Blind Signature

Musfirah Mohd Ali WEKO020147

Supervisor : Mr. Yamani Idna Idris
Moderator: Mrs. Rafidah Md Noor



Abstract

In this thesis the author introduce a cryptographic construct called Blind Signature. This
thesis is enhanced from digital signature system. The aim for this project is to develop
reliable software which is capable to protect the data integrity and authenticity using
blind signature method. Blind signature allew user to digitally sign the document
without knowing the contents of the document. The signature has a blindness property,
so if the signer later sees a document he has signed he will not be able to determine
when or for whom he signed it.

The organization of this report is divided into five chapters. The first chapter is about the
objectives, motivations, scope and limitation of this project. Then, in order to construct
the blind signature system that used an appropriate kind of method, the author did a deep
research and comparison on the existing cryptography, programming languages,
algorithms and systems which are explained in chapter two of this project. Beside, the
author also used the software methodology model as a guidance to produce a report
smoothly and on time. The chosen methodology is explained in chapter 3. In chapter 4
of this project explained the system requirements which are functional and non-
functional requirements. This chapter also enlightened what kind of scheme that the
author chose for this system. Finally, the system design is developed. In this chapter 5
the overall architecture of the system, the data flow diagram and the system interface

prototype is presented.



Acknowledgement

First and foremost, I would like to thank my advisor En Yamani Idna Idris for his
invaluable source of help while conducting the research that eventually evolved into this
thesis. He helped the author to generate the idea and spent a considerable amount of time

making sure that the author had a deep understanding on the research.

Additionally, the author also would like to thank to anyone who had contributed directly

or indirectly during the progress of this project.



Abstract

Table of Contents

Acknowledgements
Table of Contents
List of Illustrations

Chapter 1:

1.1
1.2
1.3
1.4
1.5

Chapter 2:

2:1
2.2

2.3

24

25

2.6

2.7

2.8

Introduction

Aim

Problems and Motivation
Objectives

Project scope
Limitations

Literature Review
The Background of Cryptography
Cryptographic Primitives
2.2.1 Block Ciphers
2.2.2 Additives Stream Ciphers
2.2.3 Cryptographic Hash Functions
Secret Key Cryptography
2.3.1 Feistel Cipher Structure
2.3.2 Symmetric Encryption Algorithm
2.3.2.1 Data Encryption Standard
2.3.2.2 International Data Encryption Algorithm
2.3.2.3 Blowfish
Public Key Cryptography
2.4.1 Public Key Algorithm
2.4.1.1 Rivest, Shamir, Adleman (RSA)
2.4.1.2 Digital Signature Algorithm (DSA)
Hash Functions
2.5.1 One Way Hash Funtions
2.5.1.1 Secure Hash Algorithm (SHA-1)
2.5.1.2 Message Digest 5 (MDS5)
Overview of Blind Signature
2.6.1 Application on Online Voting
Blind Signature Scheme
2.7.1 Blinding the RSA Signature Scheme
2.7.1.1 Blind Signature Protocol
2.7.2 Blind Schnorr Digital Signature Scheme
2.7.2.1 The Original of Schnorr Signature Scheme
2.7.2.2 Blinding the Original of Schnorr Signature Scheme
Programming Language
2.8.1 Microsoft Visual C ++
2.8.2 Java
2.8.3 Visual Basic

i
iii
Vi

L LN — = —

iii



2.9

Chapter 3:

3.1
3.2

Chapter 4:

4.1

42
4.3

4.4
4.5

Chapter 5:

2l
52
5.3
54

Chapter 6:

6.1
6.2

6.3

System Review

2.9.1 Online Voting System (OVS)

2.9.2 RemoteVote

2.9.3 SafeGuardSign and Crypt

2.9.4 FileAssurity

2.9.5 Verisign Code Signing for Digital IDs
2.9.6 E-Lock Prosigner

Methodology
Waterfall Model

Information Gathering

System Analysis

System Requirements

4.1.2 Functional Requirements
4.1.2.1 The Signing Process
4.1.2.2 The Unblinding Process
4.1.2.3 The Verifying Process
4.1.2.4 Key Generator Module
4.1.2.5 About Module

4.1.2.6 User Identity Verification Module

4.1.3 Non Functional Requirements
Run Time Requirements
Cryptography

4.3.1 Encryption Algorithm

Hash Algorithm

Programming Language

System Design
System Architecture
Data Flow Diagram
Interface Design
Interface Flow Chart

System Implementation

Introduction

Development Environment

6.2.1 Hardware Tools

6.2.2 Software Tools

System Development Tools

6.3.1 User Interface Development

6.3.2 User Authentication Dialog
6.3.2.1 Log In Dialog
6.3.2.2 Error Message
6.3.2.3 Blind Key Input Dialog
6.3.2.4 Private Key Input Dialog
6.3.2.5 Veritying Key Input Dialog

45
46
48
50
51
2
33

58
58
60

62
62
62
62
64
65
67
67
67
67
68
68
69
70
72

73
73
73
75
78

81
81
81
81
82
82
82
83
83
83
84
84
85



6.3.2.6 Warning Message 86

6.3.3 Main Interfaces 87

6.3.3.1 Open/ Save File 89

6.3.3.2 Generate Key 90

6.3.3.3 Blinding Task 92

6.3.3.4 Signing Task 93

6.3.3.5 Verifying Task 94

6.3.3.6 Exit 95

6.3.2 Code Development 95

Chapter 7:  System Testing 108
7.1 Introduction 108

7.2  Type of Testing 108
Chapter 8 : System Evaluation 110
8.1 Introduction 110
8.2  System Strength 110

83 System Limitation 111

8.4 Recommendation for Future Enhancement 111

8.5  Problem Discussion and Solutions 112

References
Bibliography
Appendix



List of Illustrations
Figures:
Figure 2.1 Model of Symmetric Encryption
Figure 2.2 The Structure of the Feistel Cipher
Figure 2.3 The Single Iteration of DES Algorithm
Figure 2.4 The Process of Triple DES
Figure 2.5 Public Key Cryptography for Encryption
Figure 2.6 Public Key Cryptography for Authentication
Figure 2.7 Digital Signature Using RSA Approach
Figure 2.8 Digital Signature Using DSA Approach
Figure 2.9 (a) Message Authentication Using Conventional Encryption
Figure 2.9 (b) Message Authentication Using Public Key Encryption
Figure 2.9 (c) Message Authentication Using Secret Value
Figure 2.10 The processing of a Single 512- bit block
Figure 2.11 Message Digest Generation Using SHA-1
Figure 2.12 The Elementary SHA Operation
Figure 2.1.3 Circular Left Shift Rotation
Figure 2.14 The Signing Process
Figure 2.15 The verifying process
Figure 2.16 The Ballot of the Online Voting System(OVS)
Figure 2.17 The Administrative Side of Online Voting System (OVS)
Figure 3.1 The Waterfall Model
Figure 5.1 Overall System Architecture
Figure 5.2 Data Flow Diagram
Figure 5.3 The System Main Interface Prototype Design
Figure 5.4 Key Pop Up Menu Prototype Design
Figure 5.5 Signing Process Interface prototype Design
Figure 5.6 The Interface Flow Chart
Figure 6.1 Log In Dialog Box
Figure 6.2 Error Message
Figure 6.3 Blind Key Input Dialog
Figure 6.4 Signing Key Input Dialog
Figure 6.5 Verifying Key Input Dialog
Figure 6.6 Error Message Dialog Box ( Public Key and Private Key)
Figure 6.7 Error Message Dialog Box ( Multiple Value)
Figure 6.8 Error Message Dialog Box ( Random Key)
Figure 6.9 Error Message Invalid Signature
Figure 6.10 Informing Message Valid Signature
Figure 6.11 Main Interface
Figure 6.12 Open File Task
Figure 6.13 Save Task
Figure 6.14 Key Generator
Figure 6.15 Blinding Process
Figure 6.16 Signing Process
Figure 6.17 Verifying Process
Figure 6.18 Closing Program

12
14
16
17
20
20
22
24
26
26
27
28
29
31
32
38
39
46
48
60
73
74
76
Vit
78
80
83
83
84
85
85
86
86
86
87
87
88
89
90
91
92
93
94
95

Vi



Tables:

Table 2.1 Summarization of the Using Algorithm on the Existing System
Table 4.1 The Differences and Similarities between SHA-1 and MD5

Table 4.2 Performance of MDS5 and SHA-1 Algorithm on 850 MHz Celeron

56
70
71

vii



Chapter 1 Introduction

1.1 Aim

This thesis introduces the notion of blind signatures and provides a construction which
enables us to realize this notion. Blind signature is capable to protect the integrity and
authenticity of the data by enables the signer to sign the document without knowing the
contents. Therefore, through this research, the author should be competent to understand
and implement the knowledge of blind signature through the software that will be

develop at the end of this research.

1.2  Problem and Motivation

Computerized transactions of all kinds are becoming ever more pervasive, nowadays.
Because of this phenomenon, security is most important thing that simply to be done
since the amounts of money are involved in every task of the scheme. Therefore, there
should be a technique that can avoid the possibility of fraud during the transaction. As a
result, the first approach of this crisis which is digital signature is introduced.

Digital signature is the electronic analog of the traditional handwritten signature. This
scheme allowed the signer to sign the document using the private key and only parties
that have the signer’s public key can verify the document to proof that the document is
sent by the signer. Although this method is considered as a secured system, but it has no
privacy. This is because the parties whoever involved in this virtual communication
possibly will track where or what the purpose of the transaction that is being done.
Supposed that the purchased of goods using electronic cash is untraceable or the voting

is progress without revealing the identity of the voter.



As a consequence, blind signature scheme is proposed to make sure the transaction

between two parties is secure and untraceable to protect the individual’s privacy.

Thus, because of the insufficient of digital signature scheme, it motivates the author to

make a deep research on blind signature. Unlike the digital signature, blind signature

allowed the signer to sign the document without revealing the content.

1.3

Objectives

In order to have a deep understanding on blind signature, the objectives of this research

have been made as guidance to the author while producing a good report.

a)

b)

¢)

d)

Background research on blind signature

Preliminary study on what is exactly the blind signature and how they work
is done. Besides, the investigation on the existing encryption and
authentication method that being used in blind signature scheme is made to
make the understanding of blind signature as clear as possible.

Generation of the blind signature ideas

After a deep research on the existing method of encryption and authentication
method, the determination on what kind of method that the blind signature
should operate is decide.

Hardware and software investigation and comparison

The comparison of the performance on the existing hardware and software
should be made to help the author on deciding what the specification of
hardware and software that the blind signature system should operates.

Familiarize with the algorithms of hash function and encryption function



The research on the flow and the architecture of the algorithms of hash and
encryption function is totally completed to make sure the implementation of
the algorithms is successful.

€) Understanding of data flow in blind signature system
The flow of the system should be fully understood to make sure the progress
of the system work as the author anticipates.

) System design

The system was designed based on the data flow diagram.

1.4 Project Scope
Below are the scope of the blind signature system should operate:
¢ This system had basic features that blind signatures system required such as
blinding the document, unblinding the document, signing and verifying the
document.
e Only two parties can be involved each time a communication is being held.

e The system is developed based on the application of online transaction which

required the same level of security.

1.5 Limitations
While developing the blind signature system, a few limitations had been discovered

which are stated below:



Although the public key encryption is much secure than secret key encryption,
but the speed on using public key encryption is much slower than secret key
encryption.

Besides, anything changes in a signed document will affect the verification
process. System will fail to verify the signature although it caused by a
transmission error not the attempt to forge the signature.

If the third party finds out the private key and the random key, the possibility to
forge the signature or to reveal the content of the signature is high.

If unauthorized third party know how the exact calculation on producing the
individual’s private key by deriving it from public key, it is possible to the

attacker to reproduce a new private key.



Chapter 2  Literature Review

2.1 The background of Cryptography

'Cryptography existed since 4000 years ago and the usage of this method become more
vital day by day as a consequence to tremendous growth of internet. Thus, the
2crypta.na.lyst has struggles to bring up the new technique of cryptography that
significance to the rapid development on computer technology. Cryptography can
described as a complex mathematical technique of encoding a *plaintext to *ciphertext to
avoid any unauthorized parties to read or alter the text. Modern cryptography concerns
itself with the following four objectives:

1) Confidentiality - the information cannot be understood by anyone for whom it was

unintended

2) Integrity - the information cannot be altered in storage or transit between sender and

intended receiver without the alteration being detected.

3) Non-repudiation - the creator/sender of the information cannot deny at a later stage

his or her intentions in the creation or transmission of the information.

4) Authentication - the sender and receiver can confirm each others identity and the

origin/destination of the information.

! Cryptography is the art of concealing information using encryption [Eric Maiwald, 2000]
? An individual who use cryptanalysis to identify and use weaknesses in cryptographic algorithms.
;Eric Maiwald, 2000]

Plaintext is the original message or data that is fed into the algorithm as input [William Stallings, 2000]
4 Ciphertext is the scrambled message produced as output. It depends on the plaintext and the secret key.
For a given message, two different keys will produce two different ciphertext. [William Stallings, 2000]



[http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214431,00.html,

September 2004]

Below are a few techniques for transforming the plaintext to ciphertext:

a) Substitution

i) Polyalphabetic

Periodic

Non-Interrelated Alphabets

Interrelated Alphabets

Pseudorandom key

Non periodic

Non random key, random key

i) Polygraphic

Digrraphic, Algebraic

iii) Monoalphabetic

Standard, Mixed Alphabet, Homomorphic, Incomplete Mixed Alphabet,

Multiplex, Double



iv) Fractionating
Bifid, Trifid, Fractionated Morse, Morbit
b) Transposition

i) Geometrical — Rail fence, Route, Grille

ii) Colummar
Complete — Cadenus, Nihilist
Incomplete — Myskowski, Amsco

iii) Double — U.S Army Transposition Cipher

There are, in general, three types of modern cryptography algorithm which are secret
key (or symmetric) algorithms, public-key (or asymmetric) algorithms, and hash
functions algorithms. Besides, there are also three types of secret key cryptographic
primitives: additive stream cipher, cryptographic hash functions and block ciphers.
These six types of cryptographic will be explained through out this chapter. But the

author will concentrate on the modern cryptography.
2.2  Cryptographic Primitives

While developing any application (software), security is the most important thing that
needs to be done. Therefore, nowadays numerous applications use implementation of
cryptographic algorithm to provide a security that resistance against attacks and at a low

cost. Besides, the implementation of the algorithm also must not reduce the performance



of the application. One of the advantages of primitives cryptography is that it is usually
much faster than public-key cryptography. This is because primitives cryptography only
used a single key (secret key) to encrypt and decrypt the message. But the difficulty with
secret key cryptosystems is sharing a key between the sender and receiver without
anyone else compromising it. In a system supporting a large number of users the key
management problems can become very severe. Three types of cryptography primitives
are discussed in this section. Block ciphers are used to encrypt data. If block ciphers is
not fast enough, additive stream ciphers are used as an alternative. Besides, in order to

ensure the integrity of data cryptographic hash functions are used.

2.2.1 Block Ciphers

A block cipher is defined as a set of Boolean permutation operating on n-bit vectors.
This set contains a Boolean permutation for each value of a key. In other words, it
transforms a fixed-length block of plaintext into a block of ciphertext of the same length

by using a secret key. A block cipher usually consists of several operations which are:

o Electronic Codebook (ECB) mode is the simplest, most obvious application: the
secret key is used to encrypt the plaintext block to form a ciphertext block. Two
identical plaintext blocks, then, will always generate the same ciphertext block.
Although this is the most common mode of block ciphers, it is susceptible to a
variety of brute-force attacks.

o Cipher Block Chaining (CBC) mode adds a feedback mechanism to the

encryption scheme. In CBC, the plaintext is exclusively-ORed (XORed) with the



previous ciphertext block prior to encryption. In this mode, two identical blocks
of plaintext never encrypt to the same ciphertext.

e Cipher Feedback (CFB) mode is a block cipher implementation as a self-
synchronizing stream cipher. CFB mode allows data to be encrypted in units
smaller than the block size, which might be useful in some applications such as
encrypting

e interactive terminal input. If we were using 1-byte CFB mode, for example, each
incoming character is placed into a shift register the same size as the block,
encrypted, and the block transmitted. At the receiving side, the ciphertext is
decrypted and the extra bits in the block (i.e., everything above and beyond the
one byte) are discarded.

¢ Output Feedback (OFB) mode is a block cipher implementation conceptually
similar to a synchronous stream cipher. OFB prevents the same plaintext block
from generating the same ciphertext block by using an internal feedback
mechanism that is independent of both the plaintext and ciphertext bitstreams.

[http://www.garykessler.net/library/crypto.html#fig01, September 2004]

To allow efficient implementation, block ciphers apply the same Boolean transformation
several times on a plaintext. Most good block ciphers transform the secret key into a
number of sub keys and the data is encrypted by a process that has several rounds

(iterations) each round using a different sub key. The set of sub keys is known as the



key schedule. Block cipher can also be used to construct other primitives such as hash

functions, and "MACs.

2.2.2 Additive stream ciphers

Stream ciphers encrypt individual characters, which are usually bits, of a plaintext one at
a time. Stream ciphers are typically much faster than block ciphers that generate a key
stream (a sequence of bits or bytes used as a key). The plaintext is combined with the
key stream, usually with the XOR operation. There are two techniques of stream ciphers
which are Synchronous stream ciphers and Asynchronous stream ciphers. Synchronous
stream ciphers generate a keystream independently of the plaintext message and of the
ciphertext. Sender and receiver must synchronized; the must use the same key and
operate at the same state within that key. Asynchronous stream ciphers is a stream
ciphers in which the keystream is generated as a function of the key and a fixed number

of previous ciphertext bits.

2.2.3 Cryptographic Hash Functions

Cryptographic hash functions compressed an input of arbitrary length to an output of

fixed length which is called the hash value. They satisfy the following properties:

e Preimage resistance: For any given code h, it is computationally infeasible to
find x such that H(x) = h.
e Collision resistance: For any given block x, it is computationally infeasible to

find y # x with H(y) = H(x).

’ Message authentication code is a small block of data generated by a secret key, which will the be
appended to the message.

10



e 2" preimage resistance: It is computationally infeasible to find any pair (x.y)
such that H(x) = H(y).

e H can be applied to a block of data of any size

e H produces a fixed-length output.

e H(x) is relatively easy to compute for any given x, making both hardware and

software implementation practical. [ William Stallings, 2000]
2.3 Secret key Cryptography

Secret key cryptography is also called secret key or symmetric encryption is a method
that used a single key to encrypt and decrypt the text. As shown in figure 2.1, suppose
that A want to send a confidential message (P) to B. A first need to encrypt the message

by using a single key (K) and encryption function (E). Then, the resulting ciphertext,

C= Ex (P) is send to B. B then need to decrypt the message by using the same key and

the decrypt function. The key here is produced by the third party who is the key

distribution centre (KDC) and during distribution of the key; it must be secured in terms

of confidentiality, integrity and authenticity. Symmetric key cryptography has several

weaknesses:

= Key distribution is a major problem. Parties must have a secure method of
exchanging the secret key before establishing communications with the symmetric
key protocol. If a secure electronic channel is not available, an offline key

distribution method must often be used.

11



» Symmetric key cryptography does not implement nonrepudiation. Because any
communicating party can encrypt and decrypt messages with the shared secret key,
there is no way to tell where a given message originated.

» The algorithm is not scalable. It is extremely difficult for large groups to
communicate using symmetric key cryptography. Secure private communication
between individuals in the group could be achieved only if each possible
combination of users shared a private key.

» Keys must be regenerated often. Each time a participant leaves the group, all keys
that involved that participant must be discarded.

[Ed Tittel, Mike Chapple and James Michael Stewart, 2003]

.,""\

N Key distribution center (KDC)

P C =ExP) P

Plaintext Ciphertext P!aimex?

A B

Figure 2.1 Model of Symmetric Encryption.

2.3.1 Feistel Cipher Structure

Fiestel cipher structure is one of the modern block ciphers which are devised by Host
Fiestel of IBM on 1973. Feistel ciphers are a special class of iterated block ciphers
where the ciphertext is calculated from the plaintext by repeated application of the same

transformation or round function. There are two main things that to be considered:

12



e Fast software encryption or decryption- encryption that is embedded in
applications or utility functions in order to avoid a hardware implementation will
knock down a speed execution.

e Ease of analysis- Cryptanalytic vulnerabilities will be discovered easier if an
algorithm can be explained concisely. Therefore, a higher level of assurance as to

increase an algorithm’s strength can be developed. [ William Stallings, 2000]

The structure of the fiestel cipher is showed in figure 2.2. This modern block cipher is
usually based on two different types of designs. The plaintext is split into a rightmost w-
bits (R) and a leftmost w-bits (L). These two blocks is processed through a few rounds ».
Then, round-i (Li and Ri#) will be the input for round-i+1, as well as subkeys, Ki+1. A
substitution is performed on the L data by applying a round function F to the R data and
then taking the XOR of the output of that function and the L data. The F function is
parameterized by the round subkey Ki. After the substitution, a permutation is
performed (interchange between L and R data). As a result, this architecture only
depends on the design of block size, key size, number of rounds, subkey generation

algorithm and round function.

13



Plaintext (2w bits)

LO w bits r bits RO Subkey
Round 1 generation
algorithm
R1
L1
Ki
Round i XOR F |
Ri
Li l y
XOR [« F
Round n
Ln Rn
L ntl Rn+ 1

v
Cinhertext (2w bits)

Figure 2.2 The structure of the fiestel cipher

14



2.3.2 Symmetric Encryption Algorithm

2.3.2.1 Data Encryption Standard (DES)

Data Encryption Standard that was developed by IBM on 1977 is a method to encrypt
and decrypt the data by using a single key. DES applies 56-bits of a key to each 64-bits
block of data. Then it will process in several modes and involves in 16 rounds of
encryption. Each round uses ®permutation and "substitution operations, and each uses a
different 48-bit subkey that was generated from the original 56-bit key. Figure 2.3 shows
a single iteration of DES algorithm. [William Stallings, 2000]. Based of the figure, 64-
bits block of data (permutated input) is divided into two portions, which are called
leftmost (L) and rightmost (R). Each of the iterations will process the permuted input by

applying the processing function that can be concluded as below:
Li=Ri.,
Ri=Li.; XOR F(Ri.1,Kj)

The 56-bits key is also divided into two parts which are 28 bits for Cy and another 28
bits for Dy. Then both of these parts will go through a circular left shift or rotation of 1
or 2 bits, during each of the iteration. The result of this process which is 48 bits output,
then will be the input of the of the permutation function, F(R;.;,K;). Function F involves
both permutation and substitutions operations. The substitution boxes is represented as

S-boxes which will maps each combination of 48 input bits into 32 bits pattern.

¢ Permutation is an operation that jumbles up the bits in a block into new positions. [Mohan Atreya,
2003]

7 Substitution is an operation that substitutes a new group of bits for each group of bits output by an initial
permutation. [Mohan Atreya, 2003]

15



Although DES is a very secure algorithm a few years back, but DES is not widely
implemented nowadays because DES can be easily break with the help of advance
technology that available today. Therefore, Triple Data Encryption Standard (3DES) is
introduced. With Triple DES, it can increase the length of the key through the process
which called encrypt-decrypt-encrypt. Figure 2.4 shows that the process of Triple DES.

[Suranjan Choudhury, Kartik Bhatnagar, Wasim Haque and NIIT, 2002]

L., (32-bits) R, (32-bits) C;., (28-bits) D, (28-bits)

i Left shift (s)
Expansion/Permutation Left Shift (s)

(E table)

Permutation / contraction
XOR (permuted choice 2)

Substitution/Choice
(S-box)

4

Permutation(P)

|~

]

Ri Ci Di

Figure 2.3: The single iteration of DES algorithm

16



Key 1 Key 2 Key 3

Plaintext v v WV Ciphertext

I x|Jl IL i #9%S"

it #%S*

DESf'H fyption N"l\rr ation I\Hlmr\,;nu
Figure 2.4: The process of Triple DES

Based on the figure, it first encrypts the plaintext using 56-bits key. Then, the
ciphertext is decrypted by using a different key. During the decryption it will produce
some garbage. Finally, the garbage is encrypted by using the first key. This algorithm is

three times slower than DES but it can be much more secure if it used properly.
2.3.2.2 International Data Encryption Algorithm (IDEA)

International Data Encryption Algorithm is developed by James Massey and Xuejia Lai
which is patented for Swiss ETH University. This algorithm is considered as a secured
algorithm because it used 128-bits key length longer than DES and Triple DES
algorithm. It runs eight operations on each block and each round involves three different
operations; XOR, addition and multiplication. In addition, the subkey generation
algorithm uses circular shifts in a complex way as to generate a total of 6 subkeys for
each round. Nevertheless, this algorithm is not popular as DES and Triple DES
algorithm because firstly, IDEA is slower than DES but is faster from Triple DES
algorithm. Secondly, it cannot be commercially without license and finally, it has not

been declared as a federal standard.

17



2.3.2.3 Blowfish

Blowfish is designed by Bruce Schneier in 1993 as another alternative to DES and IDEA
algorithm. It takes a variable length key ranging from a relatively insecure 32 bits to an
extremely strong 448 bits. Obviously, the longer key will affect the time of decryption or
encryption. However, time trials proof that blowfish algorithm is faster than both DES
and IDEA algorithm. The most important element in Blowfish algorithm is Fiestel
network. Fiestel uses dynamic S-boxes, which generated as a function of the key, and
XOR function and binary addition. It will process in several modes and involves in 16
rounds of encryption. Each round uses permutation and substitution operations, and each
uses a different subkey that was generated from the original key. A total of 521
executions of the blowfish encryption algorithm are required to produce the subkeys and
S-boxes. Blowfish algorithm is unpatented and license-free, and is available free for all

uses.
2.4 Public Key Cryptography

Public key cryptography is also called public key or asymmetric encryption is another
method of cryptography that is totally different from secret key cryptography. Public key
cryptography is developed by Whitfield Diffie and Martin Hellman in 1976 as
conjunction with insecurity of secret key algorithm. As we can see in secret key
algorithm, both the sender and the receiver need to agree on the secret key without
anyone else finding out. However, opposite with secret key algorithm, public key
algorithm allowed both sender and receiver have two different keys. Once the sender

want to send the message to the intended receiver, the sender will encrypt the message

18



using a public key and the receiver will decrypt the message using a private key which is
in the sole possession of the intended recipient. With this system, the private key is kept
secret whereas the public key can be given to anyone. A user can has their own key pair
generator by using good software in order to get full control over the security of their
private key. Furthermore, public-key cryptography can be used not only for encryption,
but also for authentication (digital signatures). Although the public key cryptography is
much more secure but it is slower than secret key cryptography. The asymmetric key set
has the following unique characteristics:

e The relationship between the private and public key is such that any
cryptographic operation that is performed using one key can only be reversed by
the other. Thus a message encrypted using the public key component of the
asymmetric key-pair can only be decrypted by the private key of the very same

key-pair.

e Unlike symmetric key cryptography, this technique does not require that the
sender or receiver exchange any secret information as part of the transaction.

[Nadir Gulzar and Kartik Ganeshan, 2003]

Figure 2.5 and 2.6 below shows the application of public key encryption which are

message encryption and message authentication.

19



Bobs's
public key
ring

oy Ted i
Mike Alice
Alice's public Alice 's private
key key

Transmitted

@ ciphertext > @

ik
i

2 5 . Plaintext
' l.aj"“;'“ Encryption algorithm Decry ption algorithm output
e (e.g.. RSA) (reverse of encryption
algorithm)

Figure 2.5 Public Key Cryptography for Encryption

? -1 Ted
Bob

Boh's private Bob's public
key key

Transmitted

@ ciphertext > @

Plaintext

- p . ) Plaintext
toned Encryption algorithm Decryption algorithm atiat
P (e.g., RSA) (reverse of encryption P
algorithm)

Figure 2.6 Public Key Cryptography for Authentication
There are several conditions had been laid out that the public key encryption algorithm

must fulfill:

1. It is computationally easy for a party B to generate a pair (public key KUb,

private KRb).

20



2. It is computationally easy for e sender A, knowing the public key and the
message to be encrypted, M to generate the corresponding ciphertext:
C=EKUb(M)
3. It is computationally easy for a receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:
M=DKRb(C)=DKRb[EKUb(M)]
4. Tt is computationally infeasible for an opponent, knowing the public key, KUb,
to determine the private key, KRb
5. It is computationally infeasible for an opponent, knowing the public key, KUb,
and a ciphertext, C, to recover the original message, M.
6. Either of the two related keys can be used for encryption, with the other used for
decryption.
[William Stallings, 2000]
2.4.1 Public Key Algorithm
2.4.1.1 Rivest, Shamir, Adleman (RSA)
RSA is developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. RSA is an
internet encryption authentication system that uses an algorithm. Moreover, RSA is a
block cipher in which the plaintext and ciphertext are integers between 0 and n-/ for
some n. [William Stallings, 2000]. Briefly, RSA algorithm involves multiplying two
large *prime’s number and then a set of two numbers that constitutes the public key and

another set that is the private key are derived.

¥ A prime number is a number divisible only by that number and 1.

21



Let n= pq where p and g are two large primes and let e be chosen such that (e, ® (n)) = 1
and @ (n) = (p-1) (g-1). Moreover let d be such that de = 1 mod ® (n). Assume that the
signer‘s public key is (n,e) and the private key is (p,g,d) and finally let H be the collision
resistant hash function.
For given a message m, is a valid RSA signature if:

C = H(m)e mod n
And the signature is easily verified by using a private key:

M = H(m)d mod n
It is simply to verify that the signature is valid or not by comparing the equality of these
two M and m. Figure 2.7 shows the overall process of generating digital signature using

RSA.

Sender: Receiver:

M ﬁ‘/”\ M H l

KRa

/ / | ’ Compare
" : Ekra [HM)] D __T

/

KUg

H- Hash KRa — Private key
E- Encrypt  KUa — Public key
| |- Append
D- Decrypt

Figure 2.7 Digital Signature using RSA Approach

22



2.4.1.2 Digital Signature Algorithm (DSA)
Digital Signature Algorithm is public key system for generating digital signature that
was designed in 1994 and the used of DSA for digital signature was specified under
Digital Signature Standard that is NIST standard (FP186). DSA has a more complex
architecture and it provides solely the function of digital signature.
Let p be a prime number where 2L-1<p<2L for 512<=L<=1024 and L is a multiple of 64.
Moreover, let g be a prime divisor of (p-1), where 2159<¢<2160. Then, let g = & (p-1)/g
mod p, where 4 is any integer with 1<h< (p-1) such that 4 (p-1)/g mod p>1.
Assume that x is a user’s public key where x is random or pseudorandom integer with
0<x<q and y is a user’s private key where y = gx mod p.
Besides, let K be a user’s per message secret number where K is a random or
pseudorandom integer with 0<K<gq.
The signature (r, s) is done by using:

r = (gx mod p) mod ¢

s = [K-1 (H(M) + xr)lmod ¢
The signature is verified by using:
w =(s’)-1 mod ¢
Ul=[HM’) w] mod ¢
U2=(r’) wmod ¢
v =[(gul y u2) mod p] mod ¢
TEST: v=r’,

where M is a message to be signed, H(M) is a collision resistant hash function and M’,
r’, s’ is a received version of M, r, s. Figure 2.9 shows the overall process of generating

digital signature using DSA.

23



Sender:

Receiver:

M

H- Hash KRa — Private key
E- Encrypt  KUa — Public key
| |- Append
D- Decrypt

Figure 2.8 Digital Signature using DSA approach

2.5 Hash Functions

M

A

Ver —l
/ T Compare

KUs KU, I

A hash function is a function that transforms a variable size input into an output which is

a fixed size string where it is called the hash value. The basic requirements for a

cryptographic hash function are:

e The input can be of any length,

e The output has a fixed length,

e H(x) is relatively easy to compute for any given x ,

e H(x) is one-way,

H(x) is collision-free.

[http://www.x5.net/fags/crypto/q94.html, 17 September 2004]

24



Hashing algorithm is used in message authentication. The two important aspects in

message authentication are to verify that the contents of the message have not been

altered and that the source is authentic. Message authentication does not rely on

encryption. In all of the hashing algorithms, an authentication tag is generated and

appended to each message for transmission. Thus, the message itself is not encrypted

and can be read at the destination independent of the authentication at the destination. In

this context, message confidentiality is not provided. Therefore, message authentication

without confidentiality is preferable in some conditions:

There are a number of applications in which the same message is broadcast to
number of destinations (for example, notification to users that the network is
now unavailable). It is cheaper and more reliable to have only one destination
responsible for monitoring authentication. Thus, the message must be broadcast
in plaintext with an associated message authentication tag. The responsible
system performs authentication. If a violation occurs, the other destination
system are alerted by a general alarm

An exchange in which one side has a heavy load and cannot afford the time to
decrypt all incoming messages. Authentication is carried out on a selective
basis, and messages are chosen at random for checking.

Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having decrypt it every time
authentication tag were attached to the program, it could be checked whenever

assurance is required of the integrity of the program. [William Stallings, 2000]

25



2.5.1 One Way Hash Function

One way hash functions is a mathematical function which takes a variable-length input
string and converts it into a fixed-length binary sequence and it is designed in such a
way that is hard to reverse the process. In message authentication, the message is sent
along with message digest (hash value). There are three ways in which the message can
be authenticated. Figure 2.9 (a) shows the message digest can be encrypted using
conventional encryption, Figure 2.9 (b) shows the message digest can also be encrypted
using public key encryption and Figure 2.9 (c) shows encryption is done using secret

value.

5 g 5
= o)
-
Z =% ®
= p= =
K Compare

(a) Using conventional encryption

Message

T i

Message

Compare

l\'public

(b) Using public-key encryption
Figure 2.9 (a) and 2.9 (b) Message Authentication using Conventional and Public

Key Encryption

26



7 7S %

7 il B 3

g R T L

<. -, -
S

Compare

B

Figure 2.9 (c) Message Authentication using Secret Value

(¢) Using secret value

2.5.1.1 Secure Hash Algorithm ( SHA-1)

The Secure Hash Algorithm (SHA), the algorithm specified in the secure hash
standard (SHS, FIPS 180), was developed by the National Institute of Standard
and Technology (NIST). SHA-1 is a revision to SHA that was published in 1994.

[http://www.rsasecurity.com/rsalabs/node.asp?id=2252, 17 September 2004].

The algorithm takes a message of less than 2”64 bits in length and produces a 160
bits message digest. The message digest can be the input of signature algorithm
which generates or verifies the signature for the message. Signing the message
digest rather than the message often improves the efficiency of the process

because the message digest is usually much smaller in size than the message.

SHA-1 algorithm process message in 512-bit (16 word) blocks with compression
function, that consists of 4 rounds of processing of 20 steps each. Each round uses

different primitive logical function, f as shown in figure. Each round takes as

27



input the current 512-bit block being processed (Yq) and value in buffer and
updates the contents of the buffer. Each subsequence round will make use of an
additive constant Kt as shown in table respectively. The output of the final round
will be added to the input to the first round. Figure 3 show the processing of a

single 512-bit block and Figure 3.1 show message digest generation using SHA-1.

-

)
0
-

o

N
»

fu K. W40.59)
___20 steps

bl )

o K. W[60..79)
20 steps

l
LLLLS
l

~ ' Qel

Figure 2.10 The processing of a single 512-bit block

28



Padding Message length

i1 to £12 bits) (K mod 2%
- L % 812 bits = Nx 32 bity >
B K bits
Message 100..0
——512 bits——fppeaf——512 bits—p 512 bits—p A—512 bits—p»
LI ‘,L-l

Figure 2.11 Message Digest generation using SHA-1.

Definition of bit string and integers:

A hex digit is an element of the set {0, 1, ... , 9, A, ..., F}. A hex digit is the
representation of a 4-bit string.

A word equals a 32-bit string which may be represented as a sequence of 8 hex
digits. To convert a word to 8 hex digits each 4-bit string is converted to its hex
equivalent.

An integer between 0 and 2732 - 1 inclusive may be represented as a word. The
least significant four bits of the integer are represented by the right-most hex
digit of the word representation.

Block = 512-bit string.

29



The pre processing stage of SHA-1:

e "1"is appended at the end of the original message.

e "0"s are appended. The number of "0"s will depend on the original length of the
message. The last 64 bits of the last 512-bit block are reserved for the length of
the original message.

Function and constant used:

e Initialize a 160 bit MD buffer (Hi) which is used to hold intermediate and final
results of the hash function (message digest). A, B, C, D, E are 32 bit register
represent the buffer.

1. HO = 67452301

2. H1 = EFCDAB89
3. H2 =98BADCFE
4. H3 = 10325476
5. H4 = C3D2E1F0

e A sequence of logical functions f(0), f(1)...., f(79) is used in SHA-1. Each f{t), 0
<=t <= 79, operates on three 32-bit words B, C, D and produces a 32-bit word as
output. f(t;B,C,D) is defined as follows: for words B, C, D,

1. f(t;B,C,D) = (B AND C) OR (NOT B) AND D) (0<=t<=19)
2. f(t;B,C,D) =B XOR C XOR D (20 <=t <=139)
3. f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <=t <= 59)

4. f(t;B,C,D) =B XOR C XOR D (60 <=t<=179).

30



e A sequence of constant words K(0), K(1), ... , K(79) is used in the SHA-1. In
hex these are given by:
1. K(t) = 5A827999 0<=t<=19)
2. K(t) = 6ED9EBAI (20 <=t <=39)
3. K(t) = 8F1IBBCDC (40 <=t<=59)
4. K(t) = CA62C1D6 (60 <=t<=179)
Computing the message digest.
As mentioned above, the words of the first 5-word buffer are labeled A, B, C, D, E, the
words of the second 5-word buffer are labeled HO, H1, H2, H3, H4, the words of the 80-
word sequence are labeled f(0), f(1),..., f(79) and the 16-words blocks W(1),
W(2),...W(15) now is processed. Figure 3.2 show the elementary SHA operation. Each

round will perform:

A B C D E
L :
S7S
+
b
SA30 +
y

Figure 2.12 The elementary SHA operation

31



e A,B,C,D,E<-(C+Al(t,B, C,D)+ S"5(A) + Wt +Kt), A, S*30 (B), C,D
o A<-(C+f(t,B,C,D)+ 8" (A)+ Wt+Kt
e B<-A
e C<-S"30(B)
e D<-C
e E<D
Fort=0to 79,
TEMP = S§”5 (A) + ft(B, C, D) + E + Wt + Kt
E=D,D=C,C=58"30(B), B=A, A=TEMP
Fort=16to 79 let Wt = S*1 ( Wt-3, XOR Wt-8 XOR Wt-14 XOR Wt-16)
Let A=HO,B=H1,C=H2,D=H3,E=H4
Let HO=HO0+ A
H1=H1+B
H2=H2+C
H3=H3+D
H4=H4 +E

S~K = circular left shift rotation of the 32 bit argument by K bits.

Figure 2.13 Circular left shift rotation

32



2.5.1.2 Message Digest 5

MDS5 is a message digest algorithm developed by Rivest that meant for a digital

(3

signature application where large message has to ‘ compressed’ in a secure manner
before being signed with the private key. This algorithm take a message of arbitrary
length and produce 128 bit message digest. It guessed that the difficulty of coming up
with two messages having the same messages digest is on the order of 2764 operations,
and that the difficulty coming up with any message having a given message digest is on
the order of 2128 operations. The algorithm consists of four distinct rounds, which has
a slightly different design from that of MD4, and message digest size, as well as padding
requirements, remains the same with SHA-1. Den Boer and Bosselaers have found
pseudo-collisions for MD5. More recent work by Dobbertin has extended the techniques
used so effectively in the analysis of MD4 to find collisions for the compression
function of MD5. While stopping short of providing collisions for the hash function in
its entirety this is clearly a significant step. The MDS5 is differed from MD4 are:
e A fourth round has been added
e Each step now has a unique additive constant.
e The function g in round 2 was changed from (XY v XZ v YZ) to ( XZ v Y not
(Z)) to make g less symmetric.
e Each step now adds in the result of the previous step. The promotes a faster
“avalanche effect”.
e The order in which input words are accessed in rounds 2 and 3 is changed, to

make these patterns less like each other.

33



e The shift amounts in each round have been approximately optimized, to yield a
faster “avalanche effect”. The shifts in different rounds are distinct.
[William Stallings, 2003]

2.6  Overview of Blind Signature

Digital signature scheme that proposed by Whitfield Diffie in 1976 that enable people to
digitally sign the document during any online transaction to guarantee that the
individual sending the message really is who he or she claims to be. This scheme used
the cryptography concept where the sender and the receiver need to have a private key
and public key to sign and verify the message. Supposed that, the sender who wants to
send the message will sign the message using sender’s private key and the receiver will
verify the message by the sender’s public key to make sure the message is utterly from
the one who he or she claims to be. This scenario can be described as Alice who wants
to pay for a purchase at Bob’s shop using her ‘digital coin’. In this case ‘digital coin’ is
signed by the bank which using bank’s private key. When she pays the purchased to
Bob, he will verify the ‘digital coin’ by using bank’s public key as consequences to
proof that the coin is valid. Bob then send the ‘digital coin’ to the bank and the bank will
reverify the ‘digital coin’ to make sure the coin is signed by the bank and belong to
Alice. After that, the bank will credit the money to Bob. The bank also will send the slip
as a proof that Alice had used the ‘digital coin’. So, as we can see here, this approach
provides security for all three parties Alice, Bob and the bank. Bob cannot issue that it
did not receive the payment; the bank cannot deny that it had credit to Bob, and Alice
can neither deny that she had spent the “digital coin’ to Bob nor spend the ‘digital coin’

twice.

34



As a conclusion, we can say that the money transaction using digital signature here is
secured but it has no privacy. This is because the bank possibility will determine
precisely where and when Alice spends her money. Therefore, to enhance this scheme
become more reliable blind signature scheme is introduced.

Blind signature approached is introduced by David Chaum that enable people to
digitally sign the message without knowing the contents of the message. In other words,
the signer did not know when and for whom it signed even though it can verify that
signature is indeed valid. According to the first example, supposed that the bank will
know the two parties that involved in the transaction and for what purposed the
transaction is done. But by using blind signature scheme, the bank would not know what
is going on between this two parties and when the event is occurred. Hence, in this
scenario Alice who is a spender is retained anonymity in the transaction. The bank will
sign the ‘digital coin’ blindly without knowing to whom the coin is belonged and spent
but the bank can verify the coin to admit that the coin is indeed valid. As a result, the
event that existed between Alice and Bob is secured and untraceable. At first, when this
scheme is introduced many people felt hesitate because how can to sign a document
without knowing the content of the document. However, after a deep research is made to
this scheme, this approached is utterly accepted. Therefore, here the author will explain
in detail how the blind signature scheme work by enlighten through the application of
the blind signature scheme. One of the applications that totally used this approached is

application to online voting.

35



2.6.1 Application to Online Voting

There are two parties that involved in online voting system. Which are the voter and the
voting checker. When we talk about manual voting system there are two restrictions that
we have to consider which are the individual vote is undisclosed to other peoples
including the voting checker who is responsible to count the ballot and only once voting
is permitted to one person. Therefore, if we want to implement the online voting we
must used the blind signature scheme that able to solve these two restrictions. In this
scenario we describe Alice is a voter and the other party is Voting Checker Facility. The
voting protocol is divided into two phases. First is the registration phase and the second
is the voting phase.
a) Registration Phase
Alice will create two ballots which are one for ‘yes’ and another one for ‘no’. We
assume that the votes are in the form of ‘yes’ or ‘no’. Both of these ballots consist of
the serial number to avoid the people voting more than once and other relevant
information about the voter. She then will blindly signed these two ballots and send
them to Voting Checker Facility. The Voting Checker Facility will check the serial
number in their database to make sure that Alice did not vote before. Then, the
Voting Checker Facility will blindly signed the two ballots and send back to Alice.
b) Voting Phase
After receiving her ballots from the Voting Checker Facility, she then unblinds the
ballots. She now has two set valid ballots signed by the Voting Checker Facility. Alice
picks either ‘yes’ or ‘no’ ballots. The selected ballot will encrypt using Voting Checker

Facility’s public key. Then, she sends in the vote. The Voting Checker Facility decrypts

36



the ballot, check the database to make sure that Alice did not vote before. Finally, Alice
vote has counted and the serial number is record to it’s database.

Figure 3.4 and the figure 3.5 below shows the process of signing the blinded document
at the sender side and the process of verifying the signature at the receiver side. To
blindly sign the document, the document itself must be blinded. The hash of the
document must be created first. Then, the hash document will be blind. After that, the
blinded hash is encrypted using private key. The encrypted hash is blind signature. The
document now is ready to send. The receiver will receive it and verify the signature

whether it is indeed valid or not by using the public key.

37



Sender:

Plain Text
Hashing Algorithm
Hash
Y
Blinding Sender’s private key
Process
‘ l
Asymmetric Algorithm
Blind Digital signature

Transmission

Plain text + Blind digital signature

Figure 2.14 Signing process: Sender

Receiver

38




Receiver:

Transmission received
Plain text + blind digital signature

Sender’s public key Blind digital signature

Extract the signature

A

Original hash

Compare

New Hash

A

Same hashing Algorithm

) 4

Receiver

Figure 2.15 Verifying process : Receiver
2.7  Blind Signature Scheme
2.7.1 Blinding the RSA Signature Scheme
An interesting variant on the basic digital signature is blind signature. As mentioned
before blind signature is a method to enable spender remained anonymous in Electronic
Transaction. Such signature requires that a signer be able to sign a document without

knowing it contents but when the signer is able to see the document, he should not be

39



able to determine when and for whom he signed it even though he can verify that the
signature is indeed valid.
Let n= pq where p and g are two large primes and let e be chosen such that (e, ® (n)) = 1
and @ (n) = (p-1) (g-1). Moreover let d be such that de = 1 mod @ (n). Assume that the
signer‘s public key is (n,e) and the private key is (p,q,d) and finally let / be the collision
resistant hash function.
Supposed that Bob requires Alice to sign a document but wants it to be the case that
Alice does not know the contents of this document.
2.7.4.1 Blind signature protocol
Round 1:
e Bob wants a message M is blindly signed by Alice. Therefore, before the
message is sent to Alice, Bob first blind the message by multiple the
messages with random number, r:
M’=H M’) . r"e (mod n)
Where n and e is taken from Alice’s public key.
e The message then is sent to Alice.
Round 2:
e Alice then takes the message and blindly signed it:
C =HM’)d mod n
e Observed that :
HM’)"d mod n=(H (M) . (r"*e)"d (mod n) = HM)"d . r (mod n)
Where ed = 1.

e Alice sent bank C to Bob

40



Round 3:
e Bob takes the signature C, given by Alice on the blinded message M’ and
extract an appropriate signature for M:
M =HM’)/r (mod n) = ( HM) r *e)/ r (mod n) = HM) r * (1/e) (mod n)
e The pair (M,M’) now represent a valid message / signature pair under
Alice’s public key.

From the protocol the most important thing here is Alice had signed the message without
knowing the content of the message. This is because the blinding factor re is multiplied
to the message and as a result the final message just look like a random message to
Alice. Then, after Bob unblind the message by dividing it with the blinding factor the
message is now unrecognizable to Alice. In fact, Alice can verify the signature is indeed
hers but she can severely limit in accurately determining when and for whom she signed
the message.
2.7.2 Blind Schnorr Digital Signature Scheme
Another blind signature scheme is based on the scheme of Schnorr. This scheme is based
on the intractability of the discrete logarithm problem, and is secure in the random oracle
model. Now, firstly the author will explain the original Schnorr scheme and then show
how to blind it.
2.7.2.1 The original of Schnorr Signature Scheme
Let G be a subgroup of Z*n of order q, for some value n and some prime q. Then,
choose g € G that makes computing discrete logarithm in G difficult. Next, let z # 0 be
the secret key of the signer, and y = gz be the public key. Finally, let H be a collision

resistant hash function whose domain is {0,1}* and whose range Zq.

41



For a message m € {0, 1}* a pair {c,s} is said to be a valid Schnorr signature on m if it
satisfies the following verification equation:
C=H (m, g"s, y*¢)
Where (m, g”'s, y”¢) refers to concatenation of m and g"s y”c
A valid Schnorr signature (c,s) on a message m can be generated by asigner (who knows
x) as follows:
e Chooser€ gZq
e Letc=H(m,g"x)
e Then choosing s = r-cx (mod q) creates a valid schnorr signature
This work because :
g"s y*c = g/\(r-cx) (g”x)"c = g”r (mod n)
Hence, H (m, g”s yc¢) = H (m, g"'r) = c. it turns out that schnorr signature scheme can
be made blind.
2.7.2.2 Blinding the original Schnorr Signature Protocol
Signer’s secret key is X, and it’s public key is y = g”x (mod n)
The recipient wants to have message m blindly sgned
Signer Round 1:
e Pickr'€nZq
e Sett’=g"r’ (mod n) and send t’ to the recipient
Recipient Round 2:
e Picky,6 ERZq
e Sett=tg"yy”d (modn)

e Setc=H(m,t)

42



e Setc’=c—0 (mod q) and send it to the signer
Signer Round 3:
e Sets’=r —c”x (mod q) and send it to the recipient.
Recipient Round 4:

e Sets=s"+0(modq)
The signature is now (c, s). It is not hard to see why this signature is blind. The signer
never get to see any information about either ¢ or s because these values are blinded by
the random blinding factors y and d respectively. Furthermore, the signature is valid:

ghsyre=gNs’ +7) yNc'+8) =g N’ —¢x +y+e’x) y*d =t'g" y y*8 =t (mod n)
which means ¢ = H (m,t) = H (m, g"s, y”c)
2.8  Programming Languages
Computer can only execute instruction that written in machine language. Therefore
computer need a standardized communication to translate a program written by humans
into a machine language which is called programming languages. Programming
languages allow user or programmer to specify their requirement towards computer by
writing those specifications with human language that will convert into specific machine
code. Here, the author will emphasize three types of programming languages which are
C+ +, Visual Basic and Java.
2.8.1 Microsoft Visual C++
C++ is an object-oriented programming (OOP) language that is viewed by many as the
best language for creating large-scale applications. C++ is a superset of the C
language. [http://searchdatabase.techtarget.com/sDefinition/0,,sid13_gci211850,00.html,

19 September 2004]. Other than Microsoft CryptoAPI, .NET Framework Cryptography

43



Model, there are also classes that used to implement the functions of cryptography in
Visual C ++. The class is called System.Security.Cryptography. it provides normal
cryptography services such as data encoding and decoding, hashing, random number

generation and also message authentication.

2.82 Java

Java was developed by Sun Microsystems in 1995. Java is a programming language
expressly designed for use in the distributed environment of the Internet. It was designed
to have the "look and feel" of the C++ language, but it is simpler to use than C++ and
enforces an object-oriented programming model. Java can be used to create complete
applications that may run on a single computer or be distributed among servers and
clients in a network. It can also be used to build a small application module or applet for
use as part of a Web page. Applets make it possible for a Web page user to interact with
the page. [http://searchwebservices.techtarget.com/sDefinition/

0,,51d26_gci212415,00.html].

Not only that, java also consists of several components such as Java Cryptography
Architecture (JCA) and Java Cryptography Extension (JCE). Java Cryptography
Architecture (JCA) is designed according to implementation independence and
interoperability, and algorithm independence and extensibility concepts. It means that
we can use anything cryptographic services such as digital signature and message digest
without worrying about the implementation details or even the algorithms. Algorithm
independent is achieved by defining types of cryptographic engines (services), and

defining classes that provide functionality of these cryptographic engines.

44



Implementation interoperability means that various implementations can work with each
other, use each other's keys, or verify each other's signatures. Besides, algorithm
extensibility means that new algorithms that fit in one of the supported engine classes

can be added easily.

The Java Cryptography Extension (JCE) is a set of packages that provides a framework
and implementations for encryption, key generation and key agreement, and Message
Authentication Code (MAC) algorithms. Support for encryption includes symmetric,
asymmetric, block, and stream ciphers. The software also supports secure streams and
sealed objects.

2.8.3 Visual Basic

Visual Basic (VB) is a programming environment from Microsoft in which a
programmer uses a graphical user interface to choose and modify preselected sections of
code written in the BASIC programming language.
[http://searchvb.techtarget.com/sDefinition/0,,sid8_gci213309,00.html]

Therefore, Visual Basic allow programmer to create graphical user interface (GUISs) just
by clicking with the mouse instead of writing the code. All the basic code is provided or

is built in to the project.
2.9  System review

In this sub topic, the author will review the existing online voting system which using

the blind signature scheme and the existing digital signature system.

45



2.9.1 Online Voting system (OVS)

Campus online voting system was successfully implemented at Cal State San Marcos for

the election.
Featues:
. Casting the Confidential Vote

The voter receive an email with their system generated password, open voting times, and
a customized message from the ballot administrator. The voter can click on the secure
web address in the email, provide their password and cast their vote in less than 5
minutes. After confirming their selections, the voter will get a randomly generated voter
number that only they know, thus ensuring confidentiality. The system does not store
any voting selections with the voter identity. Figure shows the balloi of the voting

system.

Online_Voting
Cal State San Marcos

Business Adm inistration Major
Official Ballot - Accounting Society Elections

To vote for a candidate, click the checkbox next tn the candidate’s name.
1f the person you vash o vote for is notlisted. enter their name in the
Write-In C idate box.

Name of “Wirite-in” Candidate

46



Figure 2.16 the ballot of the campus online voting system.

e Administering the election

1) Setting up the groups and users.

Lists of email address can easily be imported to the online voting system via
a web interface. Administrator can create their own groups that will restrict
or enable portions of the ballot for voters. Administrators can view summary
reports or detailed reports using their specified groups. In addition,
administrator can get a snap shot of voter turnout at anytime.

2) Creating the ballots and notifying the voters

To create ballots and notify users, the administrator follows steps:

i) create election with open voting times

ii) add offices, candidates and referendums

iii) assign eligible voting groups to the offices and referendum items

iv)  confirm preview ballot and/or referendum

V) use the system email notification feature to an announce the election,

password and voting instructions.

47



3
|
| v 1 1)

Cal State San Marcos - Adm inistrator

Weltame o the T al “%ab %an Masras Linline | ladn vy tesa

Ta Setilp s e ion Sollave the | lecswa Setilp YW heps

Figure 2.17 Administrative side of campus online voting system

29.2 RemoteVote9

RemoteVote is a reliable e-voting platform to power sophisticated, secure electronic
elections worldwide for public sector elections. Voters can cast ballots via multiple
voting channels, the Internet, touchtone telephone, cellular phone, digital TV and kiosks,

from anywhere in the world, within a secure environment.

Features:

e Access anyway -RemoteVote's Web-based interface provides for "anywhere" e-
voting access to election administration, management, tabulation, and reporting

with advanced toolset and formatting features. Full-scale elections are created in

% htp://www.votehere.net/remotevote.html

48



real time using credential-based administrative access, where multiple elections
can be managed simultaneously. Customization tools allow for full control of
ballot creation, style and layout.

Customized Ballot - Using configurable settings in the RemoteVote toolset,
ballots can be customized to meet the needs of the individual election. Colors,
fonts, languages, and layout can all be customized and logos and images can be
added as needed. Write-in functionality for candidates and issues is also
available. With real-time ballot preview changes can be determined quickly.
Convenience - Voters are able to cast ballots to RemoteVote via multiple voting
channels: the Internet, touch-tone telephone, cellular phone, digital TV and
kiosks, whichever is the most convenient for them.

Easy-To-Use - To simplify the voting process, RemoteVote does not require
voters to install complicated applications or plug-ins. When accessing
RemoteVote via the Internet, voters access the election through a secure Internet
connection and their completed ballots are encrypted and stored within the
system.

Security - The security of your election is important; that's why VoteHere uses
patented security to protect elections and their results. Through a combination of
industry-standard security practices and methodology, encryption, active election

monitoring and best-of-breed IT practices, elections are safe, secure and private.

49



2.9.3 SafeGuard Sign & Crypt

Safeguard Sign & Crypt allow the user to digitally sign and encrypt the document. It is
integrated into Microsoft Windows Explorer, Microsoft Word and Microsoft Excel.
Besides, it is also a software security tool for exchanging and storing sensitive
information that helps to achieve confidentiality, authenticity, integrity and non-

repudiation of sensitive files.

Features:

e Signature is generated based on the public key technology

e Allow multiple signatures

e Multiple key pairs

e Support for time stamping

e Strong encryption using AES, triple-DES, IDEA

e Used RSA algorithm (up to 2048 bits) for generating the digital signature

e Used RSA 512-2048 bit, AES 128 bits, IDEA 128 bits, triple-DES 112-168
bits, DES 56 bits, RC2 40-128 bits, square 128 bit, safer 64 bit for
encryption

e Used SHA-1, RIPEMD-160, MDS5 for generating the message digest.

50



2.9.4 FileAssurity'

FileAssurity allow user to encrypt, digitally sign and decrypting any types of document
(word processing document, spreadsheet, etc) to enhance the security of the document.
Files can be stored securely on any media or shared securely with others. This software
ensures that only authorized people can view the document that has been encrypted.

Documents can be digitally signed to prevent them being altered.

Features:

e FileAssurity can ensure files to be completely removed in one step where
the files are unable to be recovered again.

o FileAssurity can also automatically compress each file or archive to ensure
minimum disk space is used

e It does not require the owner to buy certificates and keys from a Certificate
Authority. Its built in key manager will generate self-signed keys and
certificates which can be distribute to others.

e [t is also easy to use where encrypt, sign, decrypt and verify process can be
done just by clicking.

e Used AES algorithm with a 256 bit key for encryption and RSA algorithm

with a 2048 bit key.

1% hitp://www.articsoft.com/fileassurity.htm

51



2.9.5 Code Signing for Digital IDs'!

VeriSign Code Signing Digital IDs enable software developers to digitally sign software
and macros for secure delivery over the Internet. Users who download digitally signed
Active X controls, Java applets, dynamic link libraries, .cab files, .jar files, or HTML
content from software developer site can be confident that code really comes from the
developer and has not been altered or corrupted since it was created and signed. After
signing the code, if it is tampered with in any way, the digital signature will break and
alert the users that the code has been altered and is not trustworthy. The VeriSign code

signing Digital IDs is based on the public key cryptography system.

Features:

e VeriSign Code Signing Digital ID protects the software and with this protection
the user or customer will confident that the integrity of the code they download
from site is intact - that it has not been tampered with or altered in transit.

e Digital IDs allow customers to identify the author of digitally signed code and
contact them should an issue or query arise.

e Most browsers will not accept action commands from downloaded code unless
the code is signed by a certificate from a trusted Certificate Authority, such as
VeriSign.

e Code signing certificates are easy to use in conjunction with the vendor

software tools that developers use to create products, macro and objects.

! http://www.verisign.com/products-services/security-services/code-signing/digital-ids-code-
signing/index.html

52



2.9.6 E-Lock Prosigner'

E-Lock Prosigner is an off-the-shelf desktop digital signature software that integrates
into MS Word, Excel and Adobe Acrobat. It allows to sign, encrypt, decrypt and
validate the files of any other format externally. It uses digital certificates (X.509) to
sign data and supports Microsoft, Netscape, Entrust frameworks. Besides, prosigner also
profiles to automate common operation and policies to control the use of digital

signatures.

Features:

e Sign documents directly from software applications

ProSigner integrates right into MS Word, Excel and Adobe Acrobat and allows you
to sign documents right from within these applications. In case of Word and Excel,
ProSigner provides intuitive icons and menu options, enabling you to sign/encrypt

and perform other security operations with ease.

e Wizards for Signing / Encryption

ProSigner provides various Digital Signature features in a Wizard format. This
guides the users through the complex world of digital signatures without

compromising security without any specialized training.

2 http://www.elock.com/products/prosigner/

53



e Signing / Encryption User Profiles

Users can create individual profiles for signing or encryption operations. Whenever
they need to perform routine operations, they can access these profiles, which store
all their settings and preferences. This helps them convert repetitive tasks into "one-

click" processes.

e Right click security operations

ProSigner integrates seamlessly into the Windows environment. This allows users
to "right-click" and performs signing and encryption operations right from their

desktop or windows explorer.

e Support for Multiple signatures

Many business documents need to be signed by more than one party. To make it
legally viable, all parties need to sign the exact contents. With ProSigner, multiple
people can sign and approve the same document. An audit trail is also maintained
which helps track approvals to the document. All signatures on the document can be
independently verified. Any change to the content of the document will invalidate

the previous signature.

e Batch Signing

ProSigner's Batch signing capability makes bulk signing quick and effortless and
minimizes the time involved in routine signing tasks. This feature is particularly

useful where several business documents require an authorized signature. The

54



traditional paper based method would require that he put his signature separately on
each document even if they were routine in nature. ProSigner speeds up this process

and allows for several such files to be selected and digitally signed in one go.

» Restrict access to confidential documents

To protect confidential documents, ProSigner uses encryption methods that allow
only authorized people to decrypt and view the content. Access to contents of high-
value business documents such as financial reports or Non Disclosure Agreements
need to be restricted to authorized personnel only. With ProSigner documents can

be encrypted for specific people, allowing only these people to view them.

e Time bound signatures

Allows for timestamping of documents as they are signed—a key feature for

contract enforcement and auditing.

e PKI Independence

Works with industry-accepted public key infrastructures and seamlessly supports
any X.509 digital certificate, including those issued by VeriSign, Digital Signature

Trust, Entrust, RSA Security, and others.

e Security framework independence

Supports the MS-Crypto API, Netscape Security framework, and Entrust PKI.

e Algorithm

55



Used RSA algorithm with a 2048 bit key for encryption and generating the digital

signature.

2.9.7 Summarization of the existing system

As stated before, for the blind signature system, the author had review the existing of

online voting system that used the blind signature scheme. Besides, the author also

reviews the existing digital signature system that operates similar to blind signature

system. Below is the summarization of the algorithm that the system used.

Table 2.0 Summarization of the using algorithm on the existing system

System

Features

FileAssurity

SafeGuard Sign &
Crypt

E-Lock Prosigner

RSA

DSA

DES

Blowfish

AES

SHA-1

RIPEMP

MDS5

Encryption

Authentication

Time Stamp

56




User profile
management

Secure file deletion

Build in key
manager

Certificate
Authority

37




Chapter3  Methodology

3.1 Waterfall Model
The waterfall model is one of the software process models that help the software
developer on developing a good software product. Software process model is able to
guide the developer from the scratch until the product is produced. Besides, the good
choice of software process model will lead to produce the product smoothly. Waterfall
model is introduced by Royce on 1970. Figure 3.1 shows the waterfall model phases and
the feedback loops for maintenance while the product is being developed. There are five
phases which are requirements, analysis, design, implementation and postdelivery
maintenance. In waterfall model, no phase is complete until the documentation of that
phase is completed. Besides, in every phase of the waterfall model is testing. Testing
should proceed continuously throughout the development of the software product.
Therefore, in waterfall model there is no separate testing phase to be performed. Below
are the descriptions for each phase:

e Requirements phase

The requirement analysis goal is to determine what are the exactly features needed

that the system should operate.

e Analysis phase

In this phase, the requirements of the system is refined and analyzed to achieve a

detail understanding of the requirements essential for developing the product

correctly. Besides, the requirements also are defined as a system specification.

e Design phase

58



During this phase, the internal structure of the product is determined. The product is
decomposed into modules. For each modules, algorithms are selected and data
structures chosen.

e Implementation and unit testing phase

In this phase, the target software product is implemented in the chosen

implementation languages which consist of a set of programs or program units. Unit

testing involves verifying that each unit of program meets the specification.

e Integration and system testing.

After the program units are determined, all the units of the program are integrated

and tested to ensure the target of the software product is achieved.

e Postdelivery Maintenance phase

During this phase, the system is installed. Maintenance here means to correct

anything errors that occurred and the enhancement of the product that consist of

changes to the specifications and the implementations of those changes.

Below are the advantages of waterfall model:

e Waterfall model allow the developer to departmentalize and managerial control.
It means that a schedule can be set with deadlines for each stage of development
and a product can proceed through the development process.

e Because of the testing activities is carried out constantly through out the
development, the possibility to detect and correct the fault earlier is higher.

e Besides, waterfall model emphasized the planning of the product development.

e Measurable objectives which can be used for planning future projects.

59



—————————————————————————

Change

Requirements

__________________________

b Analysis R e

o

f Design ¢ — — — —

. Implementation <

Postdelivery Maintenance

Retirement

Figure 3.1 The waterfall model
3.2  Information gathering
While developing the software, the author applies a few methods on gathering as much
information as a guidance to have a deep understanding on what exactly the author is
trying to develop. Below are a few methods taken by the author:
e Books
Read reference books that are related to the project to obtain the useful knowledges.

e Internet

60



Surf the internet that provide the information needed which are up to date and ease
latest technologies.

¢ Existing projects

Read the existing projects (the previous seniors’ thesis) that give the author idea on
how the project is carried out.

e Software products manual

Do research on the existing software products that are related to specific software
and technologies.

e Journals and proceeding papers

Do research on journal and proceeding papers that are related to this project which

can be useful guide to this project.

61



Chapter 4  System Analysis

The aim of this chapter is to analyze and refine requirements to achieve a detailed
understanding of the requirements essential for developing a software product correctly
and maintaining it easily. The requirements is categorized into two main categorizes
which are system requirements and run time requirements.

4.1 System Requirements

Requirements fall into two categories which are functional and non functional
requirements. Functional requirement specifies an action that the target product must be
able to perform. A non functional requirement specifies properties of the target product
itself such as platforms constraints, response times and reliability.

4.1.2 Functional Requirements

4.1.2.1 The signing process

This system allowed user to browse and retrieve the data or file from user’s data

store.

e If the data or file length is exceed from the length that is allowed (264 bits) the
system will alert the user.

e Then, this system will display the selected data or file to the user before the
signing and the blinding process proceeds.

e Next, the system will prompt out the private key, the public key and the random
key as an input for the signing and the blinding process.

e The selected data or file is then proceed to the blinding process first before the

signing process begin. The blinding process will generate the blinded data or file

which is the input for the signing process.

62



After the blinding process, the system will sign the blinded data or file together
with the timestamp (time when the data or file is signed). Timestamp must be
protected by the signature.

During the signing process, this system is able to show the progress of the
signing process and the system also is able to prompt the result of the process
whether is failed or successful.

The system will save the signed of the blinded data or file into user’s data store.

The signed data or file is represented with an icon.

Blinding file

In this system, user is allowed to browse and retrieve the data or file that need to
be blindly sign from the storage directory.

The system then will prompt the public key to the user as the input for computing
the blinding calculation.

Besides, the system also will generate the random key for blinding process.

Then, the blinded data or file is sent to the signing process.

Read file

In this module, user is allowed to browse and select the data or file needed from
the storage directory

This module is only displayed the format of data or file that is accepted by the
system

This module also is able to calculate the size of the selected data or file.

Then, this module is able to send the selected data or file to the hash file module.

Hash file

63



The hash function module received a block of selected data or file which length
is not exceeding from 264 bits from the read module and produces a fix length
(160 bits) output.

The hash result H(x) must be relatively easy to compute for any given data (x).
For any given h, it is computationally infeasible to find x such that H(x) = h.
For any given block x, it is computationally infeasible to find data y # x with
H(y) = H(x).

The hash file module is able to send the hash result H(x) to encrypt file module

Encrypt Hash

The encrypt hash module received the hash result from the hash file module.
In this module, the user’s public key and the random key is prompted out.
Then, the hash result of the selected data or file is encrypted. Next, the blinding

process is proceed.

4.1.2.2 The Unblinding process

This system allowed user to browse and retrieved data or file from the storage
directory for specifying which data or file needed to unblind.

Then, this system will display the selected blinded data or file to the user before
the unblinding process proceed

Before the unblinding process is proceed the system will retrieved the random
key from the key data store.

During the unblinding process, this system is able to show the progress of the
unblinding process and the system also is able to prompt the result of the process

whether is failed or successful.

64



The unblinded data or file is saved to the user’s data store.

The unblinded data or file is represented with an icon.

Read file

In this module, user is allowed to browse and select the blinded data or file
needed from the storage directory

This module is only displayed the format of data or file that is accepted by the
system

Then, this module is able to send the blinded selected data or file to the

unblinding process.

4.1.2.3 The verifying process

The blind signature system allowed user to browse and retrieved the data or file
from the storage directory that need to be verified.

Before the verifying process, this system is able to prompt out the user’s public
key as an input for the verifying process.

During the verifying process, this system is able to show the progress of the
verifying process and the system also is able to prompt the result of the process
whether is failed or successful. However, if the verification process is failed the
system is able to inform the user that the content of the data or file was changed

or modified.

Read file

In this module, user is allowed to browse and select the data or file needed from

the storage directory

65



This module is only displayed the format of data or file that is accepted by the
system

The read file module is able to extract the signature from the file and send it as
an input to the decrypt blind signature module

The read file module is able to extract the original file and send it as an input to

the hash file module

Hash file

The hash function module received a block of selected data or file which length
is not exceeding from 2764 bits from the read module and produces a fix length
(160 bits) output.

The hash result H(x) must be relatively easy to compute for any given data (x).
For any given h, it is computationally infeasible to find x such that H(x) = h.
For any given block x, it is computationally infeasible to find data y # x with
H(y) = H(%).

The hash file module is able to send the hash result H(x) to the compare hash

module.

Decrypt file

The decrypt file module received the blind signature from the read file module.
In this module, the user’s public key is prompted out.

Then, the blind signature of the selected data or file is decrypted to recover the
original hash.

The decrypt blind signature should be able to send the decrypted blind

signature to the compare hashes module.

66



Compare hashes
e The compare hashes module is able to compare the hash received from hash file
module with the hash received decrypt blind signature module.
e The compare hashes module is also able to inform user if the signature
verification is success or failed.
4.1.2.4 Key Generator Module
e The key generator module will be able to generate public key, private key and
random key.
4.1.2.5 About Module
e This module provides general information about the blind signature system, user
manual system and terms definition.
4.1.2.6 User Identity verification Module
e In this module, user need to log in by enter their username and password.
e This module will validate the username and password and will inform the user if
the username or password is invalid.
4.1.3 Non functional Requirements
e Usability
The blind signature system is a user friendly interface where the user is eased to use.
There are different icons for different purposes, menu, toolbars and pop up window
as guidance for using this system.
e Reliability
The blind signature system is able to operate with minimal errors and optimum

availability.

67



e Response Time

This system is able to operate every function that requested with a reasonable and
acceptable period of time.

e Flexibility

The blind signature system allows user to change their login username and password

or private and public key to avoid forgery.

42  Run time Requirements
The hardware and software requirements for the blind signature system are stated below.
42.1 Hardware Requirements

e Pentium 533 MHz or above

e 64MB RAM

e 1.44 Floppy disk drive

e Monitor 14” (high color 16 bit)
42.2 Software Requirements

e Microsoft Visual c++ 6.0 Professional Edition

e Windows 9x or above
43  Cryptography
In this blind signature system the author had chose public key cryptography after having
a deep investigation in comparing between the public key (asymmetric) and secret key
(symmetric) cryptography. While comparing these two types of cryptography there is

several considerations that need to give attention.

e Key length

68



e Popularity
RSA is the most widely used and has withstood over 15 years of vigorous
examination for weaknesses. Although DSS may well turn out to be strong
cryptosystem, its relatively short history will leave doubts for years to come.
e Processing speed
In the context of blind signature, the faster the algorithm to verify the signature is the
better. In RSA algorithm signature verification is faster than signature generation. It
is differ from DSA system where the signature generation is faster than signature
verification.
e Key exchange capability
RSA have a capability on key exchange.
44  Hash Algorithm
After a deep research on hashing algorithm which are the Secure Hashing Algorithm
(SHA-1) and the MD5 algorithm, the author decided to use SHA-1 in this blind
signature system. The choice is made according to several considerations as stated
below. Table 4.0 below shows the different between the SHA-1 and MDS algorithm.

Table 4.0 The differences and similarities between SHA-1 and MD5

Algorithms MD5 SHA-1
Features
Digest length 128 bits 160 bits
Unit of Processing 512 bits 512 bits
Number of steps 64 (4 round of 16) 80(4 round of 20)
Maximum message size 264 -1 bits

70




Primitive logical functions 4 4

Additive Constant used 64 4

There are a few considerations while choosing the hashing algorithm:
e Resistance to Bruce Force attacks
According to the table above, SHA-1 has 160 bits as output whereas the MD5 only
has 128 bits output. Therefore, because of the different in the amount bits of output,
SHA-1 which has a larger amount of bits is more secure against Bruce force attacks.
This is because, the attacker has difficulty on producing 2 messages which have the
same message digest on the order of 27160 operations compare to MDS5 algorithm
that only need to have 2”128 operations. Moreover, in MD5 algorithm a collision
can be found by brute force in 2764 calculations whereas SHA-1 a collision can be
found by brute force in 2”80 calculations.
e Secure against cryptanalysis
Secure against cryptanalysis means the harder cryptanalyst to discover the weakness
of the algorithm the more secure the algorithm. Therefore, in the context of
cryptanalysis, MD5 algorithm is proof to have high possibility to cryptanalytic attack
compare to SHA-1 algorithm.
e Speed
According to the table 4.1 shows that the speed of SHA-1 algorithm on a 266MHz is
much slower than MD35 algorithm. Nevertheless, the existing of powerful hardware
recently should solve the problem on the speed of the algorithm.

Table 4..1 Performance of MD5 and SHA-1 algorithm on 850 MHz Celeron

71




4.5

Algorithm Mbps

MD5 26

SHA-1 48

Programming language

In this system, Microsoft visual C++ is chose instead of Java and visual basic

programming language.

Visual C ++ can perform faster than Visual Basic during the looping operations.
Visual C ++ allows faster slipping into assembler and move the memory than the
windows API Copy Memory where this is another advantage of visual C++ or
Visual Basic

Visual Basic is complained that it creates bloated installations, is not fully object
oriented and performs poorly at mathematical tasks.

Java language do not have features like hardware-specific data types, low level
pointers to arbitrary memory addresses, or programming methods like operator
overloading, multiple inheritance.

Visual C++ is a graphical based language and allows more arbitration in
interface design than visual Basic.

Visual C++ has shorter, easy to understand and manipulate commands than Java.
Visual C++ can develop platform independent software compare to visual basic
which only can develop Microsoft platform software.

Visual C++ is more object oriented than Java thus is easy to maintain.

Visual C++ is more familiar for the author

Optimized compiler ensures better software performance.

72



Chapter 5

System Design

5.1 System Architecture

The overall architecture of blind signature system is depicted with top down approach as

shown in figure 5.1.

5.2 Data Flow Diagram

Figure 5.1 Overall System Architecture

Figure 5.2 show the data flow of diagram of the blind signature system. It illustrates how

the data is processed and stored in the blind signature system.

73

System
A A
Sign Unblind Verify Key Help User ider
generator verificati
A A
J A A A A A X Y
Read Blinding Hash Read Hash Compare About Definition
File File File File File Hash
A A
Encrypt Read Decrypt User
Hash File Hash manual



Provide request key ﬁ
Store or
Retrieve Key

Key store ~——Request store key

Unblinding Key
process Generation
Send random Request
key + blinded . ; generating key
document Provde Request
request K
key i
Return original
document
Send signed
T ~— Send random key + document = ! document + gubli c K ey_>

Blinding Return blinded document———g»- Sender Received signed Receiver

Process A document + public key L
Return verified Send private
document k:y+ blinded
ocument
Signed public P""”‘::d Request
key +signed reqt;“es file Signed
document = document
blindly

Verifying ! Signing
Process Process

5 Provide requested file Browse
File Store Document

I Request file
Figure 5.2 Data Flow Diagram

According to data flow diagram, the sender and the receiver are the two parties that
involves in this blind signature system. The sender, who triggers the blindly signing
activities, will browse the document needed and the document is retrieved from a file
store. Then, the sender can choose to generate a new private key, public key and a
random key or just retrieved the existing key from the key store. The sender then, firstly,
will blind the document. The blinding process will then generate a blinded document

after it received the random key and the document that need to be blind. After, the

74



blinding process is completed the sender now is proceed to the signing process to
generate a signed document. The signed document is only generated when the blinded
document that needs to be signed is retrieved and the private key is received. The
unblinding process is completed after the blinded document that posses the valid
signature is retrieved and the random key is received. The unblind document then will
proceed to verifying process. In the verifying process, the receiver is the one who
triggers the verifying activities. During the activities, the process will inform the sender
if the signature on the document is indeed valid or not.

5.3  Interface design

Figure 5.3 shows the system main interface prototype design. According to the interface
design, user firstly needs to click on key generator button to generate the keys. The pop
menu that shows the keys is prompt out as shows in figure 5.4. After the key is obtained
from the system, user now can choose any task on the interface that the user want the
system to execute. If the user clicks on the sign button the new window of the sign
process is appeared. It shows on figure 5.5. These interfaces are user friendly and have a
direct manipulation which provides menus such as pop up menu, iconic and cascading

menu.

75



MAGH NI MRy " o AT Y e
"B Untitled - main (=] %
Blo £t Yow Help
DEH| + 28 ?
st
BLIND SIGNATURE SYSTEM
TASK
SIGN
LUNBLIND
VERIFY
R
Ready NUM

Figure 5.3 The System Main Interface Prototype Design

76




WWW”’“ 'l-‘anf*.Mrff'*f-mw%ﬁ'-&'*-r‘--f-'fr-"r*“ﬁf‘--‘r‘--‘-W*‘vw"'r-*'@rr*a"‘f’-" N e s s e st

Ho B Yow tob
D@ »*2R & T

| PUBLIC KEY = SR

FPAMATEKEY ——

|
|

[n):

RANDOMKEY

[ oK | |Cancel]

Figure 5.4 Key Pop Up Menu Prototype Design




B Untitled - sien o , |
Fle Edt View Help S ————— |

D E ?
SIGNING -]
BROWSING
Browse : r 2 i
DOCUMENT KEY
Private Key :

31 &
(n):
' 1
K v RandomKey 1):

[ i

| 0K I lCancelI

Ready i

Figure 5.5 Signing Process Interface Prototypes Design

5.4  Interface flow chart

Figure 5.6 shows the interface flow chart of the blind signature system. Firstly, user need
to key in their username and password in a dialog box that is prompted out to the user. If
the username or password in not valid one error message will prompt out to the user and
user need to insert the username and password again. After the log in session is
successful, the system will display the main menu of the blind signature system. In this
system, there are 6 tasks that the user can choose which are sign, verify, unblind,

generate key, help and close the system. If the user clicks on the key generator button,

78



one pop up menu will prompt out to the user that contains the private key, public key
and random key. The user needs to save the key onto the key store. Then, if the user
clicks on the sign button, a new window of the signing process will appear. Here, user
needs to browse the document that need to blindly sign and insert the random key that
used to compute the blinded document and the private key for the signing the blinded
document. If the selected document’s size is exceeds from the size that is allowed, the
system will alert the user. The chosen document is displayed to the user before the
signing process initiate. During the signing process system will show the progress of the
signing process. At the end of the signing process, the system will inform the user if the
signing process is successful or fail. Then, the user can view the signed document and
save it. Same goes on to the unblind and verify button. User still needs to browse the
needed document and insert the key. But in the unblinding process user need to insert
the public key and the random key whereas the verifying process needs the user public
key only. Besides, if the user chooses to seek for help, the help process will iterated until

the users’ queries are solved or until the user itself abort the process. Finally, the user

can also choose to close the system.

79



msg of
invalidation

Com )

yes

User key in Display msg of in
and password validation
No
Valid?
yes
Generate key
Display main menu
Generate
key
/" Displaved
Task selection ir(ey'
Sign
unblind
I = o
alid fil Insert random key Insert public key
size?
Insert public key Verifying process
Insert random key
no
. File
Unblinding process fied?
Insert public key
Insert Private Key

Signing process

Figure 5.6 The Interface Flow Chart of the Blind Signature System

80



Chapter 6  System Implementation

6.1 Introduction

System implementation is the implementation of the target software product in the chosen
implementation languages. In other words, system implementation is a process that
converts the system requirements and designs into program codes. It is the delivery of the

system into production, which means day-to-day operation.

6.2  Development Environment

Development Environment is used to determine whether the requirements of the
hardware and software that were stated in chapter 4 are suitable for the software
implementation. This is important because the usage of appropriate software or hardware
will influence the development of the software product. In this section, the hardware and

software tools used to develop the entire system are listed below.

6.2.1 Hardware Tools

¢ Intel (R) Pentium (M) processor 1500 Mhz
e 256 MB RAM
e 40 Gbytes Hardisk

e BJC i255 Cannon Printer

81



6.2.2 Software Tools

e Microsoft Windows XP Home Edition

e Microsoft Visual C++ 6.0 Professional Edition

6.3 System Development Tools

In developing the blind digital signature program, the author used Microsoft Visual C++
6.0 as a tool to generate the coding and the interfaces of the program. One of the
functions that Microsoft Visual C++ 6.0 provides is Microsoft Foundation Class (MFC)

that is used to design the interfaces. Therefore, in this section, it will be the user

interfaces development and coding development.

6.3.1 User Interface Development

User interface is the part of a computer program that displays on the screen for the user to
see. It will describe how humans interact with what they see on the computer screen.
Besides, the good interface will help the user to understand on how to use the program

accurately. In this section, the real implementation of the actual user interface will be

discussed.

82



6.3.2 User Authentication Dialog

6.3.2.1 Log In Dialog

Log in dialog is used to authenticate the user and it will pop up to the screen once the
icon of the program is clicked. The user is prompted to key in the user ID and the

password in order to enter the program as shown in figure 6.1.

| Login Dialog

User ID: lAdministrator

xxxx1

[ ok ] cancel

Password:

Figure 6.1 Log in dialog

6.3.2.2 Error message

If the user had key in either the wrong user ID or password the error message will pop up

to the user as shown in figure 6.2.

Error
L | E Login Failed
.

Figure 6.2 Error Message

83



6.3.2.3 Blind Key Input Dialog

Before blinding the message user is required to enter the random key, public key and

multiple value that are generated by the program as shown in figure 6.3.

Blind Key

Key information
Public Key(e): I

Multiple Sum{n} |

Random Key(rk |

[_UK—I Cancel

Figure 6.3 Blind Key Input Dialog

6.3.2.4 Private Key Input Dialog

After blinding the message the user can proceed to sign the blinding message. Same goes

here; the user is acquired to key in the private key and the multiple value that also are

generated by the program itself.

84



Key Input

Key information

Private Key (d): l
Multiplied Sum{n): |

’TI Cancel J

Figure 6.4 Signing Key Input Dialog

6.3.2.5 Verifying Key Input Dialog

To verify the signature, user is acquired to insert the public key and multiple values. The

public key, private key, random key and multiple value are the key that are generated at

the same time during the key generation.

KeyInput

~ Key information
PublicKey(e} |
|
Multiplied Sumin} |

| OK I Cancel

figure 6.5 Verifying Key Input Dialog

85



6.2.3.6 Warning Message

If the user do not key in one of the key value a warning message is appeared to inform

that they need to re-enter the key value. Besides, a warning message also is appeared if

the signature is invalid.

~

Error

Please enter the key value

Figure 6.6 Error message Dialog box (Public key and Private key)

Error ’

Please enter the multiplied sum value

e ]

Figure 6.7 Error message Dialog Box (Multiple value)

Error

Please enter the random key value

[t

Figure 6.8 Error message Dialog Box (Random key)

86



~

| Error

! E Invalid digital signature

Figure 6.9 Error message Invalid Signature

Despite, if the signature is indeed valid, the informing message that states the valid

signature is appeared.

)
Success

1 ) valid digital signature

Figure 6.10 Informing message Valid Signature

6.3.3 Main Interfaces

Figure 6.11 below is the main interface of the blind digital signature program. It will

b

emerge once the user id and password is authenticated. As shown in the main interfaces

there are seven tasks that hold different functions.

87



& BlindDioSio

OpenFile SaveAs GenKey BindFile SignFile Verify File Clear Document Exit About

Je=als =06 =

Document

Veiify File

Figure 6.11 Main Interface

88



6.3.3.1 Open / Save file

Blind Digital Signature program allowed user to save or open whether in text file

(*.txt), Signed Files (*.signe) or Blinded Files (*.blinded).

(a1

Figure 6.12 Open File Task

Open e X
Look in: | 2 Debug _'J ¥ B~

"E,'AID e Ty P — - - e —— - — L » WBRE

=] ikan

File name: F Open

Files of type: [Text Files [*.txt) z] Cancel l
Text Files [".txt)
Signed Files [.signe)
Blinded Files *.blinded)

89



,Save As @
Savein: | ) Debug ~| & ¥ B~ h

Bl
; ] ikan

File name: | I Save I

Save as type: !E:t Files [*.txt) _v_] Cancel
Test Files [*.txt) |
Signed Files [".signe)

Blinded Files [*.blinded]

Figure 6.13 Save Task

6.3.3.2 Generate Key

All keys are generated at the same time by the key generator. User need to copy and save

all the keys somewhere else because this program do not have a special built in databases

that can keep them secretly.

90



Pﬁv&eKey[bobekeptsectet]

Brivate Koy (d lmmmm

Random Key; (00000053

Public Key Components (to be distibuted]
Public Key (s [umc353
Uz‘n;.i:?i: Sun [y |12817m3w203592
Figure 6.14 Key Generator

91



Figure 6.15 Blinding Process

92



6334 Signing Task

-

Blind Tasks
g
| Task Selection
Sign File
Verify File
==
Generate Key
————————————
e T L e N ClearDoc ||
Ee————— {
— L
Figure 6.16 Signing Process

93



6.33.5 Verifying Task

S = @ 6 m

Blind Tasks

Blind

Task Selection

)

Sign File

Verify File

Generate Key

Clear Doc

Figure 6.17 Verifying Process

94




6.3.3.6 Exit

If .
user click to close the program, a confirmation dialog box is prompted out to confirm

Whe .
ther the user is really want to exit from the program.

f Confirmation ‘
= , I

f
|
|

_\? / Close the application?

frf l OK I Cancel ]!

Figure 6.18 Closing Program

6.
32 Code Development

Bling Signature application used Microsoft Foundation Classes (MFC) to design the
INterfaces, First of all, the author designed the main interface with buttons, menus and
‘oolbar, Then, the author determines the action for each buttons, toolbars and menus,
Ev;:ry action has their own function that contains lines of coding. Coding is the most
ul’lp()rtam thing that needs to be done. This is because a successful coding determines the

8th of the application. Here, the author will explain the coding of hash function and

bling:
llndmg function

95



i) Hashing Function

- ProcessSHA()

/* Thij ; -
Me § fun.ctlon is to chop the plaintext into appropriate size and to collect the
Ssage digest in order to make available to the function of blinding and

decryption, */
void CDigSignDIg::ProcessSHA( CONST CString& strData, CString& strHash )
{
SHAI CTX context;

unsigned char aBuffer[ SHA_ BUFFER J;

unsigned char digest[20];
CString strTemp = strData;

CString strBlock = _T("");

Int nDataLen = strTemp.GetLength();
Int nIndex = 0;

CSHA1::SHA 1Init( &context );

while ( nDataLen > 0 ){
memset( aBuffer, \0', SHA_BUFFER );

if ( nDataLen > SHA_BUFFER ) {
strBlock = strTemp.Left( SHA_BUFFER );

strTemp = strtTemp.Mid( SHA_BUFFER );
} else
{ strBlock = strTemp;

strTemp =_T(""); }

memcpy( aBuffer, LPCTSTR(strBlock), strBlock.GetLength() );

96



CSHA1::SHA1Update( & context, aBuffer, strBlock.GetLength() );

nDatalen = strTemp.GetLength(); }
CSHA1::SHAIF inal( digest, & context );
strHash = (™).
for ( nIndex = 0; nIndex < 20; nIndex++ ){
strtTemp.Format( _T("%.2X"), digest[ nIndex 1)
StrHash += strTemp; }
cout<<strHash; }
Explanation for varigbjes
StData : Original data or plaintext
SttHash : Storage for message digest in digit
aBuﬁ‘er[163 84]: A temporary storage for characters to be process
digest[z()] : Storage for 160-bit message digest in hexadecimal
StrTemp : Temporary storage for string characters

alen * Storage for the length of strTemp

nlndex : Counter
Bseudo coge

1. Start

2. Iniﬁéllization

Copy original data (plaintext) into strTemp
22 Initialize strBlock with empty string ;
23 Store into nDataLen the number of characters of strTemp
3 2-4. Initialize the counter with 0
© While nDatal.en>0, do .
3-1 Set aBuffer with a total of 16384 ‘0" characters

831 84, do -
: ;Il)at?:%:s?i: :)16;’ the leftmost 16384 characters of strTemp into strBlock

3.22  Then, copy the rest characters into strTemp

97



33

34
3.5
3.6

[f nDatalLen<16384, do _
3.3.1 First, copy into strBlock the data in strTemp
3.3.2  Then, empty the strTemp

Copy strBlock into aBuffer
Call function SHA 1Update( &context,aBuffer,strBlock.Getlength( ))

Store into nDatalen the remaining number of characters in strTemp

4. Call function SHAIF inal(digest, &context)

o

Initialize strHash ~T(**)

6. If nindex<20, do

6.1

6.2

6.3

6.4
7. End

" SHAmiy()

”* The function of SHAInit is to make initialization to MD buffer before each 512-bit
bl

da

Change the format of digest (hex) into correspondent string of digits and
store in strTemp.

Add strTemp into strHash

nindex

Go to step 6

ta block is process */

void CSHA1::SHA Init(SHA1_CTX* context){

/* SHAL1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = OXEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;

context->count[0] = context->count[1] = 0; }

& lanation of Variables

: )
Ontext js a structure that contains

State[5]

- To store intermediate and final results of the hash function, also known
as message digest(MD) buffer.

98



COllnt[2] : To store bits counted in each block data before and after bits padding

Buﬂéﬂ“] : To store data to be processed by hash function

Pseudo coge

1. Start
2. Initialization in hexadecimal format
1 state[0] = 67452301
22 state[1] = EFCDAB89
23 state[2] = 98BADCFE
24 State[3] = 10325476
25 state[4] = C3D2EIF0
2.6 count[0] = count[1] -0
3. End

SHAI Transformy )

”* The function of SHAITransform is to execute the core hash function in order to
Produce intermediate and final message digest*/

#;in(:hIde "S}-IAI .hxx" .
s Hefine LITTLE, ENDIAN * This should be #define'd if true. ¥/
: idefine SHATHANDSOFF * Copies data before messing with it. */

#define LITTLE ENDIAN 1
Hefine rol(yqye, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

*
;,, blkO() and blk() perform the initial expand. */ . .
I got the idea of expanding during the round function from SSLeay

#ifdef LITT
LE_ENDIAN
110 bIk0(i) (block->1[i] = (rol(block->1[i].24)&0XFFO0FF00) [(rol(block-

lilg
felse. XOX00FFOOFF))

#define byqy; i

fengip. KOG block->1[i] ,

= cfine blk(i) (block->] [i&15] = rol(block->1[(i+13)&15]"block->1[(i+8)&15] ~block-
[(l+2)&15]’\block->l[i&15],1))

(RO+R1 different operations used in SHA1 */
), R2’XR;,Z,I§)4ZT:(t(}\1:&ExAy))Ay)+blk0(i)+Ox5A827999+rol(v,5);w=rol(w,30);

( . .
efine Rl(v X i) Z+=((W& x/\y))/\y)+blk(i)+Ox5A827999+1‘ol(v,5),w=rol(w,3O),
¥deﬁne R2(v,,w,x ’;I ’;:3 §+=((w/\x’€y)+blk(i)+0x6ED9EBAl +rol(v,5);w=rol(w,30);

99



#define R3(v,w,x,y,z,i) '
Z4=(((Wi)&y)|(wéx))+blk(i) +0x8F IBBCDCHrol(v.5);w=rol(w.30);

efine R4(v,w,x,y,z.i) z+=(wx"y)+blk(i)+0xCA62C1 D6+rol(v,5);w=rol(w,30);

/* Hash a single 512-bit block. This is the core of the algorithm. */

void CSHA | ::SHA1Transform(SHA1_CTX* context, unsigned char buffer[64])
{ —

unsigned long a, b, c, d, €;

typedef union {
unsigned char c[64];
unsigned long 1[16];
} CHARG64LONG16;

CHARG64LONG16* block;

#Hifdef SHA1IHANDSOFF
static unsigned char workspace[64];
block = (CHAR64LONG16*)workspace:

memcpy(block, buffer, 64);
#else

block = (CHAR64LONG16*)buffer;
#endif

/* Copy context->state[] to working vars i}
a = context->state[0];
b= context->state[1];
€ = context->state[2];
d = context->state[3];
7*=4context->state[4]; ’ b Loop unrolled. *
rounds of 20 operations each. . .
Ro@b.c,d,e, 0); RO(e,a,g,c,d, 1); RO(d.e,a,b.c, 2); RO(c,d,e,i,b, ;)?
RO(b.c,d.e,a, 4); RO(a,b,c.d.e, 5); RO(e:ab.c.d; 6); RO(d.e.a, ’ii ]1, .
RO(c,d,e,a’b, 8); RO(b,c.d.e.a, 9); RO(a,b,c.d.e;10); RO(e,a,b,c,d , 1)5,.
RO(d,e,a,b,c, 12); RO(c.d,e,a,b,13); RO(b,c,d.e.a,14); RO(a,b,S, ., 1 9;3
l(e,a,b,c,d, 16); R1(d,e.a,b,c.17); Rl1(c,d.e.a.b, 18); R1 (b,g, ,e,lz;,z?’)T
(a,b,c,d,e,p_()); R2(e,a,b,c,d,21); R2(d.e,a,b.c,22); RZ(Z, ,e,i,c,27)?
(bac,d,e,a’24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2( ’e’f; ’ds3l)’
(c’d’e9asb,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); Rz(e’g’ ,3’6’35)?
(deab,c,32); R2(c.d.e.a,b,33): R2(b.c.d.e.a,34); R2(lt;, Z ,3,39)?
(e’&b’c’d’36); RZ(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2( ’;’ 9e’b’43)3
(ab,c.d.e,40); R3(e.a,b,c.d.41); R3(d.e.a,b.c,42); R3(§’ ,6,36,47)?
(b,c’d’e’a’44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3( 9cvta;csd’51)3
(c.d,e,a,b,48); R3(b,c.d,e,a,49); R3(a,b,c.d.e,50); R3(e,§,c,d,e,55)?
(de,ab,c,52); R3(c,d,e.a.b,53); R3(b.c,d,e.a.54); R3(a,0,¢,0,€.59);

100



R3(e,a,b,c,d.56); R3(d.e,a,b,c,57); R3(c.d.e.a,b,58); R3(b.c.d.e.a.59);
R4(a,b,c,d,e’6()); R4(e,a,b,c,d.61); R4(d,e.a,b,c,62); R4(c,d,e,a,b,63);
Rd(b.c,d.e.a64) Ré(ab.c.de65); R4(e.ab.c.d.66); R4(d.e.abe67);
Rd(c,d,e,a,b,68); R4(b.c,d.e,a,69); R4(a,b.c.de,70); R4(e,a,b,c,d,71);
Ré(d,e.ab.c.72). RA(c.d.e.ab.73); RA(b.c.deaT4); Ra(ab.cdeTs);
54(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c.,d.e,a.b,78); R4(b,c.d,e,a,79);
/* Add the working vars back into context.statef] */
COntext->state[0] +=a;

context->state[1] += b;

context->state[2] += c;

Context->state[3] += d;

cfntEXt->state[4] +=¢g;

/* Wipe variables */

8=b=c=d=e=0;

}
Explanation Variables

&b,¢,d, eare working variables instead of using context->state[5]

Pseudo coge
L. Start
2. Initialization
2.1 a->state[0]
2.2 b->state[1]
2.3 c->state[2]
2.4 d->state[3]

3 2.5 e->state[4]
: Hash Function
3.1 For round 0 downto 15
3.1.1 execute RO
3.2 For round 16 downto 19
32.1 execute Rl
3.3 For round 20 downto 39
3.3.1 execute R2
3.4 For round 40 downto 59
3.4.1 execute R3
3.5 For round 60 downto 79
4 3.5.1 execute R4
4 Do addition to the block of MD
4.1 state[0] —a
4.2 state[1] - b
4.3 state[2] — ¢
4.4 state[3] —d
4.5 state[4] — ¢

and the state[5]

101



. Empty the value stored in a, b, ¢, d, e and waiting for the next block of

data to be processed.
6. End

* SHA1Update( )

{* the function of SHA | is to make sure the length of received data within 264 and chop
Itinto appropriate size before sent to SHA1Final */

Void CSHA 1::SHA | Update(SHA1_CTX* context, unsigned char* data, unsigned long
len) .

{
unsigned int fill, left;

left = (context->count[0] >> 3) & 0x3F;
fill = 64 - left;

context->count[0] += len << 3;
context->count[0] &=0xFFFFFFFF;
Context->count[ 1] += len>>29;

if ((context->count[0]) < (len << 3))
{

context->count[1]++;

if (left && len >=fill )
{

memcpy((void *)(context->buffer + left), (void *) data, fill);
SHA 1 Transform(context, context->buffer);

len -= fill;
data += fj)),

left = 0;

While(len >= 64){
SHA 1 Transform(context, data);
len -=64;
data +=64;

iflen){

memcpy((void *)(context->buffer + left), (void *) data, len);

102



E Xplanation Variables

Data — aBuffer
Len - humber of characters in aBuffer
Left - OW many bit still left to be processed
Fil] - fill in the buffer with its number of characters
Pseudo codes
1. Start
2. Iflen—NULL - .
2.1 Return control to calling function
3 Compute left by dividing count [0] with 8 and masking the result with value
64 to make sure it is smaller than 64
4. — 64 left o \ -
3. gg::g::: 311; total bits used by the data by m.ultlpllz(; stl:,ea ]llel: ;\1;1:12
6. Compute the total bits to make sure whether it exce
i = >- fill .
% ;f :eg,.'s_t z)[;;: t,h:n(;iatlzrzmo context-> buffer with the number of character
stored in fill
7.2 Then, call the SHA 1 Transform
7.3 Len - = fill
7.4 Data + =fill
7.5 Left— 0
8. While len>=64
8.1 Call the SHA 1 Transfom
82 Len-=64
8.3 Data += 64
s ;f;en<64th data into context -> buffer with the number of character stored in
-1 copy the da
len
10,

end

103



* SHAFinal

/* The function of SHAFinal is to add padding bit§ and le?ngth bits in to the datz: in order
10 form a 512 bit data block. Lastly, the message digest will be computed here. */

Void CSHA1::SHA I F inal(unsigned char digest[20], SHA1_CTX* context)
{

unsigned long i, j;
unsigned char finalcount[8];

for (i=0; i <8; j++)

finalcount[j] = (unsigned char)((context->count[(i>=4? 0 : 1)] >> ((3-(1 & 3)) * 8)
)& 255); /* Endian independent */
}

SHAIUPdate(context, (unsigned char *)"200", 1);
While ((context->count[0] & 504) = 448)

SHA1Update(context, (unsigned char *)"0", 1);

*
SHA]Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0;i <20; i++)

digest[i] = (unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}

™* Wipe varigbles */

1=j=0;
lnemset(<30ntext—>bufif“er, 0, 64);
1mmlset(COntext->state, 0, 20);
memset(context->count, 0, 8);

Memget . o _ .
#ifder SH&?&T}&S?&% t/;z’make SHA 1 Transform overwrite it's own static vars

SHA| Tl‘ansform(context->state, context->buffer);
?endif

Explanatiop variables

~ Countey
count[8] - plaintext length

104



Pseudo Codes

1.
2.

3,

g B

start

for i — 0 downto 8 .
2(.); lload the length of plaintext in hexadecimal from context ->count[]

Call function SHA 1Update(context, (unsigned char *) “\200”, 1) to add bit “1°
before add padding bit ‘0’

while the total bit in context ->buffer != 448

4.1 append but ‘0’ into buffer . e

Call Ilzli)nction SHA 1Update(context, (unsigned char *) \200f, 1) t?h adfc‘i |
plaintext length (final count) and trigger SHA 1Transform to form the fina
MD . . .

Final MD in context-> state[5] i_s COplei into digest [20]

All counter, variables and state is emptied

End

ii Blindine F unction

CVLon
CVLo
{

g CRSA::blind( const CVLong& vPlainText, const CVLong& vMult, const
Ng &vPrivKey , const CVLong& vRandom)

Teturn modexpblind( vPlainText, vPrivKey, vMult, vRandom );

Ex lanation Variables

VPrivke

vRfllldo

In - Plaintext

Multiple sum value
Y = Public key

M — Random key

Pseudo\(m

1.

Start

. ’
2. Call modexpblind function. The 4 variables are sent to the function

105



& m,
CVLOng modexpblind( const CVLong & x, const CVLong & e, const CVLong & m
const CVLong & r)

{

CMonty me(m);

return me.expblind( r,e,x);
}

Ex lanation Variables

X~ plaintext
e- Public key

M- multiple sum value
I'=random key

Pseudo Codes
1. Start

2 Call function CMonty and send multiple sum vall)lll'e key and plaintext.
3. Call function expblind and send random key, public key

i i tion is essential to
LMonty is a function that initialize the multiple sum value. This functi
Clculate the modular value

{CMOnty::CMonty( const CVLong &M )

m=M; v 4 L
N=0;R=1;while(R<M) {R+=R;N+=1;}
R1 = modinv( R-m, m );

) nl =R - modinv( m, R );

dular inverse
CVLong modinv( const CVLong &a, const CVLong &m ) // modu

Vg 1in range 1..m-1 such that i*a=1 mod m

/{/ A must be in range |..m-1

CVLong j=1,i=0,b=m.c=a,x.y;
While (¢ 1= )
{

x=b/c;
y=b-x*c;
b=c¢:
=Yy
y=
i=i-j*x;
=y

106



}
if(i<0)

1+=m;
}
) return i;

€xpblind function is the main function to calculate the blind plaintext.
Blindtext = (plaintext)(randomkey * publickey) % multiple value.

?VLO“g CMonty::expblind( const CVLong &x, const CVLong &, const CVLong &r)

) return (( monty exp( (r*R)%m, ¢ ) * R1 )* x) % m;

0nty_exp s the function that calculate the exponent value
C
{ VLong CMonty::monty_exp( const CVLong &x, const CVLong &e )

CVLong result = R-m, t = x;

t.docopy():
unsigned bits = e.value->bits();
unsigned i = (;
while (1)
{
if ( e.value->bit(i) )
{
mul( result, t);
}
i+=1;
if (i == bits )
{
break;
H
mul(t, t);

) Teturn result;

107



Chapter 7 System Testing

71 Introduction

System testing is carried out in parallel throughout the software development. It js
€ssential to check a software product meticulously after it has been developed. Testing a
Software product once it is ready to be implemented is far too late. This is because once
the Product is ready to implement, it is difficult to developer to trace the fault. Therefore,
Continuoysly testing ensures the software product is as fault free as possible at all times.

BesideS, System testing also is performed to determine whether the requirements that are

Stated at the early phase of software development are fulfilled.

72 Type of testing
There are a few kind of testing that the author applies while developing the program. The

AUthor ygeg the bottom up system testing approach which means the unit testing came
firs, followed by module testing and integration testing.

*  Unit Testing

Unit testing deals with the smallest and most elementary units of software such as
Sub-function or sub-routine function. For example unit testing is performed on sub-
function of the program which are ProcessSHA, Encrypt, Decrypt, Blind and etc. In
Unit testing which have been done throughout the development phase, is to identify
the error or mistake that might be made. The testing is not only been done once but

Severa] times and each changes that has been made from the testing will also need to

be testeq again.

108



* Module Testing

Module testing is performed on the module of the blind digital signature program. In
blind digital signature program, there are six modules which are blinding module,
signing module, verifying module, key generator module, user authentication module
and about module. Each of this modules has been tested separately by using the
compiler of the Microsoft Visual C++. If there are any syntax errors the compiler
Will inform the author so that the author can fix the error. Although, if no errors

€merge there can be run time errors that need the author to trace the fault in the

Source code by itself.

* Integration Testing

Integration testing is to check that the modules or components combine correctly to
achieve a product that satisfies its specifications. During the integration testing, the
Combination of all the modules had been tested by the build tool of Microsoft Visual

C+, Although there are no error on each of the modules but there can be a linking

CIror when they are integrated to become a one module.

109



Chapter 8 System Evaluation

8.1 Introduction

System evaluation is a process where developer will evaluate the complete software
Product in terms of problems that occur during the development, the strength of the

Software product, the limitation of the software product and the future enhancements for

the system in order to get a more satisfactory system.
82 System Strengths

* User Friendly

The interfaces design in blind digital signature program is very understandable. It

Means that user can easily understand on how to use the program. The grouping of the
Certain task make user understands what they need to do first. Besides, instead of the

i te the task.
button the interfaces also provide menus and icons for the user to execute

Moderate security

Besides this program used 128-bit key for the encryption where the security level

Provided s considered low to moderate.

110



83

® User Authentication

Instead of the encryption key usage, blind digital signature program also provide a
Security where forbidden unauthorized user to make use of the application for

Masquerading or fraudulent. It means this application acquired the user to

authenticate itself before enter the application.

* Response time

In addition, this application takes less than 3 seconds to generate a digital signature

for a document with approximately 30 000 characters.

System Limitations

* Process text file — Blind signature application only can process the document that
in text file and it’s own generated file such as signed and blinded file.

* Edit Box — the program cannot accommodate 2764 / 8 bytes of characters. The
Performance of the system can be tested and evaluated at the maximum as the
SHA1 only accepts the most 264 bits of input.

* Key storage- this program cannot keep the keys secretly. User have to manually

Copy, type or store the copy in a different but removable storage medium.

Recommendation for Future enhancement

* Dus 1o the speed of program, with hardware implementation, the time required
for blinding, signing and verifying can shorten and completed in shorter CPU
Cycles thus increase the system performance.

111



® Secured key storage- A key storage with proper encryption or password protected
can be developed to allow users keep their key systematically and safely.

® Higher key length- Develop a program that can support higher key length where
the more higher the key length the more higher level of security as penetrator
requires longer time to break through encryption.

® Unblind- Hopefully, in a future the program can be develop with the unblind
function that can extract the valid digital signature from the blind signature.

Besides, the unblind process also can change back the unblind message to the

original message.
8.5 Problem Discussions and solutions

In this section, the problem with the solutions that the author faced will be discussed and
listeq below. But not all the problems that the author faced come up with solutions. In

this case the author decides to discuss and gives some example to proof that the author

does Not meet the solutions.

1. Due to limited knowledge on using the Microsoft Foundation Classes (MFC)

which is the built in function that Visual C ++ provided, the author who is the first

timer has a big problem while relating the interfaces with the coding that
determines the action that it should take. Furthermore, because of so limited
People knows about the MFC the author have to learn from the book by itself.

Unfortunately, the author also unable to get useful books as guidance due to the

limited resources.

112



Solution:

One of the solutions is, the author has to buy the books by itself and have to spend a

lot of times by doing research on how to use the MFC.

2. Blind signature is a new concept that hardly to understand. In addition, there are
so limited resources whether on the internet or books that the author can refer as
guidance. All sources on the internet are same and no test data given on the
calculation. For example, for the unblind process, the formula that stated cannot

be proven. Below are the sample of test data that indicates the problems.

Key Generation

Select two primes p and g:

p=3,q 13

n=pq
=(5)(13)
=65

(p-1) (g-) =@ (n)
(5-1)(13-1) = 48

Choose number ¢ between 5 and 48, that relatively prime to 48:
e=11;

Choose d, such that ed mod (p-1) (¢-1) = 1:
edmod 48 =1

11(d) mod 48 = 1
d=35
(11) (35) mod 48 = 1
(11) (35) = 385
385 mod 48 = 1

ThGYEfore, |
Public key (e, n) : (11, 48)

Private key (». ¢, ) : (5, 13, 35)

113



Blinding process

givingm=2;r=5;
m’ = (r “)(m) (mod n)
=(5"11)(2) (mod 65)
=55

Signing process

§'=(m’“) (mod n) p
= [~ )(m)] ¢ (mod n)
=(r ) (m°) (mod n)
ed=1;
=r (m% (mod n)
= (2%)(5) mod 65
=35

Unblinding process

Unblinding process is a process that extract the appropriate signature, s, for the
original message, m, from the signature that generate on blinded message, m’,
After the blinding process, the author supposedly has a valid digital signature, s,

on the original message value, m.

s=s/r (mod n)
= 35/5 mod 65
=7

Verifying process

The problem emerges on verifying process where the original mes.sage valu'e
Cannot get it back. As for digital signature, to know whe‘the.r the signature is
indeed valid we have to do a comparison between the venfymg res!llt alfd the
Original message value. If both of the values are same, t.he signature is valid but
if it is not the signature is not valid. Due to the blll.ld s.lg.natun.-e, after the
Unblinding process the author supposedly to have a v.al.ld digital signature but
"ﬂfortunately the author cannot proof the validity of the _signature.
Tbeoreﬁcauy, the message value, m, is 2 but what the author get here is 28.

m = (s ©) (mod n)
(=28)

114



Solution:

As for this problem, the author does not find a good solution even trying so hard. Due to
that, this blind signature program does not provide the unblinding function. The program

only can verify the signature on blinded message instead of the original message.

3 At the testing stage, the author unable to provide a complete blind signature test

data to the supervisor and moderator.

Solutions

As the mathematic calculations involved were 100 complicated, the author separated the

testing data into two distinct parts. The author used different inputs for each for the ease
2 1 :

of calculation.

115



References

http://searchsecurity.techtarget.com/sDefinition/0..sid14_gci214431,00.html

http://www.garykessler.net/library/crypto.html#fig01

http://www.x5.net/fags/crypto/q94.html

http://www.rsasecurity.com/rsalabs/node.asp?id=2252

http://searchwebservices.techtarget.com/sDefinition/0..sid26 gci212415.00.html

http://searchvb.techtarget.com/sDefinition/0..sid8 g¢i213309.00.html

http://www.votehere.net/remotevote.html

http://www.articsoft.com/fileassurity.htm

http://www.verisign.com/products-services/security-services/code-signing/digital-ids-

code-signing/index.html

http://www.elock.com/products/prosigner/

http://ntrg.cs.tcd.ie/mepeirce/Project/double.html

http://www.rsasecurity.com/rsalabs/node.asp?id=2339

http://www fact-index.com/b/bl/blind signature.html

http://www.ici.ro/ici/revista/sic2003_4/art2.pdf




http://theory.lcs.mit.edu/~cis/theses/ramzanms.pdf




Bibliography

Tan Loo Geck. (2003). Implementing Digital Signature Method Jor Secure Business

Transaction. Thesis. University of Malaya.
Mohan Atreya. (2002). Digital Signatures. New York : MacGraw-Hill/Osborne

Ed Tittle, Mike chapple, James Michael Stewart. (2003). CISSP: Certified Information

Systems Security Professional Study Guide. Florida : Sybex.

Suranjan Choudary, Karthik Bhetnagar, Wasim Haque and NITT. (2002). Public Key

Infrastructure Implementation and Design : John Wiley & sons.

Nadir Gulzar and Kartik Ganeshan. (2003). Practical J2EE Application Architecture.

New York : MacGraw-Hill/Osborne.

William Stallings. (2000). Network Security Essentials : Applications and Standards.

New Jersy: Prentice Hall.

William Stallings. (2003). Cryptography and Network Security : Principles and Practies

3 New Jersy: Prentice Hall.

Stephen R.Schach. (2002). Object Oriented and Classical Sofiware Engineering. New

York : MacGraw-Hill/Osborne.



A. Appendix

B. RSA Test Data
C. Source Code
D. User Manual



Appendix B



RSA Test Data

Key Generation

Select two primes p and g:
p=5,4q=13
n=p.q
=(5)(13)
=65

(p-1) (g-1) =@ (n)
(5-1)(13-1) = 48

Choose number e between 5 and 48, that relatively prime to 48:
e=11;

Choose d, such that ed mod (p-1) (g-1) = 1:
edmod 48 = 1
11(d) mod 48 =1
d=35
(11) (35) mod 48 = 1
(11) (35) =385
385 mod 48 =1

Therefore,
Public key (e, n) : (11, 48)
Private key (p, ¢, d) : (5, 13, 35)

Blinding process

givingm=2;r=35;
m’ = (r*Xm) (mod n)
= (5711)(2) (mod 65)
=55



Signing process

s’ =(m*) (mod n)
= [(r Ym)] ¢ (mod n)
= (r “) (m") (mod n)
ed=1;
=r (m") (mod n)
= (2%”)(5) mod 65
=35

Unblinding process

m = (m’/r) (mod n)
= (mr)/r (mod n)
=mr " (mod n)
=(2)(5 """) (mod 65)
=2

Verifying process

m’ = (s ) (mod n)
= 35" mod 65
=55



Appendix C



Key generator Module

/* Generate two primes numbers*/
void CRSA::createKey( CVLong& vMult, CVLong& vEncKey, CVLong& vPrivKey )

{

// Choose primes

CVLong vPrimel;
CVLong vPrime2;
CPrimeFactory objPrimeFact;

// need to randomly generate two numbers -
srand( (unsigned)( time( NULL ) ));
unsigned ul=rand();

srand( ul );

CVLong vRandl =ul * rand();

vPrimel = objPrimeFact.find_prime( vRand1 );
srand( (unsigned)(ul * ::GetTickCount()) );

unsigned u2=rand();

srand( u2 * ul );
CVLong vRand2 = u2 * rand();
vPrime2 = objPrimeFact.find_prime( vRand2 );

if ( vPrimel > vPrime2 )

{
CVLong vTmp = vPrimel;

vPrimel = vPrime2;
vPrime2 = vI'mp;

}

// Calculate public key

vMult = vPrimel * vPrime2;
vEncKey = 50001; // must be odd since vPrimel-1 and vPrime2-1 are even

while ( ged( vPrimel-1, vEncKey ) != 1 || ged( vPrime2-1, vEncKey ) 1= 1)
{

}

// Calculate the private key
vPrivKey = modinv( vEncKey, (vPrimel - 1) * (vPrime2 - 1) );

vEncKey +=2;

// Calculate the random key
vRandomKey = 2+rand()%100;



/* Fermat .Theorem. A number is probably prime if it fulfills the requirements of this
mathematical equation of the teorem*/

int CPrimeFactory::fermat_is_probable prime( const CVLong &p )
{

// Test based on Fermats theorem a**(p-1) = 1 mod p for prime p

// For 1000 bit numbers this can take quite a while

const rep = 4;

const unsigned any[rep] = { 2,3,5,7 /*,11,13,17,19,23,29,31,37..*/ };
for ( unsigned i=0; i<rep; i+=1)

{ if (modexp( any[i], p-1,p) !=1)

{ return 0;
}

}

return 1;

}
CVLong CPrimeFactory::random( const CVLong &n)

{ CVLong x = 0;
while (x <n)
{ x =x * RAND MAX + rand();
} return x % n;

}

/* To find a prime number, it must fulfill the equation n-1 = 2”kq, n= prime number,
q=odd */

int CPrimeFactory::miller_rabin_is_probable - prime( const CVLong & n)
{

srand( (unsigned) time(0) );

unsigned T = 100;

CVLong w =n-1;

unsigned v = 0;

while (W% 2!=0)

{ G
w=w/2;

}

for (unsigned j=1:j<=T:j+=1)

{ CVLong a= 1 + random( n);
CVLong b =modexp(a, w,n);
if(b!=1&&b!=n-1)

unsigned i = 1;
while (1)
{ if (i==V)
{ return 0;

}
b= (b*b) % n;
if (b=n-1)



{

break;
b
if(b=1)
{ return 0;
Ji+=1;
H
}
jreturn 1;

}

/* To determine whether the randomly generated numbers are really prime or not by
using Fermat and Miller Rabin Theorem */

int CPrimeFactory::is_probable_prime( const CVLong & n )

{
return fermat_is_probable prime(n) && miller_rabin_is_probable _prime( n);
}
CPrimeFactory::CPrimeFactory( unsigned MP )
{

np = 0;

// Initialise pl
char * b = new char[MP+1]; // one extra to stop search

for (unsigned i=0;i<=MP;i+=1)

{
b[i] = 1;
}
unsigned p = 2;
while (1)
{
// skip composites
while ( b[p] =0)
{
p += l;
b
if (p=MP)
{
break;

)

np +=1;
// cross off multiples



unsigned ¢ = p*2;
while (¢ <MP)

{
blc] =0;
c+=p;

p+=1;
j

pl = new unsigned| np ];
np = 0;
for (p=2;p<MP;p+=1)

{
i{f (blp])
pl[np] = p:
np +=1;
}
}
delete [] b;
}

CPrimeFactory::~CPrimeFactory()
{

}

/* Find Prime Numbers */
CVLong CPrimeFactory::find prime( CVLong & start )

{

delete [] pl;

unsigned SS = 1000; // should be enough unless we are unlucky
char * b = new char[SS]; // bitset of candidate primes

unsigned tested = 0;

while (1)
{

unsigned i;
for (i=0;i<SS;i+=1)

d
}

for (i=0;i<np;i+=1)

{

b[i] = 1;

unsigned p = pl[i];
unsigned r = to_unsigned(start % p); // not as fast as it should be -

could do with special routine



{
r=p-r;
H
// cross off multiples of p
while (r<SS)
{ b[r] = 0;
r+=p;

}
}

// now test candidates
for (i=0;i<SS;i+=1)
{ if(b[i])
{ tested += 1;
if (is_probable_prime(start) )
{ delete [] b;
return start;

}
}start += 1;

}

int CPrimeFactory::make prime( CVLong & r, CVLong &k, const CVLong & min p)
// Divide out small factors or r
{ k=1;
for (unsigned i=0;i<np;i+=1)
{ unsigned p = pl[i];
// maybe pre-computing product of several primes
// and then GCD(r,p) would be faster ?
while (r% p==0)
{
if(r==p)
{

}

return 1; // can only happen if min_p is small
r=r/p;
k=k*p;

if (r<min_p)
{

}

return 0;



}
return is_probable prime( r );
}
CVLong ged( const CVLong &X, const CVLong &Y )

{
CVLong x=X, y=Y;
while (1)
{
if(y=0)
{

}

return Xx;

x=x%y;
if(x=0)
{

}
y=y%Xx;

return y;

}

CVLong modinv( const CVLong &a, const CVLong &m ) // modular inverse
// returns i in range 1..m-1 such that i*a =1 mod m
// a must be in range 1..m-1

{
CVLong j=1,i=0,b=m,c=a,x.y;
while (¢ !=0)
{



Signing Module

CVLong CRSA::encrypt( const CVLong& vPlainText, const CVLong&
CVLong& vPrivKey ) > ong& vMult, const

{
}

CVLong modexp( const CVLong & x, const CVLong & e, const CVLong & m )
{

return modexp( vPlainText, vPrivKey, vMult );

CMonty me(m);
return me.exp( X.€ );
}
CMonty::CMonty( const CVLong &M )
{
m=M;
N=0;R=1;while(R<M){R+=R;N+=1;}
R1 = modinv( R-m, m );
nl =R - modinv( m, R );
H
CVLong CMonty::exp( const CVLong &x, const CVLong &e )
{
return ( monty_exp( (x*R)%m, e ) *R1) % m;
}

void CMonty::mul( CVLong &x, const CVLong &y)

{
/I T =x*y;
T.value->fast_mul( *x.value, *y.value, N*2);

//k=(T*nl)%R;
k.value->fast_mul( *T.value, *nl.value, N );

/x=(T+k*m)/R;
x.value->fast mul( *k.value, *m.value, N*¥2 );

x+=T,
x.value->shr( N );

if (x>=m)

d
}

X ~—Mm;



CVLong CMonty::monty exp( const CVLong &x, const CVLong &e )

{

CVLong result = R-m, t = x; // don't convert input
t.docopy(); // careful not to modify input
unsigned bits = e.value->bits();

unsigned i = 0;
while (1)
if ( e.value->bit(i) )
{
mul( result, t);
}
i¥=1;
if (i==bits)
{
break;
!
mul( t, t);

return result; // don't convert output



Appendix D



User manual

This section provides a guideline to user on how to use the blind signature application.
Blind Signature application has two interfaces where the first interface only allow user to
blind the document and generate the random key. The other interface let the user to
generate the public key, private key and multiple sum value and also permit the user to
sign the blinded document and verify the signed document. The existing of these two
interfaces because there must be two kind of user which are the one who need the digital

signature (user) and the one who will generate the signature (administrator) at the same

time.

First of all, user needs to double click on the blind signature icon. Once the icon has been
clicked, the authentication dialog box appeared. Then, user need to key in the username

and password in order to enter the program. To make it easier both of the interfaces used

the same username and password.

Username: Administrator

Password: Admin

(U —————

Password: F:ﬂ

0K Cancel J

|
User ID: izgninistlatm i }
|
[

Figure 1: Log In Dialog Box



User Interface

Once the user is authenticated, the main interface appeared. Below are the figures of the

user main interface.

[ BlindDigSigne :
SavaAs Genl(oy “BindFle SmFle VarfyFls Clear Document Exit About

mﬂem-ow-] i

%,w

[

\\\

Save

Figure 2: User main interface

|
|
S
|
|

Blinding
process

Key
Generator

Then, user need to enter a document that they intent to blind. Here, user have been given

two choices whether to retrieve the document or type the document at the document part.

While user clicks the open task, a dialog as show in figure 3 appeared.



-~

Look if: | L) Debug ~| - @B ek E-
B

jE’l ikan

1

|

|

{

File name: | Open
Files of type: | Text Files (*.tx) v Cancel ]

Figure 3: Open file dialog box
Once the document showed in the document part user now need to generate the random

key. When user click the key generator button, figure as shown in figure 4 emerge.

e

Generated Keys

Private Key (to be kept secret)

Random Key(r; 00000028

0K

Figure 4: Random Key dialog box



Next, user can now blind the document by clicking the blind button. The public key and

the multiple sum value are generated by the administrator. So, the user must get the key

value before proceed to the blinding process.

Blind Key -

Key information

Public Keyle} ~ |0000C353

Multiple Sum{n} | 3BBEADB700401331

Random Key(r} 00000028

oK

Cancel

Figure 5: Blind Key dialog box

Once the OK button is clicked the blinding process proceed as shown in figure 6.

e
R = s s = @ O =

Figure 6: Blinding process progress

Document Blind Tasks
Musfirah Mohd Ali 831110146260
Blind !!
=}
Progress fFSI :
| e
|
o D AN SO L S S SO
Generate Key
Digital Signature Clear Doc



OpenFie SaveAs Genkey BindFie SinFle VerffyFle ClearDocument Exit About ’

J R = s s =@ 6 m |

Document [
0SF 4306400760407 Biind Tasks B
Blind |

|

Task Selection ‘

é
§

Digital Signature Clear Doc

Figure 7: Blinding result

After that, user needs to save (*.blinded) the blinded document as for the administrator to

sign.
e — Bx
Save in: | ) Debug ~ - @ ckE-
O : s ot
[] ikan

Flename: | | Seve |
Cancel

Save as type: | Text Files [*.txt) -

ext 4
Blinded Files(".blinded]

Figure 8: Save dialog box



Administrator Interface

R —————— O
OpenFile SaveAs Genkey BindFie SinFle VerfyFle Clear Document Exit About |
Q@r sl =0 e = ‘;
oen | A ﬂ
// Rooumest Blind Tasks i
Save : ‘
|
Task Selection | |

@ . Signing

'J‘ Process
|

{ M —
Veiiy Fie ¥+ erifying
= 1 Process
. | | generation

l
Digha Signature CloarDoc | JJ
1
|
]

Figure 9: Administrator Main Interface



On the administrator side, administrator needs to open the blinded document that the user

had saved before. By clicking the open task, the administrator will choose the blinded

document that intent to be signed.

Open — ——e
Look in: | ) Debug ~| - @ ef E-
Bl '

] ikan

~

Fiename: | [_Oeen |
Files of type: | Text Files [*.t) =l Cancel |

Text Files [.tat)
Signed Files (*.signe)
Blinded Files (* blinded)

Figure 10: Open dialog box
Then, the administrator need to generate keys by clicking the key generator button as

shown in figure 11.

LA

Generated Keys

Private Key (to be kept secret]
Private Key (d} ~ |42DSCFABOO7EBOEA

Public Key Components (to be distributed)

Public Key (e} [m:;

Muliplied Sum (n}: | 3BEEAOB700A01931

OK

Figure 11: Key generator dialog box



Now, the administrator can proceed to sign the document by clicking the sign button.
@ BhindlhoeSten X

alel(als|m|e|e|m

Document Blind Tasks
0SF4306400760407
T T Y o TUAT ey ot - m—— peee—
Key Input
Task Selection
Key information

Private Key (d} | 42D5CFABOO7EBOEA
Muliplied Sumin} | 3BEEAOB700A01331

Sign File

I OK I Cancel Verly File

Generate Key

Digital Signature Clear Doc

Figure 12: Signing Process



@i
Se= s s = @ 6 m

SR Blind Task
09F 4306400760407 .
f (il bk aniet o n e AR (ol Y ™ i -~
1ess
k Selection
Processing ... -
B SESSS Sign File
1 O | i B
Verify File
Generate Key
Digital Signature Clear Doc

Figure 13: Signing Progress




OpenFlle SaveAs GenKey BindFie SignFile VerifyFile Clear Document Exit About

%= s =@ O m

Document

0SF 4306400760407

Blind Tasks

Verify File
Generate Key

Clear Doc

Figure 14: Signing Result




Finally, the signature can easily verify in order to know whether the signature is indeed
valid as shown in figure 15.

Jel=als =20 6 m

Document
s ; - Blind Tasks |
r.ﬁ.‘;g"a— T ——
Key information Task Selection
Public Key (e} |0000C353
Multiplied Sum(n} [immm 931| Sign File '
I oK | Cancel ‘
Verily File ;
\
J
Generate Key r
Digital Signature = Clear Doc
B3F44
26784382138 9E DOBCOBE 7453795 1

F7ABCSBOO7FE1E4

Figure 15: Verifying process



R = ss =0 6 =

Document

0SF 4906400760407

Blind Tasks

Task Selection

Sign File j

Verify File

Generate Key

Clear Doc

Figure 16: Verifying result





