every generation model but conceptually reflects
conditions during topology generation. Also, several models may share specific steps
during the generation process, while other models differ significantly on the

individual steps.

Chapter 2 Literature Review

2.6.2 Other Topology Generator

2.6.2.1 Waxman

Waxman developed one of the first topology generators. This generator produces
random graphs based on the Erd’os-Renyi random graph model, but it includes
network—specific characteristics such as placing the nodes on a plane and using a

probability function to interconnect two nodes in the Waxman model which is

parameterized by the distance that separates them in the plane.

2.6.2.2 GT_ITM

One of the most popular generators available is GT-ITM. The main characteristic of
GT-ITM is hat it provides the Transit-Stub (TS) model, which focuses on reproducing
the hierarchical structure of the topology of the Internet. In the TS model, a connected
random graph is first generated by using the Waxman method or a variant of it. Each
node in that graph represents an entire Transit domain. Each transit domain node is
expanded to form another connected random graph, representing the backbone
topology of that transit domain. Next, for each node in each transit domain, a number
of random graphs are generated representing Stub domains that are attached to that
node. Finally, some extra connectivity is added, in the form of “back-door” links
between pairs of nodes, where a pair of nodes consists of a node from a transit domain

and another from a stub domain, or one node from each of two different stub domains.

GT-ITM also includes about five flavors of flat random graphs.

Chapter 2 Literature Review

2.6.2.3 Tiers

Another generator that implements models trying to imitate the structure of the
Internet is Tiers.The generation model of Tiers is based on a three-level hierarchy
aimed at reproducing the differentiation between Wide-Area, Metropolitan-Area and

Local-Area networks comprising the Internet.

2.6.2.4 Inet and PLRG

Inet and PLRG are two generators aimed at reproducing the connectivity properties of
Internet topologies. These generators initially assign node degrees from a power-law
distribution and then proceed to interconnect them using different rules. Inet first
determines whether the resulting topology will be connected, forms a spanning tree
using nodes of degree greater than two, attaches nodes with degree one to the
spanning tree and then matches the remaining unfulfilled degrees of all nodes with
each other. PLRG works similarly to Inet in that it fakes as an argument the number of

nodes to be generated and value of the exponent .

2.7 Programming Language

There are a few of programming languages that can be used in the development of the
network simulator. In addition, the features of the programming language must be
able to meet the requirements of the system to be developed. Since most of the
simulator is built in Object Oriented Programming approach, the programming
language must support the OOP approach. The choices of programming language

should be able to support other functionility of the network simulator.

o2
—
o

Chapter 2 Literature Review

In this section, it reviews on a main OOP programming languages, Java and Tcl, a
simple yet flexible and powerful scripting language. These two programming
language has become the most popular language used to develop the network

simulator.

2.7.1 Java

Java was developed at Sun Microsystems. Work on Java originally began with the

goal of creating a platform-independent language and operating system for consumer

electronics. (Deitel 2003)

The original intent was to use C++, but as work progressed in this direction, the Java
developers realized that they would be better creating their own language rather than
extending C++.J ava is both a programming language and an environment for
executing programs written in the Java language. Unlike traditional compilers, which
convert source code into machine level instructions, the Java compiler translates Java
source code into instructions that are interpreted by the runtime Java Virtual Machine.

So, unlike languages like C and C++, on which Java is based, Java is an interpreted

language.

Java is best described as a small, simple, safe, object-oriented, interpreted or
dynamically optimized, byte-coded, architecture-neutral, garbage-collected,
multithreaded programming language with a strongly typed exception-handling

mechanism for writing distributed, dynamically extensible programs. Java has several

of important features that make it an attractive programming language as below:

31

Chapter 2

Literature Review

Java 1s simple

Java started out as C++ but has had certain features removed, it is certainly a
simpler language than C++. Java has simplified C++ programming by both
adding features beyond those found in C++ and by removing some of the
features that make C++ a complicated and difficult language to master. Java is

simple because it consists of only three primitive data types-numbers, Boolean

types, and arrays.

Everything else in Java is a class.

Java is object-oriented — The design of Java is completely object-oriented.
Java provides all the luxuries of object-oriented programming: class hierarchy,
inheritance, encapsulation, and polymorphism-in a context that is truly useful
and efficient. Java's object-oriented structure enables user to develop more

useful, more tailor able, and much simpler software the first time around.

Java supports the Internet

Java can be used to build small application modules or applet for use as part of
a Web page. Applets make it possible for a Web page user to interact

with the page. Java is general purpose Java can be used to create complete
applications that may run on a single computer or be distributed among servers

and clients in a network.

Java is robust

The Java objects can contain no references to data external to themselves

Chapter 2 Literature Review

or other known objects. This ensures that an instruction cannot contain the
address of data storage in another application or in the operating system itself,
either of which would cause the program and perhaps the operating system
itself to terminate or "crash". The Java virtual machine makes a number of

checks on each object to ensure integrity.

e Javais secure

Closely related to Java's robustness is its focus on security. Because Java
does not use pointers to directly reference memory locations, as is prevalent in

C and C++, Java has a great deal of control over the code that exists within the

Java environment.

e Java is platform-independent

The programs created are portability in a network. The program is compiled
into Java byte code that can be run anywhere in a network on a

server or client that has a Java. The Java virtual machine interprets the byte
code into code that runs on the real computer hardware. This means that
individual computer platform differences such as instruction lengths can be
recognized and accommodated locally just as the program is being executed.

Platform-specific versions of the program are no longer needed.

* Java supports multithreaded

Java support for multiple, synchronized threads that are built directly into the
Java language and runtime environment. Synchronized threads are extremely

useful in creating distributed, network-aware applications. Such an application

Chapter 2 Literature Review

may be communicating with a remote server in one thread while interacting

with a user in a different thread.

2.7.2 TCL

Tcl is the leading scripting language for a wide variety of integration application
needs, whether to build a powerful GUI, embed Tcl in application, create a multi-
threaded application, or develop a cross-platform (Anon 2001). Tcl provides a
dramatically easier way to build integration applications ranging from simple

graphical user interfaces to complex financial, Web, and management applications.

Since Tcl can be used for such a wide range of purposes user can now standardize on
just one scripting language for all their needs. This is a great benefit by reducing the
cost for organization since user only need to learn, maintain, and support one scripting
solution as well as significantly improving the ability for all applications to integrate

smoothly.

2.7.2.1 Tcl Capabilities

In contrast, Tcl provides a superb platform for creating integration applications. Tcl's

capability comes from two basic features.

First, Tcl makes it easy to connect to any of the object that user need to integrate. If
user need to connect any X to any Y, it is easy to create one Tcl extension that
connects to X, another that connects to Y, and use Tcl as the intermediary between

them. Dozens of free extensions are already available for database access, network

management, and many other purposes.

34

Chapter 2 Literature Review

Second, with Tcl it is easy to write scripts that manage the connections in powerful
ways. In contrast to system programming languages, Tcl is interpreted and typeless.
The interpreted nature of Tcl makes it easy to modify and extend applications on the
fly and evolve them rapidly. By being typeless and string-oriented, Tcl hides the

differences between components and makes it easy to move information between

them.

The combination of these two features allows integration applications to be developed
5-10 times more efficiently with Tcl than with system programming languages such
as C++ or Java, measured either in development time or in lines of code. Furthermore,
the applications created with Tcl are more powerful and flexible.
There are many different reasons why people use Tcl but most of them fall into just a
few categories. Here are the ten benefits of why people use Tcl today:
* Rapid development

The most important reason why people use Tcl is that it gets their job done

faster. The applications can be implemented five to ten times faster with Tcl

than with other languages, especially if the application involves GUIS, string-

handling, or integration. Once an application is built in Tcl, it can also be

evolved rapidly to meet changing needs.

* Graphical user interfaces

With its Tk toolkit, Tcl provides facilities for creating GUIs that are incredibly
simple yet remarkably powerful. For example, the Tk canvas widget makes it
easy to create displays with graphics, yet it also provides powerful facilities
such as bindings and tags. The text widget provides sophisticated hypertext

capabilities and more. No other toolkit has the same combination of simplicity

LS
i

Chapter 2 Literature Review

and power. Tcl attracted much of its early following because it was the only
sane way to create user interfaces under Unix; now it provides these same

benefits on Windows and Macintosh platforms too.

Cross-platform applications

Tcl runs on Windows (95 and NT), Macintosh, and nearly every imaginable
Unix platform. This makes it an outstanding tool for creating cross-platform
applications. For example, the same Tcl script can run on Unix, Windows, and
Macintosh and display a graphical user interface; the GUI will have a different
look and feel on each platform, to match the user's expectations for that
platform. Because it runs on all major platforms Tcl provides an excellent
management and integration tool for mixed environments, such as those with

Windows desktops and Unix servers.

Extensible applications

If user want to create a powerful application that can be scripted and extended
by its other users and modified in the field, user will need to include an
interpreted scripting language in the application. Tcl is unmatched for this
purpose. The Tl interpreter was designed from the start to be embedded in a
variety of applications. It is easy to incorporate Tcl into an application, and
the Tcl Interpreter melds naturally with the application, almost as if the Tcl

language were designed exclusively for that particular application.

Flexible integration

With Tel it is easy to coordinate existing components and applications so that
they work together effectively. For example, it is easy to use Tcl as a control
language for special-purpose hardware and protocols, add a GUI or network

interface to a legacy application, or integrate new Java applications with

36

Chapter 2 Literature Review

legacy code in C or C++. This makes Tcl a powerful tool in areas such as
network management and factory automation.Ready for the enterpriseWith
the Tcl 8.1 release, Tcl became the first (and only) scripting language suitable
for large server applications and other mission-critical enterprise uses. The
benefits of scripting, such as rapid development, flexible evolution, and easy
integration, have been known for years, but until Tcl 8.1 no scripting language
provided all the facilities needed for enterprise applications, which include
internationalization, thread safety, cross-platform portability, great GUI
capabilities, embeddability, Interhet support, and database access. Tcl 8.1
added internationalization and thread safety, making Tcl the first scripting
language to meet all these requirements and bring the benefits of scripting to

the enterprise.

* Testing
Tcl is an ideal language to use for automated hardware and software testing,
and it may well be the dominant language used for this purpose. Tcl can easily
connect to testing hardware or internal APIs of an application, invoke test
functions, check the results, and report errors. Tcl's interpreted implementation
allows tests to be created rapidly, and the tests can be saved as Tcl script files
to reuse for regression testing. If you are testing a software application, Tcl
allows you to connect directly to lower-level APIs within the application,

which provides much more precise and complete testing.

Chapter 2 Literature Review

* Easy to learn

Tcl is a very simple language. Experienced programmers can learn Tcl and

-

produce their first interesting application in just a few hours or days. Casual
programmers can also learn Tcl quickly. Tcl is often used in situations where
experienced programmers create a base set of facilities, and more casual
programmers write Tcl scripts to customize those facilities, create business

rules,etc.

* Network-aware applications
Tcl provide easier acess to networking facilities. Servers and clients can be
created in a few minutes with just a few lines of code. Tcl provides a great

way to add network interfaces to legacy applications.

* The Tcl community
Another attractive reason for using Tcl is the large and helpful community of
Tcl users and developers. The Tcl community is a constant source of ideas,

free extensions, applications, and technical support.

2.7.2.2 Other scripting language

Tcl is a member of the class of languages known as scripting languages. There are
many other scripting languages besides Tcl, including JavaScript, Visual Basic, Perl,
and others. As a group, all of the scripting languages tend to be used for integration

applications, and all offer significant benefits over system programming languages.

Each scripting language has particular strengths. For example, JavaScript is known
for its smooth integration with Web browsers, Visual Basic for its easy-to-learn

development environment, and Perl for its string-handling capabilities. Tcl's greatest

Chapter 2 Literature Review

Strength is its versatility: it can be embedded in applications or used standalone, it has
outstanding GUI capabilities, and it can easily be connected to nearly any other
application or protocol. Tcl was designed from the start to be used for many different
purposes in many different situations, and the tremendous diversity of Tcl

applications demonstrates that it has met this design goal.

In contrast, most other scripting languages were designed for a narrower set of tasks.
They perform well for those specific tasks but they aren't used for as many different
things as Tcl. For example, JavaScript is the obvious choice to use for simple
scripting in a browser, but it is rarely used for anything outside the browser. Visual
Basic provides excellent facilities for creating Windows GUIs, but it isn't suitable for
integrating Windows desktops with Unix servers. Perl's string handling makes it an
excellent choice for system administration tasks, report generation, and Web
scripting, but it doesn't have native GUI capabilities and it isn't as easily embeddable

as Tcl.

39

Chapter 2 Literature Review

The scripting language comparison chart below gives an overview of the features

available in each of the most popular scripting languages today.

| (it [Pava [Visual
Features [Tel ||Perl
|Seript [Basic
g"sp;e“a“;,f use [Rapid development — 7z 7 Ic
;Gréat regular expressions —:/ 720
Breadthof func':tionalityr ?'E'asily ektehsible | ___-"~_] N
zEmbeddable e
[Easy GUIs i (G
IntemetandWebenabled W L7 2 a7
’Enterprise usage [Cross platform v v ;J
| ‘!‘I'ﬁternétionalization support F /L Ay v 4
4 3
Thread safe 7 v
| tDatabasc access T/Wf e B L e

Table 2.3: Comparison of today popular scripting languages

2.8 Summary

This chapter has covered the primary research background of this project and relevant
knowledge needed to develop the network simulator. A more detailed explanation of

the simulator will be presented in the following chapter.

40

Chapter 3 Research on Ns-2 and JaNetSim

Chapter 3 Ns-2 and JaNetSim

3.1 Ns-2 Concept Overview

Ns-2 is an Object-Oriented, discrete event network Simulator developed at UC
Berkely. It is written in C++ and OTcl(Object-Oriented Tcl) and primarily uses OTcl
as Command and Configuration Language. Ns is mailnly used for simulating local

and wide area networks. It simulates a wide variety of IP networks.(Fall et al. 2003)

It implements network protocols such as TCP and UDP, traffic source behaviour such
as FTP, Telnet, Web, CBR & VBR. router queue management mechanisms such as
Drop Tail, RED and CBOQ, routing algorithms such as Dijkstra and more. Ns also
implements multicasting and some of the MAC layer protocols for LAN protocols for
LAN simulations. The Ns project is now part of the VINT project that develops tools
for Simulation results display, analysis & converters that convert n/w topologies

generated by well-known generators to Ns formats.

3.1.1 OTcl Linkage

Origiﬂally, Ns is written in C++, with OTcl interpreter as a user front end. In C+, it
Supports a class hierarchy called Compiled hierarchy and in OTcl interpreter, the
Similar version are called interpret hierarchy. There is a one-one correspondence
between classes of these two hierarchies. The root of the hierarchy is Class TclObject.

User instantised objects are mirrored through methods defined in Class TclObject,

Chapter 3 Research on Ns-2 and JaNetSim

Users create new simulator objects through interpreter that are instantiated within the
interpreter. The interpreted hierarchy is automatically established through methods

defined in the TclClass.

Root of ns-2 object hierarchy

g | bind(): link variable values between
. TclObject |C++ and OTcl
e command(): link OTcl methods to C++

A RS O N

i s implementations
TcICIass i " |Create and initialize TclObject’s
Tcl ~ |C++ methods to access Tcl interpreter

TcICommand Standalone global commands

‘.E'_'r'ﬁl_‘)é’ddlechl ns script initialization

Figure 3.1 : C++4/OTecl Linkage

3.1.2 Duality Need for Different Language
Ns developer can be considered working on Tcl, running simulations in Tcl using the
simulator objects in OTcl library. The event scheduler & most of the components are

implemented in C++ and available to OTcl through an OTcl linkage

C++
For detailed simulations of protocols, programming language like C++ can efficiently

handles bytes, packet header and implements algorithm efficiently,

Tcl
In order to vary the parameter or configuration of changing scenarios, iteration time is
more important than run-time of the part of task.Thus this can be accomplished by a

scripting language like Tcl.

Chapter 3 Research on Ns-2 and JaNetSim

Figure 3.2 : OTcl and C++ duality

Ns is Object-Oriented TCl (OTcl) script interpreter that has a simulation event
scheduler and network component object libraries and network setup modules called
plumbing modules. The program that runs Ns is in OTcl script Language. The basic
script sets up & runs a simulation of network. This initiates an event scheduler, sets
up network topology using network objects and plumbing functions in the library and
tells traffic source when to start & stop. When a user wants to make a new object,
they can either write a new object from the scratch or make a compound object from

the object library & plumb data through it.

Simulation results are usually contains in files called Trace files'. When the
simulation is over Ns produces one or more text based output files that contain
simulation data as specified in the input script. It can also be viewed using a nice

graphical tool called 'Network Animator' or NAM in short.

43

Chapter 3 Research on Ns-2 and JaNetSim

3.2 Simulator Basics

Class Simulator

The overall simulator is described by a Tcl class Simulator. It provides a set of
interfaces for configuring a simulation and for choosing the type of event scheduler
used to drive the simulation. A simulation script generally begins by creating an
instance of this class and calling various methods to create nodes, topologies, and

configure other aspects of the simulation.

3.2.1 Simulator Initialization
When a new simulation object is created in tcl, the initialization procedure performs

the following operations:

. initialize the packet format (calls create_packetformat)
2 create a scheduler (defaults to a calendar scheduler)
. create a “null agent” (a discard sink used in various places)

The packet format initialization sets up field offsets within packets used by the entire
simulation.The scheduler runs the simulation in an event-driven manner and may be
replaced by alternative schedulers which provide somewhat different The null agent is

created with the following call:

set nullAgent_ [new Agent/Null]

A

Chapter 3 Research on Ns-2 and JaNetSim

This agent is generally useful as a sink for dropped packets or as a destination for

packets that are not counted or recorded.

3.2.2 Schedulers and Events

The simulator is driven by event based activities. Firstly, the scheduler runs by
selecting the following earliest event, executing it to completion and proceed with
execution of the next event. The events are measured in seconds. Currently, the
simulator is able to support only a single process of event execution at any given time.

Presently, there are four types of schedulers defined in the simulator:

* Simple Linked List Scheduler
The list scheduler (class Scheduler/List) implements the scheduler using a
simple linked-list structure. The list is kept in time-order (earliest to latest), so
event insertion and deletion require scanning the list to find the appropriate
entry.Choosing the next event for execution requires trimming the first entry
off the head of the list. This implementation preserves event execution in a

FIFO manner for simultaneous events.

* Heap Scheduler
The heap scheduler (class Scheduler/Heap) implements the scheduler using a
heap structure. This structure is superior to the list structure for a large number
of events. This implementation in ns v2 is borrowed from the MaRS-2.0
simulator; it is believed that MaRS itself borrowed the code fromNetSim,

although this lineage has not been completely verified.

Chapter 3 Research on Ns-2 and JaNetSim

Calendar Queue Scheduler
The calendar queue scheduler (class Scheduler/Calendar) uses a data structure
analogous to a one-year desk calendar, in which events on the same month/day

of multiple years can be recorded in one day.

Real Time Scheduler

The real-time scheduler (class Scheduler/RealTime) attempts to synchronize
the execution of events with real-time. It is currently implemented as a
subclass of the list scheduler. The real-time capability in ns is still under
development, but is used to introduce an ns simulated network into a real-
world topology to experiment with easily-configured network topologies,
cross-traffic, etc. This only works for relatively slow network traffic data rates,
as the simulator must be able to keep pace with the real-world packet arrival

rate, and this synchronization is not presently enforced.

3.2.3 Nodes and Packet Forwarding

Each simulation requires a single instance of the Simulator to control and operate that

simulation. The class provides instance procedures to create and manage the topology,

and internally stores references to each element of the topology. The basic primitive

for creating a node is

set ns [new Simulator| $ns node

The instance procedure node constructs a node out of more simple classifier. The

Node itself is a standalone class in OTcl. However, most of the components of the

node are themselves TclObjects. This simple structure consists of two TelObjects: an

46

Chapter 3 Research on Ns-2 and JaNetSim

address classifer (classifer) and a port classifier (dmux_). The function of these
classifiers is to distribute incoming packets to the correct agent or outgoing link. All

nodes contain at least the following components:

An address or id_, monotonically increasing by 1, A list of neighbors (neighbor), A
list of agents (agent), A node type identifier (nodetype_) and a routing module
Nodes can be configured by the users themselves using one of the control functions,
Address and port number management, routing functions, Agent Management and
neighbor tracking functions. The function of a node when it receives a packet is to
examine the packet's fields, usually its destination address, and on occasion, its source
address. It should then map the values to an outgoing interface object that is the next
downstream recipient of this packet. In this task is performed by a simple classifier
object. Multiple classifier objects, each looking at a specific portion of the packet
forward the packet through the node. A node uses many different types of classifiers
for different purposes. A classifier provides a way to match a packet against some
logical criteria and retrieve a reference to another simulation object based on the
match results. Each classifier contains a table of simulation objects indexed by slot
number. The job of a classifier is to determine the slot number associated with a
received packet and forward that packet to the object referenced by that particular

slot.

A node is essentially a collection of classifiers. The simplest node (unicast) contains
only one address classifier and one port classifier. When one extends the functionality
of the node, more classifiers are added into the base node, for instance, the multicast

node. As more function blocks is added, and each of these blocks requires its own

™

Chapter 3 Research on Ns-2 and JaNetSim

classifier(s),it becomes important for the node to provide a uniform interface to
organize these classifiers and to bridge these classifiers to the route computation

blocks.

Routing
Modules
RtMadule/Base ———| Pass § _‘J Node i i
rauting AT 4 74 routingg n Route [
add-roule s 5 add-route 1 Computation f
delete-roule Hier . dzlete-routs T
trans port "). trans port : User |
attach Meast p—pntd—p altach = Simulaticn
detach St A detach [Lo sk
Ilanagement s | Classifier
register MPLS " insert-antry
unregister £ install-=ntry
e - \ install-demux |3
. el e
-

Figure 3.3 : Interaction among node, routing module, and routing

3.2.4 Links

This is the second aspect of defining the topology. Links are used to connect the
nodes and complete the topology. Apart from simple point to point links, it supports a
variety of other media, including an emulation of a multi-access LAN using a mesh of

simple links, and other true simulation of wireless and broadcast media

set ns [new Simulator] ~ $ns simplex-link {node0} {nodel} {bandwidth}

{delay} {queue_type}

The command creates a link from node0 to nodel, with specified bandwidth and delay
characteristics. The link uses a queue of type queue_type. The procedure also adds a

TTL checker to the link. Five instance variables define the link- namely head, queue,

link, ttl,drophead.

Chapter 3 Research on Ns-2 and JaNetSim

nl
head entry
—0—» enqT_ » queue_ - deqT_ link_ e

.

drophead »{ drpT_

Figure 3.4 : Composite Construction of a Unidirectional Link

enqT _ Reference to the element that traces packets entering queue_.
deqT_ Reference to the element that traces packets leaving queue_.
drpT_ Reference to the element that traces packets dropped from queue_.
revT_ Reference to the element that traces packets received by the next

node.

The instance variables enqT, deqT, drpT, revT track the trace elements. Delays
represent the time required for a packet to traverse a link. A special form of this object
(**dynamic link") also captures the possibility of a link failure. The amount of time
required for a packet to traverse a link is defined to be speed of the link in bits/sec,

and is the link delay in seconds. The implementation of link delays is closely

associated with the blocking procedures.

3.2.5 Queue Management and Packet Scheduling

Queues represent locations where packets may be held (or dropped). Packet
scheduling refers to the decision process used to choose which packets should be
serviced or dropped. Buffer management refers to any particular discipline used to

regulate the occupancy of a particular queue. At present, support is included for drop-

49

Chapter 3 Research on Ns-2 and JaNetSim

tail (FIFO) queueing, RED buffer management, CBQ (including a priority and round-
robin scheduler), and variants of Fair Queueing including, Fair Queueing (FQ),
Stochastic Fair Queueing (SFQ), and Deficit Round-Robin (DRR). In the common
case where a delay element is downstream from a queue, the queue may be blocked
until it is re-enabled by its downstream neighbor. This is the mechanism by which
transmission delay is simulated. In addition, queues may be forcibly blocked or
unblocked at arbitrary times by their neighbors (which is used to implement multi-
queue aggregate queues with inter-queue flow control). Packet drops are implemented
in such a way that queues contain a ““drop destination"; that is, an object that receives
all packets dropped by a queue. This can be useful to (for example) keep statistics on
dropped packets. The Queue class is derived from a Connector base class. It provides
a base class used by particular types of (derived) queue classes, as well as a call-back

function to implement blocking.

3.2.6 Agents

Agents represent endpoints where network-layer packets are constructed or
consumed, and are used in the implementation of protocols at various layers. The
Agent has an implementation partly in OTcl and partly in C++. The C++ internal
Agent includes enough internal state to assign various fields to a simulated packets
before its sent. The state includes the following addr-the node address, dst-where pkts
are sent to, size, type-the type of the packet, fid-the flow identifier, prio-the IP priority
field, flags-packet flags, defttl-default ip TTL. Agent supports packet generation &
reception. The common agent methods are meant to allocate packets, receiving the

packets, specifying timeout methods.

50

Chapter 3 Research on Ns-2 and JaNetSim

3.3 NAM

Nam is a Tcl/TK based animation tool for viewing network simulation traces and real
world packet tracedata. It is is used to visualize the ns simulations and real world
packet trace data. The design theory behind nam was to create an animator that is able
to read large animation data sets and be extensible enough so that it could be used
indifferent network visualization situations. Under this constraint nam was designed
to read simple animation event commands from a large trace file. In order to handle
large animtion data sets a minimum amount of information is kept .The first step to
use nam is to produce the trace file. The trace file contains topology information, e.g.,

nodes, links, as well as packet traces.

Usually, the trace file is generated by ns. During an ns simulation, user can produce
topology configurations, layout information, and packet traces using tracing events in
Ns.

However any application can generate a nam trace file. When the trace file is
generated, it is ready to be animated by nam. Upon startup, nam will read the
tracefile, create topology, pop up a window, do layout if necessary, and then pause at
time 0. Through its user interface, nam provides control over many

aspects of animation.

D
i

Chapter 3 Research on Ns-2 and JaNetSim

s N Jve cgarn trs A4l = 7
e Faut $orwarl Uy SV Cley wwoali
)

3 : \ Plyemuin J st
Play animabios, Ledaands) 4 I Dt st izl o bz

)] } { / Thne bebwesr, o aniabion, Yranes
‘ { .

: : n Clung s e "Flep’ panazneces
rtuok patognant | o [}

Fewied by 25+ Cleg seoomde i
bl Er | g 40T s 00
§* M| At f ey 2 Bunn

50 nk, 4 ’ P i 0600060 e

Y

WA
;

e o]
”

it

Asgmmasicn arsa

L 12 I ! 1 L 1 1 (" 1 1

Ante lageait; Ca 015 O [l.lls Htorations |"1(ll

Corag wbider foz speedic =

panl s tie i P mute st

f
! 1
Attacave foze S yonl modd ‘ Nuwebe of toatan fa yol

R opeslaty o fexee fee layeat modal

Figure 3.5 : Screenshot of Nam interface

3.3.1 Objects In Nam

In Nam the animation is supported by five different components. The building blocks

in Nam are :

. Node
. Link

o Queue
C Packet

o Agent

wn
o

Chapter 3 Research on Ns-2 and JaNetSim

Node

In Nam, the node represents a source/ host/ router. Nam will terminate if there are
duplication of definition for the same node. Node may have many shapes like square,
square and hexagon. Once created the node cannot change shape. Node can be created

in many colour which represent various state during the animation.

Link

Links are created to form a connection between nodes to build network topology.
Nam links are internally simplex, but it is invisible to the users. The trace event will
creates two simplex links and other necessary setups, hence it looks to users
identical to a duplex link. Link may be represented in different colors, to simulate

flow of traffic during animation.

Queue

Queue needs to be constructed in Nam between two nodes. Unlike link, Nam queue is
associated to a simplex link. Queues are visualized as stacks of packet that need to be
transmitted between nodes. In trace events, parameters like angle between the line and

horizontal line can be logged to trace events.

Packet

In Nam, packet is visualized as a block with an arrow. The direction of the arrow
shows the flow direction of the packet. Queued packets are shown as little squares. A
packet may be dropped from a queue or a link. Dropped packets are shown as
rotating squares, and disappear at the end of the screen. Dropped packets are not

visible during backward animation.

n
L%

Chapter 3 Research on Ns-2 and JaNetSim

Agent
Agents are used to separate protocol states from nodes. They are always associated
with nodes. An agent has a name, which is a unique identifier of the agent. It is shown

as a square with its name inside, and a line link the square to its associated node.

3.4 Creating Topology

In Ns-2, Tecl script is developed to simple toplogy. Tcl script defines the simulation
scenario by including the topology and events.The script is able to create some output
on stdout, write a trace file or start nam to visualize the animation .Below show the

generic script structure in Tcl format.(Greis, Marc 2001)

set ns [new Simulator]

[Turn on tracing]

Create topology

Setup packet loss, link dynamics

Create routing agents

Create:

- multicast groups

- protocol agents

- application and/or setup traffic sources
Post-processing procs

Start simulation

First of all, create a simulator object. This is done with the command

set ns [new Simulator]

Figure 3.6 : Basic topology script in Tel (Part 1 of' 5)

Chapter 3 Research on Ns-2 and JaNetSim

Now open a file for writing that is going to be used for the nam trace data.

set nf [open out.nam w]|

$ns namtrace-all $nf

Figure 3.7 : Basic topology script in Tcl (Part 2 of 5)

The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. The
second line tell the simulator object created above to write all simulation data that is

going to be relevant for nam into this file.

The next step is to add a 'finish' procedure that closes the trace file and starts nam.

proc finish {} {
global ns nf
$ns flush-trace
close $nf
exec nam out.nam &

exit 0

Figure 3.8 : Basic topology script in Tcl (Part 3 of 5)
The next line tells the simulator object to execute the 'finish' procedure after 5.0

seconds of simulation time.

$ns at 5.0 "finish"

Figure 3.9 : Basic topology script in Tel (Part 4 of §)

Chapter 3 Research on Ns-2 and JaNetSim

The last line finally starts the simulation.

$ns run

Figure 3.10 : Basic topology script in Tecl (Part 5 of 5)

The segment of the above code will be use as a starting point to write a Tcl script for
more complex example. If the coding above is execute, the system will prompt an
error message ‘nam : empty trace file out.nam ’because objects and events have not

been defined yet

Two nodes and one link

The following two lines define the two nodes.

set n0 [$ns node]

set nl [$ns node]
Figure 3.11 : Simple script in Tcl (Part 1 of 3)

A new node object is created with the command '$ns node'. The above code creates

two nodes and assigns them to the handles 'n0'and 'nl".

The next line connects the two nodes.

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

Figure 3.12 : Simple script in Tel (Part 2 of 3)

56

Chapter 3 Research on Ns-2 and JaNetSim

This line tells the simulator object to connect the nodes n0 and n1 with a duplex link
with the bandwidth 1Megabit, a delay of 10ms and a DropTail queue. Now the file
can be save and the script can be started with command line ‘ns example1.tcl’.Nam

will be started automatically resembling the pictures below

©

©

Figure 3.13 : Simple script in Tcl (Part 2 of 3)

Sending data
In Ns-2, data is always being sent from one 'agent' to another. So the next step is to
create an agent object that sends data from node n0, and another agent object that

receives the data on node nl.

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]

$ebr0 set packetSize_ 500

$ebr0 set interval_ 0,005

$ebr0 attach-agent $udp0

57

Chapter 3 Research on Ns-2 and JaNetSim

Figure 3.14 : Create data source between nodes (Part 1 of 5)

These lines create a UDP agent and attach it to the node n0, then attach a CBR traffic
generator to the UDP agent. CBR stands for 'constant bit rate'. The packetSize is
being set to 500 bytes and a packet will be sent every 0.005 seconds (i.e. 200 packets

per second).

The next lines create a Null agent which acts as traffic sink and attach it to node n1.

set null0 [new Agent/Null]

$ns attach-agent $n1 $null0

Figure 3.15 : Create data source between nodes (Part 2 of 5)

Now the two agents have to be connected with each other.

$ns connect $udp0 $null0

Figure 3.16 : Create data source between nodes (Part 3 of 5)

And now inform the CBR agent when to send data and when to stop sending,. It's

probably best to put the following lines just before the line '$ns at 5.0 "finish"".

$ns at 0.5 "$cbrO start"

$ns at 4.5 "$cbr0 stop"

Figure 3.17 : Create data source between nodes (Part 4 of 5)

Chapter 3 Research on Ns-2 and JaNetSim

The file can be saved and restart the simulation again. When click on the ‘play’ button
in the nam window, after 0.5 simulation seconds, node 0 starts sending data packets to

node 1.

,©

>

0

Figure 3.18 : Create data source between nodes (Part 5 of 5)

Chapter 3 Research on Ns-2 and JaNetSim

3.5 Java Network Simulator (JaNetSim)

The basic underlying concepts used of JaNetSim are:
* discrete-event model
* central simulation engine with a centralized event manager.
* simulation scenario consists of a finite number of interconnected components
(simulation objects), each with a set of parameters (component properties).
* Simulation execution involves components sending messages among each
other. A message is sent by scheduling an event (to happen some time later)

for the target component (Lim, Shiau Hong 2002).

Simulation Engine

[Event Gl 1O & Mise.
Management Management Tools

e 2 O

Simulation Topolagy

Simulation Simulation
Compunent e || (ORI

Figure 3.19 : JaNetSim Overall Architecture

The architecture of the simulator enables a wide simulation of various network
components virtually possible by emulating transmission of data over the network

These concepts are modeled from the NIST ATM/HFC Network Simulator.

60

Chapter 3 Research on Ns-2 and JaNetSim

3.5.1 JavaSim

JavaSim is the main object that contains all the functionalities in the simulator. It
provides all GUI functions (together with SimPanel) and main JFrame for the
application. Besides that, it provides the event manager to handle event-passing
among all components. There will be only one instances of the JavaSim object

throughout the simulation.

There are few services provided by the JavaSim object as below:

* Provide the current simulation time in tick
* Provide a list of all existing SimComponent
* Provide communication between any components which involve creation of a

SimEvent

3.5.2 SimClock
This class serves its function as a time translator to define, interpret and provide

conversion between tick and actual time

3.5.3 SimEvent

SimEvent caters for communications between components by using enquiring
method. In order for communication to happen between source and destination ,the
source component will create SimEvent and name the destination component as
receiver and enqueue the event. The SimEvent will define time as one of its parameter

to enable the source component to react to the event that had been targeted at that

component

61

Chapter 3 Research on Ns-2 and JaNetSim

There are two types of events:
* Public Event
= can be enqueued for itself or for another SimComponent
= defined in the SimProvider object
» development of new SimComponent and event types require the
recompilation of this object
* Private Event
= can only be enqueued for itself
» private events are defined within the particular SimComponent source
itself
* private events must be greater than a constant

(SimProvider.EV_PRIVATE) defined in SimProvider

3.5.4 SimComponent

This is the most important class to understand in the simulator in order to
development new components. Every network component in the simulation inherits
SimComponent. The SimComponent class itself should not be instantiated because it
only provides the skeleton for an actual component. A new component should extends
SimComponent and override its various methods in order to provide meaningful

operations for the component.

62

Chapter 3 Research on Ns-2 and JaNetSim

Below are the methods available in the SimComponent:

METHOD DESCRIPTION

start() perform any operation needed when the

simulation starts

reset() perform a reset operation in order to bring

the status of the component back to the same

status as if it is just newly created

action(SimEvent e this is the event handler of this component,
p

and will be called by the simulator as the

destination fires. Besides that, all private

events will be handled in this method

isConnectable(SimComponent this is called by the simulation engine when a
component is about to be connected to this
comp)
component. The comp is a reference to the
new component.
addNeighbor(SimComponent this is called by the simulation engine when a
new neighbor is connected to this
comp)

component.

removeNeighbor(SimComponent | this is called by the simulation engine when a

neighbor is disconnected from this

comp)
component.

this method is used to copy parameter values

of another SimComponent of the same type.

copy(SimComponent comp)

getImage() this method is used to load an image file to

represent the component in the simulator

Table 3.1 : Methods define in SimComponent

63

Chapter 3 Research on Ns-2 and JaNetSim

Besides that, every SimComponent must have a component class and a component
type, as defined in the SimProvider class. The getCompClass() method can be used to
obtain the component class whereas getCompType() method can be used to get the

component type.

3.5.5 SimParameter
Every SimComponent can have internal parameters or external parameters, which can
be shown or accessible by users. All external parameters must inherit SimParameter.

By extending SimParameter, one obtains parameter logging and meter display

features automatically.

Any parameter that inherits SimParameter will provide a constructor that includes at
least 4 parameters, which are name of the parameter, name of the component own the

parameter, time when the parameter is created and whether the parameter can be

logged in the log file.

The current simulation engine provides 3 general purpose classes that all inherit from
SimParameter: SimParamint, SimParamDouble, and SimParamBool. Obviously,
these 3 objects provide support for integer, double and Boolean parameters.

Extending SimParameter accordingly can create other types of parameters.

O4

Chapter 3 Research on Ns-2 and JaNetSim

SimParameter
— VA
B] s
‘ L o=) | R
Inherit wo—a Inherit : S Inherit
P ! SR S A s S il il
SimParamInt | . SimParamDouble | ' SimParamBool

Figure 3.20 : Inheritance from SimParameter class

There is one important requirement to all parameters that may be added/ removed
after the creation of a component. Any addition or removal of SimParameter from the
component’s parameter list (java.util.List params) should be followed by a
notification call to the main JavaSim object, by this statement:
theSim.notifyParametersChange(this), which ensure that any opened dialogs

containing those parameters get updated/closed.

When a SimParameter is created with isLoggable true, it’s value will not get logged
when for example, a setValue() call is done. This is to avoid excessive or unnecessary
logging of data. Each component is responsible in controlling the rate of logging. In

order to make sure a new value of a SimParameter is logged, one must call the

update(long tick) method.

3.6 Object Serialization and Load/Save Function
The simulator uses object serialization as a form of light-weight persistence. This
allows accurate saving and restoring of the simulation states without much effort from

the components developers.

65

Chapter 3 Research on Ns-2 and JaNetSim

In this simulator, every SimComponent and SimParameter is serializable. This means
that each SimComponent and SimParameter must implements the java.io.Serializable
interface. This rule carries down to all class members of the particular SimComponent
or SimParameter. That is, if a component contains a member that is not primitive java
types, it should also be Serializable. In JaNetSim, the topology can be saved in two

format, from Menu --- >Save as... and Menu ---> Save Topology.

£ JaNetSim

File | Edit View To

New
Open...
Save
Save As...

Load Topology...
Save Topology...

Reset Log File
Exit

Figure 3.21 : Screenshot of save format in JaNetSim

From the first format, the layout of the topology will be saved with all the exact
values in parameter at the time of saving. When the topology is reloaded again it will
display the layout of the topology with the values logged by different devices before
saving. If the user selects to save topology from the second method it will only save
the layout of the topology without all the parameter. All the parameter from the

previous simulation will be wiped off.

60

Chapter 4 System Analysis

Chapter 4 System Analysis

4.1 Development Tools

The most suitable and appropriate tools for developing the system have been
identified and selected. The tools have been selected include the development

language as well as the entire platform on which the development of the project is

developed.
4.1.1 Programming Language

4.1.1.1 Java Programming

Java is a small, simple, dynamic and object oriented programming language coupled
with strongly typed execution handling mechanism for writing distributed,
dynamically extensible programs.

Java is object oriented programming language especially designed for use in internet
environment. Object Oriented Programming technique use method that models the
characteristics of abstract or real objects using classes and objects. Software objects
have state and behavior as they are modeled after-real world objects. An object is a
software bundle of variables and related methods. A software object maintains its
state in one or more variables. A variable is an item of data named by an identifier. A

software object implements its behavior with methods. A method is a function

(subroutine) associated with an object.

67

Chapter 4

System Analysis

Methods
(hehavior)

Yariahles
(state)

Figure 4.1 : Common visual representation of a software object.

4.1.1.2 Tecl

One of the most powerful and versatile scripting language today for creating

integration applications is Tcl. Tcl is a very simple scripting language made up of

commands separated by new lines or semicolons.

Integration applications have characteristics quite different from traditional

programming tasks. and often incorporate business rules and processes. Therefore, it

tend to ill-structurized and evolve easily. Besides that, Tcl provide syntax that can be

understand easily thus it is often popular with not sophisticated programmer.

68

Chapter 4 System Analysis

4.2 System Requirements

4.2.1 Functional Requirements

4.2.1.1 Input of converter

The converter module requires input for generating topology. The input should be in
topology format with extensions of *.tcl (Ns-2) and *top (JaNetSim).The topology

should contain all the information of the network configuration to be simulated.

Basic and minimum information to be included into the topology file :

* Information of the network components like nodes and link
 Interconnection with neighboring components

* Values of parameters of each components

4.2.1.2 Converter
The converter module is the core of the thesis. It is developed to enable conversion of

topology format from Ns-2 to JaNetSim to simulate a network in different

environment.

The converter should be able to:

* Read topology file format in *.tcl in Ns-2 and convert the topology to file

format to *.top in JaNetSim and vice versa.

* Write to topology file format in *.tcl for Ns-2 and *.top for JaNetSim.

69

Chapter 4 System Analysis

* Recreate the converted topology with minimum conversion including the

parameters and other needed values as in the original topology file.

* Save the layout of topology in choice of file format

* Log all the values and parameters failed for conversion.

4.2.1.3 Output

There should be two outputs by the end of conversion:
* The converted version of the topology file format for Ns-2 or JaNetSim in text
file format
* Alog file for informing the users of containing all the values of the data and

parameters failed to be converted during the process

4.2.2 Non-Functional Requirements

Non-functional requirements are requirements which are not directly concerned with
the specific function delivered by the system. Rather it may relate to the system
properties or alternatively define the constraints of the system. Below are the

functional requirements for the proposed system:

4.2.2.1 Physical Environment

The converter will be developed in Windows environment by using Microsoft
Window 98 with Intell Pentium III 800 Mhz processor and memory size of 128
MB.For testing purposes, *.tcl topology format have to be execute in Ns-2 which run

on Linux Red Hat 9.0 under the same hardware configuration,

70

Chapter 4 System Analysis

4.2.2.2 Users and human factor

The user of the converter program should have at least understood the basic
requirements in creating a topology to simulate a network .Users too should aware of
all the parameters of the component used in the simulator. Users should understand

about the relation of different network components and their interconnection to form a

topology

4.2.2.3 .Flexibility

The converter program should be able to change easily to support for changes and
redesign purposes. Besides that it should be able to integrate without seamless into the
existing simulator. The components and objects should be independent so that

modification of the simulation will be fuss free and time saving.

4.2.2.4 Usability

The program should be user friendly and user must be able to ues the system in
shortest time. GUI interface of the system should accustom the user with sense of
presence and familiarity with the Windows interface. The system functionalities must

be self explaining and consistent with the design of the existing system.

4.2.2.5 Maintainability
The program should be designed in a way that required less effort to maintain and

robust. The task of locating and fixing an error must be simple and less troublesome.

71

Chapter 4 System Analysis

4.2.2.6 Constraint

As the conversion involves two topology formats for two different systems with slight
different in components and connection method, not all the components can be
mapped directly to each another. During the conversion some of the values and
parameters may have to be alter to suit the best possible condition. All the values lost

will be save into a log file for reference.

Chapter 5 System Design

Chapter 5 System Design

5.1 Introduction

Design of the topology converter is based on the information collected during the
system analysis and requirements stage. The topology converter is designed for
conversion of topology file format in Ns-2 and JaNetSim system. The converter
should be able to integrate with the existing system and comes with user friendly

window based graphical user interface to reduce user time to learn the usage of

topology converter..

5.2 Technique used

There are two techniques involves in the design for the components. The first
technique is modular decomposition and the second technique will be event oriented
decomposition. Description of the both technique will be explained in details in the

following segment.

5.2.1 Modular decomposition

For this technique, the system is constructed based on assigning functions to the
components. Design of the system begins with a high-level description of the function

to be implemented. From here, the details and relation of component organization will

be produced.

73

Chapter 5 System Design

5.2.2 Event-oriented decomposition
This approach allows the system design to be base on events that are handled by the
system. Events are actions that prompt the system to perform some processing

activities and several events will be discuss in the next part.

5.3 System Design

The system design can be divided into three components, the input design,

functionality design and output design

5.3.1 Input design

The converter program will take Ns-2 Tcl script and JaNetSim topology file as an
input to the system. Basically both of the file will contain information of the topology
including parameters and values of input and output of each component. The file also

must contain the list of neighboring components and lists of routes in the class.

74

Chapter 5 System Design

5.3.2.1 File reading

s]

File opened for

No

reading?

Read line while not reach EOF

A
Create component

Initialize Log file

parameters?

Yes

Check connection

Connect
neighbours?

Create route

4
Reach the end of file

Y

Start Simulation

G

Figure 5.1 : Flow chart of file reading

75

Chapter 5 System Design

5.3.2 Functionality Design
Functionality design explains the design of classes for each component. This includes

their functionality, major attributes and major method in the class design.

5.3.2.1 NodeProperties

The node properties class will stores all the properties of each node in the network

Major attributes

é?jAftribute | Description | |

XCoordinate | location of x-coordinate on the

graph

iYCugéhrhdi'n'até “location of y-coordinate on the
graph

)."'rio‘deL'abel | node identifier ba]

v@édeType l type of node /|

Table 5.1 : Major attributes in NodeProperties

Major methods

\Method B! Descrlptlon ol
| getX() | return the X-position o RO
‘ SetXO __|[setthex-position |
..... || return they-position |
|| setthe y-position o
]jﬂ»return"tﬁh;}:‘—rx_qq; name]
] set the node name |
getType() L rcturn the node LYnERISI AT
selType() | setthenodetype |

Table 5.2 : Major methods in NodeProperties

76

Chapter 5 System Design

5.3.2.2 LinkProperties

Link properties will store all the properties of each node in the network

Major attributes

*Attnbute | Description |
(distance | the distance between two nodes |
bandwidth | the bandwidth of the link 1
‘delay | the delay between the link]
label | link identifier]
unidirectional | type of link, eiher simlpex or

' duplex

Table 5.3 : Major attributes in LinkProperties

Major methods

] Descrlptxon g

‘Method :
LsetBandw1dth() | set the link bdndw1dth

' getBandwxdth() Bk retum the value of bandwxdth

; setLabel() || set the lmk 1dcnt1f1er
getLabel()] return E}le: lmk 1dent1fxer

. setDlrectxon() il returQO for simplex, 1 for duplex
L_'S:_e_t_wtance() J\ set the d: distance between node

_getDistance() || return m distance

\ setDelay | set the delay between nodes

e —

|
|
N
7 |
|
_getDirection() | get the line type]
il
|
|
il
|

Table 5.4 : Major methods in LinkProperties

5.3.2.3 Node

The node class represents individual node on the network.The properties of the node

can be invoke by calling node.getProperties().

Major attribute

| /’:Erﬁ);u;] Deqcrnptlon TPt 4
key J unique key xdcnufm for lndlvuhml node |

Table 5.5 : Major attributes in Node

77

Chapter 5

System Design
Major method
%?Method” || Description N |l
& getKey() | return the key |
tsetKey() | assign unique key value to node |

Table 5.6 : Major methods in NodeProperties

5.3.2.4 Link

Link class represents a link between nodes.The link of the properties cn be invoke by

calling link.getProperties()

Major attributes

Wiitribute. . |j Description l
ﬁ' fromNode ‘: source node l
toNode | destination node]'

Table 5.7 : Major attributes in Link

Major methods
([Method [Deseription
| fromNode() [return source node |
|| 1oNode() [return destination node
l.},‘.{f,{l,af,oynd() .J|wc::§'1'1~r1.ect.ﬂt~l‘1‘é-s§u'rcé and destination node |
ttOStrmg() Tl _‘c}.i_i'splay the source and deéfination node |

Table 5.8 : Major methods in Link

78

Chapter 5 System Design

5.3.2.5 Converter

This class contains methods to perform the conversion method. The converter class

will also be handling a set of nodes and links

Method | Description l
1eadNS2() | read a file in Tcl script b
readSim() | read JanetSim topology format !
fromNS2() | convert the Tcl script to JaNetSim topology file form‘_q_t-;J‘
(1oNS2() | convert JanetSim topology file fomat to tcl script |

Table 5.9 : Major methods in Converter

5.3.2.6 MainClass

This class will create a command line interface to the topology conversion functions

‘or the converter.The main topology conversion functions are included in Converter

tlass.

3.3.2.7 ConverterException

“his class will be handling exception for error that occur during the conversion stage

3.3.3 Output design

The output design of the system will be the converted topologies and the log file. The

converter will record all the values of the parameter that fail to be converted for

derting the user in the log file.

79

Chépter 5 System Design

5.3.3.1 File Writing

=]

File opened for

No

reading?

Write all the component

A
Write all neighbors

A
Write all routes

Y

Append new line to file

Close file

A

@

Figure 5.2 : Flow chart of file writing

80

Chapter 5

System Design

5.4 Design Constraint

In order to implement the functionalities of network topology converter in this

project, the following assumption are made:

1) In both system, the type of component and representation of a network object

may not be similar from system to system

2) Only the subset of the components that are similar can be converted hence term

minimum conversion. Others network component will represented as closely as

possible with the available components in the system.

Below are all the components in JaNetSim and Ns-2

‘,“Tésting \ Router Switch ' BTE - Link - Application
i ? n 1
| Test Component 1 | IP Router . EthernetSwitch || BTE Generic Generic Link || TCP

| Test Component 2 | RIP Router || ATM Generic | IP BTE | application
‘ ‘ - Switch - upp
\ ATM LSR - application
| ; - UDP CBR
1 { ' CBR
| ; | application
1 1 | VBR
; i | application
| | i

Table 5.10 : Listing of all major component in JaNetSim

- Agent Traffic Source - Loss Model " Link Queue Type
| ‘
ICP CBR Periodic Generic Link Drop Tail
. TCP/RENO Exponential . Uniform Fair Queue
. TCP/Vegas FTP Stocastic Fair
. TCP/Fack Parento Queue
. UDP Telnet Deficit Round
| ertrm Robin
- Null RED

TCP Sink
. TCP Sink / Del Ack

- TCP Sink / Sack 1

(W —

Table 5.11 : Listing of all major component in Ns-2

81

Chapter 6 System Implementation

Chapter 6 System Implementation

System implementation plays an important role of converting previously analysis,

design and requirements into a real world system. The designs done in the earlier
stages were meant to provide ease in combining the sub modules into a fully
functioning system during implementation. Object oriented methodology is used at

the implementation phase of the development process through the Java programming

language.

6.1 JaNetSim to NS-2 conversion

The JaNetSim to NS-2 conversion will be implemented as the call function in the
SimGui class. The action will be perform when the JaNetSim to NS-2 button is click

by the user.The algorithm of the conversion runction is shown below:

else if(cmd.equals("JaNetSIM--->Ns-2"))

//open a save file dialog
//read file

[/create component
[/create link

[[create agent

[/write to file

//close file

}

Firstly, the converter will prompt a save dialog message to allow user to chose the

file save location.

fileChooser=new JFileChooser(System.getProperty("user.dir"));

Then it will create components, links and agents for conversion by keeping all the

essential parameters and the location coordinate.

SimComponent thiscomp=(SimComponent)components.get(i);

Chapter 6 System Implementation

Next, all the component will be assign an index number and this number contain the
component linking information. The linking information consists of the total
neighbors and the index number of every component attached to its neighboring

components.

for(int i=0;i<components.size();i++)

{
SimComponent thiscomp=(SimComponent)components.get(i);
SimComponent [] neighbors=thiscomp.getNeighbors();

}

Finally after writing all the topology information to the selected file, the file will be

save to the desired location and close.

outfile.close();

A dialog box will be prompt to user to show the summary of the conversion including
the number of nodes, links and TCP application successfully converted to NS

topology file.

6.2 NS-2 to JaNetSim conversion

The NS-2 to JaNetSim conversion will be implemented as the call function in the
SimGui class. The user will perform the action when the NS-2 to JaNetSim button is

click. The algorithm of the conversion function is shown below:

else if(cmd.equals("Ns-2--->JaNetSIM"))
{
/lopen a open file dialog
//read file
//set flag
//ereate component
//create agent
// close open file dialog
//assign link
/lopen a save file dialog
[/write to file
//close file

83

Chapter 6 System Implementation

First, the converter will prompt a open dialog message to allow user to chose the file

location for conversion.

fileChooser=new JFileChooser(System.getProperty("user.dir"));

As they is a slight variation in the NS topology file created in by NS-2 and the
topology converter, the flag function will check the selected topology file and set the
flag to value of 1 if the file is created by the topology converter. The flag is set to
distinguish certain parts of the program to perform specific function according to the

type of NS topology file.

if(aline.startsWith("## Generated"))
{

}

flag=1;

Next, the file reader will store all the nodes and the agents information in an array to
be retrieve in the later part. A new vector is declare to keep the information of the link

in non-redundant form.

Vector all=new Vector();

for(int i=0ji<nodel.length;i++)

{
if(!all.contains(node2[i]+"," +nodel[i]))
all.add(nodel[i]+"," +node2[i]);

}

After having all the important value store in an array, the file open for reading will be
close.

infile.close();
Then the program will be checking for extreme condition where the amount of node
to be converted is less than zero and more than maximum of twenty. If the amount of
node fail to comply with the allow number of nodes for conversion, an error message
will be prompt to the user and the program will exit back to mainframe. Else if the

conversion is successful, the following part will proceed.

A three dimension array will be create to store the information of the node number
and assigning link index number to the respective node in an sequence where it read

from,

84

Chapter 6 System Implementation

for(int i=0;i<m/2;i++)

{
conn_matric[i][0]=array1[i]; /nodel
conn_matric[i][1]=continuenodenum; //linkindex
conn_matric[i][2]=array2[i];//node2
continuenodenum-++;

}

A typical size of the three dimension array is conn_matric[i][3] where the size of the
row will be determine by the number of link and the column size is three to store the
information of nodel index number, the link index number and node 2 index number.

The array function will be illustrated by the sample below.

columnO columnl column2

row 0

| nodel | linkl || node2 |
rowl (| nodel || link2 [node3 |
row2 | nodel [link3 [noded |
w3 |node2 | link# | noded |
ow4 §[_node3 Jf link5 [noded
A A
node index
link index
node index

After the three dimension array is created the link information like the link index
number and the coordinate will be saved into another separate array to be retrieve
Jater. The node information will be sorted out in order in ascending order to facilitate

easy retrieval.

Object[] linknode=node.toArray();
Arrays.sort(linknode);

Then a hash map function will sort all the value in the three-dimension array to get the

following values

Chapter 6 System Implementation

i) Total number of connection for the node

ii) Index number of the neighboring node

The value will be saved into another array to be printed out to the file later. After
reading and storing all the necessary information in the buffer reader and reach end of

file, another save dialog box will be prompted to user to choose the file save location.

File theFile2=fileChooser.getSelectedFile();

After that all the information will be write to an outfile and a dialog box will be
prompt to user to show the summary of the conversion including the number of nodes,

links and TCP application successfully converted to JaNetSim topology file.

80

Chapter 7 System Testing

Chapter 7 System Testing

Testing is one of the critical phases in project development as it determines the final
outcome of the system. Testing was conducted before and after the system
implementation to detect pending errors. It represents the complete and extensive
review and challenge on the design and coding specification. Testing also provides
method to uncover logic errors and to test the system reliability. In this project, four

error detection concepts were used to test the system:

 Error detection to help to identify errors by inspection, walkthrough or other

type of errors .
e Error removal to debug and remove identified errors.
* Error tracking to find the cause of errors and fix the flaw
* Regression testing where the testing is conducted to find out whether the fixed

error is working properly and the rework codes actually fixes the error or fixes

it in one part and fails another part of the code.

7.1 Unit Testing

7.1.1 JaNetSim to Ns2 Unit Testing

7.1.1.1 Normal Conversion

For conversion of JaNetSim to NS2, unit testing is done on the number of nodes and
the TCP applications to determine the converted script contains the correct number of
nodes/applications with the right connectivity in respective coordinates. To test the
conversion , the JaNetSim topology file with 11 nodes is tested to determine the

correctness of the functionality.

87

Chapter 7 System Testing

File Edit View Tools Window Help

|_strt | Reset | | connect Mode 1 Fan | {00:00:00.000 o

Figure 7.1 : 11 nodes in JaNetSim

The topology files with 11 nodes is converted to the NS2 topology file format. The
converted file is open with the NAM editor for displaying the node to check for the

number of converted nodes and the connection of between the nodes to ensure that
the converter is working properly.

File Edit Tools
Y Of— Agent |

‘{umu.m.?hh.mmm.m.

2

~ | Loss Model| Periodic

gl TP
1:Tlmox |

i ’MMMWWMM |

Figure 7.2 Converted from JaNetSin 11 nodes

88

Chapter 7 System Testing

The converted topology contains exactly the same information of nodes number and

the connection link between the nodes. Therefore, this proved that the conversion is

successful.

7-1.1.2 Backward Conversion from NS2 topology to JaNetSim topology

The NS2 script converted from JaNetSim topology also can be converted back to its
original topology. This is to ensure that the NS2 script generated by the topology

converter is compatible and works equally as good as the original NS2 script.

§5 JaNetSim L |- 15] %]
File Edit View Tools Window Help

)

| stan | meset || comnectmose | Fian | [oo:0000.000]

Figure 7.3 : Backward conversion from NS-2 topology

89

Chapter 7 System Testing

7.1.1.3 Conversion with TCP Application

The conversion of JaNetSim to NS2 is further tested by attaching TCP application to

the node to be converted. The test case for this conversion contains four TCP

application attached to 11 nodes to determine the correctness of the functionality.

File Edit View Tools Window Help

icpapp 2

| start | Reset | | connectmode | Fi an | | 00:00:00.000

Figure 7.4 : 5 nodes with 4 TCP application in JaNetSim

The topology files with 4 TCPs and 11 nodes is converted to the NS2 topology file
format. The converted file is open with the NAM editor for displaying the node to
check for the number of converted nodes and the connection of between the nodes to

ensure that the converter is working properly.

90

Chapter 7 System Testing

RANAEdor - o e

File Edit Tools ’ TR Help
|l @|

W (@ = Agent| TCP ~ | Traffic Source| FTP ~ | Loss Model Perodic

O= O

Ol= \@ O)=

©

i
|
1
4
i

B

Eﬁﬂdﬂﬂ!ﬂl![‘!'.ll.!!!l]l.lllll!l!llll!|.|.l.1.1_’l!l!lllll‘.llllll!ll.’.l.l.llllI.l!!lll.lll.ll|II!!l!llﬂ‘lllllllll.’.",”_'!|l!lllll.l.lﬂ!!!!ll.l|"JI!!!.ll!!ll'.l.l.llllll!!."lll!!!I.|l!Il,l1|lil!ll!ll.ll.l|1!llllllil.ll“.l|l1.1L!'.l.!llllllll!l.""l*lll|llﬂ‘l"|ﬂ!l.llﬂmﬂll lﬂllIII_I’IllI!I[IILwllll!‘mnnn]llllmllllﬂlﬂllllllllﬂl

Figure 7.6 : Converted from JaNetSim with 5 nodes with 4 TCP application

The converted topology contains exactly the same information of nodes number and
the connection link between the nodes. Therefore, this proved that the conversion is

successful.

7.1.2 NS2 to JaNetSim Unit Testing

7.1.2.1 Normal Conversion

For conversion of NS2 to JaNetSim, unit testing is done on the number of nodes and
the TCP applications to determine the converted script contains the correct number of
nodes/applications with the right connectivity in respective coordinates. To test the
conversion , the NS2 topology file with 20 nodes is tested to determine the

correctness of the functionality.

91

Chapter 7 System Testing

File Edit Tools

W Ol—fAgent| TCP | Traffic Surce| ___FTP____] Loss Mol

AT

mﬁw;';"ﬂm{ﬂ""'"‘"'"lm!'ﬂlml’Wﬂlﬂhﬂlﬂmhmmﬂlﬂﬂl'“'!""ﬂulllﬂ"m["ﬂlmﬂl‘lmllllll " ﬂ"“mﬂ‘ﬂﬂll;l I.ﬂﬂld WlmﬂhW'Ll"Iﬁ&l"mﬂlllmlﬁlw’mlllhﬂllﬂlﬂ“Lﬂ;ﬂww AMUW ;“:“

Figure 7.7 : 20 nodes in NS-2

The topology files with 20 nodes is converted to the JanetSim topology file format.
The converted file is open with the JanetSim for displaying the node to check for the
number of converted nodes and the connection of between the nodes to ensure that
the converter is working properly.

& JaNetSim] - [8]]
File Edit View Tools Window Help

Start nm« Cnlmm Mmla ‘v:;':;;:'n mv)‘.‘«m}m.om;i.
s et i " h i

Figure 7.8 : Converted from NS-2 with 20 nodes

Chapter 7 System Testing

The converted topology contains exactly the same information of nodes number and
the connection link between the nodes. Therefore, this proved that the conversion is

successful.

7.1.2.2 Backward Conversion from JaNetSim topology to NS2 topology

The JaNetSim script converted from NS2 topology also can be converted back to its
original topology. This is to ensure that the JaNetSim script generated by the topology

converter is compatible and works equally as good as the original JaNetSim script.

‘—[;‘Ile Edit Tools u;alixi

L0l

TCP _J Traffic Source] FTP -«| Loss Model, Perodic - @]

[I’.lma.: = g ’0.0“':

= »®0 g

N %14}6@
A,
@42%%@ ot 4‘”%%@

©®

Ildll;ll;;;l‘lll@ﬂlﬂlﬂlllllﬂ!ll)l Em!ll mmnhmuﬁmumu‘mmmwan[mulmmﬁnmmhmlmnuhm&uMnmn]mn!lmﬁumukumkmﬂnmm*umm mﬂ

it

I_IllllI)IIIIHIlil’llllll!ll]l)llllllll!lll!ﬂlllllllll

K| g
1

Figure 7.9: Backward conversion from JaNetSim topology

7.1.2.3 Conversion with TCP Application

The conversion of NS2 to JaNetSim is further tested by attaching TCP application to
the node to be converted., The test case for this conversion contains ten TCP

application attached to 11 nodes to determine the correctness of the functionality,

93

Chapter 7 System Testing

FTP ~| Loss Model

@
@/ \@

o]
@O= Q= O= @=

i
i

|
1
¥
i
|

|

m RS S

i!ﬂ“lﬂl;ﬂlﬁll

ki

Figure 7.10 : 11 nodes with 10 TCP application in JaNetSim

The topology file with ten TCPs and 11 nodes is converted to JaNetSim topology file
format. The converted file is open with the JanetSim for displaying the node to
check for the number of converted nodes and the connection of between the nodes to

ensure that the converter is working properly.

& JaNetSim | REIs
File Edrt View Tools Window Help)

[Cstact | haset | [comections | tian_| {wososooon
Figure 7.11 : Converted from JaNetSim with 5 nodes with 4 TCP application

94

Chapter 7 System Testing

The converted topology contains exactly the same information of nodes number and
the connection link between the nodes with certain degree of manual intervention in

the topology arrangement. Therefore, this proved that the conversion is successful.

7.2 Extremity cases

There are two unusual test cases for the system testing, the first case where the
number of node to be converted from JaNetSim to NS2 is zero and another case

where the number of nodes for conversion exceeded the maximum allowed.

fr"‘f"“-- The JanetSim choosen for conversion contain no hode information
gl i, . 3 g
£ 9.4 The program will exit back to mainframe

g

OK|

|

Figure 7.12 : Number of node is zero

The number of node converted exceeded the maximum
of 20 nodes and this might result in unexpected error

Figure 7.13 : Number of node exceed maximum

The successfulness of the testing to detect the error proved that the simulation model

could simulate in a proper manner.

7.3 Debugging Strategies

Debugging is actually of finding and fixing the errors. There are various types of
errors that exist in the system; compile error, run time error and logic error. The

debugging strategies applied in the system are listed as below:

()5

Chapter 7 System Testing

* Built-in Error Detection

Java also has built-in error detection. If an error found during application
execution, an error message together with the lines number where the error
occurred will be debugged. With this features, the debugging work becomes

much easier and faster.

e Reviewing the Algorithm Used

If a program is running well, but the information is not what as intended, then
may be a logic error or database error have occurred. Reviewing algorithm and
computations for their correctness and efficiency is needed for this purpose.
Sometimes, by using different algorithms, the efficiency of the program will

be increasing.

* Display on Screen the Passing Value

One of the possibilities of wrong information being retrieved is that the wrong
value is being passed from one page of another page that will do the
processing. To ensure that right value has been passed to the next program for

processing, the passing value is displayed on screen for reviewing,.

* Check Success Status

Some processes are dependent where failure in the previous process will affect
many other processes. In order to avoid chain reaction from this kind of
process, a success status is purposely set to return a true or false value. The
success status is checked to determine whether to continue process or to exit

from the program and display error message.

7.4 Chapter Summary

Testing is one of the important steps in developing a system precision and accuracy of
output data is considered during this process. Unit testing has been carried out for the
developed system. The objective of a system will only achieve after all the thorough

testing done by different user with different aspects.

96

Chapter 7 System Testing

At the end of the testing phase, the system should be able to perform the tasks
required. The system should be ready to use by the users. However, some critical
problems and errors will occurred only after some time of the using system.
Therefore, testing should not just end up in this phase but have to keep on consistently

to make sure the system is functioning well.
The following chapter presents the system evaluation. The evaluation reveals the

problem encountered and solutions, system strengths and system constraints and

future enhancements.

97

Chapter 8 System Evaluation

Chapter 8 System Evaluation

8.1 Introduction

System evaluation is a process of that occurs continuously, drawing on a variety of
sources and information. Generally, many technical and non-technical problems were
encountered during the development stage. However, most of the problems were

detected and resolved eventually but some are not.

The role of the evaluation phase was to determine :
The extent to which the expected outcomes have been realized

The prescription value of the process where extraneous factors were taken into

consideration

Besides, the system strengths and system constraints have been list out as detail as

possible in the chapter. So that any weakness of the system can be improve in the

future enhancements.

8.2 Problems Encountered and Solutions

Lack of experience in programming Language

The development of the Topology Converter involves mainly on Java programming
language. There are times when I am facing difficulties in translating my idea and
certain algorithm to Java language. In order to cope with this problems, I would refer

to various sources like the internet and e-books and having a group discussion to share

and to solve the problems.

Difficulties in determining the system scope

When first starting the implementation of the project, the scope or boundaries of the
system are still unclear and hard to determine. Many problems were face in designing
an algorithm and coding because the system is not working very well when the
number of nodes are too large plus the types of application to be converted,
Eventually, this problem was solved through discussion with the lecturer and a

agreement on the system scope was agreed.

08

Chapter 8 System Evaluation

Problems in Development Environment

Developing the topology converter to be compatible with NS2 system on Linux
environment unfold a new challenge as the unfamiliarity with the new environment
had somehow causing the initial progress of the development to be stagnant as a lot of
testing and effort are needed to familiarize with the system in order to start the
development of the project. The problem was solves by intensive testing on the

system and through discussion with experienced seniors.

8.3 System Strength

Platform Independent

The topology converter is developed by using Java programming language and it is
cross platform. Thus, the system is able to works well in both Windows and Linux

environment.

System Transparency

System transparency refers to the condition where the users do not need to know the
file structuring of the system and the mechanism of conversion. The user only need to

convert the file to the required format and load the topology with in the right

simulator.

Consistency

The screen design is consistent throughout the whole system. The menus are always
displayed at the same position although the user switched from one module to

another. Users can easily seek for a particular option that they require in the system.

Flexibility in conversion method selection

The topology converter enable user to choose either converting the topology script
from JanetSim to NS2 or vice versa to conduct research on the both simulator

concurrently.

09

Chapter 8 System Evaluation

Ease of use

The converter is built in such way that the user do not feel the complexity of the
system. They only need to choose an appropriate script for conversion and the save
destination and with a click of button within seconds, the converted file will be save

to desire location.

8.4 System Constraints

Rare inconsistency

The constraint of the system is the need of some manual intervention to rearrange the
topology when the number of nodes for conversion increase. Besides that, there will

be some rare cases of inaccuracy in the conversion where tcp component are involved.

8.5 Future Enhancements

Support for node naming

The topology converter only support labeling of the nodes in numeric format. The
future version should be able to support labeling of nodes by alphanumeric format.
Script viewer

A new window is needed to display the selected script to ensure that the correct sciprt

is chosen for conversion.

8.6 Knowledge and Experience Gained

By developing the system, personally I feel that I have learned a lot of things, which I

have never, knew or realized before this. Some of the knowledge and experience

gained are listed below.

100

Chapter 8 System Evaluation

Self Expression

Developing the topology converter has really given me a great chance to express my
own opinions and ideas in designing and coding of the system. Involvement and
experiences gained during system development has greatly improved my self-

confidence and self-esteem.

Project Planning Skills

System development steps, stages and planning are just a theory before I developed
the system. But during the development of this system, I actually have the chance to
put into practice all the knowledge and theory about system development and

planning.

Development Tools Knowledge

Developing the system has given me the opportunity to explore the advance features
of Java programming language, running JaNetSim and NS2 network simulator and
using Linux system. By developing this system, I have discovered more practical
knowledge and firsthand experience on those system rather than reading about the

theory from book.s.

8.6 Reviews on Goal

At the final stage of the project, there were certain expectations on what would be

achieved. The following is the expectations that were achieved:

Expectation Achieved

In overall, the system had fulfilled the expectations stated by the project. The basic
foundation of the system was designed and implemented. It was eligible for future

growth and implementation.

Objectives Achieved

The project had successfully created a converter that supported conversion of
topology script between two different systems. It could be deduced that the objectives

to establish the application had been achieved.

101

Chapter 8 System Evaluation

8.7 Summary

This project had managed to achieve the overall objectives and requirements
determined during the system analysis. The testing phase has proved that the project is
implemented successfully. Huge efforts, analytical thinking and endurance to time
pressure are what it takes to bring the completion of the project. Overall experiences
gained are memorable and meaningful.

However, there are still many rooms for improvements for the system. I hope that the
system will provide a good foundation and open up more opportunities for research

and improvement on the topology converter in the near future.

102

Appendix

APPENDIX

104

Appendix

Creating a Topology File

Create NS-2 topology file

1. Load /create a new topology on the JaNetSim

File Edit View Tools Window Help

[st‘an || Reset][Connect Mo«len rnnn]inooooooun |

2. Next, go to Edit> Convert... > JaNetSim---->Ns-2

&JaNelSum i 5[5
File Etm J View Tools Window Help

Select All

Select By Class

Select By Type

Select By Name Prefix

Chear Copy Bulter
I Fast Scroll (JDK 1.3 bug?)
™ Links follow others
™ Applications follow other

GUI Priority... st >JaNelS|M]

R

snm 1f Roset l Commd Mmm ; Fit Al] L 00:00:00,000 |

Appendix

3. Choose the location to save the topology file and save the file with *.ns extension

- savelm: |C97_n . ¥ | |3 |f] || B8] 8=

[7node

D ?ngde1;

Ej 7node1

File Name: |[7NODE1.NS]

Files of Type: | All Files v
ave._.J_LCan el
Save selected ﬂlecl"‘

4. The popup will show the network summary after conversion

LT bs S S
RABR0L UMIGR T

R NS e A bt i b,

R e

File Edit View Tools Window Help

‘

Network Summary. | x|
éﬁ Number of Nodes 7

! j Number of links 6

§ Number of TCP app 0

-

e i A 4o 5 i S . R B

| start | Reset || comnectMode | Fitan | 000000000

umsm:]“ A @ 510D 7| #)Docunertt Mo, et | 83 uavA [AN et |l NPT

Appendix

Create JaNetSim topology file

1. First go to Edit=> Convert... > Ns-2---->JaNetSim

File "g&.{if View Tools Window Help

Select All

Select By Class

Select By Type

Select By Name Prefix

Gloar Cogly Bulter

{7 Fast Scroll (JDK1.3 bug?)
¥ Links follow others

¥ Applications follow others
Comert L Y] danetSiM s 2
Ns-2--->JaNetSIM

GUI Priority...

[“start | Reset | | connectmode | ran | [o00000.000]

2.Choose the location of the NS topology file and open the file

 LookIn: I[j?_n : v @ @ @ oo
| D 7node
B 7node1
D 7node1
File Name: |7NODE1.NS| SR
Files of Type: | All Files “ o N]
|_onen || cancl

Appendix

3. A new window will prompt for save location.Save the file with *.top extension

Saveln: |C17_n > @ (i} @ BBl A=

D 7node

e

D 7node |

[7nodenew

File Name: |[7NODE.TOP

Files of Type: | All Files v

Save Cancel

4. The popup will show the network summary after conversion.

EERT L) Vol e i Lt TR " y
T T S U T et A0 R 1=] .|

@ Number of Nodes 7
; Number of links 6
Number of TCP app 0

0K

o L e A B 2 A 5 BRI S

| start | Reset | | Connect Mode | F‘R;’A;lh ‘21 w]-,oo:oo;m;.nbu‘,

mstan| [74 @ 510 7] | B)Docment - Micosoh Wore| B8 1AVA ([TaNet5im B ke

D ey | g | s omm | comid e g Gamb e Sl e -G B BRI AR T gt e e

Appendix

Troubleshoot

Question :

After conversion from Ns2 to JaNetSim, the topology didn’t show up on the JaNetSim

screen.
Solution :

After loading the topology, then press Fit All button located at the lower part of the
screen and the topology will be resized to fit on the screen.

Question :

After creating a topology on JaNetSim, when pressing the Convert button it didn’t
yield any result or save dialog box.
Solution :

Make sure that after connecting all the topology, press the End Connect button located
at the lower part of the screen before the conversion process.

