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GW APPROXIMATION STUDY OF COMPTON PROFILES OF SOME

TRANSITION METAL OXIDES AND SEMICONDUCTORS

ABSTRACT

Ground state Density Functional Theory (DFT) calculations via the Localized Density

Approximation  (LDA)  functional  has  shortcomings  in  explaining  experimental

Compton profiles, typically seen in disagreement of the lower momenta regions as a

result of an incomplete description of correlation effects. In constructing the momentum

densities  via  the  LDA functional,  which  will  subsequently  be used  to  construct  the

Compton  profiles,  the  input  required  is  the  occupation  number  density  which  is

dependent on the initialized state.  Obtaining the band structure,  we can confirm the

largest contributing orbitals to the momentum density. Knowledge of the contributing

orbital  states alone is inadequate to completely explain the shortcomings behind the

LDA  momentum  density.  Using  the  GW  (Green's  function-Dielectric  screening)

Approximation, the momentum density is constructed from the spectral function which

is a Lorentzian as a function of self-energy. This self-energy term itself is dependent on

the dielectric screening term. In this work, Compton profiles constructed via the GW

Approximation  will  be  shown to  provide  not  only  greater  insight  via  the  dielectric

screening and self-energy terms, it  will  also provide better  agreement to experiment

compared to the LDA Compton profiles. In our study of NiO, we observe that the sum

of absolute values of the difference profiles is smaller in the case of GWA compared to

LDA indicating  generally  better  agreement.  For  TiO2,  we  observe  that  the  GWA

reproduces a smaller difference profile at higher momenta compared to LDA. To further

investigate the well  known strongly correlated system NiO, we have compared it  to

other Mott insulators FeO and CoO. We observe that NiO has twice broadened spectral

functions compared to FeO and CoO. This has been attributed to the twice larger d-

orbital contribution as observed in the partial density of states. The NiO momentum

density is more occupied in the low momentum region compared to FeO and CoO and

this confirms the role of NiO as a strongly correlated system. The amplitude of the
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anisotropy  of  NiO  is  seen  to  be  larger  than  FeO  and  CoO.  This  is  attributed  to

asymmetry  of  valence  electron  profiles  induced  by  spectral  functions  and  vertex

corrections.  In  our  study  of  ZnSe,  we  observe  between  0-1.5  a.u,  there  is  better

agreement to the previous study via the GWA difference profile compared to the LDA

difference profile.

Keywords: Compton Profile, GW Approximation, Density Functional Theory
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KAJIAN PENGHAMPIRAN GW KE ATAS PROFIL COMPTON UNTUK

BERBERAPA OXIDA LOGAM PERALIHAN DAN SEMIKONDUKTOR

ABSTRAK

Pengiraan teori  fungsian ketumpatan keadaan (DFT) pada peringkat  tenaga terendah

melalui  fungsian  penghampiran  ketumpatan  keadaan  setempat  (LDA)  memiliki

kekurangan  dalam  menerangkan  pemerhatian  eksperimen  profil  Compton,  di  mana

perbezaan  dilihat  pada  bahagian  momentum  kecil  disebabkan  ketaksempurnaan

penghuraian kesan korelasi. Dalam pembinaan ketumpatan keadaan momentum melalui

fungsian  LDA,  yang  akan  seterusnya  diguna  untuk  membina  profil  Compton,

kemasukkan yang diperlukan adalah ketumpatan nombor penghunian yang bergantung

pada  keadaan  awal.  Selepas  memperolehi  struktur  jalur,  kita  boleh  mengenalpasti

penyumbangan  orbital  terbesar  kepada  ketumpatan  momentum.  Pengetahuan

penyumbang keadaan orbit  sendiri  tidak  mencukupi  untuk menerangkan kekurangan

pada ketumpatan momentum LDA. Menggunakan penghampiran GW (fungsi Green-

penghadang  dielektrik),  ketumpatan  momenta  dibina  dari  fungsi  spektra  yang

merupakan  fungsi  Lorentzian  yang  bergantung  pada  swatenaga.  Swatenaga  ini  pula

bergantung pada  penghadangan dielektrik.  Di  dalam kerja  ini,  profil  Compton akan

dibina dari penghampiran GW yang akan ditunjukkan memberi bukan sahaja gambaran

yang lebih besar dengan penggunaan sebutan penghadangan dielektrik dan swatenaga,

kita  juga  akan  perolehi  persetujuan  yang lebih  baik  dengan  eksperimen  berbanding

profil Compton LDA. Di dalam pengajian NiO, kita perhati jumlah nilai mutlak profil

bezaan lebih kecil  dalam kes GWA berbanding LDA menunjukkan persetujuan lebih

tinggi berbanding LDA. Bagi TiO2, kita perhati bahawa GWA menujukkan profil bezaan

yang  lebih  kecil  pada  momenta  tinggi  berbanding  LDA.  Untuk  menyelidiki  sistem

korelasi kuat NiO dengan lebih lanjut, kita membandingkannya dengan sistem penebat

Mott  yang lain  seperti  FeO dan  CoO.  Kita  memerhati  bahawa NiO memiki  fungsi

spektra yang dua kali lebih tebal berbanding FeO dan CoO. Ini disebabkan sumbangan

orbital-d adalah dua kali ganda dalam NiO seperti yang dilihat dari ketumpatan keadaan
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separa. Ketumpatan momenta NiO lebih dihuni di rantau momentum rendah berbanding

FeO dan CoO dan ini mengesahkan peranan NiO sebagai sistem korelasi kuat. Amplitud

anisotropi NiO dilihat lebih besar berbanding FeO dan CoO. Ini disebabkan asimetri

profil  elektron  valens  disebabkan  fungsi  spektra  dan  pembetulan  verteks.  Di  dalam

kajian ZnSe, kita perhatikan bahawa diantara 0-1.5 a.u, terdapat persetujuan lebih baik

berbanding kajian sebelum ini dengan membanding profil bezaan GWA dan LDA.

Kata Kunci: Profil Compton, Penghampiran GW, Teori Fungsian Ketumpatan
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CHAPTER 1 : INTRODUCTION

1.1 Background

Understanding the bulk structure of matter is fundamental in the study of materials

science and devices. The field of study that describes the fundamental properties of

these bulk structures is Fermiology. It discusses the Fermi surface which is an abstract

boundary in reciprocal space useful for predicting the thermal, electrical, magnetic, and

optical properties of metals, semimetals, and doped semiconductors. It is well known

that a probe of the Fermi surface is via Compton scattering (Bansil et al., 1997). 

The Compton effect refers to the Doppler broadening of inelastically scattered x-ray

radiation where information on the initial momentum density of recoiled electrons can

be obtained. A projection of this momentum density onto a line through the origin is

defined as the Compton profile.  Momentum density  is  defined as the probability  to

observe electrons with momentum  p. Experimentally, this term can be obtained from

performing an x-ray Compton scattering experiment in which the momentum density is

reconstructed  from the  observed  differential  scattering  cross  section.  Using  intense

synchrotron radiation allows to image a momentum density a few percent of the Fermi

momentum.  Specifically,  the  electron  wavefunction  in  k-space is  observed  since  it

samples the bulk properties of the sample making it a very useful tool for studying the

Fermi  surface,  particularly  studying  quasiparticles.  If  the  energy  and  momentum

transfers of the probe energies are larger than the binding energies of the sample, in

which the impulse approximation is obeyed, we can obtain quasiparticle peaks, satellite

structure, discontinuity and renormalization factor from the momentum density which

can be used to obtain insight on electron-electron correlation around the Fermi surface

break. We describe in detail these topics in Section 2.1 of Chapter 2.
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1.2 Problem Statement and Objective

Theoretical studies of momentum densities takes into account valence energy bands,

Fermi  surface  topology  and  breaks,  electron  correlation  effects  and  character  of

wavefunctions. Discrepancies between experiment and theory are attributed to ignoring

correlation  effects  in  the  independent  particle  model.  Specifically,  ground  state

calculations are able to explain the overall shape and fine structures of the observed

profile but the momentum densities at the origin are greater than experimental values at

the origin but opposite in the high momentum case and a renormalization of the height

of break at the Fermi surface is seen. Overall, a momentum density resembling a step

function  is  observed  in  accordance  with  the  one  electron  approximation  at  zero

temperature. Excited state calculation on the other hand describes long range correlation

effects  and  valence  band  narrowing  due  to  the  dynamical  screening  effects.  These

effects broaden fine structures in the Compton profile which are observed to be sharper

in the ground state. This makes the momentum density which is expected to follow a

step  function  due  to  a  non-interacting  system  be  a  continuous  function.  It  is  also

possible to study individual spin states in which the Pauli exclusion principle can be

observed. These traits make the Compton profile a sensitive test  of validity of band

structure calculations. The alkali and alkali-earth metals in particular have been actively

studied for their correlation effects as they are closest to the homogeneous electron gas

and have isotropic momentum distributions. The use of the GW Approximation is said

to  improve  the  comparison  to  observation  for  the  Compton  profile  (Schulke  et  al.,

1996). Compton profiles for Li, Be, Na, Cr , Ni and Cu  have been obtained from the

GW  Approximation.  For  shallow  d-orbital  systems  such  as  transition  metals,

observation  of  these  terms  indicate  a  breakaway  from  an  equilibrium  ground  state

theory. This can be seen in momentum density calculations where it is observed that

there  is  some  agreement  in  high  momentum  region  but  discrepancies  in  the  low

momentum  region.  This  problem  has  been  improved  with  the  Lam-Platzmann

      2
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correction.  Nevertheless,  the  agreement  of  theory  to  experiment  from  using  this

correction shows small improvements. Furthermore, there seems to be the observation

of fine structures in theoretical Compton profiles compared to experiment. We describe

in detail these topics in Section 2.1-4 of Chapter 2.  

1.3 Scope of Calculations

Nickel Oxide (NiO) has been widely studied as the prototypical system undergoing

metal-insulator transition (Imada et  al.,  1998) and Titanium dioxide (TiO2) has been

widely studied as a wide bandgap semiconductor (O'regan et al., 1991). Recently, these

oxides  have  been  actively  studied  as  resistive  random  access  memories  (ReRAM)

sandwich layer. ReRAMs have emerged as a strong candidate to replace FLASH-based

memories as the need to construct integrated circuits go beyond the CMOS architecture.

In studies  concerning these  systems,  the  transition  metal  oxide  is  treated  as  an  ion

conducting layer and is sandwiched between two inert metal electrodes. The mechanism

behind its operation is named resistive switching. It is achieved by the formation and

destruction of a conductive filament in the dielectric between two electrodes (Akinaga

et al., 2010). The device works by firstly having the insulating switching material be in

a high resistance state. By applying the electroforming voltage, a conductive filament is

formed  which  creates  a  low resistance  state.  When  a  lower  voltage  is  applied,  the

conductive filament is destroyed and the device is returned to a high resistance state

(Jeong et al., 2012). The central tools used to visualize the conductive filament in all

these studies start with the Kohn-Sham electron wave function obtained from a first

principles density functional theory calculation, followed by the electron localization

function which measures the likelihood to find an electron near a reference electron at a

given point with the same spin (Becke et al., 1990). This would then be used to perform

the  Bader  charge  density  analysis  which  is  an  algorithm to  integrate  the  electronic

charge  density  around  ions  (Bader,  1990).  This  method  however  neglects  strongly

      3
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correlated effects which is relevant to the study of charge transfer. This is because the

construction of the charge density from a ground state calculation with a Hubbard term,

U as has been the case in the above mentioned studies will not adequately take into

account electron correlation commonly studied as self-energy effects. Its importance has

been  highlighted  by  Peng  (Peng  et  al.,  2012)  who  has  determined  that  strongly

correlated  effects  in  a  NiO  supercell  affect  transport  properties  during  resistive

switching.  Other  highlights  regarding  correlation  effects  include  the  construction  of

other beyond CMOS devices, for example the application of VO2 to construct a metal

insulator  transition  tunnel  junction  (Martens  et  al.,  2012;  Huefner  et  al.,  2014).

Studying  the  momentum density  instead  of  just  the  charge  density  of  these  oxides

should provide a more accurate description of the charge transfer.  In Section 4.1 of

Chapter  4,  we  firstly  calculated  the  excited  state  and  ground  state  band  structure

calculations for NiO and TiO2. We then calculated the Fermi energy and Fermi momenta

which will be subsequently used to obtain the spectral functions. These functions will be

used to obtain the momentum density. We then compared and explained the differences

between GW Approximation and ground state momentum densities. Finally we use the

momentum densities to construct the Compton profile. The profiles will be analyzed in

terms  of  difference  profiles  and  anisotropy.  We  end  this  section  by  discussing  the

quasiparticle renormalization factor.

The late TMOs FeO, CoO and NiO are said to be the prototypical Mott insulators.

Above  the  Neel  temperature,  these  oxides  are  paramagnetic  insulators  (Rodl  et  al.,

2012). Below the Neel temperature they are known to be antiferromagnetic insulators

where  MnO  and  NiO  have  underestimated  band  gaps  using  LDA/GGA electronic

structure calculations while FeO and CoO have been characterized as antiferromagnetic

phased metals (Massida et al., 1997). Antiferromagnetic ordering is said to lower the

symmetry of the FCC lattice in which certain lattices degenerated to paramagnetic state

split by antiferromagnetic field at low temperature (Peter et al., 1993). In Section 4.2 of
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Chapter 4., we are interested in studying the effects of a self-energy correction on the

late TMOs. These effects can be studied by observing the smearing of the occupational

number before and after the Fermi break. We account for the differences between LDA

and  GWA via  the  correlation  correction.  This  correction  is  analogous  to  the  Lam-

Platzman correction (LPC) which is defined as the difference between the occupation

function  for  a  non-interacting and homogeneous interacting  electron gas,  effectively

estimating the correlation effects in the Compton profile. We can further analyze this

promotion of electrons by studying the directional differences which is a measure of

anisotropy.  Anisotropy is strongly dependent on the Fermi surface and can be used to

locate the position of oscillations in the Fermi surface.

Zinc  monochalcogenides  are  the  prototype  II-VI  semiconductors.  These

semiconductor compounds can be employed as the base materials for optical devices

such as visual displays,  high density optical memories,  transparent conductors,  solid

state laser devices, photodetectors, quantum dots, thermoreflectance, electroreflectance

and solar cells. Due to its tremendous commercial value, a complete description of its

electronic  structure  is  essential.  While  ground state  density  functional  theory (DFT)

calculations based on the pseudopotential method is able to give accurate band gaps for

group  IV  and  III-V  semiconductor  materials  ,  the  ab-initio  description  of  II-VI

compounds  is  more  complex  than  IV/III-V  semiconductors  due  to  sp-d  orbital

interaction.  In this work, we firstly compared our ground state and excited state band

structure with previous  results.  We then proceed to obtain the spectral  function and

momentum distributions.  With the momentum distributions, we then proceed to obtain

the Compton profile. We discuss our calculations on these systems in detail in Section

4.3 of Chapter 4.
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CHAPTER 2 : COMPTON PROFILES FROM FIRST PRINCIPLES : 

THEORETICAL BACKGROUND 

In this chapter, we will discuss in detail the theories and models used to describe the

Compton profile from first principles methods. We start with Section 2.1 which provides

an overview of Compton scattering (Section 2.1.1 and Section 2.1.2) and its relation to

momentum density  (Section  2.1.3).  We then discuss  how the  momentum density  is

obtained from DFT (Section 2.1.4) and  discuss how it is influenced by the Marzari-

Vanderbilt  cold  smearing  (Section  2.1.5).  Section  2.2  discusses  how  the  Compton

profile is obtained beyond the impulse approximation (Section 2.2.1) as discussed in

Section 2.1.  These methods are constructed from the Green's function (Section 2.2.2) to

obtain  Hedin's  GW Approximation (Section  2.2.3).  With the  energies  from the  GW

Approximation, we can obtain the spectral functions which will be used to construct the

momentum density (Section 2.2.4). Now that we are able to construct the momentum

density from both the ground state DFT and the excited state GW Approximation, we

are able to construct their respective Compton profiles. We discuss methods to compare

these  two  profiles  in  Section  2.3.  We  firstly  discuss  the  Lam  Platzman  correction

(Section 2.3.1) which allows us to directly compare the two methods via the Kubo's

correlation correction (Section 2.3.2) which is similar to studying the difference profile

in comparison with experimental Compton profiles. We finally discuss the anisotropy in

Section 2.3.3. We end this chapter with a discussion on previous studies to obtain the

Compton profile via  the GW Approximation.

2.1 Compton Scattering : Physics and First-Principles Calculations

In  this  section,  we  will  firstly  define  the  kinematics  of  the  inelastic  scattering

process. We show how the first  and second order non-relativistic double differential

scattering cross section (DDSCS) for charge scattering can be obtained in terms of the
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Thomson cross section and the dynamic structure factor by expanding a semiempirical

interaction  Hamiltonian  using  Lehman's  representation  and  standard  second

quantization  tools.   We  will  then  layout  the  Compton  regime  based  on  impulse

approximation  which  yields  the  fundamental  relation  between  the  DDSCS  and

momentum distribution of scattering electrons and finally describe the implementation

of the impulse approximation in condensed systems. The formalisms and discussions

used in these sections are presented in (Cooper et al.,2004; Cooper, 1985) and we have

explicitly defined the derivation steps from that work.    

2.1.1 DDSCS and Kinematics

A typical inelastic scattering experiment consists of first producing a well collimated

beam of monochromatic photons, select a solid angle element dΩ of scattered beam and

analyze the energy of this angle with a resolution dω. We layout the kinematics behind

this  Compton  scattering  experiment  and  outline  the  DDSCS  in  terms  of  a  semi-

empirical interaction Hamiltonian. 

In Figure 1.1 we show the schematics of a Compton scattering experiment. A photon

of energy ħω1, wave vector k1 and polarization vector ε1 impinges on target I with initial

energy EI then scatters as a photon of energy ħω2, wave vector k2 and polarization vector

ε2 leaving the target as state F and final energy EF. The energy

ℏ (ω1−ω2)       (2.1)

and momentum 

ℏ (k1−k2)       (2.2)
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are  transferred  to  the  target.  As  a  result,  the  energy  of  the  target  due  to  energy

conservation is

ℏω=EF – E I       (2.3)

 The modulus of transferred momentum is given by

q=(ω1
2
+ω2

2
−2ω1ω2 cosϕ )½ /c       (2.4)

if 

ω≪ω1       (2.5)

q≈2 k1 sin(ϕ /2)       (2.6)

Figure 2.1: Compton scattering schematics.

Within the limits of a non-relativistic lowest order perturbation theory and neglecting

resonance phenomena, the DDSCS which is a function of  q and ω can be defined

qualitatively as

d2
σ

dΩdω2=(
dσ
dΩ )

Th
S(q ,ω)       (2.7)
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where

(
d σ
dΩ )

Th
      (2.8)

is the Thomson cross section and

S (q ,ω)               (2.9)

is the dynamic structure factor. The dynamic structure factor reflects the properties of

the  target  in  absence  of  a  perturbing  probe  (Platzman,  1974).   The  Thomson cross

section is the coupling to an electromagnetic (EM) field which is treated to the lowest

order Born approximation (Hawkes et al.,  1980). The DDSCS will allow us to learn

about the dynamic properties of matter from this inelastic scattering experiment and is a

measure of probability (Olevano et al., 2012).  We will show later that this term can be

derived  from  the  correlation  function  of  an  electron  system  undergoing  scattering

(Kubo, 1996). 

The non-relativistic DDSCS for charge scattering is defined by the Klein-Nishina

cross-section for scattering from a single free electron at rest (Carlson et al., 1982). It is

derived from a complete second order relativistic scattering cross section. The problem

with the relativistic total cross section is the mixed properties of probe with target. A

non-relativistic DDSCS handles the coupling of the EM field to the scattering electron

system. This is defined by a semiempirical interaction Hamiltonian

H i n t=∑
j

(e2
/2mc2

) A(r j)
2
−∑

j

(e/mc) A(r j) p j                 (2.10)
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where pj is the momentum operator. A(rj) is the vector potential operator of the EM field 

which expresses the photon creation and annihilation operators given by

A j=∑
l

{al A l(r j)+al
* A l

†
(r j)}         (2.11)

where 

A l(r j)=V−1
/2(4 π c2

)
½
ϵ̂l e

(ikl .r j )        (2.12)

The DDSCS can be obtained by expanding Hint using the Lehmann's representation 

(Mattuck, 2012) and the standard second quantization tools to finally obtain

d2
σ

d σdω2

=
ω2
ω1

ro
2∑

F |
⟨F |∑

j
exp(iq .r j)| I ⟩( ϵ̂1 ϵ̂2)

−
1
m∑N

⟨F | ϵ̂2
*∑

j
p j exp(−i k2 r j)| N ⟩ ⟨N | ϵ̂1∑

j
p j exp(i k1 r j)| I ⟩

EN−EI−ℏω1+iΓN /2

−⟨F | ϵ̂1∑
j

p j exp(i k1 r j)| N ⟩ ⟨N | ϵ̂2
*∑

j
p j exp(−i k2 r j) | I ⟩

EN−E I−ℏω2

2

|
∗δ(E f−E i−ℏω)

       (2.13)

Thus, for a non-resonant case, the dynamic structure factor is given by

S (q ,ω)=∑
F

| ⟨F |∑
j

exp (iq .r j) | I ⟩ |
2
δ (EF−E I−ℏω)         (2.14)

with the Thomson scattering cross section given by
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(
dσ
dΩ

)
Th

=r o
2
(ϵ̂1 . ϵ̂2

*
)

2
(
ω2
ω1

)         (2.15)

In  this  formalism,  the  dynamic  structure  factor  gives  information  on  the  dynamic

behavior of scattering electron systems in terms of excitation from initial to final states.

The delta function represents a combined density of initial and final states. 

The integral representation of the delta function reveals better information about the

correlated motion of the scattering particles in the dynamic structure factor. It is given

by

S (q ,ω)=(1/2π ℏ)∫
−∞

∞

dt e−iωt∑
F

⟨I |∑
j

e−iq .r j |F ⟩⟨F |e iHt / ℏ∑
j

e iq. r j e−iHt /ℏ | I ⟩

            (2.16)

The  response  of  the  system  strongly  depends  on  how  2π/q compares  with  the

characteristic length lc and how ω compares with characteristic frequencies ωc . If  qlc <

2π  and ω≈ωc, the interference between waves scattered from many particles at different

times is of importance. It is used to probe collective behavior of many particle systems.

If  qlc  > 2π and  ω>ωc ,  the waves scattered from different particles do not interfere,

probing one particle at a time. In this range, the timescale of the probe is small enough

to prevent the system from rearranging itself. This is the impulse approximation of the

Compton scattering regime. 

2.1.2 The Compton Scattering Regime and Impulse Approximation

The Compton scattering regime describes the inelastic scattering regime with high

momentum and energy transfer. In the high momentum transfer region (i.e large enough

to treat ejected electrons as a free noninteracting particle (Soininen et al., 2001) due to
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slow  electron  probes  (Huotari  et  al.,  2007)),  interference  effects  between  waves

scattered  from  different  particles  at  different  times  are  neglected.  Thus,  we  are

observing single  particle  properties  specifically  the  same particle  at  different  times.

These time intervals are so short that the system does not undergo rearrangement during

scattering. This requires an energy transfer greater than characteristic energies of the

scattering  system.  For  information  on  momentum  density  of  valence  electrons  the

energy transfer need not be as large as core electron information. 

In the impulse approximation, the DDSCS follows the assumption that energy and

momentum transfer is valid only for the Compton scattering regime. Starting from the

Hamilton operator

H=Ho+V     (2.17)

We expand from Equation 2.9 the term

e iHt
=e i H Ot ei V t e−[Ho ,V ]t 2

/2ℏ2

    (2.18)

As mentioned above, if the energy and momentum transferred from the probe is larger

than the binding energy of the sample ,  the impulse approximation is  valid  and the

measured spectra takes into account core and valence electron binding energy (Huotari

et al., 2010). In analytical terms,

ℏω≫(⟨[H o ,V ] ⟩)
1/2     (2.19)

which gives

e−i[H o ,V ] t2
/2ℏ2

≈1     (2.20)
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This is valid if the transferred energy is larger compared with the characteristic energies

of the system. We then insert Equations 2.18 and 2.20 to 2.16 to obtain

d2
σ

dΩdω2=(
d σ
dΩ)

Th
(

1
2πℏ )∫ dt e−iω t

⟨I |e−iq .r ei (H o+V )t / ℏe iq .r e−i (H o+V )t /ℏ | I ⟩     (2.21)

Since r commutes with V, 

r⃗ V −V r⃗=0     (2.22)

We obtain

=(
d σ
dΩ

)
Th

(
1

2πℏ
)∫ dt e

−iωt
⟨ I |e

−iq .r
e

i(H o )t /ℏ e
iq. r

e
−i (H o)t / ℏ | I ⟩      (2.23)

Since the kinetic energy operator corresponds to a complete set of eigenfunctions pF ,

we can write Equation 2.23 as

d2
ω

dΩdω2=(
d σ
dΩ

)
Th

(
1

2π ℏ
)∫ dt e−iω t

⟨I | e−iq .r e iq .r | pF ⟩e
−iϵt / ℏ eiϵ t /ℏ     (2.24)

       

Placing in the delta-function 

=(
d σ
dΩ

)
Th

(
1

2πℏ
)∫ dt | ⟨ I |e

−iq .r
| pF⟩ |

2
δ(ϵ( pF)−ϵ( pF−ℏq)−ℏω)           (2.25)

From the kinetic energy operators

ϵ(pF)=ϵ( p+ℏq)=( p2
+2ℏ p .q+ℏq2

)/2m         (2.26)
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Thus,

d2
σ

dΩdω2=(
d σ
dΩ

)
Th

(
1

2π ℏ
)∫ | ⟨ I | p⟩ |2

δ (ℏ
2 q2

/2m+ℏ p .q /m−ℏω)dp        (2.27)

The momentum space wave function is the Fourier transform of the position space wave

function

ρ( p)=(1/2πℏ)3 | ⟨ I | p ⟩ |2=|χ ( p)|2

=(1/2πℏ)3 |∫ψ(r )e−(ip. r /ℏ )dr |2
                (2.28)

It gives the probability of finding the initial electron with momentum p.

If the delta function in Equation 2.27 is true

ℏ
2q2

/2m+ℏ p .q /m – ℏω=0         (2.29)

We obtain,

p .q=
ωm
q

–
ℏ q
2
=

m
q
(ω−

ℏq2

2m
)        (2.30)

where 

q=(ω1
2
+ω2

2
−2ω1ω2 cosϕ )½ /c        (2.31)

Thus
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=

mc{ω−
ℏ(ω1

2
+ω2

2
−2ω1ω2 cosϕ )

2mc2 }

(ω1
2
+ω2

2
−2ω1ω2 cosϕ )1/2

         (2.32)

Multiply by
ℏ

ℏ

=

mc{ℏ ω1−ℏω2 –
ℏ

2

2mc2
(ω1

2
+ω2

2
−2ω1ω2 cosϕ )}

(ℏ
2
ω1

2
+ℏ

2
ω2

2
−2ℏ2

ω
1
ω

2 cosϕ )1/2
     (2.33)

Add

−2ω1ω2+2ω1ω2       (2.34)

to the third term

=

mc{ℏ ω1−ℏω2 –
ℏ

2

2mc2
(ω1

2
+ω2

2
−2ω1ω2+2ω1ω2−2ω1ω2cos ϕ )}

(ℏ
2
ω1

2
+ℏ

2
ω2

2
−2ℏ2

ω
1
ω

2 cosϕ )1/2
     (2.35)

Omitting

ℏ
2
(ω1−ω2)

2

2mc2         (2.36)

=

mc{ℏ ω1−ℏ ω2 –
ℏ

2

2mc2
(1−cosϕ )}

(ℏ
2
ω1

2
+ℏ

2
ω2

2
−2 ℏ2

ω
1
ω

2cos ϕ)1 /2
         (2.37)
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Thus, Equation 2.25 can be simplified to

d2
σ

dΩdω2=(
d σ
dΩ)

Th
(m /ℏq)∫∫ρ( px , py , pz=pq)dpx dpy

=(
d σ
dΩ )

Th
(m /ℏq)J ( pq)

    (2.38)

where

J ( pq)=∫∫ρ( px , p y , pz)d px d p y        (2.39)

is the directional Compton profile.

The essence of impulse approximation thus consists of replacing the initial and final

state energies in the argument of the delta-function by the kinetic energy because the

potential, V commutes with r. This assumes the electron to be free with momentum pF

in its final state and the momentum is conserved. However, the bonding of the electron

to the scattered atom , V is not completely neglected and can be accounted for via ρ(p).

If we define the system as single-particle wavefunction  i(rj), each scattering process

will involve only one-particle of the system. 

We have thus observed that under the impulse approximation, the Compton profile is

the projection of electron momentum density which can be deduced by the DDSCS

(Sternemann  et  al.,  2000).  This  cross  section  of  inelastic  x-ray  scattering  at  high

momentum transfer limit is related to the electronic ground state wave function and is

the key observation in the study of Fermiology. In Section 2.2, we will show that it is

possible  to  observe  quasiparticle  peaks,  satellite  structure,  discontinuity  and

renormalization factor from the momentum density which can be used to obtain insight

on electron-electron correlation around the Fermi surface break. To study these ground
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state correlation effects, the momentum space resolution must be maximized while the

final  state  effects  must  be  minimized  (Huotari  et  al.,  2007).  In  this  work,  Huotari

investigated  the  effects  of  not  obeying  the  impulse  approximation  by  studying  the

broadening  of  the  experimental  spectra  to  obtain  the  Fermi  surface.  It  outlines  the

experimental  motivations  behind  using  the  GWA to  study  the  Fermi  surface  via

Compton profile.They found that the Compton profile peak height has been found to be

lower than theoretically predicted and this is said to be due to correlation effects. The

features from the Fermi surface from experiment is observed to be broader compared to

LDA+GWA calculations.  This could be accounted for by using the antisymmetrized

germinal product.

The impulse approximation however breaks down for tightly bound core electrons

where even at high momentum and energy transfers, the binding energy of the excited

core electron to its core neighbors will be too strong to neglect (Soininen et al., 2001).

Besides  core  electrons,  final  state  electrons  are  also  an  indication  that  the  impulse

approximation  is  not  obeyed  (Sternemann  et  al.,  2000).  Improvement  on  scattering

intensity of the Compton scattering experiment allows a comparison of the Compton

profile which is closer to the model which assumes impulse approximation. In an earlier

work, Platzman (1970)  observed that a 10 keV probe can explain ground state electron

behavior within the impulse approximation. In a later study, it is observed that applying

x-ray energies between 16-18 keV shows that a small increase in probing X-ray energies

reduces the influence of the spectral functions significantly (Huotari et al., 2007). They

observed that even if an intense probing energy of ~10 keV was applied, there is still

broadening in the spectral function compared to the Fermi energy of 14.3 eV. This is

also seen in probes with a momentum resolution of 0.02 a.u (Soininen et al., 2001).

They conclude that the lifetime width of the spectral function reacts slowly compared to

the change of the momentum and energy transfer of the probing energies. However,

(Soininen et al., 2001) observed that at 30 keV, final state effects are negligible.

      17

Univ
ers

ity
 of

 M
ala

ya



EELS,  LEED,  XAS etc.  also  demand  detailed  knowledge  of  electron  scattering,

inelastic  mean free path (IMFP) and dielectric  response of  medium probed.  Bourke

(Bourke  et  al.,  2012) introduced  a  causally  constrained  momentum  dependent

broadening  theory  providing  electronic/optical  resonances  in  better  agreement  with

optical attenuation and electron scattering data. Specifically, they developed a theory to

calculate the electron IMFP in the low energy region (< 100 eV). With their model, they

could probe effects of a free electrons material with a single dominant resonance peak

or complex electron system with many optical resonances. Existing models of dielectric

response systematically overestimate IMFP due to poor account of lifetime broadening

or exchange correlation effects.

They begin with the optical data model used by Tanuma (Woicik et al.,  2016). It

deals with the determination of electron loss function related to IMFP, 

λ (E)−1
=

ℏ
ao πE ∫

0

( E−E F)

ℏ

∫
q

qt

I m
−1

ϵ(q ,ω)
dqdω                 (2.40)

The electron loss function is represented as susceptibility to plasmon excitation of a

given energy and momentum. It is defined as the relative probability of an excitation of

energy and momenta propagating in a medium. λ is thus obtained from the momentum

dependent dielectric function. The complex dielectric function is a fundamental material

parameter determining optical and electronic scattering behavior of the medium.  λ is

however  obtainable  only  for  the  case  of  the  free  electron  gas.  Thus,  its  resonance

behavior  can  be  described  by  the  Lindhard  theory  for  lossless  free  electron  gas  or

Mermin theory which accounts for lifetime broadening.
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The optical data model is given by the momentum dependent electron loss function

of  a  solid  which  is  constructed  by  summing  the  free  electron  gas  type  resonances

matching optical behavior of materials.

I m [−
1
ϵdata

]=∑ of I A I I m
−1

ϵFEG(0 ,ω ;ωp=ωi)
        (2.41)

Thus the free electron gas optical loss function is obtain from the single resonance peak

at optical limit of the plasmon frequency ωp. Lindhard type functions model resonance

described by delta functions. This is unphysical due to lack of lifetime broadening. The

Drude/Mermin  approach  includes  an  additional  lifetime  broadening  for  each

plasmon/scattering resonance.  This implies that Drude/Mermin approaches  are  many

pole models. Authors have shown that low and medium energy ELFs and IMFPs are not

consistent and have not converged to a unique result.  It does not preserve the local

electron number in the electron loss function which disagrees with Kramers-Kronig sum

rule.  Bourke  (Bourke et  al.,  2015)  later  introduced an  alternative  description of  the

Lindhard equation which preserves the sum rule. 

2.1.3 Momentum Density

Fundamentally important to solid state physics is the shape of the momentum density

near the Fermi surface. The momentum density is defined as the probability to observe

electron  with  momentum,  p (Huotari  et  al.,  2010).  As  shown  in  Equation  (2.39),

assuming  the  impulse  approximation,  the  Compton  profile  gives  a  two  component

average of the 3-d momentum density taking intrinsic inhomogeneities and Coulomb

correlation into account (Lam et al., 1974). These profiles are thus built up from slices

through the Fermi surface of radius,  pF in momentum space.  In the case of the ideal

Fermi  gas  of  free  noninteracting  electrons,  the  momentum density  is  given  by  the

Fermi-Dirac  distribution.  At  equilibrium at  zero  temperature,  a  step function with a
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discontinuity of slope 1 at  the Fermi surface sphere is  observed and is  attributed to

collisions  between  electrons.   This  is  reflected  experimentally  where  the  Compton

profile will have a discontinuity in the first derivative of the Fermi break (Huotari et al.,

2010).  This  derivative  discontinuity  of  the  Compton  profile  is  an  unambiguous

quantification of the level of correlation (Olevano et al., 2012).

Broadened  excitation  spectra  and  smoothened  discontinuity  of  the  momentum

density at the Fermi break causes anomalously large smearing of the Compton profile. It

can be explained as an incomplete incorporation of electron-electron correlation effects

in momentum density (Soininen et al., 2001).  This refers to the case of the Fermi liquid

where the momentum density departs from the step function and  a spill out of density

from lowest to highest momenta is observed. This make the momentum density which is

expected to follow a step function due to  a  non-interacting system be a continuous

function. In a normal Fermi liquid, if excitations are dampened, broadening vanishes

and  a  delta  peak  is  obtained   (Olevano  et  al.,  2012).  An  example  would  be  the

interaction  of  scattering  electron  and  the  rest  of  an  electron  gas  causing  further

broadening of measured Compton profiles (Huotari et al., 2010).  In this situation, the

probability to observe an electron above the Fermi momenta is finite above the zero

temperature. Thus, measuring momentum density can provide direct evidence of Fermi

liquid  behavior.  Specifically,  one can  obtain information on the shape  of  the Fermi

surface and thus study short range electron-electron and electron ion collision which can

be accounted for by correlation and the jump magnitude. These terms represent a direct

measure of strength of quasiparticle excitations at the Fermi surface (Olevano et al.,

2012).  Furthermore,  experimental  observation  of  the  momentum  density  allows  to

compare accuracy of approximate many body wave functions. 

In previous studies of momentum density smearing, (Huotari et al., 2007), Huotari

studied  the  impact  of  the  impulse  approximation  to  experimental  data.  Experiment
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shows  the  obtained  Fermi  surface  to  be  sharp,  however  the  theoretical  spectra  is

broadened. This can be attributed to correlation effects. Peter (Peter et al., 1993),  has

pointed out that the solution to the two particle momentum density restores cyllindrical

symmetry unavailable to the solution of a Hamiltonian in Landau gauge. This allows

comparison  to  spread  in  angle  of  annihilation  radiation  which  is  wide  enough  that

different n-states under the Fermi sphere or Fermi cylinder are smeared. This smearing

is determined by a perturbing potential which gives a break of angular width instead of

the sharp Fermi break. Barnes (Barnes et al., 1991) has also mentioned that spinon and

holon effects change superconduction ordering which smears out a sharp Fermi surface

in the state. In this work, we have adopted the quasiparticle description for interacting

fermions  D>1.  At  D=1,  it  is  non-analytic  at  mass  shell.  This  is  reflected  in  the

perturbation theory the spectral function. This can be solved by the Tomonaga-Luttinger

liquid model which rewrites the fermionic fields in terms of bosonic fields (Imambekov

et al., 2012). In this case, the dispersion curvature of the structure factor in a Luttinger

liquid  is  treated  as  a  perturbation.  For  free  fermions,  the  peak  is  narrow and non-

analytical at the curvature. We can thus write the Hamiltonian for the linear Luttinger

liquid as

H=H kin+H i n t=A [(δxψ[L])
2
+(δxψ[L])

2
]+BδxψLδx ψR         (2.42)

where

A=V L L+
V F

2 or  V RR+
V F

2  and B=2 V L R         (2.43)

Diagonalization would give

H=V /2[(δx ψ[L])
2
+(δx ψ[L])

2
]

=exp(−1/2αR
2
⟨(ψR (x , t)−ψR(0,0))ψR (0,0)⟩H)

      (2.44)
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where the correlation function can be simplified to

⟨(ψR(x , t)−ψR (0,0)) ψR(0,0)⟩= ln [(x0 vt) /xo]         (2.45)

For non-linear Luttinger liquids, the excitation energies at any given momentum are

finite.  This results  in  low energy dynamics at  an arbitrary momentum which allows

power law threshold singularities in the response functions. This allows us to write the

mapping on free chiral fermions as

Ho=
V

2π∫ dx ((ΔψL)
2
+(Δ ψR)

2
)         (2.46)

Hd=dx d†
(x)(ϵ(k) – I vd

δ
δx
)         (2.47)

H i n t=∫ dx(V LΔ
ψL

2π – V R Δ
ψR

2π )d(x )d
†
(x )         (2.48)

where  Ho describes free chiral (L,R) fermions,  Hd describes the impurity and Hint  the

forward scattering of L and R fermions off impurity. This allows us to write the spectral

function in terms of

A (k ,ω)=Θ(ϵ(k )−ω)|
1

ϵ(k )−ω|
1−

(δ(k))

2π

2

−(
δ(k)
2π )

2

                (2.49)

where 

δ±¿(k )
2π =

(1/√(k )(
k
m−

δϵ(k )
δ(k )

)±√(k )(1/π
δϵ(k)
δ( p)

+
v
k ))

2(±
δϵ(k )
δ k

– v )
¿                (2.50)
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Setting k=±kF  will thus resort to broadened mass shell states, holons or spectral edge

states, spinons. Barbiellini  (Barbiellini,  2000) obtained the occupation numbers from

natural orbital eigenvalues of single Kohn-Sham energy bands. This eigenvalue contains

the pairing term which is obtained by the Kohn-Sham exchange integral. The pairing

term is constructed from a two particle spin singlet function called a generating geminal

with  coefficients  obtained  from  a  Cooper-pair  like  function.  With  this  construct  a

correlation effect is introduced and can be adjusted to produce a smearing in momentum

space of 0.07 a.u. Recently, Aguiar (Aguiar et al., 2015) confirmed the importance of

the pairing correlations by showing that the reason fitting parameters of the momentum

density obtained from a semi-empirical approach for Li, B and C differs from its other

column members  in  the periodic  table  is  due to  the  existence of  significant  pairing

correlations in the ground state identified in terms of electron transfers from s to p like

character.  Besides  many  body  effects,  quantum  confinement  effects  also  smear  the

momentum density. This is seen in (Saniz et al., 2002) study of Compton scattering and

positron annihilation of a simple quantum dot model. They observe that the momentum

density tends to a homogeneous electron gas step function as dot radii increases but has

increased structure at  small  radii.  At low electron densities,  the atomic-like form of

wavefunction becomes evident and at higher electron densities the dot Fermi momenta

is  represented  by the   homogeneous  electron  gas  value.  Compton scattering  is  also

useful for studying spin systems where metals with highly isotropic momentum density

are most suited for study via Compton scattering. The momentum density is a quantity

showing direct evidence of the Pauli principle (Olevano et al., 2012). If we know the

momentum  density  per  spin  state,  we  can  observe  a  basic  many  body  observable

dependent on the Pauli principle (Huotari et al., 2010). 
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2.1.4 Electron-Electron Interaction

The  momentum  density  is  a  term  which  can  be  obtained  from  first  principles

calculations. In this work, we have employed the DFT (Hohenberg et al., 1964; Kohn  et

al., 1965) and DFT based calculations to obtain the momentum density. In this section

we outline the formalism behind DFT which is able to predict  the total energy of a

system of electrons and nuclei. Hamiltonians constructed to calculate the total energy of

a one atom system can be used to model real atomic systems while more complicated

systems are linearly combined extensions of atomic Hamiltonians. With the total energy

or differences between total energies one can obtain the equilibrium lattice constant of a

crystal,  surface and defect states, bulk moduli,  phonon states, piezoelectric constants

and phase transition pressures and temperatures. The formalism and discussions for this

section are obtained from the review paper by Payne (Payne et al., 1992).

According to the Born-Oppenheimer approximation (Sholl et al., 2011), due to large

differences in mass between electrons and nuclei, electrons respond instantaneously to

the motion of  nuclei.  Thus,  nuclear  coordinates  are  treated separately from electron

coordinates  in  the  many  body  wave  function.  Based  on  the  Born-Oppenheimer

approximation comes DFT which can be used to model electron-electron interaction. It

allows to map exactly a strongly interacting electron gas onto a single particle moving

in an effective nonlocal potential.

It is a nontrivial problem in electronic structure calculations to account for effects of

electron-electron interaction specifically  exchange and correlation between electrons.

The exchange term originates from the antisymmetry of the electron wavefunction. It

produces  a  spatial  separation  of  the  same  spin  electron  which  reduces  Coulombic

energy.  This reduction of energy is referred to as exchange energy (Jones et al., 1989).

The correlation energy is defined as the difference between the many body energy of an
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electronic  system and  its  energy  via  the  Hartree-Fock  approximation  (Payne  et  al.,

1992).  DFT  is  a  widely  used  method  for  calculating  ground  state  properties  and

electronic structure of solids. It is a simple method to describe the effects of exchange

and correlation in an electron gas. It is built upon the Hohenberg-Kohn theorem and the

Kohn-Sham (KS) equation. The Hohenberg-Kohn theorem states that the total energy of

an electron gas is a unique functional of an electron density. The minimum value of this

total energy functional is the ground state energy of the system and its electron density

is the exact single particle momentum density. In practice, this can be done by replacing

the many electron problem with an exactly equivalent set of self-consistent one-electron

equations. Starting from the Kohn-Sham equation,

[
−ℏ

2

2 m
+V ion(r)+V H (r )+V xc(r )] ψi(r)=Eiψi(r )                 (2.51)

where the Hartree potential, VH(r)and the exchange correlation potential, VXC(r) is given

by

V H (r)=e2∫
n(r ')

|r−r ' |
d3 r '  and V xc(r)=

δ Exc [n(r )]
δn(r )

            (2.52)

The KS equation gives a self-consistent solution as wave functions which minimize the

Kohn-Sham  total  energy  functional.  It  represents  a  mapping  of  interacting  many

electron systems onto noninteracting electrons moving in an effective potential due to

other electrons. The total energy functional is given by

E[ ψi]=2∑
i
∫ψi−

ℏ
2

2m ∇
2
ψi d

3r+∫V ion (r )n(r )d
3 r

+
e2

2 ∫
n(r)n(r ' )
|r−r ' | d r⃗ d r⃗ '+Exc [n(r )]+Eion (R I)

    (2.53)
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where Vion(r) is the static electron-ion potential,  EXC[n(r)] are the exchange correlation

functional and Eion(RI) is the Coulomb energy between the nuclei. The simplest method

to  describe  the  exchange  correlation  energy  is  the  localized  density  approximation

(LDA) (Kohn et al., 1965). It describes the exchange correlation energy per electron in a

homogeneous electron gas which has the same density as the electron gas at point r. It is

given by

Exc [n(r )]=∫ϵxc(r)n(r )d
3 r                 (2.54)

where εXC(r) is the exchange correlation energy at point r in the electron gas. The LDA

ignores correction to EXC(r) due to inhomogeneities in the electron density. 

As stated previously, only the minimum of the Kohn-Sham energy functional has

physical meaning. This energy is equal to the ground state energy of a system with

electrons of ions at positions RI. The KS equations are solved self-consistently. We can

then  obtain  the  occupied  electronic  states,  the  charge  density  and  the  electronic

potential. The highest occupied eigenvalue in an atomic/molecular calculation is equal

to the unreleased ionization energy of the system. The wavefunctions used are solutions

of one-electron Schrodinger equation which includes exchange and correlation in the

form of local potential.   The solution to the KS equation is not a one-particle wave

function. It cannot be used to simply calculate momentum density, only ground state

position electron density. 

2.1.5 Finite Temperature DFT

The  electron  density  can  be  deduced  from  a  ground  state  calculation  while  the

momentum density is obtained from 
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n( p)=∑
i=1

n

ni |ψi( p)|2                  (2.55)

which  is  the  Fourier  transform  of  real-space  one  electron  wavefunction,  Ψi and

occupation number, ni .  For our work, the occupation number density is written in terms

of an entropy function  which  results  in  a  smeared occupation  number density.  This

description  is  based  on the  finite  temperature  DFT technique  of  Marzari-Vanderbilt

which we elaborate on in this section. We point out that we follow the interpretation of

Luttinger  and  Schulke  who have  stated  that  the  momentum distribution  function  is

defined as the mean occupation number of the state k (Luttinger, 1960; Schulke et al.,

1996).

Marzari  (Marzari,  1996;  Marzari  et  al.,  1997;  Marzari  et  al.,  1999)  introduced a

reformulation of finite temperature electronic structure. They define an invariant free

energy  functional  with  respect  to  unitary  transformation  which  allows  a  projected

functional which is dependent only on orbitals where its one particle statistical operator

commutes with the non-self consistent Hamiltonian. The subsequent minimization to

self-consistency  of  the  functional  does  not  depend  on  occupations  and  rotations  of

orthonormal orbitals  and requires  doubly preconditioned all-band conjugate  gradient

methods.  Each  iteration  will  ensure  that  the  statistical  operator  commutes  with  the

current orbital representation of the Hamiltonian.

Finite temperature DFT requires an ad-hoc procedure for updating the orbitals in the

occupied  subspace.  The  evolution  of  occupancies  is  driven  by  rescaled  diagonal

elements of the Hamiltonian.  It  is  expressed in terms of statistical  mechanics based

operators and traces. The Helmholtz free energy functional

A [ΓN ]=trΓN (
1
β

lnΓN+Ĥ )                 (2.56)
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where ΓN is the many body operator, is rewritten as 

A [T ;{ψi};{f i}]=∑
ij

f ji ⟨ ψi | T̂ l+V̂ nl |ψ j⟩+Exc [n]−TS [ f ij]                 (2.57)

The wavefunction should be normalized and orthogonal  while  the trace  f should be

equal to N number of electrons. With this functional, one can obtain a rotation invariant

projected functional

G [T ;{ψi}]=min A [T ;{ψi};{f i}]          (2.58)

The functional G is brought to self-consistency with a minimization with respect to

the wavefunctions.  After each iteration,  the  fij are updated to minimize  A.  Using the

notation

hij=⟨ψi | T̂ l+V̂ nl |ψ j⟩  and V ij
n
=⟨ψi |V xc

n |ψi⟩         (2.59)

we can write the minimum conditions for A as

δ A
δ f ji

=hij+
δExc

δ f ji

−T
δS
δ f ji

−μδij

=hij+V ij
n
−T [ S ' ( f )]ij−μδij=0

                 (2.60)

The  third  term  contains  the  Fermi-Dirac  entropy  derivative  written  in  terms  of

occupation  numbers  calculated  by  diagonalizing  f.  The  fourth  term is  the  Lagrange

multiplier.  With this  term,  one can obtain the smearing technique for the density of

states which is dependent on the entropic term in the total energy functional.
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The deterioration of sampling accuracy in calculating the total charge density, kinetic

and nonlocal terms in the total energy functional is directly related to the presence of

discontinuity in functions to be integrated. This is a characteristic of the electron gas at

zero temperature where the occupation numbers drop to zero when the band energy is

above the Fermi surface. Electrons of this system will be distributed according to the

Fermi-Dirac  distribution  which  will  have  a  smoother  discontinuity  as  the  electronic

temperature  or  precision  of  sampling  mesh  increases.  By  generalizing  beyond  the

Fermi-Dirac  distribution,  entropy  is  expressed  as  a  function  of  energy  instead  of

occupation numbers. Thus, we describe an unsmeared density of state as 

n(ϵ)=∑
ik

δ(ϵ−ϵik )                          (2.61)

which will be used to obtain a smeared density of state via convolution with  

~n (ϵ)=∫
−∞

∞

d ϵ '
1
σ
~
δ(

ϵ−ϵ '
σ )n(ϵ ' )                          (2.62)

The smeared DOS is used to obtain the smeared band energy

~
Eband=∫

−∞

μ

d ϵ n̂(ϵ)          (2.63)

Here, the smeared total energy functional is equivalent to the generalized free energy

whose form depends on the choice of broadening. With some algebra, we can rewrite

the band energy into two terms

~Eband=∫
−∞

∞

d ϵ ' ϵ ' n (ϵ ') ∫
−∞

μ−ϵ '
σ

dx
~
δ(x )+σ∫

−∞

∞

dϵ ' n(ϵ ') ∫
−∞

μ−ϵ '
σ

dx x
~
δ (x)         (2.64)

      29

Univ
ers

ity
 of

 M
ala

ya



We can rewrite this equation in terms of the occupation function and entropy function

for first and second term respectively

~Eband=∑
ik

ϵik f (
μ−ϵik
σ )−σ∑

ik

S (μ−ϵik)                  (2.65)

Assuming an unsmeared DOS expanded in powers of ε

n(ϵ ')=
1
k !
∑
k=0

∞ d k n
d ϵk (ϵ '−ϵ)

k
=

1
k !
∑
k=0

n

nk
(ϵ)(ϵ '−ϵ)k          (2.66)

we can write the entropy as 

S=∑
k=0

∞

ck nk−1
(μ)σ

k                          (2.67)

where coefficient

ck=(−1)k +1 1
k !∫−∞

∞

xk+1
δ̂(x)dx          (2.68)

We will define the (x) which is used in the calculations of this work in Chapter 3. 

2.2 Obtaining the Compton Profiles from the GWA

In this section, we will outline the tools that are used to describe Compton scattering

beyond impulse approximation. We start with defining the Green's function and self-

energy terms. These terms are then used to obtain Hedin's GWA equations. We finally

discuss the spectral function and its properties.
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2.2.1 Compton Scattering Beyond Impulse Approximation

KS eigenvalues should be interpreted as quasiparticle energies directly measured by

photoemission  experiments  (photons  excite  electrons  out  of  a  crystal  leaving  holes

behind  and  providing  information  about  occupied  states).  There  is  however  no

theoretical  justification  for  this  statement  except  for  highest  occupied  states.  Kohn-

Sham DFT with the LDA functional  is  not an exact  theory to  calculate  momentum

density (Olevano et al., 2012). It is a local and energy independent approximation to the

self-energy and gives the correct ground state density. The LDA can provide the overall

description  of  Compton  profiles  and  Fermi  surface  signatures.  However,  the  LDA

profile bears sharper fine structures than the observed profile. It yields profiles higher

than  experimental  profile  at  small  momenta  and  lower  at  higher  momenta  with  a

broadened Fermi surface. This drawback is said to be due to ignoring electron-electron

correlation and quasiparticle behaviour in the independent particle model (Kubo, 2001).

In the case of weakly correlated materials, the LDA gives a good description of ground

state properties but not excited state properties. 

The GW Approximation (GWA) enables first principles quasiparticle calculations for

realistic materials. It is a first order perturbation theory where the starting Hamiltonian

is as close as possible to that of the real system (Kubo, 1996). To calculate quasiparticle

energies in our GWA study, Green's function theory is employed. In this formulation,

the many body effects are contained in self-energy operators which are non-local and

energy  dependent.  The  equation  of  motion  is  developed  via  the  Heisenberg

representation to obtain the equation of motion of the Green's function referred to as the

Dyson's equation. With this term, we then obtain the two particle Green's function. To

evaluate  the  perturbation  expansion  of  the  self-energy,  the  functional  derivative

technique is employed.  Using the Dirac picture, we can obtain a perturbation expansion
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of the self-energy and rewrite the two particle Green's function in terms of the single

particle Green's function and its perturbation expansion. 

With this single particle zeroth order Green's function we can then obtain the self-

energy in terms of the GW Approximation via Hedin's equation. In this method, we find

the  product  of  the  Kohn-Sham  states  as  the  Green's  function  with  the  irreducible

polarizability  represented  by  the  dynamically  screened  interaction  from the  random

phase approximation (RPA) which will give the dielectric function.  In this formalism,

the  dynamically  screened  interaction  splits  the  self-energy  into  an  exchange  and

correlation  term.  In  more  technical  terms,  the  irreducible  polarizability,  microscopic

dielectric function and oscillator matrix elements is written in Fourier space where the

exchange self-energy is a static term and has the same term as the Fock operators and

the correlation part contains the calculation of dynamical effects in terms of either the

plasmon-pole or contour  deformation technique.   The imaginary part  of the Green's

function is the calculated spectral function. This can be done by integrating the spectral

function with respect to energy (Lebesgue et al.,  2003).  The GWA is a lowest order

many body perturbation theory (MBPT) in  terms of  fully  screened electron-electron

interaction.  The GWA is the simplest theory beyond the Hartree-Fock approximation

(HFA) that takes into account screening (Hedin, 1965; Hedin et al., 1969). It is in fact a

generalization of HFA but with dynamically screened interaction. It is the first term in

the perturbation expansion of the self-energy in powers of screened interaction, W. A

caveat in this calculation is that a higher level of self-consistency both on G and W

reduces the level of correlation and increases discontinuity at the Fermi break (Olevano

et al., 2012). However, excited state calculation is already calculated in the GWA with

the self-energy (Huotari et al., 2007). In previous fully dressed Green's functions, the

self-energies are obtained by screening the Coulomb potential  by the RPA dielectric

function and convoluting with the Green's function (Sternemann et al., 2000). 
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Besides the study of Compton profiles, the one electron Green's function methods

can be used to determine the ionization potential  since the poles of the one-particle

Green's  function  correspond  to  the  electron  addition  and  removal  energies  and  the

smallest  removal energy is just  the ionization potential  (Grüneis et al.,  2014). Other

methods to study the effects of self-energy in the ionization potential involve the Breit

interaction and quantum electrodynamics (QED) terms (Pyykko, 2011; Pyykko et al.,

1998). In these works, they studied the Lamb shift for groups 1 and 11 neutral atom

valence electrons. The ionization potential contains two terms, the vacuum polarization

term obtained from the Uehling potential (Uehling, 1935) which is strongly localized to

the nuclear neighborhood and the self-energy term which can be treated by obtaining a

complete set of one-particle states at the Dirac level then doing the Feynman diagram.

In the  field  of  few electron  computations,  the  self-energy is  evaluated  from a  non-

relativistic density formula for light elements and is treated as a short distance effect.

An effective atomic potential in the Dirac problem was then used to simulate the Dirac-

Fock  valence  eigenvalues  in  terms  of  QED.  Barbiellini  (Barbiellini  et  al.,  2004)

proposed  the  application  of  Dyson orbitals   to  obtain  the  Kohn-Sham energies  and

observed that it can be made closer to experimental band gaps and eigenvalues when

used in a quasiparticle correction. Rodl (Rodl et al., 2012) has used the Bethe-Salpeter

equation  to  study  the  absorption  spectra  which  is  computed  from the  macroscopic

dielectric function in the case of late transition metal oxides. Its real and imaginary parts

describe the dispersion and abosrption of light.  To solve the Bethe Salpeter equation,

Rodl firstly  obtained the electron hole pair  Hamiltonian determined by quasiparticle

states  from the  electronic  band  structure,  matrix  element  of  screened  electron  hole

attraction and matrix elements of bare Coulomb interaction and local field effects. Spin

degrees of freedom in terms of singlet and triplet excitations are not well defined as

only vertical excitations from a valence to conduction band with same spin quantum

number can take place. The eigenvalue is the solved as a time evolution initial value

problem which yields the frequency dependent dielectric function but not individual
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excitonic  eigenvalues/oscillator  strengths.  The  matrix  elements  of  electron  hole

attraction are obtained via analytic expression (Bechstedt et al., 1992). This is compared

to the work of Vinson (Vinson et al., 2011) who presented a hybrid approach for BSE

core excitation spectra calculations.  It  includes an explicit  treatment of quasiparticle

effects within Hedin’s GWA and particle hole interactions. It is based on the quasiboson

formalism and the many pole self-energy model to account for quasiparticle damping

and self-energy shifts. Intraatomic Coulomb and spin orbit interaction are accounted for

by atomic multiplet effects. Prange (Prange et al., 2009) has attempted to calculate the

optical response for a variety of systems and spectral ranges. It is based on real space

multiple  scattering  theory  which  treats  arbitrary  aperiodic  systems  over  a  broad

frequency range. They have used the independent quasiparticle approximation for single

particle states. Starting from the bare response function in terms of ψo

χ
0
( r⃗ , r⃗ ’ ,ω)=

∑
i , j
( f i – f j)ψi

0
( r⃗ )ψi

0
( r⃗ ’)ψ j

0
( r⃗ ’ ’)ψ j

0
( r⃗ ’)

ω−(E j – Ei)+i δ
                (2.69)

We can obtain the dielectric function as

ϵ2(ω)=
4 π
V I m∫ d r⃗ d r⃗ ’Tr d χ ( r⃗ , r⃗ ’ ,ω)d†         (2.70)

These  terms can  now be  written  in  terms  of  a  single  particle  Green’s  function  and

density operator

χ
0
( r⃗ , r⃗ ’ ,ω)=∫

0

EF

ρ( r⃗ , r⃗ ’ ,ω)G+( r⃗ , r⃗ ’ ,ω)
+ρ( r⃗ , r⃗ ’ ,ω)G−( r⃗ , r⃗ ’ ,ω)dE        (2.71)

And the dielectric function in terms of spectral functions

−I mχ
0

π =∫
EF−ω

E F

ρ( r⃗ , r⃗ ’ , E)ρ( r⃗ , r⃗ ’ , E+ω)dE         (2.72)
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Electrons move in an effective quasiparticle scattering potential including the dynamic

self-energy correction. Specifically, this potential is a muffin tin potential for a cluster of

atoms at fixed location. The Green’s function for this potential is written as a double

angular momentum expression

G( r⃗ , r⃗ ’ ,ω)=−2k∑
L L’

R ln r⃗n
^Gln , L’ n’

⃗RL’ n ’( r⃗ ’n ’)+δnn’∑
L

H ln( r⃗ )R ln ’(r⃗ c)     (2.73)

To include  relativistic  effects  such as  spin  orbit  interaction,  the  Green’s  function  is

recast in terms of spinor solutions to Dirac’s equations.  

2.2.2 Green's Function and Self-energy

The propagator  is  defined as  the probability  amplitude for  the propagation of an

added or removed electron in a many body system (Mattuck, 2012). The probability

amplitude  itself  is  the  overlap  between  final  and  initial  states  in  the  Heisenberg

representation (Heisenberg, 1925)

iG(x , x ' )=⟨Ψ |T [ ψ̂(x) ψ̂†
(x ')]|Ψ⟩=⟨Ψ |T [ ψ̂(x) ψ̂†

(x ')]|Ψ⟩ for t> t '

⟨Ψ |T [ ψ̂
†
(x ' )ψ̂(x )]|Ψ⟩ for t< t '

 (2.74)

Here, T is the time ordering operator, G contains information of charged excitations and

ψ(x)ψ†(x) is the ground state creation and annhilation field operators. Thus, the one-

particle Green function describes the propagation of a hole or added electrons. The top-

most relation describes the probability amplitude that creation of an electron at time t'

on  x' will  propagate  to  x at  time  t.  The  bottom  relation  describes  the  probability

amplitude that creation of a hole at time t on x will propagate to x' at time t'. From the

Green's function we can obtain the expectation value of the single particle operator in

ground state, the ground state energy and the excitation spectrum. The formalisms and
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discussions  used  in  this  section  is  presented  in  Chapter  1  in  (Anisimov,  2000)  by

Aryasetiawan and the review paper of Aryasetiawan (Aryasetiawan et al., 1998) and we

have explicitly  defined the  derivation  steps  from that  work.  Other  extremely  useful

reviews are (Migdal, 1957; Friedrich et al., 2006; Strinati 1988; Onida et al., 2002; Held

et al., 2011; Hedin, 1999; Csanak et al., 1971; Aulbur et al., 1999).   

The Heisenberg representation of field operators satisfy the equation of motion

i
∂ψ(x )
∂ t

=[ψ̂(x ) , Ĥ ]        (2.75)

whose Hamiltonian is

Ĥ=∫dx ^
ψ

†
(x )H o( x)ψ̂(x )+

1
2∫ dx dx ' ^

ψ
†
(x ) ^ψ

†
( x ' )V (x−x ') ψ̂(x ' ) ψ̂(x)

                                                                                                                          (2.76)

 

The first term involves the kinetic energy plus a local external field. Putting Equation

2.76 into Equation 2.75, we get

∫ dx ψ̂(x ) ^ψ
†
( x)H o(x) ψ̂(x)+

1
2∫dx dx ' ψ̂(x ) ^ψ

†
(x ) ^ψ

†
(x ' )V (x−x ' )ψ̂(x ') ψ̂(x)

−∫ dx ψ̂†
(x )H o(x) ψ̂( x) ψ̂(x )−

1
2
∫dx dx ' ψ̂†

(x)ψ̂†
(x ' )V (x−x ') ψ̂(x ' )ψ̂(x) ψ̂(x)

    (2.77)

                    

Multiplying Equation 2.77 with ψ†(x) we get
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ψ̂
†
(x ') i

∂ψ(x )
∂ t

=∫ dx ψ̂†
(x ' )ψ̂(x )ψ̂†

(x )H o(x) ψ̂(x)

−
1
2∫dx dx ' ^ψ†

(x ') ^ψ†
(x ) ^ψ†

(x ' )V (x−x ' ) ψ̂(x ' ) ψ̂(x) ψ̂(x )

        (2.78)

After  evaluating  the  commutator,  we  obtain  the  equation  of  motion  of  the  Green's

function

[i∂
∂ t −H o(x)]G(x , x ' )

+i∫ d3r V (r−r ')⟨Ψ |T [ ψ̂†
(r , t) ψ̂(r ,t ) ψ̂(r ' , t ' )ψ̂†

(r ' , t ' )] |Ψ⟩

            (2.79)

where  the  second  term  is  the  two  particle  Green's  function  which  describes  the

propagation of two particles from 2,4 to 1,3 when written as

G2(1,2,3,4)=i2
⟨Ψ |T [ ψ̂(1) ψ̂(3) ^ψ†

(2) ^ψ†
(4)] |Ψ⟩                 (2.80)

It can be expressed in terms of one-particle Green's function by rewriting the equation

of motion as

[i ∂
∂ t

−H o(x)]G(x , x ')−∫dx M (x , x ' )G(x , x ')=δ (x−x ')         (2.81)

In the case of molecules or finite systems, the self-energy is calculated via the finite

order perturbation theory (Anisimov, 2000). This method does not work on extended

systems due to the long range nature of Coulomb interaction. In this case, an infinite

order sum of diagram is needed. To evaluate the perturbation expansion of the self-

energy, the functional derivative technique is employed. The field operators are firstly

rewritten in the Dirac picture

|ψ(r , t) ⟩=Û (t , t o) |ψ(r , t o) ⟩                 (2.82)
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where

Û (t ,t o)=T exp [−i∫
to

t

d τ ϕ̂ (t)]         (2.83)

and

ϕ̂ (t )=∫ d3 r ϕ (r ,t ) ^ψD
†
(r , t) ψ̂D(r , t)         (2.84)

Defining 

Ŝ=Û (∞ ,−∞)         (2.85)

we write

Û (∞ ,−∞)=T exp [−i∫
−∞

∞

dt∫d3 r ϕ (r , t) ψ̂D
†
(r , t) ψ̂D(r ,t)]         (2.86)

Finding

∂ Ŝ
∂ϕ (3)

       (2.87)

gives

i
∂ Ŝ

∂ϕ (3)
=T [ Ŝ ψ̂D

†
(3)ψ̂D(3)]                  (2.88)

where 

      38

Univ
ers

ity
 of

 M
ala

ya



^
ψD

†
(3) ψ̂D(3)         (2.89)

is the coefficient to ϕ(3). With this result, we can write

i
∂Ĝ(1,2)
∂ϕ (3)

= ∂
∂ϕ (3)

⟨Ψo |T [ Ŝ ψ̂D(1)
^
ψD

†
(2)]|Ψo⟩

⟨Ψo | Ŝ |Ψo⟩
         (2.90)

 Using the formula 

d
dx

{
u
v
}=

v du−u dv

v2
                 (2.91)

we can rewrite Equation 2.90 as

=⟨Ψo | Ŝ |Ψo⟩ ⟨Ψo |T [
δ Ŝ

δϕ(3)
ψ̂D (1) ψ̂D

†
(2)] |Ψo⟩

−⟨Ψo |T [ Ŝ ψ̂D (1) ψ̂D
†
(2)] |Ψo⟩⟨Ψo |

δ Ŝ
δ ϕ(3)

|Ψo⟩

⟨Ψo | Ŝ |Ψo⟩
2

    (2.92)

This will finally give

∂G(1,2)
∂ ϕ (3)

=G(1,2)G(3,3+'
)−G2(1,2,3,3+'

)                 (2.93)

We can replace the two particle Green's function from Equation 2.93  into Equation 2.81

∫d3 r ' v (r−r ')G2(1,2,3,3+'
)=∫d3 r ' v (r−r ')[G(1,2)G(3,3+'

)−
∂G(1,2)
∂ ϕ (3)

]

    (2.94)
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Defining 

v H (1)=∫ d 2 v (1−2)ρ(2)                         (2.95)

 we conclude

∫d3 r ' v (r−r ')G2(1,2,3,3+'
)=vH (1)G(1,2) –∫d3 r ' v (1,3)

∂G(1,2)
∂ ϕ (3)

    (2.96)

The  Dyson  equation  establishes  a  connection  between  fully  interacting  G and

propagator Go via the self-energy

G(12)=Go(12)+∫Go(13)Σ(34 )G(42)d 34          (2.97)

The self-energy describes the quantum mechanical state of a renormalized electron in a

many body system. It can be obtained by solving the quasiparticle equation

[ ĥo(r1)+v H (r1)]Ψ(r1)+∫Σ(r1 , r2 ,ϵQP
)Ψ(r2)dr2=ϵ

QP
Ψ(r1)     (2.98)

The quasiparticle  eigenstates  construct  G according to  Lehmann representation.  The

Lehmann  spectral  representation  is  used  to  define  the  propagator  which  gives

information on charged excitations

ϵi=
E i
(N+ 1)

−E0
N

ϵi>μ

E0
N
−E i

(N−1)
ϵi<μ

Ψi(r )=
⟨Θo

N | ψ̂(r )|Θi
N+1

⟩

⟨Θi
N−1 | ψ̂(r )|Θo

N
⟩

        (2.99)

where  EO is the ground state energy,  Ei is the excited state energy μ  is the chemical

potential  and  ΨI(r) are  the Lehmann amplitudes.  It  contains  the complete  excitation

      40

Univ
ers

ity
 of

 M
ala

ya



spectrum corresponding to excitations of N-1 particles and N+1 particles. The poles in

the Green's functions provides the information needed to interpret processes measured

in  experiments  where  a  single  electron  is  added  or  removed.  The  quasiparticle

eigenvectors and eigenvalues have direct physical meaning and can be used to obtain

interacting system charge density and properties of charge excitations. The QP energies

and wavefunction are determined from the solution of the QP equation

(T+vext+v H)Ψkn(r)+∫ d3 r 'Σ(r , r ' ,En(k ))Ψ kn(r )=En(k )Ψkn (r )     (2.100)

The major difficulty is finding an adequate approximation of the self-energy operator.

Hedin's GW Approximation can determine the self-energy by writing it as a product of

the  Green's  function  and  screened  Coulomb  interaction.  Both  non-locality  and

dynamical correlations are included. 

2.2.3 Hedin's Equations and GWA

The solution to Hedin's equation gives the exact self-energy and exact G. Its building

blocks start with the irreducible polarizability

χ (12)=
∂ n(1)
∂U (2)

=−i
∂G(11+'

)

∂U (2)
                     (2.101)

It describes the linear response of density to charges in total effective potential which

consists  of external field and Hartree potential.  With the polarizability,  we can then

obtain the dielectric matrix

ϵ(12)=δ(1,2)−∫v (1,3) χ(3,2)d 3   (2.102)
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Applying the RPA to the dielectric matrix (Stefanucci et al., 2013), we can obtain the

dynamically screened interaction

W (1,2)=∫ϵ
−1
(1,3) v(3,2)d 3   (2.103)

which is the renormalized bare Coulomb interaction giving screened interaction. The

next building block is to obtain the many body propagator, G. This is followed by the

vertex  function,   which  describes  interactions  between  virtual  hole  and  electron

excitations. With these three building blocks we can finally obtain the self energy. 

Σ=GW Γ             (2.104)

Hedin's GW Approximation can determine the self-energy by writing it as a product

of  the  Green's  function  and  screened  Coulomb  interaction.  Both  non-locality  and

dynamical correlations are included (Lebesgue et al., 2003). The direct evaluation of the

vertex function is very challenging. The GW approximation approximates the vertex

function with a local and instantaneous function

Γ(12;3)≈δ(1,2)δ (1,3)≡ΓGW
(12;3)     (2.105)

From the neglect of vertex correction, the irreducible polarizability become

χ (1,2)=−iG (1,2)G(2,1+'
)             (2.106)

The  self-energy  can  be  written  in  terms  of  propagator  and  dynamically  screened

interactions

Σ(1,2)=iG(1,2)W (1+' ,2)     (2.107)
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which when convoluted in frequency space

Σ(r1, r2,ω)=
i

2π∫ e
iω ' δ+'

G(r1, r2,ω
+'
)W (r 1, r2,ω

+'
)dω '     (2.108)

In practical terms, best G and W are used

Σ(12)=iGo
KS
(12)W o(1

+' 2)             (2.109)

where 

Go
KS
(12)                    (2.110)

represents the independent particle propagator of the KS Hamiltonian and

W o(1
+' 2)             (2.111)

represents  the  screened  interaction  calculated  from  RPA  with  KS  energies  and

wavefunctions.

χo(1,2)=−iGo
KS
(1,2)G o

KS
(2,1+'

)     (2.112)

2.2.4 Spectral Function

With the GWA we are able to model the final state interacting electron which may

explain the deviation of the DDSCS beyond the impulse approximation, giving insight

into experimental results.  In this  case,  the final state electron is the polarized recoil

electron which is affected by the so called self-energy effects. These effects are taken
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into  account  via  the  spectral  density  function  A(p,E) which  describes  the  relative

probability per unit of energy for the system to be in a state with energy E+μ  after the

injection of one electron (Soininen et al., 2001; Ng et al., 1986). The spectral density

function in terms of self-energy is given by

A ( p , E)=−
1
π

I mΣ

[E−ϵ( p)−R eΣ( p ,E)]2+[I mΣ( p , E)]2
  (2.113)

The first term in the denominator describes how far the energy of the centre of A(p,E) is

from ε(p) while the second term describes the spectral width which is the reciprocal of

the lifetime of the quasiparticle. Without the self-energy terms, the spectral function will

only contain E-ε(p)  in the denominator and is typical of ground state calculations. This

explains why fine structures tend to be sharper compared to more broadened excited

state calculations. The effect of the imaginary part of the self-energy can be obtained by

replacing  the  delta  function  in  Equation  2.27  with  A(p+ħq,E+ħω).  Under  the

assumption of the impulse approximation, the spectral function can be modeled as a

Dirac delta function and with the electron state given as a plane wave (Huotari et al.,

2007; Olevano et al., 2012).  Using Equation 2.113, instead of a Dirac delta function to

define the occupation number density implies that our model will include correlation

terms  in  particular  the  self  energy.  An occupation  number  density  similar  to  a  step

function  along  the  Fermi  energy  would  be  similar  to  the  case  of  the  LDA  a

noninteracting system at equilibrium at zero temperature.

This spectral function contains previously reported characteristics. The broadening of

the Compton profile beyond impulse approximation can be explained by the finite width

of the spectral function of the excited particle (Sternemann et al.,  2000). This width

grows with increasing electron density  (Huotari et al., 2007). Characteristic peaks and

structures in the spectral function are indicative of plasmaron and quasiparticles. These
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asymmetrical  shapes  are  influenced  by  the  polarization  function  to  obtain  the  self-

energy (Sternemann et  al.,  2000).  The  GWA reproduces  the  correct  spectral  weight

repartition between quasiparticle  peak and other  satellites  but  the positioning of  the

satellites  is  inaccurate  (Olevano  et  al.,  2012).   In  the  case  of  GWA,  exclusion  of

plasmaron  and  vertex  correction  affect  correlation  and  subsequently  the  spectral

function (Soininen et al., 2001).  

The momentum density can thus be obtained from the spectral function via

ρ(p)=∫
−∞

EF

(dE/2π)A ( p , E)      (2.114)

Thus, it can be seen that the spectral function for the interacting final state electron will

modify the dynamic structure factor (Soininen et al., 2001) as given in Equation (2.39).

We can now rewrite the dynamic structure factor in terms of the spectral functions in the

high  momentum  transfer  regions  as  the  relation  between  A(p,E) and  the  dynamic

structure factor S(q,ω) is given by

S (q,ω)=
2
ℏ
∫
−∞

0

dE∫
dp

(2π )
3

A ( p,E ) A ( p+q,ω+E )
      (2.115)

where  A(p,E) and  A(p+q,E+ω) is  the  spectral  function  for  the  final  state  hole  and

electron respectively. With this term, it is possible to study the correlation contribution

to the momentum density.  An occupation number density  similar  to  a  step function

along the Fermi energy would be similar to the case of the LDA which describes a

noninteracting system at equilibrium at zero temperature. Specifically, LDA calculations

are able to explain the overall shape and fine structures of the observed profile but the

momentum densities at the origin are greater than experimental values at the origin but
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opposite in the high momentum case. In addition, a renormalization of the height of

break at the Fermi surface is seen (Olevano et al., 2012). In a previous study, using a

dilogarithmic  function  and Legendre  chi  functions,  Soininen (Soininen et  al.,  2001)

constructed  analytical  spectral  functions  based  on plasmon energy and ground state

energy and equivalently obtained width and splitting of main and satellite peaks.

2.3 Comparative Tools between Experimental and Theoretical Studies

In this  section, we introduce the Lam-Platzman correction (LPC) to the Compton

profile.  With  this  correction  to  the  momentum  density  we  are  able  to  account  for

correlations between states. We then discuss the work of Cardwell who proposed an

exchange  correlation  correction  based  on  LPC.   They  firstly  obtained  a  fit  to  the

Lundqvist (1968) data, then the LPC is obtained by subtracting this fit from the free

electron  Compton  profile.  Kubo  then  observed  that  the  homogeneous  part  can  be

modeled by GWA quite satisfactorily. We end this section by discussing anisotropy in

Compton profiles.

2.3.1 Lam-Platzman Correction

The Lam-Platzman correction  is defined as the difference between the occupation

function for a non-interacting and homogeneous interacting electron gas (Huotari et al.,

2007), effectively estimating the correlation effects in the Compton profile. Lam (Lam

et al., 1974) firstly proposed a general formalism determining momentum density and

Compton profiles for interacting electron systems based on the Feynman's theorem and

the  Hohenberg-Kohn  theory.  They  assumed  a  non-relativistic  and  zero  temperature

system. The Feynman's theorem is given by

N ( p)=[
∂E p(λ)

∂ λ
]
λ=0

            (2.116)
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where Ep(λ) is the ground state energy of

H p(λ )=H+λ ap
† ap             (2.117)

The Hohenberg-Kohn Hamiltonian is given by

H=T +U+V             (2.118)

where 

T=
1
2∫∇ ψ

†
( r⃗ ) ψ( r⃗ )d r⃗     (2.119)

U=
1
2∫

1
| r⃗− r⃗ ' |

ψ
†
( r⃗ )ψ

†
( r⃗ ')ψ( r⃗ ' )ψ( r⃗ )d r⃗ ' d r⃗     (2.120)

V=∫V ( r⃗ )ψ†
( r⃗ ) ψ( r⃗ )d r⃗     (2.121)

can be written in terms of annhilation operators for plane wave states e.g.

T=∑
k

ϵk ( p)ak
† ak      (2.122)

where  

ϵk=
1
2

k2                                                                   (2.123)

We can thus write Equation 2.118 as
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H p(λ )=T p+U+V                     (2.124)

where

T p=∑
k

ϵk ( p)ak
† ak                    (2.125)

with 

ϵk(p)=ϵk+λδp , k              (2.126)

Replace everywhere εk by εk(p) in ground state energy E of H, we will get Ep(λ) to fulfill

Equation 2.113. Thus, to obtain Equation 2.113 from the above-mentioned Hamiltonian,

we apply two assumptions from the Hohenberg-Kohn theorem 

(a) Ground state energy E is a unique functional from of n(r)

(b) E is stationary with respect to ∂n(r)

Defining

n( r⃗ )=⟨ϕ o | ^ψ†
( r⃗ ) ψ̂( r⃗ ) |ϕ o⟩             (2.127)

we write 

E[n]≡∫V ( r⃗ )n( r⃗ )d r⃗+
1
2
∫

n( r⃗ )n ( r⃗ ' )
| r⃗− r⃗ ' |

d r⃗ d r⃗ '+G [n]        (2.128)

Since n(r) can also be written in terms of annhilation operators, it also has a dependence

on εk. We can thus write the momentum density and G terms in terms of λ which gives

two sources of λ dependence in Ep(λ), Gλ[nλ] and nλ(r) . Based on assumption b), 
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[
∂E p(λ)

∂ λ
]
λ=0

=[
∂Gλ (n)
∂ λ

]
λ=0

          (2.129)

We can thus rewrite Equation 2.116 as 

N p=
∂G(n)
∂ϵ p

    (2.130)

The  exact  form  of  G[n] is  unknown.  An  approximation  scheme  must  be  used  to

calculate the Compton profile. Lam proposed a self-consistent scheme for utilizing the

results of density calculations to obtain the approximate Compton profile. Based on the

Kohn-Sham method,  we replace the  many electron  problem via self-consistent  one-

electron equations. We firstly split G[n] to two terms

G [n]=T [n]+E xc [n]             (2.131)

This can be related to 

[
p2

2m
+V eff ( r⃗ )] ψi( r⃗ )=Ei ψi( r⃗ )             (2.132)

where

V eff=V ( r⃗ )+
1
2
∫

n( r⃗ )n ( r⃗ ' )
| r⃗− r⃗ ' |

d r⃗ d r⃗ '+V xc( r⃗ ' )             (2.133)

V xc( r⃗ )=
∂E xc(n)
∂ n( r⃗ )

                (2.134)

Putting Equation 2.133 into Equation 2.134 we write the energy as
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E=∑
i=1

n

Ei−
1
2
∫

n( r⃗ )n ( r⃗ ' )
| r⃗− r⃗ ' |

d r⃗ d r⃗ '+E xc [n]−∫V xc( r⃗ )n( r⃗ )d r⃗   (2.135)

Taking into account the assumption (b) we write

N p=∑
i=1

n ∂E i

∂ ϵp
+
∂E xc [n]
∂ϵ p

−∫
∂V xc

∂ ϵp
n ( r⃗ )d r⃗     (2.136)

Using 

N p=∑
i=1

N

| ⟨ p |ϕ i⟩ |
2             (2.137)

we write the first term in Equation 2.136 as

∂Ei

∂ϵ p
=| ⟨ p |ψi⟩ |

2
+⟨ψi |

∂V xc( r⃗ )
∂ϵ p

|ψi⟩              (2.138)

This gives Equation 2.136 to be

N p=∑
i=1

n

| ⟨ p |ψi⟩ |
2
+
∂Exc [n]
∂ϵ p

                    (2.139)

The  second  term  represents  corrections  to  momentum  density  which  are  due  to

correlations between states. We now have a formally exact definition of Equation 2.139

compared to Equation 2.137. Thus, for the local approximation in Equation 2.136

∂E xc [n]
∂ ϵp

=∫
∂ϵxc(n( r⃗ ))

∂ϵ p
n( r⃗ )d r⃗

=∫ [N p
O
(n( r⃗ ))−N p

F
(n( r⃗ ))]n ( r⃗ )d r⃗

     (2.140)
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The integration is  over the entire unit  cell.  The first  term is  from the homogeneous

electron gas calculation while the second tern is from the free electron gas. This gives

the  Lam-Platzman  correction  term describing  the  effect  of  exchange  correlation  on

Compton profiles

Δ J LDA
(q)= ∫

unit cell

ρ(r )[J h
−H f

] d3 r             (2.141)

This  term is  required  when  trying  to  obtain  momentum density  from LDA (Kubo,

2005).  It  improves the LDA momentum density  by including the isotropic result  of

correlation  correction  (Soininen  et  al.,  2001)  and  is  insensitive  to  directional

dependencies (Kubo, 2001). It is localized and spherically symmetric with no effect on

anisotropy and takes into account ground state correlations. Thus, the LPC shows that

accurate momentum space occupation numbers must include quasiparticle properties of

homogeneous, interacting electron gas with the self-energy as a function of wave vector

(Wakoh et al., 1990). 

2.3.2 Correlation Correction

Cardwell  (Cardwell  et  al.,  1989a;  Cardwell  et  al.,  1989b)  proposed an  exchange

correlation  correction  based  on  the  Lam-Platzman  correction  (LPC).  They  firstly

obtained a fit to (Lundqvist et al., 1968) data. Then the LPC is obtained by subtracting

this fit from the free electron Compton profile. The form of the correction consists of a

negative  region  in  the  origin,  sharp  peaks  near  the  Fermi  momentum  and  a  high

momentum tail. 

Comparing the LDA correction with the Compton profile correction reveals that the

LDA  correction  is  of  greater  magnitude  although  similar  in  profile.  LDA  has

consistently underestimated Compton profile. At the peak height, the theoretical profiles
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are  overestimated  due  to  neglect  of  exchange and  correlation  effects.  The effect  of

exchange and correlation on the Compton profiles is to promote electrons from low to

high momenta states (Cardwell et al., 1989). This is due to input difference normalized

to one electron and magnified when integrated over unit cell. The high momentum tail is

due to core electron distribution as a consequence of large Fermi momentum associated

with high charge density.  The magnitude of ∆JLDA at the origin is inversely proportional

to the average charge density at the core in which the high exchange and correlation

effects  with  low  electron  densities.  The  intermediate  form  by  the  distribution  of

conduction electrons. The LPC always results in a shift of electron density from low to

high momenta. This shift reflects degree in which core and conduction electrons are

correlated.

Similar to Cardwell's methodology, (Kubo, 1997) has previously observed that the

homogeneous  part  can  be  modeled  by  GWA quite  satisfactorily.  It  is  based  on the

similarities between the GWA Compton profile and the Wakoh-Matsumoto empirical

correlation correction which is by itself a good fit to experimental data (Wakoh et al.,

1990).  Kubo  defined  the  difference  between  the  free  electron  Compton  profile  and

LDA. The experimental correlation corrections are given by 

Δ Jexp
corr

( pz)=Jexp( pz)−J LDA( pz)             (2.142)

They made the assumption that since LDA does not consider correlation, Δ Jexp
corr

( pz)

describes the correlation correction. Comparing Δ Jexp
corr

( pz) and Δ JGWA
corr

( pz) , there

are discrepancies. They observe that the correlation correction is a very small proportion

of  the  profiles.  Kubo  (Kubo,  2001)  has  studied  the  correlation  correction  which  is

defined as
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Δ JGWA
corr

( pz)=J GWA( pz)−J LDA( pz)                     (2.143)

They  observed  anisotropic  correlation  effects  due  to  3d  electrons  in  comparing  the

calculated correlation corrections, Wakoh-Matsumoto empirical corrections and Lam-

Platzman correction. They also observed the differences lie mainly in the origin.

2.3.3 Anisotropy

We  can  further  analyze  this  promotion  of  electrons  by  studying  the  directional

differences which is a measure of anisotropy (Lam et al., 1974). Specifically it is the

difference between the maximum and the minimum of the Compton profile (Cardwell et

al., 1989). Anisotropy is strongly dependent on the Fermi surface (Sternemann et al.,

2000) and can be used to locate positions of oscillations in the Fermi surface (Kubo,

1996). When comparing two sets of Compton profile experiments, the structure behind

oscillations  can  be  explained  by  the  non-local  correlations  which  smears  occupied

momentum density and populates empty regions. The minimum in the oscillations of the

difference plots is due to the plane of integration intersecting the center of the Fermi

spheres and the maximum is halfway between planes.  The Compton profile based on

band structure calculations has excessive anisotropies due to inadequate treatment of

exchange and correlation. Positions of anisotropy oscillations is the same as experiment

but larger. 

2.4 Previous GWA Compton Profile Studies

In previous cases, the alkali and alkali-earth metals in particular have been actively

studied for their correlation effects as they are closest to the homogeneous electron gas

and have isotropic momentum distributions.  The use of the GW Approximation is said

to improve the comparison to observation for the Compton profile. Compton profiles for
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Li, Be, Na, Cr, Ni and Cu have been obtained from the GW Approximation. Schulke

(Schulke et al., 1996) was among the first to remark that final state interaction effects

must be taken into account according to work performed on Li.

Kubo (1996) applied the full potential linearized augmented plane wave basis states

as  input  to  the  GWA.  Via  the  plasmon  pole  method,  they  observed  plasmon  and

quasiparticle  peaks  in  their  spectral  functions.  The  occupation  number  density  is

obtained from these spectral functions. In the case of Li, occupational number densities

show directional dependence due to the anisotropy of the electron density distribution

and shape of  Fermi surface.  Comparing the LDA occupation number density  to  the

GWA occupation number density,  GWA is found to fit the experimental spectra better

than LDA. Fermi surface crossings can be observed by taking the first order differential

of the Compton profile. They observe that the GWA Fermi surface crossings are better

fits to experiment as well. Later on, it was argued that the Hamada plasmon pole model

(Hamada et al., 1990) used by Kubo does not provide an accurate description of the

imaginary part of the self-energy, hence momentum distribution (Schulke et al., 1996).

Kubo (1997) studied the sodium Compton profile and observed it can be reproduced

from an interacting electron gas model. They also studied the Li Compton profile and

determined  that  it  requires  the  LPC.  GWA for  sodium reproduces  the  experimental

Compton profile better than LDA. Li has a larger anisotropy on the Fermi surface owed

to lattice potential.  They used LDA instead of quasiparticle wavefunctions and used

only diagonal occupation number densities.

In (Sternemann et al., 2000), the momentum density broadening is obtained from a

convolution of the Compton profile with the spectral  function.  The smearing of the

Fermi break is a unique fingerprint of the interaction of the excited electron with the rest

of the system. They used a particle-hole vertex correction in their calculation where a
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Coulomb interaction between particle and hole is dynamically screened by RPA. It was

observed that the second derivative of the experimental Compton profile is closer to the

LDA convoluted with the spectral  function.  The second order  derivative reveals the

position of the peak at the Fermi momentum (Ohata et al., 2000) and allows to study

Fermi surface crossing and high momentum components (Sakurai et al., 1995). It was

previously  pointed  out  fine  structures  available  in  Al-Li  alloy  not  observed  in  Al

(Matsumoto et al., 2000). Even though Al is suppose to have an isotropic Fermi surface,

Suortti  (Suortti  et  al.,  2000)  observed  anisotropy  as  a  result  of  neglect  of  electron

correlation in their study of Al based on the model of Schulke (Schulke et al., 1996).

Valence Compton profiles are found to be asymmetric in shape and the sharp features of

the Fermi break are drastically smeared out. Sternemann concluded that deviations in

LDA and quantum Monte Carlo calculations  from experiment  can be understood in

terms of how deviation from the impulse approximation affects experimental Compton

profiles and momentum densities. An indication that the impulse approximation is not

obeyed is the observation of final state interactions even during high probing energies.

In  the  jellium  model,  the  impulse  approximation  means  neglecting  final  state

interactions which are interactions of excited particle with hole left begin in the form of

polarization. 

Soininen  et  al.  (2001)  observed  that  the  shape  of  the  spectral  function  at  high

momentum regime changes quite  slowly but  resembles the quasiparticle  peak.  They

calculated  the  self-energy  analytically  by  firstly  obtaining  the  plasmon  energy  and

ground state energy of the system. Then, using the dilogarithmic functions and Legendre

chi  functions,  they  obtain  the  analytical  spectral  functions.  The  plasmarons  are

neglected and vertex corrections are neglected while the crystal potential is found to

have a small effect on the final state electrons. Plasmarons are quasiparticles arising in a

system containing strong plasmon electron interactions (Bostwick et al.,  2012). They

observe that the width and splitting of the main and satellite peaks are very close to each
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other.  The spectral  function  changes  shape  over  a  small  range  of  electron  densities

(electron densities are a function of atomic number). As momentum transfer increases,

the spectral function becomes narrower and the satellite peak becomes broader as the

spectral weight increases. At higher momentum transfer, final state effects become less

important.  The  limitation  of  experiment  in  comparison  to  theory  is  determined  by

resolution  and  statistical  accuracy.  Unexplained  differences  are  attributed  to

experimental profiles being broader than theoretical profiles.

Kubo (2001) observed that the GWA momentum densities of the first Brillouin zone

is  moved  to  a  higher  momenta  which  plays  the  same  role  as  the  Lam-Platzman

correction with its shortcomings of isotropicity. They rationalize this result based on the

work of Wakoh and Matsumoto (Wakoh et al., 1990) where the Fermi level is located in

the middle of the d-bands, the radial wavefunction of d-components in higher energy

states  is  more  contracted  compared  to  lower  energy  states  and  the  momentum

distribution  from higher  energy  states  is  more  extended  compared  to  lower  energy

states.  The GWA automatically fulfills  this  criteria as GWA correlation correction is

similar to Wakoh-Matsumoto correlation correction.

Kubo (2004) has stated that the spin magnetic moment of Ni is caused by splitting of

the 3d band together  with negative polarization of s and p like band electrons.  The

occupied 3d bandwidth is too broad and exchange splitting is overestimated and this has

been explained as due to LSDA which does not produce Umklapp shoulders which can

be obtained from Fermi surface topology. They observe that the GWA tends to smear

Umklapp peaks even in individual band studies which is caused by broadening of the

Fermi surface. They also observe that the band narrowing seen in majority and minority

spin bands is due to dynamical screening effects  in which the use of GWA spectral

function reduces by a factor.

      56

Univ
ers

ity
 of

 M
ala

ya



In Huotari et al. (2007), final state effects to the electron are obtained by using the

formalism of  (Soininen et  al.,  2001)  which  is  convoluted  with  the  valence  electron

Compton profile. They observed that the spectral function consists of large quasiparticle

peaks and small secondary quasiparticle peaks. The finite width of the spectra is due to

the self-energy of the final state electron. They conclude that as the incident photon

energy gets larger, the Compton profile gets broader. The Compton profile close to the

origin is flat and similar to experiment. It has a discontinuity or slope after the Fermi

momentum and an end nearing the Brillouin zone edge (Fermi surface crossing). The

Compton profile peak height has been found to be lower than theoretically predicted

and they conclude that this is due to correlation. Experimental features of the Fermi

surface  are  observed  to  be  broader  compared  to  theory.  It  is  proposed  that  the

antisymmetrized geminal product (Barbiellini, 2000)  can account for experiment.  

In  the  case of  sodium,  Huotari  et  al.  (2010) observed  that  the Fermi  surface is

contained in  the  first  Brillouin  zone.  Sodium has  a  perfect  spherical  Fermi  surface

where a radial momentum density function is observed from from experimental data at

the Fermi break. The band structure reduces the discontinuity of the momentum density.

In the case of the LDA calculation, the discontinuity is 0.98. The valence band is the

perfect parabola, the wavefunction is isotropic and the Fermi surface deviates from the

sphere by 0.2 % resulting in small reduction of discontinuity. In their QMC and GWA

calculations, the pseudopotentials describe core electrons and electron-phonon coupling

in this region is neglected. The core corrections do not influence it as it is a smooth

correction. The impulse approximation is not valid for the core electron spectra in their

experiments.  Band  structure  effects  only  lead  to  small  lowering  of  momentum

distribution where  explicit  electron-electron interactions  are  turned off  via  Quantum

Monte Carlo calculations. Authors observe that the momentum density within GWA is

close to QMC. At low energy experiments, the smearing of Compton profile due to final

state effects is overwhelming and exceed experimental resolution while at high energy
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experiments,  the  spectral  function  vanishes  and  experimental  resolution  deviates.

Experiments enable clear and direct observation of discontinuity at the Fermi surface.

Their  calculation account for electron-electron interaction and band structure effects.

The solution describing the noninteracting crystalline systems is  given by the Bloch

wave  function.  The  homogeneous  electron  gas  is  the  canonical  workbench  to  test

different  theoretical  methods.  For  a  noninteracting  HEG the  Compton  profile  is  an

inverted  parabola.  For  an  ideal  Fermi  gas,  the  momentum density  is  similar  to  the

Fermi-Dirac distribution with a Compton profile resembling an inverted parabola. The

final state interaction is calculated from first principles containing self-energy terms.

Jellium is  the  simplest  many body systems that  describes  several  properties  of  real

solids especially alkali metals.  

Olevano et  al.  (2012) calculated the momentum distribution and Compton profile

within the framework of GWA on the self-energy. The Green's function was obtained by

integrating both cases of real and imaginary axis. Real axis integration is suitable for

evaluating momentum distribution far from the Fermi momentum while imaginary axis

integration is accurate near discontinuity. They compared their calculations of jellium

and sodium to X-ray Compton scattering and quantum Monte Carlo calculations near

the Fermi energy. Experimentally, the Compton profile does not resemble the inverted

parabola  and  no  discontinuity  is  observed  in  the  first  derivative  of  the  Fermi

momentum. As the electron density increases we expect momentum distribution to have

more  broadening of  the  Fermi  energy.  This  is  observed in  the  case  of  jellium.  For

strongly correlated systems, discontinuity is strongly suppressed. Thus, modification of

momentum  distribution  and  reduction  of  discontinuity  is  a  correlation  effect.  The

momentum  distribution  and  discontinuity  provide  unique  and  unambiguous

quantification  of  correlation. They  also  observe  that  any  departure  from  the  step

function  case  could  be  due  to  finite  temperature  effects,  band  structure  effects,

anisotropy  of  the  Fermi  surface,  electron-phonon  interaction  and  electron-electron
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interaction. We are particularly interested in electron-electron correlation effects. They

then performed integration on the imaginary portion of the  ω  axis  to obtain the

momentum  distribution  and  observed  the  real  part  of  the  self-energy  is  smoother

compared to the imaginary part of the self-energy. The correlation effects may induce

contributions from higher bands. They then observed the valence electrons of sodium

resemble the homogeneous electron gas from the point of view of noninteracting as well

as many body interacting observables. Here, the Compton profile of the ideal Fermi gas

and LDA has the form of an inverted parabola. Core electron contributions must be

subtracted from experimental signal to obtain Compton profiles of valance signals.

Previous calculations that study the LPC and anisotropy compare LDA calculations

directly with experiment. Li is found to contain only one electron in conduction bands

with strong electron-ion interactions and the one electron picture momentum density is

not a homogeneous electron gas and is highly anisotropic (Schulke et al.,  1996). Its

experimental break at the Fermi momentum appears close to zero and the occupation

number  densities  show  directional  dependence  owed  to  anisotropy  of  the  electron

density  and Fermi surface  topology.  This  is  observed in  Be as  well  (Huotari  et  al.,

2007). For Al, the magnitude of EMD around the origin and higher momenta is different

from experiment but subtle structures still exist. A study of the second order derivative

of  the  Compton  profile  for  the  measured  momentum  density  is  smaller  than  the

theoretical one at the Fermi momentum (Ohata et al., 2000). In Cu (Kubo, 2005), the

Fermi  surface  is deformed  from  a  sphere  which  makes  the  discontinuity  in  the

momentum density sensitive to direction.  For Cr (Kubo, 2001), anisotropic correlation

effects due to 3d electrons in LPC and Wakoh-Matsumoto correlation correction were

observed to differ at the origin.  In studies of V and Cr (Wakoh et al., 1990), it was

found that correlation effects  due to 3d and core electrons are indistinguishable and

density distributions should be strongly anisotropic. This agrees with our partial density
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of states (PDOS) as given in Figure 4 for the case of NiO and is typical of the other

TMOs as well. 
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CHAPTER 3 : COMPUTATIONAL METHODOLOGY

In this chapter, we will discuss some formalisms, methodologies, implementations

and parameterizations behind ground state (Section 3.1) and excited state calculations

(Section 3.2) as implemented in the software ABINIT (Gonze et al., 2002; Gonze et al.,

2009) used in this work. We also include a section on the work flow we have developed

to  obtain  the  band structures,  spectral  functions,  momentum densities  and Compton

profiles (Section 3.3).

3.1 Ground State Calculation

In  this  section  we  start  our  discussion  with  the  parameters  concerning  the

construction of the unit cell and its constituent atoms. We then discuss the representation

of the plane wave in terms of periodic supercells and the energy cutoff used to converge

this term. This is followed by a discussion on the parameters used to sample energies at

specific k-points on the system. We then delve deeper into the representation of the

plane wave by discussing the norm-conserving pseudopotential method. With all these

constructs  described,  we  can  discuss  the  implementation  of  the  momentum density

which  is  the  central  term  of  this  work.  We  then  discuss  the  improvement  to  the

momentum density which is the cold smearing term.  We finally discuss the parameters

used by ABINIT to construct the band structure and partial density of states.

3.1.1 Geometry

In  Table  A.1  (Appendix),  we  present  the  geometrical  parameters  used  in  our

calculation. ABINIT employs algorithms accounting for crystallographic properties of

each crystal structure (Cracknell, 1975) we initialized so that the calculation runs at its
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most efficient.  Each parameter is used to define the unit cell and the atoms in the cell.

In this work, these parameters are initialized from a crystallographic information file

(CIF).  znucl  will be initialized by the atomic number of the system we are studying.

acell is initialized by the cell length from the CIF which are the scaling factors of the

primitive vectors. rprim defines the primitive unit vector of the unit cell where we have

used the face centered cubic,  rutile  and zinc-blende structure in our calculations.  In

these  studies,  the  rhombohedral-tetragonal  distortions  typically  seen  below the  Neel

temperature are ignored (Rodl et al., 2009).  In order to obtain this parameter from the

CIF, we have used the cif2cell program (Björkman, 2011).  xred  is obtained from the

atom site data of the CIF. typat is obtained from the actual locations of atoms given in

xred. Ordering of terms in typat must agree with the input of the nuclear charge of the

elements  in the array znucl.

3.1.2 Periodic Supercells and Energy Cutoff

Calculations  of  supercells  require  handling  an  infinite  number  of  noninteracting

electrons  represented by wavefunctions which extends over the entire solid moving in a

static potential of an infinite number of nuclei and ions. The formalism to describe this

wavefunction is given by the Bloch's theorem which states that in a periodic solid, the

wavefunction is the product of a cell-periodic and wavelike part

ψi(r)=e−ik .r f i(r )             (3.1)

The cell-periodic part  fi(r) is expanded using a basis set consisting of a discrete set of

plane waves whose wave vectors are reciprocal lattice vectors of the crystal.

f i(r)=∑
G

c i ,G e−iG .r             (3.2)
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Here G is a reciprocal lattice vector. Thus, each electronic wave function can be written

as a sum of plane waves. This method is known as the Bloch theorem and it is the

simplest and most natural formalism to implement crystals. Plane waves obtained from

small kinetic energies are more important compared to large kinetic energies. Thus, the

plane wave basis set can be truncated to include only plane waves with kinetic energy

less than a particular cutoff energy. This produces a finite basis set. The cutoff energy

should be increased until the calculated total energy has converged. The developers of

ABINIT recommend consulting (Payne et al., 1992) for a thorough and complete review

of these methods.

Table  A.2  (Appendix) defines  the  parameters  relevant  to  the  setup  of  the  self

consistent field (SCF) cycle and convergence of energy.  toldfe should be set  as not

smaller than about 10−12  of the total energy. When the convergence tolerance on the

wavefunctions is satisfied, iterations will stop, so for well converged calculations nstep

is set to a value larger than needed for full convergence. The larger  ecut is, the better

converged  the  calculation  is.  For  fixed  geometry,  the  total  energy  MUST  always

decrease as ecut is raised because of the variational nature of the problem. 

3.1.3 K-point Sampling

A description of the electronic wave function in reciprocal states are set by k-points

which are determined by boundary conditions applied to bulk solids. The density of

allowed k-points is proportional to the volume of the solid. Thus, an infinite number of

k-points models infinite electronic states occupied at each k-point. Using the previously

mentioned  Bloch  theorem,  we  can  calculate  a  finite  number  of  electronic  states  as

occupied  at  an  infinite  number  of  k-points  and occupied  states  at  each k-point  will

contribute to the electronic potential of the solid. Since the electronic wavefunctions at

k-points close together will be identical, only a finite number of k-points are required to

      63

Univ
ers

ity
 of

 M
ala

ya



calculate  the  electronic  potential  and  total  energy  of  solids.  For  example,  metallic

systems require dense sets of k-points to define the Fermi surface precisely. This helps

to reduce the magnitude of error in total energy due to inadequate k-point sampling.

Knowing the k-points, we can provide a plane wave basis set description of the Kohn-

Sham equation in reciprocal space.

∑
G'

[
ℏ

2

2m
|(k+G' ) |2δGG'+V ion(G−G' )+V H (G−G ' )+V xc (G−G ' )]c i ,k +G'=Ei c i ,k+G

      (3.3)

The kinetic energy only takes the diagonal component and the potential term is Fourier

transformed.  This Hamiltonian will be diagonalized to solve the Kohn-Sham equation.

There are numerous methods proposed to sample these special sets of k-points in the

Brillouin zone (Chadi et al.,1973; Monkhorst., 1976). (Setyawan et al., 2010) provides

an overview of important k-points for the most common crystal structures in a high

throughput calculation setup.

Table A.3 (Appendix) defines all the parameters used in setting up the k-point grid.

kptopt constructs the k-point list based the input variables initializing the k points, their

number, and their weight. Since the k points form a lattice in reciprocal space, the aim is

to initialize input variables that give the reciprocal of this k-point lattice, as well as its

shift with respect to the origin. The parameters ngkpt or kptrlatt, as well as nshiftk and

shiftk achieves this. The k point lattice defined by ngkpt or kptrlatt is used to perform

integrations of periodic quantities in the Brillouin Zone, like the density or the kinetic

energy. When either ngkpt or kptrlatt is defined, kptrlen is not used as an input variable,

but the length of the smallest vector will be placed in this variable, and echoed in the

output file. In the case of a grid of k points, the auxiliary variables kptrlen, ngkpt or

kptrlatt  and  prtkpt  can  be  used  to  select  the  optimal  grid.  In  our  calculations,  the
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parameter prtkpt is set to 1, and set kptrlen to an arbitrary range between 40 to 200. An

output of suggested kptrlatt values will be given based on kptrlen, which can be used for

convergence studies. 

3.1.4 Norm-conserving Pseudopotentials

Stand  alone  plane  wave  basis  sets  have  a  shortcoming  in  describing  expanded

electron wave functions because of the large number of plane waves required to expand

core orbitals and rapid oscillations of valence electron wave functions in the core. By

applying the pseudopotential approximation, it allows the electronic wavefunctions to

be  expanded  using  a  smaller  number  of  plane  waves.  The  motivation  for  the

approximation being that physical properties of solids are more affected by the valence

rather  than core electrons.  Thus,  the core electron and its  strong ionic potential  are

replaced  with  a  weaker  pseudopotential  acting  on  pseudowavefunctions.  The  major

contribution of the core wavfunction to physical properties are by enforcing the valence

wavefunctions orthogonality to core states. In this section we detail the pseudopotential

method based on three  references,  the  first  being  (Troullier  et  al.,  1991)  who have

developed  a  procedure  to  generate  first  principles  norm-conserving  pseudopotential

which  are  said  to  be  efficient  for  slowly  converging  several  thousand  plane  wave

expanded basis set systems such as transition metals when implemented with modern

diagonalization techniques. The other two are (Payne et al., 1992; Fuchs et al., 1999)

which presents technical details of the pseudopotential method. 

Pseudopotentials are generated from an all electron atomic calculations. In DFT, this

is  obtained by assuming the  spherical  screening approximation and self-consistently

solving the radial Kohn-Sham equation.

[−1
2

d 2

dr2 +
l( l+1)

2
r 2
+V ( p , r )]r Rnl (r )=ϵnl r Rnl(r )            (3.4)
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where V(p,r) is the self-consistent one-electron potential given by

V ( p , r )=
−Z

r
+V H ( p , r )+V LDA(ρ(r ))                     (3.5)

The construction of pseudopotentials satisfies four general conditions which are

a) The  valence  pseudowavefunction  generated  from  pseudopotentials  should

contain no nodes as a smooth pseudowavefunction is desirable.

b) The  normalized  atomic  radial  pseudowavefunction  must  be  the  same  as  the

normalized radial all-electron wavefunction above the cutoff radius.

c) The charge  enclosed  within  the  cutoff  radius  for  the  wavefunctions  must  be

equal.

d) Valence all-electron and pseudopotential eigenvalues must be equal.

If  these  conditions  are  met,  the  pseudopotential  is  called  a  norm-conserving

pseudopotential.  The  pseudowavefunction  obtained  from  a  norm-conserving

pseudopotential will then be used to obtain the screened pseudopotential

V scr ,l
PP

(r )=ϵl−
l (l+ 1)

2 r 2 +
1

2r Rl
PP
(r )

d 2

d r2 [r Rl
PP
(r )]                     (3.6)

In  this  term,  the  radial  Schrodinger  equation  is  a  second  order  linear  differential

equation whose solution is determined by

d
dr

ln [Rl(r ,ϵ)]=
1

Rl(r ,ϵ)

d R l(r ,ϵ)

dr
                     (3.7)
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Figure  3.1:  The  oscillations  seen in  the  core  region  maintain  the  orthogonality
between  core  wavefunctions  and  valence  wavefunctions  as  required  by  the
exclusion principle. Phase shifts produced by core electrons is different for each
angular momentum component of valence wave function.

If  the  screened all-electron  potentials  and pseudopotentials  are  identical  outside  the

cutoff radius, the all electron wavefunction and pseudowavefunctions are proportional

as well. Thus, the pseudopotential will accurately reproduce the all-electron calculation

in  the  reference  configuration  it  is  generated.  It  is  transferable.  For  a  nodeless

pseudowavefunction, the pseudopotential does not contain a singularity except at the

origin. This ensures a continuous pseudopotential provided that the pseudowavefunction

is continuous at the second derivative. Pseudowavefunctions inside and outside the core

must  be  identical  to  the  real  wavefunction  so  that  the  two  wavefunctions  generate

identical charge densities and the first order energy dependence of the scattering from

the  ion  core  is  correct.  The  convergence  properties  of  the  pseudopotential  are

determined  by  the  difference  between  the  electronic  energies  of  the  different  ionic

configurations  seen  in  the  valence  electron  energy.  With  the  screened,  Hartree  and

exchange-correlation  pseudopotential,  we  can  then  obtain  the  ionic  pseudopotential

which can be used in a self-consistent calculation 
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V ion
PP
(r )=V scr ,l

PP
(r )−V H

PP
(r )−V xc

PP
(r )                     (3.8)

To generate the ionic pseudopotential, its operator is given by

̂V ion
PP
(r )=V ion , local

PP
(r )+∑

l

V nonlocal ,l(r ) P̂l             (3.9)

where the local potential should be chosen such that it adequately reproduces atomic

scattering  for  all  higher  angular  momentum  channels.  Each  angular  momentum

component of the wavefunction will  use a different potential.  In the case of a local

pseudopotential, the potential is the same for all angular momentum components of the

wavefunction  and  it  only  depends  on  the  distance  from  the  nucleus.  However  the

arbitrary  nature  of  the  local  potential  is  used  to  produce  an  accurate  transferable

pseudopotential.  Scattering  from  the  ion  core  is  best  described  by  a  nonlocal

pseudopotential which uses different potentials for each angular momentum component

of  the  wavefunction.  Thus,  nonlocal  pseudopotentials  play  an  important  role  in  the

construction of the ionic pseudopotentials and require efficient schemes in dealing with

the nonlocality of the pseudopotential. The partial projection methods are used. For the

nonlocal potential, the  Pl operator projects out the lth angular momentum component

from the wavefunction. The nonlocal potential can be written in terms of the Kleinman-

Bylander nonlocal potential (Kleinman et al.,1982)

V nonlocal
KB

(r )=
|V nonlocal ,l(r )ϕ l

PP
(r )> <ϕ l

PP
(r )V nonlocal ,l(r )|

<ϕ l
PP
(r )|V nonlocal , l(r )|ϕ l

PP
(r )>

             (3.10)

Here, the atomic pseudowavefunction includes the angular momentum component for

which the pseudopotential was calculated.
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The  Schrodinger  equation  for  a  crystal  using  a  plane-wave  basis  set  and

pseudopotential is given by

∑
j

H ij (k )a(G j+ k )=ϵa (Gi+ k )                 (3.11)

where the momentum space Hamiltonian for point k in the Brillouin zone is given by

H ij(k )=
1
2
δij∣(G+ j )2∣+ V local (Gi−G j)+ V nonlocal(G i+ k−G j+ k )            (3.12)

The first term is the diagonal kinetic energy operator, the second term is the Fourier

transformed local potential with the electron screening potential. The matrix elements

for the nonlocal potential is given by

V nonlocal ,l(G j+k , Gi+k )

=
2l+1
4πΩ Pl(cosθ)∫

0

∞

V nonlocal(r ) jl(|G j+k|r ) jl(|G j+k|r )r
2dr

       (3.13)

which consists of the cell volume, Legendre polynomial and spherical Bessel function,

which gives the amplitude of the angular momentum component of the plane wave at a

distance r from the origin. 

3.1.5 Momentum Density

The interaction of valence electrons of a solid and ion cores of a crystal lattice take

into account momentum density of inhomogeneous electron system in terms of electron

field parameters
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ρ(p)=
1

2π ℏ
∫dr∫dr ' e

[ip .(r−r ' )/ℏ ]
⟨ψ

†
(r )ψ(r )⟩          (3.14)

The thermal average of N electrons

⟨ψ
†
(r )ψ(r )⟩         (3.15)

is constructed from Bloch waves. This gives an electron momentum density of 

ρ(p)=∑
bb '
∑

k
∑

G

nbb' (k )αb
*
(k+G)αb '(k+G)δ(k+G−p /ℏ)                     (3.16)

where 

nbb ' (k )=⟨ak ,b
† ak , b⟩         (3.17)

is the mean occupation density of Bloch states. The momentum density is obtained from

the plane wave function 

Ψ(r , t)=∑
k
∑

b
αk ,b(t)ϕk , b(r ),ϕk , b(r )=

1
(2πℏ)3 /2

∑
G
αb(k+G)e i(k +G)r      (3.18)

The factor  determines the shape of the Compton profile. The non-diagonal elements

of occupation number density determines the mixing of different bands due to electron-

electron  interaction.  The  Bloch  electrons  are  assumed  to  be  independent  scattering

particles so non-diagonal elements vanish and diagonal elements representing Brillouin

zone k-space of different bands represent the Fermi surface. The Compton profile of

solid state electrons is determined by the occupation number density and shape of Fermi
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surface  or  Brillouin  zone  without  non-diagonal  elements.  The  higher  momentum

components also produce discontinuities for the first derivative.

3.1.6 Cold Smearing

Temperature formulation introduces systematic errors. Thus, a smearing function is

required. The expression of entropy in a power series has been denoted in the previous

chapter and by choosing (x) as a Dirac delta in Hermite polynomial

δ(x )=∑
n=0

N

An H 2n(x)e
−x2

         (3.19)

where 

An=(−1)n n !4n
√π; H o(x)=1 ; H 1(x)=2 x ; H n+1=2 x H n(x)−2 n H n−1(x)

    (3.20)

which gives the Methfessel-Paxton broadening (Methfessel et al., 1989). The Marzari-

Vanderbilt broadening however constrains the occupation numbers to be positive. The

broadening  function  is  a  Gaussian  term  multiplied  by  a  polynomial  satisfying  the

constraints 

∫
−∞

∞
~
δ (x)dx=1 → normalization

∫
−∞

∞

x
~
δ(x )dx=0 → S (0)=0

∫
−∞

∞

x2~
δ (x)dx=0 → Cold smearing

∫
−∞

∞
~
δ (x)⩾0 → positive occupancies

         (3.21)
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The third term is the cold smearing broadening term which is obtained from a third

order polynomial

δ̂(x )=
1
√π (x

3
−x2

−
3
2

ax+
3
2
)e−x2

               (3.22)

In Table A.4 (Appendix) we define the smearing parameters. The broadening is not

based on Fermi-Dirac statistics, and tsmear is only a convergence parameter. 

3.1.7 Band Structure and PDOS

In this section we discuss the parameters used in an ABINIT calculation to obtain the

band structure and partial density of states (DOS). After an earlier self-consistent cycle

calculation is performed, the density (DEN) file produced from this calculation will be

used by a calculation which initializes iscf=-2 and getden=-1. The option kssform=3 is

used  to  create  a  single  Kohn-Sham states  (KSS)  file  (double  precision)  containing

complete information on the Kohn Sham Structure (eigenstates and the pseudopotentials

used)  which  will  be  generated  using  the  conjugate  gradient  algorithm.  nbdbuf and

nbandkss concern the details of the KSS file. The number initialized to nbandkss is the

number of eigenstates in the KSS file. This number of states is forced to be the same for

all  k-points.  The precision of  the  KSS file  can be  tuned through the input  variable

kssform. The constructed KSS file will be used to construct the screening calculation.

The  actual  construction  of  the  band  structure  requires  information  from  these

parameters  but  are  presented  by the  parameters  kptopt,  ndivk and  kptbounds.  The

negative absolute value of kptopt gives the number of segments of the band structure.

The construction of the partial density of states (PDOS) is determined by the parameters

natsph, ratsph, iatsph and prtdos  and it was first introduced in (Christensen, 1978).

The advantage of using charge partitioning schemes comes from the fact that the sum of

atomic DOS, for all angular momenta and atoms, integrated on the energy range of the
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occupied states, gives back the total charge. If this is not an issue, one could rely on the

half of the nearest-neighbour distances, or any scheme that allows to define an atomic

radius. Note that the choice of this radius is however critical for the balance between the

s, p and d components. Indeed, the integrated charge within a given radius, behave as a

different power of the radius, for the different channels s, p, d. At the limit of very small

radii, the s component dominates the charge contained in the sphere. If prtdos=3, the

DOS inside  a  sphere  centered  on  some  atom is  delivered,  as  well  as  the  angular-

momentum projected (l=0,1,2,3,4) DOS in the same sphere. However, three additional

input variables might be provided, describing the atoms that are the center of the sphere

(input variables natsph and iatsph), as well as the radius of this sphere (input variable

ratsph). 

3.2 Excited State Calculation

In ABINIT, the ground state calculations which are described in the previous section

will result in a density file and a Kohn-Sham states file which is obtained from a non-

self consistent calculation. With these two files, we can then proceed to perform two

types of calculations to finally obtain excited states via the GW Approximation. The

first being the screening calculation and the second being the self-energy or self-energy

calculation which are described in this section. However, this methodology has been

known for pathologies (Jiang et al., 2010). Initial band ordering and hybrid functionals

give  unphysical  band  ordering  (Lany,  2013).  This  is  due  to  RPA underestimating

dielectric constants and overestimates band gap energies (Lany, 2013). We finally end

the section by describing how the quasiparticle renormalization factor is obtained.
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3.2.1 Screening Calculation

In this section, we have highlighted the main results from (Adler, 1962; Wiser, 1963).

Also relevant are the reviews by (Aryasetiawan et al., 1994; Onodera, 1973) The basic

ingredients needed to perform both a screening and a self-energy calculation are the so-

called oscillator matrix elements which  can be evaluated by performing a fast Fourier

transform (FFT) and is given by

M G
b1 b2(k , q)=⟨k−q ,b1 |e i(q+G) . r |k ,b2⟩

=∑
G'

U k−q b1

†
(G ')U k b2

(G+G' )
                 (3.23)

The calculation of the oscillator matrix elements consists of firstly performing an FFT

of the KS wavefunction from momentum space to real space, rotating the real space

orbitals to obtain k-points in full Brillouin zone, computing the wavefunction product

and FFT this product to finally obtain the matrix elements. With the oscillator matrix

elements, we can construct the irreducible polarizability which is given  by

χG1 G2

o
(q ,ω)=

2
v∑k

BZ

∑
cv

M G1

cv
[M G2

cv
]
†

{
1

ω+ϵck−q−ϵvk−iη−
1

ω−ϵck−q+ϵvk+iη }
    (3.24)

As per constructs of the Kohn-Sham Hamiltonian, only transitions between valence and

conduction states contribute. The q-points in the screening matrix is obtained from all

possible differences between two crystalline momenta of the wavefunctions stored in

the KSS file thus determined by k-point grid from an irreducible Brillouin zone. The

microscopic dielectric function is related to the irreducible polarizability by

 

ϵG1 G2
=δG 1G 2

−v (q ,G1)χG1 G2
(q ,ω)                 (3.25)
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Therefore, the dynamically screened interaction can be written in  reciprocal space as

W GG' (q ,ω)=
4 π

|q+G |
ϵG G'
−1

(q ,ω)
1

|q+G |
                 (3.26)

where the dielectric matrix can be obtained from random phase approximation (RPA)

^ϵGG' (q ,ω)=δ(G G' )−
8π

|q+G || q+G ' |∑vck

M G
vc
(k ,q)M G'

vc
(k ,q)

{
1

ω−ϵv(k−q)−ϵc (k )−i δ
−

1
ω−ϵv (k−q)−ϵc (k)+i δ

}

         (3.27)

where

M G
nm
(k , q)=⟨Ψk−qn |e−i (q+G)r |Ψ km⟩                  (3.28)

For imaginary frequencies we ignore the broadening factor i 

^ϵGG' (q ,ω)=δ(GG' )−
8π

|q+G || q+G ' | ∑k∈BZ
∑

vc
∑

R∈Gq

M G
vc
(k ,q)M G'

vc
(k ,q)

{
1

iω−ϵv (k−q)−ϵc (k)
−

1
iω−ϵv (k−q)−ϵc (k )

}

      (3.29)

In the case of screening calculations, irdkss will firstly read the KSS file from a non-

SCF calculation. The number of G vectors is defined by ecuteps, while ecutsigx defined

the number of G used in self-energy calculations. In principle the integrand function to

obtain χo should be evaluated for each k-point in the Brillouin zone (BZ), however it is

possible to reduce the number of points to be explicitly considered by taking advantage

of symmetry properties. In reciprocal space, this is given by a convolution in which the

number of reciprocal lattice vectors employed to describe the wavefunctions is given by

ecutwfn. As is shown in Table A.6 (Appendix), ecutwfn is smaller than ecut, so that the
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wavefunctions  are  filtered,  and some components  are  ignored.  As a  side  effect,  the

wavefunctions  are  no  more  normalized,  and  also,  no  more  orthogonal.  A value  of

ecuteps between 5 and 10 Hartree often leads to converged results (at the level of 0.01

eV for the energy gap). There are other options which ABINIT can initialize for the

variable  gwcalctyp such  as  a  Hartree-Fock  (Galamić-Mulaomerović  et  al.,  2005),

Screened Exchange (von Barth et  al.,  1972),   COHSEX (Hedin,  1965; Hedin et  al.,

1970) , model GW (Faleev et al., 2004; Gygi et al., 1997), HSE06 (Heyd et al., 2003),

PBE0 (Adamo  et  al.,  1999)  and  B3LYP (Bruneval,  2009)  in  both  1-shot  and  self-

consistent calculations (von Barth et al., 1996; Holm et al., 1998) respectively. Higher

levels of self-consistency both on G and W reduces level of correlation and increases

discontinuity and renormalization factor (Olevano et al., 2012). freqremax, freqremin

and nfreqre define the spacing of the frequency mesh along the real axis. symchi, awtr,

fftgw and  gwmem are  responsible  for  improving  the  efficiency  for  the  screening

calculation. With these results, we can obtain spectra for the loss function and dielectric

function in Equations 2.40 and 2.70.

3.2.2 Self-energy Calculation and Spectral Function

The  screened interaction is separated into static bare Coulomb term and frequency

dependent contributions

W=v+(ϵ−1
−1)v         (3.30)

Taking W into Σ splits the self-energy into

Σ(r1, r2 ;ω)=Σx(r1, r2)+Σc (r1, r2 ;ω)                 (3.31)

The exchange self-energy is a static term and has the same term as the Fock operators
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Σx (r1 , r2)=−∑
k

BZ

∑
v

occ

Ψnk (r1)Ψnk
†
(r2)v (r1 , r2)                     (3.32)

The diagonal matrix elements of the exchange part are given by

⟨b , k |Σx |b , k ⟩=−
4 π
V ∑

v

occ

∑
q

BZ

∑
G

|(M G
b1 b1(k ,q))|2

|(q+G) |2
                 (3.33)

Due to the long range nature of the bare Coulomb interaction, convergence with respect

to number of planewaves used in oscillators is  slow. Convergence for correlation is

faster as it is a short range term. 

The matrix elements of the correlation part are given by

⟨b , k|Σc|b , k ⟩

=
i

2πV ∑q

BZ

∑
G1 G2

∑
n=1

∞

(MG 1

n b1(k ,q))† (M G2

n b2(k ,q))v(G1 G2)
(q)J(G1 G2)

(nk−q)
(q ,ω)

      (3.34)

The calculation of dynamical effects are placed in the J term. ABINIT offers either the

plasmon-pole or contour deformation technique to obtain  J. Lebègue et al. (2003) has

defined these matrix elements as

⟨Ψ kn|Σc|Ψkn⟩=
1
Ω∑

q
∑
G G'
∑

m

M G
mn
(k ,q)M G '

mn
(k ,q)CGG'

M
(k ,q ,ω)          (3.35)

where 

CG G'
M

(k ,q ,ω)=
i

2π
∫dω '

W GG'
C

(q ,ω ')
ω+ω '−ϵm(k−q)+i δ sgn[ϵm(k−q)−μ]

          (3.36)
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where  Wc=ω-v. The contour integral is performed on the imaginary axis as  Wc  is well

behaved on this axis. This deformation also allows contributions from the poles of the

Green's functions

CGG '
M

(k ,q ,ω)=
−1
π ∫

0

∞

dω ' ' W GG'
C

(q , iω ' ' )
ω−ϵn(k−q)
[ω−ϵn(k−q)]2+ω ' ' 2

±W GG'
C (q+(ω−ϵn(k−q)))Θ{±(ω−ϵn(k−q))}Θ{±(ω−μ)}Θ{±(ϵn(k−q)−μ)}

    (3.37)

This  technique  is  proposed  to  avoid  dealing  with  quantities  close  to  the  real  axis

whereby the integral over real axis is transformed into integral over contour. Real axis

integration  is  suitable  for  integrating  momentum  distribution  far  from  the  Fermi

momentum while imaginary axis integration is accurate near the discontinuity (Olevano

et al., 2012).

Spectral  functions  are  described  in  terms  of  the  orthonormal  set  of  Bloch  wave

functions  obtained from the  Kohn-Sham eigenfunctions  (Olevano et  al.,  2012).  The

imaginary part  of the Green's  function is  the calculated spectral  function.  From this

term,  the occupation number density is given by

nb,b' (k )=π−1∫
−∞

μ

I mGb,b' (k,E ) dE
                (3.38)

where  μ is  the chemical potential.  This relation only holds true for cases where the

spectral function is diagonal for  b and  b', and not requiring non-diagonal terms. The

solution in terms of the Green's function can be written as

Gb ,b ' (k , E)=[E−Eb ,k−Σb ,k (E)]b ,b '
−1                 (3.39)

The integral represents the correlation contribution to the momentum distribution from

each band. Integrating the spectral  function along the real axis gives the correlation
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contribution  to  evaluate  the  momentum  distribution.  The  value  of  the  correlation

contribution  can  be  obtained  graphically  by  choosing  the  cumulant  with  the  Fermi

energy. 

In  Table  A.7  (Appendix),  we  define  the  parameters  used  in  our  self-energy

calculation. The algorithm implemented by symsigma constructs a symmetric invariant

for the diagonal matrix elements of the self-energy by simply averaging the GW results

within the  degenerate  subspace.   Usually,  ecutwfn is  smaller  than  ecut,  so that  the

wavefunctions  are  filtered,  and some components  are  ignored.  As a  side  effect,  the

wavefunctions are no more normalized, and also, no more orthogonal. Also, the set of

plane waves can be much smaller for a screening calculation, than for a self-energy

calculation, although a convergence study is needed to choose correctly both values.

When gwcalctyp=2, the quasiparticle wavefunctions are computed and represented as

linear  combination  of  some  Kohn-Sham  wavefunctions.  True  quasiparticle

wavefunctions do not differ from the Kohn-Sham (KS) wavefunction in the case of the

impulse  approximation.  To  determine  the  quasiparticle  energies  by  specific  k-point,

nkptgw and kptgw will be used. As mentioned in the previous section, kptgw will be

limited the k-points sampled in the ground state calculation and no k-point interpolation

will be carried out. In this case bdgw designates the KS wavefunctions used as basis set.

For each k-point, indeed, the quasiparticle wavefunctions are expanded considering only

the KS states between the first and second value intialized to bdgw. The parameters

freqspmax, freqspmin and  nfreqsp will determine the range of the spectral function

and its resolution.

3.2.3 Quasiparticle Renormalization Factor

The exchange correlation potential is a static, local and Hermitian approximation to

the self-energy.  If the difference between exchange-correlation potential  vxc and is  Σ

small (Lebègue et al. 2003), thus treating vxc with first order perturbation theory allows
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us to obtain a quasiparticle (QP) Hamiltonian which can be written as a perturbation of

the KS Hamiltonian

Ĥqp
=Ĥ KS

+(Σ−vxc)         (3.40)

which gives a zeroth order approximated non-local, energy dependent self-energy

eQP
=eKS

+Z ⟨ψ
KS|Σ(ϵKS

)−V xc|ψ
KS
⟩                  (3.41)

where

Z={1−⟨ψ
KS | δΣ

δ(ϵ
KS
)
|ψKS

⟩}
−1

                 (3.42)

is the renormalization factor. More specifically this allows comparison to the plasmon

pole model (Lebègue et al. 2003) if taking the real part of the perturbation

ℜ En(k )=ϵn(k)
+Znk ⟨ ⟨Ψ kn | ⟨ℜΣ(r , r ' ,ϵn(k )) |Ψ kn⟩ ⟩ ⟩−⟨ ⟨Ψ kn | ⟨vxc

LDA
(r )|Ψkn ⟩ ⟩ ⟩

      (3.43)

where the renormalization factor is given by

Znk=1−⟨Ψ kn|δ ℜΣ(r , r ' ,ϵn(k ))
δω |Ψ kn⟩                 (3.44)

This term allows to put the discontinuity of the momentum density in quantitative terms.

The quasiparticle renormalization factor is related to the size of the jump at the Fermi

break and strength of electron-electron correlation  (Soininen et al., 2001; Huotari et al.,

2010).  In  this  term,  the  self-energy  contains  electron-electron  and  electron  phonon
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effects.  The  renormalization  factor  reduces  with  decreasing  electron  density  as

correlations build up. 

3.3 Compton Profile Work Flows

In this final section, we discuss several subroutines we have used to obtain the band

structures, spectral functions and momentum densities for our calculations. We finally

discuss how we convert the momentum density to obtain the Compton profile. 

3.3.1 Implementation of SIG

In a GWA calculation via ABINIT, the end result is two files of interest which are the

Sigma file which is based on Equation (2.18) and the Quasiparticle Energies (QP) file

which is based on Equation (2.14). A Sigma file will contain a full or partial list of k-

points. Thus, our first step requires to either break each constituent spectral data into

their respective k-points or reconstruct a set of spectra based on a chosen set of k-points.

Breaking the Sigma file requires the subroutine which is essentially

Subroutine 1

num=$(( `sed '/b/d' $SIGfile | sed '/k/d' | wc -l` / `grep k $SIGfile | wc -l` )) 

grep k "$SIGfile" | awk -v var=$SIGfile -v numlines=$num '{ printf("grep -A %d k =

%f  %f  %f %s > k.%.3f,%.3f,%.3f\n",numlines,$4,$5,$6,var,$4,$5,$6)}

Here, the number of lines for each k-point are counted and placed in the variable num.

These lines will then be extracted and placed in files starting with “k.” To reconstruct

the spectra along an arbitrary chosen set of k-points, we firstly need to use the interface

subroutine which will print out the k-points available in the database and allow the user

to input a chosen set of k-points from the database. This subroutine is essentially
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Subroutine 2

ls -l k* | sed 's/^-.*k.//g' | sed 's/,/ /g' 

read array[$i] 

echo  ${array[$i]} >> plsmerge.txt

We then employ this subroutine to reconstruct  our chosen spectra

Subroutine 3

awk '{printf("k.%.3f,%.3f,%.3f\n",$1,$2,$3)}' plsmerge.txt | sed "s/^/cat /g" | sed "s/$/

>> kpath

awk -v col=$i '{printf(“%c\t”,$col)}' kpath > SpecFunc

Besides the spectra, the Sigma file contains information on the Re Σ and Im  Σ as well.

Users  thus  have  3  profiles  that  they  can  choose  from.  If  the  user  chooses  spectral

function,  all  spectral  data  will  be  placed  into  file  'SpecFunc'.  The  code  will  then

determine if the calculation is spin dependent, the number of bands, number of k-points

and number of frequencies in the calculation. With these values, the spectral function

from the above mentioned SpecFunc file can be organized into the respective bands

which allows users to select spectra from the bands of their choice. The code will then

proceed to obtain the cumulant of these spectra. Finally, the code will transpose these

cumulants with respect to distance of k-point from the origin. The user will then be

prompt  for  the  Fermi  energy  which  can  be  obtained  from  a  plasmon-pole  model

calculation. The plot obtained at this energy represents the momentum distribution of

the chosen band.

The  QP energies  are  required  to  determine  the  Fermi  break  in  the  momentum

distribution. This can be obtained by having a second order fit of the band below the

      82

Univ
ers

ity
 of

 M
ala

ya



Fermi  energy.  We  have  included  this  functionality  which  also  allows  the  user  to

compare quasiparticle bands and ground state energy bands with one another. Similar to

the case of the  Sigma file, a user can choose to break a QP file or reconstruct a QP band

structure against a ground state (GS) band structure. This means that the GW energies

will be broken into its respective k-points and reconstructed again. As, the formatting of

the ABINIT output files are similar, we will call Subroutine 1 to break the QP file. To

construct the corresponding ground state energies however, a non-self consistent ground

state calculation has to be performed with ABINIT and passed into this subroutine

Subroutine 4

var=`grep  "  kpt#    $i"  $gwnscffile  |  tail  -1  |  awk  '{printf("sgk.%.3f,%.3f,%.3f",

$8,$9,$10)}'` 

grep -A 4 " kpt#   $i" $gwnscffile | sed '/^ kpt#.*$/d' | sed 's/^  //g' | sed 's/  /\n/g' | sed

'/--/d' > $var 

To reconstruct the energies subroutine 2 is called again. The code will then obtain the

ground state and quasiparticle k-points, energies and number of bands. The final step

consists of indexing the energies of the ground state and quasiparticle energies by the

respective k-points.

3.3.2 Reconstruction of Compton Profile from Momentum Density

The  momentum  distribution  obtained  with  the  above  subroutines  will  then  be

transformed to the Compton profile via the steps described in this section. We firstly

multiply the values of the momentum density with the momenta. The cumulant of these

values gives the Compton profile as described in Equation (2.51) in Chapter 2. Using

this  theoretical  Compton profile,  we then  used  Mathematica  to  perform a Gaussian

convolution to compare with the experimental  result.  For this  convolution,  its  zero-
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padding  and  magnitude  normalization  is  set  to  the  smallest  difference  between  the

theoretical profile and experiment.

3.4 Computational Details

We finally discuss the computational details behind the three sections in Chapter 4.

3.4.1 NiO and TiO2  

We have performed two studies on the Compton profile of crystalline NiO and TiO2.

For NiO, we have initialized a rock-salt structure with lattice parameter given by 4.1684

Å. We have chosen a k-point grid of 20x20x20 which amounts to 256 k-points. For the

ground state  calculation we have initialized the plane wave kinetic energy cutoff as

2721 eV with a tolerance at 10-12 eV over 30 bands. The plane wave kinetic energy

cutoff controls the number of plane waves at a given k-point while the tolerance will

cause  the  self-consistent  cycle  to  stop  when  the  absolute  differences  between  total

energy is reached twice successfully. We have used the cold smearing technique to take

into account the occupation of the electrons in the d-orbitals. The converged total energy

is  reached  after  15  iterations.  For  the  excited  state  calculations,  we  have  used  the

contour deformation technique to obtain the spectral function. To construct the dielectric

matrix, we have initialized 60 imaginary and real frequency points using frequencies in

the range of -40.8 eV to 40.8 eV and 0.5 eV to 166.2 eV respectively.  Its plane wave

kinetic energy cutoff is set at 2721 eV with a tolerance at 10-12 eV and a polarizability

cutoff at 270 eV over 30 bands with 20 unoccupied bands. In the excited state case, the

plane wave kinetic energy cutoff  determines the cut-off energy of the planewave set

used  to  represent  the  wavefunctions  in  the  formula  that  generates  the  independent-

particle susceptibility while the polarizability cutoff determines the cut-off energy of the

planewave set used to represent the independent-particle susceptibility. Obtaining the
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dielectric matrix, we can then obtain the self-energy term in which we have set the plane

wave kinetic energy cutoff as 2721 eV and the spectral function consists of 1600 data

points in the range between -13 to 13 eV. To check for the convergence of the excited

state calculations, we have performed the routines recommended by ABINIT whereby

an initial  screening calculation will  be used to determine the converged plane wave

kinetic energy cutoff with respect to the self-energy term. With this converged term, we

would then proceed to determine the converged number of bands with respect to the

self-energy term. With these two terms, we can then proceed to determine the converged

plane wave kinetic energy cutoff, number of bands and polarizability cutoff sequentially,

with respect to the dielectric matrices which would then be checked for convergence

with respect to the self-energy. Even though the size of the Monkhorst-Pack grid is 256

k-points,  ABINIT  only  allows  k-points  taken  from  this  grid  to  undergo  contour

deformation  calculations.  We  have  thus  chosen  two  directions  to  construct  the

momentum distributions, specifically [110] with 11 k-points and [100] with 11 k-points.

For TiO2, we have initialized a rutile structure with lattice parameters 4.5888 Å-4.5888

Å-2.9576  Å.  As  the  rutile  structure  requires  more  atoms compared  to  the  rock-salt

structure,  we  have  chosen  2  Monkhorst-Pack  grids  with  the  size  of  10x10x10  and

11x11x11. For the ground state calculation, the plane wave kinetic energy cutoff is 2993

eV with  a  tolerance  at  10-9 eV  over  30  bands.  Convergence  is  achieved  after  13

iterations  respectively.  For  both  NiO and  TiO2,  we  have  used  the  Troullier-Martins

pseudopotential with the highest angular momentum of 2 in this calculation. For the

excited state calculation we have constructed the dielectric matrix out of 60 imaginary

and real frequency points using frequencies in the range of 0 eV to 27.2 eV and 0.5 eV

to 158 eV respectively. We finally constructed the self-energy calculation with a plane

wave kinetic  energy cutoff  of  2993 eV with  a  polarizability  cutoff  of  270 eV.  The

spectral function is constructed from 1600 frequency points in the range of -5.17 eV to

5.17 eV. We have sampled 11 k-points along the directions [100] and [111] respectively.

The calculations   were  conducted  as  a  spin  polarized  antiferromagnetic  system and
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found that  there  is  no significant  difference between spin up or  spin down spectral

functions.

3.4.2 NiO, CoO and FeO

We have performed three studies on the Compton profile of crystalline NiO, CoO

and FeO. We have respectively initialized a rock-salt structure with lattice parameters

given by 4.1684 Å, 4.2667 Å and 4.303 Å. In order to increase the sample size, we have

performed integrations over 5 Monkhorst-Pack grids. The grids we chose are 9x9x9,-

18x6x-18,-13x13x-13,-14x14x-14 and -15x15x-15. Its number of k-points are 110, 120,

84, 104 and 120 respectively. We have found that the ground state energies and excited

state energies for each of these grids at the Γ point is consistent to three and two decimal

places  respectively  if  initalized with the following parameters.  For  the  ground state

calculation we have initialized the plane wave kinetic energy cutoff as 1700 eV with a

tolerance at 10-12 eV over 30 bands.  Calculations of 3d and 4f systems require a large

number of plane waves to describe localized 3d and 4f states.  We have used the cold

smearing technique to take into account the occupation of the electrons in the d-orbitals.

The  k-point  grids  as  mentioned  above  converged  after  27,  23,  25,  25  and  22  self

consistent iterations respectively. For the excited state calculations, we have used the

contour deformation technique to obtain the spectral function. To construct the dielectric

matrix, we have initialized 30 imaginary and real frequency points using frequencies in

the range of of 0 eV to 27 eV and 3.3 eV to 133 eV. Its plane wave kinetic energy cutoff

is set at 1700 eV with a tolerance at 10-12 eV and a polarizability cutoff at 270 eV over

30 bands with 20 unoccupied bands. Obtaining the dielectric matrix, we can then obtain

the self-energy term in which we have set the plane wave kinetic energy cutoff as 1700

eV and the spectral function consists of 1600 data points in the range between -13 to 13

eV.  Even though the size of the Monkhorst-Pack grid was in the range of 80 to 120 k-

points,  ABINIT  only  allows  k-points  taken  from  this  grid  to  undergo  contour
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deformation  calculations.  We  have  thus  chosen  three  directions  to  construct  the

momentum distributions, specifically [101] with 30 k-points, [001] with 21 k-points and

[101] with 36 k-points. 

3.4.3 ZnSe

We have calculated the Compton profile of crystalline ZnSe which has a metastable

zincblende structure which is optically isotropic and the wurtzite structure is optically

anisotropic with c as the polar axis (Oshkiri et al., 1999; Fleszar et al., 2004). We have

initialized a zinc-blende structure with lattice parameters given by 5.6676 Å. We have

initialized  a  k-point  grid  of  16x16x16 to  sample  the  k-points.  For  the  ground state

calculation we have initialized the plane wave kinetic energy as 2175 eV with a cutoff at

10-9 eV over 75 bands. The plane wave kinetic energy cutoff controls the number of

plane waves at a given k-point while the tolerance will cause the self-consistent cycle to

stop when the absolute differences between total energy is reached twice successfully.

We have used the cold smearing technique to take into account the occupation of the

electrons in the d-orbitals. The k-point grids as mentioned above converged after 10 self

consistent iterations respectively. For the excited state calculations, we have used the

contour deformation technique to obtain the spectral function. To construct the dielectric

matrix, we have initialized 30 imaginary and real frequency points between energies of

10 eV to -10 eV.  Its plane wave kinetic energy cutoff is set at 2175 eV with a tolerance

at 10-9 eV and a polarizability cutoff at 270 eV over 15 bands with 60 unoccupied bands.

In the excited state case, the plane wave kinetic energy cutoff  determines the cut-off

energy of the planewave set used to represent the wavefunctions in the formula that

generates  the  independent-particle  susceptibility  while  the  polarizability  cutoff

determines the cut-off energy of the planewave set used to represent the independent-

particle  susceptibility. Obtaining  the  dielectric  matrix,  we  can  then  obtain  the  self-

energy term in which we have set the plane wave kinetic energy cutoff as 2175 eV and
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the spectral function consists of 1600 data points in the range between -13 to 13 eV. To

check for  the convergence  of  the excited state  calculations,  we have performed the

routines recommended by ABINIT whereby an initial screening calculation will be used

to determine the converged plane wave kinetic energy cutoff with respect to the self-

energy  term.  With  this  converged  term,  we  would  then  proceed  to  determine  the

converged number of bands with respect to the self-energy term. With these two terms,

we can  then  proceed to  determine  the  converged plane  wave kinetic  energy cutoff,

number of bands and polarizability cutoff sequentially,  with respect to the dielectric

matrices which would then be checked for convergence with respect to the self-energy.

ABINIT only allows k-points taken from the 16x16x16 k-point grid to undergo contour

deformation  calculations.  We  have  thus  chosen  two  directions  to  construct  the

momentum distributions, specifically in the direction[110] and [100] with 11 k-points

respectively. We have used the Troullier-Martins pseudopotential with a highest angular

momentum  of  2  in  this  calculation  indicating  that  the  d-orbital  is  included  in  the

valence.  Previous calculations assumed the 3d orbitals to be in core states because to

avoid using large plane wave basis sets (Oshkiri et al.,  1999;Zakharov et al.,  1994).

When treating semicore d-states, the choice of basis sets and convergence is important

(Luo et  al.,  2002).   Strong hybridization between semicore states and valence states

result  in  larger  nondiagonal  matrix  elements  not  accounted  for  causing  lower  3d

semicore binding energies compared to experimental values (Oshkiri et al., 1999). 
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CHAPTER 4 : RESULTS AND DISCUSSION

In this chapter, we show the effects of a self-energy correction on the late TMOs,

TiO2 and ZnSe. These effects are studied by observing the smearing of the occupational

number before and after the Fermi break and relating it to the clustering of broadened

spectral functions for the valence bands.

4.1 NiO and TiO2

 

In this section, we firstly calculated the excited state and ground state band structure

calculations for NiO and TiO2. We have applied a scissor operator to shift the energies

of the G point as well as the 4 k-points to the left and right of G by 4.3 eV in the case of

NiO and 3.0 eV in the case of TiO2. We then calculated the Fermi energy and Fermi

momenta which will be subsequently used to obtain the spectral functions. Our spectral

functions  for  NiO  are  broadened  and  contains  shoulder  similar  to  what  has  been

observed in earlier studies. This is in contrast to TiO2 which does not have broadened

spectra. These functions will be used to obtain the momentum density. We explain the

shape of the momentum density of NiO in terms of the cumulant functions which are

obtained from broadened spectral functions as oppose to TiO2 which have Dirac-delta

like spectral functions. We then compared and explained the differences between GW

Approximation and ground state momentum densities. Finally we use the momentum

densities to construct the Compton profile. The profiles will be analyzed in terms of

difference profiles and anisotropy. We end this section by discussing the quasiparticle

renormalization factor (QPRF).

      89

Univ
ers

ity
 of

 M
ala

ya



4.1.1 Band Energies

We firstly compare the calculated ground state band gaps with the excited state band

gaps in Table 4.1 for NiO. At the positions of the high symmetry k-points X (0.5,0.0,0.0)

and L (0.5,0.5,0.0), the application of the GWA seems to play its role in increasing the

band gap compared to the ground state calculation. Approaching the  G point however

the  agreement  between  band  gaps  seems  to  deteriorate  in  the  case  of  GWA.  The

agreement near the X and L k-points is due to the well known effectiveness of the GWA

in handling valence p-orbitals from the O atom (Aulbur et. al., 1999). 

Table 4.1: NiO band gaps for k-points of interest.

We next compare the calculated ground state band gaps with excited state band gaps

in Table 4.2 for  TiO2. In the direction [100], we observe that the GWA band gaps are

generally  smaller  than  that  ground  state  calculation  band  gaps.  This  is  due  to  this

direction mainly populated by Ti atoms with d-orbital valence energies. In the case of

the direction [110], agreement is better in the high symmetry  k-point  L (0.5,0.5,0.0).

However,  in the direction [111],  the GWA band gaps are seen to be larger than the

ground state band gaps. In these two directions, there is a strong contribution from both
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Band gaps with points of interest

E^0_gap E^GW_gap E^0_gap E^GW_gap

0 0 0 3.444 0.253 0 0 0 3.444 0.253

0.05 0 0 3.471 1.058 0.05 0.05 0 3.39 1.267

0.1 0 0 3.581 1.998 0.1 0.1 0 3.653 2.583

0.15 0 0 3.783 2.69 0.15 0.15 0 4.304 3.409
0.2 0 0 4.028 3.272 0.2 0.2 0 5.131 4.381

0.25 0 0 1.319 0.927 0.25 0.25 0 5.947 5.257

0.3 0 0 1.537 1.248 0.3 0.3 0 6.601 5.909

0.35 0 0 1.693 1.636 0.35 0.35 0 6.975 6.313

0.4 0 0 1.79 1.46 0.4 0.4 0 7.08 6.455
0.45 0 0 1.839 2.271 0.45 0.45 0 7.076 6.349

0.5 0 0 1.854 2.387 0.5 0.5 0 7.053 6.704

E^0_gap Ground state band gap

E^GW_gap Excited state band gap

k-points k-points

Univ
ers

ity
 of

 M
ala

ya



the Ti and O atoms. The disagreement in band gap mainly lies with the origin which

mainly has the largest contribution from the Ti d-orbital with smaller contributions from

p-orbitals of Ti and O.

Table 4.2: TiO2 band gaps for k-points of interest.

Table 4.3: Previous reports of GWA and experimental band gaps for NiO and TiO2.

Previous GWA Band gaps (eV) Experiment (eV)

NiO 3.75(Jiang  et  al.,  2010), 4.8(Gonze.,  2005), 5.5(Aryasetiawan  et  al.,  1995),
3.7(Massida et al., 1997),2.4(Li et al., 2005),3.6 (Ye et al., 2010)

4.3(Sawatzky et al., 1984), (Fujimori et al., 1984), 4.0(Hufner et

al., 1984)

TiO2 3.59(Chiodo  et  al.,  2010)  ,  3.78(van  Schilfgaarde  et  al.,  2006),
3.13(Malashevich et al., 2014), 3.40(Patrick et al., 2012)

3.3(Tezuka et al., 1994),3.6(Rangan et. al., 2009)

The  shortcomings  in  straightforward  GWA  calculations  on  these  TMOs  and

improvements by including other methods to the GWA calculations such as model GW,

GWA+U, self-consistent GW and HSE have been previously reported. In their study of

GWA+U of TMOs, Jiang (Jiang et al.,2010) observed that an increase in U affects the

gaps  nonlinearly  due  to  the  p-d hybridization  conteracting  the  scissor  operator.  By

applying the term U with GWA, they remark that energies can be improved to be better

than  DMFT (Georges  et  al.,  1996).  In  their  study  of  GWA for  NiO,  Aryasetiawan

(Aryasetiawan et al., 1995) employed a nonlocal rigid shift to raise and reduce the width

of Ni unoccupied eg bands. The self-energy increases the LDA's gap to 1 eV. This band

gap is seen to be very large if compared to HF, as no screening is implemented. Massida

(Massida et al., 1997) firstly observed that LSDA is unable to describe localized nature
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K-points LDA GWA LDA GWA LDA 
0 0 0 3.115 1.667 0 0 0 3.12 1.595 0 0 0 3.115

0.091 0 0 3.022 1.745 0.091 0.091 0 2.893 1.873 0.091 0.091 0.091 2.242
0.1 0 0 3.001 1.833 0.1 0.1 0 2.855 1.939 0.1 0.1 0.1 2.217

0.182 0 0 2.862 1.823 0.182 0.182 0 2.659 1.676 0.182 0.182 0.182 3.607
0.2 0 0 2.829 1.908 0.2 0.2 0 2.641 1.727 0.2 0.2 0.2 4.243

0.273 0 0 2.742 1.748 0.273 0.273 0 2.712 1.677 0.273 0.273 0.273 5.163
0.3 0 0 2.714 1.826 0.3 0.3 0 2.781 1.854 0.3 0.3 0.3 5.233

0.364 0 0 2.684 1.701 0.364 0.364 0 3.041 1.957 0.364 0.364 0.364 4.987
0.4 0 0 2.675 1.788 0.4 0.4 0 3.216 2.095 0.4 0.4 0.4 4.908

0.455 0 0 2.694 1.721 0.455 0.455 0 3.47 2.07 0.455 0.455 0.455 4.594
0.5 0 0 2.721 1.848 0.5 0.5 0 3.531 3.349 0.5 0.5 0.5 4.515

k-points k-points
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of  electron  states  and  produces  vanishing  band  gaps.  By  initializing  a  model  GW,

depletion of  charge density in Ni and an increase in charge density in O  is observed.

This causes an upward shift of unoccupied d bands by 2.5 eV from GGA to GWA gives

a bandgap of 4.2 eV.  Rodl (Rodl et al., 2009) has explained that the smaller energy gaps

in GWA is due to failure of the perturbational treatment of the quasiparticle equation.

We show the band gaps from these studies in Table 4.3. Based on this comparison we

have calculated our ground state band gap to be 3.444±2.721 eV and 3.115±0.578 eV

while the excited state band gap to be 0.253±4.247 eV and 1.667±1.807 eV for NiO and

TiO2  respectively.  

Our band gaps  at  the  G points  are  clearly much smaller  compared to  previously

performed calculations. These band gaps are dependent on the number of initialized k-

points in the calculation as shown in Table 4.4. In the case of NiO, the initialization of a

20x20x20  k-point grid thus seems inadequate to increase the band gap at the G point

where the Ni-d orbital  valence electrons are  situated as is  initialized in  the reduced

coordinates. An increase of say a 40x40x40 k-points will improve the resolution of the

k-point sampling by 0.025 a.u.  However,  this calculation would double the memory

requirements from the current calculation which is 20 GB of RAM with a screening

input file of 13 GB and a Kohn-Sham states file of 2 GB. 

Table 4.4: An increase in size of k-point grid improves band gap value

k-point grid Number of k-points Band gap, eV

5x5x5 10 -0.1315

10x10x10 47 0.079

15x15x15 120 0.1605

In  a  similar  fashion as  previous  works,  we thus  opt  to  use  the  so  called  scissor

operator to obtain a proper band gap for the case of GWA as has been suggested in

previous works of excited state calculations of NiO (Sharma et al., 2011; Yan et al.,

2013). We shift the energies of the G point as well as the 4 k-points to the left and right
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of the G by 4.3 eV (Rodl et al.,2009). This equates to the experimental band gap at the

G point and places the valence band maximum at the  G point  with a parabolic shape

(Massida et al.,1997). We present the scissor shifted band structure in Figure 4.1 (top). 

Figure 4.1: NiO (above) and TiO2 (below) excited state (orange) and ground state
(black) bandstructure and partial density of states. 

As is indicated by the partial density of states in the ground state case, the largest

contribution to the the valence band energy is the transition metal (TM) 3d orbital and a

small contribution of the O 2p orbital. Similarly to previous observations by Rodl (Rodl

et al., 2009), we observe that these bands are strongly localized with little dispersion. In

that work, the functional HSE03 reduces the shifts of the O 2p quasiparticle valence

bands and mostly affects d-states. Jiang (Jiang et al., 2010) observed that narrowing of

      93

Univ
ers

ity
 of

 M
ala

ya



valence  bandwidth  is  due to  GW energies  pushing down localized  d-orbitals  in  the

occupied  region  and  leaving  p-orbital  occupation.  However  in  studies  related  to

GWA+U, Das (Das et al., 2015) claims that increasing the Hubbard U term is seen to

significantly increase O 2p character in highest valence band states thus becoming more

delocalized. Here, d-bands saturate at high U due to d-band crossing to 4s states (Jiang

et al., 2010). 

Via  the  GWA,  these  d-states  are  strongly  affected  by  the  dynamic  character  of

screened  Coulomb  interaction.  Thus,  screening  effects  in  GWA  causes  the

wavefunctions  in valence bands to be more localized.  This term is  contained in the

dielectric function which describes free electron contribution and interband transition.

The d-orbital corresponds to filled t2g states as reported in (Rodl et al., 2009). These t2g

states contain majority and minority spins (Faleev et al., 2004). Our energies also agree

with Massida in that the  t2g and O 2p orbitals produce no gap in the case of GWA

compared to the wider gap seen in LDA. Before the application of the scissor shift, the

O 2p and TM 3d energy will be raised above the Fermi level via GWA compared to the

findings of Massida (Massida et al., 1997) at -3.5 eV for O 2p and -1.7 eV for  t2g and Li

(Li et al.,2005) at -8 eV for O 2p. Thus, a straightforward GWA without scissor operator

does  not  shift  the  valence  band  lower  compared  to  previous  studies.  We  can  also

observe the double peak valence band DOS as seen in (Rodl et al., 2009). It is thus clear

that the energies under the Fermi energy in NiO are represented by the hybridization of

p and  d-orbitals  which  are  central  to  the  discussion  of  a  strong  correlation.  This

highlights the importance of d-p hybridization in interpreting momentum densities and

the dielectric screening broadening the spectra.  Above the Fermi energy, our bands

agree with the observation by Massida that the  GWA pushed up the  eg orbitals  and

causes the shifting of the delocalized 4s state at a lesser magnitude than the localized d

states (Li et al., 2005). Rodl (Rodl et al., 2009) observed that the 3d eg states are 1 eV

higher in energy due to the neglect of vertex correction in the case of NiO however a
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strong dispersion for the Ni 4s character with TM 3d states at G is due to applying the

GWA+HSE. We then present the TiO2 band structure with a shift of 3.00 eV (Zhai et al.,

2007) at the  G point in Figure 4.1 (bottom). As is indicated by the partial density of

states  in  the  ground state  case,  the  valence  energies  have  a  hybridized  contribution

between  a  larger  TM  d-orbitals,  O  p-orbitals  and  smaller  contributions  from Ti  p-

orbitals. Below the valence energy, the contribution is mainly from the O and Ti  p-

orbitals. The conduction band has  contribution mainly from the Ti d-orbitals and O p-

orbitals. 

By obtaining the band gaps and band energies, we can now proceed to obtain the

Fermi energy and Fermi momenta. We firstly obtain the excited state Fermi energies to

be -0.265 eV in the case of NiO and 0.6876 eV for the case of  TiO2.  This value is

obtained from the middle point between the valence band energy and conduction band

energy at the  G point. We have unsuccessfully attempted to obtain the Fermi energy

directly from ABINIT via the two other methods which we will describe further. The

first  method  involves  a  full  calculation  of  all  k-points  via  the  contour  deformation

method.  This  method  fails  to  run  as  it  is  extremely  computationally  demanding.

However  this  would  provide  the  Fermi  energy  for  the  exact  initializations  we  are

performing.  The  second  method  involves  an  approximation  to  the  computationally

demanding contour deformation method which is the significantly less computationally

demanding  plasmon  pole  model  (Godby  et  al.,  1989).  In  this  method,  only  one

frequency point at 0.0 eV is used to calculate the screening and self-energy. Using this

method, with the same k-point grid and other initializations as the contour deformation

case the Fermi energy indicates that the conduction band is the valence band as the

plasmon pole model (PPM) itself gives a negative band gap at the G point.

We then proceed to obtain the Fermi momentum  or Fermi break which is used to

identify the break between occupied and unoccupied momentum densities and has the
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unit of a.u. It is calculated by identifying the effective mass through fitting the valence

band under the Fermi energy to a second order curve for all directions of interest. The

second order derivative of the inverse energy is given by

m*
=ℏ

2 d2 E−1

d k2
                             (4.1)

where we assume the Planck's constant to be 1. The Fermi momenta is thus given by

pF=√m* EF                     (4.2)

We then calculate the Fermi momenta as given by Table 4.5.  For this analysis, we are

only interested in the excited state bands as they will be used in our further analysis. It

was previously remarked that a difference in Fermi break along various directions is an

indication of distortion in the free electron sphere (Sakurai et al., 1995). This is expected

as the Fermi surface of these two oxides are not spherical.

Table 4.5: Fermi momenta for NiO and TiO2 along k-points of interest.

TMO
Fermi Moments

[100], pf/a.u. [110], pf/a.u. [111], pf/a.u.

NiO 0.2022 0.3323

TiO2 0.3243 0.2466 0.7896

4.1.2 Spectral Function and Momentum Densities

With the knowledge of the Fermi energy and Fermi momenta, we can now proceed to

obtain the spectral functions as shown in Figure 4.2. As has been performed with the

band energies, we have shifted the four k-points from the origin by 4.3 eV. We observe

that the use of the GWA creates a spectra that broadened and contains shoulders. These
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characteristics of the spectra has been observed in previous calculations of NiO by GWA

(Aryasetiawan  et  al.,  1995)  where  the  valence  band  could  not  reproduce   satellite

structures  (Aryasetiawan  et  al.,  1995).  Massida  (Massida  et  al.,  1997)  observed  a

satellite at -9 eV for NiO which corresponds to a 3d hole (Massida et al., 1997). This is

consistent  with experimental spectra where both a broadened quasiparticle  peak and

satellite structures are observed and interpreted as a transition from a d8 ground state to

a  d7 final  state  via  the  Anderson  impurity  calculations  (Aryasetiawan  et  al.,  1995).

Aryasetiawan remarks that the GWA is able to produce weak satellite structure and is

attributed  to  overemphasized  peak  in  the  imaginary  part  of  the  dielectric  screening

(Aryasetiawan et al., 1995). If compared to the spectral functions of TiO2, as shown in

Fig 4.2 (bottom), a broadening of this characteristic is not seen. We conclude that the

broadening and shoulders of the spectra be due to the d-orbital contribution as seen in

the partial density of states. This is not the case for TiO2 as the d-orbital contribution in

TiO2 is significantly smaller by one order of magnitude compared to NiO. This shows

that for the case of NiO, the spectral function moves away from a Dirac delta function

which describes the behavior of the non-interacting electron gas. This is said to be due

to the correlation terms shifting the occupancy from below to above the Fermi break.

This  confirms  the  role  that  correlation  broadens  the  spectral  function  and  the

discontinuity in the momentum distribution. This shows that the impulse approximation

is not obeyed more strongly in this region compared to other regions.
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Figure 4.2: NiO spectral functions along the direction [100] (top), [110] (middle)
direction and TiO2 spectral function for the direction [100] (bottom).
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Figure 4.3: GWA momentum density for NiO (left) and TiO2 (right).

As  the  spectral  function  will  serve  as  input  to  the  momentum  density  and

subsequently to the Compton profile, we can now directly study the contribution of the

d-orbital from the transition metal to the experimental Compton profile by this method.

We can now obtain the momentum densities by taking the value of the cumulant of the

spectral  function  over  all  directions  from a  set  of  k-points  at  the  Fermi  energy  as

described in  Chapter  3.  We present  the  momentum densities  in  Figure  4.3.  At  first

glance we observe a clear division between high and low momenta for the case of NiO,

which means that the impulse approximation is seemingly followed.  TiO2 follows this

trend as well but has a unit constant momentum at low momenta with a small, non-zero

density after the Fermi break. This is almost similar to the Fermi liquid case where we

would expect to see a unity density at low momenta. The reason we see a non-unity

momentum density  in the case of NiO can be explained by observing the cumulant

function of the previously developed spectral functions as shown in Figure 4.4. 
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Figure 4.4: NiO cumulant function for the direction [100] (top), [110] (middle) and
TiO2 cumulant function for the direction [100] (bottom). 

In the case of TiO2, an almost Dirac-delta spectra, function instantly accumulates to

unity. In the case of NiO, the shoulders and broadening of the spectra accumulate to

unity only at higher energies. We have now shown the importance that is played by the

self-energy from a GWA calculation to shape the momentum densities of two different

TMO  systems.  When  the  cumulant  of  this  spectra  is  obtained  to  construct  the

momentum density,  we find that the broadening contributes to its  inclusion into the

momentum density below the Fermi energy. This cumulant will naturally not be at unity

at the Fermi energy owing to the curving of the momentum density.
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Figure  4.5:  GWA vs  LDA momentum densities  for NiO for the  direction [100]
(above left), [110] (above right) and TiO2 for the direction [100] (bottom left).

We  now  perform  a  comparison  between  the  ground  state  and  excited  state

momentum densities as shown in Figure 4.5.  For NiO, in both directions, it  is now

obvious that the inclusion of the self-energy makes the step function momentum density

in  LDA resemble  the  Fermi-Dirac  distribution  as  seen  in  the  GWA case.  In  both

directions, from the origin to the k-point before the Fermi break, the GWA momentum

density  is  ~17  %  smaller  than  the  LDA density.  In  the  case  of  TiO2,  the  GWA

momentum densities follow the same trend as the LDA momentum densities. However,

at  the  middle k-points  of  direction [110]  of  TiO2 and after  the Fermi break  for  the

direction  [100]  and  [111]  the  occupancy  undergoes  cold  smearing  to  an  occupancy

different  than  that  of  the  GWA case as  shown in  Figure 4.3.  We will  show in  our

comparison  with  experimental  profiles  that  our  GWA Compton  profile  has  better

agreement compared to the LDA calculations.  

This supports the use of GWA to obtain Compton profiles as it has been reported by

Aryasetiawan (Aryasetiawan et al., 1995) which states that GWA can be regarded as HF

without screening , in which the screening term leads to a larger reduction of gap due to
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long range correlations. This difference to spectra in lower momenta is caused by the

interplay of the values of the frequency, ground state energy, real and self-energy as

given by Equation  2.113.  Physically,  this  broadening is  said  to  be due  to  the finite

lifetime width of the spectral  function reacting slower to  change of momentum and

energy transfer of probing energies. It involves final state electrons where the excited

particle is polarized by the tightly bound core electrons and the hole it leaves behind.

This polarization is directly obtainable from our first principles calculation Equation

(2.109)  and  used  to  obtain  the  final  self-energy.  Just  from a  simple  comparison of

ground state and excited state densities, it is obvious that polarization plays a significant

role in the interpretation of the  momentum density. 

4.1.3 Compton Profiles

With the momentum density, we can proceed to obtain the Compton profiles for both

GWA and LDA cases.  These profiles  are  compared with the experimental  Compton

profiles of Fukamachi  (Fukamachi et  al.,  1973) for both directions in NiO and the

profiles of Limandri (Limandri et al., 2014) and difference profile of Joshi (Joshi et al.,

2007) for the direction [100] in the case of TiO2. In their work, Fukamachi have stated

that they have used a solid state detector and multichannel pulse height analyzer. The

radiation is 59.54 keV γ-rays from  241Am (100 mCi) with a scattering angle fixed at

165o   for profiles measured along three major axes [100], [110] and [111]. Counts are

accumulated in five days until the peak value reaches 8x104   counts.  We initialized a

Gaussian convolution of 0.57 a.u in the case of NiO and 0.28 a.u in the case of TiO2.

The results are shown in Figure 4.6. For the case of NiO, our Compton profiles are

shown to provide a good fit to previous experimental results. This is shown in the small

differences in the difference profiles between the theoretical and experimental plots. In

both cases of NiO, there is larger disagreement in GWA compared to LDA at the origin. 
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Figure  4.6:  Compton profile  for NiO for the  direction  [100]  (above  left),  [110]
(above right) and TiO2 for the direction [100] (bottom left).

Table 4.6: Sum of difference profiles for NiO along two directions of interest.

This  means  that  the  non-unity  GWA momentum  densities  at  the  origin  should

resemble its LDA counterparts by decreasing its broadening. This might be achievable

by an increase in k-point resolution. The decrease in low momenta from the ground state

calculation is due to the valence energy contribution. It is in line with what has been

observed  in  experimental  profiles  which  is  said  to  be  a  discrepancy  with  LDA

calculations and has been observed in  other  works  as well.  Using the localized ion

model, (Chiba et al.,1974) has calculated positron angular correlation curves of NiO

single crystals and observed that the discrepancy with experiment is fairly large in the

low momentum region as well.  However above the origin, NiO seems to have better

agreement compared to LDA except a large disagreement between 1.7-2.7 a.u in the
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[100] 2.995925 3.30137
[110] 3.071575 3.81246167
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[100]  direction.  This  section  is  attributed  to  an  O  atom  and  the  difference  profile

overshoots as the quantity of p-orbitals is smaller for the valence band.  

Figure 4.7: Difference profiles for NiO for the direction [100] (above left),  [110]
(above  right)  and  TiO2 for  the  direction  [100]  (bottom  left).  Comparison  of
anisotropy (bottom right) for NiO with experiment. 

Nevertheless, if we take the sum of the absolute values of the difference profiles in

Table 4.6 we observe that that the GWA profile has a better agreement compared to

LDA. We are also able to find good agreement between the anisotropy of Fukamachi

with  our  calculation  as  shown  in  the  Figure  below.  Fukamachi  compared  his

experimental profile with a model based d-electron formalisms of (Azaroff, 1974) and

wavefunctions  of  (Clementi,  1965).  The anisotropy reveals  that  the GWA and LDA

follow the results of Fukamachi in which submaxima structure is non-existent.
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Table 4.7: QPRF for TiO2 and NiO along all calculated k-points.

In the case of TiO2, the calculated Compton profile is shown to be in agreement with

the experimental difference profile of Joshi where it is shown that the GWA reproduces

a smaller difference profile at  higher momenta compared to the LDA and the larger

disagreement at the origin in both the GWA and LDA case. In our case we observe that

the calculated GWA momentum density as shown in the Figure above constructs a better

Compton profile compared to LDA. Joshi remarked that only a higher momenta profile

agrees  with  experiment  and  this  is  attributed  to  core  electron  contributed  while

disagreement is seen in the origin. Joshi calculated the Lam-Platzman correction based

on free atom profiles and observed that the theoretical values are lower than experiment

in low momenta.  They conclude that full  atom profiles are inadequate to obtain the

Compton  profiles  and  state  a  preference  for  Hartree-Fock  LCAO  (HF)  methods  to

obtain  difference  profiles  which  have  better  agreement  with  experiment.  Linear

combination  of  atomic  orbitals  have  been  remarked  to  be  in  better  agreement  to

construct Compton profiles compared to plane wave methods. The construction of the
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QPRF QPRF

0.5 0 0 0.407 -1.456 0.5 0 0 0.727 -0.375
0.45 0 0 0.415 -1.407 0.455 0 0 0.716 -0.397
0.4 0 0 0.384 -1.601 0.4 0 0 0.707 -0.414

0.35 0 0 0.362 -1.76 0.364 0 0 0.714 -0.401
0.3 0 0 0.32 -2.125 0.3 0 0 0.692 -0.445

0.25 0 0 0.308 -2.242 0.273 0 0 0.704 -0.42
0.2 0 0 0.288 -2.476 0.2 0 0 0.688 -0.454

0.15 0 0 0.283 -2.532 0.182 0 0 0.699 -0.43
0.1 0 0 0.302 -2.306 0.1 0 0 0.695 -0.44

0.05 0 0 0.381 -1.627 0.091 0 0 0.7 -0.428
0 0 0 0.43 -1.325 0 0 0 0.701 -0.427

0.05 0.05 0 0.351 -1.846 0.091 0.091 0 0.7 -0.429
0.1 0.1 0 0.288 -2.471 0.1 0.1 0 0.691 -0.447

0.15 0.15 0 0.273 -2.669 0.182 0.182 0 0.7 -0.429
0.2 0.2 0 0.266 -2.761 0.2 0.2 0 0.685 -0.459

0.25 0.25 0 0.259 -2.856 0.273 0.273 0 0.708 -0.413
0.3 0.3 0 0.249 -3.02 0.3 0.3 0 0.707 -0.415

0.35 0.35 0 0.24 -3.163 0.364 0.364 0 0.701 -0.427
0.4 0.4 0 0.236 -3.24 0.4 0.4 0 0.689 -0.451

0.45 0.45 0 0.228 -3.385 0.455 0.455 0 0.698 -0.432

NiO k-points TiO
2
 k-pointsδΣ/δ E δΣ/δ E
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profile  from  GWA contour  deformation  spectral  function  is  possible  via  the  code

FIESTA which is based on Gaussian basis sets. However this code is not distributed by

their developers. 

Finally we compare the QPRF of NiO and TiO2 for the band under Fermi energy as

shown in Table 4.7. As is shown in Equation (3.44), as the change in the correlation part

of the self-energy gets larger the QPRF gets smaller. This means that the correlation

portion of the self-energy is more significant in NiO compared to TiO2. This confirms

the previous result of the spectral broadening. 

4.2 NiO, CoO and FeO

In this section, we firstly calculated the excited state and ground state band structure

calculations for NiO, CoO and FeO. We observe that NiO can produce a larger band gap

compared to FeO and CoO via GWA We then calculated the Fermi energy and Fermi

momenta which will be subsequently used to obtain the spectral functions. We observe

that NiO has twice broadened spectra compared to FeO and CoO.  These functions will

be  used  to  obtain  the  momentum  density.  We  then  compared  and  explained  the

differences between GWA and ground state momentum densities. Finally we use the

momentum densities to construct the Compton profile. The profiles will be analyzed in

terms of difference profiles and anisotropy. The difference profile reveals that in the

direction [001], the correlation correction is smaller in the low momenta compared to

[101] while the higher momenta goes to zero. The amplitude of the anisotropy of NiO is

seen to be larger than FeO and CoO. 
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4.2.1 Band Energies

We firstly compare the band gaps between ground state and excited state calculations

as shown in Table 4.8.  

Table 4.8: Band gaps for NiO, CoO and FeO along the [001] and [101] direction.

In similar fashion as the previous section, we observe that the GWA band gap has

disagreement with the LDA band gap at k-points near the origin. We thus opt to increase

the GWA band gap by employing a scissor shift to ensure that the band gaps are similar

to the experimentally obtained band gaps. For NiO, the scissor shift is 4.3 eV, for CoO

and FeO the scissor shift is 2.4 eV (Terakura et al., 1984). 
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Band gaps, eV
NiO CoO FeO

E^0_gap E^GW_gap E^0_gap E^GW_gap E^0_gap E^GW_gap
0 0 0 3.443 0.473 2.335 -0.678 1.903 -0.773

-0.056 0 -0.056 3.395 1.384 2.375 0.149 1.955 -0.03
-0.111 0 -0.111 3.769 2.529 2.838 1.502 2.438 1.278
-0.154 0 -0.154 4.364 3.358 3.471 2.578 3.088 2.295

-0.2 0 -0.2 5.131 4.316 4.254 3.584 3.875 3.272
-0.25 0 -0.25 5.947 5.101 5.07 4.514 0.281 0.352

-0.308 0 -0.308 6.679 5.798 0.16 0.316 0.191 0.334
-0.357 0 -0.357 7.005 6.113 6.227 5.414 0.644 -0.557

-0.4 0 -0.4 7.081 6.156 6.366 5.994 0.627 -0.677
-0.444 0 -0.444 7.077 5.967 6.327 5.94 0.081 -0.603
-0.467 0 -0.467 7.073 5.945 6.301 5.889 0.114 -0.623

NiO CoO FeO
E^0_gap E^GW_gap E^0_gap E^GW_gap E^0_gap E^GW_gap

0 0 0 3.444 0.479 2.335 -0.678 1.903 -0.773
0 0 -0.067 3.496 1.312 2.452 0.069 2.042 0.015
0 0 -0.133 3.709 2.408 2.738 1.372 2.315 1.088
0 0 -0.154 3.801 2.67 2.844 1.771 2.421 1.461
0 0 -0.2 4.029 3.081 0.929 0.328 1.029 0.361
0 0 -0.267 1.398 1.156 1.251 0.772 1.349 0.793
0 0 -0.308 1.565 1.418 1.402 1.117 1.501 1.083
0 0 -0.357 1.71 1.667 1.531 1.405 1.625 1.368
0 0 -0.4 1.79 1.674 1.599 1.619 1.687 1.562
0 0 -0.462 1.845 2.196 1.641 1.708 1.724 1.598
0 0 -0.467 1.847 2.198 1.643 1.749 1.724 1.642

E^0_gap Ground state band gap
E^GW_gap Excited state band gap

k-points
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Figure 4.8: Band structure and partial density of states for  NiO, CoO and FeO.

We present the band structure and partial density of states in Fig 4.8. From the partial

density of states, we observe that the valence band consists of a large contribution of

TM d-orbital with a small contribution of O p-orbital. NiO has the largest contribution

of d-orbital compared to FeO and CoO.  If a scissor shift were not applied, our band gap

for FeO and CoO would agree with a previous study where t2g bands fail to open up

(Das et al., 2015). From the partial density of states, we observe that the conduction
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band consists of TM d and  p orbital contribution while the top of it consists of Ni 4s

orbital contribution. In the case of NiO, we also observe that our GWA calculation has a

larger gap between the conduction and valence band energies in a similar way as the

ground state energies compared to the case of FeO and CoO.  

Similar  to  the  previous  section   with NiO,  all  oxides  shows broad valence band

maximum shoulders due to flat 3d t2g bands with a small O 2p contribution (Rodl et al.,

2009; Das et al., 2015; Aryasetiawan et al., 1995). Similarly to our previous section, we

did not observe a decrease in energy and Fermi levels to lie within the t2g states as

previously reported by Rodl.  Jiang (Jiang et  al.,  2010)  has  remarked that  the  cubic

crystal  field  environment  without  symmetry  breaking makes  ground state  high  spin

configurations degenerate which predicts a metallic state in band theory for the case of

FeO and CoO. In the case of CoO, Das (Das et al., 2015) observed that GGA fails to

yield  non-zero  band  gap  because  the  measured  gap  may  be  influenced  by  strong

correlations. Using self-consistent GWA, they observe the converged band gap to be

4.78 eV.    

Table 4.9: Fermi momenta of the NiO, CoO and FeO along the [001] and [101]
direction.

[001], pF /a.u. [101], pF /a.u.

NiO 0.1996 0.2180

CoO 0.2033 0.1566

FeO 0.1689 0.1615

Table 5.1: Fermi energy of the  NiO, CoO and FeO.

Fermi Energy, eV

NiO -0.3

CoO -0.842

FeO -1.439
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In Table 4.9, we present the Fermi momentum of the oxides studied. These values

play the role of revealing where the break between the high momentum density and low

momentum density is located. We have initialized the oxide systems in this study with

the same crystal structure and thus the Fermi momentum is expected to show the same

trend in both directions. In the same way as the previous section, we obtain the Fermi

energies as the midpoint between the conduction and valence band of the G point. These

values are shown in Table 5.1. 

4.2.2 Spectral Function and Momentum Densities

Knowing the Fermi energy, we are now able to study the spectral functions of these

oxides as shown in Figure 4.9. The spectral function reflects the poles of one-electron

Green's  function  as  it  is  related  to  electron  removal  and  addition  energies.  In  both

directions,  we observe that  the spectra below the Fermi energy are more broadened

compared to that above the Fermi energy.  A deeper look into the valence energy spectra

shows that NiO has twice broadened spectra compared to FeO and CoO. As this spectral

function was constructed from the valence energy band, differences in spectra between

the oxides can be explained by looking back to the partial density of states. We observe

that  NiO  has  twice  the  contribution  of  d-orbitals  compared  to  FeO  and  CoO.  We

propose that this larger contribution creates a much broader spectra in the case of NiO. 
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Figure 4.9: Spectral functions of the NiO, CoO and FeO along the [001] and [101]
direction. 

With our insight into the spectral functions of the oxides, we are able to study their

momentum densities  as  presented in  Figure 5.1.  For  systems which do not  have an

isotropic Fermi surface, we expect directional dependence in their momentum densities.

This is especially true for the case of transition metals. This consequence is observed in

densities  along  the  direction  [001]  to  have  a  lower   Fermi  break  compared  to  the

direction [101]. In similar case to NiO in the previous section, we observe that the GWA
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momentum densities are not at unity before the Fermi break. In the LDA case, they are

at unity. We initially observed that in the case of CoO, the density for the k-points at the

Fermi break are all lowered compared to those near the origin and in the case of FeO,

the densities before the Fermi break are uniformly around 0.6. This can be explained by

observing that  the  scissor  shifts  of  spectra  below the  Fermi  break  are  initialized as

smaller for FeO and CoO compared to NiO. These spectra nearer to the Fermi break are

misrepresented in the momentum density as the peak in the cumulant goes above the

Fermi break. 

Figure 5.1: Momentum densities of the NiO, CoO and FeO along the [001] and
[101] direction.
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This issue can be solved by fitting these spectra to a Lorentzian given by

l(ω)=
ZQP
π

η

(ω−ωO)
2
+η

2       (4.1)

where ZQP sets the amplitude of the fit, ωo sets the position of the energy of the spectral

peak and η is the fitting parameter, and using l(ω) to construct the momentum density.

This  approach  was  introduced  by  Olevano  (Olevano  et  al.,  2012)  to  account  for

misrepresentation of the spectra as a result from being constructed with an insufficient

amount of k-points. 

Figure 5.2:  Compton profiles  of  NiO, CoO and FeO along the [001]  and [101]
direction.
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This is due to low momentum occupation near the Fermi surface as the quasiparticle

lifetime goes to infinity. Our use of this method is justified in this study as we observe

negative band gaps for certain k-points in the case of CoO and FeO which indicates an

insufficient amount of k-points to construct the spectra.

In previous  comparisons  of calculated momentum density  at  the valence band to

experiment at equilibrium temperature we expect to observe a step function that is unity

at the origin. Smearing of occupancy is then observed before and after the Fermi break

followed by a drop to zero occupancy at the Fermi break with a step-wise discontinuity

until  the Brillouin zone edge.  This indicates a transfer of occupancy from below to

above the Fermi break typical of many body effects (Olevano et al., 2012).  From our

results, we observe that compared to the case of the noninteracting electron gas, there is

occupancy  above  the  Fermi  break.  This  is  due  to  the  use  of  GWA to  obtain  the

momentum densities which lowers the profile before the Fermi break compared to LDA

and increases it in the higher momentum regions.  This smearing is thus due to the self-

energy which increase as electron density increases and we can expect further increase

in occupancy above the Fermi momentum. In this high density limit, kinetic energies

dominate. At momenta greater than the Fermi break, the core asymmetry dominates. At

momenta less than the Fermi break, kinetic energy is the highest and the valence band

dominates (Sternemann 2000). In our case, the self-energy term provides the value for

the  correlation.  This  makes  the  momentum  density  a  closer  fit  to  experimental

observations.  The  experimental  peak  height  is  due  to  neglect  of  exchange  and

correlation effects.  These effects play the role of  promoting electrons from low to high

momentum states and it reflects the degree of core and conduction electron correlation. 

In order to obtain a GWA calculation that is close to experiment, the initial LDA band

energies have to be very close to the quasiparticle band energies. ABINIT ensures this

by using the KS states as the input to its GWA calculation. Continuity across the Fermi
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break  indicates  electron  correlation  typical  of  d-orbitals.  The  NiO  momentum

distributions are more occupied in the low momentum region compared to FeO and

CoO which are almost equal. 

Figure 5.3: Difference profiles (left)  and anisotropy (right)  for  NiO, CoO and
FeO.

This  lends  credence to the well  known behavior  of  NiO as a  strongly correlated

system. A lack of smearing before and after the Fermi break is typical of spectra without

broadening as seen in LDA calculations. In our case, this smearing is directly related to

the broadening of the spectral function as shown in Equation 2.66 which requires as

input the self-energy correction. Thus, the positioning of the Fermi energy and the role

      115

Univ
ers

ity
 of

 M
ala

ya



played by the self-energy term to broaden the spectra highlight the importance of these

tools in studying electron correlation in momentum densities. 

4.2.3 Compton Profiles

Now that we have obtained the momentum density, we can proceed to construct the

Compton profile (Figure 5.2) and study its correlation correction and anisotropy (Figure

5.3). We performed a Gaussian convolution on the calculated Compton profile of 0.57

a.u as initialized in the previous section for NiO. We notice that the difference between

GWA and LDA Compton profiles is not observed in the figure. However the difference

profile in Figure 5.3 points out important characteristics between them. The difference

profiles follow from the previous study of Cardwell as discussed in the previous chapter.

We notice in all three oxides that in the direction [001], the correlation correction is

smaller  in  the  lower  momenta  compared to  [101]  while  the  higher  momenta which

corresponds to the core states goes to zero. An explanation to this can be seen in the

partial density of states calculated specifically from k-points over the directions [001]

and [101]  respectively  as  shown in  Figure  5.4.  As  the  d-orbital  contribution  to  the

valence energy for the direction [001] is  larger compared to [101],  we propose this

explanation as the reason of the difference in magnitude of the correlation correction

near the origin.  This PDOS is for the ground state case but similarly reflects the orbital

contribution  as  the  excited  state  case.  In  comparing  individual  k-points,  the  largest

difference lies with the k-points near the origin. This is the region where the TM atom is

initialized and has the highest contribution of d-orbital. A lower calculated profile at the

origin compared to experiment is a common observation in previous studies. Huotari,

(Huotari et al., 2007) observed this in their study using an analytical spectral function to

convolute with their experimental valence Compton profile in the case of Be. In their

study the width of their spectra grows with increasing electron density. Other studies

include (Wakoh et al.,  1990; Kralik et al.,  1998; Schulke et al.,  1996; Baruah et al.,

      116

Univ
ers

ity
 of

 M
ala

ya



1999; Wakoh et al., 2000; Bross, 2004;Makkonen et al., 2005). An explanation for this

observation has been given by Anastassopoulos ( Anastassopoulos et  al.,  1991) who

attributed it normalization of the Compton profile in a limited k-space. 

Figure 5.4: PDOS for NiO, CoO and FeO along z-direction (left) and along x-z
direction (right).

The difference profile reflects fluctuations in the intermediate density. This region is

affected by conduction electrons (Cardwell et al., 1989). A large difference between the

LDA and GWA momentum density at the intermediate level shows that the self-energy

has a strong effect in this region. These effects play the role of  promoting electrons

from low to  high  momentum states  and  reflect  the  degree  of  core  and  conduction

electron  correlation.  In  our  case,  the  self-energy  term  provides  the  value  for  the

correlation. Besides self-energy, other physical properties that can affect the momentum
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density at the Fermi break was provided by Anastassopoulos ( Anastassopoulos et al.,

1991) for Ni where the occupation transfer between occupied to non-occupied side of

discontinuity is due to thermal excitations and non-local correlation effects. Sternemann

has studied the role by played temperature in their study of the Compton profile of Al

and Li. They observed that the Compton profile narrows with increasing temperature

and is attributed to variations in the lattice constants and can be explained well by a free

electron model with correlated occupation number density in the case of Al. After the

Fermi break, Li is observed to show large difference from experiment as temperature

increases.

We are also able to study the anisotropy between directions by plotting the difference

between two directions in Figure 5.3. Structure in these difference profiles originate

from the Umklapp contributions, Fermi surface distortion from a sphere, band structure

effects and interaction of electron bands with Brillouin zone (BZ) faces (Ohata et al.,

2000).  Thus,  the  momentum dependent  terms  that  contribute  to  anisotropy  are  the

occupation function and the Bloch wave amplitude (Rollason et al., 1987). Directional

anisotropies are useful in removing systematic errors in experimental and theoretical

results (Baruah et al., 1999). In previous studies, events in the anisotropy profile show

in terms of oscillatory structure and have been attributed to energetic and geometrical

constraints. (Rollason et al., 1987) observed that the positions of oscillations in their

calculated anisotropy profile is the same as experiment but of larger magnitude. The

origin  of  these  oscillations  is  said  to  be  due  to  non-local  correlations  smearing

momentum density and populate empty regions. Anastaspoulous ( Anastassopoulos et

al., 1991) observed that the oscillatory structure in large momenta due to a decrease of

s-orbital contribution leaving only d-orbital contribution. Sundarajan (Sundarajan et al.,

1988) also observed that their calculated oscillatory anisotropic profiles magnitudes are

larger but their peak positions agree. Their anisotropic occupation numbers of Ni  are

due to not just the first BZ but higher BZs as well.  In our studies, we did not observe
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oscillatory structure in agreement with the results of the previous section. However, the

amplitude of the anisotropy of NiO is seen to be larger than FeO and CoO. This is due

to  the  momentum  density  for  NiO  being  more  broadened  in  both  directions.  This

broadening in GWA momentum densities compared to LDA densities also explains the

differences seen in the anisotropy. In comparing anisotropies between experiment and

calculation  of  Be,  Huotari  (Huotari  et  al.,  2000)  observed  a  larger  amplitude  in

calculation compared to experiment and attributed it to asymmetry of valence electron

profiles  induced  by  spectral  function  and  vertex  correction.  This  confirms  the

importance of d-orbital component in NiO compared to FeO and CoO.

4.3 ZnSe

DFT calculations using the LDA functional produces reliable ground state properties

of solids hence useful for structural studies such as finding lattice constants (Zakharov

et al., 1994) but not suitable in describing energy levels of Zn 3d semicore states, spin-

orbit coupling, crystal field splitting energy (Kharazanov et al., 2006) and band gaps of

solids  (Fleszar et al.,  2005). Semicore states are highly localized and the choice of

exchange correlation functional is important for calculating the quality of Kohn-Sham

orbitals   (Luo et  al.,  2002).  The large error  between LDA eigenvalues for localized

semicore states compared to experimental values has been explained by Aryasetiawan

(Aryasetiawan  et  al.,  1996).  For  these  states,  a  large  contribution  is  obtained  from

polarization where an overestimation of exchange correlation energy is seen between 3d

electron and 3s-3p core. To rectify these problems with LDA for the case of ZnSe, many

corrections have been proposed. Oshikiri (Oshikiri et al.,  1999) has stated that using

gradient corrections by the GGA functional does not significantly improve the band gap

due  to  a  lack  of  nonlocality  and  energy  dependence  in  the  exchange  correlation

potential. Kharazanov (Kharazanov et al., 2007; Kharazanov et al., 2006) has proposed

the use of LDA+U to rectify the band gap problem and observed that the empirically
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defined  U and  J term  corrects  the  Zn  3d energy  levels,  suppresses  hybridization,

improve band gap estimation and causes the height of peaks in DOS corresponding to

Zn 3d states to become larger compared to LDA which means that the semicore 3d

states become more localized than pure LDA. They have also stated that exact exchange

DFT can obtain good agreement with experimental band gaps and 3d energy levels.

Gürel  (Gürel  et  al.,  2012)  has  applied  the  Tran-Blaha  modified  Becke-Johnson

functional and observes that the band gap and band dispersion curves can be reproduced

accurately without the need for shifts. However, they have reported that this functional

underestimates spin-orbit splitting. Zakharov (Zakharov et  al.,  1994) included partial

core corrections in the exchange and correlation terms to account for nonlinearity of

exchange and correlation potential in region where core and valence charge densities

overlap and found that core corrections are more important for conduction bands than

valence bands. 

The  GWA has  also  been  proposed  to  improve  band  gaps  and  semicore  binding

energies (Luo et al., 2002) as it is capable of taking account nonlocality and dynamic

correlations  (Oshikiri  et  al.,  1999).  The  self-energy  term  from  GWA  contains

information  on the  electron-electron  interaction  in  terms of  the  electrostatic  Hartree

potential  and the  non-Hermitean,  energy dependent  and  spatially  non-local  operator

(Fleszar et al., 2005). There have been various previous implementations of GWA in

studying  ZnSe.  Self-energy  corrections  for  semicore  states  were  performed  by

Aryasetiawan (Aryasetiawan et al., 1996). They report accurate results for localized as

well  as  delocalized  states  especially  to  experimental  binding energies.  Nevertheless,

there  is  still  no  agreement  against  systems with  strong Coulomb correlation  effects

(Kharazanov et al., 2007). Fleszar (Fleszar et al., 2005) compared the RPA self-energy

with the plasmon pole model for the binding energies of cation semicore d-states and

observed that the PPM causes the GW energy gaps to get larger, the semicore states to

be more bound and the occupied bandwidths to undergo an opposite shift. Plasmon-pole
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models  have  a  frequency  dependence  in  screening  which  makes  the  calculations

significantly  more  efficient  where  only  the  response  matrices  at  zero  frequency  is

calculated  instead  of  a  dense  mesh  of  frequencies.  The  self-energy  integration  was

performed analytically. Luo (Luo et al., 2002) also applied a generalized PPM to obtain

frequency dependent dielectric matrices to construct the screened Coulomb interaction.

Oshkiri (Oshikiri et al., 1999) applied the random phase approximation (RPA) where the

exchange correlation corrections to electron excitation energies are taken into account

via  non-local  energy  dependent  and  non-Hermitean  self-energy  operator.   They

observed that the RPA overscreens and lowers 3d semicore binding energy. Zakharov

(Zakharov et al., 1994) applied the Levine-Louie model dielectric function as  input to

the GWA and observed that the corrections to conduction bands have more complicated

character than corrections to valence bands.

 

4.3.1 Band Energies

In this work, we firstly compared our ground state and excited state band structure

with  previous  results.  We  observe  that  relatively  good  agreement  is  reached  with

previous  studies for  band energies  below the Fermi energy.  Bands above the Fermi

energy do not  show much difference transitioning from LDA to GWA compared to

previous studies. This may be attributed to the various methodologies and basis sets to

obtain the band energies in previous studies. The LDA band gap in this present study is

in agreement with LDA calculation of previous studies while the GWA band gap is in

agreement with other one shot GWA studies such as that by (Chen et al.,  2014) and

Fleszar  (Fleszar  et  al.,  2005).  We then  proceed  to  obtain  the  spectral  function  and

momentum distributions.  We have used a scissors shift of the magnitude 1.3 eV on the

Fermi energy of our calculation which was -1.7885 eV to obtain the spectral functions

and momentum densities. With the momentum distributions, we then proceed to obtain

the Compton profile. From the outset, the GWA profiles seems to be in better agreement
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compared to the LDA profile. This is confirmed in our study on the difference profiles

which we compared with the experimental and theoretical results of Ahuja (Ahuja et al.,

2007). 

Table 5.2: Comparison of LDA and GWA band energies from our present study
with previous studies over three high symmetry k-points. 

They obtained the Compton profile from LDA, GGA and B3LYP functionals where

an effective core pseudopotential was used to obtain the valence electron calculation

with the Bloch states consisting of Zn d and Se sp components. In our work, we observe

between  0-1.5  a.u,  there  is  a better  agreement  to  the  previous  study  via  the  GWA

difference profile compared to the LDA difference profile. Above, 1.5 a.u, both cases

show no agreement  with  the  previous  study.  We conclude  that  improvement  to  the

pseudopotential technique to obtain the Compton profile is possible if the sharp Fermi

break of the momentum distribution between a high and low momenta becomes more

smeared. Using the broadened spectral functions via the contour deformation method to

obtain the momentum distributions,  the GWA is  natural  tool  to  achieve this  via  the

contribution from the dielectric screening to the quasiparticle energies.
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Band energies
Present Study Gurel Zakharov Fleszar Oshkiri

LDA GWA LDA GWA LDA GWA GW-psp LDA GWA

G1v -12.491 -16.31 -13.02 -13.27 -13.49 -12.92 -13.49 -13.23 -12.9 -13.66 -13.42 -13.27
G15v -5.5182 -4.23 -6.69 -7.3 -7.42 -7.02 -8.82
G12d -5.5182 -4.23 -6.33 -6.98 -7.04 -6.72 -8.75
G15v 0 0 0 0 0 0 0 0 0 0 0 0
G1c 1.8677 1.915 2.67 1.26 2.84 1.45 2.84 1.02 2.37 2.46 1.07 3.1

G15c 6.33995 6.409 6.5 5.79 7.67 6.12 7.67 5.85 7.95
L1v -11.7 -17.35 -12.28 -12.49 -12.44 -11.88 -12.44 -12.15 -12.15 -12.8
L1v -5.3691 -4.868 -4.85 -5.23 -5.23 -4.92 -5.23 -5.12 -5.12 -5.6
L3v -0.0367 -2.008 -0.79 -0.87 -0.81 -0.76 -0.81 -0.88 -0.88 -0.94
L1c 3.10984 3.749 3.61 2.52 4.14 2.74 4.14
L3c 6.95926 7.962 6.91 6.4 8.18 6.63 8.18 2.31 3.68 3.76
X1v -11.432 -25.911 -12.02 -12.21 -12.07 -11.52 -12.07 -12.15 -11.89 -12.51
X3v -4.02 -6.4 -4.38 -4.77 -5.03 -4.7 -5.03 -4.86 -4.79 -5.09
X5v -1.3698 -4.04 -2.03 -2.19 -2.08 -1.96 -2.08 -2.2 -2.2 -2.38
X1c 3.57541 3.505 3.78 3 4.41 3.09 4.41 2.79 3.92 3.94
X3c 4.02628 4.089 4.25 3.47 5.01 3.64 5.01

    Band      
energies

MBJ  
LDA

GGA  
(PBE)

Theory & 
Exp
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The physical properties of ZnSe can be determined by initalizing localized semicore

d  electrons  with  valence  sp  electrons  (Rocquefelte  et  al.,  2005).  In  comparison  to

previous calculations (Zakharov et al., 1994; Ahuja et al., 2007), we have determined

that  the  valence  bands  account  for  the  7th,  8th and  9th bands.  We present  the  band

structure and partial density of states (PDOS) in Figure 1. These bands are accounted by

three regions as seen in the PDOS. The first region is in the range of -3 to 0.2 eV has

mainly p-orbital components from Zn and Se. The second region is in the range of -5.2

to 3 eV has mainly p-orbital components from Se and s- and d-orbital components from

Zn. The third region is in the range -6 to -6.7 eV consists of a well localized Zn 3d

contribution with Se  p-orbital  components.  Referring to Table 5.2,  the present study

shows that the lowest energy band for all three high symmetry k-points seems to be in

agreement in  the case of LDA but is  almost twice the energy in the case of GWA.

However, relatively good agreement is reached with previous studies for bands below

the Fermi energy for the  Γ point while the  X and  L points are slightly larger as LDA

transitions to GWA. 

The  energy  bands above  the  Fermi  energy  does  not  show  much  difference

transitioning from LDA to GWA compared to  previous  studies.  Differences  may be

attributed to the various methodologies and basis sets to obtain the band energies. These

discrepancies have also been reported in studies involving the GW method where full

GW  calculations  undergo  contraction  of  valence  bands  while  GW-pseudopotential

method  undergoes  expansion of  valence  bands  if  compared  to  LDA (Fleszar  et  al.,

2004). As reported in previous studies (Aryasetiawan et al., 1996; Karazhanov et al.,

2006;  Fleszar  et  al.,  2004;  Luo et  al.,  2002;  Oshkiri  et  al.,  1999),  we also observe

underbinding of 3d orbitals to the top of the valence bands. This hybridization with Se

2p bands falsifies band dispersions and reduces band gaps and contradicts XPS findings

(Karazhanov et al.,  2006). It has been reported by (Zakharov et  al.,  1994) 3d levels

included in the valence causes strong  p-d orbital hybridization and is responsible for
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reduction of gap and appearance of strong 3d levels. When Zn 3d electrons are placed

into the core of the pseudopotential, the top of the VB structures change minimally for

LDA and  GGA.  It  is  concluded  that  Zn  3d  is  responsible  for  the  order  of  states

(Karazhanov et al., 2006). 

Figure 5.5: Band structure and partial density of states of ZnSe along three high
symmetry k-points. The horizontal dashed line represents the Fermi energy.

The  calculated  gap  is  obtained  from  the  energy  difference  between  the  lowest

conduction band and the top of the valence band at the Γ point as shown in Table 5.3.

The LDA band  gap in  this  present  study is  in  agreement  with  LDA calculation  of

previous studies. As has been reported previously, the error in calculation of the band

gap using LDA or GGA is more severe in semiconductors due to a poor description of

strong Coulomb correlation effects for narrow d-band electrons which originates from

the mean field character of Kohn-Sham equations (Karazhanov et al.,2007; Karazhanov

et al.,2006). The d-electrons as valence produces a smaller gap due to p-d hybridization

of upper valence band with d-states resulting in upward repulsion causing a reduction in

gap (Zakharov et al.,1994).  Use of the GGA functional, hybrid functionals and the U

term seems to increase the band gap but still far from the experimental value. 
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Table 5.3:  Comparison of  band gaps of  LDA and GWA energies  with previous
studies.

4.3.2 Spectral Functions and Momentum Densities

The quasiparticle shift originates from the competition between the widening effect

of the pure exchange part and opposite effect of correlation part of self-energy for the

valence band maximum (Fleszar et al., 2004). The contour deformation method agrees

with a previous  assessment  in  (Fleszar  et  al.,  2004) where the plasmon pole model

creates a larger quasiparticle shift compared to LDA for the valence band maximum

(VBM). Our GWA band gap is in agreement with other one shot GWA studies such as

that  by Chen (Chen et  al.,  2014)  and Fleszar  (Fleszar  et  al.,  2004).  We agree with

previous reports that GW-pseudopotential/GW-RPA with a one shot perturbation still

cannot reproduce experimental energies containing semicore electrons (Fleszar et al.,

2004).   Application of the Quasiparticle Self-consitent GW (QSGW) or Vertex function

with RPA seems to increase the band gap closer to experiment.
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Band gaps, Ev

Gurel MBJLDA 2.67 Oshkiri GWA 3.1 Madelung Expt 2.82

GGA(PBE) 1.26 2.84

2.82 Gurel GW 2.24, 2.58

LDA(PW) 1.5 Zakharov GWA 2.84
GGA(PBE) 1.47 L3v-L1c, GW 4.95

Zakharov LDA 1.45 X5v-X1c,GW 6.49
Fleszar LDA 0.88 Fleszar GWA 2.24

Luo GGA 1.32 GW-RPA 2.58
Chen PBE 1..23 GW Vertex 2.33

PBE(0.25) 2.92 GW-RPA Vertex 2.68

Rocquefeite GGA(PBE) 2.69 Luo GWA 2.51

Karazhanov LDA 1.0793 Updated GWA 2.69

GGA 1.3349 Chen GWA(0) 2.28
LDA+U 1.4214 GWA(0.25) 3.06

QSGW (PBE) 2.56

3.26

LDA GWA

GGA   
(PBE+∆E)

Self-cons. 
QSGW

Present 
study

0.983 ± 
2.679

1.915±2.58
5
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Figure 5.6: (a) and (b) represent spectral functions in directions [100] and [110]
respectively. The vertical dotted line represents the Fermi energy of -3.0717 eV. (c)
and (d) represent momentum densities obtained from the occupation number and
spectral functions for LDA and GWA respectively. We compare these momentum
densities to a hypothetical best-fit momentum densities. The vertical dotted lines
represent the Fermi momentum at 0.4158 a.u. and 0.5310 a.u. for [100] and [110]
respectively.

The scissor operator is the simplest method to correct the LDA band gap. A rigid shift

of conduction band states up to experimentally determined locations provide a good first

approximation for determining the band gap. However whether a scissor operator is

applicable  to  semiconductors  with  strong  Coulomb  correlation  effects  is  still  open

(Karazhanov et al., 2007).  In previous studies, the scissor shift of 1.3 eV for ZnSe-zb

was applied to the study of refractive indices of isoelectronic chalcogenides where the

conduction band was shifted rigidly with respect to the top of the valence band until the

correct band gap was obtained (Rocquefelte et al., 2005). In this work, we have used a

shift of 0.9 eV on the Fermi energy of our calculation which was -2.577 eV to obtain the

spectral functions as given in Figure 5.6(a) and (b). As described by Olevano (Olevano

et al., 2012), we choose the value of the cumulant of the spectral function at the Fermi

energy for each calculated k-point to construct the momentum density as shown Figure

5.6 (c) and (d). 
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Figure 5.7: (a) and (b) compares the convoluted Compton profile using LDA and
GWA energies  against  experimental  and  theoretical  Compton  profiles  from  a
previous study in directions [100] and [110]. (c) and (d) represents the difference
profiles in directions [100] and [110]. 

4.3.3 Compton Profiles

The  unconvoluted  Compton  profile  is  obtained  by  firstly  fitting  the  momentum

density obtained as described above with the Fermi-Dirac distribution. We then multiply

the fitted function with its respective momenta and integrate this result to obtain the

unconvoluted profile. We then perform convolution with a Gaussian of 0.38 a.u using

Mathematica in order to compare with a previous study by Ahuja (Ahuja et al., 2007).

This value represents the resolution function of the instrument normalized to the free

atom profile (Vyas et al., 2010). Our convolution is normalized to fit the experimental

data for the directions [100] and [110] respectively and is shown in Figure 5.7 (a) and

(b). 

Compton  profile  data  is  interpreted  in  terms  of  the  difference  between  pairs  of

directional profiles (Ahuja et al., 2007). This eliminates residual systematic errors like

failure of impulse approximation, Bremstrahlung contribution, multiple scattering and
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isotropic core contribution. In their study of the difference profiles, Ahuja observes the

use  of  the  B3LYP functional  gives  the  best  fitting  to  experiment.  We  have  thus

compared their difference profile to the difference profile obtained from comparing our

LDA and GWA profiles with their experimental data as shown Figure 5.7 (c) and (d).

Between 0-1.5 a.u, both cases seem to improve on the difference profile of Ahuja. There

is  slightly  better  agreement  via  the  GWA difference  profile  compared  to  the  LDA

difference profile. Above, 1.5 a.u, the GWA Compton profile generally shows better

agreement  compared to  LDA especially  in  the direction  [100].  Nevertheless,  in  this

range Ahuja's study still shows better agreement to experiment. In previous studies, the

difference  profiles  in  this  region  is  said  to  not  change  with  respect  to  experiment

because the contribution to this momentum region is due to inner electrons unaffected

by compound formation (Vyas et  al.,  2010).  Any discrepancies from experiment are

related  to  pseudopotential  calculations  which  have  been  observed  to  overestimate

momentum density at J(0) while the reverse trend is seen at J(4)-J(1.5) (Ahuja et al.,

2007). We thus conclude that improvement to the pseudopotential technique to obtain

the Compton profile is possible as the momentum distribution becomes more smeared at

the Fermi break between high and low momenta at the cost of the neglecting the sharp

Fermi break.  The GWA is natural tool  to achieve this  via the contribution from the

dielectric screening to the quasiparticle energies. 
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CHAPTER 5 : CONCLUSION

In  this  work,  we  have  performed  first  principles  calculations  on  crystalline  late

TMOs, TiO2 and ZnSe to obtain their respective energies, spectral functions, momentum

densities and Compton profiles. For NiO and TiO2  we have calculated our ground state

band gap to be 3.444±2.721 eV and 3.115±0.578 eV while the excited state band gap to

be 0.253±4.247 eV and 1.667±1.807 eV for NiO and  TiO2  respectively.   In the case of

NiO,  the  excited  state  band  gaps  for  k-points  near  the  origin  and  at  the  origin

respectively  are  much  smaller  compared  to  ground  state  calculations.  This  can  be

attributed to shortcomings in the GWA to account for d-orbital contributions and the

limitations of computational resources as discussed in the text.  We have thus opt to

apply a scissor operator to shift the energies of the G point as well as the 4 k-points to

the left  and right  of  G by 4.3 eV in the  case  of  NiO.  The valence band energy is

observed to have its largest contribution from the TM 3d orbital and a small contribution

from the  O 2p orbital.  These  bands  are  seen  to  be  strongly  localized  with  a  weak

dispersion. However, they are not shifted to a lower energy compared to previous works

unless a scissor shift is applied. Above the Fermi energy, GWA is seen to push the  d-

orbitals and 4s state to a slightly higher energy. Similarly, the valence energies of TiO2

are seen to have a hybridized contribution between TM d-orbitals, O  p-orbitals and a

small contribution from Ti  p-orbitals. After obtaining the Fermi energy and momenta,

we then present the spectral function of these oxides. Our spectral functions for NiO are

broadened and contains shoulder similar to what has been observed in earlier studies.

This is in contrast to TiO2 which does not have broadened spectra. This is attributed to

the smaller contribution of d-orbital to TiO2 for the valence energies compared to NiO.

With the spectral  functions,  we can proceed to  obtain the momentum densities.  We

explain the shape of the momentum density of NiO in terms of the cumulant functions

which are obtained from the broadened spectral functions as oppose to TiO2 which have

Dirac-delta like spectral functions. This shows the importance played by the self-energy
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from a  GWA calculation  to  shape  the  momentum densities  of  two different   TMO

systems.  In  comparing  the  LDA and  GWA momentum  densities,  the  GWA NiO

momentum density  is  seen  to  be 17 % smaller  compared to  the LDA in  the  lower

momentum region. In the high momentum region, the GWA TiO2 momentum density is

much smaller compared to LDA. With these two types of momentum densities we can

now  perform  a  comparison  of  their  Compton  profiles  to  previous  studies.  NiO  is

observed to generally have a good fit with previous experimental results. However, a

larger  disagreement  in  GWA compared  to  LDA is  observed  in  the  origin  of  the

difference  profiles.  This  can  be  improved  with  an  increased  resolution  of  k-points.

Nevertheless, the sum of absolute values of the difference profiles is smaller in the case

of GWA compared to LDA indicating generally better agreement. Its anisotropy agrees

with previous experimental results in which submaxima structure is non-existent. For

TiO2,  we  observe  that  the  GWA reproduces  a  smaller  difference  profile  at  higher

momenta compared to LDA. Our profile agrees with previous results at lower momenta

with  a  disagreement  seen  at  the  origin.  We conclude  by  observing  that  our  QPRF

indicates  that  the  correlation  portion  of  the  self-energy  is  more  significant  in  NiO

compared to TiO2.

In our study of NiO, CoO and FeO, we similarly observed that the excited state band

gaps are much smaller for  k-points near the origin compared to the ground state band

gaps. We thus applied a scissor shift to these  k-points to improve agreement with the

experimental band gaps. We observe that NiO can produce a larger band gap compared

to FeO and CoO via GWA. All oxides show broad valence band shoulders but disagree

with the valence band energies of previous calculations with the scissor operator. With

the Fermi energy and momenta we obtained the spectral functions of these oxides. We

observe that NiO has twice braodened spectra compared to FeO and CoO. This has been

attributed to the twice larger d-orbital contribution as observed in the partial density of

states. With the spectral functions, then proceed to construct the momentum density. For
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the cause of FeO and CoO, we have firstly improved on the lowered density near the

Fermi break  by fitting the  spectral  functions  of  these  k-points  to  a  Lorentzian.  Our

momentum  densities  show  difference  to  the  noninteracting  electron  gas  where  we

observe occupancy above the Fermi break attributed to the GWA. The NiO momentum

density is more occupied in the low momentum region compared to FeO and CoO and

this  confirms the role  of NiO as  a  strongly correlated system. With the momentum

density, we can proceed to construct the Compton profile. GWA and LDA Compton

profile are seen to generally not show any difference. However, the difference profile

reveals  that  in  the  direction  [001],  the  correlation  correction  is  smaller  in  the  low

momenta compared to [101] while the higher momenta goes to zero. This is similarly

attributed to a larger d-orbital contribution along [001] as observed in the partial density

of states. The large fluctuation at the intermediate level in both directions reflect that the

self-energy has a large effect in this region. Our anisotropy does not reflect oscillatory

structures as compared to previous studies. However the amplitude of the anisotropy of

NiO is seen to be larger than FeO and CoO. This is attributed to asymmetry of valence

electron profiles induced by spectral functions and vertex corrections.

In our study of ZnSe, we firstly compared our ground state and excited state band

structure with previous results. We observe that relatively good agreement is reached

with previous studies for band energies below the Fermi energy. Bands above the Fermi

energy do not  show much difference transitioning from LDA to GWA compared to

previous studies. This may be attributed to the various methodologies and basis sets to

obtain the band energies in previous studies. The LDA band gap in this present study is

in agreement with LDA calculation of previous studies while the GWA band gap is in

agreement with other one shot GWA studies. Specifically we have calculated our ground

state band gap to be 0.983±2.679 eV while the excited state band gap to be 1.915±2.585

eV. We then proceed to obtain the spectral function and momentum distributions.  We

have  used  a  scissors  shift  of  the  magnitude  1.3  eV  on  the  Fermi  energy  of  our
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calculation  which  was  -1.7885  eV to  obtain  the  spectral  functions  and  momentum

densities. With the momentum distributions, we then proceed to obtain the Compton

profile. From the outset, the GWA profiles seems to be in better agreement compared to

the LDA profile. This is confirmed in our study on the difference profiles which we

compared with  the  previous  experimental  and theoretical  results.  They obtained the

Compton  profile  from LDA,  GGA and  B3LYP functionals  where  an  effective  core

pseudopotential  was  used  to  obtain  the  valence  electron  calculation  with  the  Bloch

states consisting of Zn d and Se sp components. In our work, we observe between 0-1.5

a.u,  there is  better  agreement  to  the  previous  study via  the GWA difference  profile

compared to the LDA difference profile. Above, 1.5 a.u, both cases show no agreement

with  the  previous  study.  We  conclude  that  improvement  to  the  pseudopotential

technique to  obtain the Compton profile  is  possible  if  the sharp Fermi break of the

momentum distribution between high and low momenta becomes more smeared. Using

the  broadened  spectral  functions  via  the  contour  deformation  method  to  obtain  the

momentum distributions, the GWA is natural tool to achieve this via the contribution

from the dielectric screening to the quasiparticle energies. 

Our work has shown that the GWA contour deformation method with the scissor shift

to calculate calculate Compton profiles is able to provide better agreement to previous

experimental  results  compared  to  ground  state  calculations.  This  is  specifically

attributed to the broadening of the spectral function used to obtain the Compton profiles.

With this broadening and results from the projected density of states, we are able to

explicitly  determine  angular  momentum orbital  contribution  to  Compton profiles.  A

future endeavor might consist of applying muffin tin or projector augmented wave basis

sets which have been shown to be computationally cheaper to obtain the band energies

and spectral functions. 
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