
Pcrpustakaan SKTM

FACULTY OF
COMPUTER SCIENCE

AND INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

IMPLEMENTATION OF TOPOLOGY
CONVERTER INTO UM JANETSIM

ANDREW CI-IIAM MING JER(WEK010015)

Under the Supervision of
Mr. Phang Keat Keong

Moderator
Mr. Ang Tan Fong
SESSION 2003/2004

This project is submitted to the faculty f Cornput r ience and Information
Technology, University of Malaya, in partial fulfillment requirement f the achelor
of Computer Science.

Univ
ers

ity
 of

 M
ala

ya

Abstract

Abstract

This project describes and implement the approach and procedure involve in th -

development of the network topology converter to be implemented in JaNetSim.

The development of topology converter will made possible the conversion of different

topology file format in Ns-2 and JaNetSim to enable wider range of simulation to be

carried out more efficiently and effectively. Ns-2 is an established network simulator

with the most active research and it can be a great and powerful reference tools to

improve and complement the functionality of UM JaNetSim. The topology converter

will incorporate several important features. The most important features lies in the

object oriented approach which provide the luxurious of manipulating inheritance and

polymorphism which provide benefits like reusability, flexibility and extendibility.

Another important feature is the friendly, intuitive and simple to use interface. The

interface provided by the topology converter will be consistent with the JaNetSim

layout. This will greatly cut the amount of time to help user to familiarize and utilize

the functionalities provided by the topology converter.

The topology converter will be helpful to translate various topology formats to

increase portability and widen the scope for various simulators.

i

Univ
ers

ity
 of

 M
ala

ya

Acknowledgement

Acknowledgement

First, I would like to express my utmost gratitude to my project supervisor, Mr. Phann

Keat Keong for being such a great and inspiring supervisor for the generou sharing

of knowledge and support when it comes to the project discussion. He had always

concerned about our work progress and readily took some time off his hectic work

schedule to listen to our problems and make things right for us.

Besides that I would like to convey my sincere gratitude to Mr. Ling Teck Chaw and

my moderator Mr. Ang Tan Fong for their kind and resourceful help and advice

during the discussion and unselfish share of knowledge and technical solutions.

I would also like to express my deepest appreciation to my family members for

providing a strong mental and moral support to me during the project development.

They had provided me with strong pillar of support in time of despair and this has

greatly motivated and inspired me to greater height in life.

Lastly, I would like to thanks all my others project members especially to Chia Kai

Yan, Lim Lee Wen and Tang Geck Hiang for their advice, support and co peration.

ii

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Table Of Contents

Abstract , i

Acknowledgement i!••·•········ ii

Table Of Contents , " iii

List of Figures vii

List of Tables , , ix

Chapter 1 Introduction 1
1.1 Introduction to Network Topology 1
1.2 Introduction to Network Simulator 1
1.3 Objective 2
1.4 Scope 3
1.5 Schedule 3
1.6 Report Organization 4

Chapter 2 Literature Review 6
2.1 Introduction to Topology General Concepts 6
2.2 Line Configuration 6

2.2. l Point-to-Point 6
2.2.2 Multipoint 7

2.3 Topology 8
2.3.l Introduction to topology 8
2.3.2 Reviews of Topology 9

2.3.2.1 Bus 9
2.3.2.2 Ring 10
2.3.2.3 Star : 11
2.3.2.4 Tree 12
2.3.2.5 Mesh 13

2.4 Transmission Mode 13
2.4.l Simplex 14
2.4.2 Half-duplex 14
2.4.3 Full -duplex 15

2.5 Introduction to Computer Simulation 1
2.5.l Network Simulation Approache 17
2.5.2 Study of Various Existing Simulator 18

2.5.2.1 INSANE 18
2.5.2.2 NIST ATM/HFC 19
2.5.2.3 YATS 20
2.5.2.4 MNeT++ ~·········•1, , ~ .. \ ..•..............• ,l i ••••• ~·11••i••····20
2.5 .. 2.5 Net im+» ~ .. ,. ~ ··~··~··············•1•1···1 •·············!··,•i••·····i···················· 21

2.5.3 Advantag and i advanta f Vari us imulat r 22
2.5.4 Compari on of netw rk imulat r ~··l•••·,··~·········,··25

snera t r , ,, i. ,, •• , •• , •••••••• , •••••••• ········•t••········· ., ,,, , .. ,. ,, 25
•••••itlit•t••••••t•tit•t\tttt•••••••••••••••t••'l••••••••'••••••••tt•1tt1t•1tt•••••1•••~11111•111ttlilwtfttttt•l•t2

iii

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

2.6.2 Other Topology Generator 29
2.6.2.1 Waxman 2"
2.6.2.2 GT ITM 2<
2.6.2.3 Tiers 0
2.6.2.4 Inet and PLRG 0

2. 7 Programming Language... 0
2.7.l Java 31
2.7.2 TCL 3

2.7.2.1 Tel Capabilities 4
2.7.2.2 Other scripting language 38

2.8 Summary 40

Chapter 3 Ns-2 and JaNetSim 41
3.1 Ns-2 Concept Overview 41

3.1.l OTcl Linkage 41
3.1.2 Duality Need for Different Language .42

3.2 Simulator Basics 44
3.2.l Simulator Initialization 44
3.2.2 Schedulers and Events 45
3.2.3 Nodes and Packet Forwarding 46
3.2.4 Links 48
3.2.5 Queue Management and Packet Scheduling 49
3.2.6 Agents SO

3.3 NAM 51
3.3.l Objects In Nam 52

3.4 Creating Topology 54
3.5 Java Network Simulator (JaNetSim) 60

3.5.l JavaSim 61
3.5.2 SimClock 61
3.5.3 Simfivent 6l
3.5.4 Sin1Component 62
3 .5 .5 S irnl'ararne ter 64

3.6 Object Serialization and Load/Save Function 65

Chapter 4 System Analysis 67
4.1 Development Tools 67

4.1. l Programming Language 67
4.1.l.l Java Programming 67

4.1.1.2 Tel 6
4.2 System Requirements 69

4.2.l Functional Requirements 6
4.2.1.l Input f converter .
4.2.1.2 Converter 69
4.2~ 1.3 Ou tput , ,~ ~ , •i•••ii •••••••• i•• •••• , ••. i "'·••tftt••···· ·-·· ~., .• -·~. ~ ·-··· •••• 70

4.2.2 Non-Fun ti nal Requirements 70
4.2.2.1 PI1y icat nvironrn nt ·~······,,, .. , , .. i •••••• ~ •••••• , •••• ~., •• ,.i.l••·····,···•»••·····-··· 70
4.2.2.2 Users and human fa t r ... Hi,iilHUI0'1•tn1tl1ttn•••·••••H•tu•ttHiUtH••Utt"t'H••, .. ~ ... 71
4"2.2.3 .Flexibility ···1·•····---···•-t••\••·t,,,,,.,,,,,.~ ••••• , •• , ,,,.,.,.,, ••••••• , •••• ,,.il.,.,,.,,,,,,, •• ,,,,, 71
4.2.2.4 Usabillty t1•·····. ~····••II•-· .. ···- ,,, .. , .. ,., •••••t• ,, •••• ,_,, ••• , ••• , •• ,.,,, •t••• •••• 71
4.2.2,5 Maintainability ············t••-•tt••··········,················,···········••t~ .. , ,, .. i •• ,, •••• ,, 71

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

4.2.2.6 Constraint 72

Chapter 5 System Design 73
5.1Introduction 7
5 .2 Technique used 7

5.2.l Modular decomposition 7
5.2.2 Event-oriented decomposition 7

5.3 System Design 74
5.3.1 Input design 7
5.3.2.l File reading 75

5.3.2 Functionality Design 76
5.3.2.l NodeProperties 76
5 .3.2.2 LinkProperties 77
5.3.2.4 Link 78
5.3.2.5 Converter 79
5.3.2.6 MainClass 79
5.3.2.7 ConverterException 79

5.3.3 Output design 79
5.3.3.1 File Writing 80

5.4 Design Constraint. 81

Chapter 6 System Implementation 82
6.1 JaNetSim to NS-2 conversion 82
6.2 NS-2 to JaNetSim conversion 83

Chapter 7 System Testing 87
7.1 Unit Testing 87
7.1.l JaNetSim to Ns2 Unit Testing 87

7. l.1.1 Normal Conversion 87
7.1.l.2 Backward Conversion from NS2 topology to JaNetSim topology 89
7. l.1.3 Conversion with TCP Application 90

7.1.2 NS2 to JaNetSim Unit Testing 91
7.1.2.l Normal Conversion 91
7.1.2.2 Backward Conversion from JaNetSim topology to NS2 topology 93
7.1.2.3 Conversion with TCP Application 93

7.2 Extremity cases " 5
7 .3 Debugging Strategies 95
7.4 Chapter Summary 6

Chapter 8 System Evaluation 98
8.1 Introduction .
8.2 Problem n ountered and oluti n 9
8.3 System Strength .
8.4 Sy tern Constraints ~~. ····~~··, ~· ·•·t··· ~ , i••. ~·· •••• , •• ~~··•11• ••• ,, •• , ,,, •• ~· • •••• , ti -100
.5 Fu ture nhan men ts ··········~·················•i•t••··••i···;·····-···········,······························i• 100

8.6 Kn wledge and peri 11 e ained nnUHtlfi1HlilHIU-.t•HUU•H•··••hH•nt•t1nHttU•ttt•• 100
8.6 Review n , al ... , .. l! •••• , ••• ,,~··••t···~·············•t••··············,····'·~··························,t•,, ... 101

. 7 urnrnary ·•1•·~· •1•••··'' ···J··'-~····~···,···················•t~ .. ,.,, , ,.,,,,, ,,,,,,.,1 •••••• 102

REFE.REN E· ••••••••l!t••f<11•~•!f:••ttH~Hlil•••••••••t••tftf.iU!illtU•nt1'h••••t t•ti\t,.t;t••tttt'Ui.t••••••t1•••••••tttttt••••f 1(:)

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

APPENDIX 104

Univ
ers

ity
 of

 M
ala

ya

List of Figures

List of Figures

Figure 1.1 : Project schedule of the task during the research and development. .
Figure 2.1 : Point-to-point line configuration 7
Figure 2.2 : Multipoint line configuration 7
Figure 2.3: Bus topology .
Figure 2.4 : Ring topology 10
Figure 2.5 : Star topology 11
Figure 2.6 : Tree topology 12
Figure 2.7: Mesh topology 13
Figure 2.8 : Simplex 14
Figure 2.9 : Half-duplex 14
Figure 2.10: Full-duplex 15
Figure 2.11 : Three Sub-Fields of Computer Simulation 16
Figure 2.12: Schematic structure of BRITE 26
Figure 2.13 : A Topology as seen by BRITE 27
Figure 3.1 : C++/OTcl Linkage .42
Figure 3.2 : OTcl and C++ duality 43
Figure 3.3 : Interaction among node, routing module, and routing .48
Figure 3 .4 : Composite Construction of a Unidirectional Link 49
Figure 3.5 : Screens hot of Nam interface 52
Figure 3.6 : Basic topology script in Tel (Part 1 of 5) 54
Figure 3. 7 : Basic topology script in Tel (Part 2 of 5) 55
Figure 3.8 : Basic topology script in Tel (Part 3 of 5) 55
Figure 3.9 : Basic topology script in Tel (Part 4 of 5) 55
Figure 3.10: Basic topology script in Tel (Part 5 of 5) 56
Figure 3.11 : Simple script in Tel (Part 1 of 3) 56
Figure 3.12: Simple script in Tel (Part 2of3) 56
Figure 3.14: Create data source between nodes (Part 1of5) 58
Figure 3.15: Create data source between nodes (Part 2 of 5) 58
Figure 3.16 : Create data source between node (Part 3 of 5) 58
Figure 3.17 : Create data source between nodes (Part 4 of 5) 58
Figure 3.19: JaNetSim Overall Architecture o
Figure 3.20 : Inheritance from SimParameter class 65
Figure 3.21 : Screens hot of save format in JaNetSim .
Figure 4.1 : Common visual representation of a software object. 68
Figure 5.1 : Flow chart of file reading 75
Figure 5.2: Flow chart of file writing 80
Figure 7.1 : 11 nodes in JaNetSim 88
Figure 7 .2 : Converted from JaNet in 11 nodes 8
Figure 7 .3 : Backward conversion from N -2 top l gy 8
Figure 7.4: 5 n de with 4 TCP application in JaN~t im o
Figure 7. c : C nv rt cl fr rn JaNet Im with 5 11 des with 4 T P uppli ati 11 1
Figure 7.7: 20 n es i11 N -2 ··J··········i···························~············-····,·~·····················,·~·-········ - 2
igur 7. : nverted fr m N -2 with 20 nod s 2

Figure 7. : Backward cnv rsi n fr m JaN ~t Im top l y 3
igur 7J O : l1 n · with 1 P appli ati n in JuN ·l im ..

Figure 7.11 : onv rt cl from faN-'l hn with 5 nodes with , T P tq pli atlon c ,
igur 7.12 :·Number f 11 de i z r ~~lOt1Unt1-••••••t1••••n1t•••11Y~\·t!i•tU,.t1t•ttH.tlUUftttfUt11•1u , 5

vii

Univ
ers

ity
 of

 M
ala

ya

List of Figures

Figure 7 .13 : Number of node exceed maximum 95

viii

Univ
ers

ity
 of

 M
ala

ya

List of Tables

List of Tables

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10 :
Table 5.11 :

Advantages and Disadvantages of various simulator 2
Comparison of various simulator _5
Comparison of today popular scripting languages 40
Methods define in SimComponent 3
Major attributes in NodeProperties 7
Major methods in Ncdel'roperties 76
Major attributes in LinkProperties 77
Major methods in LinkProperties 77
Major attributes in Node 77
Major methods in NodeProperties 78
Major attributes in Link 78
Major methods in Link 78
Major methods in Converter 79
Listing of all major component in JaNetSim 81
Listing of all major component in Ns-2 81

ix

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

Chapter 1 Introduction

1.1 Introduction to Network Topology

Network topology refers to the specific physical or logical arrangement of the

elements in a network (Anon 1998). Two networks have the same topology if the

connection configuration is the same, although the networks may differ in physical

interconnections, distances between nodes, transmission rates, or signal types. The

common types of network topology will be illustrated in Chapter 2 of the thesis under

Topology.

The network topology tree plays a critical role in management of the network (Cisco

2003). It consists of four main purposes:

• Identifies key components of the network

• Organizes the settings and convention :for the key components

• Defines the physical structure of network topology

• Provides building blocks for the network

• Defines the desired traffic flows across your network

1.2 Introduction to Network Simulator

With the rapid development of high-speed network, network simulator has become a

valuable tool to study and inve tigate the protocol and design issues regarding the

performance of the network. It allow ll er to make correct decision on designing a

network with ut the need t inve t into the te bnolo y. A n twor! Imulator can b ~

used as a tool f r netwod<: planning r as a tool for pr to ol p rforman vts. analysis, It is

useful for modeling netw rk behuvior un l r diff Plll s ·Uhl·· and ondntcns f r the

l

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

various network components. Users are able to analyze and predict the performance

of the network design based on the generated result of network simulator. Be ides

that, researchers and network planners are able to analyze network without the

expense of building a real network with the use of a simulator. Huge saving can b

made both in terms of investment and the cost in terms of unnece sary restructuring

for experimentation. (AU-KBC 2003)

1.3 Objective

The primary objectives of this project are to study and understand the operation of

creating and generating a topology in various network environments. This involves

researching work on various network simulator topologies to enhance the

understanding of the concept behind the topology generation. In the research,

comparison of the topology generated in JaNetSim and Ns-2 are examine in details

to differentiate the approach used by various simulator to create, simulate and save the

topology format.

The goal of the project is to create a converter program that is able to convert

topology format between Ns-2 and JaNetSim. The script developed must be able t

integrate into the exi ting JaNetSim y tern

The converter program should have the following capabilities:

• C overt Tel script fr m N -2 to to pol gy format in UM JaN 'l rm.

• Convert fr m topolo 1y f rmat in UM JaNet Im to t 1 s ript in Ns-2.

• All wt p I gy t be saved in two f rmat:

i) Plain l p l gy file with ut the f; arum ters

ii) T pol y with lo in full vulu "S 1l 'uv id thn · .

...

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.4 Scope

This project mainly involves a lot of research work on the existing netw rl simulat r

and its functionalities. Thus the scope of the project will be covering two simulator

that will be dissect and research intensively, which is the Ns-2 and JaNct im

simulator.

During the research, the overview ,structure and file saving method of both simulator

are explore to provide clear and unifying view of the entire system to improve

understanding on the work mechanism to ease the process of developing the

converter for the project.

1.5 Schedule

TasKNarne Dura!ion S!a11 tinisn ~ m JulW '~J Au J1 m Od11 ~1 NovLJ m Jan~ U~ 1fe

6 fTSWSTMtTSWSTM

1 ~-J~oj:t1De!~1i~on _j_1~~~s~~~o~offiJ1_ T~l/1ffi~· t

~ jlilera!ureRe~ew f Woars; Monon~mJ: fri1n3ffiJ ~

~ I Rese.artn WorKs
1

·fo ~ars: Mon l!L11~J/ r rl W1ffiJ :fi1
~ 1 s~s!em ka~sis ; 1~ aa~s Mon m~mr f n w1~J 1

~
I : - •. ,

~ l~teffiOis~n : W~aisiWe~&llWOJ TueWIWIJ ~
n ~ 11~1er~e~!a!ion i rn oars· Wea ~1111~): f n 111ro~
1 ~ iTes~n~ 1 J1 oars. rnwm~: rn11nro~ l

, I__ . - • -

~ ~ JDornmen!a!ion Im a~s MonOIJ~WJ rueY1lffi~ [i.....;,. ~........_....__ __,--..,;;;....__ ."""""";::·!

ID

Fizure 1.1 : Proje ts .h idule of th' to It durtng th r .senr 'h und de iloprn ·11t

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.6 Report Organization

The others chapters in the thesis are organized as follow :

Chapter 2 covers the research work done during the project to enhance the knowledz

and gathering of basic concept in network topology. The chapter mainly cov r 3

sections. The first section is a review of network topology concept. The second

section covers the evaluation of current existing network simulator and the last section

reviews the programming approaches that will used to develop the converter to be

integrated into JaNetSim.

Chapter 3 will dissect both simulators, Ns-2 and JaNetSim t get m re details

information on the components and operational process with regard t topology on

both system. Besides that, it will be looking on the l pol gy and save file format on

both simulator.

Chapter 4 will be covering the development to l, functi nal requirements and non

functional requirement that are e ential t provide inf rmation and tructure to draft

a design for the topology converter pr gram

Chapter 5 will focu on the overview d ign of the entire pr ject. hi in lude the

design propo al of bje t la ses t be implemented in the ystem. a h class de i n

includes attribute. and des ripti n f metb d perf rm by that .luss,

Chapter 6

f all th

vet th irn] lcmentati n f the top l

peratic nal rl fl w an pr · rammin

onv "rt er. lt ", plalns in cl etuil ·

din l b imp! em ·nt 'd in lh

nvert r pr ram.

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

Chapter 7 will include all the systematically approach taken in order to test th

workability of the system to conform the functionalities in the requir m nts that th

system had promised to deliver.

Chapter 8 will concludes the research and development of the network to pol gy. It.

summarize the findings of the project, the final product and the constraint during the

development and testing stage.

s

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Chapter 2 Literature Review

2.1 Introduction to Topology General Concepts

A major component of a network consists of links and nodes. The arrang m nt and

interconnection of the links and nodes is known as the network top logy. Generally

in network topology, there are few concepts that provide the basic for the relationship:

• Line configuration

• Topology

• Transmission mode

2 .2 Line Configuration

Line configuration refers to the way two or more communication devi e attach to a

link. Link is a physical communication pathway that tran .fers data fr m ne device t

another device (Forouzan 2001). In rder for communicati n t ccur, tw device

must be connected in ome other way t the same link at the same time. There are tw

possible line configuration : point-to-point and multip int.

2.2.1 Point-to-Point

Point -to-point is a term u ed to de cribe a data channel which conne t tw , and nly

two, terminal by providing a dedicated link between them. During the transrnissi n

the entire ape ity f the hannel is reserved for the terminals · 111111uni ation, There

are two different type f p int-t -p int:

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

0 Point-to-point Circuit: A communication circuit, or system

connecting two points through a telephone circuit, or line.

D Point-to-point Network: A Point-to-point Network i one in whi h

exactly two stations are connected. It may be dial connecti n or a

leased line.

=r =

IVlodem rv1odem
Host

computer
Figure 2.1 : Point-to-point line configuration

2.2.2 Multipoint

A multipoint line configuration de cribe a line c nfigurati n in which a single

transmission facility is shared by everal end stati ns. ine or circuit interconnecting

several stations are also called multipoint line .Only one tation can end or receive at

any time, all others mu t wait. If sev ral devices can u the link imultaneou ly, it i

a spatially shared line configuration. If users mu t take turns, it is a lime-shared Jin

configuration.

Qlf,.oH\
\:.'lit1 I W\°"t

Flgur · l.2 : Mnltlvul11t Ihm coul .ui·11tiu11

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3 Topology

2.3.1 Introduction to topology

Topology refers to the shape of a network, or the network's layout. The n twork

topology determined the connectivity of the nodes in the network and the

communication method. Topologies are either physical or logical.

Physical topology is the physical structure of a network that provide for the layout

that enable the workstations to connect to the network through cable to transmit data.

For physical layout of devices on a network, every LAN has a t pology, or the way

that the devices on a network are arranged and how they communicate with each

other.

The logical topology, in contrast, is the way that the ignals act n the network media,

or the way that the data passes thr ugh the netw rJ from ne device t the next

without regard to the phy ical interconnecti n f the d vices.

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3.2 Reviews of Topology

2.3.2.1 Bus

A bus topology is a network topology in which there is a single line call d the bus or

backbone to which all nodes are connected.Nodes are connected to the bus by drop

lines and taps.A drop line is a connection running between the device and the main

cable .A tap is a connector that either splices into the main cable or punctures the

sheathing of a cable to create a contact with the metalic core (Anon 2003).

Advantages

• Easy in tallation and uses le abling than th rs top I zies.

Figure 2.3 : Bu topology

Connectivity b tween dedicated n des i not affected by failure I an ther

node.

Disadvantages

• iffi ult re nfi urati n and Iuult is lati n.

all the truru missi n 'n 1 ·tw n I

•

arne s ide f th pr bl m

)11 th

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3.2.2 Ring

Ring topology is a network topology in which every node has exactly two branches

connected to it.All devices are connected to one another in the shape of a closed loop,

so that each device is connected directly to two other devices, one on either side of it.

A signal is passed along the ring in one direction from device to device until it

reaches its destination. Each device in the ring incorporates a repeater. When a device

receives a signal intended for another destination, the repeater regenerates the bits

and passes them along the networks.

Advantages

)
Figure 2.4 : Ring topology

• Easy to install and reconfigure .

• All stations have equal priority for the medium access.

Disadvantages

• Shared bandwidth for the entire network

• Unidirectional traffic provides no alternatives in .as of 11 stwor! failure.

10

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3.2.3 Star
Star topology is a network topology in which peripheral nodes are nn ted lo a

central hub, which rebroadcasts all transmissions received from any p ri h ml nod

to all peripheral nodes on the network, including the originating node. All periph ml

nodes may thus communicate with all others by transmitting to, and receiving from,

the central hub only. There are three different types of hub:

Passive Hub

A passive hub serves simply as a conduit for the data, enabling it to go from one

device (or segment) to another.

Intelligent Hub

Intelligent hubs include additional feature that enable an adrnini trat r to monitor the

traffic passing through the hub and to configure ea h port in the hub. Intelligent hub

are also called manageable hubs.

Switching Hub

A third type of hub, called a switching hub, actually reads the de tination addre f

each packet and then forward the packet to the cone t p rt.

11

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Advantages

• Simple expansion .

Straightforward network management. •

Disadvantages

• Single point of failure in case of failure of the central hub .

2.3.2.4 Tree

Tree topology is a network topology in which the nodes are arranged a a tree. From

a topologic viewpoint, this resembles an interconnection of star networks in that

individual peripheral nodes are required to transmit t and receive fr m one other

node only and are not required to act as repeaters or regenerators. Unlike the star

network, the function of the central node may be di tributed.

Figure 2.6 : Tree topology

Advantages

• Easy t expand

• ailure f the u eri r n de will nJ- nus Iailur l s m su . st "tni.i.

Di advantage

• Branche an b dis ionn \ t d in 'US\ or f iilurc r \SUI ·d r nod'

12

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3.2.5 Mesh

Mesh topology is a network topology in which there are at least two nodes with tw

or more paths between them. Devices are connected with many redundant

interconnections between network nodes. In a true mesh topology ev ry node has a

connection to every other node in the network

Figure 2.7 : Mesh topolo y

Advantages

• Topology with the highest reliability

• Direct connectivity between all nodes

Disadvantages

• Expensive

• Difficult t expand and re nfigured

Complex wiring •

2.4 Transmission Mode

Transrnis ion m de is u ed l cl 'fin th dire 'ti n f sl nnl flew etv) n tw linl d

devi e (F r uzan 2001 .

duplex and full-dup] ',

hlllf·

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.4.1 Simplex

Data can flow in only one direction. Only one of the two stati n n a linl an

transmit; the . other only can receive

Client
computer Server

Simplex

Figure 2.8 : Simplex

2.4.2 Half-duplex

Data flows in only one direction at a time. It is sometimes called tw -way alternate.

Each station can both transmit and receive, but not at the arne time. When one device

is sending, another can only receives and vice versa.

--~-------H_a_lf-_d_up_l_ex ~~ J~
~ -

Figure 2.9 : Half-duplex

14

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.4.3 Full -duplex

Data flows in both directions at the same time.Most modem conne ti ns today

transmit full duplex increasing efficiency with data flowing on the same pair f wir s

in both directions simultaneously.

[[)~ Fu II-duplex ~ Ll
I -- ~·'')) -i?

--ai ~~-a
Figure 2.10 : Full-duplex

15

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.5 Introduction to Computer Simulation

Computer simulation is designing of an actual or the rctical physical system

executing the model on a digital computer, and analyzing the cxc ution utput.

Simulation embodies the principle of "learning by doing" - a model f some ort i

build and then operates the model to learn about a system. Computer simulation

serves to drive synthetic environments and virtual worlds. Within the overall tasks of

simulation, there are three primary sub-fields:

• model design

• model execution

• model analysis

Models are designed to provide answer at a given ab traction level - the more detailed

the model, the more detail the output.

EX~ UTION
ANALY 1

MODEL DESIGN
C nceptual
Model
· unctional
Model

MODEL
EXE UTION

Serial
Algorithm

lnpuL- uq UL
Annlysls
·:p .rim 11t rl •11ign
vlsu lli~ lli0t1 ti!' D.\lu

ligur' .J l : Tlu ·' 11b-FI •Id,' of m111mt 11· ~1mol111iou

1

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Simulation is often essential in the following cases:

• The model is very complex with many variables and intera ting

The underlying variables relationships are non-linear

The model contains random variates

The model output is to be visual as in a 3D computer animation

mpcn nt

•

•

•

The power of simulation is that - even for easily solvable linear systems - a uniform

model execution technique can be used to solve a large variety of systems. Another

important aspects of the simulation technique are to builds a simulation model to

replicate the actual system.

2.5.1 Network Simulation Approaches

There are two approaches to modeling a network simulator. The e tw approache are

as below:

• Analytical modeling

Analytical modeling is a clo ed form approach of networl modeling meth d

which the network is model mathematically in the form of equati n. The main

disadvantage of analytical models i ver impli ti view of the netw rk and

their inability to simulate the dynamic nature fa rnputer netw rk.

• Discrete event modelln

The computer r plicate the real world bje t whi ih m"t1ns the ·) ts 1 luy

ertain r le and han e it int durin 1 imuluti n. hi

approach i m re ac urat but it r quire m r · m I lina time in J)v 'loi in .

L7

Univ
ers

ity
 of

 M
ala

ya

Chapter 2
Literature Review

the system. Besides that, it need more time in processing the real world

objects.

2.5.2 Study of Various Existing Simulator

A network simulator is used to perform experiments on network without the expans

of building a real network. It help user to perform analysis on the network and obtain

accurate information in order to plan and design the network more efficiently.

Generally, ATM network simulators are able to support network performance analysis

in varying traffic types and loads, network capacity planning, traffic aggregation

studies and ATM network protocol research. The following are the current ATM

network simulator evaluated to analysis their strength and weakness:

• INSANE

• NIST ATM/HFC

• YATS

• OMNET++

• NetSim++

2.5.2.l INSANE

INSANE (Internet Simulated ATM Networking Environment) is desi zned t t st

various IPover A TM algorithms with realistic traffic l ad derived fr m empiri ·al

traffic measurements. INSANE1s ATM r t , 1 sta .k provides r eal-tlm runrant 30 to

ATM virtual circuits by u ing Rate ontr 11 id tali Fri rity R l?) qu uing,

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

the system. Besides that, it need more time in processing the real world

objects.

2.5.2 Study of Various Existing Simulator

A network simulator is used to perform experiments on network with ut the c tpan

of building a real network. It help user to perform analysis on the network and obtain

accurate information in order to plan and design the network more efficient! y.

Generally, ATM network simulators are able to support network performance analysis

in varying traffic types and loads, network capacity planning, traffic aggregation

studies and ATM network protocol research. The following are the current A M

network simulator evaluated to analysi their strength and weakn

• INANE

• NI T ATM/

• YAT

• OMNET++

• Net im++

2.5.2.1 INSANE

INSANE (Internet imulated ATM Networking nvir nment) i de i n d l te 'l

variou IPover TM alg rithrn with reaf Li· tralfi l ads d ri ·d fr m ernpiri ul

traffic measurement . TN

ATM virtual ir uit by usin Rat

id

ntr II ·d tuti · ri rit

iuarunt · ·

P u u in .

I l

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

ATM signaling is performed using a protocol similar to the Real-Time hannel

Administration Protocol (RCAP). Internet protocols supported include lar · subsets

of IP, TCP, and UDP. In particular, the simulated TCP implementation p rf rms

connection management, slow start, flow and congestion control, retransmission and

fast retransmits. Various application simulators mimic the behavior of standard

Internet applications to provide a realistic workload, including: telnet, ftp, WWW,

real-time audio, and real-time video.

INSANE is designed to run large simulations whose results are processed off-line. It

works quite well on distributed computing clusters (although simulations are all

sequential processes, a large number of them can easily be run in parallel).

Although there is no graphical user interface, a (optional) Tk-based graphical

simulation monitor provides an easy way to check the progress of multiple running

simulation processes. The bulk of INSANE is written in C++. Customization and

simulation configuration is performed with Tel scripts.

2.5.2.2 NIST ATM/HFC

This simulator was developed at the National Institute of Standards and Technology

(NIST) and it is a tool to analyze the behavior of A TM and HFC networks without the

expense of building a real network. Therefore, this simulator can conceivably be u ed

to plan be used to plan A TM networks as well as analyze A TM and HFC protocols.

It allows the user to intera tively model the environment with a graphi al user

interfa e. y u in the NJ T A TM/f irnulator, the us r an reate different

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

network topologies, adjust the parameters of each component's operation, m asurc

network activity, save/load different simulation configuration and log data imuluti 11

execution.

2.5.2.3 YATS

YATS (Yet Another Tiny Simulator) is a small cell-level simulation tool for ATM. Its

kernel comprises the event scheduler, a symbol manager and a scanner/parser front

end An input file describes the - arbitrary - model network configuration, the

simulation actions and the way to analyze the results. The input language is a simple

script language, which allows for a flexible problem description (loops, macros and

basic mathematical capabilities are provided). The discrete-time event scheduler

applies a static calendar queue and unusual event memory management, which results

in good simulation speed.

The system is written in C++. All network nodes are objects that communicate over

standardized messages. Graphical object clas es are able to display the time

dependent behavior of variables and distributions inside of other model objects

(without adding complexity to these network objects).

2.5.2.4 OMNeT ++

OMNeT ++ (Objective Modular Network Testbed in C++) is a discrete event

simulation tool. It is primarily designed to simulate c mputer netw rks, multi­

proces ors and other distributed ystems, but it may be us eful for modeling other

y t m t I. MNeT++ has been dev 1 ·d n inux but it w rks just as well n

m t Unix systems and on Win 1ow ptnttcrrna NT re .ommended). 1l provtdes a

20

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

simulation library with statistical classes and an environment that supports intern tiv

simulation including the visualization of collected data.The gnu plot-bas d J tool

is used for analyzing and plotting simulation results.

2.5.2.5 NetSim++

In a nutshell, NetSim++ is a software package designed to provide a compr h nsi e

work environment for the network modeler. It can be used in areas of communications

networks such as performance measurement for existing or future networks under a

wide range of conditions.

Besides that, it can perform analysis and simulation of queuing systems. NetSim++ is

designed specifically for the development and analysis of communications networks.

Models can be hierarchically structured, allowing their re-use in different simulations.

Specifications are entered graphically with specialized editors. The editors provide an

efficient medium for design capture via a consistent set of modern user-interface

elements.

NetSim++ follows for the hierarchy and communication model a subset of SDL-92

semantics. As with SDL, the active parts are processes; a hybrid approach i used to

embed C++ language code with a graphically specified Extended inite State

Machine (EFSM).

21

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.5.3 Advantage and Disadvantages of Various Simulator

Simulator Dlsndvnntages Advantages

INSANE graphical The imulator Tk-based The

simulation monitor enable works on a f w hardv r

user to check the progress of and platforms only and

multiple running simulation this restricted the
the process. Besides that, it is able portability of

to support the simulation on a simulator. Furthermore,

large network, which the there are a few software
result is processed off-line. requirements to run the

simulator and this will be

troublesome for the user
to use the software

NIST ATM/HFC The user can create different U er
topologies and able to adjust might

of the sirnulat r

fa e problem
the parameters during the setting up the network

simulation of the network. topology becau e they

The user can save and load need Lo input a large

various simulation number of paramet rs.

configuration.The simulator The customization f the

provide a graphi al user simulator' c mp nent

interface and enable u er to requires u er r

drag and drop the entities in programmers have

the network. str ng foundati n in C.

Besides that, it i u: mg

pr dural appr acb

whereby the rn nents

have overlapp d

fun 'li 11 • berw en the
'l'"'J1 . 'mp 11 UL'. ·

sirnulnt r nly ·un nm n

.....

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

limited platform that is

UNIX and INU"
platf rm.

YATS The simulation of the network The pure Iott d

has reasonable speed and operati n au s

simple models virtually can restri ti n wh n

run in real time. The simulator simulating differ nt line

has high flexibility of speeds in the same model.

integrated model description, It's only possible to

simulation control, and result choose speeds for which

analysis. The whole the cell transfer time is an
simulation experiment can be integer multiple of a basic

instrumented via time used for the whole

environment variables that in m del. Lower line speeds
turn allows - together with a are emulated by the

shell script - to easily perform multiplexer objects
complete experiment eries cla e Mux /Mux

over night. Although it i very the ABR multiplexer doe

simple, the online di play are not yet support lower

useful to understand what' speeds. The di crete-tirne

happening in the model nature exclude s me

network. Thi especially holds u eful ource m dels like

for A R, the P i on type . While

TCP and all thi the Ian uage ba ed m del

stuff. des ripti n yield a high

Ile ibility, the input n ay

be me a bit irritating in

-as f larger n lw rk
OMNET++ MNeT++ has

flexible . imulati 11 s lmulu l ~ lh ~

and p scs it I' ide p werful
envir nm 'Ill f r simulutl n

~ uti n.
' i11 I' +·I

Jun · uugc

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

hierarchical and reusable to use OMNet++.

models easily. The interface is

human readable and it source

code is provided.
NetSim++ NetSim++ provide an Th urr nt

efficient event-driven implem ntation f

Simulation Kernel, a NetSim++ 1 available

Simulation API and a Base only for UNIXJX

Models Library of Window System

components. It takes the platforms.
design specification and

automatically generates

an executable simulation. A

set of analysis tools is

provided to interpret and

visualize a large volume of

simulati n re ults,

Table 2.1 : Advantages and Disadvantages of various simulator

2

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.5.4 Comparison of network simulator

Based on the evaluation of the network simulator, the Tai ,I 2.2 b low sumrn ri ' th"
network simulator on a few feature such as discrete-event sirnulat r, obj t- ri nt ~
GUI, multithreaded, web enabled, platform independent.

Simulator Discrete Object- GUI Multi thread Web- Platform

Event Oriented Enable Independent

Simulation

INSANE \} \} \} \} x x
NIST -v x \} x x x

ATM/HFC

YATS \} \} \} x x
OMNet++ \} \} "' x x

NetSIM++ -v x '\/ -v x x

Table 2.2 : ompal"ison of vnrious simulator

2.6 Topology Generator

In order to engineer and de ign the internet, crucial issue uch as the large cale

structure of its underlying physical topology, its time ev luti n and th ntributi n

of its individual components to it overall function need t be well und r: toed.

Extensive simulations are usually performed t a ses it feasibility in term f

efficiency and perf rrnan e.

In general, Internet tudie and imulati n assum ~ ertuin t t rti 1 r

to Intern t-wid 3 b ha i r r th' pr t ls an l al oritluns b ·in :r studt id, th · hosen

25

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

topologies must exhibit fundamental properties or invariants ernpiri cally touud in th'

actual extant structure of the Internet. Otherwi e,

drawn.

rre t on lus i ns ann t he-

There are several synthetic topology generators available to the n tw rking r

community .Many of them differ significantly with respect to the characteristics of the

topologies they generate

2.6.1 BRITE

Design and implementation

BRITE was designed to be a flexible topology generator, not re tricted to any

particular way of generating topologie (Medina et al. 2001). A such, it upp rt

multiple generati n model . hi ecti n will be d cri ing the de ign g al and

approach and behind BRITE implementation. Figure 2.12 depict a schematic view f

the structure of BRITE .The different component in BRITE are labeled from (1) -

(4).

11)

nurn:
(;tnl'nttl~m
En1:l11t:'

ll

rnun:
,\1111lysi~
1·:n~l11t:'

"e .::,,.,.........,__,
~ ,r•·-•·-··,_• --
] I ~1(111 .. r / , ---------·

r------- r-- --
l~IHTI'. : 'S : : SSF ·1

!,._..., _! I

(hll)Jlll fo1·ml\tS

11'1 iure 2. l : , ·h nuntl 'slrn tur • of BR rt ft,

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

BRITE reads the generation parameters from a configuration file (1) that an b ithcr

hand written by the user or automatically generated by RITE's T .BRT ~

provides the capability of importing topologies (2) gen rat d by th r t cl a> :::;..

generators (GT-ITM, Inet , Tiers , BRITE 1.0) or topological data galh r d ir tJ 1

from the Internet (NLANR, Skitter). BRITE can be included in the imported file

formats, because it is possible to generate topologies using BRITE and then reusing

them to generate other topologies by combining them with BRITE models or other

imported formats. In the current distribution BRITE produces a topology in its own

file format (3), and output capabilities for producing topologies that can be used

directly by the Network Simulator (NS) and the Scalable Simulation Frarnew rk

(SSF) simulators are currently being developed.

BRITE's Architecture

In BRITE, a topology is represented by a class Topology. This class contains a Model

(1) and a Graph (2) as data members, and among others, a set of exporting method

and function members (3).

•'. tjhll'l

ll<llllHI~

r - . ··. r·- . ·. . . .
I :.; Ii ""1 I
'·--··· 1 ... ---,.

'l'opolog ns ·•cu 1 · IJRl1'U

27

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

The Model class is an abstract base class from which multiple specific generation

models are derived.Each specific topology generated by BRITE can us a single

instance of one of the available generation models if the generated topology is fl t or

more than one instance if the topology is a combined hierarchical topology. Th

Graph data member (2) is a Graph class with the minimal functionality required by

the generation models. The class may be extended or replaced with minimum effects

on the remaining code if the graph component is required.

Finally, the general architecture shows a set of export methods which output BRITE

topologies into specific formats.

Topology generation process

The specific details regarding how a topology is generated depend on the specific

generation model being used. The generation process can divided into a four-step

process:

1. Placing the nodes in the plane

2. Interconnecting the nodes

3. Assigning attributes to topological components (delay

and bandwidth for links, AS id for nodes, etc.)

4. Outputting the topology to a specific format.

This generation process will not fit every generation model but conceptually reflects

conditions during topology generation. Also, several models may share specific steps

during the generation process, while other m dets differ significantly on the

individual steps.

28

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.6.2 Other Topology Generator

2.6.2.1 Waxman

Waxman developed one of the first topology generators. This generator produ s

random graphs based on the Erd .. os-Renyi random graph model, but it includes

network-specific characteristics such as placing the nodes on a plane and using a

probability function to interconnect two nodes in the Waxman model which is

parameterized by the distance that separates them in the plane.

2.6.2.2 GT ITM

One of the most popular generators available is GT-ITM. The main characteristic of

GT-ITM is hat it provides the Transit-Stub (TS) model, which focuses on reproducing

the hierarchical structure of the topology of the Internet. In the TS model, a connected

random graph is first generated by using the Waxman method or a variant of it. Each

node in that graph represents an entire Transit domain. Each transit domain node is

expanded to form another connected random graph, representing the backbone

topology of that transit domain. Next, for each node in each transit domain, a number

of random graphs are generated representing Stub domains that are attached to that

node. Finally, some extra connectivity is added, in the form of "back-door" links

between pairs of nodes, where a pair of nodes consists of a node from a transit domain

and another from a stub domain, or one node from each of two different stub domains.

GT-ITM also includes about five flavors of flat random graphs.

2

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.6.2.3 Tiers

Another generator that implements models trying to imitate the structure of th"

Internet is Tiers.The generation model of Tiers is based on a three-level hierar h

aimed at reproducing the differentiation between Wide-Area, Metropolitan-Ar a and

Local-Area networks comprising the Internet.

2.6.2.4 Inet and PLRG

Inet and PLRG are two generators aimed at reproducing the connectivity properties of

Internet topologies. These generators initially assign node degrees from a power-law

distribution and then proceed to interconnect them using different rules. Inet first

determines whether the resulting topology will be connected, forms a spanning tree

using nodes of degree greater than two, attaches nodes with degree one to the

spanning tree and then matches the remaining unfulfilled degrees of all nodes with

each other. PLRG works similarly to Inet in that it takes as an argument the number of

nodes to be generated and value of the exponent .

2.7 Programming Language

There are a few of programming languages that can be used in the development of the

network simulator. In addition, the features of the programming language must be

able to meet the requirements of the system to be developed. Since most of the

simulator is built in Object Oriented Programming approach, the programming

language must support the OOP approach. The choices of programming language

should be able to upport other functionality f the network simulator.

30

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

In this section, it reviews on a main OOP programming languages, Java and Tel, a

simple yet flexible and powerful scripting language. These two programming

language has become the most popular language used to develop the network

simulator.

2.7.1 Java

Java was developed at Sun Microsystems. Work on Java originally began with the

goal of creating a platform-independent language and operating system for consumer

electronics. (Deitel 2003)

The original intent was to use C++, but as work progressed in this direction, the Java

developers realized that they would be better creating their own language rather than

extending C++.J ava is both a programming language and an environment for

executing programs written in the Java language. Unlike traditional compilers, which

convert source code into machine level instructions, the Java compiler translates Java

source code into instructions that are interpreted by the runtime Java Virtual Machine.

So, unlike languages like C and C++, on which Java is based, Java is an interpreted

language.

Java is best described as a small, simple, safe, object-oriented, interpreted or

dynamically optimized, byte-coded, architecture-neutral, garbage-collected,

multithreaded programming language with a strongly typed exception-handling

mechanism for writing distributed, dynamically extensible programs. Java has several

of important features that make it an attra tive programming Ianguage as below:

31

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

• Java is simple

Java started out as C++ but has had certain features removed, it is l'tainly a

simpler language than C++. Java has simplified C++ programming by both

adding features beyond those found in C++ and by removing some of th

features that make C++ a complicated and difficult language to master. Java is

simple because it consists of only three primitive data types-numbers, Boolean

types, and arrays.

• Everything else in Java is a class.

Java is object-oriented - The design of Java is completely object-oriented.

Java provides all the luxuries of object-oriented programming: class hierarchy,

inheritance, encapsulation, and polymorphism-in a context that is truly useful

and efficient. Java's object-oriented structure enables user to develop more

useful, more tailor able, and much simpler software the first time around.

• Java supports the Internet

Java can be used to build small application modules or applet for use as part of

a Web page. Applets make it possible for a Web page user to interact

with the page. Java is general purpose Java can be used to create complete

applications that may run on a single computer or be distributed among servers

and clients in a network.

• Java is robust

The Java obje t an ntain no reference to data external to themselves

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

or other known objects. This ensures that an instruction cannot contain the

address of data storage in another application or in the operating system itself,

either of which would cause the program and perhaps the operating syst m

itself to terminate or "crash". The Java virtual machine makes a number of

checks on each object to ensure integrity.

• Java is secure

Closely related to Java's robustness is its focus on security. Because Java

does not use pointers to directly reference memory locations, as is prevalent in

C and C++, Java has a great deal of control over the code that exists within the

Java environment.

• Java is platform-independent

The programs created are portability in a network. The program is compiled

into Java byte code that can be run anywhere in a network on a

server or client that has a Java. The Java virtual machine interprets the byte

code into code that runs on the real computer hardware. This means that

individual computer platform differences such as instruction lengths can be

recognized and accommodated locally just as the program is being executed.

Platform-specific versions of the program are no longer needed.

• Java supports multithreaded

Java support for multiple, synchronized threads that are built directly into the

Java language and runtime environment. Synchronized threads are extremely

useful in creating distributed, network-aware applications. Such an application

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

may be communicating with a remote server in one thread while interactinz
0

with a user in a different thread.

2.7.2 TCL

Tel is the leading scripting language for a wide variety of integration application

needs, whether to build a powerful GUI, embed Tel in application, create a multi-

threaded application, or develop a cross-platform (Anon 2001). Tel provides a

dramatically easier way to build integration applications ranging from simple

graphical user interfaces to complex financial, Web, and management applications.

Since Tel can be used for such a wide range of purposes user can now standardize on

just one scripting language for all their needs. This is a great benefit by reducing the

cost for organization since user only need to learn, maintain, and support one scripting

solution as well as significantly improving the ability for all applications to integrate

smoothly.

2.7.2.1 Tel Capabilities

In contrast, Tel provides a superb platform for creating integration applications. Tel's

capability comes from two basic features.

First, Tel makes it easy to connect to any of the object that user need to integrate. If

user need to connect any X to any Y, it is easy to create one Tel extension that

connects to X another that connects to Y, and use Tel as the intermediary between
'

them. Dozens of free extensions are already available for database access, network

management, and many other purposes.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Second, with Tel it is easy to write scripts that manage the connections in powerful

ways. In contrast to system programming languages, Tel is interpreted and type] ss,

The interpreted nature of Tel makes it easy to modify and extend applications on th·

fly and evolve them rapidly. By being typeless and string-oriented, Tel hides th

differences between components and makes it easy to move information between

them.

The combination of these two features allows integration applications to be developed

5-10 times more efficiently with Tel than with system programming languages such

as C++ or Java, measured either in development time or in lines of code. Furthermore,

the applications created with Tel are more powerful and flexible.

There are many different reasons why people use Tel but most of them fall into just a

few categories. Here are the ten benefits of why people use Tel today:

• Rapid development

The most important reason why people use Tel is that it gets their job done

faster. The applications can be implemented five to ten times faster with Tel

than with other languages, especially if the application involve GUis, string-

handling, or integration. Once an application is built in Tel, it can also be

evolved rapidly to meet changing needs.

• Graphical user interfaces

With its Tk toolkit, Tel provide facilities for creating Uls that are incredibly

simple yet remarkably powerful. For exampl , the r- k anvas wi I 't:t makes it

easy t create di play with raphi s yet it al r r vides 1 w rful faciliti
uch as bindings and tag . The t 't wid et pr vid es phis ti at I hypertext
apa iliti sand more. No oth rt lklt hu th sum ombinali n f strnpl! lty

35

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

and power. Tel attracted much of its early following because it was the only

sane way to create user interfaces under Unix; now it provides these sam

benefits on Windows and Macinto: h platf rrns too.

• Cross-platform applications

Tel runs on Windows (95 and NT), Macintosh, and nearly every imaginabl

Unix platform. This makes it an outstanding tool for creating cross-platform

applications. For example, the same Tel script can run on Unix, Windows, and

Macintosh and display a graphical user interface; the GUI will have a different

look and feel on each platform, to match the user's expectations for that

platform. Because it runs on all major platforms Tel provides an excellent

management and integration tool for mixed environments, such a those with

Windows desktops and Unix servers.

• Extensible applications

If user want to create a powerful application that can be scripted and extended

by its other users and modified in the field, user will need to include an

interpreted scripting language in the application. Tel is unmatched for thi

purpose. The Tel interpreter was designed from the start t be em edded in a

variety of applications. It is easy to incorporate Tel into an appli ati n, and

the Tel Interpreter melds naturally with the application, alm t a if the T I

language were designed exclusively for that particular applicati n;

• Flexible integration

With Tel it is easy to coordinate existing comp nents and ap1 li ati n o that

they work together effe .tively, re cample, it i as tc use T I as a ntr I

language f r . pe ial-purp e hardware and pr t l or n tw rk

int rfa e to a l ~ u y appli nticn -H int ml· 11 w Jn ·1 n pH ·nLi n with

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

legacy code in C or C++. This makes Tel a powerful tool in areas such as

network management and factory automation.Ready for the enterpri With

the Tel 8.1 release, Tel became the first (and only) scripting language suitabl

for large server applications and other mission-critical enterpris uses. Th

benefits of scripting, such as rapid development, flexible evolution, and ea y

integration, have been known for years, but until Tel 8.1 no scripting language

provided all the facilities needed for enterprise applications, which include

internationalization, thread safety, cross-platform portability, great GUI

capabilities, embeddability, Internet support, and database access. Tel 8.1

added internationalization and thread safety, making Tel the first scripting

language to meet all these requirements and bring the benefits of scripting to

the enterprise.

• Testing

Tel is an ideal language to use for automated hardware and software testing,

and it may well be the dominant language used for this purpose. Tel can easily

connect to testing hardware or internal APis of an applicati n, inv ke test

functions, check the results, and report errors. Tcl's interpreted irnplernentati n

allows tests to be created rapidly, and the tests can be saved a Tel script file

to reuse for regre si n testing. If you are te ting a software application, Tel

allows you to connect directly t lower-level APis within the ap] li ali n,

which provides much m re preci e and omplete t"sti11g.

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

• Easy to learn

Tel is a very simple language. Experienced programmers can learn T l and

produce their first interesting application in just a few hour r days. ascal
programmers can also learn Tel quickly. Tel is often used in situations wh r

experienced programmers create a base set of facilities, and more asual
programmers write Tel scripts to customize those facilities, create busines

rules,etc.

• Network-aware applications

Tel provide easier acess to networking facilities. Servers and clients can be

created in a few minutes with just a few lines of code. Tel provides a great

way to add network interfaces to legacy applications.

• The Tel community

Another attractive reason for using Tel i the large and helpful community f

Tel users and developers. The Tel community is a constant ource of idea ,

free extensions, applications, and technical support.

2.7.2.2 Other scripting language

Tel is a member of the class of languages known as scripting language . There are

many other scripting language besides Tel, including Java Script, Vi ual Ba ic, Perl,

and others. As a group, all of the cripting languages tend t be u ed f r integrati n

applications, and all offer significant benefits over sy tern programming languages.

Each scripting language has parti ular strengths. For xarn; l 1 Java · ri l is kn wn

for its sm th integrati n with W b br w 31' \ Visual Basi f r

development environment) and p rl f r it trio r-handlin lpnbiliti . r 1'

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Strength is its versatility: it can be embedded in applications or used standalone, it has
outstanding GUI capabilities, and it can easily be connected to nearly any oth r

application or protocol. Tel was designed from the start to be used for many diff r nt

purposes in many different situations, and the tremendous diversity of T 1

applications demonstrates that it has met this design goal.

In contrast, most other scripting languages were designed for a narrower set of tasks.

They perform well for those specific tasks but they aren't used for as many different

things as Tel. For example, JavaScript is the obvious choice to use for simple

scripting in a browser, but it is rarely used for anything outside the browser. Visual

·Basic provides excellent facilities for creating Windows GUis, but it isn't suitable for

integrating Windows desktops with Unix servers. Perl's string handling makes it an

excellent choice for system administration tasks, report generation, and Web

scripting, but it doesn't have native GUI capabilities and it isn't as easily embeddable

as Tel.

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

The scripting language comparison chart below gives an overview of the features

available in each of the most popular scripting languages today.

Table 2.3: Comparison of today popular scripting languages

2 .8 Summary

This chapter has covered the primary re earch ba kground f this pr je t and relevant

knowledge needed t devel p the networl simulator. A mor · d etail d planatlon f

the simulator will be pre ent in the f II win hapt r,

0

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

Chapter 3 Ns-2 and JaNetSim

3.1 Ns-2 Concept Overview

Ns-2 is an Object-Oriented, discrete event network Simulator developed at U

Berkely, It is written in C++ and OTcl(Object-Oriented Tel) arid primarily u e OT l

as Command and Configuration Language. Ns is rnailnly used for simulating local

and wide area networks. It simulates a wide variety of IP networks.(Fall et al. 2003)

It implements network protocols such as TCP and UDP, traffic source behaviour such

as FTP, Telnet, Web, CBR & VBR. router queue management mechanisms such as

Drop Tail, RED and CBQ, routing algorithms such as Dijkstra and more. Ns also

implements multicasting and some of the MAC layer protocols for LAN protocols for

LAN simulations. The Ns project is now part of the VINT project that develops tool

for Simulation results display, analysis & converters that convert n/w to pol gie

generated by well-known generators to Ns formats.

3.1.1 OTcl Linkage

Originally, Ns is written in C++, with OTcl interpreter a au er front end. In ++, it

supports a class hierarchy called Compiled hierarchy and in O'Tcl interpreter, the

similar version are called interpret hierarchy. There is a one- n corresp ndence

between classes of these two hierarchie s. The root of th hierarchy i Class Tel bje t.

User instantised objects are minored thr ugh methods defined in la s T l bject.

41

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

Users create new simulator objects through interpreter that are instantiated within the

interpreter. The interpreted hierarchy is automatically established through meth d

defined in the TelClass.

· Root of ns-2 object hierarchy

bind(): link variable values between
C++ and OTcl
command(): link OTcl methods to C++
implementations

Create and initialize TclObject's

C++ methods to access Tel interpreter

;"l"clqommand Standalone global commands
' . t;:m~eddedTcl ns script initialization

Figure 3.1 : C++/OTcl Linkage

3.1.2 Duality Need for Different Language

Ns developer can be considered working on Tel, running simulations in Tel using the

simulator objects in OTcl library. The event sch duler & mo t of the c rnponent are

implemented in C++ and available to O'Tcl through an OTcl linkage

C++

For detailed simulations of protocols, programming language like C++ an efficiently

handles bytes, packet header and implements algorithm efficiently,

Tel

In order to vary the parameter r configuration of changing s eaarios, iterati n time i

more important than run-lime I the art f ta 1 .. hu this un b H rnplished y a

scripting language like T l.

2

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

OTc

n
Figure 3.2 : OTcl and C++ duality

Ns is Object-Oriented TCl (OTcl) script interpreter that has a simulation event

scheduler and network component object libraries and network setup modules called

plumbing modules. The program that runs Ns is in OTcl script Language. The basic

script sets up & run a simulation of network. Thi initiate an event cheduler, et

up network topology using network objects and plumbing functions in the library and

tells traffic source when to start & stop. When a u er wants to make a new object,

they can either write a new object from the scratch or make a compound object from

the object library & plumb data through it.

Simulation results are usually contains in files called 'Trace file '. When the

simulation is over N produces one or more text ba ed output file that contain

simulation data a pecified in the input script. It can also be viewed u ing a ni e

graphical tool called 'Network Anirnat r' or NAM in hort.

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

3.2 Simulator Basics

Class Simulator

The overall simulator is described by a Tel class Simulator. It provides a set of

interfaces for configuring a simulation and for choosing the type of event scheduler

used to drive the simulation. A simulation script generally begins by creating an

instance of this class and calling various methods to create nodes, topologies, and

configure other aspects of the simulation.

3.2.1 Simulator Initialization

When a new simulation object is created in tel, the initialization procedure performs

the following operations:

• initialize the packet format (call create_packetf rmat)

• er ate a scheduler (defaults to a calendar scheduler)

• create a "null agent" (a discard sink used in variou places)

The packet format initialization sets up field offsets within packets u ed by the entire

simulation.The scheduler runs the simulation in an event-driven manner and may be

replaced by alternative schedulers which provide somewhat different The null agent is

created with the following call:

et nullAgent_ (new Agent/Null]

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

This agent is generally useful as a sink for dropped packets or as a destination for

packets that are not counted or recorded.

3.2.2 Schedulers and Events

The simulator is driven by event based activities. Firs ti y, the scheduler runs by

selecting the following earliest event, executing it to completion and proceed with

execution of the next event. The events are measured in seconds. Currently, the

simulator is able to support only a single process of event execution at any given time.

Presently, there are four types of schedulers defined in the simulator:

• Simple Linked List Scheduler

The list scheduler (class Scheduler/List) implements the scheduler using a

simple linked-list structure. The Ii tis kept in time-order (earlie t to late t),

event insertion and deletion require scanning the list to find the appropriate

entry .Choosing the next event for execution requires trimming the first entry

off the head of the list. This implementation preserve event execution in a

FIFO manner for simultaneou events.

• Heap Scheduler

The heap scheduler (class Scheduler/Heap) implement the scheduler using a

heap structure. This structure is superior to the li t structure for a large number

of event . Thi implernentati n in ns v2 i borrowed from the MaR · -2.0

sirnulat r; it i b lieved that MaR it elf b rrowed the de fromN Jt im,

although thi linea e ha n lb' 'fl ompl 't'ly verifi .

Univ
ers

ity
 of

 M
ala

ya

Chapter 3. Research on Ns-2 and JaNetSim

• Calendar Queue Scheduler

The calendar queue scheduler (class Scheduler/Calendar) uses a data structur

analogous to a one-year desk calendar, in which events on the same month/day

of multiple years can be recorded in one day.

Real Time Scheduler

The real-time scheduler (class Scheduler/Real'Time) attempts to synchronize

the execution of events with real-time. It is currently implemented as a

subclass of the list scheduler. The real-time capability in ns is still under

development, but is used to introduce an ns simulated network into a real­

world topology to experiment with easily-configured network topologies,

cross-traffic, etc. This only works for relatively slow network traffic data rates,

as the simulator must be able to keep pace with the real-world packet arrival

rate, and this synchronization is not presently enforced.

3.2.3 Nodes and Packet Forwarding

Each simulation requires a single instance of the Simulator to contr l and perate that

simulation. The class provides instance procedures to create and manage the topol gy,

and internally stores references to each element of the topology. The basic primitive

for creating a node is

set ns [new Simulator] $n node

The instance pr cedure n de n tru ts a n de ut I m r simpl la sifi r. 'Ch

Node itself is a standal ne cla s in T I, t w ver, most f h mp n 11l f th

n de are thernselve slmplc stru 'lur' : en

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns~2 and JaNetSim

address classifer (classifer J and a port classifier (drnux). The function of these

classifiers is to distribute incoming packets to the correct agent or outgoing link. All

nodes contain at least the following components:

An address or id_, monotonically increasing by 1, A list of neighbors (neighborj, A

list of agents (agentj, A node type identifier (nodetypej and a routing module

Nodes can be configured by the users themselves using one of the control function ,

Address and port number management, routing functions, Agent Management and

neighbor tracking functions. The function of a node when it receives a packet is to

examine the packet's fields, usually its destination address, and on occasion, its source

address. It should then map the values to an outgoing interface bject that is the next

downstream recipient of this packet. In this task is performed by a simple classifier

object. Multiple classifier objects, each looking at a specific portion f the packet

forward the packet through the node. A node u es many different types of classifier

for different purposes. A classifier provides a way to match a packet against some

logical criteria and retrieve a reference to another simulation object based on the

match results. Each classifier contains a table of imulation bjects indexed by sl t

number. The job of a classifier is to determine the slot number ass ciated with a

received packet and forward that packet to the object referenced by that particular

slot.

A node is essentially a coltecti n f la· ifier . The irnplest node (uni ast) ontain

only one address la ifier and ne p rt lassifier, When one e t '11 tli fun ·tiooalily

of the node, morn classifi r are add d int the base n de, C r in tan the multi a t

node. As more fun ti n bl k is add cl and fl b f hese bl k, r uir · ii. wn

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

classifier(s),it becomes important for the node to provide a uniform interface to

organize these classifiers and to bridge these classifiers to the route computation

blocks.

trans port
attach
do?ls1:h

add-roula
delele-rou~

Rot1ting
Modules:

add-route ;
delete-mute i

RtModuleiB<1s:e. Node
routinq f0Lttil1•;;)

transport
3ltaoh
detach

Man11~1env;nt Clnseifier
re-;iist.;.r
unregister ~

Figure 3.3 : Interaction among node, routing module, and routing

3.2.4 Links

This is the second aspect of defining the topology. Link are used to connect the

nodes and complete the topology. Apart from simple point to point links, it supports a

variety of other media, including an emulation of a multi-access LAN using a mesh of

simple links, and other true simulation of wireless and broadcast media

set ns [new Simulator] $ns simplex-link {nodeO} {nodel} {bandwidth}

{delay} {queue_type}

The command creates a link from nodeO to nodel, with specified bandwidth and delay

characteristics. The link u es a queue of type queuetype. The procedure als adds a

TTL checker to the link. Five instance variables define the link- namely head queu ,

link, ttl.drophead,

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

queue_ deqT_ link

' '
' '
~

I
I
I

ol

ttl

, ,

,
, , ,

drophead drpT_

Figure 3.4 : Composite Construction of a Unidirectional Link

enqT_ Reference to the element that traces packets entering queue_.

deqT _Reference to the element that traces packets leaving queue_.

drpT_ Reference to the element that traces packets dropped from queue_.

rcvT_ Reference to the element that traces packets received by the next

node.

The instance variables enqT, deqT, drpT, rcv'I' track the trace elements. Delays

represent the time required for a packet to traverse a link. A special form of this object

("dynamic link") also captures the possibility of a link failure. The amount of time

required for a packet to traverse a link is defined to be speed of the link in bits/sec,

and is the link delay in seconds. The implementation of link delay is clo ely

associated with the blocking procedures.

3.2.5 Queue Management and Packet Scheduling

Queues represent locations where packets may be held or dr I ed). Packet

scheduling refers t the de i i n pr e

serviced or dropped. any parii ulur di ipline used t

regulate the upun y fa pnrti ulur qu Ju . t 11 • nt, sur p rt i in ·tud d for drop-

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

tail (FIFO) queueing, RED buffer management, CBQ (including a priority and round­

robin scheduler), and variants of Fair Queueing including, Fair ueuein (),

Stochastic Fair Queueing (SFQ), and Deficit Round-Robin (DRR). In the comm n

case where a delay element is downstream from a queue, the queue may be block d

until it is re-enabled by its downstream neighbor. This is the mechanism by which

transmission delay is simulated. In addition, queues may be forcibly blocked or

unblocked at arbitrary times by their neighbors (which is used to implement multi­

queue aggregate queues with inter-queue flow control). Packet drops are implemented

in such a way that queues contain a "drop destination"; that is, an object that receives

all packets dropped by a queue. This can be useful to (for example) keep statistic on

dropped packets. The Queue class is derived from a Connector base class. It provides

a base class used by particular type f (derived) queue cla e , as well a a call-back

function to implement blocking.

3.2.6 Agents

Agents represent endpoints where network-layer packets are constructed or

consumed, and are u ed in the implementation of protocols at various layer . The

Agent has an implementation partly in O'Tcl and partly in C++. he C++ internal

Agent includes enough internal state to assign vari us fields to a simulated pa kets

before its sent. The state includes the following addr-the node addre s, d t-where pkt

are sent to, size, type-the type of the I a ket, fid-the fl w identifier, pri -the IP pri rity

field, flags-packet flag , defttl-default i1 Tl' . A rent up rt pa ket eneruti n &

recepti n. The ornm n a ent m th ds ar m i,111t t all al pa iket 1 r "'ivin ') th

packet , spe ifyin tim ut 111 erhoda,

50

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

3.3NAM

Nam is a Tcl/TK based animation tool for viewing network simulation traces and real

world packet tracedata. It is is used to visualize the ns simulations and real world

packet trace data. The design theory behind nam was to create an animator that is able

to read large animation data sets and be extensible enough so that it could be used

indifferent network visualization situations. Under this constraint narn was designed

to read simple animation event commands from a large trace file. In order to handle

large animtion data sets a minimum amount of information is kept .The first step to

use nam is to produce the trace file. The trace file contains topology information, e.g.,

nodes, links, as well as packet traces.

Usually, the trace file is generated by ns. During an ns simulation, user can produce

topology configurations, layout information, and packet traces using tracing events in

Ns.

However any application can generate a nam trace file. When the trace file is

generated, it is ready to be animated by nam. Upon startup, nam will read the

tracefile, create topology, pop up a window, do layout if necessary, and then pause at

time 0. Through its user interface, narn provides control over many

aspects of animation.

51

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

C~c;p m1iw.1ti!:'t:"1
'.

?lay ;:ni.cr.alu.c-. 't.;t.:J:•;:;utJ~ \
\
'·

::~: f ~Jl~~z uy ~~ • ~111? ;,lof1:i:>::'1•

.Pl:.; :1..c!/11<~•;.n i

Aulrcvi.l!a) ar~a

.H 1u.c.:!h'l d 1..h1uJJ.wu I ll ~.y uni

Figure 3.5 : Screcnshot of Nam interface

3.3.1 Objects In Nam

In Nam the animation is upported by five different components. The building blocks

in Nam are:

• Node

• Link

• Queue

• Packet

Agent

52

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns~2 and JaNetSim

Node

In Nam, the node represents a source/ host/ router. Nam will terminate if there are

duplication of definition for the same node. Node may have many shape like squar ,

square and hexagon. Once created the node cannot change hape. Node can be creat

in many colour which represent various state during the animation.

Link

Links are created to form a connection between nodes to build network topology.

Nam links are internally simplex, but it is invisible to the users. The trace event will

creates two simplex links and other necessary setups, hence it looks to users

identical to a duplex link. Link may be represented in different color , to simulate

flow of traffic during animation.

Queue

Queue needs to be constructed in Nam between two nodes. Unlike link, Nam queue is

associated to a simplex link. Queues are visualized a tacks of packet that need to be

transmitted between nodes. In trace events, parameter like angle between the line and

horizontal line can be logged to trace events.

Packet

In Nam, packet is visualized as a block with an arrow. The directi n f the arr w

shows the flow directi n of the pa ket. ueued packets are sh wn as little squares. A

packet may be dr pped fr m a . ueue r a link. rep]

rotating squares, and di ap ear al th end f the scr · n.

visible durin ba kward animation.

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

Agent

Agents are used to separate protocol states from nodes. They are always associated

with nodes. An agent has a name, which is a unique identifier of the agent. It is shown

as a square with its name inside, and a line link the square to its ass ciated n de.

3.4 Creating Topology

In Ns-2, Tel script is developed to simple toplogy. Tel script defines the simulation

scenario by including the topology and events.The script is able to create some output

on stdout, write a trace file or start nam to visualize the animation .Below show the

generic script structure in Tel format.(Greis, Marc 2001)

set ns [new Simulator]

[Turn on tracing]

Create topology

#Setup packet loss, link dynamics

#Create routing agents

#Create:

- multicast groups

- protocol agent

- applicati n and/ r etup traffic sources

Post-processing procs

#Start simulation

First of all, create a imulat r bject. This i d ne with the command

s 'l ns ln •w imulatcr]

l!i aurc 3. ; : Dusi tupolog tJ rlpt lu 'I ·I Purt l ol' S

s

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

Now open a file for writing that is going to be used for the nam trace data.

set nf [open out.narn w]

$ns narntrace-all $nf

Figure 3.7 : Basic topology script in Tel (Part 2 of 5)

The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. The

second line tell the simulator object created above to write all simulation data that is

going to be relevant for nam into this file.

The next step is to add a 'finish' procedure that closes the trace file and starts nam.

proc finish {} {

global ns nf

$ns flush-trace

close $nf

exec nam out.nam &

exit 0

}

Figure 3.8 : Basic topology script in Tel (Part 3 of 5)

The next line tells the simulator bject to execute the 'finish' pro edure after 5;

seconds of simulati n time.

$n • l S.O 11fi11I h''

55

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns~2 and JaNetSim

The last line finally starts the simulation.

$ns run

Figure 3.10 : Basic topology script in Tel (Part S of S)

The segment of the above code will be use as a starting point to write a Tel script for

more complex example. If the coding above is execute, the system will prompt an

error message 'nam : empty trace file out.nam 'because objects and events have not

been defined yet

Two nodes and one link

The following two lines define the two nodes.

set nO [$ns node)

set nl [Sns node)

Fizure 3.11 : Simple script in Tel (Part 1 of3)

A new node object is created with the command '$ns node'. The ab ve c de creates

two nodes and assigns them to the handles 'nO' and 'nl '.

The next line connects the two node .

$ns duplex-link $n0 $111 lM~ 10ms rop'Iui!

Fi ur • .12 : Shnvt ·t'lpt h 1' ·1 Purt 2 of)

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

This line tells the simulator object to connect the nodes nO and nl with a duplex link

with the bandwidth IMegabit, a delay of lOms and a DropTail queue. Now the file

can be save and the script can be started with command line 'ns example l.tcl' .Nam

will be started automatically resembling the pictures below

®

Figure 3.13 : Simple script in Tel (Part J of 3)

Sending data

In Ns-2, data is always being sent from one 'agent' to another. So the next step is to

create an agent object that sends data from node nO, and another agent object that

receives the data on node n l.

#Create a UDP agent and attach it to node nO

set udpO [new Agent/UDP]

$ns attach-agent $n0 $udp0

Create a CBR traffic source and atta h it lo udpO

set cbrO (new Application/Traffic/ BR]

$ br set pn k l ize_ 500

$ brO set inl 'rval_ 0.005

$ brO allu h·as nt $udp0

57

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

Figure 3.14 : Create data source between nodes (Part 1of5)

These lines create a UDP agent and attach it to the node nO, then attach a CBR traffic

generator to the UDP agent. CBR stands for 'constant bit rate'. The pa k t lz is

being set to 500 bytes and a packet will be sent every 0.005 seconds (i.c, 200 pack ts

per second).

The next lines create a Null agent which acts as traffic sink and attach it to node nl.

set nullO (new Agent/Null]

$ns attach-agent $nl $null0

Figure 3.15 : Create data source between nodes (Part 2 of 5)

Now the two agents have to be connected with each ther.

$ns connect $udp0 $null0

Figure 3.16 : Create data source between node (Part 3 of S)

And now inform the CBR agent when to send data and when to st p ending. It's

probably best to put the following line ju t before the line '$n at 5. "finish'".

$ns at 0.5 "$cbr0 start"

$ns at 4.5 "$cbr0 stop"

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

The file can be saved and restart the simulation again. When click 011 the 'play' button

in the nam window, after 0.5 simulation seconds, node 0 starts sending data packet. t

node 1.

Figure 3.18 : Create data source between nodes (Part 5 of 5)

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

. 3.5 Java Network Simulator (]aNetSim)

The basic underlying concepts used of JaNetSim are:

• discrete-event model

• . central simulation engine with a centralized event manager.

• simulation scenario consists of a finite number of interconnected components

(simulation objects), each with a set of parameters (component properties).

• Simulation execution involves components sending messages among each

other. A message is sent by scheduling an event (to happen some time later)

for the target component (Lim, Shiau Hong 2002).

11() II.: 111 ice.
'f't,,,,,

CiUI
Mnn:l(l.~llll!'lll

E,·~nt
l\bm1g,c1n.:111

The architecture of the simulator enable a wide sirnulati n f vari u networl

components virtually possible by emulating tran missi n I data ver the 11 tworl

These c ncepts are m deled fr m the NI

$i11111i:lli•lll
(\,mp,111..-111

Si11111h11k 1l
C011111, 11·111

Figure 3.19 : JaNet im Overall Architectur

Ml n

0

imulu! r.

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns~2 and JaNetSim

3.5.1 J avaSim

JavaSim is the main object that contains all the functionalities in the imulator, It

provides all GUI functions (together with SimPanel) and main Jf'rarne for th

application. Besides that, it provides the event manager to handle event-passing

among all components. There will be only one instances of the Java im object

throughout the simulation.

There are few services provided by the JavaSim object as below:

• Provide the current simulation time in tick

• Provide a list of all existing SimComponent

• Provide communication between any components which involve creation of a

SimEvent

3.5.2 SimClock

This class serves its function a a time tran lat r t define, interpret and provide

conversion between tick and actual time

3.5.3 SimEvent

SimEvent caters for communications between components by using enquiring

method. In order for communication to happen betw en source and destination the

source component will create imEvent and name the de tinati n omponent a

receiver and enqueue the vent. he irn v nt will d fin time a arum t r

to enable the ur e mp n nt t r ··1 t t th nu that JnttJ IJ • 'll tar 'l rd Ht that

component

l

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns~2 and JaNetSim

There are two types of events:

• Public Event

• can be enqueued for itself or for another SimComponent

• defined in the SimProvider object

• development of new SimComponent and event types require the

recompilation of this object

• Private Event

• can only be enqueued for itself

• private events are defined within the particular SimComponent source

itself

• private events must be greater than a con rant

(SimProvider.EV _PRIVATE) defined in SimProvider

3.5.4 SimComponent

This is the most important class to under tand in the simulator in order t

development new components. Every network c mp nent in the irnulation inherit.

SimComponent. The SimComponent class itself should not be instantiated because it

only provides the skeleton for an actual comp nent. A new omp nent h uld extend

SimComponent and override its variou meth d in order to provide meaningful

operations for the component.
Univ

ers
ity

 of
 M

ala
ya

Chapter 3 Research on Ns-2 and JaNetSim

Below are the methods available in the SimComponent:

reset()

METHOD DESCRIPTION

start() perform any operation needed when the

simulation starts

perform a reset operation in order to bring

the status of the component back to the same

status as if it is just newly created

action(SimEvent e) this is the event handler of this component,

and will be called by the simulator as the

destination fires. Besides that, all private

events will be handled in this method

isConnectable(SimComponent

comp)

addNeighbor(SimComponent

comp)

this is called by the simulation engine when a

component is ab ut t be nn ted to thi

component. The comp i a reference to the
new component.

this is called by the simulation engine when a

new neighbor is connected to thi

component.

removeNeighbor(SimComponent

comp)

this is called by the simulation engine when a

neighbor is di connected fr m this

comp nent.

copy(SimComponent comp) this method i u ed to copy parameter values

of another irn omponent of the sam ty e.

getimage() thi meth d i · us ed t load an ima fil" t

repr ent the mp 11 sru in the simulat r

1 nble .1 . M •fhud' J •Hn' tn 'Im omptH1cut

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

Besides that, every SimComponent must have a component class and a component

type, as defined in the SimProvider class. The getCompClass() method can be u ed t

obtain the component class whereas getCompType() method can be u ed t get the

component type.

3.5.5 Siml'arameter

Every SimComponent can have internal parameters or external parameters, which can

be shown or accessible by users. All external parameters must inherit SimParameter.

By extending SimParameter, one obtains parameter logging and meter display

features automatically.

Any parameter that inherits SimParameter will provide a constructor that includes at

least 4 parameters, which are name of the parameter, name f the c mp nent wn the

parameter, time when the parameter is created and whether the parameter can be

logged in the log file.

The current simulation engine provides 3 general purpose classes that all inherit from

Siml'ararneter: Simi'aramlnt, Simharamlrouble, and Simi'aramliool. bvi usly

these 3 objects provide support for integer, double and Boolean parameters.

Extending SimParameter accordingly can create other types of parameter .
Univ

ers
ity

 of
 M

ala
ya

Chapter 3 Research on Ns-2 and JaNetSim

SimParameter

Inherit

..- _ . ..,....,
_........................ f '-....~

..-..- I ',,
»> I h . I I I n ent

1
n icrit

/ .!..................................... [::::.:::: \
i

I SimParamDouble SimParamBool
'

I l
...) ..

--- ----':": . :/
SimParamlnt

Figure 3.20 : Inheritance from SimParamcter class

There is one important requirement to all parameters that may be added/ removed

after the creation of a component. Any addition or removal of SimParameter from the

component's parameter list (java.util.List params] should be followed by a

notification call to the main JavaSim object, by thi tatement:

theSim.n.otifyParametersChange(this), which en ure that any pened dial gs

containing those parameters get updated/closed.

When a SimParameter is created with isLoggable true, it's value will not get logged

when for example, a setValue() call is done. This is to av id exces ive r unneces ary

logging of data. Each component is responsible in controlling the rate f 1 ging. In

order to make sure a new value of a Simf'arameter i Jogged, ne mu t all the

updateilong tick) method.

3.6 Object Serialization. and Load/ ave Function

The simulator u e bj l serializati n as a f rm f Ii hl·W i ht p r. isl en ·,. Thi·

allow accurate saving and r t ring f the sirnulati n 'tot's with ut mu h ' ort fr m

the

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Research on Ns-2 and JaNetSim

In this simulator, every SimComponent and SimParameter is serializable. This means

that each SimComponent and SimParameter must implements the [ava.io.Serializable

interface. This rule carries down to all class members of the particular imComp n nt

or SimParameter. That is, if a component contains a member that is not rirnitive [ava

types, it should also be Serializable. In JaNetSim, the topology can be saved in tw

format, from Menu --- »Save as ... and Menu ---> Save Topology.

lltJaNetSim ·
~dit y_iew To

New
· Qpen ...
Save
S!!'ffi As ...

~oad Topology .
Save Iopology .

Beset Log File

Figure 3.21 : Screenshot of save format in .Jo Net im

From the first format, the layout of the topology will be saved with all the exact

values in parameter at the time of saving. When the t pology i rel aded again it will

display the layout of the topology with the value I gged by differ nt devi es ef r

saving. If the user selects to save topology from the second meth d it will nly av"

the layout of the topology without all the parameter. All the parameter from the

previous simulation will be wip d ff.

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

Chapter 4 System Analysis

4.1 Development Tools

The most suitable and appropriate tools for developing the system have been

identified and selected. The tools have been selected include the development

language as well as the entire platform on which the development of the project i

developed.

4.1.1 Programming Language

4.1.1.1 Java Programming

Java is a small, simple, dynamic and object oriented programming language coupled

with strongly typed execution handling rnechani m for writing distributed,

dynamically extensible programs.

Java is object oriented programming language e pecially designed for u .. e in internet

environment. Object Oriented Programming technique u e method that model the

characteristics of abstract or real objects using clas e and object . oftware bjects

have state and behavior as they are modeled after-real w rld bjects. An je t i a

software bundle of variables and related methods. A oftware bject maintain it

state in one or more variables. A variable is an item of data named by an identifier. A

software object implements it behavi r with meth d . A m etb d i a fun ·li n

(subroutine) associated with an bject.

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

Methods
(behavior)

Variables
(state)

Figure 4.1 : Common visual representation of a software object.

4.1.1.2 Tel

One of the most powerful and versatile scripting language today for creating

integration applications is Tel. Tel is a very simple scripting language made up of

commands separated by new lines or semicolons.

Integration applications have characteristics quite different from traditional

programming tasks. and often incorporate bu iness rule and pr e e . Theref re, it

tend to ill-structurized and evolve easily. Besides that, Tel pr vide yntax that can be

understand easily thus it is often popular with not ophi ticated programmer.

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

4.2 System Requirements

4.2.1 Functional Requirements

4.2.1.1 Input of converter

The converter module requires input for generating topology. The input should be in

topology format with extensions of *.tel (Ns-2) and "top (JaNetSim).The topology

should contain all the information of the network configuration to be simulated.

Basic and minimum information to be included into the topology file :

• Information of the network components like nodes and link

• Interconnection with neighboring components

• Values of parameters of each components

4.2.1.2 Converter

The converter module is the core of the the is. It is developed to enable conversion of

topology format from Ns-2 to JaNetSim to imulate a network in different

environment.

The converter should be able to:

• Read topology file format in *.tel in Ns-2 and convert the top logy t file

format to * .t p in JaNetSim and vice versa.

• Write to topol gy file format in * .t l for N -2 and ~·.top f r JaN t Im.

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

• Recreate the converted topology with minimum conversion including the

parameters and other needed values as in the original topology file.

• Save the layout of topology in choice of file format

• Log all the values and parameters failed for conversion.

4.2.1.3 Output

There should be two outputs by the end of conversion:

• The converted version of the topology file format for Ns-2 or JaNetSim in text

file format

• A log file for informing the users of containing all the values of the data and

parameters failed to be converted during the proce s

4.2.2 Non-Functional Requirements

Non-functional requirements are requirements which are not directly concerned with

the specific function delivered by the y tem. Rather it may relate to the system

properties or alternatively define the con traints of the system. Below are the

functional requirements for the prop ed system:

4.2.2.1 Physical Environment

The converter will be dev l ped in Wind. w envir nrnent by using Microsoft

Window 98 with Intell Pentium III 800 Mhz pr e sor and memory ize f 128

MB.For testing pu rp , e , "'.1 l t pol y r rrnat hav ~ l b ex u l ~ in Ns-- whi 'h run

on Linux Red Hat 9. under the same hardware nfi uration,

7()

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

4.2.2.2 Users and human factor

The user of the converter program should have at least understood the basi

requirements in creating a topology to simulate a network .Users too should aware f

all the parameters of the component used in the simulator. Users should understand

about the relation of different network components and their interconnection to form a

topology

4.2.2.3 .Flexibility

The converter program should be able to change easily to support for changes and

redesign purposes. Besides that it should be able to integrate without seamle s into the

existing simulator. The components and objects should be independent s that

modification of the simulation will be fuss free and time aving.

4.2.2.4 Usability

The program should be user friendly and user must be able to ues the ystem in

shortest time. GUI interface of the system hould accu tom the user with sense of

presence and familiarity with the Window interface. The ystem functi nalitie must

be self explaining and consistent with the d sign of the exi ting sy tern.

4.2.2.S Maintainability

The program should b designed in a way that required le effort t maintain and

robust. The task of l eating and fixing an rr r mu t be imple and le s tr ubl "Som .

71

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

4.2.2.6 Constraint

As the conversion involves two topology formats for two different systems with sli zht

different in components and connection method, not all the components can be

mapped directly to each another. During the conversion some of the values and

parameters may have to be alter to suit the best possible condition. All the values lost

will be save into a log file for reference.

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

Chapter 5 System Design

5.1 Introduction

Design of the topology converter is based on the information collected during the

system analysis and requirements stage. The topology converter is designed for

conversion of topology file format in Ns-2 and JaNetSim system. The converter

should be able to integrate with the existing system and comes with user friendly

window based graphical user interface to reduce user time to learn the usage of

topology converter..

5.2 Technique used

There are two techniques involves in the design for the components. The first

technique is modular decomposition and the second technique will be event riented

decomposition. Description of the both technique will be explained in details in the

following segment.

5.2.1 Modular decomposition

For this technique, the system is constructed ba ed on a signing function t the

components. Design of the system begin with a high-level description f the fun ti n

to be implemented. From here, the details and relation f component rganizati n will

be produced.

7

Univ
ers

ity
 of

 M
ala

ya

Chapter S System Design

5.2.2 Event-oriented decomposition

This approach allows the system design to be base on events that are handled by the

system. Events are actions that prompt the system to perform some pr essin

activities and several events will be discuss in the next part.

5 .3 System Design

The system design can be divided into three components, the input design,

functionality design and output design

5.3.1 Input design

The converter program will take Ns-2 Tel script and JaNetSim topology file as an

input to the system. Basically both of the file will contain information of the topology

including parameters and values of input and output of each component. The file al o

must contain the list of neighboring components and li t f route in the clas .

74

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

5.3.2.1 File reading

Start

Read line while not reach EOF

Create component

No

No
Log file

Create route

Reach the end of file

Start Simulation

75

N
Check c nnection

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

5.3.2 Functionality Design

Functionality design explains the design of classes for each component. Thi include

their functionality, major attributes and major method in the class design,

5.3.2.1 NodeProperties

The node properties class will stores all the properties of each node in the network

Major attributes

-··· I
i -------'

Table 5.1 : Major attributes in Nodel'roperties

Major methods

Table 5.2 : M1\jor methods in Nod 'Prop •rU~s

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

5.3.2.2 LinkProperties

Link properties will store all the properties of each node in the network

Major attributes

Table 5.3 : Major attributes in LinkProperties

Major methods

r~~~-~?_4~::~-~-~:::·~-.-.::~::::r:::!?~.~~~-r..~~~i=·:.:~.:-.-=:~.==~~~:~=---··-i;
l::?.c:!~:~~~~.i.?.i~.~1.~I L~.~! .. :!:.~_!~~i.~--~~?~.~ i? th __ . I·
l~~~~~~.~-~~i.~ .. ~-~~(~::.~.:11: ~~i0i:.~~~~-:~~i~~_? t ba·n_d·~~~~---·=-1
~~i~l~3H~~;;i;~;tf¥e~:fi~~---. -1:
[-geibfre'Cdon(LJl'iset ttiP, line type · ... · 1·

r;tbirect1ono· ·H· i:~~~rn o for ·sirl1piex,1 tor duplex I
[setDist'ance() __J l sei the distance between node I
[itb'h;fanceo · H return dis.iance- · I,
[se.tbe1ay ··· ·· _Jf set.the 'delay t>etween nodes - I
[geti5e1ay · ··-·· · · j i ··1-eturn the Cletay -· j!

Table 5.4 : Major methods in LinkProperties

5.3.2.3 Node

The node class represents individual node on the network.The propertie

can be invoke by calling node.getPropertie ().

then de

Major attribute

lAtt~~J~cripti n _ _ . _
~2' _* __ J!__:iE~q~e_k~ ide~ti!i ar ~· r ind1.:']du~J n d

Tupi, s. : Major nttribut •sin Nod·

77

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

Major method

------------·----- ~Metbod~\-Descriptfo'ii ----- -·- -· - -- · - - _·---~.Ji
\i.ietkeyo·]rretlirn.t"iie.key ... -· --- ·-- ·· - · · · ·--~j
!isOiKOY(f · -J! aSSigU Uiiic\lle ke Y valuO to node - · . · 1 I
l••••••••••• .. ••••·••••••·•~-.-H"-•-••o•• •••• ~-·· ,,,~~ e ·-• •"• •••Ho... ·--H•· H ' ~" ,, ·' Oo N •

Table 5.6 : Major methods in NodeProperties

5.3.2.4 Link

Link class represents a link between nodes.The link of the properties en be invoke by

calling link.getPropertiesO

Major attributes

[~~-~~~~~:!{~::.:::::.::·:: ::~] [~~~~!.~~~~~ri- .. --·-·----------
[tromN ode If sourcenode .

:----.-=--:--~-~--=-==~~,,-,J
[~~~-o~e ··-·· . _ JL~~-~=t:-:in:-:- .. a:-:ti_o:-:n=-~~- o_d_e-.-:::-::--::-----,,.~.,.l1

Table 5.7 : Major attributes in Link

Major methods

[1:'!et_~~?.. JI Descr~pti_?1~- . __
[~omNo_?e:,O J\ :~u_rn ~ource no_de
[~~~~-Q _i\~~~-t-~_:.~-~~s_t~~~~ode _ _ _ __ .
[§_~~a~~~~LJ -~~1~n_ec~ ~l~e sou!ce · ~d d~s~ination n de
r~~-~t!ir~_gQ][~_isplay ~he_~ou_~~e_and destination node

Table 5.8 : Major method in Link

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

5.3.2.5 Converter

This class contains methods to perform the conversion method. The converter cla s

will also be handling a set of nodes and links

.1Jviethod ·· 11-bescriptio.n j:
~readNS2()ji real a file-in Tel script !l
.readSim() . ,, re.ad JanetSim topology format . 1:

_fromNS2() ji convert the Tel script to JaNefSim topology file format jl

~~~S-20 ~( c?nvert JanetSim topology file fomat to tel script IJ 

Table 5.9 : Major methods in Converter 

5.3.2.6 MainClass 

Ihis class will create a command line interface to the topology conversion functions 

for the converter.The m in top l gy nver i n fun li ns are included in Converter 

dass. 

B.2.7 Converter Exception 

This class will be handling excepti n f r rr r that c ur during the conver ion stage 

$.3.3 Output design 

'Ihe output design of the ystern will e th rr erted t p l gie and the l g fil . The 

converter will rec rd all the values the p. rarnet r that fail t be nverted for 

alerting the user in the log file. 

7 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 System Design 

5.3.3.l File Writing 

Start 

No 

Write all the component 

Write all neighbors 

Write all routes 

Append new line to file 

Close file 

Stop 

Figure 5.2 : Flow chart of file writing 

so 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 System Design 

5 .4 Design Constraint 

In order to implement the functionalities of network topology converter in thi 

project, the following assumption are made: 

1) In both system, the type of component and representation of a network object 

may not be similar from system to system 

2) Only the subset of the components that are similar can be converted hence term 

minimum conversion. Others network component will represented as closely as 

possible with the available components in the system. 

Below are all the components in JaNetSim and Ns-2 

l.~:::'.~.~: ... ::.~: ... ~ .. ·-··-···J [_~:~-~:.~--~-=_] [~:.~~·~·-···- ~:~ ~]!_BT~- ---- I l~: ... .. . ' ' l 
Test Component 1 IP Router EthernetSwitch I BTE Generic 
Test Component 2 RIP Router ATM Generic 1 IP BTE 

Switch 11 
ATM LR 

I I 

I 
I 
I ._ __ 

- ·-11 Applictitlon 11 
.... ., , 

Generic Link TCP 
application 
UDP 
application 
UDPCBR 
BR 

application I 
v R 
application 

- •. ~ - - 
Table 5.10: Listing of all major component in JaNet im 

[Age1ii .. ~~~ 1 Ti·iil'fic Source 

r ...... . . . . . . 
: TCP ' BR 
i TCP/RENO Exponential 
i TCP/Vegas 1 FTP 
TCP/Fack , Parente 
UDP , Telnet 

]! LossM_o_d_c'~~~li~ L~in_l<--~~~-· 

I Periodic I Generic Link 
Uniform 1 

' Drop Tail 
, Fair Queue 
Stocastic Falr 
Qucu 

uficil Round 
Robin 
R I Null 

, TCP ink 
\ TCP Sink I 
I TCP ink I [_ ,.,.,_._. _, 

el Ack 
ack 1 

---- ""'-------··'! 
Table S.l l : I 'ting of 111l 1w jor ·om pun •ot in Ns·2 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 System Implementation 

Chapter 6 System Implementation 

System implementation plays an important role of converting previously analysis, 
design and requirements into a real world system. The designs done in the earlier 

stages were meant to provide ease in combining the sub modules into a fully 
functioning system during implementation. Object oriented methodology is used at 

the implementation phase of the development process through the Java programming 

language. 

6.1 JaNetSim to NS-2 conversion 

The JaNetSim to NS-2 conversion will be implemented as the call functi n in the 

SimGui class. The action will be perform when the JaNetSim to NS~2 button is click 
by the user.The algorithm of the conversion function is shown below: 

else if( cmd.equals("JaNetSIM--->Ns-2")) 
{ 

//open a save file dialog 
//read file 
//create component 
//create link 
//create agent 
//write to file 
//close file 

} 

Firstly, the converter will prompt a save dialog message to allow user t ch se the 

file save location. 

fileChooser=new JFileChooser(System.getProperty(" user.dir" )) · 

Then it will create components, link and agents for conv rsion by keepin all the 

essential parameters and the I cati n · rdinate, 

Sim omponent thtscompe Im 'ompcnent .onipon •nls.g ~t i · 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 System Implementation 

Next, all the component will be assign an index number and this number contain the 

component . linking information. The linking information consists of the total 

neighbors and the index number of every component attached to its neighboring 

components. 

for(int i=O;i<components.sizeO;i++) 
{ 

SimComponent thiscomp=(SimComponent)components.get(i); 
SimComponent D neighbors=thiscomp.getNeighborsO; 

} 

Finally after writing all the topology information to the selected file, the file will be 
save to the desired location and close. 

outfile.closet); 

A dialog box will be prompt to user to show the summary of the conversion including 

the number of nodes, links and TCP application successfully converted to NS 

topology file. 

6.2 NS-2 to JaNetSim conversion 

The NS-2 to JaNetSim conversion will be implemented as the call function in the 

SimGui class. The user will perform the action when the NS-2 to JaNetSim button is 

click. The algorithm of the conversion function is shown below: 

else if(cmd.equals("Ns-2--->JaNetSIM")) 
{ 

//open a open file dialog 
//read file 
//set flag 
//create component 
//create agent 
II close open file dialo 
//assign link 
//open a save file dialog 
//write to file 
//close file 

} 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 System Implementation 

First, the converter will prompt a open dialog message to allow user to chose the file 

location for conversion. 

fileChooser=new JFileChooser(System.getProperty(" user.dlr") ); 

As they is a slight variation in the NS topology file created in by NS-2 and the 

topology converter, the flag function will check the selected topology file and set the 

flag to value of 1 if the file is created by the topology converter. The flag is set t 

distinguish certain parts of the program to perform specific function according to the 

type of NS topology file. 

if(aline.startsWith(" ##Generated")) 
{ 
flage l ; 

} 

Next, the file reader will store all the nodes and the agents information in an array to 

be retrieve in the later part. A new vector is declare to keep the information of the link 

in non-redundant form. 

Vector all=new Vector(); 

for(int i=O;i<nodel.length;i++) 
{ 
if(!all.contains(node2[i] +"," +nodel [i])) 
all.add(nodel[i]+"," +node2[i]); 

} 

After having all the important value store in an array, the file open for reading will be 
close. 

in file.closet); 

Then the program will be checking for extreme c ndition where the am unt f n de 

to be converted i less than zero and m re than maximum f twenty. If the am unt f 

node fail to comply with the allow number of node for conversion, an err r mes a e 

will be prompt to the user and the pr gram will exit ba k t mainfram ", .. Ise if th 
conversion is succes ful, the following part will pr ed. 

A three dimen i n array will b inf rm ti n f th n d numb r 
and a signing link index number t the r spe tive n de in an ' qu n ~ \i h re it "!'Id 

fr m. 

Univ
ers

ity
 of

 M
ala

ya



· Chapter 6 System Implementation 

for(int i=O;i<m/2;i++) 
{ 

conn_matric[i][O]=arrayl[i]; //nodel 
conn_matric[i][l]=continuenodenum; //linkindex 
conn _matric[i] [2]=array2[i] ;//node2 
continuenodenum++; 

} 

A typical size of the three dimension array is conn_matric[i][3) where the size of the 

row will be determine by the number of link and the column size is three to store the 

information of nodel index number, the link index number and node 2 index number. 

The array function will be illustrated by the sample below. 

column 0 columnl column2 

rowO 

row 1 
row 2 
row 3 

[ .. 11o~e 1 .. ~I l~~kl II node2 I 
r-_ 11ode 1 ·11 link2 1 !node3 I 
1 ·--n~eT--J [--rriik3-J 1-nocie~·-J 
I nod~ 2 lj- lin~4 q n?de3 I 
I node 3 !!li~~5 JI node4 j row4 

Lnodeindex 

link index 

node index .__ _ 
After the three dimension array is created the link inf rrnation like the link ind x 

number and the coordinate will be saved into another separate array to be retrieve 

later. The node information will be sorted ut in rder in a cendin rder to fa ilitat 

easy retrieval. 

bje t linl nodeenod '.toArr-rt 
Arrays. ortulnknude ; 

'Then a ha h map fun ti n will rt all the value i11 th thr .e-dim ensi n urrn to t th 
:following values 

85 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 System Implementation 

i) Total number of connection for the node 

ii) Index number of the neighboring node 

The value will be saved into another array to be printed out to the file later. Aft .r 

reading and storing all the necessary information in the buffer reader and reach end of 

file, another save dialog box will be prompted to user to choose the file ave location. 

File theFile2=fileChooser.getSelectedFileO; 

After that all the information will be write to an outfile and a dialog box will be 

prompt to user to show the summary of the conversion including the number of node , 

links and TCP application successfully converted to JaNetSim topology file. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

Chapter 7 System Testing 

Testing is one of the critical phases in project development as it determine the final 

outcome of the system. Testing was conducted before and after the system 

implementation to detect pending errors. It represents the complete and extensive 

review and challenge on the design and coding specification. Testing also provides 

method to uncover logic errors and to test the system reliability. In this project, four 
error detection concepts were used to test the system: 

• Error detection to help to identify errors by inspection, walkthrough or other 

type of errors . 

• Error removal to debug and remove identified errors. 

• Error tracking to find the cause of errors and fix the flaw 

• Regression testing where the testing is conducted to find out whether the fixed 

error is working properly and the rework codes actually fixe the error or fixes 
it in one part and fails another part of the code. 

7.1 Unit Testing 

7.1.1 JaNetSim to Ns2 Unit Testing 

7.1.1.1 Normal Conversion 

For conversion of J aNetSim t N 2, unit te ting is done n the numb er f n des and 

the TCP applications to determine the converted cript ntains the t numb r f 

node /applications with the right nne tivity in re pe ·tiv rdinut . T t ·st th· 

conversion , the JaNet irn t y file with 11 11 de i "5t d t d t rm ne the 

correctnes of the functi nali ty. 

7 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

Figu1·e 7.1 : 11 nodes in JaNetSim 

The topology files with 11 nodes is converted to the NS2 topology file format. The 

converted file is open with the NAM editor for displaying the node to check for the 

number of converted nodes and the connection of between the nodes to ensure that 
the converter is working properly. 

v ' - 
file fidit Ioors 

I liiirji;"''»u;;;;,;1,, i1011·1-111-11111~/\g;;;,r.c1;,11;;;;tJ,,,, ,.,1,,11,1i11"'T'~;,"''·''''"' 1.111. -::",;:;,'.~~! ~~~~"mlloH ''"'" ~'~""''' , .... ,, .. ,,: !...~; ~~~Jj,:r::;,,. ,1Pcr. u.":~::l~cp 
. ...,HW'fH·, •· ·m r•·•·w.'SW l'c·"·en·v1··.., •. 'Pt-·· , ,.,., __ =4:,,_., i=!.i • ....,. ...,....._./_lme_1,_t ---• 

8 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

The converted topology contains exactly the same information of nodes number and 

the connection link between the nodes. Therefore, this proved that the conversion i 

successful. 

7 .1.1.2 Backward Conversion from NS2 topology to JaNetSim topology 

The NS2 script converted from JaNetSim topology also can be converted back to its 

original topology. This is to ensure that the NS2 script generated by the topology 

converter is compatible and works equally as good as the original NS2 script. 

file sdit ~ew rools ~ntlow !:!_el11 

Figure 7.3 : Backward conversion Irom N ·2 topolog 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

7.1.1.3 Conversion with TCP Application 

The conversion of JaNetSim to NS2 is further tested by attaching TCP application to 

the node to be converted. The test case for this conversion contains four TCP 

application attached to 11 nodes to determine the correctness of the functionality. 

File" Edit ·View !ools ~ndow !:!el1i r--,... - 
, .. 

I 

I 

. [~~rt J"R~;;CJ r~~<:_!_~~~J'it Ali I f _oqji_o:oo,,oo§J 
-~-·--·--- .. ·~·-·~-,,_..:.._.....,,..:: -.-- :- - ..• ..:... ..._, - ~ ....___ - --· .. 

Figure 7.4 : 5 nodes with 4 TCP application in JaNetSim 

The topology files with 4 TCPs and 11 nodes is nvert d t the N 2 t pol y file 

format. The converted file is open with the NAM editor for displaying the node re 
check for the number of converted node and the nne ti n f between the n d .. s t 

ensure that the converter is working properly. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

Tf.1e _Edit Iools 

Figure 7.6 : Converted from JaNetSim with 5 nodes with 4 T P application 

The converted topology contains exactly the same information of node number and 
the connection link between the node . Therefore, thi proved that the conversion i 

successful. 

7.1.2 NS2 to JaNetSi1n Unit Testing 

7.1.2.1 Normal Conversion 

For conversion of NS2 to JaNetSim, unit testing is d ne on the number f nodes and 

the TCP applications to determine the converted cript c ntain the orrect number of 

nodes/applications with the right connectivity in re pe tive rdinate . T test th 

conversion , the NS2 topology file with 20 n d s i testec lo cl l ermine th 

correctness of the functi nali ty. 

1 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

. - .. . .. ~,- ' . " 

1~ 
1·········· 

I 

Figure 7. 7 : 20 nodes in NS-2 

The topology files with 20 nodes is converted to the JanerSim t p logy file f rrnat. 
The converted file is open with the JanetSirn for displaying the nod t check for the 

number of converted nodes and the connection of between the node t ensure that 
the converter is working properly. 

Elle !;_1tn l(iew 1001s yyi1111ow !:!0111 

......................................................................... ,f~~--~·""[' ;;;~:;··11 .... u~tt~ ;t Mo.";. f 111 A11 l I no ili1 oo.noh J 

Figure ?.8: onv rtcd from -2 with 0 nt>tl • 

2 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

The converted topology contains exactly the same information of nodes number and 

the connection link between the nodes. Therefore, this proved that the conversion is 
successful. 

7.1.2.2 Backward Conversion from JaNetSim topology to NS2 topology 

The JaNetSim script converted from NS2 topology also can be converted back to its 

original topology. This is to ensure that the JaNetSim script generated by the topology 

converter is compatible and works equally as good as the original JaNetSim script. 

flle f.tlil rools l:iOlfl 

~;:l,;,~J,:.:.:"·,,«~:.LU!LC,~:,~~"·.w·.·-··J~~·i~c. .. ~~~r1:~~.L,, .. ~: • 
L'!Wi"'''""'""~M"'"""'"'"'""""'"''''ll!l'''"""'"'''i'"'""""'"""" ,.,,.,,,,,.,,,,"'''"f I""'=-"'"-'"" , .. " ' 
-~ 
~ 

Figure 7.9: Backward conversion from JaN t int topology 

7.1.2.3 Conversion with T P Application 

1),0 

The conversion of N 2 t JaN t im i further l ''t.cd by allu hin l T l" a1 pli uli n tc 
the node t be c overt d, The l st .ase f r this ·011 'rsi n Hl:1 ins t n ~I P 

application attached t 1111 des t determine the Off" tu '~S F th' fun tit nnlhy, 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 System Testing 

v 

~~~ ~ 
·1- ---------------------~;~ l~~!.ill.L::r·-~~l . TCP - Traffic Source FTP - l.JJU M_o~BIL P0.!!2.<~ ~·· l 0
f;;Cr,;~,',;~;;;;,w;:t,,,;,,;~,;.;,;,;;;;;;;;;;;:;;;;;;;;;;::iiilliiiiif~iiiiiiiiiiiii;;;;;t.,.;;11Tlll'1itiiffil"i<r.:0•11Thfi,l.r;;;m;:rn;::mi1i1iii!ffiliiiNiilliT,;;;;;;;;;;;;;;;;...,.., 11~ i:i#<tt1,:~H;11.i,;111ri{miiiliiliir1iiim,11~11J1Jlii

..:..•-::"=.<:.ii:i,~--nf·~ •. ,,.,, ~"""'r"'·'"'•"rg.r1·'/f''f"·"''~~.~~~,;:.1f·ci:\• 'd°' t!? ·•• !#ti1';1Mit«f'~..!J.. ... ~~~·~:

l
I I

!

The topology file with ten TCPs and 11 nodes is converted to JaNetSim t pol gy file

format. The , converted file is open with the JanerSim for displaying the node to

check for the number of converted nodes and the connection of between the n de to

ensure that the converter is working properly.

Figure 7.10: 11 nodes with 10 TCP application in JaNetSim

Elle !;_!lh l!lew' roofs ltt)n!low !:!Biil

Figure 7.11 : onv rted Irom JnN •t Im with S nod with 4 ·r P npvll · ulen

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 System Testing

The converted topology contains exactly the same information of nodes number and

the connection link between the nodes with certain degree of manual intervention in

the topology arrangement. Therefore, this proved that the conversion is successful.

7.2 Extremity cases

There are two unusual test cases for the system testing, the first case where the

number of node to be converted from JaNetSim to NS2 is zero and another case

where the number of nodes for conversion exceeded the maximum allowed.

t ', 4i· . The JanetSim cnoosen for conwrsion contain no node information

I ~2~~ , The program will exit back to maintrama

f 1:~1
I .

Figure 7.12 : Number of node is zero

The number of node converted exceeded the maximum
of 20 nodes and this might result in unexpected error

Figure 7.13 : Number of node exceed maximum

The successfulness of the testing to detect the error proved that the simulation model

could simulate in a proper manner.

7.3 Debugging Strategies

Debugging is actually of finding and fixing the error . There are various typ · of

errors that exist in the system; c mpilc nor, run time error and lo i rror. h ~

debugging strategies applied in the system are Ii ted as bel w:

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 System Testing

• Built-in Error Detection

Java also has built-in error detection. If an error found during application

execution, an error message together with the lines number where the error

occurred will be debugged. With this features, the debugging work becomes

much easier and faster.

• Reviewing the Algorithm Used

If a program is running well, but the information is not what as intended, then

may be a logic error or database error have occurred. Reviewing algorithm and

computations for their correctness and efficiency is needed for this purpose.

Sometimes, by using different algorithms, the efficiency of the program will

be increasing.

• Display on Screen the Passing Value

One of the possibilities of wrong information being retrieved is that the wrong
value is being passed from one page of another page that will do the

processing. To ensure that right value has been passed to the next program for
processing, the passing value is displayed on screen for reviewing.

• Check Success Status

Some processes are dependent where failure in the previous process will affect

many other processes. In order to avoid chain reaction from thi kind of

process, a success status is purposely set to return a true or false value. The

success status is checked to determine whether to continue process or to exit

from the program and display error message.

7.4 Chapter Summary

Testing is one of the important steps in developing a system preci ion and a urn y of
output data is considered during this pr ce . Unit restin has be en arried ut for th"

developed system. The objective of a system will nly a hieve aft r all th" thor u ih
testing done by different user with different a P' ts.

9

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 System Testing

At the end of the testing phase, the system should be able to perform the tasks

required. The system should be ready to use by the users. However, some critical

problems and errors will occurred only after some time of the using system.

Therefore, testing should not just end up in this phase but have to keep on consistently

to make sure the system is functioning well.

The following chapter presents the system evaluation. The evaluation reveals the

problem encountered and solutions, system strengths and system constraints and

future enhancements.

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 System Evaluation

Chapter 8 System Evaluation

8.1 Introduction

System evaluation is a process of that occurs continuously, drawing on a variety of

sources and information. Generally, many technical and non-technical problems were

encountered during the development stage. However, most of the problems were

detected and resolved eventually but some are not.

The role of the evaluation phase was to determine :

The extent to which the expected outcomes have been realized
The prescription value of the process where extraneous factors were taken into

consideration

Besides, the system strengths and system constraints have been li t out as detail as
possible in the chapter. So that any weakness of the system can be improve in the

future enhancements.

8.2 Problems Encountered and Solutions

Lack of experience in programming Language

The development of the Topology Converter involves mainly on Java programming

language. There are times when I am facing difficulties in translating my idea and

certain algorithm to Java language. In order to cope with this problems, I would refer
to various sources like the internet and e-books and having a group discussion to hare

and to solve the problems.

Difficulties in determining the system scope

When first starting the implementation of the project, the scope or boundaries f the
system are still unclear and hard to determine. Many problems were fa '" in des! ninz
an algorithm and coding because the ystem is n t workin v ry w 11 wh n th"
number of nodes are too large plu the types :f applt ation to I " onv rted,

Eventually, this problem was solved throu h di iusalon with the I turer und u

agreement on the system scope wa agreed.

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 System Evaluation

Problems in Development Environment

Developing the topology converter to be compatible with NS2 system on Linux

environment unfold a new challenge as the unfamiliarity with the new environment

had somehow causing the initial progress of the development to be stagnant as a lot of

testing and effort are needed to familiarize with the system in order to start the

development of the project. The problem was solves by intensive testing on the

system and through discussion with experienced seniors.

8.3 System Strength

Platform Independent

The topology converter is developed by using Java programming language and it is

cross platform. Thus, the system is able to works well in both Windows and Linux

environment.

System Transparency

System transparency refers to the condition where the users do not need to know the

file structuring of the system and the mechanism of conversion. The user only need to

convert the file to the required format and load the topology with in the right

simulator.

Consistency

The screen design is consistent throughout the whole system. The menus are always

displayed at the same position although the user switched from one module to

another. Users can easily seek for a particular option that they require in the system.

Flexibility in conversion method selection

The topology converter enable user to choose either converting the topology ript

from JanetSim to NS2 or vice versa t c ndu t research on th" both imulat r

concurrently.

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 System Evaluation

Ease of use

The converter is built in such way that the user do not feel the complexity of the

system. They only need to choose an appropriate script for conversion and the ave

destination and with a click of button within seconds, the converted file will be save

to desire location.

8.4 System Constraints

Rare inconsistency

The constraint of the system is the need of some manual intervention to rearrange the

topology when the number of nodes for conversion increase. Besides that, there will

be some rare cases of inaccuracy in the conversion where tcp component are involved.

8.5 Future Enhancements

Support for node naming

The topology converter only support labeling of the nodes in numeric format. The
future version should be able to support labeling of nodes by alphanumeric format.

Script viewer

A new window is needed to display the selected script to ensure that the correct sciprt

is chosen for conversion.

8.6 Knowledge and Experience Gained

By developing the system, personally I feel that I have learned a lot of things, which I
have never, knew or realized before this. Some of the knowledge and experience

gained are listed below.

100

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 System Evaluation

Self Expression

Developing the topology converter has really given me a great chance to express my

own opinions and ideas in designing and coding of the system. Involvement and

experiences gained during system development has greatly improved my self­

confidence and self-esteem.

Project Planning Skills

System development steps, stages and planning are just a theory before I developed

the system. But during the development of this system, I actually have the chance to

put into practice all the knowledge and theory about system development and

planning.

Development Tools Knowledge

Developing the system has given me the opportunity to explore the advance features

of Java programming language, running JaNetSim and NS2 network simulator and

using Linux system. By developing this system, I have di covered more practi al

knowledge and firsthand experience on those system rather than reading about the

theory from book.s.

8.6 Reviews on Goal

At the final stage of the project, there were certain expectations on what would be

achieved. The following is the expectations that were achieved:

Expectation Achieved

In overall, the system had fulfilled the expectations stated by the project. The basic

foundation of the system was designed and implemented. It wa eligible for future

growth and implementation.

Objectives Achieved

The project had successfully create l a nverter that . UJ p rt d 'tH1V rsi n f
topology script between two different syst nu . It ould bl} d edu d that th obj itlv ~~

to establish the application had been achiev .

lOl

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 System Evaluation

8.7 Summary

This project had managed to achieve the overall objectives and requirement

determined during the system analysis. The testing phase has proved that the project is

implemented successfully. Huge efforts, analytical thinking and endurance to time

pressure are what it takes to bring the completion of the project. Overall experiences

gained are memorable and meaningful.

However, there are still many rooms for improvements for the system. I hope that the

system will provide a good foundation and open up more opportunities for research

and improvement on the topology converter in the near future.

102

Univ
ers

ity
 of

 M
ala

ya

Appendix

APPENDIX

104

Univ
ers

ity
 of

 M
ala

ya

Appendix

Univ
ers

ity
 of

 M
ala

ya

Appendix

Creating a Topology File

Create NS-2 topology file

1. Load /create a new topology on the JaNetSim

~ile !;_dit ~ew roots Y'{indow !:!elJ)

I

2. Next, go to Edit7 Convert ... 7 JaNetSim---->Ns-2

Elle !illl)· ~ow 1001s lr{lruJow !:!•)Ir>
~Olilct All

So!ed By Class
Seleq By Typo
Select By t:!_arne ProflK -~--·-·"-~-·1-~--·---1
n Fast Scroll (JDK1.3 hug?).
r!!! Links follow others

0 e, 1, n•1"' B~1 "' ___ .. . Univ
ers

ity
 of

 M
ala

ya

Appendix

3. Choose the location to save the topology file and save the file with * .ns extension

• t
f save In: ·I u 7 _n ~·· -· ---~

~ .. ·. D 7node
L. D77~~ci;~ i ,_, ~J
} · D 7node1
~.
~ • Ii.
l
~­
J
r. ·---- .. ·--·--·-- .. ·-·------·-----·---------~·-·--·
1

f f!le ~ame: j 7r'10_D_E_1_._N_S_-=,__---------,-------

l · Files ~f !)lpe: I All Files-1 r . . ~~~~~~~-'--~~~~~-:--~~~~___.- r
i,

I saw 11 cane~
--[save selected 11191

4. The popup will show the network summary after c nversion

Elle !i:lltt ~ew rools ~ndow !:!Clp

Netwo1k Summal)I '. · r • · ,'J",~'£1
~ 1 Nu1111Jcr of NO•H:s 7
411' N111r1her of links 6

Numher Of TCP llf>P 0 Univ
ers

ity
 of

 M
ala

ya

Appendix

Create JaNetSim topology file

1. First go to Edit-7 Convert. .. -7 Ns-2---->JaNetSim

r;rv·,,,..'9:~

, Eile J~d1tj_¥,i_~~:_:I~.~~---~'...~~':"'-J!;:..e...:.1ri:..---..,,..-.,.-------_.;.------._..,
~elect All ·
Se[ect By bass

·Sele<:! By TY11e
'·
_Select By ~arne Prefix

·· fJ Fast Scroll (JDK1.3 bug?)
'~Links ronow oth~rs .

1.~11 Reset I 1---c;;;;nect Mooe i Ftt All I r oo~iiO:oo.ooo 1

2.Choose the location of the NS topology file and open the file

A.open ' r ' ' ' • : '•• "..". ~' :. •'·' t.,,,,.•<•ti:-:l.'~tk~B.ll ~ ' '' .) .' . ' ~ '',• •, ~;~:. ·~· ·\·:it..~f~.~...,

I.· Loolqn: '·~[j-7 __ n ___,• j ~ fiJ lg]~[§ l 'ci 1no11e
l [J 7node1
[J 7notle1

File !farne: j7NODE1 .NSJ : I
Flies of J:ype: ... [A_l_I F_ll_e_s_..._...._...~J

I_ Ou 11 _ I G unr.ul · J

Univ
ers

ity
 of

 M
ala

ya

Appendix

3. A new window will prompt for save location.Save the file with *.top extension

r.:·---'---..:..-·-·-------------------·--------·----------·-
. [J ?node

. IJ_1~~ci?~~]
[] 7nodenew

-----·-··--····· .. ··· .. ·-·---···--·-·- .. -·---·--·-----------·- ' .
File Name:' . ·1;_7;_N..:..O..:..D.::.E;_.T_O_P ..,---------------'I

.·· Fi~es of !)/Pe: . l_A_ll_F_il_e_s '"""--'------------- ... __.I

Save J J Cancel I

4. The popup will show the network urnmary after c nversi n.

[lie Edit --=----=--·~----

•f

Nurnhcr of No11os 7
Nllllll)Or of llrikS 6
Number of TCP lll"lfl 0

I PK\ I

_ _
l_~L ncmit \ Gn~Md

liil StM f ttj (B ¢/'J 0 "11' ® DoMliti\l • Mk11rml!1 Vib!

Univ
ers

ity
 of

 M
ala

ya

·-----------------------
Appendix

Troubleshoot

Question:

After conversion from Ns2 to JaNetSim, the topology didn't show up on the JaNetSim
screen.
Solution:

After loading the topology, then press Fit All button located at the lower part of the
screen and the topology will be resized to fit on the screen.

Question:

After creating a topology on JaNetSim, when pressing the Convert button it didn't
yield any result or save dialog box.
Solution:

Make sure that after connecting all the topology, press the End Connect button located
at the lower part of the screen before the conversion pr cess.

Univ
ers

ity
 of

 M
ala

ya

