
Blind Signature

Musfirah Mohd Ali WEK020147

Supervisor : Mr. Yamani Idna Idris
Moderator: Mrs. Rafidah Md Noor

Univ
ers

ity
 of

 M
ala

ya

Abstract

In this thesis the author introduce a cryptographic construct called Blind Signature. This

thesis is enhanced from digital signature system. The aim for this project is to develop

reliable software which is capable to protect the data integrity and authenticity using

blind signature method. Blind signature allcw user to digitally sign the document

without knowing the contents of the document. The signature has a blindness property,

so if the signer later sees a document he has signed he will not be able to determine

when or for whom he signed it.

The organization of this report is divided into five chapters. The first chapter is about the

objectives, motivations, scope and limitation of this project. Then, in order to construct

the blind signature system that used an appropriate kind of method, the author did a deep

research and comparison on the existing cryptography, programming languages,

algorithms and systems which are explained in chapter two of this project. Beside, the

author also used the software methodology model as a guidance to produce a report

smoothly and on time. The chosen methodology is explained in chapter 3. In chapter 4

of this project explained the system requirements which are functional and non­

functional requirements. This chapter also enlightened what kind of scheme that the

author chose for this system. Finally, the system design is developed. In this chapter 5

the overall architecture of the system, the data flow diagram and the system interface

prototype is presented.

Univ
ers

ity
 of

 M
ala

ya

Acknowledgement

First and foremost, I would like to thank my advisor En Yamani Idna Idris for his

invaluable source of help while conducting the research that eventually evolved into this

thesis. He helped the author to generate the idea and spent a considerable amount of time

making sure that the author had a deep understanding on the research.

Additionally, the author also would like to thank to anyone who had contributed directly

or indirectly during the progress of this project.

II

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Illustrations

Chapter 1:
1.1
1.2
1.3
1.4
1.5

Chapter 2:
2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

Introduction
Aim
Problems and Motivation
Objectives
Project scope
Limitations

Literature Review
The Background of Cryptography
Cryptographic Primitives
2.2.1 Block Ciphers
2.2.2 Additives Stream Ciphers
2.2.3 Cryptographic Hash Functions
Secret Key Cryptography
2.3.1 Feistel Cipher Structure
2.3.2 Symmetric Encryption Algorithm

2.3.2.1 Data Encryption Standard
2.3.2.2 International Data Encryption Algorithm
2.3 .2.3 Blowfish

Public Key Cryptography
2.4.1 Public Key Algorithm

2.4.1.1 Rivest, Shamir, Adleman (RSA)
2.4.1.2 Digital Signature Algorithm (DSA)

Hash Functions
2.5.l One Way Hash Funtions

2.5.1.1 Secure Hash Algorithm (SHA-1)
2.5.1.2 Message Digest 5 (MD5)

Overview of Blind Signature
2.6.1 Application on Online Voting

Blind Signature Scheme
2.7.1 Blinding the RSA Signature Scheme

2. 7 .1.1 Blind Signature Protocol
2.7.2 Blind Schnorr Digital Signature Scheme

2.7.2.1 The Original of Schnorr Signature Scheme
2.7.2.2 Blinding the Original of Schnorr Signature Scheme

Programming Language
2.8.1 Microsoft Visual C ++
2.8.2 Java
2.8.3 Visual Basic

II

lll

VI

1
1
1
2
3
3

5
7
7
8
10
10
I 1
12
15
15
17
18
18
21
21
23
24
26
27
33
34
36
39
39
40
41
41
42
43
43
44
45

111

Univ
ers

ity
 of

 M
ala

ya

2.9 System Review 45
2.9.1 Online Voting System (OVS) 46
2.9.2 Remote Vote 48
2.9.3 SafeGuardSign and Crypt 50
2.9.4 FileAssurity 51
2.9.5 Verisign Code Signing for Digital IDs 52
2.9.6 E-Lock Prosigner 53

Chapter 3: Methodology 58
3.1 Waterfall Model 58
3.2 Information Gathering 60

Chapter 4: System Analysis 62
4.1 System Requirements 62

4.1.2 Functional Requirements 62
4.1.2.1 The Signing Process 62
4.1.2.2 The Unblinding Process 64
4.1.2.3 The Verifying Process 65
4.1.2.4 Key Generator Module 67
4.1.2.5 About Module 67
4.1.2.6 User Identity Verification Module 67

4.1.3 Non Functional Requirements 67
4.2 Run Time Requirements 68
4.3 Cryptography 68

4.3.1 Encryption Algorithm 69
4.4 Hash Algorithm 70
4.5 Programming Language 72

Chapter 5: System Design 73
5.1 System Architecture 73
5.2 Data Flow Diagram 73
5.3 Interface Design 75
5.4 Interface Flow Chart 78

Chapter 6: System Implementation 81
6.1 Introduction 81
6.2 Development Environment 81

6.2.1 Hardware Tools 81
6.2.2 Software Tools 82

6.3 System Development Tools 82
6.3.1 User Interface Development 82
6.3.2 User Authentication Dialog 83

6.3.2.1 Log In Dialog 83
6.3.2.2 Error Message 83
6.3.2.3 Blind Key Input Dialog 84
6.3.2.4 Private Key Input Dialog 84
6.3.2.5 Verifying Key Input Dialog 85

IV

Univ
ers

ity
 of

 M
ala

ya

Chapter 7:
7.1
7.2

Chapter 8:
8.1
8.2
8.3
8.4
8.5

References
Bibliography
Appendix

6.3.2.6 Warning Message
6.3.3 Main Interfaces

6.3.3.1 Open I Save File
6.3.3.2 Generate Key
6.3.3.3 Blinding Task
6.3.3.4 Signing Task
6.3.3 .5 Verifying Task
6.3.3.6 Exit

6.3.2 Code Development

System Testing
Introduction
Type of Testing

System Evaluation
Introduction
System Strength
System Limitation
Recommendation for Future Enhancement
Problem Discussion and Solutions

86
87
89
90
92
93
94
95
95

108
108
108

110
110
110
111
111
11 2

v

Univ
ers

ity
 of

 M
ala

ya

List of Illustrations
Figures:
Figure 2.1 Model of Symmetric Encryption
Figure 2.2 The Structure of the Feistel Cipher
Figure 2.3 The Single Iteration of DES Algorithm
Figure 2.4 The Process of Triple DES
Figure 2.5 Public Key Cryptography for Encryption
Figure 2.6 Public Key Cryptography for Authentication
Figure 2. 7 Digital Signature Using RSA Approach
Figure 2.8 Digital Signature Using DSA Approach
Figure 2.9 (a) Message Authentication Using Conventional Encryption
Figure 2.9 (b) Message Authentication Using Public Key Encryption
Figure 2.9 (c) Message Authentication Using Secret Value
Figure 2.10 The processing of a Single 512- bit block
Figure 2.11 Message Digest Generation Using SHA- I
Figure 2.12 The Elementary SHA Operation
Figure 2.1.3 Circular Left Shift Rotation
Figure 2.14 The Signing Process
Figure 2.15 The verifying process
Figure 2.16 The Ballot of the Online Voting System(OVS)
Figure 2.17 The Administrative Side of Online Voting System (OVS)
Figure 3.1 The Waterfall Model
Figure 5.1 Overall System Architecture
Figure 5.2 Data Flow Diagram
Figure 5.3 The System Main Interface Prototype Design
Figure 5.4 Key Pop Up Menu Prototype Design
Figure 5.5 Signing Process Interface prototype Design
Figure 5.6 The Interface Flow Chart
Figure 6.1 Log In Dialog Box
Figure 6.2 Error Message
Figure 6.3 Blind Key Input Dialog
Figure 6.4 Signing Key Input Dialog
Figure 6.5 Verifying Key Input Dialog
Figure 6.6 Error Message Dialog Box (Public Key and Private Key)
Figure 6.7 Error Message Dialog Box (Multiple Value)
Figure 6.8 Error Message Dialog Box (Random Key)
Figure 6.9 Error Message Invalid Signature
Figure 6.10 Informing Message Valid Signature
Figure 6.11 Main Interface
Figure 6.12 Open File Task
Figure 6.13 Save Task
Figure 6.14 Key Generator
Figure 6.15 Blinding Process
Figure 6.16 Signing Process
Figure 6.17 Verifying Process
Figure 6.18 Closing Program

12
14
16
17
20
20
22
24
26
26
27
28
29
31
32
38
39
46
48
60
73
74
76
77
78
80
83
83
84
85
85
86
86
86
87
87
88
89
90
91
92
93
94
95

VI

Univ
ers

ity
 of

 M
ala

ya

Tables:
Table 2.I Summarization of the Using Algorithm on the Existing System 56
Table 4. I The Differences and Similarities between SHA- I and MD5 70
Table 4.2 Performance of MD5 and SHA-I Algorithm on 850 MHz Celeron 71

VIJ

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.1 Aim

This thesis introduces the notion of blind signatures and provides a construction which

enables us to realize this notion. Blind signature is capable to protect the integrity and

authenticity of the data by enables the signer to sign the document without knowing the

contents. Therefore, through this research, the author should be competent to understand

and implement the knowledge of blind signature through the software that will be

develop at the end of this research.

1.2 Problem and Motivation

Computerized transactions of all kinds are becoming ever more pervasive, nowadays.

Because of this phenomenon, security is most important thing that simply to be done

since the amounts of money are involved in every task of the scheme. Therefore, there

should be a technique that can avoid the possibility of fraud during the transaction. As a

result, the first approach of this crisis which is digital signature is introduced.

Digital signature is the electronic analog of the traditional handwritten signature. This

scheme allowed the signer to sign the document using the private key and only parties

that have the signer's public key can verify the document to proof that the document is

sent by the signer. Although this method is considered as a secured system, but it has no

privacy. This is because the parties whoever involved in this virtual communication

possibly will track where or what the purpose of the transaction that is being done.

Supposed that the purchased of goods using electronic cash is untraceable or the voting

is progress without revealing the identity of the voter.

1

Univ
ers

ity
 of

 M
ala

ya

As a consequence, blind signature scheme is proposed to make sure the transaction

between two parties is secure and untraceable to protect the individual ' s privacy.

Thus, because of the insufficient of digital signature scheme, it motivates the author to

make a deep research on blind signature. Unlike the digital signature, blind signature

allowed the signer to sign the document without revealing the content.

1.3 Objectives

In order to have a deep understanding on blind signature, the objectives of this research

have been made as guidance to the author while producing a good report.

a) Background research on blind signature

Preliminary study on what is exactly the blind signature and how they work

is done. Besides, the investigation on the existing encryption and

authentication method that being used in blind signature scheme is made to

make the understanding of blind signature as clear as possible.

b) Generation of the blind signature ideas

After a deep research on the existing method of encryption and authentication

method, the determination on what kind of method that the blind signature

should operate is decide.

c) Hardware and software investigation and comparison

The comparison of the performance on the existing hardware and software

should be made to help the author on deciding what the specification of

hardware and software that the blind signature system should operates.

d) Familiarize with the algorithms of hash function and encryption function

2

Univ
ers

ity
 of

 M
ala

ya

The research on the flow and the architecture of the algorithms of hash and

encryption function is totally completed to make sure the implementation of

the algorithms is successful.

e) Understanding of data flow in blind signature system

The flow of the system should be fully understood to make sure the progress

of the system work as the author antfoipates.

f) System design

The system was designed based on the data flow diagram.

1.4 Project Scope

Below are the scope of the blind signature system should operate:

• This system had basic features that blind signatures system required such as

blinding the document, unblinding the document, signing and verifying the

document.

• Only two parties can be involved each time a communication is being held.

• The system is developed based on the application of online transaction which

required the same level of security.

1.5 Limitations

While developing the blind signature system, a few limitations had been discovered

which are stated below:

3

Univ
ers

ity
 of

 M
ala

ya

• Although the public key encryption is much secure than secret key encryption,

but the speed on using public key encryption is much slower than secret key

encryption.

• Besides, anything changes in a signed document will affect the verification

process. System will fail to verify the signature although it caused by a

transmission error not the attempt to forge the signature.

• If the third party finds out the private key and the random key, the possibility to

forge the signature or to reveal the content of the signature is high.

• If unauthorized third party know how the exact calculation on producing the

individual's private key by deriving it from public key, it is possible to the

attacker to reproduce a new private key.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.1 The background of Cryptography

1Cryptography existed since 4000 years ago arid the usage of this method become more

vital day by day as a consequence to tremendous growth of internet. Thus, the

2cryptanalyst has struggles to bring up the new technique of cryptography that

significarice to the rapid development on computer technology. Cryptography cari

described as a complex mathematical technique of encoding a 3plaintext to 4ciphertext to

avoid ariy unauthorized parties to read or alter the text. Modem cryptography concerns

itself with the following four objectives:

1) Confidentiality - the information cannot be understood by ariyone for whom it was

unintended

2) Integrity - the information cannot be altered in storage or trarisit between sender arid

intended receiver without the alteration being detected.

3) Non-repudiation - the creator/sender of the information cannot deny at a later stage

his or her intentions in the creation or trarismission of the information.

4) Authentication - the sender and receiver cari confirm each others identity arid the

origin/destination of the information.

1 Cryptography is the art of concealing information using encryption [Eric Maiwald, 2000)
2 An individual who use cryptanalysis to identify and use weaknesses in cryptographic algorithms.
{Eric Maiwald, 2000)

Plaintext is the original message or data that is fed into the algorithm as input [William Stallings, 2000)
4 Ciphertext is the scrambled message produced as output. It depends on the plaintext and the secret key.
For a given message, two different keys will produce two different ciphertext. [William Stallings, 2000)

5

Univ
ers

ity
 of

 M
ala

ya

[http://searchsecurity.techtarget.com/sDefinjtion/O,,sid 14 _gci214431 ,00.html,

September 2004]

Below are a few techciques for transforming the plaintext to ciphertext:

a) Substitution

i) Polyalphabetic

Periodic

Non-Interrelated Alphabets

Interrelated Alphabets

Pseudorandom key

Non periodic

Non random key, random key

ii) Polygraphic

Digrraphic, Algebraic

iii) Monoalphabetic

Standard, Mixed Alphabet, Homomorphic, Incomplete Mixed Alphabet,

Multiplex, Double

6

Univ
ers

ity
 of

 M
ala

ya

iv) Fractionating

Bifid, Trifid, Fractionated Morse, Morbit

b) Transposition

i) Geometrical - Rail fence, Route, Grille

ii) Colummar

Complete - Cadenus, Nihilist

Incomplete - Myskowski, Amsco

iii) Double - U.S Anny Transposition Cipher

There are, in general, three types of modem cryptography algorithm which are secret

key (or symmetric) algorithms, public-key (or asymmetric) algorithms, and hash

functions algorithms. Besides, there are also three types of secret key cryptographic

primitives: additive stream cipher, cryptographic hash functions and block ciphers.

These six types of cryptographic will be explained through out this chapter. But the

author will concentrate on the modem cryptography.

2.2 Cryptographic Primitives

While developing any application (software), security is the most important thing that

needs to be done. Therefore, nowadays numerous applications use implementation of

cryptographic algorithm to provide a security that resistance against attacks and at a low

cost. Besides, the implementation of the algorithm also must not reduce the performance

7

Univ
ers

ity
 of

 M
ala

ya

of the application. One of the advantages of primitives cryptography is that it is usually

much faster than public-key cryptography. This is because primitives cryptography only

used a single key (secret key) to encrypt and decrypt the message. But the difficulty with

secret key cryptosystems is sharing a key between the sender and receiver without

anyone else compromising it. In a system supporting a large number of users the key

management problems can become very severe. Three types of cryptography primitives

are discussed in this section. Block ciphers are used to encrypt data. If block ciphers is

not fast enough, additive stream ciphers are used as an alternative. Besides, in order to

ensure the integrity of data cryptographic hash functions are used.

2.2.1 Block Ciphers

A block cipher is defined as a set of Boolean permutation operating on n-bit vectors.

This set contains a Boolean permutation for each value of a key. In other words, it

transforms a fixed-length block of plaintext into a block of ciphertext of the same length

by using a secret key. A block cipher usually consists of several operations which are:

• Electronic Codebook (ECB) mode is the simplest, most obvious application: the

secret key is used to encrypt the plaintext block to form a ciphertext block. Two

identical plaintext blocks, then, will always generate the same ciphertext block.

Although this is the most common mode of block ciphers, it is susceptible to a

variety of brute-force attacks.

• Cipher Block Chaining (CBC) mode adds a feedback mechanism to the

encryption scheme. In CBC, the plaintext is exclusively-ORed (XORed) with the

8

Univ
ers

ity
 of

 M
ala

ya

previous ciphertext block prior to encryption. In this mode, two identical blocks

of plaintext never encrypt to the same ciphertext.

• Cipher Feedback (CFB) mode is a block cipher implementation as a self­

synchronizing stream cipher. CFB mode allows data to be encrypted in units

smaller than the block size, which might be useful in some applications such as

encrypting

• interactive terminal input. If we were using 1-byte CFB mode, for example, each

incoming character is placed into a shift register the same size as the block,

encrypted, and the block transmitted. At the receiving side, the ciphertext is

decrypted and the extra bits in the block (i.e., everything above and beyond the

one byte) are discarded.

• Output Feedback (OFB) mode is a block cipher implementation c0nceptually

similar to a synchronous stream cipher. OFB prevents the same plaintext block

from generating the same ciphertext block by using an internal feedback

mechanism that is independent of both the plaintext and ciphertext bitstreams.

[http://www.garykessler.net/library/crypto.html#figO 1, September 2004]

To allow efficient implementation, block ciphers apply the same Boolean transformation

several times on a plaintext. Most good block ciphers transform the secret key into a

number of sub keys and the data is encrypted by a process that has several rounds

(iterations) each round using a different sub key. The set of sub keys is known as the

9

Univ
ers

ity
 of

 M
ala

ya

key schedule. Block cipher can also be used to construct other primitives such as hash

functions, and 5MACs.

2.2.2 Additive stream ciphers

Stream ciphers encrypt individual characters, which are usually bits, of a plaintext one at

a time. Stream ciphers are typically much faster than block ciphers that generate a key

stream (a sequence of bits or bytes used as a key). The plaintext is combined with the

key stream, usually with the XOR operation. There are two techniques of stream ciphers

which are Synchronous stream ciphers and Asynchronous stream ciphers. Synchronous

stream ciphers generate a keystream independently of the plaintext message and of the

ciphertext. Sender and receiver must synchronized; the must use the same key and

operate at the same state within that key. Asynchronous stream ciphers is a stream

ciphers in which the keystream is generated as a function of the key and a fixed number

of previous ciphertext bits.

2.2.3 Cryptographic Hash Functions

Cryptographic hash functions compressed an input of arbitrary length to an output of

fixed length which is called the hash value. They satisfy the following properties:

• Preimage resistance: For any given code h, it is computationally infeasible to

find x such that H(x) = h.

• Collision resistance: For any given block x, it is computationally infeasible to

find y :/= x with H(y) = H(x).

5 Message authentication code is a small block of data generated by a secret key, which will the be
appended to the message.

10

Univ
ers

ity
 of

 M
ala

ya

• 2"d preimage resistance: It is computationally infeasible to find any pair (x,y)

such that H(x) = H(y).

• H can be applied to a block of data of any size

• H produces a fixed-length output.

• H(x) is relatively easy to compute for any given x, making both hardware and

software implementation practical. [William Stallings, 2000]

2.3 Secret key Cryptography

Secret key cryptography is also called secret key or symmetric encryption is a method

that used a single key to encrypt and decrypt the text. As shown in figure 2.1 , suppose

that A want to send a confidential message (P) to B. A first need to encrypt the message

by using a single key (K) and encryption function (E). Then, the resulting ciphertext,

C= EK (P) is send to B. B then need to decrypt the message by using the same key and

the decrypt function. The key here is produced by the third party who is the key

distribution centre (KDC) and during distribution of the key; it must be secured in terms

of confidentiality, integrity and authenticity. Symmetric key cryptography has several

weaknesses:

• Key distribution is a major problem. Parties must have a secure method of

exchanging the secret key before establishing communications with the symmetric

key protocol. If a secure electronic channel is not available, an offline key

distribution method must often be used.

11

Univ
ers

ity
 of

 M
ala

ya

• Symmetric key cryptography does not implement nonrepudiation. Because any

communicating party can encrypt and decrypt messages with the shared secret key,

there is no way to tell where a given message originated.

• The algorithm is not scalable. It is extremely difficult for large groups to

communicate using symmetric key cryptography. Secure private communication

between individuals in the group could be achieved only if each possible

combination of users shared a private key.

• Keys must be regenerated often. Each time a participant leaves the group, all keys

that involved that participant must be discarded.

[Ed Tittel, Mike Chapple and James Michael Stewart, 2003)

K

p p
Plaintext Ciphertext

A

Figure 2.1 Model of Symmetric Encryption.

2.3.1 Feistel Cipher Structure

Fiestel cipher structure is one of the modern block ciphers which are devised by Host

Fiestel of IBM on 1973. F eistel ciphers are a special class of iterated block ciphers

where the ciphertext is calculated from the plaintext by repeated application of the same

transformation or round function. There are two main things that to be considered:

12

Univ
ers

ity
 of

 M
ala

ya

• Fast software encryption or decryption- encryption that is embedded in

applications or utility functions in order to avoid a hardware implementation will

knock down a speed execution.

• Ease of analysis- Cryptanalytic vulnerabilities will be discovered easier if an

algorithm can be explained concisely. Therefore, a higher level of assurance as to

increase an algorithm's strength can be developed. [William Stallings, 2000]

The structure of the fiestel cipher is showed in figure 2.2. This modem block cipher is

usually based on two different types of designs. The plaintext is split into a rightmost w­

hits (R) and a leftmost w-bits (L). These two blocks is processed through a few rounds n.

Then, round-i (Li and Ri) will be the input for round-i+ 1, as well as subkeys, Ki+ 1. A

substitution is performed on the L data by applying a round function F to the R data and

then taking the XOR of the output of that function and the L data. The F function is

parameterized by the round subkey Ki. After the substitution, a permutation is

performed (interchange between L and R data). As a result, this architecture only

depends on the design of block size, key size, number of rounds, subkey generation

algorithm and round function.

13

Univ
ers

ity
 of

 M
ala

ya

LO
Round I

LI

Round i

Li

Roundn

Ln

Ln+I

Plaintext (2w bits)

whits r bits RO

F

XOR F

Cinhertext (2w hits)

Figure 2.2 The structure of the fiestel cipher

RI

Ki

Ri

Rn

Rn+ 1

Subkey
generation
algorithm

I4

Univ
ers

ity
 of

 M
ala

ya

2.3.2 Symmetric Encryption Algorithm

2.3.2.1 Data Encryption Standard (DES)

Data Encryption Standard that was developed by IBM on 1977 is a method to encrypt

and decrypt the data by using a single key. DES applies 56-bits of a key to each 64-bits

block of data. Then it will process in several modes and involves in 16 rounds of

encryption. Each round uses 6permutation and -7 substitution operations, and each uses a

different 48-bit subkey that was generated from the original 56-bit key. Figure 2.3 shows

a single iteration of DES algorithm. [William Stallings, 2000]. Based of the figure, 64-

bits block of data (permutated input) is divided into two portions, which are called

leftmost (L) and rightmost (R). Each of the iterations will process the permuted input by

applying the processing function that can be concluded as below:

The 56-bits key is also divided into two parts which are 28 bits for Co and another 28

bits for D0• Then both of these parts will go through a circular left shift or rotation of 1

or 2 bits, during each of the iteration. The result of this process which is 48 bits output,

then will be the input of the of the permutation function, F(Ri-t,Ki). Function F involves

both permutation and substitutions operations. The substitution boxes is represented as

S-boxes which will maps each combination of 48 input bits into 32 bits pattern.

6 Pennutation is an operation that jumbles up the bits in a block into new positions. [Mohan Atreya,
2003]
7 Substitution is an operation that substitutes a new group of bits for each group of bits output by an initial
permutation. [Mohan Atreya, 2003)

15

Univ
ers

ity
 of

 M
ala

ya

Although DES is a very secure algorithm a few years back, but DES is not widely

implemented nowadays because DES can be easily break with the help of advance

technology that available today. Therefore, Triple Data Encryption Standard (3DES) is

introduced. With Triple DES, it can increase the length of the key through the process

which called encrypt-decrypt-encrypt. Figure 2.4 shows that the process of Triple DES.

[Suranjan Choudhury, Kartik Bhatnagar, Wasirp Haque and NUT, 2002]

L;.1 (32-bits) R;. 1 (32-bits)

Expansion/Permutation
(E table)

XOR

Substitution/Choice
(S-box)

Permutation(P)

XOR

C;.1 (28-bits)

Left Shift (s)

D;.1 (28-bits)

Left shift (s)

Permutation I contraction
(permuted choice 2)

Figure 2.3: The single iteration of DES algorithm

16

Univ
ers

ity
 of

 M
ala

ya

Figure 2.4: The process of Triple DES

Based on the figure, it first encrypts the plaintext usmg 56-bits key. Then, the

ciphertext is decrypted by using a different key. During the decryption it will produce

some garbage. Finally, the garbage is encrypted by using the first key. This algorithm is

three times slower than DES but it can be much more secure if it used properly.

2.3.2.2 International Data Encryption Algorithm (IDEA)

International Data Encryption Algorithm is developed by James Massey and Xuejia Lai

which is patented for Swiss ETH University. This algorithm is considered as a secured

algorithm because it used 128-bits key length longer than DES and Triple DES

algorithm. It runs eight operations on each block and each round involves three different

operations; XOR, addition and multiplication. In addition, the subkey generation

algorithm uses circular shifts in a complex way as to generate a total of 6 subkeys for

each round. Nevertheless, this algorithm is not popular as DES and Triple DES

algorithm because firstly, IDEA is slower than DES but is faster from Triple DES

algorithm. Secondly, it cannot be commercially without license and finally, it has not

been declared as a federal standard.

17

Univ
ers

ity
 of

 M
ala

ya

2.3.2.3 Blo\Vfish

Blo\Vfish is designed by Bruce Schneier in 1993 as another alternative to DES and IDEA

algorithm. It takes a variable length key ranging from a relatively insecure 32 bits to an

extremely strong 448 bits. Obviously, the longer key will affect the time of decryption or

encryption. However, time trials proof that blo\Vfish algorithm is faster than both DES

and IDEA algorithm. The most important element in Blo\Vfish algorithm is Fiestel

network. Fiestel uses dynamic S-boxes, which generated as a function of the key, and

XOR function and binary addition. It will process in several modes and involves in 16

rounds of encryption. Each round uses permutation and substitution operations, and each

uses a different subkey that was generated from the original key. A total of 521

executions of the blo\Vfish encryption algorithm are required to produce the subkeys and

S-boxes. Blo\Vfish algorithm is unpatented and license-free, and is available free for all

uses.

2.4 Public Key Cryptography

Public key cryptography is also called public key or asymmetric encryption is another

method of cryptography that is totally different from secret key cryptography. Public key

cryptography is developed by Whitfield Diffie and Martin Hellman in 1976 as

conjunction with insecurity of secret key algorithm. As we can see in secret key

algorithm, both the sender and the receiver need to agree on the secret key without

anyone else finding out. However, opposite with secret key algorithm, public key

algorithm allowed both sender and receiver have two different keys. Once the sender

want to send the message to the intended receiver, the sender will encrypt the message

18

Univ
ers

ity
 of

 M
ala

ya

using a public key and the receiver will decrypt the message using a private key which is

in the sole possession of the intended recipient. With this system, the private key is kept

secret whereas the public key can be given to anyone. A user can has their own key pair

generator by using good software in order to get full control over the security of their

private key. Furthermore, public-key cryptography can be used not only for encryption,

but also for authentication (digital signatures). Although the public key cryptography is

much more secure but it is slower than secret key cryptography. The asymmetric key set

has the following unique characteristics:

• The relationship between the private and public key is such that any

cryptographic operation that is performed using one key can only be reversed by

the other. Thus a message encrypted using the public key component of the

asymmetric key-pair can only be decrypted by the private key of the very same

key-pair.

• Unlike symmetric key cryptography, this technique does not require that the

sender or receiver exchange any secret information as part of the transaction.

[Nadir Gulzar and Kartik Ganeshan, 2003]

Figure 2.5 and 2.6 below shows the application of public key encryption which are

message encryption and message authentication.

19

Univ
ers

ity
 of

 M
ala

ya

Plain text
input

Plamtext

input

Joy

uhlk
v

E1H"r) ption ulAorithm
(e.g •• RSAI

Transmittl"cl
cipherlext

-
-....

Alice•,. prhute
y ke . ,.

®
O.,<-"r) 1>lion ulgorilhm
(rcver.<.e or cncrn>lion

t1lAorirhm I

Figure 2.5 Public Key Cryptography for Encryption

Bob',, p ri\'llle
kc \ ' . ,

- ® -
~

Eocr~ptioo ali:toritlun
(e.i; .. RSA)

Tran.~mitted

dphcrtcxt

Joy

'

Hob'~ p ublic
ke~

~, -
- ®

~

Decryption ali;:orillm1
(rcver.;e of encryption

uli:torithm~

Figure 2.6 Public Key Cryptography for Authentication

Pluintcxt
output

Plainte'.l.t
output

There are several conditions had been laid out that the public key encryption algorithm

must fulfill:

1. It is computationally easy for a party B to generate a pair (public key KUb,

private KRb).

20

Univ
ers

ity
 of

 M
ala

ya

2. It is computationally easy for e sender A, knowing the public key and the

message to be encrypted, M to generate the corresponding ciphertext:

C=EKUb(M)

3. It is computationally easy for a receiver B to decrypt the resulting ciphertext

using the private key to recover the original message:

M=DKRb(C)=DKRb[EKUb(M)]

4. It is computationally infeasible for an opponent, knowing the public key, KUb,

to determine the private key, K.Rb

5. It is computationally infeasible for an opponent, knowing the public key, KUb,

and a ciphertext, C, to recover the original message, M.

6. Either of the two related keys can be used for encryption, with the other used for

decryption.

[William Stallings, 2000]

2.4.1 Public Key Algorithm

2.4.1.1 Rivest, Shamir, Adleman (RSA)

RSA is developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. RSA is an

internet encryption authentication system that uses an algorithm. Moreover, RSA is a

block cipher in which the plaintext and ciphertext are integers between 0 and n-1 for

some n. [William Stallings, 2000]. Briefly, RSA algorithm involves multiplying two

large 8prime's number and then a set of two numbers that constitutes the public key and

another set that is the private key are derived.

8 A prime number_is a number divisible only by that number and 1.

21

Univ
ers

ity
 of

 M
ala

ya

Let n= pq where p and q are two large primes and let e be chosen such that (e , <l> (n)) = 1

and <l> (n) = (p-1) (q-1). Moreover let d be such that de = 1 mod <l> (n). Assume that the

signer's public key is (n,e) and the private key is (p,q,d) and finally let H be the collision

resistant hash function.

For given a message m, is a valid RSA signature if:

C = H(m)e mod n

And the signature is easily verified by using a private key:

M = H(m)d mod n

It is simply to verify that the signature is valid or not by comparing the equality of these

two Mand m. Figure 2. 7 shows the overall process of generating digital signature using

RSA.

Sender:

M

H-Hash
E- Encrypt
I I-Append
D- Decrypt

KRa

I
E

KRa - Private key
KU a - Public key

Receiver:

EKRa [H(M)] D

KU a

Figure 2. 7 Digital Signature using RSA Approach

Compare

22

Univ
ers

ity
 of

 M
ala

ya

2.4.1.2 Digital Signature Algorithm (DSA)

Digital Signature Algorithm is public key system for generating digital signature that

was designed in 1994 and the used of DSA for digital signature was specified under

Digital Signature Standard that is NIST standard (FP 186). DSA has a more complex

architecture and it provides solely the function of digital signature.

Letp be a prime number where 2L-l<p<2L for 512<=L<=l024 and Lis a multiple of 64.

Moreover, let q be a prime divisor of (p-1), where 2159<q<2160. Then, let g = h (p-1)/q

mod p , where h is any integer with 1 <h< (p-1) such that h (p-1)/ q mod p> I.

Assume that x is a user's public key where x is random or pseudorandom integer with

O<x<q and y is a user's private key where y = gx mod p.

Besides, let K be a user's per message secret number where K is a random or

pseudo random integer with O<K <q.

The signature (r, s) is done by using:

r = (gx modp) mod q

s = [K-1 (H(M) + xr)]mod q

The signature is verified by using:

w =(s')-1 mod q

Ul= [H(M') w] mod q

U2= (r') w mod q

v = [(gul yu2) modp] mod q

TEST: v = r',

where M is a message to be signed, H(M) is a collision resistant hash function and M',

r', s' is a received version of M, r, s. Figure 2.9 shows the overall process of generating

digital signature using DSA.

23

Univ
ers

ity
 of

 M
ala

ya

Sender:

M

H-Hash
E-Encrypt
I I-Append
D- Decrypt

2.5 Hash Functions

KR.a

K.Ra - Private key
KU a - Public key

Receiver:

Figure 2.8 Digital Signature using DSA approach

H

I r Compare

KUG KUa

A hash function is a function that transforms a variable size input into an output which is

a fixed size string where it is called the hash value. The basic requirements for a

cryptographic hash function are:

• The input can be of any length,

• The output has a fixed length,

• H(x) is relatively easy to compute for any given x ,

• H(x) is one-way,

• H(x) is collision-free.

[http://www.x5.net/faqs/crypto/q94.html, 17 September 2004]

24

Univ
ers

ity
 of

 M
ala

ya

Hashing algorithm is used in message authentication. The two important aspects in

message authentication are to verify that the contents of the message have not been

altered and that the source is authentic. Message authentication does not rely on

encryption. In all of the hashing algorithms, an authentication tag is generated and

appended to each message for transmission. Thus, the message itself is not encrypted

and can be read at the destination independent of the authentication at the destination. In

this context, message confidentiality is not provided. Therefore, message authentication

without confidentiality is preferable in some conditions:

• There are a number of applications in which the same message is broadcast to

number of destinations (for example, notification to users that the network is

now unavailable). It is cheaper and more reliable to have only one destination

responsible for monitoring authentication. Thus, the message must be broadcast

in plaintext with an associated message authentication tag. The responsible

system performs authentication. If a violation occurs, the other destination

system are alerted by a general alarm

• An exchange in which one side has a heavy load and cannot afford the time to

decrypt all incoming messages. Authentication is carried out on a selective

basis, and messages are chosen at random for checking.

• Authentication of a computer program in plaintext is an attractive service. The

computer program can be executed without having decrypt it every time

authentication tag were attached to the program, it could be checked whenever

assurance is required of the integrity of the program [William Stallings, 2000]

25

Univ
ers

ity
 of

 M
ala

ya

2.5.1 One Way Hash Function

One way hash functions is a mathematical function which takes a variable-length input

string and converts it into a fixed-length binary sequence and it is designed in such a

way that is hard to reverse the process. In message authentication, the message is sent

along with message digest (hash value). There are three ways in which the message can

be authenticated. Figure 2.9 (a) shows the message digest can be encrypted using

conventional encryption, Figure 2.9 (b) shows the message digest can also be encrypted

using public key encryption and Figure 2.9 (c) shows encryption is done using secret

value.

~

; --------!~
~ %
:;

K
Compare

(a) Using conventional encryption

4.1

?I -------!~ ij z
:;

K Compare
public

(b) U ing public-key cncr)·ption

Figure 2.9 (a) and 2.9 (b) Message Authentication using Conventional and Public

Key Encryption

26

Univ
ers

ity
 of

 M
ala

ya

z - ..

(c) Using secret '\1aluc

Figure 2.9 (c) Message Authentication using Secret Value

2.5.1.1 Secure Hash Algorithm (SHA-I)

Compare

The Secure Hash Algorithm (SHA), the algorithm specified in the secure hash

standard (SHS, FIPS 180), was developed by the National Institute of Standard

and Technology (NIST). SHA-I is a revision to SHA that was published in 1994.

[http://www.rsasecurity.com/rsalabs/node.asp?id=2252, I 7 September 2004].

The algorithm takes a message of less than 2"64 bits in length and produces a 160

bits message digest. The message digest can be the input of signature algorithm

which generates or verifies the signature for the message. Signing the message

digest rather than the message often improves the efficiency of the process

because the message digest is usually much smaller in size than the message.

SHA-1 algorithm process message in 512-bit (I6 word) blocks with compression

function, that consists of 4 rounds of processing of 20 steps each. Each round uses

different primitive logical function, f as shown in figure. Each round takes as

27

Univ
ers

ity
 of

 M
ala

ya

input the current 512-bit block being processed (Y q) and value in buffer and

updates the contents of the buffer. Each subsequence round will make use of an

additive constant Kt as shown in table respectively. The output of the final round

will be added to the input to the first round. Figure 3 show the processing of a

single 512-bit block and Figure 3.1 show message digest generation using SHA-I.

'

Figure 2.10 The processing of a single 512-bit block

28

Univ
ers

ity
 of

 M
ala

ya

Paddinj?
«!lo 512 bit.SI

\les'>ll!!C length

IK mod .?6-1)

4-----------L ·: 512 bits = .\'x 32 bits,...-----'"'!~----+

+-------------KhitSo·---------.

1\lles.liiage

Vo • • •

512 512

160 160 160

CVq

51.?

• • •

512

160 _,......9'1 llsHA

1(10-bit
digest

Figure 2.11 Message Digest generation using SHA-1.

Definition of bit string and integers:

• A hex digit is an element of the set {O, 1, ... , 9, A, ... , F}. A hex digit is the

representation of a 4-bit string.

• A word equals a 32-bit string which may be represented as a sequence of 8 hex

digits. To convert a word to 8 hex digits each 4-bit string is converted to its hex

equivalent.

• An integer between 0 and 2"32 - 1 inclusive may be represented as a word. The

least significant four bits of the integer are represented by the right-most hex

digit of the word representation.

• Block= 512-bit string.

29

Univ
ers

ity
 of

 M
ala

ya

The pre processing stage of SHA-1:

• "1" is appended at the end of the original message.

• "O"s are appended. The number of "O"s will depend on the original length of the

message. The last 64 bits of the last 512-bit block are reserved for the length of

the original message.

Function and constant used:

• Initialize a 160 bit MD buffer (Hi) which is used to hold intermediate and final

results of the hash function (message digest). A, B, C, D, E are 32 bit register

represent the buffer.

1. HO= 67452301

2. HI = EFCDAB89

3. H2 = 98BADCFE

4. H3 = 10325476

5. H4 = C3D2E1FO

• A sequence oflogical functions f(O), f(l), ... , f(79) is used in SHA-I. Each f(t), O

<= t <= 79, operates on three 32-bit words B, C, D and produces a 32-bit word as

output. f(t;B,C,D) is defined as follows: for words B, C, D,

1. f(t;B,C,D) = (B AND C) OR ((NOT B) AND D) (O<=t<=19)

2. f(t;B,C,D) = B XOR C XOR D (20 <= t <= 39)

3. f(t;B,C,D) =(BAND C) OR (BAND D) OR (C AND D) (40 <= t <= 59)

4. f(t;B,C,D) = B XOR C XOR D (60 <= t <= 79).

30

Univ
ers

ity
 of

 M
ala

ya

• A sequence of constant words K(O), K(l), ... , K(79) is used in the SHA-1. In

hex these are given by:

1. K(t) = 5A827999

2. K(t) = 6ED9EBA 1

3. K(t) = 8F1BBCDC

4. K(t) = CA62C1D6

Computing the message digest.

(0 <= t <= 19)

(20 <= t <= 39)

(40 <= t <= 59)

(60 <= t <= 79)

As mentioned above, the words of the first 5-word buffer are labeled A, B, C, D, E, the

words of the second 5-word buffer are labeled HO, Hl, H2, H3, H4, the words of the 80-

word sequence are labeled f(O), f(l), ... , f(79) and the 16-words blocks W(l),

W(2), ... W(15) now is processed. Figure 3.2 show the elementary SHA operation. Each

round will perform:

A B D E

+

S"5
+

S"10 +

Figure 2.12 The elementary SHA operation

31

Univ
ers

ity
 of

 M
ala

ya

• A, B, C, D, E <- (C + f(t, B, C, D) + S"5(A) + Wt + Kt), A, S"30 (B), C, D

• A<- (C + f (t, B, C, D) + S"5 (A)+ Wt+ Kt

• B<-A

• C <- S"30 (B)

• D<-C

• E<-D

Fort= 0 to 79,

TEMP = S"5 (A) + ft(B, C, D) + E + Wt+ Kt

E = D D = C C = S"30 (B) B = A A = TEMP
' ' ' '

Fort= I 6 to 79 let Wt= S" 1 (Wt-3, XOR Wt-8 XOR Wt-I 4 XOR Wt-I 6)

Let A= HO, B = Hl, C = H2, D = H3, E = H4

Let HO=HO+A

HI =HI+ B

H2=H2+C

H3 =H3 +D

H4=H4+E

S"K =circular left shift rotation of the 32 bit argument by K bits.

D I I I I I I I
Figure 2.13 Circular left shift rotation

32

Univ
ers

ity
 of

 M
ala

ya

2.5.1.2 Message Digest 5

MD5 is a message digest algorithm developed by Rivest that meant for a digital

signature application where large message has to ' compressed' in a secure manner

before being signed with the private key. This algorithm take a message of arbitrary

length and produce 128 bit message digest. It guessed that the difficulty of coming up

with two messages having the same messages digest is on the order of 2"64 operations,

and that the difficulty coming up with any message having a given message digest is on

the order of 2" 128 operations. The algorithm consists of four distinct rounds, which has

a slightly different design from that of MD4, and message digest size, as well as padding

requirements, remains the same with SHA-1. Den Boer and Bosselaers have found

pseudo-collisions for MD5. More recent work by Dobbertin has extended the techniques

used so effectively in the analysis of MD4 to find collisions for the compression

function of MD5. While stopping short of providing collisions for the hash function in

its entirety this is clearly a significant step. The MD5 is differed from MD4 are:

• A fourth round has been added

• Each step now has a unique additive constant.

• The function g in round 2 was changed from (XY v XZ v YZ) to (XZ v Y not

(Z)) to make g less symmetric.

• Each step now adds in the result of the previous step. The promotes a faster

"avalanche effect".

• The order in which input words are accessed in rounds 2 and 3 is changed, to

make these patterns less like each other.

33

Univ
ers

ity
 of

 M
ala

ya

• The shift amounts in each round have been approximately optimized, to yield a

faster "avalanche effect". The shifts in different rounds are distinct.

[William Stallings, 2003]

2.6 Overview of Blind Signature

Digital signature scheme that proposed by Whitfield Diffie in 1976 that enable people to

digitally sign the document during any online transaction to guarantee that the

individual sending the message really is who he or she claims to be. This scheme used

the cryptography concept where the sender and the receiver need to have a private key

and public key to sign and verify the message. Supposed that, the sender who wants to

send the message will sign the message using sender's private key and the receiver will

verify the message by the sender's public key to make sure the message is utterly from

the one who he or she claims to be. This scenario can be described as Alice who wants

to pay for a purchase at Bob's shop using her 'digital coin'. In this case 'digital coin' is

signed by the bank which using bank's private key. When she pays the purchased to

Bob, he will verify the 'digital coin' by using bank's public key as consequences to

proof that the coin is valid. Bob then send the 'digital coin' to the bank and the bank will

reverify the 'digital coin' to make sure the coin is signed by the bank and belong to

Alice. After that, the bank will credit the money to Bob. The bank also will send the slip

as a proof that Alice had used the 'digital coin' . So, as we can see here, this approach

provides security for all three parties Alice, Bob and the bank. Bob cannot issue that it

did not receive the payment; the bank cannot deny that it had credit to Bob, and Alice

can neither deny that she had spent the 'digital coin' to Bob nor spend the ' digital coin'

twice.

34

Univ
ers

ity
 of

 M
ala

ya

As a conclusion, we can say that the money transaction using digital signature here is

secured but it has no privacy. This is because the bank possibility will determine

precisely where and when Alice spends her money. Therefore, to enhance this scheme

become more reliable blind signature scheme is introduced.

Blind signature approached is introduced by David Chaum that enable people to

digitally sign the message without knowing the contents of the message. In other words,

the signer did not know when and for whom it signed even though it can verify that

signature is indeed valid. According to the first example, supposed that the bank will

know the two parties that involved in the transaction and for what purposed the

transaction is done. But by using blind signature scheme, the bank would not know what

is going on between this two parties and when the event is occurred. Hence, in this

scenario Alice who is a spender is retained anonymity in the transaction. The bank will

sign the 'digital coin' blindly without knowing to whom the coin is belonged and spent

but the bank can verify the coin to admit that the coin is indeed valid. As a result, the

event that existed between Alice and Bob is secured and untraceable. At first, when this

scheme is introduced many people felt hesitate because how can to sign a document

without knowing the content of the document. However, after a deep research is made to

this scheme, this approached is utterly accepted. Therefore, here the author will explain

in detail how the blind signature scheme work by enlighten through the application of

the blind signature scheme. One of the applications that totally used this approached is

application to online voting.

35

Univ
ers

ity
 of

 M
ala

ya

2.6. l Application to Online Voting

There are two parties that involved in online voting system. Which are the voter and the

voting checker. When we talk about manual voting system there are two restrictions that

we have to consider which are the individual vote is undisclosed to other peoples

including the voting checker who is responsible to count the ballot and only once voting

is permitted to one person. Therefore, if we want to implement the online voting we

must used the blind signature scheme that able to solve these two restrictions. In this

scenario we describe Alice is a voter and the other party is Voting Checker Facility. The

voting protocol is divided into two phases. First is the registration phase and the second

is the voting phase.

a) Registration Phase

Alice will create two ballots which are one for 'yes' and another one for 'no' . We

assume that the votes are in the form of 'yes' or ' no' . Both of these ballots consist of

the serial number to avoid the people voting more than once and other relevant

information about the voter. She then will blindly signed these two ballots and send

them to Voting Checker Facility. The Voting Checker Facility will check the serial

number in their database to make sure that Alice did not vote before. Then, the

Voting Checker Facility will blindly signed the two ballots and send back to Alice.

b) Voting Phase

After receiving her ballots from the Voting Checker Facility, she then unblinds the

ballots. She now has two set valid ballots signed by the Voting Checker Facility. Alice

picks either 'yes' or 'no' ballots. The selected ballot will encrypt using Voting Checker

Facility's public key. Then, she sends in the vote. The Voting Checker Facility decrypts

36

Univ
ers

ity
 of

 M
ala

ya

the ballot, check the database to make sure that Alice did not vote before. Finally, Alice

vote has counted and the serial number is record to it's database.

Figure 3.4 and the figure 3.5 below shows the process of signing the blinded document

at the sender side and the process of verifying the signature at the receiver side. To

blindly sign the document, the document itself must be blinded. The hash of the

document must be created first. Then, the hash document will be blind. After that, the

blinded hash is encrypted using private key. The encrypted hash is blind signature. The

document now is ready to send. The receiver will receive it and verify the signature

whether it is indeed valid or not by using the public key.

37

Univ
ers

ity
 of

 M
ala

ya

Sender:

Plain Text

Hashing Algorithm

Hash

Blinding
Process

Sender' s private key

Asymmetric Algorithm

Blind Digital signature

Transmission
Plain text + Blind digital signature

Figure 2.14 Signing process: Sender

Receiver

38

Univ
ers

ity
 of

 M
ala

ya

Receiver:

Transmission received
Plain text + blind digital signature

Sender' s public key Blind digital signature

Extract the signature

Original hash

Compare

New Hash

Same hashing Algorithm

Receiver

Figure 2.15 Verifying process : Receiver

2. 7 Blind Signature Scheme

2.7.1 Blinding the RSA Signature Scheme

An interesting variant on the basic digital signature is blind signature. As mentioned

before blind signature is a method to enable spender remained anonymous in Electronic

Transaction. Such signature requires that a signer be able to sign a document without

knowing it contents but when the signer is able to see the document, he should not be

39

Univ
ers

ity
 of

 M
ala

ya

able to determine when and for whom he signed it even though he can verify that the

signature is indeed valid.

Let n= pq where p and q are two large primes and let e be chosen such that (e , <1> (n)) = I

and <t> (n) = (p-1) (q-1). Moreover let d be such that de= 1 mod <1> (n) . Assume that the

signer's public key is (n,e) and the private key is (p,q,d) and finally let Hbe the collision

resistant hash function.

Supposed that Bob requires Alice to sign a document but wants it to be the case that

Alice does not know the contents of this document.

2.7.1.1 Blind signature protocol

Round 1:

• Bob wants a message M is blindly signed by Alice. Therefore, before the

message is sent to Alice, Bob first blind the message by multiple the

messages with random number, r:

M' = H (M') . r"e (mod n)

Where n and e is taken from Alice's public key.

• The message then is sent to Alice.

Round2:

• Alice then takes the message and blindly signed it:

C = H(M')d mod n

• Observed that:

H(M')"d mod n = (H (M') . (r"e)"d (mod n) = H(M)"d . r (mod n)

Where ed = 1.

• Alice sent bank C to Bob

40

Univ
ers

ity
 of

 M
ala

ya

Round 3:

• Bob takes the signature C, given by Alice on the blinded message M' and

extract an appropriate signature for M:

M = H(M') Ir (mod n) = (H(M) r "e)/ r (mod n) = H(M) r " (1/e) (mod n)

• The pair (M,M') now represent a valid message I signature pair under

Alice's public key.

From the protocol the most important thing here is Alice had signed the message without

knowing the content of the message. This is because the blinding factor r"e is multiplied

to the message and as a result the final message just look like a random message to

Alice. Then, after Bob unblind the message by dividing it with the blinding factor the

message is now unrecognizable to Alice. In fact, Alice can verify the signature is indeed

hers but she can severely limit in accurately determining when and for whom she signed

the message.

2. 7 .2 Blind Schnorr Digital Signature Scheme

Another blind signature scheme is based on the scheme of Schnorr. This scheme is based

on the intractability of the discrete logarithm problem, and is secure in the random oracle

model. Now, firstly the author will explain the original Schnorr scheme and then show

how to blind it.

2.7.2.1 The original of Schnorr Signature Scheme

Let G be a subgroup of Z*n of order q, for some value n and some prime q. Then,

choose g € G that makes computing discrete logarithm in G difficult. Next, let z -:f O be

the secret key of the signer, and y = g"z be the public key. Finally, let H be a collision

resistant hash function whose domain is { 0, 1} * and whose range Zq.

41

Univ
ers

ity
 of

 M
ala

ya

For a message m € {O, 1}* a pair {c,s} is said to be a valid Schnorr signature on m if it

satisfies the following verification equation:

C = H (m, g"s, y"c)

Where (m, g"s, y"c) refers to concatenation of m and g"s y"c

A valid Schnorr signature (c,s) on a message m can be generated by asigner (who knows

x) as follows:

• Choose r € g Zq

• Let c = H (m, g"x)

• Then choosing s = r-cx (mod q) creates a valid schnorr signature

This work because:

g"s y"c = g"(r-cx) (g"x)"c = g"r (mod n)

Hence, H (m, g"s y"c) = H (m, g"r) = c. it turns out that schnorr signature scheme can

be made blind.

2.7.2.2 Blinding the original Schnorr Signature Protocol

Signer's secret key is x, and it's public key is y = g"x (mod n)

The recipient wants to have message m blindly sgned

Signer Round 1:

• Pick r' € n Zq

• Sett' = g"r' (mod n) and send t' to the recipient

Recipient Round 2:

• Pick y, 5 € R Zq

• Set t = t' g" y y" 5 (mod n)

• Set c = H (m, t)

42

Univ
ers

ity
 of

 M
ala

ya

• Set c' = c - o (mod q) and send it to the signer

Signer Round 3:

• Sets'= r' - c"x (mod q) and send it to the recipient.

Recipient Round 4:

• Sets= s' + o (mod q)

The signature is now (c, s). It is not hard to see why this signature is blind. The signer

never get to see any information about either c ors because these values are blinded by

the random blinding factors 'Y and o respectively. Furthermore, the signature is valid:

g"s y"c = g"(s' + y) y"(c'+ o) = g "(r' - c'x + 'Y +c'x) y"o = t'g" 'Y y"o = t (mod n)

which means c = H (m,t) = H (m, g"s, y"c)

2.8 Programming Languages

Computer can only execute instruction that written in machine language. Therefore

computer need a standardized communication to translate a program written by humans

into a machine language which is called programming languages. Programming

languages allow user or programmer to specify their requirement towards computer by

writing those specifications with human language that will convert into specific machine

code. Here, the author will emphasize three types of programming languages which are

C+ +,Visual Basic and Java.

2.8.1 Microsoft Visual C++

C++ is an object-oriented programming (OOP) language that is viewed by many as the

best language for creating large-scale applications. C++ is a superset of the C

language. [http://searchdatabase.techtarget.com/sDefinition/O,,sid 13 _gci211850,00.html,

19 September 2004]. Other than Microsoft CryptoAPI, .NET Framework Cryptography

43

Univ
ers

ity
 of

 M
ala

ya

Model, there are also classes that used to implement the functions of cryptography in

Visual C ++. The class is called System.Security.Cryptography. it provides normal

cryptography services such as data encoding and decoding, hashing, random number

generation and also message authentication.

2.8.2 Java

Java was developed by Sun Microsystems in 1995. Java is a programming language

expressly designed for use in the distributed environment of the Internet. It was designed

to have the "look and feel" of the C++ language, but it is simpler to use than C++ and

enforces an object-oriented programming model. Java can be used to create complete

applications that may run on a single computer or be distributed among servers and

clients in a network. It can also be used to build a small application module or applet for

use as part of a Web page. Applets make it possible for a Web page user to interact with

the page. [http://searchwebservices.techtarget.com/sDefinition/

0,,sid26 _gci212415,00.html].

Not only that, java also consists of several components such as Java Cryptography

Architecture (JCA) and Java Cryptography Extension (JCE). Java Cryptography

Architecture (JCA) is designed according to implementation independence and

interoperability, and algorithm independence and extensibility concepts. It means that

we can use anything cryptographic services such as digital signature and message digest

without worrying about the implementation details or even the algorithms. Algorithm

independent is achieved by defining types of cryptographic engines (services), and

defining classes that provide functionality of these cryptographic engines.

44

Univ
ers

ity
 of

 M
ala

ya

Implementation interoperability means that various implementations can work with each

other, use each other's keys, or verify each other's signatures. Besides, algorithm

extensibility means that new algorithms that fit in one of the supported engine classes

can be added easily.

The Java Cryptography Extension (JCE) is a set of packages that provides a framework

and implementations for encryption, key generation and key agreement, and Message

Authentication Code (MAC) algorithms. Support for encryption includes symmetric,

asymmetric, block, and stream ciphers. The software also supports secure streams and

sealed objects.

2.8.3 Visual Basic

Visual Basic (VB) is a programming environment from Microsoft in which a

programmer uses a graphical user interface to choose and modify preselected sections of

code written m the BASIC programming language.

[http://searchvb.techtarget.com/sDefinition/O,,sid8_gci213309,00.html]

Therefore, Visual Basic allow programmer to create graphical user interface (GUis) just

by clicking with the mouse instead of writing the code. All the basic code is provided or

is built in to the project.

2.9 System review

In this sub topic, the author will review the existing online voting system which using

the blind signature scheme and the existing digital signature system.

45

Univ
ers

ity
 of

 M
ala

ya

2.9.l Online Voting system (OVS)

Campus online voting system was successfully implemented at Cal State San Marcos for

the election.

Featues:

• Casting the Confidential Vote

The voter receive an email with their system generated password, open voting times, and

a customized message from the ballot administrator. The voter can click on the secure

web address in the email, provide their password and cast their vote in less than 5

minutes. After confirming their selections, the voter will get a randomly generated voter

number that only they know, thus ensuring confidentiality. The system does not store

any voting selections with the voter identity. Figure shows the ballot of the voting

system.

Cal State San Marcos
BUllMU Adm lnlstraUon Major
otftclal Ballot -AccOU'lting Socletw Elec:Uons
To.,.._ Rr ~ oi•thPa. ct.de the checklto• ne>ctt. ~ c.ndrdaitlt"• nan'•·
~":.r~::zh~~ ••'- 6.or '"' 111et:li.,'2tl. ea'2r ~•r name- in U-e

" Un¢dn

G wast..-4cr,
T .Li!ff'!l"'SCO

,' .. ,,.,,., ~ f •' '"< 1 ,j I f 1 .. ti• 1 ~ 1 11'

46

Univ
ers

ity
 of

 M
ala

ya

Figure 2.16 the ballot of the campus online voting system.

• Administering the election

I) Setting up the groups and users.

Lists of email address can easily be imported to the online voting system via

a web interface. Administrator can create their own groups that will restrict

or enable portions of the ballot for voters. Administrators can view summary

reports or detailed reports using their specified groups. In addition,

administrator can get a snap shot of voter turnout at anytime.

2) Creating the ballots and notifying the voters

To create ballots and notify users, the administrator follows steps:

i) create election with open voting times

ii) add offices, candidates and referendums

iii) assign eligible voting groups to the offices and referendum items

iv) confirm preview ballot and/or referendum

v) use the system email notification feature to an announce the election,

password and voting instructions.

47

Univ
ers

ity
 of

 M
ala

ya

Cal St.lt ai tnl tol'

to•,.,t •r·A3ilt,,..1aU ,,1h, ii... .r-,,t1•••'•h·•••

Figure 2.17 Administrative side of campus online voting system

2.9.2 R.ernote\'ote9

R.emote\'ote is a reliable e-voting platform to power sophisticated, secure electronic

elections worldwide for public sector elections. \' oters can cast ballots via multiple

voting channels, the Internet, touchtone telephone, cellular phone, digital TV' and kiosks,

from anywhere in the world, within a secure environment.

Features:

• Access anyway -R.emote\'ote's Web-based interface provides for "anywhere" e-

voting access to election administration, management, tabulation, and reporting

with advanced toolset and formatting features. Full-scale elections are created in

9 http://www. votehere. net/remotevote. html

48

Univ
ers

ity
 of

 M
ala

ya

real time using credential-based administrative access, where multiple elections

can be managed simultaneously. Customization tools allow for full control of

ballot creation, style and layout.

• Customized Ballot - Using configurable settings in the RemoteVote toolset,

ballots can be customized to meet the needs of the individual election. Colors,

fonts, languages, and layout can all be customized and logos and images can be

added as needed. Write-in functionality for candidates and issues is also

available. With real-time ballot preview changes can be determined quickly.

• Convenience - Voters are able to cast ballots to Remote Vote via multiple voting

channels: the Internet, touch-tone telephone, cellular phone, digital TV and

kiosks, whichever is the most convenient for them.

• Easy-To-Use - To simplify the voting process, RemoteVote does not require

voters to install complicated applications or plug-ins. \Vben accessing

Remote Vote via the Internet, voters access the election through a secure Internet

connection and their completed ballots are encrypted and stored within the

system.

• Security - The security of your election is important; that's why VoteHere uses

patented security to protect elections and their results. Through a combination of

industry-standard security practices and methodology, encryption, active election

monitoring and best-of-breed IT practices, elections are safe, secure and private.

49

Univ
ers

ity
 of

 M
ala

ya

2.9.3 SafeGuard Sign & Crypt

Safeguard Sign & Crypt allow the user to digitally sign and encrypt the document. It is

integrated into Microsoft Windows Explorer, Microsoft Word and Microsoft Excel.

Besides, it is also a software security tool for exchanging and storing sensitive

information that helps to achieve confidentiality, authenticity, integrity and non­

repudiation of sensitive files.

Features:

• Signature is generated based on the public key technology

• Allow multiple signatures

• Multiple key pairs

• Support for time stamping

• Strong encryption using AES, triple-DES, IDEA

• Used RSA algorithm (up to 2048 bits) for generating the digital signature

• Used RSA 512-2048 bit, AES 128 bits, IDEA 128 bits, triple-DES 112-168

bits, DES 56 bits, RC2 40-128 bits, square 128 bit, safer 64 bit for

encryption

• Used SHA-1, RIPEMD-160, MD5 for generating the message digest.

50

Univ
ers

ity
 of

 M
ala

ya

2.9.4 FileAssurity 10

FileAssurity allow user to encrypt, digitally sign and decrypting any types of document

(word processing document, spreadsheet, etc) to enhance the security of the document.

File5 can be stored securely on any media or shared securely with others. This software

ensures that only authorized people can view the document that has been encrypted.

Documents can be digitally signed to prevent them being altered.

Features:

• FileAssurity can ensure files to be completely removed in one step where

the files are unable to be recovered again.

• FileAssurity can also automatically compress each file or archive to ensure

minimum disk space is used

• It does not require the owner to buy certificates and keys from a Certificate

Authority. Its built in key manager will generate self-signed keys and

certificates which can be distribute to others.

• It is also easy to use where encrypt, sign, decrypt and verify process can be

done just by clicking.

• Used AES algorithm with a 256 bit key for encryption and RSA algorithm

with a 2048 bit key .

•

10 http://www.articsoft.com/fileassurity .htm

51

Univ
ers

ity
 of

 M
ala

ya

2.9.5 Code Signing for Digital 1Ds11

VeriSign Code Signing Digital IDs enable software developers to digitally sign software

and macros for secure delivery over the Internet. Users who download digitally signed

Active X controls, Java applets, dynamic link libraries, .cab files, .jar files, or HTML

content from software developer site can be confident that code really comes from the

developer and has not been altered or corrupted since it was created and signed. After

signing the code, if it is tampered with in any way, the digital signature will break and

alert the users that the code has been altered and is not trustworthy. The VeriSign code

signing Digital IDs is based on the public key cryptography system.

Features:

• VeriSign Code Signing Digital ID protects the software and with this protection

the user or customer will confident that the integrity of the code they download

from site is intact - that it has not been tampered with or altered in transit.

• Digital IDs allow customers to identify the author of digitally signed code and

contact them should an issue or query arise.

• Most browsers will not accept action commands from downloaded code unless

the code is signed by a certificate from a trusted Certificate Authority, such as

VeriSign.

• Code signing certificates are easy to use in conjunction with the vendor

software tools that developers use to create products, macro and objects.

11 http://www.verisign.com/products-services/security-services/code-signing/ digital-ids-code­
signing/index.html

52

Univ
ers

ity
 of

 M
ala

ya

2.9.6 E-Lock Prosigner12

E-Lock Prosigner is an off-the-shelf desktop digital signature software that integrates

into MS Word, Excel and Adobe Acrobat. It allows to sign, encrypt, decrypt and

valiriate the files of any other format externally. It uses digital certificates (X.509) to

sign data and supports Microsoft, Netscape, Entrust frameworks. Besides, prosigner also

profiles to automate common operation and policies to control the use of digital

signatures.

Features:

• Sign documents directly from software applications

ProSigner integrates right into MS Word, Excel and Adobe Acrobat and allows you

to sign documents right from within these applications. In case of Word and Excel,

ProSigner provides intuitive icons and menu options, enabling you to sign/encrypt

and perform other security operations with ease.

• Wizards for Signing I Encryption

ProSigner provides various Digital Signature features in a Wizard format. This

guides the users through the complex world of digital signatures without

compromising security without any specialized training.

12 http://www.elock.com/pro<lucts/prosigner/

53

Univ
ers

ity
 of

 M
ala

ya

• Signing I Encryption User Profiles

Users can create individual profiles for signing or encryption operations. Whenever

they need to perform routine operations, they can access these profiles, which store

all their settings and preferences. This helps them convert repetitive tasks into "one­

click" processes.

• Right click security operations

ProSigner integrates seamlessly into the Windows environment. This allows users

to "right-click" and performs signing and encryption operations right from their

desktop or windows explorer.

• Support for Multiple signatures

Many business documents need to be signed by more than one party. To make it

legally viable, all parties need to sign the exact contents. With ProSigner, multiple

people can sign and approve the same document. An audit trail is also maintained

which helps track approvals to the document. All signatures on the document can be

independently verified. Any change to the content of the document will invalidate

the previous signature.

• Batch Signing

ProSigner's Batch signing capability makes bulk signing quick and effortless and

minimizes the time involved in routine signing tasks. This feature is particularly

useful where several business documents require an authorized signature. The

54

Univ
ers

ity
 of

 M
ala

ya

traditional paper based method would require that he put his signature separately on

each document even if they were routine in nature. ProSigner speeds up this process

and allows for several such files to be selected and digitally signed in one go.

Restrict access to confidential documents

To protect confidential documents, ProSigner uses encryption methods that allow

only authorized people to decrypt and view the content. Access to contents of high­

value business documents such as financial reports or Non Disclosure Agreements

need to be restricted to authorized personnel only. With ProSigner documents can

be encrypted for specific people, allowing only these people to view them.

• Time bound signatures

Allows for timestamping of documents as they are signed-a key feature for

contract enforcement and auditing.

• PK.I Independence

Works with industry-accepted public key infrastructures and seamlessly supports

any X.509 digital certificate, including those issued by VeriSign, Digital Signature

Trust, Entrust, RSA Security, and others.

• Security framework independence

Supports the MS-Crypto API, Netscape Security framework, and Entrust PK.I.

• Algorithm

55

Univ
ers

ity
 of

 M
ala

ya

Used RSA algorithm with a 2048 bit key for encryption and generating the digital

signature.

2.9.7 Summarization of the existing system

As stated before, for the blind signature system, the author had review the existing of

online voting system that used the blind signature scheme. Besides, the author also

reviews the existing digital signature system that operates similar to blind signature

system. Below is the summarization of the algorithm that the system used.

Table 2.0 Summarization of the using algorithm on the existing system

System FileAssurity SafeGuard Sign & E-Lock Prosigner
Crypt

Features
RSA • • •

DSA
DES •

Blowfish
AES • •

SHA-1 • • •

RIPEMP •

MD5 • •

Encryption • •

Authentication • •

Time Stamp • •

56

Univ
ers

ity
 of

 M
ala

ya

User profile •
management
Secure file deletion •

Build in key •
manager
Certificate •
Authority

57

Univ
ers

ity
 of

 M
ala

ya

Chapter3 Methodology

3 .1 Waterfall Model

The waterfall model is one of the software process models that help the software

developer on developing a good software product. Software process model is able to

guide the developer from the scratch until the product is produced. Besides, the good

choice of software process model will lead to produce the product smoothly. Waterfall

model is introduced by Royce on 1970. Figure 3.1 shows the waterfall model phases and

the feedback loops for maintenance while the product is being developed. There are five

phases which are requirements, analysis, design, implementation and postdelivery

maintenance. In waterfall model, no phase is complete until the documentation of that

phase is completed. Besides, in every phase of the waterfall model is testing. Testing

should proceed continuously throughout the development of the software product.

Therefore, in waterfall model there is no separate testing phase to be performed. Below

are the descriptions for each phase:

• Requirements phase

The requirement analysis goal is to determine what are the exactly features needed

that the system should operate.

• Analysis phase

In this phase, the requirements of the system is refined and analyzed to achieve a

detail understanding of the requirements essential for developing the product

correctly. Besides, the requirements also are defined as a system specification.

• Design phase

58

Univ
ers

ity
 of

 M
ala

ya

During this phase, the internal structure of the product is determined. The product is

decomposed into modules. For each modules, algorithms are selected and data

structures chosen.

• Implementation and unit testing phase

In this phase, the target software product is implemented in the chosen

implementation languages which consist of a set of programs or program units. Unit

testing involves verifying that each unit of program meets the specification.

• Integration and system testing.

After the program units are determined, all the units of the program are integrated

and tested to ensure the target of the software product is achieved.

• Postdelivery Maintenance phase

During this phase, the system is installed. Maintenance here means to correct

anything errors that occurred and the enhancement of the product that consist of

changes to the specifications and the implementations of those changes.

Below are the advantages of waterfall model:

• Waterfall model allow the developer to departmentalize and managerial control.

It means that a schedule can be set with deadlines for each stage of development

and a product can proceed through the development process.

• Because of the testing activities is carried out constantly through out the

development, the possibility to detect and correct the fault earlier is higher.

• Besides, waterfall model emphasized the planning of the product development.

• Measurable objectives which can be used for planning future projects.

59

Univ
ers

ity
 of

 M
ala

ya

Requirements

i

:--------- --- -- -- --------:

! Change ,
f------------------------------------1 Requirements ~----:

: : : :
I I I I
I I I I ! : ________________________ J l
! ~

---..z.'" _____ · --.... 1

' ' , __ ---------------- Analysis

i
'

'

·------------

..

T

'

I+--

Design +- - - -
1
I
I

·• I

Implementation ~ :

I I
I I

1r I I

Postdelivery Maintenance

,.
Retirement

Figure 3 .1 The waterfall model

3 .2 Information gathering

'

While developing the software, the author applies a few methods on gathering as much

information as a guidance to have a deep understanding on what exactly the author is

trying to develop. Below are a few methods taken by the author:

• Books

Read reference books that are related to the project to obtain the useful knowledges.

• Internet

60

Univ
ers

ity
 of

 M
ala

ya

Surf the internet that provide the information needed which are up to date and ease

latest technologies.

• Existing projects

Read the existing projects (the previous seniors' thesis) that give the author idea on

how the project is carried out.

• Software products manual

Do research on the existing software products that are related to specific software

and technologies.

• Journals and proceeding papers

Do research on journal and proceeding papers that are related to this project which

can be useful guide to this project.

61

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 System Analysis

The aim of this chapter is to analyze and refine requirements to achieve a detailed

understanding of the requirements essential for developing a software product correctly

and maintaining it easily. The requirements is categorized into two main categorizes

which are system requirements and run time requirements.

4.1 System Requirements

Requirements fall into two categories which are functional and non functional

requirements. Functional requirement specifies an action that the target product must be

able to perform. A non functional requirement specifies properties of the target product

itself such as platforms constraints, response times and reliability.

4.1.2 Functional Requirements

4.1.2.1 The signing process

• This system allowed user to browse and retrieve the data or file from user's data

store.

• If the data or file length is exceed from the length that is allowed (2"64 bits) the

system will alert the user.

• Then, this system will display the selected data or file to the user before the

signing and the blinding process proceeds.

• Next, the system will prompt out the private key, the public key and the random

key as an input for the signing and the blinding process.

• The selected data or file is then proceed to the blinding process first before the

signing process begin. The blinding process will generate the blinded data or file

which is the input for the signing process.

62

Univ
ers

ity
 of

 M
ala

ya

• After the blinding process, the system will sign the blinded data or file together

with the timestamp (time when the data or file is signed). Timestamp must be

protected by the signature.

• During the signing process, this system is able to show the progress of the

signing process and the system also is able to prompt the result of the process

whether is failed or successful.

• The system will save the signed of the blinded data or file into user' s data store.

• The signed data or file is represented with an icon.

Blinding file

• In this system, user is allowed to browse and retrieve the data or file that need to

be blindly sign from the storage directory.

• The system then will prompt the public key to the user as the input for computing

the blinding calculation.

• Besides, the system also will generate the random key for blinding process.

• Then, the blinded data or file is sent to the signing process.

Read file

• In this module, user is allowed to browse and select the data or file needed from

the storage directory

• This module is only displayed the format of data or file that is accepted by the

system

• This module also is able to calculate the size of the selected data or file .

• Then, this module is able to send the selected data or file to the hash file module .

Hash file

63

Univ
ers

ity
 of

 M
ala

ya

• The hash function module received a block of selected data or file which length

is not exceeding from 2/\64 bits from the read module and produces a fix length

(160 bits) output.

• The hash result H(x) must be relatively easy to compute for any given data (x).

• For any given h, it is computationally infeasible to find x such that H(x) = h.

• For any given block x, it is computationally infeasible to find data y f. x with

H(y) = H(x).

• The hash file module is able to send the hash result H(x) to encrypt file module

Encrypt Hash

• The encrypt hash module received the hash result from the hash file module.

• In this module, the user's public key and the random key is prompted out.

• Then, the hash result of the selected data or file is encrypted. Next, the blinding

process is proceed.

4.1.2.2 The Unblinding process

• This system allowed user to browse and retrieved data or file from the storage

directory for specifying which data or file needed to unblind.

• Then, this system will display the selected blinded data or file to the user before

the unblinding process proceed

• Before the unblinding process is proceed the system will retrieved the random

key from the key data store.

• During the unblinding process, this system is able to show the progress of the

unblinding process and the system also is able to prompt the result of the process

whether is failed or successful.

64

Univ
ers

ity
 of

 M
ala

ya

• The unblinded data or file is saved to the user' s data store.

• The unblinded data or file is represented with an icon.

Read file

• In this module, user is allowed to browse and select the blinded data or file

needed from the storage directory

• This module is only displayed the format of data or file that is accepted by the

system

• Then, this module is able to send the blinded selected data or file to the

unblinding process.

4.1.2.3 The verifying process

• The blind signature system allowed user to browse and retrieved the data or file

from the storage directory that need to be verified.

• Before the verifying process, this system is able to prompt out the user's public

key as an input for the verifying process.

• During the verifying process, this system is able to show the progress of the

verifying process and the system also is able to prompt the result of the process

whether is failed or successful. However, if the verification process is failed the

system is able to inform the user that the content of the data or file was changed

or modified.

Read file

• In this module, user is allowed to browse and select the data or file needed from

the storage directory

65

Univ
ers

ity
 of

 M
ala

ya

• This module is only displayed the format of data or file that is accepted by the

system

• The read file module is able to extract the signature from the file and send it as

an input to the decrypt blind signature module

• The read file module is able to extract the original file and send it as an input to

the hash file module

Hash file

• The hash function module received a block of selected data or file which length

is not exceeding from 2"64 bits from the read module and produces a fix length

(160 bits) output.

• The hash result H(x) must be relatively easy to compute for any given data (x).

• For any given h, it is computationally infeasible to find x such that H(x) = h.

• For any given block x, it is computationally infeasible to find data y f. x with

H(y) = H(x).

• Tue hash file module is able to send the hash result H(x) to the compare hash

module.

Decrypt file

• Tue decrypt file module received the blind signature from the read file module.

• In this module, the user's public key is prompted out.

• Then, the blind signature of the selected data or file is decrypted to recover the

original hash.

• Tue decrypt blind signature should be able to send the decrypted blind

signature to the compare hashes module.

66

Univ
ers

ity
 of

 M
ala

ya

Compare hashes

• The compare hashes module is able to compare the hash received from hash file

module with the hash received decrypt blind signature module.

• The compare hashes module is also able to inform user if the signature

verification is success or failed.

4.1.2.4 Key Generator Module

• The key generator module will be able to generate public key, private key and

random key.

4.1.2.5 About Module

• This module provides general information about the blind signature system, user

manual system and terms definition.

4.1.2.6 User Identity verification Module

• In this module, user need to log in by enter their usemame and password.

• This module will validate the usemame and password and will inform the user if

the usemame or password is invalid.

4.1.3 Non functional Requirements

• Usability

Tue blind signature system is a user friendly interface where the user is eased to use.

There are different icons for different purposes, menu, toolbars and pop up window

as guidance for using this system.

• Reliability

The blind signature system is able to operate with minimal errors and optimum

availability.

67

Univ
ers

ity
 of

 M
ala

ya

• Response Time

This system is able to operate every function that requested with a reasonable and

acceptable period of time.

• Flexibility

The blind signature system allows user to change their login usemame and password

or private and public key to avoid forgery.

4.2 Run time Requirements

The hardware and software requirements for the blind signature system are stated below.

4.2. l Hardware Requirements

• Pentium 533 MHz or above

• 64MBRAM

• 1.44 Floppy disk drive

• Monitor 14" (high color 16 bit)

4.2.2 Software Requirements

• Microsoft Visual c++ 6.0 Professional Edition

• Windows 9x or above

4.3 Cryptography

In this blind signature system the author had chose public key cryptography after having

a deep investigation in comparing between the public key (asymmetric) and secret key

(symmetric) cryptography. While comparing these two types of cryptography there is

several considerations that need to give attention.

• Key length

68

Univ
ers

ity
 of

 M
ala

ya

• Popularity

RSA is the most widely used and has withstood over 15 years of vigorous

examination for weaknesses. Although DSS may well turn out to be strong

cryptosystem, its relatively short history will leave doubts for years to come.

• Processing speed

In the context of blind signature, the faster the algorithm to verify the signature is the

better. In RSA algorithm signature verification is faster than signature generation. It

is differ from DSA system where the signature generation is faster than signature

verification.

• Key exchange capability

RSA have a capability on key exchange.

4.4 Hash Algorithm

After a deep research on hashing algorithm which are the Secure Hashing Algorithm

(SHA-1) and the MD5 algorithm, the author decided to use SHA-1 in this blind

signature system. The choice is made according to several considerations as stated

below. Table 4.0 below shows the different between the SHA-1 and MD5 algorithm.

Table 4.0 The differences and similarities between SHA-1 and MD5

Algorithms MD5 SHA-1

Features

Digest length 128 bits 160 bits

Unit of Processing 512 bits 512 bits

Number of steps 64 (4 round of 16) 80(4 round of 20)

Maximum message size 264 -1 bits

70

Univ
ers

ity
 of

 M
ala

ya

Primitive logical functions 4

Additive Constant used 64

There are a few considerations while choosing the hashing algorithm:

• Resistance to Bruce Force attacks

4

4

According to the table above, SHA-1 has 160 bits as output whereas the MD5 only

has 128 bits output. Therefore, because of the different in the amount bits of output,

SHA-1 which has a larger amount of bits is more secure against Bruce force attacks.

This is because, the attacker has difficulty on producing 2 messages which have the

same message digest on the order of 2" 160 operations compare to MD5 algorithm

that only need to have 2" 128 operations. Moreover, in MD5 algorithm a collision

can be found by brute force in 2"64 calculations whereas SHA-1 a collision can be

found by brute force in 2"80 calculations.

• Secure against cryptanalysis

Secure against cryptanalysis means the harder cryptanalyst to discover the weakness

of the algorithm the more secure the algorithm. Therefore, in the context of

cryptanalysis, MD5 algorithm is proof to have high possibility to cryptanalytic attack

compare to SHA-1 algorithm.

• Speed

According to the table 4.1 shows that the speed of SHA-1 algorithm on a 266MHz is

much slower than MD5 algorithm. Nevertheless, the existing of powerful hardware

recently should solve the problem on the speed of the algorithm.

Table 4 .. 1 Performance ofMD5 and SHA-1 algorithm on 850 MHz Celeron

71

Univ
ers

ity
 of

 M
ala

ya

Algorithm Mbps

MD5 26

SHA-1 48

4.5 Progranuninglanguage

In this system, Microsoft visual C++ is chose instead of Java and visual basic

programming language.

• Visual C ++ can perform faster than Visual Basic during the looping operations.

• Visual C ++allows faster slipping into assembler and move the memory than the

windows API Copy Memory where this is another advantage of visual C++ or

Visual Basic

• Visual Basic is complained that it creates bloated installations, is not fully object

oriented and performs poorly at mathematical tasks.

• Java language do not have features like hardware-specific data types, low level

pointers to arbitrary memory addresses, or progranuning methods like operator

overloading, multiple inheritance.

• Visual C++ is a graphical based language and allows more arbitration m

interface design than visual Basic.

• Visual C++ has shorter, easy to understand and manipulate commands than Java.

• Visual C++ can develop platform independent software compare to visual basic

which only can develop Microsoft platform software.

• Visual C++ is more object oriented than Java thus is easy to maintain.

• Visual C++ is more familiar for the author

• Optimized compiler ensures better software performance .

72

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design

5.1 System Architecture

The overall architecture of blind signature system is depicted with top down approach as

shown in figure 5 .1.

System I
1

1 l l l
Sign Unblind Verify Key Help User iden

generator verificati•

i .,
i '~ i

Read Blinding Hash Read Hash Compare About Definition

File File File File File Hash

'. •• ,, '.
Encrypt Read Decrypt User

Hash File Hash manual

Figure 5.1 Overall System Architecture

5.2 Data Flow Diagram

Figure 5.2 show the data flow of diagram of the blind signature system. It illustrates how

the data is processed and stored in the blind signature system.

73

Univ
ers

ity
 of

 M
ala

ya

Key store

Unblinding
process

Blinding
Process

..... ._--Request store key---_.

Return original
document

Return verified
document

Verifying
Process

File Store

Store or
Retrieve Key

=l key

Provide Request
requested file

file

Browse
Document

t'-------Request file---------'

Figure 5.2 Data Flow Diagram

Request
generating key

generated
key

Key
Generation

Send signed ~
document + public key .

Received signed Receiver
document + public key

Signed
document

blindly

Send private
key+ blinded

document

Signing
Process

According to data flow diagram, the sender and the receiver are the two parties that

involves in this blind signature system. The sender, who triggers the blindly signing

activities, will browse the document needed and the document is retrieved from a file

store. Then, the sender can choose to generate a new private key, public key and a

random key or just retrieved the existing key from the key store. The sender then, firstly,

will blind the document. The blinding process will then generate a blinded document

after it received the random key and the document that need to be blind. After, the

74

Univ
ers

ity
 of

 M
ala

ya

blinding process is completed the sender now is proceed to the signing process to

generate a signed document. The signed document is only generated when the blinded

document that needs to be signed is retrieved and the private key is received. The

unblinding process is completed after the blinded document that posses the valid

signature is retrieved and the random key is received. The unblind document then will

proceed to verifying process. In the verifying process, the receiver is the one who

triggers the verifying activities. During the activities, the process will inform the sender

if the signature on the document is indeed valid or not.

5.3 Interface design

Figure 5.3 shows the system main interface prototype design. According to the interface

design, user firstly needs to click on key generator button to generate the keys. The pop

menu that shows the keys is prompt out as shows in figure 5.4. After the key is obtained

from the system, user now can choose any task on the interface that the user want the

system to execute. If the user clicks on the sign button the new window of the sign

process is appeared. It shows on figure 5.5. These interfaces are user friendly and have a

direct manipulation which provides menus such as pop up menu, iconic and cascading

menu.

75

Univ
ers

ity
 of

 M
ala

ya

E.ile g_dit ~iew tielp

BLIND SIGNATURE SYSTEM

TASK

UNBLIND

VERIFY

Ready NUM

Figure 5.3 The System Main Interface Prototype Design

76

Univ
ers

ity
 of

 M
ala

ya

!1 unt1tled - key

E.ile g_dit '.!!Jew tielp

PUBLIC KEY

PRIVATE KEY

RANDOM KEY

OK I Cancel I

Ready NUM

Figure 5.4 Key Pop Up Menu Prototype Design

77

Univ
ers

ity
 of

 M
ala

ya

!ii Untitled - s1gn

Eile ~dit ~iew tielp

BROWSING

Browse :

DOCUMENT

~

Ready

j

_!J

SIGNING

KEY
Private Key :

JJ
(n) :

JJ
Random Key (r) :

1J

Figure 5.5 Signing Process Interface Prototypes Design

5 .4 Interface flow chart

NUM

Figure 5.6 shows the interface flow chart of the blind signature system. Firstly, user need

to key in their usemame and password in a dialog box that is prompted out to the user. If

the usemame or password in not valid one error message will prompt out to the user and

user need to insert the usemame and password again. After the log in session is

successful, the system will display the main menu of the blind signature system. In this

system, there are 6 tasks that the user can choose which are sign, verify, unblind,

generate key, help and close the system. If the user clicks on the key generator button,

78

Univ
ers

ity
 of

 M
ala

ya

one pop up menu will prompt out to the user that contains the private key, public key

and random key. The user needs to save the key onto the key store. Then, if the user

clicks on the sign button, a new window of the signing process will appear. Here, user

needs to browse the document that need to blindly sign and insert the random key that

usL.d to compute the blinded document and the private key for the signing the blinded

document. If the selected document's size is exceeds from the size that is allowed, the

system will alert the user. The chosen document is displayed to the user before the

signing process initiate. During the signing process system will show the progress of the

signing process. At the end of the signing process, the system will inform the user if the

signing process is successful or fail. Then, the user can view the signed document and

save it. Same goes on to the unblind and verify button. User still needs to browse the

needed document and insert the key. But in the unblinding process user need to insert

the public key and the random key whereas the verifying process needs the user public

key only. Besides, if the user chooses to seek for help, the help process will iterated until

the users' queries are solved or until the user itself abort the process. Finally, the user

can also choose to close the system.

79

Univ
ers

ity
 of

 M
ala

ya

No

tsp aye
msgof

invalidation

yes

Insert random key

Insert public key

Insert Private Key

Blinding process

Signing process

Start

User key in usemame ______ ___,

and password

yes

Display main menu

Task selection

yes

no

Generate
key

unblind

Insert random key

Insert public key

Unblinding process

yes

end

Display msg of in
validation

no

No

Generate key

Displayed
key

verify

no

No

Insert public key

Verifying process

yes

Figure 5.6 The Interface Flow Chart of the Blind Signature System

80

Univ
ers

ity
 of

 M
ala

ya

Chapter 6 System Implementation

6.1 Introduction

System implementation is the implementation of the target software product in the chosen

impleml:ntation languages. In other words, system implementation is a process that

converts the system requirements and designs into program codes. It is the delivery of the

system into production, which means day-to-day operation.

6.2 Development Environment

Development Environment is used to determine whether the requirements of the

hardware and software that were stated in chapter 4 are suitable for the software

implementation. This is important because the usage of appropriate software or hardware

will influence the development of the software product. In this section, the hardware and

software tools used to develop the entire system are listed below.

6.2.1 Hardware Tools

• Intel (R) Pentium (M) processor 1500 Mhz

• 256MBRAM

• 40 Gbytes Hardisk

• BJC i255 Cannon Printer

81

Univ
ers

ity
 of

 M
ala

ya

6.2.2 Software Tools

• Microsoft Windows XP Home Edition

• Microsoft Visual C++ 6.0 Professional Edition

6.3 System Development Tools

In developing the blind digital signature program, the author used Microsoft Visual C++

6.0 as a tool to generate the coding and the interfaces of the program. One of the

functions that Microsoft Visual C++ 6.0 provides is Microsoft Foundation Class (MFC)

that is used to design the interfaces. Therefore, in this section, it will be the user

interfaces development and coding development.

6.3. l User Interface Development

User interface is the part of a computer program that displays on the screen for the user to

see. It will describe how humans interact with what they see on the computer screen.

Besides, the good interface will help the user to understand on how to use the program

accurately. In this section, the real implementation of the actual user interface will be

discussed.

82

Univ
ers

ity
 of

 M
ala

ya

6.3.2 User Authentication Dialog

6.3.2.1 Log In Dialog

Log in dialog is used to authenticate the user and it will pop up to the screen once the

icon of the program is clicked. The user is prompted to key in the user ID and the

password in order to enter the program as shown in figure 6.1.

6.3.2.2 Error message

Logm 01alog

User ID: !Administrator

Password: 1 1

OK Cancel

Figure 6.1 Log in dialog

If the user had key in either the wrong user ID or password the error message will pop up

to the user as shown in figure 6.2.

Eno1

~ Login failed

I c:::::::::::9.~: : :::::::::::H

Figure 6.2 Error Message

83

Univ
ers

ity
 of

 M
ala

ya

6.3.2.3 Blind Key Input Dialog

Before blinding the message user is required to enter the random key, public key and

multiple value that are generated by the program as shown in figure 6.3.

Blmd Key

Key information

Public Key(e):

Multiple Sum(n):

Random Key(r):

DK Cancel

Figure 6.3 Blind Key Input Dialog

6.3.2.4 Private Key Input Dialog

After blinding the message the user can proceed to sign the blinding message. Same goes

here; the user is acquired to key in the private key and the multiple value that also are

generated by the program itself.

84

Univ
ers

ity
 of

 M
ala

ya

Key Input

Key information

Private Key (d): I

---- - ·::"

r-~~~~~~~~~~~~~~~~~

Multiplied Sum(n): j

OK Cancel

Figure 6.4 Signing Key Input Dialog

6.3.2.5 Verifying Key Input Dialog

To verify the signature, user is acquired to insert the public key and multiple values. The

public key, private key, random key and multiple value are the key that are generated at

the same time during the key generation.

Key Input

Key information

Public Key (e): J
;..-~~~~~~~~~~~~~~~~~

Multiplied Sum(n): I

OK J Cancel

figure 6.5 Verifying Key Input Dialog

85

Univ
ers

ity
 of

 M
ala

ya

6.2.3.6 Warning Message

If the user do not key in one of the key value a warning message is appeared to inform

that they need to re-enter the key value. Besides, a warning message also is appeared if

the signature is invalid.

£nor

Please enter the key value

OK

Figure 6.6 Error message Dialog box (Public key and Private key)

£1 ror

Please enter the multiplied sum value

OK

Figure 6. 7 Error message Dialog Box (Multiple value)

£1 ror

Please enter the random key value

OK

Figure 6.8 Error message Dialog Box (Random key)

86

Univ
ers

ity
 of

 M
ala

ya

~ Invalid digital signature

OK

Figure 6.9 Error message Invalid Signature

Despite, if the signature is indeed valid, the informing message that states the valid

signature is appeared.

Success

• I Valid digital signature

OK

Figure 6.10 Informing message Valid Signature

6.3.3 Main Interfaces

Figure 6.11 below is the main interface of the blind digital signature program. It will

emerge once the user id and password is authenticated. As shown in the main interfaces,

there are seven tasks that hold different functions.

87

Univ
ers

ity
 of

 M
ala

ya

~ BhndlhgS1gne

Open F~e Save As Gen Key Blrld File SIQn Fie Verify Fie dear Document Exit About

Document
Bind Tasks

_ s~_j

Task Selection

Sign File

Veri~-J

Generate Key I

Digital Signatuie
r-----···----,
! ClearDoc !
i i 1-··-----··-i

I

.____ ______ J
Figure 6.11 Main Interface

88

Univ
ers

ity
 of

 M
ala

ya

6.3.3.1 Open I Save file

Blind Digital Signature program allowed user to save or open whether in text file

(* .txt), Signed Files(* .signe) or Blinded Files(* .blinded).

Open

Look in: I Debug

' - ID
,J ikan

File name:

Files of type: IT ext Files (".txt)

L!:::=::====t T el!t Files (".txt)
Signed Files (".signe)
Blinded Files ".blinded

~ ~. lf:T:I ... l!::.J w~ Ea

Open

:::;:] Cancel

Figure 6.12 Open File Task

---,

J
J

I

89

Univ
ers

ity
 of

 M
ala

ya

Save As

Save in: j Debug

tl ID
) ikan

------- ----
File name:

Save as type: IT ext Files (".txt)

=====I Te>d Files (".hct)
Signed Files (". signe)
Blinded Files ". blinded

Figure 6.13 Save Task

6.3.3 .2 Generate Key

~~-~ ...
l.=.J W "" l!:..B

Save

Cancel

J

All keys are generated at the same time by the key generator. User need to copy and save

all the keys somewhere else because this program do not have a special built in databases

that can keep them secretly.

90

Univ
ers

ity
 of

 M
ala

ya

~nerated Keys

Private Key (to be kept secret)

~1 8-35-B-22-0-30-0-15_0_0-06~~~~~~~~~~~~~

Random Key(rJ: joooooo53

Public Key Components (to be distributed)

/ooooc353

h 281700300203592

OK

Figure 6.14 Key Generator

91

Univ
ers

ity
 of

 M
ala

ya

6.3.3.3 Blinding Task

-~~ I ~ I ~ I 8 I [ill I
r--

Document

MusfwahMohdAti 831110146260

Prog1ess

Digital Signature

Piocessing ...

Figure 6.15 Blinding Process

Blind Tasks

B~nd
J/

Task Selection

Sign File

Verify He !l

Generate Key IJ

___ _J

92

Univ
ers

ity
 of

 M
ala

ya

6·3.3.4 Signing Task

I ,
•
I

~1~ 1 ~ 1 ~ 1 IOl• l

~~

- ··- -·--
P1og1ess

Processing ...

Digitar Sioiatt1e

Figure 6.16 Signing Process

·- .

Blind Tasks l
Blind J/

Task Selection

Sign File II

Verily Fie 1/

Generate Key //

ae~Doc JI

93

Univ
ers

ity
 of

 M
ala

ya

6.3.3.5 Verifying Task

0FE81 CF200Q2CF55

- - •. , .. - ·- - - ..
P1og1ess

Processi'tg ...

Di(jtal Signin.at~u~re~--------------------­~
/60875F5E0005aso11A382A20000
~~~757E0004BCD17F6857 
~CSOOCXJ85E0005C66C 

Figure 6.17 Verifying Process 

Bind Tasks 

Bi~ II 

Task Selection 

II Sign File . 

Ver~y Fie 

" Generate Key .I 

ClearDoc J 

94 

Univ
ers

ity
 of

 M
ala

ya



6·3.3.6 Exit 

If user click to close the program, a confirmation dialog box is prompted out to confirm 

Whether the user is really want to exit from the program. 

( onfil mation 
------==-,1 @ c~ .. the applb•fon? 

/ OK Cancel 

Figure 6.18 Closing Program 

6.3.2 C d D o e evelopment 

Blind signature d . Cl (MFC) d application used Microsoft Foun at10n asses to esign the 

Interfaces. First of all, the author designed the main interface with buttons, menus and 

tooibars. Then, the author determines the action for each buttons, toolbars and menus. 

Ev~ry action has their own function that contains lines of coding. Coding is the most 

lillportant thing that needs to be done. This is because a successful coding determines the 

strength of the application. Here, the author will explain the coding of hash function and 

blindin 
g function 

95 

Univ
ers

ity
 of

 M
ala

ya



i) Hashing Function 

• ProcessSHAO 

~ This ~ction .is to chop the plaintex~ into appropriate si~e and to collect the 
essage digest m order to make available to the function of blinding and 

decryption.* I 

{ 

void CDigSignDig::ProcessSHA( CONST CString& strData, CString& strHash) 

SHAl CTX context; 

unsigned char aBuffer[ SHA_BUFFER ]; 

unsigned char digest[20]; 

CString strTemp = strData; 

CString strBlock = _ T('"'); 

Int nDataLen = strTemp.GetLengthO; 

Int nlndex = O; 

CSHAl ::SHAIInit( &context); 

while ( nDataLen > 0 ) { 

memset( aBuffer, '\O', SHA_ BUFFER ); 

if( nDataLen > SHA_BUFFER) { 

strBlock = strTemp.Left( SHA_BUFFER ); 

strTemp = strTemp.Mid( SHA_BUFFER ); 

} else 

{ strBlock = strTemp; 

T('"')· strTemp = _ , } 

memcpy( aBuffer, LPCTSTR(strBlock), strBlock.GetLength() ); 

96 

Univ
ers

ity
 of

 M
ala

ya



CSHAl ::SHA 1 Update( & context, aBuffer, strBlock.GetLength() ); 

nDataLen = strTemp.GetLength(); } 

CSHAI ::SHAIFinal( digest, & context); 

strHash = _T(""); 

for ( nlndex = O; nlndex < 20; nlndex++ ){ 

strTemp.Fonnat( _ T("%.2X"), digest[ nlndex ] ); 

strHash += strTemp; } 

cout<<strHash;} 

~ 
strData 

: Original data or plaintext 

Strl-Jash 
: Storage for message digest in digit 

a.BUffer(l6384]: A temporary storage for characters to be process 

digest[20] : Storage for 160-bit message digest in hexadecimal 

strremp 

nDataLen 

nlndex 

~ 

: Temporary storage for string characters 

: Storage for the length of strTemp 

: Counter 

I. Start 
2· lnitializ.ation 

2.I Copy original data (plaintext) into strTemp 
2·2 Initialize strBlock with empty string 
2·3 Store into nDataLen the number of characters of strTemp 

3. ~hi4. 1e nDinitialize the counter with 0 
ataLen>O do 

3.1 Set aBuffe; with a total of 16384 'O' characters 
3.2 If nDataLen> 16384, do 

3.2.l First copy the leftmost 16384 characters of strTemp into strBiock 
3.2.2 Then, copy the rest characters into strTemp 

97 

Univ
ers

ity
 of

 M
ala

ya



3.3 

3.4 
3.5 
3.6 

If nDataLen< l 6384, do 
3.3.l First, copy into strBlock the data in strTemp 
3.3.2 Then, empty the strTemp 
Copy strBlock into aBuffer 
Call function SHAJ Update( &context,aBuffer,strBlock.Getlength( )) 
Store into nDataLen the remaining number of characters in strTemp 

4· Call function SHAlFinal(digest, &context) 
5· Initialize strHash - T(" ") 
6· If nlndex<20, do 

6.1 Change the format of digest (hex) into correspondent string of digits and 

6.2 
6.3 
6.4 

7. End 

store in strTemp. 
Add strTemp into strHash 
nlndex 
Go to step 6 

• SiiAinit() 

I* Th 
d e function of SHAinit is to make initialization to MD buffer before each 512-bit 
ata block is process *I 

void CSHAI::SHAllnit(SHAl_CTX* context){ 

I* SHAl initialization constants*/ 

context->state[O] = Ox67452301; 

context->state[l) = OxEFCDAB89; 

context->state[2] = Ox98BADCFE; 

context->state[3] = Ox10325476; 

context->state[4] = OxC3D2ElFO; 

context->count[O] = context->count[l] = O; } 

~ 
Context· 

ts a structure that contains 

State[5] : To store intermediate and final results of the hash function, also known 
as message digest(MD) buffer. 

98 

Univ
ers

ity
 of

 M
ala

ya



Count[2) 

Butrer(64] 

: To store bits counted in each block data before and after bits padding 

: To store data to be processed by hash function 

1. Start 

2. Initialization in hexadecimal fonnat 
2.1 state[O] = 67452301 
2.2 state[l] = EFCDAB89 
2.3 state[2) = 98BADCFE 
2.4 state[3) = 10325476 
2.5 state[4) = C3D2EIFO 
2.6 count[O) = count(l) - O 

3. End 

• 8l-IA1 Transform() 

~: !11e ~ction of SHA I Transform is to execute the core hash function in order to 0 
uce intermediate and final message digest* I 

~elude "SHAl.hxx" 

I* ~efine LI1TLE_ENDIAN *This should be #define'd.iftru~. *! 
efine SHAlHANDSOFF *Copies data before messmg with 1t. */ 

#define Ll1TLE_ENDIAN I 

#de fin . 
e rol(value, bits) (((value)<< (bits)) I ((value)>> (32 - (bits)))) 

I* blko 
/*I 

0 
0 an~ blkO perform the initial expand. */ . 

#ifd g t the idea of expanding during the round funct10n from SSLeay *I 
#d ef LITTLE END IAN 

:>1t1fine blk:O(i) (b1ock->l[i] = (rol(block->l[i],24)&0xFFOOFFOO) j(rol(block­
#eI~~8)&0xOOFFOOFF)) 

::~~e blk:O(i) block->l[i) 

~~~e blk:(i) (block->l[i& 15) = rol(block->J[(i+ l 3)&15]"'block->J((i+8)&15) AbJock-
H-2)&15)"block->I[i&I 5), I))

I* (R
#defi O+RI), R2, R3, R4 are the different operations used in SHAI */
#defime RO(v,w,x,y,z,i) z+=((w&(xAy)yy)+blkO(i)+Ox5A827999+rol(v,5);w=rol(w,30);
'l<ie~e Rl(v,w,x,y,z,i) z+=((w&(x/'\y)yy)+blk(i)+Ox5A827999+rol(v,5);w=rol(w,30);

e R2(v,w,x,y,z,i) z+=(w/'\x/'\y)+blk(i)+ox6ED9EBAI +rol(v,5);w=rol(w,30);

99

Univ
ers

ity
 of

 M
ala

ya

#define R3(v w x y z i') z+== , , ' , ,
#d (((wlx)&y)l(w&x))+blk(i)+Ox8F 1 BBCDC+rol(v ,5);w=rol(w,30);

efine R4(v,w,x,y,z,i) z+=(w"x"y)+blk(i)+OxCA62ClD6+rol(v,5);w==rol(w,30);

I* Hash a single 512-bit block. This is the core of the algorithm.*/

tid CSlIAI::SHAITransform(SHAl _CTX* context, unsigned char buffer[64])

unsigned long a, b, c, d, e;

typedef union {
unsigned char c[64];
unsigned long 1[16];

} CHAR64LONG16'
'

CHAR64LONG16* block· '
#'£ 1 defSHAIHANDSOFF

static unsigned char workspace[64];
block== (CHAR64LONG 16*)workspace;

#else memcpy(block, buffer, 64);

block = (CHAR64LONG 16*)buffer·

endif '

I* Copy context->state[] to working vars*/
a= context->state[O];
b = context->state[l];
c = context->state[2];
d == context->state[3];
e = context->state[4];

R /* 4 rounds of 20 operations each. Loop unrolled.*/
R~(a,b,c,d,e, O); RO(e,a,b,c,d, I); RO{d,e,a,b,c, 2); RO(c,d,e,a,b, 3);
RO (b,c,d,e,a, 4); RO(a,b,c,d,e, 5); RO(e,a,b,c,d, 6); RO{d,e,a,b,c, 7);
RO (c,d,e,a,b, 8); RO(b,c,d,e,a, 9); RO(a,b,c,d,e, 1 O); RO(e,a,b,c,d, 11);
RI (d,e,a,b,c,12); RO(c,d,e,a,b,13); RO(b,c,d,e,a,14); RO(a,b,c,d,e,15);
R2 (e,a,b,c,d,16); RI (d,e,a,b,c, 17); Rl (c,d,e,a,b,18); RI {b,c,d,e,a, 19);
R2 (a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2 (b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2 (c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2 (d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R.3 (e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R.3 (a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R.3 (b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R.3 (c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);

(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);

100

Univ
ers

ity
 of

 M
ala

ya

R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R 4(a,b,c,d,e, 70); R4(e,a,b,c,d, 71);
R4(d,e,a,b,c, 72); R4(c,d,e,a,b,73); R4(b,c,d,e,a, 74); R4(a,b,c,d,e, 75);
R4(e,a,b,c,d, 76); R4(d,e,a,b,c, 77); R4(c,d,e,a,b, 78); R4(b,c,d,e,a, 79);
I* Add the working vars back into context.state[] *I
context->state[O] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e·
1* Wipe variables *I '
a ::: b ::: c = d = e = o·

} '

~lgnation Variables

a, b, c, d, e are working variables instead of using context->state[5]

~
1.
2.

3.

4.

Start
Initialization
2.1 a->state[O]
2.2 b->state[1]
2.3 c->state[2]
2.4 d->state[3]
2.5 e->state[4]
Hash Function

3 .1 For round 0 down to 15
3.1.1 execute RO

3.2 For round 16 downto 19
3.2. l execute Rl

3.3 For round 20 downto 39
3.3.1 execute R2

3.4 For round 40 downto 59
3.4.1 execute R3

3.5 For round 60 downto 79
3.5. l execute R4

Do addition to the block of MD and the state[5]

4.1 state[O] - a
4.2 state[l] - b
4.3 state[2] - c
4.4 state[3] - d
4.5 state[4] - e

101

Univ
ers

ity
 of

 M
ala

ya

}

5. Empty the value stored in a, b, c, d, e and waiting for the next block of
data to be processed.

6. End

• SHAIUpdate()

:•.the function of SHA I is to make sure the length of received data within 2"64 and chop
It lilto appropriate size before sent to SHA I Final *I

~:~ CSHAl::SHAIUpdate(SHAl_CTX* context, unsigned char* data, unsigned long

{

}

unsigned int fill left·
' '

left= (context->count[O] >> 3) & Ox3F;
fill = 64 - left-

'

context->count[O] += Jen<< 3;
context->count[O] &=OxFFFFFFFF;
context->count[l] += len>>29;

if ((context->count[O]) < (Jen << 3))
{

}
context->count[I]++;

if (left && Jen >=fill)
{

memcpy((void *)(context->buffer +left), (void*) data, fill);
SHAJ Transform(context, context->buffer);
len -= fill·

data += fill· '
'

left = O·
'

While(len >= 64) {

}

SHAJ Transform(context, data);
len -=64·

' data +=64·
'

if(len){ . *
memcpy((void *)(context->buffer +left), (v01d) data, len);

}

102

Univ
ers

ity
 of

 M
ala

ya

~anation Variables

Data - aBuffer

ten -number of characters in aBuffer
F~~ - ho~ many bit still left to be processed

1
- fill m the buffer with its number of characters

~
1.
2.

Start
If Jen - NULL
2.1 Return control to calling function

3.

4.
5.
6.
7.

Compute left by dividing count [OJ with 8 and masking the result with value
64 to make sure it is smaller than 64

8.

9.

10.

Compute fill - 64 left
Compute the total bits used by the data by multiplied the len with 8
compute the total bits to make sure whether it exceeds value 2/\32
if left!= NULL and len >-fill
7.1 First copy the data into context-> buffer with the number of character

stored in fill
7.2 Then, call the SHAl Transform
7.3 Len - = fill
7.4 Data + =fill
7.5 Left - 0
while len>=64
8.1 Call the SHA I Transfom
8.2 Len - = 64
8.3 Data += 64

if len<64
9.1 copy the data into context -> buffer with the number of character stored in

len
end

103

Univ
ers

ity
 of

 M
ala

ya

• SHAFinal

I* The function of SHAFinal is to add padding bits and length bits in to the data in order
to form a 512 bit data block. Lastly, the message digest will be computed here.*/

~oid CSHA 1: :SHA I Final(unsigned char digest(20], SHA l _ CTX* context)

unsigned long i, j;
unsigned char finalcount(8];

for (i == O; i < 8; i++)
{

) finalcount[i] ==(unsigned char)((context->count[(i >= 4? 0: 1)] >> ((3-(i & 3)) * 8)
~ 255); I* Endian independent*/

8~1Update(context, (unsigned char *)"\200", 1);
While ((context->count(O] & 504) != 448)

{
SHAIUpdate(context, (unsigned char *)"\O", l);

}

.SHAIUpdate(context, finalcount, 8); /*Should cause a SHAlTransformO */
for (t == 0; i < 20; i++)

{
digest[i] ==(unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8)) & 255);

}

i•w·
• 1.Pe variables *I
l::::: j::::: 0·

'
Illetnset(context->buffer 0 64)·
Ill ' ' ' emset(context->state O 20)·
Ill ' ' ' emset(context->count O 8)·
Ille ' ' ' #' tnset{&finalcount, O 8)·

lfdefSHAIHANDSOFF /;make SHAITransform overwrite it's own static vars*/

SfIA1 Transform(context->state context->buffer);
endif '

}

~anatin ·--· •• ~
I-counter

linaJcount[8] - plaintext length

104

Univ
ers

ity
 of

 M
ala

ya

&@do Codes

1.
2.

start
for i - 0 downto 8

3.

4.

2.1 load the length of plaintext in hexadecimal from context ->countO
Call function SHAJUpdate(context, (unsigned char*) "\200", I) to add bit '1'
before add padding bit 'O'
while the total bit in context ->buffer != 448
4.1 append but 'O' into buffer

5. Call function SHA 1 Update(context, (unsigned char *) "\200'', 1) to add
plaintext length (final count) and trigger SHAI Transform to form the fmal
MD

6.
7.
8.

Final MD in context-> state[5] is copied into digest [20]
All counter, variables and state is emptied
End

g~ong CRSA::blind(const CVLong& vPlainText, const CVLong& vMult, const
{ Long &vPrivKey , const CVLong& vRandom)

} return modexpblind(vPlainText, vPrivKey, vMult, vRandom);

~
VPl ·

ain - Plaintext
VMuit M 1. vp . - u tiple sum value

nvKey - Public key
VR.anct

om - Random key

~
1. Start
2· Call modexpblind function. The 4 variables are sent to the function

105

Univ
ers

ity
 of

 M
ala

ya

CVLong modexpblind(const CVLong & x, const CVLong & e, const CVLong & m
const CVLong & r) '
{

CMonty me(m);

}
return me.expblind(r,e,x);

&nlanation Variables

X- Plaintext
e- Public key
Ill- multiple sum value
r - random key

~
1. Start

2. Call function CMonty and send multiple sum value
3· Call function expblind and send random key, public key and plaintext.

~ is a function that initialize the multiple sum value. This function is essential to
~te the modular value

~Monty::CMonty(const CVLong &M)

m=M;
N = O; R = I; while(R < M) { R += R;N+= 1;}
Rl = modinv(R-m, m);

} nl = R - modinv(m, R);

/CVLong modinv(const CVLong &a, const CVLong &m) II modular inverse
I return . . . d

//a s 1 m range 1 .. m-1 such that 1*a = 1 mo m
{ must be in range I .. m-1

CVLongj= I,i=O,b=m,c=a,x,y;
While (c ! = Q)
{

x = b I c;
y = b - x*c;
b = c·

' c = y;
y = j ;
j = i-j*x;
l = y;

106

Univ
ers

ity
 of

 M
ala

ya

}

}
if (i < 0)
{

}
i+=m;

return i;

~ind function is the main function to calculate the b1ind pJaintext.
Blindtext = (plaintext)(randomkey" publickey) % multiple value.

fVLong CMonty::expblind(const CVLong &x, const CVLong &e, const CVLong &r)

} return ((monty_exp((r*R)%m, e) *RI)* x) % m;

J!!.Qmy_ exp is the function that calculate the exponent value

fVLong CMonty::rnonty_exp(const CVLong &x, const CVLong &e)

CVLong result= R-m, t = x;
t.docopyQ;

}

unsigned bits = e. value->bitsO;
unsigned i = O;
While (1)
{

if (e. value->bit(i))
{

muJ(result, t);
}

i += 1 ·
' if (i =bits)

{
break;

}
muJ(t, t);

} return result;

107

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 System Testing

7.1 Introduction

System testing is carried out in parallel throughout the software development. It is

essential to check a software product meticulously after it has been developed. Testing a

software product once it is ready to be implemented is far too late. This is because once

the product is ready to implement, it is difficult to developer to trace the fault. Therefore,

continuously testing ensures the software product is as fault free as possible at all times.

Besides, system testing also is performed to determine whether the requirements that are

stated at the early phase of software development are fulfilled.

7.2
Type of testing

lbere are a few kind of testing that the author applies while developing the program. The

author uses the bottom up system testing approach which means the unit testing came

first, followed by module testing and integration testing.

• Unit Testing

Unit testing deals with the smallest and most elementary units of software such as

sub-function or sub-routine function. For example unit testing is performed on sub­

function of the program which are ProcessSHA, Encrypt, Decrypt, Blind and etc. In

Unit testing which have been done throughout the development phase, is to identify

the error or mistake that might be made. The testing is not only been done once but

several times and each changes that has been made from the testing will also need to

be tested · agam.

108

Univ
ers

ity
 of

 M
ala

ya

• Module Testing

Module testing is performed on the module of the blind digital signature program. In

blind digital signature program, there are six modules which are blinding module,

signing module, verifying module, key generator module, user authentication module

and about module. Each of this modules has been tested separately by using the

compiler of the Microsoft Visual C++. If there are any syntax errors the compiler

will inform the author so that the author can fix the error. Although, if no errors

emerge there can be run time errors that need the author to trace the fault in the

source code by itself.

• Integration Testing

Integration testing is to check that the modules or components combine correctly to

achieve a product that satisfies its specifications. During the integration testing, the

combination of all the modules had been tested by the build tool of Microsoft Visual

C++. Although there are no error on each of the modules but there can be a linking

error when they are integrated to become a one module.

109

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 System Evaluation

8· I Introduction

System evaluation is a process where developer will evaluate the complete software

Product in terms of problems that occur during the development, the strength of the

software product, the limitation of the software product and the future enhancements for

the system in order to get a more satisfactory system.

8.2 System Strengths

• User Friendly

The interfaces design in blind digital signature program is very understandable. It

means that user can easily understand on how to use the program. The grouping of the

certain task make user understands what they need to do first. Besides, instead of the

button the interfaces also provide menus and icons for the user to execute the task.

• Moderate security

Besides, this program used 128-bit key for the encryption where the security level

Provided is considered low to moderate.

110

Univ
ers

ity
 of

 M
ala

ya

• User Authentication

Instead of the encryption key usage, blind digital signature program also provide a

security where forbidden unauthorized user to make use of the application for

masquerading or fraudulent. It means this application acquired the user to

authenticate itself before enter the application.

• Response time

In addition, this application takes less than 3 seconds to generate a digital signature

for a document with approximately 30 000 characters.

8.3
System Limitations

8.4

• Process text file - Blind signature application only can process the document that

in text file and it's own generated file such as signed and blinded file.

• Edit Box - the program cannot accommodate 21\64 I 8 bytes of characters. The

performance of the system can be tested and evaluated at the maximum as the

SHA.1 only accepts the most 21\64 bits of input.

• Key storage- this program cannot keep the keys secretly. User have to manually

copy, type or store the copy in a different but removable storage medium.

Recommendation for Future enhancement

• Due to the speed of program, with hardware implementation, the time required

for blinding, signing and verifying can shorten and completed in shorter CPU

cycles thus increase the system performance.

111

Univ
ers

ity
 of

 M
ala

ya

• Secured key storage- A key storage with proper encryption or password protected

can be developed to allow users keep their key systematically and safely.

• Higher key length- Develop a program that can support higher key length where

the more higher the key length the more higher level of security as penetrator

requires longer time to break through encryption.

• Unblind- Hopefully, in a future the program can be develop with the unblind

function that can extract the valid digital signature from the blind signature.

Besides, the unblind process also can change back the unblind message to the

original message.

8·5 Problem Discussions and solutions

In this section, the problem with the solutions that the author faced will be discussed and

listed below. But not all the problems that the author faced come up with solutions. In

this case the author decides to discuss and gives some example to proof that the author

does not meet the solutions.

I. Due to limited knowledge on using the Microsoft Foundation Classes (MFC)

Which is the built in function that Visual C ++ provided, the author who is the first

timer has a big problem while relating the interfaces with the coding that

determines the action that it should take. Furthermore, because of so limited

people knows about the MFC the author have to learn from the book by itself.

Unfortunately, the author also unable to get useful books as guidance due to the

limited resources.

] 12

Univ
ers

ity
 of

 M
ala

ya

Solution:

One of the solutions is, the author has to buy the books by itself and have to spend a

lot of times by doing research on how to use the MFC.

2. Blind signature is a new concept that hardly to understand. In addition, there are

so limited resources whether on the internet or books that the author can refer as

guidance. All sources on the internet are same and no test data given on the

calculation. For example, for the unblind process, the formula that stated cannot

be proven. Below are the sample oftest data that indicates the problems.

Key Generation

Select two primes p and q:
p=5,q= 13
n=p.q

= (5)(13)
= 65

(p-1) (q-1) = <l> (n)
(5-I)(13-l) = 48

Choose number e between 5 and 48, that relatively prime to 48:
e =I I;

Choose d, such that ed mod (p-1) (q-1) = I:
edmod 48 =I

I 1 (d) mod 48 = 1

Therefore
'

d=35
(1 I) (35) mod 48 =I

(11) (35) = 385
385 mod 48 = 1

Public key (e, n): (11, 48)
Private key (p, q, d) : (5, 13, 35)

113

Univ
ers

ity
 of

 M
ala

ya

Blinding process

giving m = 2; r = 5;

Signing process

s ' = (m'd) (mod n)

Unblinding process

m' = (r e)(m) (mod n)
= (5"11)(2) (mod 65)
= 55

= [(r j(m)] d (mod n)
=(re) (m) (mod n)

ed =l;
= r (md) (mod n)

= (235)(5) mod 65
=35

Unblinding process is a process that extract the appropriate signature s for the . ' ' original message, m, from the signature that generate on blinded message, m '.
After the blinding process, the author supposedly has a valid digital signature, s
on the original message value, m. '

Yerifying process

s = s '/r (mod n)
= 35/5 mod 65
= 7

The problem emerges on verifying process where the original message value
cannot get it back. As for digital signature, to know whether the signature is
indeed valid we have to do a comparison between the verifying result and the
?riginal message value. If both of the values are same, the signature is valid but
if it is not the signature is not valid. Due to the blind signature, after the
unblinding process the author supposedly to have a valid digital signature but
Unfortunately the author cannot proof the validity of the signature.
TheoreticaUy, the message value, m, is 2 but what the author get here is 28.

114

Univ
ers

ity
 of

 M
ala

ya

Solution:

As for this problem, the author does not find a good solution even trying so hard. Due to

that, this blind signature program does not provide the unblinding function. The program

only can verify the signature on blinded message instead of the original message.

3. At the testing stage, the author unable to provide a complete blind signature test

data to the supervisor and moderator.

Solutions

As the mathematic calculations involved were too complicated, the author separated the

testing data into two distinct parts. The author used different inputs for each for the ease

of calculation.

115

Univ
ers

ity
 of

 M
ala

ya

References

http://searchsecurity.techtarget.com/sDefinition/0,,sidl 4 gci21443 l ,00.html

http://www.garykessler.net/library/crypto.html#figOl

http://www.x5.net/fags/crypto/g94.html

http://www.rsasecurity.com/rsalabs/node.asp ?id=2252

http://searchwebservices.techtarget.com/sDefinition/O,,sid26 gci2 l 24 l 5 ,00.html

http://searchvb.techtarget.com/sDefinition/O,,sid8 gci2 l 3309 ,00.html

http://www.votehere.net/remotevote.html

http://www.articsoft.com/fileassurity.htm

http://www.verisign.com/products-services/security-services/code-signingldigital-ids­

code-signing/index.html

http://www.elock.com/products/prosigner/

http://ntrg.cs.tcd.ie/mepeirce/Project/double.html

http ://www.rsasecurity.com/rsalabs/node.asp ?id=23 3 9

http://www.fact-index.com/b/bl/blind signature.html

http://www.ici.ro/ici/revist'i/sic2003 4/art2. pdf

Univ
ers

ity
 of

 M
ala

ya

http://theory.lcs.mit.edu/--cis/theses/ramzanms.pdf

Univ
ers

ity
 of

 M
ala

ya

Bibliography

Tan Loo Geck. (2003). Implementing Digital Signature Method for Secure Business

Transaction. Thesis. University of Malaya.

Mohan Atreya. (2002). Digital Signatures. New York : MacGraw-Hill/Osbome

Ed Tittle, Mike chapple, James Michael Stewart. (2003). CISSP.· Certified Information

Systems Security Professional Study Guide. Florida: Sybex.

Suranjan Choudary, Karthik Bhetnagar, Wasim Haque and NITT. (2002). Public Key

Infrastructure Implementation and Design : John Wiley & sons.

Nadir Guizar and Kartik Ganeshan. (2003). Practical J2EE Application Architecture.

New York : MacGraw-Hill/Osbome.

William Stallings. (2000). Network Security Essentials : Applications and Standards.

New Jersy: Prentice Hall.

William Stallings. (2003). Cryptography and Network Security: Principles and Practies

3rd. New Jersy: Prentice Hall.

Stephen R.Schach. (2002). Object Oriented and Classical Software Engineering. New

York: MacGraw-Hill/Osbome.

Univ
ers

ity
 of

 M
ala

ya

A. Appendix
B. RSA Test Data
C. Source Code
D. User Manual

Univ
ers

ity
 of

 M
ala

ya

AppendixB

Univ
ers

ity
 of

 M
ala

ya

RSA Test Data

Key Generation

Select two primes p and q:
p = 5, q = 13

n=p.q
= (5)(13)
=65

(p-1) (q-1) = <f> (n)
(5-1)(13-1) = 48

Choose number e between 5 and 48, that relatively prime to 48:
e= 11·

'

Choose d, such that ed mod (p-1) (q-1) = 1 :
edmod 48 = 1

Therefore,

Blinding process

giving m = 2 · r = 5 ·
' '

1 l(d) mod 48 = 1
d=35

(11) (35) mod 48 = 1
(11) (35) = 385
385 mod 48 = 1

Public key (e, n): (11, 48)
Private key (p, q, d) : (5, 13, 35)

m' = (r e)(m) (mod n)
= (5"' 11)(2) (mod 65)
= 55

Univ
ers

ity
 of

 M
ala

ya

Signing process

Unblinding process

Verifying process

s' = (m'd) (mod n)
= [(r e)(m)] d (mod n)

=(red) (md) (mod n)
ed=I ·

'
= r (md) (mod n)
= (235

)(5) mod 65
=35

m = (m'/r) (mod n)
= (mre)/r (mod n)
= mr lie (mod n)

= (2)(5 1111
) (mod 65)

=2

m' = (s' e) (mod n)
= 35 11 mod65

= 55

Univ
ers

ity
 of

 M
ala

ya

Appendix C

Univ
ers

ity
 of

 M
ala

ya

}

Key generator Module

I* Generate two primes numbers* I
void CRSA::createKey(CVLong& vMult, CVLong& vEncKey, CVLong& vPrivKey)
{

11 Choose primes
CVLong vPrime 1;
CVLong vPrime2;
CPrimeFactory objPrimeFact;
II need to randomly generate two numbers
srand((unsigned)(time(NULL)));
unsigned ul =rand();

srand(ul);
CVLong vRand 1 = u 1 * rand();
vPrimel = objPrimeFact.find_prime(vRandl);
srand((unsigned)(ul * ::GetTickCount()));
unsigned u2 = rand();

srand(u2 * ul);
CVLong vRand2 = u2 * rand();
vPrime2 = objPrimeFact.find _prime(vRand2);

if (vPrimel > vPrime2)
{

}

CVLong vTmp = vPrimel;
vPrimel = vPrime2;
vPrime2 = vTmp;

II Calculate public key
vMult = vPrime 1 * vPrime2;
vEncKey = 50001; II must be odd since vPrime 1-1 and vPrime2-1 are even
while (gcd(vPrimel-1, vEncKey) != 1 II gcd(vPrime2-1, vEncKey) !=I)
{

vEncKey += 2;
}

II Calculate the private key
vPrivKey = modinv(vEncKey, (vPrimel - 1) * (vPrime2 - 1));

11 Calculate the random key
vRandom.Key = 2+rand()% I 00;

Univ
ers

ity
 of

 M
ala

ya

I* Fermat Theorem. A number is probably prime if it fulfills the requirements of this
mathematical equation of the teorem*I

int CPrimeFactory::fermat_is_probable_prime(const CVLong &p)
{

}

II Test based on Fermats theorem a**(p-1) =I mod p for prime p
II For 1000 bit numbers this can take quite a while
const rep = 4;
const unsigned any[rep] = { 2,3,5,7 l*,11,13,17,19,23,29,31,37 .. *I };
for (unsigned i=O; i<rep; i+=l)
{ if (modexp(any[i], p-1, p) != 1)

{return O;
}

}
return 1;

CVLong CPrimeFactory::random(const CVLong & n)
{ CVLong x = O;

while (x < n)
{ x = x * RAND _MAX + rand();
} return x % n;

}

I* To find a prime number, it must fulfill the equation n-1 = 2"kq, n= prime number,

q=odd *I

int CPrimeFactory::miller_rabin_is_probable_prime(const CVLong & n)

{
srand((unsigned) time(O));
unsigned T = I 00;
CVLong w = n-1;
unsigned v = O;
while (w % 2 ! = 0)
{ v += 1;

w=wl2;

} .
for (unsigned j= I ;j<=T;_i+= I)
{ CVLong a = 1 + random(n);

CVLong b = modexp(a, w, n);
if (b != I && b != n-1)
{ unsigned i = I;

while (1)
{ if (i = v)

{ return 0;
}
b = (b*b) % n;
if (b = n-1)

Univ
ers

ity
 of

 M
ala

ya

}

}
}return 1;

}

{

}
break;

if (b = l)
{ return O;
}i+= I;

I* To determine whether the randomly generated numbers are really prime or not by
using Fermat and Miller Rabin Theorem*/

int CPrimeFactory::is_probable_prime(const CVLong & n)
{

}
return fermat_is_probable_prime(n) && miller_rabin_is_probable_prime(n);

CPrimeFactory::CPrimeFactory(unsigned MP)
{

np = O;

11 Initialise pl
char * b = new char[MP+ I]; 11 one extra to stop search
for (unsigned i=O;i<=MP;i+= l)
{

b[i] = I ;
}

unsigned p = 2;
while (I)
{

II skip composites
while (b(p] = 0)
{

p += l ;
}

if(p = MP)
{

break;
}

np += I;
II cross off multiples

Univ
ers

ity
 of

 M
ala

ya

}

}

unsigned c = p*2;
while (c < MP)
{

}
p +=I;

b[c] = O;
c+= p;

pl = new unsigned[np];
np = O;
for (p=2;p<MP;p+=l)
{

}

if (b[p])
{

}

pl[np] = p;
np += 1;

delete[] b;

CPrimeF actory: :---CPrimeF actoryO
{

delete [] pl ;
}

I* Find Prime Numbers *I
CVLong CPrimeFactory::find_prime(CVLong & start)
{

unsigned SS = I 000; II should be enough unless we are unlucky
char* b = new char[SS] ; II bitset of candidate primes
unsigned tested = O;

while (1)
{

unsigned i;
for (i=O;i<SS;i+= l)
{

b[i] = I;
}

for (i=O;i<np;i+= l)
{

unsigned p = pl[i] ;
unsigned r = to_unsigned(start % p); II not as fast as it should be -

could do with special routine

Univ
ers

ity
 of

 M
ala

ya

}

if (r)
{

}
r = p - r;

11 cross off multiples of p

}

while (r < SS)
{ b[r]=O;

r+=p;
}

}
II now test candidates
for (i=O;i<SS;i+= 1)
{ if (b[i])

}

{ tested += 1 ;
if (is__probable__prime(start))
{ delete [] b;

}
}start+= 1;

return start;

int CPrimeFactory::make__prime(CVLong & r, CVLong &k, const CVLong & min__p)
II Divide out smaJJ factors or r
{ k = 1;

for (unsigned i=O;i<np;i+= 1)
{ unsigned p = pl[i];

II maybe pre-computing product of several primes
II and then GCD(r,p) would be faster?
while (r % p = 0)
{

if(r = p)
{

return I ; 11 can only happen if min __p is small
}

r = r Ip;
k = k * p;

if(r < min__p)
{

return O;
}

Univ
ers

ity
 of

 M
ala

ya

}

}

}

}
return is _probable _prime(r);

CVLong gcd(const CVLong &X, const CVLong & Y)
{

CVLong x= X, y=Y;
while (1)
{

}

if(y = 0)
{

return x;
}

x=x %y;
if(x =O)
{

return y;
}
y = y % x;

CVLong modinv(const CVLong &a, const CVLong &m) II modular inverse
II returns i in range 1..m-1 such that i*a = 1 mod m
11 a must be in range 1 .. m-1
{

CVLong j= 1,i=O,b=rn,c=a,x,y;
while (c != 0)
{

}

x = b I c;
y = b - x*c;
b = c;
c = y;
y = j;

j=i-j*x;
i = y;

if (i < 0)
{

i +=m;
}
return i;

Univ
ers

ity
 of

 M
ala

ya

Signing Module

CVLong CRSA::encrypt(const CVLong& vPlainText, const CVLong& vMult, const
CVLong& vPrivKey)
{

return modexp(vPlainText, vPrivKey, vMult);
}

CVLong modexp(const CVLong & x, const CVLong & e, const CVLong & m)
{

}

CMonty me(m);
return me.exp(x,e);

CMonty: :CMonty(const CV Long &M)
{

m = M;
N = O; R = I ; while (R < M) { R += R; N += I ; }
RI = modinv(R-m, m);
nl = R - modinv(m, R);

}

CVLong CMonty::exp(const CVLong &x, const CVLong &e)

{
return (monty_exp((x*R)%m, e) * Rl) % m;

}

void CMonty: :mul(CVLong &x, const CVLong &y)

{

}

II T = x*y;
T.value->fast_mul(*x.value, *y.value, N*2);

II k = (T * nl) % R;
k.value->fast_mul(*T.value, *n I.value, N);

II x = (T + k*m) I R;
x.value->fast_mul(*k.value, *m.value, N*2);

x += T;
x.value->shr(N);

if (x>=m)
{

x -= m;
}

Univ
ers

ity
 of

 M
ala

ya

CVLong CMonty: :monty _exp(const CVLong &x, const CV Long &e)
{

}

CVLong result = R-m, t = x; II don't convert input
t.docopy(); II careful not to modify input
unsigned bits = e.value->bits();
unsigned i = O;
while (1)
{

}

if (e.value->bit(i))
{

mul(result, t);
}

i += l;
if (i =bits)
{

break;
}
mul(t, t);

return result; II don't convert output

Univ
ers

ity
 of

 M
ala

ya

AppendixD

Univ
ers

ity
 of

 M
ala

ya

User manual

This section provides a guideline to user on how to use the blind signature application.

Blind Signature application has two interfaces where the first interface only allow user to

blind the document and generate the random key. The other interface let the user to

generate the public key, private key and multiple sum value and also permit the user to

sign the blinded document and verify the signed document. The existing of these two

interfaces because there must be two kind of user which are the one who need the digital

signature (user) and the one who will generate the signature (administrator) at the same

time.

First of all, user needs to double click on the blind signature icon. Once the icon has been

clicked, the authentication dialog box appeared. Then, user need to key in the username

and password in order to enter the program. To make it easier both of the interfaces used

the same usemame and password.

Usemame: Administrator

Password: Ad.min

logm D1atog

User ID: Administrator

Password: 1""""1
I~ _O_K___, Cancel j

Figure I: Log In Dialog Box

Univ
ers

ity
 of

 M
ala

ya

User Interface

Once the user is authenticated, the main interface appeared. Below are the figures of the

user main interface.

Save As Gen Key Bind Fie Sign Fie Verfy Ale Clear Dorunent Ext About

Iii/ 0 -

Open

Save

l_I -
. ------

Figure 2: User main interface

Bind Tasks

ae .. Doc

Blinding
process

Key
Generator

Then, user need to enter a document that they intent to blind. Here, user have been given

two choices whether to retrieve the document or type the document at the document part.

While user clicks the open task, a dialog as show in figure 3 appeared.

Univ
ers

ity
 of

 M
ala

ya

Open

I Look in: I Debug

ID
ikan

File name:

Files of type: IT ext Files [".txt]

Figure 3: Open file dialog box

?

Open

Cancel

Once the document showed in the document part user now need to generate the random

key. When user click the key generator button, figure as shown in figure 4 emerge.

Gene1ated Keys
~---==---------=--=------------...... --------....... ==-===-.

Private Key [to be kept secret]

Random Key(r]: 00000028

OK

Figure 4: Random Key dialog box

Univ
ers

ity
 of

 M
ala

ya

Next, user can now blind the document by clicking the blind button. The public key and

the multiple sum value are generated by the administrator. So, the user must get the key

value before proceed to the blinding process.

Bhnd Key

Key information

Public Key(eJ: joooOC353

Multiple Sum(n): f386EA0870Q6.01931

Random Key(r): joooooo2s

OK Cancel j·

Figure 5: Blind Key dialog box

Once the OK button is clicked the blinding process proceed as shown in figure 6.

DoclM!lel'lt Blrld T aoks
IMusfrah Mohd Afi 831110146260

Blind J

k Seleciion

Procening ...

Generate Key

Dogeal SV>ature CiearDoc J

Figure 6: Blinding process progress

Univ
ers

ity
 of

 M
ala

ya

~ ---=~:----

~: Bhn<l>1gStgne

Open Fie Save As Gen Key Bti1d File S'ign Ale Verfy Fie dear Doctment Exit About

Document

09F 4906400760407 Blind Tasks

Blind 1:

i i _ _J!
Task S eledion

=iijl
Generate Key 1!

Digit!!I Signature

r- -- ---------------------~ 11

1

Clear Doc

-~~-~

- - - J

Figure 7: Blinding result

After that, user needs to save(* .blinded) the blinded document as for the administrator to

sign.

Save As

..---=--==============;-Save in: I Iii Debug iJ
J m

ikan

File name:

~....,,/c. ~ ... t.=.J LJ~ IEE.I

Save

I Save as type: IT ext Files (".txt) :o:;:J
L_ ~=~ j're)(tFiles(". txt) ~=======

Cancel

~B~li~nd~e~d~F~ile=s~r~. b~lin~d~e~dJ.__ ______ __.I

Figure 8: Save dialog box

Univ
ers

ity
 of

 M
ala

ya

Administrator Interface

" Bhncl) Sign.

Open File Save As Gen Key B'id File 5il;Jl File Verfy Fie Clear Dorunent Exlt About

Open

Save

Figure 9: Administrator Main Interface

Blirw:t TMX.

I

T""' selection I

~ ~tit:1-~-

~ 1-
Clear Doc

-I

Signing
Process

Verifying
Process

Key
generation

Univ
ers

ity
 of

 M
ala

ya

On the administrator side, administrator needs to open the blinded document that the user

had saved before. By clicking the open task, the administrator will choose the blinded

document that intent to be signed.

Open

Look in: j Debug

I ID
ikan

File name:

Files of type: I T ext Files (x_ txt)

1.!::::====1Text Files (".brt)
Signed Files (".signe)
Blinded Files ".blinded

Figure I 0: Open dialog box

Open

Cancei_j

Then, the administrator need to generate keys by clicking the key generator button as

shown in figure 11.

Generated Keys

:.......------------=-----------------------------11
Private Key (to be kept secret)

Private Key (d): 42i55CFAB007EBOEA

Public Key Components (to be distributed)

Public Key [e):
1ooooc353

Multiplied Sum [n): 386EA087006.01931

OK

Figure 11 : Key generator dialog box

Univ
ers

ity
 of

 M
ala

ya

Now, the administrator can proceed to sign the document by clicking the sign button.

Doco.anent
09F 49)6400760407

Bind Tasks

II
Key Input

Task Selection
Key inf01mation

Private Key {d): j42D5CFAB007EBCEA

Muliplied Sum{n~ l3B6EAOB71XWJ1931
Sign File

OK Cancel
VerifyFde

--= __,

Generate Key

Digital S ignatile Clear Doc

Figure 12: Signing Process

Univ
ers

ity
 of

 M
ala

ya

I I

Document

09F4906400760407
Blind Tasks

k Selection

Processing ...

Sign File

--- --- -- -] Ve1ifyFile J
Generate Key

~

Clear Doc

Figure 13: Signing Progress

Univ
ers

ity
 of

 M
ala

ya

: Blinll>1gSigne
Open Fie Save As Gen Key Blind Fiie Slg'I File Ver'ly F1le dear Document Exit About

Document
09F 400>400760407

D~al Signature

B'.F445500'.l>JAFB3E50C2800003
'267B43821389E OOOC08E 7 453795
().4(XOC583F1 F7 ABC58007F61 E 4

, 8 ,• ,

Figure 14: Signing Result

[-

Bind Tasks

1
Task Selection

Verly File

Generate Key

Cle!llDoc

Univ
ers

ity
 of

 M
ala

ya

Finally, the signature can easily verify in order to know whether the signature is indeed

valid as shown in figure 15.

: ,,

()g'4906400760407

-----Key Input

Key information

Pl.bic Key (e~ looooc353
Muliplied Sum(nl j:ll6EAOB700A01931I

1 B3F44~83E50C2000003
26784:1l21:1l!IOOOBCOOE7453795
04009C583F1 F7ABC58007F61 E4

OK Cancel

Figure 15: Verifying process

l

Blind Tasks

II

Task Selection

Sign File

Verify File

Generate Key

Clear Doc

--

Univ
ers

ity
 of

 M
ala

ya

Document
09F 4906400760407

Success

l ~ .- Valid dgital signattre

~ OK I J

Blind Tasks

I

===~::!J

Task Selection

Veriy File

Generate Key

Digital Signatwe Cleai Doc
1B3F44~50C2808003 __J i
·2S7B43B213B9EOOOCOBE7453795 _J
04009C583F1 F7ABC58007F61 E4

,______ __ _

Figure 16: Verifying result

Univ
ers

ity
 of

 M
ala

ya

