
A SECURITY FRAMEWORK FOR MOBILE HEALTH

APPLICATIONS ON ANDROID PLATFORM

MUZAMMIL HUSSAIN

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

A SECURITY FRAMEWORK FOR MOBILE HEALTH
APPLICATIONS ON ANDROID PLATFORM

MUZAMMIL HUSSAIN

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Muzammil Hussain

Matric No: WHA130038

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

A SECURITY FRAMEWORK FOR MOBILE HEALTH APPLICATIONS

ON ANDROID PLATFORM

Field of Study: Network Security (Computer Science)

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name: Prof. Dr. Miss Laiha Binti Mat Kiah

Designation: Professor

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

The advent of smartphones dramatically changed the way of communication,

computation, and the model of many services, including healthcare delivery. The

adoption of smartphones in the healthcare system is rapidly growing, and enormous

number of apps are being developed to monitor patient health, access patient records, test

results, prescribe medications, and for numerous related purposes under the collective

term of mobile Health (mHealth). These apps are readily accessible to the average user

of mobile devices, and despite the potential of mHealth apps to improve the availability,

affordability and effectiveness of delivering healthcare services, they handle sensitive

medical data, and as such, have also the potential to carry substantial risks to the security

and privacy of their users. Developers of apps are usually unknown, and users are

unaware of how their data are being managed and used. This is combined with the

emergence of new threats due to the deficiency in mobile apps development or the design

ambiguities of the current mobile operating systems. A number of mobile operating

systems are available in the market, but the Android platform has gained the topmost

popularity. However, Android security model is short of completely ensuring the privacy

and security of users’ data, including the data of mHealth apps. Despite the security

mechanisms provided by Android such as permissions and sandboxing, mHealth apps are

still plagued by serious privacy and security issues. These security issues need to be

addressed in order to improve the acceptance of mHealth apps among users and the

efficacy of mHealth apps in the healthcare system. The focus of this research is on the

security of mHealth apps, and the main objective is to propose a coherent, practical and

efficient framework to improve the security of medical data associated with Android

mHealth apps, as well as to protect the privacy of their users. The proposed framework

provides its intended protection mainly through a set of security checks and policies that

Univ
ers

ity
 of

 M
ala

ya

iv

ensure protection against traditional as well as recently published threats to mHealth apps.

The design of the framework comprises two layers: a Security Module Layer (SML) that

implements the security-check modules, and a System Interface Layer (SIL) that

interfaces SML to the Android OS. SML enforces security and privacy policies at

different levels of Android platform through SIL. The proposed framework is validated

via a prototypic implementation on actual Android devices to show its practicality and

evaluate its performance. The framework is evaluated in terms of effectiveness and

efficiency. Effectiveness is evaluated by demonstrating the performance of the

framework against a selected set of attacks, while efficiency is evaluated by comparing

the performance overhead in terms of energy consumption, memory and CPU utilization,

with the performance of a mainline, stock version of Android. Results of the experimental

evaluations showed that the proposed framework can successfully protect mHealth apps

against a wide range of attacks with negligible overhead, so it is both effective and

practical. Furthermore, this framework is available to other researchers for research

purposes as well as for real-world deployments.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Kemunculan telefon pintar secara mendadak mengubah cara komunikasi, pengiraan,

dan pelbagai model perkhidmatan, termasuk penyampaian penjagaan kesihatan.

Penggunaan telefon pintar dalam sistem penjagaan kesihatan berkembang pesat, dan

sejumlah besar aplikasi yang sedang dibangunkan untuk memantau kesihatan pesakit,

rekod akses pesakit, keputusan ujian, menetapkan ubat-ubatan, dan untuk pelbagai tujuan

berkaitan di bawah istilah kolektif Kesihatan mudah alih (mHealth). Aplikasi ini adalah

mudah diakses oleh pengguna purata peranti mudah alih, dan walaupun potensi mHealth

aplikasi untuk meningkatkan ketersediaan, kemampuan dan keberkesanan penyampaian

perkhidmatan penjagaan kesihatan, mereka mengendalikan data perubatan yang sensitif,

dan oleh itu, mempunyai juga potensi untuk membawa besar risiko kepada keselamatan

dan privasi pengguna mereka. Pemaju aplikasi biasanya tidak diketahui, dan pengguna

tidak tahu bahawa bagaimana data mereka diuruskan dan digunakan. Ini digabungkan

dengan munculnya ancaman baru kerana kekurangan dalam pembangunan aplikasi

mudah alih atau kekaburan reka bentuk sistem operasi mudah alih semasa. Beberapa

sistem operasi mudah alih yang terdapat di pasaran, tetapi platform Android telah

mendapat populariti yang paling atas. Walau bagaimanapun, model keselamatan Android

adalah pada masa ini belum sepenuhnya mampu memastikan privasi dan keselamatan

data pengguna, termasuk data aplikasi mHealth. Walaupun mekanisme keselamatan yang

disediakan oleh Android seperti kebenaran dan kotak pasir, aplikasi mHealth masih

berhadapan dengan isu-isu privasi dan keselamatan yang serius. Isu-isu keselamatan perlu

diberi perhatian dalam usaha untuk meningkatkan penerimaan aplikasi mHealth

dikalangan pengguna dan keberkesanan aplikasi mHealth dalam sistem penjagaan

kesihatan. Fokus kajian ini adalah pada keselamatan aplikasi mHealth, dan objektif utama

adalah untuk mencadangkan rangka kerja yang jelas, praktikal dan berkesan untuk

meningkatkan keselamatan data kesihatan yang berkaitan dengan aplikasi Android

Univ
ers

ity
 of

 M
ala

ya

vi

mHealth, serta untuk melindungi privasi pengguna mereka. Rangka kerja yang

dicadangkan memperuntukkan perlindungan yang dimaksudkan terutamanya melalui

satu set cek dan dasar-dasar yang memastikan perlindungan terhadap tradisional serta

ancaman baru-baru ini diterbitkan untuk aplikasi mHealth keselamatan. Reka bentuk

rangka kerja terdiri daripada dua lapisan: lapisan Modul Keselamatan Layer (SML) yang

melaksanakan modul keselamatan cek, dan Layer Interface System (SIL) yang

mempunyai ruang kaitan SML untuk OS Android. SML menguatkuasakan dasar

keselamatan dan privasi pada tahap Android Platform yang berbeza melalui SIL. Rangka

kerja yang dicadangkan itu disahkan melalui pelaksanaan prototypic pada peranti

Android yang sebenar untuk menunjukkan praktikal dan menilai prestasinya. Rangka

kerja ini dinilai dari segi keberkesanan dan kecekapan. Keberkesanan dinilai dengan

menunjukkan prestasi rangka kerja terhadap set serangan yang dipilih, manakala

kecekapan dinilai dengan membandingkan overhed prestasi dari segi penggunaan tenaga,

ingatan dan CPU, dengan pelaksanaan laluan utama, versi stok Android. Keputusan

penilaian uji kaji menunjukkan bahawa rangka kerja yang dicadangkan berjaya boleh

melindungi aplikasi mHealth daripada pelbagai serangan dengan overhead diabaikan, jadi

kedua-dua ia adalah berkesan dan praktikal. Tambahan pula, rangka kerja ini disediakan

kepada penyelidik lain untuk tujuan penyelidikan dan juga untuk pergerakan dunia

sebenar.

 Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENT

All Praise be to Allah, Almighty, Lord of the worlds, The Most Gracious, The Most

Merciful, and peace be upon His Messenger. First and foremost, I am thankful to

Almighty Allah for enabling me to complete this challenging task.

I would like to express my heartiest gratitude and appreciation to my supervisors, Prof.

Dr. Miss Laiha Binti Mat Kiah, and Dr. Nor Badrul Anuar Bin Jumaat for their invaluable

guidance, supervision, unparalleled patience, exemplary kindness, support, and

encouragement to me throughout this research. Their keen, meaningful and kind

supervision empowered me to pursue this research with commitment and dedication. I

wish to extend my thanks to all those who have contributed directly or indirectly to the

completion of this work or the building of my career. I would like to thank specifically

Prof. Dr. Shaukat Iqbal, Associate Prof. Dr. Muhammad Shujaat Mubarik, Dr. Bilal

Bahaa Zaidan, and Dr. Aws Alaa Zaidan for all they have done; their deeds to me are

beyond any attempt of detailing. Especially, I am deeply indebted to Dr. Ahmed Al-Haiqi

for his support, advices, guidance and consistent help on each stage throughout this

research. I would also like to thank my friends for encouraging me and supporting me at

every occasion. Special thanks go to Bright Sparks Program, University of Malaya, for

the direct contribution to the accomplishment of this goal. I further thank University of

Malaya and its entire people, in particular the friendly staff of the Faculty of Computer

Science and Information Technology.

I give my deepest gratitude and genuine love to my parents for their love, care, prayers

and support throughout my entire life. I have no words to thank my father; his constant

support, motivation, and encouragement kept me passionate to complete this task. And

of course, my mother, her never-ending prayers for me kept me safe and elevated in every

sphere of life. Finally, my grateful thanks and heartfelt appreciation go to my valued

brother Eng. Mussadiq Hussain for his support throughout my study.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

ABSTRACT ... III

ABSTRAK ... V

ACKNOWLEDGEMENT .. VII

TABLE OF CONTENTS ... VIII

LIST OF FIGURES .. XII

LIST OF TABLES ... XIV

LIST OF SYMBOLS AND ABBREVIATIONS .. XV

LIST OF APPENDICES ... XVII

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Research Background ... 3

1.3 Problem Statement ... 5

1.4 Research Questions .. 8

1.5 Objectives of the Research ... 8

1.6 Research Scope .. 10

1.7 Thesis Outline/Organization .. 11

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 The Landscape of Research on Smartphone mHealth Apps 13

2.1.1 An Overview .. 13

2.1.2 A Taxonomy of Literature Works on mHealth Apps 15

2.1.2.1 Class 1: Review and survey articles ... 16

2.1.2.2 Class 2: Studies conducted on mHealth apps and their use 20

2.1.2.3 Class 3: Reports on actual attempts to develop mHealth apps ... 22

2.1.2.4 Class 4: Proposals of frameworks to develop and operate mHealth
apps ... 23

2.1.3 Articles by Medical Specialty of Apps .. 24

2.1.4 Articles by Purpose and Function of Apps .. 24

2.1.5 Articles by Indexing Databases .. 26

2.1.6 Motivations for Smartphone mHealth Apps .. 26

2.1.7 Challenges to mHealth Apps.. 28

2.2 The Android Platform and Its Security .. 32

2.2.1 Android System Architecture ... 32

2.2.2 The Structure of Android Apps .. 36

2.2.2.1 Activity ... 37

2.2.2.2 Service .. 38

Univ
ers

ity
 of

 M
ala

ya

ix

2.2.2.3 Content provider ... 38

2.2.2.4 Broadcast receiver .. 38

2.2.3 Android Security Model... 39

2.2.3.1 Android permission system .. 39

2.2.3.2 Application sandboxing .. 40

2.2.3.3 Application signing .. 40

2.2.3.4 Secure inter-process communication .. 40

2.2.3.5 SELinux .. 40

2.2.4 Android Security Research Trends .. 41

2.2.5 Issues in Android Security ... 49

2.3 Security and Privacy of mHealth Apps .. 51

2.3.1 Threats to mHealth Apps ... 51

2.3.2 An Empirical Assessment of mHealth Apps’ Security 58

2.3.3 Existing Solutions for mHealth Apps’ Security 59

2.4 Chapter Summary ... 63

CHAPTER 3: RESEARCH METHODOLOGY ... 64

3.1 Phase I: Preliminary Study ... 64

3.2 Phase II: Framework Design .. 66

3.3 Phase III: Prototype Implementation .. 67

3.4 Phase IV: Evaluation .. 69

3.5 Chapter Summary ... 70

CHAPTER 4: THE DESIGN OF “MHEALTH APPS SECURITY
FRAMEWORK” .. 71

4.1 MASF Overall Architecture ... 71

4.2 MASF Layered Components .. 73

4.2.1 Security Module Layer... 74

4.2.1.1 Security checkers .. 74

4.2.1.2 SML manager ... 81

4.2.1.3 Policy database ... 84

4.2.1.4 User interactor .. 84

4.2.1.5 Action performer .. 84

4.2.2 System Interface Layer .. 87

4.2.3 Other External Components ... 88

4.2.3.1 Android operating system ... 89

4.2.3.2 Apps .. 89

4.2.3.3 App store .. 89

4.2.3.4 Users ... 90

4.2.4 MASF Policies ... 90

4.2.4.1 Policy restrictions ... 92

4.2.4.2 Policy conditions .. 93

4.2.4.3 Policy definition ... 97

4.3 Framework Operation .. 97

4.3.1 Use Case I: Installation of a New App ... 97

Univ
ers

ity
 of

 M
ala

ya

x

4.3.2 Use Case II: Privacy Enhanced Content Providers and System Services
 ... 98

4.3.3 Use Case III: Context-Aware Fine-Grained Access Control 100

4.3.4 Use Case IV: Mitigating the DMB Attacks when Connecting to Devices
 ... 101

4.4 Chapter Summary ... 103

CHAPTER 5: IMPLEMENTATION AND EVALUATION 105

5.1 Implementation Details .. 105

5.1.1 Implementation of the System Interface Layer 106

5.1.1.1 Kernel space ... 107

5.1.1.2 Middleware layer .. 108

5.1.1.3 Application layer .. 109

5.1.2 Implementation of the Security Modules Layer 110

5.1.3 Enforcement of Fine-Grained Access Control Policies 112

5.1.3.1 Context-aware access control ... 113

5.1.3.2 One-time checks ... 113

5.1.3.3 Permission management ... 114

5.1.3.4 Data shadowing .. 114

5.1.3.5 Installation checks .. 115

5.1.3.6 Intent management ... 115

5.1.3.7 Managing system peripheral state .. 116

5.2 Experimental Evaluation .. 116

5.2.1 Experiment 1: Effectiveness .. 117

5.2.2 Experiment 2: Malware Test Suite... 121

5.2.3 Experiment 3: Impact of Permission Restrictions 122

5.2.4 Experiment 4: Impact of Data Shadowing ... 123

5.2.5 Experiment 5: Impact of Disabling/Blocking Intents 124

5.2.6 Experiment 6: Impact of Enabling/Disabling System Peripherals 125

5.2.7 Experiment 7: ICC False Positives .. 126

5.2.8 Analysis of the Impact on Android Security .. 128

5.3 Performance Evaluation ... 130

5.3.1 SML Performance Overhead ... 130

5.3.1.1 Performance overhead of permission checks 130

5.3.1.2 Performance overhead of context checks 133

5.3.1.3 Java microbenchmark ... 134

5.3.1.4 Macrobenchmarks .. 137

5.3.1.5 System memory overhead .. 139

5.3.2 SIL performance overhead ... 141

5.4 Chapter Summary ... 142

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 143

6.1 Research Summary and Objectives Achievement ... 143

6.2 Contribution of the Research .. 146

6.3 Research Limitations .. 148

Univ
ers

ity
 of

 M
ala

ya

xi

6.4 Future Work ... 149

REFERENCES .. 151

LIST OF PUBLICATIONS ... 175

APPENDICES ... 177

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF FIGURES

Figure 2.1: A Taxonomy of Research Literature on Smartphone mHealth Apps 17

Figure 2.2: Number of Included Articles by the Specialty of Apps They Cover 25

Figure 2.3: Number of Included Articles by the Purpose or Function of Apps They
Cover .. 25

Figure 2.4: Number of Included Articles in Different Categories by the Source Digital
Database ... 26

Figure 2.5: Android System Architecture ... 35

Figure 2.6: Android App Components and Their Interactions 37

Figure 2.7: Taxonomy of Literature on Android Security .. 41

Figure 2.8: A Three-Dimensional Model for Classifying mHealth Apps in Terms of
Security and Privacy Concerns (Plachkinova et al., 2015) 57

Figure 2.9: A Taxonomy of mHealth Apps - Security and Privacy Concerns
(Plachkinova et al., 2015) .. 58

Figure 2.10: Security and Privacy Analysis of Sample mHealth Apps 59

Figure 2.11: Static Analysis System Design Framework ... 62

Figure 3.2: Conceptual Framework of the Research .. 65

Figure 4.1: The Overall Architecture of the Proposed Framework MASF 73

Figure 4.2: Data Leakage Detection with Static Analysis .. 79

Figure 4.3: Static Taint Analysis System Design Framework 80

Figure 4.4: System Interface Layer ... 88

Figure 4.5: Use Case 1 - Installation of a New App ... 98

Figure 5.1: Middleware Security Module Structure ... 111

Figure 5.2: Security Assessment of a 100 mHealth Apps on Stock Android OS 118

Figure 5.3: Number of Apps Attempting to Access Various Resources Containing
Sensitive Data .. 118

Figure 5.4: Impact of Permission Revoking on Applications 123

Figure 5.5: Impact of Data Shadowing on mHealth Apps .. 124

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 5.6: Impact of Intent Disabling on Apps ... 125

Figure 5.7: Impact of Enabling/Disabling System Peripherals 126

Figure 5.8: Denied ICCs by Different Policy Checks... 127

Figure 5.9: Time Overhead of MASF Permission Check System 131

Figure 5.10: Energy Overhead of MASF Permission Check System 133

Figure 5.11: Comparison of Device Battery Consumption while Checking for Context
Updates .. 134

Figure 5.12: The Result of CaffeineMark 3.0 Benchmark / Microbenchmark of Java
Overhead. ... 136

Figure 5.13: Total Memory Overhead Comparison with and without MASF Policy
Restrictions .. 140

Figure 5.14: Relative Cumulative Frequency Distribution of Microbenchmarks in
Stock Android vs SIL .. 142

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF TABLES

Table 1.1: Research Questions Mapped to the List of Objectives and Contributions .. 9

Table 2.1: A Summary of Existing Android Security Proposals in the Literature 45

Table 2.2: Description of Attack Surfaces (He et al., 2014) 54

Table 2.3: Recommendations to Consumers and Application Developers (Adhikari et
al., 2014) .. 61

Table 4.1: Sample Installation-Time Policy Rules ... 95

Table 5.1: Malware Test Suite .. 121

Table 5.2: Macrobenchmark Results of Time Overhead for Modified Core Android
Methods ... 137

Table 5.3: Weighted Average Performance Overhead of Executing Hooked Functions
in Stock Android and in SIL. The Margin of Error is given for the 95%
Confidence Interval. .. 142

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface
APP(S) Application(s)
ASF Android Security Framework
CPU Central Processing Unit
DMB Device Mis-Bonding
DVM Dalvik Virtual Machine
ECG Electrocardiogram
EMA Ecological Momentary Assessment
FDA Food and Drug Administration
GNU GNU's Not Unix
GPS Global Positioning System
HIPPA Health Insurance Portability and Accountability Act
ICC Inter Component Communication
IDE Integrated Development Environment
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IP Internet Protocol
IPC Inter-Process Communication
IRM Inlined Reference Monitors
LSM Linux Security Module
MAC Mandatory Access Control
MASF MHealth Apps Security Framework
mHealth Mobile Health
MMS Multimedia Messaging Service
NDK Native Development Kit
NFC Near Field Communication
OS Operating System
PDAs Personal Digital Assistants
PHI Personal Health Information
PHR Personal Health Records
PII Patient Identity Information
PL Programming Language
RPC Remote Procedure Call
SD Secure Digital
SDK Software Development Kit
SELinux Security-Enhanced Linux
SIL System Interface Layer
SML Security Module Layer
SMS Short Message Service
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UID User ID

Univ
ers

ity
 of

 M
ala

ya

xvi

URI Uniform Resource Identifier
URL Uniform Resource Locator
Wi-Fi Wireless Fidelity
XML Extensible Markup Language

Univ
ers

ity
 of

 M
ala

ya

xvii

LIST OF APPENDICES

APPENDIX A : Sample Set of Applications 177
APPENDIX B : List of System Interface Layer Functions 182

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

The advent of smartphone dramatically changed the way of communication,

computation, and the model of many traditional and new services, e.g., healthcare and

entertainment. In the early days, mobile phones were only used for making phone calls.

Nowadays mobile phones have come to be known as smartphones because of their

increasing functions and intelligence. Smartphones are equipped with powerful operating

systems that enable users to install additional software, more storage and processing

capabilities, and multiple options of network connectivity. Due to their improved

functionalities and computing capabilities, smartphones are increasingly viewed as

handheld computers (M. N. Boulos, Wheeler, Tavares, & Jones, 2011), and their adoption

by people is arising due to their ease of use (Y. Park & Chen, 2007).

Among the available smartphone Operating Systems (OS) in the market, Android OS

has the topmost popularity, with a market share of above 87.6% (International Data

Corporation, 2016), and more than 1.5 million apps available on Google Play ("Number

of Android applications," 2015). Categories of those apps range from the basic trivia

game apps to serious business and financial applications. One active area of smartphone

apps that has witnessed an astonishing growth is the healthcare system. Under the

category of medical apps, Google Play and similar online stores of smartphone apps are

providing large collections of apps that can be used for various healthcare-related

functions. Adopting the notion of mobile Health (mHealth) as a reference to the use of

mobile devices in medicine and public health, smartphone medical apps are referred to in

this thesis as mHealth apps. mHealth apps are hereby defined as software programs that

provide health related services through smartphones and tablets.

Univ
ers

ity
 of

 M
ala

ya

2

mHealth apps have the potential to improve the availability, affordability and

effectiveness of healthcare services for patients (Mirza, Norris, & Stockdale, 2008). They

have become incorporated into the health informatics field as tools that maintain a patient-

centred model of healthcare by enabling users to monitor their health related problems,

attain personal fitness goals, and understand specific medical conditions. Patients can use

smartphones to access and update their medical records, monitor their health, and to view

their prescriptions as well (Brennan, Downs, & Casper, 2010). Physicians, on the other

hand, can use smartphones to access patient records and test results, monitor patient

health and to prescribe medications (Burdette, Herchline, & Oehler, 2008; Luxton,

McCann, Bush, Mishkind, & Reger, 2011; Ozdalga, Ozdalga, & Ahuja, 2012). mHealth

apps can also improve the way in which physicians interact with patients and provide

healthcare services.

Similar to other new trends, mHealth apps have to face a number of challenges despite

their compelling benefits. The sensitive nature of these apps’ purpose and consequence

of use –in relation to human health– impose several questions about their reliability,

authority, and compliance to regulations. Aside from the functional requirements, issues

related to non-functional requirements have also to be addressed, such as the usability of

the apps by users from different age groups. In particular, it soon became clear that

mHealth apps carry substantial risks to the security of user’s sensitive medical data as

well as their privacy (Adhikari, Richards, & Scott, 2014; Dehling, Gao, Schneider, &

Sunyaev, 2015; Gill, Kamath, & Gill, 2012; He, Naveed, Gunter, & Nahrstedt, 2014;

Plachkinova, Andrés, & Chatterjee, 2015; Y. Zhou & Jiang, 2012). Developers of these

apps are usually unknown, and users are unaware of how their data are being managed

and used. In mHealth, users can easily enhance the functionalities of their smartphones

by connecting them to external devices, such as medical devices, sensors and credit card

readers. This introduces many new threats along with the useful applications in various

Univ
ers

ity
 of

 M
ala

ya

3

domains, including healthcare information systems and retail (Anokwa, Ribeka, Parikh,

Borriello, & Were, 2012; Avancha, Baxi, & Kotz, 2012; Istepanian, Laxminarayan, &

Pattichis, 2006; Murthy & Kotz, 2014; Naveed, Zhou, Demetriou, Wang, & Gunter,

2014).

It should be noted that in addition to the traditional threats found in other software and

information systems, mHealth apps introduce new security and privacy threats to mobile

computing (He et al., 2014). Even when compared to other health information systems,

mHealth apps are different in various perspectives. First, mHealth apps have the potential

to collect larger amounts of data from patients because mobile devices are always carried

by the patients and can collect data over long time intervals. Second, mHealth apps collect

much broader range of data besides physiological measurements and direct medical data;

this includes patient activities, location, lifestyle, social interactions, diet details, eating

habits and so on. Third, the nature of communication between the patient and healthcare

professionals is different (He et al., 2014); e.g. healthcare professionals can remotely

access and monitor patients’ health conditions.

Motivated by the previous facts and observations, the focus of this research is

specifically the security of mHealth apps. This thesis aims to improve the security of

medical data associated with Android mHealth apps, as well as to protect the privacy of

users from threats that might be imposed by such apps.

1.2 Research Background

The main theme of this thesis is the security and privacy of mHealth apps on Android

smartphones. This theme involves three main research components: the concept of

mHealth apps, the security of Android smartphones, and the incorporation of mHealth

apps’ security within Android security model. The first two ingredients are themselves

separate research fields, while the third element –the focal point of this research– is an

Univ
ers

ity
 of

 M
ala

ya

4

emergent field with very few recent contributions. This section introduces these research

components briefly, while more elaborate background is provided in the next chapter.

Mobile health is a medical and public health practice using mobile devices, such as

smartphones, personal digital assistants (PDAs), patient monitoring devices and other

wireless devices (Organization, 2011). mHealth is an emerging field which has the

potential to make healthcare professionals more efficient, increase patient satisfaction and

reduce the healthcare cost. The general concept of mHealth includes medical apps. There

are several types of medical apps, some are using external devices such as medical

sensors, and some apps are using smartphone resources, such as the camera for the

treatment of the patient. The use of mHealth apps among physicians and patients has

grown significantly since the introduction of mobile phones. Physicians can access

patients’ data and medical knowledge at the point of care, and they can also monitor

patient health through mHealth apps.

Android is an operating system based on Linux for mobile devices. Android platform

provides a rich application framework that allows developers to build innovative apps in

the Java language environment. Android is a multi-user system in which each app is

considered an individual user, and is given a unique user ID (UID). Every app runs in its

own Linux process and uses a separate virtual machine to be isolated from other apps. In

this way, Android platform implements the principle of least privilege. That is, each app,

by default, can only access those components that are required to do its own work. In

order to protect user data, system resources (including the network) and apps themselves,

Android platform provides the following extra security features: security at the OS level

through the Linux kernel’s secure inter-process communication (IPC), application

sandbox, application signing, and the Android permission model. The details of these

security features are discussed in Chapter 2.

Univ
ers

ity
 of

 M
ala

ya

5

Recently, researchers have been actively involved in the study of mHealth apps, in

particular their security and privacy. For example, Mitchell et al. (2013) investigated the

security and privacy challenges of mHealth apps; He et al. (2014) raised the security

concerns of Android mHealth apps; and Plachkinova et al. (2015) proposed a taxonomy

of mHealth apps’ security and privacy concerns. Nevertheless, beyond the identification

and investigation of the problem itself, there is no actual solution for the security and

privacy of mHealth apps specifically, except one policy framework (Mitchell et al.,

2013). This framework provides some guidelines to secure mHealth apps; however, these

policies are not enough and even not implemented to secure mHealth apps. In addition,

Android-provided security features are still insufficient to protect user data against few

security attacks that are equally applicable to mHealth apps and their data, such as side

channel threats, privilege escalation attacks, sensors-based covert channels and DMB

attacks (A. Al-Haiqi, Ismail, & Nordin, 2014; Davi, Dmitrienko, Sadeghi, & Winandy,

2011; He et al., 2014; Naveed et al., 2014).

mHealth apps are a new and revolutionary development in healthcare system, and a

huge number of people can access this new system at a very low cost. Considering the

great utility and impact of this phenomenal development, and the detrimental effect that

security and privacy issues might cause to its successful deployment, those issues need

to be addressed to improve mHealth apps’ effectiveness and alleviate any barriers to their

rapid integration into the healthcare system.

1.3 Problem Statement

Using smartphone apps in the delivery of healthcare is rapidly proliferating. mHealth

apps have several potentials that drive this popularity, including the ability to increase

patient satisfaction, improve doctor efficiency, and reduce the cost of healthcare (Bishop,

2013). There is still no regulatory protection for mHealth apps similar to that available

Univ
ers

ity
 of

 M
ala

ya

6

for traditional health sectors, including PC-based electronic health. For example, the

Health Insurance Portability and Accountability Act (HIPPA) is not yet widely applied

to mHealth apps (Plachkinova et al., 2015). Similarly, the Food and Drug Administration

(FDA) intends to apply its regulatory oversight to only those apps that turn smartphones

into medical devices and whose functionality can pose risk to patients’ safety if not

functioning as intended, which is only a subset of all mHealth apps (Food &

Administration, 2015). Several recent studies showed that the lack of standardization,

guidelines, security and privacy of user data are the main barriers to the widespread use

of mHealth apps (Adhikari et al., 2014; He et al., 2014; Kharrazi, Chisholm, VanNasdale,

& Thompson, 2012; Mitchell et al., 2013; Plachkinova et al., 2015).

mHealth apps face the usual security challenges of enforcing confidentiality, integrity,

and availability via authentication, authorization, and access control (Adhikari et al.,

2014; Dehling et al., 2015; He et al., 2014; Mitchell et al., 2013; Plachkinova et al., 2015).

Such protection is necessary to facilitate the adoption of these apps by the healthcare

system. Users of mHealth apps are also susceptible to privacy threats, such as identity

theft, disclosure threats, privilege escalation attacks and side channel threats, among

others (Davi et al., 2011; He et al., 2014; Kotz, 2011; Plachkinova et al., 2015). Leakage

of information is a major challenge for mHealth apps (Dehling et al., 2015), where these

apps may leak information in numerous ways. For example, apps usually declare their

components as public (He et al., 2014), so malicious apps can easily access their

information. Besides, apps usually store unencrypted data on smartphone external storage

(He et al., 2014; McCarthy, 2013; Mitchell et al., 2013), so any app that has the

permission to access external storage can easily access the user’s data. Usage of third

party services and sharing of information with social networks or other third parties are

also raising threats to mHealth apps (Adhikari et al., 2014; Dehling et al., 2015; He et al.,

2014; Plachkinova et al., 2015). In addition, mHealth apps use external devices to

Univ
ers

ity
 of

 M
ala

ya

7

enhance the functionality of the phone. These devices also impose serious threats to users

data, such as external-Device MisBonding (DMB) attacks that include data-stealing and

data-injection attacks (Naveed et al., 2014), since Android permission system does not

provide permission-based protection for external devices and sensors.

Existing smartphone operating systems, particularly Android, are not sufficient to

ensure privacy and security of users’ data, particularly in the case of mHealth apps. One

major issue in the security model of Android is that the permission mechanism is too

coarse-grained and the user might not be aware of the full implications when granting

permissions to apps (Y. Zhou, Zhang, Jiang, & Freeh, 2011).

Based on the above facts, there is a need for a better solution to protect the security of

mHealth apps, and ensure the confidentiality, integrity and availability of their data. Data

associated with mHealth apps are particularly of sensitive nature, and unauthorized

leakage or manipulation of these data do not only threaten the privacy of the patients, but

might threaten their health or even lives. The intended protection is two-way; meaning it

protects the mHealth app and its corresponding data from potential threats on the system,

and also protects the system and its resources from installed mHealth apps that can

unintentionally or otherwise bring new threats by means of poor design, or ill will. The

focus of this thesis is to propose such a solution in the form of a security framework for

mHealth apps on Android platform. The proposed framework ought to address the

aforementioned security and privacy issues on Android, with a special focus on threats

associated with mHealth apps, such as the revealed vulnerabilities in literature, including

information leakage; and the published attacks, such as DMB, privilege escalation, and

side-channel attacks.

Univ
ers

ity
 of

 M
ala

ya

8

1.4 Research Questions

This research focuses on data security and on privacy issues involved in using mHealth

apps within healthcare systems, and proposes a security framework for mHealth apps on

Android. The following research questions have been posed to set the direction for this

research:

(i) What are the known privacy and security issues associated with using mHealth

apps on current smartphones, particularly the Android platform?

(ii) What are the state-of-the-art threats to medical data in the context of mHealth

apps on Android?

(iii) Is the original security design of the Android platform capable enough of

securing highly diverse and fast-evolving Android-based mHealth apps?

(iv) What are the currently available security solutions for securing Android

mHealth apps and protecting their data?

(v) What are the requirements of a security framework for Android mHealth

apps?

(vi) How can a security framework resolve the existing security problems of

mHealth apps?

(vii) What are the tools needed to implement and evaluate the proposed

framework?

(viii) How can we evaluate and analyse the proposed framework?

1.5 Objectives of the Research

The overall objective of this research is to improve the situation of mHealth apps in

terms of a practical and implementable security framework on the Android platform. This

general objective can be broken down into the following list of detailed objectives:

Univ
ers

ity
 of

 M
ala

ya

9

(i) To investigate the security issues associated with mHealth apps as well as with

the Android platform.

(ii) To examine security solutions that are specifically designed for mHealth apps

and highlight their weaknesses, so as to help identifying the desired

requirements for a better security solution.

(iii) To design a security framework to handle mHealth apps and protect their

security, incorporating new security checks on the installation and operation

of the apps. The design of this framework is based on the previous analysis.

(iv) To implement the proposed mHealth apps security framework, building a

custom Android image that is deployable on a real device.

(v) To evaluate the proposed framework in terms of effectiveness and efficiency.

Effectiveness is evaluated by demonstrating that the framework can

successfully protect the system from a particular set of attacks, while

efficiency is evaluated by measuring the performance overhead in terms of

energy consumption, memory and CPU utilization.

Table 1.1: Research Questions Mapped to the List of Objectives and Contributions

Research Questions Objective Contribution Chapter
What are the data privacy and security issues
associated with using mHealth apps?

i i 1 &2

What are the state-of-the-art threats to medical
data in mHealth apps?

i ii 2

Is the original security design of Android OS
capable enough to secure highly diverse and fast-
evolving Android mHealth apps?

i - 1 & 2

What are the existing security solutions to secure
Android mHealth apps?

ii - 2

What are the requirements of a security
framework for Android mHealth apps?

ii iii 1 & 3 & 4

How can a security framework resolve the
existing security problems of mHealth apps?

iii iv 4

What are the tools needed to implement and
evaluate proposed framework?

iv v 3 & 5

How can we evaluate and analyse the proposed
framework?

v v 5

Univ
ers

ity
 of

 M
ala

ya

10

Table 1.1 maps the research questions set forth in the previous section to the above

set of targeted objectives, along with the corresponding actual contributions, which are

to be stated later in Chapter 6. This table includes as well the respective chapters in which

those contributions are presented and discussed.

1.6 Research Scope

Several assumptions and design selections restrict the scope of the research work

within this thesis. The following points list those restrictions:

(i) This research only considers mHealth apps out of the available kinds of apps.

For example, it does not include the finance, education, social and other

categories, though the same solution would be feasible as well.

(ii) Because Android platform is most popular and open source, it was decided to

work on Android OS out of the available smartphone OSs.

(iii) Android 4.3 Jelly Bean has been used to implement the proposed framework.

(iv) Android middleware and the underlying Linux kernel are considered as

trusted base, and assumed as not been maliciously designed.

To put the research focus in perspective, Figure 1.1 depicts the scope, where the shaded

area is the narrow focus of the thesis.

Figure 1.1: Area of Research

mHealth

Smartphones (Android OS)

Security
Apps Medical Apps

Univ
ers

ity
 of

 M
ala

ya

11

1.7 Thesis Outline/Organization

The current chapter is an introduction to the work to be presented throughout the thesis,

including the main motivations, research background, the specific problem statement to

be addressed, and the main research questions to be answered. This chapter also sets the

objectives to be accomplished and maps those objectives to the research questions. The

scope of the research is also described based on the problem.

Altogether, this thesis is composed of six chapters. The rest of the thesis is organized

as follows:

Chapter 2: Literature Review

This chapter is divided into three main section. First section provides the necessary

background of research on mHealth apps and its related areas. A thematic taxonomy is

proposed that compactly describes the research on mHealth apps and defines different

directions in this field. The second section of this chapter provides an essential

background on Android OS and its security mechanism, and it also reviews recent

research trends on Android security. Finally, the solutions proposed in the literature to

protect the security and privacy of mHealth apps are provided in the third section of this

chapter.

Chapter 3: Research Methodology

This chapter outlines the general research methodology adopted in this research study.

This methodology is expressed in terms of a conceptual framework that consists of four

phases: a preliminary study, the proposed framework’s design, a proof-of-concept

prototypic implementation, and finally the evaluation. These four phases are briefly

described alongside the methods followed in each phase.

Univ
ers

ity
 of

 M
ala

ya

12

Chapter 4: The Design of “mHealth Apps Security Framework”

This chapter presents the concrete design that was generated to achieve the main

objective of the research. It outlines and describes the design of the proposed framework,

starting from the overall architecture, throughout the individual layers and their

components, up to the discussion of few use cases that are representative of the typical

operation of the proposed framework.

Chapter 5: Implementation and Evaluation

This chapter presents the results of evaluating a prototypic implementation of the

proposed framework. The built implementation is meant to serve as a proof-of-concept

that validates the design in the previous chapter and provides an initial seed for further

deployments. After describing the implementation choices, this chapter aims to evaluate

and analyse the prototype in terms of effectiveness and efficiency. The effectiveness

measures the performance and usefulness of the proposed framework in satisfying its

purpose of securing users’ privacy and protecting their sensitive data. These are evaluated

through a set of experiments that are described in the chapter. Another set of experiments

measure performance metrics (CPU utilization, memory usage and energy consumption)

in order to evaluate the efficiency of the framework in performing its function. In

particular, the focus is on the overhead imposed by the framework on the normal

operation of the system.

Chapter 6: Conclusions and Future Work

This chapter concludes the thesis by presenting the summary of this research and

reporting on the re-examination of the research objectives. Moreover, it lists the main

findings of this research work, highlighting the significance of the proposed solution. This

chapter also states the limitations of this research study and proposes future directions to

improve the produced solution and avoid some of its limitations.

Univ
ers

ity
 of

 M
ala

ya

13

CHAPTER 2: LITERATURE REVIEW

This chapter sets the stage for later chapters by providing necessary background

information on the concepts of mHealth apps, the Android platform and the security

issues at the intersection of both. The chapter is divided into three major sections. Section

2.1 is first providing a comprehensive literature survey on mHealth Apps, and its related

areas. Second, Section 2.2 is providing a complete background on the Android

architecture, and what has been done to secure this platform. The third and most important

section (Section 2.3) reviews the most relevant works in the literature on the threats to

mHealth apps, and provides a critical assessment of their security and privacy. This

section also summarizes the existing solutions to address those issues. The focus of the

section is directly related to the research in this thesis, which attempts to contribute a

novel solution to the said issues.

2.1 The Landscape of Research on Smartphone mHealth Apps

This section provides the necessary background about the research on mHealth apps,

how rapidly this field is growing, and what are the main highlights in this new trend of

mobile healthcare systems. It surveys the efforts of researchers in response to the new

and disruptive technology of smartphone mHealth apps, mapping the research landscape

form the literature into a coherent taxonomy, and finding out basic characteristics of this

emerging field.

2.1.1 An Overview

Adoption of smartphones in the arsenal of healthcare is coming as no surprise. People

have always used available facilities to enhance their most important activities and protect

their most valuable assets; and no asset is more valuable than their own health. The

utilization of information and communication technology in the practice of healthcare

introduced the notion of eHealth, where telecommunications is enabling telemedicine,

Univ
ers

ity
 of

 M
ala

ya

14

computers are processing health data, and the Internet is providing the infrastructure to

exchange all sorts of medical information and services. When mobility became possible,

telecommunications occurred through mobile phones, and computers moved along with

people in the form of portable laptops and then handheld devices. The eHealth stretched

to include mobile health (mHealth); but still, the phone was a phone and the computer

was a computer; until both converged into a single unit known as a “smartphone”.

Smartphones are mobile devices that are smarter than earlier generations of cellular

phones, usually known as feature-phones. This extra smartness is gained by virtue of

closer resemblance to personal computers (PCs). Smartphones possess greater computing

power, more connectivity options, sophisticated operating systems, full Internet access,

and most importantly the ability to install and run third-party applications, often dubbed

as "apps". This last feature extended the smartphone’s versatility into new functions

unthought-of before, even by its designers.

However, smartphones are not just scaled down versions of their PC relatives; they

depart from traditional PCs in several ways. They are portable, even beyond the

portability of laptops, and they are meant to be mobile and used on the move. This

introduces the notion of context to smartphones, in terms of location, ambient, and user

actions. Smartphones can measure these variables via onboard sensors, such as

accelerometers and gyroscopes, which are unique to smartphone platforms. Smartphones

also enjoy the ultimate connectivity among computing devices, with multiple wireless

interfaces to cellular networks, Wi-Fi access points, Bluetooth peripherals, up to the latest

innovations of Wi-Fi Direct and the Near Field Communication (NFC) technologies.

Being this disruptive, smartphones are also the most personal computers so far. They

are carried everywhere, and used to run all sort of functions, most of which are intimate

to the users. In the context of healthcare, the trend of seeking health information from the

Univ
ers

ity
 of

 M
ala

ya

15

Internet is an obvious option on mobile platforms, but the real change came through the

surge of apps written by developers to serve a wide variety of medical and healthcare

scenarios, such as health education, intervention and adherence enhancement, as well as

medication and diagnosis. Apps targeted both health professionals, patients, and the

public, in the form of medical references, calculators, through the way to being

attachments or alternatives to medical devices. In essence, what physicians and patients

had to access on stationary computers have been brought to them by apps right onto their

hands/pockets, augmented by innovative use of the new sensing capabilities that required

previously special equipment, external to the computing device.

The unique characteristic of mHealth, and particularly that based on smartphone apps

is that it has grown very fast, outpacing the governmental efforts in regulation, as well as

the health informatics researchers in study and evaluation. It is not feasible to review, let

alone evaluate, the 100000 medical-related apps available online for the major

smartphone platforms (Jahns, 2014), but those apps are actually open in the wild for

download and use by healthcare professionals as well as the public. Apps are stored

centrally in web-based repositories called app stores, a one-stop-shop fashion for

marketing apps. The most popular smartphones today, with a market share of 87.6% and

11.7% respectively (International Data Corporation, 2016) are the Android (Google,

2016) and iOS (Apple, 2016b) supported-phones; their corresponding online markets are

Google Play (Google, 2016) and Apple Apps Store (Apple, 2016a), respectively.

2.1.2 A Taxonomy of Literature Works on mHealth Apps

A comprehensive survey of research on mHealth apps was conducted, referring to a

number of online databases, including ScienceDirect, Web of Science, IEEE Explore, and

PubMed by using the following query string: ("health apps" OR "medical apps" OR

"medical smartphone apps" OR "health smartphone apps" OR "healthcare apps" OR

Univ
ers

ity
 of

 M
ala

ya

16

"healthcare smartphone apps"). This survey resulted in 133 articles that were read

thoroughly in the main purpose of finding out a general map for the conducted research

on this emerging topic. Most of the articles (51.13%; 68/133) are review and survey

papers that refer to actual apps or to the literature in order to describe the existing mHealth

apps for a specific specialty, disease, or purpose, or to provide a general overview of the

new trend. The next largest portion of articles (32.33%; 43/133) conducted various

studies, ranging from seeking to evaluate samples from the flowing current of mHealth

apps to exploring the desired features that people would like to have in their newly found

helper tools. Quite a few researchers (12.78%; 17/133) moved along the new wave and

presented actual attempts to develop their own mHealth apps, or shared their experiences

in doing so. The final and smallest portion of works (3.76%; 5/133) included proposals

for frameworks or models that address the operation of apps or their development in the

more general setting. Observing these patterns, the general categories of research articles

can be captured, and then the classification can be refined into the literature taxonomy

shown in Figure 2.1. It is possible to distinguish between several subcategories in the

main classes, though overlaps do happen. In the following subsections, the observed

categories are listed, making simple statistics throughout the discussion.

2.1.2.1 Class 1: Review and survey articles

It comes as no surprise that the earliest and most research works on mHealth apps are

review articles that aimed to capture the new phenomena, introduce it to the medical

community, and derive some descriptive statistics, trying to understand the implications

and potentials along the way. The easiest and largest class to notice is the reviews based

on a specific specialty or disease (Al-Hadithy & Ghosh, 2013; Arnhold, Quade, & Kirch,

2014; Aungst, 2013; Baheti & Toshniwal, 2014; Bender, Yue, To, Deacken, & Jadad,

2013; Bhansali & Armstrong, 2012; T. Carter, O’Neill, Johns, & Brady, 2013; Cheng,

Chakrabarti, & Kam, 2014; Chhablani, Kaja, & Shah, 2012; Connor, Brady, de Beaux, &

Univ
ers

ity
 of

 M
ala

ya

17

Tulloh, 2013; Dala-Ali, Lloyd, & Al-Abed, 2011; Derbyshire & Dancey, 2013; Deveau

& Chilukuri, 2012; Donker et al., 2013; Dubey et al., 2014; Elias, Fogger, McGuinness,

& D'Alessandro, 2014; Eng & Lee, 2013; Franko, 2012; Goff, 2012; Gomez-Iturriaga,

Bilbao, Casquero, Cacicedo, & Crook, 2012; Goyal & Cafazzo, 2013; Kalz et al., 2014;

Khatoon, Hill, & Walmsley, 2013; Kraidin, Ginsberg, & Solina, 2012; H. Lee et al., 2014;

Lewis, 2013; Lippman, 2013; Milani et al., 2014; Mohan & Branford, 2012; Moodley,

Mangino, & Goff, 2013; Muessig, Pike, LeGrand, & Hightow-Weidman, 2013; Nwosu

& Mason, 2012; O'Neill, Holmer, Greenberg, & Meara, 2013; O’Neill & Brady, 2012;

Oehler, Smith, & Toney, 2010; Pandey, Hasan, Dubey, & Sarangi, 2013; Robinson &

Jones, 2014; Singh, 2013; Slaper & Conkol, 2014; Sondhi & Devgan, 2013; D. J. Stevens,

Jackson, Howes, & Morgan, 2014; Tripp et al., 2014; Wallace & Dhingra, 2013; Wang

et al., 2014; Warnock, 2012; Workman & Gupta, 2013; Yoo, 2013) (47/68 articles).

Research on
mHealth apps Studies conducted on

mHealth apps and their
use

Reports on actual
attempts to develop

mHealth apps

Proposals of frameworks
to develop and operate

mHealth apps

Review and surveys

Selected apps

Evaluation study

Comparative study

Disease-based

Purpose-based

General overview

Specialty-based

Desired features

Efficacy

Feasibility

Acceptance

Apps design and development

Data access and integration

Security and privacy

Usage

Content analysis

Reliability and accuracy

Adherence

Involvement

Selected criteria

Figure 2.1: A Taxonomy of Research Literature on Smartphone mHealth Apps

Univ
ers

ity
 of

 M
ala

ya

18

Examples of this category include the reviews of apps on Anaesthesia (Bhansali &

Armstrong, 2012; Connor et al., 2013; Glassenberg, De Oliveira, Glassenberg, &

McCarthy, 2013; Kraidin et al., 2012; Morris, Javed, Bodger, Gorse, & Williams, 2013),

Surgery (T. Carter et al., 2013; Dala-Ali et al., 2011; Edlin & Deshpande, 2013; Franko,

2012; O'Neill et al., 2013; D. J. Stevens et al., 2014; Warnock, 2012), Plastic surgery (Al-

Hadithy & Ghosh, 2013; Mohan & Branford, 2012; Morris et al., 2013; Workman &

Gupta, 2013), Oncology (Bender et al., 2013; Gomez-Iturriaga et al., 2012; Lewis, 2013;

Min et al., 2014; Pandey et al., 2013; C. S. Xu, Anderson, Armer, & Shyu, 2012),

Palliative medicine (Nwosu & Mason, 2012; B. Rosser & C. Eccleston, 2011; B. A.

Rosser & C. Eccleston, 2011; Wallace & Dhingra, 2013), Ophthalmology (Cheng et al.,

2014; Chhablani et al., 2012), Dentistry (Baheti & Toshniwal, 2014; Khatoon et al., 2013;

Singh, 2013), Pharmacy (Aungst, 2013; Dayer, Heldenbrand, Anderson, Gubbins, &

Martin, 2013; Haffey, Brady, & Maxwell, 2013, 2014), Psychiatry (Dennison, Morrison,

Conway, & Yardley, 2013; Donker et al., 2013; Elias et al., 2014; Kuhn et al., 2014;

Shand, Ridani, Tighe, & Christensen, 2013; Zhu, Liu, & Holroyd, 2012), Paediatrics

(Goldbach et al., 2013; Hawkes, Walsh, Ryan, & Dempsey, 2013; Ho et al., 2014; Peck,

Stanton, & Reynolds, 2014; Rozenblyum, Mistry, Cellucci, Martimianakis, & Laxer,

2014; Slaper & Conkol, 2014; Sondhi & Devgan, 2013; Wackel, Beerman, West, &

Arora, 2014; Wearing, Nollen, Befort, Davis, & Agemy, 2014), Infectious Diseases

(Burdette, Trotman, & Cmar, 2012; Goff, 2012; Moodley et al., 2013; Muessig et al.,

2013; Oehler et al., 2010; Robustillo Cortés, Cantudo Cuenca, Morillo Verdugo, & Calvo

Cidoncha, 2014; Spain, 2014; Visvanathan, Hamilton, & Brady, 2012; Yoo, 2013), Public

health (Abroms, Lee Westmaas, Bontemps-Jones, Ramani, & Mellerson, 2013; Arnhold

et al., 2014; Årsand et al., 2012; Azar et al., 2013; Bender et al., 2013; BinDhim, Freeman,

& Trevena, 2014; Breland, Yeh, & Yu, 2013; Breton, Fuemmeler, & Abroms, 2011; M.

C. Carter, Burley, Nykjaer, & Cade, 2013; Choi, Noh, & Park, 2014; Cohn, Hunter‐Reel,

Univ
ers

ity
 of

 M
ala

ya

19

Hagman, & Mitchell, 2011; Dunton et al., 2014; V. Gay & Leijdekkers, 2012; Goyal &

Cafazzo, 2013; Hebden, Cook, van der Ploeg, & Allman-Farinelli, 2012; Kirwan,

Duncan, Vandelanotte, & Mummery, 2013; McCurdie et al., 2012; Patel, Nowostawski,

Thomson, Wilson, & Medlin, 2013; Pulverman & Yellowlees, 2014; Rabin & Bock,

2011; Savic, Best, Rodda, & Lubman, 2013; Silow-Carroll & Smith, 2013; Wang et al.,

2014), Women health (Derbyshire & Dancey, 2013; Robinson & Jones, 2014; Tripp et

al., 2014), Dermatology (Chadwick, Loescher, Janda, & Soyer, 2014; Deveau &

Chilukuri, 2012; Hamilton & Brady, 2012), Family medicine (Goldbach et al., 2013;

Lippman, 2013), Endocrinology (Eng & Lee, 2013), Cardiopulmonary Resuscitation

(Kalz et al., 2014), Rehabilitation (Elwood et al., 2011; Milani et al., 2014), Asthma

(Huckvale, Car, Morrison, & Car, 2012; McCurdie et al., 2012), Internal medicine

(Bierbrier, Lo, & Wu, 2014; Goldbach et al., 2013; O’Neill & Brady, 2012; H.-C. Wu et

al., 2014), Cardiology (M. J. Cho, Sim, & Hwang, 2014; Dubey et al., 2014; McCurdie

et al., 2012), and Sports medicine (H. Lee et al., 2014). A smaller group of articles

provides general overviews of medical apps and their benefits or impacts (M. N. Boulos

et al., 2011; M. N. K. Boulos, Brewer, Karimkhani, Buller, & Dellavalle, 2014; Campbell

& Choudhury, 2012; Carrera & Dalton, 2014; Fiordelli, Diviani, & Schulz, 2013; Valerie

Gay & Leijdekkers, 2011; Liu, Zhu, Holroyd, & Seng, 2011; Mertz, 2012; Moore,

Anderson, & Cox, 2012; Y. T. Yang & Silverman, 2014) (10/68). Despite their generality,

few of these surveys emphasize special aspects, such as the integration of social

networking with medical apps (Valerie Gay & Leijdekkers, 2011), the perspective of

developers (Liu et al., 2011), the sensing capabilities of smartphones (Campbell &

Choudhury, 2012), or the legal issues and federal regulations of apps (Y. T. Yang &

Silverman, 2014). Another few papers (11/68) review apps in the context of specific

purposes rather than specific specialties or general views, including apps as references

(Haffey et al., 2014; Hilgefort et al., 2013; Zanni, 2013), apps for pain management (B.

Univ
ers

ity
 of

 M
ala

ya

20

Rosser & C. Eccleston, 2011; B. A. Rosser & C. Eccleston, 2011), clinical management

(Silow-Carroll & Smith, 2013), pre-operative settings (Brusco, 2010), medical adherence

(Dayer et al., 2013), wellness (Handel, 2011), tobacco cessation (Pulverman &

Yellowlees, 2014), and even apps for pro-smoking (BinDhim et al., 2014) (to raise

awareness of harmful apps).

2.1.2.2 Class 2: Studies conducted on mHealth apps and their use

Despite the frequent complaint in literature about the lack of works that study and

assess the phenomena of mHealth apps compared to just reporting on them, around a third

of the sample in the above survey (43/133) was articles conducting studies in one form

or another (Abroms et al., 2013; Albrecht, von Jan, Jungnickel, & Pramann, 2012; Årsand

et al., 2012; Azar et al., 2013; Bierbrier et al., 2014; Breland et al., 2013; Breton et al.,

2011; Burdette et al., 2012; M. C. Carter et al., 2013; Chadwick et al., 2014; J. Cho, Park,

& Lee, 2014; Choi et al., 2014; Cohn et al., 2011; Dennison et al., 2013; Edlin &

Deshpande, 2013; Elwood et al., 2011; Franko, 2011; Franko, Bray, & Newton, 2012;

Franko & Tirrell, 2012; Gill et al., 2012; Glassenberg et al., 2013; Goldbach et al., 2013;

Haffey et al., 2013; Hamilton & Brady, 2012; Hawkes et al., 2013; Ho et al., 2014;

Huckvale et al., 2012; Kalz et al., 2014; Kazi, Saha, & Mastey, 2014; Kuhn et al., 2014;

Min et al., 2014; Morris et al., 2013; O’Reilly et al., 2013; Payne, Wharrad, & Watts,

2012; Peck et al., 2014; Rabin & Bock, 2011; Robustillo Cortés et al., 2014; Rozenblyum

et al., 2014; Savic et al., 2013; Shand et al., 2013; Spain, 2014; Visvanathan et al., 2012;

Wackel et al., 2014; Wearing et al., 2014). The included works in the survey were divided

into a large category of evaluation studies (29/43), and a few other smaller categories

(14/43). These categories attempt to compare between mHealth apps or between apps and

other tools (5/43), explore the desired features sought by users in medical apps (4/43),

study the efficacy of medical apps (2/43), check their feasibility in certain situations

(2/43), or examine clinician acceptance of using them (1/43). Among evaluation studies,

Univ
ers

ity
 of

 M
ala

ya

21

the most popular criteria is the usage patterns of apps by physicians (Elwood et al., 2011;

Franko, 2011; Gill et al., 2012; O’Reilly et al., 2013), medical students (Franko & Tirrell,

2012; Payne et al., 2012), or patients (J. Cho et al., 2014; Dennison et al., 2013). Other

studies perform content analysis of apps on smoking cessation (Abroms et al., 2013; Choi

et al., 2014), asthma self-management (Huckvale et al., 2012), weight management (Azar

et al., 2013), addiction recovery (Savic et al., 2013), or references of infectious diseases

(Burdette et al., 2012). Arguably, the most sought after studies are those that test the

accuracy and reliability of apps. Available studies in this direction are still few, evaluating

either the precision of apps measurement compared to traditional tools (Franko et al.,

2012; Ho et al., 2014; Wackel et al., 2014), the accuracy their calculations (Bierbrier et

al., 2014; Haffey et al., 2013), or the reliability of their assessment (Chadwick et al.,

2014). A related class to these studies is the articles that address the adherence of mHealth

apps to regulations and established guidelines, especially those related to evidence-based

behaviour change (Breton et al., 2011; Cohn et al., 2011; Wearing et al., 2014), and

diabetes self-management (Breland et al., 2013). Other evaluation studies examine the

involvement of healthcare professionals in the development of mHealth apps (Edlin &

Deshpande, 2013; Hamilton & Brady, 2012; Visvanathan et al., 2012), or evaluate apps

against a specific set of selected criteria (Albrecht et al., 2012; Robustillo Cortés et al.,

2014; Spain, 2014).

Apart from evaluations, few works compare between two mHealth apps (Glassenberg

et al., 2013; Morris et al., 2013), between an app and traditional website and paper-based

tools (M. C. Carter et al., 2013), or between an app and smartphone-based website access

(Goldbach et al., 2013). Another group of studies reported lessons on the design and best

practices of developing mHealth apps with features in demand (Årsand et al., 2012; Kazi

et al., 2014; Rabin & Bock, 2011; Rozenblyum et al., 2014). A couple of studies examined

efficacy of mHealth apps: whether the use of apps can improve performance of trainees

Univ
ers

ity
 of

 M
ala

ya

22

in new-born intubation (Hawkes et al., 2013), and effectiveness of apps in suicide

prevention (Shand et al., 2013). Another couple of apps addressed the feasibility of using

mHealth apps on either daily collection of self-reporting data (Min et al., 2014), or as

immunization reminder systems (Peck et al., 2014). Finally, Kuhn et al. investigated the

acceptance of mental-health clinician to a future mHealth app based on its description

(Kuhn et al., 2014).

2.1.2.3 Class 3: Reports on actual attempts to develop mHealth apps

The literature on mHealth apps includes active attempts to participate in the new trend

and develop apps by the researchers themselves (mostly professionals from healthcare

disciplines) (17/133). The first such attempt was published in 2010, proposing the use of

web apps to collect patients’ data (Hamou et al., 2010). A popular choice among articles

in this category is to develop physical-activity behaviour change and fitness apps (V. Gay

& Leijdekkers, 2012; Hebden et al., 2012; Kirwan et al., 2013). Most papers from IEEE

conferences (7/12) appear in this category, reporting on the development of mHealth apps

(C. S. Xu et al., 2012; Zhu et al., 2012), proposing the use of hardware capabilities like

barcode and RFID tags (Schreier et al., 2013), and the use of data mining (Tseng et al.,

2012), or proposing complete designs of apps (Ramachandran & Pai, 2014). A couple of

articles demonstrate the use of motion sensors (Aguinaga & Poellabauer, 2013; Dunton

et al., 2014). Other options in this category include the development of educational apps

(M. J. Cho et al., 2014). The rest of apps-development articles include reports on apps to

facilitate public observations collection (Patel et al., 2013), collaboration among

researchers (Alexander et al., 2013), or assist international patients by translating medical

terms (Hasegawa et al., 2013). One article targets patients of colorectal cancer via early

screening service (H.-C. Wu et al., 2014), and the final article in this category reports a

large-scale experience with developing 12 health apps in the largest tertiary hospital in

Korea (J.-Y. Park et al., 2014).

Univ
ers

ity
 of

 M
ala

ya

23

When talking about development, the choice of platform is pertinent. Most of the first

mHealth apps were developed for Apple iOS (through iPhone or iPad devices), as the

commencement of this platform predated Google Android (2007 and 2008 respectively).

However, most of the research development works in the surveyed sample targeted the

Android or both platforms (7/17 and 4/17 respectively). Five articles developed for the

iOS, and one article chose to develop a cross-platform, web-based app. As of the target

audience of the developed mHealth apps, the majority of apps targeted the patients or the

public (12/17), two apps targeted medical staff, and three apps targeted both groups.

Ten of the articles developing mHealth apps explicitly stated the involvement of

external professionals of the subject matter in addition to the authors. Those professionals

included software developers (Hamou et al., 2010; Kirwan et al., 2013); personal from

marketing, nutrition and dietetics, physical activity and information technology (Hebden

et al., 2012); two psychologists, a software engineering expert, an Objective-C developer

and a media designer (Zhu et al., 2012); software developers, information scientists and

end-users (Patel et al., 2013); information technology staff (Alexander et al., 2013);

computer scientists, psychologists, epidemiologists, exercise scientists, graphic designers

and end users (Dunton et al., 2014); a professional web developer (M. J. Cho et al., 2014);

an information technology alliance company (J.-Y. Park et al., 2014); as well as doctors

and patients (Ramachandran & Pai, 2014).

2.1.2.4 Class 4: Proposals of frameworks to develop and operate mHealth apps

The final class in the developed taxonomy is articles that cannot be fit in the previous

group of articles, since they do not develop new apps, but rather introduce overall

frameworks or models for the development or use of them. Articles in this class (5/133)

include either works focusing on models and methods for the design (McCurdie et al.,

2012) or development of mHealth apps (Paschou, Sakkopoulos, & Tsakalidis, 2013).

Univ
ers

ity
 of

 M
ala

ya

24

Another couple of articles introduce frameworks for data access and integration between

apps and other parts of health information systems (Fox, Cooley, McGrath, & Hauswirth,

2012; Mersini, Sakkopoulos, & Tsakalidis, 2013). Finally, a single work addresses the

issue of secure exchange of mHealth apps’ data, proposing a cooperative environment

with data encryption framework (Silva, Rodrigues, Canelo, Lopes, & Zhou, 2013). This

category of articles is currently attracting the least attention among researchers.

Nevertheless, it is expected that devising frameworks for the production and operation of

mHealth apps within the big picture of health informatics would receive more interest as

the demand for general and scalable solutions for the current challenges increase.

2.1.3 Articles by Medical Specialty of Apps

It is probably interesting to find out which medical fields are served by the new

mHealth apps and to which extent. Figure 2.2 shows the number of articles by the

specialty of which their apps cover. The shown articles do not include the full list (133),

because the specialties of the addressed apps in 30 articles are not available or not

applicable (e.g. the case of proposing general frameworks for apps development). The

articles neither add up to 103, since the apps in few articles fall in more than one specialty.

2.1.4 Articles by Purpose and Function of Apps

MHealth apps generally serve particular purposes or functions. Examples include the

functions of information reference, education, self-management, clinical practice and

diagnosis. Excluding the review articles (since each review usually surveys apps from the

whole range of functions), the number of articles from the other categories (detailed by

the purpose of apps they address) is shown in Figure 2.3. The value of this figure is to

gain an insight into the most visited functions by studies and development efforts, and

those that need more attention. The list in Figure 2.3 misses nine articles, where the

specific purpose of the subjected apps could not be found.

Univ
ers

ity
 of

 M
ala

ya

25

Figure 2.2: Number of Included Articles by the Specialty of Apps They Cover

Figure 2.3: Number of Included Articles by the Purpose or Function of Apps They

Cover

5
7

4
6

3
4

2
3

2
4

6
1

9
1

3
9

2
3

2
23

4
1
1
1

3
1

0 5 10 15 20 25

Anaesthesia
Surgery

Plastic surgery
Oncology

Dermatology
Palliative medicine

Ophthalmology
Dentistry

Family medicine
pharmacy

Psychiatry
Endocrinology

Paediatrics
Cardiopulmonary Resuscitation

Women health
Infectious Disease

Rehabilitation
Asthma

Orthopaedics
Public health

Internal medicine
Sleep medicine

Nursing
Neurology
Cardiology

Sports medicine

NUMBER OF ARTICLES

16
18

8
5

16
1

3
11

3
13

12
13

0 5 10 15 20

Reference

Training/Education

Fitness/Lifestyle

Communication/translation

Self-management/monitoring

Remote monitoring

Disease management

Data collection

Improving adherence

Clinical practice

health behavior change

Diagnosis

Univ
ers

ity
 of

 M
ala

ya

26

2.1.5 Articles by Indexing Databases

Figure 2.4 depicts the distribution of articles from different categories over the digital

databases in which the search was performed. The purpose is to highlight the potential

venues for seeking (as well as publishing) works on mHealth apps. It seems that the

disciplines of life and medical sciences are more interested in this subject, which is to be

expected. It is also important to note that the figures in this graph are not consistent with

the numbers of articles initially found in each database. For example, the initial query

against WoS index triggered only 56 results before any exclusion, while Figure 2.4 shows

86 articles of the final set in WoS. The reason for this discrepancy is that the initial query

failed to pull out all the relevant articles from this particular database, though the same

query yielded more articles from the other database. Because the databases were looked

up manually against the final sample set of articles, more articles showed up for each

database than it could itself return. This indicates that the individual search engines matter

in performing queries in addition to the specific query string.

Figure 2.4: Number of Included Articles in Different Categories by the Source

Digital Database

2.1.6 Motivations for Smartphone mHealth Apps

The benefits of using smartphone apps in the healthcare domain are obvious and

compelling. This section lists but a few of the advantages reported in the literature,

58

43

15

3

39

33

10

1

11

7

1

7

4

3

1

0 20 40 60 80 100 120

PubMed

WoS

ScienceDirect

IEEE Xplore

Review Study Development Framework

Univ
ers

ity
 of

 M
ala

ya

27

grouped into categories of similar benefits and citing the corresponding references for

further discussion.

 Benefits related to smartphones portability

Smartphones are agile, handheld, and can be used on the move (M. N. Boulos et al.,

2011). This mobility and portability allow for several benefits. For example, Smartphone

apps can provide timely communication (Elias et al., 2014), and are ideal for keeping a

symptom diary as they accompany users all the time (Lippman, 2013). From a research

perspective, smartphone apps allow conducting ecological momentary assessment

(EMA) using MAs, where patients can capture data describing their experience on spot

in real time (Tripp et al., 2014), and they also allow for repeated sampling of behaviour

over numerous time points and allow the ability to capture less frequent and rare events

(Cohn et al., 2011).

 Benefits related to smartphones’ capabilities

As mentioned earlier, smartphones possess several capabilities that enable new

possibilities via installed apps. Because they can connect to the Internet, smartphones are

useful to keep clinicians up-to-date with the latest medical techniques and advances (M.

N. Boulos et al., 2011). The continuous connectedness of smartphones allows the sharing

of behavioural and health data with health professionals or peers (Dennison et al., 2013).

This ability may also allow telemedicine to replace time-consuming office visits

altogether (M. N. K. Boulos et al., 2014). Moreover, Smartphone mHealth apps are

specifically created to work well for point-of-care decisions about topics such as drug

dosing and conventional treatment regimens, where the needed information are

aggregated and presented in an easily digestible format (Goldbach et al., 2013). The

increasing ability of smartphones to use internal sensors to infer context such as user

location, movement, emotion, and social engagement has raised the prospect of

Univ
ers

ity
 of

 M
ala

ya

28

continuous and automated tracking of health-related behaviours and timely, tailored

interventions for specific contexts (Dennison et al., 2013). Apart from hardware or

software features, the feature of anonymity granted by apps allows patients to ask

questions they might otherwise feel embarrassed asking a healthcare professional (Tripp

et al., 2014).

 Benefits related to smartphones’ market penetration

The popularity and ubiquity of smartphones allow for access into populations that are

difficult to reach and engage (Goyal & Cafazzo, 2013). For patients who cannot access

care provision premises, mHealth apps are especially beneficial (Silow-Carroll & Smith,

2013).

2.1.7 Challenges to mHealth Apps

Though attractive, smartphone mHealth apps are (still) not believed to be the panacea

of healthcare delivery. The literature indicates that researchers are concerned about many

challenges associated with apps and their use in healthcare. Key reported challenges for

adoption of mHealth apps are listed below, along with citations to references in which the

reader can find the original suggestion and further discussion on those challenges. The

challenges are classified into a few groups according to their nature.

 Concerns on quality

Perhaps the most persistent and crucial challenges are those related to the quality of

the developed mHealth apps. Major issues include concerns on the low involvement of

qualified professional in app development (Cheng et al., 2014), a lack of extrinsic scrutiny

and peer review after publishing (Cheng et al., 2014; Eng & Lee, 2013; Goldbach et al.,

2013), lack of evidence of clinical effectiveness, (Eng & Lee, 2013), lack of objective

research to evaluate outcomes (Silow-Carroll & Smith, 2013), the absence of content

regulation (O’Neill & Brady, 2012) as well as the absence of a regulatory framework that

Univ
ers

ity
 of

 M
ala

ya

29

standardizes development (Silow-Carroll & Smith, 2013). Furthermore, many

smartphone apps are not based on behavioural change theories or guidelines (M. N. K.

Boulos et al., 2014).

 Concerns on security and privacy

Privacy of patients and security of their data are also a major and pertinent issue when

talking about smartphone apps, and has been frequently raised by researchers (M. N. K.

Boulos et al., 2014; Elias et al., 2014; O’Neill & Brady, 2012; Silow-Carroll & Smith,

2013). Elias et al. (2014) note the non-compliance of mHealth apps with the Health

Insurance Portability and Accountability Act, unlike the traditional EHRs. They also

notice that the apps distribution business model needs caution. Apps and service provided

are free to the individual, but privacy is not assured. Information collected about an

individual while using the app and its associated services can then be used for targeted

marketing either directly by the company or sold to others for marketing or product

development (Elias et al., 2014). Furthermore, there are always security risks for less

experienced users who might be tricked to download apps that contain malware or offer

them dubious medical information and advice (M. N. K. Boulos et al., 2014).

 Concerns on integration

It is important to note that mHealth apps are just one (important) aspect of mobile

health, which is one form of healthcare delivery; as such, a vital issue is the lack of

integration with other parts of the healthcare delivery system (Eng & Lee, 2013). In

particular, technical challenges are caused by the lack of seamless interfaces between app

platforms and providers’ existing information technology systems (Silow-Carroll &

Smith, 2013).

Univ
ers

ity
 of

 M
ala

ya

30

 Concerns on usability

Many researchers also highlighted the problems in using smartphone apps because of

the additional involved complexity and the limited usability compared with traditional

platforms such as PCs. For example, complexity is introduced to individuals by the need

to manage a mix of mobile devices, personal apps, and apps they use for healthcare

purposes, each with its own learning curve, possible financial costs, and security and

privacy concerns. This burden on consumers could become overwhelming with each

organization, provider, and associated businesses requiring use of their own apps (Elias

et al., 2014). Moreover, those in rural areas may have limited or no signal and will be

unable to benefit from the use of mHealth apps. Beyond access, the patient has to commit

to daily use of the app (Elias et al., 2014). Other usability issues relate to the small internal

storage capacity, processing power and screen size of the mobile phone, which require

apps to be used in a reduced format, potentially reducing clarity (O’Neill & Brady, 2012;

Silow-Carroll & Smith, 2013). There are also the prosaic issues such as remembering to

recharge a device and the simple maintenance of equipment within a patient’s home,

which may be problematic (Silow-Carroll & Smith, 2013). Furthermore, older patients in

particular may suffer from lack of knowledge or discomfort with technology (Silow-

Carroll & Smith, 2013); an app that is perfectly usable by a younger person might be very

difficult to manipulate by an older or disabled person (M. N. K. Boulos et al., 2014).

 Concerns on safety

In a medical environment, apps might cause unexpected effects, such as surface

contamination. Smartphones can act as a reservoir for bacteria, and it is possible that

doctors using mHealth apps are less likely to perform hand hygiene, thereby increasing

the risk of bacterial transmission (O’Neill & Brady, 2012). Electromagnetic radiation

from the mobile devices not only could hamper the functionality of patient devices such

as pacemakers, but also could interfere with other medical equipment (Gill et al., 2012).

Univ
ers

ity
 of

 M
ala

ya

31

In addition, app descriptions in general contain limited advice or safety information

regarding their use as a medical tool (Eng & Lee, 2013).

 Concerns on financial costs

Despite the pervasiveness of smartphones, certain cost overhead associated with

mHealth apps might hinder their wide adoption and use. Examples of the cost overhead

include the hidden charges of connection, particularly for apps that automatically connect

to other apps or services (Elias et al., 2014). In addition, some patients cannot afford

smartphones or the required high-speed Internet connection. For app providers, the

development, support, maintenance and regular updating may entail significant costs (M.

N. K. Boulos et al., 2014).

 Concerns on administrative and ethical issues

A less obvious source of difficulties is the reimbursement obstacles caused by

communication via smartphones for providers who devote time to these types of activities

(Slaper & Conkol, 2014). Providers working in fee-for-service environments will

generally expect to be paid for the time they spend on managing healthcare through apps

and for associated software or equipment costs. Yet insurers, employers, and other payers

are unlikely to reimburse for these costs until there is more robust evidence of their

effectiveness (Silow-Carroll & Smith, 2013).

In addition, ethical and medico-legal questions arise when smartphones are used to

record patient information via mHealth apps. Informed consent from individual patients

would be required (O’Reilly et al., 2013). Moreover, advertising through apps allows

companies to target physicians directly, potentially indirectly and unethically influencing

prescribing and treatment practices (O'Neill et al., 2013).

Univ
ers

ity
 of

 M
ala

ya

32

 Concerns on negative effects

Finally, the use of smartphone apps for medical purposes may entail unwanted effects,

many of which have been highlighted in the literature. For example, self-monitoring of

certain measures (like glucose) by patients can cause depression and may do more harm

than good (Lippman, 2013). Further, apps that provide medical advice based on their own

collected data and algorithms could cause unnecessary worry or false reassurance (Eng

& Lee, 2013). Other reported challenges include the mistakes and omissions in health

care work settings because of distraction and interruptions caused by interaction with

apps or their notifications, the impact on inter-professional relationships due to

overreliance on communicating by apps, resulting in a decrease in verbal communication,

and unprofessional behaviours in the use of smartphones by residents (Gill et al., 2012).

Another important issue is the effect on aspects of essential communication between

patients and care providers, such as eye contact, gestures, visibility of actions, and verbal

and nonverbal contact (Gill et al., 2012; Payne et al., 2012).

2.2 The Android Platform and Its Security

The main goal of this thesis is to protect sensitive information of mHealth apps and

their user. MHealth apps operate on mobile platforms, and because the Android operating

system is chosen as the target platform in this thesis, there is a need to review its structure

as well as its security model in detail. This section briefly presents the details of Android

OS, its components, the possible types of communication in the system, and the supported

security mechanisms.

2.2.1 Android System Architecture

Android is a Linux based operating system developed primarily for mobile devices

(e.g., smartphones or tablets) circa 2003 by Android Inc. (Elgin, 2005). Soon after,

Google acquired this company in 2005. Google commenced the first Android device in

Univ
ers

ity
 of

 M
ala

ya

33

October 2008, and thenceforth it maintains the development of the operating system, as

well as its marketing and support. Google also releases the source code of Android under

open source licenses, and allows vendors to customize new releases of the operating

system and to use the customized version in their own devices, subject to the compliance

of a special compatibility agreement (Project, 2016).

Android operating system is a stack of software components, as shown in Figure 2.5.

Android platform comprises a Linux kernel, a middleware layer and an application layer.

Google customized the underlying Linux internals to provide strong isolation between

different processes, and then built the whole system upon the modified Linux kernel. The

kernel also serves as an abstraction layer between the hardware and other software layers

(Rashidi & Fung, 2015). The Linux kernel provides the usual basic facilities, for instance:

memory management, device drivers, process scheduling, and a file system.

The Android middleware layer lies on the top of the Linux kernel. This layer contains

three main components: the application framework, the native operating system libraries,

and the Android runtime environment. The application framework is written in Java and

is a collection of services that define the environment in which Android apps are run and

managed. These services are offered to apps as Java classes. System applications such as

the system content providers and system services are also part of the application

framework. These applications and services provide the essential functionalities and

services of the platform, such as System Settings, Clipboard, LocationManager,

WifiManager, and the AudioManager. In Android platform, system content providers are

essential databases, while system services provide the required high-level functions to

control the device’s hardware and to get information about the platform state, such as

location and network status.

Univ
ers

ity
 of

 M
ala

ya

34

Another part of the middleware is a set of native libraries, which provide

functionalities such as graphics processing and multimedia support. These libraries are

written in the C/C++ programming language. The final part of Android middleware layer

is the runtime environment, which comprises the Dalvik Virtual Machine and core Java

libraries. This layer is mostly written in C/C++ except parts of the core libraries, and is

customized for the specific needs and requirements of resource-constrained mobile

devices.

As illustrated in Figure 2.5, Android Application layer is located at the top of the

Android software stack. This contains both the pre-installed apps (i.e., native Android

apps) and the third party apps developed by different (unofficial) app developers. Apps

are written in Java, but for performance reasons may include native code (C/C++), which

is called through the Java Native Interface (JNI). Basically, the Android OS is a multi-

user system, in which each app has a unique user ID (UID). All files in an app will be

assigned to that apps UID and usually not accessible to other apps. Each app runs in its

own Linux process with a unique UNIX user identity and isolated from other apps, so

that apps must explicitly share data and resources. In this way, Android platform

implements the principle of least privilege. Generally, Android app consists of certain

components: Activity (User interface), Service (background process), Broadcast Receiver

(mailbox for broadcast messages), and Content Provider (SQL-like database) (Bugiel,

Davi, Dmitrienko, Heuser, et al., 2011).

The usual path to develop Android apps is to use the special Software Development

Kit (SDK) provided by Google, which include an extensive set of tools and API libraries,

using the Java programming language. This development option relies on the rich Java

application framework in Android, which enable developers to interact with various

aspects of the system including hardware and software components, such as sensors,

Univ
ers

ity
 of

 M
ala

ya

35

wireless interfaces, telephony services, as well as multimedia and user interface elements.

It is also possible to write native apps in the C/C++ language through the special Native

Development Kit (NDK) (Android, 2016a). A finalized Android app is not distributed in

the traditional Java bytecode format within “.class” files or “.jar” archives. Rather,

Android development kit includes a tool that converts the Java compiled bytecode into

custom bytecode in the form of “.dex” files to be executed by the Dalvik virtual machine.

Developers have also to sign their apps, though they can use self-signed certificates

(Android, 2016c). The official online store and market for Android apps is Google Play

(Google, 2016), where developers can distribute and sell their apps.

APPLICATIONS

Home Contacts Phone Browser

 LIBRARIES ANDROID RUNTIME

APPLICATION FRAMEWORK

Activity
Manager

Window
Manager

Notification
Manager View System Content

Providers

Location
Manager

Telephony
Manager

Package
Manager

Resource
Manager

XMPP
Service

Surface
Manager SQLite Media

Framework Core Libraries

FreeType WebKit OpenGL ES
Dalvik Virtual

Machine

SSL SGL libc

LINUX KERNEL

Display
Driver

Camera
Driver

Bluetooth
Driver Audio Drivers Binder (IPC)

Driver

WiFi Driver Power
Management

Process
Management

Memory
Management

Flash Memory
Driver

Figure 2.5: Android System Architecture

Android platform is a common target for academic research studies, including the

present one. The main reason behind this popularity is straightforward: Android is an

Univ
ers

ity
 of

 M
ala

ya

36

open product; its source code is available from Google for interested parties, including

other software developers and hardware vendors. This has resulted in an interesting

outcome. On the one hand, researchers can dissect the operating system source code,

studying relevant parts to their research and potentially modifying the code base

accordingly. The possession of a real and mature operating system code at the disposal

of researchers to experiment with and implement new ideas proved very attractive and

rewarding. Most of the research literature on mobile platforms is directed towards

Android, which results in yet more studies that address this platform.

On the other hand, being released under an open license (subject to compliance

agreement), Android platform can be adopted by any hardware vendors, including mobile

device manufacturers or embedded-system developers. The target devices that employ

Android are far more than those employing competing mobile platforms. For example,

the market share of Android-based smartphones is almost 87.6% as of 2016 (International

Data Corporation, 2016). This means that research studies on the Android platform have

much broader potential impact than studies performed on other mobile platforms. Also

related to this point is the fact that more hardware devices from various vendors are

available to experiment with. This enables researchers to verify their results on a variety

of designs and implementations.

The aforementioned reasons justify for the selection of Android platform as the main

target in this as well as other studies. Nevertheless, it is worthy emphasizing that most of

the results are often applicable to other mobile platforms, with some modifications that

depend on the nature of the study.

2.2.2 The Structure of Android Apps

An Android app is an application software that is developed to be run on mobile

devices, such as smartphones or tablets (Techopedia, 2016). Each Android app contains

Univ
ers

ity
 of

 M
ala

ya

37

one or more of four main components: activities, services, broadcast receivers or content

providers. With a few exceptions, communication between apps occurs through the

middleware layer, which defines the different types of inter-process communication

(IPC). There is a direct correspondence between types of IPC and the four main

components of apps. In general, IPC is implemented through objects called intent

message (Enck, Ongtang, & McDaniel, 2009). By definition, an intent is “an abstract

description of an operation to be performed” (Developers, 2016b). Intents are addressed

either directly to a component using the application’s unique namespace, or to an action

string. For instance, it can be used with the startActivity() method to launch an Activity,

with the bindService(Intent,ServiceConnection,int) or startService(Intent) methods to

communicate with a background Service, and with the broadcastIntent() method to send

it to any interested BroadcastReceiver components. Further, developers define intent

filters based on action strings for different components of apps to automatically start out

on corresponding events. For instance, two different Android apps’ components and their

interaction is shown in Figure 2.6. The details of an app components are given below.

Application A

Process

Application B

Process

Activity B

Activity A Broadcast
Receiver

Activity

Content
Provider SQLite

Intent

Intent

Intent

Intent from
system or
other apps

Figure 2.6: Android App Components and Their Interactions

2.2.2.1 Activity

An activity component represents a single screen with a user interface (Developers,

2016a). An activity component interacts with the user through touchscreen and keypad.

Univ
ers

ity
 of

 M
ala

ya

http://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
http://developer.android.com/reference/android/content/BroadcastReceiver.html

38

Apps usually contain multiple activities, one for each screen presented to the user. for

example, in an email app, one activity shows a list of new emails, another activity for

reading emails, and another activity to compose an email.

2.2.2.2 Service

A service is “a component that runs in the background to perform long-running

operations or to perform work for remote processes” (Developers, 2016a). A service

component does not provide a user interface. Furthermore, this component provides

background processing that continues even after its app loses focus. Services also define

arbitrary interfaces for remote procedure call (RPC), including method execution and

callbacks, which can only be called after the service has been bound.

2.2.2.3 Content provider

A Content Provider component manages a shared set of app data. This component is

a database-like mechanism for sharing data with other apps. An app user can store the

data in the file system, an SQLite database, on the web, or any other persistent storage

location that apps can access. The interface with content providers does not use intents,

but rather is addressed through a content URI. It supports standard SQL-like queries, e.g.,

SELECT, INSERT, UPDATE, through which components in other apps can retrieve,

store or even modify the data according to the content provider’s schema (i.e., if the

content provider allows it).

2.2.2.4 Broadcast receiver

A broadcast receiver is another Android app component that responds to system-wide

broadcast announcements. It is an asynchronous event mailbox for broadcasted intent

messages.

Univ
ers

ity
 of

 M
ala

ya

39

Many broadcasts originate from the system, for instance, a broadcast announcing that

the battery is low, the screen has turned off, or a picture was captured. Apps can also

initiate broadcasts, for instance, to let other apps know that some data has been

downloaded to the device and is available for them to use (Developers, 2016a).

Every app package includes a manifest file. The manifest file defines all components

in an app that also includes their types and intent filters. Note that Android platform

allows apps to dynamically create broadcast receivers that do not appear in the manifest

(Enck et al., 2009).

2.2.3 Android Security Model

This section briefly lists the security mechanisms that Android platform uses to secure

the application environment. Android implements a number of security mechanisms, the

most prominent of which are application sandboxing and a permission framework that

enforces mandatory access control (MAC) on inter-component communication calls and

on the access to core functionalities. A detailed overview of Android security mechanisms

can be found in (Android, 2016b).

2.2.3.1 Android permission system

By default, Android apps have limited access to system’s resources and to each other’s

components. The access to sensitive resources within Android is protected through a

security mechanism called permissions. It provides protected APIs for the sensitive

resources, including telephony, GPS, location, camera, Bluetooth, SMS/MMS and

network access. To make use of the protected APIs, an Android app must declare the

permissions associated to those APIs’ in its own manifest file, and the permissions are

agreed upon at installation time by the user.

Univ
ers

ity
 of

 M
ala

ya

40

2.2.3.2 Application sandboxing

All installed apps on Android platform run in an application sandbox. The Android

assigns a unique user identifier (UID) to each app and runs it as an individual user in a

separate process. Furthermore, each app runs in its own instance of the DVM under the

assigned UID. This sandboxing mechanism also applies to native code contained in apps.

However, apps from the same vendor can use a shared UID, hence basically sharing the

sandbox. Basically, the kernel enforces security between applications via standard Linux

features, such as UID-based permissions and process isolation.

2.2.3.3 Application signing

Application signing allows to identify the author of an app. Application signing is the

first step to ensure the application sandbox mechanism; certificates are signed to ensure

which UID is associated to which app and different apps run under different UIDs. As an

app is installed on Android OS, the system verifies that the app has been properly

certified.

2.2.3.4 Secure inter-process communication

In Android platform, processes can communicate by using any of the standard UNIX-

style mechanisms. Android platform also provides new Inter-Process Communication

(IPC) mechanisms that includes binder, intents, services and content providers. Binder is

a lightweight remote procedure call mechanism that is designed for high-performance in-

process and cross-process calls. Services can provide interfaces directly accessible using

Binder.

2.2.3.5 SELinux

Android employs Security-Enhanced Linux (SELinux) (Shabtai, Fledel, & Elovici,

2010) to apply mandatory access control. SELinux is the primary Mandatory Access

Control (MAC) mechanism built into a number of GNU/Linux distributions.

Univ
ers

ity
 of

 M
ala

ya

41

2.2.4 Android Security Research Trends

Recently, a number of security extensions for Android have been proposed. Figure 2.7

is classifying the diverse and rich literature on Android security into a comprehensive

taxonomy of research directions.

Android
Security
Research

Analysis of
existing

security model

Enhancing
existing

security model

Protection
mechanisms

Apps analysis

Permissions

Attacks & vulnerabilities

Forensics

Malware detection/prevention

Apps plagiarism / repackaging

Third-party code

Privacy leaks detection/prevention

Context-aware access control

Fine-grained access control

Runtime policy enforcement

Domain isolation

SELinux-based

Security profiles

Fake data

Figure 2.7: Taxonomy of Literature on Android Security

Two major directions can be recognized in existing studies on the current security

model of Android (Enck, 2011). Some researchers focus on the protection mechanisms

while others analyse the apps themselves. When it comes to the Android security model,

one of the most obvious and common targets for research studies is the permissions

system. Researchers have covered several aspects related to permissions. Few works have

explained the permission system (Felt, Chin, Hanna, Song, & Wagner, 2011), while

others have analysed them (Au, Zhou, Huang, & Lie, 2012; Barrera, Kayacik, van

Oorschot, & Somayaji, 2010; Sarma et al., 2012; Shin, Kiyomoto, Fukushima, & Tanaka,

2010; R. Stevens, Ganz, Filkov, Devanbu, & Chen, 2013). Other studies have questioned

Univ
ers

ity
 of

 M
ala

ya

42

their effectiveness (Felt, Greenwood, & Wagner, 2011; Orthacker et al., 2011), and also

their usability (Felt, Ha, et al., 2012; Kelley et al., 2012). Yet, further research proposed

improvements to the permission system itself (Do, Martini, & Choo, 2014; Fragkaki,

Bauer, Jia, & Swasey, 2012; Jeon et al., 2012; Shen et al., 2014). In addition, research on

permissions includes attempts to guide developers on how to request the right permissions

(Vidas, Christin, & Cranor, 2011) as well as guidelines for platform designers (A. M. A.

Al-Haiqi, 2015; Felt, Egelman, Finifter, Akhawe, & Wagner, 2012).

One of the most infamous attacks on the Android platform is the privilege escalation

attack. In this attack, an app that lacks enough permissions can delegate the performance

of a task that needs missing privileges to another app with the necessary permissions.

This attack has been analysed in many studies (Davi et al., 2011; Felt, Wang, Moshchuk,

Hanna, & Chin, 2011; Marforio, Ritzdorf, Francillon, & Capkun, 2012). Another type of

studied attacks include the exploitation of various vulnerabilities, such as those at the

level of system design (Lee, Lu, Wang, Kim, & Lee, 2014) and the level of managing

package updates (Xing, Pan, Wang, Yuan, & Wang, 2014).

Examples of other miscellaneous attacks include the exploitation of external device

mis-bonding (Naveed et al., 2014), the usr-interface state inference attack (Chen, Qian,

& Mao, 2014), the denial-of-app attack (Arzt, Huber, Rasthofer, & Bodden, 2014), and

the attack on the WebView component (Luo, Hao, Du, Wang, & Yin, 2011). Furthermore,

Android forensics received a lot of attention as well (Hoog, 2011; Lessard & Kessler,

2010; Spreitzenbarth, 2011), examples include forensic methods of collection and

acquisition (Simão, Sícoli, Melo, Deus, & Sousa Júnior, 2011; Vidas, Zhang, & Christin,

2011), methods for analysing the file system (Quick & Alzaabi, 2011; Schmitt, 2011),

and techniques to counteract the forensic methods (Albano, Castiglione, Cattaneo, & De

Santis, 2011; Distefano, Me, & Pace, 2010; Karlsson & Glisson, 2014).

Univ
ers

ity
 of

 M
ala

ya

43

Malicious apps (malware) are the main vehicle to implement threats on the Android

platform. Therefore, many research studies can be classified under the category of

malware analysis (Felt, Finifter, Chin, Hanna, & Wagner, 2011; Yan & Yin, 2012; Y.

Zhou & Jiang, 2012). Other studies focused on malware detection (Aafer, Du, & Yin,

2013; Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014; Bläsing, Batyuk, Schmidt,

Camtepe, & Albayrak, 2010; Burguera, Zurutuza, & Nadjm-Tehrani, 2011; Enck et al.,

2009; Gorla, Tavecchia, Gross, & Zeller, 2014; M. Grace, Zhou, Zhang, Zou, & Jiang,

2012; Sanz et al., 2013; Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012;

Weichselbaum et al., 2014; D.-J. Wu, Mao, Wei, Lee, & Wu, 2012; W. Zhou, Zhou,

Grace, Jiang, & Zou, 2013; Y. Zhou, Wang, Zhou, & Jiang, 2012). Few researchers even

evaluated malware detectors (Maggi, Valdi, & Zanero, 2013; Rastogi, Chen, & Jiang,

2013; Zheng, Lee, & Lui, 2012).

The analysis of Android apps revealed new types of threats, such as apps repackaging

(Crussell, Gibler, & Chen, 2012, 2013; Gibler et al., 2013; Hanna et al., 2012; Linares-

Vásquez, Holtzhauer, Bernal-Cárdenas, & Poshyvanyk, 2014; W. Zhou, Zhang, & Jiang,

2013; W. Zhou, Zhou, Jiang, & Ning, 2012). Another example of new threats is the

problem of embedded third-party code (Sun & Tan, 2014), especially threats from

advertisement libraries (M. C. Grace, Zhou, Jiang, & Sadeghi, 2012; Pearce, Felt, Nunez,

& Wagner, 2012; Shekhar, Dietz, & Wallach, 2012; Zhang, Ahlawat, & Du, 2013).

Malware is not the only threat that apps can impose on users. Apps might leak users’

sensitive data unintentionally. This type of apps is sometimes referred to as grayware.

Techniques to protect privacy were addressed by many research works. One of the most

common techniques is the concept of information-flow tracking. In this technique, private

data are tainted and then traced throughout its flow in the app. The flow is logged and

possibly blocked whenever a labelled object moves from a private domain to a public

Univ
ers

ity
 of

 M
ala

ya

44

domain (e.g., transferred out through the network). A famous implementation of this type

of techniques is TaintDroid (Enck et al., 2014). Other examples of dynamic taint tracking

can be found in (Gilbert, Chun, Cox, & Jung, 2011; Hornyack, Han, Jung, Schechter, &

Wetherall, 2011; Mollus, Westhoff, & Markmann, 2014; C. Zheng et al., 2012).

Another technique to detect leakage of private data is the static analysis of the source

code of Android apps after decompilation (Arzt, Rasthofer, et al., 2014; Chan, Hui, &

Yiu, 2012; Chin, Felt, Greenwood, & Wagner, 2011; Fuchs, Chaudhuri, & Foster, 2009;

M. C. Grace, Zhou, Wang, & Jiang, 2012; Z. Yang & Yang, 2012). Additional techniques

include symbolic execution (Z. Yang et al., 2013), instrumentation of byteode (Bartel,

Klein, Monperrus, Allix, & Le Traon, 2012; Karami, Elsabagh, Najafiborazjani, &

Stavrou, 2013) and repackaging apps (Berthome, Fecherolle, Guilloteau, & Lalande,

2012).

Aside from examining protection mechanisms and analyzing available apps,

significant portion of the research on Android security proposes various enhancements to

its security model. Several studies proposed enhancements to extend the current platform

in the form of new frameworks. Those enhancements aimed to improve several aspects

of the system’s security and the user’s privacy. For example, Saint (Ongtang,

McLaughlin, Enck, & McDaniel, 2012) proposes a framework to control grants of install-

time permissions and the use of those granted permission during runtime, all according

to a policy dictated by the app developer. Other frameworks that enhance runtime policy

include Apex (Nauman, Khan, & Zhang, 2010), Aurasium (R. Xu, Saïdi, & Anderson,

2012) and AppGuard (Backes, Gerling, Hammer, Maffei, & von Styp-Rekowsky, 2014).

Another way to improve Android security is to provide context-aware privacy. Among

the works that proposed the latter are (Bai, Gu, Feng, Guo, & Chen, 2010; Chakraborty

et al., 2014; Conti, Nguyen, & Crispo, 2011). Other works extended the security model

Univ
ers

ity
 of

 M
ala

ya

45

with fine-grained access control (Bugiel, Heuser, & Sadeghi, 2013; Russello, Crispo,

Fernandes, & Zhauniarovich, 2011; Y. Zhou et al., 2011). One solution enables the users

to reply to apps’ requests with empty or unavailable resources, based on certain conditions

(Beresford, Rice, Skehin, & Sohan, 2011). Yet another way to improve the security model

is by implementing isolation between several security domains (Bugiel, Davi,

Dmitrienko, Heuser, et al., 2011), by providing different security profiles (Zhauniarovich,

Russello, Conti, Crispo, & Fernandes, 2014), or by enabling differentiated user access

control (Ni, Yang, Bai, Champion, & Xuan, 2009). SELinux-based mandatory access

control was also added to the Android architecture (Bugiel, Heuser, & Sadeghi, 2012;

Shabtai et al., 2010).

It might be worthy to note, however, that comprehensive surveys on that rich Android

security literature are very limited and many times outdated (Becher et al., 2011; Enck,

2011; La Polla, Martinelli, & Sgandurra, 2013). Table 2.1 summarizes existing security

solutions on Android.

Table 2.1: A Summary of Existing Android Security Proposals in the Literature

System Reference Technique(s)
Used

Brief Description

Kirin (Enck et al.,
2009)

Rule-based
system

The Kirin security service is proposed to perform
lightweight certification of apps to mitigate malware at
install time. Kirin security service uses a set of security
rules on apps’ requested permissions to detect matched
malicious permission requests and characteristics. Kirin
extracts the permissions from an app’s manifest file at
install time, and checks whether these permissions are
breaking certain security rules. Kirin uses a variant of
security requirements engineering techniques to perform
in-depth security analysis of Android platform to develop
a set of security rules that match malware characteristics.

APEX (Nauman et
al., 2010)

Rule-based
policy

Apex is a comprehensive policy enforcement framework
for Android platform, which allows a user to selectively
grant permissions to different apps, and impose
constraints on the usage of resources. Users can define
their constraints through a simple interface of the
extended Android installer called Poly.

Univ
ers

ity
 of

 M
ala

ya

46

Table 2.1, Continued

System Reference Technique(s)
Used

Brief Description

Paranoid
Android

(Portokalidi
s,
Homburg,
Anagnostak
is, & Bos,
2010)

Misuse
detection

This system is cloud-based detection framework that
performs security checks on a remote server. This server
hosts exact replicas of user smartphones in separate
virtual machines. The novelty of Paranoid Android is to
move the process of security checks from the mobile
device to a cloud server. The reason behind this is the lack
of adequate computational power and battery energy on
mobile platforms.

Porscha (Ongtang,
Butler, &
McDaniel,
2010)

Rule-based
policy, secure
delivery

Porscha focuses on the protection of contents based on
Digital Rights Management (DRM), such as MP3-based
MMS or email. This system places reference monitors
and content proxies within the middleware to enforce
DRM policies embedded in the received content. The
primary goal of the system is to improve the enforcement
of DRM policy and ensure that protected content is only
accessed by authorized parties and is only accessible by
apps that are endorsed by the provider. In addition,
Porscha ensures the ability to access contents under
policy-defined contextual constraints (e.g., time
limitation, a maximum number of viewings, etc.).

AppFence (Hornyack
et al., 2011)

Dynamic taint
analysis,
resource-
access
mocking

AppFence provides a mechanism to impose privacy
controls on existing (unmodified) Android apps.
AppFence provides a data shadowing mechanism to
prevent apps from accessing sensitive information that is
not required to perform user-desired functionalities, and
it also provides an exfiltration blocking mechanism to
block outgoing communications tainted by sensitive data.
Both of these privacy controls are used to limit an app’s
misuse of user sensitive data.

QUIRE (Dietz,
Shekhar,
Pisetsky,
Shu, &
Wallach,
2011)

Call-chain
propagation

QUIRE deals with attacks based on inter-component
communication. This system employs a call-chain
tracking technique that provides important contexts in the
form of provenance and OS managed data security to
local and remote apps communicating by IPC and RPC
respectively.

CRePE

(Conti et
al., 2011)

Rule-based
policy

CRePE is a system to enforce fine-grained policies in the
Android platform based on the smartphone’s context (i.e.,
the status of some variables such as location, time, noise,
light, and temperature). Users or trusted third parties are
allowed to define fine-grained context-related policies in
the CRePE system.

TISSA (Y. Zhou et
al., 2011)

Resource-
access
mocking

TISSA implements a privacy mode on Android, which
allows a user to flexibly control, what types of private
information will be accessible to an app. Further, users
can dynamically (re)adjust the granted access at runtime
in a fine-grained manner to achieve their specific desired
functionalities.

Univ
ers

ity
 of

 M
ala

ya

47

Table 2.1, Continued

System Reference Technique(s)
Used

Brief Description

TrustDroid (Bugiel,
Davi,
Dmitrienko
, Heuser, et
al., 2011)

Domain
isolation

This is a security framework that provides a lightweight
domain isolation on each layer (i.e., middleware layer,
kernel layer, and network layer) of the Android software
stack, in order to mitigate unauthorized data access and
communication among apps. TrustDroid isolates data as
well as apps of different trust levels in a lightweight
fashion. Basically, it provides app and data isolation by
controlling the main communication channels in Android:
IPC, databases, files and socket connections.

MockDroid (Beresford
et al., 2011)

Resource-
access
mocking

MockDroid grants fake permissions to protect private
data and allows users to provide fake or ‘mock’ data to an
app interactively, while the app is being used. Users are
allowed to revoke access to particular resources at
execution time.

Crowdroid (Burguera
et al., 2011)

Anomaly
detection

This is a behaviour based malware detection system. It
detects anomalously behaving apps through a
crowdsourcing framework. Crowdroid analyses the
behaviour of Android apps to differentiate between the
apps that have identical names and versions, but behave
differently.

ComDroid (Chin et al.,
2011)

Static analysis ComDroid is a mechanism to discover vulnerabilities
related to communication between apps. Because many
of such vulnerabilities caused by the ability of intents to
implement both intra and inter-app communication, this
system examines interactions between apps and detects
risks that might arise in app components. Types of
possible vulnerabilities include phishing, data loss, and
other unexpected behaviors.

XManDroid (Bugiel,
Davi,
Dmitrienko
, Fischer, &
Sadeghi,
2011)

ICC &
channel
control

XManDroid is a security framework that mitigates
privilege escalation attacks. It extends the monitoring
mechanism of Android OS to detect and prevent app-level
privilege escalation attacks at run-time based on system-
centric policy. XManDroid monitors all interactions
between apps and dynamically analyses the apps’
transitive permission usage. The communication links
that are being monitored should pass verification process
against a set of policy rules. In the end, depending on pre-
defined policies, the system allows for an effective
detection of (covert) channels established through the
Android system services and content providers, while
simultaneously optimizing the rate of false positives.

RiskRanker (M. Grace
et al., 2012)

Static analysis RiskRanker is an automated system to analyse whether a
particular app exhibits dangerous behaviour. It is a
proactive scheme to spot zero-day Android malware.
RiskRanker tries to measure potential security risks
caused by untrusted apps.

Univ
ers

ity
 of

 M
ala

ya

48

Table 2.1, Continued

System Reference Technique(s)
Used

Brief Description

Saint (Ongtang et
al., 2012)

Rule-based
policy

Saint is another work that allows app developers to
provide security policies to be enforced in order to
regulate installation-time permission assignment and
their run-time use. Saint introduces a fine-grained,
context-aware access control model to enable developers
to install policies that protect the interfaces of their apps.
Though Saint could, with a corresponding system centric
policy, provide the isolation of apps on direct and
broadcast ICC, it cannot prevent indirect communication
via system components.

FlaskDroid (Bugiel,
Heuser, et
al., 2012)

MAC FlaskDroid is a general architecture for ensuring
Mandatory Access Control (MAC) on both Android’s
middleware and its kernel layer simultaneously. This
architecture provides an effective and flexible security
mechanism to setup various security solutions and fine-
grained policies. The authors of the architecture designed
a policy language that was inspired by SELinux
(Loscocco & Smalley, 2001) in order to extract
customized operational semantics at the Android
middleware.

DroidScope (Yan &
Yin, 2012)

Dynamic
analysis

DroidScope is an Android analysis platform that inspects
apps and builds semantic views at both the operating
system and Java levels. This platform is a dynamic virtual
machine introspection tool that is based on QEMU
emulator (Bellard, 2005) with custom analysis plugins in
the form of defined APIs. To collect apps’ activities and
trace executions, this system exports APIs of three
different types: APIs at the application framework layer,
APIs at the hardware layer, and APIs at the Dalvik Virtual
Machine layer.

DroidRanger (Y. Zhou et
al., 2012)

Static &
dynamic
analyses

DroidRanger is an analysis system to detect existing and
known malware as well as unknown malware, usually
named as zero-day threats. DroidRanger detect known
malware using behavioral foot-printing scheme based on
permissions. For detecting zero-day malware,
DroidRanger applies a filtering scheme based on
heuristics in order to find specific inherent behaviors of
unknown malware families.

DroidMOSS (W. Zhou et
al., 2012)

Fuzzy
hashing

DroidMOSS is an app similarity measurement system. It
applies a fuzzy hashing technique (French & Casey,
2012; Server, 2007) to localize and detect the changes
from app-repackaging behaviour. Basically, the main
function of DroidMOSS is to detect repackaged apps on
third-party Android marketplaces. They measure the
similarity of apps that are collected from third-party
Android marketplace with the apps from the official
Android markets.

Univ
ers

ity
 of

 M
ala

ya

49

Table 2.1, Continued

System Reference Technique(s)
Used

Brief Description

AppGuard (Backes,
Gerling,
Hammer,
Maffei, &
von Styp-
Rekowsky,
2013)

Binary
rewriting

AppGuard enforces security-related policies on untrusted
apps, which are customized by the users. This system
employs inline reference monitoring to allow users of
enforcing security policies defined by them on third party
apps. AppGuard controls both third-party apps and the
operating system itself.

AppInk (W. Zhou,
X. Zhang,
et al., 2013)

Dynamic
watermarking

AppInk is mechanism for dynamic watermarking based
on graphs. The purpose of this mechanism is to mitigate
app repackaging. This tool generates a new app from the
source code of one app with a watermark value. The
generated app has a transparent embedded watermark and
an associated manifest file.

TaintDroid (Enck et al.,
2014)

Dynamic taint
analysis

TaintDroid is a system that tracks data flow and allows
users to analyze flows of sensitive data. This system
enables expert users to detect misbehaving apps, by
automatically tainting sensitive data in the smartphone in
order to trace them and find out whether the labeled data
leave the device. In the latter case, the label of the leaked
data is recorded along with the app which sent the data
and the destination address.

NativeGuard (Sun &
Tan, 2014)

Native code
isolation

NativeGuard is a framework that uses the system-
provided isolation between Android processes to sandbox
native libraries of an app from other components of the
app.

2.2.5 Issues in Android Security

A key component of the Android security model is the permission system that controls

the access to sensitive device resources by third-party apps. However, Android’s

permission control mechanism has been proven ineffective to protect user’s privacy and

resource from malicious apps (Rashidi & Fung, 2015). Further, it has been shown that the

majority of smartphone apps attempt to collect data that are not required for the main

function of the app (Gunasekera, 2012; Rashidi & Fung, 2015). Reasons for the

drawbacks of the existing permission system include users inexperience with realizing

irrelevant resource requests and their urge to use the app even at the expense of

Univ
ers

ity
 of

 M
ala

ya

50

compromising their privacy (Felt, Chin, et al., 2011; Felt, Ha, et al., 2012; Rashidi &

Fung, 2015).

Further, vulnerabilities in Android kernel can be exploited to obtain access to

resources or services that are by default protected from an app or a user. This type of

attack is called privilege escalation attack and it enables unauthorized apps to perform

actions with more privileges than they have been granted. This, in turn, leads to

unauthorized access to user data and many sensitive information leakages. It is also

possible to exploit Android exported (i.e. public) components an obtain access to critical

permissions, and hence, to sensitive resources and information (Davi et al., 2011; Rashidi

& Fung, 2015).

There is also the threat of colluding apps, where several apps are developed by the

same developer, and therefore released under the same certificate. Users install theses

apps, some of which are granted sensitive permissions and others are granted normal

ones. Afterwards, each of these apps gets access to the combined pool of their permissions

and resources because they are all assigned the same UID (Marforio, Francillon, &

Capkun, 2011; Rashidi & Fung, 2015).

Android platform lacks a configurable, runtime ICC control. This was a design

decision to fulfil several purposes. The first purpose is to prevent an app from accessing

any open interfaces of another app, even if the former had obtained the required

permissions at its install time (Chin et al., 2011; Felt, Wang, et al., 2011; Tan, Chua, &

Thing, 2015). The second objective is to prevent an app from intercepting an intent

broadcast, and possibly stopping its propagation afterward (Chin et al., 2011; Tan et al.,

2015). By intercepting system-event broadcasts, a malicious app is able to intercept

important system events stealthily, which contain sensitive information, such as an

incoming call or SMS. A third purpose is to isolate apps and prevent them from

Univ
ers

ity
 of

 M
ala

ya

51

communicating via ICC and other shared channels (Bugiel, Davi, Dmitrienko, Fischer, et

al., 2011; Bugiel, Davi, et al., 2012; Tan et al., 2015). However, this lack of runtime inter-

app access control can lead to data leakage and confused deputy problems. The presently

uncontrolled ICC among apps in Android can be exploited by colluding apps.

Moreover, an Android device has several identifiers that can be used as a unique device

ID, such as IMEI, Android system ID, or hardware serial number (Tan et al., 2015). As

Android devices are prone to information leakage, if this device ID is also leaked, external

parties can track the user easily.

Even outside the Android middleware, there exist potential security weaknesses that

could compromise the security of an Android device. In particular, potential security

weaknesses or vulnerabilities can be located at the Linux kernel and its native libraries

(Loscocco & Smalley, 2001; X. Zhou et al., 2013). Also, weaknesses and vulnerabilities

can be associated with device manufacturers’ customization and preinstalled apps (M. C.

Grace, Y. Zhou, et al., 2012; Tan et al., 2015; L. Wu, Grace, Zhou, Wu, & Jiang, 2013;

X. Zhou, Lee, Zhang, Naveed, & Wang, 2014).

2.3 Security and Privacy of mHealth Apps

This section provides the most relevant and related work in the literature to the

problem of mHealth-apps’ security and privacy, starting with a review of the main

security and privacy threats to mHealth apps, then presenting the results of an

experimental assessment of sample mHealth apps, and then ending with a critical analysis

of existing solutions.

2.3.1 Threats to mHealth Apps

Although mHealth apps provide a lot of benefits and easy access to healthcare services,

they are loaded with new security and privacy risks to mHealth app user (Avancha et al.,

Univ
ers

ity
 of

 M
ala

ya

52

2012; Kotz, Avancha, & Baxi, 2009; Poon, Zhang, & Bao, 2006). Smartphone apps for

healthcare are rapidly increasing. There are several types of mHealth apps, some are using

external devices such as medical sensors, and some apps are using smartphone resources,

such as the camera for the treatment of the patient. Recently, several studies showed that

lack of standardization, guidelines, security and privacy of user data are the main barrier

to the widespread use of mHealth apps, and these issues should be addressed in order to

improve mHealth apps reliability and usability (Adhikari et al., 2014; Faudree & Ford,

2013; Kharrazi et al., 2012).

The market of mHealth apps is nevertheless growing rapidly; hence, health data are

also increasing. Privacy and security of sensitive medical data could be significantly

affected by this new trend of treatment of the patient. mHealth apps handle sensitive

medical data for patients and healthcare professionals, and those data are as sensitive as

those handled by HIPAA entities, but mHealth apps handle the data using lower assurance

than HIPPA entities. There is a need to develop frameworks and guidelines for mHealth

apps to ensure the security and privacy of health data (He et al., 2014).

Android mHealth apps use third party servers and unsecured Internet communication

which have raised the security and privacy concerns. He et al (2014) revealed that several

mHealth apps send information over the Internet without encryption and put sensitive

information into logs. Numerous apps have component exposure threats, and some apps

store unencrypted information on an external storage, e.g., SD Card, where a malicious

app can read them. Several mHealth apps use Bluetooth in order to collect data from

health or medical sensors. In fact, Bluetooth play a major role for communication in

sensor-based health monitoring systems; mHealth apps collect numerous types of health

information from Bluetooth, such as electrocardiogram (ECG), heart rate, pulse oximetry,

respiration, blood pressure, body temperature, body weight, exercise activities and quality

Univ
ers

ity
 of

 M
ala

ya

53

of sleep (He et al., 2014). mHealth apps store various type of information without

encryption, including but not limited to, mobile users’ name, date of birth, country,

preferred language(s), culture preference(s), insurance carrier identifier, personal app

identifier, medications, medical conditions, physician(s), and pharmacies (Mitchell et al.,

2013).

mHealth apps are different from other health information systems from various

perspectives. First, mHealth apps collect large amount of data from patient because

mobile devices are always with the patient and can collect data for a long time. Second,

mHealth apps collect much broader range of data, which include not only physiological

data, but also include the patient activities, location, lifestyle, social interactions, diet

details, eating habits and so on. Third, the nature of communication between the patient

and healthcare professionals is different (He et al., 2014). These aspects imposed new

security and privacy threats to mHealth information systems.

There are several potential attack surfaces in Android system that a malicious party

can use to gain unauthorized access to sensitive medical data in mHealth apps. A recent

study (He et al., 2014) stated seven attack surfaces that need protection: Third Party

Services, Internet, Logging, Bluetooth, SD Card Storage, Side Channels and Exported

Components. mHealth apps in Google Play usually send sensitive medical data in plain

text and store them on third party servers whose confidentiality rules are not sufficient

for this type of data (He et al., 2014). Table 2.2 lists the seven attack surfaces that a

malicious party can use to access sensitive medical data.

Developers can view and collect debugging output of apps from Android logging

system; therefore, a malicious app with READ_LOGS permission may access sensitive

information from log messages. A malicious app with WRITE_EXTERNAL_STORAGE

or READ_EXTERNAL_STORAGE permissions can write or read files from external

Univ
ers

ity
 of

 M
ala

ya

54

storages, such as SD card (He et al., 2014). Android app developers can declare a

component as public or exported; if a component is declared as exported, then a malicious

app can send unwanted intents to the component. Furthermore, if a content provider is

declared as exported or public, this enables malcious apps to write or read the exported

content provider without any permission (He et al., 2014). A malicious party can also use

side channels to get sensitive information from mHealth apps in the Android operating

system (He et al., 2014).

Table 2.2: Description of Attack Surfaces (He et al., 2014)

Attack Surface Description
Internet Sensitive information is sent over the internet with insecure protocols, e.g.

HTTP, misconfigured HTTPS, etc.
Third Party Sensitive information is stored in third party servers
Bluetooth Sensitive information collected by Bluetooth-enabled health devices can be

sniffed or injected
Logging Sensitive information is put into system logs where it is not secured
SD Card Storage Sensitive information is stored as unencrypted files on SD card, publicly

accessible by any other app
Exported
Components

Android app components, intended to be private, are set as exported, making
them accessible by other apps

Side Channel Sensitive information can be inferred by a malicious app with side channels, e.g.
network package size, sequence, timing, etc.

He et al. (2014) identified another problem. Developers usually put sensitive

information into HTTPS URLs for secure transmission of data. However, even though

this information is not visible during transmission, it is still visible in other places, such

as server logs, mobile app logs, browser history and so on. It may be difficult to identify

or control who is accessing the logs. Mitchell et al (2013) used forensic analysis and

testing to prove that current mHealth apps lack adequate privacy and security controls.

The authors revealed that several apps store unencrypted personal information on the

smartphone itself. The log files show plain text instead of encrypted text from top-

downloaded app.

Univ
ers

ity
 of

 M
ala

ya

55

These issues are more important for mHealth apps that store personal health

information (PHI) or electronic health records (EHR) and exchange that data with health-

related websites (Mitchell et al., 2013). Data security, access control and confidentiality

are the main security issues in mHealth apps that must be addressed in order to use these

apps in healthcare system (Adhikari et al., 2014; He et al., 2014; Mitchell et al., 2013).

Security standards have not yet been fully implemented by OS developers, app

programmers, device manufacturers or the different levels of government agencies;

therefore, it is very easy for malicious parties to get access to user data collected by

mHealth apps. OS manufacturers commonly hide information relating to data security

and data collection policies inside the tens of pages of legalese presented to end users and

they usually click “Agree” without reading it (Mitchell et al., 2013).

McCarthy (2013) reported that most of the users’ data are poorly protected in mHealth

apps. The author also reported that in a technical analysis study of 43 health and fitness

apps, only 60% of the paid apps and 74% of the free apps had a privacy policy, and it is

accessible either on the developer’s website or in the app. However, only 48% of the paid

apps and 25% of the free apps informed users about the privacy policy. In addition, none

of the free apps and just one of the paid apps encrypted all the communications sent from

the device to the developer. The data without encryption in mHealth apps pose a serious

threat to users’ data privacy.

Adhikari et al. (2014) performed analysis on 20 most popular mHealth apps and

highlighted the various security concerns. In brief, the serious risks to users’ data are

insufficient security measures, lack of users’ authentication, sharing of information with

third party, and lack of users’ knowledge about the app.

Univ
ers

ity
 of

 M
ala

ya

56

Nowadays, users can easily enhance the functionalities of their smartphones by

connecting them to external devices, such as medical devices, sensors and credit card

readers, which allow them to use smartphones in various application domains such as

healthcare information systems and retail stores. However, this new development is not

accompanied by a corresponding levels of protection; indeed, if an app has permission to

use communication channels like Near Field Communication (NFC) and Bluetooth, then

it can easily access the devices that communicate with the smartphone on these channels

(Naveed et al., 2014).

Android’s permissions and sandbox security model mainly protect local resources,

such as SD-card, GPS, etc. Each of these resources is protected through one or more

permissions, and can only be accessed by Android apps that have appropriate permissions

to use particular resources. On the other side, no permissions are allocated to an external

device; however, android can only control channels that links smartphone to external

device, such as NFC, Bluetooth, Audio port, etc. The main problem here is that many

external devices share the same channel in order to communicate with smartphone and

many apps also claim the permission to use that channel for different purposes.

Consequently, it is very difficult to control unauthorized access on external devices in the

presence of those insiders (unauthorized apps that has permission to use the device’s

communication channel). Naveed et al. (2014) revealed this new security issue for

Android devices called as External Device Mis-Bonding (DMB).

A malicious app using DMB attack can surreptitiously collect patient’s data from an

Android device or spoof a device and inject fake data into the original device’s medical

app. In data-stealing attack, a malicious app with Bluetooth permission can surreptitiously

downlaod a patient’s sensitive data from external devices without being noticed, using

side-channel infromation to find the right moment for download. In data-injection attack,

Univ
ers

ity
 of

 M
ala

ya

57

a malicious app with Bluetooth permission can collect the pairing information of an

authorized device and reset the link key, and it can pair with a malicious device to inject

fake medical data into the original device’s official app. In fact, Bluetooth secure

communcation is designed for protecting device to device communication, not to protect

communcation between a device and an app (Naveed et al., 2014). External devices may

not develop their own authentication systems because these are simple sensors and

usually do not have much resources to ensure authentication.

Some of the most common threats to mHealth apps are defined in (Kotz, 2011). Those

threats include: (1) identity threats: misuse of patient identity information (PII); (2)

Access threats: unauthorized access to personal health information (PHI) or personal

health records (PHR); and (3) Disclosure threats: unauthorized disclosure of PII or PHI.

Disclosure Threats

Access Threats

Identity Threats

Physician or Student
Reference

Layperson

Communication, Education
and Research

Patient Care and Monitoring

Auth
ori

zat
ion

 &

Auth
en

tic
ati

on

Int
eg

rity
 &

Acco
un

tab
ilit

y

Ease
 of

 U
se

&

Ava
ila

bil
ity

Con
fid

en
tia

lity
,

Man
ag

em
en

t &

Phy
sic

al
Secu

rity

SECURITY

A
PP

PRIV
ACY

Figure 2.8: A Three-Dimensional Model for Classifying mHealth Apps in Terms of
Security and Privacy Concerns (Plachkinova et al., 2015)

Plachkinova et al. (2015) report the various types of threats that mHealth app are

posing to users. A taxonomy of mHealth apps with respect to security and privacy is

proposed by (Plachkinova et al., 2015), and it has three dimensions, as shown in Figure

Univ
ers

ity
 of

 M
ala

ya

58

2.8. Figure 2.9 depicts the proposed taxonomy based on the model in Figure 2.8. Details

can be found in (Plachkinova et al., 2015).

Patient Care and
Monitoring

Layperson

Communication,
Education and Research

Physician or Student
Reference

SECURITY
DIMENSION

Physical Security

Authentication

Accountability

Authorization

Integrity

Availability

Confidentiality

Ease of Use

Management

APP DIMENSION

Identity Threats Access Threats Disclosure ThreatsPRIVACY
DIMENSION

Figure 2.9: A Taxonomy of mHealth Apps - Security and Privacy Concerns
(Plachkinova et al., 2015)

2.3.2 An Empirical Assessment of mHealth Apps’ Security

To gain a first-hand experience with the security and privacy of mHealth apps, we

conducted an assessment experiment on mHealth apps. A sample of 100 mHealth apps

has been selected, downloaded, and inspected to identify possible security and privacy

issues. Figure 2.10 presents the results of this experiment, summarising the issues that

have been found on the sample mHealth apps. During the experiment, it was observed

that a lot of apps were disclosing the user data (73 out of 100). Only 11 apps out of 100

were accessing the external devices, and when checked against DMB attacks (for both

data injection and data stealing DMB attacks), not a single app was able to defend against

DMB attacks. Furthermore, 53 apps were a source for a malicious app to perform

privileges escalation attacks. Only 7 apps were using the encryption to secure user data.

Some apps were accessing user information that was not necessary at all to fulfil their

functionalities. Only, 45 percent of the apps were using authentication to secure user

information.

Univ
ers

ity
 of

 M
ala

ya

59

Among these 100 apps, 73 were detected to be leaking the private information. Most

of those apps request to access the location, contacts, call logs, phone identity, camera,

account information and Bluetooth. Among the 73 apps, 48 apps leak the location

information, 43 apps send the IMEI number, and 24 apps leak both IMEI number and

location information. Although 32 apps are accessing the contacts, most of them do not

need contacts to perform their functions. Further, 21 apps have permission to access

Bluetooth, which can cause DMB attack.

Figure 2.10: Security and Privacy Analysis of Sample mHealth Apps

2.3.3 Existing Solutions for mHealth Apps’ Security

Attempting to resolve security issues in mHealth apps is the focus of this thesis. This

section presents the most related proposals in the literature, which attempt to address the

problems of security and privacy for mHealth apps. It is notable that the number of

existing proposals is small, despite the importance of the topic. Below is a listing of those

works.

Yes
No

Total

45

7
22 27

60

11

53
55

93
78 73

40

0

47

100 100 100 100 100

11

100

Yes No Total

Univ
ers

ity
 of

 M
ala

ya

60

A policy framework is proposed in (Mitchell et al., 2013), which includes the

following guidelines to improve the security and privacy for mHealth apps:

• CONTEXT: Provide details about the applications, its capabilities and

limitations, and its use of patient information.

• MINIMIZATION: Minimize the amount of information that is collected

from/about the patient.

• INFORMED CONSENT/AWARE-PATIENT: The patient should be made

aware of how the information will be used and has been used by the application.

A more aware patient is likely to make better decisions about trade-offs

involving information privacy-security and healthcare benefits.

• OWNERSHIP: The ownership of the information should be well defined

meaning who owns the user data even in anonymous form.

• DELETION-AFTER-DEACTIVATION: If a patient has deactivated an

application, all information about/from the patient should be deleted.

• SECURE STORAGE: The information should be kept securely at device,

server or cloud. To reduce transmission over wireless networks, information

that is subject to change can be stored locally, while more static information can

be kept at a server.

• END-TO-END: Various weak points in the end-to-end security should be

identified and efforts be made to correct these weaknesses in applications,

devices, operating systems, networks, servers, among others.

This policy framework is a set of guidelines to follow for the developers and users.

These recommendations were developed based on the results of conducting a physical

forensics analysis of several widely used mHealth applications.

Univ
ers

ity
 of

 M
ala

ya

61

Another security and privacy solution for mHealth apps was proposed by (Adhikari et

al., 2014). Again, the authors proposed a set of recommendations to consumers and

mHealth app developers that can be found in Table 2.3. The proposed guidelines are based

on a comparative analysis of the 20 most popular mHealth apps at the time of publication.

The aim of the analysis was to identify risk and safe features that can help consumers

select safe mHealth apps and aid developers in building mHealth apps with appropriate

security and privacy measures.

Table 2.3: Recommendations to Consumers and Application Developers (Adhikari
et al., 2014)

Consumers Application developers
Research the app before
downloading it

Sensitive consumers’ information should always be stored
encrypted so that attackers cannot simply retrieve this data off
of the file system.

Try to use apps without entering
personal information if permitted

Apps should be designed to help patients through the
evolution of a disease and provide recommendations

Look for user reviews and the privacy
policy of an app, either through the
app store or online.

Include user authentication. Provide options so user can
safely retrieve their login details if forgotten. Only 10% or 2
apps out of 20 apps ask for user authentication prior to log-in.

Remove data when usage stopped.
This may prevent unauthorised use of
stored data when consumers no
longer use the apps.

Minimise sharing information with third parties or advertisers
and ask users to confirm agreement before sharing. 65% or
13 apps shared consumers’ information to third parties or
advertisers.

Give feedback on product: Users’
feedback on the features, privacy and
policy, and functions of an app will
help the developers to restructure the
app appropriately.

Apps should allow consumers to delete their personal
information completely. According to the analysis only 5%
or 1 apps mentioned in its privacy policy that consumers can
delete information completely therefore this criterion need to
be improved appropriately.

 Provide user with information about the implementation of
security measures and authentication and what how/where
their data is stored.

On a more technical level, a static taint-analysis framework was proposed by (He,

2014a), which is shown in Figure 2.11. Static taint analysis works by analysing tainted

data flows through Android apps and sending outputs to human analysts or to automated

tools which can make security decisions. Again, in this research, the author also proposed

some recommendations, listed below:

Univ
ers

ity
 of

 M
ala

ya

62

• Encryption is essential to secure personal data stored on mobile devices.

• When accessing web-based services for syncing users’ sensitive data, TLS/SSL

is necessary to be deployed throughout the Internet transmission session.

• Even though the network transmission session is protected and encrypted, using

third party services to store users’ sensitive data must be closely reviewed and

users should be informed when it is happening.

• Developer guidelines or training can be helpful in avoiding many of the

common mistakes that are rooted from development with poor secure practices.

• Risk assessment provided by authorities can further minimize the security risks

that may harm users.

Android Source
Code Parser Source Builder Sink Builder

Call Graph BuilderTaint AnalyserAnalysis Result Entry Point Builder

Figure 2.11: Static Analysis System Design Framework

In conclusion, there is no comprehensive solution for mHealth apps to address their

security and privacy issues. Most of the research work in the literature just proposed some

recommendations and guidelines for the developers and users of mHealth apps. This

thesis, on the other hand, is proposing a practical framework for mHealth apps that

protects the mHealth apps efficiently and effectively. The research in this thesis does not

ignore previous works, however, as building an effective solution involves a range of

functions and techniques that can be beyond the capabilities of a single project. For

example, the taint-analysis system in Figure 2.11 is employed in this thesis as part of the

proposed framework to provide static taint analysis of target mHealth apps.

Univ
ers

ity
 of

 M
ala

ya

63

2.4 Chapter Summary

This chapter provided a broad overview of the necessary background to appreciate the

research in this thesis, as well as the most related works in the literature. The main focus

of the research is to produce a security framework for Android platform to address the

security and privacy issues on mHealth apps. As such, three major sections were covered

in the chapter: first, a comprehensive literature-based review of mHealth apps and its

related landscape, benefits and challenges was provided. Second, the chapter presented a

brief background on the Android platform architecture and its security model, as the main

target platform in the thesis. Finally, the crossing of the previous two sections, mHealth

apps and Android security issues, was discussed in detail, in terms of specific threats to

mHealth apps, an empirical assessment of current mHealth apps, and previous proposals

to address the security and privacy of mHealth apps.

Univ
ers

ity
 of

 M
ala

ya

64

CHAPTER 3: RESEARCH METHODOLOGY

This chapter outlines the general methodology adopted in this research study. This

research work was divided into four distinct and successive phases, each of which are

described in a separate section, starting from the initial preliminary study that suggested

the need for the intended security framework (Section 3.1), followed by the design

process of the framework (Section 3.2), and then through the implementation of a

prototypic proof-of-concept version of the framework (Section 3.3), and finally ending

with the evaluation process (3.4). The overall research methodology is illustrated in

Figure 3.1.

3.1 Phase I: Preliminary Study

Initially, the literature in three specific fields has been investigated to find and identify

the research problem. The problem of this thesis includes the component of mHealth apps

from medical informatics, the research on Android security from the field of mobile

security, and the interdisciplinary research on the security and privacy of mHealth apps.

mHealth apps were explored for the Android platform specifically. First, a detailed survey

has been performed on mHealth apps in the literature as well as in available online app

stores, and the impact of apps on the healthcare system has been identified.

Second, the existing security model of the Android platform was critically analysed to

identify the security issues that need to be addressed. Android security architecture has

received tremendous attention, mostly attempting to enhance system protection as a

whole for all types of apps hat could be run on the system, and all kinds of data that could

be stored on its internal storage. The analysis within this phase focused on a niche class

of apps specialized in mobile healthcare. Although most apps share common concerns of

security and privacy threats, different classes of apps might require specific requirements

that needs to be addressed separately within the system overall security architecture.

Univ
ers

ity
 of

 M
ala

ya

65

Literature

Phase-I: Preliminary Study

Phase-II: Framework Design

Phase-III: Prototype Implementation

Assessment of mHealth apps
Identification of problems and gap(s)

Investigations on

mHealth apps Android security Security and privacy of
Android mHealth apps

Research questions

Research objectives

Phase-IV: Evaluation

Requirement specification of a secure framework for mHealth apps

Proposal of a new security framework for mHealth apps

Compilation of the new framework into a custom Android image

Deployment of the framework on a real device (smartphone)

Tools:
• Development

platform
• Java PL
• Development

IDE
• Android

Smartphone

Attacks on Android
Platform

Comparison with Stock Android

Need for new security modules/checks Need for integration with Android
Platform

Implementation of the new
security modules/checks

Adoption of an integration
mechanism

Effectiveness Performance overhead

Security checks
against apps’ sample

Benchmarking using CaffeineMark

CPU time Memory Energy

Resilience against
selected attacks

TESTING

Figure 3.1: Conceptual Framework of the Research

Third, previously proposed security frameworks in the literature for Android platform

were categorized. As of the security and privacy of mHealth apps, issues related to

mHealth apps have been identified, similarly, medical sensors-based threats to mHealth

apps have also been explored. Subsequently, the existing solutions to secure mHealth

Univ
ers

ity
 of

 M
ala

ya

66

apps were critically analysed to identify potential foundations for the current work as well

as issues that need to be addressed, improved or extended.

To study the security and privacy issues of mHealth apps, a practical security and

privacy assessment has been conducted on a sample of mHealth apps by actual

installations on Android smartphones. This experiment almost revealed the same threats

to Android mHealth apps as found in the literature. On the basis of both the literature

review and the experimental assessment, the research questions and objectives have been

set for this research study.

As discussed in the first two chapters, the result of this phase led to direct the focus of

this research study into the development of a security framework for mHealth apps.

3.2 Phase II: Framework Design

The main goal of this research is to develop a security framework for mHealth apps to

ensure the security and privacy of sensitive medical data. Based on the finding of the

preliminary study in the previous phase, several specifications have shaped out to

constitute the desired framework, considering the security issues of mHealth apps and the

limited resources of mobile devices. First of all, the requirements of the security

framework have been identified, which led to design a number of components that are

necessary to implement the required functions, including the performance of security

checks against installed apps, information leakage, malware, device connections, and

similar cases. To orchestrate all those functions, there is a need for a core component to

administer the checks, and take proper decisions probably based on a repository of

security policies. The said components form the core of the intended framework, and

were grouped in a single layer named as the Security Module Layer (SML).

Univ
ers

ity
 of

 M
ala

ya

67

Crucial to the operation of this layer is to have a low-level access as an entry point into

the internals of the underpinning Android platform, in terms of reference monitors and

hooks onto the various levels of the kernel, middleware as well as the application level.

To keep the design modular, the task of interfacing the SML to the mobile operating

system was delegated to another layer of the framework called the System Interface Layer

(SIL). As explained in the next chapter, this layer was adopted from a previous research

work that was leveraged to provide the necessary foundation for SML. According to this

reasoning during the design process, the SML is required to do all the compulsory security

functions and SIL is required to work as an integration layer between SML and the

Android OS in order to make SML functional.

The resulting overall design was named as MHealth Apps Security Framework

(MASF). MASF mitigates various security and privacy threats facing by mHealth apps,

such as data leakage, privileges escalation attacks, DMB attacks, and misuse of granted

permissions to apps. Furthermore, to protect sensitive medical data and mHealth apps

from different attacks, MASF provides several mechanisms that includes fine-grained

access control, context-aware access control, and it further provides data shadowing

mechanism to protect user private information by providing fake versions of the requested

data when deemed necessary by the framework. MASF also enables the users to define

their own policies according to their requirements.

3.3 Phase III: Prototype Implementation

For validation purposes, the framework has been implemented on a real environment.

The implementation of MASF encompasses the two layers designed in the previous

phase; i.e. SML and SIL. SML comprises a number of software modules that correspond

to the various required security functions, each of which can run in the user mode.

Besides, it also implements a database utility to store security policies, implemented in

Univ
ers

ity
 of

 M
ala

ya

68

Android as a SQLite local database. In addition of implementing their own logic, several

such modules need to call special API functions to access the internals of the Android

platform in order to interfere with the normal operation of the system. In other words,

those security modules need to be integrated into Android.

An integration framework was adopted from literature to work as the SIL; this helped

in interfacing SML to the Android OS. SIL provides a platform that makes possible the

monitoring of various references and actions made by mHealth apps, performing different

security checks and also the enforcement of the security policies. Afterwards, the new

framework based on both SML and SIL was compiled together within the Android source

code into a custom Android copy, which was subsequently deployed on a real phone.

During this process the following tools were used: Java programming language, a

development station, a development IDE and an Android smartphone. The following

steps describe the implementation of the framework prototype:

1. A distribution of the Linux operating system (Ubuntu 14.04) was installed to

establish an environment to download and install the stock Android source

code.

2. The source code of the stock Android operating system, version 4.3, was

downloaded from http://source.android.c om/source/downloading.html.

3. To enforce security checks and hooks, MASF needs an integration layer into

the Android source, which is provided by the System Interface Layer. SIL is

adopted from another framework in the literature called ASF, and SIL patches

were installed into to source code of Android 4.3.

4. MASF is programmed according to the design explained in the next chapter,

and then installed onto the modified source code of Android.

Univ
ers

ity
 of

 M
ala

ya

69

5. Thereafter, this customize source code was compiled and installed into a real

Android device.

3.4 Phase IV: Evaluation

In this phase of the research, MASF is evaluated and analysed in terms of effectiveness

and efficiency. Effectiveness of this framework is evaluated by demonstrating that the

framework can successfully protect the security and privacy of mHealth apps and its

users. To check the effectiveness, a sample of mHealth apps has been tested against the

various attacks. Furthermore, a number of experiments were conducted to evaluate

functioning of MASF, such as to test effectiveness of MASF against different attacks, test

against malwares, impact of data shadowing, impact of permission restrictions, impact of

disabling intents, impact of enabling/disabling system peripherals. Subsequently, false

positive and usability test were also performed on Android customised with MASF.

On the other hand, the efficiency of MASF is evaluated by examining the performance

overhead on the underlying Android system during the operation of the framework. To

check the performance overhead, the following metrics were measured: CPU utilization,

memory usage, and energy consumption. Several experiments were conducted to evaluate

the performance of MASF. Due to the lack of publicly available implementations of

similar frameworks, the results of MASF’s performance evaluation were compared to

those obtained out of stock Android versions. The performance of mainstream Android

copies is considered as a baseline against which the impact of the proposed framework’s

impact on the system is measured. Therefore, the CPU time, memory usage and energy

consumption of Android apps on a stock version (without MASF) are considered as the

reference of measurement for the apps performance after installing MASF.

Univ
ers

ity
 of

 M
ala

ya

70

3.5 Chapter Summary

This chapter outlines the general methodology that was adopted to carry out this

research study. The research conceptual framework is presented in terms of four main

phases. Each phase corresponds to a major distinct step in conducting the research in this

thesis in producing the anticipated output. Beyond the phase of the preliminary study

necessary to identify the research problem and main objectives, the chapter lists the major

steps of designing the target security framework, implementing the proof-of-concept

prototype of the framework, and then evaluating the resulting prototype against a set of

performance criteria. The last three steps are yet to be elaborated in the next two chapters.

Univ
ers

ity
 of

 M
ala

ya

71

CHAPTER 4: THE DESIGN OF “MHEALTH APPS SECURITY

FRAMEWORK”

This chapter presents the detailed design of the proposed MHealth Apps Security

Framework, named as “MASF”. This framework comprises several components that are

divided into two major layers, each of which is discussed below. Section 4.1 gives an

overall view of the framework design. Section 4.2 is the main part of this chapter and

contains the detailed description of the framework components. Section 4.3 describes

some use cases of MASF, while Section 4.4 concludes the chapter.

4.1 MASF Overall Architecture

As discussed earlier in Chapter 2, mHealth apps are facing several security and privacy

challenges. To participate in addressing these issues, this thesis proposes a security

framework (MASF) that can provide special measures to protect the users of medical apps

and their data from malicious or otherwise incompetently written mHealth apps on the

Android mobile. In order to achieve such a goal, several functions are expected from the

framework.

The framework is expected to inspect apps before and during execution, starting from

the point of installation. It is also required to provide security measures beyond the

capability of the host system (Android in this case). For example, MASF is required to

provide fine-grained access control to sensitive resources that is more effective than the

coarse-grained permission system offered by Android. The concept of context should also

be considered when controlling access to private resources or data. For example,

collection of certain medical data is not expected at certain times or places, and the

framework should be able to discern the allowed and disallowed actions based on the

particular context at which the actions occur.

Univ
ers

ity
 of

 M
ala

ya

72

Furthermore, scenarios that are specific to mHealth apps should be paid special

attention. For example, reading to or from medical sensors and devices should be

monitored and checked against the current context, and against any known attacks as

well. It is also important to enable the user of the framework to dictate a set of policies

that is used to derive the decisions of the framework; for example, policies related to what

actions are allowed in which context.

In the design of MASF, several components are assigned different tasks to ensure the

above functionality. A main component is responsible for performing the security checks

and taking decisions related to attempted actions by the various mHealth apps in the

system. This main part is called the manager. To support its operation, the manager refers

to a set of software tools called checkers. These tools perform specialized checks on the

installation of new mHealth apps, context checks, malware checks, taint analysis and

checks related to the communication of external devices. The manager refers to a policy

database and makes use of those special checks to form a complete idea about the

adherence of a specific app or actions of an app to the stated policies. It then delegates

the enforcement of the policies to an action-performer. Another component called the

user-interactor allows the user to provide policies to protect his/her security and/or

privacy.

It is obvious that the functions performed by the various checkers and by the action-

performer need special access to the underlining operating system, as they interfere with

and control low-level operations of the host system. To modularize the design of MASF,

the above described parts including the manager and its supportive components are

grouped in one layer, named as the Security Module Layer (SML) since it is directly

concerned with the security-related functions, and then this layer relies on another layer

for interfacing to the Android internal parts. This latter layer is aptly called the System

Univ
ers

ity
 of

 M
ala

ya

73

Interface Layer (SIL). The general structure of the proposed MASF is illustrated in Figure

4.2. Further details on SML and SIL are given in the subsequent sections (4.2.1 and 4.2.2,

respectively).

Figure 4.1: The Overall Architecture of the Proposed Framework MASF

4.2 MASF Layered Components

This section details the individual components of MASF. The main two layers of

MASF are shown in white colour in Figure 4.1. Most contributions of this thesis lie within

the first layer (SML), for which the building blocks are shown in light grey.

Smartphone

App Store

User

APP

Security Module Layer

m
an

ag
er

user-interactor

checkers

installation-checker

context-checker
policy-

database
malware-checker

device-checker

taint-analyser

action-performer

System Interface Layer

Android Operating System

Univ
ers

ity
 of

 M
ala

ya

74

4.2.1 Security Module Layer

Security Module Layer (SML) is the main part of MASF, which encompasses the

essential functions to protect the system’s security and the user’s privacy. In order to fulfil

its purpose, this layer needs to be able to:

• Monitor references and actions made by mHealth apps

• Examine static and dynamic attributes of mHealth apps

• Receive policies defined by the user of the system

• Enforce user policies

One or more components are dedicated for each of these function categories. Several

modules depicted in Figure 4.1 as checkers are responsible for providing the necessary

security checks and examinations. A user-interactor component interfaces with the user

to receive user policies (the form of which to be defined later in this Chapter), and a

policy-database stores them for later use by the framework. The central component that

monitors the apps’ references and rationalise about their actions in line with the user’s

policies then make the required decision is the manager, which enforces the made

decisions through the action-performer. The following subsections elaborate the design

of each of those components.

4.2.1.1 Security checkers

Security checkers are used by the manager to essentially provide necessary

information for making security decisions. In order to provide such information, a

checker might perform operations such as simple collection of sensor data, up to

sophisticated analysis of the apps code or behaviour. Five types of checks are deployed

in SML. The corresponding checkers are explained below.

Univ
ers

ity
 of

 M
ala

ya

75

 Context checker

According to (Conti et al., 2011), a context could be defined as one of the following

aspects: status of some variables (e.g., time, geographical location, temperature, light and

noise), the presence of other devices and sensors, a particular type of interaction between

the smartphone and user, or a combination of all these aspects. Some security rules

depend on the context. In MASF, only time and geographical location are considered for

context-aware access control.

The context-checker is responsible for detecting, reporting and thenceforth updating

the context of the device and its apps. This job requires the context-checker to subscribe

to Android system services, such as the LocationManager. Basically, this type of checks

is based on the concept of context-aware access control. The context-checker collects the

physical location parameters (GPS, Cell ID, Wi-Fi parameters) through the device sensors

and reports those parameters to the manager upon request. These context checks enable

the manager to allow the user of imposing run-time constraints on the usage of sensitive

resources based on different contexts (e.g., location, time). The users can describe their

constraints using a simple interface (i.e., app), implemented by the user-interactor.

Possible rules and policies related to context-aware access control are defined in Section

4.2.4.

 Malware checker

A modern smartphone provides capabilities that are comparable to low-end computers.

As such, it is also facing nearly the same security and privacy issues. Indeed, mobile

malware is growing exponentially, and hence the process of malware detection is

becoming an essential part of mobile security frameworks. The SML manager performs

some checks against malware apps with the help of a malware-checker that is dedicated

to identifying malicious apps.

Univ
ers

ity
 of

 M
ala

ya

76

Basically, the malware-checker invokes an anti-malware app that is installed on the

smartphone, and scans the target apps. The results of the scan are reported to the manager.

If any malware is detected, then the manager sends a notification to the user about that

particular malware. The malware app is marked as an “untrusted” alongside its source,

and this information is kept in the policy-database so that future installations of new apps

from the same source can be prevented by the installation-checker. The untrusted app

cannot access other mHealth apps, nor it can access any sensitive system resources.

 External devices checker

The use of medical sensors and other external devices is growing among smartphone

users, and mHealth apps in particular are increasingly expected to support communication

with external sensors and monitoring devices. Therefore, SML includes another special

tool used by the manager specifically to check connections to external devices. For

example, the device-checker tests against the Device Miss Bonding (DMB) attack that

was exposed by (Naveed et al., 2014) and discussed in Chapter 2.

The device-checker monitors the apps that are using sensors or external devices (any

device outside the smartphone), and checks the information that is being transferred

between the smartphone and the external sensors or devices. It is invoked by the manager

when an app accesses the external devices (e.g., heartbeat reader) through Bluetooth or

Wi-Fi, the two most common connectivity options on smartphones. On the basis of

security and privacy policies, the manager takes the decision whether or not the app is

allowed to communicate (send and receive) that information with the external device or

not. The device-checker also provides the manager with information on whether the

communication with the external device is encrypted or not.

Univ
ers

ity
 of

 M
ala

ya

77

 Installation checker

Another tool in the arsenal of the SML manager is the installation-checker. This

checker is unlike the above checkers works only at the time of installation of a particular

app. Some security rules have been developed for the installation-checker regardless of

the installed app or the user-provided policies. When users want to install a new app,

installation-checker first checks its permission and requested resources, as well as other

meta-data that the manager needs to decide whether to accept the new installation or raise

an alarming notification for the user.

When users install an app, they grant the app all permissions it requests, and have to

trust on the way the app uses the granted permissions and smartphone’s resources.

Although there is now an option available since Android 6.0 that enables users to revoke

permissions, still users are not aware of how the app is using the device resources after

granting the permission. Apps can easily misuse smartphone resources to compromise

user privacy, and can reveal user sensitive medical information in case of mHealth apps.

Presently, after granting the permissions to an app, there is no way to impose extra

constraints on how, when and under what circumstances those granted permission can be

used. The actual problem lies in the inability of users to really understand the implications

of the granted permissions and correctly judge their approval.

installation-checker checks the newly requested permissions against few predefined

combinations of permissions that can be dangerous for mHealth apps. It is really difficult

for mHealth app users to understand the requested permissions and most importantly how

a combination of some requested permissions can misuse medical information or can leak

sensitive medical data. So, installation-checker refers to some dangerous combination of

permissions and perform analysis at install time.

Univ
ers

ity
 of

 M
ala

ya

78

At the time of installation, installation-checker first extracts the security configuration

of an app from the target package manifest, and reports the result to the manager, which

evaluates the configuration against a collection of security and privacy policies. If an

app’s security configuration fails to pass all the policies, then the manager has two

options. The more secure choice is to reject the installation of that particular app.

Otherwise, installation can continue after giving the user a warning notification that the

app could be harmful for the sensitive medical data. Obviously, this is a less secure option

for the users who usually install apps ignoring any warnings.

For example, the manager might take the decision to either allow or deny the

installation of a particular app based on the following dynamics: 1) don’t accept any app

from other than Google Play store, 2) don’t install an app if the developer(s)’ name(s)

appear in a blacklist (i.e., users can add a developer’s name in that list on the basis of

their own experience with apps from that particular developer), 3) don’t install an app if

it has some strange features (i.e., strange features are a list of some features, such as an

app wants to access camera, however, it does not need it to fully perform its functionality).

The policies related to installation-checker are defined in section 4.2.4.

 Taint analyser

Determining how an app uses and reveals privacy-sensitive information is achievable

using fine-grained taint analysis, commonly called “taint tracking”. A taint is simply a

label on a data item or variable. The label assigns a semantic type (e.g., geographic

location of device) to the data, and may simultaneously use multiple such types

(commonly called a taint tag). It is the task of the taint tracking system to (1) assign taint

labels at a taint source, (2) propagate taint labels to dependent data and variables, and

finally (3) take some action based on the taint label of data at a taint sink.

Univ
ers

ity
 of

 M
ala

ya

79

The tainting-analyser traces the flow of information, and if there is disclosure of

sensitive information, for example via transmission of information from an app’s

component and the Internet, then it notifies the manager. The taint-analyser can be

invoked by the manager in several occasions and in tandem with other checkers for

tracking sensitive information and comparing against the context, connected device, and

security policies.

Static taint analysis technique can keep track of sensitive tainted information through

the app by starting at any one from a list of sources and then following the data flow until

it reaches any one from a list of sinks. So, it reveals which sensitive data is being leaked

to which sink channel, as shown in Figure 4.2.

Static taint analysis has been used in many previous research works (Arzt, Rasthofer,

et al., 2014; Lu, Li, Wu, Lee, & Jiang, 2012; Rasthofer, Arzt, & Bodden, 2014). Dynamic

taint analysis has also been used in some works such as TaintDroid (Enck et al., 2014).

Both dynamic and static analysis can be used to achieve taint tracking. But dynamic

analysis may require many test runs to reach appropriate code coverage. In case of

dynamic analysis, however, malicious app can be developed to be able to recognize the

behaviour of dynamic analysis and pose itself as a benign app to bypass the detection.

Dynamic analysis also entails a heavy overhead on the performance of the system if used

in real time. For these reasons, static analysis is chosen over dynamic analysis for data

leakage detection in MASF.

Figure 4.2: Data Leakage Detection with Static Analysis

Univ
ers

ity
 of

 M
ala

ya

80

Implementing static analysis on Android is very challenging due to the special design

of Android OS. Existing data flow analysis techniques are not directly applicable to

Android apps due to the Android programming paradigm’s special multiple entry points.

Unlike a Java program, Android app doesn’t have a single entry point, and many entry

points can be defined for an Android app. As Android apps have four main components

(i.e., activities, services, content providers and broadcast receivers), Android framework

can call the methods associated with these components to start and stop the components.

To be able to effectively predict the data flow, static analysis need not only precisely

model the life-cycle of components but also need to integrate callbacks for system-event

handling, UI interaction and so on.

Android Source
Code

Parser Source Builder Sink Builder

Call Graph BuilderTaint AnalyserAnalysis Result

Predefined
“source” listParse manifest

Parse Java source
code

Parse layout xmls

Source detection

Labeled source
Sink detection

Predefined
“sink” list

Entry Point Builder

Entry-point
detection

Entry-point
list

Figure 4.3: Static Taint Analysis System Design Framework

Figure 4.3 shows the design of the taint-analyser. This design is basically based on

FlowDroid (Arzt, Rasthofer, et al., 2014) and extended by (He, 2014b). Tainting searches

through the app for lifecycle and callback methods by parsing various Android-specific

Univ
ers

ity
 of

 M
ala

ya

81

files, including the manifest file, layout XML files, Java source files and so on. Then, a

list of sources and sinks is constructed from label defined by developers in source code.

After that, tainting generates a main method as a single entry point for the Android

program from the list of lifecycle and callback methods. This main method is used to

generate a call graph for the taint analysis. The taint analysis reports any possible links

between the sources and sinks as warnings of potential vulnerabilities to the manager.

4.2.1.2 SML manager

The manager component is the heart of the Security Module Layer. It performs the

core function of monitoring references and actions taken by the mHealth apps and uses

other components of SML to both examine those references and actions against the

defined policies in the policy-database and to enforce the policies through the action-

performer component. There are many types of actions that action-performer can take

based on the manager direction, such as data shadowing, blocking access to data, granting

access to data, revoking permissions, installation control, saving state, and disabling

intents.

MASF extends Android’s middleware through the System Interface Layer (SIL). For

example, the PackageManager in Android is responsible for the installation of new apps.

The PackageManager is extended by the SIL to interface with SML manager, so the

manager can interact with the apps, and can enforce the necessary security and privacy

rules and policies for mHealth apps.

Android uses the mechanism of Inter Component Communication (ICC) as the

primary method of communication between apps. However, ICC is technically based on

IPC at the kernel level, and it can be seen as a logical connection in the middleware.

Access control on ICC is important for the enforcement of security and privacy policies

in the middleware.

Univ
ers

ity
 of

 M
ala

ya

82

Different types of ICC can be used by apps for communication. First, the most

common way for apps to communication through ICC is to establish direct

communication links, known as Direct ICC. For example, an app can send an Intent to

another app, query its content provider, or connect to its service. The manager detects

this communication through hooks provided by the SIL and prevents it in case the sender

and receiver apps of the ICC are not allowed communicate or exchange specific

information according to the corresponding policies. However, system apps form an

exception and direct ICC is not prohibited if either sender or receiver of the ICC is a

system app.

Besides the direct ICC, apps can also send Broadcast Intents, which are delivered to

all registered receivers. Similar to the approaches followed by (Bugiel, Davi, Dmitrienko,

Fischer, et al., 2011) and (Ongtang et al., 2012), the manager filters out all the receivers

of a broadcast intent who are not allowed according to the policies before the broadcast

is delivered. Again, system apps have an exception and are not filtered from the receivers

list.

A mechanism for apps from different domains to communicate indirectly is to share

data in System Content Providers, such as the Contacts database, the Calendar, or the

Clipboard; ICC reads in this case reads data from such providers. MASF extends the

System Content Providers, and upon read access to a provider, all data are filtered by the

manager.

Mandatory Access Control (MAC) mechanism is provided by the underlying Linux

kernel. Such mechanism, implemented by SELinux or TOMOYO Linux, is already a

default feature of the Linux kernel and provides mandatory access control on various

aspects of the OS, including the file system and the Inter-Process Communication. Thus,

by leveraging such mechanism, the manager can perform access control on the file system

Univ
ers

ity
 of

 M
ala

ya

83

and IPC levels. The file system provides for a further communication channel between

apps. Apps can share files system-wide, by writing to a system-wide readable location.

Hence, a sending app is able to write such a file and a receiving app would simply read

the same file. The mandatory access control mechanism enforces isolation on the file

system. By using this, the manager makes sure that system-wide readable files can be

read by other apps only if both the reader and writer are trusted apps.

To prevent any communication of apps via Linux IPC (e.g., sockets, pipes, shared

memory, or messages). The manager leverages the same domains already established for

the file system access control. Thus, other third party apps cannot establish IPC with

mHealth apps. However, system apps form an exception, as denial of communication to

system apps can be harmful for the system and other apps, or can affect the functionalities

of apps.

A further channel that should be considered here is the Internet network, i.e., network

sockets used for communication through Internet protocols (such as TCP/IP). By using

these sockets apps can communicate with remote hosts, however they also can

communicate with other apps on the same platform. Thus, the MASF has to take both

local and remote communication into consideration. To enforce access control here, the

manager component employs a firewall to modify or block the Internet socket based

communication. To locally enforce isolation between mHealth apps and other third party

apps, the manager prohibits any communication from a local network socket of other

third party apps to another local network socket on the platform. This might look as over-

restrictive, but it is a very reasonable enforcement, as apps exist on the same platform so

they should use lightweight ICC to communicate instead of network channels.

Univ
ers

ity
 of

 M
ala

ya

84

4.2.1.3 Policy database

The policy-database component serves as the main repository to store all the policies

and rules, which are discussed later in this section. All policies and rules are stored in this

database, and the manager accesses this database during the various checks to ensure the

implementation of all policies. Rules and policies stored by the policy-database can be

updated and modified by the user of the smartphone.

4.2.1.4 User interactor

The user-interactor component is an app that interacts with the user. User can interact

with MASF to create, update, and delete security and privacy policies. Furthermore, for

context-related policies, user can also create, update and delete contexts. The user-

interactor stores all the policies and related information in the policy-database.

4.2.1.5 Action performer

Another important component at the disposal of the manager is the action-performer.

This component performs the decisions taken by the manager to enforce the various

policies. There are a number of actions that the action-performer can take, including

blocking, data shadowing, granting, disabling intents, saving device state and revoking

permission. The functions of each action and its description is given below.

 Blocking

The action-performer might block outgoing communications tainted by sensitive data.

This control is applied in MASF to limit the misuse of sensitive medical data. Blocking

happens usually in the case of conflicts of information flow or other functionality with

privacy policies. When a conflict occurs, the manager decides to block the information

flow or functionality which created the conflict with the policies. However, the blocking

option can sometime harm or crash the app, as it needs the data to continue. There are

two types of blocking that MASF provides and implements through the action-performer.

Univ
ers

ity
 of

 M
ala

ya

85

In the first type of blocking, app cannot communicate with other apps, and cannot send

data through the Internet. In the second type of blocking, apps can communicate with

each other, but cannot send/receive data through the Internet. The latter option is

necessary when it is compulsory to make data available for other apps in order to

accomplish some essential task.

To block the data that is being exchanged through network sockets, first the manager

intercepts calls to the network stack to associate domain names with open sockets and

detects when tainted data have been written to a socket. When an output buffer comprises

tainted data, the action-performer just drops the buffer and choose one of the following

actions: dropping the offending message covertly, or misleading the app by indicating

that the buffer has been sent.

 Data shadowing

As mentioned above, blocking sometimes cannot be possible, therefore it is mandatory

to provide an app with data so that it can continue functioning. To solve this issue, the

technique of data shadowing option is used. The action-performer implements data

shadowing to prevent apps from accessing sensitive medical data. It conceals the actual

user data stored on the device and provides a fake copy of sensitive data (e.g., medical

history, etc.) instead of the original one.

Android apps use the file system to access the microphone, camera, logs, etc. When

apps try to open these resources and the manager decides to deny their attempts, the

action-performer shadows all sensitive data, such as the browser history and bookmarks,

contacts, accounts information, subscribed feeds, SMS/MMS, and calendar entries, by

returning a fake set of data. When apps request the device’s location, the response is a set

of fake location information. When apps request the device’s phone state, the returned

value is a fake phone number with a fake app-specific device ID (IMEI). The action-

Univ
ers

ity
 of

 M
ala

ya

86

performer can also return a fake version of the SIM serial number, voice mail number,

and subscriber ID (IMSI); however, very rare apps request this type of data.

 Granting

Another action that can be taken by the action-performer is to provide the original

requested data. The SML manager takes this decision when it thinks the requesting app

can be trusted with private user’s data.

 Installation control

This type of action is related to the checks at installation time of new apps. If the

manager decided based on the information from the installation-checker that an app does

not satisfy the policies, then the action-performer either warn the user and allow the

installation process to proceed, or it might prevent the installation of the app altogether.

 Revoking permission

MASF supports also the action of revoking selective permission(s) from an app for a

particular period of time, or a particular location, at runtime.

 Disabling intent

This action intercepts and drops the specified intent message. MASF can enforce a

number of controls on different activities by intercepting intents, such as to launch an app

(prevent certain apps from running on the device), app installation and uninstallation

(prevent an app from sending an intent to install or uninstall an app), services (prevent

apps from starting background services), lock and unlock the device (prevent requesting

pin code to unlock the device), broadcasts (prevent apps from broadcasting Intents), and

app multitasking (prevent running multiple user-app simultaneously).

Univ
ers

ity
 of

 M
ala

ya

87

 Saving device state

This action disables toggling the state (ON/OFF) of the specified system peripheral. It

is particularly relevant when mHealth apps exchange data with medical sensors or other

kinds of external device, so that users can restrict the access of other apps to system

peripherals (e.g., Bluetooth and NFC).

4.2.2 System Interface Layer

The System Interface Layer (SIL) is the second layer of MASF. SIL acts as an

interfacing layer between the first SM layer described above and the underlying Android

operating system, and provides the former with access to the latter. SIL is as essential part

of the framework to deploy all the enforcements issued by the SML into the Android OS.

SML implements a logic that receives necessary input and produce desired output. The

required input initiates from the internal workings of other apps, which are well beyond

the access of any normal application in the Android architecture. The desired output also

interferes with the system-level functions and cannot be achieved using normal apps.

There is a need for special modifications of the stock Android code base that offers entry

points to the internals of the system, which can be used by the upper layer of the proposed

framework.

SIL inserts some hooks on different layers of the Android OS, including the kernel,

the middleware layer, and the application layer, to provide the required interface for the

SML in order to receive the necessary input from the workings of other mHealth apps,

and to enforce the suitable actions on the system level. Separating SML from SIL makes

the design of MASF modular, so that the main logic (checks) of the framework can be

deployed later on any platform by using a compatible interface with that platform. It also

allowed the implementation of MASF to utilize available solutions in the literature that

are policy-independent and provides exactly the required interfacing to the internals of

Univ
ers

ity
 of

 M
ala

ya

88

Android without imposing any specific security logic, which is to be left for the design

of MASF.

The SIL that has been used to implement MASF is shown in Figure 4.4. This SIL is

originally proposed by (Backes, Bugiel, Gerling, & von Styp-Rekowsky, 2014), and

named as Android Security Framework (ASF). ASF is a general, extensible and policy-

agnostic security infrastructure for Android. The basic idea behind ASF is to extend

Android with a new security API. This API allows to easily author, integrate, and enforce

generic security policies. ASF allows security experts to develop Android security

extensions against a novel Android security API and to deploy their security models in

the form of modules as part of Android’s platform security. In essence, the Security

Module Layer in MASF can be thought of as a special security extension to ASF in the

latter terminology, which is specifically designed with mHealth apps in mind.

User Space

App

Inlined RM

Kernel Space

Virutal Filesystem
Virutal Filesystem

System Service/App
Dex (DVM)

Native Code

API

Permission Check

Privileged
Functionality

LSM Hook

API

Discretionary Access Control

Privileged ResourcePrivate/Public Resource

Binder IPC

syscallsyscall

Stock Android Security Reference Monitor Security Module

Middleware Hook

Module Front-end App(s)

Middleware Framework

Middleware
API

Middleware
Sub-Module

LSM Framework

Kernel
API

Kernel
Sub-Module

CheckAccess

CheckAccess

callModule(Bundle args)

Proprietary self-contained channel
(e.g., sysfs, socket, ...)

System Interface Layer

Figure 4.4: System Interface Layer

4.2.3 Other External Components

This subsection completes the picture of the layered components of MASF by listing

the external components that are interacting with the main two layers of SML and SIL.

Univ
ers

ity
 of

 M
ala

ya

89

In a sense, a security framework to that controls mHealth smartphone apps and protect

the security and privacy of users would naturally run on a mobile platform and be utilized

by users; so those entities can be viewed as an integral part of the framework. These

components are listed below.

4.2.3.1 Android operating system

Android OS was selected to deploy the proposed framework because it is the most

popular and widely used smartphone operating system, and it is open source as well.

Chapter 2 explains the Android OS and its working in some detail. The proposed

framework cannot work on a stock Android copy and needs special modifications to allow

for the intended functionality. These modifications are implemented in the System

Interface Layer on which the Security Module Layer is built.

4.2.3.2 Apps

A smartphone application (app for short) is a piece of software designed to accomplish

a particular purpose. There is a huge number of apps available on online app stores,

classified into many categories and can perform a large number of functions. Android

apps typically contain one or more of four software components: activities, services,

content providers and broadcast receivers. These components can interact with each

other within the same app or across other apps’ using intent messages. In this research,

the focus is on mHealth apps, which are growing exponentially alongside the security

threats targeted at them.

4.2.3.3 App store

This is basically a collection of online accessible apps, and mobile users download

apps from the app store. For Android apps, the official and most popular app store is

Google Play by Google Inc.; however, there are number of app stores available from

untrusted third parties, and they may provide malicious apps as well.

Univ
ers

ity
 of

 M
ala

ya

90

4.2.3.4 Users

MASF serves users in the first place, and it allows users to define policies according

to their requirements. Users basically provide policies to secure medical data. Users work

as input for the policy-database in the SM layer, through the user-interactor component,

which is a custom Android app.

4.2.4 MASF Policies

In addition to the predefined security rules and policies in the framework, policies in

MASF can also be provided by the users through the user-interactor, and they form an

important component of the SML. Security and privacy policies feed the manager

component and define the decisions made by the manager in response to the various

actions and references requested by the apps. The policy-database stores all the policies,

including user-defined rules.

These rules ensure the confidentiality and integrity of sensitive medical data. Most of

the previous research is based on coarse-grained policies to enforce the security. In this

framework, users are able to enforce fine-grained security and privacy policies, which

allow users much more flexibility to control access to the sensitive medical data; for

example, users can change security policies while an app is running, and they can control

access to different resources based on the current context (e.g., location and time).

Currently, most of security controls on smartphones are based on policies per app, and

normally policies are set at installation time. App developers declare all the required

permissions in the compulsory manifest file, in order to be able to interact with other apps

and to access protected parts of the system’s API. Normally, users grant all those

permissions at installation time. Granting all permissions together at installation time is a

coarse-grained control: a user usually has no idea how the permissions are being exercised

after the installation. Further, Android does not have a mechanism that allows policies to

Univ
ers

ity
 of

 M
ala

ya

91

grant access to a particular resource only for a specified number of times, or only in

specific contexts (e.g., location or time), or only under some special circumstances. To

resolve the above issue, MASF provides a number of security and privacy policies that

are enforced by the SML manager with the help of the various checkers introduced in the

previous subsection as well as the action-performer component.

MASF supports several types of policies. One major class of policies is based on the

current context while using the apps. Context-related policies resolve very complex

problems that are usually faced by mHealth apps. Sometime there is a need to give a

permission based on the context for a particular communication or connection, and later

on the need calls for revoking that permission from the connection. In other words, control

of the access depends on the context.

As defined earlier, a context could be one of the following aspects: status of some

variables (e.g., time, location, temperature, light and noise), the presence of other devices

and sensors, a particular type of interaction between the smartphone and user, or a

combination of all these aspects. In MASF, users, developers and trusted third parties are

allowed to define context-related policies, and the framework can enforce the policies at

run-time when the smartphone is within a particular context. MASF uses context-related

security policies to extend the control of the users and trusted third parties to secure the

information. By definition, a security policy divides the system states into two sets: a set

of authorized (secure) states, and a set of unauthorized (insecure) states. Therefore, a

context-related security policy is a security policy that separates the authorized states

from the unauthorized states of the system based on the context.

In MASF, the policies are defined as a set of restrictions and corresponding conditions.

The restrictions are applied to apps whenever the conditions are encountered. Policy

restrictions represent the constraints on accessing the device resources, services, system

Univ
ers

ity
 of

 M
ala

ya

92

methods, functions, and user data. Policy conditions on the other hand define the situation

in which those restrictions should be applied, such as at a certain context or when a

suspicious combination of permissions is requested at installation.

A number of policies are defined in this subsection, some are applied at the time of

installation of new app, while other policies are enforced on the basis of context (e.g.,

time and location). MASF policy rules are based on (Shebaro, Oluwatimi, & Bertino,

2015) and significantly extended to consider policies for various other security aspects of

the framework. In the following, the two aspects of policies, restrictions and conditions,

are described respectively.

4.2.4.1 Policy restrictions

Policies impose restrictions on the use of apps, subject to certain conditions. To define

a policy restriction, the following sets are defined first:

• 𝑨𝑷𝑷 : is the set of subjects representing the device apps

• 𝑹𝑬𝑺 : is the set of protected objects representing the services, resources, user

data, permissions, and functionalities available for the apps

• 𝑨𝑪𝑻 : is the set of restriction actions that can be applied through MASF policies

The set of subjects 𝐴𝑃𝑃 is composed of the 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑎𝑚𝑒𝑠 of all apps installed on

the device. Additionally, a special character * is added that represents all the installed

apps. This special character is useful for policies that need to be enforced on all apps,

instead of creating the same policy for every app. Further, it is assumed that each object

from the set 𝑅𝐸𝑆 has an associated type from the set (permission, intent, data, system

peripheral). Let 𝑟 be an object from the set 𝑅𝐸𝑆; notation 𝑡(𝑟) denotes the type of 𝑟. The

set of actions 𝐴𝐶𝑇 defined for MASF includes the following actions, as discussed above

in section 4.2.1.5 in the context of action-performer role: preventing installation,

Univ
ers

ity
 of

 M
ala

ya

93

revoking permissions, disabling intents, shadowing data and saving device state. Note

that revoking permissions can be used to block specific data transfer through the network.

i. Definition 1 (policy restriction):

Let 𝑝 ∈ 𝐴𝑃𝑃, 𝑟 ∈ 𝑅𝐸𝑆, 𝑎 ∈ 𝐴𝐶𝑇𝐼𝑂𝑁, and notation 𝑡(𝑟) denotes the type of 𝑟. A

policy restriction (𝑃𝑅) is defined as the tuple [𝑝, 𝑟, 𝑎] such that:

𝑎 = {

revoke permission if t(r) = 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛
disable intent if t(r) =𝑖𝑛𝑡𝑒𝑛𝑡
shadow data if t(r) = 𝑑𝑎𝑡𝑎
save state if t(r) = 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙

4.2.4.2 Policy conditions

Access control policies are enforced on the basis of context, and other conditions such

as the set of permissions requested upon installation.

 Context conditions

In MASF, device location and a time interval are considered for context. The device

location data is captured from GPS and users can assign logical location names in which

the device is located. A policy time interval is introduced in MASF, which represents the

specific time period within which a policy should be enforced. The date and time is

represented in the following format 𝐷𝐷 − 𝑀𝑀 − 𝑌𝑌𝑌𝑌 − ℎℎ: 𝑚𝑚: 𝑠𝑠. In addition,

MASF uses the 𝑅 flag to define recurring events. The value of 𝑅 is drawn from the set

[𝑂, 𝐷, 𝑊, 𝑀, 𝑌], which is defining the event frequency: 𝑂 ⟶ 𝑂𝑛𝑐𝑒, 𝐷 ⟶ 𝐷𝑎𝑖𝑙𝑦, 𝑊 ⟶

𝑊𝑒𝑒𝑘𝑙𝑦, 𝑀 ⟶ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦, 𝑎𝑛𝑑 𝑌 ⟶ 𝑌𝑒𝑎𝑟𝑙𝑦. Date and time define the policy time

interval and an event is recurred based on the value of 𝑅 (i.e., the value of 𝑅 defines the

frequency with which that particular policy condition should be checked). For example,

to set an event that occurs every Friday for 8AM to 4PM for six months, 𝑅 would be set

Univ
ers

ity
 of

 M
ala

ya

94

𝑊 and the time interval would be set to event date-time, such as starting on 01 − 01 −

2016 − 08: 00: 00 and ending on 30−06 − 2016 − 16: 00: 00.

ii. Definition 2 (context condition):

A context 𝑐 could be defined as one of the following aspects: time or location. A

context is a condition for enforcing an associated restriction. A context policy is the

combination of the condition and restriction associated with it; one context can be

associated with one policy and one policy can be associated with only one context (one-

to-one relation).

Let 𝐿 be a location name and representing a particular location, and let [𝑆, 𝐸, 𝑓]

respectively be the starting time, ending time, and frequency, which define when a

particular policy is going to be enforced. So, a context condition for the policies is defined

as the tuple of [𝐿, (𝑆, 𝐸, 𝑓)].

iii. Definition 3 (active context (active policy)):

A context 𝑐 is called as an active context at a given time 𝒕, if the required

considerations that the context describes are verified. A policy 𝑷 that is associated with

active context 𝑪 is called as active policy. There exists a possibility of more than one

active context at the same time.

 Installation conditions

For installation polices, promising work has been already done in this area by (Enck

et al., 2009). In MASF, an installation condition is represented by the result of a test to

whether an installation rule is passed or failed. Table 4.1 describe some useful installation

rules for MASF to be checked at the time of installation. This table is based on examples

from (Enck et al., 2009) and extended with few conditions.

Univ
ers

ity
 of

 M
ala

ya

95

Table 4.1: Sample Installation-Time Policy Rules

Sample conditions
1 An app must not have any of the following combinations of permissions:

1) Phone state, internet, and record audio
2) Outgoing or incoming calls, record audio, and internet
3) Receive SMS and write SMS
4) Send SMS and Write SMS

2 An app should be downloaded from the user-listed app stores. For instance,
if user listed only Google Play store for downloading of apps, then apps
cannot be downloaded from any app stores except Google Play store.

3 User can block specific developers. An app cannot be downloaded from a list
of developers who the user has blacklisted.

The rules defined above only require the knowledge of the permission labels that are

requested by an app, as well as the action strings used in the intent filters. A rule indicates

the combinations of permission labels and action strings that should not be used by third-

party apps. Each rule is the conjunction of sets of permissions and action strings received.

A simple logic to represent a set of rules can be defined. Let 𝐼𝑅 be the set of all security

and privacy rules for installation-checker, and let 𝐼𝑃 be the set of all possible permission

labels used by the app and 𝐼𝐴 be the set of all possible action strings used by activities,

broadcast receivers, and services to receive intents. Then, each rule 𝑖𝑟𝑖 is a tuple

(2𝐼𝑃, 2𝐼𝐴)1, where 𝑖𝑟𝑖 ∈ 𝐼𝑅. Each rule 𝑖𝑟𝑖 can be defined with the notation 𝑖𝑟𝑖 = (𝐼𝑃𝑖 , 𝐼𝐴𝑖)

to refer to a specific subset of permission labels and action strings for rule 𝑖𝑟𝑖, where 𝐼𝑃𝑖 ∈

2𝐼𝑃 and 𝐼𝐴𝑖 ∈ 2𝐼𝐴. Next, a configuration based on package manifest contents is defined.

let 𝐼𝐶 be the set of all possible configurations extracted from a package manifest. Here,

it is only required to get the set of permission labels used by the app and the set of action

strings used by its activities, broadcast receivers, and services. Then, each

configuration 𝑖𝑐 can be defined as a tuple (2𝐼𝑃, 2𝐼𝐴), where 𝑖𝑐 ∈ 𝐼𝐶. Consequently, the

1 A standard notation 2𝑋 is used to represent the power set of a set X, which contains the set of all subsets including ∅.

Univ
ers

ity
 of

 M
ala

ya

96

notation 𝑖𝑐𝑡 = (𝐼𝑃𝑡, 𝐼𝐴𝑡) is used to refer to a specific subset of permission labels and

action strings used by a target app 𝑡, where 𝐼𝑃𝑡 ∈ 2𝐼𝑃 and 𝐼𝐴𝑡 ∈ 2𝐼𝐴. It is possible now to

define the semantics of a set of installation rules. A function

𝑓𝑎𝑖𝑙 ∶ 𝐼𝐶×𝐼𝑅 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

is defined to test if an app configuration fails for a particular rule 𝑖𝑟𝑖. Let 𝑖𝑐𝑡 be the

configuration for target app 𝑡 and 𝑖𝑟𝑖 be a rule. So we can define 𝑓𝑎𝑖𝑙(𝑖𝑐𝑡, 𝑖𝑟𝑖) as:

(𝐼𝑃𝑡, 𝐼𝐴𝑡) = 𝑖𝑐𝑡, (𝐼𝑃𝑖, 𝐼𝐴𝑖) = 𝑖𝑟𝑖, 𝐼𝑃𝑖 ⊆ 𝐼𝑃𝑡 ∧ 𝐼𝐴𝑖 ⊆ 𝐼𝐴𝑡

So the permissions and actions strings (i.e., the permissions and actions strings that

are defined in the rule should not access any app, because it is a dangerous combination,

and the app who is accessing this can act maliciously) must not be accessed by the target

app, but according to the above equation it is in the target app configuration, so this app

fails the defined rule.

iv. Definition 4 (installation condition):

Let 𝐹𝐼𝑅: 𝐼𝐶 → 𝐼𝑅 be a function that returns the set of all rules in 𝐼𝑅 ∈ 2𝐼𝑅 for which

an app configuration fails:

𝐹𝐼𝑅(𝑖𝑐𝑡) = {𝑖𝑟𝑖|𝑖𝑟𝑖 ∈ 𝐼𝑅, 𝑓𝑎𝑖𝑙(𝑖𝑐𝑡, 𝑖𝑟𝑖)}

The configuration 𝑖𝑐𝑡 passes a given rule-set 𝐼𝑅 if 𝐹𝐼𝑅(𝑖𝑐𝑡) = ∅. Hence, the result of

this function 𝐹𝐼𝑅(𝑖𝑐𝑡) defines the installation condition for an app, which is tested upon

installation and, if a non-empty set, will lead to the enforcement of the associated

restrictions defined by the corresponding installation policy.

Univ
ers

ity
 of

 M
ala

ya

97

4.2.4.3 Policy definition

A policy in MASF is the combination of a policy condition and the policy restriction

associated with it.

v. Definition 5 (policy)

Let 𝑃𝑅 be a policy restriction as defined in definition 1 and 𝑐 be a condition such as

the one defined by definition 2 or the one defined by definition 4. A policy 𝑃 is defined

as a tuple [𝑃𝑅, 𝑐]. The following example illustrates a context policy:

𝑷 = [[∗, 𝒂𝒏𝒅𝒓𝒐𝒊𝒅. 𝒑𝒆𝒓𝒎𝒊𝒔𝒔𝒊𝒐𝒏. 𝑪𝑨𝑴𝑬𝑹𝑨, 𝑹𝒆𝒗𝒐𝒌𝒆_𝑷𝒆𝒓𝒎𝒊𝒔𝒔𝒊𝒐𝒏],

[𝑯𝒐𝒔𝒑𝒊𝒕𝒂𝒍_𝑨(𝟎𝟏 − 𝟎𝟓 − 𝟐𝟎𝟏𝟔 − 𝟏𝟎: 𝟎𝟎: 𝟎𝟎, 𝟑𝟎 − 𝟎𝟔 − 𝟐𝟎𝟏𝟔 − 𝟏𝟔: 𝟎𝟎: 𝟎𝟎, 𝑾)]]

The example policy shown above disables all the apps from having the camera

permission weekly between 10.00 AM to 4.00 PM for two months in Hospital-A.

4.3 Framework Operation

This section explains interactions between different components of MASF. Some of

the use cases are presented to describe the functionalities of the framework and how it

protects the user data from unauthorized access.

4.3.1 Use Case I: Installation of a New App

To explain how installation-checker works and how the corresponding installation

policies behave during the installation of a new app, a use case (installation of a new app)

is depicted in Figure 4.5. This use case shows how MASF and its corresponding policies

behave when user tries to install a new app. Arrows 1 and 2 are showing the installation

of a new app from the app store. For installation, Android app installer first handles the

app, and before it completes its installation process the SML manager intercepts the

installation process and asks the installation-checker to check the app manifest file and

look at the permission labels requested by the app, as well as the action strings used in

Univ
ers

ity
 of

 M
ala

ya

98

the intent filters (arrow 4). This checker then returns a result to the manager as per

definition 4 above (arrow 5). The manager reads the relevant installation policies from

the policy-database (arrow 6), and follows the policy defined in definition 5 to decide

whether to prevent or proceed with the installation process. The decision is delegated to

the action-performer (arrow 7), which enforces it upon Android installer (arrow 8).

Figure 4.5: Use Case 1 - Installation of a New App

4.3.2 Use Case II: Privacy Enhanced Content Providers and System Services

System Services and Content Providers are an integral part of the Android application

framework and implement the API exposed to third party apps. Prominent services are

the LocationManager and the Audio Services, while prominent content providers are the

Contacts app and SMS/MMS app. Android enforces permission checks on access to the

interfaces of these services and providers.

However, the default permissions of Android are too coarse-grained and protect access

only to the entire service/provider but not to specific functions or data, and once these

permissions are granted then users are not aware how the permissions are being used.

Thus, the user cannot control in a fine-grained fashion which sensitive data can be

accessed, how, when and by whom. For example, the Facebook have access to the entire

contacts database although only a subset of the data is required for their correct

functioning.

App Store

App

A
nd

ro
id

 A
pp

 In
st

al
le

r

SML manager

 action-performer

 policy-database

 installation-checker
1

2

3

7

8

4

5

6

Univ
ers

ity
 of

 M
ala

ya

99

MASF deploys some hooks into each service interface and function. The SIL inserts a

hook into each of the AutdioService, LocationManager, and SensorManager to achieve

fine-grained access control on these functions. To show how MASF protects the content

providers and system services, an example of protecting a content provider (e.g. the

Contacts) is shown in Figure 4.6.

Figure 4.6: Use Case 2: Protecting Contents

When an app requests for some content such as the contacts, the request first goes to

a content resolver (arrow 1). Afterwards it goes to Android permission check, a

mechanism that is provided by Android OS to check the permissions granted for an app

before allowing it to access the protected resources (arrow 2). The manager takes the

control here (arrow 3), and decides whether it is safe to grant the app an access to the

requested content. In order to reach a decision, the manager might resort to the taint-

analyser to examine the app and track the path of the requested data through its code.

This could reveal whether the requested data are leaked out to the untrusted domain or

are just consumed locally (arrows 4 and 5). The manager can also make use of the

context-checker to check the conformity of the access to context-related policies (arrows

4 and 5). Based on the results and the policies read from the policy-database (arrow 6),

App

Content
Resolver

A
nd

ro
id

 P
er

m
is

si
on

 C
he

ck

SML manager

 action-performer

 policy-database

 taint-analyzer
1

2

3

8

6

4

 context-checker
4

5

5

7

Univ
ers

ity
 of

 M
ala

ya

100

the manager either instructs the action-performer to grant the required access or to take

one of the following actions: provide shadowed contents, or deny the access to contents.

4.3.3 Use Case III: Context-Aware Fine-Grained Access Control

As mentioned earlier, MASF can provide a context-aware and fine-grained access

control mechanism, so that the user can control the access to sensitive resources according

to the current context (e.g., location or time). Figure 4.7 shows an example of providing

context-aware access control based on the current location.

Figure 4.7: Use Case 3: Context-Aware Fine-Grained Access Control

A context-aware fine-grained access control mechanism is demonstrated in Figure 4.7.

This figure is showing a use case for location-based context-aware fine-grained access

control. As depicted in the figure, when an app sends a request to use a system service or

to access resources (arrows 1 and 2), first the Android permission check system verifies

the permissions for the corresponding activity, if it allows to access the service or

resource, then the SML manager intercepts the request (arrow 3). From there, the

manager refers to the context-checker (arrow 4), which in turn reads the location data

from Android’s location-manager (arrow 5), and returns a result to the manager in terms

of a tuple that was defined in definition 2 in section 4.2.4.2 (arrow 6). The manager then

compares the returned context with the defined context policies in the policy-database

access (arrow 7). To achieve its job, the context-checker refers to the system-provided

App Store

App

A
nd

ro
id

 P
er

m
is

si
on

 C
he

ck

SML manager

 action-performer

 policy-database

 context-checker
1

2

3

9

4

6

7

 Location-manager

5 8

Univ
ers

ity
 of

 M
ala

ya

101

location-manager (arrow 5) to learn about the current GPS and other location-related

measurements. Finally, the enforcement of the decision made by the manager based on

the context policies is delegated to the action-performer (arrow 8).

4.3.4 Use Case IV: Mitigating the DMB Attacks when Connecting to Devices

This use case defines how MASF mitigate the DMB attack (DMB attack definition is

provided in Chapter 2). Considering this case is important in mHealth apps, as these apps

usually communicate with medical sensors and other external medical devices. mHealth

apps generally collect measurements from external devices (e.g., heartbeat reader) and

sensors to accomplish their medical services. During this process, medical information

might be stolen by an adversary through a malicious app that is installed on the same

smartphone, or the adversary can inject fake data, which could be very dangerous for the

user.

MASF deploys the device-checker to detect these attacks. When an app tries to access

data from external resources. Figure 4.8 illustrates the architecture for Bluetooth socket

communication on Android 4.3, and it also depicts how MASF works against DMB

attacks. Android platform supports pairing a device programmatically, using the system

calls 𝑠𝑒𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 and 𝑠𝑒𝑡𝑃𝑖𝑛 or 𝑆𝑒𝑡𝑃𝑎𝑠𝑠𝑘𝑒𝑦 of the 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ𝐷𝑒𝑣𝑖𝑐𝑒

class. To unpair a device, the app uses the API call 𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑜𝑛𝑑. Otherwise, the app

can invoke the built-in settings program to control the Bluetooth adapter. In both cases,

an IPC request needs to be sent to 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑣𝑖𝑐𝑒 to control the Bluetooth device. Once

a bond is established between the app and the device, the app can make a socket

connection to access the device. It first needs to talk to the 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ𝐴𝑑𝑎𝑝𝑡𝑒𝑟, to get a

list of paired devices. From this list, the app identifies the target device (MAC) and further

requests a socket through the object 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ𝐷𝑒𝑣𝑖𝑐𝑒. This request is also delivered

Univ
ers

ity
 of

 M
ala

ya

102

using an IPC, through the 𝐼𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ interface, to 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒, which creates the

socket for the connection.

Figure 4.8: Use Case 4: Collect Data from External Devices/Sensor (DMB Attacks)

Once an external device is activated, it is paired with its authorized app by the user.

MASF observes this pairing process and then generates a bonding policy that associates

each device (name, MAC) to its official app (UID). In MASF, users can also define their

own policy rule, such as the rule that a particular device can only be accessed by a specific

app, as well as rules based on the context. Furthermore, users can also use save state

policies (policies related to system peripherals) to control access of apps to the Bluetooth

interface (i.e., they can use policies to stop toggling of Bluetooth).

Whenever Android receives a Bluetooth socket-connection request from an app, the

manager component of MASF asks the device-checker to check whether the app is

associated in the bonding policy to the device it is trying to talk to: if the app is not on the

device’s bonding policy, the request is denied; otherwise, it is allowed to proceed. In this

way, MASF can mitigate data stealing attacks. The framework can also provide policies

for unpairing, to dissolve a pairing relation between the smartphone and a device, so user

BluetoothDevice

BluetoothManagerService IBluetooth

AdapterService Reference Monitor

BlueDroid
Kernel

Frameworks

APIs

BluetoothAdapter

SIL SML manager

device-checker

action-performer

po
lic

y-
da

ta
ba

se

1

2 4

3

5

6

7

Univ
ers

ity
 of

 M
ala

ya

103

can stop the unauthorized unpairing attempts to defeat the data injection attack, because

this attack is contingent on resetting the link key for the phone-device communication, so

it cannot work without unpairing the phone from the device.

Referring to Figure 4.8, 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒 controls socket establishment and manages

the unpairing operation. MASF inserts a Reference Monitor into the 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒

through the SIL, in order to control the bonding (pairing) between apps and Bluetooth

devices. First, any request by an app to pair/unpair to a Bluetooth device is delivered to

the SML manager (arrow 1), which might perform several tests including the ones directly

related to the communicating app/device pair and the parameters of the communication.

For the latter, the manager calls upon the device-checker (arrow 2) to receive a direct

input from the reference monitor via the System Interface Layer (arrow 3) and then report

the obtained information about the app/device pair and the communication parameters to

the manager (arrow 4). As per all other checks, the manager refers to the policy-database

to read the policies related to external-device connections (arrow 5), and then to make a

decision on the current connection, and to inform the action-performer of the decision

(arrow 6), in order to enforce the required actions (arrow 8).

4.4 Chapter Summary

In this chapter, the detailed design of the proposed MHealth Apps Security Framework

(MASF) is presented. MASF is meant to be a practical and lightweight framework to

secure sensitive medical data that is handling by mHealth apps. The framework consists

of two major layers: the Security Module Layer and the System Interface Layer. The main

contribution of this thesis lie in the SM layer, which comprises several components to

fulfil the framework functionality. This chapter explains how the core component of

SML, which is called the manager, relies on a set of special checker tools and a repository

of policies to make decision on the various requests and actions made by mHealth apps

Univ
ers

ity
 of

 M
ala

ya

104

to access system resources. With special monitors for the context, installation, malware,

external devices, as well as a special taint analyser, the manager can acquire a fair idea

on the events on the smartphone, and can delegate the enforcement of security decision

to a dedicated component called the action-performer. SML cannot function at all without

a window into the internals of the underlying Android system, which is provided by the

SI layer. The final part of the chapter discussed four different scenarios in which MASF

can operate to further clarify the expected operation of the framework.

Univ
ers

ity
 of

 M
ala

ya

105

CHAPTER 5: IMPLEMENTATION AND EVALUATION

This chapter explains the process of validating and evaluating the proposed

framework. It commences with a brief overview of the implementation of MASF in

Section 5.1, where the implementations of different components of the framework are

briefly explained for the purpose of validating the design presented on the previous

chapter.

MASF achieves all its security and privacy objectives with a minimal trade-off

between security and performance. The implemented solution induces a small overhead

both in terms of time and energy consumption. Further, all security and privacy checks

and extensions are incorporated in the Android system with minimal changes to the

codebase of the Android stock version, and to the user interface of the existing security

architecture. The framework is also backward compatible with the current security

mechanism for better acceptability in both the Android ecosystem and its healthcare

community. Section 5.2 explains the process and results of evaluation of this framework

in terms of effectiveness and performance overhead (for example induced computational

time and energy consumption), compared to the stock version of an Android system.

Section 5.3 discusses the overall performance of MASF, while Section 5.4 provides a

summary of the chapter.

5.1 Implementation Details

This section presents the technical details of MASF’s implementation. As discussed

earlier in Chapter 4, the design of MASF encompasses two main layers, one of which

provides the main functionality of security checks and in turn consists of several

components and is written in Java; the second layer is providing the necessary integration

with the Android platform, and as such, entails modifications to the Android OS. This

Univ
ers

ity
 of

 M
ala

ya

106

section starts with the latter layer, the System Interface Layer (SIL), then proceeds to

present the Security Module Layer (SML).

5.1.1 Implementation of the System Interface Layer

Starting from the bottom of MASF architecture, this layer is essential for integrating

the functionality of the whole framework, mainly provided by the upper SM layer, into

the underlying Android platform internals. SML is implemented as a set of user-space

modules; therefore, it must be provided with some interface to access the Android system.

This interface should include adequate function calls and event triggers to enable the

functionality of MASF. Providing this kind of Application Programming Interface (API)

is the purpose of SIL.

Because the stock version of Android does not allow that kind of hooking into its

internal workings, SIL must modify the Android stock code to fulfil its intended purpose.

To this end, there are two options for SIL: either to be built from scratch, or to be adopted

from any available API system that does provide the required hooks into the Android OS.

Following the first option entails a significant amount of work on an essential part of

MASF but nevertheless not the main focus of the framework, which is the set of security

checks against mHealth apps, not how to integrate them into Android specifically.

The problem with the second option is that the needed API should be specialized on

the one hand, providing hooks into specific Android internals that relate to its security

model in particular, and should be generic on the other hand, allowing other modules to

implement their own logic; i.e. it should not enforce a specific security model or policy

on the calling modules. Fortunately, such an API system do exist, and one particular

generic framework is selected to provide the basic interfacing needs of MASF to the

Android platform. This solution is adjusted for the purpose of MASF and wrapped in the

bottom layer, SIL.

Univ
ers

ity
 of

 M
ala

ya

107

SIL implementation relies on Android Security Framework (ASF) (Backes, Bugiel, et

al., 2014). ASF is an extensible and model-agnostic security infrastructure. The basic idea

behind ASF is to extend Android with a new security API that allows to write and

integrate general security policies. This function perfectly fits the need of MASF. In that

way, SIL allows for the development of security extensions against a well-defined

security API in the form of security modules that integrate nicely in the Android’s

platform security. Those modules are located in the upper SM layer.

Technically, ASF provides necessary hooks into different layers of Android: the

applicatios, the middleware as well as the kernel. Those hooks take the form of reference

monitors that are planted at various points in the Android security architecture and are

being called each time a protected resource in invoked. For each reference monitor, there

is an associated API function that should be implemented by some security module

written as a normal Android app. The API function is provided by ASF (and hence by

SIL in MASF), while the security modules reside in the SM layer of MASF and are

implemented in this thesis to enforce security-related policy on direct ICC, broadcast

intents, and other channels through system content providers and system services.

ASF infrastructure has been prototypically implemented for Android v4.3 and is

available in source code. It currently comprises 4606 lines of code. As mentioned earlier,

SIL uses the implementation of ASF, which occurs at three different levels, each of which

are briefly presented below.

5.1.1.1 Kernel space

To provide access to Android kernel and enable enforcing policies at that level, SIL

adopts the mature Linux Security Module (LSM) (Wright, Cowan, Smalley, Morris, &

Kroah-Hartman, 2002) framework. LSM itself implements mandatory access control at

the kernel level and enables other modules to register for enforcement hooks to kernel

Univ
ers

ity
 of

 M
ala

ya

108

components such as process management and the virtual file system. A submodule of SIL

is no more than a standard LSM module that registers for LSM hooks using the LSM

API. Then, this submodule provides its own kernel API to other modules in the upper

layer of MASF (i.e. Security Modules Layer), to implement mandatory access control at

the kernel level through the SIL API, which is ultimately using the LSM API. Several

other known solutions depend on LSM, including SELinux (Smalley, Vance, & Salamon,

2001), and TOMOYO (Harada, Horie, & Tanaka, 2004).

5.1.1.2 Middleware layer

Android architecture contains a set of system services (e.g. activity manager service,

location manager service and network manager service) and system apps (e.g. Dial app,

Calendar app and Camera app) that offer the Android API available to developers of other

apps, including mHealth apps. SIL extends this middleware of the Android security

model using a large number of reference monitors embedded inside Android system

services and system apps. These reference monitors act as hooks that are linked to any

module in the upper SM layer through SIL middleware API, in contrast to SIL kernel API

mentioned in the previous subsection. SML modules are expected to implement access

control and security policy decisions in the functions of this middleware API, through

which the hooks would enforce them upon the control flow within Android middleware.

SIL middleware API contains 168 functions (full listing of these functions is provided

in Appendix B). These functions define the bulk of functionality available to the upper

components of MASF. This API can be broken down into several categories, the most

important of which is the category of enforcement functions, which is composed of 136

methods and are called by SIL whenever the enforcement hooks in system apps and

services are triggered. Each hook has a corresponding function in the API that implements

the policy decision logic for this hook. Enforcement functions receive the same

Univ
ers

ity
 of

 M
ala

ya

109

parameters as their hooks, and they can modify the program flow at run time by passing

arguments by reference or returning objects as return values.

Another category of middleware API functions provided by SIL is life-cycle

management. SML modules implement functions to manage the system life-cycle, such

as initialization or shutdown. For example, modules can use these functions to initiate

their policy engines or to save internal states to persistent storage before the device turns

off. Furthermore, SIL middleware API include event notification interfaces used to

propagate important system events to SML modules. For instance, modules should be

immediately informed when an app was successfully installed, replaced, or removed.

SML modules can also use callback interfaces for communicating in a more direct manner

with system services, such as the PackageManagerService, and avoids the need to go

through the Android API. For example, this category of SIL API includes functions that

allow modules to efficiently resolve PIDs to application package names.

SIL also provides a special callModule function that allows SML modules to

implement communication with front-end apps (e.g. the user-interactor module in SML

that enables users to provide custom security policies). When using callModule(), this

communication is based on Bundles, which are key-value mappings used to send arbitrary

data from one activity to another by way of intents.

5.1.1.3 Application layer

At the application layer, SIL allows modules of SML to hook inside mHealth apps

themselves, using the technique of Inlined Reference Monitors (IRM), introduced by

Erlingsson and Schneider (Erlingsson & Schneider, 2000). This mechanism rewrites an

mHealth app such that the reference monitor is embedded right into the app itself. The

security module at SML can use an instrumentation API provided by SIL to hook any

Univ
ers

ity
 of

 M
ala

ya

110

Java function within a selected app, then function calls are redirected to the embedded

inlined reference monitor, which in turn enforces policy decisions made by the module.

Hooks injected via the instrumentation API are local to the app process that the API is

called from. The main advantage of policy enforcement in the caller’s process context is

that the hook and subsequently the security module has full access to the internal state of

the app and can thus provide rich contextual information about the caller. In contrast to

the hooks placed in the Android middleware, application layer hooks are dynamic, which

means that hooks are injected by directly modifying the target app’s memory when a new

app process is started.

5.1.2 Implementation of the Security Modules Layer

The detailed design of the Security Modules Layer (SML) is presented in Chapter 2.

As explained in that chapter, SML consists of a set of modules including the manager,

the policy-database, the user-interactor, the action-performer and a set of security

checkers. This section describes the structure of such security modules within SML. Each

of these modules is no more than a user-space Android app, created using the Android

SDK. What differentiates most of these modules from normal Android apps is the use of

the security API provided by SIL. Modules within SML are installed in a protected

location on the file system, and are loaded during the system boot. Similar to any Android

app, the package of an SML module is a jar file that contains program code in terms of

Java classes, resources, and the manifest file (Figure 5.1).

The manifest file is an XML-based file that declares the main properties of a module,

such as the module author or code version, and, more importantly, the name of the main

Java class that forms the entry point for the module. As in regular apps, the classes.dex

file contains the Java code compiled to Dalvik executable bytecode (DEX). It contains all

Java classes that implement the security module’s logic. During the load process of the

Univ
ers

ity
 of

 M
ala

ya

111

security module, the SIL middleware uses the Java reflection API to load the module’s

main class (as specified in the manifest file) from classes.dex. To ensure that the reflection

works error-free, the main class must implement the SIL API discussed in the previous

subsections.

Security modules also contain a native library liblsm.so written in C, and a

corresponding Java class LSM.java, which exposes the native library via the Java Native

Interface. The purpose of this code is to implement a proprietary interface between the

user-space processes of security modules that uses SIL middleware API and those that

uses SIL kernel API, which are implemented as Linux security module in the kernel

(Section 5.1.1.1). LSM.java has to implement the generic interface for the communication

with the kernel. The generic kernel module interface of SIL loads LSM.java through the

Java reflection API into Android’s application framework. This allows apps and services

to communicate via SIL (and reflectively through LSM.java) with the kernel module and

avoids a policy-specific interface.

Finally, each module can ship with proprietary resources, such as initial configuration

files or required binaries. During module initialization, Android informs the module about

the location of its Jar file, enabling the module to extract these resources on-demand from

its file.

Middleware Sub-Module (Middleware Security
Module)

Manifest.xml Classes.dex

LSM.java / liblsm.so Resources

Figure 5.1: Middleware Security Module Structure

SML modules aim to enforce access control policies as explained in the previous

chapter, the implementation of these access control and policy enforcement mechanisms

are presented in the following sub sections.

Univ
ers

ity
 of

 M
ala

ya

112

5.1.3 Enforcement of Fine-Grained Access Control Policies

Enforcing fine-grained access control policies on apps is implemented by restricting

third party apps’ ability to access critical system resources. To realize this goal, SML

modules mostly use two mechanisms provided by SIL: the middleware-level enforcement

functions, and the application-level IRM. In general, the manager component would

implement several reference monitors or hooks embedded within Android’s system

services and apps to intercept important events and also respond with decided actions.

Each reference monitor protects one specific privileged resource and is placed such that

it is always invoked by the control flow between the Android API and access to the

resource. In total, all monitors enable powerful and semantically rich security policies.

For example, fine-grained filtering of requests for data from content providers can be

achieved using the pre-query hooks on Android ContentProvider system service to

modify selection arguments and retrieve only contacts that are allowed for the current

caller specified via a policy entry.

Using the IRM instrumentation API, SML modules dynamically hook selected Java

functions within the mHealth app process. Function calls are redirected to an inlined

reference monitor that enforces fine-grained policy decisions made by the module, which

are difficult to enforce using the native Android security model. For example, functions

that setup the registration with sensors can be hooked to enforce low data resolutions, and

functions that access the web can be enforced to use encryption through https rather than

the use of http.

In SML, most policy decision logic is implemented by the manager referring to

policies in the policy-database persistent storage. The manager responds to reference

monitors at various levels in the Android architecture, selects the apps into which IRMs

are injected, and when necessary makes use of other checkers to make security logic

Univ
ers

ity
 of

 M
ala

ya

113

decisions. The response of the manager includes taking a decision about the requested

access or intended action and then invoking the action-performer to execute one of pre-

determined set of actions that have been defined in Section 4.2.1.5.

5.1.3.1 Context-aware access control

A pertinent example of fine-grained access control is context-aware access control. A

context is based on the geolocation of the device as well as the time. Depending on this

context, MASF either allows or denies apps access to security and privacy sensitive

information. To accomplish that, the manager invokes the context-checker component

upon the start of an mHealth app. The context-checker in its turn registers as a listener for

location updates to detect context changes. When the app requests a resource or service,

the manager checks if there is any policy that is associated with the app request. If such

a policy exists, the manager asks the context-checker to report the context of the device

in terms of location and current time. The manager then matches the reported context

with the context defined in the policy. In case of a match, the manager enforces the

corresponding policy restrictions by invoking the action-performer to apply those

restrictions on the app request.

5.1.3.2 One-time checks

As an example of the implementation of other security checks, event functions

provided by SIL are used to trigger malware checks and taint analysis upon the event of

installing a new app. These checks are necessary only once per installation of an app or

its updates, and the event of installation is registered with SIL by the manager. There is

no reason for waiting until the app actually runs and makes access requests to check for

malware behaviour or information leakage. To guard against these threats, the manager

is notified whenever a new app is installed, upon which it asks the malware-checker to

exam the app against malware behaviour. In the current implementation, this is achieved

Univ
ers

ity
 of

 M
ala

ya

114

by simply invoking an installed anti-malware app, specifying the app as the target for the

scan process. The results of the scan are delivered back to the manager. In addition, the

taint-analyser is also invoked by the manager to perform taint analysis on the newly

installed app. As explained earlier in Chapter 4, the implementation of the taint-analyser

is based on FlowDroid (Arzt et al., 2014) and extended by (He, 2014). Taint analysis

could be very efficient in revealing special threats such as the privilege escalation attack.

5.1.3.3 Permission management

In Android, all the resources that require explicit permissions to access are protected

by the ActivityManagerService class through the checkComponentPermission method,

which is called to verify that calling app has the right permission(s) to access a resource.

Among the hooked system services, the SIL layer of MASF provides 10 hooks for the

ActivityManagerService. The SML manager implements the enforcement functions

corresponding to the checkComponentPermission hook, and thereby intercepting the

permission checks before they are performed by the Android system and then enforcing

more fine-grained control permissions that better reflect the app function and narrow

down its accessibility to system resources. For example, the READ_PHONE_STATE

permission provides apps with access to a large set of information on the phone number,

the IMEI/MEID identifier, subscriber identification, phone state (busy/available), SIM

serial number…etc., while only a subset of this information might be adequate.

5.1.3.4 Data shadowing

Data shadowing means that an app that wants to retrieve sensitive information (e.g.,

contacts information, location data, or IMEI number) only gets empty, fake, or filtered

data. This is one of the possible actions that could be enforced by the action-performer

component based on the manager decision, though its implementation might not be

obvious like other straightforward actions such as blocking or revoking permissions. Data

Univ
ers

ity
 of

 M
ala

ya

115

shadowing is implemented using edit automaton hooks in the ContectProvider.Transport

class, the ContactsProvider-specific hooks, the Telephony service and Location service.

For ContentProvider and ContactsProvider, the SIL pre-query and post-query hooks

allow a fine-grained filtering or replacing (faking) of the returned data as well as returning

an empty data set. However, the current coverage of enforcement hooks does not include

some of the data shadowing points, such as microphone, logs, or camera, and are left for

the future work.

5.1.3.5 Installation checks

MASF also extends Android’s app installation process with policy-based checks and

denies the installation of a new app when it violates the relevant policies. The manager

component makes use of a special module called the installation-checker. This module

performs a set of investigations based on the permissions requested by an app and the

interfaces (e.g., Broadcast receivers) it wants to register in the system. The result of that

examination is then returned to the manager and the installation of the app is rejected if

the relevant policy dictates so. To implement this security service, the manager uses the

scanPackage hook in the PackageManagerService, checks the new app against the policy

and aborts its installation in case the policy rejects the app.

5.1.3.6 Intent management

MASF can enforce a number of controls/restrictions on different activities by

intercepting intents for purposes such as launching an app (to prevent certain apps from

running on the device), app installation and uninstallation (to prevent an app from sending

an intent to install or uninstall an app), services (to prevent apps from starting background

services), locking and unlocking the device (to prevent requesting pin code to unlock the

device), broadcasts (to prevent apps from broadcasting intents), or app multitasking (to

prevent running multiple user-apps simultaneously). The implementation of intent

Univ
ers

ity
 of

 M
ala

ya

116

interception is achieved by the manager using SIL-provided enforcement functions. In

particular, the manager implements the function associated with the hook of the intent

broadcasting subsystem of the ActivityManagerService.

5.1.3.7 Managing system peripheral state

MASF also enables users of configuring policies to restrict access to peripheral devices

such as the Bluetooth, based, for example, on a certain context. Users can configure their

devices to prevent apps from modifying the state of a device (whether the device is

enabled or disabled). The manager uses enforcement functions into BluetoothAdapter

and WifiManager classes to implement the control over peripherals state rather than

permission management. In that way, MASF prevent apps from crashing if they lack the

necessary code to handle exceptions that may result from just revoking permissions.

5.2 Experimental Evaluation

This section presents the results of evaluating MASF from two distinct perspectives:

effectiveness and practicality. Through a series of experiments, the aim of the evaluation

is to verify that MASF can actually protect private information, and can control the access

to sensitive data in accordance with users’ policies. Users are expected to be able to

(re)adjust and enforce security and privacy policies after installation even at runtime

without affecting app functionality. This section presents the experimental results of

various checks that control the privacy and security of user in the context of mHealth

apps. Further, the impact of MASF on user experience is also evaluated and discussed. A

number of mHealth apps are tested to check the effectiveness and performance impact of

the framework, most of which are explained in Section 5.2.1.

In addition to evaluate the implementation MASF to understand its effectiveness in

protecting sensitive data, the conducted experiments also aimed to evaluate the

framework’s performance impact on the phone’s normal operations. All the experiments

Univ
ers

ity
 of

 M
ala

ya

117

were conducted on a Samsung Galaxy S3 device with a Quad-core 1.4 GHz Cortex-A9

and 1GB memory, running the Android 4.3 operating system (API level v. 18). At the

time of evaluation, the top 100 apps from the Google Play market were run for testing

and evaluating the modifications to the stock Android.

A number of experiments were performed to evaluate the effectiveness and efficiency

of MASF against different attacks and in various scenarios. The results of these

experiments are presented in the following subsections.

5.2.1 Experiment 1: Effectiveness

This section presents a number of experiments that were conducted to show how

effectively can MASF protect user data against security threats. A sample of 100 mHealth

apps was used to check how the framework works against leakage of private information,

and what steps it takes to prevent this leakage. As a first step, the sample apps were

executed on a stock Android version to establish an insight into the scene of mHealth

apps security. The complete list of the sample apps is given in Appendix A.

Figure 5.2 presents the results of examining the set of apps, showing a number of

threats faced by mHealth apps on the stock Android operating system. During the

experiment, it was observed that a lot of apps are disclosing users’ data (73 out of 100)

without the knowledge of users. Only 11 apps out of 100 were accessing the external

devices. Those apps were checked against DMB attacks (for both data injection and data

stealing variations of the DMB attacks), with no single app being able to defend against

these attacks. Furthermore, 53 apps had the potential to perform privileges escalation

attacks. Only 7 apps used encryption to secure user data. Some apps accessed user

information that was not necessary at all to fulfil their functionalities. Only 45 percent of

the apps employed authentication to secure user information.

Univ
ers

ity
 of

 M
ala

ya

118

Figure 5.2: Security Assessment of a 100 mHealth Apps on Stock Android OS

Figure 5.3: Number of Apps Attempting to Access Various Resources Containing

Sensitive Data

Most of the examined apps attempted to access the device location, list of contacts,

call logs, phone identity, camera, account information and Bluetooth, as can be seen in

Figure 5.3. Figure 5.3 shows how many out of the 100 target apps accessed these

resources and how frequently, which also reflects the relative importance of the resources.

Among 73 apps that found to be leaking information surreptitiously, 48 apps leaked

0 20 40 60 80 100

Authentication

Encryption

Privacy Terms & Conditions

Prevent Leakage of information

Suitability of Requested Data

DMB Attacks

Privilege Escalation Attacks

Authenticatio
n

Encryption
Privacy Terms
& Conditions

Prevent
Leakage of

information

Suitability of
Requested

Data
DMB Attacks

Privilege
Escalation

Attacks

Total 100 100 100 100 100 11 100

No 55 93 78 73 40 0 47

Yes 45 7 22 27 60 11 53

Total No Yes

0
5

10
15
20
25
30
35
40
45
50

A
PP

S

Univ
ers

ity
 of

 M
ala

ya

119

location information, 43 apps sent the IMEI number, and 24 apps leaked both the IMEI

number and location information. Although most of them do not need to do, 32 apps did

access the contacts information, 21 apps had permission to access Bluetooth, which can

cause DMB attacks in the case of mHealth apps. Other apps attempted to access the logs,

microphone and other sensitive resources, which leads to disclosure of sensitive user data.

In later experiments, the same set of 100 mHealth apps were installed on the device

containing Android 4.3 enhanced with MASF, which provides a set of privacy and

security policies to effectively prevent leakage of private information, DMB attacks and

privilege escalation attacks. MASF can provide apps with shadow data, and deny

permissions to access Bluetooth by untrusted apps. MASF indeed prevented all the 73

apps from leaking information that was detected in the previous experiment. MASF also

successfully defended against DMB and privilege escalation attacks. MASF solved the

encryption problem by providing shadow or empty data so that apps cannot expose actual

sensitive data in plain text.

A number of experiments was performed to test the effectiveness of MASF against

different attacks, and experimental results show that the framework is very effective to

control unauthorized access of user data and other system services and resources.

Experimental results of three scenarios are presented below.

Scenario 1. In this example, an app named Heart Rate Monitor was used, which was

known to request the permission to access the location, even though this app does not

need to access the location to perform its operations. When this app was installed and run

on the stock Android, after granted the permission to access location, the app leaked the

phone location information, and sent that information to a remote server. However, when

MASF was installed on the smartphone, and then the same app was installed and run, the

app provided empty/fake location to the remote server. That was the effect of checking

Univ
ers

ity
 of

 M
ala

ya

120

the rules and policies related to privacy of location by the framework. Furthermore, the

experiment showed that no app was affected by enabling MASF on the smartphone; they

were running smoothly and working normally.

Scenario 2. Another two experiments were performed on the app named Diabetes, one

without, and the other with, the protection of MASF. At the time of installation, this app

declared the permission to access the phone identity, but this information was leaked to a

remote server. In the first experiment, this app sent the IMEI number of the smartphone

to a remote server. The leaked IMEI number (376855633798032) was in the query string

of HTTP GET request to the server. After the confirmation of leakage on stock Android,

the second experiment started on Android enhanced with MASF. The same app was run

again to check the effectiveness of MASF. Although the app was again sending an IMEI

number, but this time the IMEI number was not the original one, the framework sent a

fake IMEI number. The reason here to send the fake value instead of blocking the access

is to make sure that the app continues its operation without crashing.

Scenario 3. To check the effectiveness of MASF against DMB attacks, several attack

scenarios are attempted against a set of apps as described in Naveed et al. (2014),

including DMB data-injection and data-stealing attacks. All these attack attempts were

thwarted. In particular, for all data-stealing attacks, MASF stopped the malicious app

from making socket connections to the target device, as these connections violated the

policies. MASF also did not allow access to system peripherals (i.e. Bluetooth devices)

for apps that were not explicitly allowed by the phone user through the policies. For the

data-injection attacks, MASF blocked all the attempts to unpair the phone from the

devices and therefore defeated the data-injection attacks.

Univ
ers

ity
 of

 M
ala

ya

121

5.2.2 Experiment 2: Malware Test Suite

This set of experiments adopts the malware test suite that was presented by (Bugiel,

Davi, Dmitrienko, Fischer, et al., 2011). MASF was evaluated by applying that malware

test suite, which constitutes a set of recent privilege escalation attacks (Davi et al., 2011;

Enck, Ongtang, & McDaniel, 2008; Lineberry, Richardson, & Wyatt, 2010; Schlegel et

al., 2011). The test suite exploits transitive permission usage to perform attacks against

user privacy or to gain unauthorized access to protected system interfaces. A group of 6

example attacks were chosen for the experiment, which are defined in Table 5.1. Each

row in the table shows the granted set of permissions for two colluding malicious apps,

in a given scenario attack. Attack scenarios 2-4 are proof-of-concept examples of

malware, while scenarios 1, 5 and 6 emulate the attacks in (Davi et al., 2011; Enck et al.,

2008; Lineberry et al., 2010; Schlegel et al., 2011).

Table 5.1: Malware Test Suite

1st App 2nd App
1 Malicious voice recorder RECORD_AUDIO

and PHONE_STATE or
PROCESS_OUTGOING_CALLS

Malicious wallpaper (Schlegel et
al., 2011) INTERNET

2 Malicious step counter
ACCESS_FINE_LOCATION

Malicious wallpaper INTERNET

3 Malicious contacts manager
READ_CONTACTS

Malicious wallpaper INTERNET

4 Malicious SMS widget READ_SMS Malicious wallpaper INTERNET
5 Malicious app no INTERTNET Vulnerable browser (Lineberry et

al., 2010) INTERNET
6 Malicious app no SEND_SMS Vulnerable SMS widget (Davi et

al., 2011) SEND_SMS

Attacks 1 to 4 involve two colluding malicious apps, where one app gets the Internet

access, and another one can gain access to sensitive user data, such as contact, user

location, SMS database and recorded audio. In the attack scenario 1, the malicious voice

recorder also requires the PROCESS_OUTGOING_CALLS or PHONE_STATE

Univ
ers

ity
 of

 M
ala

ya

122

permission, because this permission is required to be notified at what time the incoming

or outgoing call starts. Apps collude to send private user information to the remote

adversary. In attack scenarios 2 to 4, apps establish the ICC communication link between

them, whereas in scenario 1 they communicate through a covert channel.

In scenarios 5 and 6 a malicious app misuses a vulnerable app that has the permission

to access Internet, voice call or SMS services to get unauthorized access to these system

interfaces. Scenario 5 emulates attacks reported in (Egele, Kruegel, Kirda, & Vigna,

2011; Lineberry et al., 2010), which exploits an unprotected interface of the Android web

browser to do unauthorized download of malicious files. In scenario 6 the malicious app

sends unauthorized text messages, similar to the attack shown in (Davi et al., 2011).

MASF is tested to evaluate its effectiveness in detecting the malware presented in the

above description. All tests were performed on the device running Android 4.3 and

MASF. After enforcing MASF access control, the malicious apps were installed from the

test suite and performed the corresponding attacks. All attacks were successfully detected

and prevented by MASF.

5.2.3 Experiment 3: Impact of Permission Restrictions

This experiment was conducted to find the impact of permission-related policy

restrictions on apps. In particular, the experiment aimed to check whether an app crashes

or not when a permission that was granted at the time of installation is denied. A stress

test was performed on each app, and the impact of revoking the permissions of each app

was observed when it was requesting for a service or resource. The experiment was also

performed on a set of 100 apps and used the ADB logging utility to view the permission

being revoked when the checkComponentPermission hook is invoked.

Univ
ers

ity
 of

 M
ala

ya

123

Figure 5.4 shows both the number of apps that crashed and those that did not, upon

performing the test on each permission. An app was considered as crashed if it failed

during the execution of any part of its functionality, whether major or minor. The primary

cause of crashes of an app is the lack of developer’s skills to handle the denial of

previously granted permissions. App crashes can be prevented or reduced if error-

handling was added whenever an app tries to access resources or request for a service.

5.2.4 Experiment 4: Impact of Data Shadowing

The aim of this experiment was to observe the impact of data shadowing or blocking

access to user data. In data shadowing, when an app tries to access sensitive information,

MASF returns a fake copy of data. For example, when an app tries to access device

geographical location, MASF sends fake location information if the defined policies

restrict such access. The data shadowing effect was tested on the same sample of 100

apps used in the previous experiments. The result of this experiment is shown in Figure

5.5. The effect of blocking access to user data was also checked in this experiment.

Figure 5.4: Impact of Permission Revoking on Applications

The experiment results show that data shadowing is very effective and it can

successfully protect the user information without giving access to original data; as can be

0
10
20
30
40
50
60
70
80
90

100

No Crash Crash

Univ
ers

ity
 of

 M
ala

ya

124

seen in Figure 5.5, only 9 out of the 100 apps were crashed during the experiment (as

previously, an app is counted as crashed even if it is failing to perform a minor

functionality). Actually, data shadowing works very successfully where revoking

permissions does not work, because sometimes the user has to give the permission for

particular data, service or resource in order to make sure that apps behave normally, so

revoking permission does not work all the time. MASF can also deny access to sensitive

data when a particular app attempts to access user data. Hence, the result of blocking

access to sensitive data is also demonstrated in Figure 5.5. Blocking access to sensitive

data causes crashes for more apps; as evident in Figure 5.5, 23 out of 100 apps crashed

during the experiment when using the blocking access option. Thus, data shadowing is

more effective and robust compared to data blocking. However, both options are

successfully protecting the user sensitive data.

Figure 5.5: Impact of Data Shadowing on mHealth Apps

5.2.5 Experiment 5: Impact of Disabling/Blocking Intents

This experiment was conducted to observe the impact of disabling the intents that can

be helpful for an adversary to steal user data or can cause to reveal sensitive user data.

This experiment was also conducted on the same sample of 100 apps. This experiment

No Crash
Crash

0
20
40
60
80

100

Shadowing Blocking Granting

No Crash CrashUniv
ers

ity
 of

 M
ala

ya

125

tested how intent disabling can affect apps functionality. The results of this experiment

are shown in Figure 5.6.

Disabling intents is effective against certain types of attacks (e.g., to mitigate privilege

escalation attacks and data leakage). As can be seen in Figure 5.6, only 17 out of the 100

apps crashed during the experiment. Intent disabling is working very fine with 83 out of

100 apps, and it does not affect the app’s main functionality. Disabling some intents may

affect the functionality that is related to the disabled intent; however, this is done

intentionally to protect sensitive data, resources and services. Generally, disabling Intent

is very useful to protect the sensitive information.

Figure 5.6: Impact of Intent Disabling on Apps

5.2.6 Experiment 6: Impact of Enabling/Disabling System Peripherals

The main objective of this experiment is to find the impact of denying the access to

system peripherals (e.g., Bluetooth). In this experiment, the behaviour of apps was

checked when apps try to access the Bluetooth, and MASF policy restrictions do not allow

that. Similar to previous experiments, this experiment tested how many apps crash or

cannot achieve their main objective when restricting access to peripherals. The

experiment was again performed on the sample of 100 apps; however, only 43 out of the

100 apps were accessing the system peripherals (i.e., Bluetooth). The results of this

experiment are illustrated in Figure 5.7.

0

20

40

60

80

100

No Crash Crash

Univ
ers

ity
 of

 M
ala

ya

126

The results of the experiment show that only 11 out of 43 apps crashed during the

experiment. If denying the access to system peripherals affect the main functionality of

the app, then the case was considered as a crash. The experiment proved that MASF can

successfully revoke access to system peripherals in order to protect sensitive user data.

Figure 5.7: Impact of Enabling/Disabling System Peripherals

5.2.7 Experiment 7: ICC False Positives

Although MASF was shown to be effective in enforcing security restrictions, it is

possible that some of the framework decisions may be too restrictive and can be

considered as false positives. For example, denying an access request or revoking a

permission when there is no real reason to do that is a wrong decision (false positive). To

evaluate this possibility and study how MASF affects third party apps in this regard, the

sample of 100 apps was employed again. During the experiment, all apps were installed

and thoroughly used in a test set in an arbitrary order, with interleaving installation,

uninstallation, and usage of the apps. To quantify the evaluation, the collected

measurements focused on the Inter-Component Communication (ICC) issued and denied

requests, since ICC is the primary mechanism of communications between apps and

access control on ICC is important for the enforcement of security and privacy policies

in the middleware.

The apps were tested and their behaviour was checked with and without MASF. Figure

5.8 shows that MASF performed a number of policy checks during the test of 100 apps,

0

10

20

30

40

No Crash Crash

Univ
ers

ity
 of

 M
ala

ya

127

and in response to these checks, some ICC attempts were denied during the experiment

that are also shown in the figure. The number of denied ICC is very little as compared to

a static system like Kirin (Enck et al., 2009). If MASF policies restrictions would be

enforced with Kirin, then each of 100 test apps would in average conflict with 54 other

apps from the set.

Figure 5.8: Denied ICCs by Different Policy Checks

Manual inspection of each message along with the network packet trace confirmed

that there were very few false positives. The denied ICCs were evaluated, which revealed

that very few of the denied ICCs were false positives, as shown in the Figure 5.8. In

particular, the following were the main sources for false positives: (1) for direct ICC, 5

apps were the main source for the false positives, because they held a high number of

permissions. Those apps caused 3 false positives out of the 38 denied ICCs; (2) the power

system service provider, caused only 2 false positives out of the 18 denied ICCs with

system service providers; and (3) the system settings content provider, caused just 4 false

positives out of the 42 denied ICCs in this case. False positives for apps can be prevented

by adjusting and refining the policies.

ICCs between apps
ICCs to System Service Providers

ICCs to System Content Providers
Total

Policy
checks

Denied
ICC

Denied
ICC with

false
positives

Percentage
of Denied

ICC

1845

38 3 2.06%

421
18 2 4.27%

1691

42 4 2.48%

3957

98 9 2.47%

ICCs between apps ICCs to System Service Providers ICCs to System Content Providers Total

Univ
ers

ity
 of

 M
ala

ya

128

5.2.8 Analysis of the Impact on Android Security

This section presents results of some experiments and observations that were

conducted to analyse the impact of MASF on Android security itself. This section also

presents a security analysis of possible threats from malicious users or apps that can

bypass the framework’s policy restrictions.

First of all, it is noted that MASF does not reduce the Android OS security itself. For

each requested access to an app or system service, MASF only introduces further checks,

and these checks depend on the security and privacy policies. However, each access that

is not denied by MASF is still passed on to the Android Permission Check system and

not influenced by MASF anymore. As a result, MASF can only reduce the number of

accesses allowed, not reducing the security.

In Android platform, each app is assigned a unique UID that the system uses to refer

to an app. However, if two apps are created and signed by the same developer, then the

system gives both apps the same UID, so these apps can share the same processes if

needed (Bugiel, Davi, et al., 2012). The Android OS enforces its security policies not

based on the app label or its package name, but rather on the process UID. MASF, on the

other hand, obtains the name of the package (app) which is performing an action by

calling the PackageManager’s getPackagesForUid (int uid). In this way, MASF policy

restrictions are not dependent on the UID but are transformed to refer to the package

name. For instance, if two apps, app X and app Y, are sharing the same UID, and the user

has blocked the access to GPS from app X, this app may still be able to get information

about the device’s geographical location because App Y was still able to access GPS

according to the policies. MASF prevents such threat through blocking all package names

associated with a UID using the getPackagesForUid method.

Univ
ers

ity
 of

 M
ala

ya

129

In MASF, user can define security policies to limit the access to resources in some

necessary situations. For example, the user can define a policy for a particular set of apps

allowing to use Bluetooth only at home. As mentioned earlier, users can configure policy

restrictions based on the context (i.e., time and location), and these policy restrictions are

either enforced system-wide or per app. If apps can modify these policies, then any

malicious app can execute specific attacks based on policy configurations. In order to

protect the policies, MASF does not allow write privileges to be granted on policies

directly for any other app, thus preventing policies from being modified. All writes are

performed by MASF through the user-interactor component.

Further, a malicious app that is aware of MASF policies may attempt to drop a policy

or modify the device’s identified context so that the wrong policy is applied.

Nevertheless, in MASF implementation, the context information is directly retrieved

from the system protected APIs that cannot be modified by apps. Context information is

managed by the context-checker that collects such information regardless of which apps

are running on the device or which services are requested by apps, based on requests from

the manager. This independency of the context-checker gives robustness in gathering

context data that is forwarded to the manager.

Once an app requests access to a resource, the Android OS verifies whether this app

has permission(s) for the requested resource only at the time of the request. However,

some processes associated with certain resources may continuously run even if the device

is later moved to a different context for which the user has not allowed access to this

resource. The reason behind this is that permission granting is not checked continuously

while the process is running, instead it is only checked once the request is issued.

Malicious apps may take advantage of this, e.g., by continuously recording audio in one

context while transitioning to another context. The Android OS does not continuously

Univ
ers

ity
 of

 M
ala

ya

130

verify whether an app has audio recording permission during recording. It verifies the

permission each time a request is made, after that when the permission is approved the

app can continue using the permission for that particular session. MASF implementation

thwarts this type of attacks. When a registered location is associated with a policy

restriction on audio or video access, MASF forces the apps with the associated

permissions in their AndroidManifest.xml to close.

Finally, it is important to make sure that an adversary cannot skip MASF enforcement.

As mentioned, MASF is designed as an extension of Android platform, and it is deployed

to a protected location on the file system, from where it is loaded during boot. To avoid

the adversary modifying the operating system of the phone itself (drivers and MASF

included), Trusted Computing mechanisms leveraging Trusted Platform Module (TPM)

can be used. However, the discussion of these mechanisms is outside the scope of this

thesis.

5.3 Performance Evaluation

This section presents the experimental results conducted to evaluate the performance

of MASF. Particularly, time and energy consumption are evaluated by running different

features of MASF because energy consumption and time performance are two main

limitations of smartphone. All performance evaluation experiments were conducted on

Android v4.3. As mentioned earlier, the custom system image of Android that includes

MASF was installed on this smartphone. Details of the experiments and how MASF

induces overhead are given in the following subsections.

5.3.1 SML Performance Overhead

5.3.1.1 Performance overhead of permission checks

First, the overhead induced by MASF permission check system is examined. This is

the induced overhead caused by each request that leads MASF to check the permissions

Univ
ers

ity
 of

 M
ala

ya

131

of an app. Experiments were conducted to find the amount of overhead induced by MASF

permission check with respect to both time and energy consumption. To find time

overhead, an experiment is conducted to measure the time induced by MASF’s checks.

MASF permission check works through a hook before the Android permission check

mechanism is taking control. The time interval is measured between the request of a

resource (app or system service) and the moment that request is fulfilled and MASF is

finished with the permission checking. MASF hooks into both access requests by apps

and system services, but not much differences were noticed between these two cases. In

fact, both requests are treated in the same way by MASF. Further, for some resources,

MASF does not influence the results with any overhead.

The results of this experiment are shown in Figure 5.9. In the graph, Y-axis shows the

time overhead measured in milliseconds, and X-axis shows the number of rules examined

in response to permission checks. This graph is plotted by obtaining the average of 200

measurements. As evident from the figure, the time overhead induced by MASF for its

permission checks is negligible, with all measured delays even corresponding to larger

number of rules being under 0.5 ms. As expected, the time overhead increases as the

number of active policies are increasing.

Figure 5.9: Time Overhead of MASF Permission Check System

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
O

ve
rh

ea
d

(m
ill

is
ec

on
ds

)

Number of Policies

Univ
ers

ity
 of

 M
ala

ya

132

As mentioned earlier, energy consumption is an important issue in smartphones, so

energy overhead induced by MASF permission check system was also investigated to

ensure that this framework is a practical solution. To investigate energy overhead, all

MASF functions and policies were enabled during the experiment to estimate the

maximum energy demand of MASF. The experiment was started with fully charged

battery, and then a number of different functions was performed on the smartphone every

ten minutes during the experiment, such as sending of SMSs, making phone calls, running

different medical and non-medical apps. The experiment was repeated 30 times for each

of two cases when the smartphone was running Android as well as when it was running

Android with MASF.

The results of the experiment are shown in Figure 5.10. Android with MASF consume

higher energy as compared to the original Android. This is due to the energy consumption

of different checkers in the MASF. In particular, 4571 permission checks were called

during the experiment for 24 different resources. Further, as expected, consumed energy

by MASF increases as the number of active rules increases. As shown in Figure 5.9, the

energy consumption of MASF is almost 5 % of the battery when 15 rules are active,

whereas it turns into almost 9% of the battery when 45 rules are active. It can also be seen

from the figure that the energy consumption of MASF does not increase linearly with the

increase in number of active rules. This is because some basic actions of MASF remain

the same for a number of rules.

In conclusion, according to the experiment results, the energy consumption of the

MASF permission check system is reasonable. However, most probably it would be very

rare cases in which the framework would need 45 active rules or more, which makes

MASF a quite reasonable solution because very few rules would be active for a particular

event and for a specified period of time. It should also be noted that this solution, to the

Univ
ers

ity
 of

 M
ala

ya

133

best of the author knowledge, is the first of its nature, and hence no particular attention is

paid towards any possible optimizations.

Figure 5.10: Energy Overhead of MASF Permission Check System

5.3.1.2 Performance overhead of context checks

The purpose of this experiment is to measure the Android device’s energy

consumption change when MASF context-related policies are enforced compared to

when they are not. For this purpose, the device’s battery percentage was monitored when

running both the stock Android and Android with MASF, separately. In each case, it was

ensured that the device’s screen never turns off and that Wi-Fi and GPS are both enabled.

Finding the context through context-checker, the overhead depends mostly on how

much the system is desired to be responsive to context changes. Actually, if system wants

to detect context changes sooner, then the context checking frequency will be higher,

hence, it would lead to increasing the overhead. To study the effect of various update

frequencies, the performed experiment was run over three different frequencies of

location-data updates: 5, 10, and 15 minutes, in addition to the case where no context

checks were involved. Further, the experiment was started with a fully charged battery.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

En
er

gy
 C

on
su

m
pt

io
n

(%
 o

f b
at

te
ry

)

Number of Policies

Android Android with SFM

Univ
ers

ity
 of

 M
ala

ya

134

According to the measurement, if the context-checker registers for context information

updates every 5 minutes, then it consumes 15% of the battery. However, if the period of

checking the context extends to every 10 minutes, then it consumes only 7% of the

battery. If the context update period further extends to every 15 minutes, then it consumes

just 3.25% of the battery energy. This can be seen in Figure 5.11 by noticing the battery

percentage displayed on the device with and without enforcing MASF policies.

Figure 5.11: Comparison of Device Battery Consumption while Checking for
Context Updates

In the first case, the overhead is not negligible, while in the third case, the energy

consumption for checking every 15 minutes is quite promising. Moreover, optimizations

are possible to the current implementation, for example, the context checking frequency

might be reduced while the value of a variable of interest (e.g., location) is far from the

current value of the context. The experiment results also demonstrate the importance of

the issue of energy consumption in the context of smartphones. In conclusion, MASF has

a reasonable amount of context-check overhead in terms of energy consumption.

5.3.1.3 Java microbenchmark

The Java CaffeineMark 3.0 benchmark tests were employed to measure the overall

performance overhead of MASF. This benchmark contains a set of programs to evaluate

0
10
20
30
40
50
60
70
80
90

100

0 30 60 90 120 150 180 210 240 270 300 330 360

B
at

te
ry

 P
er

ce
nt

ag
e

%

Time (in minutes)

Android 5 min
10 min 15 min

Univ
ers

ity
 of

 M
ala

ya

135

the app runtime overhead. For evaluating MASF, an Android port of the standard

CaffeineMark 3.0 [Pendragon Software Corporation 1997] was used.

The CaffeineMark 3.0 is a series of tests that measure the speed of Java programs

running in various hardware and software configurations. CaffeineMark scores roughly

correlate with the number of Java instructions executed per second, and do not depend

significantly on the amount of memory in the system or on the speed of a computer’s disk

drives or Internet connection. CaffeineMark uses several tests to measure various aspects

of Java virtual machine performance. Each test runs for approximately the same length

of time period. The score for each test is proportional to the number of times the test was

executed divided by the time taken to execute the test.

The following is a brief description of each test, originally presented in (Pendragon

Software Corporation, 1997):

• Sieve: the classic sieve of Eratosthenes finds prime numbers.

• Loop: the loop test uses sorting and sequence generation as to measure compiler

optimization of loops.

• Logic: tests the speed with which the virtual machine executes decision-making

instructions.

• Method: the Method test executes recursive function calls to see how well the

VM handles method calls.

• Float: simulates a 3D rotation of objects around a point.

The overall CaffeineMark score is the geometric mean of the individual scores.

The CaffeineMark 3.0 benchmark was run on both stock Android and the Android

with MASF. The results for both experiments are shown in Figure 5.12. This figure shows

the score for all the tests, where a higher score is better in terms of performance. During

Univ
ers

ity
 of

 M
ala

ya

136

the experiment, the Sieve score was 9830 for stock Android and 9339 for Android with

MASF. CaffeineMark gave Loop scores of 21833 and 19651 for stock Android and

Android with MASF respectively. Logic test obtained 18880 for stock Android while

17370 for MASF. Stock Android acquired a score of 15184 for the String test while

MASF Android attained a score of 13362. Float score is 9617 for stock Android and 9040

for Android with MASF. Further, MASF achieved a score of 7009 for the Method test as

compared to 7875 for the same test with stock Android. The unmodified Android system

had an average score of 12924, while the average score of MASF was 11799, which

shows that MASF has an 8.7% overhead as compared to the stock Android according to

the CaffeineMark benchmark tests.

In conclusion, the results of performance overhead indicate that MASF is a lightweight

framework that is capable enough to effectively protect user private and sensitive medical

information.

Figure 5.12: The Result of CaffeineMark 3.0 Benchmark / Microbenchmark of
Java Overhead.

0

5000

10000

15000

20000

25000

Sieve Loop Logic String Float Method Overall

C
af

fe
in

eM
ar

k
3.

0
Sc

or
e

CaffeineMark 3.0 Benchmark

Android
Android with SFM

Univ
ers

ity
 of

 M
ala

ya

137

5.3.1.4 Macrobenchmarks

To measure the overhead of MASF on a higher-level, several macrobenchmarks were

conducted for high-level smartphone operations. The experiments were performed on the

device running Android with and without MASF. Each experiment was run at least 50

times. Average results with 95% confidence interval are shown in Table 5.2. During the

study, only limited performance overhead was observed as detailed below.

Table 5.2: Macrobenchmark Results of Time Overhead for Modified Core
Android Methods

Method / Benchmark Android MASF Overhead
App Load Time 109 ms 113 ms 3.66 %
Check Component Permission 101 ms 108 ms 6.93 %
App Filter 140 ms 142 ms 1.42 %
Intents to Start Activity 116 ms 125 ms 7.75 %
Network Access 90 ms 91 ms 1.1 %
Policy Change/Alteration - 2 ms -
Intent to Start Service 73 ms 76 ms 3.94 %
Intent to Send Broadcast 69 ms 71 ms 2.89 %
Phone Call 159 ms 170 ms 6.9 %
User Data Content Resolver 107 ms 115 ms 7.47 %
Device Peripherals Set Enable/Disable 83 ms 88 ms 6.02 %

To evaluate the timing overhead introduced by MASF modifications to Android, the

amount of time that takes MASF modified methods to fully execute was calculated during

the experiment. The execution times of these modified methods before the modifications

were also calculated (i.e., the time of execution of these methods on stock Android). The

two sets of times were compared to estimate the overhead of MASF modifications.

Specifically, this experiment measured the overhead time caused by “intercepting app

permissions”, “intent messages to start activity, service or send broadcast”, “app load

time”, “network access check”, “user data accesses” (e.g., contacts), “phone call”,

“policy change”, and “access to system peripherals” (e.g., Bluetooth). Detailed

descriptions of these parameters are given in next paragraph. Table 5.2 reports in

Univ
ers

ity
 of

 M
ala

ya

138

milliseconds the time imposed on these methods. As the results show, the overall delay

introduced by enforcing MASF policies is not perceivable by the end-user.

• In “app load time”, the time to start an app in MASF was compared to a baseline

app load time in Android. The app load time measures starting from when

ActivityManager receives a command in order to start an activity component to

the time the activity thread is displayed. This time includes app resolution by

the ActivityManager, IPC, and graphical display. The average overhead for

loading apps is 4 ms, which is negligible. It means MASF adds only 3.66%

overhead, as the operation is dominated by native graphics libraries.

• In “check component permission”, the time overheads for both Android and

MASF were measured to find how much additional time MASF consumes to

check component permission for the enforcement of policies. In this case,

MASF only takes 7 ms more as compared to stock Android, which shows that

MASF adds 6.93% overhead.

• In “app filtering”, MASF filters the potential target apps when Android uses an

implicit intent to start an activity component. The time between sending an

intent message and the resolution of the final list of apps presented to the user

was measured during the experiment. MASF only causes a negligible delay of

2 ms, which means it introduces a mere 1.42% overhead.

• The time delay caused by “intents to start activity” was also measure during the

experiment. On stock Android, it takes 116 ms, however, for MASF it takes 125

ms. Hence, MASF adds 9 ms, which translates to 7.75% overhead.

• In “network access check”, a hook is placed in the kernel by MASF, which is

called every time a process attempts to access the network. This experiment was

conducted by using an app which attempts to access the network repeatedly.

Since Android already performs similar check to enforce its INTERNET

Univ
ers

ity
 of

 M
ala

ya

139

permission, MASF’s additional checks have negligible impact (i.e., it causes a

negligible delay of 1 ms, which entails only 1.1% overhead).

• In “policy change”, the time to change the policies and contexts, and the time

for reassignment of services and resource to all apps is also measured during

the experiment. This policy re-enforcement only takes 2 ms.

• The time delay caused by “intent to start service” was also measured during the

experiment. On stock Android it takes 73 ms, however, for MASF it takes 76

ms. Hence, MASF brings 3 ms, which means it adds only 3.94% overhead.

• The time delay for “intent to send broadcast” was also measured, which takes

69 ms for stock Android and 71 ms for MASF. It causes a negligible delay of 2

ms, which means MASF adds only 2.89% overhead.

• The “phone call” benchmark measured the time from pressing “dial” to the

point at which the audio hardware was reconfigured to “in call” mode. MASF

adds less than 11 ms per phone call setup, which means 6.9% overhead, which

is significantly less than call setup in the network that takes time on the order

of seconds.

• The time overhead for “user data content resolver” was 107 ms and 115 ms for

stock Android and MASF respectively. This means a delay of 8 ms, which

translates to a 7.47% overhead.

• MASF also needs to enable or disable some of the system peripherals to enforce

policies, the time delay to “enable or disable a device peripheral” was further

measured during the experiment. The result shows that it causes only a delay of

5 ms, which means MASF adds a negligible 6.02% overhead.

5.3.1.5 System memory overhead

An experiment was conducted to measure the amount of memory overhead placed by

MASF on the system. Mainly, the purpose of this experiment was to observe the changes

Univ
ers

ity
 of

 M
ala

ya

140

in memory usage caused by MASF restrictions and by the context detection mechanism

(i.e., LocationService) that continuously run in the background for context updates.

Figure 5.13 depicts that the memory usage when enforcing MASF policies closely

matches the memory usage when these policies are not enforced. As the figure shows,

memory usage due to permission checks in Android is 9.25% of the memory while the

same is 10.36% of the memory during the experiment on Android with MASF policy

enforcement. Further, usage ratio due to intents is 6.22% of the memory in case of

Android whereas it is 8.11% of the memory in the case of MASF. Likewise, user data

cause a memory usage of 18.53% and 21.37% in the cases of Android and Android with

MASF, respectively. Finally, system peripherals are taking 9.93% of memory space

during the operation on stock Android and 12.43% of memory when using MASF.

Figure 5.13: Total Memory Overhead Comparison with and without MASF Policy

Restrictions

The maximum memory overhead caused by MASF during these tests was about 2.84%

of the memory, thus it is within an acceptable range. The average memory footprint of

MASF is 1.5 MB with a standard deviation of 389.4 KB.

0

5

10

15

20

25

Permissions Intent User Data System
Peripherals

%
 o

f T
ot

al
 M

em
or

y

Base Applications Policy Enforced ApplicationsUniv
ers

ity
 of

 M
ala

ya

141

5.3.2 SIL performance overhead

Most of the actual performance overhead comes from the Security Model layer in

MASF; nonetheless, it is also interesting to check the impact of SIL on the system

performance. SIL is based on LSM at the kernel level, and the performance of the latter

was already evaluated separately, e.g., for SE Android (Smalley & Craig, 2013). The

focus here is to check the effect of SIL middleware security framework on the

performance of instrumented middleware system services and apps.

SIL is implemented as a modification to the Android OS code base in version 4.3_r3.1

(“Jelly Bean”) and used the Android Linux kernel in branch android-omap-tuna-3.0-jb-

mr1.1. Microbenchmarks were performed for all execution paths on which a hook diverts

the control flow to SIL’s middleware framework. First, the execution time of each hooked

function was measured without loading SML models and allowing by default all access.

Afterwards this test was repeated with hooks disabled to measure the default performance

of the same functions and thus operating like a stock Android. All those microbenchmarks

were performed on Android version 4.3, which was booted and then used according to a

test plan for different daily tasks such as sending SMS and emails, browsing the Internet,

contacts management, and installing and uninstalling third party apps.

Table 5.3 reports the number of measurements for each test case and their mean values.

To exclude extreme outliers, the highest decile in both measurement series was excluded

from the measurements. For SIL, the mean is the weighted mean value with consideration

of the frequency of each single hook. During the experiment, the mean time of stock

Android was 106.556 µs, whereas SIL without loading SML models imposed 118.924

µs, which is approximately only 11.61% overhead compared to stock Android. Figure

5.14 presents the relative cumulative frequency distribution of the measurements series

and further illustrates this low performance overhead.

Univ
ers

ity
 of

 M
ala

ya

142

Table 5.3: Weighted Average Performance Overhead of Executing Hooked
Functions in Stock Android and in SIL. The Margin of Error is given for the 95%

Confidence Interval.

Type (System) Frequency Mean (µs)

Stock Android 6743 106.556

SIL 5535 118.924

Figure 5.14: Relative Cumulative Frequency Distribution of Microbenchmarks in

Stock Android vs SIL

5.4 Chapter Summary

This chapter presents the technical details of the implementation of the proposed

framework, MASF. The implementations of the two main layers, SML and SIL, along

with their components are discussed. The resulting prototype is meant to validate the

design of the framework in previous chapters via a proof-of-concept implementation.

This chapter also describes the evaluation of MASF through a number of experiments

that show its effectiveness in thwarting attacks on mHealth apps, and preventing

intentional as well as unintentional disclosure of user privacy. Furthermore, experimental

results of performance evaluation showed that MASF’ overhead is not human

perceivable, suggesting that this framework is a practical and lightweight solution viable

for deployment in smartphone platforms.

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1200 1400 1600

R
el

at
iv

e
C

um
ul

at
iv

e
Fr

eq
ue

nc
y

Time (µs)

Android

SIL

Univ
ers

ity
 of

 M
ala

ya

143

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

This chapter concludes the presentation of the work on developing a security

framework for mHealth apps on the Android platform. Besides summarizing the main

points of the research work, this chapter re-evaluates the research objectives and puts

forward the accomplishments of this study. Furthermore, it summarizes contributions of

the research and discusses its limitations. Finally, it presents a few potential future

directions to improve this work.

The complete organization of this chapter is as follows. Section 6.1 discusses the

reappraisal of the objectives of this research work. The contributions of this research are

highlighted in Section 6.2. Moreover, Section 6.3 discusses the limitations of this research

work, while Section 6.4 proposes several directions for future work.

6.1 Research Summary and Objectives Achievement

Smartphones and their apps have dramatically changed the way of communication,

computation, and the model of many traditional and new services. One active area of

smartphone apps that has witnessed an astonishing growth is the mHealth apps. mHealth

apps are defined in this thesis as software programs that provide health related services

through smartphones and tablets. Using mHealth apps in the delivery of healthcare is

rapidly proliferating. mHealth apps have several potentials that drive this popularity,

including the ability to increase patient satisfaction, improve doctor efficiency, reduce the

cost of healthcare, and to improve the availability, affordability and effectiveness of

healthcare services.

The problem of this thesis starts with the observation that despite all those benefits,

mHealth apps bring about new risks to the security of user’s sensitive medical data.

Existing smartphone operating systems, particularly Android, are not sufficient to ensure

Univ
ers

ity
 of

 M
ala

ya

144

privacy and security of users’ data, particularly in the case of mHealth apps. The lack of

that privacy protection is one of the major barriers to the widespread use of mHealth apps.

This observation leads to the need for better solutions to secure mHealth apps, and ensure

the confidentiality, integrity and availability of medical data, and consequently facilitate

the adoption of these apps by the healthcare system.

Motivated by the above argument, this thesis aimed to improve the security of medical

data associated with Android mHealth apps, as well as to protect the privacy of users from

threats that might be imposed by those apps. Because the required functions to achieve

such a goal cannot be implemented using a single app that is running in the user space,

there is a need to develop a complete framework of multiple components that roots deep

in the internals of the system and effectively protects the target data. The overall goal of

this research was to design and implement such a framework that is both practical and

effective, directed specifically to the Android platform. To achieve this goal, this research

had set five objectives, listed in Section 1.4. These objectives are revisited and

commented in the following paragraphs.

To identify the outstanding issues related to the security and privacy of mHealth apps,

and find out research gaps in this area, the literature was comprehensively reviewed as a

first objective of this research. This review also covered the Android security architecture

and the corresponding issues in the Android platform. A thorough investigation and

analysis were performed on the field of mHealth apps, producing a thematic taxonomy of

research works on mHealth apps (Section 2.1). This taxonomy classified the research

field on mHealth apps into four main classes (with further sub-classes). Then, a brief

introduction of Android operating system and its security mechanisms was presented

(Section 2.2). Subsequently, the existing solutions in the literature to protect Android

platform were discussed, and specific security weaknesses of the Android platform were

Univ
ers

ity
 of

 M
ala

ya

145

explained, mainly reporting on privacy threats exposed by works in the literature. After

that, a comprehensive survey on security and privacy threats to mHealth apps was

provided (Section 2.3). An analysis on a set of mHealth apps was performed to further

investigate the security issues of mHealth apps. Hence, the challenges mHealth apps are

facing were discussed thoroughly. Finally, existing security solutions that are specifically

designed for mHealth apps were examined, highlighting their weaknesses.

As the main objective of the thesis, a MHealth Apps Security Framework (MASF),

was proposed to secure the execution of mHealth apps and their users’ data (Section 4.1).

MASF addresses various security and privacy threats of mHealth apps, such as data

leakage, DMB attacks, privileges escalation attacks, and misuse of permissions. This

framework provides mechanisms for fine-grained access control, context-aware access

control, and protection of private information through taint analysis and data shadowing.

Moreover, MASF provides the users the ability to define their own policies according to

their requirements to control apps’ access to system resources based on several criteria,

including the current context of the device such as the time and location. The framework

can revoke certain permissions, revoke access for system peripherals, disable intents, and

provide shadow data.

The proposed design was then implemented in a real environment to meet the objective

of evaluating the framework. According to the design of MASF, its implementation

consists of two main parts: the Security Module Layer (SML) and the System Interface

Layer (SIL). SML performs all the necessary security checks and tests and defines all

security policies to be enforced on the apps in runtime, while SIL provides SML with the

necessary interface into Android internals. As such, SML is the main part, and user can

only interact with this layer. Users can define their own policies and store them within

SML databases. SML comprises several components and works on top of the SIL. As a

Univ
ers

ity
 of

 M
ala

ya

146

result of the implementation, a stock Android version was extended with several hooks

and new components to implement MASF.

The proposed framework was evaluated and analysed in terms of effectiveness and

efficiency. Effectiveness was shown by demonstrating that the framework can

successfully protect the system from a particular set of attacks, while efficiency was

evaluated by examining the performance overhead in terms of energy consumption,

memory and CPU utilization. Experiments conducted to evaluate efficiency included

testing MASF against different attacks and malware, as well as testing the impact of data

shadowing, permission restrictions, disabling intents, and the impact of

enabling/disabling system peripherals. The results of those experiments showed that

MASF is very effective against all the listed attacks, and it successfully protected the

mHealth apps and their users’ data in the tested scenarios. Subsequently, false positive

and usability tests were also performed, which showed a very small number of false

positives.

Another set of experiments tested the performance of MASF in terms of processing

time, energy consumption and memory. These experiments demonstrated clearly that

MASF induce negligible overhead in the process of deploying all the checks and

enforcing all the policies. Hence, MASF proved itself as a lightweight and a practical

solution. From the above summary, it can be concluded that all the objectives of this

research have been successfully achieved.

6.2 Contribution of the Research

As discussed in the previous section, it is possible to refer to the targeted objectives

and list the successful output in meeting them to derive the list of contributions. For a

one-to-one mapping, please refer to Table 1.1 in Chapter 1. The aim of this section,

Univ
ers

ity
 of

 M
ala

ya

147

however, is to highlight the contributions of the thesis in a more perceptive manner, to

help appreciate the real value of the work.

(i) This work provides a comprehensive survey on mHealth apps and on their

security issues. It summarizes some serious security and privacy issues

associated with the use of Android mHealth apps, including DMB attacks,

side channel threats, and usage of third party storage and services without

encryption. Considering the relative recency of the topic, such survey has its

own value to research community.

(ii) This work assessed the security of mHealth apps by testing a sample of top

100 free mHealth apps to find state-of-the-art security threats, which revealed

many threats to Android mHealth apps, such as lack of authentication,

authorization, confidentiality, and the leak of sensitive medical information

by many apps.

(iii) This thesis also specifies the basic requirements that are needed to secure

users’ data in mHealth apps and to propose security framework on Android

platform. As an emerging field with no or little previous guidelines, this thesis

contributes a set of basic parameters needed to secure information in mHealth

apps.

(iv) This thesis proposes a security framework to protect mHealth apps’ user data.

To the best of the author’s knowledge, this is the first comprehensive

framework for mHealth apps. A policy framework has been proposed

previously in the literature (Mitchell et al., 2013), which only provides some

guidelines to mitigate mHealth apps threats. This thesis, on the other hand,

proposes a practical framework that could be installed and work on Android

platform. This framework comprises two software layers, a Security Module

Layer (SML), and a System Interface Layer (SIL). These are to be installed

Univ
ers

ity
 of

 M
ala

ya

148

on Android OS to protect user information against security and privacy

threats.

(v) The proposed framework is demonstrated and evaluated using proof-of-

concept implementation on real Android devices. For evaluation, the

effectiveness and performance overhead of the framework were examined.

For effectiveness, a sample of mHealth apps is checked against information

leakage, confidentiality and other attacks that are stated in section 1.3. For

performance overhead, and due to lack of similar framework implementations,

the framework was benchmarked with the stock version of Android 4.3, in

terms of memory, processing and battery consumption. The unmodified

Android system was considered a baseline against which to compare the

performance impact of MASF.

6.3 Research Limitations

The scope of this research is limited to investigating and analysing the security and

privacy threats of mHealth apps specifically, and then to propose a security framework

to protect that class of apps. Although the analysis and evaluation did not explicitly

include other classes of smartphone apps (e.g. banking, educational, and communication

apps), there is no reason that the proposed solution cannot be applied to other apps.

This solution was also implemented on Android platform exclusively, and no other

mobile platforms was considered for the implementation of the framework. Porting the

solution to other platform is feasible in theory, though the amount of changes may be

significant in practice due to the intimate relation between the design of the framework

and the internals of Android operating system. Nevertheless, Android is by far the most

widespread used smartphone platform, and choosing it for the development of the target

framework seems a reasonable decision.

Univ
ers

ity
 of

 M
ala

ya

149

This research also suffers from the rapid evolution of the technology in the field of

smartphone computing. Google is working hard to enhance the user experience as well

as the security of its Android platform with each new release of the operating system. By

the time this research has finished, there will probably be few enhancements to the

platform that were not considered by the produced solution. This is a common issue in

information technology-related long-term research. However, the value of the research is

not diminished because of such advancements, and the produced solutions can usually be

deployed in newer versions with no or little modifications.

Because of the nature of the addressed problem, the proposed solution had to go

through a modification to the stock-based Android version, which might limit the wide

acceptance of the solution. This limitation is common with all other similar solutions at

the same level of effectiveness. In fact, the ability to access and modify the open source

Android platform is a main motivation and enabler for such line of research, which

increases innovation and contributes to the overall good of the technology. The ideal

scenario for such proposals is to be adopted by Google in their main code base for next

Android releases.

Finally, it might be worthy to note that during the design of MASF, the underlying

Linux kernel and the Android middleware were considered as trusted base. Therefore,

MASF does not attempt to prevent an adversary from compromising this base itself.

6.4 Future Work

This work is simply the first step in a longer journey towards realizing practical

mHealth apps security. To increase the deployment opportunity of the proposed

framework, further research and development work is needed, in part to cover for the

current limitations, and also to introduce more features and improvements. Few

suggestions for potential future work are listed below.

Univ
ers

ity
 of

 M
ala

ya

150

• One possible way to enhance the applicability of the proposed framework is to

evaluate its performance against other classes of apps besides mHealth apps.

For example, banking apps might require few special considerations to be taken,

which might lead to the introduction of more security checkers, such as for key

certificates and specific phishing attacks.

• It is also tempting to consider porting the framework to other smartphone

platforms, e.g. Apple iOS.

• It is important to note that the successful deployment of the proposed

framework would probably rely on the regular update of its implementation to

cater for new developments introduced by Google the incremental releases of

Android. For example, the introduction of dynamic run-time permissions might

render few of the security checks performed by MASF redundant. The

framework should also adopt newer capabilities of the underlying platform to

provide better results and user-experience.

• The context-checker of MASF considers only the time and location as criteria

for context-aware access control. It is possible to consider other types of

context, such environmental variables, the presence of other devices and

sensors, or a particular type of interaction between the smartphone and user.

• The current version of MASF uses static tainting to track sensitive data flows.

Though the choice of static tainting has been justified in Chapter 3, there may

be situation in which dynamic tainting can provide better results.Univ
ers

ity
 of

 M
ala

ya

151

REFERENCES

Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: Mining API-level features for
robust malware detection in android. Paper presented at the International
Conference on Security and Privacy in Communication Systems.

Abroms, L. C., Lee Westmaas, J., Bontemps-Jones, J., Ramani, R., & Mellerson, J.
(2013). A content analysis of popular smartphone apps for smoking cessation.
American journal of preventive medicine, 45(6), 732-736.

Adhikari, R., Richards, D., & Scott, K. (2014, 8th - 10th December 2014). Security and
Privacy Issues Related to the Use of Mobile Health Apps. Paper presented at the
Australasian Conference on Information Systems (ACIS), Auckland, New
Zealand.

Aguinaga, S., & Poellabauer, C. (2013). Stealthy Health Sensing to Objectively
Characterize Motor Movement Disorders. Procedia Computer Science, 19, 1182-
1189.

Al-Hadithy, N., & Ghosh, S. (2013). Smartphones and the plastic surgeon. Journal of
Plastic, Reconstructive & Aesthetic Surgery, 66(6), e155-e161.

Al-Haiqi, A., Ismail, M., & Nordin, R. (2014). A New Sensors-Based Covert Channel on
Android. The Scientific World Journal, 2014(Article ID 969628), 1-14.

Al-Haiqi, A. M. A. (2015). Sensors-based side channel security threats on android
platform. (Ph.D.), National University of Malaysia.

Albano, P., Castiglione, A., Cattaneo, G., & De Santis, A. (2011). A novel anti-forensics
technique for the android OS. Paper presented at the Broadband and Wireless
Computing, Communication and Applications (BWCCA), 2011 International
Conference on.

Albrecht, U.-V., von Jan, U., Jungnickel, T., & Pramann, O. (2012). App-synopsis-
standard reporting for medical apps. Studies in health technology and informatics,
192, 1154-1154.

Alexander, S., Hoy, H., Maskey, M., Conover, H., Gamble, J., & Fraley, A. (2013).
Initiating Collaboration among Organ Transplant Professionals through Web
Portals and Mobile Applications. OJIN: The Online Journal of Issues in Nursing,
18(2).

Android. (2016a). Android Ndk. Retrieved from https://developer.android.com/ndk/
index.html

Android. (2016b). Security. Retrieved from https://source.android.com/security/

Android. (2016c). Sign Your App. Retrieved from https://developer.android.com/studio/
publish/app-signing.html

Univ
ers

ity
 of

 M
ala

ya

https://source.android.com/security/
https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html

152

Anokwa, Y., Ribeka, N., Parikh, T., Borriello, G., & Were, M. C. (2012). Design of a
phone-based clinical decision support system for resource-limited settings. Paper
presented at the Proceedings of the Fifth International Conference on Information
and Communication Technologies and Development.

Apple. (2016a). Apple Store. Retrieved from http://store.apple.com/us

Apple. (2016b). iOS. Retrieved from https://www.apple.com/my/ios/

Arnhold, M., Quade, M., & Kirch, W. (2014). Mobile Applications for Diabetics: A
Systematic Review and Expert-Based Usability Evaluation Considering the
Special Requirements of Diabetes Patients Age 50 Years or Older. Journal of
medical Internet research, 16(4), e104.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., & Rieck, K. (2014). DREBIN:
Effective and Explainable Detection of Android Malware in Your Pocket. Paper
presented at the NDSS, San Diego, CA, USA.

Årsand, E., Frøisland, D. H., Skrøvseth, S. O., Chomutare, T., Tatara, N., Hartvigsen, G.,
& Tufano, J. T. (2012). Mobile health applications to assist patients with diabetes:
lessons learned and design implications. Journal of diabetes science and
technology, 6(5), 1197-1206.

Arzt, S., Huber, S., Rasthofer, S., & Bodden, E. (2014). Denial-of-app attack: inhibiting
the installation of android apps on stock phones. Paper presented at the
Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., . . . McDaniel, P. (2014).
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. ACM SIGPLAN Notices, 49(6), 259-269.

Au, K. W. Y., Zhou, Y. F., Huang, Z., & Lie, D. (2012). Pscout: analyzing the android
permission specification. Paper presented at the Proceedings of the 2012 ACM
conference on Computer and communications security.

Aungst, T. D. (2013). Medical applications for pharmacists using mobile devices. Annals
of Pharmacotherapy, 47(7-8), 1088-1095.

Avancha, S., Baxi, A., & Kotz, D. (2012). Privacy in mobile technology for personal
healthcare. ACM Computing Surveys (CSUR), 45(1), 3.

Azar, K. M., Lesser, L. I., Laing, B. Y., Stephens, J., Aurora, M. S., Burke, L. E., &
Palaniappan, L. P. (2013). Mobile applications for weight management: theory-
based content analysis. American journal of preventive medicine, 45(5), 583-589.

Backes, M., Bugiel, S., Gerling, S., & von Styp-Rekowsky, P. (2014). Android Security
Framework: Extensible multi-layered access control on Android. Paper presented
at the Proceedings of the 30th Annual Computer Security Applications
Conference.

Univ
ers

ity
 of

 M
ala

ya

http://store.apple.com/us
https://www.apple.com/my/ios/

153

Backes, M., Gerling, S., Hammer, C., Maffei, M., & von Styp-Rekowsky, P. (2013).
AppGuard–enforcing user requirements on android apps Tools and Algorithms
for the Construction and Analysis of Systems (pp. 543-548): Springer.

Backes, M., Gerling, S., Hammer, C., Maffei, M., & von Styp-Rekowsky, P. (2014).
AppGuard–Fine-grained policy enforcement for untrusted Android applications
Data Privacy Management and Autonomous Spontaneous Security (pp. 213-231):
Springer.

Baheti, M. J., & Toshniwal, N. (2014). Orthodontic apps at fingertips. Progress in
Orthodontics, 15(1), 1-5.

Bai, G., Gu, L., Feng, T., Guo, Y., & Chen, X. (2010). Context-aware usage control for
android. Paper presented at the International Conference on Security and Privacy
in Communication Systems, Berlin Heidelberg.

Barrera, D., Kayacik, H. G., van Oorschot, P. C., & Somayaji, A. (2010). A methodology
for empirical analysis of permission-based security models and its application to
android. Paper presented at the Proceedings of the 17th ACM conference on
Computer and communications security.

Bartel, A., Klein, J., Monperrus, M., Allix, K., & Le Traon, Y. (2012). Improving privacy
on android smartphones through in-vivo bytecode instrumentation (2879711118).
Retrieved from

Becher, M., Freiling, F. C., Hoffmann, J., Holz, T., Uellenbeck, S., & Wolf, C. (2011).
Mobile security catching up? revealing the nuts and bolts of the security of mobile
devices. Paper presented at the 2011 IEEE Symposium on Security and Privacy.

Bellard, F. (2005). QEMU, a Fast and Portable Dynamic Translator. Paper presented at
the USENIX Annual Technical Conference, FREENIX Track.

Bender, J. L., Yue, R. Y. K., To, M. J., Deacken, L., & Jadad, A. R. (2013). A lot of
action, but not in the right direction: systematic review and content analysis of
smartphone applications for the prevention, detection, and management of cancer.
Journal of medical Internet research, 15(12).

Beresford, A. R., Rice, A., Skehin, N., & Sohan, R. (2011). MockDroid: trading privacy
for application functionality on smartphones. Paper presented at the Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications.

Berthome, P., Fecherolle, T., Guilloteau, N., & Lalande, J.-F. (2012). Repackaging
android applications for auditing access to private data. Paper presented at the
Availability, Reliability and Security (ARES), 2012 Seventh International
Conference on.

Bhansali, R., & Armstrong, J. (2012). Smartphone applications for pediatric anesthesia.
Pediatric Anesthesia, 22(4), 400-404.

Bierbrier, R., Lo, V., & Wu, R. C. (2014). Evaluation of the accuracy of smartphone
medical calculation apps. Journal of medical Internet research, 16(2).

Univ
ers

ity
 of

 M
ala

ya

154

BinDhim, N. F., Freeman, B., & Trevena, L. (2014). Pro-smoking apps for smartphones:
the latest vehicle for the tobacco industry? Tobacco control, 23(1), e4-e4.

Bishop, J. (2013). mHealth Apps: A Guide to HIPAA, FDA Approvals, and
Certifications. Retrieved from http://littlegreensoftware.com/mhealth-apps-
hipaa-fda-approvals-certifications/

Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., & Albayrak, S. (2010). An
android application sandbox system for suspicious software detection. Paper
presented at the Malicious and unwanted software (MALWARE), 2010 5th
international conference on.

Boulos, M. N., Wheeler, S., Tavares, C., & Jones, R. (2011). How smartphones are
changing the face of mobile and participatory healthcare: an overview, with
example from eCAALYX. Biomedical engineering online, 10(1), 24.

Boulos, M. N. K., Brewer, A. C., Karimkhani, C., Buller, D. B., & Dellavalle, R. P.
(2014). Mobile medical and health apps: state of the art, concerns, regulatory
control and certification. Online journal of public health informatics, 5(3), 229.

Breland, J. Y., Yeh, V. M., & Yu, J. (2013). Adherence to evidence-based guidelines
among diabetes self-management apps. Translational behavioral medicine, 3(3),
277-286.

Brennan, P. F., Downs, S., & Casper, G. (2010). Project HealthDesign: Rethinking the
power and potential of personal health records. Journal of biomedical informatics,
43(5), S3-S5.

Breton, E. R., Fuemmeler, B. F., & Abroms, L. C. (2011). Weight loss—there is an app
for that! But does it adhere to evidence-informed practices? Translational
behavioral medicine, 1(4), 523-529.

Brusco, J. M. (2010). Using smartphone applications in perioperative practice. AORN
journal, 92(5), 503-508.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., & Sadeghi, A.-R. (2011). Xmandroid:
A new android evolution to mitigate privilege escalation attacks. Technische
Universität Darmstadt, Technical Report TR-2011-04.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., & Shastry, B. (2012).
Towards Taming Privilege-Escalation Attacks on Android. Paper presented at the
NDSS.

Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.-R., & Shastry, B. (2011).
Practical and lightweight domain isolation on android. Paper presented at the
Proceedings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices.

Bugiel, S., Heuser, S., & Sadeghi, A.-R. (2012). Towards a framework for android
security modules: Extending se android type enforcement to android middleware.
Intel Collaborative Research Institute for Secure Computing.

Univ
ers

ity
 of

 M
ala

ya

155

Bugiel, S., Heuser, S., & Sadeghi, A.-R. (2013). Flexible and fine-grained mandatory
access control on Android for diverse security and privacy policies. Paper
presented at the Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13).

Burdette, S. D., Herchline, T. E., & Oehler, R. (2008). Practicing medicine in a
technological age: using smartphones in clinical practice. Clinical infectious
diseases, 47(1), 117-122.

Burdette, S. D., Trotman, R., & Cmar, J. (2012). Mobile infectious disease references:
from the bedside to the beach. Clinical infectious diseases, 55(1), 114-125.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: behavior-based
malware detection system for android. Paper presented at the Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile devices.

Campbell, A., & Choudhury, T. (2012). From Smart to Cognitive Phones. Pervasive
Computing, IEEE, 11(3), 7-11. doi:10.1109/MPRV.2012.41

Carrera, P. M., & Dalton, A. R. (2014). Do-it-yourself Healthcare: The current landscape,
prospects and consequences. Maturitas, 77(1), 37-40.

Carter, M. C., Burley, V. J., Nykjaer, C., & Cade, J. E. (2013). Adherence to a smartphone
application for weight loss compared to website and paper diary: pilot randomized
controlled trial. Journal of medical Internet research, 15(4).

Carter, T., O’Neill, S., Johns, N., & Brady, R. R. (2013). Contemporary vascular
smartphone medical applications. Annals of vascular surgery, 27(6), 804-809.

Chadwick, X., Loescher, L. J., Janda, M., & Soyer, H. P. (2014). Mobile Medical
Applications for Melanoma Risk Assessment: False Assurance or Valuable Tool?
Paper presented at the System Sciences (HICSS), 2014 47th Hawaii International
Conference on.

Chakraborty, S., Shen, C., Raghavan, K. R., Shoukry, Y., Millar, M., & Srivastava, M.
(2014). ipShield: a framework for enforcing context-aware privacy. Paper
presented at the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14).

Chan, P. P., Hui, L. C., & Yiu, S.-M. (2012). Droidchecker: analyzing android
applications for capability leak. Paper presented at the Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks.

Chen, Q. A., Qian, Z., & Mao, Z. M. (2014). Peeking into your app without actually
seeing it: UI state inference and novel android attacks. Paper presented at the
23rd USENIX Security Symposium (USENIX Security 14).

Cheng, N. M., Chakrabarti, R., & Kam, J. K. (2014). iPhone Applications for Eye Care
Professionals: A Review of Current Capabilities and Concerns. Telemedicine and
e-Health, 20(4), 385-387.

Univ
ers

ity
 of

 M
ala

ya

156

Chhablani, J., Kaja, S., & Shah, V. A. (2012). Smartphones in ophthalmology. Indian
journal of ophthalmology, 60(2), 127.

Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011). Analyzing inter-application
communication in Android. Paper presented at the Proceedings of the 9th
international conference on Mobile systems, applications, and services.

Cho, J., Park, D., & Lee, H. E. (2014). Cognitive Factors of Using Health Apps:
Systematic Analysis of Relationships Among Health Consciousness, Health
Information Orientation, eHealth Literacy, and Health App Use Efficacy. Journal
of medical Internet research, 16(5).

Cho, M. J., Sim, J. L., & Hwang, S. Y. (2014). Development of Smartphone Educational
Application for Patients with Coronary Artery Disease. Healthcare informatics
research, 20(2), 117-124.

Choi, J., Noh, G.-Y., & Park, D.-J. (2014). Smoking Cessation Apps for Smartphones:
Content Analysis With the Self-Determination Theory. Journal of medical
Internet research, 16(2).

Cohn, A. M., Hunter‐Reel, D., Hagman, B. T., & Mitchell, J. (2011). Promoting behavior
change from alcohol use through mobile technology: the future of ecological
momentary assessment. Alcoholism: Clinical and Experimental Research, 35(12),
2209-2215.

Connor, K., Brady, R., de Beaux, A., & Tulloh, B. (2013). Contemporary hernia
smartphone applications (apps). Hernia, 1-5.

Conti, M., Nguyen, V. T. N., & Crispo, B. (2011). CRePE: Context-related policy
enforcement for Android Information Security (pp. 331-345): Springer.

Crussell, J., Gibler, C., & Chen, H. (2012). Attack of the clones: Detecting cloned
applications on android markets. Paper presented at the European Symposium on
Research in Computer Security.

Crussell, J., Gibler, C., & Chen, H. (2013). Andarwin: Scalable detection of semantically
similar android applications. Paper presented at the European Symposium on
Research in Computer Security.

Dala-Ali, B. M., Lloyd, M. A., & Al-Abed, Y. (2011). The uses of the iPhone for
surgeons. The surgeon, 9(1), 44-48.

Davi, L., Dmitrienko, A., Sadeghi, A.-R., & Winandy, M. (2011). Privilege escalation
attacks on android Information Security (pp. 346-360): Springer.

Dayer, L., Heldenbrand, S., Anderson, P., Gubbins, P. O., & Martin, B. C. (2013).
Smartphone medication adherence apps: potential benefits to patients and
providers. Journal of the American Pharmacists Association: JAPhA, 53(2), 172.

Dehling, T., Gao, F., Schneider, S., & Sunyaev, A. (2015). Exploring the Far Side of
Mobile Health: Information Security and Privacy of Mobile Health Apps on iOS
and Android. JMIR mHealth and uHealth, 3(1), e8. doi:10.2196/mhealth.3672

Univ
ers

ity
 of

 M
ala

ya

157

Dennison, L., Morrison, L., Conway, G., & Yardley, L. (2013). Opportunities and
challenges for smartphone applications in supporting health behavior change:
qualitative study. Journal of medical Internet research, 15(4).

Derbyshire, E., & Dancey, D. (2013). Smartphone medical applications for women's
health: what is the evidence-base and feedback? International journal of
telemedicine and applications, 2013, 9.

Deveau, M., & Chilukuri, S. (2012). Mobile applications for dermatology. Paper
presented at the Seminars in Cutaneous Medicine and Surgery.

Developers, A. (2016a). Application Fundamentals. Retrieved from http://developer.
android.com/guide/components/fundamentals.html

Developers, A. (2016b). Intent. Retrieved from http://developer.android.com/reference/
android/content/Intent.html

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., & Wallach, D. S. (2011). QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. Paper presented at
the USENIX Security Symposium.

Distefano, A., Me, G., & Pace, F. (2010). Android anti-forensics through a local
paradigm. digital investigation, 7, S83-S94.

Do, Q., Martini, B., & Choo, K.-K. R. (2014). Enhancing user privacy on Android mobile
devices via permissions removal. Paper presented at the 2014 47th Hawaii
International Conference on System Sciences.

Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M.-R., & Christensen, H. (2013).
Smartphones for smarter delivery of mental health programs: a systematic review.
Journal of medical Internet research, 15(11).

Dubey, D., Amritphale, A., Sawhney, A., Amritphale, N., Dubey, P., & Pandey, A.
(2014). Smart Phone Applications as a Source of Information on Stroke. Journal
of Stroke, 16(2), 86-90.

Dunton, G. F., Dzubur, E., Kawabata, K., Yanez, B., Bo, B., & Intille, S. (2014).
Development of a smartphone application to measure physical activity using
sensor-assisted self-report. Frontiers in public health, 2.

Edlin, J. C., & Deshpande, R. P. (2013). Caveats of smartphone applications for the
cardiothoracic trainee. The Journal of thoracic and cardiovascular surgery,
146(6), 1321-1326.

Egele, M., Kruegel, C., Kirda, E., & Vigna, G. (2011). PiOS: Detecting Privacy Leaks in
iOS Applications. Paper presented at the NDSS.

Elgin, B. (2005). Google Buys Android for Its Mobile Arsenal. Retrieved from http://
tech-insider.org/mobile/research/2005/0817.html

Univ
ers

ity
 of

 M
ala

ya

http://tech-insider.org/mobile/research/2005/0817.html
http://tech-insider.org/mobile/research/2005/0817.html

158

Elias, B. L., Fogger, S. A., McGuinness, T. M., & D'Alessandro, K. R. (2014). Mobile
apps for psychiatric nurses. Journal of psychosocial nursing and mental health
services, 52(4), 42-47.

Elwood, D., Diamond, M. C., Heckman, J., Bonder, J. H., Beltran, J. E., Moroz, A., &
Yip, J. (2011). Mobile Health: Exploring Attitudes Among Physical Medicine and
Rehabilitation Physicians Toward this Emerging Element of Health Delivery.
PM&R, 3(7), 678-680. doi:http://dx.doi.org/10.1016/j.pmrj.2011.05.004

Enck, W. (2011). Defending users against smartphone apps: Techniques and future
directions. Paper presented at the International Conference on Information
Systems Security.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., . . . Sheth, A. N.
(2014). TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS),
32(2), 5.

Enck, W., Ongtang, M., & McDaniel, P. (2008). Mitigating Android software misuse
before it happens.

Enck, W., Ongtang, M., & McDaniel, P. (2009). On lightweight mobile phone application
certification. Paper presented at the Proceedings of the 16th ACM conference on
Computer and communications security.

Eng, D. S., & Lee, J. M. (2013). The promise and peril of mobile health applications for
diabetes and endocrinology. Pediatric diabetes, 14(4), 231-238.

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., & Bharmal, A. (2013). Androsimilar:
robust statistical feature signature for android malware detection. Paper
presented at the Proceedings of the 6th International Conference on Security of
Information and Networks.

Faudree, B., & Ford, M. (2013). Security and Privacy in Mobile Health. CIO Journal.

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions
demystified. Paper presented at the Proceedings of the 18th ACM conference on
Computer and communications security.

Felt, A. P., Egelman, S., Finifter, M., Akhawe, D., & Wagner, D. (2012). How to Ask for
Permission. Paper presented at the HotSec.

Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011). A survey of mobile
malware in the wild. Paper presented at the Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices.

Felt, A. P., Greenwood, K., & Wagner, D. (2011). The effectiveness of application
permissions. Paper presented at the Proceedings of the 2nd USENIX conference
on Web application development.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.pmrj.2011.05.004

159

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., & Wagner, D. (2012). Android
permissions: User attention, comprehension, and behavior. Paper presented at the
Proceedings of the Eighth Symposium on Usable Privacy and Security.

Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., & Chin, E. (2011). Permission Re-
Delegation: Attacks and Defenses. Paper presented at the USENIX Security
Symposium.

Fiordelli, M., Diviani, N., & Schulz, P. J. (2013). Mapping mHealth research: a decade
of evolution. Journal of medical Internet research, 15(5).

Food, & Administration, D. (2015). Mobile medical applications: guidance for industry
and Food and Drug Administration staff. USA: Food and Drug Administration,
1-44.

Fox, R., Cooley, J., McGrath, M., & Hauswirth, M. (2012). Mobile health apps - from
singular to collaborative. Stud Health Technol Inform, 177, 158-163.

Fragkaki, E., Bauer, L., Jia, L., & Swasey, D. (2012). Modeling and enhancing android’s
permission system. Paper presented at the European Symposium on Research in
Computer Security.

Franko, O. I. (2011). Smartphone apps for orthopaedic surgeons. Clinical Orthopaedics
and Related Research®, 469(7), 2042-2048.

Franko, O. I. (2012). Mobile Software Applications for Hand Surgeons. The Journal of
hand surgery, 37(6), 1273-1275.

Franko, O. I., Bray, C., & Newton, P. O. (2012). Validation of a scoliometer smartphone
app to assess scoliosis. Journal of Pediatric Orthopaedics, 32(8), e72-e75.

Franko, O. I., & Tirrell, T. F. (2012). Smartphone app use among medical providers in
ACGME training programs. Journal of medical systems, 36(5), 3135-3139.

French, D., & Casey, W. (2012). 2 Fuzzy Hashing Techniques in Applied Malware
Analysis. Results of SEI Line-Funded Exploratory New Starts Projects, 2.

Fuchs, A. P., Chaudhuri, A., & Foster, J. S. (2009). Scandroid: Automated security
certification of android.

Gay, V., & Leijdekkers, P. (2011). The Good, The Bad and the Ugly about Social
Networks for Health Apps. Paper presented at the Embedded and Ubiquitous
Computing (EUC), 2011 IFIP 9th International Conference on.

Gay, V., & Leijdekkers, P. (2012). Personalised mobile health and fitness apps: lessons
learned from myFitnessCompanion(R). Stud Health Technol Inform, 177, 248-
253.

Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., & Choi, H. (2013). Adrob:
Examining the landscape and impact of android application plagiarism. Paper
presented at the Proceeding of the 11th annual international conference on Mobile
systems, applications, and services.

Univ
ers

ity
 of

 M
ala

ya

160

Gilbert, P., Chun, B.-G., Cox, L. P., & Jung, J. (2011). Vision: automated security
validation of mobile apps at app markets. Paper presented at the Proceedings of
the second international workshop on Mobile cloud computing and services.

Gill, P. S., Kamath, A., & Gill, T. S. (2012). Distraction: an assessment of smartphone
usage in health care work settings. Risk management and healthcare policy, 5,
105.

Glassenberg, R., De Oliveira, G., Glassenberg, S., & McCarthy, R. (2013). Teaching
bronchoscopic intubation with an iPhone application: a randomized controlled
trial. Journal of Clinical Anesthesia, 25(3), 248-249.

Goff, D. A. (2012). iPhones, iPads, and medical applications for antimicrobial
stewardship. Pharmacotherapy: The Journal of Human Pharmacology and Drug
Therapy, 32(7), 657-661.

Goldbach, H., Chang, A. Y., Kyer, A., Ketshogileng, D., Taylor, L., Chandra, A., . . .
Fontelo, P. (2013). Evaluation of generic medical information accessed via mobile
phones at the point of care in resource-limited settings. Journal of the American
Medical Informatics Association, amiajnl-2012-001276.

Gomez-Iturriaga, A., Bilbao, P., Casquero, F., Cacicedo, J., & Crook, J. (2012).
Smartphones and tablets: Reshaping radiation oncologists’ lives. Reports of
Practical Oncology & Radiotherapy, 17(5), 276-280.

Google. (2016). Google Play. Retrieved from https://play.google.com/store

Gorla, A., Tavecchia, I., Gross, F., & Zeller, A. (2014). Checking app behavior against
app descriptions. Paper presented at the Proceedings of the 36th International
Conference on Software Engineering.

Goyal, S., & Cafazzo, J. A. (2013). Mobile phone health apps for diabetes management:
Current evidence and future developments. QJM, hct203.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012). Riskranker: scalable and
accurate zero-day android malware detection. Paper presented at the Proceedings
of the 10th international conference on Mobile systems, applications, and
services.

Grace, M. C., Zhou, W., Jiang, X., & Sadeghi, A.-R. (2012). Unsafe exposure analysis of
mobile in-app advertisements. Paper presented at the Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks.

Grace, M. C., Zhou, Y., Wang, Z., & Jiang, X. (2012). Systematic Detection of Capability
Leaks in Stock Android Smartphones. Paper presented at the NDSS.

Gunasekera, S. (2012). Android Apps Security: Apress.

Haffey, F., Brady, R. R., & Maxwell, S. (2013). A comparison of the reliability of
smartphone apps for opioid conversion. Drug safety, 36(2), 111-117.

Univ
ers

ity
 of

 M
ala

ya

https://play.google.com/store

161

Haffey, F., Brady, R. R., & Maxwell, S. (2014). Smartphone apps to support hospital
prescribing and pharmacology education: a review of current provision. British
journal of clinical pharmacology, 77(1), 31-38.

Hamilton, A., & Brady, R. (2012). Medical professional involvement in smartphone
‘apps’ in dermatology. British Journal of Dermatology, 167(1), 220-221.

Hamou, A., Guy, S., Lewden, B., Bilyea, A., Gwadry-Sridhar, F., & Bauer, M. (2010).
Data collection with iPhone Web apps efficiently collecting patient data using
mobile devices. Paper presented at the e-Health Networking Applications and
Services (Healthcom), 2010 12th IEEE International Conference on.

Handel, M. J. (2011). mHealth (Mobile Health)—Using Apps for Health and Wellness.
EXPLORE: The Journal of Science and Healing, 7(4), 256-261.

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., & Song, D. (2012). Juxtapp: A scalable
system for detecting code reuse among android applications. Paper presented at
the International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment.

Harada, T., Horie, T., & Tanaka, K. (2004). Task oriented management obviates your
onus on Linux. Paper presented at the Linux Conference.

Hasegawa, S., Hasegawa, A., Takasu, K., Kojima, T., Miyao, M., Sugita, N., . . . Kato,
K. (2013). Multilingual medical dialog system developed as smartphone/tablet
application. Paper presented at the Engineering in Medicine and Biology Society
(EMBC), 2013 35th Annual International Conference of the IEEE.

Hawkes, C. P., Walsh, B. H., Ryan, C. A., & Dempsey, E. M. (2013). Smartphone
technology enhances newborn intubation knowledge and performance amongst
paediatric trainees. Resuscitation, 84(2), 223-226.

He, D. (2014a). Security threats to Android apps. Master’s thesis, University of Illinois
at Urbana-Champaign.

He, D. (2014b). Security threats to Android apps.

He, D., Naveed, M., Gunter, C. A., & Nahrstedt, K. (2014). Security Concerns in Android
mHealth Apps. Paper presented at the American Medical Informatics Association
(AMIA) Annual Symposium.

Hebden, L., Cook, A., van der Ploeg, H. P., & Allman-Farinelli, M. (2012). Development
of smartphone applications for nutrition and physical activity behavior change.
JMIR Research Protocols, 1(2).

Hilgefort, J., Fitzpatrick, S., Lycans, D., Wilson-Byrne, T., Fisher, C., & Shuler, F.
(2013). Smartphone medical applications useful for the rural practitioner. The
West Virginia medical journal, 110(1), 40-44.

Ho, C.-L., Fu, Y.-C., Lin, M.-C., Chan, S.-C., Hwang, B., & Jan, S.-L. (2014).
Smartphone Applications (Apps) for Heart Rate Measurement in Children:

Univ
ers

ity
 of

 M
ala

ya

162

Comparison with Electrocardiography Monitor. Pediatric cardiology, 35(4), 726-
731.

Hoog, A. (2011). Android forensics: investigation, analysis and mobile security for
Google Android: Elsevier.

Hornyack, P., Han, S., Jung, J., Schechter, S., & Wetherall, D. (2011). These aren't the
droids you're looking for: retrofitting android to protect data from imperious
applications. Paper presented at the Proceedings of the 18th ACM conference on
Computer and communications security.

Huckvale, K., Car, M., Morrison, C., & Car, J. (2012). Apps for asthma self-management:
a systematic assessment of content and tools. BMC medicine, 10(1), 144.

International Data Corporation. (2016). Smartphone OS Market Share, Q2 2016.
Retrieved from http://www.idc.com/prodserv/smartphone-os-market-share.jsp

Istepanian, R., Laxminarayan, S., & Pattichis, C. S. (2006). M-health: Emerging Mobile
Health Systems: Springer.

Jahns, R.-G. (2014). The 8 drivers and barriers that will shape the mHealth app market in
the next 5 years. Retrieved from http://mhealtheconomics.com/the-8-drivers-
and-barriers-that-will-shape-the-mhealth-app-market-in-the-next-5-years/

Jana, S., & Shmatikov, V. (2012). Memento: Learning secrets from process footprints.
Paper presented at the Security and Privacy (SP), 2012 IEEE Symposium on.

Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster, J. S., & Millstein,
T. (2012). Dr. Android and Mr. Hide: fine-grained permissions in android
applications. Paper presented at the Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices.

Jing, Y., Ahn, G.-J., Zhao, Z., & Hu, H. (2014). Riskmon: Continuous and automated risk
assessment of mobile applications. Paper presented at the Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy.

Kalz, M., Lenssen, N., Felzen, M., Rossaint, R., Tabuenca, B., Specht, M., & Skorning,
M. (2014). Smartphone Apps for Cardiopulmonary Resuscitation Training and
Real Incident Support: A Mixed-Methods Evaluation Study. Journal of medical
Internet research, 16(3).

Karami, M., Elsabagh, M., Najafiborazjani, P., & Stavrou, A. (2013). Behavioral analysis
of android applications using automated instrumentation. Paper presented at the
Software Security and Reliability-Companion (SERE-C), 2013 IEEE 7th
International Conference on.

Karlsson, K.-J., & Glisson, W. B. (2014). Android anti-forensics: Modifying
cyanogenmod. Paper presented at the 2014 47th Hawaii International Conference
on System Sciences.

Univ
ers

ity
 of

 M
ala

ya

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

163

Kazi, D. S., Saha, P., & Mastey, N. (2014). PW266 Mobile Phones: Hope or Hype? A
Qualitative Study of Best Practices in m-Health Development in a Low Income
Country. Global Heart, 9(1), e312.

Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sadeh, N., & Wetherall, D. (2012). A
conundrum of permissions: installing applications on an android smartphone.
Paper presented at the International Conference on Financial Cryptography and
Data Security.

Kharrazi, H., Chisholm, R., VanNasdale, D., & Thompson, B. (2012). Mobile personal
health records: an evaluation of features and functionality. International journal
of medical informatics, 81(9), 579-593.

Khatoon, B., Hill, K., & Walmsley, A. (2013). Can we learn, teach and practise dentistry
anywhere, anytime? British dental journal, 215(7), 345-347.

Kirwan, M., Duncan, M. J., Vandelanotte, C., & Mummery, W. K. (2013). Design,
Development, and Formative Evaluation of a Smartphone Application for
Recording and Monitoring Physical Activity Levels The 10,000 Steps
“iStepLog”. Health Education & Behavior, 40(2), 140-151.

Kotz, D. (2011). A threat taxonomy for mHealth privacy. Paper presented at the
COMSNETS.

Kotz, D., Avancha, S., & Baxi, A. (2009). A privacy framework for mobile health and
home-care systems. Paper presented at the Proceedings of the first ACM
workshop on Security and privacy in medical and home-care systems.

Kraidin, J., Ginsberg, S. H., & Solina, A. (2012). Anesthesia apps: overview of current
technology and intelligent search techniques. Journal of cardiothoracic and
vascular anesthesia, 26(2), 322-326.

Kuhn, E., Eftekhari, A., Hoffman, J. E., Crowley, J. J., Ramsey, K. M., Reger, G. M., &
Ruzek, J. I. (2014). Clinician Perceptions of Using a Smartphone App with
Prolonged Exposure Therapy. Administration and Policy in Mental Health and
Mental Health Services Research, 1-8.

La Polla, M., Martinelli, F., & Sgandurra, D. (2013). A survey on security for mobile
devices. IEEE communications surveys & tutorials, 15(1), 446-471.

Lee, B., Lu, L., Wang, T., Kim, T., & Lee, W. (2014). From zygote to morula: Fortifying
weakened aslr on android. Paper presented at the 2014 IEEE Symposium on
Security and Privacy.

Lee, H., Sullivan, S. J., Schneiders, A. G., Ahmed, O. H., Balasundaram, A. P., Williams,
D., . . . McCrory, P. (2014). Smartphone and tablet apps for concussion road
warriors (team clinicians): a systematic review for practical users. British journal
of sports medicine, bjsports-2013-092930.

Lessard, J., & Kessler, G. (2010). Android Forensics: Simplifying Cell Phone
Examinations.

Univ
ers

ity
 of

 M
ala

ya

164

Lewis, T. (2013). Breast self-examination: A novel health promotion medium. European
Journal of Surgical Oncology (EJSO), 39(5), 502.
doi:http://dx.doi.org/10.1016/j.ejso.2013.01.182

Linares-Vásquez, M., Holtzhauer, A., Bernal-Cárdenas, C., & Poshyvanyk, D. (2014).
Revisiting android reuse studies in the context of code obfuscation and library
usages. Paper presented at the Proceedings of the 11th Working Conference on
Mining Software Repositories.

Lineberry, A., Richardson, D. L., & Wyatt, T. (2010). These aren’t the permissions you’re
looking for. DefCon, 18, 2010.

Lippman, H. (2013). How apps are changing family medicine. J Fam Pract, 62(7), 362-
367.

Liu, C., Zhu, Q., Holroyd, K. A., & Seng, E. K. (2011). Status and trends of mobile-health
applications for iOS devices: A developer's perspective. Journal of Systems and
Software, 84(11), 2022-2033.

Loscocco, P., & Smalley, S. (2001). Integrating flexible support for security policies into
the Linux operating system. Paper presented at the Proceedings of the FREENIX
track: USENIX Annual Technical Conference.

Lu, L., Li, Z., Wu, Z., Lee, W., & Jiang, G. (2012). Chex: statically vetting android apps
for component hijacking vulnerabilities. Paper presented at the Proceedings of the
2012 ACM conference on Computer and communications security.

Luo, T., Hao, H., Du, W., Wang, Y., & Yin, H. (2011). Attacks on WebView in the
Android system. Paper presented at the Proceedings of the 27th Annual Computer
Security Applications Conference.

Luxton, D. D., McCann, R. A., Bush, N. E., Mishkind, M. C., & Reger, G. M. (2011).
mHealth for mental health: Integrating smartphone technology in behavioral
healthcare. Professional Psychology: Research and Practice, 42(6), 505.

Maggi, F., Valdi, A., & Zanero, S. (2013). AndroTotal: a flexible, scalable toolbox and
service for testing mobile malware detectors. Paper presented at the Proceedings
of the Third ACM workshop on Security and privacy in smartphones & mobile
devices.

Marforio, C., Francillon, A., & Capkun, S. (2011). Application collusion attack on the
permission-based security model and its implications for modern smartphone
systems: Department of Computer Science, ETH Zurich Zürich, Switzerland.

Marforio, C., Ritzdorf, H., Francillon, A., & Capkun, S. (2012). Analysis of the
communication between colluding applications on modern smartphones. Paper
presented at the Proceedings of the 28th Annual Computer Security Applications
Conference.

McCarthy, M. (2013). Experts warn on data security in health and fitness apps. BMJ, 347,
1.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.ejso.2013.01.182

165

McCurdie, T., Taneva, S., Casselman, M., Yeung, M., McDaniel, C., Ho, W., & Cafazzo,
J. (2012). mHealth consumer apps: the case for user-centered design. Biomedical
Instrumentation & Technology, 46(s2), 49-56.

Mersini, P., Sakkopoulos, E., & Tsakalidis, A. (2013). APPification of hospital
healthcare and data management using QRcodes. Paper presented at the
Information, Intelligence, Systems and Applications (IISA), 2013 Fourth
International Conference on.

Mertz, L. (2012). Ultrasound? Fetal monitoring? Spectrometer? There's an app for that!:
biomedical smart phone apps are taking healthcare by storm. Pulse, IEEE, 3(2),
16-21.

Milani, P., Coccetta, C. A., Rabini, A., Sciarra, T., Massazza, G., & Ferriero, G. (2014).
A Review of Mobile Smartphone Applications for Body Position Measurement
in Rehabilitation: A Focus on Goniometric Tools. PM&R.

Min, Y. H., Lee, J. W., Shin, Y.-W., Jo, M.-W., Sohn, G., Lee, J.-H., . . . Ko, B. S. (2014).
Daily Collection of Self-Reporting Sleep Disturbance Data via a Smartphone App
in Breast Cancer Patients Receiving Chemotherapy: A Feasibility Study. Journal
of medical Internet research, 16(5), e135.

Mirza, F., Norris, T., & Stockdale, R. (2008). Mobile technologies and the holistic
management of chronic diseases. Health informatics journal, 14(4), 309-321.

Mitchell, S., Ridley, S., Tharenos, C., Varshney, U., Vetter, R., & Yaylacicegi, U. (2013).
Investigating Privacy and Security Challenges of mHealth Applications. Paper
presented at the Americas Conference on Information Systems (AMCIS),
Chicago, Illinois, USA.

Mohan, A. T., & Branford, O. A. (2012). iGuide to Plastic Surgery iPhone Apps, the
Plastic Surgeon, and the Health Care Environment. Aesthetic Surgery Journal,
32(5), 653-658.

Mollus, K., Westhoff, D., & Markmann, T. (2014). Curtailing privilege escalation
attacks over asynchronous channels on Android. Paper presented at the
Innovations for Community Services (I4CS), 2014 14th International Conference
on.

Moodley, A., Mangino, J. E., & Goff, D. A. (2013). Review of infectious diseases
applications for iPhone/iPad and Android: from pocket to patient. Clinical
infectious diseases, 57(8), 1145-1154.

Moore, S., Anderson, J., & Cox, S. (2012). Pros and cons of using apps in clinical
practice: Smartphones have the potential to enhance care but, say Sally Moore
and colleagues, healthcare apps are not regulated, making it hard for nurse
managers to be certain that those available are accurate, reliable and safe. Nursing
Management, 19(6), 14-17.

Morris, R., Javed, M., Bodger, O., Gorse, S. H., & Williams, D. (2013). A comparison of
two smartphone applications and the validation of smartphone applications as
tools for fluid calculation for burns resuscitation. Burns.

Univ
ers

ity
 of

 M
ala

ya

166

Muessig, K. E., Pike, E. C., LeGrand, S., & Hightow-Weidman, L. B. (2013). Mobile
phone applications for the care and prevention of HIV and other sexually
transmitted diseases: a review. Journal of medical Internet research, 15(1).

Murthy, R., & Kotz, D. (2014). Assessing blood-pressure measurement in tablet-based
mHealth apps. Paper presented at the Communication Systems and Networks
(COMSNETS), 2014 Sixth International Conference on.

Nauman, M., Khan, S., & Zhang, X. (2010). Apex: extending android permission model
and enforcement with user-defined runtime constraints. Paper presented at the
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security.

Naveed, M., Zhou, X., Demetriou, S., Wang, X., & Gunter, C. A. (2014). Inside Job:
Understanding and Mitigating the Threat of External Device Mis-Bonding on
Android. Paper presented at the Network and Distributed System Security (NDSS)
Symposium.

Ni, X., Yang, Z., Bai, X., Champion, A. C., & Xuan, D. (2009). DiffUser: Differentiated
user access control on smartphones. Paper presented at the 2009 IEEE 6th
International Conference on Mobile Adhoc and Sensor Systems.

Number of Android applications. (2015, 21 June, 2015). Retrieved from https://www.
appbrain.com/stats/number-of-android-apps

Nwosu, A. C., & Mason, S. (2012). Palliative medicine and smartphones: an opportunity
for innovation? BMJ supportive & palliative care, 2(1), 75-77.

O'Neill, K., Holmer, H., Greenberg, S., & Meara, J. (2013). Applying surgical apps:
Smartphone and tablet apps prove useful in clinical practice. Bulletin of the
American College of Surgeons, 98(11), 10-18.

O’Neill, S., & Brady, R. (2012). Colorectal smartphone apps: opportunities and risks.
Colorectal Disease, 14(9), e530-e534.

O’Reilly, M., Nason, G., Liddy, S., Fitzgerald, C., Kelly, M., & Shields, C. (2013).
DOCSS: doctors on-call smartphone study. Irish journal of medical science, 1-5.

Oehler, R. L., Smith, K., & Toney, J. F. (2010). Infectious diseases resources for the
iPhone. Clinical infectious diseases, 50(9), 1268-1274.

Ongtang, M., Butler, K., & McDaniel, P. (2010). Porscha: Policy oriented secure content
handling in Android. Paper presented at the Proceedings of the 26th Annual
Computer Security Applications Conference.

Ongtang, M., McLaughlin, S., Enck, W., & McDaniel, P. (2012). Semantically rich
application‐centric security in Android. Security and Communication Networks,
5(6), 658-673.

Organization, W. H. (2011). mHealth: New horizons for health through mobile
technologies: World Health Organization.

Univ
ers

ity
 of

 M
ala

ya

167

Orthacker, C., Teufl, P., Kraxberger, S., Lackner, G., Gissing, M., Marsalek, A., . . .
Prevenhueber, O. (2011). Android security permissions–can we trust them? Paper
presented at the International Conference on Security and Privacy in Mobile
Information and Communication Systems.

Ozdalga, E., Ozdalga, A., & Ahuja, N. (2012). The smartphone in medicine: a review of
current and potential use among physicians and students. Journal of medical
Internet research, 14(5).

Pandey, A., Hasan, S., Dubey, D., & Sarangi, S. (2013). Smartphone apps as a source of
cancer information: changing trends in health information-seeking behavior.
Journal of Cancer Education, 28(1), 138-142.

Pandita, R., Xiao, X., Yang, W., Enck, W., & Xie, T. (2013). WHYPER: Towards
Automating Risk Assessment of Mobile Applications. Paper presented at the
USENIX Security.

Park, J.-Y., Lee, G., Shin, S.-Y., Kim, J. H., Han, H.-W., Kwon, T.-W., . . . Lee, J. H.
(2014). Lessons Learned from the Development of Health Applications in a
Tertiary Hospital. Telemedicine and e-Health, 20(3), 215-222.

Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of
smartphone. Industrial Management & Data Systems, 107(9), 1349-1365.

Paschou, M., Sakkopoulos, E., & Tsakalidis, A. (2013). easyHealthApps: e-Health Apps
Dynamic Generation for Smartphones & Tablets. Journal of medical systems,
37(3), 1-12.

Patel, V., Nowostawski, M., Thomson, G., Wilson, N., & Medlin, H. (2013). Developing
a smartphone ‘app’for public health research: the example of measuring observed
smoking in vehicles. Journal of epidemiology and community health, 67(5), 446-
452.

Payne, K. F. B., Wharrad, H., & Watts, K. (2012). Smartphone and medical related App
use among medical students and junior doctors in the United Kingdom (UK): a
regional survey. BMC medical informatics and decision making, 12(1), 121.

Pearce, P., Felt, A. P., Nunez, G., & Wagner, D. (2012). Addroid: Privilege separation
for applications and advertisers in android. Paper presented at the Proceedings of
the 7th ACM Symposium on Information, Computer and Communications
Security.

Peck, J. L., Stanton, M., & Reynolds, G. E. (2014). Smartphone preventive health care:
Parental use of an immunization reminder system. Journal of Pediatric Health
Care, 28(1), 35-42.

Pendragon Software Corporation. (1997). CaffeineMark 3.0 Information. Retrieved
from http://www.benchmarkhq.ru/cm30/info.html

Plachkinova, M., Andrés, S., & Chatterjee, S. (2015). A Taxonomy of mHealth Apps–
Security and Privacy Concerns. Paper presented at the Hawaii International
Conference on System Sciences.

Univ
ers

ity
 of

 M
ala

ya

http://www.benchmarkhq.ru/cm30/info.html

168

Poon, C. C., Zhang, Y.-T., & Bao, S.-D. (2006). A novel biometrics method to secure
wireless body area sensor networks for telemedicine and m-health.
Communications Magazine, IEEE, 44(4), 73-81.

Portokalidis, G., Homburg, P., Anagnostakis, K., & Bos, H. (2010). Paranoid Android:
versatile protection for smartphones. Paper presented at the Proceedings of the
26th Annual Computer Security Applications Conference.

Project, A. O. S. (2016). Android Compatibility. Retrieved from http://source.android.
com/compatibility/

Pulverman, R., & Yellowlees, P. M. (2014). Smart devices and a future of hybrid tobacco
cessation programs. Telemedicine and e-Health, 20(3), 241-245.

Quick, D., & Alzaabi, M. (2011). Forensic analysis of the android file system yaffs2.

Rabin, C., & Bock, B. (2011). Desired features of smartphone applications promoting
physical activity. Telemedicine and e-Health, 17(10), 801-803.

Ramachandran, A., & Pai, V. V. S. (2014, 5-7 March 2014). Patient-centered mobile
apps for chronic disease management. Paper presented at the Computing for
Sustainable Global Development (INDIACom), 2014 International Conference
on.

Rashidi, B., & Fung, C. (2015). A Survey of Android Security Threats and Defenses.
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications (JoWUA), 6(3), 3-35.

Rasthofer, S., Arzt, S., & Bodden, E. (2014). A Machine-learning Approach for
Classifying and Categorizing Android Sources and Sinks. Paper presented at the
NDSS.

Rastogi, V., Chen, Y., & Jiang, X. (2013). Droidchameleon: evaluating android anti-
malware against transformation attacks. Paper presented at the Proceedings of
the 8th ACM SIGSAC symposium on Information, computer and
communications security.

Robinson, F., & Jones, C. (2014). Women's engagement with mobile device applications
in pregnancy and childbirth. Pract Midwife, 17(1), 23-25.

Robustillo Cortés, M. d. l. A., Cantudo Cuenca, M. R., Morillo Verdugo, R., & Calvo
Cidoncha, E. (2014). High Quantity but Limited Quality in Healthcare
Applications Intended for HIV-Infected Patients. Telemedicine and e-Health.

Rosser, B., & Eccleston, C. (2011). The current state of healthcare apps for pain: A review
of the functionality and validity of commercially available pain-related
smartphone applications. The Journal of Pain, 12(4), P9.

Rosser, B. A., & Eccleston, C. (2011). Smartphone applications for pain management.
Journal of telemedicine and telecare, 17(6), 308-312.

Univ
ers

ity
 of

 M
ala

ya

169

Rozenblyum, E. V., Mistry, N., Cellucci, T., Martimianakis, T., & Laxer, R. M. (2014).
A144: Resident's Guide to Rheumatology Guide Mobile Application: An
International Needs Assessment. Arthritis & Rheumatology, 66(S11), S187-S187.

Russello, G., Crispo, B., Fernandes, E., & Zhauniarovich, Y. (2011). Yaase: Yet another
android security extension. Paper presented at the Privacy, Security, Risk and
Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social
Computing (SocialCom), 2011 IEEE Third International Conference on.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G., & Álvarez, G.
(2013). Puma: Permission usage to detect malware in android. Paper presented
at the International Joint Conference CISIS’12-ICEUTE´ 12-SOCO´ 12 Special
Sessions.

Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., & Molloy, I. (2012).
Android permissions: a perspective combining risks and benefits. Paper presented
at the Proceedings of the 17th ACM symposium on Access Control Models and
Technologies.

Savic, M., Best, D., Rodda, S., & Lubman, D. I. (2013). Exploring the Focus and
Experiences of Smartphone Applications for Addiction Recovery. Journal of
addictive diseases, 32(3), 310-319.

Schlegel, R., Zhang, K., Zhou, X.-y., Intwala, M., Kapadia, A., & Wang, X. (2011).
Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones.
Paper presented at the NDSS.

Schmitt, S. (2011). Mobile Phone Forensics: Analysis of the Android Filesystem
(YAFFS2). University of Mannheim.

Schreier, G., Schwarz, M., Modre-Osprian, R., Kastner, P., Scherr, D., & Fruhwald, F.
(2013). Design and evaluation of a multimodal mHealth based medication
management system for patient self administration. Paper presented at the
Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual
International Conference of the IEEE.

Server, S. (2007). Fuzzy Clarity: Using Fuzzy Hashing Techniques to Identify Malicious
Code.

Shabtai, A., Fledel, Y., & Elovici, Y. (2010). Securing Android-powered mobile devices
using SELinux. IEEE security & privacy, 3(8), 36-44.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: a
behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems, 38(1), 161-190.

Shand, F. L., Ridani, R., Tighe, J., & Christensen, H. (2013). The effectiveness of a
suicide prevention app for indigenous Australian youths: study protocol for a
randomized controlled trial. Trials, 14. doi:10.1186/1745-6215-14-396

Univ
ers

ity
 of

 M
ala

ya

170

Shebaro, B., Oluwatimi, O., & Bertino, E. (2015). Context-based access control systems
for mobile devices. IEEE Transactions on Dependable and Secure Computing,
12(2), 150-163.

Shekhar, S., Dietz, M., & Wallach, D. S. (2012). Adsplit: Separating smartphone
advertising from applications. Paper presented at the Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12).

Shen, F., Vishnubhotla, N., Todarka, C., Arora, M., Dhandapani, B., Lehner, E. J., . . .
Ziarek, L. (2014). Information flows as a permission mechanism. Paper presented
at the Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering.

Shin, W., Kiyomoto, S., Fukushima, K., & Tanaka, T. (2010). A formal model to analyze
the permission authorization and enforcement in the android framework. Paper
presented at the Social Computing (SocialCom), 2010 IEEE Second International
Conference on.

Silow-Carroll, S., & Smith, B. (2013). Clinical management apps: creating partnerships
between providers and patients. Published November, 6.

Silva, B. M., Rodrigues, J. J., Canelo, F., Lopes, I. C., & Zhou, L. (2013). A data
encryption solution for mobile health apps in cooperation environments. Journal
of medical Internet research, 15(4).

Simão, A. M. d. L., Sícoli, F. C., Melo, L. P. d., Deus, F. E. G. d., & Sousa Júnior, R. T.
d. (2011). Acquisition and Analysis of Digital Evidencein Android Smartphones.

Singh, P. (2013). Orthodontic apps for smartphones. Journal of orthodontics, 40(3), 249-
255.

Slaper, M. R., & Conkol, K. (2014). mHealth Tools for the Pediatric Patient-Centered
Medical Home. Pediatric annals, 43(2), e39-43.

Smalley, S., & Craig, R. (2013). Security Enhanced (SE) Android: Bringing Flexible
MAC to Android. Paper presented at the NDSS.

Smalley, S., Vance, C., & Salamon, W. (2001). Implementing SELinux as a Linux
security module. NAI Labs Report, 1(43), 139.

Sondhi, V., & Devgan, A. (2013). Translating technology into patient care: Smartphone
applications in pediatric health care. medical journal armed forces india, 69(2),
156-161.

Spain, C. H. J. (2014). A better regulation is required in viral hepatitis smartphone
applications. Farm Hosp, 38(2), 112-117.

Spreitzenbarth, M. (2011). Tools and Processes for Forensic Analyses of Smartphones
and Mobile Malware. Paper presented at the SPRING-SIDAR Graduierten-
Workshop über Reaktive Sicherheit, 21.-22. März 2011, Bochum, Deutschland.

Univ
ers

ity
 of

 M
ala

ya

171

Stevens, D. J., Jackson, J. A., Howes, N., & Morgan, J. (2014). Obesity Surgery
Smartphone Apps: a Review. Obesity surgery, 24(1), 32-36.

Stevens, R., Ganz, J., Filkov, V., Devanbu, P., & Chen, H. (2013). Asking for (and about)
permissions used by android apps. Paper presented at the Proceedings of the 10th
Working Conference on Mining Software Repositories.

Sun, M., & Tan, G. (2014). NativeGuard: Protecting android applications from third-
party native libraries. Paper presented at the Proceedings of the 2014 ACM
conference on Security and privacy in wireless & mobile networks.

Tan, D. J., Chua, T.-W., & Thing, V. L. (2015). Securing android: a survey, taxonomy,
and challenges. ACM Computing Surveys (CSUR), 47(4), 58.

Techopedia. (2016). Definition - What does Mobile Application (Mobile App) mean?
Retrieved from https://www.techopedia.com/definition/2953/mobile-application-
mobile-app

Tripp, N., Hainey, K., Liu, A., Poulton, A., Peek, M., Kim, J., & Nanan, R. (2014). An
emerging model of maternity care: Smartphone, midwife, doctor? Women and
Birth, 27(1), 64-67.

Tseng, M.-H., Hsu, H.-C., Chang, C.-C., Ting, H., Wu, H.-C., & Tang, P.-H. (2012).
Development of an intelligent app for obstructive sleep apnea prediction on
Android smartphone using data mining approach. Paper presented at the
Ubiquitous Intelligence & Computing and 9th International Conference on
Autonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference
on.

Vidas, T., Christin, N., & Cranor, L. (2011). Curbing android permission creep. Paper
presented at the Proceedings of the Web.

Vidas, T., Zhang, C., & Christin, N. (2011). Toward a general collection methodology
for Android devices. digital investigation, 8, S14-S24.

Visvanathan, A., Hamilton, A., & Brady, R. (2012). Smartphone apps in microbiology—
is better regulation required? Clinical Microbiology and Infection, 18(7), E218-
E220.

Wackel, P., Beerman, L., West, L., & Arora, G. (2014). Tachycardia Detection Using
Smartphone Applications in Pediatric Patients. The Journal of pediatrics, 164(5),
1133-1135.

Wallace, L., & Dhingra, L. (2013). A systematic review of smartphone applications for
chronic pain available for download in the United States. Journal of opioid
management, 10(1), 63-68.

Wang, J., Wang, Y., Wei, C., Yao, N., Yuan, A., Shan, Y., & Yuan, C. (2014).
Smartphone Interventions for Long-Term Health Management of Chronic
Diseases: An Integrative Review. Telemedicine and e-Health.

Univ
ers

ity
 of

 M
ala

ya

https://www.techopedia.com/definition/2953/mobile-application-mobile-app
https://www.techopedia.com/definition/2953/mobile-application-mobile-app

172

Warnock, G. L. (2012). The use of apps in surgery. Canadian Journal of Surgery, 55(2),
77.

Wearing, J. R., Nollen, N., Befort, C., Davis, A. M., & Agemy, C. K. (2014). iPhone App
Adherence to Expert-Recommended Guidelines for Pediatric Obesity Prevention.
Childhood Obesity, 10(2), 132-144.

Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., van der Veen,
V., & Platzer, C. (2014). Andrubis: Android malware under the magnifying glass.
Vienna University of Technology, Tech. Rep. TRISECLAB-0414, 1, 5.

Workman, A. D., & Gupta, S. C. (2013). A plastic surgeon’s guide to applying
smartphone technology in patient care. Aesthetic Surgery Journal,
1090820X12472338.

Wright, C., Cowan, C., Smalley, S., Morris, J., & Kroah-Hartman, G. (2002). Linux
Security Modules: General Security Support for the Linux Kernel. Paper presented
at the USENIX Security Symposium.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012). Droidmat: Android
malware detection through manifest and api calls tracing. Paper presented at the
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on.

Wu, H.-C., Chang, C.-J., Lin, C.-C., Tsai, M.-C., Chang, C.-C., & Tseng, M.-H. (2014).
Developing Screening Services for Colorectal Cancer on Android Smartphones.
Telemedicine and e-Health.

Wu, L., Grace, M., Zhou, Y., Wu, C., & Jiang, X. (2013). The impact of vendor
customizations on android security. Paper presented at the Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security.

Xing, L., Pan, X., Wang, R., Yuan, K., & Wang, X. (2014). Upgrading your android,
elevating my malware: Privilege escalation through mobile os updating. Paper
presented at the 2014 IEEE Symposium on Security and Privacy.

Xu, C. S., Anderson, B., Armer, J., & Shyu, C.-R. (2012). Improving disease management
through a mobile application for lymphedema patients. Paper presented at the e-
Health Networking, Applications and Services (Healthcom), 2012 IEEE 14th
International Conference on.

Xu, R., Saïdi, H., & Anderson, R. (2012). Aurasium: Practical policy enforcement for
android applications. Paper presented at the Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12).

Yan, L. K., & Yin, H. (2012). Droidscope: seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. Paper presented at the
Presented as part of the 21st USENIX Security Symposium (USENIX Security
12).

Yang, Y. T., & Silverman, R. D. (2014). Mobile health applications: the patchwork of
legal and liability issues suggests strategies to improve oversight. Health Affairs,
33(2), 222-227.

Univ
ers

ity
 of

 M
ala

ya

173

Yang, Z., & Yang, M. (2012). Leakminer: Detect information leakage on android with
static taint analysis. Paper presented at the Software Engineering (WCSE), 2012
Third World Congress on.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., & Wang, X. S. (2013). Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection.
Paper presented at the Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security.

Yoo, J.-H. (2013). The Meaning of Information Technology (IT) Mobile Devices to Me,
the Infectious Disease Physician. Infection & chemotherapy, 45(2), 244-251.

Zanni, G. R. (2013). Medical apps worth having. Consult Pharm, 28(5), 322-324.
doi:10.4140/TCP.n.2013.322

Zhang, X., Ahlawat, A., & Du, W. (2013). AFrame: isolating advertisements from mobile
applications in Android. Paper presented at the Proceedings of the 29th Annual
Computer Security Applications Conference.

Zhauniarovich, Y., Russello, G., Conti, M., Crispo, B., & Fernandes, E. (2014). MOSES:
supporting and enforcing security profiles on smartphones. IEEE Transactions on
Dependable and Secure Computing, 11(3), 211-223.

Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., & Zou, W. (2012). Smartdroid:
an automatic system for revealing ui-based trigger conditions in android
applications. Paper presented at the Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices.

Zheng, M., Lee, P. P., & Lui, J. C. (2012). ADAM: an automatic and extensible platform
to stress test android anti-virus systems. Paper presented at the International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment.

Zhou, W., Zhang, X., & Jiang, X. (2013). AppInk: watermarking android apps for
repackaging deterrence. Paper presented at the Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security.

Zhou, W., Zhou, Y., Grace, M., Jiang, X., & Zou, S. (2013). Fast, scalable detection of
piggybacked mobile applications. Paper presented at the Proceedings of the third
ACM conference on Data and application security and privacy.

Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting repackaged smartphone
applications in third-party android marketplaces. Paper presented at the
Proceedings of the second ACM conference on Data and Application Security and
Privacy.

Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., . . . Nahrstedt, K. (2013).
Identity, location, disease and more: Inferring your secrets from android public
resources. Paper presented at the Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security.

Univ
ers

ity
 of

 M
ala

ya

174

Zhou, X., Lee, Y., Zhang, N., Naveed, M., & Wang, X. (2014). The peril of
fragmentation: Security hazards in android device driver customizations. Paper
presented at the 2014 IEEE Symposium on Security and Privacy.

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Characterization and
evolution. Paper presented at the Security and Privacy (SP), 2012 IEEE
Symposium on.

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012). Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. Paper
presented at the NDSS.

Zhou, Y., Zhang, X., Jiang, X., & Freeh, V. W. (2011). Taming information-stealing
smartphone applications (on android) Trust and Trustworthy Computing (pp. 93-
107): Springer.

Zhu, Q., Liu, C., & Holroyd, K. A. (2012). From a traditional behavioral management
program to an m-health app: Lessons learned in developing m-health apps for
existing health care programs. Paper presented at the Software Engineering in
Health Care (SEHC), 2012 4th International Workshop on.

Univ
ers

ity
 of

 M
ala

ya

175

LIST OF PUBLICATIONS

• Muzammil Hussain, Ahmed Al-Haiqi, Aws Alaa Zaidan, Bilal Bahaa Zaidan,

Miss Laiha Mat Kiah, Nor Badrul Anuar, & Mohamed Abdulnabi, “The rise of

keyloggers on smartphones: A survey and insight into motion-based tap

inference attacks”, Pervasive and Mobile Computing, Volume 25, January

2016, Pages 1-25, ISSN 1574-1192, (ISI Q1, Impact Factor 2.079).

• Muzammil Hussain, Ahmed Al-Haiqi, Aws Alaa Zaidan, Bilal Bahaa Zaidan,

Miss Laiha Mat Kiah, Nor Badrul Anuar, & Mohamed Abdulnabi, “The

landscape of research on smartphone medical apps: Coherent taxonomy,

motivations, open challenges and recommendations” Computer methods and

programs in biomedicine, Volume 122, December 2015, Pages 393-408, ISSN

0169-2607, (ISI Q1, Impact Factor 1.897).

• Muzammil Hussain, Miss Laiha Mat Kiah, Nor Badrul Anuar, & Ahmed Al-

Haiqi, “A Security Framework for Mobile Health Applications” Journal of

biomedical informatics, (Submitted), February 2017, ISSN 1532-0464, (ISI Q1,

Impact Factor 2.447).

• Miss Laiha Mat Kiah, SH Al-Bakri, Aws Alaa Zaidan, Bilal Bahaa Zaidan, &

Muzammil Hussain, “Design and develop a video conferencing framework for

real-time telemedicine applications using secure group-based communication

architecture” Journal of medical systems, Volume 38, October 2014, Pages 1-

11, ISSN 0148-5598, (ISI Q2, Impact Factor 2.213).

• Salman Iqbal, Miss Laiha Mat Kiah, Babak Dhaghighi, Muzammil Hussain,

Suleman Khan, Khan, Muhammad Khurram Khan, & Kim-Kwang Raymond

Choo, “On cloud security attacks: A taxonomy and intrusion detection and

prevention as a service”, Journal of Network and Computer Applications,

Univ
ers

ity
 of

 M
ala

ya

176

Volume 74, October 2016, Pages 98-120, ISSN 1084-8045, (ISI Q1, Impact

Factor 2.331).

• Mohamed Abdulnabi, Ahmed Al-Haiqi, MLM Kiah, A. A. Zaidan, BB. Zaidan,

Muzammil Hussain, “A Distributed Framework for Health Information

Exchange Using Smartphone Technologies” Journal of Biomedical Informatics,

Volume 69, May 2017, Pages 230–250, ISSN 1532-0464, (ISI Q1, Impact

Factor 2.447).

• Aws Alaa Zaidan, Bilal Bahaa Zaidan, Muzammil Hussain, Ahmed Al-Haiqi,

Miss Laiha Mat Kiah, & Mohamed Abdulnabi, “Multi-criteria analysis for OS-

EMR software selection problem: a comparative study” Decision Support

Systems, Volume 78, October 2015, Pages 15-27, ISSN 0167-9236, (ISI Q1,

Impact Factor 2.604).

• Aws Alaa Zaidan, Bilal Bahaa Zaidan, Ahmed Al-Haiqi, Miss Laiha Mat Kiah,

Muzammil Hussain, & Mohamed Abdulnabi, “Evaluation and selection of

open-source EMR software packages based on integrated AHP and

TOPSIS” Journal of biomedical informatics, Volume 53, February 2015, Pages

390-404, ISSN 1532-0464, (ISI Q1, Impact Factor 2.482).

• Bilal Bahaa Zaidan, Ahmed Al-Haiqi, Aws Alaa Zaidan, Mohamed Abdulnabi,

Miss Laiha Mat Kiah, & Muzammil Hussain, “A security framework for

nationwide health information exchange based on telehealth strategy” Journal

of medical systems, Volume 39, May 2015, Pages 1-19, ISSN 0148-5598, (ISI

Q2, Impact Factor 2.213).

Univ
ers

ity
 of

 M
ala

ya

177

APPENDICES

APPENDIX A: SAMPLE SET OF APPLICATIONS

Table A-1: List of the Sample Set of Apps

Apps URL

1 Blood Pressure Diary
https://play.google.com/store/apps/details?id=org.fruct.yar.bloo
dpressurediary

2 Ob (Pregnancy) Wheel
https://play.google.com/store/apps/details?id=com.quartertone.
medcalc.obwheel

3 Contraction Timer
https://play.google.com/store/apps/details?id=com.ianhanniballa
ke.contractiontimer

4 Baby Care
https://play.google.com/store/apps/details?id=com.kolsoft.babyc
are

5
Pregnancy Test &
Symptom Quiz

https://play.google.com/store/apps/details?id=com.tsavo.amipre
gnant

6 Medical Calculators https://play.google.com/store/apps/details?id=Pedcall.Calculator

7 BP (Blood Pressure) Diary
https://play.google.com/store/apps/details?id=kr.co.openit.bpdia
ry

8
Feed Baby - Tracker &
Monitor

https://play.google.com/store/apps/details?id=au.com.penguinap
ps.android.babyfeeding.client.android

9
Baby Care - track baby
growth!

https://play.google.com/store/apps/details?id=com.luckyxmobil
e.babycare

10
Pregnancy Due Date
Calculator

https://play.google.com/store/apps/details?id=surebaby.pregnan
cy.calculator

11 My Menstrual Diary
https://play.google.com/store/apps/details?id=com.ecare.menstr
ualdiary

12 BMI Calculator (free)
https://play.google.com/store/apps/details?id=free.wk.mybodym
ass

13 Menstrual Calendar
https://play.google.com/store/apps/details?id=com.guillaumegra
nger.mc

14 My Ovulation Calculator
https://play.google.com/store/apps/details?id=com.ecare.ovulati
oncalculator

15 Pregnancy +
https://play.google.com/store/apps/details?id=com.hp.pregnancy
.lite

16 Blood Pressure (My Heart) https://play.google.com/store/apps/details?id=com.szyk.myheart

17 Migraine Buddy
https://play.google.com/store/apps/details?id=com.healint.migra
ineapp

18 Dosage Calc
https://play.google.com/store/apps/details?id=com.sekos.dosage
calc

19 Figure 1 - Medical Images
https://play.google.com/store/apps/details?id=com.figure1.andro
id

Univ
ers

ity
 of

 M
ala

ya

https://play.google.com/store/apps/details?id=org.fruct.yar.bloodpressurediary
https://play.google.com/store/apps/details?id=org.fruct.yar.bloodpressurediary
https://play.google.com/store/apps/details?id=com.quartertone.medcalc.obwheel
https://play.google.com/store/apps/details?id=com.quartertone.medcalc.obwheel
https://play.google.com/store/apps/details?id=com.ianhanniballake.contractiontimer
https://play.google.com/store/apps/details?id=com.ianhanniballake.contractiontimer
https://play.google.com/store/apps/details?id=com.kolsoft.babycare
https://play.google.com/store/apps/details?id=com.kolsoft.babycare
https://play.google.com/store/apps/details?id=com.tsavo.amipregnant
https://play.google.com/store/apps/details?id=com.tsavo.amipregnant
https://play.google.com/store/apps/details?id=Pedcall.Calculator
https://play.google.com/store/apps/details?id=kr.co.openit.bpdiary
https://play.google.com/store/apps/details?id=kr.co.openit.bpdiary
https://play.google.com/store/apps/details?id=au.com.penguinapps.android.babyfeeding.client.android
https://play.google.com/store/apps/details?id=au.com.penguinapps.android.babyfeeding.client.android
https://play.google.com/store/apps/details?id=com.luckyxmobile.babycare
https://play.google.com/store/apps/details?id=com.luckyxmobile.babycare
https://play.google.com/store/apps/details?id=surebaby.pregnancy.calculator
https://play.google.com/store/apps/details?id=surebaby.pregnancy.calculator
https://play.google.com/store/apps/details?id=com.ecare.menstrualdiary
https://play.google.com/store/apps/details?id=com.ecare.menstrualdiary
https://play.google.com/store/apps/details?id=free.wk.mybodymass
https://play.google.com/store/apps/details?id=free.wk.mybodymass
https://play.google.com/store/apps/details?id=com.guillaumegranger.mc
https://play.google.com/store/apps/details?id=com.guillaumegranger.mc
https://play.google.com/store/apps/details?id=com.ecare.ovulationcalculator
https://play.google.com/store/apps/details?id=com.ecare.ovulationcalculator
https://play.google.com/store/apps/details?id=com.hp.pregnancy.lite
https://play.google.com/store/apps/details?id=com.hp.pregnancy.lite
https://play.google.com/store/apps/details?id=com.szyk.myheart
https://play.google.com/store/apps/details?id=com.healint.migraineapp
https://play.google.com/store/apps/details?id=com.healint.migraineapp
https://play.google.com/store/apps/details?id=com.sekos.dosagecalc
https://play.google.com/store/apps/details?id=com.sekos.dosagecalc
https://play.google.com/store/apps/details?id=com.figure1.android
https://play.google.com/store/apps/details?id=com.figure1.android

178

Table A-1, Continued

Apps URL

20 Ovia Pregnancy Guide
https://play.google.com/store/apps/details?id=com.ovuline.preg
nancy

21 Blood Pressure
https://play.google.com/store/apps/details?id=com.freshware.blo
odpressure

22 OnTrack Diabetes
https://play.google.com/store/apps/details?id=com.gexperts.ontr
ack

23
Glucose Buddy : Diabetes
Log

https://play.google.com/store/apps/details?id=com.skyhealth.glu
cosebuddyfree

24 Pediatric OnCall
https://play.google.com/store/apps/details?id=com.pediatriconca
ll

25 PMCare+
https://play.google.com/store/apps/details?id=com.mosync.app_
PMCare_Mobile

26 Weight Calorie Watch
https://play.google.com/store/apps/details?id=com.ecare.weight
caloriewatch

27
Ramsay Sime Darby
Health Care

https://play.google.com/store/apps/details?id=com.lanewaysoft
ware.ourdoctors

28 Diabetes:M https://play.google.com/store/apps/details?id=com.mydiabetes

29 FaceLift
https://play.google.com/store/apps/details?id=com.modiface.fac
elift.free

30
iMom • Pregnancy &
Fertility

https://play.google.com/store/apps/details?id=com.obscience.im
amma

31
Couple Counseling &
Chatting

https://play.google.com/store/apps/details?id=com.abma.couple
counseling

32
BMI Calculator. Healthy
Weight

https://play.google.com/store/apps/details?id=com.despdev.weig
ht_loss_calculator

33
MoodTools - Depression
Aid

https://play.google.com/store/apps/details?id=com.moodtools.m
oodtools

34 Spo2
https://play.google.com/store/apps/details?id=com.berry_med.sp
o2_bt

35 Lady Pill Reminder
https://play.google.com/store/apps/details?id=com.baviux.pillre
minder

36 Health-Tracker
https://play.google.com/store/apps/details?id=com.benoved.phr_
lite

37
Woman Calendar /
Feminap

https://play.google.com/store/apps/details?id=com.kolsoft.femin
ap

38
HEART ATTACK
ALERT SYSTEM

https://play.google.com/store/apps/details?id=com.ha.home

39 Menstrual Calendar
https://play.google.com/store/apps/details?id=com.indhay.menst
rualcalendar

40 Ob Wheel Extra data
https://play.google.com/store/apps/details?id=com.quartertone.
medcalc.obwheel.extras

Univ
ers

ity
 of

 M
ala

ya

https://play.google.com/store/apps/details?id=com.ovuline.pregnancy
https://play.google.com/store/apps/details?id=com.ovuline.pregnancy
https://play.google.com/store/apps/details?id=com.freshware.bloodpressure
https://play.google.com/store/apps/details?id=com.freshware.bloodpressure
https://play.google.com/store/apps/details?id=com.gexperts.ontrack
https://play.google.com/store/apps/details?id=com.gexperts.ontrack
https://play.google.com/store/apps/details?id=com.skyhealth.glucosebuddyfree
https://play.google.com/store/apps/details?id=com.skyhealth.glucosebuddyfree
https://play.google.com/store/apps/details?id=com.pediatriconcall
https://play.google.com/store/apps/details?id=com.pediatriconcall
https://play.google.com/store/apps/details?id=com.mosync.app_PMCare_Mobile
https://play.google.com/store/apps/details?id=com.mosync.app_PMCare_Mobile
https://play.google.com/store/apps/details?id=com.ecare.weightcaloriewatch
https://play.google.com/store/apps/details?id=com.ecare.weightcaloriewatch
https://play.google.com/store/apps/details?id=com.lanewaysoftware.ourdoctors
https://play.google.com/store/apps/details?id=com.lanewaysoftware.ourdoctors
https://play.google.com/store/apps/details?id=com.mydiabetes
https://play.google.com/store/apps/details?id=com.modiface.facelift.free
https://play.google.com/store/apps/details?id=com.modiface.facelift.free
https://play.google.com/store/apps/details?id=com.obscience.imamma
https://play.google.com/store/apps/details?id=com.obscience.imamma
https://play.google.com/store/apps/details?id=com.abma.couplecounseling
https://play.google.com/store/apps/details?id=com.abma.couplecounseling
https://play.google.com/store/apps/details?id=com.despdev.weight_loss_calculator
https://play.google.com/store/apps/details?id=com.despdev.weight_loss_calculator
https://play.google.com/store/apps/details?id=com.moodtools.moodtools
https://play.google.com/store/apps/details?id=com.moodtools.moodtools
https://play.google.com/store/apps/details?id=com.berry_med.spo2_bt
https://play.google.com/store/apps/details?id=com.berry_med.spo2_bt
https://play.google.com/store/apps/details?id=com.baviux.pillreminder
https://play.google.com/store/apps/details?id=com.baviux.pillreminder
https://play.google.com/store/apps/details?id=com.benoved.phr_lite
https://play.google.com/store/apps/details?id=com.benoved.phr_lite
https://play.google.com/store/apps/details?id=com.kolsoft.feminap
https://play.google.com/store/apps/details?id=com.kolsoft.feminap
https://play.google.com/store/apps/details?id=com.ha.home
https://play.google.com/store/apps/details?id=com.indhay.menstrualcalendar
https://play.google.com/store/apps/details?id=com.indhay.menstrualcalendar
https://play.google.com/store/apps/details?id=com.quartertone.medcalc.obwheel.extras
https://play.google.com/store/apps/details?id=com.quartertone.medcalc.obwheel.extras

179

Table A-1, Continued

Apps URL

41 Blood Pressure - MyDiary
https://play.google.com/store/apps/details?id=com.zlamanit.bloo
d.pressure

42 f-Ready https://play.google.com/store/apps/details?id=com.sssllc.fready

43
Menstruation Fertility Pro
Lte

https://play.google.com/store/apps/details?id=com.cbgsolutions.
mfprotrial

44 Baby growth
https://play.google.com/store/apps/details?id=com.melunasoft.k
ampylesanaptykshs

45
Depression CBT Self-Help
Guide

https://play.google.com/store/apps/details?id=com.excelatlife.de
pression

46
Mom 2 Be Pregnancy
Tracker

https://play.google.com/store/apps/details?id=com.instanceone.a
ndroid.mom2befree

47 Weight Diary
https://play.google.com/store/apps/details?id=org.fruct.yar.weig
htdiary

48 Breastfeeding
https://play.google.com/store/apps/details?id=com.whisperarts.k
ids.breastfeeding

49
Contraction Timer for
Labour

https://play.google.com/store/apps/details?id=au.com.penguinap
ps.android.beautifulcontractiontimer.app

50
Framingham Risk
Calculator

https://play.google.com/store/apps/details?id=com.calculaterx.fr
aminghamriskcalculator

51 Baby Growth Apps FREE
https://play.google.com/store/apps/details?id=standard.android.a
pp.BabyApps

52
Kidfolio Baby Tracker &
Book

https://play.google.com/store/apps/details?id=com.alt12.kidfolio

53 GFR & BSA Calculator
https://play.google.com/store/apps/details?id=com.medcomis.de
vice.android.egfr

54 Scanadu Scout https://play.google.com/store/apps/details?id=com.scanadu.schs

55 Pilluling
https://play.google.com/store/apps/details?id=ru.pilluling.androi
d

56
Doctor On Demand: MD &
Therapy

https://play.google.com/store/apps/details?id=com.doctorondem
and.android.patient

57 My Glycemia
https://play.google.com/store/apps/details?id=com.insyncapp.di
abete

58 Diabetes Journal
https://play.google.com/store/apps/details?id=com.suderman.dia
beteslog

59 Diabetes - Glucose Diary https://play.google.com/store/apps/details?id=com.szyk.diabetes

60 Diabetes Plus
https://play.google.com/store/apps/details?id=com.squaremed.di
abetesplus.typ1

61
Doctor Mole - Skin cancer
app

https://play.google.com/store/apps/details?id=com.revsoft.docto
rmole

Univ
ers

ity
 of

 M
ala

ya

https://play.google.com/store/apps/details?id=com.zlamanit.blood.pressure
https://play.google.com/store/apps/details?id=com.zlamanit.blood.pressure
https://play.google.com/store/apps/details?id=com.sssllc.fready
https://play.google.com/store/apps/details?id=com.cbgsolutions.mfprotrial
https://play.google.com/store/apps/details?id=com.cbgsolutions.mfprotrial
https://play.google.com/store/apps/details?id=com.melunasoft.kampylesanaptykshs
https://play.google.com/store/apps/details?id=com.melunasoft.kampylesanaptykshs
https://play.google.com/store/apps/details?id=com.excelatlife.depression
https://play.google.com/store/apps/details?id=com.excelatlife.depression
https://play.google.com/store/apps/details?id=com.instanceone.android.mom2befree
https://play.google.com/store/apps/details?id=com.instanceone.android.mom2befree
https://play.google.com/store/apps/details?id=org.fruct.yar.weightdiary
https://play.google.com/store/apps/details?id=org.fruct.yar.weightdiary
https://play.google.com/store/apps/details?id=com.whisperarts.kids.breastfeeding
https://play.google.com/store/apps/details?id=com.whisperarts.kids.breastfeeding
https://play.google.com/store/apps/details?id=au.com.penguinapps.android.beautifulcontractiontimer.app
https://play.google.com/store/apps/details?id=au.com.penguinapps.android.beautifulcontractiontimer.app
https://play.google.com/store/apps/details?id=com.calculaterx.framinghamriskcalculator
https://play.google.com/store/apps/details?id=com.calculaterx.framinghamriskcalculator
https://play.google.com/store/apps/details?id=standard.android.app.BabyApps
https://play.google.com/store/apps/details?id=standard.android.app.BabyApps
https://play.google.com/store/apps/details?id=com.alt12.kidfolio
https://play.google.com/store/apps/details?id=com.medcomis.device.android.egfr
https://play.google.com/store/apps/details?id=com.medcomis.device.android.egfr
https://play.google.com/store/apps/details?id=com.scanadu.schs
https://play.google.com/store/apps/details?id=ru.pilluling.android
https://play.google.com/store/apps/details?id=ru.pilluling.android
https://play.google.com/store/apps/details?id=com.doctorondemand.android.patient
https://play.google.com/store/apps/details?id=com.doctorondemand.android.patient
https://play.google.com/store/apps/details?id=com.insyncapp.diabete
https://play.google.com/store/apps/details?id=com.insyncapp.diabete
https://play.google.com/store/apps/details?id=com.suderman.diabeteslog
https://play.google.com/store/apps/details?id=com.suderman.diabeteslog
https://play.google.com/store/apps/details?id=com.szyk.diabetes
https://play.google.com/store/apps/details?id=com.squaremed.diabetesplus.typ1
https://play.google.com/store/apps/details?id=com.squaremed.diabetesplus.typ1
https://play.google.com/store/apps/details?id=com.revsoft.doctormole
https://play.google.com/store/apps/details?id=com.revsoft.doctormole

180

Table A-1, Continued

Apps URL

62 Six-Min Walk Test
https://play.google.com/store/apps/details?id=com.stepic.sixmin
wt

63 Fluid & Electrolytes
https://play.google.com/store/apps/details?id=com.quartertone.
medcalc

64 LabLink On The Go
https://play.google.com/store/apps/details?id=com.kpjlablink.lot
g

65 Heart Rate Monitor
https://play.google.com/store/apps/details?id=com.mobmaxime.
heartrate

66 MedTouch HD
https://play.google.com/store/apps/details?id=mr.ultrasound.ista
tionpad

67 MedSight HD
https://play.google.com/store/apps/details?id=mr.ultrasound.me
dsightpad

68 Period Calendar / Tracker
https://play.google.com/store/apps/details?id=com.popularapp.p
eriodcalendar

69
BMI Calculator - Weight
Loss

https://play.google.com/store/apps/details?id=tools.bmirechner

70
Calorie Counter -
MyFitnessPal

https://play.google.com/store/apps/details?id=com.myfitnesspal.
android

71 Mi Fit
https://play.google.com/store/apps/details?id=com.xiaomi.hm.h
ealth

72 Instant Heart Rate
https://play.google.com/store/apps/details?id=si.modula.android
.instantheartrate

73 Period Tracker
https://play.google.com/store/apps/details?id=com.period.tracke
r.lite

74
RunKeeper - GPS Track
Run Walk

https://play.google.com/store/apps/details?id=com.fitnesskeeper
.runkeeper.pro

75 Nike+ Running https://play.google.com/store/apps/details?id=com.nike.plusgps

76 Monitor Your Weight
https://play.google.com/store/apps/details?id=monitoryourweigh
t.bustan.net

77
Runtastic Running &
Fitness

https://play.google.com/store/apps/details?id=com.runtastic.andr
oid

78
Noom Walk Pedometer:
Fitness

https://play.google.com/store/apps/details?id=com.noom.walk

79
My Diet Coach - Weight
Loss

https://play.google.com/store/apps/details?id=com.dietcoacher.s
os

80 Google Fit
https://play.google.com/store/apps/details?id=com.google.andro
id.apps.fitness

81 My Tracks
https://play.google.com/store/apps/details?id=com.google.andro
id.maps.mytracks

82 Pedometer
https://play.google.com/store/apps/details?id=com.tayu.tau.pedo
meter

83
Ovulation & Period
Calendar

https://play.google.com/store/apps/details?id=com.ladytimer.ov
ulationcalendar

Univ
ers

ity
 of

 M
ala

ya

https://play.google.com/store/apps/details?id=com.stepic.sixminwt
https://play.google.com/store/apps/details?id=com.stepic.sixminwt
https://play.google.com/store/apps/details?id=com.quartertone.medcalc
https://play.google.com/store/apps/details?id=com.quartertone.medcalc
https://play.google.com/store/apps/details?id=com.kpjlablink.lotg
https://play.google.com/store/apps/details?id=com.kpjlablink.lotg
https://play.google.com/store/apps/details?id=com.mobmaxime.heartrate
https://play.google.com/store/apps/details?id=com.mobmaxime.heartrate
https://play.google.com/store/apps/details?id=mr.ultrasound.istationpad
https://play.google.com/store/apps/details?id=mr.ultrasound.istationpad
https://play.google.com/store/apps/details?id=mr.ultrasound.medsightpad
https://play.google.com/store/apps/details?id=mr.ultrasound.medsightpad
https://play.google.com/store/apps/details?id=com.popularapp.periodcalendar
https://play.google.com/store/apps/details?id=com.popularapp.periodcalendar
https://play.google.com/store/apps/details?id=tools.bmirechner
https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health
https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate
https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate
https://play.google.com/store/apps/details?id=com.period.tracker.lite
https://play.google.com/store/apps/details?id=com.period.tracker.lite
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.nike.plusgps
https://play.google.com/store/apps/details?id=monitoryourweight.bustan.net
https://play.google.com/store/apps/details?id=monitoryourweight.bustan.net
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.noom.walk
https://play.google.com/store/apps/details?id=com.dietcoacher.sos
https://play.google.com/store/apps/details?id=com.dietcoacher.sos
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.maps.mytracks
https://play.google.com/store/apps/details?id=com.google.android.maps.mytracks
https://play.google.com/store/apps/details?id=com.tayu.tau.pedometer
https://play.google.com/store/apps/details?id=com.tayu.tau.pedometer
https://play.google.com/store/apps/details?id=com.ladytimer.ovulationcalendar
https://play.google.com/store/apps/details?id=com.ladytimer.ovulationcalendar

181

Table A-1, Continued

Apps URL

84
My Days - Period &
Ovulation

https://play.google.com/store/apps/details?id=com.chris.mydays

85
Endomondo Running
Cycling Walk

https://play.google.com/store/apps/details?id=com.endomondo.a
ndroid

86
I’m Expecting - Pregnancy
App

https://play.google.com/store/apps/details?id=org.medhelp.iame
xpecting

87
My Cycles Period and
Ovulation

https://play.google.com/store/apps/details?id=org.medhelp.mc

88
Strava Running and
Cycling GPS

https://play.google.com/store/apps/details?id=com.strava

89
Runtastic Pedometer Step
Count

https://play.google.com/store/apps/details?id=com.runtastic.andr
oid.pedometer.lite

90
Woman's DIARY period・
diet・cal

https://play.google.com/store/apps/details?id=jp.kirei_r.sp.diary
_free

91
LoveCycles Menstrual
Calendar

https://play.google.com/store/apps/details?id=in.plackal.lovecyc
lesfree

92 Pedometer
https://play.google.com/store/apps/details?id=cc.pacer.androida
pp

93
Runtastic Heart Rate
Monitor

https://play.google.com/store/apps/details?id=com.runtastic.andr
oid.heartrate.lite

94 Garmin Connect™ Mobile
https://play.google.com/store/apps/details?id=com.garmin.andro
id.apps.connectmobile

95 Pregnancy Tracker https://play.google.com/store/apps/details?id=com.wte.view

96
My Diet Diary Calorie
Counter

https://play.google.com/store/apps/details?id=org.medhelp.mydi
et

97
Calorie Counter by
FatSecret

https://play.google.com/store/apps/details?id=com.fatsecret.andr
oid

98
WomanLog Pregnancy
Calendar

https://play.google.com/store/apps/details?id=com.proactiveapp.
womanlogpregnancy.free

99 Cardiograph
https://play.google.com/store/apps/details?id=com.macropinch.h
ydra.android

100
Blood Pressure (BP)
Watch

https://play.google.com/store/apps/details?id=com.boxeelab.hea
lthlete.bpwatch

Univ

ers
ity

 of
 M

ala
ya

https://play.google.com/store/apps/details?id=com.chris.mydays
https://play.google.com/store/apps/details?id=com.endomondo.android
https://play.google.com/store/apps/details?id=com.endomondo.android
https://play.google.com/store/apps/details?id=org.medhelp.iamexpecting
https://play.google.com/store/apps/details?id=org.medhelp.iamexpecting
https://play.google.com/store/apps/details?id=org.medhelp.mc
https://play.google.com/store/apps/details?id=com.strava
https://play.google.com/store/apps/details?id=com.runtastic.android.pedometer.lite
https://play.google.com/store/apps/details?id=com.runtastic.android.pedometer.lite
https://play.google.com/store/apps/details?id=jp.kirei_r.sp.diary_free
https://play.google.com/store/apps/details?id=jp.kirei_r.sp.diary_free
https://play.google.com/store/apps/details?id=in.plackal.lovecyclesfree
https://play.google.com/store/apps/details?id=in.plackal.lovecyclesfree
https://play.google.com/store/apps/details?id=cc.pacer.androidapp
https://play.google.com/store/apps/details?id=cc.pacer.androidapp
https://play.google.com/store/apps/details?id=com.runtastic.android.heartrate.lite
https://play.google.com/store/apps/details?id=com.runtastic.android.heartrate.lite
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.wte.view
https://play.google.com/store/apps/details?id=org.medhelp.mydiet
https://play.google.com/store/apps/details?id=org.medhelp.mydiet
https://play.google.com/store/apps/details?id=com.fatsecret.android
https://play.google.com/store/apps/details?id=com.fatsecret.android
https://play.google.com/store/apps/details?id=com.proactiveapp.womanlogpregnancy.free
https://play.google.com/store/apps/details?id=com.proactiveapp.womanlogpregnancy.free
https://play.google.com/store/apps/details?id=com.macropinch.hydra.android
https://play.google.com/store/apps/details?id=com.macropinch.hydra.android
https://play.google.com/store/apps/details?id=com.boxeelab.healthlete.bpwatch
https://play.google.com/store/apps/details?id=com.boxeelab.healthlete.bpwatch

182

APPENDIX B: LIST OF SYSTEM INTERFACE LAYER FUNCTIONS

Listing B-1: A Complete List of System Interface Layer Functions Based on
ASF (Backes, et al., 2014)

1 public interface IAccessControlModule {
2 /∗ ∗∗∗
3 ∗ General functions
4 ∗∗∗ ∗/
5 public boolean init();
6 public ModuleConfiguration getConfig();
7 public void shutdown();
8
9 /∗ ∗∗∗
10 ∗ Package life−cycle event hooks
11 ∗∗∗ ∗/
12 public void security_event_installNewPackage(PackageParser.Package pkg,

 UserHandle user);
13 public void security_event_replacePackage(PackageParser.Package oldPkg,

 PackageParser.Package newPkg, UserHandle user);
14 public void security_event_deletePackage(String packageName, int uid, int

 removedAppId, int removedUsers[], UserHandle user);
15
16 /∗ ∗∗∗
17 ∗ Generic hooks
18 ∗∗∗ ∗/
19 public void security_generic_checkPolicy(Bundle arguments);
20 public void security_generic_callModule(Bundle arguments);
21 public boolean security_generic_instrumentApp(String packageName);
22
23 /∗ ∗∗∗
24 ∗ Broadcast hooks
25 ∗∗∗ ∗/
26 public boolean security_broadcast_deliverToRegisteredReceiver(Intent intent,

 ComponentName targetComp, String requiredPermission, int targetUid,
 int targetPid, String callerPackage, ApplicationInfo callerApp, int
 callingUid, int callingPid);
27 public boolean security_broadcast_processNextBroadcast(Intent intent,

 ResolveInfo target, String requiredPermission, String callerPackage,
 ApplicationInfo callerApp, int callingUid, int callingPid);

28
29 /∗ ∗∗∗
30 ∗ ContentProvider.Transport hooks
31 ∗∗∗ ∗/
32 public boolean security_cp_applyOperation(ContentProviderOperation op, int
 uid, int pid);
33 public boolean security_cp_preQuery(String callingPkg, Uri uri, String[]

 projection, String selection, String[] selectionArgs, String sortOrder, int
 uid, int pid);
34 public Cursor security_cp_postQuery(Cursor result, String callingPkg, Uri uri,

 String[] projection, String selection, String[] selectionArgs, String

Univ
ers

ity
 of

 M
ala

ya

183

 sortOrder, int uid, int pid);
35 public boolean security_cp_insert(Uri uri, ContentValues initialValues, int uid,
 int pid);
36 public boolean security_cp_bulkInsert(Uri uri, ContentValues[] initialValues,
 int uid, int pid);
37 public boolean security_cp_delete(String callingPkg, Uri uri, String selection,

 String[] selectionArgs, int uid, int pid);
38 public boolean security_cp_update(String callingPkg, Uri uri, ContentValues

 values, String selection, String[] selectionArgs, int uid, int pid);
39 public boolean security_cp_openFile(Uri uri, String mode, int uid, int pid);
40 public boolean security_cp_preCall(String providerClass, String method, String

 arg, Bundle extras, int uid, int pid);
41 public Bundle security_cp_postCall(Bundle result, String providerClass, String

 method, String arg, Bundle extras, int uid, int pid);
42
43 public boolean security_contacts_preQueryDirectory(Uri uri, String

 directoryName, String directoryType, String[] projection, String
 selection, String[] selectionArgs, String sortOrder, int uid, int pid);
44 public BulkCursorDescriptor

 security_contacts_postQueryDirectory(BulkCursorDescriptor result,
 String directoryName, String directoryType, String providerName, Uri
 uri, String[] projection, String selection, String[] selectionArgs, String
 sortOrder, int uid, int pid);
45
46 /∗ ∗∗∗
47 ∗ Activity related hooks
48 ∗∗∗ ∗/
49 public boolean security_ams_startActivity(Intent intent, String resolvedType,

 ActivityInfo aInfo, String resultWho, int requestCode, int startFlags,
 Bundle options, ApplicationInfo callerInfo, int callingPid, int callingUid,
 int callingUserId);
50 public boolean security_ams_finishActivity(ComponentName origActivity,

 ComponentName realActivity, Intent intent, int userId, ApplicationInfo
 info, int resultCode, Intent resultData, int uid, int pid);

51 public boolean security_ams_moveTaskToFront(ComponentName
 origActivity, ComponentName realActivity, Intent intent, int userId,
 ApplicationInfo info, int flags, Bundle options, int uid, int pid);
52 public boolean security_ams_moveTaskToBack(ComponentName origActivity,

 ComponentName realActivity, Intent intent, int userId, ApplicationInfo
 info, int uid, int pid);

53 public boolean security_ams_clearApplicationUserData(String packageName,
 int pkgUid, int userId, int uid, int pid);
54
55 /∗ ∗∗∗
56 ∗ Permission check overrides
57 ∗∗∗ ∗/
58 public int security_ams_checkComponentPermission(String permission, int

 origUid, int origPid, int tlsUid, int tlsPid, int owningUid, boolean
 exported, int callerUid, int callerPid);

59 public boolean security_ams_checkCPUriPermission(Uri uri, ProviderInfo cpi,
 int processUid, int processPid, boolean procesIsolated, int
 processUserId, String processName, ApplicationInfo info, int uid, int

Univ
ers

ity
 of

 M
ala

ya

184

 pid);
60 public boolean security_ams_checkCPUriPermission(Uri uri, ProviderInfo cpi,
 int uid, int pid);
61 public boolean security_ams_checkGrantUriPermission(int callingUid, String

 targetPkg, int targetUid, Uri uri, int modeFlags);
62 public int security_ams_checkUriPermission(Uri uri, int origUid, int origPid,
 int tlsUid, int tlsPid, int modeFlags);
63
64 /∗ ∗∗∗
65 ∗ PackageManagerService hooks
66 ∗∗∗ ∗/
67 public boolean security_pms_getPackageInfo(PackageInfo pi, int flags, int
 userId, boolean isUninstalled, int uid, int pid);
68 public boolean security_pms_getPackageUid(ApplicationInfo info, int userId,
 int uid, int pid);
69 public boolean security_pms_getPackageGids(ApplicationInfo info, int[] gids,
 int uid, int pid);
70 public String[] security_pms_getPackagesForUid(int forUid, String[] packages,
 int uid, int pid);
71 public boolean security_pms_getNameForUid(int forUid, String name, int uid,
 int pid);
72 public boolean security_pms_getUidForSharedUser(String sharedUserName,
 int suid, int uid, int pid);
73 public boolean security_pms_findPreferredActivity(Intent intent, String

 resolvedType, int flags, ResolveInfo ri, int priority, int userId, int uid,
 int pid);
74 public List<ResolveInfo>
 security_pms_queryIntentActivities(List<ResolveInfo> currentList,
 Intent intent, String resolvedType, int flags, int userId, int uid, int pid);
75 public List<ResolveInfo>
 security_pms_queryIntentReceivers(List<ResolveInfo> currentList,
 Intent intent, String resolvedType, int flags, int userId, int uid, int pid);
76 public List<ResolveInfo> security_pms_queryIntentServices(List<ResolveInfo>

 currentList, Intent intent, String resolvedType, int flags, int userId, int
 uid, int pid);
77 public ArrayList<PackageInfo>

 security_pms_getInstalledPackages(ArrayList<PackageInfo> currentList,
 int flags, int userId, int uid, int pid);

78 public ArrayList<PackageInfo>
 security_pms_getPackagesHoldingPermissions(ArrayList<PackageInfo>
 currentList, int flags, int userId, String[] permissions, int uid, int pid);

79 public ArrayList<ApplicationInfo>
 security_pms_getInstalledApplications(ArrayList<ApplicationInfo>
 currentList, int flags, int userId, int uid, int pid);

80 public ArrayList<ApplicationInfo>
 security_pms_getPersistentApplications(ArrayList<ApplicationInfo>
 currentList, int flags, int uid, int pid);

81 public boolean security_pms_getProviderInfo(ProviderInfo pi,
 ComponentName component, int flags, int userId, int uid, int pid);
82 public boolean security_pms_getActivityInfo(ActivityInfo ai, ComponentName

 component, int flags, int userId, int uid, int pid);
83 public boolean security_pms_getReceiverInfo(ActivityInfo ai,

Univ
ers

ity
 of

 M
ala

ya

185

 ComponentName component, int flags, int userId, int uid, int pid);
84 public boolean security_pms_getServiceInfo(ServiceInfo si, ComponentName

 component, int flags, int userId, int uid, int pid);
85 /∗ Pre−init function (packages are scanned before init is called) ∗/
86 public boolean security_pms_scanPackage(PackageParser.Package pkg);
87 public boolean security_pms_deletePackage(PackageParser.Package pkg,
 boolean isSystemApp, boolean dataOnly, int flags);
88 public boolean security_pms_deletePackageSingleUser(PackageParser.Package

 pkg, boolean isSystemApp, int flags, int user);
89
90 /∗ ∗∗∗
91 ∗ Content Provider (general) related hooks
92 ∗∗∗ ∗/
93 /∗ Changed ProcessRecord to public for our module SDK ∗/
94 public boolean security_ams_checkContentProviderPermission(ProviderInfo
 cpi, String permission, int processUid, int processPid, boolean
 procesIsolated, int processUserId, String processName, ApplicationInfo
 info, int uid, int pid);
95 public boolean security_ams_checkContentProviderPermission(ProviderInfo
 cpi, String permission, int uid, int pid);
96 public boolean security_ams_checkPathPermission(ProviderInfo cpi,

 PathPermission pp, String permission, int processUid, int processPid,
 boolean procesIsolated, int processUserId, String processName,
 ApplicationInfo info, int uid, int pid);

97 public boolean security_ams_checkPathPermission(ProviderInfo cpi,
 PathPermission pp, String permission, int uid, int pid);
98 public boolean security_ams_checkAppSwitchAllowed(int uid, int pid);
99
100 /∗ ∗∗∗
101 ∗ Service related hooks
102 ∗∗∗ ∗/
103 public List<ActivityManager.RunningServiceInfo> security_ams_getServices

(ArrayList<ActivityManager.RunningServiceInfo> srvList, int uid,
int pid);

104 public boolean security_ams_peekService(Intent service, String resolvedType,
 ServiceInfo serviceInfo, ApplicationInfo appInfo, String packageName,
 String permission, int uid, int pid);

105 public boolean security_ams_startService(Intent service, String resolvedType,
 ComponentName name, String shortName, ServiceInfo serviceInfo,
 ApplicationInfo appInfo, int srvUserId, String packageName, String

processName, String permission, int callingPid, int callingUid);
106 public boolean security_ams_stopService(Intent service, String resolvedType,

 ComponentName name, String shortName, ServiceInfo serviceInfo,
 ApplicationInfo appInfo, int srvUserId, String packageName, String

processName, String permission, int callingPid, int callingUid);
107 public boolean security_ams_bindService(Intent service, String resolvedType,
 int flags, ComponentName name, String shortName, ServiceInfo
 serviceInfo, ApplicationInfo appInfo, int srvUserId, String
 packageName, String processName, String permission, int callingPid, int
 callingUid);
108
109 /∗ ∗∗∗

Univ
ers

ity
 of

 M
ala

ya

186

110 ∗ LocationManagerService hooks
111 ∗∗∗ ∗/
112 public void security_location_getAllProviders(List<String> providerList, int
 uid, int pid);
113 public void security_location_getProviders(List<String> providers, Criteria

criteria, boolean enabledOnly, int uid, int pid);

114 /∗ Unhide LocationRequest for our module SDK ∗/
115 public void security_location_requestLocationUpdates(LocationRequest
 request, PendingIntent pi, int uid, int pid);
116 public void security_location_removeLocationUpdates(PendingIntent pi, int
 uid, int pid);
117 public Location security_location_getLastLocation(Location currentLocation,

 LocationRequest request, int uid, int pid);
118 public boolean security_location_addGpsStatusListener(int uid, int pid);
119 public boolean security_location_sendExtraCommand(String provider, String

 command, Bundle extras, int uid, int pid);
120 /∗ Unhide Geofence class for our module SDK ∗/
121 public void security_location_requestGeofence(LocationRequest request,
 Geofence geofence, PendingIntent intent, int uid, int pid);
122 public void security_location_removeGeofence(Geofence geofence,
 PendingIntent intent, int uid, int pid);
123 public boolean security_location_isProviderEnabled(String provider, int uid,
 int pid);
124 public Location security_location_reportLocation(Location location, boolean

 passive, int uid, int pid);
125 public ProviderProperties security_location_addTestProvider(String name,

ProviderProperties properties, int uid, int pid);
126 public boolean security_location_removeTestProvider(String provider, int uid,
 int pid);
127 public boolean security_location_setTestProviderLocation(String provider,

 Location location, int uid, int pid);
128 public boolean security_location_clearTestProviderLocation(String provider,
 int uid, int pid);
129 public boolean security_location_setTestProviderEnabled(String provider,
 boolean enabled, int uid, int pid);
130 public boolean security_location_clearTestProviderEnabled(String provider, int

 uid, int pid);
131 public boolean security_location_setTestProviderStatus(String provider, int
 status, Bundle extras, long updateTime, int uid, int pid);
132 public boolean security_location_clearTestProviderStatus(String provider, int
 uid, int pid);
133 public boolean security_location_sendLocationUpdate(Location location, String

 receiverPackageName, int pid, int uid);
134 public boolean security_location_updateFence(Location location, Geofence
 fence, PendingIntent fenceIntent, String fencePackageName, int uid);
135
136 /∗ ∗∗∗
137 ∗ AudioService hooks
138 ∗∗∗ ∗/
139 public boolean security_audio_adjustStreamVolume(int streamType, int

Univ
ers

ity
 of

 M
ala

ya

187

 direction, int flags, int uid, int pid);
140 public boolean security_audio_setStreamVolume(int streamType, int index, int

flags, int uid, int pid);
141 public boolean security_audio_setMasterVolume(int volume, int flags, int uid,
 int pid);
142 public boolean security_audio_setRingerMode(int mode, int uid, int pid);
143 public boolean security_audio_setSpeakerphoneOn(boolean on, int uid, int
 pid);
144
145 /∗ ∗∗∗
146 ∗ TelephonyService hooks
147 ∗∗∗ ∗/
148 public boolean security_telephony_call(String number, int uid, int pid);
149 public List<NeighboringCellInfo>

 security_telephony_getNeighboringCellInfo(List<NeighboringCellInfo>
 currentList, int uid, int pid);

150
151 /∗ ∗∗∗
152 ∗ SMS and MMS Service hooks
153 ∗∗∗ ∗/
154 public boolean security_sms_copyMessageToIcc(int status, byte[] pdu, byte[]

 smsc, int uid, int pid);
155 public boolean security_sms_getAllMessagesFromIcc(int uid, int pid);
156 public List<RawByteData>

 security_sms_getAllMessagesFromIccFilter(List<RawByteData>
 rawSms, int uid, int pid);
157 public boolean security_sms_sendData(String destAddr, String scAddr, int

 destPort, byte[] data, PendingIntent sentIntent, PendingIntent
 deliveryIntent, int uid, int pid);
158 public boolean security_sms_sendText(String destAddr, String scAddr, String
 text, PendingIntent sentIntent, PendingIntent deliveryIntent, int uid, int
 pid);
159 public boolean security_sms_sendMultipartText(String destAddr, String
 scAddr, List<String> parts, List<PendingIntent> sentIntents,
 List<PendingIntent> deliveryIntents, int uid, int pid);
160 public boolean security_sms_updateMessageOnIccEf(int index, int status,
 byte[] pdu, int uid, int pid);
161
162 /∗ ∗∗∗
163 ∗ WiFi Service hooks
164 ∗∗∗ ∗/
165 public List<ScanResult> security_wifi_getScanResult(List<ScanResult> result,
 int uid, int pid);
166 public boolean security_wifi_startScan(int uid, int pid);
167 public boolean security_wifi_setWifiEnabled(boolean enable, int uid, int pid);
168 public boolean security_wifi_setWifiApEnabled(WifiConfiguration wifiConfig,

 boolean enabled, int uid, int pid);
169 public boolean security_wifi_setWifiApConfiguration(WifiConfiguration

 wifiConfig, int uid, int pid);
170 public boolean security_wifi_disconnect(int uid, int pid);
171 public boolean security_wifi_reconnect(int uid, int pid);

Univ
ers

ity
 of

 M
ala

ya

188

172 public boolean security_wifi_reassociate(int uid, int pid);
173 public List<WifiConfiguration>

 security_wifi_getConfiguredNetworks(List<WifiConfiguration>
currentList, int uid, int pid);

174 public boolean security_wifi_addOrUpdateNetwork(WifiConfiguration config,
 int uid, int pid);
175 public boolean security_wifi_removeNetwork(int netId, int uid, int pid);
176 public boolean security_wifi_enableNetwork(int netId, boolean disableOthers,
 int uid, int pid);
177 public boolean security_wifi_disableNetwork(int netId, int uid, int pid);
178 public boolean security_wifi_getConnectionInfo(WifiInfo info, int uid, int pid);
179 public boolean security_wifi_setCountryCode(String countryCode, boolean

persist, int uid, int pid);
180 public boolean security_wifi_setFrequencyBand(int band, boolean persist, int
 uid, int pid);
181 public boolean security_wifi_startWifi(int uid, int pid);
182 public boolean security_wifi_stopWifi(int uid, int pid);
183 public boolean security_wifi_addToBlacklist(String bssid, int uid, int pid);
184 public boolean security_wifi_clearBlacklist(int uid, int pid);
185 public boolean security_wifi_getWifiServiceMessenger(int uid, int pid);
186 public boolean security_wifi_getWifiStateMachineMessenger(int uid, int pid);
187 public boolean security_wifi_getConfigFile(String currentConfig, int uid, int
 pid);
188
189 /∗ ∗∗∗
190 ∗ ClipboardService hooks
191 ∗∗∗ ∗/
192 public ClipData security_clip_getPrimaryClip(ClipData currentPrimary, int

 clipUid, int uid, int pid);
193 public boolean security_clip_setPrimaryClip(ClipData clip, int uid, int pid);
194 public boolean security_clip_informPrimaryClipChanged(ClipData

 currentPrimary, int setByUid, String packageName, int uid);
195 public ClipDescription
 security_clip_getPrimaryClipDescription(ClipDescription
 currentDescription, int clipUid, int uid, int pid);
196 public boolean security_clip_hasPrimaryClip(boolean hasClipboard, int
 clipUid, int uid, int pid);
197 public boolean security_clip_hasClipboardText(String currentText, int clipUid,
 int uid, int pid);
198
199 /∗ ∗∗∗
200 ∗ PowerManagerService hooks
201 ∗∗∗ ∗/
202 public boolean security_power_acquireWakeLock(String tag, WorkSource ws,
 int uid, int pid);
203 public boolean security_power_userActivity(long eventTime, int event, int
 flags, int uid, int pid);
204 public boolean security_power_goToSleep(long eventTime, int reason, int uid,
 int pid);
205 public boolean security_power_wakeUp(long eventTime, int uid, int pid);
206 public boolean security_power_nap(long time, int uid, int pid);
207 public boolean security_power_setBacklightBrightness(int brightness, int uid,

Univ
ers

ity
 of

 M
ala

ya

189

 int pid);
208 public boolean security_power_reboot(boolean confirm, String reason, boolean

 wait, int uid, int pid);
209
210 /∗ ∗∗∗
211 ∗ PhoneSubscriberInfo hooks
212 ∗∗∗ ∗/
213 public String security_phonesubinfo_getDeviceId(String id, int uid, int pid);
214 public String security_phonesubinfo_getDeviceSvn(String svn, int uid, int pid);
215 public String security_phonesubinfo_getSubscriberId(String id, int uid, int pid);
216 public String security_phonesubinfo_getGroupIdLevel1(String groupid, int uid,
 int pid);
217 public String security_phonesubinfo_getIccSerialNumber(String icc, int uid, int

 pid);
218 public String security_phonesubinfo_getLine1Number(String number, int uid,
 int pid);
219 public String security_phonesubinfo_getLine1AlphaTag(String tag, int uid, int

 pid);
220 public String security_phonesubinfo_getMsisdn(String msisdn, int uid, int pid);
221 public String security_phonesubinfo_getVoiceMailNumber(String number, int
 uid, int pid);
222 public String security_phonesubinfo_getVoiceMailAphaTag(String tag, int uid,
 int pid);
223 public String security_phonesubinfo_getIsimImpi(String impi, int uid, int pid);
224 public String security_phonesubinfo_getIsimDomain(String domain, int uid, int

pid);
225 public String[] security_phonesubinfo_getIsimImpu(String impu[], int uid, int
 pid);
226 }

Interface for Access Control Policy Modules to Linux Security Module

1 public interface KMACAdaptor {
2 public boolean init();
3 public boolean isEnabled();
4 public boolean isEnforcing();
5 public boolean setEnforcing(boolean value);
6 public boolean setContext(String path, Bundle context);
7 public boolean restoreContext(Bundle context);
8 public Bundle getContext(String path);
9 public Bundle getPeerContext(FileDescriptor fd); /∗ wrapper around
 getsockopt call to LSM ∗/
10 public Bundle getCurrentContext();
11 public Bundle getProcessContext(int pid);
12 public Bundle getConfig(Bundle args); /∗ e.g., get list of defined booleans or
 one specific boolean value ∗/
13 public boolean setConfig(Bundle conf); /∗ e.g., set a boolean value ∗/
14 public boolean checkAccess(Bundle args); /∗ args can be, e.g., quadruple of

 subject ctx, object ctx, object class, op ∗/
15
16 /∗ Zygote is statically integrated with the Kernel MAC, thus, each

Univ
ers

ity
 of

 M
ala

ya

190

 KMACAdaptor must implemented these hooks in ZygoteConnection ∗/
17 public boolean security_zygote_applyUidSecurityPolicy(Credentials creds,

 Bundle peerSecurityContext);
18 public boolean security_zygote_applyRlimitSecurityPolicy(Credentials creds,

 Bundle peerSecurityContext);
19 public boolean security_zygote_applyCapabilitiesSecurityPolicy(Credentials

 creds, Bundle peerSecurityContext);
20 public boolean security_zygote_applyInvokeWithSecurityPolicy(Credentials

creds, Bundle peerSecurityContext);
21 public boolean security_zygote_applySecurityLabelPolicy(Credentials creds,
 Bundle peerSecurityContext);
22 }

Methods for IRM Instrumentation

1 public class Instrumentation {
2 public static void initClass(Class<?> clazz);
3
4 public static int redirectMethod(String fromDescriptor, String toDescriptor);
5 public static int redirectMethod(Signature from, Signature to);
6
7 public static void callVoidMethod(Class<?> caller, Object _this, Object... args);
8 public static void callVoidMethod(String id, Object _this, Object... args);
9 public static void callVoidMethod(int methodId, Object _this, Object... args);
10 public static int callIntMethod(Class<?> caller, Object _this, Object... args);
11 public static int callIntMethod(String id, Object _this, Object... args);
12 public static int callIntMethod(int methodId, Object _this, Object... args);
13 public static boolean callBooleanMethod(Class<?> caller, Object _this,
 Object... args);
14 public static boolean callBooleanMethod(String id, Object _this, Object...
 args);
15 public static boolean callBooleanMethod(int methodId, Object _this, Object...

 args);
16 public static Object callObjectMethod(Class<?> caller, Object _this, Object...

 args);
17 public static Object callObjectMethod(String id, Object _this, Object... args);
18 public static Object callObjectMethod(int methodId, Object _this, Object...
 args);
19 public static void callStaticVoidMethod(Class<?> caller, Class<?> _clazz,
 Object... args);
20 public static void callStaticVoidMethod(String id, Class<?> _clazz, Object...

 args);
21 public static void callStaticVoidMethod(int methodId, Class<?> _clazz,
 Object... args);
22 public static Object callStaticObjectMethod(Class<?> caller, Class<?> _clazz,

 Object... args);
23 public static Object callStaticObjectMethod(String id, Class<?> _clazz,
 Object... args);
24 public static Object callStaticObjectMethod(int methodId, Class<?> _clazz,
 Object... args);
25 }

Univ
ers

ity
 of

 M
ala

ya

	ABSTRACT
	ABSTRAK
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Research Background
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Objectives of the Research
	1.6 Research Scope
	1.7 Thesis Outline/Organization

	CHAPTER 2: LITERATURE REVIEW
	2.1 The Landscape of Research on Smartphone mHealth Apps
	2.1.1 An Overview
	2.1.2 A Taxonomy of Literature Works on mHealth Apps
	2.1.2.1 Class 1: Review and survey articles
	2.1.2.2 Class 2: Studies conducted on mHealth apps and their use
	2.1.2.3 Class 3: Reports on actual attempts to develop mHealth apps
	2.1.2.4 Class 4: Proposals of frameworks to develop and operate mHealth apps

	2.1.3 Articles by Medical Specialty of Apps
	2.1.4 Articles by Purpose and Function of Apps
	2.1.5 Articles by Indexing Databases
	2.1.6 Motivations for Smartphone mHealth Apps
	(a) Benefits related to smartphones portability
	(b) Benefits related to smartphones’ capabilities
	(c) Benefits related to smartphones’ market penetration

	2.1.7 Challenges to mHealth Apps
	(a) Concerns on quality
	(b) Concerns on security and privacy
	(c) Concerns on integration
	(d) Concerns on usability
	(e) Concerns on safety
	(f) Concerns on financial costs
	(g) Concerns on administrative and ethical issues
	(h) Concerns on negative effects

	2.2 The Android Platform and Its Security
	2.2.1 Android System Architecture
	2.2.2 The Structure of Android Apps
	2.2.2.1 Activity
	2.2.2.2 Service
	2.2.2.3 Content provider
	2.2.2.4 Broadcast receiver

	2.2.3 Android Security Model
	2.2.3.1 Android permission system
	2.2.3.2 Application sandboxing
	2.2.3.3 Application signing
	2.2.3.4 Secure inter-process communication
	2.2.3.5 SELinux

	2.2.4 Android Security Research Trends
	2.2.5 Issues in Android Security

	2.3 Security and Privacy of mHealth Apps
	2.3.1 Threats to mHealth Apps
	2.3.2 An Empirical Assessment of mHealth Apps’ Security
	2.3.3 Existing Solutions for mHealth Apps’ Security

	2.4 Chapter Summary

	CHAPTER 3: Research Methodology
	3.1 Phase I: Preliminary Study
	3.2 Phase II: Framework Design
	3.3 Phase III: Prototype Implementation
	3.4 Phase IV: Evaluation
	3.5 Chapter Summary

	CHAPTER 4: The Design of “mHealth Apps Security Framework”
	4.1 MASF Overall Architecture
	4.2 MASF Layered Components
	4.2.1 Security Module Layer
	4.2.1.1 Security checkers
	(a) Context checker
	(b) Malware checker
	(c) External devices checker
	(d) Installation checker
	(e) Taint analyser

	4.2.1.2 SML manager
	4.2.1.3 Policy database
	4.2.1.4 User interactor
	4.2.1.5 Action performer
	(a) Blocking
	(b) Data shadowing
	(c) Granting
	(d) Installation control
	(e) Revoking permission
	(f) Disabling intent
	(g) Saving device state

	4.2.2 System Interface Layer
	4.2.3 Other External Components
	4.2.3.1 Android operating system
	4.2.3.2 Apps
	4.2.3.3 App store
	4.2.3.4 Users

	4.2.4 MASF Policies
	4.2.4.1 Policy restrictions
	4.2.4.2 Policy conditions
	(a) Context conditions
	(b) Installation conditions

	4.2.4.3 Policy definition

	4.3 Framework Operation
	4.3.1 Use Case I: Installation of a New App
	4.3.2 Use Case II: Privacy Enhanced Content Providers and System Services
	4.3.3 Use Case III: Context-Aware Fine-Grained Access Control
	4.3.4 Use Case IV: Mitigating the DMB Attacks when Connecting to Devices

	4.4 Chapter Summary

	CHAPTER 5: Implementation and Evaluation
	5.1 Implementation Details
	5.1.1 Implementation of the System Interface Layer
	5.1.1.1 Kernel space
	5.1.1.2 Middleware layer
	5.1.1.3 Application layer

	5.1.2 Implementation of the Security Modules Layer
	5.1.3 Enforcement of Fine-Grained Access Control Policies
	5.1.3.1 Context-aware access control
	5.1.3.2 One-time checks
	5.1.3.3 Permission management
	5.1.3.4 Data shadowing
	5.1.3.5 Installation checks
	5.1.3.6 Intent management
	5.1.3.7 Managing system peripheral state

	5.2 Experimental Evaluation
	5.2.1 Experiment 1: Effectiveness
	5.2.2 Experiment 2: Malware Test Suite
	5.2.3 Experiment 3: Impact of Permission Restrictions
	5.2.4 Experiment 4: Impact of Data Shadowing
	5.2.5 Experiment 5: Impact of Disabling/Blocking Intents
	5.2.6 Experiment 6: Impact of Enabling/Disabling System Peripherals
	5.2.7 Experiment 7: ICC False Positives
	5.2.8 Analysis of the Impact on Android Security

	5.3 Performance Evaluation
	5.3.1 SML Performance Overhead
	5.3.1.1 Performance overhead of permission checks
	5.3.1.2 Performance overhead of context checks
	5.3.1.3 Java microbenchmark
	5.3.1.4 Macrobenchmarks
	5.3.1.5 System memory overhead

	5.3.2 SIL performance overhead

	5.4 Chapter Summary

	CHAPTER 6: Conclusions and Future Work
	6.1 Research Summary and Objectives Achievement
	6.2 Contribution of the Research
	6.3 Research Limitations
	6.4 Future Work

	REFERENCES
	LIST OF PUBLICATIONS
	APPENDICES

