FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA

WXES3182

Thesis

Session 2004/2005

NETWORK SECURITY TOOLS -
FIREWALL

DING KHOON CHONG
WEK020043

Supervisor
MR. LIEW CHEE SUN
Moderator

MR. ANG TAN FONG

ABSTRACT

A firewall is a system or group of systems that enforces an access control policy between
two or more networks. The actual means by which this is accomplished varies widely, but
in principle, the firewall can be thought of as a pair of mechanisms: one which exists to
block traffic, and the other which exists to permit traffic. Some firewalls place a greater
emphasis on blocking traffic, while others emphasize permitting traffic. Probably the
most important thing to recognize about a firewall is that it implements an access control
policy. If we do not have a good idea of what kind of access you want to allow or to deny,
a firewall really would not help you. It is also important to recognize that the firewall's
configuration, because it is a mechanism for enforcing policy, imposes its policy on
everything behind it. Administrators for firewalls managing the connectivity for a large

number of hosts therefore have a heavy responsibility.

ACKNOWLEDGEMENT

One of greatest pleasures of writing this report is acknowledging the efforts of many
people whose hard work, cooperation, friendship, and understanding were crucial

throughout the undergoing of this project.

Firstly, I would like to thank Mr. Liew Chee Sun, my supervisor for his guidance and
advice throughout the entire project. The time that he has shared with me has made a
great contribution to the success of the project. Following that, I would like to thank my
considerate and kind moderator, Mr. Ang Tan Fong for his valuable pointers and

comment on this project.
[n addition, [would like to express my gratitude to my discussion group members. They
are Mr.Kok Soo Leong, Mr.Gan Guan Sui, Mr.Gan Soon Huat for their willingness to

shore ideas and information during discussions session to make this project successful.

Finally yet importantly, I would like to express my appreciation to my course mates and

family members for their encouragement and patience in the succession of this project.

Il

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Project OVErVIEW.ouussrsnssassennnreressnsssensorsernsssessnssssnsnnsssinsorsasass
12" Project MOtIVAION: s rsssassseornnsesnesiheatssmssrrasesnosrosnssnsiosessssnnses
1.3 Project ObjeCtiVe...ceressrrrurasasrssssssnrsnsrnssrsrinunisssninssinmnsestniessses
1.4 Project SCOPE.sesusssssrornsasssarnssssonssssssnssrsnsniaseeonssersusssssssosngsbos
1.5 Project Schedule.......ooeviiiereemiiiiiiiiiiiiiiiiiiiiii i,

1.6 REPOIt LAYOUL...uuuvrruenseereriiineiiiiii ittt b e

CHAPTER 2 LITERATURE REVIEW
D R N troaUCtIONIO L INCTOEKINR T Es Pt asarsiseanscadatbostonsnsisssrtenirsdchnresis

Y I N T d A R Ty et b r e o, W T R Iy e

D) N AN ey e s annesveirsanssaRaaIVTR st eeanssonasasounnnesionnansoratnsees
...........

2.3 Computer Network Security T U T A ey 1 PR e M s i
2.3.1 Types 0f AttacK....ooevreeriiiriiiiiiiii
2.3.2 Attempts to Gain ACCESS....vviviiiiiiiiiiniiiiiii
2.3.4 PingofDeath........cooovviiiiin
Ve A TR I 0T s i B s s I B O T e
0. 3.0 WOl e eunnsnannsssssesssnsosasnssonssesssssstsssssasssssssssssssossssssssesnss
2.3.7 TEOJAN. L. vvunerunssnesssrsss s s s s
2.3.8 Spyware and AdWAare. ..o

2.4 TCP/IP
AL T O o 8 T L e R R R R R e R R R R R RN L

o

2

3.4 Analysis Workflow

... 60
3 D e S AW T Tl O ey s et s et te st ers ses s aestts ih e e LR e LN vexdad a0 60
ORI mpl e e AL O RNy LKLl O e O e v et lx L et st an ArFhN v e batensns srsrsss 61
T e ST A O T] O e e e st (e e 1 vwis { e EEALE AR AN Ay FAushs ¥y ddsh 6l
CHAPTER 4 SYSTEM REQUIREMENTS ANALYSIS

A I et O A L R OO e 1O O B g d €3 < £ LU st Ly (s areabesssnsssteresnnsssns 63
41 1 B O e K L1 e O e ¥ rs e estsosriarssasinisdntastossssnasnsas ol 63
401 A PACKe R e I e e 1y e s fevassvsrraesersisibssnvsiveniese Tmakks 63
41 R OIS G O R T aat s it epe caser ot sstschnrronstuenertivesssr N ulesessse 63
41545 Generate [Somifile s (e it it e fxveisnrs s Coprret (AR QoM s (4 ssssoasins 64
4515538 G T | e om0 1 v o ek n s e 5450 e s 1 400 dnsa i h b o ans oo 64
) e T O e P R s T T 3 TYPLT 70 VATl TY LT e TP Pt 64
A] N VRt T R e O Tty Ll O et h 018 £ 6 41 an L LRRE KA LS A Kk wi aB ey hs 64
400 SN ON=BUN IO R S U eI B, S o5t e as s s aasssssnssssntsssasonnsssnnsnsnsss 65
4.3 Software and Hardware Selection........coovvviviiiiiiiiiiiinineniiiiiiinines 66
A D evelonme RO T eI S e o e ou 1 ah s ea ihe s ftaribabertre st sneshsdbary 67
CHAPTER 5 SYSTEM DESIGN

S L D e Ay I Gt D I A N e e e e d e ve s xhreseh s vs rb s bR v ds Earabhasrart 68
St Rire P oWer D eS RN VeV B W Tt s s s o5 r s ks s benshinsdratsinsnannassash 69
S I Te R O TR O K L] QW Ty ¢ Ta Rk e b ah sk ranaes v buaThe s REnka g s bN bR eishiasbis 70
S A (OO XU BT AT o e IR iR Chx s ek s ks an i s e aNas AEVERVE RNV EsRENERT Isd 71
S N HIre RO D) At i O W L A AT ST e, 10 s xao s vsvstanivabediansssasssnstnrntts 72

510 RIraROWenUEE A tartace DA T eIy (11, i asantsashhasssrsnesnshsskins i3

2.8:5 Network Address Translation (NAT) i v e Baavi oo o Weviiienviinensinsns

2.9 Case Study: Commercial Internet Firewall Product........................
2101 Sy Tate s e eh e e R R I s+ v e b v a kS aa e h b a R e b ead
2.9.2 Tiny Firewall 6.0 . ceuiiesdiliaa M sviiniinninniunisinniiniisnesiaeniiin
00 37 B A | BT N o sy bl s s T b s s i
D] O R re W a] T O OGN L Ty r s s s ins shvehnas tasha Al Lo R PAR s VA RN 0t s b nhh d9T s
D D DA K IR T T I L o Fe Al e it hratsvas by i ner by vans s thnkniivininvotndessnyes)
D 0 D I LBV E] A W Y B s £ s er it shrtvsn e s arastaaba sy s vsserdssvsnnsnsyvas
2.10.3" Application LayerFirewalls......c.ccovisivinniiiiniinnniiiiinia,
CHAPTER 3 METHODOLOGY

3.1 OVEIVIEW, s st s iersnensnunsonnnsbvoensssthosnssasantsrbonsansnhssasnsnsiossnsssnanssnis
3.2 Process Model........oovviviinnsiininiiniininininiinn S G
3.2.1 Iterative-and-Incremental Model.............. SHv srbrtteymaitanin g

N

3.3 Requirements Workflow ..o Liesesnaihnating Kreieratibhaceta

57

57

39

CHAPTER 6 SYSTEM IMPLEMENTATION

O Intrody ChIOn B e

6.2 Development Environment................

6.3 Algotithms s By s L

6.4 COdin g A e R T 3 (et B T s s v b evennssaninanssnse

6.4.1 The Filter-Hook Driver................

640 Createtheternel M ode D LIVer st isete tetseetssrsaviessassssireiirsivsnll
540 REREgiSterin g ARl T U CHON s s s sttt s s enebasr s amme s TR

6:4 34T he Riltert N ct On e e e s i srer sttt i N

6.5 The reason why use this method to develop a Firewall

CHAPTER 7 SYSTEM TESTING

{7 Tt r O U C L O T e e T e avt s B L e i e b L

T2 UnitiTestiNG oes i is vavsashavts (idsvie, P

F2iModleTesting: i vseessicss fireae N+

TEA O K T R R el S
2 O [R Ot O = U DA D D L L O s vi s e bir s aas bt s arncsnsnsanbsanss snrsrse
78 SYStemy T OB IR R S FETE f 03 s 11k Ciessatsshnsets ceshenkrshds ¥oRsthnastesdissst)

A GO LS e i tia et 1 i h e b b v e e s i F e e s Lt v

CHAPTER 8 SYSTEM EVALUATION

S IRt L O P e e ettt it L L T ey R T e e

8.2 System StrengthS.....cciviiiiiiiiniiiniin

8.2.1 Easy-to-use Application.................

8.2.2 Organized and User Friendly Interface

8.2.3 System Transparency......ocovviiiiniin

.....................................

......................................

......................................

......................................

.....................................

......................................

......................................

......................

76
76
77
77
77
78
84

88

93
94
94
96
97
08

99

100
100
100

101

VI

8.2.4 Reliable System with Effective Errors Handling

...........................

8.3 Problems Encountered and solutions

...

8.3.1 Difficulties in determining the scope of the application

...................

8.3.2 Understanding on Current System Procedure

...............................

8.3.3 Difficulties in choosing a development platform

...........................

8.3.4 Lack of knowledge in develops Firewall

....................................

8.4 System Limitations

...

8.4.1 Lack of functional modules

...

8.4.2 Lack of Network Ultilities Display

...

8.5 Future Enhancements

..

8.5.1 Increase the number of rules

..

8.5.2 Module Enhancement

...

8.6 Knowledge and experienced gained

...

QT N C LS QT T o g s e x kb o dus b e Fih v i e b ness

REFRENGESro s ol st ERAR Sy 0 s i i s

APPEN DI X E i R eI s kst L eh T s kvt s st Vi it ot bass sains siihnysidihinkits

101

102

102

102

104

104

104

104

105

105

105

106

107

109

VI

LIST OF FIGURES

Figure 2.1:TCP/IP B0 CO A eI e e e i

Figure2.2: UDP in the OSI Reference W [T) bt £ 008 et b AN il R Bl e e

Figure 2.3: Six phases of C++ programming language................oooeevinini,
Figure 2.4: Sygate Personal HIrAW AL R I S OO S st s st ens s aessreaasttresens
Figure 2.5: Tiny Firewall 6.0 Print Screen..........ccccoivviiiiiniinninniiiiiin
Figure 2.6: ZoneAlarm Print Screen..........ocinieriiiiiiniiniiiiiiniinniiiiin,
Figure 2.7: depicts the network packet evaluation process used by a

packet filter firewall...........ooeiiii
Figure 2.8: depicts the network packet evaluation process used by a

circlit avel ira Wl s s rae s s v buntethens ARaPes st skt ihssihas oinisnthsnse
Figure 2.9: depicts the network packet evaluation

process used by a applicationlayeRE VALl et it i e

Figure 2.10: depicts the flow of communications between a real client

and a network server when the communications pass through a proxy service.....

Figure 2.11: depicts the network packet evaluation process used by

a dynamic packet Lo T e S T IR E T R Th el h s T r e e PR e AR

Figure 3.1: Iterative-and-Incremental Models ..o i i tansansansssnnes sas

Figure 4.1: Components of Net DIBTeNe i irisretrsrivkiiririnis VR e
Figure 5.1: an Overview of the FirePower is Placed.........oon beviianiii :
Figure 5.2: FirePower Architecture............

Figure 5.3: Showing FirePower WO R oW T s B s LG Dot

36

41

46

48

54

62

68

69

70

VIl

Figrets 4l BircRower ConteXt D iagram el e et i v eerian v e

Figure 5.5; EirePower Data Elow DIiagram ..i.eiieiitieenairmneisnsevavansesnnorin

Figure 5.6: Initial FirePower Interfacess . . ovvisiasiiivisaniniisnrnisnniireassanns

Figure 7.1 System Testing Steps...

..

Figure 7.2 Process Monitoring Module...............oooooiiiiiiiinin,

Figure 7.3 Simple Port Scanner Module Integrating Test....................o.n.

Figure 7.4 Bottom-up Testing......

...

Figure 7.5 Insert Rule to T L S R M e Ml s e s S,

Figure 7.6 ICMP Packet is blocked

...

96

97

98

99

CHAPTER 1 INTRODUCTION

1.1 Project Overview
This chapter describes the purposes of the project and the problems to be solved. The

system functions and rationale of the project will be discussed too later in this chapter.

The aim of this project is to define a firewall. The firewall in an organization uses provides
the security at the entranceway to network. If you permit individuals to use modems, your
organization does not have a single entryway, but many ports of exposure. The firewall
should function at the level required by your policy for authenticating traffic, collecting

sufficiently detailed logging, and perhaps inspection of data which passes (for viruses or

applets).

Most of all, a firewall is an implementation of security policy. The policy itself should be
based on examining your organization’s assets, and determine which level of access is

appropriate when compared to the risk to those assets.

1.2 Project Motivation

In order to guard the traffic of whether it is from outside or inside of a large computer
network. a firewall is necessary to prevent spyware or unauthorized intruders to access a
certain computer system. A computer network firewall is an electronic blocking
mechanism that will not allow unauthorized intruders into a computer system. A computer
firewall is a software program that blocks potential hackers from your individual computer

or your computer network, Many different computer firewall software packages are

available with a broad variety of costs and update options. Any computer that is always

connected to the internet needs a firewall package.

Firewall Software is a basic requirement for anyone using broadband to prevent hacking,
virus, and other security risks. Firewall software is software designed to prevent
unauthorized access to a computer or network that is connected to the Internet. Firewall
software comes in a variety of forms, offering a wide variety of features, protection
capabilities, scalability and cost. From personal firewall software that can be purchased for
a few dollar, to corporate firewall software costing thousands, firewall software is a
necessary component of having any type of broadband connection. Typically, firewall
software works by hiding your computer (via the ports that connect it to the Internet) from
unknown users. Firewall software basically 'stealths' your computer of network, hiding it

from hackers who scour the Internet looking for vulnerable computers that they can gain
> (e

access to.

1.3 Project Objective
o Do research on firewall technologies.
Develop a firewall filtering uses a range of information in the packet header (for
example, source and destination IP addresses, port, and protocol) while routing
uses only the destination IP address.
Detects and Blocks malicious Internet activity before it can reach computer.
o Identifies attackers and type of attack by IP.
o Protects personal information from hackers,

Alerts and Records threatening Internet traffic to computer.

o

1.5 Project Schedule
2004 2008
D Task Name Start Finish Duration
[Jul I Aun!hp l ot l Nav I Daa | van ‘m I Mar]AN
1 | Project Definitions 6/16/2004 712712004 30d
2 | Literature Review 6/25/2004 7/29/2004 25d s]
3 | Research 7/19/2004 8/27/2004 30d B
4 | System Analysis 8/18/2004 9/9/2004 17d A
5 | System Design 9/1/2004 10/1/2004 23d [
6 | Implementation 10/1/2004 1/6/2005 70d BT
7 | Testing 1/2/2004 2/5/2004 25d
8 | Documentation 7/26/2004 2/18/2005 150d (s S |

1.6

Report Layout

This report has been divided to 5 chapters, which are organized as follows:

iii.

Chapter 1 Introduction

Introduces the current networking technologies associates with this project and
FirePower, project definition, project objectives, project schedule and report layout.
Chapter 2 Literature Review

This will include all the related topic to firewall and also case study of the
commercial internet firewall product as a reference.

Chapter 3 Methodology

Define the Methodology used for FirePower development. A Methodology will
offer a step-by-step approach to the desired situation

- and cach step will offer

some success and benefit,

A

Vi.

vil.

Vil.

Chapter 4 System Requirements Analysis
Explain what to build firewalls using different technologies that are available. It
also presents the evaluation criteria should apply when developing the most

appropriate firewall.

Chapter 5 System Design

Overview of Internet firewall design in order to produce firewall solution for our
machine.

Chapter 6 System Implementation

Explain fundamentally how filtering driver works.

Chapter 7 System Testing

Overview of implementing system testing throughout the whole development.
Chapter 8 System Evaluation

Define the strengths and weaknesses of the system and follow by indicating future

enhancement.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction of Networking

In the world of computers today, networking is the practice of linking two or more
computing devices together for the purpose of sharing data. Networks are built with a mix

of computer hardware and computer software.

Computer networks come in many different shapes and sizes. Over the years, the
networking industry has coined terms like "LAN" and "WAN" attempting to define
sensible categories for the major types of network designs. The precise meaning of this

terminology remains lost on the average person, however,

2.2 Network Structure

The industry refers to nearly every type of network as an "area network." The most

commonly-discussed categories of computer networks include the following:

i. Local Area Network (LAN)

ii. Wide Area Network (WAN)

(§)

2.2.1 LAN

A LAN connects network devices over a relatively short distance. A networked office
building, school, or home usually contains a single LAN, though sometimes one building
will contain a few small LANs, and occasionally a LAN will span a group of nearby

buildings. In [P networking, one can conceive of a LAN as a single IP subnet.

Besides operating in a limited space, LANs include several other distinctive features.
LANSs are typically owned, controlled, and managed by a single person or organization.
They also use certain specific connectivity technologies, primarily Ethernet and Token

Ring.

2.2.2 WAN
As the term implies, a wide-area network spans a large physical distance. A WAN like the

Internet spans most of the world!

A WAN is a geographically-dispered collection of LANs. A network device called a router
connects LANs to a WAN. In IP networking, the router maintains both a LAN address and

a WAN address.

2.3 Computer Network Security Threat

2.3.1 Types of Attack

Before determining exactly what type of firewall we need, we must first understand the
nature of security threats that exist. The Internet is one large community, and as in any
community it has both good and bad lements. The bad elements range from incompetent
outsiders who do damage unintentionally, to the proficient, malicious hackers who mount
deliberate assaults on companies using the Internet as their weapon of choice.
Generally there are three types of attack that could potentially affect our business:
o Information theft: Stealing company confidential information, such as employee
records, customer records, or company intellectual property
o Information sabotage: Changing information in an attempt to damage an individual
or company’s reputation, such as changing employee medical or educational
records or uploading derogatory content onto your Web site
o Denial of service (DoS): Bringing down your company’s network or servers so that
legitimate users cannot access services or so that normal company operations such

as production are impeded

2.3.2 Attempts to Gain Access

A hacker may attempt to gain access for sport or greed. An attempt to gain access usually
starts with gathering information about the network. Later attacks use that information to
achieve the real purpose—to steal or destroy data,

A hacker may use a port scanner—a piece of software that can map a network. It is then

possible to find out how the network is structured and what software is running on it,

Once the hacker has a picture of the network, he can exploit known software weaknesses
and use hacking tools to wreak havoc. It is even possible to get into the administrator’s

files and wipe the drives, although a good password will usually foil that effort.

Fortunately, a good firewall is immune to port scanning. As new port scanners are
developed to get around this immunity, firewall vendors produce patches to maintain the

immunity.

2.3.3 Denial-of-Service Attacks
DoS attacks are purely malicious. They don’t result in any gain for the hacker other than
the “joy” of rendering the network, or parts of it, unavailable for legitimate use. DoS

attacks overload a system so that it isn’t available

they deny your ability to use your
network service. To overload the system, the hacker sends very large packets of data or

programs that require the system to respond continuously to a bogus command.

To launch a DoS attack, a hacker must know the IP address of the target machine. A good
firewall doesn’t reveal its own IP address or the [P addresses on the LAN. The hacker may
think he has contacted the network when he has only contacted the firewall-—and he can’t
lock up the network from there. Furthermore, when a hacker launches an attack, some
firewalls can identify the incoming data as an attack, reject the data, alert the system

administrator, and track the data back to the sender, who can then be apprehended,

)

Advanced antivirus software programs exist to combat viruses. Antivirus software
examines the contents of local hard drives to identify patterns of data called "signatures"

that match known viruses.

2.3.6 Worm

Worms are malicious software applications designed to spread via computer networks.
Worms are one form of malware along with viruses and Trojans. A person typically
installs worms by inadvertently opening an email attachment or message that contains
executable scripts.

Once installed on a computer, worms spontaneously generate additional email messages
containing copies of the worm. They may also open TCP ports to create networks security
holes for other applications, and they may attempt to "flood" the LAN with spurious
Denial of Service (DoS) data transmissions.

Being embedded inside everyday network software, worms easily penetrate most firewalls

and other network security measures.

2.3.7 Trojan

Named after the Trojan Horse of ancient Greek history, a Trojan is a network software
application designed to remain hidden on an installed computer. Trojans generally serve
malicious purposes and are therefore a form of malware,

Trojans sometimes, for example, access personal information stored locally on home or
business computers, then send these data to a remote party via the Internet. Alternatively,
trojans may serve merely as a "backdoor" application, opening network ports to allow
other network applications access to that computer, Trojans are also capable of launching

I

2.3.4 Ping of Death

In late 1996 and early 1997, a flaw in the implementation of networking in some operating
systems became well-known and popularized by hackers as a way to crash computers
remotely over the Internet. The Ping of Death attack was relatively easy to carry out and

very dangerous due to its high probability of success.

Technically speaking, the Ping of Death attack involved sending IP packets of a size
greater than 65,535 bytes to the target computer. IP packets of this size are illegal, but
applications can be built that are capable of creating them. Carefully programmed
operating systems could detect and safely handle illegal [P packets, but some failed to do
this. [CMP ping utilities often included large-packet capability and became the namesake
of the problem, although UDP and other IP-based protocols also could transport Ping of

Death.

2.3.5 Viruses

In computer technology, viruses are malicious software programs, a form of malware.
Viruses exist on local disk drives and spread from one computer to another through sharing
of "infected" files. Common methods for spreading viruses include floppy disks, FTP file
transfers, and copying files between shared network drives.

Once installed on a computer, a virus may modify or remove application and system files,
Some viruses render a computer inoperable; others merely display startling screen

messages to unsuspecting users.

10

Denial of Service (DoS) attacks. A combination of firewalls and antivirus software protect

networks against trojans.

In contrast to worms, however, trojans do not replicate themselves or seek to infect other

systems once installed on a computer.

How Trojans Work
Today's security challenges are mainly related to preventing Trojans and Worms from
infiltrating the computer and causing various damages on it including the theft of data.

There are several stages for hackers to exploit your computer.,

. Get to the target computer and inject the malicious code
This is the most difficult part for the hacker. There are few examples of the exploits (with

the comments on protection):

o RPC service buffer overflow (MSBlast) => sending special packets to port 135
forces RPC service to execute some payload (= code) of the packets.

o Outlook Express & Outlook MIME exploit => sending special html email forces
automatically execute attached exe.

o Could use other exploits of MS applications bugs (1IS, IE, OE....)

o VBA macro in MS office documents (requires user to open the document)

o email attachment (exe, vbs, js... = requires user to open the attachment),

o web page active content (requires user to visit the web page and sometimes also to

confirm the active code download),

modifying content of known binary file such as winword.exe (this is classical old
fashioned virus) e.g. on a common network share.
boot sectors of floppy disks or other removable media is old fashioned yet

successful approach (the code automatically executes when the drive is mounted).

2. Let the injected code "install" the Trojan itself

Usually the injected code has only one opportunity to execute (email won't be opened

again; user will not run the .exe or visit the particular web page again etc.). Therefore the

code (worm) must establish a way of how to start again. The worm copies itself into some

location, usually within Windows subtree (c:\windows etc.), and creates some unsuspicious

looking name for itself (e.g. Microsoft known program names such as iis.exe or dllhost.exe

- the latter one is in different dir to avoid problems in overwriting the original file).

To maintain the future start the worm executes some of the following scenarios:

O

O

Use Run keys to autostart on next logon.

Installs as a service or (rarely) as a driver (either via API or directly writing into
registry).

Using other keys to autostart in some occasions (e.g. exefile).

copies itself into Start Menu\Programs\Startup folder

Replaces .jpg (or other) files with xxxx.jpg.exe (the last extension is hidden in
explorer by default) thus waiting till user opens some picture.

One JScript virus has used ActiveX control with the CLSID "06290BD5-48AA-

[1D2-8432- 006008C3FBFC" to get control over files.

2.3.8 Spyware and Adware

Spyware and Adware is software made by publishers that allow them to snoop on your

browsing activity, invade your privacy, and flood you with those horrible popups. If you

are like most users on the internet, chances are you are probably infected with these

applications. That is why we have designed our revolutionary product.

Spyware and Adware affect every internet user by:

O

(0]

All information you enter via the web can be intercepted.

Unauthorized sites can add themselves to your desktop (icons).

Unauthorized sites can add themselves to your internet favorites.

Your browsing activity can be tracked and monitored.

Unwanted toolbars and searchbars can attach themselves to your browser without
your knowledge or approval.

Your personal information can be sold to other parties without your knowledge or
consent.

Your default homepage and settings can be hijacked so you can't change them.
These malicious components not only invade your PC so they can not be removed,

but take up your hard drive space and slow down your PC.

2.4 TCP/IP

TCP/IP protocols map to a four-layer conceptual model known as the DARPA model. The
four layers of the DARPA model are: Application, Transport, Internet, and Network
Interface. Each layer in the DARPA model corresponds to one or more layers of the seven-

layer Open Systems Interconnection (OSI) model.

Transmission Control Protocol (TCP) and Internet Protocol (IP) are two distinct network
protocols, technically speaking. TCP and IP are so commonly used together, however, that
TCP/IP has become standard terminology to refer to either or both of the protocols.

In other words, the term TCP/IP refers to network communications where the TCP

transport is used to deliver data across IP networks.

0S! Model Layers | TCPAP Protocol

TCPAP Protooot
NcllmcUe I Sude
e gt £ | pr Tﬁ 1 ¥
Q Appleavon Layer | »\prmﬁml‘rf 3 , | ; § ; ;
{ L\FQEM! f.wl Telnet [1P isn.nx>§ ONS|RIP | %wm
[- || 2 I
& e — o J] el 4
{ w |1 =} lkntml«khl i1 “‘jp | ||m> 1
~4a] uu;nx!l‘r,_«f 1 ? |

i | l ¢ . “) ‘l(,-’l“’ I(A"", i
L Nf E"':‘hl ’1” J i 1 hfz‘ﬁltl.r,!'({:‘cRP e 1

Token fFrame

e |
E thermet | Ring Rekry

ey | ¢ ey
§ Datay-Link Larper | 'quw fu.,h soge! !
i _— e I H[»’v‘

[Pmpicaltager]| |1

Figure 2.1: TCP/IP Protocol Architecture

2.5 UDP

The User Datagram Protocol (UDP) supports network applications that need to transport
data between computers. Applications that use UDP include client/server programs like
video conferencing systems. Although UDP has been in use for many years -- and
overshadowed by more glamorous alternatives -- it remains an interesting and viable

technology.

UDP -- like its cousin the Transmission Control Protocol (TCP) -- sits directly on top of
the base Internet Protocol (IP). Recalling the Open Systems Interconnection (OSI) model

of networking, UDP (and TCP) are transport layer protocols as shown below.

7/ Application

O Presentation

> Session

-4 UDP, TC

3 Network e

2 E Data Link ISthernet

l 3 Physical Lnishielded twisted paw (UTP)

Figure2.2: UDP in the OSI Reference Model
In general, UDP implements a fairly "lightweight" layer above the Internet Protocol. UDP's
main purpose is to abstract network traffic in the form of datagrams. A datagram comprises
one single "unit" of binary data; the first eight (8) bytes of a datagram contain the header

information and the remaining bytes contain the data itself.

16

2.6 Network Protocol

A network protocol defines a "language" of rules and conventions for communication
between devices. A protocol includes formatting rules that specify how data is packaged
into messages. It also may include conventions like message acknowledgement or data

compression to support reliable and/or high-performance communication.

Many protocols exist in computer networking ranging from high level (like SOAP) to low
level (like ARP). The Internet Protocol family includes IP and all higher-level network
protocols built on top of it, such as TCP, UDP, HTTP, and FTP. Modern operating systems
include services or daemons that implement support for specific protocols. Some protocols,

like TCP/IP, have also been implemented in silicon hardware for optimized performance.

2.6.1 FTP

FTP allows one to transfer files between computers on the Internet. Technically, FTP is a
simple network protocol based on [P, but many also use the term "FTP" to refer to this type

of file sharing service.

The FTP service is based on client/server architecture. An FTP client program initiates a
connection to a remote computer running FTP server software. After the connection is
established, the client can choose to send and/or receive copies of files, singly or in groups.
To connect to an FTP server, a client generally requires a username and password as set by
the administrator of the server. Many public FTP archives follow a special convention for

that accepts a username of "anonymous."

FTP clients are included with most network operating systems, but most operating system
clients (such as FTP.EXE on Windows) support a relatively unfriendly command-line
interface. Many freeware and shareware third-party FTP clients have been developed that
support graphic user interfaces (GUIs) and additional convenience features. In either
command-line or graphic interfaces, FTP clients identify the server either by its [P address

(such as 192.168.0.1) or by its host name (such as ftp.about.com).

The FTP protocol supports two modes of data transfer: plain text (ASCII), and binary. The
mode an FTP client uses must generally be configured by the end user. The mode usually
defaults to plain text. The most common error one makes in using FTP occurs when
attempting to transfer a binary file (such as a program or music file) while in text mode. A
copy of the file is made, but this copy will often be unusable. When working with FTP

clients and files, learn to use the transfer mode properly.

2.6.2 IP
[P is probably the world's single most popular network protocol. Data travels over an IP-
based network in the form of packets; each IP packet includes both a header (that specifies

source, destination, and other information about the data) and the message data itself.

[P supports the notion of unique addressing for computers on a network. Current IP (IPv4)

addresses contain four bytes (32 bits) that is sufficient to address most computers on the

Internet.,

18

IP supports protocol layering as defined in the OSI reference model. Popular higher-level
protocols like HTTP, TCP, and UDP are built directly on top of IP. Likewise, [P can travel
over several different lower-level data link interfaces like Ethernet and ATM. IP originated

with UNIX® networking in the 1970s.

2.7 Socket

A socket is one end-point of a two-way communication link between two programs
running on the network. Socket classes are used to represent the connection between a
client program and a server program.

Normally, a server runs on a specific computer and has a socket that is bound to a specific
port number. The server just waits, listening to the socket for a client to make a connection
request.

On the client-side: The client knows the hostname of the machine on which the server is
running and the port number to which the server is connected. To make a connection

request, the client tries to rendezvous with the server on the server's machine and port.

connection

Server
request

client

[f everything goes well, the server accepts the connection. Upon acceptance, the server gets
a new socket bound to a different port. It needs a new socket (and consequently a different
port number) so that it can continue to listen to the original socket for connection requests

while tending to the needs of the connected client,

19

server

n<af { @y st

client

e by e

port connection

On the client side, if the connection is accepted, a socket is successfully created and the
client can use the socket to communicate with the server. Note that the socket on the client
side is not bound to the port number used to rendezvous with the server. Rather, the client

is assigned a port number local to the machine on which the client is running.

2.8 Computer Languages

Object-oriented Programming

Object-oriented Programming (OOP) is organized around “objects™ (a software bundle of
variable and related methods) rather than “actions,” data rather than logic. Objects are the
things you think about first in designing a program and they are also the units of code that
are eventually derived from the process. In between, each object is made into a generic
class of object and even more class definitions in their code. Each object is an instance of a
particular class or subclass with the class’s own methods or procedures and data variables.

An object is what actually runs in the computer.

The first step in OOP is to identify all the objects you want to manipulate and how they
relate to each other, an exercise often known as data modeling. Once you've identified an
object, you generalize it as a class of objects (think of Plato’s concepts of the “ideal™ chair

that stands for all chairs) and define the Kind of data it contains and any logic sequences

20

that can manipulate it. Each distinct logic sequence is known as a method. A real instance

if a class is called (no surprise here) an “object” or, in some environments, an “instance of

a class.” The object or class instance is what you run in the computer. Its methods provide

computer instructions and the class object characteristics provide relevant data. You

communicate with objects- and they communicate with each other- with well-defined

interfaces called messages.

The concepts and rules used in object-oriented programming provide these important

benefits:

The concept of a data class makes it possible to define subclasses of data
objects that share some or all of the main class characteristics. Called
inheritance, this property of OOP forces a more thorough data analysis, reduces
development time, and ensures more accurate coding.

Since a class defines only the data it needs to be concerned with, when an
instance of that class (an object) is run, the code will not be able to accidentally
access other program data. This characteristic of data hiding provides greater
system security and avoids unintended data corruption.

The definition of a class is reusable not only by the program for which it is
initially created but also by other object-oriented programs (and, for this reason,
can be more easily distributed for use in networks).

The concept of data classes allows a programmer to create any new data type
that is not already defined in the language itself,

One of the first object-oriented computer languages was called Smalltalk, C++

and Java are the most popular object-oriented languages today, The Java

programming languages is designed especially for use in distributed

applications on corporate networks and the Internet.

The following describe some advantages of object-oriented programming language.

ii.

Vi.

28.1 C

Simplicity: software objects model real world objects, so the complexity is
reduced and the program structure is very clear.

Modularity: each object forms a separate entity whose internal workings are
decoupled from other parts of the system.

Modifiability: it is easy to make minor changes in the data representation or
procedures in an OO program. Changes inside a class do not affect any other
part of a program, since the only public interface that the external world has to a
class is through the use of methods.

Extensibility: adding new features or responding to changing operating
environment can be solved by introducing a few new objects and modifying
some existing ones.

Maintainability: objects can be maintained separately, making locating and
fixing problems easier.

Reusability: objects can be reused in different programs.

The C programming language was devised in the early 1970s as a system implementation

language for the nascent UNIX operating system. Derived from the typeless language

BCPL, it evolved a type structure; created on a tiny machine as a tool to improve

programming environment, it has become one of the dominant languages of today,

As a programming language, C is rather like Pascal or FORTRAN. Values are stored in
variables. Programs are structured by defining and calling functions. Program flow is
controlled using loops, if statements and function calls. Input and output can be directed to

the terminal or to files. Related data can be stored together in arrays or structures.

Of the three languages, C allows the most precise control of input and output. C is also
rather terser than FORTRAN or Pascal. This can result in short efficient programs, where
the programmer has made wise use of C's range of powerful operators. It also allows the

programmer to produce programs which are impossible to understand.

Programmers who are familiar with the use of pointers (or indirect addressing, to use the
correct term) will welcome the ease of use compared with some other languages.
Undisciplined use of pointers can lead to errors which are very hard to trace. This course

only deals with the simplest applications of pointers.

C programs will look similar under any other system (such as VMS or DOS), some other
features will differ from system to system. In particular the method of compiling a program

to produce a file of runnable code will be different on each system.,

The UNIX system is itself written in C. In fact C was invented specifically to implement
UNIX. All of the UNIX commands which you type, plus the other system facilities such as

password checking, lineprinter queues or magnetic tape controllers are written in C.

In the course of the development of UNIX, hundreds of functions were written to give
access to various facets of the system. These functions are available to the programmer in
libraries. By writing in C and using the UNIX system libraries, very powerful system
programs can be created. These libraries are less easy to access using other programming

languages. C is therefore the natural language for writing UNIX system programs.

2.82 C++

C++ is a general purpose programming language with a bias towards systems
programming that

o isa better C

o supports data abstraction

o supports object-oriented programming

O supports generic programming.

C++ is an object-oriented programming (OOP) language that is viewed by many as the

best language for creating large-scale applications. C++ is a superset of the C language.

The C++ language facilities structured and disciplined approach to computer program
design. C++ programs consist of pieces called classes and function. Programmer can
program each piece that programmer need to form a Ct++ program. But most Ct+
programmers take advantage of the rich collections of existing classes and functions in the
C++ standard library. C++ programs typically go through six phases to be executed. These

are: edit, preprocess, compile, link, load, and execute. (Deitel, 1997)

Editor

A

]

Program is created in
the editor and stored

Disk on disk
LA
Preprocessor progr: ID
)
3 rocesses the code
Preprocessor 5 . Disk p
=
Compiler creates
Compiler e object code and stores
> A Disk on disk
Linker > i~ Linker links the object
m code with the libraries,
create a.out and store it
Primary Memory
Loader)
A

CPU

Primary Memory

% §

Loader puts program in
memory

CPU takes each \

instruction and
execute it, possibly
storing new data
values as the program

executes /

Figure 2.3: Six phases of C++ programming language

2.8.3 Java

Java has caused more excitement than any development on the Internet since Mosaic.

Everyone, it seems, is talking about it.

Java was the first way to include inline sound and animation in a web page. Java also lets
users interact with a web page. Instead of just reading it and perhaps filling out a form,
users can now play games, calculate spreadsheets, chat in realtime, get continuously

updated data and much, much more.

Here are just a few of the many things Java can do for a web page:

o Inline sounds that play in realtime whenever a user loads a page
o Music that plays in the background on a page

o Cartoon style animations

o Realtime video

o Multiplayer interactive games

Java is a programming language for distributed applications. It doesn't just allow you to
add new types of content to your pages like Netscape and Internet Explorer do. Rather it
lets you add both the content and the code necessary to interact with that content. You no
longer need to wait for the next release of a browser that supports your preferred image

format or special game protocol.

284 C#

C# is Microsoft's new programming language for the NET platform. It combines some of
the best features of modern programming languages such as Java, C++ or Visual Basic, C#
is an object-oriented language with single inheritance but multiple interfaces per class, It

supports component-based programming by properties (smart fields), events and delegates

(enhanced function pointers). C# is fully interoperable with other .NET languages such as

VB.NET, Eiffe.NET or Oberon.NET.

Briefly, here are several features of .Net that make a suitable and robust environment for
application development on supported platforms, currently Windows. We'll explore each

of these points in detail in the next few lessons of this tutorial.

i. Cross Language Support.
All Net languages are based on the same underlying type system. This means that code
written in one .Net language can easily use and integrate with code written in other .Net

languages. .Net languages include C#, Visual Basic.Net and managed C++.

ii. Use of Common Internet protocols.
Net offers extensive support for XML, which is the choice for formatting information over

the Internet. Additionally, support for transfer via SOAP is also integrated.

iii. Use of Metadata within Assemblies.

Net components (Executables and libraries in C++ lingo) are deployed as part of
assemblies. Each assembly contains metadata that allows simple assembly versioning,
simpler reflections to determine assemble content and capabilities and component based
security. These are real advantages over what Java offers and we will explore them in

detail.

iv. Simple Deployment
The metadata in assemblies also simplifies deployment. An assembly can specify exactly
the location and version of any other code it needs. The problems of maintaining a registry
such as that needed with .COM components and the problems of DLL version mismatch

have been eliminated.

v. Type Checking
The CLR, common language runtime, type checks all objects in use. All objects are

derived from an object class, similar to what is done in Java,

Memory Management and Garbage Collection

The CLR also handles memory allocation and garbage collection. Garbage collection is the
automatic reclaiming of memory from objects that are no longer in scope. The memory

management nightmares of C++ are gone.

2.8.5 Network Address Translation (NAT)

Firewalls using NAT and/or Port Address Translation (PAT) completely hide the network
protected by the firewall by using many-to-one address translation. In most NAT
implementations there is a single public IP address used for the entire network. All packets
going outside the network have their internal IP addresses hidden for security, so any
incoming packets are delivered to the network’s public IP address. To handle ensuing port
conflicts, PAT needs to be added to NAT.

A disadvantage of NAT is that it can't properly pass protocols containing I[P address

information in the data portion of the packet.

2.9 Case Study: Commercial Internet Firewall Product

Today there are many commercial internet personal firewalls at the market. Each has its
own strengths and weakness. So you simply choose one of them that meet your needs
install into your computer, then doing some simple configuration finally your computer
being protected from malicious intruder. The following are some examples of today

commercial personal firewall.

2.9.1 Sygate

f?’ Sygate Personal Firewall
File Security Tools Yiew Help

e [ea & d @ @

Block all Applications Logs Sacurity Test Help

Incoming Incoming Tratfic History

Qutgoing Outguing Tratfic

Running Apphcations : i3 |
I_‘ﬂNIOSA'BZ.EXE wGenenc Host Process for WIn32 Services
%vm Server for Win32

I'" CBA -- Message System

MN(‘)IS User mode 1/O Driver

fﬂ]NT Kernel & System

E’J]LSA Shell (Export Version)

‘ ’ Showere::age Console] A

Secunty Status: Nomal

Figure 2.4: Sygate Personal Firewall Print Screen

Attack History Graph

Windows Services [Hide Bro:

The Sygate solution provides comprehensive protection against information leakage by

controlling the network communication of all managed endpoints, preventing unauthorized

P2P file transfer applications, analyzing the content of traffic for sensitive data, and

ensuring that all sensitive information generated on or delivered via Web applications to

3rd-party-owned endpoints is encrypted on the endpoint, and sanitizes at the end of the

Web session, preventing recovery of the deleted files. Thus, information leakage is avoided,

and data privacy is preserved. There some extra features with Sygate:

i. Host Integrity: Host Integrity ensures that devices accessing confidential data are

secured by antivirus software with updated virus definitions, a personal firewall,

critical service packs, and patches.

29

e

Virtual Desktop: The Virtual Desktop creates secure encrypted environment on the
endpoint that enables users to download confidential data into a virtual
environment where it can be opened by local applications, modified, and uploaded
back to the Web application, or copied to a floppy disk, USB hard drive, or other
removable media. When the session is terminated or times out, the virtual desktop

will sanitize the system, removing all data generated during the session.

Cache Cleaner: Sygate Cache Cleaner ensures that Web browser information, such
as cookies, history, auto-complete, stored passwords, and temporary and
downloaded files, are erased or removed upon termination of the session, inactivity
timeout, or closing of the browser. Cache Cleaner can either work in conjunction
with Sygate On-Demand Agent to clean the browser cache on additional operating
systems such as Mac OSX, Linux, and Windows (98,ME), or as a standalone

module.

30

2.9.2 Tiny Firewall 6.0

[TPFS Administration Center

™ Backup W
An

Save
Updates t;;) d Iy
Bulld: 5.5.1332 Avtematically # estore |1 chanaes

Check now!
| B Activity [

=4~ Intrusion Monitoring Rules Q) ezra@INCHRIST
dp add oelete cdhadd ¥ Oelete 4P add 8 Delete View:
s INTRUSION Group Group Rule Rule Token Token | All objects |
"1 prevenvion | Grouplist X @ General
1 INTRUSION gy backdoor ndes 2;’"‘ i:f:‘"w ndet
MONITORING L0 ftp.nes i) fudes a6 enabled

L ddos.rules

o dns.rules

O dos.rdes

L0 Arpbotules

LQ) Popd.rues

L0 nntp.rules

(L3 hap.rules

(0 chat,rules

£ finger.rules

£y eenprinfo.rues

0 . rules

(g rfo.rules

0 attack-resporces.es
L sc.rules

L webemisc ruies

L0 policy. rdes

LO tp.rules

L0 bad-traffic.iules

LK) netbios rules 4

* PREDEFINED
IP ADDRESSES

A ET R T II AR T A TSRS S

il O™ Byt

N 1 B VO 2050 1108 am

Figure 2.5: Tiny Firewall 6.0 Print Screen

Several functions for Tiny Firewall are:
i. Blocks Network Activity
ii. Stops Unknown Viruses and Spyware
iii. Controls Application Behavior
iv. Protects Files and Computer Settings

v. Multiuser Environment

3l

2.9.3 ZoneAlarm

| Overview = WAns | ProdsE o Prefarences

v aaeed s W s

\ scund o e 1 brdnaenns boywm bomeows Lsicnn st yoscw wvit ol e ——
» Vi AR 1y i .
Ty Pyoh 1 of s hawn baen hugheding futorial
T
Poatveer awligs o &y Widrssngaid A% Ao o
e S TR P R T ‘i"gé Tive tacwasd buys thockod 1 atoess
| Boo il abed gl s . Wrn s
e ke A SIS~
4 e . . . 1
s ¥ i Ktrrsans 1ol ¥ Firewall is
O o P Koeve Absers e -/‘;ﬁ D o eriel tacuand bor et seomis e b et
S pectmetmuy o Ty 14 &
W? oy e Swe ey
SR et x Y B teied " B sinod Py ailber Bl ~ .
v b Mokl i wr e
3 0y dipwns) o er ol ot > asevds b o brmd
What's New
at
(ol Ararsrs B o i Zooe Lats
" R e R - [T,

3
Chmpwr iy P PP 2em e 424 VAL Sl W ms £Erre et v rieene

Figure 2.6: ZoneAlarm Print Screen

i. Zone Labs is the award-winning leader in personal and distributed firewall
protection for over 25 million PCs worldwide.

ii. Zone Labs now protects you and your PC across all major Internet activities,
including email, Web surfing, online shopping, banking, instant messaging, and

more.

Zone Labs products are easy to use, yet powerful. Novices can protect themselves
with little effort because Zone Labs products come with optimized, out-of-the-box
security settings. Savvy users can fine-tune Internet security controls to meet their

precise needs.

2.10 Firewall Technology

A firewall is a system or group of systems that enforces an access control policy between
two networks. The most important thing to recognize about a firewall is that it implements
an access control policy. A firewall will typically set up a boundary between the known
trustable users on one side and the potentially hackers/crackers on the other. A basic
firewall setup depends greatly on the fact it is placed at the entry point to the network. If
firewalls are not at every entry point of a network, they cannot block all of the unwanted
traffic. Having a firewall blocking the front door is great, but you still need something
watching the back door and the windows! You may have your main entrance covered, but

there are often other ways into your network.

2.10.1 Packet Filtering

A packet filtering firewall is a router that is configured to validate the port and address of
both the source and destination host of a packet to the control policy. Packet filtering
works at the network layer of the Open System Interconnection (OSI) model or the Internet
Protocol (IP) layer of the Transmission Control Protocol (TCP) TCP/IP model. The port
and IP address of a packet will be matched to a control policy before allowing it onto the

network.

A packet filtering system will drop all packets that do not meet the rule set you have
allowed into your network. This is a quick way to set up a defense, but only serves to slow
down an aggressive hacker/cracker. Packet filters are one of the casiest defenses to get
around for a hacker/cracker. They do not inspect the content of the packets and are not
application aware. Filters can only stop packets that come into your network through the

34

entry point that it is on. Setting up a packet filter at your only entry point will stop only
those packets that do not meet the criteria for entry. Packet filters can and will be fooled by

a savvy hacker/cracker who wants in your network.

A rule set may look similar to the following:

Type Source Addr Dest Addr Source Port Dest Port Action
TCP X 123.4.5.6 >1023 23 Permit
IR 129.6.48.254 123.4.5.6 >1023 119 Permit
* * * * ¥ Deny

An administrator must become familiar with the different types of Internet Control
Message Protocol (ICMP) packets that you may want your packet filter router to allow.
There are many different types of ICMP message packets that can be identified by the type

field. Here are a few examples and the Reference of each.

Type Name Reference
0 Echo Reply [RFC792]
3 Destination Unreachable [RFC792]
4 Source Quench [RFC792]
8 Echo [RFC792]

34

How Packet Filters Work

A packet filter firewall is a that analyzes network traffic at the transport protocol layer,
Each IP network packet is examined to see if it matches one of a set of rules defining what
data flows are allowed. These rules identify whether communication is allowed based upon
information contained within the internet and transport layer headers and the direction in

which the packet is headed (internal to external network or vice-versa).

Packet filters typically enable you to manipulate (that is, permit or prohibit) the transfer of
data based on the following controls:

o the physical network interface that the packet arrives on

o the address the data is (supposedly) coming from (source IP address)

o the address the data is going to (destination IP address)

o the type of transport layer (TCP, UDP, ICMP)

o the transport layer source port

o the transport layer destination port

35

e

Apphasaynn Spacs

L Kerned 5paca

A 21 @ packat satishies all o the '
 pacxat iter rsag, than depandirg :

an whsthar it s dastined for the \

fieerwall or & rermate hest, e

priscaat ether propacstes up

the netwecrk Slack far fulure

Procageng oo gels leowarded

o tha deslinatan host,

Accapled nalwors [Feayt s

; packets Chutgaing netwon,

' packel

e ey Oroared |

: LPackel tiners o] listaf |

: pasl les |

. ‘ 1 v {

! } |

o ECEIT o (1) A1 Mcoming pacsets sre Compared
! irpurming nabwork against detined rulag compesed fom
: prackal @ very imied sommard sat for ane

or mare low-lesal protocaols, such ag 1P,
TCF and ICMP Packats am aithar
doniad arct dropped nara, o thay arg
acoeptad and passed 10 the natwork
stack tor debvary

WATE

Figure 2,7 depicts the network packet evaluation process used by a packet filter

firewall.

Packet filters generally do not understand the application layer protocols used in the
COMmunication packets. Instead, they work by applying a rule set that is maintained in the
TCpp kemel. This rule set contains an associated action that will be applied to any

Packets maiching the criteria mentioned above.

he action taken may take on one of two values: "deny" or "permit" the network packet,
WO lists, (he deny list and the permit list, are maintained in the kernel. For a network

Packet to by routed to its proper destination, it must first pass a check of both the deny and

36

permit lists. That is, it must not be expressly denied, and it must be expressly permitted.
Some packet filters that are incorporated into router hardware implement a different policy.
In these types of packet filters, the packet must be expressly denied or else it is permitted.
In order for you to understand the filtering rules, you must consider the security stance

utilized by the routing hardware.

Packet filters typically implement command sets that allow the checking of the source and
destination port numbers on the TCP and UDP transport layer protocols. This check
determines whether an applicable permit or deny rule exists for that specific port and
protocol combination. Due to the fact that the ICMP protocol layer does not utilize port
numbers for its communications protocol, it is difficult for packet filters to apply any
security policy to this form of network traffic. In order to apply an effective security policy
to ICMP, the packet filter must maintain state tables to ensure that an [CMP reply message
was recently requested from an internal host. This ability to track communications state is

one of the primary differences between simple packet filters and dynamic packet filters.

Because packet filters are implemented in the network layer, they generally do not
understand how to process state information in the high-level protocols, such as FTP. The
more sophisticated packet filters are able to detect [P, TCP, UDP, and ICMP. Using a
packet filter that includes the TCP/UDP port filtering capability, you can permit certain
types of connections to be made to specific computers while prohibiting other types of

connections to those computers and similar connections to other computers.

37

Because this type of firewall does not inspect the network packet's application layer data
and does not track the state of connections, this solution is the least secure of the firewall
technologies. It allows access through the firewall with a minimal amount of scrutiny. In
other words, if the checks succeed, the network packet is allowed to be routed through the
firewall as defined by the rules in the firewall's routing table. However, because it does less
processing than the other technologies, it is the fastest firewall technology available and is

often implemented in hardware solutions, such as IP routers.

Packet filter firewalls often readdress network packets so that outgoing traffic appears to
have originated from a different host rather than an internal host. The process of
readdressing network packets is called network address translation. Network address
translation hides the topology and addressing schemes of trusted networks from untrusted
networks.

To summarize, firewalls based on the packet filtering technologies have the following

advantages:

o Packet filters are generally faster than other firewall technologies because they
perform fewer evaluations. Also, they can easily be implemented as hardware
solutions.

o A single rule can help protect an entire network by prohibiting connections
between specific Internet sources and internal computers,

o Packet filters do not require client computers to be specifically configured; the

packet filters do all of the work.

o In conjunction with network address translation, you can use packet filter firewalls

to shield internal [P addresses from external users.

Firewalls based on the packet filtering technologies have the following disadvantages:

o Packet filters do not understand application layer protocols. They cannot restrict
access to protocol subsets for even the most basic services, such as the PUT or
GET commands in FTP. For this reason, they are less secure than application layer
and circuit level firewalls.

o Packet filters are stateless in that they do not keep information about a session or
application-derived information.

o Packet filters have very limited abilities to manipulate information within a packet.

o Packet filters do not offer value-added features, such as HTTP object caching, URL
filtering, and authentication because they do not understand the protocols being
used and cannot discern one from another.

o Packet filters cannot restrict what information is passed from internal computers to
services on the firewall server. Packet filters only restrict what information can go
to it. Thus, intruders can potentially access the services on the firewall server,

o Packet filters have little or no audit event generation and alerting mechanisms.

o Because of the complexity of supporting most non-trivial network services, it can

be difficult to test "accept" and "deny" rules.

39

2.10.2 Circuit Level Gateways
A circuit level firewall is a technology that validates the fact that a packet is either a
connection request or a data packet belonging to a connection, or virtual circuit, between

two peer transport layers.

To validate a session, a circuit level firewall examines each connection setup to ensure that
it follows a legitimate handshake for the transport layer protocol being used (the only
widely used transport protocol that uses a handshake are TCP). In addition, data packets
are not forwarded until the handshake is complete. The firewall maintains a table of valid
connections (which includes complete session state and sequencing information) and lets
network packets containing data pass through when network packet information matches
an entry in the virtual circuit table. Once a connection is terminated, its table entry is

removed, and that virtual circuit between the two peer transport layers is closed.

40

How Circuit Level Firewalls Work

Agpslicaton [ttes

i Remel paca

! MarwOrk stk ; :
T A'

v L1 LAl inooeming packegy st

E e parnparet agasnst é
; delinad rukes composed o
: frorn @ cormrmand =t 1o g

o
,.,w..m.,.mm.....w.m\?)

ther rarsspart layer A
prossesd, TR Paceats
are githar cenied and
drogped hem, ar theay
are s sptad aad passed
82 thg malwork stack

; Aar dedieiry

Incomeg nteork
ek

Chrcdered
ket of nules

It a packet gatisfag the candaicns
of the virtugd circuit 1able and

e LY L0

Qulgeing rutwark

Tha transpot lygar mpntaing stata
nfarmation aboul 4 network sassion |
in 1 wirtuaal oot ke

ordiaran ksl of rules, ard than
gapandng on wnalher 815 destingd
for shar frawall or a remate host, the
packed aithnr propagates up the
netanark stack or gals foowasndod 1o
1l destination hoed,

MG T

Packet

Figure 2.8: depicts the network packet evaluation process used by a circuit level

firewall.

Wh ek e 5 : : h
€N -a connection is set up, the circuit level firewall typically stores the following

info i i
Mation about the connection:

(©)

The sequencing information

delivereg

A unique session identifier for the connection, which is used for tracking purposes

The state of the connection: handshake, established, or closing

The source [P address, which is the address from which the data is being delivered

The desiination IP address, which is the address to which the data is being

o The physical network interface through with the packet arrives

o The physical network interface through which the packet goes out

Using this information, the circuit level firewall checks the header information contained
within each network packet to determine whether the transmitting computer has permission
to send data to the receiving computer and whether the receiving computer has permission

to receive that data.

Circuit level firewalls have only limited understanding of the protocols used in the network
packets. They can only detect one transport layer protocol, TCP. Like packet filters, circuit

level firewalls work by applying a rule set that is maintained in the TCP/IP kernel.

Circuit level firewalls allow access through the firewall with a minimal amount of scrutiny
by building a limited form of connection state. Only those network packets that are
associated with an existing connection are allowed through the firewall. When a
connection establishment packet is received, the circuit level firewall checks its rule bases
to determine whether that connection should be allowed. If the connection is allowed, all
network packets associated with that connection are routed through the firewall as defined
in the firewall server's routing table with no further security checks. This method is very

fast and provides a limited amount of state checking.

Circuit level firewalls can perform additional checks to ensure that a network packet has

not been spoofed and that the data contained within the transport protocol header complies

with the definition for that protocol, which allows the firewall to detect limited forms of

modified packet data.

Circuit level firewalls often readdress network packets so that outgoing traffic appears to
have originated from the firewall rather than an internal host. As stated previously, this
process of readdressing network packets is called network address translation, and because
circuit level firewalls maintain information about each session, they can properly map

external responses back to the appropriate internal host.

To summarize, circuit level firewalls have the following advantages:
o Circuit level firewalls are generally faster than application layer firewalls because
they perform fewer evaluations.
o A circuit level firewall can help protect an entire network by prohibiting
connections between specific Internet sources and internal computers.
o In conjunction with network address translation, you can use circuit level firewalls

to shield internal IP addresses from external users.

Circuit level firewalls have the following disadvantages:
o Circuit level firewalls cannot restrict access to protocol subsets other than TCPp,
o Circuit level firewalls cannot perform strict security checks on a higher-level
protocol should the need arise.
o Circuit level firewalls have limited audit event generation abilities but can typically
tie a network data packet to an application layer protocol by building limited forms

of session state.

Circuit level firewalls do not offer value-added features, such as HTTP object
caching, URL filtering, and authentication because they do not understand the
protocols being used and cannot discern one from another.

[t can be difficult to test "accept" and "deny" rules.

2.10.3 Application Layer Firewalls

An application layer firewall is a technology that evaluates network packets for valid data
at the application layer before allowing a connection. It examines the data in all network
packets at the application layer and maintains complete connection state and sequencing
information. In addition, an application layer firewall can validate other security items that

only appear within the application layer data, such as user passwords and service requests.

Most application layer firewalls include specialized application software and proxy
services. Proxy services are special-purpose programs that manage traffic through a
firewall for a specific service, such as HTTP or FTP. Proxy services are specific to the
protocol that they are designed to forward, and they can provide increased access control,
careful detailed checks for valid data, and generate audit records about the traffic that they

transfer.

How Application Layer Firewalls Work

I 3 Thes proxy Secdicn processes (he received dista,
H camparas the data againgy the soceplable command
st rulag, as wall as NOoSE ardd USar PEeqrmessian ruks,
10 datarmine whelhwr W accapl o deay 1ha packet,

Promias may also paroom othar funchons, such &s data
maddicanon, autheatcaton, logging, UL fiterng, ang
HTTP abject cachng.

Agcapd arvd
4 :

Apupdication proxy service

' ACaples

Packet ditiy and etk
header inforrratian packeas ! 7 When 1ha nelwaork stack insnes

.
-
.
-
frosres Micaby ot ‘[< processing the packat its cata is
T

?<
arae

: pratacal laper passed from kemel space o
Appication space ta e proxy

g serar 1hat is §stening an &

¢ Apphcaton space specilic TCP or UDP part.

L Keenel spaca

41 Tha networs packel orogagatas up
T the "narganad® netesrk stack umii
A reachas the highest presccol
layer foares i tha packet

|

Mative nabwork S5ack i
!

- |

e L
Incersg netaxirk Chusgairg
praaskey pasckest

HUE e

Figure 2.9: depicts the network packet evaluation process used by a application layer

firewall.

Each application proxy requires two components that are typically implemented as a sing|e
executable: a proxy server and a proxy client. A proxy server acts as the end server for g
connection requests originated on a trusted network by a real client. That is, g
communication between internal users and the Internet passes through the proxy server
rather than allowing users to communicate directly with other servers on the Internet, Ap
internal user, or client, sends a request to the proxy server for connecting to an externg|
service, such as FTP or Telnet. The proxy server evaluates the request and decides 1o

46

permit or deny the request based on a set of rules that are managed for the individual
network service. Proxy servers understand the protocol of the service that they are
evaluating, and therefore, they only allow those packets through that comply with the
protocol definitions. They also enable additional benefits, such as detailed audit records of

session information, user authentication, and caching.

A proxy client is part of a user application that talks to the real server on the external
network on behalf of the real client. When a real client requests a service, the proxy server
evaluates that request against the policy rules defined for that proxy and determines
whether to approve it. If it approves the request, the proxy server forwards that request to
the proxy client. The proxy client then contacts the real server on behalf of the client (thus
the term "proxy") and proceeds to relay requests from the proxy server to the real server
and to relay responses from the real server to the proxy server. Likewise, the proxy server

relays requests and responses between the proxy client and the real client.

How a Proxy Service Works

,"" .',_
i Internat 1
| W— ¢
o (0 |
-l L ‘-./
? t
1k =l
Reply | | Forwanded
| | requesl
+ Applicatian layer procy service J
© Duathomad u :
{ prooty sarver | - T
! i Proxy Agplicaten | Proxy
; ; SBrver protosol | client
! ! analysis |
i ' [A
Forwarnded l P":;q“;;-:\!‘
reply | |-,
: Intemal
\ nabwark
b
3
Heal ciant | 4
3

internal

Figure 2.10: depicts the flow of communications between a real client and a network

server when the communications pass through a proxy service.

Proxy services never allow direct connections, and they force all network packets to be
examined and filtered for suitability. Instead of communicating directly with the req|
service, a user communicates to the proxy server (because the user's default gateway is gey

to point to the proxy server on the firewall). The same is true from the perspective of the

real service communicating with a user. The proxies handle all communications between

the user and a real service.

A proxy service sits transparently between a user on the internal network and the real
service on the external network. That is, from the user's perspective, that user is dealing
directly with the real service. From the real service's perspective, it is dealing directly with

a user on the proxy server (instead of the user's real computer).

Proxy services are implemented on top of the firewall host's network stack and operate
only in the application space of the operating system. Consequently, each packet must pass
through the low-level protocols in the kernel before being passed up the stack to
application space for a thorough inspection of the packet headers and packet data by the
proxies. Then, the packet must travel back down to the kernel, and then back down the
stack for distribution. Because each packet in a session is subject to this process, proxy

services are notoriously slow.

Like circuit level firewalls, application layer firewalls can perform additional checks to

ensure that a network packet has not been spoofed, and they often perform network address

translation.

To summarize, proxy services have several key advantages:

o Proxy services understand and enforce high-level protocols, such as HTTP and F1p,

o Proxy services maintain information about the communications passing through the
firewall server. They provide partial communication-derived sate information, full
application-derived state information, and partial session information.

Proxy services can be used to deny access to certain network services, while
permitting access to others.

o Proxy services are also capable of processing and manipulating packet data.

o Proxy services do not allow direct communications between external servers and
internal computers, so the names of internal computers do not have to be made
known to external computers. In other words, proxy services shield internal IP
addresses from the external world.

o By providing transparency, proxies provide users with the appearance that they are
communicating directly with external servers.

o Proxy services can route internal services, as well as external-to-internal requests,
elsewhere (for example, they can route services to an HTTP server on another
computer).

© Proxy services can provide value-added features, such as HTTP object caching,
URL filtering, and user authentication.

0

Proxy services are good at generating audit records, allowing administrators to

monitor attempts to violate the firewall's security policies.

Proxy services also have some disadvantages. These disadvantages include the following;
O Proxy services require you to replace the native network stack on the firewall
server,

Because the proxy servers listen on the same port as network servers, you cannot
run network servers on the firewall server.

Proxy services introduce performance delays. Inbound data has to be processed
twice, by the application and by its proxy (for example, the Internet e-mail
application talks to the proxy e-mail agent, which in-turn talks to a LAN e-mail
application).

Generally, a new proxy must be written for each protocol that you want to pass
through the firewall, and therefore, the number of available network services and
their scalability is limited. Usually a lag of six months or more exists from when
the application is available and when its proxy is available, meaning users must
wait for mission-critical applications to be available to them.

Application level firewalls cannot provide proxies for UDP, RPC, and other
services from common protocol families.

Proxy services often require modifications to clients or client procedures, thus
adding a task to the configuration process.

Proxy services are vulnerable to operating-system and application-level bugs. Most
packet filter firewalls do not rely extensively on operating system support
mechanisms; however, they do generally rely on device drivers, etc. Most
application layer firewalls require extensive support from the operating system to
operate correctly, such as support from NDIS, TCP/IP, WinSock, Win32, and the
standard C library. If a security relevant bug appears in any of these libraries, it can
have undesirable effects on the security of the firewall server,

Application layer firewalls overlook network packet information that is contained

in lower layers. If the network stack is not performing correctly (which is comple

o

to validate), then some of the information used to perform security checks that
application layer firewalls request using standard calls from operating system
libraries could return incorrect information. An example call that is often utilized
by application layer firewalls is the getpeeraddress() call.

Proxies may require additional passwords or other validation procedures that

introduce delays and frustrate users.

2.10.4 Dynamic Packet Filters /Stateful Inspection

A dynamic packet filter firewall is a technology that allows modification of the security
rule base on the fly. This type of technology is most useful for providing limited support
for the UDP transport protocol. The UDP transport protocol is typically used for limited

information requests and queries in application layer protocol exchanges.

This firewall accomplishes its functional requirements by associating all UDP packets that
cross the security perimeter with a virtual connection. If a response packet is generated and
sent back to the original requester, then a virtual connection is established and the packet is
allowed to traverse the firewall server. The information associated with a virtual
connection is typically remembered for a short period of time, and if no response packet is

received within this time period, the virtual connection is invalidated.

Network packet evaluation process

{5} All natwosrk packets associates
with an autharicated 5e6550
are processed by an application
narenrg an e fireaall bost,

.
1
‘

: LY Authaatication gaemaens
L Apphcatan space A

L —

| Eemel spacs

packe) Mrar rulas, then degansing
on whather it is dashned for {he
Feawall ar a remcts hast. the
picked pitber progasgales up

the netwiek slack for utune
proosssing o gels loraarded

5 1he network Nhost.

; Marwark stack -

¥

L oo

T
Agapied nalwork Outgaing network

v as peackat
;
2 oo
; .2} Based on information Dynamic |
! aontaired wnhv'nfmr:h I3 0t wles 1l SR mamia Hias Aré
: packel, cf:mnl'l [ld'(,klﬂ ;“' """ ﬂ("”.M;’ W) 't;ded R d Famovod
E - :mg(x:mn:d wilkt acwet hillars 1 Oroered | ;&wd e cwn;“”'r"
E :::::trxx;::is.mu ‘f "“: ! of 1ha dala con!urne'_; i
; / el within the matwark packet
! [iuiamiig | T and tha stive infarmation
. i - l - by
Incaming natwork Jn AL Scoming packEs are compared
packat ainst detinadd rules composad (rom
& >

& vary imaed cammand sat lar one

or mare low-lavel protngees, such as i,
TCR, ard drogpes hara, o thay are
aocegtid ard passed 10 the ratwork
stack lor deliveny or they are accested,

*hig 1T

Figure 2.11: depicts the network packet evaluation process used by a dynamic packet

filter firewall.

Dynamic packet filter firewalls have the same advantages and disadvantages associated
with first-generation packet filter firewalls with one notable exception: the advantage of
not allowing unsolicited UDP packets onto your internal network. As long as a Upp
request packet originated on your internal network and is delivered to an untrusted host,

the firewall server allows what appears to be a response packet to be delivered 1o (he

54

originating host. The response packet that is allowed back must contain a destination
address that matches the original source address, a transport layer destination port that

matches the original source port, and the same transport layer protocol type.

This feature is useful for allowing application layer protocols, such as the Domain Name
System (DNS), to operate across your security perimeter. An internal DNS server must
originate requests to other DNS servers running on the Internet to retrieve address
information for unknown hosts. DNS servers may make these requests using a TCP

connection or UDP virtual connection.

A dynamic packet filter firewall may also be used to provide support for a limited subset of
the ICMP transport protocol. ICMP is often used to test network connectivity by sending a
pair of network packets between two cooperating hosts. Because the firewall server can
allow a response to cross the firewall at the request of an internal host, the internal host is

able to deduce that a host exists on an untrusted network.

wn
i

CHAPTER 3 METHODOLOGY

3.1 Overview

This chapter will define the Methodology used for FirePower development. A
Methodology will offer a step-by-step approach to the desired situation — and each step
will offer some success and benefit. Which doesn’t deliver any real benefits before it is

fully implemented is not made for real life.

In order to achieving high-quality architectural designs in software development are, the
following items should take in consideration:

o awareness of the importance of architectural design to software development

o understanding of the role of the software architect

o understanding of the design process

o design experience in a development organization

o sufficient software architecture design methods and tools

o understanding of how to evaluate designs

o communication among stakeholders

3.2 Process Model

There are some process models:
[. Waterfall Model
I[I. V Model
[I. System Development Life Cycle (SDLC)
[V. Spiral Model

V. lterative-and-Incremental Model

3.2.1 Iterative-and-Incremental Model

[terative-and-Incremental Model has been used to develop FirePower because:

o There are multiple opportunities for checking that the software product is correct

o Every iteration incorporates the test workflow

o Faults can be detected and corrected early

o The robustness of the architecture can be determined early in the life cycle

o Architecture — the various component modules and how they fit together

o Robustness — the property of being able to handle extensions and changes without
falling apart

o Scope of project well understand

o Project risks have been accessed and are considered to be low.

Prototyping is a sub-process and prototype is a partially developed product or g

simple simulator of the actual system to examine the proposed system and overview on

57

the functionalities. A prototype of FirePower will be built regarding to the project
scope and the analysis of the system before start to build the actual system.

Prototyping is very important because:

« To ensure the system meet the performance goals or constraints.

o To ensure the system are practical and flexible.

o To ensure the system fulfill the users’ requirement.

« To have an insight of how the module and sub-modules interact with each other.

58

Iterative-and-Incremental Model

i i 1
1 | |
Increment A | IncrementB | IncrementC | Increment D
i | |
. 1 I |
Requirements I
workflow : : H
| I i
| | i
v Analysis A e B
2 workflow ! : :
'g i | 1
g 1 1
& workflow : ! !
’_L_/____,/{/j
|
. 1
Implementation
workflow ! : :
! I 1
1 | i
Test : !
workflow] e TR LT T T S T T (RS

Figure 3.1: Iterative-and-Incremental Model

3.3 Requirements Workflow
To determine the computer security’s needs
i. First, gain an understanding of the application domain. That is, the specific
environment in which the software product is to operate.
ii. Second, build a model Use UML to describe the processes .If at any time the cost is

not justified, development terminates immediately.

59

3.4 Analysis Workflow

i. The aim of the analysis workflow is to analyze and refine the requirements. The

requirements artifacts must be totally comprehensible.

3.5 Design Workflow

o Shape the system form and architecture that meets all requirements.

o Understand issues on non-functional requirements and constraints related to
technologies.

o Identify subsystems (overall structure, requirements, interfaces, classes)
enabling concurrent development.

o Create a seamless abstraction of the system implementation.

o Implementation adds content to a stable architecture.

o Provides a visualization of the implementation.

o Architectural design :

o Consider patterns and implementation reuse.

o Identify nodes and network configurations.

o Nodes: number and processing power.

o Connections: protocols, bandwidth, quality, etc.

o Fault tolerance: redundancy, fail-over, migration, data backup, etc.

o Identify subsystems and their interfaces.

o First iteration is analysis package --> subsystem.

o Refine for shared functionality, reused/wrapped legacy software, load
balancing, etc,

o Define dependencies and layers.

60

Define interfaces to serve dependencies.

When designing use cases in terms of subsystems and interfaces, identify
operations on each interface.

[dentify generic design mechanisms: persistence, transparent object
distribution, security, error detection and recovery, transaction management,

etc.

2.6 Implementation Workflow

o The two phases of the program implementation process:

i. The delivery of the program.
ii. How the program and the infrastructure are modified to adjust to the

evolution of the market.

2.7 Testing Workflow

Testing of individual program components

Usually the responsibility of the component developer (except sometimes
for critical systems)

Testing of groups of components integrated to create a system or sub-
system

Tests are based on a system specification

61

CHAPTER 4 SYSTEM REQUIREMENTS ANALYSIS

The need for Internet firewalls has increased tremendously over the years. Everyone is
looking for the best firewall solutions to protect the internal components of their networks
from threats and network intrusions. If the needs of the organization are not well defined,
then it is almost impossible to identify the best firewall solution. Therefore, first must
determine the needs of machine and then design a firewall solution that best meets those

needs.

This chapter explains what to build firewalls using different technologies that are available.
It also presents the evaluation criteria should apply when developing the most appropriate

firewall.

Help Module

Allow All | i 0
Module KirePower Block Ping Module

Application Running Add Rules Module Block All Module Port Scan
Module Module
IP Address Port Number Action

Figure 4.1: Components of FirePower

62

4.1 Functional Requirements
The following will illustrates all functions and policies will be provided at FirePower. Now

we come to see how does the security threat been solved by FirePower.

4.1.1 Block Ping
The Ping of Death is the granddaddy of all denial-of-service attacks. It exploits the fact that
many TCP/IP implementations trust that [CMP packets are correctly formed and perform

too little error checking.

Note: Configuring firewalls to block ICMP and any unknown protocols will prevent this

attack.

4.1.2 Packet Filtering
Some malicious packet will causes your network down. Hence Packet filtering is needed to
allow trusted sources can come in.

Note: Add rules to FirePower. Allow trusted source only.

4.1.3 Port Scanner

In order to observe computer with their services provided. Port Scanner is integrated to
check what port is available.

Note: A Port Scanner with GUI will be integrated. User simply input [P address and port
range. The Port Scanner will do an analysis to your computer to make sure whether the

specify port is open or not.

63

4.1.4 Generate Log file

A successful Personal Firewall not only able to defend the malicious packet but also can do
some sample accounting management.

Note: A Log file will be generating automatically to let the user know what packet has

been blocked.

4.1.5 GUI

[n order to simplify the usage of FirePower, a user friendly interface is required. Every
function is executed just by a click.
Note: The user friendly interface let user to manage the personal firewall setting. Thus, it

will make the life easier.

4.1.6 Help Menu

Cee e - i > FirePower. A clear guideline may teach
User may face some difficulties when using the FirePow ar g ay

them how to use.

a0 o) s FiraP e
Note: A briefly guideline is provided to help new user to learn how to use the FirePower,

4.1.7 System Tray

Itis a necessary a shortcut being created while running the system. It makes the window

look more neatly.

Note: Its better way to hide the GUI and then call it back when there is the needs,

64

4.2 Non-Functional Requirement

Reliability: The system should be reliable in performing its protection function and
network operation. For example, whenever a button is clicked, the system should be able to

perform some functionality or generate some message or animation to inform the user what

is happening.

Usability: The system should be user friendly. User must be able to learn how to use the
System in the shortest period. It will enhance and support rather than limit or restrict the
understanding of firewall. Human interfaces need to be intuitive and consistent with the

user knowledge in order to them gain some knowledge through the FirePower,

Manageability: The modules within the system should be easy to manage. This will make
the maintaining, enhancement work simpler, and not time consumed. The system should
not cause any damages to the current FirePower after a new component has been added.
The system should be designed systematically so that the effort required to locate and fix

an error in the system is minimum,
Flexibility: The system has its capabilities to make advantages of new technologies,
fesource and in fast changing environment. The system should be able to implement in a

changing environment of platform.

Correctness: The final application must meet the objective, specification and requirement

of the users.

65

4.3 Software and Hardware Selection

The following is a software requirement for the development of the FirePower.

Visual Studio .NET

Visual Studio .NET is a complete set of development tools for building ASP Web

applications, XML Web services, desktop applications, and mobile applications. Visual

Basic NET. Visual C++ NET, Visual C# .NET, and Visual J# .NET all use the same

integrated development environment (IDE), which allows them to share tools and

facilitates in the creation of mixed-language solutions. In addition, these languages

leverage the functionality of the NET Framework, which provides access to key

technologies that simplify the development of ASP Web applications and XML Web

services.

This section contains information about some of the latest tools and technologies available

in this release of Visual Studio.

Windows Forms

Windows Forms is the new platform for Microsoft Windows application development,

based on the .NET Framework. This framework provides a clear, object-oriented,

3 : '.' H i~ IS ‘\v ‘) s.
extensible set of classes that enables you o develop rich Windows application
" ¢ s SENE dSsCe s v

T srfara i I l_‘;- "‘ ." 3
Additionally, Windows Forms can act a5 the local user interface in a multi-tier distributed
¢ 3 Ve

solution,

006

4.4 Development Requirements

The following are the hardware requirements for the development of the FirePower.
a) Hardware requirements:

J PC with at least Pentium II1 600 MHz processor

: At least 128 MB of Random Access Memory (RAM)

. At least 10GB of hard disk space.

: Network Interface card.

: Other standard computer peripherals.

Software requirements:

C Microsoft Windows 2000 Professional Edition .
: Microsoft Visual Studio .NET

g Microsoft .NET Framework

User Requirements

The following are the hardware and software requirements for the user in order to use UM

pest

a) Client Hardware Requirements

> PC with at least Pentium 166 MHz and above

: At least 64 MB of Random Access Memory (RAM)
: Network interface card.

: At least 10 GB hard disk space

) Other standard computer peripherals

67

CHAPTER 5 SYSTEM DESIGN

In this chapter, I will get a detailed overview of Internet firewall design for the purpose of
producing a firewall solution for our machine.

After the stage of system analysis, the implementation of the entire system can be design
according to the system’s requirement. The object-oriented methodology will be used at
the implementation phase of the development process through the C++ programming

language.

5.1 Deployment Diagram

TCP/IP & UDP
Personal O
Computer

FirePower »

Figure 5.1: an Overview of the NetDenfender is Placed

68

5.2 FirePower Design Overview

The overview of FirePower design is important before proceed to development of entire

system.

IP Address
ll { II Add Rules <:
FirePower st
Block Ping
i Packet

Filtering Block All

Port S
(L7 S Allow All

Hel
> pe IP Address
.| Application Port Number

Figure 5.2: FirePower Architecture

69

5.3 FirePower Workflow

Packet

Allow

Add Rules

Figure 5.3: Showing FirePower Workflow

70

5.4 Context Diagram

(

DELETE RULES
Administrator / User REQUEST SCAN PORT
REQUEST ALLOW ALL
REQUEST HELP
BLOCK PING
UPDATE ADD RULES
\ 5
Iy 'y 4 A
L4 ¥ 4 L L 4
\
VIEW RULES
BLOCK PACKET
VIEW APPLICATION RUNNING F | R EPOW ER
FILTED PACKET

Figure 5.4: FirePower Context Diagram

\ Y

71

5.5 FirePower Data Flow Diagram

Service Ruring
? '_— ey 7 Bl
Scanrning , o
Port Opening Block Al b
| Part Filter
| ;
5 = 4 Lo
e
Port ! l
Scanner
_ Decision
I Action made |
| Request | |
1 Cheacking
NN 2
L N i
Y | Decison mace (o
-p i
“Port Scan Request 5 g 1
FirePower Packel Checking
Open Port Display » M
| Hsly |
L] ||
i Act}un Désf »
Time " Logfie Request | | ; | piy
Generate | History | } 7 | |
~ Request
£ Fy] ‘
, Inisate.
} * | Request Application
Open S Noication
Lo fle 09 fle B $
1 F Y Executing File
| j ! | | : Lisirg
L) 1 a 8 | 3 Program
o b P curenrtly
ile Siore 4 i : L
Start ow Rurring

Figure 5.5: FirePower Data Flow Diagram

5.6 FirePower User Interface Design

User interface design describes how software communicates with the human user who uses

it (Mundher, 1994). The user interface design focuses on the effective general interaction

between its user and the system. It also takes into account development of complete,

unambiguous and easy-to-understand information displays.

The interface is the system for most users. However, well or poorly designed, it

stands as the representative of system. The goal of good interface design is to produce

interface that helps users and businesses get the information they need in and out of the

system by addressing the following objectives.

)

Effectiveness in allowing users to access the system in the way that is

congruent with the individual needs.

Efficiency in increasing the speed of configure the FirePower and reduce the

number of error that occur.

Interface need to be usable and consist of certain characteristics in common:

They reflect the workflows that are familiar or comfortable

They support the user’s learning style

They are compatible in the users’ working environment

They encompass a design concept (a metaphor or idiom) that is familiar to the
users.
They have a consistency of presentation (layout, icons, interactions) that

makes them appear reliable and easy to learn.

73

vi) The usage of languages and illustrations are familiar to the users or are easy

to learn

In short, usable interfaces fit in, simply and elegantly, with users‘s life and work

needs.

Example:

FirePower Interface Prototype Print Screen

NetDender
File View Window Help

rBelow are the rules that are registed rules file

Source P Source Port I Protocol I Action

Destination IP | Destination Port
- ,

Application Kunning Start

Block All Allow All | Block Ping

Figure 5.6: Initial NetDenfender Interface

74

SUMMARY

The Internet has made large amounts of information available to the average computer user
at home, in business and in education. For many people, having access to this information
is no longer just an advantage, it is essential. Yet connecting a private network to the
Internet can expose critical or confidential data to malicious attack from anywhere in the
world. Users who connect their computers to the Internet must be aware of these dangers,
their implications and how to protect their data and their critical systems. Firewalls can
protect both individual computers and corporate networks from hostile intrusion from the

Internet, but must be understood to be used correctly.

~3
“wn

CHAPTER 6 SYSTEM IMPLEMENTATION

6.1 Introduction
After the system —designing phase on the how the system should be functioning,

the next process will include the system implementation phase. The system

implementation phase is an important element especially when integration of system is

needed between subsystems. In this phase, we have to consider about the issues of settings

up the development environment, which include software and hardware requirements.

6.2 Development Environment

In order to optimize the development progress, suitable development environment

is major factor to be considered. The software con figurations of FirePower are described in

the following table:

Development Tools Function Description

Microsoft Windows XP Development Platform Operating System

Microsoft Visual Studio .Net | Programming Tool System Development Tools

Professional

Adobe Photoshop 7.0 Image Creation Tool Create images for FirePower
p £

Axialis Icon Workshop 5.02 | Icon Creation Tools Create icons for FirePower
p

Fast-Help International Help Files Creation Tools | Create Help file for

FirePower

Table 6-1 List of FircPower Development Tools

76

6.3 Algorithms
The program design often specifies a class of algorithms to be used in the coding

the component developers are writing. There are several ways developer used to organize

the codes.

o Keeping the program simple and tidy to make sure that the codes are readable.

e Using data structures to determine program structures
o Coding such as functions that needed to call for few times may put out of

the main program. Besides, variables that may need to use in several forms,

should put in a general module (public).

e Always give comment on code, additional comments are useful wherever helpful

information can be added to a component.
o Comment block in C++ NET may looks like “//This is the sample of

comment block” or “/* This is the sample of comment block™/.

6.4 Coding

6.4.1 The Filter-Hook Driver

We can summarize them in the following steps:
|. Create a Filter-Hook Driver. For this. we must create a Kernel Mode Driver, we

choose the name, DOS name and other driver characteristics, nothing obligatory
but it is recommended using descriptive names.

all the filter function, first we must get a pointer to I[P Filter

o

If we want to inst

Driver. So. it will be the second step.

17

3. We already have the pointer, now we can install the filter function. We can do it by
sending a specific IRP. The data passed in this "message" includes a pointer to the
filter function.

4. Filtering packets.

5. When we decide to finish filtering, we must deregister the filter function. We can

do it by "registering" as filter function the null pointer.

6.4.2 Create the Kernel Mode Driver

Filter-Hook driver is a Kernel Mode Driver, so if we want to do one, we have to make a

Kernel Mode Driver.

The structure of the Filter-Hook driver is the typical Kernel Mode Driver structure:
A driver entry where we create the device set the standard routines in order to process IRPs

(Dispatch, load, unload, create....) and create the symbolic link for communication with

user applications.

The standard routines to manage IRPs. Before begin to code, think what [OCTL "export"
to applications from device driver. In the sample, we implement four [OCTL Codes:
START IP HOOK (registers the filter function), STOP_IP_HOOK (deregisters the filter
function), ADD_FILTER (installs a new rule) and CLEAR_FILTER (frees all rules).

For our driver, we must implement one more function: the filter function.

It is recommended to use a program that generates the structure of a Kernel Mode Driver,
50 only have to put code into the generate functions.

78

We can see the implementation of the structure of the Driver, in the following code:

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,

IN PUNICODE_STRING RegistryPath)

/-
dprintf("DrvFItlp.SYS: entering DriverEntry\n");

//we have to create the device

RtlInitUnicodeString(&deviceNameUnicodeString,NT_DEVICE_NAME);
ntStatus = loCreateDevice(DriverObject, 0,&deviceNameUnicodeString,
FILE DEVICE_DRVFLTIP, 0, FALSE, &deviceObject);
if (NT_SUCCESS(ntStatus))
{
// Create a symbolic link that Win32 apps can specify to gain access
// to this driver/device
RtllnitUnicodeString(&deviceLinkUnicochtring, DOS_DEVICE NAME);
ntStatus = IoCrcatcSymboIicLink(&dcvichinkl.h1icochlring,
&deviceNameUnicodeString);
// create dispatch points for device control, create, close.

DriverObject->MajorFunction[IR P MJ CREATE] =

]

DriverObject->MajorFunction[IR P MJ CLOSE]
DrivcrObjcct->Majorl’unclion[lRP_MJ_[)I’,VI(,’li‘(‘()N'I‘R()l,| = DrvDispatch;

DriverObject->DriverUnload = DryUnload;

79

if (!NT_SUCCESS(ntStatus))

{
dprintf("Error in initialization. Unloading...");
DrvUnload(DriverObject);

}

return ntStatus;

}
NTSTATUS DrvDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)

{8

switch (irpStack->MajorFunction)

{

case IRP_MJ CREATE:
dprintf("DrvFItlp.SYS: IRP_MJ CREATE\n");
break;

case IRP_MJ_CLOSE:
dprintf("DrvFItlp.SYS: IRP_MJ_CLOSE\n");
break;

case IRP._MJ DEVICE_CONTROL:

dprintf("DrvFItlp.SYS: IRP_MJ_DEVICE_CONTROL\n");

ioControlCode = irpStack->Parameters.DeviceloControl.loControlCode;

80

switch (ioControlCode)

{

// ioctl code to start filtering

case START _[P_HOOK:

{
SetFilterFunction(cbFilterFunction);
break;

h

/] ioctl to stop filtering

case STOP [P HOOK:

{
SetFilterFunction(NULL);
break;

J

// ioctl to add a filter rule

case ADD FILTER:

{
if(inputBufferLength == sizeof(IPFilter))
{

[PFilter *nf;

81

nf = (IPFilter *)ioBuffer;
AddFilterToList(nf);

}
break;

}

/] ioctl to free filter rule list

case CLEAR_FILTER:

{
ClearFilterList();
break;

j

default:
[rp->loStatus.Statt
dprintl’("Drvl’fltlp.SYS: unknown IRP_MJ_DE

break;

// ioctl to free filter rule list
case CLEAR_FILTER:
!

ClearFilterList();

break;

——

1S = S’I’/\'I‘US_INVALID__l’/\RAMli'l‘l’iR;

VIC E_CONTROL\n");

default:

[rp->IoStatus.Status = STATUS INVALID_PARAMETER;

dprintf("DrvFItlp.SYS: unknown IRP_MJ _DEVICE_CONTROL\n");

break;

break;

b

ntStatus = [rp->loStatus.Status;
loCompleteRequest(Irp, [O_NO_INCREMENT);
// We never have pending operation so always return the satus code.

return ntStatus;

}
VOID DrvUnload(IN PDRIVER_OBJECT DriverObject)
(
UNICODE_STRING deviceLinkUnicodeString;
dprintf("DrvFItIp.SYS: Unloading\n");
SetFilterFunction(NULL);
// Free any resources
ClearFilterList();
// Delete the symbolic link
RtlnitUnicodeString(&deviceLinkUnicodeString, DOS_DEVICE_NAME);

loDeleteSymbolicLink(&deviceLinkUnicodeString);

83

// Delete the device object

IoDeleteDevice(DriverObject->DeviceObject);

}

We already have made the driver main code, so we follow with code of the Filter-

Hook Driver.

6.4.2 Registering a Filter function

: (FilterF i > | *mented
In the above code, we have seen a function called SetFilterFunction(..). We impler

3 : e » will describe the steps
this function to register a function in the IP Filter Driver. We will describ p

followed:

First, we must get a pointer to the IP Filter Driver. That requires that driver is installed and

o Meiver before loading this driver,
executing. My user application loads and starts IP Filter Driver before loading th

in order to assure this.

i TL PF_SET_EXTENS POINTER as
Second, we must build an IRP specifying 10C IL_Pt -SU—LX[LNSK)NJ OIN s

- SET EXTENS __INFO
0 Control Code. We must pass as parameler p[-“_sl,,[ﬁl,)\ll.NSI()N__H()()l\M

el sttar functi “we want to uninstall
structure that has information about the pointer (0 filter function. I we
-~ (s [0 -

; assi ILL as the pointer to filter
the function, we have to follow the same steps but passing NULI 5

function,

84

Send the build IRP to the device driver.

Here there is one of the bigger problems of this driver. Only one filter function can be

installed, so if other applications installed one, we can not install wer function.

I will show in the following lines, the code of this function:

NTSTATUS SetFilterFunction

(PacketFilterExtensionPtr filterFunction)

NTSTATUS status = STATUS_SUCCESS, waitStatus=STATUS_SUCCESS;

UNICODE_STRING filterName;
PDEVICE _OBIJECT ipDeviceObject=NULL;
PFILE_OBJECT ipFiIeObject=NULL;
PF__SE’I‘_EX'I‘ENSl()N__l~IO()K_lNFO filterData;
KEVENT event;
IO_STATUS_BLOCK joStatus;
PIRP irp;

dprintf("Getting pointer 0 IpFilterDriver\n®):

//first of all, we have to get a pointer to [pFilterDriver Device

RllInitUnicochtring(&ﬁIterNamc. DD _I I’FLTRDRVRWDEVICEWNAM[:]);

status = loGetDeviceObjectPointe

&ipFileObject, &ipDeviceObject);

r(&t'lllcrNumc.S'l‘/\Nl)/\Rl)*RI(il {TS_ALL,

85

if(NT_SUCCESS(status))

{

//initialize the struct with functions parameters
filterData.ExtensionPointer = filterFunction;
//we need initialize the event used later by
//the IpFilterDriver to signal us

//when it finished its work

KelnitializeEvent(&event, NotificationEvent, FALSE);
//we build the irp needed to establish fitler function
irp =
loBuildDeviceloControlRequest(lOCTL__PF_SE'l’_EXTENSION_POINTER,

ipDeviceObject, if(irp != NULL)
{

// we send the IRP

status = loCallDriver(ipDeviceObject, irp);

//and finally, we wait for

//"acknowledge" of IpFilter Driver

if (status == STATUS_PENDING)

{ waitStatus = KeWaitForSingleObject(&event,

Executive. KernelMode, FALSE, NULL);

\\\\\

dprintf("Error waiting for [pFilterDriver response.”);

86

S

status = ioStatus.Status;

ifINT_SUCCESS(status))

dprintf("Error, 10 error with ipFilterDriver\n");

else

//if we cant allocate the space,
//we return the corresponding code error

status = STATUS_INSUFFICIENT_RESOURCES;
dprintf("Error building IpFilterDriver IRP\n");

}

if(ipFileObject != NULL)

ObDereferenceObject(ipFileObject);

ipFileObject = NULL;

ipDeviceObject = NULL;

}

else
dprintf("Error while getting the pointer\n");

return status;

We can see that when we finish the process of establishing the filter function, we must de-
reference the file object obtained when we got a pointer to the device driver. We use an
event to be notified when IpFilter Driver finish the processes of the IRP.

6.4.3 The Filter function

We have seen how we can develop the driver and how to install the filter function, but we

don't know anything about this function yet.

We had said that this function is called always when the host receives or sends a packet.

Depending on the return value of this function, the system decides what to do with the

packet.
The prototype of this function must be:

typedef PF_ FORWARD_ACTION
(*PacketFilterExtensionPtr)(

/I'lp Packet Header

IN unsigned char *PacketHeader,

// Packet. Don't include Header

IN unsigned char *Packet,

// Packet length. Don't include length of ip header

IN unsigned int PacketLength,

// Index number for the interface adapter

/lover which the packet arrived

IN unsigned int RecvInterfacelndex,

// Index number for the interface adapter
//over which the packet will be transmitted
IN unsigned int SendInterfacelndex,

//1P address for the interface

/ladapter that received the packet

IN IPAddr RecvLinkNextHop,

//IP address for the interface adapter

//that will transmit the packet

IN IPAddr SendLinkNextHop

)
PF_FORWARD ACTION is an enumerated type that can value (in Microsoft Words):

PF_FORWARD

Specifies for the IP filter driver to immediately return the forward response to the IP stack.
For local packets, IP forwards them up the stack. If the destination for packets is another

computer and routing is enabled, [P routes them accordingly.

PF_DROP
Specifies for the IP filter driver to immediately return the drop response to the IP stack. IP

should drop the packet.

89

PF PASS
Specifies for the IP filter driver to filter packets and return the resulting response to the IP

stack. How the IP filter driver proceeds to filter packets is determined by how it was set

with the Packet Filtering API.

The filter hook returns this pass response if it determined that it should not process the

packet but should allow the IP filter driver to filter the packet.

Although DDK documentation only include these 3 values, if look into pfhook.h (include
needed for Filter-Hook Driver), we can see one more. This value is PF_ICMP_ON_DROP.
Suppose this value correspond with dropping the packet and informing source for error

with an [CMP packet.

As we can see in the definition of the filter function, the packet and its header are passed as
pointers. So, we can modify header or payload and then forward the packets. This is very

useful for example to do Network Address Translation (NAT). If we change destination

address, IP routes the packets.

[n our implementation, the filter function compares each packet with a list of rules,

introduced by the user application. This list is implemented as a linked list that is built in
runtime with each START_IP_HOOK IOCTL.

User Application: It's a MFC application that manages the filter rules. This application

sends the rules to the application and decides when the driver must begin to filter. Three
steps for filteringthe traffic:

90

Define the rules we need. With Add and Delete commands we can add or delete filter rules.
Install Rules. When we define the rules, click install button to send them to the driver.

Start Filtering. We only have to click start button in order to begin filtering.

Filter-Hook Driver: Driver that filter [P Traffic based in the filter rules received from user

application.

The Filter-Hook Driver must be in the same directory as the user application executable.

6.5 The reason why use this method to develop a Firewall
It is not the unique method to develop firewalls for Windows, there are others as NDIS
Firewall, TDI Firewall, Winsock Layered Firewall, Packet Filtering APL. So we will

mention some advantages and disadvantages of Filter-Hook Driver.

We have much flexibility filtering with this method. We can filter all IP traffic (and above).

However we can not filter lower layer header, for example, we can not filter Ethernet

frame. We need a NDIS filter to do it, more complicated to develop but more flexible.

It is an easy method. Installing a firewall and the implementation of filter function is an

easy procedure with this method. However Packet Filtering API is easier yet, although it is

less flexible. We can not access packet content, and we can not modify this with Packet

Filtering API.

Although this driver has not bad characteristics it has a great disadvantage. As we had

mentioned this before, only one filter function can be installed each time. We can develop

a great firewall, it can be downloaded and installed by thousands of users but if other

91

! A 3 it
applications use this filter (and installed the filter function before) our program would no

do anything.

92

CHAPTER 7 SYSTEM TESTING

7.1 Introduction

System testing is essential phase to ensure the system performs according to its

specifications and in line with user’s requirements and expectations. Testing is done

throughout system development not just at the end. The following figure 7-1 is showing

the processes in system testing environment.

System Other Customer
Unit Test | Design Functional Software Requirement User
Specifications Requirement Requirement Specifications ~ Environment
Unit Test
LV
-l
Q
)
=
g
8. A 4 A A A
E Integration Functional Performance Acceptance Installation
© Test | T est Test Test Test
Integrated Functioning Verified, Accepted
Test System Validated System
Software
Unit Test

SYSTEM IN
USE!

Figure 7-1 System Testing Steps

Testing is preformed to detect the existence of faults and then try to correct it. Therefore, a

systematically test procedure is needed to make sure the

completely.

system is tested thoroughly and

In testing phase, three types of testing have been carried out through FirePower. There are:
i. Unit and Integration Testing.
ii. Function Testing

iii. System Testing

7.2 Unit Testing

In unit testing phase, individual components are tested to ensure that stand-alone program
fixes the bug without side effects. After new component is developed, it is tested
independently without other system components. This is to assure that the component is
able to work accurately and persistently. All function on each button is examine to ensure
it perform the entitles output such as hyperlink to the right page, call the right function to
execute, display the correct message according to the error and eliminates all the syntax

faults occurred.

7.2.1 Module Testing

Module testing will focused on each sub module in FirePower, Each of the sub modules is
tested with the specific functions that they perform to see whether they really output the

results or fulfill the design requirement.

By using the Process Monitor module as an example, each components or functions in this
module has to be examined carefully to discover syntax ertor or semantic error, Process
Monitor module is used to check each application starts with permission from the user in
order to prevent various Trojans running in our computers. As a result, every line of the

codes related to these functions has to examine one by one to ensure that these functions

94

fulfilled the user’s requirements. If any errors are discovered, correction and debugging has

to be carried out immediately to resolve those problems.

In the unit testing phase, each of the buttons in the appointment module has been examined
to make sure that all the buttons are function according to the system environment and
requirements. For example, the “No” button will perform all the logical functions such as

block the application to start and save the rules in the registry keys.

LV all FirePower 1,001 EN oy 0"

-~

{ | - g nstall e s " e
CIEEEEERAEA
A ! - L NAn Vong

[Dﬂnmn-:an_)&nk l Destination Port [Protocol | Action }

~

g‘

i‘ SoumoMnk 7t l Sovece Port '] Destination [P

Clear Allowed Polcies

Clear Resticted Policies

9 C:\Progr am Files\Internet Explorer\IEXPLORE EXE

" 15 trying to start, do you aliow that ? |
Please recall that § you say yes this action will be happerng every time this program |
! starts |
This goes for NO as well 50 ba careful what you wish for

Clear All Policies

! Yes No

4
o w3

:@uun)mm

- e L;} (’)» ; ’LS]MW ’ —) " "g {ﬁ] ‘ .:’ “; i ’ ‘j h.‘.v i %

Figure 7-2 Process Monitoring Module

7.2.2 Integration Testing

When the module testing has achieved certain degree of success and meets the objectives,
the sub modules are combined into a working system. Integration testing is planned and
coordinated so that when a failure occurs, developer has some idea of what caused it. For

example, the simple Port Scanner is tested when it integrated into the main system and to

make sure it can work properly.

&% Firewall FirePower 1,001 i - vl W]2
‘ el (Simplo Port Scanner ; ' WW“ TR

@ (gﬂ i A [. 19‘,!“ l l o

. ‘ " Remote Mechine ! ‘ ‘
vIE | |
T R T Local Camputer bet_ | Pustoenl | Action'|
| ' i
‘ ’ " Scan a single port l ! ‘
‘ |
; } & scanarangeof ports | 20 10| 80
15|
|
| Number of att sI ‘
| er emp 1
f Resut of Scmrm PO
E 1P address | Port number | Port Status l Attempts [Remarks A& |
192.168,1,1 20 Closs 1 o
192,168,1.1 21 Close |
i 192,168.1.1 22 Close 1
| 1192.168.1.1 23 Close 1
19206810 24 Close 1
| 1192.168,1.1 28 Close 1
| 1192.168.1.1 26 Close 1 >
| {1mn 140 0 ¢ * FAmen \
el " | (2]
Cancel l
Ready
NUM

f&msmswmv

5

Figure 7-3 Simple Port Scanner Module Integrating Test

96

7.2.2.1 Bottom - up Integration

Bottom-up testing is one popular approach for merging components to test the larger
system. In this method, each component at the lowest level of the system hierarchy is
tested individually first. Then the next components to be tested are those that cal the
previously tested ones. This approach is followed repeatedly until all components are
included in the testing. The bottom-up method is useful when many of the low-level
components are general-purpose utility routines that are invoked often by others, when the
design is object-oriented or when the system is integrating a large number of stand-alone
reused components. Testing which had been carried out throughout FirePower is based on

Bottom-up Integration approach as shown in the following figure 7-4.

A,B,C,D,E,
F,G

Figure 7-4 Bottom-up Testing

97

7.3 System Testing

System Testing is differences from unit testing and integration testing. System testing is
the ultimate testing procedure. System tests study all the concern issues and behaviors that
can only be exposed by testing the entire integrated system or major part of it. The testing
process is also concerned with validating the system meets it functional and non-functional
requirements. Under system testing, the whole process was simulated and followed

through until the end.

Although some of the sub module had been testing for its functionality in the integration
testing, now is the really testing to see the integration/interaction from different system.
Subsequently, corrections are done to the relevant comporents upon detection of faults or

errors. The following figure 7-5 and figure 7-6 showing how the FirePower works.

' irePowar 1,001 N »-’ ';".-1 .

"""" Tou-c- Port | DestmatonlP | anon Muk | Destnation Port toe o
192,166 1 1 255255355224 All All 25525525525 Al Drop
AddRule o — ' e

| Sowce
Ip Addiess 5168 i 1 Port I 0
(0000 for Al LR 10 tor Alj
i Destination
Ip Addiess)]) Poil prey
{00000 tor Al { 10 tor Al) I

i

H

!

! .

Potocol JUDP =] Acton [Biee T <]
[Eaail] Corest_|

Ready UM

Figure 7-5 Insert Rule to FirePower

98

B C:\WINDOWS system32cmd.exe , -olxj

Microsoft Windows KP [Uepsion 5.1.2680]
<C)> Copyright 1985-2001 Microsoft Cowp.

C:\Documents and Settings\ezradd:

D:\>ping 192.168.1.1

Pinging 192.168.1.1 with 32 bytes of data:
Destination host unveachable.

Dest@nat%on host unreachable.

Destgnatgon host unreachable.

Pestination host unreachable.

ing statistics for 192.168,1.1:
Packets: Sent = 4, Received = B, Lost = 4 <1007

D>

For Help, click Help Topics an the Help Menu.

i) 7O Ene |0 B M (2T S

Figure 7-6 ICMP Packet is blocked

;»(Qj%;,t!-u 350 PM

7.4 Conclusion

The testi . ined in this chapter ci » executed concurrently. Testing
The testing strategies as outlined in this chapter cannot be exe y g

"’ H 2t 1 H >) att y v ¢ sevt y
has to start from bottom-up, namely from unit testing to implementation/ functional testing,

and finally to system testing. The order in which it is performed is ensure that all areas of

loopholes are covered extensively. Once testing has been completed, the full-fledge system

is ready to be put in production.

09

CHAPTER 8 SYSTEM EVALUATION

8.1 Introduction

After having gone through the implementation phase, which includes program
development and coding, system evaluation is the final phase of developing the system. In
this phase, system evaluation involves determine the problems and difficulties which arise
during and after the program coding phase, recognizing the system strengths and
weaknesses and finally draft out the system limitations and also it future enhancements.

This chapter will also present the knowledge and experience gained though the process of

developing and implementing FirePower.

These areas will be delved into further details in the following sections.

8.2 System Strengths

As this project is about building a pure computer security firewall application, here is some

strength that this program has managed to reveal:

8.2.1 Easy-to-use Application

Ease-of-use is most important aspect in this system. This system specially designed to
allow a more efficient and effective protect computer resources from intruders, prevent
unauthorized access to the computer. It eliminates as many time-consuming and resource-
consuming tasks as possible. On the other hand, this system provides easy to use and user

100

friendly user interface, no training is needed to be specially conducted to learn how
FirePower works. FirePower is extremely easy to use in which all new users will be able to

pick in the shortest time as it is equip with graphical button.

8.2.2 Organized and User Friendly Interface
All the modules in FirePower have its own and standardized user interface, no command
line is needed and easy to learn. Standardization in user interface design is making

FirePower flow easier to understand and reduce the complexity of the system.

8.2.3 System Transparency

System transparency refers to the conditions where users do not have to know or learn
about how packet is filtered, how the system structure, how the filter driver is being built
and anything related to the system built. Users are just required to know how to

communicate and simple configuration with the user interface of the system.

8.2.4 Reliable System with Effective Errors Handling

To avoid run time error, FirePower is developed with error handling. Error message will be
displayed when the system encounters exceptions and it will not terminate suddenly. By
using “exception handling” block as shown in table below, every error can be handled

efficiently. When error occurred, message box will be displayed immediately to the user.

101

8.3 Problems Encountered and solutions

Several problems have occurred during the development and implementing of FirePower.
Some problems have been discovered and solutions have been sought during testing and
reference check on the information through Internet Forum and MFC C++ programming

reference books. Encountering with these problems has been proven to be valuable

experience and guideline in the future.

8.3.1 Difficulties in determining the scope of the application

FirePower involves a lot of network constraints and model. Therefore, basic knowledge is
needed as a foundation in building an application of this nature. However, due to lack of
knowledge in this field and this field is using latest technology, it is very difficult to
determine the scope of the system and how the actual network security firewall works. As
a result, a lot of effort is needed to gather information about the scope of the system.
Before starting this project plenty of time has been spent in researching the network

firewal| such as Sygate, Tiny Firewall 6.0 and ZoneAlarm. In this research, we have tried

0 use the software and learn the way they work.

8.3.2 Understanding on Current System Procedure

From the phase of data gather and analysis, had read some journal, books and tries to

understand the current firewall available.

Undcrstanding in details on current firewall application helps in enhances the system. Thus,
developers face problem on some details procedure on configure the rules. This is due to

the limitations such as:
102

e Unauthorized access
e Denial of service

e System vulnerable

8.3.3 Difficulties in choosing a development platform, programming

language and tolls

There are several platforms that we can use to develop a firewall application such as Java,
C++ and C# NET. Besides the platform, choosing a suitable programming language and
tools was a critical process as all tools and the programming language have their strengths

and weakness. In addition, the availability of the required tools for development is also a

major consideration.

Getting information from internet helps in making the decision of choosing platform and
development tools. By choosing C++ .NET as the platform have some advantages.

C++ NET is a powerful programming language but equip with easy to use user interface.

8.3.4 Lack of knowledge in develops Firewall

The very fast challenge in developing Firewall such as FirePower is to master and to get
familiar with programming language, firewall application behavior and the security
features in transferring packets across the network. For instance, to get mastering in using

visual studio .NET by using C++ .NET and MFC as the programming language, debugging

and compiling file.

103

By referring to website msdn.microsoft.com, lots of article available there. Besides that

lots of valuable information can be gained from codeproject website.

8.4 System Limitations

Owing to the time constraint and the constraint of the programming language itself, there

were some limitations in this FirePower. These include:

8.4.1 Lack of functional modules
Although being able to perform the major and important task of a observing the traffic, the
firewall still lacks certain functionality such as entering more than the number of

maximum rules. Well this minor functionality may provide the ideas for the future

enhancements of FirePower.

8.4.2 Lack of Network Utilities Display

The FirePower is not able to show the traffic bandwidths usage.

8.5 Future Enhancements
Some functionality of the system can be enhanced in order to improve the quality of the

system. The following are some recommendations be developer and user on how to

enhance the system that developed.

104

8.5.1 Increase the number of rules

In order to guard the traffic effectively, more rules is needed. Beside that more powerful
filtering driver been developed.
8.5.2 Module Enhancement

More effective application filtering is developed.

8.6 Knowledge and experienced gained

Through out the process in developing FirePower, a lot of knowledge and experience can
be gained. First of all, mastering in C++ NET programming language, which are the
powerful programming languages nowadays. Besides that though out this project I have
the chance to learn the latest technology and networking concept such as packet filtering
concept. Knowledge can be gained through self-study, information from internet,

practically applying the knowledge and getting advice from others.

More opportunities in exposing to PC environment including setting up tools, configuring
hardware and software had eventually helps in experiencing the real and practical

techniques in performing those mentioned tasks.

In developing FirePower, an opportunity given to get involve in designing systems, system

tray , programs and interfaces of the system.

Presenting proposed FirePower and public speaking had also helps in improving
presentation skill. In spite of this, experiences are gained from such an activity and to

improve one to become more self-confidence when facing the public.
105

In addition, developer has to be independent enough when performing task in developing

system. Developer also must learn to be a problem solver, patient, critical and an analytical

thinking to resolve problems and to face challenges.

8.7 Conclusion

After implementation, FirePower should be evaluated. Problems that encountered were
analyzed and the appropriate solutions were taken carefully. Overall, FirePower strengths
fulfill the functional and non-functional requirements as planed at the start of this project.
Although there some constraints or limitation in FirePower but there can be the future

enhancement, Knowledge and experience gained through this project also being evaluated.

106

REFERENCES

Firewalls 24Seven, Second Edition

by Matthew Strebe and Charles Perkins

Sybex © 2002 How to design, implement, and maintain a secure network.
Deitel 1997. C++ How to Program. New Jersey: Prentice Hall

Deitel 1997. Java How to Program. New Jersey: Prentice Hall

M.Melly.1995.0bject Oriented Basic Concepts and Advantages[online]. Availale

from: www.mmrg.ecs.soton.ac.uk/publications/archieve/melly 1995a/htmlI/node3.html

PrOgramming with Microsoft Visual C++ .NET, Sixth Edition
by George Shepherd and David Kruglinski

Microsoft Press © 2003

The in-depth reference that covers both classic, core Windows competencies and

modern .NET programming.

107

http://www.codeproject.com

http://ietf.org

http://compnetworking.about.com/
http://www.c-sharpcorner.com/Networking.asp
http://www.hackingexposed.com/tools/tools.html
http://www.umlib.um.edu.my
http://www.cprogramming.com/begin.html
http://www.ibiblio.org/javafaq/javatutorial.html
http://www.planet—source-code.com

http://www.sysinternals.com

108

APPENDIXES

Outline
A. Installation
B. System Requirement
C. Getting Started

A. Installation

1. Open folder Installer under folder FirePower Ver 1.001 and double click FirePower Ver.
1.001 Windows Package Installer. (Make sure you read the user manual before

installing this firewall application.)

2. Then a setup wizard will prompt up and read carefully the instruction (Figure 10.1).

After that, proceed to the next steps.

8 FisePoer Ver, 1001 _

The installer will guide you through the steps required to install FirePower Ver 1.001 on
Yaur computer,

WARNING. This computer program is protected by copyright [aw and international
treaties. Unauthanzed duplication or distnbution of this progran, or any po_rhon ofit may
result in savere civil or criminal penalties, and wil be prosecuted to the maximurn axtent

possible under the law.

I Cancel l l Next > ’
S Sl R

Figure 10.1

3. Then, a wizard that require to select the installation folder for FirePower Ver. 1,001 as

shown in figure 10.2. Follow the instruction and proceed to the next steps. (Disk Cost

109

will show out the space needed by this program to install on your hard disk. You can

click Browse button to change the location of installation files.)

Figure 10.2
4. After proceeding the previous step, a confirm installation wizard will prompt out to

confirm the installation of this program (Figure 10.3). Click Next to confirm and the

installation of this program will start automatically.

110

| i@ FirePower Ver. 1.001

| Confirm Installation

Figure 10.3

B. System Requirement

Processor: Pentium [I 300 MHZ and above.

All Windows Operating System:
Windows 98, Windows 2000, Windows ME, Windows 2000 Server, Windows 2003

Server, Windows NT version 4, and Windows XP.

Space needed: 24 MB

C. Getting Started

I. Introduction
FirePower Ver, 1.001 is developed as a packet-filtering based firewall

application which more suitable for small and simple network or personal
using on personal computer. This firewall is using FireHook Driver (Refer
to Guide.doc under FirePower folder.). For implementing this firewall

11

effectively, a good security policy should be setting up as the most basic
policy concerned to “Allowing some traffic that you want and then block all
traffics”.

II. FirePower Interfaces and Panels

X Firewall FirePower 1.001
File Rules Option Tools Help

- ;
LR \ Scan

| Destination 1P

Ready W o 5 , ‘ PR ET

Figure 10.4

& Firewall FirePower 1.001
Rules Option Tools Help

Start Filtering e Eg :
. Stop Filtering Eﬁ W ‘\‘»,;j @ g“

Save Rules
Exit

it

| éou;ce Mask Sovme Port : Destination [P Destisation Mask | Destinati

Figure 10.5

Figure 10.6

#: Firewall FirePower 1,001
File Rules

Wedandl Tools Help

Startup Setting

. Block Al Traffic
- Allow All Traffic

Songee [P { Souece Mash

by)

e e

ot a Po '

File Rules Option Help

Figure 10.7

Fire Sniff
Port Scanner

Process Explorer
Process Monitor

—

|

Destination M ask Deatunan

e —

Figure 10.8

114

P Firewall FirePower 1.001

File Rules Option Tools HaZle

Songee [F

e TEd [1 e

Sousee Mask

Spuere Port | Destwation [P | Destination Mask | Destian

|

{

File Ry

les

Optictt

Tools Help

<

Firewal Started Sucessfully

|

fReady i R S

- S i o

Figure 10.10

15

