
Faculty of Computer Science & Information Technology
University Of Malaya 50603 Kuala Lumpur

Malaysia

Project Title
Web information retrieval and monitoring

Using adaptive agent

Supervised by
Mr. Woo Chaw Seng

Moderated by
Prof. Madya Dr. Mohd Sapiyan Baba

Prepared by
Chong Yuen Beng (WEK98032)

Dissertation submitted by Chong Yuen Beng

in partial fulfillment of the requirements for the

Degree of Bachelor of Computer Science

Submission Date February 9, 2001

I

Univ
ers

ity
 of

 M
ala

ya

DECLARATION

Hereby, I declare that this thesis is my own work and has not been

submitted in any form for another degree or diploma at any university or
other institute of tertiary education. Information derived from the

published, unpublished work of others has been acknowledged in the

text, and a list of references is given.

Chong Yuen Beng
February 9, 2001

II

Univ
ers

ity
 of

 M
ala

ya

Abstract

Internet is the information house. There are million of pages posted in the

Internet, and still growing in exponential. Locate a web page, without a

search engines, is like a blind explorer.

There are many search engines in the existence world, but more new search

engines is under construction. Each search engine has its advantage and

disadvantage, depend on the need of the searchers.

The projects aims to develop an agent, with some advanced features, to

allow the searchers obtain the information from the Internet easily.

The advanced features included, table of contents preview, chart of relevant,

session review and resuming, etc.

In addition, the system has the ability to learn, allow the system to grown

without the help from the human. As the information in the Internet is

expanding, editing the system's knowledge is not an easy task.

III

Univ
ers

ity
 of

 M
ala

ya

Acknowledgement

Specially thanks to the supervisor, Mr. Woo Chaw Seng, and the moderator,

Prof. Madya Dr. Mohd Sapiyan Baba for their support, advice, time in helping

me in the project.

Thanks to my team member, Khong Yoong Meng, Lim Su Sian, and Cheah

Hoong Seng, having their time and co-operation with me in the project.

To the faculty, provided the facilities, allowed me to search for much

information from the Internet; and allowed me refer to previous works done

by the seniors.

IV

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Abstiact III

Ackno-w,ledgement , IV
Te1l>le <>f Ce>11t~11~ •...••..•..•.....•.••.........•...•........••.•...•........•...•..••........ \J
List of Figures ...•.. X

List of Tables ••.. XI
Chapter I: Introduction 1

1.1 Introduction 2

1.2 Directories 2
1.3 Search Engines 3
1.4 Meta-Crawlers 3
1.6 Project Overview 4

1. 7 Objective 5
Interface Design 5

Web Content Searching and Monitoring 6

Web Contents Processing 6

1.7.4 Results 6

1. 7. 4.1 Chart of relevant 7
1. 7. 4.2 Table of Contents 7

1.8.1 Normal Search 7

1.8.1.1 Search by Keyword 8
1.8.1.2 Suggest Related Keyword 8
1.8,1.3 Boolean Expression 8
1.8.1.4 Automatic Phrase Searching 8
1.8.1.5 Suggestion of Phrase 9
1.8.1. 6 Check for Typo Error. 9
1.8.1. 7 Case Sensitivity Searching 9

1.8.2 Advanced Search 9

1.7.1

1.7.2

1.7.3

v

Univ
ers

ity
 of

 M
ala

ya

1.8.2.1

1.8.2.2

1.8.2.3

Chart of Relevant 1 O
Table of Contents {TOC) 1 o
fvfeclia ~a,.c:hing!"t=iltef"ing 11

1.8.3 Additional features with member Login 12

1.8.3.1 Bookmaf"k 12

1.8.3.2 Session 12

1.8.3.3 History 13

1.8.3.4 Upclate Notific:ation 13

1. 9 The Limitation 13
1.9.1 Graphical Information 13

1.9.2 Language 14

1. 9 .3 Bottle Neck in System Performance 14

Chapter II: Literature Review•.. 15

2.1 Search Engines Review 16

2.1.1 Issues in Designing Search Engines 16

2.1.1.1 Conventions Usecl 16

2.1.1.2

2.1.1.3

2.1.1.4

2.1.1.5

2.1.1.6

2.1.1.7

2.1.1.8

2.1.1.9

2.1.1.10

2.1.1.11

2.1.1.12

2.1.1.13

2.1.1.14

seen» Engine Size , 17

Phf"ase Seaf"c:hing... 17

Pf"oximity 18

rroncstton . 18
Title, Date, ancl URL fie/els 18

"Links to" a URL u 18

Language 19

fvfedia ~a,.c:hing 19

Case Sensitivity 19

Gives Count tor Answer. 20

Output Options 20

Also Shown on Results Pages 20

''1'1of"e Like 771is" 20

2.1.2 Feature Comparison 21

VI

Univ
ers

ity
 of

 M
ala

ya

2.2 Neural Network 23
2.2.1 Properties and Capabilities , 23

2.2.1.1 Non-linearity 23

2.2.1.2 Input-Output Mapping 24

2.2.1.3 Adaptively 24

2.2.1. 4 Evidential Response 24

2.2.2 Human Brain 25

2.2.3 Models of Neuron 25

2.2.4 Network Architectures 26

2.2.5 Artificial Intelligence and Neural Networks 27

2.2.5.1 Knowledge Representation 27

2.2.5.2 Reasoning 28

2.2.5.3 Learning 28

Chapter III: Methodology 30

3 .1 Program Schedule 31

3.2 Development Requirement 32
3.2.1 Hardware Requirement ; 32

3.2.2 Development Tools 32

3.2.3 Database Management System (DBMS) 34

3.3 Run-time requirements 35
3.3.1 Disk Space Required 35

3.3.2 System Requirements 36

Chapter IV: System Design 37

4.1 Database Dictionary 38
4 .1.1 Member Profile 38

4.1.2 Keyword 40

4.1.3 Page Indexing 41

4.2 Neural Net Design 46
4.2.1 Overview of Neural Net Design 46

VII

Univ
ers

ity
 of

 M
ala

ya

4.2.2 Input Layer 46

4.2.2.1 Administrators 47

4.2.2.2 Users 48

4.2.2.3 Internet Documents 49

4.2.3 Extracting Layer 49

4.2.4 Processing Layer 49
4.2. 4.1 Learner 50

4.2. 4.2 Keyword Learning 50

4.2.4.3

4.2.4.4

4.2.4.5

4.2.4.6

Construction of Relation 51

Classification of Keyword. 51

Phrases Learning 52

Spell Checker 52

4.2.5 Database Administrator 54
Chapter V: Implementation 55

s .1 Overview 56

5.1.1 Database Classes 56

5.1.1.1 CDataMngr 56

5.1.1.2 Other Classe 56

5.1.2 Neural Net Classes 56

5.1.2.1 Neuron 57

5.1.2.2 Link 61

5.1.2.3 Layer 66

5.1.2.4 Neural Net 68

5.1.3 Object Classes 72
5.1.3.1 711e Spell Checker 72

5.1.3.2 . Tokenizer 79

S.1.4 Thread/Process Classes 95

5.1.4.1 Extracting 711read 95

5.1.4.2 Re-Indexing 711read 101

5.1.4.3 Neural Net Training Thresa 105

VIII

Univ
ers

ity
 of

 M
ala

ya

5.1.4.4 Relevance Analysis Thread 109

Chapter VI: Evaluation and Conclusion 113

6.1 Relevance Analysis 114

6.2 Exhausting of Resource 114

6 .. 3 Learning 114

6.4 Future Enhancement 114

6.4.1 Extracting Info 114

6.4.2 Protocol 115

6.4.3 More Broader Use of Neural Network 115

6.4.4 More Control 115

6.4.5 Portability 115

6.4.6 More Security 116

6.4.7 Object-Oriented Programming 116

RE!fE!rf!rlC:E! ••• 1.2.~
~ppendi:x:: 1.1.!J

A: List of Major Search Engines 119

B: Supported data type 121

IX

Univ
ers

ity
 of

 M
ala

ya

List of Figures

Figure 2.1 Block diagram representation of nervous system 25

Figure 2.2: Nonlinear model of a neuron 26

Figure 2.3: Fully connected feed forward network with hidden layer 27

Figure 2.4: Simple model of machine learning 28

Figure 3.1: Project schedule 31

Figure 3.2: Disk space required 35

Figure 4.1: neural net design 46

Figure 4.2: Sources of input layer 47

Figure 4.3: Keyword Learning 50

Figure 5.1: The structure of a neuron 57

Figure 5.2: The Activation Function 60

Figure 5.3: Connected Neuron 62

Figure 5.4: Collection of links 63

Figure 5.5: A Layer of neurons 66

Figure 5.6: Layers of neurons, indexes are zero-based in C++ 68

Figure 5.7: CSpellChecker::IsPlural() 75

x

Univ
ers

ity
 of

 M
ala

ya

List of Tables
Table 2.1: Features comparison between major search engines 22

Table 3.1: Capacity between SQL Server 6.5 and SQL Server 7.0 34

Table B.1: Data type [6] supported by MS SQL Server 7.0 122

XI

Univ
ers

ity
 of

 M
ala

ya

Chapter I: Introduction

This chapter introduces to the type of search agents, overview and objective

of the project: Web information retrieval and monitoring.

This chapter also includes the system functions, both normal search and

advanced search.

1.1 Introduction

1.2 Directories

1.3 Search Engines

1.4 Meta-Crawlers

1.5 Disadvantage of Current System

1.6 Project Overview

1. 7 Objective

• Interface Design

• Web Content Searching and Monitoring

• Web Content Processing

• Results

1.8 System Functions

• Normal Search

• Advanced Search

• Additional features with member Login

1. 9 The Limitation

• Graphical Information

• Language

• Bottle Neck in System Performance

1

Univ
ers

ity
 of

 M
ala

ya

1.1 Introduction

The Internet has tens of millions of sites and the numbers of web site still

growing in exponential; it's hard to locate a web site, without a Search

Agent. In other words, without a search agent, the Internet will not be able

to grow as we seen now. Search agent makes the Internet- alive.

Two basic approaches have been used in the search agents are: online

search engines, and directories.

Searchable directories and search engines treat information differently. They

approach it differently, store it differently, and present it to the world

differently.

1.2 ·Directories

Directories, or a subject guide, such as Yahoo, Snap, LookSmart, and

MageHan are useful for browsing general topics. An online directory is

actually a vast collection of categories and subcategories constructed by

people, not a computer program.

The major difference between search engines and directories is that a

directory has structure. The directory is very useful to locate any

information, when the keyword is unsure, or unknown. When a keyword is

unsure, just look for the appropriate category and a comprehensive listing of

sites for a particular subject can be reach, without missing any information.

2

Univ
ers

ity
 of

 M
ala

ya

Because of the need of structuring the hierarchy of information in a

directory, the directories are fine for browsing general topics, for specific

information, a search engine in needed.

The results search by directories is often having higher accuracy, but results

sometimes ate very limited. Broken links may happen.

1.3 search Engines

In search engines, the content of search engine is unknown, until a keyword

is typed in the query box.

All search engines do keyword searches against a database.

Searching in search engine is not an easy job. To effectively gettjng

information from a search engine, difference key;vord is needed in searching

a particular topic.

1,4 Meta-Crawlers

The search engines explained in section 1.3 all uses computer programs

which often-called spider or robot to explore the Internet. The spiders and

robots continuously collect information from the Internet, find new web

pages, indexing it, and store in their database. See Appendix A for the list of

search engines, directories and Meta~Crawlers.

3

Univ
ers

ity
 of

 M
ala

ya

Meta crawlers also called Meta Search Engines, searches multiple search

engines simultaneously. Meta crawlers do not have own indexing database,

but uses results collected by other search engines.

1.5 Disadvantage of Cuttent System

Current system has it limitation, which may improve in the project:

{a) Search sesston cannot be resumed when:

• Computer shutdown

• IUegal operation of Browser

• Disconnected from the server
(b) History -unavailable when ·moving to other computer. Every search

needs to be restarted from the beginning.

{c) Search by matching the exact keyword, not accurate and not broad.

(d) No update information, i.e. last update of the pages.

{e) Broken links.

1.6 Project Overview

Tue project aims to developing an agent that finds ·information on the net

.according to individual interests.

This project will be developed by a team of four persons.
I. Um Su Sian, will develop a user interface that allows input of

instructions into the agent.
II. Gheah Hoong Seng, will develop an engine that schedule jobs for

web content searching and monitoring.

4

Univ
ers

ity
 of

 M
ala

ya

III. Myself, will develop a neural network that helps the agent to

search and monitor web information.

IV. Khong Yoong Meng, will develop a module that generate charts

using collected information.

1.7 Objective

The main objectives of the project is allow user to search the web contents

based on their own interest. The system provides some advanced features,

which may lead the users to decide if their want to visit the pages.

Using the member's profile, users may also bookmark a page, resume

previous search, and receive update notification.

1.7.1 Interface Design

The interface design is aims to give user easiest way to querying the web

URLs. The features include:

_ The interface will allow user the select a topic, and select related

keyword from a list;

_ Allow user enter the keyword into a "Boolean expression ready"

query box;

- Automatic phrase searching;

- Suggest phrase to user;

- Check for typo error;

- Case sensitivity searching;

- Media searching and filtering;

5

Univ
ers

ity
 of

 M
ala

ya

Besides, the interfaces collect feedback from users as well. The feedback

collected may use to stimulus the learner (user enter keyword), decide the

ranking or a page (user visited the page), etc.

1.7.2 Web Content Searching and Monitoring .

In this project, the URLs will collected by summit keyword to other search

engine, similar to the meta-crawlers. After the URLs were stored into

database, the agent will continuously explore the page, gathering the update

information and HTML documents. The objectives are:

- Monitoring the web page, if the page was updated, or was moved,

or closed;
- Download the page, for indexing and analyzing.

1.7.3 Web Contents Processing

The processes are to indexing and analyzing the contents of a page. The

major processes are:

(a) Keyword Indexing;

(b) Learning;
(c) Table of Contents Making; and

(d) Relevant Analyzing.

See chapter IV for more details about the processes.

1.7.4 Results

6

Univ
ers

ity
 of

 M
ala

ya

Some advanced results will be produced, to aid the users to decide if they

want to visit the page by previewing the contents.

1.7.4.1 Chart of relevant

The most active keywords will be used in the chart, this allow the users to

know what briefly is in the web page. See section 1.6: Advanced Search for

more details.

1.7.4.2 Table of Contents

The table of contents listed the title, any headers in the page, and any link

to other pages. This will help user to preview the contents of the pages.

See section 1.6: Advanced Search for more details.

1.8 System Functions

This session will discussing the major features of the search agent. The

features can be divided into normal search, and advanced search. Besides,

the functions also distinguish between features with user logged on, and

without log on.

1.8.1 Normal Search

7

Univ
ers

ity
 of

 M
ala

ya

Normal search refer to the default feature provide to the user. Normal

search usually required no special overhead.

1.8.1.1 Search by Keyword

Normal search provide user search particular information using the keyword.

User allows keying in the keyword, or selecting a keyword from the list.

1.8.1.2 Suggest Related Keyword

Related keyword is always listed. When users key in a keyword, any

keyword that related to this keyword will be listed for reference.

1.8.1.3 Boolean Expression

The interface included a 'Boolean expression ready' query box. Users will

not need to learn to how to do Boolean search.

Topic Computer

Related Keyword: Artificial Intelligent

AND: Neural Network

OR: Genetic Algorithm

NOT Include: Fuzzy Logic

1.8.1.4 Automatic Phrase Searching

8

Univ
ers

ity
 of

 M
ala

ya

When users entered two or more keyword into a column, for example:

Neural Network, the agents will do phrase searching automatically. See
learner: phrase learning for more details about phrase searching.

1.8.1.5 Suggestion of Phrase

When users entered a keyword, for example: Neural; the agent will advice

any related phrase to the users, to search by more accurate phrase: 'Neural

Network'. This will help the users enquire the results they need faster, when

the users do not know much about the topic they want to search.

1.8.1.6 Check for Typo Error

Users may entered incorrect keyword, due to typo error, forgot the spelling,

or don't know the exact spelling of a keyword. Most search engine will

return O search results when users entered incorrect keyword.

1.8.1. 7 Case Sensitivity Searching

When users entered all low case letters, the agent will search for both upper

case and lower case letter. When the users entered an upper case letter,

the agent will search by the exact keyword (case sensitive). See Issues in

Designing Search Engines in Chapter II.

1.8.2 Advanced Search

9

Univ
ers

ity
 of

 M
ala

ya

Advanced search refer to additional advanced features in the agent.

Advanced features normally need some overhead, and often, results will not

100°/o guarantee to be correct.

1.s.2.1 Chart of Relevant

Most search engine only provides the relevant to the keyword entered by the
users. Users may not able to guess how much relevant of the pages for

other keyword.

5%
0%

Computer Software Programming Other

The relevant chart shows the percentage of different keyword. This can help
user have brief idea about the contents of the page.

1.s.2.2 Table of Contents (TOC)

The tables of contents allow user to preview any page before they visit the
page. Of cause, the users may want to view the TOC, as this required a

little overhead.

lcomputer
----What is computer?

10

Univ
ers

ity
 of

 M
ala

ya

---- Computer evolution
---- http://www.abc.com/add.html

---- http://www.bcd.com/zyx/ads.html

The above example shown that the title of the page is 'Computer', while

.. there are two headers in the page, titled 'What is computer?' and 'Computer

evolution'. From the table of contents, the users know that the pages have

two hyperlink into other pages, which is 'http://www.abc.com/add.html' and

'http://www.bcd.com/zyx/ads.html'.

1.8.2.3 Media Searching/Filtering

Users may preview what's the media or objects that contains in the pages.

Besides, the users may filter the search results by selecting the objects that

must include or exclude in a pages.

There are 16 type of media has been identified and will be indexed in the

database.

1. Image

2. Audio (wave file)

3. MP3

4. Video

5. Flash

6. Java, or Applet

7. JavaScript

8. ActiveX Object

9. Executable program file

10. Acrobat Portable Document Format (PDF)

11. VBScript

11

Univ
ers

ity
 of

 M
ala

ya

12. Postscript document

13. Real Media (Real Audio and Video)

14. Compressed file

15. Form, need input from user

16. Other, other undefined objects, e.g. Microsoft Office document.

1.8.3 Additional features with member Login

The features mention above can be enjoyed by all users, anyway, there are

few features, which can be offered only for the member. This is because

these features need some storage in server-side database.

1.8.3.1 Bookmark

With member login, member can bookmark a page into their account. User

can revisit the page, without restart the search, or wrote it down someway.

The bookmark feature is special design for users who uses public computer,

such as in school's lab, office's computer. Once a page has been added to

the bookmark, user can revisit the page from any computer.

1.8.3.2 Session

Every search session is recorded, whenever the user login as a member.

Most search engines do not allow a search session to be continued. With

this feature, users may review what was search before and resume the

session, without restarting the search from the beginning, and click 'next' to

jump over the URLs.

12

Univ
ers

ity
 of

 M
ala

ya

1.8.3.3 History

Together with session, users may review what page their visited during any

search session. Same as bookmark, the history can be access anyway in the

world.

The history help user to identify which page has been or has not been visited

during their search. This may help user avoid revisiting a useless page, or

let the user revisit an interesting page.

1.8.3.4 Update Notification

The last advantage of member login is users may receive update notification

through email. User is notify when:

(a) Interested sites was updated:
Any page that bookmark by the user; will receive a notification email

when the page was updated.

(b) New URLs were discovered:
When new URLs were discovered, user can receive a notification

when the contents meet the criteria of any search session.

1.9 The Limitation

1.9.1 Graphical Information

13

Univ
ers

ity
 of

 M
ala

ya

When analyzing the contents of a page, graphical representation of

information (e.g. webmaster may include a phrase into image) is ignored.

This may lead to inaccurate relevant calculation, missed headers in table of

contents. Searching to the page maybe unsuccessful as the keyword is

inside the graphics and not found in the text.

1.9.2 Language

The spell checker, keyword relation, phrase is designed based on English.

Although keyword from other languages (e.g. Malay) can be query through

the agent, the result is not guarantee to be correct.

1.9.3 Bottle Neck in System Performance

For the first three months, the system will have a bad performance. The

system should need a certain period before it can achieve a stable status.

The factors in determine the period included: numbers of testers, affection

of the learning process, speed of Internet connection.

14

Univ
ers

ity
 of

 M
ala

ya

Chapter II: Literature Review

This chapter included some review of current search engines, their features,

advantage and disadvantage. This chapter will discuss about AI (Artificial

Intelligence), Neural Network, and the approaches in produce this project.

2.1 Search Engines Review
• Issues in Designing Search Engines

• Features Comparisons

2.2 Neural Network
• Properties and Capabilities

• Human Brain

• Models of Neuron
• Network Architectures
• Artificial Intelligence and Neural Networks

15

Univ
ers

ity
 of

 M
ala

ya

2.1 Search Engines Review

This section discusses the issues in designing a search engine. Some
comparisons between major search engines are listed [2J.

2.1.1 Issues in Designing Search Engines

Following discuss some issues or features when designing a search agent.

2.1.1.1 Conventions Used

This refers to the operator ('AND', '+', etc.), syntax (enter keyword), or
prefix (e.g. for phrase searching) that the user is required to enter in order

to perform a search.

In most search engine, the both operator in word (And) or symbol (+) is
accepted. The default operator is various between search engine, some
uses 'or' as default and some uses 'and' for default.

All search engines accept keyword for searching, but some do accept a
whole sentence to be entered into the search box (e.g. www.webtop.com).
Typo error won't check as most search engines assume users may want to

search for that keyword.

All search engines do phrase searching when user entered double or single
quote(") for the keywords, some will do automatic phrase searching.

16

Univ
ers

ity
 of

 M
ala

ya

2.1.1.2 Search Engine Size

.
The "size" stated by search engines conventionally refers to the number of

(

unique web pages (unique URLs), rather than "sites" (which may contain

numerous "pages").

Boolean Operators (+, -, AND, OR, NOT) and Parentheses

In general, there are two type of Boolean capability among search engines.

Most search engines accept both type of Boolean operators, word (AND, OR)

and symbol (+, -).

Operators Symbols Used

AND &

OR +
NOT Prefix'-'

Besides this, most search engines also have the capability of nesting (the

use of parentheses).

AltaVista and Excite use "AND NOT" for the "NOT". Some engines required

that Boolean operators be capitalized, but some do not.

2.1.1.3 Phrase Searching

For almost all search engines, a phrase searching is done by putting the

phrase in double quotes in the query box. In some cases, a phrase can also

be designated by choosing the phrase option from a pull-down menu.

17

Univ
ers

ity
 of

 M
ala

ya

2.1.1.4 Proximity

Phrase searching is one form of proximity searching. Proximity searching

refers to the ability of searching out of the keyword provide by the users.

For example, when use search by the word 'Computer', the agents should be

able to search also the keyword related to computer.

The most common proximity option is NEAR, which specifies "within 10

words" in Altavista and "within 25 words" in Lycos advanced search.

Lycos advanced search also provides BEFORE and FAR options.

2.1.1.s Truncation

Most search engines provide search with truncation and usually donate with

the symbol (*). The capability enable user to enter part of the keyword, or

part of the phrase.

2.1.1.6 Title, Date, and URL fields

Some search engines offer the ability of searching by title, date and URL.

This usually implemented using a prefix. For example: "title: neural

network".

2.1.1.1 "Links to" a URL

18

Univ
ers

ity
 of

 M
ala

ya

This refers t o the capability of identifying which pages in the search engine's

database contain a link to a particular URL. This enables the users to

identify sites that have some interest in the site referred to.

2.1.1.s Language

This refers to the capability of searching by the language in which the web

page is written.

2.1.1.9 Media Searching

This refers to the capability for searching by type of media--images, audio

files, and video files. For the several search engines that provide this, the

implementation can be quite different. In AltaVista, a word in an image file's

name can be searched (or, better, use the special "Images, Audio & Video"

option). In HotBot[3], beside perform a subject search, can also specify that

only records that contain an image, sound, or video file.

2.1. :t.10 Case Sensitivity

The search engines should treat upper and lower case letters differently.

The users will recognize the importance of this in instances when they need

to distinguish between "ADIS" and "aids".

In general, when a query is entered using all tower case, the search engine

will retrieve both lower and upper case. When the searcher enters upper

case, a fully case-sensitive engine should be used and return only those

19

Univ
ers

ity
 of

 M
ala

ya

records with an exact case match. For example, "next" will retrieve "next

and "next, whereas "neXt" will only retrieve "neXt."

2.1.1.11 Gives Count for Answer

All major search engines - except Excite, provide a count of the search

results.

2.1.1.12 Output Options

This refers to whether if the user can specify the number of record on each

results page, etc.

2.1.1.13 Also Shown on Results Pages

This addition to the chart reflects one of the major changes that have taken

place in search engines. Results pages are now often far richer than they

were a year or so ago. The producers have done an excellent job in

incorporating additional relevant material into the pages, beyond just the

results of the search of the Web database. This includes such things as:

results of a search on the engine's associated Web directory, links to

company homepages and company directories, related searches or search

terms, results from associated popularity search programs, related news, etc.

2.1.1.14 "More Like This"

20

Univ
ers

ity
 of

 M
ala

ya

Some search engines enable a user to find other records that are similar to

the current result. This is often useful for finding additional relevant records.

2.1.2 Feature Comparison

The following charts E2J listed some comparison among the major search

engine.

and

AND, AND OR,NOT and, not or, not, or, not
NOT adj.,

near,
before,
far

Quotations Quotation Quotation Quotation Quotation
marks marks marks marks marks

No Yes Yes No No

Use+ Use+ Use+ Use+ Use+

Use - Use - Use - Use - Use -

Grouped Yes Grouped Yes Yes Yes
under under

1 one title one title

Ly cos Northern
. I Light

75M SOM 200M
& sites pages pages sites

Yes Yes No

AND or and

21

Univ
ers

ity
 of

 M
ala

ya

Limit by
date,
language,
or format
field
followed
by a
colon

Concept
searching
suggests
terms

Limit by
date,
language,
location,
page
depth

Find
similar
searches

Search
for image
and
sound
files

Table 2.1: Features comparison between major search engines

Custom
folders

22

Univ
ers

ity
 of

 M
ala

ya

2.2 Neural Network

Artificial neural network, commonly referred to as "neural networks", has

been motivated right from its inception by the recognition that the human

brain computers in an entirely different way from the conventional digital

computer.

The brain is a highly complex, nonlinear, and parallel computer (information

processing system). It has the capability to organize its structural

constituents, known as neurons, which able to perform certain computations

(e.g. pattern recognition, perception, and motor control) many times faster

than the fastest digital computer in existence today.

2.2.1 Properties and Capabilities

Neural network derives a powerful computing technique, with its parallel

distributed structure and its ability to learn. Therefore, the neural network is

generalized. Generalization refers to ability of producing reasonable outputs

for inputs not encountered during training (learning).

These two information-processing capabilities make it possible for a neural

network to solve complex, large-scale problems that are currently

intractable.

2.2.1.1 Non-linearity

23

Univ
ers

ity
 of

 M
ala

ya

Neural network can be linear or nonlinear. Non-linearity is important if the

underlying physical mechanism responsible for generation of the input signal

(e.g. speech signal) is inherently nonlinear.

2.2.1.2 Input-Output Mapping

Learning with a teacher or supervised learning involves modification of the

synaptic weights of a neural network by applying a set of labeled training

samples or task examples. Each example consists of a unique input signal

and corresponding desired response.

The training of the network is repeated for many examples in the set until

the network reaches a steady state where there are no further significant

changes in the synaptic weights.

Thus, the network learns from the examples by construction an input-output

mapping for the problem at hand.

2.2.1.3 Adaptively

Neural networks have a built-in capability to adapt their synaptic weights to

changes in the surrounding environment. In particular, a neural network

trained to operate in a specific environment can be easily retrained to deal

with minor changes in the operating environmental conditions.

2.2.1.4 Evidential Response

24

Univ
ers

ity
 of

 M
ala

ya

In the context of pattern classification, a neural network can be designed to

provide information not only about which particular pattern to select, but

also about the confidence in the decision made. This latter information may

be used to reject ambiguous patterns, should they arise, and thereby

improve the classification performance of the network.

2.2.2 Human Brain

Stimulus Receptors

Neural
Net

Response Effectors

Figure 2.1 Block diagram representation of nervous system

The receptors convert stimuli from the human body (input) or an external

environment into electrical impulses that convey information to the neural

net (brain). The effectors convert electrical impulses generated by the

neural into discernible responses as system outputs.

2.2.3 Models of Neuron

A neuron is an information-processing unit that is fundamental to the

operation of a neural network. There are three basic elements of the

neuronal model:

(a) A set of synapses or connecting links, each of which characterized by

a weight or strength of its own.

25

Univ
ers

ity
 of

 M
ala

ya

(b) An adder for summing the input signals, weighted by the respective
synapses of the neuron

(c) An activation function for limiting the amplitude of the output of a

neuron. Typically, the normalized amplitude range of the output of a

neuron is written as the closed unit interval [0, 1] or alternatively [-1,

1].

Input
Signals

Activation
Function

Output
Yk

Synaptic
Weights

Figure 2.2: Nonlinear model of a neuron

i

y = L x ;W
1

where y = output value

x = input signals

w = synaptic weights

2.2.4 Network Architectures

The manner in which the neurons of a neural network are structured is

intimately linked with the learning algorithm used to train the network.

Therefore, the learning algorithms (rules) used in the design of neural

networks is being structured.

26

Univ
ers

ity
 of

 M
ala

ya

Input layer

of source

Layer of

hidden

Layer of

output

Figure 2.3: Fully connected feed forward network with hidden layer

2.2.5 Artificial Intelligence and Neural Networks

The goal of artificial intelligence (AI) is the development of algorithms that

require machines to perform cognitive task, like human do.

An AI system must be capable of doing three things:

(a) Store knowledge (knowledge representation),

(b) Apply the knowledge to solve problem (reasoning), and

(c) Acquire new knowledge through experience (learning).

2.2.s.1 Knowledge Representation

27

Univ
ers

ity
 of

 M
ala

ya

"Knowledge" as used by AI researchers, is just another term for data. The

knowledge can be in declarative, procedural, Meta, heuristic, structural [4J.

Generally, the knowledge can be represented as a static collection of facts

(records), with a set of procedures ([generic algorithm) to manipulate the

facts.

2.2.s.2 Reasoning

Reasoning is the ability to solve problems. The general way of solving the

problem is searching around the rules, data and control until a solution is

enquired.

2.2.5.3 Learning

Performance ...
Environment " element

j ~

,,
Learning Knowledge
Element - Base

Figure 2.4: Simple model of machine learning

The environment supplies information to the learning element. The learning

element use this information and add/modify the knowledge base, thus, the

performance element can be improved.

Error Correction Learning

28

Univ
ers

ity
 of

 M
ala

ya

The error signal, e is derived from difference between the desired output (d)

and the actual output (y), thus,

e=d-y

According to the delta rule, the adjustment of weight is,

11w = nex

where w = weight

11 = positive constant, the learning rate

e = error signal

x = input value

The updated value of synaptic weight w is determined by

w(n + 1) = w(n) + 11w
where n as time step

29

Univ
ers

ity
 of

 M
ala

ya

Chapter III: Methodology
Methodology refers to the method used to develop the system. It included
the project schedule, development tools, and system requirement.

3.1 Program Schedule

3.2 Development Requirement

• Hardware Requirement

• Development Tools

• Database Management System (DBMS)

3.2 Run-time requirements

• Disk Space Required

• System Requirements

30

Univ
ers

ity
 of

 M
ala

ya

3.1 Program Schedule

Activities

Web Information Retrieve and Monitoring Using Adaptive Agent

Feb
200

Sep Oct

200 200

Jul Aug

200 200

Jun
200

Nov Dec Jan
200 200 200

Phase I June 2000 - early September 2000

Literature Review : . : . : . : . : . : . :1

Draft Proposal

Methodology

~
t..:..:...:..J

I:-:·,:-:· I

System Analysis

System Design

Proposal & Viva
: : i I:-: >':-1

Phase II mid September 2000 - mid January 2000

System Design I:'.: :<I

Coding

System Testing
: :

:;:-:;:: ·:-:-:-:'.:-:;::/-:.~

Documentation

l= Process to be carried
Figure 3.1: Project schedule

31

Univ
ers

ity
 of

 M
ala

ya

3.2 Development Requirement

Development requirement refers to the hardware and developments tool that

will be used during the development process.

3.2.1 Hardware ·Requirement

A personal computer with 32MB of RAM, 2GB of HDD, and Pentium 233MMX

or above is required. Hardware required during the developing process is

not an importance issues. A personal computer, which supports the

following development tools, is essential.

3.2.2 Development Tools

This is a Web-base application, thus, a personal web server is required

during the development time. Besides, MS-SQL server 7.0 is selected as the

database managements system. See sectton 3.2.3 for detail about MS-SQL

server.

All the process need to be complete faster, to reduce overhead, as the

·process will need a long periods to be complete. E.g. the learning process,

the system will need to analyze a lot of input to achieve the desired outputs.

Thus, MS-Visual C++ is used, as C program is the fastest (after the assembly

language) code can be generated in existence today.

For developing server-side scripting, MS-Visual Interdev will be used. Active

Server Page (ASP) will be used for server-side scripting, as it wild range of

component and co-operate with MS-Visual Basic. Visual Basic is a great tool

to develop user-friendly interface, with the drag and drop feature.

32

Univ
ers

ity
 of

 M
ala

ya

For client-side scripting, JavaScript will be used. JavaScript is supported by

the two major browser, Netscape Navigator, and Microsoft Internet Explorer.

Meanwhile VBScript is only supported by Microsoft Internet Explorer.

33

Univ
ers

ity
 of

 M
ala

ya

3.2.3 Database Management System (DBMS)

MS-SQL server 7 .0 is a powerful DBMS in the market. With the capability to

manipulate the database up to 1,048,516 TB, and the access times below

4BG of database will not shows any great delay.

Large and fast database is need for indexing high volume of pages;

therefore, the SQL server 7 .0 is suitable as the DBMS. Besides, the DBMS

support client-server architecture; two differences servers can be setup with

one server supplying web-services and another one supplying database

query services. Thus, help to boost the performance of the system.

Attribute SQL Server 6.5 SQL Server 7.0

Database size 1 TB 1,048,516 TB

Page size 2 KB 8 KB

Files per database 32 32,767

File size (data) 32 GB 32 TB

File size (log) 32 GB 4TB

Bytes per character or 255 8,000

binary column

Bytes per GROUP BY, 900 8,060

ORDER BY

Bytes per row 1,962 8,060

Columns per base table 250 1,024

Tables per SELECT 16 256

statement

Table 3.1: Capacity between SQL Server 6.5 and SQL Server 7.0

34

Univ
ers

ity
 of

 M
ala

ya

3.3 Run-time requirements

Run time requirement need to be specified, as an importance issues, include

hardware and software. The performance is greatly dependence on the

hardware used.

3.3.1 Disk Space Required

Following is a brief calculation of disk space required for the system.

Description Disk Space
(MB)

Runtime Software
OS and Runtime software 2,048.00

User Profile
650 users, 3MB per user quota 1,950.00

Keyword Indexing
Assume 60,000 keyword is being indexes, each keyword
required 56 bytes, space required = 60,000 * 56 / 10242

3.06

Assume every keyword contains 100 relations, each
relation required 10 bytes, space required = 60,000 * 100
* 10 / 10242

57.22

Page Indexing
Assume average space required for indexing, storing
properties of a page take 2,048 bytes

3,906.25
For indexing 2M pages, space required = 2M * 2048
Catching
Space used for caching HTML documents, e.g. storing
HTML page locally

100.00

Totals: Required disk space 8,064.53

Figure 3.2: Disk space required

35

Univ
ers

ity
 of

 M
ala

ya

3.3.2 System Requirements

• Windows NT server

• Web Server (IIS 4.0)

• Microsoft SQL server 7.0
• 8GB of Hard disk, more hard disk space required to support more

user and indexing more pages

• 128MB RAM, 256MB recommended for higher performance

• Fast Internet connection

36

Univ
ers

ity
 of

 M
ala

ya

Chapter IV: System Design

4.1 Database Dictionary

• Member Profile

• Keyword
• Page Indexing

4.2 Neural Net Design

• Overview of Neural Net Design

• Input Layer

• Extracting Layer

• Processing Layer

• Database Administrator

37

Univ
ers

ity
 of

 M
ala

ya

4.1 Database Dictionary

The database tables used in the projects can be divided into three groups:

(a) Member Profile,

(b) Keyword, and

(c) Page Indexing.

See appendix B for supported data types by MS-SQL server 7.0.

4.1.1 Member Profile

Main table for member profile, contains an automatic generated member ID,

member's email used as login ID, password which required when login to

member's account, and the last login date of the user.

MEMBER Data Type Size Description

*Member_ID Int 4 Member ID

Email Char[SO] 50 Member's email, use as a login ID

Password Char[20] 20 Login password

Last_Login Small Date Time 4 Last login date

Total: 4 78

Registered member is allowed to bookmark a page. Bookmark is permanent

for the user.

38

Univ
ers

ity
 of

 M
ala

ya

BOOKMARK Data Type Size Description

Member_ID Int 4 Member ID

Page_ID Int 4 Page ID

Total: 2 8

Search Session. Each member can have unlimited search session, but have

a limitation of 3MB quote, included the bookmark, history and session.

Session Data Type Size Description

*Session_ID Int 4 Session ID

Member_ID Int 4 Member ID

Login_IP Int 4 IP of login session

Session Date Small Date Time 4 Last revise date of the session

Total: 4 16

History used to store pages that visited by the users.

HISTORY Data Type Size Description

Session_ID Int 4 Session ID

Page_ID Int 4 Page ID

Date_ Visited SmallDateTime 4 Date of last visiting of the page

Total: 3 12

Key list stored all the keyword entered by a session.

I Data Type I Size I Description I KEYLIST

39

Univ
ers

ity
 of

 M
ala

ya

Session_ID Int 4 Session ID

Keyword_ID Int 4 Keyword ID

Total: 2 8

4.1.2 Keyword

These databases are the knowledge base of the keyword. The structures is

designed to allow the learner to manipulate the records.

Keyword, store the keyword name and a keyword ID is assigned

automatically. The ID used as a reference to the key name, as all other

table will refer to the 10 and not storing the whole string, in order to save

space.

The weight used to store the frequency in which the keyword was entered,

selected, or searches the keyword.

KEYWORD Data Type Size Description

Keyword_ID Int 4 Keyword ID

KeyName Char[SO] 50 Keyword Name

Searched Count Smalllnt 2 Frequency of keyword used by

user.

IndexCount Small Int 2 Frequency of re-indexmq the

keyword

IndexLevel 11nylnt 1 Indicate this keyword is not yet

indexed, already re-indexed,

prepared for indexing, relevance

40

Univ
ers

ity
 of

 M
ala

ya

analyzed, or it's a common word

which will not being indexed.

Total: 3 59

Related Keyword, for classification, relation between keyword is directed,
while in the following table, relating is undirected.

RELATED Data Type Size Description

Key ID Int 4 Keyword ID

Sub Key ID Int 4 Keyword ID

Weight Smalllnt 2 Frequency of occurrences

Total: 3 10

Linked Keyword, used to store neural net linked items.

Linked Data Type Size Description

ID Int 4 Linked ID

Input ID Int 4 Input keyword's ID

Output ID Int 4 Output keyword's ID

Weight Double 8 Connection Weight

4.1.3 Page Indexing

The last section of database used for indexing a web page.

Page, storing the major structure of a HTML document, each page being

indexed should have a page ID. The URL of a page Is breaking down into

three pieces, file name, folder, and domain.

41

Univ
ers

ity
 of

 M
ala

ya

When a remote location (URL) is needed, the folder id will refer to the folder

table, see section after this for more details in reconstruction of the URL.

Meanwhile, when the locate location (HTML documents cache at local

storage), folder ID (converted into string) is refer to a local folder, and file

ID (converted into string) is the file name.

PAGE Data Type Size Description

*Page ID Int 4 Page ID

Folder ID Int 4 Folder ID

File ID Int 4 File ID

Last Update Small Date Time 4 Page last update date

Sizes Int 4 Page's length

Last Revised Small Date Time 4 Last date that revise the page

Image Bit 1/8 Page contain image

Audio Bit 1/8 Page contain audio

MP3 Bit 1/8 Page contain MP3

Video Bit 1/8 Page contain Video

Flash Bit 1/8 Page contain flash

Java Bit 1/8 Page contain Java Applet

JavaScript Bit 1/8 Page contain Java Script

ActiveX Bit 1/8 Page contain ActiveX object

EXE Bit 1/8 Page contain executable file

Acrobat Bit 1/8 Page contain Acrobat PDF

document

VBScript Bit 1/8 Page contain VBScript

Real Media Bit 1/8 Page contain Real Audio/Video

Postscript Bit 1/8 Page contain Postscript file

ZIP Bit 1/8 Page contain downloadable

42

Univ
ers

ity
 of

 M
ala

ya

compressed file

FORM Bit 1/8 Page have form

Other Bit 1/8 Contain undefined documents, e.g.

MS-Office documents, etc.

Total: 22 26

Hyperlink refer to the hyperlink between the pages. This table used in

table of contents maker, which store all the hyperlink in a page.

HYPERLINK Data Type Size Description

Page ID Int 4 Page ID

Link Page Int 4 Link to other pages

Total: 2 8

Folder, is used to store remote URL information. If the folder name is equal

to "/ROOT", then the Parent Folder ID is refer to domain name, else, the

parent folder will refer back to the folder id.

This method used for save storage space, if there's more files inside a same

folder, only the file name need a new record, while the folder name, domain

name will not need another storage. Duplicated name will not be record

differently.

FOLDER Data Type Size Description

*Folder_ID Int 4 Folder ID

Folder _Name Char[40] 40 Folder Name

Parent_Folder Int 4 Parent Folder (see rule)

43

Univ
ers

ity
 of

 M
ala

ya

j Total: 3 148

Domain, store a domain name, e.g. www.abc.com, www.ai.edu.

DOMAIN Data Type Size Description

*DomainID Int 4 Domain ID

Domain Name Char[50] 50 Domain Name (www.abc.com)

IndexPage Int 4 Default/Index page ID

Total: 2 58

file Name, storing file name; because most web pages have same name,

e.g. index.html, default.asp. This table used to save storage space.

FILE Data Type Size Description

*File_ID Int 4 File ID

File_Name Char[40] 40 File Name

Total: 2 44

Page Indexing, all the keywords will be indexing against the pages.

INDEX Data Type Size Description

Keyword_ID Int 4 Keyword ID

Page_ID Int 4 Page ID

Counter Tinyint 1 Total of keyword found in the page

Relevance Tiny Int 1 Percent of relevance

Total: 2 9

44

Univ
ers

ity
 of

 M
ala

ya

The following structure storing the all the title, subtitle or headers within the

pages. This table used to support the table of contents features discuss

earlier.

lltle Data Type Size Description

Page ID Int 4 Page ID

litle Char[40] 50 Page's title, subtitle or header

Total: 2 54

45

Univ
ers

ity
 of

 M
ala

ya

4.2 Neural Net Design

4.2.1 Overview of Neural Net Design

Input Layer
(Stimulus)

Extracting Layer
(Preprocessing)

Processing Layer
(Neural Net)

Database Administrator

Figure 4.1: neural net design

4.2.2 Input Layer

The input layer is the stimulus for the neural network. There are three

major sources of input:

(a) Administrators

(b) Users

(c) Internet Documents

46

Univ
ers

ity
 of

 M
ala

ya

I• User • Admin •Internet I
Figure 4.2: Sources of input layer

4.2.2.1 Administrators

Administrators include the developers and others system tester (if any).

Administrators should only involved themselves during the development

times.

Administrators will try to test the learning algorithms, by inputting the testing

sets into the neural networks. Output results are being monitored.

47

Univ
ers

ity
 of

 M
ala

ya

4.2.2.2 Users

Users may suggest a new keyword to the agent, and may suggest keyword

classification to the system.

The new keyword and classification should have higher accuracy, but the

process is slow, and need a lot's of users for learn a correct keyword, and

construct the relation between keyword.

Suggest Keyword
When user entered a keyword that is not found in the database, the user is

said to 'suggest' a keyword to the system. If the searching against the

keyword is successful (through other search engines), the system may learn

a new keyword from the user.

Suggest first, second, and third level classification

The interface provide a browse able keyword for the user. When user select

a topic, a further list of keyword will be provide to the user. All keyword at

top of a classification considered as a topic, e.g. computer, automobile,

education, etc., the top level will be pre-installed by the administrators. If

user didn't found the keyword, they can type in the keyword, thus, a new

keyword under the topic is suggested by the users.

The classification is said to be strong, if have certain amount of users

selected the same topic, and key in the same keyword. When it's strong

enough, the keyword will be listed out at the 2nd level list.

48

Univ
ers

ity
 of

 M
ala

ya

4.2.2.3 Internet Documents

The HTML documents downloaded from the Internet provide the largest

learning space for the system. The Internet documents may provide all the

words that can be indexed.

Keyword learning, relations among keyword being constructed, and all other

learning process should be carefully designed so that the learning process

can be success with minimal error.

4.2.3 Extracting Layer

Extracting layer act as the preprocessor to the neural network, will try to

extract need information from the input layer.

The module included: Words counter & indexer, page properties scanner,

title, header extractor, etc.

Words counter and indexer will collect the keyword that found in a page and

store in database.

Page properties scanner will try to check if the page contains various

information/object (e.g. Image, ActiveX, etc.)

litle, header extractor will try to look for possible title in the page.

4.2.4 Processing Layer

There are three major processes inside the processing layer:

49

Univ
ers

ity
 of

 M
ala

ya

(a) Learner,

(b) Re-Indexing,

(c) Relevant Analyzer.

4.2.4.1 Learner

The learner is used for learning a new keyword; construct relationship
between keyword; classification of keyword; and learn phrases.

4.2.4.2 Keyword Learning

Figure 4.3: Keyword Learning

Common Words

Common words refer to the words that have very high frequency shared
between difference domains. For example: the, of, a first, list, etc.

50

Univ
ers

ity
 of

 M
ala

ya

These words will not be indexed.

Domain Keyword

Domain keyword refer to keywords t hat have that have high frequency in

the same domain but have low frequency shared words between domain.

For example: neural network, cognitive, computer, hardware, software, etc.

These words will be indexed.

Special Keyword
Special Keyword is the keyword with medium high frequency in a domain

and not found in other domain. Normally is the word with capital, or a

keyword only found in the domain. For examples: Microsoft, Creative, ...

These words will be indexed.

4.2.4.3 Construction of Relation

Related keyword will be linked. The keywords are said related if keywords

are located in same sentence.

The relation will aid the relevant analyzer, and suggest related keyword to

the user.

4.2.4.4 Classification of Keyword

51

Univ
ers

ity
 of

 M
ala

ya

Related keyword will classify under same topic/title. When a title or header

is found, the keyword under it is said to under the class of the title.

Allow user to have reference of related keyword under a topic/title.

4.2.4.5 Phrases Learning

If two or more keywords always be together (next to each other), it will

'remembered' as a phase. For examples: neural network.

This will allow suggestion of phase to user, and automatic phrase searching.

4.2.4.6 Spell Checker

The spell checker has various usages.
(a) Suggest correction if typo error, or when user key in incomplete

keyword.
(b) Avoid indexing of similar keyword differently, in order to save

indexing space.

The spell checker is limited to English only. Keyword in other languages may

lead to unexpected outputs.
The spell checker has the following function:

(a) Singular .and plural adjustment

(b) Abbreviations pattern matching

(c) Partial matching

(d) Typo error checking

52

Univ
ers

ity
 of

 M
ala

ya

Singular and Plural

Keyword will be stored in singular mode, and indexing should be done for

the singular mode keyword. For example: computer will be indexed instead

of computers. Thus, if a page has the word 'computer' and 'computers', only

one entry in the indexing space will be needed.

Abbreviation Pattern Matching

Abbreviation pattern matching designed for avoiding indexing of keyword

and it's abbreviation together. For example: int1 will match as international;

lang will indexed as language.

Not all matching will be successful. If matching success, the indexer will

index the completely original word, else the abbreviation is treated as a new

or difference word.

-- Abbreviations Pattern

The abbreviation has some common pattern:
(a) Abbreviations of a word are always started with the first letter. (E.g.

figfor fi{}Jre.
(b) First letter taken for a phrase. (E.g. PM for Rime Mnister).

(c) Leading letters is taken as abbreviation. (E.g. math for mat~matics)

(d) Vowel is excluded. (E.g. msgfor rres:,age).

53

Univ
ers

ity
 of

 M
ala

ya

Partial Matching

Partial matching is needed for:

(a) Detect difference between British English and American English. For

example: color is same as colour, word that end with -ize is same as

word that end with -ise.

(b) User entered incomplete keyword.

4.2.5 Database Administrator

Database Administrator will record results from the processing layer. Output

is generated based on the databases.

54

Univ
ers

ity
 of

 M
ala

ya

Chapter V: Implementation
Overview
5.1.1 Database Classes

• CDataMngr

• Other Classes

5.1.2 Neural Net Classes

• Neuron

• Link

• Layer
• Neural Net

5.1.3 Object Classes

• The Spell Checker

• Tokenizer

5.1.4 Thread/Process Classes

• Extracting Thread

• Re~Indexing Thread

• Neural Net Training Thread

• Relevance Analysis Thread

55

Univ
ers

ity
 of

 M
ala

ya

5.1 Overview
There are four categories in the coding, each provide difference functionality.

a) Database Classes
-- Used to access the database, perform several data related

functions.
b) Neural Net Classes

-- Used to simulate a neural network.

c) Object Classes

-- Included the spell checker, tokenizer.

d) Thread Classes
--The processes.

5.1.1 Database Classes
Database Classes used to access to the database source, provided with

ODBC.

5.1.1.1 CDataMngr
This class provides the connection of all other recordset to the ODBC source.

In this project, login info in save in the registry, without encryption. The

class will get the login info from the registry and establish the connection.

5.1.1.2 Other Classe
Every recordset is access by classes, thus, making manipulation of the record

much easier.

5.1.2 Neural Net Classes

The neural net classes included the following object:

56

Univ
ers

ity
 of

 M
ala

ya

(a) CNeuron

(b) Clink

(c) CLayer, and

(d) CNeuralNet

5.1.2.1 Neuron

CNeuron Overview

CNeuron represent a node in the neural network. Each neuron has a unique

ID. In this project, every keyword is considered as a neuron, thus, the ID of

a neuron Is actually the ID of the keyword.

x

y

Adder Activation Function Output

Input Signal, where x is the input value, w is the weight.

Figure 5.1: The structure of a neuron.

Class Member

Private Variable
I Each Neuron has a unique ID. long m_ID

57

Univ
ers

ity
 of

 M
ala

ya

double m_Error Error of this neuron.

double m_ Value Neuron's value.

Clink m_Input Input Neurons.

Constructor
CNeuron() Construct an empty neuron, all private

variable is set to 0.

CNeuron(long ID, Construct a neuron with known ID, --

double Value = 1.0) default value is 1.0.

CNeuron(CString keyName) Construct a neuron with a keyword, ID

will be retrieve from database.

CNeuron(CTokenNode* pNode) Construct a neuron from CTokenNode.

Get/Set Data
double GetValue() Get/Set neuron's value.

void SetValue(double newValue)

long GetID() Get/Set neuron's ID.

void SetID(long ID)

void SetID(CString keyName) Get ID from keyword's recordset and

assign this neuron with the ID.

double GetError() Get/Set Error.

void SetError(double Error)

Clink* Getlnputlink(); Return pointer of Input neuron's link.

Connection Method
Provide connection operation

void ConnectFrom(Connect this neuron from another

CNeuron &input) neuron.

void ConnectTo(CNeuron Connect this neuron to another neuron.

&output)

58

Univ
ers

ity
 of

 M
ala

ya

void SaveConnection() Save Connection into database.

void RestoreConnection() Restore Connection from database.

Neuron's Operation

double Activiation(double value) The activation function.

double Fire() Fire this neuron.

void Learn(double Learning Rate) Learn from error with specified learning
rate.

Firing the Neuron

(see section 2.2.3 for information of firing an neuron)

double CNeuron: :Fire()
{

int j = rn....Input.Getsize();

double sum= 0.0;

for (inti= O; i < j; i++)
{

sum+= rn....Input.Getweightedvalue(i);
}

rn._value = Activiation(sum);
return rn._value;

}

m_Input is an instance of Clink. Clink: :GetWeightedValued() will return the

linked neuron's value multiply with the connection weight.

59

Univ
ers

ity
 of

 M
ala

ya

where y = output value
x = input value

w = synaptic weights

The Activation Function

double CNeuron::Activiation(double value)
{

if (value> 100)
return 100;

else if (value< 0)
return O;

else
return value;

}

0 100

Figure 5.2: The Activation Function.

The Learning process

60

Univ
ers

ity
 of

 M
ala

ya

Learn will recalculate the weight of the input Link according to the learning

rate, its own error and its input Neuron value using generalized delta rule.
(see page 28 for more information about the learning rule)

void CNeuron::Learn(double LearningRate)
{

inti, j = rn_Input.Getsize();

double input_value, old_weight, new_weight;

II loop through each input link of the Neuron
II reset the weights according to generalized
II delta rule to reduce the error of this Neuron
for (i = 0; i < j; i ++)
{

II input Neuron value
input_value = (rn_Input.GetinputNeuron(i))

->Getva l ue () ;

II original weight of the link
old_weight = rn_Input.Getweight(i);

II generalized delta rule
new_weight = old_weight +(LearningRate * rn_Error *

input_value);

II reset the weight of the link
rn_Input.SetWeight(i, new_weight);

}
}

s.1.2.2 Link

61

Univ
ers

ity
 of

 M
ala

ya

The Class Clink is derived from CptrArray. Clink is a collection class, which
collects the ClinkNode object.

ClinkNode Overview

ClinkNode contains the pointer to input neuron, output neuron and its

connection weight.

Input

Neuron

Weight Output

Neuron

Figure 5.3: Connected Neuron.

Class Member

Private Variable

long m_ID Link's ID.

CNeuron =rn jnput Pointer to input neuron.

CNeuron *m_Output Pointer to output neuron.

double m_ Weight Connection weight of this link.

Get/Set Value
double GetOutputValue() Get output neuron's value.

double GetlnputValue() Get input neuron's value.

double GetWeightedValue() Return input value multiply with the

weight.

double GetWeight() Get weight.

62

Univ
ers

ity
 of

 M
ala

ya

Void SetWeight(double Weight) Set weight.

CNeuron* Getlnput() Get pointer to input neuron.
CNeuron* GetOutput() Get pointer to output neuron.
void Setinput(CNeuron* Input) Set input neuron.
void SetOutput(CNeuron* Output) Set output neuron.
long GetinputID() Get input neuron's ID.
long GetOutputID() Get output neuron's ID.
long GetID() Get link's ID

void SetID(long ID) Set link's ID

Clink Overview

Clink is derived from CPtrArray. This class collects the pointers of

CLinkNode. Each neuron has a private member of Clink, which collects the

entire input link to the neuron.

Input

Neuron

Figure 5.4: Collection of links.

Class Member

63

Univ
ers

ity
 of

 M
ala

ya

Note: nlndex is referred to the index of link node in the array.

Private Variable
There's no private variable for this class. Variables are inherited.

Constructor.
Clink() Construct an empty link
CLink(CNeuron *Input, Construct a link and add one link node
CNeuron *Output, into the collection.
double Weight = 0.0)

Get/Set Value
long GetID(int nlndex = 0) Get link's ID at nlndex.

double GetinputNeuronValue(Get input neuron's value at nlndex.
int nlndex = 0)

double GetWeightedValue(Get weighted value at nlndex.

int nlndex = 0)

double GetWeight(int nindex = 0) Get weight at nlndex.

void SetWeight(int nlndex = 0, Set weight at nlndex, default weight is
double Weight= 0.5) 0.5.

CNeuron* GetOutputNeuron(Return pointer of output neuron at

int nlndex = 0) nlndex.

CNeuron* GetlnputNeuron(Return pointer of input neuron at

int nlndex = O) nlndex.

long GetOutputNeuronID(Get output neuron's ID.

int nlndex = 0)

long GetlnputNeuronID(Get input neuron's ID.

int nlndex = 0)
-

CLinkNode* GetAt(int nlndex) Return link node at nlndex.

64

Univ
ers

ity
 of

 M
ala

ya

Connection Method
void Connect(CNeuron *Input, Add a new connection/link between two
CNeuron *Output, neurons.
double Weight = 0.0)

void Disconnect(CNeuron *Input, Remove connection of a link. --·-
CNeuron *Output)

void RestoreWeight() Restore weight from database.
void SaveConnection() Save weight and connection to

database.

Other
void Destroy() j Destroy this object.

65

Univ
ers

ity
 of

 M
ala

ya

5.1.2.3 Layer

Clayer Overview

The CLayer class is derived from CPtrArray. CLayer stored the array of
neurons.

A Layer of

o~
0
O>
0
OJ

Neurons

neurons

Figure 5.5: A Layer of neurons.

Class Member

Note: nindex is referred to the index of neuron in the array.

Private Variable

There's no private variable for this class.

Constructor
CLayer() / Construct an empty layer.

Get/Set Value

CNeuron* GetAt(int nindex = O) I Return pointer of neuron at nindex-:- -

66

Univ
ers

ity
 of

 M
ala

ya

void SetError(int nlndex, Set error of neuron at nindex.
double Error)

double GetNeuronValue(Get neuron's value at nlndex.
int nlndex = 0)

void SetNeuronValue(Set neuron's value at nlndex.
int nlndex,

double value)

Neuron Operation
void AddNeuron(long ID) Add a neuron into this layer using
void AddNeuron(several method.

CTokenNode* pNode)
void AddNeuron(

CString keyName)

int AddNeuron(

CNeuron *pNeuron)

void Fire() Fire all neurons in this layer.
void Learn(double Learning_Rate) Make all neurons in this layer learn from

error.

void LinkAllTo(CLayer *tolayer) Link all neurons in this layer to another

layer. Use to create a fully connected

neural network.

void SaveConnection() Save connection into database.
void RestoreConnection() Restore connection from database.
void Destroy() Destroy this layer.

To fire the layer, each neuron is the layer is fired.

void CLayer::Fire()
{

inti, j = Getsize();

67

Univ
ers

ity
 of

 M
ala

ya

CNeuron* pNeuron;

for (i = O; i < j; i ++)
{

pNeuron = GetAt(i);
ASSERT(pNeuron !=NULL);

pNeuron->Fire();

}
}

5.1.2.4 Neural Net

CNeura/Net Overview

The CNeuralNet class is derived for CPtrArray and act as a collector of

CLayer object.

0
01
0

Figure 5.6: Layers of neurons, indexes are zero-based in C++.

Class Member

68

Univ
ers

ity
 of

 M
ala

ya

Private Variable

double m_LearnParam Learning Parameter

Constructor
CNeuralNet() Construct an empty neural net.

Get/Set Value
CLayer* GetAt(int nindex = 0) Return pointer of a layer at nindex.
double GetOutputValue(Get Output Value.

int nindex = O)
void SetinputValue(int nindex, Set input value.
double value)

void MakeinputZero() Set all value in input layer to 0.

void SetLayerSize(int numlayer) Set number of layer in the net. This

function should be call after the net was
constructed or when the Destory()

function was called.

void SetLearningParam(Set the learning parameter.
double learning_rate)

Adding elements
int AddLayer(CLayer* newlayer) Add a layer in the net.

void AddNeuron(int nindex, Add a neuron in a layer, nindex refer to

CNeuron *pNeuron) which layer to add the neuron.

void Addinput(CString keyName) Add a neuron in the input layer using
void Addinput(several ways.

CTokenNode*pNode)

void Addinput(long InputID)

69

Univ
ers

ity
 of

 M
ala

ya

void AddOutput(CString keyName) Add a neuron in the output layer using
void AddOutput(several ways.
CfokenNode*pNode)

void AddOutput(long OutputID)

Neural Net Operation
- void Fire() Fire the entire neural net.

void Learn() Make the net to learn.
void Interconnect() Build a fully connected network.
void SetDesiredOutput(int nindex, Set desired output.
double DesiredOutput)

Other
int Findinputindex(Find a neuron's current index in the
long NeuronID) input layer using neuron's ID.

void DeleteConnection() Delete the connection that was saved
into database.

void SaveConnection() Save the connection into database.

void RestoreConnection() Restore connecting weight for every

connection in the network.

void Destroy() Destroy the network.

Input and Output

The zero index of layer is considered as input layer and the last layer as

output layer.

Set Desired Output

70

Univ
ers

ity
 of

 M
ala

ya

This function will calculate the error of the output Neuron according to the

desired value. The network should be fired first before calling this function.
void CNeuralNet::setDesiredoutput(int nindex,

double Desiredoutput)
{

CLayer *player= GetAt(Getupper8ound());

double error= Desiredoutput -
pLayer->GetNeuronValue(nindex);

II Set the error of the output Neuron to computed error
pLayer->SetError(nindex, error);

}

This function will fire the entire network. Since the first layer (zero indexed)

is the input layer, thus, this function will fire from the second layer until the
last layer.

void CNeuralNet::Fire()
{

inti, j = Getsize();

CLayer* player;

for (i = 1; i < J ; i ++)
{

player~ GetAt(i);
pLayer->Fi re();

}
}

71

Univ
ers

ity
 of

 M
ala

ya

5.1.3 Object Classes
5.1.3.1 The Spell Checker

CSpe//Checker Overview

The Spell Checker is used to adjust a plural keyword into singular, thus, to
avoid duplicated indexes of the keyword.

Rules for Forming Plural Nouns.

Rule 1: Nouns are regularly made plural by addition of -s:
----- day days, roof roofs, shoe shoes

This function try to remove the -s from given string, return true if succeed.
BOOL cspellchecker::MakesingularA(CString &s)
{

if (s.Right(l) == "s")
{

s = s.Left(s.GetLength() - 1);
return true;

}

else
reL:urn false;

}

Rule 2: Nouns ending in sibilant ('s') sounds spelled with ~ ch, sh, and x.
----- bus buses, box boxes, church churches;

and some of the nouns ending with o:

----- buffalo buffaloes, mango mangoes

This function try to remove the -es from given string.

72

Univ
ers

ity
 of

 M
ala

ya

BOOL CSpellchecker::MakesingularB(CString &s)
{

if (s.Right(2) == "es")
{

s = s.Left(s.GetLength() - 2);
return true;

}

else
return false;

}

Rule 3: Nouns ending with y changed to -ies
----- baby babies

This function try to replace ending -ies with y.
BOOL cspellchecker::MakesingularC(CString &s)
{

if (s.Right(3) == "ies")
{

s = s , Left(s. Get Length() - 3) + "y";
return true;

}

else
return false;

}

Rule 4: Nouns ending with f, f is changed to ves
----- leaf leaves, thief thieves

This function try to replace ending -ves with f:
BOOL CSpellchecker::MakesingularD(CString &s)
{

if (s.Right(3) == "ves")
{

73

Univ
ers

ity
 of

 M
ala

ya

s = s. Left(s. Get Length() - 3) + "f";
return true;

}

else
return false;

}

74

Univ
ers

ity
 of

 M
ala

ya

This function will try to detect the given keyword is plural of another
keyword.

Is Modified

keyword in

Database?

NO

NO

Figure 5.7: CSpellChecker::IsPlural().

Since there are many exceptions in forming plural nouns, a generalized

algorithm to detect plural keyword is impossible. This function is only

designed to detect plural with ending -s. Other type of plural wfll not be

processed and will be considered as difference word. For example: children,

tooth teeth, foot feet, policemen will be treat as difference word.

BOOL cspellchecker::IsPlural(CString &src, BOOL modify)
{

CKeywordset m_Keyset(m_dataconn);

75

Univ
ers

ity
 of

 M
ala

ya

CString
long

tmp_Str, s = src;
ID= m_KeySet.GetKeyID(src);

s .MakeLower();

s = Trim(s);

tmp_Str = s;

II Rule 1: Nouns are regularly made plural by the
II addition of -s
if (MakeSingularA(tmp_Str))
{

try
{

if (
{

if
{

(m_keyID = m_KeySet.GetKeyID(tmp_Str)) != 0)

(ID!= 0)

m_Keyset.Find(ID);
m_Keyset.Delete();

}

if (modify) src = tmp_Str;

return true;
}

} catch (cuserException *e)
{

e->Delete();
}

}

tmp_Str = s;

II Rule 2: Nouns ending withs, ch, sh, and x
if (MakesingularB(tmp_Str))
{

try

76

Univ
ers

ity
 of

 M
ala

ya

{
if ((m_keyID = m_KeySet.GetKeyID(tmp_Str)) != 0)
{

if (ID != 0)
{

m_Keyset.Find(ID);
m_Keyset.Delete();
m_KeySet.Update();

}

if (modify) src = s;
return true;

}
} catch (CUserException *e)
{

e->Delete();
}

}

tmp_Str = s;

II Rule 3: Nouns ending with y, changed to -1es
if (Makesingularc(tmp_Str))
{

try
{

if (
{

if
{

(m_keyID = m_KeySet.GetKeyID(tmp_Str)) != 0)

(ID!= 0)

m_Keyset.Find(ID);
m_Keyset.Delete();
m_Keyset.Update();

}

if (modify) src = tmp_Str;
return true;

}
} catch (cuserException *e)
{

77

Univ
ers

ity
 of

 M
ala

ya

e->Del ete();
}

}

tmp_Str = s;

II Rule 4: Nouns ending with f: changed to ves
if (Makesingularo(tmp_Str))
{

try
{

if ((m_keyID = m_KeySet.GetKeyID(tmp_Str)) != 0)
{

if (ID != 0)
{

m_Keyset.Find(ID);
m_Keyset.Delete();
m_Keyset.Update();

}

if (modify) src = tmp_Str;
return true;

}
} catch (cuserException *e)
{

e->De 1 ete () ;
}

}

return false;
}

78

Univ
ers

ity
 of

 M
ala

ya

5.1.3.2 Tokenizer

Overview

To process the HTML documents, the text has to be break into tokens for

indexing. A token is a single word in the document. The standard built-in

library strtokO is not suitable for processing the HTML documents, because

the HTML documents contains HTML tag which need to treat differently with
normal text.

CTokenNode Overview

Private Variable
long m_ID Token's ID, same as keyword ID.
CString m_ Token The keyword.

Int m_Count Number of keyword found.

unsigned long m_ Type Token type.

unsigned long m_Extended Extended token type.

Token Type (defined)

79

Univ
ers

ity
 of

 M
ala

ya

#define TOKEN_HYPERLINK Ox0020
#define TOKEN_EMAIL Ox0040

#define TOKEN_QUOTE OPEN_QUOTE
#define TOKEN_QUOTE_END CLOSE_QUOTE

Extended Status (defined)
e 1ne HTML_NOT__.A_TAG

#define HTML_NULL OxOOOO
#define HTML_UNDEFINE OxOOOO
#define HTML_DOC OxOOOl
#define HTML_HEAD Ox0002
#define HTML_TITLE Ox0004
#define HTML_BODY Ox0008
#define HTML_SCRIPT OxOOlO
#define HTML_STYLE Ox0020

#define HTML_BOLD Ox0040
#define HTML_ITALIC Ox0080
#define HTML_UNDERLINE OxOlOO

#define HTML_BEGIN_BLOCK Ox0200
#define HTML_END_BLOCK Ox0400

e 1ne TOKEN_NULL
#define TOKEN_UNDEFINE
#define TOKEN_WORD
#define TOKEN_NUMBER
#define TOKEN_DATE
#define TOKEN_TIME

#define TOKEN_HTMLTAG

#define NOT_QUOTED
#define OPEN_QUOTE
#define CLOSE_QUOTE

#define HTML_TABLE Ox0800

OxOOOO
OxOOOl
Ox0002
Ox0004
Ox0008

OxOOlO

OxOOOO
Ox0080
OxOlOO

80

Univ
ers

ity
 of

 M
ala

ya

Bi~ Operations

#define SetStatusBit(target, value) target I= value

#define ResetStatusBit(target, value) target&= -value

#define GetStatusBit(target, value) (target & value)

Bit operations are common in c/c++ programming. For an integer (16 bits)

or a long integer (32 bits) can act as a "flag" to indicate the state on or off.

OxOOOl represent a hexadecimal number in c/c++,

OxOOOO = 000000000000000 (binary), OxOOOl = 000000000000001 (binary)

Ox0002 = 000000000000010 (binary), Ox0004 = 000000000000100 (binary)

and so on.

To set a status bit:

Original Integer (binary) 0000 0000 0000 0000

Predefined Value 0000 0000 0000 0001

OR Operation 0000 0000 0000 0001

To read a status bit, non-zero result indicate that the bit was set.

Original Integer (binary) 0000 0000 0000 0001

Predefined Value 0000 0000 0000 0001

AND Operation 0000 0000 0000 0001

To reset a status bit,

Original Integer (binary) 0000 0000 0000 0001

One's Complement 1111111111111110

Predefined Value 0000 0000 0000 0001

AND Operation (Last bit 0000 0000 0000 0000

is reset)

81

Univ
ers

ity
 of

 M
ala

ya

Constructor

CTokenNode() Construct an empty token node.
CTokenNode(CString keyName, Construct a node with known keyword.
long Type = 0,

long Extended= 0)

CTokenNode(Copy constructor
CTokenNode &tokNode)

Get/Set Value
BOOL GetExtended(long Status) Get/Set/Reset Extended status.
void ResetExtended(long Status)

void SetExtended(long Status)

BOOL GetStatus(long Status) Get/Set/Reset token type.
void SetStatus(long Status)

void ResetStatus(long Status)

void DecreaseCount() Increase or Decrease the counter.
void IncreaseCount(int nRate)

int GetCount() Get/Set the counter.
void SetCount(int nCount = 1)

long GetID() Get/Set keyword ID.
void GetKeywordID()

void SetID(long ID= 0)

void SetID(CString keyName)

CString GetValue() Get/Set keyword.
void SetValue(CString keyName)

Other Method
void CheckTokenType() Check token type.

82

Univ
ers

ity
 of

 M
ala

ya

BOOL IsWholeWord() Return true if the token only has
alphabet.

BOOL IsEndOfSentense(Return true and remove ending dot
CString &s) indicate that is end of sentense.
int IsQuote(CString &s) Return quoting status (opening or

closing) and remove the quote. Return
O indicate that is no quote.

Check Token Type

The function try to detect the token is either HTML tag (which opened by'<'

and closed by '>'), an email address (which has '@' and '.' Character), a

hyperlink (which has http://), a number or a word. This function also able
to detect if the word is quoted, or is the last word in a sentense.
II check token type
void CTokenNode::checkTokenType()
{

int tmp_findl, tmp_find2;
long Status;

II This is a HTML tag
if (m_Token.Left(l) == "<" && m_Token.Right(l) -- ">")
{

SetStatus(TOKEN_HTMLTAG);
}

else
{
II search for email
tmp_findl = m_Token.Find('@');
tmp_find2 = m_Token.Find('.');

II This is an email
if ((tmp_findl != -1)
&& (m_Token.ReverseFind('@') == tmp_findl)

83

Univ
ers

ity
 of

 M
ala

ya

&& (m_Token.ReverseFind(1•
1) > tmp_findl))

{
Setstatus(TOKEN_EMAIL);

}

II This is an hyperlink
else if ((tmp_find2 != -1) &&

(m_Token.Find(":ll") !== -1))
{

SetStatus(TOKEN_HYPERLINK);
}

else
{

BOOL done= false;

whi 1 e (! done)
{

done= true;

if ((Status= IsQuote(m_Token)))
{

done= false;
Setstatus(Status);

}

else if (IsEndofsentense(m_Token))
{

done= false;
SetStatus(TOKEN_ENDOFSENTENSE);

}

if (m_Token.Right(2) == "'s")
m_Token.Delete(m_Token.Getlength() - 2, 2);

II This is a word
if (isalpha(m_Token.GetAt(O)))
{

setstatus (TOKEN_WORD);
}

84

Univ
ers

ity
 of

 M
ala

ya

II This is a number
else if (isdigit(m_Token.GetAt(O)))
{

SetStatus(TOKEN_NUMBER);
}

}
}

}
}

Some word may surround by two or more quote, for example, a token might

be like this:

C'My Program'1·
Thus, a loop is needed to remove the beginning bracket and double quote,

or removing the ending dot, closing bracket and the double quote.

CToken, the collection class

CToken derived from CPtrArray, is a collection class of CTokenNode. This

class provide routine to manipulate the token node, generating token,

searching within the array, and indexing.

Private Variables
CStrlng m_whitespace Define the white space. A white space

like a space, a tab, a carry return is

used as separator between two words.

Constructor

void Init() Initialize the default white space.

CToken() Construct an empty token array
'

85

Univ
ers

ity
 of

 M
ala

ya

CToken(CString s) I Generate token array from the string.

Get/Set Value
void AddToken(CString tok, Add token node.

long Type= 0,

long Extended= 0)

void AddToken(int ID

int nCount = 1)

CTokenNode* GetAt(Return pointer to token node at nindex.

int nindex = O)
CString GetValue(int nindex - O) Get token's value at nindex.

void IncreaseCount(int nindex, Increase count of a token at nindex.

int nRate)
BOOL GetExtended(int nindex, Get/Set/Reset extended status of token

long Status) at nindex.

void SetExtended(int nindex,

long Status)
void ResetExtended(int nindex,

long Status)
BOOL GetStatus(int nindex, Get/Set/Reset token status at nindex.

long Status)
void SetStatus(int nindex,

long Status)
void ResetStatus(int nindex,

long Status)
int Geteount(int nindex = O) Get token's counter.

void GetKeywordID(int nindex) Get keyword's ID from database of

token at nindex.

void GetAllKeywordID() Get all keyword's ID of all tokens.

86

Univ
ers

ity
 of

 M
ala

ya

Generating Token

long GenerateToken(CString& src) Generate tokens array from source.

long GenerateToken(CString& src,

int &pos, long Status= 0,

long BackStatus = 0)
--- -

CString GetNextToken(Get next token starting from position

CString &src, int &pos) "pos".

BOOL ConvertSpecialChar(Convert special character in HTML

CString &s, int Startlndex) documents, which starting with '&' and

end with ';'. For example: for

white space.

Indexing
void Swap(int nindexA, Swap two item in .the array.

int nindexB)
void Swap(CTokenNode* pLeft,

CTokenNode* pRight)

void SortByCountDesc() Sort the array by counter.

void Indexing() Indexing, remove HTML tag and

duplicated keyword.

Other

87

Univ
ers

ity
 of

 M
ala

ya

int Find(int ID) Find index of a token using several

int Find(CString tok, ways.

int Startindex = 0,
int Stopindex = -1)

int FindTag(CString Tag,

int Startindex :::; 0,

int Stopindex = -1)
int Count(CString tok) Count frequency of a keyword.

-
int IsHTML Tag(CString tag) Detect if the token is not a HTML tag, is

opening tag, or closing tag.

long ConvertTagToStatus(Convert tag to predefined status, i.e.

CString tag) convert <TABLE> to HTML_ TABLE.

void Destroy() Destroy this object

void CheckTokenType(int nindex) Check token type at nindex.

BOOL IsWhiteSpace(const char c) Is White Spcace?

BOOL IsEmpty() Is Empty array?

88

Univ
ers

ity
 of

 M
ala

ya

Generate Tokens

Start

NO

YES

Get Next Token

Add to Array

NO
YES, Closing Tag

Return

YES, Opening Tag

Start Recursive

Example: the source is
0 1 2 3 4 5
01234567890123456789012345678901234567890123456789012
<HEAD><TITLE>Title</TITLE></HEAD><BODY>Testing</BODY>

Current Pos Tag Status Back Status Recursive Count

0 HTML_NULL HTML_NULL 0

6 HTML_HEAD HTML_HEAD 1 (Start recursive)

13 HTML_lTILE HTML_lTILE 2 (Start recursive)

18 Title HTML_lTILE 2

26 HTML_lTILE HTML HEAD 1 (Returned)

33 HTML_HEAD HTML_NULL O (Returned)

39 HTML_BODY HTML_BODY 1 (Start recursive)

46 Testing HTML_BODY 1

53 HTML_BODY HTML_NULL O (Returned)

89

Univ
ers

ity
 of

 M
ala

ya

This routine search through the HTML documents, breaking the entire

document into HTML tag and word. Using a recursive, setting the status bit

is easier. For the example above, the word "title" have been marked as

HTML_HEAD and HTML_ TITLE, while the word "testing" marked as

HTML_BODY. (See definitions of extended status at CTokenNode class

memben.

II Generate token
long CToken::GenerateToken(CString& src, int &pos,

long Status, long Openstatus)
{

cstring tok;
int bTag;
long fstatus, lstatus;

while (pos < src.GetLength())
{

tok = GetNextToken(src, pos);

if (tok == "") break;

bTag = ISHTMLTag(tok);

if (bTag == OPEN_TAG)
{

AddToken(tok,O,status);

fstatus = convertTagToStatus(tok);

if (fstatus != HTML_NULL)
{

setStatusBit(Status, fstatus);

lstatus = GenerateToken(src, pos, Status,

fstatus);

if (0penstatus != HTML_NULL && lstatus !=

fstatus)

90

Univ
ers

ity
 of

 M
ala

ya

return lstatus;

else
ResetStatusBit(Status, fstatus);

}
}

else if (bTag == CLOSE_TAG)
{

AddToken(tok,O,status);

fstatus = ConvertTagToStatus(tok);

if (fstatus != HTML_NULL)
return fstatus;

}

else
{

AddToken(tok,O,status);
}

}

return openstatus;
} //end function

91

Univ
ers

ity
 of

 M
ala

ya

CToken::GetNextToken

This function used to search for next token in the source.

Start

Remove White Space

Search for closing '>'

NO

Search until next

white space found

cstring CToken::GetNextToken(CString &src, int &pos)
{

char ch;
int i = O;
long tok_type = O;

II Remove white space
while (pos < src.GetLength())
{

ch= src[pos];

92

Univ
ers

ity
 of

 M
ala

ya

if (ch=='<')
{

tok_type = TOKEN_HTMLTAG;
break;

}

else if (rswhitespace(ch))
pos++;

II Remove white space " "
else if (ch=='&' && !Convertspecialchar(src, pos

))
pos++;

else
{

tok_type = TOKEN_UNDEFINE;
break;

}
} ;

cstring tmp;

II Stop if reach end of string
if (pos >= src.GetLength())

return"";

II search for closing '>' for html tag
if (tok_type == TOKEN_HTMLTAG)
{

i = src.Find('>', pos);

if (i == -1)
{

tmp = src.Mid(pos);
pos = src.GetLength();
return tmp;

}

else

93

Univ
ers

ity
 of

 M
ala

ya

{
tmp = src.Mid(pos, ++1 - pos);
pos = i;
return tmp;

}
}

i = 1;
ch= src[pos + i];

II search until white space, opening html tag '<'or
end of string

while (!Iswhitespace(ch) &&. ch!='<' && (pos + ++i) <

src.GetLength())
{

ch= src[pos + i];

if (ch== '&' && convertSpecialchar(src,pos+i))
ch= src[pos + i];

}

tmp = src.Mid(pos, i);
pos += 1;
return tmp;

}

94

Univ
ers

ity
 of

 M
ala

ya

5.1.4 Thread/Process Classes

To avoid taking too much of processor resource, all threads are running at

the lowest piority.

5.1.4.1 Extracting Thread

This thread performs the extracting keywords, paqes' properties and pages'

title from downloaded HTML documents.

Variables
int m_nDownloaded Number of downloaded item.

int m_nToDownload Number of item on the download queue.

CDataMngr* m_pdb Provide data connection

CDownloadSet* m_pdl Recordset: Download queue

CPageSet* m_pSet Recordset: Stored pages' info.

Scanning
void Scan_ Title(long PageID, Scan the entire token for possible title

CToken& token) and stored into database (TitleSet).

BOOL Scan_JavaScript(Detect existence of JavaScript.

CString tag)
BOOL Scan_ VBScript(CString tag) Detect existence of VBScript.

long Scan_Script(CToken &token, Scan for <SCRIPT>, </SCRIPT> tag,

int &nStart) and return the script language.

95

Univ
ers

ity
 of

 M
ala

ya

BOOL Scan_Acrobat(CString tag) Scan for adobe acrobat document.

BOOL Scan_ActiveX(CString tag) Scan for <OBJECT> with indicate this

page contains ActiveX control.

BOOL Scan_Other(CString tag) Scan for other document type, e.g.

Microsoft Word, Excel.

BOOL Scan_Flash(CString tag) Scan for existence of Macromedia Flash

Object.

BOOL Scan_PostScript(Scan for existence of Postscript

CString tag) Document.

BOOL Scan_Form(CString tag) Scan for existence of <FORM>.

BOOL Scan_Image(CString tag) Scan for Image.

BOOL Scan_Java(CString tag) Scan for Java Applet.

BOOL Scan_EXE(CString tag) Scan for Executable file.

BOOL Scan_MP3(CString tag) Scan for MP3.

BOOL Scan_Audio(CString tag) Scan for audio file.

BOOL Scan_RealMedia(Scan for Real Media.

CString tag)

BOOL Scan_ Video(CString tag) Scan for Video.

BOOL Scan_ZIP(CString tag) Scan for Compressed file.

void Scan_Page(CToken &token) Scan for the entire page.

Extracting
BOOL ReadPage(long PageID, Read the page into buffer.

CString &buffer)

void ExtractPage(long PageID) Extract the page info.

void Extract(int nCount = 1) Extracting process.

Other

96

Univ
ers

ity
 of

 M
ala

ya

void IndexPage(long PageID, Index the page, store all keyword of this

CToken& token) page into the recorset, Indexes.

void SetNextDownloaditem(Set next item to be download.

int nCount = 100)

97

Univ
ers

ity
 of

 M
ala

ya

The Main Process Loop

While

NO

NO

YES Add Next Download

Item

YES
Extract

Look for downloaded item which

not in queue, or lost

The thread continues running until the kill signaled.

Set Next Download Item
This function will select next item (specify by nCount) to be downloaded and

analysis. It takes 20°/o of nCount from the history recordset. When the user

visited the page, it'll record in the history recordset. Selecting the visited

item so that the information of most often visited page is atways up-to-date.

void HTMLExtractThread::setNextDownloaditem(int ncount)
{

try
{

98

Univ
ers

ity
 of

 M
ala

ya

int historycount = int(nCount * 0.2);

CHistorySet histSet(m_pdb);

histSet.m_strsort = "[Date_visited] DESC";

hi srset .open();

while (! histset.IsEOF() && historycount-- > O)
{

m_pSet->Find(histSet.m_Page_ID);
if (m_pdl->Add(m_pSet->m_Page_ID, 3))

ncount--;

histSet.MoveNext();
}

hi stset. close();

long LastID = m_pdl->GetLastDownloadPageID();

m_pSet->llLStrsort = "[Page_ID]";

if (! m_pSet->Goto(LastID))
{

m_pSet->MoveFirst();
}

m_pSet->llLStrSort .. ". = ,

while (! m_pSet->IsEOF() && nCount-- > O)
{

m_pdl->Add(m_pSet->11LPage_ID, 3);
m_pSet->MoveNext();

}

m_nTooownload = m_pdl->Count();

m_pSet->Close();
m.pd] ->Close();

99

Univ
ers

ity
 of

 M
ala

ya

} catch (CDBException *e)
{

e->ReportError();
e-c-ne l ete();

}
}

Extracting

This function get downloaded item from the download queue, and call to

ExtractPage() to perform extacting.
void HTMLExtractThread::Extract(int ncount)
{

1 ong 1 oadedID;

while (ncount-- > 0)
{

try
{

m_noownloaded = m_pdl->GetDownloadedFilecount();

if (m_noownloaded != 0)
{

loadedID = m_pdl->m_Page_ID;
m_pdl->Deleteoownload(loadedID);
ExtractPage(loadedID);

}

} catch (CDBException *e)
{

e->ReportError();
e->DeleteO;

}
}

}

void HTMLExtractThread::ExtractPage(long PageID)
{

100

Univ
ers

ity
 of

 M
ala

ya

CString buffer;
CToken token;
CHyperLinkSet hyperlink(m_pdb);
int i , j ;

if (ReadPage(PageID, buffer))
{

token.GenerateToken(buffer);

buffer = 1111; 11 Release buffer;
buffer.FreeExtra();

scan_Page(token);

scan_Title(PageID, token);

rndexPage(PageID, token);

J = hyperlink.GetHyperLink(PageID);

for (i = 0 ; i < j ; i ++)
{

ExtractPage(hyperlink.m_Link_Page);
hyperlink.MoveNext();

}
}

}

5.1.4.2 Re-Indexing Thread

The Extracting Thread just gets the keyword, and adds to database. Re
Indexing is needed to get related keyword, delete unwanted keyword (which
is too common that is not needed to be indexed).

101

Univ
ers

ity
 of

 M
ala

ya

The main process loop

While

YES Set Next Queue

Item index= 0

NO

Re-Indexing

void CReindexThread::Reindex(int ncount)
{

long currentID;

while (ncount-- > 0)
{

m_nQueued = m_pKey->GetQueued() - 1;
currentID = m_pKey->m_Keyword_ID;
m_pKey->SetindexedLevel(CurrentID, INDEX_REINDEXED);
updateindex(currentID);

}
}

void CReindexThread::updateindex(long KeyID)

{
crndexset indexset(m_pdb);
crndexset pagerndex(m_pdb);
CPageset pageset(m_pdb);
CLinkset linkset(m_pdb);

CToken token;

102

Univ
ers

ity
 of

 M
ala

ya

int tTLnPaged
int m_nTotalPage

= indexset.GetReferedPages(Keyro);
= pageSet.Count();

II If 50% of total page contain this keyword, discard
II this keyword for not indexed
if (tTLnTotalPage * 0.7 < m_nPaged)
{

m_pKey->SetindexedLevel(KeyID, INDE)(_NOTCARE);
indexset.DeleteKeyword(KeyID);
linkset.DeleteConnection(KeyID);

}

else
{

int currentID;

int tokenindex;

int nsample = 30;

while (!indexset.IsEOF() && nsample-- > o &&
token.Getsize() < 2000)

{
currentID = indexset.m_Page_ID;

pageindex.m_strFilter.Format("[Page_ro] = %ld",
currentID);

pageindex.m_strSort ="[counter] oesc";
pageindex.Open();

while (!pageindex.IsEOF())
{

tokenrndex =token.Find(pagerndex.rn._Keyword_ID
) ;

if (tokenrndex == -1)
{

token.AddToken(pageindex.m_Keyword_ro,
pageindex.m_counter);

103

Univ
ers

ity
 of

 M
ala

ya

}
else
{

token.GetAt(tokenindex)
>IncreaseCount(pageindex.m_counter);

}

pageindex.MoveNext();
}

pagerndex.Close();
indexset.MoveNext();

}

token.sortByCountDesc();

if (token.Getsize() > 100)
token.setsize(lOO);

waitForsingleobject(pNet->m_hEventoone, INFINITE};
pNet->DoTraining(&token, KeyID);

}
}

After re-index the keyword, the most related keyword is selected for the

training.

Desired Output = 95
Index

Related Keyword

For Example:

104

Univ
ers

ity
 of

 M
ala

ya

Page ID Keyword ID Counter

1 2 10

1 3 5

2 2 7

2 4 2

2 5 9

3 1 8

Let say the re-index target keyword's ID is 2.

On start re-indexing, page with ID 1 and 2 is selected. All keyword in page 1

and 2 is collected, counted, thus, keywords with ID 2, 3, 4, 5 is said related

with keyword with ID 2.

During the re-index process, if a keyword is found in 70°/o of the total page,

the keyword will mark with 'NOT _CARE' so that this keyword will remove

from the indexing recordset and not to select as related keyword. The rate

(700/o) shall be reduced when the total page increased.

To reduce the input signal, only the highest 100 related keyword is selected

for training.

S.1.4.3 Neural Net Training Thread

This thread receives order from the re-index thread. The re-index thread will

select the target keyword and it associated keyword, where target keyword

is treated as the output of the neural network, and the related keyword is

treated as the input signal.

105

Univ
ers

ity
 of

 M
ala

ya

Prepare for training

This function is called by the re-index thread. It used to prepare the thread

for another set of training.

void CNeuralNetThread::DoTraining(CToken *Input,
long outputID)

{

Wait for the last training to finish it Job, only a training set can be activated.

Anyway, to allow two training to run, two instance of CNeuralNetThread

object can be constructed.

waitForsingleobject(rn_hEventDone, INFINITE);

Create a new neural net object, a single layer neural net is required, thus,

setting the layer size to 2.

rn_net =new CNeuralNet();

rn_net->SetLayersize(2);

rn_net->SetLearningParam(0.001);

Since there're only two layers in the network, the input layer located at index

o, while the output layer located at index 1.

Now adding the only output into the output layer.

rn_net->AddOutput(OutputID);

ASSERT (Input I= NULL);

Loop thorough the input (the related keyword) and add into the input layer.

106

Univ
ers

ity
 of

 M
ala

ya

inti, j = Input->Getsize();
for (i = 0; i < j; i ++)
{

m_net->Addinput(Input->GetAt(i));
}

II create full connected network
m_net->Interconnect();

Notify this thread to start the training.

ResetEvent(m_hEventDone);
SetEvent(m_hEventStart);

}

Start Training

This function starts when the re-index thread built the network structure.

void CNeuralNetThread::StartTraining(int Loopcount)
{

if (m_net ==NULL)
return;

Restoring the connection (the weights) from the database, if no connection

was saved before, the weight is set to 0.

II Restore Connection
AddToMessage(m_pLog, "NeuralNetThread: Restoring

NeuralNet connection ... ");
m_net->Restoreconnection();

107

Univ
ers

ity
 of

 M
ala

ya

AddToMessage(m_pLog, "NeuralNetThread: Start
Training ... ") ;

Loop for the training procedure until output value equal to the desired

output. To avoid infinite loop, a LoopCount is assigned, if desired output

cannot be obtain, the training is give up.

while (m_net->Getoutputvalue(O) I= m_oesiredoutput
&& Loopcount-- > O)

{
m_net->Fire(); II Fire the entire network

II Set the desire output and calculate the error
m_net->Setoesiredoutput(O, m_Desiredoutput);

II Adjust the weights
m_net->Learn () ;

}

Delete previous connection. This is needed so that previous connection will

be removed. Some keyword may detect as 'NOT _CARE' during re-indexing.

Thus, if the keyword was training together with the same output before, will

remain in the database and affect the relevance analyzer.

AddToMessage(m_pLog, "NeuralNetThread: Delete
connection ... ");

m_net->Deleteconnection();

AddToMessage(m_pLog, "NeuralNetThread: Save
connection ... ") ;

m_net->Saveconnection();

if (m_net !=NULL)
{

m....net->Destroy();
delete m_net;
m_net =NULL;

108

Univ
ers

ity
 of

 M
ala

ya

}

Notify this thread that the training process is done, wait for another training

set to be prepared.

ResetEvent(m_hEventStart);
setEvent (m_hEventDone);

}

5.1.4.4 Relevance Analysis Thread

This thread will select those keywords, which were re-indexed. The indexed

keyword should have a trained set of related keyword in database.

void CRelevantThread::GetRelevant(long KeyID)

{
CLinkset linkset(m_pdb);

ctndexset indexset(m_pdb);
Cindexset pageindex(m_pdb);

int t , j;

Restore the network, targeted keyword (to analysis the relevance) act as the

output.

m_net. Destroy();
m_net.SetLayersize(2);
m_net.Addoutput(Keyro);

linkSet.GetLinked(KeyID);
if (!linkSet.IsEOF() I I !linkSet.IsBOF())

{
linkSet.MoveFirst();

109

Univ
ers

ity
 of

 M
ala

ya

while (!linkSet.IsEOF())
{

rn_net.Addinput(linkset.rn_Input);
linkset.MoveNext();

}

rn_net.Interconnect();

rn_net.Restoreconnection();
}

Select all pages that contain this keyword.

indexSet.rn_strFilter.Format("[Keyword_ID] = %ld",
KeyID);

i ndexset. open() ;
indexSet.rn_strFilter = "" . '
if (! indexSet.IsEOF() I I !indexset.IsBOF())
{

while (!indexset.IsEOF())
{

Get all indexed keyword of this page, the indexed keyword is act as the input

signal for the network.

pageindex.rn_strFilter.Format("[Page ID] = %ld",
indexset.rn_Page_ID);

pageindex.Open();
pageindex.rn_strFilter = "" . '
rn_net.Makeinputzero();

while (!pageindex.IsEOF())
{
i = pageindex.rn_Keyword_ro;
J = rn_net.Findinputindex(i);

110

Univ
ers

ity
 of

 M
ala

ya

if (j != -1)
{

rn_net.setinputvalue(j,
double(pageindex.rn_Counter));

}

pageindex.MoveNext();
}

Fire the network; get the output and store into database.

rn_net. Fi re();

pageindex.updateRelevant(indexSet.rn_Page_ID, KeyID,
BYTE(rn_net.Getoutputvalue(O)));

pageindex.close();
indexset.MoveNext();

}
}

Update searched count, index count and relevance.

csessionKeyset sessionKey(rn_pdb);
csessionNotSet sessionNot(rn_pdb);

sessionKey.rn_strFilter.Format("[Keyword_ID] = %ld",

KeyID);
sessionNot.rn_strFilter.Format("[Keyword_ID] = %ld",

KeyID);

int count= sessionKey.Count() + sessionNot.Count();

if (rn_pKey->Find(KeyID))
{

rn_pKey->Edi t();
rn_pKey->rn_IndexLevel = INDEX...RELEVANT;
rn_pKey->rn_Indexcount++;

111

Univ
ers

ity
 of

 M
ala

ya

m_pKey->m_Searchedcount =count;
m_pKey->Update();

}
}

112

Univ
ers

ity
 of

 M
ala

ya

Chapter VI: Evaluation and Conclusion
6.1 Relevance Analysis

6.2 Exhausting of Resource

6.3 Learning

6.4 Future Enhancement

• Extracting Info

• Protocol
• More Broader Use of Neural Network

• More Control

• Portability

• More Security

6.5 Object-Oriented Programming •

113

Univ
ers

ity
 of

 M
ala

ya

6.1 Relevance Analysis
The correctness of relevance obtain by the neural network is unknown.
There's no standard formula or method In calculating the relevance of a
keyword in a web page, since there's a lot of exception.

Most of the search engine, like AltaVista, WebTop, have replace the percent
of relevance with a simple bar chart (with 5 degree), or just simply remove
the percent of relevance from their engine.

6.2 Exhausting of Resource
The processes in the project required a lot of CPU time, hard disk space and
Internet connection. The system maybe unstable or experience time out for

other process.

6.3 Learning
With the ability to learn, the system will only need very few pre-installed
knowledge. In other words, the most needed pre-installed knowledge is the
main topic (1st level at classification of keyword).

Performance of the system improved when the system receive more input

from the environments.

6.4 Future Enhancement

6.4.1 Extracting Info
The extraction of information of a page is too simply. A better algorithm to
extract the information Is needed to obtain the Information of a web page.
Not all the HTML tag Is analyzed and processed in this project, all HTML tag

114

Univ
ers

ity
 of

 M
ala

ya

shall give some information about the web page, thus, and analysis of more

of the HTML tag is needed in the future.

6.4.2 Protocol
Currently, only the HTrP protocol is searchable, some plain text article might
accessible from the FTP protocol or the NEWS protocol. Many valuable
information stored in protocol other then the HTfP.

6.4.3 More Broader Use of Neural Network
Many parts in this project can apply with the neural network. For example,
to detect a keyword that is common in all domains. Currently, a keyword is
assume to be common if there's 70°/o of indexed page contain the keyword,

but this is not accurate.

6.4.4 More Control
There's only simply control of the processes in the software, which allow
user to select which thread to run or suspend. More flexible is needed, for
example, allow user to specified which folder to download the internet
documents, allow user to change the thread's priority, and allow more
instance of a thread to run at the same time (run 2 training set at a time).

6.4.S Portability
The final release of this software is less than lOOK while the debug version is
around 300K. To transfer the software to other PC is easy, just copy in on a
floppy disk and bring to other PC. Anyway, some step must be done before
the software can functional.

First, set up the ODBC to the data source.

115

Univ
ers

ity
 of

 M
ala

ya

Second, install the software that downloads HTML documents into local hard

disk at "C:\URL\" (which done by my team member, Cheah Hoong Seng).

The software can be run at Windows® 95, Windows® 98, Windows® NT

4.0 or Windows® 2000. The system should have MFC42.dll In order to run

the software.

6.4.6 More Security
The login info is stored without encryption in the registry. Anybody that
gained access at the server can open the registry and view the password.
An algorithm shall be built to encrypt the password.

The login dialog was temporary take off from the software, for easy
debugging, and not yet re-activated yet, thus, the login dialog need to re
activate on final release.

Anyway, the login info that saves in the registry is only accessible for the

following condition:

First, the server is unattended.
Second, the server is unlocked.
Third, the server is login as Administrator.
Fourth, the hacker/cracker look in the registry.

The login info (the registry) is not assessable using Remote Connection.

6.4.7 Object·Oriented Programming
The source code was written using OOP approach. Thus, It code Is reusable
and easy to debug.

116

Univ
ers

ity
 of

 M
ala

ya

Reference

Online Internet Reference:

[1] URL:
Title:
Date:
Description:

Articles
Title:

[2] URL:
Title:
Date:
Description:

[3] URL:

Title:
Description:

http://www.findarticles.com
-n/a-
Various
This is an online searchable database of articles in many
domains.
ENT Launch of SQL 7 .0 Server tests Microsoft. (Product
Announcement)
Online Web Search Engines (More) features &
command

http://www.kcpl.lib.mo.us/search/srchengines.htm
Introduction to Search Engine
August 23, 2000
This web site introduce about search engine, provide
various comparison of famous search engines like
AltaVista, Excite, Hotbot, etc ...

http://www.hotbot.com
http://hotbot.lycos.com/?MT=&SM=MC&DV=O&LG=any
&DC= 10&DE=2&act.super.x= 148&act.super.y=9
Hotbot, Hotbot Super Search
Search Engine, click to 'Advance Search' for more
details.

[4] URL: http://www.geocities.com/CapeCanaveral/ 1624/
Title: Neural Net At Your Fingers Tips
Description: Provide example of source code in C

Books
[5] Title:

Editor:
Publisher:

Page/Chapter:
Description:

Expert System, Design and Development
John Griffin
Macmillan Publishing Company, USA
54-55, Chapter 2
Type of knowledge

[6] lltle: Neural Networks, a Comprehensive Foundation
Author: Simon Haykln

117

Univ
ers

ity
 of

 M
ala

ya

Publisher: Prentice Hall International, Inc.
Chapter: Chapter 1: Introduction

Description: Introduction to Neural Network.

[7] Title: Student's Companion To KBSM English
Author: Noor Azlina Yunus

Publisher: Penerbit Fajar Bakti Sdn. Bhd.
Page: 16-17

Description: Rules for Forming Plural Nouns

Other's

[8] Help files from Microsoft® SQL Server 7.0, supported data types

[9] Other search engines, see appendix A.

118

Univ
ers

ity
 of

 M
ala

ya

Appendix:

A: List of Major Search Engines
Major Search Engines
http://www.alltheweb.com
http://www.altavista.com
http://www.dejanews.com
http://www.excite.com
http://magellan.excite.com
http://www.google.com
http://www.hotbot.com
http://www.infoseek.com
http://www.lycos.com
http://www.northernlight.com
http://www.topcllck.com
http://www.viola.com
http://www.webcrawler.com

Meta-crawlers
http://www.askjeveeves.com
http://www.dogpile.com
http://www.gohip.com
http://www.savvysearch.com/search
http://www. web-search .com
http://www.noimages.com
http://www.wiz.co.uk/search .asp

Searchable Directories
http://dmoz.org/
http://www.looksmart.com

119

Univ
ers

ity
 of

 M
ala

ya

http://www.netguide.com

http://www. netscape. net

http://www.yahoo.com

ISPs with search engines

http://www.aol.com/netfind/home.html

http://http://search.btinternet.com/

http://search.msn.com/

http://www.geocities.com

http://search.icq.com/

Search Engines in Malaysia

http://www.catcha.com.my

http://www.cari.com.my

120

Univ
ers

ity
 of

 M
ala

ya

B: Supported data type

Data Types

Bit

Int

smallint

tinyint

Description
(Byte)

Sizes

1/8

4

2

1

Microsoft:® SQL Server™ optimizes the

storage used for bit columns. If there are 8

or fewer bit columns in a table, the

columns are stored as 1 byte. If there are

from 9 to 16 bit columns, they are stored

as 2 bytes, and so on.

Integer (whole number) data from -21\31

(-2,147,483,648) through 21\31 - 1

(2,147,483,647).

Integer data from -21\15 (-32,768) through

21\15 - 1 (32,767). Storage size is 2 bytes.

Integer data from 0 through 255. Storage

size is 1 byte.

121

Univ
ers

ity
 of

 M
ala

ya

datetime

smalldatetime

char[n]

8

4

n

decimal, float, money,
N/A

smallmoney, etc.

Date and time data from January 1, 1900,

through June 6, 2079, with accuracy to the

minute.

Date and time data from January 1, 1753,

to December 31, 9999, to an accuracy of

one three-hundredth second, or 3.33

milliseconds.

Fixed-length non-Unicode character data

with length of n characters. n must be a

value from 1 through 8,000. Storage size is

n bytes.

Other supported data types, details not

listed here because these data type will not

used in database design. No floating

number is required in the project.

Table B.l: Data type [6] supported by MS SQL Server 7.0

122

Univ
ers

ity
 of

 M
ala

ya

