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LAZY COP NUMBER AND OTHER RELATED GRAPH PARAMETERS

ABSTRACT

In this thesis, we focus on graph parameters in the game of Cops and Robbers and the

burning number of graphs. The game of cops and robbers is a two-player game played on

a finite connected undirected graph G. The first player occupies some vertices with a set

of cops, and the second player occupies a vertex with a single robber. The cops move first,

followed by the robber. After that, the players move alternately. On the cops’ turn, each of

the cops may remain stationary or move to an adjacent vertex. On the robber’s turn, he

may remain stationary or move to an adjacent vertex. A round of the game is a cop move

together with the subsequent robber move. The cops win if after a finite number of rounds,

one of them can move to catch the robber, that is, the cop and the robber occupy the same

vertex. The robber wins if he can evade the cops indefinitely. The cop number is the main

graph parameter in the game of cops and robbers. In this thesis, we investigate the cop

number and lazy cop number of a graph G, the minimum order of graphs for small value

of cop number and the capture time. Our results focused on a variant of the game, the

lazy cops and robbers, where at most one cop moves in any round. Burning a graph is

a process defined on the vertex set of a simple finite graph. Initially, at time step t = 0,

all vertices are unburned. At the beginning of every time step t ≥ 1, an unburned vertex

is chosen to burn (if such a vertex is available). Thereafter, if a vertex is burned in time

step t − 1, then in time step t, each of its unburned neighbours becomes burned. A burned

vertex will remain burned throughout the process. The process ends when all vertices are

burned. The burning number of a graph G, denoted by b(G), is the minimum number of

time steps required to burn a graph. In this thesis, we give a survey on some known results

of burning number of certain graphs and present the bounds on the burning number of the
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generalized Petersen graphs.

Keywords: cop number, lazy cop number, minimum order, burning number, generalized

Petersen graphs.
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LAZY COP NUMBER DAN PARAMETER-PARAMETER GRAF LAIN YANG

BERKAITAN

ABSTRAK

Dalam tesis ini, kami menumpukan pada parameter graf dalam permainan polis

dan perompak serta nombor pembakaran graf. Permainan polis dan perompak ialah

sesuatu permainan yang melibatkan dua pemain yang dimainkan pada satu graf berikat

yang terhingga dan tidak berarah G. Pemain pertama meletakkan satu set polis pada

beberapa mercu manakala pemain kedua meduduki satu perompak pada satu mercu.

Polis-polis bergerak dahulu dan diikuti dengan perompak. Selepas itu, kedua-dua pemain

bergerak secara alternatif. Pada giliran polis, setiap polis boleh pegun atau bergerak ke

mercu bersebelahan. Pada giliran perompak, dia boleh pegun atau bergerak ke mercu

bersebelahan. Satu pusingan pada permainan ini ialah satu giliran polis diikuti dengan

satu giliran perompak. Polis menang sekiranya selepas beberapa pusingan, salah satu polis

boleh bergerak untuk menangkap perompak tersebut, maksudnya, polis tersebut menduduki

mercu yang sama dengan perompak. Perompak menang sekiranya dia boleh mengelakkan

polis selama-lamanya. Cop number ialah parameter graf utama dalam permainan polis

dan perompak. Dalam tesis ini, kami mengkaji cop number dan lazy cop number satu graf

G, bilangan mercu minimum pada graf yang cop number-nya kecil dan masa penangkapan.

Keputusan kami menumpukan pada variasi permainan ini, polis malas dan perompak, di

mana maksimum satu polis bergerak pada setiap pusingan. Membakar satu graf ialah satu

proses yang didefinisikan pada set mercu satu graf mudah dan terhingga. Pada mulanya,

pada langkah masa t = 0, semua mercu tidak terbakar. Pada permulaan sesuatu langkah

masa t ≥ 1, satu mercu tidak terbakar dipilih untuk dibakarkan (sekiranya mercu tidak

terbakar wujud). Selepas itu, sekiranya sesuatu mercu dibakarkan pada langkah masa
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t − 1, pada langkah masa t, setiap jiran mercu tersebut yang tidak terbakar dibakarkan.

Sesuatu mercu yang terbakar akan kekal terbakar sepanjang proses ini. Proses ini tamat

apabila semua mercu telah dibakarkan. Nombor pembakaran satu graf G, dilambangkan

b(G), ialah nombor minimum langkah pembakaran yang diperlukan untuk membakarkan

graf tersebut. Dalam tesis ini, kami memberikan satu kajian mengenai keputusan yang

sudah diketahui pada sesetengah graf dan menunjukkan sempadan nombor pembakaran

graf Petersen umum.

Kata kunci: cop number, lazy cop number, bilangan mercu minimum, nombor pem-

bakaran, graf Petersen umum.
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CHAPTER 1: INTRODUCTION

What do the perennial childhood game such as hide-and-seek as well as the computer

gamePac-Man and themilitary pursuit of a target have in common? Since time immemorial,

regardless of locality, man has indulged in thrills that give him that giddy adrenaline rush,

and the aforementioned activities are in actual fact, of the same genre as “pursuits and

escapes”. As we grow older, the fascination for different sorts of games become more

sophisticated and complex.

The mathematical puzzles of pursuit and escapes are of great interest today among

mathematicians and computer scientists. This is because graph searching is a fast

developing area of study within graph theory. The popular game of “Cops and Robbers”

plays on graphs and has a number of motivating applications, besides providing interesting

mathematical questions. There are many search problems on a network that can be

formulated as some variant of the game of cops and robbers, such as searching for a lost

person in a network of caves or a virus in a computer network, mostly modifying the

network used. The cop number of a graph can be thought of as a measure of the ease

of searching the graph. Besides, networks that require a smaller number of cops may be

viewed as more secure than those where many cops are needed.

Recently, Kramer et al. (2014) studied the spread of emotional contagion in Facebook.

They highlighted the fact that the underlying network is an essential factor such that

emotional states are contagious via emotional contagion. Netizens are experiencing the

same emotions without their awareness, moreover, without direct interaction between

people and in complete absence of nonverbal cues. Hence, agents in the network spread

the contagion to their friends or followers, and the contagion propagates over time. So,

if the goal was to minimize the time for the contagion to reach the entire network, then
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which agents (and in which order) would you target with the contagion?

Graph burning was recently introduced as a simple model of spreading social influence,

see (Bessy et al., 2017; Bonato et al., 2014; Bonato et al., 2016; Roshanbin, 2016). This

process is inspired by contact processes on graphs such as graph bootstrap percolation,

and graph searching paradigms such as Firefighter (Barghi & Winkler, 2015; Finbow &

MacGillivray, 2009). The main parameter in graph burning is the burning number. The

burning number measures the speed of the spread of contagion in a graph; the lower the

burning number, the faster the contagion spreads. We can use graphs to model the structure

of social networks in real life.

In this thesis, we focus on graph parameters in the game of cops and robbers and the

burning of a graph. In the upcoming sections in this chapter, we shall introduce the rules

of the game of cops and robbers and burning of graphs followed by some basic definitions

and notations of graphs.

1.1 How to play the games?

Here, we give some rules of the game of cops and robbers and how to burn a graph.

1.1.1 The game of cops and robbers

The game of cops and robbers is a two-player game played on a finite connected

undirected graph. It was independently introduced by Quilliot (1978) and Nowakowski

and Winkler (1983). The first player occupies some vertices with some number of cops

(multiple cops may occupy a single vertex) and the second player occupies a vertex with

a single robber. After that they move alternatively along the edges of the graph. On the

cops’ turn, each of the cops may remain stationary or move to an adjacent vertex. On the

robber’s turn, he may remain stationary or move to an adjacent vertex. A round of the

game is a cop move together with the subsequent robber move. The cops win if after a

2
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finite number of rounds, one of them can move to catch (or capture) the robber, that is, the

cop and the robber occupy the same vertex. The robber wins if he can evade being caught

indefinitely. A cop winning strategy refers to a set of instructions for the cops, if followed,

guarantees that the cops can win any game played on G, regardless of how the robber

moves throughout the game. Similarly, a robber winning strategy is a set of instructions

for the robber, if followed, to evade capture indefinitely. The game of cops and robbers is

often called a vertex-pursuit game on graphs. In this game, both the cops and robber play

optimal strategies (that is, the cop is trying to make the game as short as possible while the

robber is avoiding capture as long as possible).

The game of cops and robbers is a game of perfect information. That is, each player

is aware of all the movements of the other player. A detailed survey on some graph

parameters of the game of cops and robbers is presented in Chapter 2.

1.1.2 Burning a graph

As mentioned, graph burning is a discrete-time process that can be used to model the

spread of social contagion in social networks. It was introduced in (Bonato et al., 2014;

Bonato, Janssen, & Roshanbin, 2016; Roshanbin, 2016).

This process is defined on the vertex set of a simple finite graph. Throughout the

process, each vertex is either burned or unburned. Initially at time step t = 0, all vertices

are unburned. At the beginning of every time step t ≥ 1, an unburned vertex is chosen to

burn (if such a vertex is available). After that, if a vertex was burned in time step t − 1,

then in time step t, each of its unburned neighbours becomes burned. A burned vertex will

remain burned throughout the process. The process ends when all vertices are burned, in

which case we say the graph is burned.

The main study in graph burning is the burning number of a graph G, denoted as b(G),

which is the minimum number of time steps needed to burn the graph G. We shall further

3

Univ
ers

ity
 of

 M
ala

ya



discuss some known results on burning number of certain graphs in Chapter 2.

1.2 Definitions and Notation

In this section, the basic definitions and notation which will be frequently referred

throughout this thesis are presented. For standard terms and definitions not included here,

the reader is referred to (Chartrand & Lesniak, 1996; West, 2001; Wilson, 1996).

As a number of asymptotic results will be presented, we give some corresponding

notation. Let f and g be functions whose domain is some subset of R. We write f ∈ O(g)

if the limit

lim
x→∞

f (x)
g(x)

exists and is finite. And by writing f = O(g), we mean there is a constant c > 0 (not

depending on x) such that for all x > N , f (x) ≤ cg(x).

We write f = Ω(g) if g = O( f ) and f = Θ(g) if f = O(g) and f = Ω(g). If

limx→∞
f (x)
g(x) = 0, then f = o(g) (or g = ω( f )). So if f = o(1), then f tends to 0.

If x is a real number, then 1+ x ≤ ex . We shall sometimes write ex as exp(x), especially

when x is a complicated expression.

A graph G is an ordered pair (V,E), where the vertex setV = V(G) is a finite non-empty

set, and the edge set E = E(G) is a family of unordered pairs of elements from V . The

elements in V(G) (respectively E(G)) are called vertices (respectively edges). Two vertices

u, v ∈ V(G) are adjacent if {u, v} ∈ E(G), and we say there is an edge uv joining them.

Two vertices u and v are said to be incident with the edge uv, that is, u and v are endpoints

of uv. Similarly, two distinct edges e and f are adjacent if they are incident to a common

vertex, otherwise they are non-adjacent. A set of pairwise non-adjacent vertices is called

an independent set of vertices.

4
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The cardinality |V(G)| is the order of G, while |E(G)| is its size. Let u be a vertex.

Its neighbour set of u, defined as N(u), is the set of vertices adjacent and not equal to u

(also called neighbours of u). The closed neighbour set of u, written as N[u], is the set

N(u) ∪ {u}.

A subgraph G′ = (V ′,E′) of a graph G = (V,E) is a graph where V ′ ⊆ V and E′ ⊆ E .

Let S ⊆ V(G). An induced subgraph of G is the graph induced by the set of vertices S;

that is, the graph with vertices in the set S, with two vertices are adjacent if and only if

they are adjacent in G. A subgraph S is a spanning subgraph of G if V(S) = V(G). We

write G − S to be the subgraph induced by V(G) \ S. Particularly, if S = {x}, then we write

G − x. If H is an induced subgraph of G, then we may write G − H for G − V(H).

The degree of a vertex u ∈ V(G), written as degG(u), is the cardinal |N(u)|. The

minimum degree of G, denoted as δ(G), is the degree of the vertex with the least number

of neighbours adjacent to it. Similarly, the maximum degree of G, denoted as ∆(G), is

the degree of the vertex with the greatest number of neighbours adjacent to it. A graph is

k-regular if each vertex of the graph has degree k.

A path is a sequence of vertices such that each vertex is adjacent to the next vertex in

the sequence; the length of a path is the number of its edges. A path of order n is denoted

by Pn. P[x, y] is a path with endpoints x and y and P(x, y) = P[x, y] − {x, y}. A cycle

Cn is a sequence of n vertices such that each vertex is adjacent to the next vertex in the

sequence of modulo n. Note that in a cycle the number of vertices and edges are equal.

The length of a cycle is the number of edges in the cycle. The girth of a graph is the length

of a shortest cycle contained in the graph. A connected graph without any cycles is called

a tree. A tree is typically denoted by T . It is straightforward that a tree with n vertices has

n − 1 edges. In fact, every minimal connected graph is a tree. It is also known that a graph

T is a tree if and only if every pair of the vertices in T are connected by a unique path.

5
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A graph G is said to be connected if for any two vertices u and v in G, there exists a

path from u to v; if there is no such path, then G is said to be disconnected. Further, if a

graph is disconnected, then it is the disjoint union of several connected graphs called the

connected components of the graph. Therefore, a graph is connected if and only if it has

only one component; it is disconnected if and only if it has more than one component. A

connected component consisting of a single vertex is called an isolated vertex. A graph

G is said to be k-connected (or k-vertex-connected) if it has more than k vertices and the

result of deleting any set of fewer than k vertices is a connected graph. A cut vertex is one

whose deletion results in a disconnected graph.

A homomorphism f from G to H is a function f : V(G) → V(H) that preserves edges;

that is, if xy ∈ E(G), then f (x) f (y) ∈ E(H). We shall simply write f : G→ H to refer a

homomorphism from G to H. An isomorphism from G to H is a bijection f : G → H

such that f (x) f (y) ∈ E(H) if and only if xy ∈ E(G). If there is an isomorphism from G

to H, we say that G and H are isomorphic, written as G � H. An automorphism of G is

an isomorphism from G to itself. A graph G is vertex-transitive if for all pairs of vertices u

and v of G, there is an automorphism f of G, so that f (u) = v.

The distance between u and v where {u, v} ∈ V(G), denoted by distG(u, v) (or dG(u, v)),

is the length of a shortest path connecting u and v (and 0 if u = v). We write dist(u, v)

(or d(u, v)) if the graph in question is clear. The eccentricity of a vertex u in graph G

is defined as max{dist(v,u) : v ∈ V(G)}. The radius of G, denoted as rad(G), is the

minimum eccentricity over the set of all vertices in G. The diameter of G, denoted

by diam(G), is the maximum eccentricity over the set of all vertices in G, equivalently

diam(G)=max{dist(v,u) : u, v ∈ V(G)}.

The complement G of a graph G is the graph with vertex set V(G) and edge set

{uv : uv < E(G),u, v ∈ V(G)}. A complete graph is a graph whose vertices are pairwise
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adjacent. It is denoted as Kn if it has n vertices. The complement of a complete graph with

n vertices is denoted as Kn where E(Kn) = ∅. A bipartite graph is a graph whose vertex

set can be partitioned into two independent sets called partite sets V1 and V2, such that each

edge joins a vertex of V1 to a vertex of V2. A complete bipartite graph is a simple bipartite

graph such that two vertices are adjacent if and only if they are in different partite sets.

When the two partite sets have m and n vertices respectively, then the complete bipartite

graph is denoted as Km,n.

In a graph G, a set S ⊆ G of vertices is a dominating set of G if every vertex in G \ S has

at least one neighbour in S. The domination number of G, written as γ(G), is the minimum

cardinality of a dominating set. Since placing a cop on each element of a dominating set

of a graph G ensures a win for the cops in at most two rounds, we have the obvious bound

of c(G) ≤ γ(G).

Given two graphs G and H, their Cartesian product G�H is a graph with vertex set

V(G) ×V(H) and two vertices (u1, v1) and (u2, v2) are adjacent in G�H if and only if either

(i) u1 = u2 and v1 is adjacent to v2 in H, or

(ii) v1 = v2 and u1 is adjacent to u2 in G.

A hypercube of dimension n, written as Qn, is the graph with vertex set {0,1}n where

two vertices are adjacent if and only if they differ in exactly one coordinate. See Figures

1.1 and 1.2.

Let n and k be two integers such that 1 ≤ k ≤ n − 1. The generalized Petersen

graph P(n, k) is the graph with vertex set {ui, vi : i = 0,1, ...,n − 1} and edge set

{uiui+1,uivi, vivi+k : i = 0,1, ...,n − 1 with subscripts reduced modulo n}. The classical

Petersen graph P(5,2) is depicted in Figure 1.3.

For ease of reading, we shall define some other specific graphs and terminologies in the

relevant chapters.
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Figure 1.1: Q2 and Q3
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1.3 Chapter overview

Many of the results in this thesis appeared in (Sim, K. A. et al., 2016, 2017, 2018).

In Chapter 2, we define and give a survey on some graph parameters related to the game

of cops and robbers. We will also present some variants to the standard game of cops

and robbers and consider some fundamental facts about cop number and the well-known

Meyniel’s conjecture. We also provide some known results of cop number for basic

graphs. Then, we focus on the game of lazy cops and robbers. Moreover, we present the
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Figure 1.3: The Petersen graph P(5,2)

corresponding cop number for the game of lazy cops and robbers. We then investigate

the minimum order of k-cop-win graphs, and provide the results for k = 1,2,3. We finish

Chapter 2 by defining burning number of graphs, and showing the burning number of

some specific graphs such as paths, cycles, and complete bipartite graphs. The asymptotic

results on the burning number of Cartesian grids, toroidal grids, and hypercubes are also

presented.

Chapter 3 represents the work done and published in (Sim, K. A. et al., 2017). We

present asymptotic bounds on the lazy cop number for generalized hypercubes Q(n,m).

We also find the exact lazy cop number for the case when n = 2.

In Chapter 4, we find the minimum order of graphs which has lazy cop number 4. We

also determine that the Petersen graph P(5,2) is the unique connected graph on 10 vertices

with maximum degree ≤ 3 which has lazy cop number less than 4.

Chapter 5 represents the work done and published in (Sim, K. A. et al., 2018). We

study the burning number of the generalized Petersen graph P(n, k). We show that for

any fixed positive integer k, limn→∞
b(P(n,k))√

n
k

= 1. Furthermore, we give tight bounds for

b(P(n,1)), b(P(n,2)) and b(P(n,3)).

In Chapter 6, we present some miscellaneous results related to the graph parameters.

Some of the results are published in (Sim, K. A. et al., 2016). These results may stand on
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its own, which may be useful in future. We also give some open problems and discuss

some future work, concluding from the current papers.
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CHAPTER 2: LITERATURE REVIEW

2.1 Graph parameters related to the game of cops and robbers

In this section, we discuss some graph parameters related to the game of cops and

robbers: cop number, minimum order of graphs of small value of cop number, and capture

time. We give some known results on these parameters.

2.1.1 Cop number

The main focus of study in the game of cops and robbers is the cop number.

Definition 2.1.1. (Aigner & Fromme, 1984) For a graph G, cop number, denoted as c(G),

is the minimum number of cops needed for the cops to capture the robber in G.

The followings are some fundamental results for cop number. Computing the cop

number is NP-hard, see (Fomin et al., 2008, 2010). Aigner and Fromme (1984) showed

early results as Theorem 2.1.2.

Theorem 2.1.2. (Aigner & Fromme, 1984) Let G be a graph with minimum degree

δ(G) ≥ k which contains no 3- or 4-cycles. Then c(G) ≥ k.

Hence, we have Theorem 2.1.3.

Theorem 2.1.3. (Aigner & Fromme, 1984) If G has girth at least 5, then c(G) ≥ δ(G).

By referring to the Petersen graph P(5,2) in Figure 1.3, it is straightforward that

c(P(5,2)) ≤ 3, by placing cops at the bottom two vertices of the middle 5-cycle and a

vertex at the top of the outer 5-cycle. Theorem 2.1.3 implies that c(P(5,2)) ≥ 3. Hence

c(P(5,2)) = 3.

In the generalized Petersen graphs, Ball et al. (2017) proved that the cop number of

every generalized Petersen graph P(n, k) is at most 4.
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A planar graph is a graph that can be drawn in the plane without edge crossings. A

beautiful early result (Theorem 2.1.4) for planar graph was presented.

Theorem 2.1.4. (Aigner & Fromme, 1984) If G is a planar graph, then c(G) ≤ 3.

The idea of the proof of Theorem 2.1.4 is to increase the cop territory; that is, a set S

of vertices such that if the robber moved to S, then they would be caught. If the territory

can always be increased, the number of vertices the robber can move to without being

caught is eventually reduced to the empty set, and so the robber is captured. For better

understanding on the proof of Theorem 2.1.4, see (Aigner & Fromme, 1984) and (Bonato

& Nowakowski, 2011, p. 100-104).

A path P in a graph G is isometric if for all vertices x, y in P, their distance in P is the

same as their distance in G; that is, dP(x, y) = dG(x, y).

For a fixed integer k ≥ 1, an induced subgraph H of G is k-guardable if, after finitely

many moves, k cops can move only in the vertices of H in such a way that if the robber

moves into H at round t, then he will be captured at round t + 1. We say that the k cops

guards H. For example, a complete graph Kn is 1-guardable. Theorem 2.1.4 gives rise to

Isometric Path Lemma.

Theorem 2.1.5. [Isometric Path Lemma] If P is an isometric path in G, then P is

1-guardable.

In an isometric path, one cop can patrol effectively and ensure no robber can ever escape

it without being captured. See (Aigner & Fromme, 1984) and (Bonato & Nowakowski,

2011, p. 17,18).

Graph products give us interesting ways of forming new graphs from old ones. Cop

number of products of graphs was first considered by Tošić (1988) for Cartesian products.
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Theorem 2.1.6. (Tošić, 1988) For graphs G and H,

c(G�H) ≤ c(G) + c(H).

More generally, for graphs G1,G2, . . . ,Gk , we have that

c
(
�k

i=1Gi

)
≤

k∑
i=1

c(Gi).

It was established in (Maamoun & Meyniel, 1987) that the cop number of a Cartesian

product of k trees is
⌈ k+1

2
⌉
.

Theorem 2.1.7. (Maamoun & Meyniel, 1987) If T1,T2, . . . ,Tk are trees, then

c
(
�k

i=1Ti

)
=

⌈
k + 1

2

⌉
.

In particular, we have c(Qn) =
⌈n+1

2
⌉
since Qn may be viewed as the n-fold Cartesian

product of K2. Neufeld and Nowakowski (1998) then determined the cop numbers of the

Cartesian products of cycles and trees in the following theorems.

Theorem 2.1.8. (Neufeld & Nowakowski, 1998) Let C1,C2, . . . ,Ck be cycles, each with

length of at least 4. Then

c
(
�k

i=1Ci

)
= k + 1.

Theorem 2.1.9. (Neufeld & Nowakowski, 1998) Let C1,C2, . . . ,Ck be cycles each of length

at least 4 and let G = �k
i=1Ci. Let T1,T2, . . . ,Tj be trees and let H = � j

i=1Ti Then

c (G�H) = k +
⌈

j + 1
2

⌉
.

The most famous unsolved question on the cop number is the Meyniel’s conjecture,

mentioned by Frankl (1987). Meyniel’s conjecture is a very challenging problem in the
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game of cops and robbers. Meyniel’s conjecture states that if G is a connected graph of

order n, then

c(G) = O(
√

n).

For n a positive integer, let G be a graph of order n. In the earlier time, Frankl (1987)

proved that

c(G) ≤ (1 + o(1)) n
log log n

log n
.

However, this is far from the conjecture. After more than 20 years, Chiniforooshan

(2008) showed that

c(G) = O
(

n
log n

)
.

There has been recent progress by Scott and Sudakov (2011) and Lu and Peng (2012).

However, the conjecture is still wide open. Independently, they proved that the following

theorem.

Theorem 2.1.10. (Lu & Peng, 2012; Scott & Sudakov, 2011) For a graph G with n vertices,

c(G) ≤ O

(
n

2(1−o(1))
√

log2(n)

)
.

Up to date, Scott and Sudakov (2011) and Lu and Peng (2012) contributed current

best effort in approaching Meyniel’s conjecture but it is still far from proving Meyniel’s

conjecture. Solving the soft Meyniel’s conjecture, which states that for a fixed constant

w > 0,

c(G) = O(n1−w),

would be a significant breakthrough. However, the conjecture still remains open.
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We note that the proofs of Theorem 2.1.10 in (Lu & Peng, 2012; Scott & Sudakov,

2011) used the greedy approach. In addition, all of the proofs used probabilistic method,

which represents a new and interesting approach to proving the conjecture.

Besides, Lu and Peng (2012) also proved Theorem 2.1.11.

Theorem 2.1.11. (Lu & Peng, 2012) If G is a graph on n vertices with diameter two, then

c(G) ≤ 2
√

n − 1.

2.1.2 Minimum order of graphs

For a fixed positive integer k, we say a graph G is k-cop-win if c(G) = k. In the special

case k = 1, G is said to be a cop-win graph. For example, a path or a tree is a cop-win

(Aigner & Fromme, 1984) graph and the Petersen graph is 3-cop-win (Baird et al., 2014).

In a tree T , the vertex occupied by a cop C partitions the tree into 2 components and each

time C moves along the unique path toward the robber R, the component R occupied is

reduced by at least one vertex.

We define Mk to be the minimum order of a connected k-cop-win graph and mk to be the

minimumorder of a connected graphG satisfying c(G) ≥ k. Note thatmk aremonotonically

increasing, and mk ≤ Mk . To date, the exact values of these parameters are only known for

first three values of k. Baird et al. (2014) showed that m1 = M1 = 1,m2 = M2 = 4 and

m3 = M3 = 10. Moreover, they proved that the Petersen graph is the unique 3-cop-win

graph with order 10, see Theorem 2.1.14.

Theorem 2.1.12 presented the relationship between mk and Meyniel’s conjecture on the

asymptotic maximum value of the cop number of a connected graph.
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Theorem 2.1.12. (Baird et al., 2014)

1. For any positive integer k,mk ∈ O(k2).

2. Meyniel’s conjecture is equivalent to the property that mk ∈ Ω(k2), for all k ∈ N.

Hence, if Meyniel’s conjecture holds, then Theorem 2.1.12 implies that

mk = Θ(k2).

Theorem 2.1.13. (Baird et al., 2014) If G is a graph on at most 9 vertices, then c(G) ≤ 2.

They also proved that m3 = 10 and that this value is attained uniquely by the Petersen

graph, as Theorem 2.1.14.

Theorem 2.1.14. (Baird et al., 2014) The Petersen graph is the unique isomorphism type

of graphs on 10 vertices that are 3-cop-win.

A vertex u is a corner if there is some vertex v such that N[u] ⊆ N[v]. A graph

is dismantlable if some sequence of deleting corners results in the graph K1. This is

equivalent in saying that a graph G is dismantlable if we can label the vertices with positive

integers 1,2, . . . ,n in such a way that for each i < n, the vertex i is a corner in the subgraph

induced by {i, i + 1, . . . ,n}. We call this ordering of V(G) a cop-win ordering. A graph is

cop-win if and only if it is dismantlable (Nowakowski & Winkler, 1983).

Besides proving Theorems 2.1.13 and 2.1.14 mathematically, Baird et al. (2014) also

used a computer search to calculate the cop number of every connected graph on 10 or

fewer vertices. They performed this categorization by checking for cop-win orderings in

(Nowakowski & Winkler, 1983) and using an algorithm provided in (Bonato et al., 2010),

see Table 2.1.

In Table 2.1, for a positive integer n, g(n) is the number of non-isomorphic (not

necessarily connected) graphs of order n, and gc(n) is the number of non-isomorphic

16

Univ
ers

ity
 of

 M
ala

ya



connected graphs of order n. Then, fk(n) is the number of non-isomorphic connected

k-cop-win graphs of order n. Clearly, fk(n) ≤ gc(n) ≤ g(n).

Table 2.1: Cop number of small order graphs

order n g(n) gc(n) f1(n) f2(n) f3(n)
1 1 1 1 0 0
2 2 1 1 0 0
3 4 2 2 0 0
4 11 6 5 1 0
5 34 21 16 5 0
6 156 112 68 44 0
7 1044 853 403 450 0
8 12346 11117 3791 7326 0
9 274668 261080 65561 195519 0
10 12005168 11716571 2258313 9458257 1

Among these graphs there is only one graph G of order 10 that requires 3 cops to win.

Moreover, since it is 3-cop win, then G has to be the Petersen graph.

Recently, Hosseini (2018) showed Theorem 2.1.15.

Theorem 2.1.15. (Hosseini, 2018) The values Mk are strictly increasing.

Theorem 2.1.15 implies that Mk−1 < Mk for every k ≥ 2. In other words, the minimum

order of a graph that requires k cops to capture the robber is increasing in k. Following

this, Hosseini (2018) also proved Corollary 2.1.16.

Corollary 2.1.16. (Hosseini, 2018) If G is a graph on Mk vertices with c(G) = k, then G

is 2-connected. Moreover, c(G\v) = c(G) − 1 for every vertex v ∈ V(G).

2.1.3 Capture time

A cop winning strategy may not be the fastest strategy for the cop to capture a robber

in general. For example, consider a path Pn with n vertices labelled from left to right by

1,2, . . . ,n. Consider a cop winning strategy such that a cop moves from left to right. Using

this strategy, the cop requires n − 1 moves to catch the robber (whose best move is to be
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placed initially at n and remains stationary throughout the game). However, if the cop

initially occupy a vertex at the center (or almost center) of the path, the cop can win in at

most
⌊ n

2
⌋
rounds regardless of the initial position of robber.

Similarly, in a cycle Cn with vertices 1,2, . . . ,n, if initially we place 2 cops at vertices 1

and
⌈n+1

2
⌉
respectively, then the cops can win in at most

⌊m−1
2

⌋
rounds where m =

⌈n+1
2

⌉
.

Each of the two cops will just have to move closer to the robber in each round. The number

of rounds in this cop winning strategy is clearly less than that if two cops occupy a same

vertex initially, which is another cop winning strategy on Cn.

If k cops play on a graph G with k ≥ c(G), assuming optimal play by the robber, the

k-capture time, denoted as captk(G), is defined to be the minimum number of rounds (not

including the initial round) until the capture is achieved by cops among all possible cop

winning strategies over G. In the case k = c(G), we simply write capt(G) and refer to this

as the capture time of G.

Bonato et al. (2009) studied the capture time in cop-win graphs and admits a cop

strategy by induction that capture the robber in O(n) rounds.

Theorem 2.1.17. (Bonato et al., 2009) If G is a cop-win graph of order n ≥ 5, then

capt(G)≤ n − 3.

By considering small order cop-win graphs of order n, the bound was improved to

capt(G) ≤ n − 4 for n ≥ 7 in (Gavenčiak, 2010). It was first noted in (Berarducci &

Intrigila, 1993) that for any constant k ≥ 2, if G is k-cop-win, then its capture time is

O(nk+1). Bounds on the capture time with 3 cops playing on a planar graphs were proved

by Bonato et al. (2017).
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Theorem 2.1.18. (Bonato et al., 2017) If G is a planar graph of order n, then

capt3(G) ≤ (diam(G) + 1)n = O(n2).

Futhermore, the O(n2) bound can be improved to the following linear bound.

Theorem 2.1.19. (Pisantechakool & Tan, 2016) If G is a planar graph of order n, then

capt3(G) ≤ 2n.

If there are many cops playing on a planar graph, then Theorem 2.1.20 follows.

Theorem 2.1.20. (Bonato et al., 2017) If G is a planar graph of order n and k ≥ 12
√

n,

then

captk(G) ≤ 6 rad(G) log n.

It was shown in (Mehrabian, 2011) that if G is the Cartesian product of two trees, then

capt(G) =
⌊

diam(G)
2

⌋
. Hence, the 2-capture time of a m × n grid (Cartesian product of Pm

and Pn) is
⌊m+n

2
⌋
− 1.

The capture time of the hypercubes Qn were investigated in (Bonato et al., 2013).

Theorem 2.1.21. (Bonato et al., 2013) Let n ≥ 1 be an integer, we have that

capt(Qn)=Θ(n ln n).

Bonato et al. (2013) derived the asymptotic order of the capture time of the hypercube.

They established an upper bound on the capture time of the hypercube by using a cop

winning strategy which is similar to the one described in (Maamoun & Meyniel, 1987). By

assuming the robber move randomly throughout the game, they used probabilistic method

to show that the robber has a strategy to survive long enough to achieve the lower bound.
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2.2 Variants of the game of cops and robbers

In the game of cops and robbers, the usual setting (as described in Section 1.1) is a

discrete-time two-person game consisting of a set of cops whose goal is the capture of the

robber and a robber who is trying to evade capture. Variations allow for players to possess

only imperfect information, utilize only certain types of movements, allowing the players

to move at various speeds, or meet specified conditions to win the game. Many variants of

the game of cops and robbers have been studied. See (Bonato & Nowakowski, 2011) for

an extensive surveys.

Some examples include the settings in which cops are chasing an invisible or a drunk

robber (a robber who performs a random walk) (Kehagias & Prałat, 2012; Kehagias et

al., 2013, 2014) and the game where the cops and robber move at different speeds (Fomin

et al., 2010; Alon & Mehrabian, 2015; Chalopin et al., 2011) or on the directed graphs

(Frieze et al., 2012) . Recently, a new variant called Zombies and Survivors has been

introduced in (Bonato, Mitsche, et al., 2016; Fitzpatrick et al., 2016) where the zombies

(analogous to the cops) must move closer to a survivor (analogous to the robber) in each

round and the survivor evades capture. The corresponding cop numbers and capture times

have been studied in these papers.

In this thesis, we are interested in a variant introduced by Offner and Ojakian (2014),

where at most one cop moves in any round. It is called the game of Lazy Cops and Robbers

and the lazy cop number is the minimum number of cops required to catch the robber in

this setting. We write cL(G) for the lazy cop number of a graph G.

We give some known results of the lazy cop number. It is clear that cL(Pn) = c(Pn) = 1

and cL(Cn) = c(Cn) = 2. Offner and Ojakian (2014) were interested in Lazy Cops and
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Robber played on the hypercube Qn and they proved the following asymptotic bounds:

2b
√

n/20c ≤ cL(Qn) = O
(
2n ln n
n3/2

)
.

The lower bound was later improved by Bal et al. (2015), by using probabilistic method

coupled with a potential function argument. They showed that for every ε > 0,

cL(Qn) = Ω

(
2n

n5/2+ε

)
.

They also studied the game of lazy cops and robbers on random graphs and graphs

on surfaces (Bal et al., 2016). Sullivan et al. (2016b) showed that cL(Pn�Cm) = 2,

cL(Kn�T) = 2, cL(Kn�Cm) = 3 for n,m ≥ 3 and cL(Cn�Cn) ≤ 2
⌈n

3
⌉
for n ≥ 4.

Recent work of Gao and Yang (2017) gave a non-trivial example of a planar graph G

such that cL(G) ≥ 4 (in contrast to the upper bound of 3 given in Theorem 2.1.4).

A graph G satisfying cL(G) = k is k-lazy cop-win. As for finding the minimum order G

with cL(G) = k, we define M l
k to be the minimum order of a connected k-lazy cop-win

graph and define ml
k to be the the minimum order of a connected graph G with cL(G) ≥ k.

It is easy to see that ml
1 = M l

1 = 1. For k = 2, we must have ml
2 = M l

2 = 4 since the only

connected graphs with three vertices are P3 and C3, both are 1-lazy cop-win graphs and

the fact that cL(C4) = 2.

Sullivan et al. (2016a) proved that for the game of lazy cops and robbers, K3�K3 is the

unique 3-lazy cop-win graph on nine vertices. In addition, all other graphs on 9 or fewer

vertices have lazy cop number at most two. Hence ml
3 = M l

3 = 9. They also showed that

cL(Kn�Kn) = n.

To the best of our knowledge, to date, there is no result on the capture time of the lazy

cops and robbers that has been published.
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2.3 Burning number of graphs

Suppose a graph G is burned in m time steps in a burning process. For 1 ≤ i ≤ m, we

denote the vertex we choose to burn at the beginning of time step i by xi. The sequence

(x1, x2, . . . , xm) is called a burning sequence for G. Each xi is called a burning source of G.

The burning number of a graph G, denoted by b(G), is the length of a shortest burning

sequence for G. Determining b(G) for general graphs is a non-trivial problem. It is known

that computing the burning number of a graph is NP-complete (Bessy et al., 2017).

It is straightforward to see that b(Kn) = 2. For paths and cycles, Bonato, Janssen, and

Roshanbin (2016) determined their burning numbers exactly.

Theorem 2.3.1. (Bonato, Janssen, & Roshanbin, 2016, Theorem 9 and Corollary 10) Let

Pn be a path with n vertices and Cn be a cycle with n vertices. Then

b(Pn) =
⌈
n1/2

⌉
= b(Cn).

They also investigated the sum and product of the burning number of a graph and its

complement. In particular, they proved that for a graph G of order n ≥ 2, the bounds

4 ≤ b(G)+ b(G) ≤ n+ 2 hold, and for n ≥ 6, b(G)b(G) ≤ 2n, with the equality is achieved

by complete graphs.

For general graphs, they showed the following.

Lemma 2.3.2. (Bonato, Janssen, & Roshanbin, 2016) For any graph G with radius r and

diameter d, ⌈
(d + 1)1/2

⌉
≤ b(G) ≤ r + 1.

In the same paper, they also gave an upper bound on the burning number of any

connected graph G of order n, showing that b(n) ≤ 2
√

n − 1. Later, this upper bound was
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improved to roughly
√

6
2
√

n by Land and Lu (2016).

It was conjectured in (Bonato, Janssen, & Roshanbin, 2016) that b(G) ≤ d
√

ne for any

connected graph G of order n. Very recently, Bonato and Lidbetter (2017) verified this

conjecture for spider graphs, which are trees with exactly one vertex of degree at least 3.

Bessy et al. (2018) also determined that for a tree T of order n with n2 vertices of degree

2, and n≥3 vertices of degree at least 3, b(T) ≤
⌈√

n + n2 +
1
4 +

1
2

⌉
and b(T) ≤

⌈√
n
⌉
+ n≥3.

Several other results on burning number of graphs have also been studied recently.

Mitsche et al. (n.d.) investigated the burning number of graph products and also focused on

the probabilistic aspects of the burning number. Mitsche et al. (2017, n.d.) and Roshanbin

(2016) provided an asymptotic results on graph products. By an m × n toroidal grid we

mean the Cartesian product of Cm and Pn.

Theorem 2.3.3. (Mitsche et al., 2017; Roshanbin, 2016) Let G be an m×n grid or toroidal

grid with 1 ≤ m ≤ n, where m = m(n) is a function of n. Then

b(G) =



Θ(
√

n), if m = O(
√

n),

(1 + o(1))
(

3
2

) 1
3
(mn)

1
3 , if m = ω(

√
n).

Mitsche et al. (n.d.) also showed that

lim
n→∞

b(Qn)
n
2
= 1,

where Qn is the n-dimensional hypercube. In fact, they proved a stronger result, which is

the following inequalities

n
2
+ 1 −

√
n log n < b(Qn) ≤

⌈n
2

⌉
+ 1.
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The burning number of the hypercube Qn is asymptotically n
2 (Mitsche et al., n.d.), but

the exact value of b(Qn) is still unknown. The concept of burning number is still new and

little is known about the burning number of many graph classes. We provide the burning

number of generalized Petersen graphs in Chapter 5.
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CHAPTER 3: LAZY COPS AND ROBBERS ON GENERALIZED
HYPERCUBES

3.1 Introduction

In this chapter, we shall determine the the lazy cop number of the generalized hypercube

Q(n,m). First, we define the generalized hypercube Q(n,m).

Let m,n be positive integers, and define [m] := {0,1,2, . . . ,m}. Then Q(n,m) is the

graph with vertex set

V(Q(n,m)) = {(a1,a2, . . . ,an) : ai ∈ [m]} ,

and two vertices in Q(n,m) are adjacent if and only if they differ in exactly one coordinate.

That is,

E(Q(n,m)) =
{
{(a1,a2, . . . ,an), (b1, b2, . . . , bn)} : a j , b j for some j and

ai = bi for i , j} .

We note that Q(n,1) is the hypercube Qn.

We remark that many properties of generalized hypercubes have been studied. For

example, Duh et al. (1996) computed best containers, wide diameter and fault diameter of

generalized hypercubes. Mollard (1991) gave two new characterizations of the Hamming

graphs. Nakano (1993) studied linear layouts of generalized hypercubes and presented the

exact or nearly exact values of the bisection width, the cut width and the total edge length

of them. Some of these properties are important in the study of interconnection network

(see, for example, (Bhuyan & Agrawal, 1984)).

We generalize existing methods to prove asymptotic bounds for the lazy cop number of

Q(n,m) and show the proofs of Theorem 3.1.1 in Section 3.2.
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Theorem 3.1.1. Let m be a positive integer and let ε > 0. Then for sufficiently large n, we

have

(m + 1)n

n5/2+ε ≤ cL(Q(n,m)) = O
(
(m + 1)n ln n

n3/2

)
.

We shall first find the exact lazy cop number for the case when n = 2.

Proposition 3.1.2. cL(Q(2,m)) = m + 1.

Proof. Suppose there are m cops occupying vertices (xi, yi), 1 ≤ i ≤ m. The robber

can choose the vertex (u, v) as the starting position where u ∈ [m] \ {x1, . . . , xm} and

v ∈ [m] \ {y1, . . . , ym}. Such u and v can be found because |{x1, . . . , xm}| ≤ m and

|{y1, . . . , ym}| ≤ m. Therefore, the distance between the robber and any of the cops is 2.

Suppose that on the cops’ turn, a cop moves from (xi0, yi0) to (x′i0, yi0). If x′i0 , u, then the

robber remains at its vertex (u, v). So, after this round, the distance is still 2. If x′i0 = u,

then the robber moves from (u, v) to (u′, v) where u′ ∈ [m] \ {x1, . . . , xi0−1,u, xi0+1, . . . , xm}.

Again, the distance is still 2. Hence, the robber can evade the cops indefinitely and

cL(Q(2,m)) > m.

Now, it remains to show that cL(Q(2,m)) ≤ m + 1. If there are m + 1 cops, then we can

place a cop on each of the vertices in the set S = {(i, i) : 0 ≤ i ≤ m} as the cops’ starting

positions. Note that S is a dominating set of Q(2,m). So, no matter which vertex the robber

chooses as the starting position, a cop will definitely catch the robber immediately. Hence,

cL(Q(2,m)) ≤ m + 1.

3.2 Main results on cL(Q(n,m))

3.2.1 Upper bound

It is clear that by occupying the dominating set of a graph, the cops win. So the lazy

cop number (and also the cop number) of a graph is bounded above by the size of the

smallest dominating set of the graph. When Offner and Ojakian (2014) proved the upper
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bound of cL(Qn), their strategy for the cops is to occupy the dominating set of the middle

levels of Qn and then move up or down according to the position of the robber. We shall

use this idea in proving the upper bound of cL(Q(n,m)). The following result bounds the

size of the smallest dominating set of a graph in terms of its minimum degree.

Lemma 3.2.1. (Alon & Spencer, 2016, Theorem 1.2.2 on p. 6) A graph with N vertices

and minimum degree δ has a dominating set of size at most N 1+ln(1+δ)
1+δ .

We will also need the Stirling’s formula (see, for example, (Cameron, 1995, 3.6.2 on p.

31)) in our proofs:

n! =
√

2πn
(n

e

)n
(
1 +O

(
1
n

))
.

For a non-negative integer k, let level k refer to those vertices of Q(n,m) with exactly

k non-zero coordinates. So the number of vertices in level k is exactly mk (n
k

)
. For

any real number x, let bxc be the smallest integer less than or equal to x. Note that

bxc ≤ x < bxc + 1.

The following lemma tells us that level bm(n+1)
m+1 c has the greatest number of vertices.

Lemma 3.2.2. Let m,n, k be integers such that 1 ≤ m ≤ n and 0 ≤ k ≤ n. Let

ak = mk
(
n
k

)
.

Then ak ≤ ak+1 if and only if 0 ≤ k ≤ mn−1
m+1 .

Proof. Note that

ak+1
ak
= m

(
n − k
k + 1

)
.
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Thus, ak ≤ ak+1 if and only if 0 ≤ k ≤ mn−1
m+1 .

Here is a technical lemma to bound
( n
αn

)
for 0 < α < 1.

Lemma 3.2.3. Let α and β be real numbers with 0 < α < 1. Then for sufficiently large n,

(
n

bαn + βc

)
= O

(
1

√
nααn(1 − α)(1−α)n

)
.

Proof. By the Stirling’s formula,

(
n

bαn + βc

)
= O

©«
√

2πn
( n

e

)n√
2πbαn + βc

(
bαn+βc

e

) bαn+βc √
2π(n − bαn + βc)

(
n−bαn+βc

e

)n−bαn+βc

ª®®¬
= O

(
nn+ 1

2√
αn + β − 1 (αn + β − 1)bαn+βc √n − (αn + β) (n − (αn + β))n−bαn+βc

)
.

Since β − 1 ≤ bαn + βc − αn ≤ β and limn→∞

(
1 + β−1

αn

)αn
= exp (β − 1) > 0, we have

αbαn+βc−αn
(
1 +

β − 1
αn

) bαn+βc

= αbαn+βc−αn
(
1 +

β − 1
αn

) bαn+βc−αn (
1 +

β − 1
αn

)αn

≥ A,

where A is a positive constant depending on α and β. Therefore,

√
αn + β − 1 (αn + β − 1)bαn+βc =

√
n

(√
α +

β − 1
n

)
αbαn+βcnbαn+βc

(
1 +

β − 1
αn

) bαn+βc

≥

(√
nααnnbαn+βc

) (
A

√
α +

β − 1
n

)
≥

(√
nααnnbαn+βc

) (
A
√
α

2

)
.
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Since limn→∞

(
1 − β

(1−α)n

) (1−α)n
= exp (−β) > 0, we have

(1 − α)n−bαn+βc−(1−α)n
(
1 −

β

(1 − α)n

)n−bαn+βc

= (1 − α)αn−bαn+βc
(
1 −

β

(1 − α)n

)αn−bαn+βc (
1 −

β

(1 − α)n

) (1−α)n
≥ B,

where B is a positive constant depending on α and β. Therefore,

√
n − (αn + β) (n − (αn + β))n−bαn+βc

=
√

n

(√
1 − α −

β

n

)
(1 − α)n−bαn+βc nn−bαn+βc

(
1 −

β

(1 − α)n

)n−bαn+βc

≥

(√
n (1 − α)(1−α)n nn−bαn+βc

) (
B

√
1 − α −

β

n

)
≥

(√
n (1 − α)(1−α)n nn−bαn+βc

) (
B

√
1 − α

2

)
.

Hence,

(
n

bαn + βc

)
= O

(
1

√
nααn(1 − α)(1−α)n

)
.

We are now ready to prove the upper bound of Theorem 3.1.1. Our proof is a

generalization of (Offner & Ojakian, 2014, Theorem 5.4).

Theorem 3.2.4. Let m be a positive integer. Then for sufficiently large n,

cL(Q(n,m)) = O
(
(m + 1)n ln n

n3/2

)
.
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Proof. The case m = 1 was proved in (Offner & Ojakian, 2014, Theorem 5.4). So we shall

assume that m > 1. We describe a strategy for the cops (the same strategy used by Offner

and Ojakian (2014) in proving the case of Qn) where we position the cops so that they

dominate a level and then move up or down the levels in a phalanx in order to catch the

robber.

Let Gk denote the subgraph of Q(n,m) induced by level k. Then Gk has mk (n
k

)
vertices

and every vertex has degree exactly k(m − 1). We claim that for 0 ≤ k ≤ n, Gk has a

dominating set of size O
(
(m+1)n ln n

n3/2

)
.

By Lemma 3.2.1, Gk has a dominating set of size at most

mk
(
n
k

)
1 + ln(1 + k(m − 1))

1 + k(m − 1)
. (3.1)

Note that limt→∞ t
m

m+t = 1 and limt→∞ t
t

m+t = ∞. Thus,

lim
t→∞

t + m
tt/(t+m)

= lim
t→∞

t
m

m+t + lim
t→∞

m
tt/(t+m)

= 1.

So, we may choose a t0 satisfying

(a) t0 > 1;

(b) t0+m

t
t0/(t0+m)
0

< m + 1
2 .

Now, (a) implies that m
t0+m < m

m+1 .
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Case 1. Suppose 0 ≤ k ≤ mn
t0+m . Since

1+ln(1+x(m−1))
1+x(m−1) is a decreasing function for x ≥ 0, we

have 1+ln(1+k(m−1))
1+k(m−1) ≤ 1. By Lemma 3.2.2 and Lemma 3.2.3, with α = m

t0+m and β = 0,

mk
(
n
k

)
≤ m

mn
t0+m

(
n⌊

mn
t0+m

⌋)

= O
©«
m

mn
t0+m

1
√

n
(

m
t0+m

) mn
t0+m

(
1 − m

t0+m

) (
1− m

t0+m

)
n

ª®®®®¬
= O

©«
(t0 + m)n

t
t0n
t0+m
0
√

n

ª®®¬
= O

©«
©«

t0 + m

t
t0

t0+m
0

ª®®¬
n

1
√

n

ª®®¬
= O

©«
(
m + 1

2

)n

√
n

ª®®¬ ,
where the last inequality follows from our choice of t0. Therefore, the dominating set is of

size at most O
(
(m+ 1

2)
n

√
n

)
.

Note that if x > 1, then limn→∞
xn
n = ∞. Now, m+1

m+ 1
2
= 1 + 1

2(m+ 1
2)

> 1. Thus,

limn→∞

(
m+1
m+ 1

2

)n
n = ∞, and so for n sufficiently large,

(
m + 1

2

)n

√
n

<
(m + 1)n

n3/2 <
(m + 1)n ln n

n3/2 .

Hence, the dominating set is of size at most O
(
(m+1)n ln n

n3/2

)
.

Case 2. Suppose mn
t0+m < k ≤ n. Again, since 1+ln(1+x(m−1))

1+x(m−1) is a decreasing function in x,

we have

1 + ln(1 + k(m − 1))
1 + k(m − 1)

≤

1 + ln
(
1 +

(
mn

t0+m

)
(m − 1)

)
1 +

(
mn

t0+m

)
(m − 1)

= O
(
ln n
n

)
.
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Note that mn
t0+m < m(n+1)

m+1 < n (for sufficiently large n). Therefore, by Lemma 3.2.2 and

Lemma 3.2.3, with α = β = m
m+1 ,

mk
(
n
k

)
≤ m

m(n+1)
m+1

(
n⌊

m(n+1)
m+1

⌋)
= O ©«m

mn
m+1

1
√

n
( m

m+1
) mn
m+1

(
1 − m

m+1
)(1− m

m+1)n

ª®¬
= O

(
(m + 1)n
√

n

)
.

Therefore, the dominating set is of size at most O
(
(m+1)n ln n

n3/2

)
.

Our claim has been established. The cops should initially select a set of vertices D,

that dominates G
b
m(n+1)
m+1 c

, and place two cops on each vertex in D, coloring one red and

the other blue, thus supplying enough cops to dominate any Gk . If the robber chooses

an initial position in level bm(n+1)
m+1 c, then he will be caught immediately. Suppose the

robber chooses a vertex in some level i > bm(n+1)
m+1 c. At first, the blue cops should remain

in place, while the red cops rearrange themselves one by one to dominate G
b
m(n+1)
m+1 c+1.

Since the blue cops are still dominating G
b
m(n+1)
m+1 c

, the robber is restricted to move only in

levels greater than bm(n+1)
m+1 c. After the red cops have dominated G

b
m(n+1)
m+1 c+1, the robber

will be in a level greater than bm(n+1)
m+1 c + 1. Now, the red cops should remain in place

while the blue cops rearrange themselves to dominate G
b
m(n+1)
m+1 c+2. Since the red cops are

still dominating G
b
m(n+1)
m+1 c+1, the robber is restricted to move only in levels greater than

b
m(n+1)

m+1 c + 1. Proceeding in this manner, with cops of one color dominating Gk while the

cops of the other color proceed to dominate Gk+1, the cops will force the robber to move to

higher and higher levels, until the cops eventually dominate Gn at which point the robber

will be caught. Suppose instead that the robber chooses an initial position in some level

i < bm(n+1)
m+1 c. Similarly, with cops of one color dominating Gk while the cops of the other
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color proceed to dominate Gk−1, the cops will force the robber to move to lower and lower

levels, until the cops eventually dominate G0 at which point the robber will be caught.

This completes the proof of the theorem.

We remark here that in the proof above, if we take Gk to be the subgraph induced by

levels k and k + 1 instead, we can improve the upper bound of cL(Q(n,m)) for any fixed m,

but only up to a constant. The asymptotic bound remains the same.

3.2.2 Lower bound

Bal et al. (2015) introduced a potential function and used the probabilistic method to

prove the lower bound of cL(Qn). In this subsection, we shall use this idea to prove the

lower bound of Theorem 3.1.1. From now on, we shall assume m ≥ 1 and ε > 0 are fixed,

and n is sufficiently large. Let α = m
m+1 and

β = max

(√
(2α(1 + ε) + 1)

m + 1
, (1 + ε)

√
3
ε

)
.

It is clear that β > 1 and so for all n ≥ n0, there is an integer rn satisfying

αn − 2β
√

n ≤ rn ≤ αn − β
√

n. (3.2)

Let ρ = ρ(n) be the function defined by ρ(n) = αn − rn for n ≥ n0 and ρ(n) = 0

for 1 ≤ n < n0. Then for n ≥ n0, β
√

n ≤ ρ(n) ≤ 2β
√

n and αn − ρ(n) is an integer.

Furthermore, ρ→∞ and ρ
n → 0 as n→∞.

For 1 ≤ i ≤ αn − ρ, let

εi =
(m + 1)(1 + ε)

nm − (m + 1)(i + 1)
,
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and

wi = Am−i
(
n − 2

i

)−1 i∏
j=1
(1 + ε j), A =

m(n − 2)
1 + ε1

. (3.3)

For αn − ρ ≤ i ≤ n, let

wi = (n − i)
wαn−ρ

(1 − α)n + ρ
. (3.4)

Note that for 1 ≤ i ≤ αn − ρ,

εi =
(m + 1)(1 + ε)

nm − (m + 1)(i + 1)
≤
(m + 1)(1 + ε)
(m + 1)(ρ − 1)

= o(1),

w1 = 1, w2 =
2

mn (1 + o(1)), w3 = O
(

1
n2

)
and wn = 0.

We remark that wi is a modification of the weight function used in the proof of the

lower bound of cL(Qn) in (Bal et al., 2015).

Lemma 3.2.5.

1 <
wαn−ρ−1

wαn−ρ
< 1 +O

(
1
√

n

)
.

Proof. Note that

wαn−ρ−1

wαn−ρ
= m

(
n − 1 − (αn − ρ)

αn − ρ

)
(1 + εαn−ρ)

−1

= m
(
(1 − α)n − 1 + ρ

αn − ρ

) (
1 +

(m + 1)(1 + ε)
nm − (m + 1)(αn − ρ + 1)

)−1

=

(
αn − m + mρ

αn − ρ

) (
1 +
(m + 1)(1 + ε)
(m + 1)(ρ − 1)

)−1

=

(
1 +
(m + 1)ρ − m

αn − ρ

) (
ρ − 1
ρ + ε

)
=

(
1 +
(m + 1)ρ − m

αn − ρ

) (
1 −

1 + ε
ρ + ε

)
= 1 +

(m + 1)ρ − m
αn − ρ

−
1 + ε
ρ + ε

−

(
(m + 1)ρ − m

αn − ρ

) (
1 + ε
ρ + ε

)
.
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Since ρ ≥
√
(2α(1+ε)+1)n

m+1 and limn→∞
ρ
n = 0, for sufficiently large n, (m+1)ρ−m

2(αn−ρ) ≥
1+ε
ρ+ε and

1+ε
ρ+ε ≤

1
4 . Thus,

wαn−ρ−1

wαn−ρ
≥ 1 +

(m + 1)ρ − m
4(αn − ρ)

> 1.

Finally, as β
√

n ≤ ρ ≤ 2β
√

n, we have

(m + 1)ρ − m
αn − ρ

+
1 + ε
ρ + ε

+

(
(m + 1)ρ − m

αn − ρ

) (
1 + ε
ρ + ε

)
= O

(
1
√

n

)
,

whence the lemma follows.

Lemma 3.2.6. For 1 ≤ i ≤ n, wi is a strictly decreasing sequence.

Proof. For αn − ρ ≤ i ≤ n, wi decreases linearly from wαn−ρ to wn = 0. It is left to

show that wi is decreasing for 1 ≤ i ≤ αn − ρ. Since n−1−x
x and

(
1 + (m+1)(1+ε)

nm−(m+1)(x+1)

)−1
are

decreasing functions, we have

wi−1
wi
= m

(
n − 1 − i

i

)
(1 + εi)

−1

≥ m
(
n − 1 − (αn − ρ)

αn − ρ

) (
1 +

(m + 1)(1 + ε)
nm − (m + 1)((αn − ρ) + 1)

)−1

=
wαn−ρ−1

wαn−ρ
> 1,

where the last inequality follows from Lemma 3.2.5. Hence, wi is strictly decreasing.

Lemma 3.2.7.

wαn−ρ = O
(

n2+ ε2

(m + 1)n

)
.

Proof. First, note that for any integers a, b and real number t with 1 ≤ a ≤ b and t > b+ 1,

b∑
i=a

1
t − i

≤

∫ b+1

a

1
t − x

dx = ln
( t − a
t − b − 1

)
.
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Therefore,

αn−ρ∏
j=1
(1 + ε j) = exp ©«

αn−ρ∑
j=1

ln
(
1 + ε j

)ª®¬
≤ exp ©«

αn−ρ∑
j=1

ε j
ª®¬

= exp ©«
αn−ρ∑
j=1

(m + 1)(1 + ε)
nm − (m + 1)( j + 1)

ª®¬
= exp ©«(m + 1)(1 + ε)

m + 1

αn−ρ∑
j=1

1
αn − j − 1

ª®¬
≤ exp

(
(1 + ε) ln

(
αn − 2
ρ − 2

))
= O

((
n
ρ

)1+ε
)

= O
(
n

1+ε
2

)
,

where the last inequality follows from ρ ≥ β
√

n.

Next, limn→∞
( n
αn−ρ)

( n−2
αn−ρ)

= limn→∞
n(n−1)

((1−α)n+ρ)((1−α)n+ρ−1) =
1

(1−α)2 . So,

(
n − 2
αn − ρ

)−1
= O

((
n

αn − ρ

)−1
)
.

By the Stirling’s formula,

(
n

αn − ρ

)−1
=
(αn − ρ)!((1 − α)n + ρ)!

n!

= O
©«
(√

2π(αn − ρ)
(αn−ρ

e

)αn−ρ
) (√

2π((1 − α)n + ρ)
(
(1−α)n+ρ

e

) (1−α)n+ρ)
√

2πn
( n

e

)n

ª®®®®¬
= O

(
√

nααn−ρ(1 − α)(1−α)n+ρ
(
1 −

ρ

αn

)αn−ρ
(
1 +

ρ

(1 − α)n

) (1−α)n+ρ)
.
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Now,

(
1 −

ρ

αn

)αn−ρ
= exp

(
(αn − ρ) ln

(
1 −

ρ

αn

))
= exp

(
−(αn − ρ)

(
ρ

αn
+

1
2

( ρ
αn

)2
+

1
3

( ρ
αn

)3
+O

(( ρ
n

)4
)))

= exp
(
−ρ +

ρ2

2αn
+

ρ3

6(αn)2
+O

(( ρ
n

)3
))

= exp
(
−ρ +

ρ2

2αn
+O

(
1
√

n

))
,

where the last inequality follows from ρ = O(
√

n).

Similarly,

(
1 +

ρ

(1 − α)n

) (1−α)n+ρ
= exp

(
((1 − α)n + ρ)

(
ρ

(1 − α)n
−

1
2

(
ρ

(1 − α)n

)2
+O

(( ρ
n

)3
)))

= exp
(
ρ +

ρ2

2(1 − α)n
+O

(
1
√

n

))
.

Thus,

(
1 −

ρ

αn

)αn−ρ
(
1 +

ρ

(1 − α)n

) (1−α)n+ρ
= exp

(
ρ2

2(1 − α)n
+

ρ2

2αn
+O

(
1
√

n

))
= exp

(
ρ2

n

(
1

2α(1 − α)

)
+O

(
1
√

n

))
≤ exp

(
3β2

α(1 − α)

)
,
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where the last inequality follows from ρ ≤ 2β
√

n. Hence,

m−(αn−ρ)
(

n − 2
αn − ρ

)−1
= O

(
m−(αn−ρ)

(
n

αn − ρ

)−1
)

= O
(
m−(αn−ρ)√nααn−ρ(1 − α)(1−α)n+ρ

)
= O

( √
n

(m + 1)n

)
,

and

wαn−ρ = O
(
n
( √

n
(m + 1)n

) (
n

1+ε
2

))
,

whence the lemma follows.

Lemma 3.2.8. For 2 ≤ i ≤ αn − ρ − 1,

i
(n − 2)m

wi−1 +
(m − 1)i
(n − 2)m

wi +
(n − i − 2)m
(n − 2)m

wi+1 ≤ wi

(
1 −

ε

2n

)
.

Proof. Note that

V =
i

(n − 2)m
wi−1 +

(m − 1)i
(n − 2)m

wi +
(n − i − 2)m
(n − 2)m

wi+1

= wi

(
i

(n − 2)m

(
wi−1
wi

)
+
(m − 1)i
(n − 2)m

+
n − i − 2

n − 2

(
wi+1
wi

))
= wi

(
n − 1 − i

n − 2
(1 + εi)

−1 +
(m − 1)i
(n − 2)m

+
i + 1
(n − 2)m

(1 + εi+1)

)
.

Since

(1 + εi)
−1 = 1 − εi + ε

2
i − ε

3
i + · · · ≤ 1 − εi + ε

2
i ,

and

1 + εi+1 = 1 + εi

(
1 +

m + 1
nm − (m + 1)(i + 2)

)
≤ 1 + εi + ε

2
i ,
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we obtain

V ≤ wi

(
n − 1 − i

n − 2
(1 − εi + ε

2
i ) +

(m − 1)i
(n − 2)m

+
i + 1
(n − 2)m

(1 + εi + ε
2
i )

)
= wi

(
1 +

m + 1
(n − 2)m

− εi

(
n − 1 − i

n − 2
−

i + 1
(n − 2)m

)
+ ε2

i

(
n − 1 − i

n − 2
+

i + 1
(n − 2)m

))
.

From 2 ≤ i ≤ αn − ρ − 1 and α = m
m+1 , we get

ε2
i

(
n − 1 − i

n − 2
+

i + 1
(n − 2)m

)
=

(
(m + 1)(1 + ε)

nm − (m + 1)(i + 1)

)2 (
nm − (m − 1)(i + 1)

(n − 2)m

)
≤

(
(m + 1)(1 + ε)
(m + 1)ρ

)2 (
nm − 3(m − 1)
(n − 2)m

)
≤

(
1 + ε
ρ

)2 (
3
2

)
≤

ε

2n
,

where the last inequality follows provided that ρ ≥ (1 + ε)
√

3n
ε . Since

εi

(
n − 1 − i

n − 2
−

i + 1
(n − 2)m

)
=

(m + 1)(1 + ε)
nm − (m + 1)(i + 1)

(
nm − (m + 1)(i + 1)

(n − 2)m

)
=
(m + 1)(1 + ε)
(n − 2)m

,

we have

V ≤ wi

(
1 +

m + 1
(n − 2)m

−
(m + 1)(1 + ε)
(n − 2)m

+
ε

2n

)
= wi

(
1 −
(m + 1)ε
(n − 2)m

+
ε

2n

)
≤ wi

(
1 −

ε

n
+
ε

2n

)
= wi

(
1 −

ε

2n

)
.
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We are now ready to prove the lower bound of cL(Q(n,m)). Our proof is a generalization

of (Bal et al., 2015, Theorem 1).

Theorem 3.2.9. Let m be a positive integer and let ε > 0. Then for sufficiently large n,

cL(Q(n,m)) ≥
(m + 1)n

n5/2+ε .

Proof. Let Ni be the number of cops at distance i from the robber. We say that a cop at

distance i from the robber has weight wi, where wi is as defined in equations (3.3) and

(3.4). Let the potential function P be defined as

P =
n∑

i=1
Niwi .

Recall that w1 = 1 . If the cops can catch the robber on their turn, then immediately before

the cops’ turn we must have P ≥ 1, since some cop must be at distance 1 from the robber.

To show that the robber can evade the cops indefinitely, we shall prove that the robber can

always move such that right before the cops’ move,

P < 1. (3.5)

Without lost of generality, all cops start at the same vertex and the robber starts at a

vertex at distance n from the cops. Therefore, P = 0 and invariant (3.5) holds. Suppose

that before the cops make their move, the potential function satisfies invariant (3.5).

Let the coordinate of the robber be u = (x1, . . . , xn) right before the cops’ move. Suppose

that on the cops’ turn, a cop C∗ moves to a vertex v. We may assume that C∗ moves closer

to u, as otherwise, the robber may remain in u to maintain invariant (3.5). Let P1 represent

the total weight of all cops at distance i from u with 2 ≤ i ≤ αn − ρ − 1 other than C∗. Let
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P2 represent the total weight of all cops at distance at least αn − ρ from u other than C∗.

The robber’s strategy is to move to a vertex to maintain invariant (3.5). We shall

show that such a vertex always exists by computing the expected potential function for all

possible vertices the robber can move to.

We need to choose two distinct integers i0, i1 ∈ {1,2, . . . ,n} based on the vertex v (the

vertex C∗ is occupying). We shall explain how to choose i0 and i1 later. Assume at the

moment that i0 and i1 have been chosen. We only allow the robber to move to a vertex

that differs with u at coordinate a where a < {i0, i1}. For each a < {i0, i1}, the robber has

m = |[m] \ {xi}| vertices to choose from. Thus, the robber has (n − 2)m possible vertices

to move to.

First, we shall show that the expected value of P1 is at most

P1

(
1 −

ε

2n

)
(3.6)

after the robber’s move in each round.

Proof of inequality (3.6). Let C be a cop at distance i from the robber, where 2 ≤ i ≤

αn − ρ − 1. Before the robber’s move, C has weight wi. Let wC represent the expected

weight of C after the robber’s move. Let C and u differ at coordinates r1, . . . ,ri.

Suppose i0, i1 ∈ {r1, . . . ,ri}. If the robber moves to a vertex that differs with u at

coordinate r j and r j < {i0, i1}, then out of the m choices, one of the choices will reduce the

distance of C by 1, whereas the other m − 1 choices will maintain the distance of C. If the

robber moves to a vertex that differs with u at coordinate a and a < {r1, . . . ,ri}, then the

distance of C will increase by 1. Therefore,
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wC =
i − 2
(n − 2)m

wi−1 +
(m − 1)(i − 2)
(n − 2)m

wi +
(n − i)m
(n − 2)m

wi+1

≤
i

(n − 2)m
wi−1 +

(m − 1)i
(n − 2)m

wi +
(n − i − 2)m
(n − 2)m

wi+1,

where the last inequality follows from the fact that wi is decreasing (Lemma 3.2.6).

Similarly, if |{i0, i1} ∩ {r1, . . . ,ri}| = 1, then

wC =
i − 1
(n − 2)m

wi−1 +
(m − 1)(i − 1)
(n − 2)m

wi +
(n − i − 1)m
(n − 2)m

wi+1

≤
i

(n − 2)m
wi−1 +

(m − 1)i
(n − 2)m

wi +
(n − i − 2)m
(n − 2)m

wi+1.

Finally, if |{i0, i1} ∩ {r1, . . . ,ri}| = 0, then

wC =
i

(n − 2)m
wi−1 +

(m − 1)i
(n − 2)m

wi +
(n − i − 2)m
(n − 2)m

wi+1.

In either case, we have

wC ≤
i

(n − 2)m
wi−1 +

(m − 1)i
(n − 2)m

wi +
(n − i − 2)m
(n − 2)m

wi+1

≤ wi

(
1 −

ε

2n

)
,

where the last inequality follows from Lemma 3.2.8. By summing up each cop’s individual

contribution toward the potential, we see that after the robber’s move, (3.6) holds.

Next, we claim that the expected value of P2 is at most

P2 +
ε

4n
, (3.7)
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after the robber’s move in each round.

Proof of inequality (3.7). LetC be a cop at distance i from the robber, whereαn−ρ ≤ i ≤ n.

Before the robber’s move, C has weight wi. After the robber’s move, if the distance between

C and u decreases by 1, then the change in the weight of C is wi−1 − wi, if the distance

between C and u are the same, then there is no change in the weight of C, and if the

distance between C and u increases by 1, then the change in the weight of C is wi+1 − wi.

If αn − ρ ≤ i ≤ n, then wi − wi+1 =
wαn−ρ
(1−α)n+ρ = O

(
wαn−ρ

n

)
= O

(
n1+ ε2
(m+1)n

)
by Lemma

3.2.7. If αn − ρ + 1 ≤ i ≤ n, then wi−1 − wi =
wαn−ρ
(1−α)n+ρ = O

(
wαn−ρ

n

)
= O

(
n1+ ε2
(m+1)n

)
. Now,

let us compute the upper bound for wαn−ρ−1 − wαn−ρ. By Lemma 3.2.5,

wαn−ρ−1

wαn−ρ
< 1 +O

(
1
√

n

)
.

Therefore, wαn−ρ−1 − wαn−ρ = O
(
wαn−ρ
√

n

)
= O

(
n

3+ε
2

(m+1)n

)
. Hence, the total change in the

weight of C is at most O
(

n
3+ε

2
(m+1)n

)
.

If the total number of cops is at most (m+1)n
n5/2+ε , then the expected change in P2 is at most

O

((
(m + 1)n

n5/2+ε

) (
n

3+ε
2

(m + 1)n

))
,

and (3.7) follows.

Now, we consider three cases based on on the vertex v (the vertex C∗ is occupying).

Case 1. Suppose v and u differ at one coordinate, say i0. Then the coordinate of C∗ is

v = (x1, . . . , xi0−1, yi0, xi0+1, . . . , xn) where yi0 , xi0 . The robber cannot move to a vertex

that differs with u at coordinate i0, as otherwise, C∗ will be able to catch the robber in the

next move. So the robber can only move to a vertex that differs with u at coordinate i where

i , i0. Choose any i1 ∈ {1,2, . . . ,n} \ {i0}. Note that in this scenario, C∗ moves from a
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vertex of distance 2 to another vertex of distance 1. Recall that the robber is allowed to

move to a vertex that differs with u at coordinate a where a < {i0, i1}. So, after the robber’s

move, (3.6) and (3.7) hold.

Since C∗ was at distance 2 before its move, we have

P1 + P2 + w2 < 1. (3.8)

After the robber’s move, C∗ is at distance 2 from the robber. Combining (3.6), (3.7) and

(3.8), the total expected potential is at most

P1

(
1 −

ε

2n

)
+ w2 + P2 +

ε

4n

< (1 − w2 − P2)
(
1 −

ε

2n

)
+ w2 + P2 +

ε

4n

= 1 −
ε

2n
+
ε(w2 + P2)

2n
+
ε

4n

= 1 −
ε

4n
+
ε(w2 + P2)

2n

≤ 1 −
ε

8n

< 1,

where the second to last inequality follows fromw2 = O
(

1
n

)
andP2 = O

((
(m+1)n
n5/2+ε

)
wαn−ρ

)
=

O
(

1
n

1+ε
2

)
. Since the expected potential is less than 1, there must be a move for the robber

to maintain invariant (3.5).

Case 2. Suppose v and u differ at two coordinates, say i0 and i1. Then the coordinate

of C∗ is v = (x1, . . . , xi0−1, yi0, xi0+1, . . . , xi1−1, yi1, xi1+1, . . . , xn) where i0 < i1, yi0 , xi0 and

yi1 , xi1 . Note that in this scenario, C∗ moves from a vertex of distance 3 to another vertex

of distance 2. Here, there is the possibility that other cops are at distance 2 from the robber.

Recall that the robber is allowed to move to a vertex that differs with u at coordinate a
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where a < {i0, i1}. So, after the robber’s move, (3.6) and (3.7) hold.

Since C∗ was at distance 3 before its move, we have

P1 + P2 + w3 < 1. (3.9)

After the robber’s move, C∗ is at distance 3 from the robber. Combining (3.6), (3.7)

and (3.9), the total expected potential is at most

P1

(
1 −

ε

2n

)
+ w3 + P2 +

ε

4n

< (1 − w3 − P2)
(
1 −

ε

2n

)
+ w3 + P2 +

ε

4n

= 1 −
ε

2n
+
ε(w3 + P2)

2n
+
ε

4n

= 1 −
ε

4n
+
ε(w3 + P2)

2n

≤ 1 −
ε

8n

< 1,

where the second to last inequality follows from w3 = O
(

1
n2

)
and P2 = O

(
1

n
1+ε

2

)
. Again,

the robber may maintain invariant (3.5).

Case 3. Suppose v and u differ at at least three coordinates. Note that in this scenario,

C∗ moves from a vertex of distance s + 1 to another vertex of distance s ≥ 3. Here,

there is the possibility that other cops are at distance 2 from the robber. Choose any

i0, i1 ∈ {1,2, . . . ,n}. Recall that the robber is allowed to move to a vertex that differs with

u at coordinate a where a < {i0, i1}. So, after the robber’s move, (3.6) and (3.7) hold.

Since C∗ was at distance s + 1 before its move, we have P1 + P2 + ws+1 < 1. Thus,

P1 + P2 < 1 − ws+1 < 1. (3.10)
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Now, C∗ is at distance s from the robber just before the robber’s move. Let wC∗

represent the expected weight of C∗ after the robber’s move. If 3 ≤ s ≤ αn − ρ − 1, then

wC∗ ≤ ws
(
1 − ε

2n

)
= O (w3) = O

(
1
n2

)
. If αn−ρ ≤ s ≤ n−1, thenwC∗ ≤ ws+O

(
wαn−ρ
√

n

)
=

O (w3) = O
(

1
n2

)
. Hence, the expected potential is at most

P1

(
1 −

ε

2n

)
+ P2 +

ε

4n
+ wC∗

< (1 − P2)
(
1 −

ε

2n

)
+ P2 +

ε

4n
+O

(
1
n2

)
= 1 −

ε

2n
+
εP2
2n
+
ε

4n
+O

(
1
n2

)
= 1 −

ε

4n
+
εP2
2n
+O

(
1
n2

)
≤ 1 −

ε

8n

< 1,

where the second to last inequality follows from P2 = O
(

1
n

1+ε
2

)
.

This completes the proof of the theorem.
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CHAPTER 4: ON THE MINIMUM ORDER OF 4-LAZY COPS-WIN GRAPHS

4.1 Introduction

Sullivan et al. (2016a) proved that the minimum order of a connected graph with lazy

cop number 3 is 9 and further conjectured that for a connected graph G on n vertices with

∆(G) ≥ n − k2, we must have cL(G) ≤ k. In this chapter, we compute the exact values

for ml
4 and M l

4 and prove some related results, including the above conjecture for the case

k = 4 (see Corollary 4.4.7).

In section 4.2, we show that cL(P(n,2)) = 3 for P(n,2) of girth at least 5 (Lemma 4.2.1).

Then we prove the following Theorem 4.1.1 and Theorem 4.1.2 in section 4.3 and section

4.4 respectively.

Theorem 4.1.1. If G is a connected graph with 10 vertices and ∆(G) ≤ 3, then cL(G) ≤ 3.

Furthermore, equality holds if and only if G is the Petersen graph.

Theorem 4.1.2. If G is a connected graph with at most 15 vertices, then cL(G) ≤ 3.

The exact values for ml
4 and M l

4 ( Corollary 4.1.3) can be deduced easily from Theorem

4.1.2 and the fact that cL(K4�K4) = 4 (Sullivan et al., 2016a).

Corollary 4.1.3. ml
4 = M l

4 = 16.

We recall that for a given vertex v ∈ V(G), its neighbourhood NG(v) is the set

{u ∈ V(G) | uv ∈ E(G)} and NG[v] is the set {v} ∪ NG(v). Furthermore, for any subset

U ⊆ V(G), NG(U) =
⋃

u∈U NG(u) and NG[U] =
⋃

u∈U NG[u]. If the graph in question is

clear, we shall write N(v), N[v], N(U) and N[U]. A vertex occupied by a cop or robber is

also called a position.
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For the ease of reading of the upcoming proofs, let the cops ci, i = 1,2, . . . ,n be at our

disposal to play on a graph G to capture the robber r . If e is a cop or the robber and is at

position u ∈ V(G), we shall write NG(e) instead of NG(u). Similarly, NG[e] = NG[u].

When we say a cop c moves one step at a time to a vertex w, we mean that c will move

towards w in all cops’ turn regardless of the movement of r in each robber’s turn. So c

will occupy w in finite steps.

Lemma 4.1.4. (Sullivan et al., 2016a, Theorem 2.5) Assume G = (V,E) has a vertex

v ∈ V with deg(v) = 1; say uv ∈ E is the unique edge incident to v. Define G′ to be the

graph with vertex set V ′ = V − {v} and edge set E′ = E − {uv}. Then cL(G′) = cL(G).

By virtue of Lemma 4.1.4, we may ignore graphs that have a vertex of degree 1. By

removing vertices of degree 1, we obtain a graph with the same lazy cop number but with

smaller number of vertices.

4.2 cL(P(n,2))

The generalized Petersen graph P(n,2) is the graph with vertex set

V(P(n,2)) = {u1, . . . ,un, v1, . . . , vn}

and edge set

E(P(n,2)) = {uivi,uiui+1, vivi+2 : 1 ≤ i ≤ n},

where the subscripts are taken modulo n. Note that P(5,2) is just the Petersen graph.
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Lemma 4.2.1. For P(n,2) of girth ≥ 5, we have cL(P(n,2)) = 3.

Proof. Aigner and Fromme (1984) shows that for any graph G with girth at least 5,

then c(G) ≥ δ(G). Since P(n,2) is 3-regular and c(G) ≤ cL(G), this indicates that

cL(P(n,2)) ≥ 3.

Now, it is left to show that cL(P(n,2)) ≤ 3. Here, we describe a winning strategy for

the cops. Suppose we have 3 cops at our disposal, say c1, c2 and c3. The robber will be

denoted by r . If at round t, the robber is at position u j or v j , we set Wt(r) = j. We do the

same for the cops ci. We may consider Wt as the weight of a cop or the robber at round t.

Initially we place c1 at position un, c2 at position v1 and c3 at position v2 (see Figure

4.1).

un−1 un u1 u2 u3

vn−1 vn v1 v2 v3

Figure 4.1: c1 at position un, c2 at position v1 and c3 at position v2.

Therefore W1(c1) = n, W1(c2) = 1 and W1(c3) = 2. Note that r cannot be placed at

positions {un−1, vn−1, vn,u1,u2, v3}. So, initially we must have

max (W1(c2),W1(c3)) = 2 < W1(r) < n − 1 = W1(c1) − 1,

and W1(c2) and W1(c3) are consecutive integers.

The elements in the interval that Wt(r) can lie within refers to the weight of “safe”

vertices (r not being caught in round t + 1) that r can occupy at round t. Initially, the size

of the interval that W1(r) can lie within is W1(c1) − 2 −max (W1(c2),W1(c3)) = n − 4.
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Suppose that at round t, we have

max (Wt(c2),Wt(c3)) < Wt(r) < Wt(c1) − 1,

and Wt(c2) and Wt(c3) are consecutive integers. The size of the interval that Wt(r) can lie

within is s = Wt(c1) − 2 −max (Wt(c2),Wt(c3)). Now, we shall give a strategy depending

on the value of Wt(r) that will reduce the size of the interval that Wt+1(r) can lie within.

z a x c1

w b y d

Figure 4.2: Robber is at position z or w.

Scenario 1. Suppose Wt(r) = Wt(c1) − 3 (see Figure 4.2). So r is at position z or w. We

move the cop c1 to position x. At robber’s turn, if r is at position z, he cannot move to a,

otherwise he will be caught in the next round. Similarly, if r is at position w, he cannot

move to y. Thus, at round t + 1, we must have Wt+1(r) < Wt+1(c1) − 1 = Wt(c1) − 2. Note

thatWt+1(c2) = Wt(c2), Wt+1(c3) = Wt(c3) andWt+1(r) = Wt(r),Wt(r)−1 orWt(r)−2. So,

Wt+1(c2) andWt+1(c3) are still consecutive integers. IfWt+1(r) > max (Wt+1(c2),Wt+1(c3)),

then we have achieved our objective for the size of the interval that Wt+1(r) can lie within

is Wt+1(c1) − 2 − max (Wt+1(c2),Wt+1(c3)) = Wt(c1) − 3 − max (Wt(c2),Wt(c3)) = s − 1.

Recall that the size of the interval that Wt(r) can lie within is s.

Suppose Wt+1(r) ≤ max (Wt+1(c2),Wt+1(c3)). We may assume Wt+1(c2) = Wt+1(c3) − 1

because Wt+1(c2) and Wt+1(c3) are consecutive integers. Since max (Wt(c2),Wt(c3)) <

Wt(r), this can only happen if Wt+1(r) = Wt(r) − 1 or Wt(r) − 2. If Wt+1(r) = Wt(r) − 2,

then r must be at position w or f at round t (see Figure 4.3), and at his turn, he moves to

the position a cop is occupying. This is absurd. If Wt+1(r) = Wt(r) − 1, then r must be at
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position z at round t, and at his turn, he moves to e. The robber will be caught at round

t + 1 by the cop c3.

e z

c2 c3 w f

Figure 4.3: Wt(c2) = Wt(c3) − 1.

Scenario 2. SupposeWt(r) , Wt(c1)−3. Assume thatWt(c2) = Wt(c3)−1 (see Figure 4.3).

Wemove the cop c2 to positionw. At the robber’s turn, he cannotmove to z, otherwise hewill

be caught at round t+1. So, wemust haveWt(c3)+1 = max (Wt+1(c2),Wt+1(c3)) < Wt+1(r).

Since Wt(r) < Wt(c1) − 1 and Wt(r) , Wt(c1) − 3, either Wt(r) = Wt(c1) − 2 or Wt(r) <

Wt(c1)−3. IfWt(r) = Wt(c1)−2, then r is at position a or b (see Figure 4.2). If r is at a, he

cannotmove to x, otherwise hewill be caught at round t+1 by the cop c1. Similarly, if r is at b,

he cannot move to d. Thus,Wt+1(r) < Wt+1(c1)−1 = Wt(c1)−1. IfWt(r) < Wt(c1)−3, then

Wt+1(r) < Wt(c1)−1, forWt+1(r) ≤ Wt(r)+2. Hence, wemust haveWt+1(r) < Wt+1(c1)−1.

We have achieved our objective for the size of the interval that Wt+1(r) can lie within is

Wt+1(c1) − 2 −max (Wt+1(c2),Wt+1(c3)) = Wt(c1) − 2 − (Wt(c3) + 1) = s − 1.

From Scenario 1 and 2, we see that either the robber is caught or the interval is getting

smaller and smaller. This process cannot go on indefinitely. So, the robber will be caught

eventually.

This completes the proof of the lemma.

4.3 Proof of Theorem 4.1.1

Lemma 4.3.1. Let G be a connected graph on 10 vertices with ∆(G) = 3. If G − N[v] is

not a 6-cycle for all v ∈ V(G) with deg(v) = 3, then cL(G) ≤ 2.
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Proof. Let c1 and c2 be the two cops at our disposal to catch the robber r in G.

Case 1. Suppose there is a vertex u0 ∈ V(G)with degG(u0) = 3 such that∆(G−N[u0]) ≤ 2.

Since ∆(G − N[u0]) ≤ 2, every component in G − N[u0] is a path or a cycle. Initially,

we place the two cops at position u0. Then r can only be placed at a component H in

G − N[u0]. As long as there is a cop occupying u0, r will have to remain in H.

• If H is a path, then we keep c1 at u0 and move c2 to a vertex in H. Since cL(H) = 1,

r will be caught by c2 eventually.

• Suppose H is a cycle. By the hypothesis of the lemma, H cannot be a 6-cycle. We

shall assume H is a 5-cycle. The case H is a 4-cycle or a 3-cycle can be proved

similarly.

– Assume there is a vertex w0 ∈ V(H) with degG(w0) = 2. Then w0 is not

adjacent to any vertices in N[u0]. There are two possibilities (see Figure 4.4).

We keep c1 at u0 and move c2 into position as in Figure 4.4.

c1

b
w0

c2

(a)

c1

a

b
w0

c2

(b)

Figure 4.4: Two possible graphs such that degG(w0) = 2.

Since degG(b) ≤ 3 and degH(b) = 2, b is not adjacent to any vertices in N(u0)

(Figure 4.4 (a)) or b is adjacent to a ∈ N(u0) (Figure 4.4 (b)). In either case, r

can only stay at positions b or w0. In Figure 4.4 (a), we keep c2 at his position

and move c1 to position w0 one step at a time. In Figure 4.4 (b), we keep c2 at

his position and move c1 to position b via a. In either case, r will be caught.
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– Assume degG(w) = 3 for all w ∈ V(H).

c1

a

w1
w2 w3

c2

(a)

c1

a

w1
w2 w3

c2
w4

b

(b)

Figure 4.5: Positions of c1 and c2.

Since degH(w) = 2, N(w) ∩ N(u0) = 1 for all w ∈ V(H). This means there is a

vertex a ∈ N(u0) with |N(a) ∩ V(H)| = 2. We keep c1 at u0 and move c2 into

position as in Figure 4.5. Note that r can only stay at positions w1 or w2. In

Figure 4.5 (a), we keep c2 at his position and move c1 to a. The robber will be

caught. In Figure 4.5 (b), we move c2 to w3. Then r can be at positions w1 or

w4 only. Now move c1 to b. At robber’s turn, he can only remain at w1. In the

next round, we move c1 from b to w4. The robber will be caught.

Case 2. Suppose ∆(G − N[u]) = 3 for all u ∈ V(G) with degG(u) = 3.

Pick a vertex u0 ∈ V(G) with degG(u0) = 3 and pick a vertex v0 ∈ V(G − N[u0]) with

degG−N[u0](v0) = 3. By what we have stated in Case 2, such a v0 can always be found.

Initially we place c1 at u0 and c2 at v0. Note that G − N[u0] − N[v0] is a disjoint union

of 2 vertices or a 2-path. Let V(G − N[u0] − N[v0]) = {w1,w2}.

Suppose G − N[u0] − N[v0] is a disjoint union of 2 vertices. We may assume r is at

position w1. Since deg(w1) ≤ 3, there is a ci such that |N(ci) ∩ N(w1)| ≤ 1 for some

i = 1,2. We may assume |N(c1) ∩ N(w1)| ≤ 1 (see Figure 4.6).

In Figure 4.6 (a), we keep c2 at his position and move c1 to w1 one step at a time. Note

that r can only remain at w1 for c2 is occupying v0. So, the robber will be caught. In
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c1 c2

w1 w2

(a) |N(c1) ∩ N(w1)| = 0

c1 c2

a

w1 w2

(b) |N(c1) ∩ N(w1)| = 1

Figure 4.6: Two possible graphs such that |N(c1) ∩ N(w1)| ≤ 1.

Figure 4.6 (b), we keep c2 at his position and move c1 to a. The robber will also be caught.

Suppose G − N[u0] − N[v0] is a 2-path.

(i) |N(w2) ∩ N(c1)| = 0 and |N(w1) ∩ N(c1)| ≤ 1.

This situation is quite similar like the one in Figure 4.6 except that w1 and w2 are

adjacent. So, we use the same cop- winning strategy, that is, keep c2 at his position

and move c1 towards w1. The robber will be caught.

(ii) |N(w2) ∩ N(c1)| = 0 and |N(w1) ∩ N(c1)| = 2.

Since degG(w1) = 3,w1 is not adjacent to any vertices in N(c2), i.e., |N(w1)∩N(c2)| =

0. If |N(w2) ∩N(c2)| ≤ 1, then the cops will have winning strategy similar to (i). So,

we may assume |N(w2) ∩ N(c2)| = 2 (see Figure 4.7). If r is at w1, then we move c2

to b and in the next round from b to w2. The robber will be caught. If r is at w2, then

we move c1 to a and in the next round from a to w1. The robber will also be caught.

c1 c2

a b

w1 w2

Figure 4.7: |N(w2) ∩ N(c2)| = 2.
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From (i) and (ii), we may assume that |N(wi)∩N(c1)| = 1 = |N(wi)∩N(c2)| for i = 1,2

(see Figure 4.8). There are two possibilities. In Figure 4.8(a), we move c1 to z1. The

robber will be caught. Recall that w1 and w2 is not adjacent to N(c1) except z1. Otherwise

|N(wi) ∩ N(c2)| = 0, which is similar to (i).

u0
c1

z1 z2

v0
c2

z3 z4

w1 w2

u0
c1

z1 z2

v0
c2

z3 z4

w1 w2

(a) (b)

Figure 4.8: Two possible graphs such that |N(w2) ∩ N(c2)| = 2.

Now, from the graph in Figure 4.8 (b), we remove N[w1] from G (see Figure 4.9).

u0

z1 z2 a

v0

z3 z4 b

w1 w2

u0

z2 a

v0

z4 b

G − N[w1]

Figure 4.9: N[w1] is removed from Figure 4.8 (b).

Let J1 = G − N[w1]. From what we assume in Case 2, there is a vertex of degree 3 in

J1. Note that u0, v0, z2 and z4 are at most of degree 2 in J1. We may assume a is of degree

3 in J1.

• Suppose a is adjacent to vertices z2 and b (see Figure 4.10 (a)). We move c1 to z1.

Then r can only move to w2 or z2. Next, move c2 to z4. Then r can only move to z2

or a. Next, move c1 back to u0. Then r can only move to b. Now move c2 back to v0.

Since b is adjacent to a or zi, the robber cannot move back to w1 or w2. Hence, the

robber will be caught.
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u0
c1

z1 z2
a

v0
c2

z3 z4 b

w1 w2

u0
c1

z1 z2 a

v0
c2

z3 z4 b

w1 w2

(a) (b)

Figure 4.10: Neighbours of a.

• Suppose a is adjacent to z4 (see Figure 4.10 (b)). Note that a cannot be adjacent to

z1 or z3 since degJ1(a) = 3. It may be adjacent to z2 or b. We move c2 to z3. Then

r can only move to w2 or z4. Next, move c1 to z2. Then r can only move to z4 or

a. Next, move c2 back to v0. Then r can only move to a. Now move c1 back to u0.

Since a is adjacent to b or zi, the robber cannot move back to w1 or w2. Hence, the

robber will be caught.

This completes the proof of the lemma.

Now, we are ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. By Lemma 4.2.1, cL(P(5,2)) = 3. So, it is sufficient to show that

if G is not the Petersen graph P(5,2), then cL(G) ≤ 2. If ∆(G) ≤ 2, then G is a path or a

cycle, and thus, cL(G) ≤ 2. So, we may assume that ∆(G) = 3 and G is not the Petersen

graph. By Lemma 4.3.1, we may further assume that there is a vertex u0 ∈ V(G) with

deg(u0) = 3 and J = G − N[u0] is a 6-cycle. Note that each vertex in V(J) is adjacent to

at most one vertex in N(u0). Initially we may place two cops c1 and c2 at u0. Note that the

robber r can only remain in J as long as a cop is occupying u0.

Case 1. Suppose there are two vertices a, b ∈ V(J) such that a and b are not adjacent to

any vertices in N(u0). We consider three cases where (i) a is adjacent to b in J, (ii) a and
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b are separated by a vertex in J or (iii) a and b are separated by two vertices in J.

(i) Suppose a is adjacent to b in J. We keep c1 at u0 and move c2 into position as in

Figure 4.11.

u0
c1

a
b v c2

(a)

u0
c1

z

a
b v c2

(b)

Figure 4.11: Positions of c1 and c2.

Note that r can only stay at a, b or v. In Figure 4.11 (a), v is not adjacent to any

vertices in N(u0). So, we move c1 towards v, one step at a time. We keep c2 at his

position. At each robber’s turn, he can only remain at a, b or v. Thus he will be

caught by c1. In Figure 4.11 (b), v is adjacent to the vertex z ∈ N(u0). So, we move

c1 to z and then from z to v. The robber will also be caught.

(ii) Suppose a and b are separated by a vertex. We keep c1 at u0 and move c2 into

position as in Figure 4.12.

u0
c1

a
v b c2

(a)

u0
c1

z

a
v b c2

(b)

Figure 4.12: Positions of c1 and c2.
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In Figure 4.12 (a), v is not adjacent to any vertices in N(u0). So, we move c1 towards

v, one step at a time. We keep c2 at his position. The robber will be caught. In

Figure 4.12 (b), v is adjacent to the vertex z ∈ N(u0). So, we move c1 to z and then

from z to v. The robber will also be caught.

(iii) Suppose a and b are separated by two vertices. By Case 1(i) and (ii), each

wi ∈ V(J)\{a, b} is adjacent to a vertex in N(u0). Thus there is a vertex z ∈ N(u0)

is adjacent to two vertices w1 and w2 in J. There are three possibilities (see Figure

4.13). We keep c1 at u0 and move c2 into position as in Figure 4.13.

u0
c1

z

a
w1

x

w2

y

b c2

(a)

u0
c1

z
s

a
w1

x

y b c2

w2

(b)u0
c1

z
s

a
x

w1 y b c2

w2

(c)

Figure 4.13: The possible graphs such that a and b are separated by two vertices.

Note that r can only stay in a, x or y. In Figure 4.13 (a), w1 and w2 are adjacent. We

move c1 to z and then from z to x. The robber will be caught. In Figure 4.13 (b), w1

and w2 are separated by one vertex in J. We move c2 to w2. r can only stay in x, y or

b. Then, we move c1 to s and then from s to y. The robber will be caught. In Figure

4.13 (c), w1 and w2 are separated by two vertices in J. We move c1 to s, and then

from s to y. Now, r can only stay in a. We move c1 from y to x and r will be caught.
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Case 2. Suppose there is a z ∈ N(u0) with N(z) ∩V(J) = {a, b} such that (i) a is adjacent

to b in J or (ii) a and b are separated by a vertex in J.

(i) Suppose a is adjacent to b in J. We keep c1 at u0 and move c2 into position as in

Figure 4.14.

u0
c1

z

a
b v c2

(a)

u0
c1

z
w

a
b v c2 d

(b)

Figure 4.14: a and b are adjacent.

Note that r can only stay at a, b or v. In Figure 4.14 (a), v is not adjacent to any

vertices in N(u0). So, we move c1 to z and then from z to b. The robber will be

caught. In Figure 4.14 (b), v is adjacent to the vertex w ∈ N(u0). So, we move c1 to

w. Note that r can only stay at a, b or z. Next, move c2 to d and then from d to a.

The robber will be caught.

(ii) Suppose a and b are separated by a vertex. We keep c1 at u0 and move c2 into

position as in Figure 4.15.

u0
c1

z

a
v b c2 d

(a)

u0
c1

z
w x

a
v b f

e

c2 d

(b)

Figure 4.15: a and b are separated by one vertex.
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In Figure 4.15 (a), v is not adjacent to any vertices in N(u0). So, we move c1 to

z. Note that r can only remain at v. Now move c2 to d and then from d to a. The

robber will be caught.

In Figure 4.15 (b), v is adjacent to the vertex w ∈ N(u0).

– Suppose w is not adjacent to any vertices in V(J) except v. By Case 1, we

may assume that x is adjacent to exactly 2 vertices in {d, e, f }. Therefore,

degG(w) = 2. We move c1 to z. Note that r can only remain at v or w. Next,

move c2 to f and then from f to b and from b to v. The robber will be caught.

– Suppose w is adjacent to a vertex y in V(J). Note that y ∈ {d, e, f }. We move

c1 to z. Note that r can only remain at v or w. Next, move c2 to y and then

from y to w. The robber will be caught.

By Case 1, we must have at most one vertex in V(J) not adjacent to any vertex in N(u0).

Hence there exists at least two vertices zi ∈ N(u0) for i = 1,2 such that |N(zi) ∩ V(J)| = 2.

By Case 2, we may assume that if there is a z ∈ N(u0) with N(z) ∩ V(J) = {a, b}, then a

and b are separated by exactly 2 vertices in J (a and b are of distance 3 in J). Since G is

not the Petersen graph, we deduce that G is the unique graph isomorphic as in Figure 4.16

(a) or (b).

u0
c1

z1
z2 z3

w1
w2 w3 w4 w5

c2 w6

u0
c1

z1
z2 z3

w1
w2 w3 w4 w5

c2 w6

(b)(a)

Figure 4.16: Two possible graphs of G, which is not the Petersen graph.
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In Figure 4.16 (a), w3 is not adjacent to z3. We move c1 to z1. Then r can only stay

at w2 or w3. Next, move c2 to z2 and then from z2 to w2. The robber will be caught. In

Figure 4.16 (b), w3 is adjacent to z3. If z3 is adjacent to w6, then G is the Petersen graph.

So we may assume that z3 is not adjacent to w6. We move c1 to z1. Then r can only stay at

w2,w3 or z3. Next, move c2 to z2. Then r can only stay at w3 or z3. Next, move c2 from z2

to w2 and then from w2 to w3. The robber will be caught.

This completes the proof of the theorem.

4.4 Proof of Theorem 4.1.2

Here, we provide some known results (Theorems 4.4.1 and 4.4.2) and prove the following

lemmas which will be useful in proving Theorem 4.1.2.

Theorem 4.4.1. (Sullivan et al., 2016a, Theorem 3.1) If G is a connected graph on at most

8 vertices, then cL(G) ≤ 2.

Theorem 4.4.2. (Sullivan et al., 2016a, Theorem 2.4) The graph G = K3�K3 is the unique

graph on 9 vertices with cL(G) = 3. All other graphs H on 9 vertices have cL(H) ≤ 2.

Lemma 4.4.3. If G is a connected graph with ∆(G) ≤ 2, then cL(G) ≤ 2.

Proof. Since ∆(G) ≤ 2, G is a path or a cycle. Hence cL(G) ≤ 2.

Lemma 4.4.4. If G is a connected graph on n vertices with ∆(G) ≤ 3, then cL(G) ≤

max
(
3, b n

4c
)
.

Proof. Let
⌊ n

4
⌋
= t. We shall show that the lemma holds by using induction on t. If t = 1,

then n ≤ 7 and the lemma follows from Theorem 4.4.1. Assume that the lemma holds for

all 1 ≤ t < m. We shall show that the lemma also holds for n = 4m + q for any 0 ≤ q < 4.

Let u ∈ V(G) be of degree 3. If∆(G−N[u]) ≤ 2, then byLemma 4.4.3, cL(G−N[u]) ≤ 2.

Thus, cL(G) ≤ 3. So, we may assume ∆(G − N[u]) = 3. The number of vertices in
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G − N[u] is n′ = 4(m − 1) + q. If m − 1 ≥ 3, then by induction, cL(G − N[u]) ≤ m − 1,

and hence cL(G) ≤ m, the lemma holds. So, we may assume m ≤ 3, i.e., G is a graph with

at most 15 vertices. We shall show that 3 cops are enough to catch the robber. Let c1, c2

and c3 denote the cops and r denotes the robber.

Let S ⊆ V(G) be the set of all vertices of degree 3. A subset M ⊆ S is said to be

independent if N[s] ∩ N[s′] = ∅ for all s, s′ ∈ M . M ⊆ S is a maximal independent set if

|M | is of the largest size. Note that |M | ≤ 3, as |V(G)| ≤ 15.

Case 1. Suppose |M | = 3.

Let u1,u2,u3 ∈ M . Initially, we place ci at ui for i = 1,2,3 (see Figure 4.17).

u1
c1

u2
c2

u3
c3

w1 w2 w3

(a)

Figure 4.17: w1,w2 and w3 are not adjacent.

Let r be in a component J in G − N[u1 ∪ u2 ∪ u3]. Let {w j} ∈ V(J) for some j = 1,2,3.

Since degG(w j) ≤ 3, for any possible graph of J, |N(J) ∩ N(ui)| ≤ 1 for some i = 1,2,3.

We may assume |N(J) ∩ N(u1)| ≤ 1. Now we move c1 to r in J one step at a time or via

the vertex of N(J) ∩ N(u1) if exists. The robber r will have to remain in J as long as c2

and c3 are occupying u2 and u3, respectively. The robber will be caught.

Case 2. Suppose |M | = 2.

Let u1,u2 ∈ M . Initially we place c1 at u1 and c2, c3 at u2. Let r be in a component J in

G − N[u1] − N[u2].

(i) Suppose J is a path or a 3-cycle. Then we keep c1 and c2 at their positions and use

c3 to catch the robber in J. The robber will be caught because cL(J) = 1.
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(ii) Suppose J is a t-cycle, t = 4,5,6 with vertex set {w1,w2, . . . ,wt} and edge set

{w jw j+1} where the subscripts are taken modulo t. We move c3 to a vertex wt−1 in

J as in Figure 4.18.

u1
c1

u2
c2

w1
w2 w3 c3

wt−1

wt

(a)

Figure 4.18: c3 is placed at wt−1.

Note that |N(w1 ∪ w2 ∪ w3) ∩ N(ui)| ≤ 1 for some i = 1,2. We may assume

|N(w1 ∪ w2 ∪ w3) ∩ N(u1)| ≤ 1. If |N(w1 ∪ w2 ∪ w3) ∩ N(u1)| = 0, we move c1

towards w2 one step at a time. If |N(w1∪w2∪w3)∩N(u1)| = 1, we move c1 towards

w2 through the vertex of N(w j) ∩ N(u1) for some j = 1,2,3 one step at a time. We

keep c2 and c3 at their positions all the while. The robber can only remain at w1,w2

or w3. So, he will be caught.

(iii) Suppose J is a 7-cycle with vertex set {w1,w2, . . . ,w7} and edge set {w jw j+1}

where the subscripts are taken modulo 7.

Suppose there exists a vertex in the 7-cycle is not adjacent to all vertices in N(u1∪u2).

We may assume w4 is not adjacent to all vertices in N(u1 ∪ u2). Then we move c3 to

w6 in J as in Figure 4.19. Note that |N(w1 ∪w2 ∪w3) ∩ N(ui)| ≤ 1 for some i = 1,2.

We may assume |N(w1 ∪ w2 ∪ w3) ∩ N(u1)| ≤ 1. Then we move c1 similarly as

in Case 2(ii). Then, we move c1 to w3 if the robber is at w4. The robber can only

remain at w1,w2,w3 or w4 as c2 and c3 remain throughout the game. So, he will be

caught.
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u1
c1

u2
c2

w1
w2 w3 w4 c3

w6

Figure 4.19: w4 is not adjacent to all vertices in N(u1 ∪ u2) and c3 is moved to w6.

Now, suppose all vertices in J are adjacent to some vertices in N(u1 ∪ u2). Hence,

there are at least four vertices in J are adjacent to some vertices N(ui) for some

i = 1,2. Following this, there exists four consecutive vertices in J such that at least

three of the four vertices are adjacent to some vertices in N(ui) for some i = 1,2.

Without loss of generality, let {w1,w2,w3,w4} be the consecutive four vertices such

that at least three of them are adjacent to some vertices in N(u1). This indicates

that |N(w1 ∪ w2 ∪ w3 ∪ w4) ∩ N(u2)| ≤ 1. We now move c3 to w6. The robber can

only stay in w1,w2,w3 or w4. Then we move c2 to r in J one step at a time or via

the vertex of N(w1 ∪ w2 ∪ w3 ∪ w4) ∩ N(u2) if exists. The cops c2 and c3 remain

throughout the game. Hence r has to remain in wi for some i = 1,2,3,4 and he will

be caught.

Case 3. Suppose |M | = 1. Let u ∈ M. Then ∆(G − N[u]) ≤ 2. By Lemma 4.4.3,

cL(G − N[u]) ≤ 2. Hence cL(G) ≤ 3.

This completes the proof.

Lemma 4.4.5. If G is a connected graph on n vertices with ∆(G) ≥ n − 9, then cL(G) ≤ 3.

Proof. Let u ∈ V(G) with deg(u) = ∆(G) ≥ n−9. We have three lazy cops at our disposal,

and we shall choose initially to place all the three cops at u. Let H be the component of

G − N[u] for which the robber is placed initially. Two of the cops at position u will be
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moved to H, one at a time. One cop will remain at u at all time. This restricts the robber

to move only on the vertices of H throughout the game. Since |V(H)| ≤ 8, by Theorem

4.4.1, cL(H) ≤ 2. Hence, 3 cops are sufficient in catching the robber.

Lemma 4.4.6. Let G be a connected graph with 15 vertices and there is at least one vertex

of degree 4. If G − N[u] is the Petersen graph for all u ∈ V(G) with degG(u) = 4, then

∆(G) ≥ 5.

Proof. It is sufficient to show that there is a vertex in V(G) with degree 5. Let u1 ∈ V(G)

with degG(u1) = 4. Since G − N[u1] is the Petersen graph, there is a vertex u2 in N(u1)

adjacent to a vertex v1 in V(G − N[u1]). We may assume the graph is as in Figure 4.20.

v1

v2 v3 v4

w1 w2 w3 w4 w5
w6

u1

u2 u3 u4 u5

Figure 4.20: A vertex u2 in N(u1) adjacent to a vertex v1 in V(G − N[u1]).

Now consider G − N[v1] (see Figure 4.21). Since the resulting graph must be the

Petersen graph, we may assume u3 is adjacent to w1 and w4, u4 is adjacent to w2 and w5,

and u5 is adjacent to w3 and w6 (see Figure 4.22).

w1 w2 w3 w4 w5
w6

u1

u3 u4 u5

Figure 4.21: G − N[v1]

Now consider G − N[w1] (see Figure 4.23). Since the resulting graph is the Petersen

graph, w4 must be adjacent to u2. Hence, degG(w4) = 5.
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v1

v2 v3 v4

w1 w2 w3 w4 w5
w6

u1

u2 u3 u4 u5

Figure 4.22: u3 is adjacent to w1 and w4, u4 is adjacent to w2 and w5, and u5 is
adjacent to w3 and w6

v1

v3 v4

w3 w4 w5

u1

u2 u4 u5

Figure 4.23: G − N[w1]

We are now ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. We first consider the case when |V(G)| ≤ 14. By Lemmas 4.4.3,

4.4.4 and 4.4.5, we shall only need to deal with the case when ∆(G) = 4. Let u be a vertex

in G with degree 4. Observe that G − N[u] has at most 9 vertices and that G − N[u] is

not the graph K3�K3. So, by Theorems 4.4.1 and 4.4.2, cL(G − N[u]) ≤ 2, implying

cL(G) ≤ 3.

We now assume that |V(G)| = 15. If ∆(G) ≤ 3, then by Lemmas 4.4.3 and 4.4.4,

cL(G) ≤ 3. If ∆(G) ≥ 6, then by Lemma 4.4.5, cL(G) ≤ 3. Suppose ∆(G) = 5. Let

u ∈ V(G) with degG(u) = 5. Initially, place all the three cops c1, c2 and c3 at u. Then

the robber r must be at one of the components in G − N[u], say H. Note that r has to

remain in H as long as there is a cop occupying u. If H has at most 8 vertices, then

by Theorem 4.4.1, cL(H) ≤ 2. If H has 9 vertices and H � K3�K3, then by Theorem

4.4.2, cL(H) ≤ 2. In either case, we keep c1 at u and use c2 and c3 to catch the robber in
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H. Suppose H � K3�K3. There is a vertex w ∈ V(H) with degG(w) = 5 because G is

connected. Since K3�K3 is vertex transitive, we may assume w is the vertex at the top left

of K3�K3. Now keep c1 at u and move c2 to the center vertex of K3�K3. After that, move

c3 to the bottom right vertex of K3�K3. Note that r can only stay at w. Now move c1 to w

through the only vertex in N(u) ∩ N(w). The robber will be caught.

So, we are only left with the case when ∆(G) = 4. Let S ⊆ V(G) be the set of all

vertices of degree 4. A subset M ⊆ S is said to be independent if N[w] ∩ N[w′] = ∅ for

all w,w′ ∈ M with w , w′. M ⊆ S is a maximal independent set if |M | is of the largest

size. Note that |M | ≤ 3. We shall show that three cops c1, c2, c3 are sufficient to catch the

robber for each of the possible size of M .

Case 1. Suppose |M | = 3.

Let w1,w2,w3 ∈ M . Place ci at wi for i = 1,2,3. SinceV(G) = N[w1]∪N[w2]∪N[w3],

the robber will be caught.

Case 2. Suppose |M | = 2.

Let w1,w2 ∈ M . Place c1 and c3 at w1 and c2 at w2. The robber r must be at one of the

components in G − N[w1] − N[w2], say J. Since |M | = 2, ∆(J) ≤ 3. Note that r has to

remain in J as long as w1 and w2 are occupied by cops.

(i) ∆(J) = 3.

Let a ∈ V(J) with degJ(a) = 3. We keep c1 and c2 at w1 and w2, respectively, and

move c3 to a. Since |N[w1]∪N[w2]∪N[a]| = 14, r must be at the remaining vertex,

say b. Since degG(b) ≤ 4, there is a ci (1 ≤ i ≤ 3) such that |N(b) ∩ N(ci)| ≤ 1.

Now move ci to b one step at a time or via the vertex in N(b) ∩ N(ci) (if exists). The

robber will be caught.
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(ii) ∆(J) ≤ 2. Then J is a path or a s-cycle where s ≤ 5.

– If J is a path or a 3-cycle, then we keep c1 and c2 at w1 and w2, respectively,

and use c3 to catch the robber in J.

– If J is a 4-cycle, then we keep c1 and c2 at w1 and w2, respectively, and move

c3 to a vertex in J. Note that r must be at the remaining vertex in J, say b (see

Figure 4.24).

b
c3

Figure 4.24: J is a 4-cycle.

Since degG(b) ≤ 4, there is a ci (1 ≤ i ≤ 2) such that |N(b) ∩ N(ci)| ≤ 1. Now

move ci to b one step at a time (if |N(b) ∩ N(ci)| = 0) or via the vertex in

N(b) ∩ N(ci) (if |N(b) ∩ N(ci)| = 1). The robber will be caught.

– If J is a 5-cycle, then we keep c1 and c2 at w1 and w2, respectively, and move

c3 to a vertex in J (see Figure 4.25).

w1
c1

w2
c2

a
b c3

Figure 4.25: Positions of c1, c2 and c3.

If there is no edge connecting a vertex in {a, b} with a vertex in N(c1), then we

move c1 to a one step at a time. Note that r can stay at a or b only, as long as

c2 and c3 are at their positions. So, the robber will be caught. Hence we may

assume there is an edge connecting a vertex in {a, b} with a vertex in N(c1).
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Without loss of generality, we may assume a is adjacent to a vertex z in N(c1)

(see Figure 4.26).

w1
c1

w2
c2

z

a
b c3

Figure 4.26: a is adjacent to a vertex z in N(c1).

Suppose N(a) ∩ N(c2) = ∅.

i. If |N(b) ∩ N(c2)| ≤ 1, then keep c1 and c3 at their positions and move

c2 to b one step at a time (if |N(b) ∩ N(c2)| = 0) or via the vertex in

N(b) ∩ N(c2) (if |N(b) ∩ N(c2)| = 1). The robber will be caught.

ii. If |N(b) ∩ N(c2)| = 2, then N(b) ∩ N(c1) = ∅. If |N(a) ∩ N(c1)| = 1,

move c1 to a via z. The robber will be caught. For if |N(a) ∩ N(c1)| = 2

(see Figure 4.27), we move c2 to b via x if the robber is at a and move c1

to a via z if the robber is at b. In either case, the robber will be caught.

w1
c1

w2
c2

z x

a
b c3

Figure 4.27: |N(a) ∩ N(c1)| = 2.

So we may assume |N(a) ∩ N(c2)| = 1 (see Figure 4.28).

If |N(b) ∩ N(c2)| = 0, then keep c1 and c3 at their positions and move c2 to a

via x. If |N(b) ∩ N(c1)| = 0, then keep c2 and c3 at their positions and move
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w1
c1

w2
c2

z x

a
b c3

Figure 4.28: |N(a) ∩ N(c2)| = 1.

c1 to a via z. In either case, the robber will be caught. So we may assume

|N(b) ∩ N(ci)| = 1 for i = 1,2. If b is adjacent to z, then keep c2 and c3 at their

positions and move c1 to z. The robber will be caught. So we may assume b is

not adjacent to z. Similarly, we may assume b is not adjacent to x (see Figure

4.29).

w1
c1

w2
c2

z e x f

a
b d c3

Figure 4.29: |N(b) ∩ N(ci)| = 1 for i = 1,2.

Note that r can be at a or b. We shall assume r is at a. The case r is at b is

similar. Move c2 to x. Then r will have to move to b. Next, move c1 to e.

Then r will have to move to f . Now, move c2 back to w2. If f is not adjacent

to a vertex in N(w1)\{e}, then r will be caught in the next cop’s turn. If f is

adjacent to a vertex in N(w1)\{e}, then r will have to move from f to a vertex

in N(w1)\{e}. Now, move c1 back to w1. At robber’s turn, if r is not at z, he

will be caught in the next cop’s turn. So, r must be at z and f is adjacent to z.
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Now, reset the movements and assume r is at a. Move c1 to z. Then r will have

to move to b. Next, move c2 to f . Then r will have to move to e. Now, move c1

back to w1. If e is not adjacent to a vertex in N(w2)\{ f }, then r will be caught

in the next cop’s turn. If e is adjacent to a vertex in N(w2)\{ f }, then r will

have to move from e to a vertex in N(w2)\{ f }. Now, move c2 back to w2. At

robber’s turn, if r is not at x, he will caught in the next cop’s turn. So r must

be at x and e is adjacent to x (see Figure 4.30).

w1
c1

w2
c2

z e x f

a
b d c3

Figure 4.30: Positions of c1, c2 and c3 initially.

Reset the movements and assume r is at a. Now, move c2 to x. Then r will

have to move to b. Next, move c1 to z. Then r will have to remain at b. Move

c3 to d. The robber will be caught.

Case 3. Suppose |M | = 1.

Then ∆(G − N[u]) ≤ 3 for all u ∈ V(G) with degG(u) = 4.

Suppose there is a vertex w ∈ V(G) with degG(w) = 4 such that G − N[w] is not

connected. Place all the cops at w. The robber r must be at one of the components in

G − N[w], say J. If ∆(J) ≤ 2, then by Lemma 4.4.3, cL(J) ≤ 2. So, we keep one cop at w

and use the other two cops to catch the robber in J. Similarly, by Theorems 4.4.1 and 4.4.2,

we may assume J = K3�K3 or |V(J)| = 10. The former cannot happen because |M | = 1.

The latter also cannot happen because G − N[w] is not connected.
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So, we may assume that G − N[u] is connected for all u ∈ V(G) with degG(u) = 4. If

there is a vertex v ∈ V(G) with degG(v) = 4 such that G − N[v] is not the Petersen graph,

then by Theorem 4.1.1, cL(G − N[v]) ≤ 2. Hence, we keep one cop at v and use the other

two cops to catch the robber in G − N[v].

Now we may assume that G − N[u] is the Petersen graph for all u ∈ V(G) with

degG(u) = 4. By Lemma 4.4.6, ∆(G) ≥ 5, a contradiction.

Hence, cL(G) ≤ 3 and this completes the proof of the theorem.

Corollary 4.4.7. If G is a connected graph with n vertices and ∆(G) ≥ n − 16, then

cL(G) ≤ 4.

Proof. Let u ∈ V(G) with deg(u) = ∆(G). Place all the four cops at u. The robber r

must be at a component in G − N[u], say H. Note that |V(H)| ≤ 15. By Theorem 4.1.2,

cL(H) ≤ 3. So, we keep one cop at u and use the other three cops to catch the robber in

H.
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CHAPTER 5: ON THE BURNING NUMBER OF GENERALIZED PETERSEN
GRAPHS

5.1 Introduction

In this chapter, we present the burning number of the generalized Petersen graphs. Let

n ≥ 3 and k be integers such that 1 ≤ k ≤ n − 1. We recall that the generalized Petersen

graph P(n, k) is defined to be the graph on 2n vertices with vertex set

V(P(n, k)) = {ui, vi : i = 0,1,2, . . . ,n − 1}

and edge set

E(P(n, k)) = {uiui+1,uivi, vivi+k : i = 0,1,2, . . . ,n − 1},

where subscripts are taken modulo n. Let D1 = {ui : i = 0,1,2, . . . ,n − 1} and D2 =

{vi : i = 0,1,2, . . . ,n − 1}. The subgraph induced by D1 is called the outer rim while the

subgraph induced by D2 is called the inner rim. A spoke of P(n, k) is an edge of the form

uivi for some 0 ≤ i ≤ n − 1.

The following are the main results of this chapter.

Theorem 5.1.1. Let k be a fixed positive integer. Then

⌈√⌊n
k

⌋⌉
≤ b(P(n, k)) ≤

⌈√⌊n
k

⌋⌉
+

⌊
k
2

⌋
+ 2.

In particular,

lim
n→∞

b(P(n, k))√ n
k

= 1.
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Theorem 5.1.2. For n ≥ 3,

⌈√
n
⌉
≤ b(P(n,1)) ≤

⌈√
n
⌉
+ 1.

Furthermore, the bounds are tight, and if n is a square, then b(P(n,1)) =
√

n + 1.

Theorem 5.1.3. For n ≥ 3,

⌈√
n
2

⌉
+ 1 ≤ b(P(n,2)) ≤

⌈√
n
2

⌉
+ 2.

Furthermore, the bounds are tight, and if n
2 is a square, then b(P(n,2)) =

√n
2 + 2.

Theorem 5.1.4. For n ≥ 4,

⌈√
n
3

⌉
+ 1 ≤ b(P(n,3)) ≤

⌈√⌊n
3

⌋⌉
+ 3.

Note that distG(u,u) = 0. Given a non-negative integer s, the s-th closed neighbourhood

of a vertex u, denoted by NG
s [u], is the set of vertices whose distance from u is at most s,

i.e.,

NG
s [u] = {v ∈ V(G) : distG(u, v) ≤ s}.

Again, if the graph in question is clear, we shall write Ns[u] for NG
s [u].

Let (x1, x2, . . . , xm) be a burning sequence of a graph G. As in (Bonato, Janssen,

& Roshanbin, 2016, Section 2), for each pair i and j, with 1 ≤ i < j ≤ m, we have

dist(xi, x j) ≥ j − i and

V(G) = Nm−1[x1] ∪ Nm−2[x2] ∪ · · · ∪ N0[xm]. (5.1)
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In Section 5.2, we provide bounds for the burning number of P(n, k) and show that

b(P(n, k)) is asymptotically
√ n

k . In Section 5.3, we determine the exact values of b(P(n, k))

for 1 ≤ n ≤ 8. Then, we prove Theorems 5.1.2, 5.1.3 and 5.1.4 in Section 5.4.

5.2 General case

Lemma 5.2.1. For n ≥ 3 and 1 ≤ k < n,

b(P(n, k)) ≥

⌈√⌊n
k

⌋⌉
.

Proof. Let C be a cycle with
⌊ n

k

⌋
vertices, V(C) = {0,1,2, . . . ,

⌊ n
k

⌋
− 1} and E(C) =

{i(i + 1) : 0,1, . . . ,
⌊ n

k

⌋
− 1}, where the integers are taken modulo

⌊ n
k

⌋
. Recall that the

outer rim and inner rim of P(n, k) are D1 = {u0,u1, . . . ,un−1} and D2 = {v0, v1, . . . , vn−1},

respectively.

For each m ∈ {0,1,2, . . . ,n − 1}, let

f (m) =



p, if m = pk + q, 0 ≤ p <
⌊ n

k

⌋
,0 ≤ q ≤ k − 1;

⌊ n
k

⌋
− 1, if m =

⌊ n
k

⌋
k + q, 0 ≤ q < k − 1.

(5.2)

Let ϕ : V(P(n, k)) → V(C) be defined by

ϕ(ui) = f (i) = ϕ(vi), ∀i ∈ {0,1,2, . . . ,n − 1}. (5.3)

Clearly, ϕ is surjective.

Let (x1, x2, . . . , xs) be a burning sequence of P(n, k). We construct a burning sequence

for C using the map ϕ as follows:

(a) At the beginning of time step 1, burn y1 = ϕ(x1);
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(b) At the beginning of time step t (2 ≤ t ≤ s), if ϕ(xt) is still unburned, then burn

yt = ϕ(xt), otherwise, burn any unburned vertex yt ∈ V(C).

Note that in (b) above, if at the beginning of time step t (2 ≤ t ≤ s), no unburned vertex

can be found, then (y1, y2, . . . , yt−1) is a burning sequence of C. So we may assume that

such an unburned vertex can be found at the beginning of every time step. We shall show

that (y1, y2, . . . , ys) is a burning sequence of C. This follows from ϕ is surjective and the

following claim.

Claim. If z ∈ V(P(n, k)) is burned at time step t0, then its image ϕ(z) in C is burned at

time step t1 ≤ t0.

Proof. If z = x1, then it is burned at time step 1. Its image ϕ(z) = y1 is also burned at

time step 1. The claim is true. Assume that the claim is true for a t0 < s.

Suppose z is burned at time step t0 + 1. If z is a burning source, then z = xt0+1. By (b),

ϕ(z) is burned at time step t0 + 1 provided that ϕ(xt0+1) is unburned. If ϕ(xt0+1) is burned,

then it must be burned at an earlier time step. So the claim holds.

Wemay assume that z , xt0+1. Note that for any two distinct verticesw1,w2 ∈ V(P(n, k))

such that ϕ(w1), ϕ(w2) ∈ V(C) and |ϕ(w1) − ϕ(w2)| ≤ 1 or |ϕ(w1) − ϕ(w2)| = b
n
k c − 1,

then ϕ(w1) = ϕ(w2) or ϕ(w1) and ϕ(w2) are adjacent in C. We shall distinguish two cases.

Case 1. Let z = ul . Then it is adjacent to vl,ul+1 and ul−1 where the subscript are taken

modulo n. Furthermore, either vl,ul+1 or ul−1 is burned at time step t0. So by induction,

ϕ(vl), ϕ(ul+1) or ϕ(ul−1) is burned at time step t1 ≤ t0 respectively. By equations (5.2)

and (5.3), |ϕ(ul) − ϕ(vl)| = 0, |ϕ(ul) − ϕ(ul−1)| ≤ 1 and |ϕ(ul) − ϕ(ul+1)| ≤ 1 where

l = 1,2, . . . ,n− 2 and |ϕ(u0) − ϕ(un−1)| = b
n
k c − 1. This means that ϕ(z) = ϕ(ul) is burned

at time step t1 + 1 ≤ t0 + 1.

Case 2. Let z = vl . It is adjacent to ul, vl+k and ul−k where the subscript are taken modulo

n. Either ul, vl−k or vl+k is burned at time step t0. Here, we denote v−i = vn−i for a
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non-negative i. So by induction, ϕ(ul), ϕ(vl+k) or ϕ(vl−k) is burned at time step t1 ≤ t0

respectively. By equations (5.2) and (5.3), we have |ϕ(vl) − ϕ(ul)| = 0,

|ϕ(vl) − ϕ(vl−k)| =



b n
k c − 1, if l = 0,1,2, . . . , k − 1;

1, if l = k, k + 1, . . . , b n
k ck − 1;

0, if l = b n
k ck, b

n
k ck + 1, . . . ,n − 1.

and

|ϕ(vl) − ϕ(vl+k)| =



1, if l = 0,1,2, . . . ,
(
b n

k c − 1
)

k − 1;

0, if l =
(
b n

k c − 1
)

k,
(
b n

k c − 1
)

k + 1, . . . ,n − 1 − k;

b n
k c − 1, if l = n − k,n − k + 1, . . . ,n − 1.

This means that ϕ(z) = ϕ(vl) is burned at time step t1 + 1 ≤ t0 + 1.

This completes the proof of the claim.

Therefore, given any burning sequence of P(n, k), we can construct a burning sequence

for C with shorter or the same length. Hence b(P(n, k)) ≥ b(C) =
⌈√⌊ n

k

⌋⌉
, where the last

equality follows from Theorem 2.3.1.

Lemma 5.2.2. For n ≥ 3 and 1 ≤ k < n,

b(P(n, k)) ≤

⌈√⌊n
k

⌋⌉
+

⌊
k
2

⌋
+ 2.
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Proof. Recall that the outer rim and inner rim of P(n, k) are D1 = {u0,u1, . . . ,un−1} and

D2 = {v0, v1, . . . , vn−1}, respectively. Let r =
⌊ n

k

⌋
. We shall construct a burning sequence

for P(n, k) of length at most
⌈√

r
⌉
+

⌊ k
2
⌋
+ 2. Note that a subgraph G induced by the

vertices v0, vk, v2k, . . . , v(r−1)k in P(n, k) is a path or cycle of order r. By Theorem 2.3.1,

b(G) =
⌈√

r
⌉
. So there is a burning sequence (x1, x2, . . . , xd√re) of G. We shall take

x1, x2, . . . , xd√re as the first part of our burning sequence for P(n, k).

Note that at time step d
√

re, all v0, vk, v2k, . . . , v(r−1)k are burned. If at time step d
√

re,

urk is unburned, then we set xd√re+1 = urk . Otherwise, we set xd√re+1 to be any unburned

vertex. Since uik is adjacent to vik for 0 ≤ i ≤ (r − 1), at time step d
√

re + 1, all

u0,uk,u2k, . . . ,u(r−1)k,urk are burned. Furthermore, at most k − 1 vertices are unburned in

the path uikuik+1uik+2 · · · u(i+1)k in the outer rim (see Figure 5.1).

uik

vik

uik+1

vik+1

uik+2

vik+2

uik+k−1

vik+k−1

u(i+1)k

v(i+1)k

urk

vrk

u0

v0

k − 1 vertices︷                     ︸︸                     ︷ ≤ k − 1 vertices︷  ︸︸  ︷

Figure 5.1: Filled vertices are burned whereas empty vertices are unburned.

Now, for j ≥ d
√

re + 2, we can choose x j to be any unburned vertex. Note that at

time step d
√

re + 1 +
⌊ k

2
⌋
, all the vertices in the outer rim are burned. Since ui and vi are

adjacent, at time step d
√

re + 2 +
⌊ k

2
⌋
, all vertices in the inner rim are also burned. Hence

the lemma follows.

Proof of Theorem 5.1.1. By Lemmas 5.2.1 and 5.2.2, we have

⌈√⌊n
k

⌋⌉
≤ b(P(n, k)) ≤

⌈√⌊n
k

⌋⌉
+

⌊
k
2

⌋
+ 2.
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By noting that limn→∞

⌈√
b nk c

⌉
√

n
k

= 1 and limn→∞
b k2 c+2
√

n
k

= 0, we conclude

lim
n→∞

b(P(n, k))√ n
k

= 1.

5.3 Case 1 ≤ n ≤ 8

We shall give the exact burning numbers for the case 1 ≤ n ≤ 8 in this section. Note

that P(n, k) is isomorphic to P(n,n − k). So we may assume that 1 ≤ k ≤
⌊ n

2
⌋
. Recall that

the s-th closed neighbourhood of a vertex x ∈ V(P(n, k)) is

Ns[x] = {y ∈ V(P(n, k)) : dist(y, x) ≤ s},

and the outer rim and inner rim of P(n, k) are D1 = {u0,u1, . . . ,un−1} and D2 =

{v0, v1, . . . , vn−1}, respectively.

Proposition 5.3.1. Let 3 ≤ n ≤ 8 and 1 ≤ k ≤
⌊ n

2
⌋
. Then,

b(P(n, k)) =



3, if 3 ≤ n ≤ 6 or n=7, k , 1,

4, if n=8 or n = 7, k = 1.

Proof. Since each vertex x ∈ V(P(n, k)) is of degree 3, |N0[x]| = 1, |N1[x]| ≤ 4 and

|N2[x]| ≤ 10.

Let 3 ≤ n ≤ 7. If (x1, x2) is a burning sequence of P(n, k), then by equation (5.1),

2n ≤ |N1[x1]| + |N0[x2]| ≤ 4 + 1 = 5,
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implying that n < 3, which is a contradiction. Hence b(P(n, k)) ≥ 3. Similarly, if

(x1, x2, x3) is a burning sequence of P(8, k), then

16 ≤ |N2[x1]| + |N1[x2]| + |N0[x3]| ≤ 10 + 4 + 1 = 15,

again is a contradiction. Hence b(P(8, k)) ≥ 4.

Note that for each x ∈ V(P(7,1)), |N2[x]| = 8. So if (x1, x2, x3) is a burning sequence

of P(7,1), then

14 ≤ |N2[x1]| + |N1[x2]| + |N0[x3]| ≤ 8 + 4 + 1 = 13,

which is a contradiction. Hence b(P(7,1)) ≥ 4.

Now, the proposition can be verified easily from the burning sequences in the following

table (see also Figure 5.2).

Table 5.1: Burning sequences

Burning sequence Graph
(u0, v1, v2) P(3,1),P(4,1),P(4,2)
(u0, v3,u3) P(5,1),P(6,1),P(6,2)
(u0,u2, v4) P(5,2),P(6,3)
(u0,u2,u4, v4) P(7,1)
(u0,u3, v4) P(7,2)
(v0, v2,u5) P(7,3)
(u0,u2, v4,u4) P(8,1),P(8,2),P(8,3),P(8,4)
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x1

x3

x2

x1

x2

x3

x1

x2x3

P(6,2) P(6,3)
P(7,2)

Figure 5.2: Burning sequences

5.4 Case 1 ≤ k ≤ 3

5.4.1 Proof of Theorem 5.1.2

Note that for each x ∈ V(P(n,1)), |Nm[x]| ≤ 4m for m ≥ 1 and |N0[x]| = 1. So if

(x1, x2, . . . , xl) is a burning sequence of P(n,1), then by equation (5.1),

2n ≤ |N0[xl]| +

l−1∑
i=1
|Nl−i[xi]| ≤ 1 +

l−1∑
i=1

4(l − i) = 2l2 − 2l + 1.

Since l ≥ 1, by completing the square, we conclude that l ≥
2+
√

4−8(1−2n)
4 = 1

2 +
√

n − 1
4 >

√
n. Hence b(P(n,1)) ≥

⌈√
n
⌉
, and if n is a square, then b(P(n,1)) ≥

⌈√
n
⌉
+ 1.

The subgraph C induced by the vertices in the outer rim D1 = {u0,u1, . . . ,un−1} is

a cycle of length n. By Theorem 2.3.1, b(C) =
⌈√

n
⌉
. So C has a burning sequence

(y1, y2, . . . , yd
√

n e). We shall take y1, y2, . . . , yd
√

ne as the first part of our burning sequence

for P(n,1). Note that at time step d
√

ne, all the vertices in the outer rim are burned. Choose

any unburned vertex z in the inner rim. Let yd√ne+1 = z. Since uivi are adjacent for

1 ≤ i ≤ n − 1, at time step d
√

ne + 1 all vertices in the inner rim are also burned. Hence

b(P(n,1)) ≤
⌈√

n
⌉
+ 1, and if n is a square, then b(P(n,1)) =

√
n + 1.
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Finally, by Proposition 5.3.1, b(P(5,1)) = 3 =
⌈√

5
⌉
. So the bounds are tight. This

completes the proof of Theorem 5.1.2.

5.4.2 Proof of Theorem 5.1.3

We shall first define an isomorphic graph of P(n,2), say H(n). Let

W1 =
{
si, s′i, ti, t

′
i : i = 1,2, . . . ,

⌊n
2

⌋}
;

W2 =
{
titi+1, t′i t

′
i+1, sis′i+1, s j t j, s′j t

′
j, s j s′j : 1 ≤ i ≤

⌊n
2

⌋
− 1,1 ≤ j ≤

⌊n
2

⌋}
.

If n is even, then let

V(H(n)) = W1;

E(H(n)) = W2 ∪
{
t1t n

2
, t′1t′n

2
, s n

2
s′1

}
. (5.4)

If n is odd, then let

V(H(n)) = W1 ∪ {s0, t0} ;

E(H(n)) = W2 ∪
{
s0s n−1

2
, s0s′1, s0t0, t0t1, t0t′n−1

2
, t n−1

2
t′1
}
. (5.5)

We now show that P(n,2) is isomorphic to H(n) (see Figures 5.3 and 5.4). Define

φ : V(P(n,2)) → V(H(n)) as follows: Let φ(ui) = s′i
2+1

if i is even and i , n − 1;

φ(ui) = s i−1
2 +1 if i is odd; φ(un−1) = s0 if n − 1 is even. Let φ(vi) = t′i

2+1
if i is even and

i , n − 1; φ(vi) = t i−1
2 +1 if i is odd; φ(vn−1) = t0 if n − 1 is even. Note that the subgraph

induced by all the vertices si, s′i in H(n) is isomorphic to the outer rim in P(n,2), and the

subgraph induced by all the vertices ti, t′i in H(n) is isomorphic to the inner rim in P(n,2).

Furthermore, siti, s′i t
′
i are the spokes in P(n,2). So P(n,2) is isomorphic to H(n).
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Let T1 = {ti : 1 ≤ i ≤ b n
2c}, T2 = {t′i : 1 ≤ i ≤ b n

2c}, and level Li = {si, s′i, ti, t
′
i } for

i = 1,2, . . . , b n
2c.

u0 u1

u2

u3

u4u5

un−2

un−1

t1

t2

t3

t n
2

s1

s2

s3

s n
2

s′1

s′2

s′3

s′n
2

t′1
t′2

t′3
t′n

2

P(n,2) H(n)

T1
⇓

T2
⇓

⇐ L1

⇐ L2

⇐ L3

⇐ L n
2

Figure 5.3: H(n) is isomorphic to P(n,2) where n is even.

u0

u1

u2

u3

u4un−4

un−3

un−2

un−1
t1

t2

t3

t n−1
2

s1

s2

s3

s n−1
2

s′1

s′2

s′3

s′n−1
2

t′1

t′2

t′3

t′n−1
2

s0

t0

P(n,2) H(n)

T1
⇓

T2
⇓

⇐ L1

⇐ L2

⇐ L3

⇐ L n−1
2

Figure 5.4: H(n) is isomorphic to P(n,2) where n is odd.

Lemma 5.4.1. For n ≥ 3,

b(P(n,2)) ≥
⌈√

n
2

⌉
+ 1.

Furthermore, if n
2 is a square, then b(P(n,2)) ≥

√n
2 + 2.
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Proof. Note that if x < T1 ∪T2, then |N0[x]| = 1, |N1[x]| ≤ 4, |N2[x]| ≤ 10, |N3[x]| ≤ 16,

|N4[x]| ≤ 22, |N5[x]| ≤ 30 and |Nr[x]| ≤ 30 + 8(r − 5) for r ≥ 6 (see Figure 5.5). After 5

steps, a maximum of 8 vertices are newly burned in each following step.

N0[x] N1[x]
N2[x]

N3[x]

N4[x]
N5[x]

x x x x

x x

Figure 5.5: Spreading of fire from x < T1 ∪ T2. Filled vertices are burned whereas
empty vertices are unburned.

If x ∈ T1 ∪ T2, then |N0[x]| = 1, |N1[x]| ≤ 4, |N2[x]| ≤ 10, |N3[x]| ≤ 18 and

|Nr[x]| ≤ 18 + 8(r − 3) for r ≥ 4 (see Figure 5.6). After 4 steps, a maximum of 8 vertices

are newly burned in each following step.

In either case, we have |N0[x]| = 1, |N1[x]| ≤ 4, |N2[x]| ≤ 10, |N3[x]| ≤ 18 and

|Nr[x]| ≤ 18 + 8(r − 3) = 8r − 6 for r ≥ 4.

By Proposition 5.3.1, b(P(n,2)) = 3 =
⌈√n

2
⌉
+ 1 for 3 ≤ n ≤ 7 and

b(P(8,2)) = 4 =
√

n
2
+ 2.
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x x x

N0[x]
N1[x]

N2[x]

Figure 5.6: Spreading of fire from x ∈ T1 ∪ T2. Filled vertices are burned whereas
empty vertices are unburned.

Hence the lemma holds for 3 ≤ n ≤ 8. So we may assume n ≥ 9. Suppose 9 ≤ n ≤ 16,

then
⌈√n

2
⌉
≤ 3. If P(n,2) has a burning sequence of length 3, say (x1, x2, x3), then by

equation (5.1), 18 ≤ 2n ≤
∑3

i=1 |N3−i[xi]| ≤ 1 + 4 + 10 = 15, a contradiction. Suppose

17 ≤ n ≤ 32, then
⌈√n

2
⌉
≤ 4. If P(n,2) has a burning sequence of length 4, say

(x1, x2, x3, x4), then 34 ≤ 2n ≤
∑4

i=1 |N4−i[xi]| ≤ 1 + 4 + 10 + 18 = 33, a contradiction. So

b(P(n,2)) ≥
⌈√n

2
⌉
+ 1 for 3 ≤ n ≤ 32.

Note that for 9 ≤ n ≤ 32, n
2 is a square if and only if n = 18 or 32. When n = 18,√n

2 + 2 = 5. If P(18,2) has a burning sequence of length 4, then
∑4

i=1 |N4−i[xi]| ≤ 33,

but |V(P(18,2))| = 36. When n = 32,
√n

2 + 2 = 6. If P(32,2) has a burning sequence of

length 5, then
∑5

i=1 |N5−i[xi]| ≤ 1 + 4 + 10 + 18 + 26 = 59, but |V(P(32,2))| = 64. Thus,

if n
2 is a square and 9 ≤ n ≤ 32, then b(P(n,2)) ≥

√n
2 + 2.

Suppose n ≥ 33. If P(n,2) has a burning sequence of length l, say (x1, x2, . . . , xl), then

by equation (5.1),

2n ≤
l∑

i=1
|Nl−i[xi]| ≤ |N0[xl]| + |N1[xl−1]| + |N2[xl−2]| +

l−3∑
i=1
|Nl−i[xi]|

≤ 1 + 4 + 10 +
l−1∑
r=3
(8r − 6)

= 4l2 − 10l + 9.

85

Univ
ers

ity
 of

 M
ala

ya



Since l ≥ 1, by completing the square, we conclude that

l ≥
10 +

√
100 − 16(9 − 2n)

8
=

5
4
+

√
n
2
−

11
16

>

√
n
2
+ 1.

Hence b(P(n,2)) ≥
⌈√n

2
⌉
+ 1, and if n

2 is a square, then b(P(n,2)) ≥
√n

2 + 2. This

completes the proof of the lemma.

Lemma 5.4.2. For n ≥ 3,

b(P(n,2)) ≤
⌈√

n
2

⌉
+ 2.

Proof. Let l =
⌈√n

2
⌉
.

It is sufficient to show that there is a burning sequence (x1, x2, . . . , xl, xl+1, xl+2) in H(n).

Note that for 2 ≤ j ≤ l, the term (2 j − 1)l − ( j − 1)2 is increasing. Let m0 be the largest

positive integer such that (2m0 − 1)l − (m0 − 1)2 ≤
⌊ n

2
⌋
. Since

(2l − 1)l − (l − 1)2 = l2 + l − 1 ≥
(√

n
2

)2

+

(√
n
2
− 1

)
>

n
2
,

we must have m0 ≤ l − 1.

Now, we construct the first part of a burning sequence for H(n), say x1, x2, . . . , xl , as

follows:

(a) Let x1 = tl ;

(b) For each 2 ≤ j ≤ m0, set x j = t(2 j−1)l−( j−1)2 if j is odd, or x j = t′
(2 j−1)l−( j−1)2 if j is

even;

(c) For j ≥ m0 + 1:

(i) Suppose m0 ≤ l − 2. If xm0 = t(2m0−1)l−(m0−1)2 , then set xm0+1 = t′
b n2 c

, whereas

if xm0 = t′
(2m0−1)l−(m0−1)2 , then set xm0+1 = tb n2 c . For m0 + 2 ≤ w ≤ l, choose

xw to be any unburned vertex (if possible).
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(ii) Suppose m0 = l − 1. If xl−1 = t(2l−3)l−(l−2)2 , then set xl = t′
b n2 c

, whereas if

xl−1 = t′
(2l−3)l−(l−2)2 , then set xl = tb n2 c .

In Figure 5.7, the filled vertices are Nl−i[xi] and the shaded vertices are Nl+2−i[xi]\Nl−i[xi].

In particular, L4 ∪ L5 ∪ · · · ∪ Ll ⊆ Nl−1[x1]. So (L1 ∪ L2 ∪ · · · ∪ Ll) \ {t′1} ⊆ Nl+1[x1]

(see Figure 5.7 (a)).

t1
L1

L2

L3

L4

tl = x1
Ll

t ′1

xj−1

xj

tb n2 c = xl

xl−1

t ′
b n2 c

...
...

...
...

...

...
...

...
...

...
...

...
...

l levels

l − j + 2 levels

l − j + 1 levels

≤ 3 levels

(b) 2 ≤ j ≤ m0 + 1 ≤ l − 1

(a)

(c)

Figure 5.7: Construction

Suppose 2 ≤ j ≤ m0. Note that x j is contained in level L(2 j−1)l−( j−1)2 and x j−1 is

contained in level L(2 j−3)l−( j−2)2 . There are exactly 2l − 2 j + 4 = ((2 j − 1)l − ( j − 1)2) −

((2 j − 3)l − ( j − 2)2) + 1 levels between L(2 j−1)l−( j−1)2 and L(2 j−3)l−( j−2)2 (inclusive). All

these levels are contained in Nl− j+3[x j−1] ∪ Nl− j+2[x j] (see Figure 5.7 (b)).
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Suppose m0 ≤ l − 2. By the choice of m0, (2m0 + 1)l − m2
0 >

⌊ n
2
⌋
. So the number of

levels between Lb n2 c and L(2m0−1)l−(m0−1)2 (inclusive) is at most

⌊n
2

⌋
− ((2m0 − 1)l − (m0 − 1)2) + 1 < (2m0 + 1)l − m2

0 − ((2m0 − 1)l − (m0 − 1)2) + 1

= 2l − 2m0 + 2.

All these levels are contained in Nl−m0+2[xm0] ∪ Nl−m0+1[xm0+1] (see Figure 5.7 (b)).

Suppose m0 = l − 1. Then xl−1 is in level L(2l−3)l−(l−2)2 and xl is in level Lb n2 c . Note

that

(2l − 3)l − (l − 2)2 + 2 = l2 + l − 2 >
n
2
− 1 ≥

⌊n
2

⌋
− 1.

Hence we have

(2l − 3)l − (l − 2)2 + 2 ≥
⌊n
2

⌋
.

Therefore,

L(2l−3)l−(l−2)2 ∪ L(2l−3)l−(l−2)2+1 ∪ · · · ∪ Lb n2 c ⊆ N3[xl−1] ∪ N2[xl],

(see Figure 5.7 (c)).

If we set xl+1 = t′1 and xl+2 to be any unburned vertex at time step l + 1 (if possible),

then (x1, x2, . . . , xl, xl+1, xl+2) is a burning sequence of H(n) when n is even. If n is odd, it

is also a burning sequence by noticing that {s0, t0} ∈ Nl+1[x1] (see Figures 5.4 and 5.7 (a)).

This completes the proof of the lemma.

The first part of Theorem 5.1.3 follows fromLemmas 5.4.1 and 5.4.2. Furthermore, if n
2 is

a square, then b(P(n,2)) =
√n

2+2. Finally, by Proposition 5.3.1, b(P(3,2)) = 3 =
⌈√

3
2

⌉
+1.

So the bounds are tight. This completes the proof of Theorem 5.1.3.
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5.4.3 Proof of Theorem 5.1.4

Proof. The upper bound follows from Theorem 5.1.1.

We define P(n,3) to be the graph on 2n vertices with vertex set

V(P(n,3)) = {ui, vi : i = 0,1,2, . . . ,n − 1}

and edge set

E(P(n,3)) = {uiui+1,uivi, vivi+3 : i = 0,1,2, . . . ,n − 1},

where subscripts are taken modulo 3. The set of vertices D1 = {ui : i = 0,1,2, . . . ,n − 1}

induces the outer rim whereas D2 = {vi : i = 0,1,2, . . . ,n − 1} induces the inner rim.

Figures 5.8 and 5.9 show part of P(n,3). For ease of understanding, in Figures 5.8 and 5.9,

we label the vertices of P(n,3) as follows. For vertex vi, we write i for i = 0,1,2, . . . , b n−1
2 c

and i − n for i = b n−1
2 c + 1, b n−1

2 c + 2, . . . ,n − 1. Similarly, for vertex ui, we write i′ for

i = 0,1,2, . . . , b n−1
2 c and (i − n)′ for i = b n−1

2 c + 1, b n−1
2 c + 2, . . . ,n − 1.

If x is a vertex from the inner rim (as in Figure 5.8), then |N0[x]| = 1, |N1[x]| ≤ 4,

|N2[x]| ≤ 10, |N3[x]| ≤ 20, |N4[x]| ≤ 32 and |Nr[x]| ≤ 20 + 12(r − 3) = 12r − 16 for

r ≥ 4. After 4 steps, a maximum of 12 vertices are newly burned in each following

step. If x is a vertex from the outer rim (as in Figure 5.9), then |N0[x]| = 1, |N1[x]| ≤ 4,

|N2[x]| ≤ 10, |N3[x]| ≤ 18, |N4[x]| ≤ 28 and |Nr[x]| ≤ 28 + 12(r − 4) = 12r − 20 for

r ≥ 5.

In both cases, either x is a vertex in the inner rim or outer rim of P(n,3), |N0[x]| = 1,

|N1[x]| ≤ 4, |N2[x]| ≤ 10, |N3[x]| ≤ 20, |N4[x]| ≤ 32 and |Nr[x]| ≤ 20 + 12(r − 3) =

12r − 16 for r ≥ 4. After 4 steps, at most 12 vertices are newly burned in each following

step.

Suppose 4 ≤ n ≤ 12, then
⌈√n

3
⌉
= 2. If P(n,3) has burning sequence of length 2, say

(x1, x2), then by equation (5.1), 8 ≤ 2n ≤
∑2

i=1 |N2−i[xi]| ≤ 1 + 4 = 5, a contradiction.
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0

-3 0’ 3

-6 -3’ -1’ 1’ 3’ 6

-9 -6’ -4’ -2’ -1 1 2’ 4’ 6’ 9

-12 -9’ -7’ -5’ -4 -2 2 4 5’ 7’ 9’ 12

-15 -12’ -10’ -8’ -7 -5 5 7 8’ 10’ 12’ 15

-18 -15’ -13’ -11’ -10 -8 8 10 11’ 13’ 15’ 18

-21 -18’ -16’ -14’ -13 -11 11 13 14’ 16’ 18’ 21

...
...

Figure 5.8: Spreading of fire from a burning source x where x is a vertex in the inner
rim of P(n,3).

Suppose 13 ≤ n ≤ 27, then
⌈√n

3
⌉
= 3. If P(n,3) has burning sequence of length 3, say

(x1, x2, x3), then 26 ≤ 2n ≤
∑3

i=1 |N3−i[xi]| ≤ 1 + 4 + 10 = 15, a contradiction. Similarly,

suppose 28 ≤ n ≤ 48, then
⌈√n

3
⌉
= 4. If P(n,3) has burning sequence of length 4, say

(x1, x2, x3, x4), then 56 ≤ 2n ≤
∑4

i=1 |N4−i[xi]| ≤ 1 + 4 + 10 + 20 = 35, a contradiction.

The above implies that the lower bound of b(P(n,3) ≥
⌈√n

3
⌉
+ 1is true for 4 ≤ n ≤ 48.

So, assume n ≥ 49. Then
⌈√n

3
⌉
≥ 5. If P(n,3) has burning sequence of length l, say

(x1, x2, . . . , xl) where l ≥ 5, then by equation (5.1),
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0’

-1’ 0 1’

-2’ -1 -3 3 1 2’

-3’ -2 -4 -6 6 4 2 3

-4’ -5 -7 -9 -6’ 6’ 9 7 5 4’

-5’ -8 -10 -12 -9’ -7’ 7’ 9’ 12 10 8 5’

-11 -13 -15 -12’ -10’ -8’ 8’ 10’ 12’ 15 13 11

-14 -16 -18 -15’ -13’ -11’ 11’ 13’ 15’ 18 16 14

-17 -19 -21 -18’ -16’ -14’ 14’ 16’ 18’ 21 19 17

...
...

Figure 5.9: Spreading of fire from a burning source x where x is a vertex in the outer
rim of P(n,3).

2n ≤
l∑

i=1
|Nl−i[xi]| ≤ |N0[xl]| + |N1[xl−1]| + |N2[xl−2]| + |N3[xl−3]| +

l−4∑
i=1
|Nl−i[xi]|

≤ 1 + 4 + 10 + 20 +
l−1∑
r=4
(12r − 16)

= 6l2 − 22l + 27.

Since l ≥ 1, by completing the square, we conclude that

l ≥
22 +

√
484 − 24(27 − 2n)

12
=

11
6
+

√
n
3
−

41
36

>

√
n
3
+ 1.

Hence b(P(n,3)) ≥
⌈√n

3
⌉
+ 1. This completes the proof of Theorem 5.1.4.
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CHAPTER 6: OTHER RESULTS AND CONCLUSIONS

In this chapter, we show some miscellaneous results which stands on its own or maybe

useful in future.

6.1 On the shortest path in some k-connected graphs

Let G be a graph and u, v be two distinct vertices of G and P[u, v] be a path with

endpoints u and v. A path P[u, v] is non-separating if G − V(P) is connected. Two or

more paths are said to be independent if no internal vertex of one path occurs in the other.

This means that two P[u, v] paths are independent if and only if u and v are their only

common vertices.

A well-known theorem of Menger (see, e.g. (Diestel, 2010)) states that a graph is

k-connected if and only if it contains k independent paths between any two vertices.

The following result was conjectured by Lovász (1975) and later proved by Thomassen

(1981).

Theorem 6.1.1. (Thomassen, 1981) Let k ≥ 1. If G is a (k + 3)-connected graph, then G

contains a cycle C such that G − V(C) is k-connected.

Another well-known conjecture by Lovász (1975) is the following.

Conjecture 6.1.2. (Lovász, 1975) Let k be a positive integer. There exists a smallest

integer f (k) such that for every f (k)-connected graph G and two vertices u and v in G,

there exists a P[u, v] such that G − V(P) is k-connected.

This conjecture is true for k = 1,2. Indeed, a famous theorem of Tutte (1963) states

that any 3-connected graph contains a non-separating path connecting any two vertices,

implying that f (1) ≤ 3. The case k = 2was proven by Chen et al. (2003) and independently,

by Kriesell (2001), showing that f (2) = 5. In fact, they proved that the deleted path is
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an induced path. Later, Kawarabayashi et al. (2005) showed that if G is not a double

wheel and is 4-connected, then G contains a P[u, v] such that G − V(P) is 2-connected.

Here, a double wheel is a graph obtained from the union of a cycle C with two vertices

s, t by adding all possible edges from {s, t} to V(C). The set {s, t} is called the center of

the double wheel and C is called the ring of the double wheel. Figure 6.1(a) shows an

example of a double wheel. Conjecture 6.1.2 still remains open for the cases k ≥ 3.

Also, Chen et al. (2003) showed that in any (22k + 2)-connected graph, there exist k

internally vertex disjoint paths between any two vertices such that the deletion of any one

of these paths does not disconnect the graph. This motivated Kawarabayashi and Ozeki

(2011) to propose the following conjecture, generalizing Conjecture 6.1.2.

Conjecture 6.1.3. (Kawarabayashi & Ozeki, 2011) Let k, l be positive integers. There

exists a function f = f (k, l) such that the following holds. For every f (k, l)-connected

graph G and two distinct vertices u and v in G, there are k internally disjoint paths

P1, ...,Pk with endpoints u and v such that G − ∪k
i=1V(Pi) is l-connected.

Note that when k = 1, Conjecture 6.1.3 is exactly Lovász’s conjecture.

Kawarabayashi and Ozeki (2011) showed that for any (2l + 1)-connected graph G and

for any two vertices u, v ∈ V(G), there exists l internally vertex disjoint P[u, v] paths

P1,P2, . . . ,Pl such that G − ∪l
i=1V(Pi) is 1-connected. Also, they pointed out that if G

is (3l + 2)-connected, then one can find l internally vertex disjoint paths P1,P2, . . . ,Pl

between any two given vertices such that G − ∪l
i=1V(Pi) is 2-connected.

A weaker version of Lovász conjecture was proposed by Kriesell (n.d.): There exists a

function h(k) such that for any h(k)-connected graphG and for any two vertices u, v ∈ V(G),

there exists an induced P[u, v] in G such that G − E(P) is k-connected. This weaker

version was then proven by Kawarabayashi et al. (2008).
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This motivates us to ask: To what extend is the length of non-separating P[u, v] path in

non-separating graph G − V(P)?

If G is 3-connected, it is not true in general that a non-separating path P is the shortest

path in G. For example, the wheel graph Wn with n vertices, where n ≥ 7 and uv < E(Wn),

is disconnected when the shortest path P[u, v] which includes the center vertex is deleted.

A wheel Wn is a graph formed by connecting a single vertex to all vertices of a cycle C of

order n − 1. Figure 6.1(b) shows a graph W7. Here, we investigate the maximum length of

the shortest non-separating P[u, v] in G for any two distinct vertices u and v.

s t

(a) (b)

Figure 6.1: (a) A double wheel with center {s, t}, (b) W7

Definition 6.1.4. Suppose G is a connected graph and u and v are two distinct vertices in G.

Let P[u, v] be the shortest path in G with endpoints u and v and t(G) = max {|V(P[u, v])| :

u, v ∈ V(G)}.

Theorem 6.1.5. Let k ≥ 1 and G be a k-connected graph with n vertices where n ≥ k + 1.

Then, t(G) ≤ b n−2
k c + 2.

Proof. If n = k + 1 or G is a complete graph, then t(G) = 2. We have nothing to prove.

Now, we assume n ≥ k + 2 and G is not a complete graph.

Let u and v be two distinct vertices in G such that |V(P[u, v])| = t(G) = t. Let A1 = {u},

A2 = N(u) and for 3 ≤ r ≤ t, Ar = N(Ar−1)\(Ar−1 ∪ Ar−2). Observe that v ∈ At and

|A2 |, |A3 |, |A4 |, ..., |At−1 | is at least k and |At | ≥ 1. Otherwise, by deleting the set with less
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than k vertices will disconnect the graph, contradicting that G is k-connected. Now, since

n ≥ k(t − 2) + 2, we have t(G) ≤ b n−2
k c + 2.

Alternative proof of Theorem 6.1.5: Let u, v be any two vertices of G. By Menger’s

theorem, G has k independent paths between u and v. Then, one of the k independent u− v

paths contains at most b n−2
k c vertices. By adding u and v, we have |V(P[u, v])| ≤ b n−2

k c +2,

implying t(G) ≤ b n−2
k c + 2.

One natural question to ask is: When does equality hold? We now present some graphs

where the equality holds in Theorem 6.1.5.

Suppose X and Y are two graphs. By the join of X and Y , denoted by X + Y , we

mean the graph with V(X + Y ) = V(X) ∪ V(Y ) and E(X + Y ) = E(X) ∪ E(Y ) ∪ {ab | a ∈

V(X), b ∈ V(Y )}.

Theorem 6.1.6. Let t(G) = max {|V(P[u, v])| : u, v ∈ V(G)}. Then

1. t(Km) = 2;

2. t(Pr) = r ;

3. t(C2r) = r + 1;

4. t(C2r+1) = r + 1;

5. t(Kp1,p2,...,pr ) = 3;

6. t(Km�Pr) = r + 1 for m,r ≥ 2;

7. t(Km + Kr) = 3 for m,r ≥ 2.

Proof. Let G be a k-connected graph with n vertices. If G has two non-adjacent vertices,

then t(G) ≥ 3. Hence, t(Km) = 2 and if G is not a complete graph, we have t(G) ≥ 3. To

show that the upper bound of Theorem 6.1.5 is best possible, we need to show that for each

G in the theorem, there must exist two vertices u and v such that |V(P[u, v])| = b n−2
k c + 2.
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Noting that Km is (m − 1)-connected, Pr is 1-connected and Cm is 2-connected, the first

four cases are straightforward. For the case of complete r-partite graph Kp1,p2,...,pr , any two

vertices u, v in different partite sets have |V(P[u, v])| = 2, whereas any two vertices u, v in

the same partite set have |V(P[u, v])| = 3, implying that t(Kp1,p2,...,pr ) = 3.

Next, observe that for r ≥ 2, Km�Pr is m-connected an so t(Km�Pr) ≤ r + 1 (by

Theorem 6.1.5). Let Zm = {0,1,2, . . . ,m − 1} and Wr = {0,1,2, . . . ,r − 1}. Suppose

that V(Km�Pr) = Zm ×Wr . Then the shortest path between (x1,0) and (x2,r − 1), where

x1 , x2, has |V(P[(x1,0), (x2,r − 1)])| = r + 1, and so t(Km�Pr) = r + 1.

Finally, let Km + Kr has vertex set Zm ∪ Zr . If at least one of the vertices u, v is in Zm,

then they are adjacent, otherwise |V(P[u, v])| = 3. So t(Km + Kr) = 3.

6.2 Lazy cop number

In finding the minimum order of graphs with fixed lazy cop number, we are curious

whether the lazy cop number of a connected graph G remains the same if we delete some

vertices of G and add edges to it. In Figure 6.2, compare G1 with H1, and G2 with H2.

These are the counterexamples where cL(G) , cL(H) if some vertices of degree 2 is

replaced by an edge.

cL(G1) = 2 cL(H1) = 1
cL(G2) = 2 cL(H2) = 1

Figure 6.2: cL(G) , cL(H)
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Theorem 6.2.1. Suppose G is a graph with n vertices such that there exists a path P[x, y]

with every vertex of VG(P(x, y)) is of degree 2. Let H be a graph withV(H) = V(G−P(x, y))

and E(H) = E(G) − E(P[x, y]) + xy. Then, we have cL(H) ≤ cL(G) + 1.

Proof. Suppose cL(G) = k and let S1 be a cop winning strategy in G. We show that k + 1

cops are sufficient to catch the robber R in H. Here, we describe a cop winning strategy

in H as follows. Let C1,C2, . . . ,Ck+1 be the cops at our disposal. At the beginning of the

game, we place a cop Ck+1 at x in H and assign the cops Ci, i = 1,2, . . . , k as in strategy S1.

If there is a cop Cj for some j = 1,2, . . . , k is assigned in P(x, y) as in strategy S1 initially,

then we place Cj in y. If at any round, it is on Cj’s turn to move in P(x, y), then Cj just

remains stationary on y. Otherwise, the cops play as S1. After a finite number of rounds,

k + 1 cops can capture R in H because Ck+1 in x prevents R from moving to or to be placed

in y at the beginning of the game.

Offner and Ojakian (2014) gave Lemma 6.2.2. For x and y are integers, x active cops

(denoted as xa) and y passive cops (denoted as yp) means that only x cops can move and

y cops have to remain stationary in each round of the game. Then (xa + yp) ∗−→ Qn means

that x active cops and y passive cops in each round are sufficient to catch robber in Qn

regardless initial position of the game.

Lemma 6.2.2. (Offner&Ojakian, 2014) Suppose x, y ≥ 1 are integers and (xa+yp) ∗−→ Qn.

Then ((x + 1)a + yp) ∗−→ Qn+2.

Besides, they proposed Conjecture 6.2.3. Let C1a(n) denote the lazy cop number in

hypercube Qn. Let Cka(n) denote the cop number in a hypercube Qn such that in each

round of the game, only k cops are active. Even if we cannot determine the values of
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Cka(n) exactly, it would still be interesting to understand how this quantity behaves as the

parameter is changed.

One can easily verify that C(k+1)a(n) ≤ Cka(n) + 1 as follows. Let T be a cop winning

strategy in Qn with k cops active in each round. Then, by assigning an extra cop C∗ in any

vertex of Qn where C∗ moves freely in every round of the game, and following T , we have

C(k+1)a(n) ≤ Cka(n) + 1. Actually, Offner and Ojakian (2014) expected that Cka(n) would

decrease in k.

Conjecture 6.2.3. (Offner & Ojakian, 2014) For 1 ≤ k < dn/2e,

C(dn/2e−1)a(n) ≤ C(dn/2e−2)a(n) ≤ ... ≤ C1a(n).

Although we are not able to prove the Conjecture 6.2.3 in general, we show Lemma

6.2.4, which will then lead to Theorem 6.2.5.

Lemma 6.2.4. C1a(n) > C1a(n − 2) for n − 2 ≥ 3.

Proof. It suffices to show that C1a(n − 2) = r cops is insufficient to capture the robber in

Qn such that only one cop is active in each round of the game. We arrange the vertices of

Qn into the Cartesian product graph G = Qn = Qn−2�C4 such that every vertex in each

copy of Qn−2 is the same in the last two coordinates. Let Hi, i = 1,2,3,4 denote the i-th

copy of Qn−2 in G, i is of reduced modulo 4. Here, we describe a robber winning strategy

in Qn to evade capture from the r cops indefinitely.

Let S be a robber winning strategy in Qn−2 with ≤ r − 1 cops. The robber will move

according to strategy S as follows. Initially, the robber identifies a cop C∗ in Hi and

places himself in Hi+2. The robber may assume every cops (except C∗) is at corresponding

vertices in Hi+2. Then the robber can avoid being caught by the ≤ r − 1 cops and moves

within Hi+2 following strategy S. If C∗ remains stationary, then the robber moves within
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Hi+2 following strategy S. If C∗ moves within Hi in any round, the robber just remains

stationary. If C∗ moves from Hi across to Hi+1 (or Hi−1), then the robber moves to Hi+3

(or Hi+1 respectively). In any round, the robber will always be at distance two away from

all the cops and in particular, distance two is in the first n − 2 coordinates for cops not C∗.

Hence, C1a(n) > C1a(n − 2).

Theorem 6.2.5. For n ≥ 3, we have C2a(n) ≤ C1a(n).

Proof. Lemma 6.2.2 indicates that C2a(n) ≤ C1a(n− 2)+ 1. Then, following Lemma 6.2.4,

we have C2a(n) − C1a(n) ≤ [C1a(n − 2) + 1] − [C1a(n − 2) + 1] = 0.

6.3 Open problems and future work

In this thesis, we bound the lazy cop number in generalized hypercubes (as in Chapter

3) and found the minimum order of graphs with lazy cop number ≥ 4 (as in Chapter 4).

Besides, we also bound the burning number of generalized Petersen graphs (as in Chapter

5).

We conclude with some reflections on the literature reviews together with our results

and hence propose some open problems. We include citations where relevant.

1. (Bonato & Mohar, 2017) Determine a tight bound on the capture time of planar

graphs with cop number 2 and 3.

2. Determine the capture time of lazy cops and robbers in hypercube Qn. Bonato et

al. (2013) showed that the capture time of the hypercube capt(Qn)=Θ(n ln n). Their

methods include a novel randomized strategy for the players, which involve the

coupon collector problem. This motivates us to investigate the capture time of lazy

cops and robbers in hypercube Qn, since we already know that cL(Qn) = Ω
(

2n
n5/2+ε

)
for every ε > 0, see Bal et al. (2015).
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3. We shall try to explore the capture time of cops and robbers in general subcubic

graphs.

4. Using the results in Chapter 4, we shall continue our work in finding the minimum

order of graphs for k-lazy cops-winning for k ≥ 5. We would like to find a more

general solution without investigating the maximum degree of vertices of each

possible graph.

5. It seems reasonable to expect that Conjecture 6.2.3 is true. We shall continue the

work in Theorem 6.2.5 to prove the general case.

6. Determine the minimum order of k-cop-win (or k-lazy cop-win) graphs in general.

7. Determine the burning number of some other special graphs such as Halin graphs.

8. In finding the burning number of generalized Petersen graphs P(n, k), since n and

k are finite, the number of newly burned vertices in each step is believed to be

constant after some finite steps. However, when k gets larger, the calculations is

more complex and more steps are required for the number of newly burned vertices

in each step to be constant. Hence, one might need to develop further techniques

in order to reduce the large amount of computations involved. We shall continue

the work in (Sim, K. A. et al., 2018) by finding the burning number of generalized

Petersen graph in general.
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Abstract The burning number b(G) of a graph G is used for measuring the speed
of contagion in a graph. In this paper, we study the burning number of the gen-
eralized Petersen graph P(n, k). We show that for any fixed positive integer k,
limn→∞ b(P(n,k))√

n
k

= 1. Furthermore, we give tight bounds for b(P(n, 1)) and

b(P(n, 2)).

Keywords Burning number · Generalized Petersen graphs

Mathematics Subject Classification 05C57 · 05C80

1 Introduction

Graph burning is a discrete-time process that can be used to model the spread of social
contagion in social networks. It was introduced by Bonato et al. [2,3,8]. This process is
defined on the vertex set of a simple finite graph. Throughout the process, each vertex
is either burned or unburned. Initially, at time step t = 0, all vertices are unburned.
At the beginning of every time step t ≥ 1, an unburned vertex is chosen to burn (if
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a b s t r a c t

The lazy cop number is the minimum number of cops needed for the cops to have a
winning strategy in the game of Cops and Robbers where at most one cop may move in
any round. This variant of the game of Cops and Robbers, called Lazy Cops and Robbers,
was introduced by Offner and Ojakian, who provided bounds for the lazy cop number of
the hypercube. In this paper, we are interested in the game of Lazy Cops and Robbers on
generalized hypercubes. Generalizing existingmethods, wewill give asymptotic upper and
lower bounds on the lazy cop number of the generalized hypercube.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The game of Cops and Robbers is a well-known two-player game played on a finite connected undirected graph. It was
independently introduced by Quilliot [14] and by Nowakowski and Winkler [12]. The first player occupies some vertices
with some number of cops (multiple cops may occupy a single vertex) and the second player occupies a vertex with a single
robber. After that they move alternatively along the edges of the graph. On the cops’ turn, each of the cops may remain
stationary or move to an adjacent vertex. On the robber’s turn, he may remain stationary or move to an adjacent vertex. A
round of the game is a cop move together with the subsequent robber move. The cops win if after a finite number of rounds,
one of them can move to catch the robber, that is, the cop and the robber occupy the same vertex. The main object of study
in the game of Cops and Robbers is the cop number, the minimum number of cops required to catch the robber, introduced
by Aigner and Fromme [1]. The most famous unsolved question in this context is Meyniel’s conjecture [9]: the cop number
of a connected graph with n vertices is O(

√
n).

Many variants of Cops and Robbers have been studied. (See [5] for a survey of some of the variants.) We are interested
in a variant introduced by Offner and Ojakian [13], where at most one cop moves in any round. It is called the game of Lazy
Cops and Robbers and the lazy cop number is the minimum number of cops required to catch the robber in this setting. We
write cL(G) for the lazy cop number of a graph G. Offner and Ojakian were interested in Lazy Cops and Robbers played on the
hypercube Qn and they proved the following asymptotic bounds:

2⌊
√
n/20⌋

≤ cL(Qn) = O
(
2n ln n
n3/2

)
.

The lower boundwas later improved by Bal, Bonato, Kinnersley, and Pralat [3], by using the probabilistic method coupled
with a potential function argument. They showed that for every ε > 0,

cL(Qn) = Ω

(
2n

n5/2+ε

)
.
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Abstract. Suppose G is a connected graph and u and v are two distinct vertices of G. Let ],[ vuP be the shortest path in 
G with endpoints u and v. Let )}(, : |]),[({| )( GVvuvuPVmaxGt . A graph G is said to be k-connected if it has more 
than k vertices and removal of fewer than k vertices does not disconnect the graph G. We show that in any k-connected 

graph G with n vertices, .2
2

)(
k

n
Gt We also present some graphs where the equality holds. 

INTRODUCTION 

Let G be a graph and u, v be two distinct vertices of G. A vu  path is a path with endpoints u and v. A vu path P 
is non-separating if )(PVG  is connected. Two or more paths are said to be independent if no internal vertex of 
one path occurs in the other. This means that two vu paths are independent if and only if u and v are their only 
common vertices. A graph G is said to be k-connected if it has more than k vertices and removal of any set of fewer 
than k vertices from G does not disconnect G. 

A well-known theorem of Menger (see, e.g. [1]) states that a graph is k-connected if and only if it contains k 
independent paths between any two vertices. 

The following result was conjectured by Lovász [2] in 1975 and later proven by Thomassen [3] in 1981. 
 
Theorem 1 Let 1k . If G is a (k + 3)-connected graph, then G contains a cycle C such that )(CVG isk-
connected. 

Another well-known conjecture due to Lovász [2] is the following. 
 
Conjecture 1 Let k be a positive integer. There exists a smallest integer )(kf  such that for every )(kf -
connected graph G and two vertices u and v in G, there exists a vu  path P such that )(PVG  is k-connected. 

This conjecture is true for .2 ,1k  Indeed, a famous theorem of Tutte [4] states that any 3-connected graph 
contains a non-separating path connecting any two vertices, implying that .3)1(f  The case k = 2 was proven by 
Chen, Gould and Yu [5] and independently, by Kriesell [6], showing that .5)2(f  In fact, they proved that the 
deleted path is an induced path. Later, Kawarabayashi, Lee and Yu [7] showed that if G is not a double wheel and is 
4-connected, then G contains a vu path P such that )(PVG  is 2-connected. Here, a double wheel is a graph 
obtained from the union of a cycle C with two vertices ts  ,  by adding all possible edges from } ,{ ts  to ).(CV The 
set } ,{ ts is called the center of the double wheel and C is called the ring of the double wheel. Figure 1(a) shows an 
example of a double wheel. Conjecture 1 still remains open for the cases .3k  
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