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ABSTRACT 

The advent of smartphones dramatically changed the way of communication, 

computation, and the model of many services, including healthcare delivery. The 

adoption of smartphones in the healthcare system is rapidly growing, and enormous 

number of apps are being developed to monitor patient health, access patient records, test 

results, prescribe medications, and for numerous related purposes under the collective 

term of mobile Health (mHealth). These apps are readily accessible to the average user 

of mobile devices, and despite the potential of mHealth apps to improve the availability, 

affordability and effectiveness of delivering healthcare services, they handle sensitive 

medical data, and as such, have also the potential to carry substantial risks to the security 

and privacy of their users. Developers of apps are usually unknown, and users are 

unaware of how their data are being managed and used. This is combined with the 

emergence of new threats due to the deficiency in mobile apps development or the design 

ambiguities of the current mobile operating systems. A number of mobile operating 

systems are available in the market, but the Android platform has gained the topmost 

popularity. However, Android security model is short of completely ensuring the privacy 

and security of users’ data, including the data of mHealth apps. Despite the security 

mechanisms provided by Android such as permissions and sandboxing, mHealth apps are 

still plagued by serious privacy and security issues. These security issues need to be 

addressed in order to improve the acceptance of mHealth apps among users and the 

efficacy of mHealth apps in the healthcare system. The focus of this research is on the 

security of mHealth apps, and the main objective is to propose a coherent, practical and 

efficient framework to improve the security of medical data associated with Android 

mHealth apps, as well as to protect the privacy of their users. The proposed framework 

provides its intended protection mainly through a set of security checks and policies that 

Univ
ers

ity
 of

 M
ala

ya



iv 

 

ensure protection against traditional as well as recently published threats to mHealth apps. 

The design of the framework comprises two layers: a Security Module Layer (SML) that 

implements the security-check modules, and a System Interface Layer (SIL) that 

interfaces SML to the Android OS. SML enforces security and privacy policies at 

different levels of Android platform through SIL. The proposed framework is validated 

via a prototypic implementation on actual Android devices to show its practicality and 

evaluate its performance. The framework is evaluated in terms of effectiveness and 

efficiency. Effectiveness is evaluated by demonstrating the performance of the 

framework against a selected set of attacks, while efficiency is evaluated by comparing 

the performance overhead in terms of energy consumption, memory and CPU utilization, 

with the performance of a mainline, stock version of Android. Results of the experimental 

evaluations showed that the proposed framework can successfully protect mHealth apps 

against a wide range of attacks with negligible overhead, so it is both effective and 

practical. Furthermore, this framework is available to other researchers for research 

purposes as well as for real-world deployments. 
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ABSTRAK 

Kemunculan telefon pintar secara mendadak mengubah cara komunikasi, pengiraan, 

dan pelbagai model perkhidmatan, termasuk penyampaian penjagaan kesihatan. 

Penggunaan telefon pintar dalam sistem penjagaan kesihatan berkembang pesat, dan 

sejumlah besar aplikasi yang sedang dibangunkan untuk memantau kesihatan pesakit, 

rekod akses pesakit, keputusan ujian, menetapkan ubat-ubatan, dan untuk pelbagai tujuan 

berkaitan di bawah istilah kolektif Kesihatan mudah alih (mHealth). Aplikasi ini adalah 

mudah diakses oleh pengguna purata peranti mudah alih, dan walaupun potensi mHealth 

aplikasi untuk meningkatkan ketersediaan, kemampuan dan keberkesanan penyampaian 

perkhidmatan penjagaan kesihatan, mereka mengendalikan data perubatan yang sensitif, 

dan oleh itu, mempunyai juga potensi untuk membawa besar risiko kepada keselamatan 

dan privasi pengguna mereka. Pemaju aplikasi biasanya tidak diketahui, dan pengguna 

tidak tahu bahawa bagaimana data mereka diuruskan dan digunakan. Ini digabungkan 

dengan munculnya ancaman baru kerana kekurangan dalam pembangunan aplikasi 

mudah alih atau kekaburan reka bentuk sistem operasi mudah alih semasa. Beberapa 

sistem operasi mudah alih yang terdapat di pasaran, tetapi platform Android telah 

mendapat populariti yang paling atas. Walau bagaimanapun, model keselamatan Android 

adalah pada masa ini belum sepenuhnya mampu memastikan privasi dan keselamatan 

data pengguna, termasuk data aplikasi mHealth. Walaupun mekanisme keselamatan yang 

disediakan oleh Android seperti kebenaran dan kotak pasir, aplikasi mHealth masih 

berhadapan dengan isu-isu privasi dan keselamatan yang serius. Isu-isu keselamatan perlu 

diberi perhatian dalam usaha untuk meningkatkan penerimaan aplikasi mHealth 

dikalangan pengguna dan keberkesanan aplikasi mHealth dalam sistem penjagaan 

kesihatan. Fokus kajian ini adalah pada keselamatan aplikasi mHealth, dan objektif utama 

adalah untuk mencadangkan rangka kerja yang jelas, praktikal dan berkesan untuk 

meningkatkan keselamatan data kesihatan yang berkaitan dengan aplikasi Android 
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mHealth, serta untuk melindungi privasi pengguna mereka. Rangka kerja yang 

dicadangkan memperuntukkan perlindungan yang dimaksudkan terutamanya melalui 

satu set cek dan dasar-dasar yang memastikan perlindungan terhadap tradisional serta 

ancaman baru-baru ini diterbitkan untuk aplikasi mHealth keselamatan. Reka bentuk 

rangka kerja terdiri daripada dua lapisan: lapisan Modul Keselamatan Layer (SML) yang 

melaksanakan modul keselamatan cek, dan Layer Interface System (SIL) yang 

mempunyai ruang kaitan SML untuk OS Android. SML menguatkuasakan dasar 

keselamatan dan privasi pada tahap Android Platform yang berbeza melalui SIL. Rangka 

kerja yang dicadangkan itu disahkan melalui pelaksanaan prototypic pada peranti 

Android yang sebenar untuk menunjukkan praktikal dan menilai prestasinya. Rangka 

kerja ini dinilai dari segi keberkesanan dan kecekapan. Keberkesanan dinilai dengan 

menunjukkan prestasi rangka kerja terhadap set serangan yang dipilih, manakala 

kecekapan dinilai dengan membandingkan overhed prestasi dari segi penggunaan tenaga, 

ingatan dan CPU, dengan pelaksanaan laluan utama, versi stok Android. Keputusan 

penilaian uji kaji menunjukkan bahawa rangka kerja yang dicadangkan berjaya boleh 

melindungi aplikasi mHealth daripada pelbagai serangan dengan overhead diabaikan, jadi 

kedua-dua ia adalah berkesan dan praktikal. Tambahan pula, rangka kerja ini disediakan 

kepada penyelidik lain untuk tujuan penyelidikan dan juga untuk pergerakan dunia 

sebenar. 
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CHAPTER 1:  INTRODUCTION 

1.1 Introduction 

The advent of smartphone dramatically changed the way of communication, 

computation, and the model of many traditional and new services, e.g., healthcare and 

entertainment. In the early days, mobile phones were only used for making phone calls. 

Nowadays mobile phones have come to be known as smartphones because of their 

increasing functions and intelligence. Smartphones are equipped with powerful operating 

systems that enable users to install additional software, more storage and processing 

capabilities, and multiple options of network connectivity. Due to their improved 

functionalities and computing capabilities, smartphones are increasingly viewed as 

handheld computers (M. N. Boulos, Wheeler, Tavares, & Jones, 2011), and their adoption 

by people is arising due to their ease of use (Y. Park & Chen, 2007). 

Among the available smartphone Operating Systems (OS) in the market, Android OS 

has the topmost popularity, with a market share of above  87.6% (International Data 

Corporation, 2016), and more than 1.5 million apps available on Google Play ("Number 

of Android applications," 2015). Categories of those apps range from the basic trivia 

game apps to serious business and financial applications. One active area of smartphone 

apps that has witnessed an astonishing growth is the healthcare system. Under the 

category of medical apps, Google Play and similar online stores of smartphone apps are 

providing large collections of apps that can be used for various healthcare-related 

functions. Adopting the notion of mobile Health (mHealth) as a reference to the use of 

mobile devices in medicine and public health, smartphone medical apps are referred to in 

this thesis as mHealth apps. mHealth apps are hereby defined as software programs that 

provide health related services through smartphones and tablets.  
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mHealth apps have the potential to improve the availability, affordability and 

effectiveness of healthcare services for patients (Mirza, Norris, & Stockdale, 2008). They 

have become incorporated into the health informatics field as tools that maintain a patient-

centred model of healthcare by enabling users to monitor their health related problems, 

attain personal fitness goals, and understand specific medical conditions. Patients can use 

smartphones to access and update their medical records, monitor their health, and to view 

their prescriptions as well (Brennan, Downs, & Casper, 2010). Physicians, on the other 

hand, can use smartphones to access patient records and test results, monitor patient 

health and to prescribe medications (Burdette, Herchline, & Oehler, 2008; Luxton, 

McCann, Bush, Mishkind, & Reger, 2011; Ozdalga, Ozdalga, & Ahuja, 2012). mHealth 

apps can also improve the way in which physicians interact with patients and provide 

healthcare services. 

Similar to other new trends, mHealth apps have to face a number of challenges despite 

their compelling benefits. The sensitive nature of these apps’ purpose and consequence 

of use –in relation to human health– impose several questions about their reliability, 

authority, and compliance to regulations. Aside from the functional requirements, issues 

related to non-functional requirements have also to be addressed, such as the usability of 

the apps by users from different age groups. In particular, it soon became clear that 

mHealth apps carry substantial risks to the security of user’s sensitive medical data as 

well as their privacy (Adhikari, Richards, & Scott, 2014; Dehling, Gao, Schneider, & 

Sunyaev, 2015; Gill, Kamath, & Gill, 2012; He, Naveed, Gunter, & Nahrstedt, 2014; 

Plachkinova, Andrés, & Chatterjee, 2015; Y. Zhou & Jiang, 2012). Developers of these 

apps are usually unknown, and users are unaware of how their data are being managed 

and used. In mHealth, users can easily enhance the functionalities of their smartphones 

by connecting them to external devices, such as medical devices, sensors and credit card 

readers. This introduces many new threats along with the useful applications in various 
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domains, including healthcare information systems and retail (Anokwa, Ribeka, Parikh, 

Borriello, & Were, 2012; Avancha, Baxi, & Kotz, 2012; Istepanian, Laxminarayan, & 

Pattichis, 2006; Murthy & Kotz, 2014; Naveed, Zhou, Demetriou, Wang, & Gunter, 

2014). 

It should be noted that in addition to the traditional threats found in other software and 

information systems, mHealth apps introduce new security and privacy threats to mobile 

computing (He et al., 2014). Even when compared to other health information systems, 

mHealth apps are different in various perspectives. First, mHealth apps have the potential 

to collect larger amounts of data from patients because mobile devices are always carried 

by the patients and can collect data over long time intervals. Second, mHealth apps collect 

much broader range of data besides physiological measurements and direct medical data; 

this includes patient activities, location, lifestyle, social interactions, diet details, eating 

habits and so on. Third, the nature of communication between the patient and healthcare 

professionals is different (He et al., 2014); e.g. healthcare professionals can remotely 

access and monitor patients’ health conditions.  

Motivated by the previous facts and observations, the focus of this research is 

specifically the security of mHealth apps. This thesis aims to improve the security of 

medical data associated with Android mHealth apps, as well as to protect the privacy of 

users from threats that might be imposed by such apps. 

1.2 Research Background 

The main theme of this thesis is the security and privacy of mHealth apps on Android 

smartphones. This theme involves three main research components: the concept of 

mHealth apps, the security of Android smartphones, and the incorporation of mHealth 

apps’ security within Android security model. The first two ingredients are themselves 

separate research fields, while the third element –the focal point of this research– is an 
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emergent field with very few recent contributions. This section introduces these research 

components briefly, while more elaborate background is provided in the next chapter.     

Mobile health is a medical and public health practice using mobile devices, such as 

smartphones, personal digital assistants (PDAs), patient monitoring devices and other 

wireless devices (Organization, 2011). mHealth is an emerging field which has the 

potential to make healthcare professionals more efficient, increase patient satisfaction and 

reduce the healthcare cost. The general concept of mHealth includes medical apps. There 

are several types of medical apps, some are using external devices such as medical 

sensors, and some apps are using smartphone resources, such as the camera for the 

treatment of the patient. The use of mHealth apps among physicians and patients has 

grown significantly since the introduction of mobile phones. Physicians can access 

patients’ data and medical knowledge at the point of care, and they can also monitor 

patient health through mHealth apps. 

Android is an operating system based on Linux for mobile devices. Android platform 

provides a rich application framework that allows developers to build innovative apps in 

the Java language environment. Android is a multi-user system in which each app is 

considered an individual user, and is given a unique user ID (UID). Every app runs in its 

own Linux process and uses a separate virtual machine to be isolated from other apps. In 

this way, Android platform implements the principle of least privilege. That is, each app, 

by default, can only access those components that are required to do its own work. In 

order to protect user data, system resources (including the network) and apps themselves, 

Android platform provides the following extra security features: security at the OS level 

through the Linux kernel’s secure inter-process communication (IPC), application 

sandbox, application signing, and the Android permission model. The details of these 

security features are discussed in Chapter 2. 
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Recently, researchers have been actively involved in the study of mHealth apps, in 

particular their security and privacy. For example, Mitchell et al. (2013) investigated the 

security and privacy challenges of mHealth apps; He et al. (2014) raised the security 

concerns of Android mHealth apps; and Plachkinova et al. (2015) proposed a taxonomy 

of mHealth apps’ security and privacy concerns. Nevertheless, beyond the identification 

and investigation of the problem itself, there is no actual solution for the security and 

privacy of mHealth apps specifically, except one policy framework (Mitchell et al., 

2013). This framework provides some guidelines to secure mHealth apps; however, these 

policies are not enough and even not implemented to secure mHealth apps. In addition, 

Android-provided security features are still insufficient to protect user data against few 

security attacks that are equally applicable to mHealth apps and their data, such as side 

channel threats, privilege escalation attacks, sensors-based covert channels and DMB 

attacks (A. Al-Haiqi, Ismail, & Nordin, 2014; Davi, Dmitrienko, Sadeghi, & Winandy, 

2011; He et al., 2014; Naveed et al., 2014). 

mHealth apps are a new and revolutionary development in healthcare system, and a 

huge number of people can access this new system at a very low cost. Considering the 

great utility and impact of this phenomenal development, and the detrimental effect that 

security and privacy issues might cause to its successful deployment, those issues need 

to be addressed to improve mHealth apps’ effectiveness and alleviate any barriers to their 

rapid integration into the healthcare system. 

1.3 Problem Statement 

Using smartphone apps in the delivery of healthcare is rapidly proliferating. mHealth 

apps have several potentials that drive this popularity, including the ability to increase 

patient satisfaction, improve doctor efficiency, and reduce the cost of healthcare (Bishop, 

2013). There is still no regulatory protection for mHealth apps similar to that available 
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for traditional health sectors, including PC-based electronic health. For example, the 

Health Insurance Portability and Accountability Act (HIPPA) is not yet widely applied 

to mHealth apps (Plachkinova et al., 2015). Similarly, the Food and Drug Administration 

(FDA) intends to apply its regulatory oversight to only those apps that turn smartphones 

into medical devices and whose functionality can pose risk to patients’ safety if not 

functioning as intended, which is only a subset of all mHealth apps (Food & 

Administration, 2015). Several recent studies showed that the lack of standardization, 

guidelines, security and privacy of user data are the main barriers to the widespread use 

of mHealth apps (Adhikari et al., 2014; He et al., 2014; Kharrazi, Chisholm, VanNasdale, 

& Thompson, 2012; Mitchell et al., 2013; Plachkinova et al., 2015). 

mHealth apps face the usual security challenges of enforcing confidentiality, integrity, 

and availability via authentication, authorization, and access control (Adhikari et al., 

2014; Dehling et al., 2015; He et al., 2014; Mitchell et al., 2013; Plachkinova et al., 2015). 

Such protection is necessary to facilitate the adoption of these apps by the healthcare 

system. Users of mHealth apps are also susceptible to privacy threats, such as identity 

theft, disclosure threats, privilege escalation attacks and side channel threats, among 

others (Davi et al., 2011; He et al., 2014; Kotz, 2011; Plachkinova et al., 2015). Leakage 

of information is a major challenge for mHealth apps (Dehling et al., 2015), where these 

apps may leak information in numerous ways. For example, apps usually declare their 

components as public (He et al., 2014), so malicious apps can easily access their 

information. Besides, apps usually store unencrypted data on smartphone external storage 

(He et al., 2014; McCarthy, 2013; Mitchell et al., 2013), so any app that has the 

permission to access external storage can easily access the user’s data. Usage of third 

party services and sharing of information with social networks or other third parties are 

also raising threats to mHealth apps (Adhikari et al., 2014; Dehling et al., 2015; He et al., 

2014; Plachkinova et al., 2015). In addition, mHealth apps use external devices to 
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enhance the functionality of the phone. These devices also impose serious threats to users 

data, such as external-Device MisBonding (DMB) attacks that include data-stealing and 

data-injection attacks (Naveed et al., 2014), since Android permission system does not 

provide permission-based protection for external devices and sensors. 

Existing smartphone operating systems, particularly Android, are not sufficient to 

ensure privacy and security of users’ data, particularly in the case of mHealth apps. One 

major issue in the security model of Android is that the permission mechanism is too 

coarse-grained and the user might not be aware of the full implications when granting 

permissions to apps (Y. Zhou, Zhang, Jiang, & Freeh, 2011). 

Based on the above facts, there is a need for a better solution to protect the security of 

mHealth apps, and ensure the confidentiality, integrity and availability of their data. Data 

associated with mHealth apps are particularly of sensitive nature, and unauthorized 

leakage or manipulation of these data do not only threaten the privacy of the patients, but 

might threaten their health or even lives. The intended protection is two-way; meaning it 

protects the mHealth app and its corresponding data from potential threats on the system, 

and also protects the system and its resources from installed mHealth apps that can 

unintentionally or otherwise bring new threats by means of poor design, or ill will. The 

focus of this thesis is to propose such a solution in the form of a security framework for 

mHealth apps on Android platform. The proposed framework ought to address the 

aforementioned security and privacy issues on Android, with a special focus on threats 

associated with mHealth apps, such as the revealed vulnerabilities in literature, including 

information leakage; and the published attacks, such as DMB, privilege escalation, and 

side-channel attacks. 
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1.4 Research Questions 

This research focuses on data security and on privacy issues involved in using mHealth 

apps within healthcare systems, and proposes a security framework for mHealth apps on 

Android. The following research questions have been posed to set the direction for this 

research: 

(i) What are the known privacy and security issues associated with using mHealth 

apps on current smartphones, particularly the Android platform?  

(ii) What are the state-of-the-art threats to medical data in the context of mHealth 

apps on Android? 

(iii) Is the original security design of the Android platform capable enough of 

securing highly diverse and fast-evolving Android-based mHealth apps? 

(iv) What are the currently available security solutions for securing Android 

mHealth apps and protecting their data? 

(v) What are the requirements of a security framework for Android mHealth 

apps? 

(vi) How can a security framework resolve the existing security problems of 

mHealth apps? 

(vii) What are the tools needed to implement and evaluate the proposed 

framework? 

(viii) How can we evaluate and analyse the proposed framework? 

1.5 Objectives of the Research 

The overall objective of this research is to improve the situation of mHealth apps in 

terms of a practical and implementable security framework on the Android platform. This 

general objective can be broken down into the following list of detailed objectives: 
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(i) To investigate the security issues associated with mHealth apps as well as with 

the Android platform. 

(ii) To examine security solutions that are specifically designed for mHealth apps 

and highlight their weaknesses, so as to help identifying the desired 

requirements for a better security solution. 

(iii) To design a security framework to handle mHealth apps and protect their 

security, incorporating new security checks on the installation and operation 

of the apps. The design of this framework is based on the previous analysis. 

(iv) To implement the proposed mHealth apps security framework, building a 

custom Android image that is deployable on a real device. 

(v) To evaluate the proposed framework in terms of effectiveness and efficiency. 

Effectiveness is evaluated by demonstrating that the framework can 

successfully protect the system from a particular set of attacks, while 

efficiency is evaluated by measuring the performance overhead in terms of 

energy consumption, memory and CPU utilization. 

Table 1.1: Research Questions Mapped to the List of Objectives and Contributions 

Research Questions Objective Contribution Chapter 
What are the data privacy and security issues 
associated with using mHealth apps? 

i i 1 &2 

What are the state-of-the-art threats to medical 
data in mHealth apps? 

i ii 2 

Is the original security design of Android OS 
capable enough to secure highly diverse and fast-
evolving Android mHealth apps? 

i - 1 & 2 

What are the existing security solutions to secure 
Android mHealth apps? 

ii - 2 

What are the requirements of a security 
framework for Android mHealth apps? 

ii iii 1 & 3 & 4 

How can a security framework resolve the 
existing security problems of mHealth apps? 

iii iv 4 

What are the tools needed to implement and 
evaluate proposed framework? 

iv v 3 & 5 

How can we evaluate and analyse the proposed 
framework? 

v v 5 
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Table 1.1 maps the research questions set forth in the previous section to the above 

set of targeted objectives, along with the corresponding actual contributions, which are 

to be stated later in Chapter 6. This table includes as well the respective chapters in which 

those contributions are presented and discussed. 

1.6 Research Scope 

Several assumptions and design selections restrict the scope of the research work 

within this thesis. The following points list those restrictions: 

(i) This research only considers mHealth apps out of the available kinds of apps. 

For example, it does not include the finance, education, social and other 

categories, though the same solution would be feasible as well. 

(ii) Because Android platform is most popular and open source, it was decided to 

work on Android OS out of the available smartphone OSs.  

(iii) Android 4.3 Jelly Bean has been used to implement the proposed framework. 

(iv) Android middleware and the underlying Linux kernel are considered as 

trusted base, and assumed as not been maliciously designed. 

To put the research focus in perspective, Figure 1.1 depicts the scope, where the shaded 

area is the narrow focus of the thesis. 

 

Figure 1.1: Area of Research 

mHealth

Smartphones (Android OS)

Security
Apps Medical Apps
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1.7 Thesis Outline/Organization 

The current chapter is an introduction to the work to be presented throughout the thesis, 

including the main motivations, research background, the specific problem statement to 

be addressed, and the main research questions to be answered. This chapter also sets the 

objectives to be accomplished and maps those objectives to the research questions. The 

scope of the research is also described based on the problem. 

Altogether, this thesis is composed of six chapters. The rest of the thesis is organized 

as follows: 

Chapter 2: Literature Review 

This chapter is divided into three main section. First section provides the necessary 

background of research on mHealth apps and its related areas. A thematic taxonomy is 

proposed that compactly describes the research on mHealth apps and defines different 

directions in this field. The second section of this chapter provides an essential 

background on Android OS and its security mechanism, and it also reviews recent 

research trends on Android security. Finally, the solutions proposed in the literature to 

protect the security and privacy of mHealth apps are provided in the third section of this 

chapter. 

Chapter 3: Research Methodology 

This chapter outlines the general research methodology adopted in this research study. 

This methodology is expressed in terms of a conceptual framework that consists of four 

phases: a preliminary study, the proposed framework’s design, a proof-of-concept 

prototypic implementation, and finally the evaluation. These four phases are briefly 

described alongside the methods followed in each phase. 
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Chapter 4: The Design of “mHealth Apps Security Framework” 

This chapter presents the concrete design that was generated to achieve the main 

objective of the research. It outlines and describes the design of the proposed framework, 

starting from the overall architecture, throughout the individual layers and their 

components, up to the discussion of few use cases that are representative of the typical 

operation of the proposed framework. 

Chapter 5: Implementation and Evaluation 

This chapter presents the results of evaluating a prototypic implementation of the 

proposed framework. The built implementation is meant to serve as a proof-of-concept 

that validates the design in the previous chapter and provides an initial seed for further 

deployments. After describing the implementation choices, this chapter aims to evaluate 

and analyse the prototype in terms of effectiveness and efficiency. The effectiveness 

measures the performance and usefulness of the proposed framework in satisfying its 

purpose of securing users’ privacy and protecting their sensitive data. These are evaluated 

through a set of experiments that are described in the chapter. Another set of experiments 

measure performance metrics (CPU utilization, memory usage and energy consumption) 

in order to evaluate the efficiency of the framework in performing its function. In 

particular, the focus is on the overhead imposed by the framework on the normal 

operation of the system.  

Chapter 6: Conclusions and Future Work 

This chapter concludes the thesis by presenting the summary of this research and 

reporting on the re-examination of the research objectives. Moreover, it lists the main 

findings of this research work, highlighting the significance of the proposed solution. This 

chapter also states the limitations of this research study and proposes future directions to 

improve the produced solution and avoid some of its limitations.
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CHAPTER 2:  LITERATURE REVIEW 

This chapter sets the stage for later chapters by providing necessary background 

information on the concepts of mHealth apps, the Android platform and the security 

issues at the intersection of both. The chapter is divided into three major sections. Section 

2.1 is first providing a comprehensive literature survey on mHealth Apps, and its related 

areas. Second, Section 2.2 is providing a complete background on the Android 

architecture, and what has been done to secure this platform. The third and most important 

section (Section 2.3) reviews the most relevant works in the literature on the threats to 

mHealth apps, and provides a critical assessment of their security and privacy. This 

section also summarizes the existing solutions to address those issues. The focus of the 

section is directly related to the research in this thesis, which attempts to contribute a 

novel solution to the said issues. 

2.1 The Landscape of Research on Smartphone mHealth Apps 

This section provides the necessary background about the research on mHealth apps, 

how rapidly this field is growing, and what are the main highlights in this new trend of 

mobile healthcare systems. It surveys the efforts of researchers in response to the new 

and disruptive technology of smartphone mHealth apps, mapping the research landscape 

form the literature into a coherent taxonomy, and finding out basic characteristics of this 

emerging field. 

2.1.1 An Overview 

Adoption of smartphones in the arsenal of healthcare is coming as no surprise. People 

have always used available facilities to enhance their most important activities and protect 

their most valuable assets; and no asset is more valuable than their own health. The 

utilization of information and communication technology in the practice of healthcare 

introduced the notion of eHealth, where telecommunications is enabling telemedicine, 
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computers are processing health data, and the Internet is providing the infrastructure to 

exchange all sorts of medical information and services. When mobility became possible, 

telecommunications occurred through mobile phones, and computers moved along with 

people in the form of portable laptops and then handheld devices. The eHealth stretched 

to include mobile health (mHealth); but still, the phone was a phone and the computer 

was a computer; until both converged into a single unit known as a “smartphone”. 

Smartphones are mobile devices that are smarter than earlier generations of cellular 

phones, usually known as feature-phones. This extra smartness is gained by virtue of 

closer resemblance to personal computers (PCs). Smartphones possess greater computing 

power, more connectivity options, sophisticated operating systems, full Internet access, 

and most importantly the ability to install and run third-party applications, often dubbed 

as "apps". This last feature extended the smartphone’s versatility into new functions 

unthought-of before, even by its designers.  

However, smartphones are not just scaled down versions of their PC relatives; they 

depart from traditional PCs in several ways. They are portable, even beyond the 

portability of laptops, and they are meant to be mobile and used on the move. This 

introduces the notion of context to smartphones, in terms of location, ambient, and user 

actions. Smartphones can measure these variables via onboard sensors, such as 

accelerometers and gyroscopes, which are unique to smartphone platforms. Smartphones 

also enjoy the ultimate connectivity among computing devices, with multiple wireless 

interfaces to cellular networks, Wi-Fi access points, Bluetooth peripherals, up to the latest 

innovations of Wi-Fi Direct and the Near Field Communication (NFC) technologies. 

Being this disruptive, smartphones are also the most personal computers so far. They 

are carried everywhere, and used to run all sort of functions, most of which are intimate 

to the users. In the context of healthcare, the trend of seeking health information from the 
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Internet is an obvious option on mobile platforms, but the real change came through the 

surge of apps written by developers to serve a wide variety of medical and healthcare 

scenarios, such as health education, intervention and adherence enhancement, as well as 

medication and diagnosis. Apps targeted both health professionals, patients, and the 

public, in the form of medical references, calculators, through the way to being 

attachments or alternatives to medical devices. In essence, what physicians and patients 

had to access on stationary computers have been brought to them by apps right onto their 

hands/pockets, augmented by innovative use of the new sensing capabilities that required 

previously special equipment, external to the computing device.  

The unique characteristic of mHealth, and particularly that based on smartphone apps 

is that it has grown very fast, outpacing the governmental efforts in regulation, as well as 

the health informatics researchers in study and evaluation. It is not feasible to review, let 

alone evaluate, the 100000 medical-related apps available online for the major 

smartphone platforms (Jahns, 2014), but those apps are actually open in the wild for 

download and use by healthcare professionals as well as the public. Apps are stored 

centrally in web-based repositories called app stores, a one-stop-shop fashion for 

marketing apps. The most popular smartphones today, with a market share of 87.6% and 

11.7% respectively (International Data Corporation, 2016) are the Android (Google, 

2016) and iOS (Apple, 2016b) supported-phones; their corresponding online markets are 

Google Play (Google, 2016) and Apple Apps Store (Apple, 2016a), respectively. 

2.1.2 A Taxonomy of Literature Works on mHealth Apps 

A comprehensive survey of research on mHealth apps was conducted, referring to a 

number of online databases, including ScienceDirect, Web of Science, IEEE Explore, and 

PubMed by using the following query string: ("health apps" OR "medical apps" OR 

"medical smartphone apps" OR "health smartphone apps" OR "healthcare apps" OR 
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"healthcare smartphone apps"). This survey resulted in 133 articles that were read 

thoroughly in the main purpose of finding out a general map for the conducted research 

on this emerging topic. Most of the articles (51.13%; 68/133) are review and survey 

papers that refer to actual apps or to the literature in order to describe the existing mHealth 

apps for a specific specialty, disease, or purpose, or to provide a general overview of the 

new trend. The next largest portion of articles (32.33%; 43/133) conducted various 

studies, ranging from seeking to evaluate samples from the flowing current of mHealth 

apps to exploring the desired features that people would like to have in their newly found 

helper tools. Quite a few researchers (12.78%; 17/133) moved along the new wave and 

presented actual attempts to develop their own mHealth apps, or shared their experiences 

in doing so. The final and smallest portion of works (3.76%; 5/133) included proposals 

for frameworks or models that address the operation of apps or their development in the 

more general setting. Observing these patterns, the general categories of research articles 

can be captured, and then the classification can be refined into the literature taxonomy 

shown in Figure 2.1. It is possible to distinguish between several subcategories in the 

main classes, though overlaps do happen. In the following subsections, the observed 

categories are listed, making simple statistics throughout the discussion. 

2.1.2.1 Class 1: Review and survey articles 

It comes as no surprise that the earliest and most research works on mHealth apps are 

review articles that aimed to capture the new phenomena, introduce it to the medical 

community, and derive some descriptive statistics, trying to understand the implications 

and potentials along the way. The easiest and largest class to notice is the reviews based 

on a specific specialty or disease (Al-Hadithy & Ghosh, 2013; Arnhold, Quade, & Kirch, 

2014; Aungst, 2013; Baheti & Toshniwal, 2014; Bender, Yue, To, Deacken, & Jadad, 

2013; Bhansali & Armstrong, 2012; T. Carter, O’Neill, Johns, & Brady, 2013; Cheng, 

Chakrabarti, & Kam, 2014; Chhablani, Kaja, & Shah, 2012; Connor, Brady, de Beaux, & 
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Tulloh, 2013; Dala-Ali, Lloyd, & Al-Abed, 2011; Derbyshire & Dancey, 2013; Deveau 

& Chilukuri, 2012; Donker et al., 2013; Dubey et al., 2014; Elias, Fogger, McGuinness, 

& D'Alessandro, 2014; Eng & Lee, 2013; Franko, 2012; Goff, 2012; Gomez-Iturriaga, 

Bilbao, Casquero, Cacicedo, & Crook, 2012; Goyal & Cafazzo, 2013; Kalz et al., 2014; 

Khatoon, Hill, & Walmsley, 2013; Kraidin, Ginsberg, & Solina, 2012; H. Lee et al., 2014; 

Lewis, 2013; Lippman, 2013; Milani et al., 2014; Mohan & Branford, 2012; Moodley, 

Mangino, & Goff, 2013; Muessig, Pike, LeGrand, & Hightow-Weidman, 2013; Nwosu 

& Mason, 2012; O'Neill, Holmer, Greenberg, & Meara, 2013; O’Neill & Brady, 2012; 

Oehler, Smith, & Toney, 2010; Pandey, Hasan, Dubey, & Sarangi, 2013; Robinson & 

Jones, 2014; Singh, 2013; Slaper & Conkol, 2014; Sondhi & Devgan, 2013; D. J. Stevens, 

Jackson, Howes, & Morgan, 2014; Tripp et al., 2014; Wallace & Dhingra, 2013; Wang 

et al., 2014; Warnock, 2012; Workman & Gupta, 2013; Yoo, 2013) (47/68 articles).

  

Research on 
mHealth apps Studies conducted on 

mHealth apps and their 
use

Reports on actual 
attempts to develop 

mHealth apps

Proposals of frameworks 
to develop and operate 

mHealth apps

Review and surveys

Selected apps

Evaluation study

Comparative study

Disease-based

Purpose-based

General overview

Specialty-based

Desired features

Efficacy

Feasibility

Acceptance

Apps design and development

Data access and integration

Security and privacy

Usage

Content analysis

Reliability and accuracy

Adherence

Involvement

Selected criteria

 

Figure 2.1: A Taxonomy of Research Literature on Smartphone mHealth Apps 
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Examples of this category include the reviews of apps on Anaesthesia (Bhansali & 

Armstrong, 2012; Connor et al., 2013; Glassenberg, De Oliveira, Glassenberg, & 

McCarthy, 2013; Kraidin et al., 2012; Morris, Javed, Bodger, Gorse, & Williams, 2013), 

Surgery (T. Carter et al., 2013; Dala-Ali et al., 2011; Edlin & Deshpande, 2013; Franko, 

2012; O'Neill et al., 2013; D. J. Stevens et al., 2014; Warnock, 2012), Plastic surgery (Al-

Hadithy & Ghosh, 2013; Mohan & Branford, 2012; Morris et al., 2013; Workman & 

Gupta, 2013), Oncology (Bender et al., 2013; Gomez-Iturriaga et al., 2012; Lewis, 2013; 

Min et al., 2014; Pandey et al., 2013; C. S. Xu, Anderson, Armer, & Shyu, 2012), 

Palliative medicine (Nwosu & Mason, 2012; B. Rosser & C. Eccleston, 2011; B. A. 

Rosser & C. Eccleston, 2011; Wallace & Dhingra, 2013), Ophthalmology (Cheng et al., 

2014; Chhablani et al., 2012), Dentistry (Baheti & Toshniwal, 2014; Khatoon et al., 2013; 

Singh, 2013), Pharmacy (Aungst, 2013; Dayer, Heldenbrand, Anderson, Gubbins, & 

Martin, 2013; Haffey, Brady, & Maxwell, 2013, 2014), Psychiatry (Dennison, Morrison, 

Conway, & Yardley, 2013; Donker et al., 2013; Elias et al., 2014; Kuhn et al., 2014; 

Shand, Ridani, Tighe, & Christensen, 2013; Zhu, Liu, & Holroyd, 2012), Paediatrics 

(Goldbach et al., 2013; Hawkes, Walsh, Ryan, & Dempsey, 2013; Ho et al., 2014; Peck, 

Stanton, & Reynolds, 2014; Rozenblyum, Mistry, Cellucci, Martimianakis, & Laxer, 

2014; Slaper & Conkol, 2014; Sondhi & Devgan, 2013; Wackel, Beerman, West, & 

Arora, 2014; Wearing, Nollen, Befort, Davis, & Agemy, 2014), Infectious Diseases 

(Burdette, Trotman, & Cmar, 2012; Goff, 2012; Moodley et al., 2013; Muessig et al., 

2013; Oehler et al., 2010; Robustillo Cortés, Cantudo Cuenca, Morillo Verdugo, & Calvo 

Cidoncha, 2014; Spain, 2014; Visvanathan, Hamilton, & Brady, 2012; Yoo, 2013), Public 

health (Abroms, Lee Westmaas, Bontemps-Jones, Ramani, & Mellerson, 2013; Arnhold 

et al., 2014; Årsand et al., 2012; Azar et al., 2013; Bender et al., 2013; BinDhim, Freeman, 

& Trevena, 2014; Breland, Yeh, & Yu, 2013; Breton, Fuemmeler, & Abroms, 2011; M. 

C. Carter, Burley, Nykjaer, & Cade, 2013; Choi, Noh, & Park, 2014; Cohn, Hunter‐Reel, 
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Hagman, & Mitchell, 2011; Dunton et al., 2014; V. Gay & Leijdekkers, 2012; Goyal & 

Cafazzo, 2013; Hebden, Cook, van der Ploeg, & Allman-Farinelli, 2012; Kirwan, 

Duncan, Vandelanotte, & Mummery, 2013; McCurdie et al., 2012; Patel, Nowostawski, 

Thomson, Wilson, & Medlin, 2013; Pulverman & Yellowlees, 2014; Rabin & Bock, 

2011; Savic, Best, Rodda, & Lubman, 2013; Silow-Carroll & Smith, 2013; Wang et al., 

2014), Women health (Derbyshire & Dancey, 2013; Robinson & Jones, 2014; Tripp et 

al., 2014), Dermatology (Chadwick, Loescher, Janda, & Soyer, 2014; Deveau & 

Chilukuri, 2012; Hamilton & Brady, 2012), Family medicine (Goldbach et al., 2013; 

Lippman, 2013), Endocrinology (Eng & Lee, 2013), Cardiopulmonary Resuscitation 

(Kalz et al., 2014), Rehabilitation (Elwood et al., 2011; Milani et al., 2014), Asthma 

(Huckvale, Car, Morrison, & Car, 2012; McCurdie et al., 2012), Internal medicine 

(Bierbrier, Lo, & Wu, 2014; Goldbach et al., 2013; O’Neill & Brady, 2012; H.-C. Wu et 

al., 2014), Cardiology (M. J. Cho, Sim, & Hwang, 2014; Dubey et al., 2014; McCurdie 

et al., 2012), and Sports medicine (H. Lee et al., 2014). A smaller group of articles 

provides general overviews of medical apps and their benefits or impacts (M. N. Boulos 

et al., 2011; M. N. K. Boulos, Brewer, Karimkhani, Buller, & Dellavalle, 2014; Campbell 

& Choudhury, 2012; Carrera & Dalton, 2014; Fiordelli, Diviani, & Schulz, 2013; Valerie 

Gay & Leijdekkers, 2011; Liu, Zhu, Holroyd, & Seng, 2011; Mertz, 2012; Moore, 

Anderson, & Cox, 2012; Y. T. Yang & Silverman, 2014) (10/68). Despite their generality, 

few of these surveys emphasize special aspects, such as the integration of social 

networking with medical apps (Valerie Gay & Leijdekkers, 2011), the perspective of 

developers (Liu et al., 2011), the sensing capabilities of smartphones (Campbell & 

Choudhury, 2012), or the legal issues and federal regulations of apps (Y. T. Yang & 

Silverman, 2014). Another few papers (11/68) review apps in the context of specific 

purposes rather than specific specialties or general views, including apps as references 

(Haffey et al., 2014; Hilgefort et al., 2013; Zanni, 2013), apps for pain management (B. 
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Rosser & C. Eccleston, 2011; B. A. Rosser & C. Eccleston, 2011), clinical management 

(Silow-Carroll & Smith, 2013), pre-operative settings (Brusco, 2010), medical adherence 

(Dayer et al., 2013), wellness (Handel, 2011), tobacco cessation (Pulverman & 

Yellowlees, 2014), and even apps for pro-smoking (BinDhim et al., 2014) (to raise 

awareness of harmful apps). 

2.1.2.2 Class 2: Studies conducted on mHealth apps and their use 

Despite the frequent complaint in literature about the lack of works that study and 

assess the phenomena of mHealth apps compared to just reporting on them, around a third 

of the  sample in the above survey (43/133) was articles conducting studies in one form 

or another (Abroms et al., 2013; Albrecht, von Jan, Jungnickel, & Pramann, 2012; Årsand 

et al., 2012; Azar et al., 2013; Bierbrier et al., 2014; Breland et al., 2013; Breton et al., 

2011; Burdette et al., 2012; M. C. Carter et al., 2013; Chadwick et al., 2014; J. Cho, Park, 

& Lee, 2014; Choi et al., 2014; Cohn et al., 2011; Dennison et al., 2013; Edlin & 

Deshpande, 2013; Elwood et al., 2011; Franko, 2011; Franko, Bray, & Newton, 2012; 

Franko & Tirrell, 2012; Gill et al., 2012; Glassenberg et al., 2013; Goldbach et al., 2013; 

Haffey et al., 2013; Hamilton & Brady, 2012; Hawkes et al., 2013; Ho et al., 2014; 

Huckvale et al., 2012; Kalz et al., 2014; Kazi, Saha, & Mastey, 2014; Kuhn et al., 2014; 

Min et al., 2014; Morris et al., 2013; O’Reilly et al., 2013; Payne, Wharrad, & Watts, 

2012; Peck et al., 2014; Rabin & Bock, 2011; Robustillo Cortés et al., 2014; Rozenblyum 

et al., 2014; Savic et al., 2013; Shand et al., 2013; Spain, 2014; Visvanathan et al., 2012; 

Wackel et al., 2014; Wearing et al., 2014). The included works in the survey were divided 

into a large category of evaluation studies (29/43), and a few other smaller categories 

(14/43). These categories attempt to compare between mHealth apps or between apps and 

other tools (5/43), explore the desired features sought by users in medical apps (4/43), 

study the efficacy of medical apps (2/43), check their feasibility in certain situations 

(2/43), or examine clinician acceptance of using them (1/43). Among evaluation studies, 
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the most popular criteria is the usage patterns of apps by physicians (Elwood et al., 2011; 

Franko, 2011; Gill et al., 2012; O’Reilly et al., 2013), medical students (Franko & Tirrell, 

2012; Payne et al., 2012), or patients (J. Cho et al., 2014; Dennison et al., 2013). Other 

studies perform content analysis of apps on smoking cessation (Abroms et al., 2013; Choi 

et al., 2014), asthma self-management (Huckvale et al., 2012), weight management (Azar 

et al., 2013), addiction recovery (Savic et al., 2013), or references of infectious diseases 

(Burdette et al., 2012). Arguably, the most sought after studies are those that test the 

accuracy and reliability of apps. Available studies in this direction are still few, evaluating 

either the precision of apps measurement compared to traditional tools (Franko et al., 

2012; Ho et al., 2014; Wackel et al., 2014), the accuracy their calculations (Bierbrier et 

al., 2014; Haffey et al., 2013), or the reliability of their assessment (Chadwick et al., 

2014). A related class to these studies is the articles that address the adherence of mHealth 

apps to regulations and established guidelines, especially those related to evidence-based 

behaviour change (Breton et al., 2011; Cohn et al., 2011; Wearing et al., 2014), and 

diabetes self-management (Breland et al., 2013). Other evaluation studies examine the 

involvement of healthcare professionals in the development of mHealth apps (Edlin & 

Deshpande, 2013; Hamilton & Brady, 2012; Visvanathan et al., 2012), or evaluate apps 

against a specific set of selected criteria (Albrecht et al., 2012; Robustillo Cortés et al., 

2014; Spain, 2014). 

Apart from evaluations, few works compare between two mHealth apps (Glassenberg 

et al., 2013; Morris et al., 2013), between an app and traditional website and paper-based 

tools (M. C. Carter et al., 2013), or between an app and smartphone-based website access 

(Goldbach et al., 2013). Another group of studies reported lessons on the design and best 

practices of developing mHealth apps with features in demand (Årsand et al., 2012; Kazi 

et al., 2014; Rabin & Bock, 2011; Rozenblyum et al., 2014). A couple of studies examined 

efficacy of mHealth apps: whether the use of apps can improve performance of trainees 
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in new-born intubation (Hawkes et al., 2013), and effectiveness of apps in suicide 

prevention (Shand et al., 2013). Another couple of apps addressed the feasibility of using 

mHealth apps on either daily collection of self-reporting data (Min et al., 2014), or as 

immunization reminder systems (Peck et al., 2014). Finally, Kuhn et al. investigated the 

acceptance of mental-health clinician to a future mHealth app based on its description 

(Kuhn et al., 2014). 

2.1.2.3 Class 3: Reports on actual attempts to develop mHealth apps 

The literature on mHealth apps includes active attempts to participate in the new trend 

and develop apps by the researchers themselves (mostly professionals from healthcare 

disciplines) (17/133). The first such attempt was published in 2010, proposing the use of 

web apps to collect patients’ data (Hamou et al., 2010). A popular choice among articles 

in this category is to develop physical-activity behaviour change and fitness apps (V. Gay 

& Leijdekkers, 2012; Hebden et al., 2012; Kirwan et al., 2013). Most papers from IEEE 

conferences (7/12) appear in this category, reporting on the development of mHealth apps 

(C. S. Xu et al., 2012; Zhu et al., 2012), proposing the use of hardware capabilities like 

barcode and RFID tags (Schreier et al., 2013), and the use of data mining (Tseng et al., 

2012), or proposing complete designs of apps (Ramachandran & Pai, 2014). A couple of 

articles demonstrate the use of motion sensors (Aguinaga & Poellabauer, 2013; Dunton 

et al., 2014). Other options in this category include the development of educational apps 

(M. J. Cho et al., 2014). The rest of apps-development articles include reports on apps to 

facilitate public observations collection (Patel et al., 2013), collaboration among 

researchers (Alexander et al., 2013), or assist international patients by translating medical 

terms (Hasegawa et al., 2013). One article targets patients of colorectal cancer via early 

screening service (H.-C. Wu et al., 2014), and the final article in this category reports a 

large-scale experience with developing 12 health apps in the largest tertiary hospital in 

Korea (J.-Y. Park et al., 2014). 
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When talking about development, the choice of platform is pertinent. Most of the first 

mHealth apps were developed for Apple iOS (through iPhone or iPad devices), as the 

commencement of this platform predated Google Android (2007 and 2008 respectively). 

However, most of the research development works in the surveyed sample targeted the 

Android or both platforms (7/17 and 4/17 respectively). Five articles developed for the 

iOS, and one article chose to develop a cross-platform, web-based app. As of the target 

audience of the developed mHealth apps, the majority of apps targeted the patients or the 

public (12/17), two apps targeted medical staff, and three apps targeted both groups. 

Ten of the articles developing mHealth apps explicitly stated the involvement of 

external professionals of the subject matter in addition to the authors. Those professionals 

included software developers (Hamou et al., 2010; Kirwan et al., 2013); personal from 

marketing, nutrition and dietetics, physical activity and information technology (Hebden 

et al., 2012); two psychologists, a software engineering expert, an Objective-C  developer 

and a media designer (Zhu et al., 2012); software developers, information scientists and 

end-users (Patel et al., 2013); information technology staff (Alexander et al., 2013); 

computer scientists, psychologists, epidemiologists, exercise scientists, graphic designers 

and end users (Dunton et al., 2014); a professional web developer (M. J. Cho et al., 2014); 

an information technology alliance company (J.-Y. Park et al., 2014); as well as doctors 

and patients (Ramachandran & Pai, 2014). 

2.1.2.4 Class 4: Proposals of frameworks to develop and operate mHealth apps 

The final class in the developed taxonomy is articles that cannot be fit in the previous 

group of articles, since they do not develop new apps, but rather introduce overall 

frameworks or models for the development or use of them. Articles in this class (5/133) 

include either works focusing on models and methods for the design (McCurdie et al., 

2012) or development of mHealth apps (Paschou, Sakkopoulos, & Tsakalidis, 2013). 
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Another couple of articles introduce frameworks for data access and integration between 

apps and other parts of health information systems (Fox, Cooley, McGrath, & Hauswirth, 

2012; Mersini, Sakkopoulos, & Tsakalidis, 2013). Finally, a single work addresses the 

issue of secure exchange of mHealth apps’ data, proposing a cooperative environment 

with data encryption framework (Silva, Rodrigues, Canelo, Lopes, & Zhou, 2013). This 

category of articles is currently attracting the least attention among researchers. 

Nevertheless, it is expected that devising frameworks for the production and operation of 

mHealth apps within the big picture of health informatics would receive more interest as 

the demand for general and scalable solutions for the current challenges increase. 

2.1.3 Articles by Medical Specialty of Apps 

It is probably interesting to find out which medical fields are served by the new 

mHealth apps and to which extent. Figure 2.2 shows the number of articles by the 

specialty of which their apps cover. The shown articles do not include the full list (133), 

because the specialties of the addressed apps in 30 articles are not available or not 

applicable (e.g. the case of proposing general frameworks for apps development). The 

articles neither add up to 103, since the apps in few articles fall in more than one specialty. 

2.1.4 Articles by Purpose and Function of Apps 

MHealth apps generally serve particular purposes or functions. Examples include the 

functions of information reference, education, self-management, clinical practice and 

diagnosis. Excluding the review articles (since each review usually surveys apps from the 

whole range of functions), the number of articles from the other categories (detailed by 

the purpose of apps they address) is shown in Figure 2.3. The value of this figure is to 

gain an insight into the most visited functions by studies and development efforts, and 

those that need more attention. The list in Figure 2.3 misses nine articles, where the 

specific purpose of the subjected apps could not be found. 
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Figure 2.2: Number of Included Articles by the Specialty of Apps They Cover 

 
Figure 2.3: Number of Included Articles by the Purpose or Function of Apps They 
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2.1.5 Articles by Indexing Databases 

Figure 2.4 depicts the distribution of articles from different categories over the digital 

databases in which the search was performed. The purpose is to highlight the potential 

venues for seeking (as well as publishing) works on mHealth apps. It seems that the 

disciplines of life and medical sciences are more interested in this subject, which is to be 

expected. It is also important to note that the figures in this graph are not consistent with 

the numbers of articles initially found in each database. For example, the initial query 

against WoS index triggered only 56 results before any exclusion, while Figure 2.4 shows 

86 articles of the final set in WoS. The reason for this discrepancy is that the initial query 

failed to pull out all the relevant articles from this particular database, though the same 

query yielded more articles from the other database. Because the databases were looked 

up manually against the final sample set of articles, more articles showed up for each 

database than it could itself return. This indicates that the individual search engines matter 

in performing queries in addition to the specific query string. 

 
Figure 2.4: Number of Included Articles in Different Categories by the Source 

Digital Database 
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grouped into categories of similar benefits and citing the corresponding references for 

further discussion. 

 Benefits related to smartphones portability 

Smartphones are agile, handheld, and can be used on the move (M. N. Boulos et al., 

2011). This mobility and portability allow for several benefits. For example, Smartphone 

apps can provide timely communication (Elias et al., 2014), and are ideal for keeping a 

symptom diary as they accompany users all the time (Lippman, 2013). From a research 

perspective, smartphone apps allow conducting ecological momentary assessment 

(EMA) using MAs, where patients can capture data describing their experience on spot 

in real time (Tripp et al., 2014), and they also allow for repeated sampling of behaviour 

over numerous time points and allow the ability to capture less frequent and rare events 

(Cohn et al., 2011). 

 Benefits related to smartphones’ capabilities 

As mentioned earlier, smartphones possess several capabilities that enable new 

possibilities via installed apps. Because they can connect to the Internet, smartphones are 

useful to keep clinicians up-to-date with the latest medical techniques and advances (M. 

N. Boulos et al., 2011). The continuous connectedness of smartphones allows the sharing 

of behavioural and health data with health professionals or peers (Dennison et al., 2013). 

This ability may also allow telemedicine to replace time-consuming office visits 

altogether (M. N. K. Boulos et al., 2014). Moreover, Smartphone mHealth apps are 

specifically created to work well for point-of-care decisions about topics such as drug 

dosing and conventional treatment regimens, where the needed information are 

aggregated and presented in an easily digestible format (Goldbach et al., 2013). The 

increasing ability of smartphones to use internal sensors to infer context such as user 

location, movement, emotion, and social engagement has raised the prospect of 
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continuous and automated tracking of health-related behaviours and timely, tailored 

interventions for specific contexts (Dennison et al., 2013). Apart from hardware or 

software features, the feature of anonymity granted by apps allows patients to ask 

questions they might otherwise feel embarrassed asking a healthcare professional (Tripp 

et al., 2014). 

 Benefits related to smartphones’ market penetration 

The popularity and ubiquity of smartphones allow for access into populations that are 

difficult to reach and engage (Goyal & Cafazzo, 2013). For patients who cannot access 

care provision premises, mHealth apps are especially beneficial (Silow-Carroll & Smith, 

2013). 

2.1.7 Challenges to mHealth Apps 

Though attractive, smartphone mHealth apps are (still) not believed to be the panacea 

of healthcare delivery. The literature indicates that researchers are concerned about many 

challenges associated with apps and their use in healthcare. Key reported challenges for 

adoption of mHealth apps are listed below, along with citations to references in which the 

reader can find the original suggestion and further discussion on those challenges. The 

challenges are classified into a few groups according to their nature. 

 Concerns on quality 

Perhaps the most persistent and crucial challenges are those related to the quality of 

the developed mHealth apps. Major issues include concerns on the low involvement of 

qualified professional in app development (Cheng et al., 2014), a lack of extrinsic scrutiny 

and peer review after publishing (Cheng et al., 2014; Eng & Lee, 2013; Goldbach et al., 

2013), lack of evidence of clinical effectiveness, (Eng & Lee, 2013), lack of objective 

research to evaluate outcomes (Silow-Carroll & Smith, 2013), the absence of content 

regulation (O’Neill & Brady, 2012) as well as the absence of a regulatory framework that 
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standardizes development (Silow-Carroll & Smith, 2013). Furthermore, many 

smartphone apps are not based on behavioural change theories or guidelines (M. N. K. 

Boulos et al., 2014). 

 Concerns on security and privacy 

Privacy of patients and security of their data are also a major and pertinent issue when 

talking about smartphone apps, and has been frequently raised by researchers (M. N. K. 

Boulos et al., 2014; Elias et al., 2014; O’Neill & Brady, 2012; Silow-Carroll & Smith, 

2013). Elias et al. (2014) note the non-compliance of mHealth apps with the Health 

Insurance Portability and Accountability Act, unlike the traditional EHRs. They also 

notice that the apps distribution business model needs caution. Apps and service provided 

are free to the individual, but privacy is not assured. Information collected about an 

individual while using the app and its associated services can then be used for targeted 

marketing either directly by the company or sold to others for marketing or product 

development (Elias et al., 2014). Furthermore, there are always security risks for less 

experienced users who might be tricked to download apps that contain malware or offer 

them dubious medical information and advice (M. N. K. Boulos et al., 2014). 

 Concerns on integration 

It is important to note that mHealth apps are just one (important) aspect of mobile 

health, which is one form of healthcare delivery; as such, a vital issue is the lack of 

integration with other parts of the healthcare delivery system (Eng & Lee, 2013). In 

particular, technical challenges are caused by the lack of seamless interfaces between app 

platforms and providers’ existing information technology systems (Silow-Carroll & 

Smith, 2013). 
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 Concerns on usability 

Many researchers also highlighted the problems in using smartphone apps because of 

the additional involved complexity and the limited usability compared with traditional 

platforms such as PCs. For example, complexity is introduced to individuals by the need 

to manage a mix of mobile devices, personal apps, and apps they use for healthcare 

purposes, each with its own learning curve, possible financial costs, and security and 

privacy concerns. This burden on consumers could become overwhelming with each 

organization, provider, and associated businesses requiring use of their own apps (Elias 

et al., 2014). Moreover, those in rural areas may have limited or no signal and will be 

unable to benefit from the use of mHealth apps. Beyond access, the patient has to commit 

to daily use of the app (Elias et al., 2014). Other usability issues relate to the small internal 

storage capacity, processing power and screen size of the mobile phone, which require 

apps to be used in a reduced format, potentially reducing clarity (O’Neill & Brady, 2012; 

Silow-Carroll & Smith, 2013). There are also the prosaic issues such as remembering to 

recharge a device and the simple maintenance of equipment within a patient’s home, 

which may be problematic (Silow-Carroll & Smith, 2013). Furthermore, older patients in 

particular may suffer from lack of knowledge or discomfort with technology (Silow-

Carroll & Smith, 2013); an app that is perfectly usable by a younger person might be very 

difficult to manipulate by an older or disabled person (M. N. K. Boulos et al., 2014). 

 Concerns on safety 

In a medical environment, apps might cause unexpected effects, such as surface 

contamination. Smartphones can act as a reservoir for bacteria, and it is possible that 

doctors using mHealth apps are less likely to perform hand hygiene, thereby increasing 

the risk of bacterial transmission (O’Neill & Brady, 2012). Electromagnetic radiation 

from the mobile devices not only could hamper the functionality of patient devices such 

as pacemakers, but also could interfere with other medical equipment (Gill et al., 2012). 
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In addition, app descriptions in general contain limited advice or safety information 

regarding their use as a medical tool (Eng & Lee, 2013). 

 Concerns on financial costs 

Despite the pervasiveness of smartphones, certain cost overhead associated with 

mHealth apps might hinder their wide adoption and use. Examples of the cost overhead 

include the hidden charges of connection, particularly for apps that automatically connect 

to other apps or services (Elias et al., 2014). In addition, some patients cannot afford 

smartphones or the required high-speed Internet connection. For app providers, the 

development, support, maintenance and regular updating may entail significant costs (M. 

N. K. Boulos et al., 2014). 

 Concerns on administrative and ethical issues 

A less obvious source of difficulties is the reimbursement obstacles caused by 

communication via smartphones for providers who devote time to these types of activities 

(Slaper & Conkol, 2014). Providers working in fee-for-service environments will 

generally expect to be paid for the time they spend on managing healthcare through apps 

and for associated software or equipment costs. Yet insurers, employers, and other payers 

are unlikely to reimburse for these costs until there is more robust evidence of their 

effectiveness (Silow-Carroll & Smith, 2013). 

In addition, ethical and medico-legal questions arise when smartphones are used to 

record patient information via mHealth apps. Informed consent from individual patients 

would be required (O’Reilly et al., 2013). Moreover, advertising through apps allows 

companies to target physicians directly, potentially indirectly and unethically influencing 

prescribing and treatment practices (O'Neill et al., 2013). 
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 Concerns on negative effects 

Finally, the use of smartphone apps for medical purposes may entail unwanted effects, 

many of which have been highlighted in the literature. For example, self-monitoring of 

certain measures (like glucose) by patients can cause depression and may do more harm 

than good (Lippman, 2013). Further, apps that provide medical advice based on their own 

collected data and algorithms could cause unnecessary worry or false reassurance (Eng 

& Lee, 2013). Other reported challenges include the mistakes and omissions in health 

care work settings because of distraction and interruptions caused by interaction with 

apps or their notifications, the impact on inter-professional relationships due to 

overreliance on communicating by apps, resulting in a decrease in verbal communication, 

and unprofessional behaviours in the use of smartphones by residents (Gill et al., 2012). 

Another important issue is the effect on aspects of essential communication between 

patients and care providers, such as eye contact, gestures, visibility of actions, and verbal 

and nonverbal contact (Gill et al., 2012; Payne et al., 2012). 

2.2 The Android Platform and Its Security 

The main goal of this thesis is to protect sensitive information of mHealth apps and 

their user. MHealth apps operate on mobile platforms, and because the Android operating 

system is chosen as the target platform in this thesis, there is a need to review its structure 

as well as its security model in detail. This section briefly presents the details of Android 

OS, its components, the possible types of communication in the system, and the supported 

security mechanisms. 

2.2.1 Android System Architecture 

Android is a Linux based operating system developed primarily for mobile devices 

(e.g., smartphones or tablets) circa 2003 by Android Inc. (Elgin, 2005). Soon after, 

Google acquired this company in 2005. Google commenced the first Android device in 
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October 2008, and thenceforth it maintains the development of the operating system, as 

well as its marketing and support. Google also releases the source code of Android under 

open source licenses, and allows vendors to customize new releases of the operating 

system and to use the customized version in their own devices, subject to the compliance 

of a special compatibility agreement (Project, 2016). 

Android operating system is a stack of software components, as shown in Figure 2.5. 

Android platform comprises a Linux kernel, a middleware layer and an application layer. 

Google customized the underlying Linux internals to provide strong isolation between 

different processes, and then built the whole system upon the modified Linux kernel. The 

kernel also serves as an abstraction layer between the hardware and other software layers 

(Rashidi & Fung, 2015). The Linux kernel provides the usual basic facilities, for instance: 

memory management, device drivers, process scheduling, and a file system. 

The Android middleware layer lies on the top of the Linux kernel. This layer contains 

three main components: the application framework, the native operating system libraries, 

and the Android runtime environment. The application framework is written in Java and 

is a collection of services that define the environment in which Android apps are run and 

managed. These services are offered to apps as Java classes. System applications such as 

the system content providers and system services are also part of the application 

framework. These applications and services provide the essential functionalities and 

services of the platform, such as System Settings, Clipboard, LocationManager, 

WifiManager, and the AudioManager. In Android platform, system content providers are 

essential databases, while system services provide the required high-level functions to 

control the device’s hardware and to get information about the platform state, such as 

location and network status. 
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Another part of the middleware is a set of native libraries, which provide 

functionalities such as graphics processing and multimedia support. These libraries are 

written in the C/C++ programming language. The final part of Android middleware layer 

is the runtime environment, which comprises the Dalvik Virtual Machine and core Java 

libraries. This layer is mostly written in C/C++ except parts of the core libraries, and is 

customized for the specific needs and requirements of resource-constrained mobile 

devices.  

As illustrated in Figure 2.5, Android Application layer is located at the top of the 

Android software stack. This contains both the pre-installed apps (i.e., native Android 

apps) and the third party apps developed by different (unofficial) app developers. Apps 

are written in Java, but for performance reasons may include native code (C/C++), which 

is called through the Java Native Interface (JNI). Basically, the Android OS is a multi-

user system, in which each app has a unique user ID (UID). All files in an app will be 

assigned to that apps UID and usually not accessible to other apps. Each app runs in its 

own Linux process with a unique UNIX user identity and isolated from other apps, so 

that apps must explicitly share data and resources. In this way, Android platform 

implements the principle of least privilege. Generally, Android app consists of certain 

components: Activity (User interface), Service (background process), Broadcast Receiver 

(mailbox for broadcast messages), and Content Provider (SQL-like database) (Bugiel, 

Davi, Dmitrienko, Heuser, et al., 2011). 

The usual path to develop Android apps is to use the special Software Development 

Kit (SDK) provided by Google, which include an extensive set of tools and API libraries, 

using the Java programming language. This development option relies on the rich Java 

application framework in Android, which enable developers to interact with various 

aspects of the system including hardware and software components, such as sensors, 
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wireless interfaces, telephony services, as well as multimedia and user interface elements. 

It is also possible to write native apps in the C/C++ language through the special Native 

Development Kit (NDK) (Android, 2016a). A finalized Android app is not distributed in 

the traditional Java bytecode format within “.class” files or “.jar” archives. Rather, 

Android development kit includes a tool that converts the Java compiled bytecode into 

custom bytecode in the form of “.dex” files to be executed by the Dalvik virtual machine. 

Developers have also to sign their apps, though they can use self-signed certificates 

(Android, 2016c). The official online store and market for Android apps is Google Play 

(Google, 2016), where developers can distribute and sell their apps. 
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Figure 2.5: Android System Architecture 

Android platform is a common target for academic research studies, including the 

present one. The main reason behind this popularity is straightforward: Android is an 

Univ
ers

ity
 of

 M
ala

ya



36 

 

open product; its source code is available from Google for interested parties, including 

other software developers and hardware vendors. This has resulted in an interesting 

outcome. On the one hand, researchers can dissect the operating system source code, 

studying relevant parts to their research and potentially modifying the code base 

accordingly. The possession of a real and mature operating system code at the disposal 

of researchers to experiment with and implement new ideas proved very attractive and 

rewarding. Most of the research literature on mobile platforms is directed towards 

Android, which results in yet more studies that address this platform.  

On the other hand, being released under an open license (subject to compliance 

agreement), Android platform can be adopted by any hardware vendors, including mobile 

device manufacturers or embedded-system developers. The target devices that employ 

Android are far more than those employing competing mobile platforms. For example, 

the market share of Android-based smartphones is almost 87.6% as of 2016 (International 

Data Corporation, 2016). This means that research studies on the Android platform have 

much broader potential impact than studies performed on other mobile platforms. Also 

related to this point is the fact that more hardware devices from various vendors are 

available to experiment with. This enables researchers to verify their results on a variety 

of designs and implementations. 

The aforementioned reasons justify for the selection of Android platform as the main 

target in this as well as other studies. Nevertheless, it is worthy emphasizing that most of 

the results are often applicable to other mobile platforms, with some modifications that 

depend on the nature of the study. 

2.2.2 The Structure of Android Apps 

An Android app is an application software that is developed to be run on mobile 

devices, such as smartphones or tablets (Techopedia, 2016). Each Android app contains 
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one or more of four main components: activities, services, broadcast receivers or content 

providers. With a few exceptions, communication between apps occurs through the 

middleware layer, which defines the different types of inter-process communication 

(IPC). There is a direct correspondence between types of IPC and the four main 

components of apps. In general, IPC is implemented through objects called intent 

message (Enck, Ongtang, & McDaniel, 2009). By definition, an intent is “an abstract 

description of an operation to be performed” (Developers, 2016b). Intents are addressed 

either directly to a component using the application’s unique namespace, or to an action 

string. For instance, it can be used with the startActivity() method to launch an Activity, 

with the bindService(Intent,ServiceConnection,int) or startService(Intent) methods to 

communicate with a background Service, and with the broadcastIntent() method to send 

it to any interested BroadcastReceiver components. Further, developers define intent 

filters based on action strings for different components of apps to automatically start out 

on corresponding events. For instance, two different Android apps’ components and their 

interaction is shown in Figure 2.6. The details of an app components are given below. 

Application A

Process

Application B

Process

Activity B

Activity A Broadcast 
Receiver

Activity

Content 
Provider SQLite

Intent

Intent

Intent

Intent from 
system or 
other apps

 
Figure 2.6: Android App Components and Their Interactions 

2.2.2.1 Activity 

An activity component represents a single screen with a user interface (Developers, 

2016a). An activity component interacts with the user through touchscreen and keypad. 
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Apps usually contain multiple activities, one for each screen presented to the user. for 

example, in an email app, one activity shows a list of new emails, another activity for 

reading emails, and another activity to compose an email. 

2.2.2.2 Service 

A service is “a component that runs in the background to perform long-running 

operations or to perform work for remote processes” (Developers, 2016a). A service 

component does not provide a user interface. Furthermore, this component provides 

background processing that continues even after its app loses focus. Services also define 

arbitrary interfaces for remote procedure call (RPC), including method execution and 

callbacks, which can only be called after the service has been bound. 

2.2.2.3 Content provider 

A Content Provider component manages a shared set of app data. This component is 

a database-like mechanism for sharing data with other apps. An app user can store the 

data in the file system, an SQLite database, on the web, or any other persistent storage 

location that apps can access. The interface with content providers does not use intents, 

but rather is addressed through a content URI. It supports standard SQL-like queries, e.g., 

SELECT, INSERT, UPDATE, through which components in other apps can retrieve, 

store or even modify the data according to the content provider’s schema (i.e., if the 

content provider allows it). 

2.2.2.4 Broadcast receiver 

A broadcast receiver is another Android app component that responds to system-wide 

broadcast announcements. It is an asynchronous event mailbox for broadcasted intent 

messages. 
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Many broadcasts originate from the system, for instance, a broadcast announcing that 

the battery is low, the screen has turned off, or a picture was captured. Apps can also 

initiate broadcasts, for instance, to let other apps know that some data has been 

downloaded to the device and is available for them to use (Developers, 2016a). 

Every app package includes a manifest file. The manifest file defines all components 

in an app that also includes their types and intent filters. Note that Android platform 

allows apps to dynamically create broadcast receivers that do not appear in the manifest 

(Enck et al., 2009). 

2.2.3 Android Security Model 

This section briefly lists the security mechanisms that Android platform uses to secure 

the application environment. Android implements a number of security mechanisms, the 

most prominent of which are application sandboxing and a permission framework that 

enforces mandatory access control (MAC) on inter-component communication calls and 

on the access to core functionalities. A detailed overview of Android security mechanisms 

can be found in (Android, 2016b). 

2.2.3.1 Android permission system 

By default, Android apps have limited access to system’s resources and to each other’s 

components. The access to sensitive resources within Android is protected through a 

security mechanism called permissions. It provides protected APIs for the sensitive 

resources, including telephony, GPS, location, camera, Bluetooth, SMS/MMS and 

network access. To make use of the protected APIs, an Android app must declare the 

permissions associated to those APIs’ in its own manifest file, and the permissions are 

agreed upon at installation time by the user. 
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2.2.3.2 Application sandboxing 

All installed apps on Android platform run in an application sandbox. The Android 

assigns a unique user identifier (UID) to each app and runs it as an individual user in a 

separate process. Furthermore, each app runs in its own instance of the DVM under the 

assigned UID. This sandboxing mechanism also applies to native code contained in apps. 

However, apps from the same vendor can use a shared UID, hence basically sharing the 

sandbox. Basically, the kernel enforces security between applications via standard Linux 

features, such as UID-based permissions and process isolation. 

2.2.3.3 Application signing 

Application signing allows to identify the author of an app. Application signing is the 

first step to ensure the application sandbox mechanism; certificates are signed to ensure 

which UID is associated to which app and different apps run under different UIDs. As an 

app is installed on Android OS, the system verifies that the app has been properly 

certified. 

2.2.3.4 Secure inter-process communication 

In Android platform, processes can communicate by using any of the standard UNIX-

style mechanisms. Android platform also provides new Inter-Process Communication 

(IPC) mechanisms that includes binder, intents, services and content providers. Binder is 

a lightweight remote procedure call mechanism that is designed for high-performance in-

process and cross-process calls. Services can provide interfaces directly accessible using 

Binder. 

2.2.3.5 SELinux 

Android employs Security-Enhanced Linux (SELinux) (Shabtai, Fledel, & Elovici, 

2010) to apply mandatory access control. SELinux is the primary Mandatory Access 

Control (MAC) mechanism built into a number of GNU/Linux distributions. 
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2.2.4 Android Security Research Trends 

Recently, a number of security extensions for Android have been proposed. Figure 2.7 

is classifying the diverse and rich literature on Android security into a comprehensive 

taxonomy of research directions.  

Android 
Security 
Research

Analysis of 
existing 

security model

Enhancing 
existing 

security model

Protection 
mechanisms

Apps analysis

Permissions

Attacks & vulnerabilities

Forensics

Malware detection/prevention

Apps plagiarism / repackaging

Third-party code

Privacy leaks detection/prevention

Context-aware access control

Fine-grained access control

Runtime policy enforcement

Domain isolation

SELinux-based

Security profiles

Fake data
 

Figure 2.7: Taxonomy of Literature on Android Security 

Two major directions can be recognized in existing studies on the current security 

model of Android (Enck, 2011). Some researchers focus on the protection mechanisms 

while others analyse the apps themselves. When it comes to the Android security model, 

one of the most obvious and common targets for research studies is the permissions 

system. Researchers have covered several aspects related to permissions. Few works have 

explained the permission system (Felt, Chin, Hanna, Song, & Wagner, 2011), while 

others have analysed them (Au, Zhou, Huang, & Lie, 2012; Barrera, Kayacik, van 

Oorschot, & Somayaji, 2010; Sarma et al., 2012; Shin, Kiyomoto, Fukushima, & Tanaka, 

2010; R. Stevens, Ganz, Filkov, Devanbu, & Chen, 2013). Other studies have questioned 
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their effectiveness (Felt, Greenwood, & Wagner, 2011; Orthacker et al., 2011), and also 

their usability (Felt, Ha, et al., 2012; Kelley et al., 2012). Yet, further research proposed 

improvements to the permission system itself (Do, Martini, & Choo, 2014; Fragkaki, 

Bauer, Jia, & Swasey, 2012; Jeon et al., 2012; Shen et al., 2014). In addition, research on 

permissions includes attempts to guide developers on how to request the right permissions 

(Vidas, Christin, & Cranor, 2011) as well as guidelines for platform designers (A. M. A. 

Al-Haiqi, 2015; Felt, Egelman, Finifter, Akhawe, & Wagner, 2012). 

One of the most infamous attacks on the Android platform is the privilege escalation 

attack. In this attack, an app that lacks enough permissions can delegate the performance 

of a task that needs missing privileges to another app with the necessary permissions. 

This attack has been analysed in many studies (Davi et al., 2011; Felt, Wang, Moshchuk, 

Hanna, & Chin, 2011; Marforio, Ritzdorf, Francillon, & Capkun, 2012). Another type of 

studied attacks include the exploitation of various vulnerabilities, such as those at the 

level of system design (Lee, Lu, Wang, Kim, & Lee, 2014) and the level of managing 

package updates (Xing, Pan, Wang, Yuan, & Wang, 2014).  

Examples of other miscellaneous attacks include the exploitation of external device 

mis-bonding (Naveed et al., 2014), the usr-interface state inference attack  (Chen, Qian, 

& Mao, 2014), the denial-of-app attack (Arzt, Huber, Rasthofer, & Bodden, 2014), and 

the attack on the WebView component (Luo, Hao, Du, Wang, & Yin, 2011). Furthermore, 

Android forensics received a lot of attention as well (Hoog, 2011; Lessard & Kessler, 

2010; Spreitzenbarth, 2011), examples include forensic methods of collection and 

acquisition (Simão, Sícoli, Melo, Deus, & Sousa Júnior, 2011; Vidas, Zhang, & Christin, 

2011), methods for analysing the file system (Quick & Alzaabi, 2011; Schmitt, 2011), 

and techniques to counteract the forensic methods (Albano, Castiglione, Cattaneo, & De 

Santis, 2011; Distefano, Me, & Pace, 2010; Karlsson & Glisson, 2014). 
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Malicious apps (malware) are the main vehicle to implement threats on the Android 

platform. Therefore, many research studies can be classified under the category of 

malware analysis (Felt, Finifter, Chin, Hanna, & Wagner, 2011; Yan & Yin, 2012; Y. 

Zhou & Jiang, 2012). Other studies focused on malware detection (Aafer, Du, & Yin, 

2013; Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014; Bläsing, Batyuk, Schmidt, 

Camtepe, & Albayrak, 2010; Burguera, Zurutuza, & Nadjm-Tehrani, 2011; Enck et al., 

2009; Gorla, Tavecchia, Gross, & Zeller, 2014; M. Grace, Zhou, Zhang, Zou, & Jiang, 

2012; Sanz et al., 2013; Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012; 

Weichselbaum et al., 2014; D.-J. Wu, Mao, Wei, Lee, & Wu, 2012; W. Zhou, Zhou, 

Grace, Jiang, & Zou, 2013; Y. Zhou, Wang, Zhou, & Jiang, 2012). Few researchers even 

evaluated malware detectors (Maggi, Valdi, & Zanero, 2013; Rastogi, Chen, & Jiang, 

2013; Zheng, Lee, & Lui, 2012).  

The analysis of Android apps revealed new types of threats, such as apps repackaging 

(Crussell, Gibler, & Chen, 2012, 2013; Gibler et al., 2013; Hanna et al., 2012; Linares-

Vásquez, Holtzhauer, Bernal-Cárdenas, & Poshyvanyk, 2014; W. Zhou, Zhang, & Jiang, 

2013; W. Zhou, Zhou, Jiang, & Ning, 2012). Another example of new threats is the 

problem of embedded third-party code (Sun & Tan, 2014), especially threats from 

advertisement libraries (M. C. Grace, Zhou, Jiang, & Sadeghi, 2012; Pearce, Felt, Nunez, 

& Wagner, 2012; Shekhar, Dietz, & Wallach, 2012; Zhang, Ahlawat, & Du, 2013). 

Malware is not the only threat that apps can impose on users. Apps might leak users’ 

sensitive data unintentionally. This type of apps is sometimes referred to as grayware. 

Techniques to protect privacy were addressed by many research works. One of the most 

common techniques is the concept of information-flow tracking. In this technique, private 

data are tainted and then traced throughout its flow in the app. The flow is logged and 

possibly blocked whenever a labelled object moves from a private domain to a public 
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domain (e.g., transferred out through the network). A famous implementation of this type 

of techniques is TaintDroid (Enck et al., 2014). Other examples of dynamic taint tracking 

can be found in (Gilbert, Chun, Cox, & Jung, 2011; Hornyack, Han, Jung, Schechter, & 

Wetherall, 2011; Mollus, Westhoff, & Markmann, 2014; C. Zheng et al., 2012).  

Another technique to detect leakage of private data is the static analysis of the source 

code of Android apps after decompilation (Arzt, Rasthofer, et al., 2014; Chan, Hui, & 

Yiu, 2012; Chin, Felt, Greenwood, & Wagner, 2011; Fuchs, Chaudhuri, & Foster, 2009; 

M. C. Grace, Zhou, Wang, & Jiang, 2012; Z. Yang & Yang, 2012). Additional techniques 

include symbolic execution (Z. Yang et al., 2013), instrumentation of byteode (Bartel, 

Klein, Monperrus, Allix, & Le Traon, 2012; Karami, Elsabagh, Najafiborazjani, & 

Stavrou, 2013) and repackaging apps (Berthome, Fecherolle, Guilloteau, & Lalande, 

2012). 

Aside from examining protection mechanisms and analyzing available apps, 

significant portion of the research on Android security proposes various enhancements to 

its security model. Several studies proposed enhancements to extend the current platform 

in the form of new frameworks. Those enhancements aimed to improve several aspects 

of the system’s security and the user’s privacy. For example, Saint (Ongtang, 

McLaughlin, Enck, & McDaniel, 2012) proposes a framework to control grants of install-

time permissions and the use of those granted permission during runtime, all according 

to a policy dictated by the app developer. Other frameworks that enhance runtime policy 

include Apex (Nauman, Khan, & Zhang, 2010), Aurasium (R. Xu, Saïdi, & Anderson, 

2012) and AppGuard (Backes, Gerling, Hammer, Maffei, & von Styp-Rekowsky, 2014). 

Another way to improve Android security is to provide context-aware privacy. Among 

the works that proposed the latter are (Bai, Gu, Feng, Guo, & Chen, 2010; Chakraborty 

et al., 2014; Conti, Nguyen, & Crispo, 2011). Other works extended the security model 
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with fine-grained access control (Bugiel, Heuser, & Sadeghi, 2013; Russello, Crispo, 

Fernandes, & Zhauniarovich, 2011; Y. Zhou et al., 2011). One solution enables the users 

to reply to apps’ requests with empty or unavailable resources, based on certain conditions  

(Beresford, Rice, Skehin, & Sohan, 2011). Yet another way to improve the security model 

is by implementing isolation between several security domains (Bugiel, Davi, 

Dmitrienko, Heuser, et al., 2011), by providing different security profiles (Zhauniarovich, 

Russello, Conti, Crispo, & Fernandes, 2014), or by enabling differentiated user access 

control (Ni, Yang, Bai, Champion, & Xuan, 2009). SELinux-based mandatory access 

control was also added to the Android architecture (Bugiel, Heuser, & Sadeghi, 2012; 

Shabtai et al., 2010).  

It might be worthy to note, however, that comprehensive surveys on that rich Android 

security literature are very limited and many times outdated (Becher et al., 2011; Enck, 

2011; La Polla, Martinelli, & Sgandurra, 2013). Table 2.1 summarizes existing security 

solutions on Android. 

Table 2.1: A Summary of Existing Android Security Proposals in the Literature  

System Reference Technique(s) 
Used 

Brief Description 

Kirin (Enck et al., 
2009) 

Rule-based 
system 

The Kirin security service is proposed to perform 
lightweight certification of apps to mitigate malware at 
install time. Kirin security service uses a set of security 
rules on apps’ requested permissions to detect matched 
malicious permission requests and characteristics. Kirin 
extracts the permissions from an app’s manifest file at 
install time, and checks whether these permissions are 
breaking certain security rules. Kirin uses a variant of 
security requirements engineering techniques to perform 
in-depth security analysis of Android platform to develop 
a set of security rules that match malware characteristics. 

APEX (Nauman et 
al., 2010) 

Rule-based 
policy 

Apex is a comprehensive policy enforcement framework 
for Android platform, which allows a user to selectively 
grant permissions to different apps, and impose 
constraints on the usage of resources. Users can define 
their constraints through a simple interface of the 
extended Android installer called Poly. 
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Table 2.1, Continued 

System Reference Technique(s) 
Used 

Brief Description 

Paranoid 
Android 

(Portokalidi
s, 
Homburg, 
Anagnostak
is, & Bos, 
2010) 

Misuse 
detection 

This system is cloud-based detection framework that 
performs security checks on a remote server. This server 
hosts exact replicas of user smartphones in separate 
virtual machines. The novelty of Paranoid Android is to 
move the process of security checks from the mobile 
device to a cloud server. The reason behind this is the lack 
of adequate computational power and battery energy on 
mobile platforms. 

Porscha (Ongtang, 
Butler, & 
McDaniel, 
2010) 

Rule-based 
policy, secure 
delivery 

Porscha focuses on the protection of contents based on 
Digital Rights Management (DRM), such as MP3-based 
MMS or email. This system places reference monitors 
and content proxies within the middleware to enforce 
DRM policies embedded in the received content. The 
primary goal of the system is to improve the enforcement 
of DRM policy and ensure that protected content is only 
accessed by authorized parties and is only accessible by 
apps that are endorsed by the provider. In addition, 
Porscha ensures the ability to access contents under 
policy-defined contextual constraints (e.g., time 
limitation, a maximum number of viewings, etc.). 

AppFence (Hornyack 
et al., 2011) 

Dynamic taint 
analysis, 
resource-
access 
mocking 

AppFence provides a mechanism to impose privacy 
controls on existing (unmodified) Android apps. 
AppFence provides a data shadowing mechanism to 
prevent apps from accessing sensitive information that is 
not required to perform user-desired functionalities, and 
it also provides an exfiltration blocking mechanism to 
block outgoing communications tainted by sensitive data. 
Both of these privacy controls are used to limit an app’s 
misuse of user sensitive data. 

QUIRE (Dietz, 
Shekhar, 
Pisetsky, 
Shu, & 
Wallach, 
2011) 

Call-chain 
propagation 

QUIRE deals with attacks based on inter-component 
communication. This system employs a call-chain 
tracking technique that provides important contexts in the 
form of provenance and OS managed data security to 
local and remote apps communicating by IPC and RPC 
respectively. 

CRePE 
 

(Conti et 
al., 2011) 

Rule-based 
policy 

CRePE is a system to enforce fine-grained policies in the 
Android platform based on the smartphone’s context (i.e., 
the status of some variables such as location, time, noise, 
light, and temperature). Users or trusted third parties are 
allowed to define fine-grained context-related policies in 
the CRePE system. 

TISSA (Y. Zhou et 
al., 2011) 

Resource-
access 
mocking 

TISSA implements a privacy mode on Android, which 
allows a user to flexibly control, what types of private 
information will be accessible to an app. Further, users 
can dynamically (re)adjust the granted access at runtime 
in a fine-grained manner to achieve their specific desired 
functionalities. 
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Table 2.1, Continued 

System Reference Technique(s) 
Used 

Brief Description 

TrustDroid (Bugiel, 
Davi, 
Dmitrienko
, Heuser, et 
al., 2011) 

Domain 
isolation 

This is a security framework that provides a lightweight 
domain isolation on each layer (i.e., middleware layer, 
kernel layer, and network layer) of the Android software 
stack, in order to mitigate unauthorized data access and 
communication among apps. TrustDroid isolates data as 
well as apps of different trust levels in a lightweight 
fashion. Basically, it provides app and data isolation by 
controlling the main communication channels in Android: 
IPC, databases, files and socket connections. 

MockDroid (Beresford 
et al., 2011) 

Resource-
access 
mocking 

MockDroid grants fake permissions to protect private 
data and allows users to provide fake or ‘mock’ data to an 
app interactively, while the app is being used. Users are 
allowed to revoke access to particular resources at 
execution time. 

Crowdroid (Burguera 
et al., 2011) 

Anomaly 
detection 

This is a behaviour based malware detection system. It 
detects anomalously behaving apps through a 
crowdsourcing framework. Crowdroid analyses the 
behaviour of Android apps to differentiate between the 
apps that have identical names and versions, but behave 
differently.  

ComDroid (Chin et al., 
2011) 

Static analysis ComDroid is a mechanism to discover vulnerabilities 
related to communication between apps. Because many 
of such vulnerabilities caused by the ability of intents to 
implement both intra and inter-app communication, this 
system examines interactions between apps and detects 
risks that might arise in app components. Types of 
possible vulnerabilities include phishing, data loss, and 
other unexpected behaviors. 

XManDroid (Bugiel, 
Davi, 
Dmitrienko
, Fischer, & 
Sadeghi, 
2011) 

ICC & 
channel 
control 

XManDroid is a security framework that mitigates 
privilege escalation attacks. It extends the monitoring 
mechanism of Android OS to detect and prevent app-level 
privilege escalation attacks at run-time based on system-
centric policy. XManDroid monitors all interactions 
between apps and dynamically analyses the apps’ 
transitive permission usage. The communication links 
that are being monitored should pass verification process 
against a set of policy rules. In the end, depending on pre-
defined policies, the system allows for an effective 
detection of (covert) channels established through the 
Android system services and content providers, while 
simultaneously optimizing the rate of false positives. 

RiskRanker (M. Grace 
et al., 2012) 

Static analysis RiskRanker is an automated system to analyse whether a 
particular app exhibits dangerous behaviour. It is a 
proactive scheme to spot zero-day Android malware. 
RiskRanker tries to measure potential security risks 
caused by untrusted apps. 
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Table 2.1, Continued 

System Reference Technique(s) 
Used 

Brief Description 

Saint (Ongtang et 
al., 2012) 

Rule-based 
policy 

Saint is another work that allows app developers to 
provide security policies to be enforced in order to 
regulate installation-time permission assignment and 
their run-time use. Saint introduces a fine-grained, 
context-aware access control model to enable developers 
to install policies that protect the interfaces of their apps. 
Though Saint could, with a corresponding system centric 
policy, provide the isolation of apps on direct and 
broadcast ICC, it cannot prevent indirect communication 
via system components. 

FlaskDroid (Bugiel, 
Heuser, et 
al., 2012) 

MAC FlaskDroid is a general architecture for ensuring 
Mandatory Access Control (MAC) on both Android’s 
middleware and its kernel layer simultaneously. This 
architecture provides an effective and flexible security 
mechanism to setup various security solutions and fine-
grained policies. The authors of the architecture designed 
a policy language that was inspired by SELinux 
(Loscocco & Smalley, 2001) in order to extract 
customized operational semantics at the Android 
middleware. 

DroidScope (Yan & 
Yin, 2012) 

Dynamic 
analysis 

DroidScope is an Android analysis platform that inspects 
apps and builds semantic views at both the operating 
system and Java levels. This platform is a dynamic virtual 
machine introspection tool that is based on QEMU 
emulator (Bellard, 2005) with custom analysis plugins in 
the form of defined APIs. To collect apps’ activities and 
trace executions, this system exports APIs of three 
different types: APIs at the application framework layer, 
APIs at the hardware layer, and APIs at the Dalvik Virtual 
Machine layer. 

DroidRanger (Y. Zhou et 
al., 2012) 

Static & 
dynamic 
analyses 

DroidRanger is an analysis system to detect existing and 
known malware as well as unknown malware, usually 
named as zero-day threats. DroidRanger detect known 
malware using behavioral foot-printing scheme based on 
permissions. For detecting zero-day malware, 
DroidRanger applies a filtering scheme based on 
heuristics in order to find specific inherent behaviors of 
unknown malware families. 

DroidMOSS (W. Zhou et 
al., 2012) 

Fuzzy 
hashing 

DroidMOSS is an app similarity measurement system. It 
applies a fuzzy hashing technique (French & Casey, 
2012; Server, 2007) to localize and detect the changes 
from app-repackaging behaviour. Basically, the main 
function of DroidMOSS is to detect repackaged apps on 
third-party Android marketplaces. They measure the 
similarity of apps that are collected from third-party 
Android marketplace with the apps from the official 
Android markets. 
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Table 2.1, Continued 

System Reference Technique(s) 
Used 

Brief Description 

AppGuard (Backes, 
Gerling, 
Hammer, 
Maffei, & 
von Styp-
Rekowsky, 
2013) 

Binary 
rewriting 

AppGuard enforces security-related policies on untrusted 
apps, which are customized by the users. This system 
employs inline reference monitoring to allow users of 
enforcing security policies defined by them on third party 
apps. AppGuard controls both third-party apps and the 
operating system itself. 

AppInk (W. Zhou, 
X. Zhang, 
et al., 2013) 

Dynamic 
watermarking 

AppInk is mechanism for dynamic watermarking based 
on graphs. The purpose of this mechanism is to mitigate 
app repackaging. This tool generates a new app from the 
source code of one app with a watermark value. The 
generated app has a transparent embedded watermark and 
an associated manifest file. 

TaintDroid (Enck et al., 
2014) 

Dynamic taint 
analysis 

TaintDroid is a system that tracks data flow and allows 
users to analyze flows of sensitive data. This system 
enables expert users to detect misbehaving apps, by 
automatically tainting sensitive data in the smartphone in 
order to trace them and find out whether the labeled data 
leave the device. In the latter case, the label of the leaked 
data is recorded along with the app which sent the data 
and the destination address. 

NativeGuard (Sun & 
Tan, 2014) 

Native code 
isolation 

NativeGuard is a framework that uses the system-
provided isolation between Android processes to sandbox 
native libraries of an app from other components of the 
app. 

 

2.2.5 Issues in Android Security  

A key component of the Android security model is the permission system that controls 

the access to sensitive device resources by third-party apps. However, Android’s 

permission control mechanism has been proven ineffective to protect user’s privacy and 

resource from malicious apps (Rashidi & Fung, 2015). Further, it has been shown that the 

majority of smartphone apps attempt to collect data that are not required for the main 

function of the app (Gunasekera, 2012; Rashidi & Fung, 2015). Reasons for the 

drawbacks of the existing permission system include users inexperience with realizing 

irrelevant resource requests and their urge to use the app even at the expense of 
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compromising their privacy (Felt, Chin, et al., 2011; Felt, Ha, et al., 2012; Rashidi & 

Fung, 2015). 

Further, vulnerabilities in Android kernel can be exploited to obtain access to 

resources or services that are by default protected from an app or a user. This type of 

attack is called privilege escalation attack and it enables unauthorized apps to perform 

actions with more privileges than they have been granted. This, in turn, leads to 

unauthorized access to user data and many sensitive information leakages. It is also 

possible to exploit Android exported (i.e. public) components an obtain access to critical 

permissions, and hence, to sensitive resources and information (Davi et al., 2011; Rashidi 

& Fung, 2015). 

There is also the threat of colluding apps, where several apps are developed by the 

same developer, and therefore released under the same certificate. Users install theses 

apps, some of which are granted sensitive permissions and others are granted normal 

ones. Afterwards, each of these apps gets access to the combined pool of their permissions 

and resources because they are all assigned the same UID (Marforio, Francillon, & 

Capkun, 2011; Rashidi & Fung, 2015). 

Android platform lacks a configurable, runtime ICC control. This was a design 

decision to fulfil several purposes. The first purpose is to prevent an app from accessing 

any open interfaces of another app, even if the former had obtained the required 

permissions at its install time (Chin et al., 2011; Felt, Wang, et al., 2011; Tan, Chua, & 

Thing, 2015). The second objective is to prevent an app from intercepting an intent 

broadcast, and possibly stopping its propagation afterward (Chin et al., 2011; Tan et al., 

2015). By intercepting system-event broadcasts, a malicious app is able to intercept 

important system events stealthily, which contain sensitive information, such as an 

incoming call or SMS. A third purpose is to isolate apps and prevent them from 
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communicating via ICC and other shared channels (Bugiel, Davi, Dmitrienko, Fischer, et 

al., 2011; Bugiel, Davi, et al., 2012; Tan et al., 2015). However, this lack of runtime inter-

app access control can lead to data leakage and confused deputy problems. The presently 

uncontrolled ICC among apps in Android can be exploited by colluding apps. 

Moreover, an Android device has several identifiers that can be used as a unique device 

ID, such as IMEI, Android system ID, or hardware serial number (Tan et al., 2015). As 

Android devices are prone to information leakage, if this device ID is also leaked, external 

parties can track the user easily. 

Even outside the Android middleware, there exist potential security weaknesses that 

could compromise the security of an Android device. In particular, potential security 

weaknesses or vulnerabilities can be located at the Linux kernel and its native libraries 

(Loscocco & Smalley, 2001; X. Zhou et al., 2013). Also, weaknesses and vulnerabilities 

can be associated with device manufacturers’ customization and preinstalled apps (M. C. 

Grace, Y. Zhou, et al., 2012; Tan et al., 2015; L. Wu, Grace, Zhou, Wu, & Jiang, 2013; 

X. Zhou, Lee, Zhang, Naveed, & Wang, 2014). 

2.3 Security and Privacy of mHealth Apps 

This section provides the most relevant and related work in the literature to the 

problem of mHealth-apps’ security and privacy, starting with a review of the main 

security and privacy threats to mHealth apps, then presenting the results of an 

experimental assessment of sample mHealth apps, and then ending with a critical analysis 

of existing solutions. 

2.3.1 Threats to mHealth Apps 

Although mHealth apps provide a lot of benefits and easy access to healthcare services, 

they are loaded with new security and privacy risks to mHealth app user (Avancha et al., 

Univ
ers

ity
 of

 M
ala

ya



52 

 

2012; Kotz, Avancha, & Baxi, 2009; Poon, Zhang, & Bao, 2006). Smartphone apps for 

healthcare are rapidly increasing. There are several types of mHealth apps, some are using 

external devices such as medical sensors, and some apps are using smartphone resources, 

such as the camera for the treatment of the patient. Recently, several studies showed that 

lack of standardization, guidelines, security and privacy of user data are the main barrier 

to the widespread use of mHealth apps, and these issues should be addressed in order to 

improve mHealth apps reliability and usability (Adhikari et al., 2014; Faudree & Ford, 

2013; Kharrazi et al., 2012). 

The market of mHealth apps is nevertheless growing rapidly; hence, health data are 

also increasing. Privacy and security of sensitive medical data could be significantly 

affected by this new trend of treatment of the patient. mHealth apps handle sensitive 

medical data for patients and healthcare professionals, and those data are as sensitive as 

those handled by HIPAA entities, but mHealth apps handle the data using lower assurance 

than HIPPA entities. There is a need to develop frameworks and guidelines for mHealth 

apps to ensure the security and privacy of health data (He et al., 2014). 

Android mHealth apps use third party servers and unsecured Internet communication 

which have raised the security and privacy concerns. He et al (2014) revealed that several 

mHealth apps send information over the Internet without encryption and put sensitive 

information into logs. Numerous apps have component exposure threats, and some apps 

store unencrypted information on an external storage, e.g., SD Card, where a malicious 

app can read them. Several mHealth apps use Bluetooth in order to collect data from 

health or medical sensors. In fact, Bluetooth play a major role for communication in  

sensor-based health monitoring systems; mHealth apps collect numerous types of health 

information from Bluetooth, such as electrocardiogram (ECG), heart rate, pulse oximetry, 

respiration, blood pressure, body temperature, body weight, exercise activities and quality 
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of sleep (He et al., 2014). mHealth apps store various type of information without 

encryption, including but not limited to, mobile users’ name, date of birth, country, 

preferred language(s), culture  preference(s), insurance carrier identifier, personal app 

identifier, medications, medical conditions, physician(s), and pharmacies (Mitchell et al., 

2013). 

mHealth apps are different from other health information systems from various 

perspectives. First, mHealth apps collect large amount of data from patient because 

mobile devices are always with the patient and can collect data for a long time. Second, 

mHealth apps collect much broader range of data, which include not only physiological 

data, but also include the patient activities, location, lifestyle, social interactions, diet 

details, eating habits and so on. Third, the nature of communication between the patient 

and healthcare professionals is different (He et al., 2014). These aspects imposed new 

security and privacy threats to mHealth information systems. 

There are several potential attack surfaces in Android system that a malicious party 

can use to gain unauthorized access to sensitive medical data in mHealth apps. A recent 

study (He et al., 2014) stated seven attack surfaces that need protection: Third Party 

Services, Internet, Logging, Bluetooth, SD Card Storage, Side Channels and Exported 

Components. mHealth apps in Google Play usually send sensitive medical data in plain 

text and store them on third party servers whose confidentiality rules are not sufficient 

for this type of data (He et al., 2014). Table 2.2 lists the seven attack surfaces that a 

malicious party can use to access sensitive medical data. 

Developers can view and collect debugging output of apps from Android logging 

system; therefore, a malicious app with READ_LOGS permission may access sensitive 

information from log messages. A malicious app with WRITE_EXTERNAL_STORAGE 

or READ_EXTERNAL_STORAGE permissions can write or read files from external 
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storages, such as SD card (He et al., 2014). Android app developers can declare a 

component as public or exported; if a component is declared as exported, then a malicious 

app can send unwanted intents to the component. Furthermore, if a content provider is 

declared as exported or public, this enables malcious apps to write or read the exported 

content provider without any permission (He et al., 2014). A malicious party can also use 

side channels to get sensitive information from mHealth apps in the Android operating 

system (He et al., 2014). 

Table 2.2: Description of Attack Surfaces (He et al., 2014) 

Attack Surface Description 
Internet Sensitive information is sent over the internet with insecure protocols, e.g. 

HTTP, misconfigured HTTPS, etc. 
Third Party Sensitive information is stored in third party servers 
Bluetooth Sensitive information collected by Bluetooth-enabled health devices can be 

sniffed or injected 
Logging Sensitive information is put into system logs where it is not secured 
SD Card Storage Sensitive information is stored as unencrypted files on SD card, publicly 

accessible by any other app 
Exported 
Components 

Android app components, intended to be private, are set as exported, making 
them accessible by other apps 

Side Channel Sensitive information can be inferred by a malicious app with side channels, e.g. 
network package size, sequence, timing, etc. 

 

He et al. (2014) identified another problem.  Developers usually put sensitive 

information into HTTPS URLs for secure transmission of data. However, even though 

this information is not visible during transmission, it is still visible in other places, such 

as server logs, mobile app logs, browser history and so on. It may be difficult to identify 

or control who is accessing the logs. Mitchell et al (2013) used forensic analysis and 

testing to prove that current mHealth apps lack adequate privacy and security controls. 

The authors revealed that several apps store unencrypted personal information on the 

smartphone itself. The log files show plain text instead of encrypted text from top-

downloaded app.  
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These issues are more important for mHealth apps that store personal health 

information (PHI) or electronic health records (EHR) and exchange that data with health-

related websites (Mitchell et al., 2013). Data security, access control and confidentiality 

are the main security issues in mHealth apps that must be addressed in order to use these 

apps in healthcare system (Adhikari et al., 2014; He et al., 2014; Mitchell et al., 2013). 

Security standards have not yet been fully implemented by OS developers, app 

programmers, device manufacturers or the different levels of government agencies; 

therefore, it is very easy for malicious parties to get access to user data collected by 

mHealth apps. OS manufacturers commonly hide information relating to data security 

and data collection policies inside the tens of pages of legalese presented to end users and 

they usually click “Agree” without reading it (Mitchell et al., 2013). 

McCarthy (2013) reported that most of the users’ data are poorly protected in mHealth 

apps. The author also reported that in a technical analysis study of 43 health and fitness 

apps, only 60% of the paid apps and 74% of the free apps had a privacy policy, and it is 

accessible either on the developer’s website or in the app. However, only 48% of the paid 

apps and 25% of the free apps informed users about the privacy policy. In addition, none 

of the free apps and just one of the paid apps encrypted all the communications sent from 

the device to the developer. The data without encryption in mHealth apps pose a serious 

threat to users’ data privacy. 

Adhikari et al. (2014) performed analysis on 20 most popular mHealth apps and 

highlighted the various security concerns. In brief, the serious risks to users’ data are 

insufficient security measures, lack of users’ authentication, sharing of information with 

third party, and lack of users’ knowledge about the app. 
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Nowadays, users can easily enhance the functionalities of their smartphones by 

connecting them to external devices, such as medical devices, sensors and credit card 

readers, which allow them to use smartphones in various application domains such as 

healthcare information systems and retail stores. However, this new development is not 

accompanied by a corresponding levels of protection; indeed, if an app has permission to 

use communication channels like Near Field Communication (NFC) and Bluetooth, then 

it can easily access the devices that communicate with the smartphone on these channels 

(Naveed et al., 2014).  

Android’s permissions and sandbox security model mainly protect local resources, 

such as SD-card, GPS, etc. Each of these resources is protected through one or more 

permissions, and can only be accessed by Android apps that have appropriate permissions 

to use particular resources. On the other side, no permissions are allocated to an external 

device; however, android can only control channels that links smartphone to external 

device, such as NFC, Bluetooth, Audio port, etc. The main problem here is that many 

external devices share the same channel in order to communicate with smartphone and 

many apps also claim the permission to use that channel for different purposes. 

Consequently, it is very difficult to control unauthorized access on external devices in the 

presence of those insiders (unauthorized apps that has permission to use the device’s 

communication channel). Naveed et al. (2014) revealed this new security issue for 

Android devices called as External Device Mis-Bonding (DMB).  

A malicious app using DMB attack can surreptitiously collect patient’s data from an 

Android device or spoof a device and inject fake data into the original device’s medical 

app. In data-stealing attack, a malicious app with Bluetooth permission can surreptitiously 

downlaod a patient’s sensitive data from external devices without being noticed, using 

side-channel infromation to find the right moment for download. In data-injection attack, 
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a malicious app with Bluetooth permission can collect the pairing information of an 

authorized device and reset the link key, and it can pair with a malicious device to inject 

fake medical data into the original device’s official app. In fact, Bluetooth secure 

communcation is designed for protecting device to device communication, not to protect 

communcation between a device and an app (Naveed et al., 2014). External devices may 

not develop their own authentication systems because these are simple sensors and 

usually do not have much resources to ensure authentication. 

Some of the most common threats to mHealth apps are defined in (Kotz, 2011). Those 

threats include: (1) identity threats: misuse of patient identity information (PII); (2) 

Access threats:  unauthorized access to personal health information (PHI) or personal 

health records (PHR); and (3) Disclosure threats: unauthorized disclosure of PII or PHI. 
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Figure 2.8: A Three-Dimensional Model for Classifying mHealth Apps in Terms of 
Security and Privacy Concerns (Plachkinova et al., 2015) 

Plachkinova et al. (2015) report the various types of threats that mHealth app are 

posing to users. A taxonomy of mHealth apps with respect to security and privacy is 

proposed by (Plachkinova et al., 2015), and it has three dimensions, as shown in Figure 
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2.8. Figure 2.9 depicts the proposed taxonomy based on the model in Figure 2.8. Details 

can be found in (Plachkinova et al., 2015). 
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Figure 2.9: A Taxonomy of mHealth Apps - Security and Privacy Concerns 
(Plachkinova et al., 2015) 

2.3.2 An Empirical Assessment of mHealth Apps’ Security 

To gain a first-hand experience with the security and privacy of mHealth apps, we 

conducted an assessment experiment on mHealth apps. A sample of 100 mHealth apps 

has been selected, downloaded, and inspected to identify possible security and privacy 

issues. Figure 2.10 presents the results of this experiment, summarising the issues that 

have been found on the sample mHealth apps. During the experiment, it was observed 

that a lot of apps were disclosing the user data (73 out of 100). Only 11 apps out of 100 

were accessing the external devices, and when checked against DMB attacks (for both 

data injection and data stealing DMB attacks), not a single app was able to defend against 

DMB attacks. Furthermore, 53 apps were a source for a malicious app to perform 

privileges escalation attacks. Only 7 apps were using the encryption to secure user data. 

Some apps were accessing user information that was not necessary at all to fulfil their 

functionalities. Only, 45 percent of the apps were using authentication to secure user 

information. 
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Among these 100 apps, 73 were detected to be leaking the private information. Most 

of those apps request to access the location, contacts, call logs, phone identity, camera, 

account information and Bluetooth. Among the 73 apps, 48 apps leak the location 

information, 43 apps send the IMEI number, and 24 apps leak both IMEI number and 

location information. Although 32 apps are accessing the contacts, most of them do not 

need contacts to perform their functions. Further, 21 apps have permission to access 

Bluetooth, which can cause DMB attack. 

 
Figure 2.10: Security and Privacy Analysis of Sample mHealth Apps 

2.3.3 Existing Solutions for mHealth Apps’ Security 

Attempting to resolve security issues in mHealth apps is the focus of this thesis. This 

section presents the most related proposals in the literature, which attempt to address the 

problems of security and privacy for mHealth apps. It is notable that the number of 

existing proposals is small, despite the importance of the topic. Below is a listing of those 

works. 
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A policy framework is proposed in (Mitchell et al., 2013), which includes the 

following guidelines to improve the security and privacy for mHealth apps: 

• CONTEXT: Provide details about the applications, its capabilities and 

limitations, and its use of patient information. 

• MINIMIZATION: Minimize the amount of information that is collected 

from/about the patient. 

• INFORMED CONSENT/AWARE-PATIENT: The patient should be made 

aware of how the information will be used and has been used by the application. 

A more aware patient is likely to make better decisions about trade-offs 

involving information privacy-security and healthcare benefits. 

• OWNERSHIP: The ownership of the information should be well defined 

meaning who owns the user data even in anonymous form. 

• DELETION-AFTER-DEACTIVATION: If a patient has deactivated an 

application, all information about/from the patient should be deleted. 

• SECURE STORAGE: The information should be kept securely at device, 

server or cloud. To reduce transmission over wireless networks, information 

that is subject to change can be stored locally, while more static information can 

be kept at a server. 

• END-TO-END: Various weak points in the end-to-end security should be 

identified and efforts be made to correct these weaknesses in applications, 

devices, operating systems, networks, servers, among others. 

This policy framework is a set of guidelines to follow for the developers and users. 

These recommendations were developed based on the results of conducting a physical 

forensics analysis of several widely used mHealth applications. 

Univ
ers

ity
 of

 M
ala

ya



61 

 

Another security and privacy solution for mHealth apps was proposed by (Adhikari et 

al., 2014). Again, the authors proposed a set of recommendations to consumers and 

mHealth app developers that can be found in Table 2.3. The proposed guidelines are based 

on a comparative analysis of the 20 most popular mHealth apps at the time of publication. 

The aim of the analysis was to identify risk and safe features that can help consumers 

select safe mHealth apps and aid developers in building mHealth apps with appropriate 

security and privacy measures. 

Table 2.3: Recommendations to Consumers and Application Developers (Adhikari 
et al., 2014) 

Consumers Application developers 
Research the app before 
downloading it 

Sensitive consumers’ information should always be stored 
encrypted so that attackers cannot simply retrieve this data off 
of the file system. 

Try to use apps without entering 
personal information if permitted 

Apps should be designed to help patients through the 
evolution of a disease and provide recommendations 

Look for user reviews and the privacy 
policy of an app, either through the 
app store or online. 

Include user authentication. Provide options so user can 
safely retrieve their login details if forgotten. Only 10% or 2 
apps out of 20 apps ask for user authentication prior to log-in. 

Remove data when usage stopped. 
This may prevent unauthorised use of 
stored data when consumers no 
longer use the apps. 

Minimise sharing information with third parties or advertisers 
and ask users to confirm agreement before sharing. 65% or 
13 apps shared consumers’ information to third parties or 
advertisers. 

Give feedback on product: Users’ 
feedback on the features, privacy and 
policy, and functions of an app will 
help the developers to restructure the 
app appropriately. 

Apps should allow consumers to delete their personal 
information completely. According to the analysis only 5% 
or 1 apps mentioned in its privacy policy that consumers can 
delete information completely therefore this criterion need to 
be improved appropriately. 

 Provide user with information about the implementation of 
security measures and authentication and what how/where 
their data is stored. 

 

On a more technical level, a static taint-analysis framework was proposed by (He, 

2014a), which is shown in Figure 2.11. Static taint analysis works by analysing tainted 

data flows through Android apps and sending outputs to human analysts or to automated 

tools which can make security decisions. Again, in this research, the author also proposed 

some recommendations, listed below: 
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• Encryption is essential to secure personal data stored on mobile devices. 

• When accessing web-based services for syncing users’ sensitive data, TLS/SSL 

is necessary to be deployed throughout the Internet transmission session. 

• Even though the network transmission session is protected and encrypted, using 

third party services to store users’ sensitive data must be closely reviewed and 

users should be informed when it is happening. 

• Developer guidelines or training can be helpful in avoiding many of the 

common mistakes that are rooted from development with poor secure practices. 

• Risk assessment provided by authorities can further minimize the security risks 

that may harm users. 

Android Source 
Code Parser Source Builder Sink Builder

Call Graph BuilderTaint AnalyserAnalysis Result Entry Point Builder

 

Figure 2.11: Static Analysis System Design Framework 

In conclusion, there is no comprehensive solution for mHealth apps to address their 

security and privacy issues. Most of the research work in the literature just proposed some 

recommendations and guidelines for the developers and users of mHealth apps. This 

thesis, on the other hand, is proposing a practical framework for mHealth apps that 

protects the mHealth apps efficiently and effectively. The research in this thesis does not 

ignore previous works, however, as building an effective solution involves a range of 

functions and techniques that can be beyond the capabilities of a single project. For 

example, the taint-analysis system in Figure 2.11 is employed in this thesis as part of the 

proposed framework to provide static taint analysis of target mHealth apps. 
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2.4 Chapter Summary  

This chapter provided a broad overview of the necessary background to appreciate the 

research in this thesis, as well as the most related works in the literature. The main focus 

of the research is to produce a security framework for Android platform to address the 

security and privacy issues on mHealth apps. As such, three major sections were covered 

in the chapter: first, a comprehensive literature-based review of mHealth apps and its 

related landscape, benefits and challenges was provided. Second, the chapter presented a 

brief background on the Android platform architecture and its security model, as the main 

target platform in the thesis. Finally, the crossing of the previous two sections, mHealth 

apps and Android security issues, was discussed in detail, in terms of specific threats to 

mHealth apps, an empirical assessment of current mHealth apps, and previous proposals 

to address the security and privacy of mHealth apps. 

 

Univ
ers

ity
 of

 M
ala

ya



64 

 

CHAPTER 3:  RESEARCH METHODOLOGY 

This chapter outlines the general methodology adopted in this research study. This 

research work was divided into four distinct and successive phases, each of which are 

described in a separate section, starting from the initial preliminary study that suggested 

the need for the intended security framework (Section 3.1), followed by the design 

process of the framework (Section 3.2), and then through the implementation of a 

prototypic proof-of-concept version of the framework (Section 3.3), and finally ending 

with the evaluation process (3.4). The overall research methodology is illustrated in 

Figure 3.1. 

3.1 Phase I: Preliminary Study 

Initially, the literature in three specific fields has been investigated to find and identify 

the research problem. The problem of this thesis includes the component of mHealth apps 

from medical informatics, the research on Android security from the field of mobile 

security, and the interdisciplinary research on the security and privacy of mHealth apps. 

mHealth apps were explored for the Android platform specifically. First, a detailed survey 

has been performed on mHealth apps in the literature as well as in available online app 

stores, and the impact of apps on the healthcare system has been identified.  

Second, the existing security model of the Android platform was critically analysed to 

identify the security issues that need to be addressed. Android security architecture has 

received tremendous attention, mostly attempting to enhance system protection as a 

whole for all types of apps hat could be run on the system, and all kinds of data that could 

be stored on its internal storage. The analysis within this phase focused on a niche class 

of apps specialized in mobile healthcare. Although most apps share common concerns of 

security and privacy threats, different classes of apps might require specific requirements 

that needs to be addressed separately within the system overall security architecture. 
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Figure 3.1: Conceptual Framework of the Research 

Third, previously proposed security frameworks in the literature for Android platform 

were categorized. As of the security and privacy of mHealth apps, issues related to 

mHealth apps have been identified, similarly, medical sensors-based threats to mHealth 

apps have also been explored. Subsequently, the existing solutions to secure mHealth 
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apps were critically analysed to identify potential foundations for the current work as well 

as issues that need to be addressed, improved or extended. 

To study the security and privacy issues of mHealth apps, a practical security and 

privacy assessment has been conducted on a sample of mHealth apps by actual 

installations on Android smartphones. This experiment almost revealed the same threats 

to Android mHealth apps as found in the literature. On the basis of both the literature 

review and the experimental assessment, the research questions and objectives have been 

set for this research study. 

As discussed in the first two chapters, the result of this phase led to direct the focus of 

this research study into the development of a security framework for mHealth apps. 

3.2 Phase II: Framework Design 

The main goal of this research is to develop a security framework for mHealth apps to 

ensure the security and privacy of sensitive medical data. Based on the finding of the 

preliminary study in the previous phase, several specifications have shaped out to 

constitute the desired framework, considering the security issues of mHealth apps and the 

limited resources of mobile devices. First of all, the requirements of the security 

framework have been identified, which led to design a number of components that are 

necessary to implement the required functions, including the performance of security 

checks against installed apps, information leakage, malware, device connections, and 

similar cases. To orchestrate all those functions, there is a need for a core component to 

administer the checks, and take proper decisions probably based on a repository of 

security policies. The said components form the core of the intended framework, and 

were grouped in a single layer named as the Security Module Layer (SML).  
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Crucial to the operation of this layer is to have a low-level access as an entry point into 

the internals of the underpinning Android platform, in terms of reference monitors and 

hooks onto the various levels of the kernel, middleware as well as the application level. 

To keep the design modular, the task of interfacing the SML to the mobile operating 

system was delegated to another layer of the framework called the System Interface Layer 

(SIL). As explained in the next chapter, this layer was adopted from a previous research 

work that was leveraged to provide the necessary foundation for SML. According to this 

reasoning during the design process, the SML is required to do all the compulsory security 

functions and SIL is required to work as an integration layer between SML and the 

Android OS in order to make SML functional. 

The resulting overall design was named as MHealth Apps Security Framework 

(MASF). MASF mitigates various security and privacy threats facing by mHealth apps, 

such as data leakage, privileges escalation attacks, DMB attacks, and misuse of granted 

permissions to apps. Furthermore, to protect sensitive medical data and mHealth apps 

from different attacks, MASF provides several mechanisms that includes fine-grained 

access control, context-aware access control, and it further provides data shadowing 

mechanism to protect user private information by providing fake versions of the requested 

data when deemed necessary by the framework. MASF also enables the users to define 

their own policies according to their requirements. 

3.3 Phase III: Prototype Implementation 

For validation purposes, the framework has been implemented on a real environment. 

The implementation of MASF encompasses the two layers designed in the previous 

phase; i.e. SML and SIL. SML comprises a number of software modules that correspond 

to the various required security functions, each of which can run in the user mode. 

Besides, it also implements a database utility to store security policies, implemented in 
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Android as a SQLite local database. In addition of implementing their own logic, several 

such modules need to call special API functions to access the internals of the Android 

platform in order to interfere with the normal operation of the system. In other words, 

those security modules need to be integrated into Android.  

An integration framework was adopted from literature to work as the SIL; this helped 

in interfacing SML to the Android OS. SIL provides a platform that makes possible the 

monitoring of various references and actions made by mHealth apps, performing different 

security checks and also the enforcement of the security policies. Afterwards, the new 

framework based on both SML and SIL was compiled together within the Android source 

code into a custom Android copy, which was subsequently deployed on a real phone. 

During this process the following tools were used: Java programming language, a 

development station, a development IDE and an Android smartphone. The following 

steps describe the implementation of the framework prototype: 

1. A distribution of the Linux operating system (Ubuntu 14.04) was installed to 

establish an environment to download and install the stock Android source 

code. 

2. The source code of the stock Android operating system, version 4.3, was 

downloaded from http://source.android.c om/source/downloading.html. 

3. To enforce security checks and hooks, MASF needs an integration layer into 

the Android source, which is provided by the System Interface Layer. SIL is 

adopted from another framework in the literature called ASF, and SIL patches 

were installed into to source code of Android 4.3.  

4. MASF is programmed according to the design explained in the next chapter, 

and then installed onto the modified source code of Android. 
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5. Thereafter, this customize source code was compiled and installed into a real 

Android device. 

3.4 Phase IV: Evaluation 

In this phase of the research, MASF is evaluated and analysed in terms of effectiveness 

and efficiency. Effectiveness of this framework is evaluated by demonstrating that the 

framework can successfully protect the security and privacy of mHealth apps and its 

users. To check the effectiveness, a sample of mHealth apps has been tested against the 

various attacks. Furthermore, a number of experiments were conducted to evaluate 

functioning of MASF, such as to test effectiveness of MASF against different attacks, test 

against malwares, impact of data shadowing, impact of permission restrictions, impact of 

disabling intents, impact of enabling/disabling system peripherals. Subsequently, false 

positive and usability test were also performed on Android customised with MASF. 

On the other hand, the efficiency of MASF is evaluated by examining the performance 

overhead on the underlying Android system during the operation of the framework. To 

check the performance overhead, the following metrics were measured: CPU utilization, 

memory usage, and energy consumption. Several experiments were conducted to evaluate 

the performance of MASF. Due to the lack of publicly available implementations of 

similar frameworks, the results of MASF’s performance evaluation were compared to 

those obtained out of stock Android versions. The performance of mainstream Android 

copies is considered as a baseline against which the impact of the proposed framework’s 

impact on the system is measured. Therefore, the CPU time, memory usage and energy 

consumption of Android apps on a stock version (without MASF) are considered as the 

reference of measurement for the apps performance after installing MASF. 
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3.5 Chapter Summary 

This chapter outlines the general methodology that was adopted to carry out this 

research study. The research conceptual framework is presented in terms of four main 

phases. Each phase corresponds to a major distinct step in conducting the research in this 

thesis in producing the anticipated output. Beyond the phase of the preliminary study 

necessary to identify the research problem and main objectives, the chapter lists the major 

steps of designing the target security framework, implementing the proof-of-concept 

prototype of the framework, and then evaluating the resulting prototype against a set of 

performance criteria. The last three steps are yet to be elaborated in the next two chapters. 
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CHAPTER 4:  THE DESIGN OF “MHEALTH APPS SECURITY 

FRAMEWORK” 

This chapter presents the detailed design of the proposed MHealth Apps Security 

Framework, named as “MASF”. This framework comprises several components that are 

divided into two major layers, each of which is discussed below. Section 4.1 gives an 

overall view of the framework design. Section 4.2 is the main part of this chapter and 

contains the detailed description of the framework components. Section 4.3 describes 

some use cases of MASF, while Section 4.4 concludes the chapter. 

4.1 MASF Overall Architecture 

As discussed earlier in Chapter 2, mHealth apps are facing several security and privacy 

challenges. To participate in addressing these issues, this thesis proposes a security 

framework (MASF) that can provide special measures to protect the users of medical apps 

and their data from malicious or otherwise incompetently written mHealth apps on the 

Android mobile. In order to achieve such a goal, several functions are expected from the 

framework.  

The framework is expected to inspect apps before and during execution, starting from 

the point of installation. It is also required to provide security measures beyond the 

capability of the host system (Android in this case). For example, MASF is required to 

provide fine-grained access control to sensitive resources that is more effective than the 

coarse-grained permission system offered by Android. The concept of context should also 

be considered when controlling access to private resources or data. For example, 

collection of certain medical data is not expected at certain times or places, and the 

framework should be able to discern the allowed and disallowed actions based on the 

particular context at which the actions occur.  
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Furthermore, scenarios that are specific to mHealth apps should be paid special 

attention. For example, reading to or from medical sensors and devices should be 

monitored and checked against the current context, and against any known attacks as 

well. It is also important to enable the user of the framework to dictate a set of policies 

that is used to derive the decisions of the framework; for example, policies related to what 

actions are allowed in which context.  

In the design of MASF, several components are assigned different tasks to ensure the 

above functionality. A main component is responsible for performing the security checks 

and taking decisions related to attempted actions by the various mHealth apps in the 

system. This main part is called the manager. To support its operation, the manager refers 

to a set of software tools called checkers. These tools perform specialized checks on the 

installation of new mHealth apps, context checks, malware checks, taint analysis and 

checks related to the communication of external devices. The manager refers to a policy 

database and makes use of those special checks to form a complete idea about the 

adherence of a specific app or actions of an app to the stated policies. It then delegates 

the enforcement of the policies to an action-performer. Another component called the 

user-interactor allows the user to provide policies to protect his/her security and/or 

privacy.  

It is obvious that the functions performed by the various checkers and by the action-

performer need special access to the underlining operating system, as they interfere with 

and control low-level operations of the host system. To modularize the design of MASF, 

the above described parts including the manager and its supportive components are 

grouped in one layer, named as the Security Module Layer (SML) since it is directly 

concerned with the security-related functions, and then this layer relies on another layer 

for interfacing to the Android internal parts. This latter layer is aptly called the System 
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Interface Layer (SIL). The general structure of the proposed MASF is illustrated in Figure 

4.2. Further details on SML and SIL are given in the subsequent sections (4.2.1 and 4.2.2, 

respectively). 

 
Figure 4.1: The Overall Architecture of the Proposed Framework MASF 

4.2 MASF Layered Components 

This section details the individual components of MASF. The main two layers of 

MASF are shown in white colour in Figure 4.1. Most contributions of this thesis lie within 

the first layer (SML), for which the building blocks are shown in light grey. 
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4.2.1 Security Module Layer 

Security Module Layer (SML) is the main part of MASF, which encompasses the 

essential functions to protect the system’s security and the user’s privacy. In order to fulfil 

its purpose, this layer needs to be able to: 

• Monitor references and actions made by mHealth apps 

• Examine static and dynamic attributes of mHealth apps 

• Receive policies defined by the user of the system 

• Enforce user policies 

One or more components are dedicated for each of these function categories. Several 

modules depicted in Figure 4.1 as checkers are responsible for providing the necessary 

security checks and examinations. A user-interactor component interfaces with the user 

to receive user policies (the form of which to be defined later in this Chapter), and a 

policy-database stores them for later use by the framework. The central component that 

monitors the apps’ references and rationalise about their actions in line with the user’s 

policies then make the required decision is the manager, which enforces the made 

decisions through the action-performer. The following subsections elaborate the design 

of each of those components. 

4.2.1.1 Security checkers 

Security checkers are used by the manager to essentially provide necessary 

information for making security decisions. In order to provide such information, a 

checker might perform operations such as simple collection of sensor data, up to 

sophisticated analysis of the apps code or behaviour. Five types of checks are deployed 

in SML. The corresponding checkers are explained below. 
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 Context checker 

According to (Conti et al., 2011), a context could be defined as one of the following 

aspects: status of some variables (e.g., time, geographical location, temperature, light and 

noise), the presence of other devices and sensors, a particular type of interaction between 

the smartphone and user, or a combination of all these aspects. Some security rules 

depend on the context. In MASF, only time and geographical location are considered for 

context-aware access control.  

The context-checker is responsible for detecting, reporting and thenceforth updating 

the context of the device and its apps. This job requires the context-checker to subscribe 

to Android system services, such as the LocationManager. Basically, this type of checks 

is based on the concept of context-aware access control. The context-checker collects the 

physical location parameters (GPS, Cell ID, Wi-Fi parameters) through the device sensors 

and reports those parameters to the manager upon request. These context checks enable 

the manager to allow the user of imposing run-time constraints on the usage of sensitive 

resources based on different contexts (e.g., location, time). The users can describe their 

constraints using a simple interface (i.e., app), implemented by the user-interactor. 

Possible rules and policies related to context-aware access control are defined in Section 

4.2.4. 

 Malware checker 

A modern smartphone provides capabilities that are comparable to low-end computers. 

As such, it is also facing nearly the same security and privacy issues. Indeed, mobile 

malware is growing exponentially, and hence the process of malware detection is 

becoming an essential part of mobile security frameworks. The SML manager performs 

some checks against malware apps with the help of a malware-checker that is dedicated 

to identifying malicious apps.  

Univ
ers

ity
 of

 M
ala

ya



76 

 

Basically, the malware-checker invokes an anti-malware app that is installed on the 

smartphone, and scans the target apps. The results of the scan are reported to the manager. 

If any malware is detected, then the manager sends a notification to the user about that 

particular malware. The malware app is marked as an “untrusted” alongside its source, 

and this information is kept in the policy-database so that future installations of new apps 

from the same source can be prevented by the installation-checker. The untrusted app 

cannot access other mHealth apps, nor it can access any sensitive system resources. 

 External devices checker 

The use of medical sensors and other external devices is growing among smartphone 

users, and mHealth apps in particular are increasingly expected to support communication 

with external sensors and monitoring devices. Therefore, SML includes another special 

tool used by the manager specifically to check connections to external devices. For 

example, the device-checker tests against the Device Miss Bonding (DMB) attack that 

was exposed by (Naveed et al., 2014) and discussed in Chapter 2. 

The device-checker monitors the apps that are using sensors or external devices (any 

device outside the smartphone), and checks the information that is being transferred 

between the smartphone and the external sensors or devices. It is invoked by the manager 

when an app accesses the external devices (e.g., heartbeat reader) through Bluetooth or 

Wi-Fi, the two most common connectivity options on smartphones. On the basis of 

security and privacy policies, the manager takes the decision whether or not the app is 

allowed to communicate (send and receive) that information with the external device or 

not. The device-checker also provides the manager with information on whether the 

communication with the external device is encrypted or not. 
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 Installation checker 

Another tool in the arsenal of the SML manager is the installation-checker. This 

checker is unlike the above checkers works only at the time of installation of a particular 

app. Some security rules have been developed for the installation-checker regardless of 

the installed app or the user-provided policies. When users want to install a new app, 

installation-checker first checks its permission and requested resources, as well as other 

meta-data that the manager needs to decide whether to accept the new installation or raise 

an alarming notification for the user. 

When users install an app, they grant the app all permissions it requests, and have to 

trust on the way the app uses the granted permissions and smartphone’s resources. 

Although there is now an option available since Android 6.0 that enables users to revoke 

permissions, still users are not aware of how the app is using the device resources after 

granting the permission. Apps can easily misuse smartphone resources to compromise 

user privacy, and can reveal user sensitive medical information in case of mHealth apps. 

Presently, after granting the permissions to an app, there is no way to impose extra 

constraints on how, when and under what circumstances those granted permission can be 

used. The actual problem lies in the inability of users to really understand the implications 

of the granted permissions and correctly judge their approval. 

installation-checker checks the newly requested permissions against few predefined 

combinations of permissions that can be dangerous for mHealth apps. It is really difficult 

for mHealth app users to understand the requested permissions and most importantly how 

a combination of some requested permissions can misuse medical information or can leak 

sensitive medical data. So, installation-checker refers to some dangerous combination of 

permissions and perform analysis at install time. 
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At the time of installation, installation-checker first extracts the security configuration 

of an app from the target package manifest, and reports the result to the manager, which 

evaluates the configuration against a collection of security and privacy policies. If an 

app’s security configuration fails to pass all the policies, then the manager has two 

options. The more secure choice is to reject the installation of that particular app. 

Otherwise, installation can continue after giving the user a warning notification that the 

app could be harmful for the sensitive medical data. Obviously, this is a less secure option 

for the users who usually install apps ignoring any warnings. 

For example, the manager might take the decision to either allow or deny the 

installation of a particular app based on the following dynamics: 1) don’t accept any app 

from other than Google Play store, 2) don’t install an app if the developer(s)’ name(s) 

appear in a blacklist (i.e., users can add a developer’s name in that list on the basis of 

their own experience with apps from that particular developer), 3) don’t install an app if 

it has some strange features (i.e., strange features are a list of some features, such as an 

app wants to access camera, however, it does not need it to fully perform its functionality). 

The policies related to installation-checker are defined in section 4.2.4. 

 Taint analyser  

Determining how an app uses and reveals privacy-sensitive information is achievable 

using fine-grained taint analysis, commonly called “taint tracking”. A taint is simply a 

label on a data item or variable. The label assigns a semantic type (e.g., geographic 

location of device) to the data, and may simultaneously use multiple such types 

(commonly called a taint tag). It is the task of the taint tracking system to (1) assign taint 

labels at a taint source, (2) propagate taint labels to dependent data and variables, and 

finally (3) take some action based on the taint label of data at a taint sink. 
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The tainting-analyser traces the flow of information, and if there is disclosure of 

sensitive information, for example via transmission of information from an app’s 

component and the Internet, then it notifies the manager. The taint-analyser can be 

invoked by the manager in several occasions and in tandem with other checkers for 

tracking sensitive information and comparing against the context, connected device, and 

security policies. 

Static taint analysis technique can keep track of sensitive tainted information through 

the app by starting at any one from a list of sources and then following the data flow until 

it reaches any one from a list of sinks. So, it reveals which sensitive data is being leaked 

to which sink channel, as shown in Figure 4.2. 

Static taint analysis has been used in many previous research works (Arzt, Rasthofer, 

et al., 2014; Lu, Li, Wu, Lee, & Jiang, 2012; Rasthofer, Arzt, & Bodden, 2014). Dynamic 

taint analysis has also been used in some works such as TaintDroid (Enck et al., 2014). 

Both dynamic and static analysis can be used to achieve taint tracking. But dynamic 

analysis may require many test runs to reach appropriate code coverage. In case of 

dynamic analysis, however, malicious app can be developed to be able to recognize the 

behaviour of dynamic analysis and pose itself as a benign app to bypass the detection. 

Dynamic analysis also entails a heavy overhead on the performance of the system if used 

in real time. For these reasons, static analysis is chosen over dynamic analysis for data 

leakage detection in MASF. 

 
Figure 4.2: Data Leakage Detection with Static Analysis 
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Implementing static analysis on Android is very challenging due to the special design 

of Android OS. Existing data flow analysis techniques are not directly applicable to 

Android apps due to the Android programming paradigm’s special multiple entry points. 

Unlike a Java program, Android app doesn’t have a single entry point, and many entry 

points can be defined for an Android app. As Android apps have four main components 

(i.e., activities, services, content providers and broadcast receivers), Android framework 

can call the methods associated with these components to start and stop the components. 

To be able to effectively predict the data flow, static analysis need not only precisely 

model the life-cycle of components but also need to integrate callbacks for system-event 

handling, UI interaction and so on. 
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Figure 4.3: Static Taint Analysis System Design Framework 

Figure 4.3 shows the design of the taint-analyser. This design is basically based on 

FlowDroid (Arzt, Rasthofer, et al., 2014) and extended by (He, 2014b). Tainting searches 

through the app for lifecycle and callback methods by parsing various Android-specific 
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files, including the manifest file, layout XML files, Java source files and so on. Then, a 

list of sources and sinks is constructed from label defined by developers in source code. 

After that, tainting generates a main method as a single entry point for the Android 

program from the list of lifecycle and callback methods. This main method is used to 

generate a call graph for the taint analysis. The taint analysis reports any possible links 

between the sources and sinks as warnings of potential vulnerabilities to the manager. 

4.2.1.2 SML manager 

The manager component is the heart of the Security Module Layer. It performs the 

core function of monitoring references and actions taken by the mHealth apps and uses 

other components of SML to both examine those references and actions against the 

defined policies in the policy-database and to enforce the policies through the action-

performer component. There are many types of actions that action-performer can take 

based on the manager direction, such as data shadowing, blocking access to data, granting 

access to data, revoking permissions, installation control, saving state, and disabling 

intents. 

MASF extends Android’s middleware through the System Interface Layer (SIL). For 

example, the PackageManager in Android is responsible for the installation of new apps. 

The PackageManager is extended by the SIL to interface with SML manager, so the 

manager can interact with the apps, and can enforce the necessary security and privacy 

rules and policies for mHealth apps. 

Android uses the mechanism of Inter Component Communication (ICC) as the 

primary method of communication between apps. However, ICC is technically based on 

IPC at the kernel level, and it can be seen as a logical connection in the middleware. 

Access control on ICC is important for the enforcement of security and privacy policies 

in the middleware.  
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Different types of ICC can be used by apps for communication. First, the most 

common way for apps to communication through ICC is to establish direct 

communication links, known as Direct ICC. For example, an app can send an Intent to 

another app, query its content provider, or connect to its service. The manager detects 

this communication through hooks provided by the SIL and prevents it in case the sender 

and receiver apps of the ICC are not allowed communicate or exchange specific 

information according to the corresponding policies. However, system apps form an 

exception and direct ICC is not prohibited if either sender or receiver of the ICC is a 

system app.  

Besides the direct ICC, apps can also send Broadcast Intents, which are delivered to 

all registered receivers. Similar to the approaches followed by (Bugiel, Davi, Dmitrienko, 

Fischer, et al., 2011) and (Ongtang et al., 2012), the manager filters out all the receivers 

of a broadcast intent who are not allowed according to the policies before the broadcast 

is delivered. Again, system apps have an exception and are not filtered from the receivers 

list.  

A mechanism for apps from different domains to communicate indirectly is to share 

data in System Content Providers, such as the Contacts database, the Calendar, or the 

Clipboard; ICC reads in this case reads data from such providers. MASF extends the 

System Content Providers, and upon read access to a provider, all data are filtered by the 

manager. 

Mandatory Access Control (MAC) mechanism is provided by the underlying Linux 

kernel. Such mechanism, implemented by SELinux or TOMOYO Linux, is already a 

default feature of the Linux kernel and provides mandatory access control on various 

aspects of the OS, including the file system and the Inter-Process Communication. Thus, 

by leveraging such mechanism, the manager can perform access control on the file system 
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and IPC levels. The file system provides for a further communication channel between 

apps. Apps can share files system-wide, by writing to a system-wide readable location. 

Hence, a sending app is able to write such a file and a receiving app would simply read 

the same file. The mandatory access control mechanism enforces isolation on the file 

system. By using this, the manager makes sure that system-wide readable files can be 

read by other apps only if both the reader and writer are trusted apps.  

To prevent any communication of apps via Linux IPC (e.g., sockets, pipes, shared 

memory, or messages). The manager leverages the same domains already established for 

the file system access control. Thus, other third party apps cannot establish IPC with 

mHealth apps. However, system apps form an exception, as denial of communication to 

system apps can be harmful for the system and other apps, or can affect the functionalities 

of apps. 

A further channel that should be considered here is the Internet network, i.e., network 

sockets used for communication through Internet protocols (such as TCP/IP). By using 

these sockets apps can communicate with remote hosts, however they also can 

communicate with other apps on the same platform. Thus, the MASF has to take both 

local and remote communication into consideration. To enforce access control here, the 

manager component employs a firewall to modify or block the Internet socket based 

communication. To locally enforce isolation between mHealth apps and other third party 

apps, the manager prohibits any communication from a local network socket of other 

third party apps to another local network socket on the platform. This might look as over-

restrictive, but it is a very reasonable enforcement, as apps exist on the same platform so 

they should use lightweight ICC to communicate instead of network channels. 
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4.2.1.3 Policy database 

The policy-database component serves as the main repository to store all the policies 

and rules, which are discussed later in this section. All policies and rules are stored in this 

database, and the manager accesses this database during the various checks to ensure the 

implementation of all policies. Rules and policies stored by the policy-database can be 

updated and modified by the user of the smartphone. 

4.2.1.4 User interactor 

The user-interactor component is an app that interacts with the user. User can interact 

with MASF to create, update, and delete security and privacy policies. Furthermore, for 

context-related policies, user can also create, update and delete contexts. The user-

interactor stores all the policies and related information in the policy-database. 

4.2.1.5 Action performer 

Another important component at the disposal of the manager is the action-performer. 

This component performs the decisions taken by the manager to enforce the various 

policies. There are a number of actions that the action-performer can take, including 

blocking, data shadowing, granting, disabling intents, saving device state and revoking 

permission. The functions of each action and its description is given below. 

 Blocking 

The action-performer might block outgoing communications tainted by sensitive data. 

This control is applied in MASF to limit the misuse of sensitive medical data. Blocking 

happens usually in the case of conflicts of information flow or other functionality with 

privacy policies. When a conflict occurs, the manager decides to block the information 

flow or functionality which created the conflict with the policies. However, the blocking 

option can sometime harm or crash the app, as it needs the data to continue. There are 

two types of blocking that MASF provides and implements through the action-performer. 
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In the first type of blocking, app cannot communicate with other apps, and cannot send 

data through the Internet. In the second type of blocking, apps can communicate with 

each other, but cannot send/receive data through the Internet. The latter option is 

necessary when it is compulsory to make data available for other apps in order to 

accomplish some essential task. 

To block the data that is being exchanged through network sockets, first the manager 

intercepts calls to the network stack to associate domain names with open sockets and 

detects when tainted data have been written to a socket. When an output buffer comprises 

tainted data, the action-performer just drops the buffer and choose one of the following 

actions: dropping the offending message covertly, or misleading the app by indicating 

that the buffer has been sent. 

 Data shadowing 

As mentioned above, blocking sometimes cannot be possible, therefore it is mandatory 

to provide an app with data so that it can continue functioning.  To solve this issue, the 

technique of data shadowing option is used. The action-performer implements data 

shadowing to prevent apps from accessing sensitive medical data. It conceals the actual 

user data stored on the device and provides a fake copy of sensitive data (e.g., medical 

history, etc.) instead of the original one. 

Android apps use the file system to access the microphone, camera, logs, etc. When 

apps try to open these resources and the manager decides to deny their attempts, the 

action-performer shadows all sensitive data, such as the browser history and bookmarks, 

contacts, accounts information, subscribed feeds, SMS/MMS, and calendar entries, by 

returning a fake set of data. When apps request the device’s location, the response is a set 

of fake location information. When apps request the device’s phone state, the returned 

value is a fake phone number with a fake app-specific device ID (IMEI). The action-
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performer can also return a fake version of the SIM serial number, voice mail number, 

and subscriber ID (IMSI); however, very rare apps request this type of data. 

 Granting 

Another action that can be taken by the action-performer is to provide the original 

requested data. The SML manager takes this decision when it thinks the requesting app 

can be trusted with private user’s data. 

 Installation control 

This type of action is related to the checks at installation time of new apps. If the 

manager decided based on the information from the installation-checker that an app does 

not satisfy the policies, then the action-performer either warn the user and allow the 

installation process to proceed, or it might prevent the installation of the app altogether. 

 Revoking permission 

MASF supports also the action of revoking selective permission(s) from an app for a 

particular period of time, or a particular location, at runtime. 

 Disabling intent 

This action intercepts and drops the specified intent message. MASF can enforce a 

number of controls on different activities by intercepting intents, such as to launch an app 

(prevent certain apps from running on the device), app installation and uninstallation 

(prevent an app from sending an intent to install or uninstall an app), services (prevent 

apps from starting background services), lock and unlock the device (prevent requesting 

pin code to unlock the device), broadcasts (prevent apps from broadcasting Intents), and 

app multitasking (prevent running multiple user-app simultaneously). 
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 Saving device state  

This action disables toggling the state (ON/OFF) of the specified system peripheral. It 

is particularly relevant when mHealth apps exchange data with medical sensors or other 

kinds of external device, so that users can restrict the access of other apps to system 

peripherals (e.g., Bluetooth and NFC). 

4.2.2 System Interface Layer 

The System Interface Layer (SIL) is the second layer of MASF. SIL acts as an 

interfacing layer between the first SM layer described above and the underlying Android 

operating system, and provides the former with access to the latter. SIL is as essential part 

of the framework to deploy all the enforcements issued by the SML into the Android OS. 

SML implements a logic that receives necessary input and produce desired output. The 

required input initiates from the internal workings of other apps, which are well beyond 

the access of any normal application in the Android architecture. The desired output also 

interferes with the system-level functions and cannot be achieved using normal apps. 

There is a need for special modifications of the stock Android code base that offers entry 

points to the internals of the system, which can be used by the upper layer of the proposed 

framework. 

SIL inserts some hooks on different layers of the Android OS, including the kernel, 

the middleware layer, and the application layer, to provide the required interface for the 

SML in order to receive the necessary input from the workings of other mHealth apps, 

and to enforce the suitable actions on the system level. Separating SML from SIL makes 

the design of MASF modular, so that the main logic (checks) of the framework can be 

deployed later on any platform by using a compatible interface with that platform. It also 

allowed the implementation of MASF to utilize available solutions in the literature that 

are policy-independent and provides exactly the required interfacing to the internals of 
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Android without imposing any specific security logic, which is to be left for the design 

of MASF. 

The SIL that has been used to implement MASF is shown in Figure 4.4. This SIL is 

originally proposed by (Backes, Bugiel, Gerling, & von Styp-Rekowsky, 2014), and 

named as Android Security Framework (ASF). ASF is a general, extensible and policy-

agnostic security infrastructure for Android. The basic idea behind ASF is to extend 

Android with a new security API. This API allows to easily author, integrate, and enforce 

generic security policies. ASF allows security experts to develop Android security 

extensions against a novel Android security API and to deploy their security models in 

the form of modules as part of Android’s platform security. In essence, the Security 

Module Layer in MASF can be thought of as a special security extension to ASF in the 

latter terminology, which is specifically designed with mHealth apps in mind. 
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Figure 4.4: System Interface Layer 

4.2.3 Other External Components 

This subsection completes the picture of the layered components of MASF by listing 

the external components that are interacting with the main two layers of SML and SIL. 
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In a sense, a security framework to that controls mHealth smartphone apps and protect 

the security and privacy of users would naturally run on a mobile platform and be utilized 

by users; so those entities can be viewed as an integral part of the framework. These 

components are listed below. 

4.2.3.1 Android operating system 

Android OS was selected to deploy the proposed framework because it is the most 

popular and widely used smartphone operating system, and it is open source as well. 

Chapter 2 explains the Android OS and its working in some detail. The proposed 

framework cannot work on a stock Android copy and needs special modifications to allow 

for the intended functionality. These modifications are implemented in the System 

Interface Layer on which the Security Module Layer is built. 

4.2.3.2 Apps 

A smartphone application (app for short) is a piece of software designed to accomplish 

a particular purpose. There is a huge number of apps available on online app stores, 

classified into many categories and can perform a large number of functions. Android 

apps typically contain one or more of four software components: activities, services, 

content providers and broadcast receivers. These components can interact with each 

other within the same app or across other apps’ using intent messages. In this research, 

the focus is on mHealth apps, which are growing exponentially alongside the security 

threats targeted at them. 

4.2.3.3 App store 

This is basically a collection of online accessible apps, and mobile users download 

apps from the app store. For Android apps, the official and most popular app store is 

Google Play by Google Inc.; however, there are number of app stores available from 

untrusted third parties, and they may provide malicious apps as well. 
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4.2.3.4 Users 

MASF serves users in the first place, and it allows users to define policies according 

to their requirements. Users basically provide policies to secure medical data. Users work 

as input for the policy-database in the SM layer, through the user-interactor component, 

which is a custom Android app. 

4.2.4 MASF Policies  

In addition to the predefined security rules and policies in the framework, policies in 

MASF can also be provided by the users through the user-interactor, and they form an 

important component of the SML. Security and privacy policies feed the manager 

component and define the decisions made by the manager in response to the various 

actions and references requested by the apps. The policy-database stores all the policies, 

including user-defined rules. 

These rules ensure the confidentiality and integrity of sensitive medical data. Most of 

the previous research is based on coarse-grained policies to enforce the security. In this 

framework, users are able to enforce fine-grained security and privacy policies, which 

allow users much more flexibility to control access to the sensitive medical data; for 

example, users can change security policies while an app is running, and they can control 

access to different resources based on the current context (e.g., location and time).  

Currently, most of security controls on smartphones are based on policies per app, and 

normally policies are set at installation time. App developers declare all the required 

permissions in the compulsory manifest file, in order to be able to interact with other apps 

and to access protected parts of the system’s API. Normally, users grant all those 

permissions at installation time. Granting all permissions together at installation time is a 

coarse-grained control: a user usually has no idea how the permissions are being exercised 

after the installation. Further, Android does not have a mechanism that allows policies to 
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grant access to a particular resource only for a specified number of times, or only in 

specific contexts (e.g., location or time), or only under some special circumstances. To 

resolve the above issue, MASF provides a number of security and privacy policies that 

are enforced by the SML manager with the help of the various checkers introduced in the 

previous subsection as well as the action-performer component. 

MASF supports several types of policies. One major class of policies is based on the 

current context while using the apps. Context-related policies resolve very complex 

problems that are usually faced by mHealth apps. Sometime there is a need to give a 

permission based on the context for a particular communication or connection, and later 

on the need calls for revoking that permission from the connection. In other words, control 

of the access depends on the context.  

As defined earlier, a context could be one of the following aspects: status of some 

variables (e.g., time, location, temperature, light and noise), the presence of other devices 

and sensors, a particular type of interaction between the smartphone and user, or a 

combination of all these aspects. In MASF, users, developers and trusted third parties are 

allowed to define context-related policies, and the framework can enforce the policies at 

run-time when the smartphone is within a particular context. MASF uses context-related 

security policies to extend the control of the users and trusted third parties to secure the 

information. By definition, a security policy divides the system states into two sets: a set 

of authorized (secure) states, and a set of unauthorized (insecure) states. Therefore, a 

context-related security policy is a security policy that separates the authorized states 

from the unauthorized states of the system based on the context. 

In MASF, the policies are defined as a set of restrictions and corresponding conditions. 

The restrictions are applied to apps whenever the conditions are encountered. Policy 

restrictions represent the constraints on accessing the device resources, services, system 
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methods, functions, and user data. Policy conditions on the other hand define the situation 

in which those restrictions should be applied, such as at a certain context or when a 

suspicious combination of permissions is requested at installation.  

A number of policies are defined in this subsection, some are applied at the time of 

installation of new app, while other policies are enforced on the basis of context (e.g., 

time and location). MASF policy rules are based on (Shebaro, Oluwatimi, & Bertino, 

2015) and significantly extended to consider policies for various other security aspects of 

the framework. In the following, the two aspects of policies, restrictions and conditions, 

are described respectively. 

4.2.4.1 Policy restrictions 

Policies impose restrictions on the use of apps, subject to certain conditions. To define 

a policy restriction, the following sets are defined first: 

• 𝑨𝑷𝑷 : is the set of subjects representing the device apps 

• 𝑹𝑬𝑺 : is the set of protected objects representing the services, resources, user 

data, permissions, and functionalities available for the apps 

• 𝑨𝑪𝑻 : is the set of restriction actions that can be applied through MASF policies 

The set of subjects 𝐴𝑃𝑃 is composed of the 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑎𝑚𝑒𝑠 of all apps installed on 

the device. Additionally, a special character * is added that represents all the installed 

apps. This special character is useful for policies that need to be enforced on all apps, 

instead of creating the same policy for every app. Further, it is assumed that each object 

from the set 𝑅𝐸𝑆 has an associated type from the set (permission, intent, data, system 

peripheral). Let 𝑟 be an object from the set 𝑅𝐸𝑆; notation 𝑡(𝑟) denotes the type of 𝑟. The 

set of actions 𝐴𝐶𝑇 defined for MASF includes the following actions, as discussed above 

in section 4.2.1.5 in the context of action-performer role: preventing installation, 
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revoking permissions, disabling intents, shadowing data and saving device state. Note 

that revoking permissions can be used to block specific data transfer through the network. 

i. Definition 1 (policy restriction): 

Let 𝑝 ∈ 𝐴𝑃𝑃, 𝑟 ∈ 𝑅𝐸𝑆, 𝑎 ∈ 𝐴𝐶𝑇𝐼𝑂𝑁, and notation 𝑡(𝑟) denotes the type of 𝑟. A 

policy restriction (𝑃𝑅) is defined as the tuple [𝑝, 𝑟,  𝑎] such that: 

𝑎 = {

revoke permission          if t(r) = 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛                  
disable intent                   if t(r) =𝑖𝑛𝑡𝑒𝑛𝑡                              
shadow data                      if t(r) = 𝑑𝑎𝑡𝑎                                
save state                          if t(r) = 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙    

 

4.2.4.2 Policy conditions 

Access control policies are enforced on the basis of context, and other conditions such 

as the set of permissions requested upon installation.  

 Context conditions 

In MASF, device location and a time interval are considered for context. The device 

location data is captured from GPS and users can assign logical location names in which 

the device is located. A policy time interval is introduced in MASF, which represents the 

specific time period within which a policy should be enforced. The date and time is 

represented in the following format 𝐷𝐷 − 𝑀𝑀 − 𝑌𝑌𝑌𝑌 − ℎℎ: 𝑚𝑚: 𝑠𝑠. In addition, 

MASF uses the 𝑅 flag to define recurring events. The value of 𝑅 is drawn from the set 

[𝑂, 𝐷, 𝑊, 𝑀, 𝑌], which is defining the event frequency: 𝑂 ⟶ 𝑂𝑛𝑐𝑒, 𝐷 ⟶ 𝐷𝑎𝑖𝑙𝑦, 𝑊 ⟶

𝑊𝑒𝑒𝑘𝑙𝑦, 𝑀 ⟶ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦, 𝑎𝑛𝑑 𝑌 ⟶ 𝑌𝑒𝑎𝑟𝑙𝑦. Date and time define the policy time 

interval and an event is recurred based on the value of 𝑅 (i.e., the value of 𝑅 defines the 

frequency with which that particular policy condition should be checked). For example, 

to set an event that occurs every Friday for 8AM to 4PM for six months, 𝑅 would be set 
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𝑊 and the time interval would be set to event date-time, such as starting on 01 − 01 −

2016 − 08: 00: 00 and ending on 30−06 − 2016 − 16: 00: 00. 

ii. Definition 2 (context condition): 

A context 𝑐 could be defined as one of the following aspects: time or location. A 

context is a condition for enforcing an associated restriction. A context policy is the 

combination of the condition and restriction associated with it; one context can be 

associated with one policy and one policy can be associated with only one context (one-

to-one relation). 

Let 𝐿 be a location name and representing a particular location, and let [𝑆, 𝐸, 𝑓] 

respectively be the starting time, ending time, and frequency, which define when a 

particular policy is going to be enforced. So, a context condition for the policies is defined 

as the tuple of [𝐿, (𝑆, 𝐸, 𝑓)]. 

iii. Definition 3 (active context (active policy)): 

A context 𝑐 is called as an active context at a given time 𝒕, if the required 

considerations that the context describes are verified. A policy 𝑷 that is associated with 

active context 𝑪 is called as active policy. There exists a possibility of more than one 

active context at the same time. 

 Installation conditions 

For installation polices, promising work has been already done in this area by (Enck 

et al., 2009). In MASF, an installation condition is represented by the result of a test to 

whether an installation rule is passed or failed. Table 4.1 describe some useful installation 

rules for MASF to be checked at the time of installation. This table is based on examples 

from (Enck et al., 2009) and extended with few conditions. 
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Table 4.1: Sample Installation-Time Policy Rules 

# Sample conditions 
1 An app must not have any of the following combinations of permissions: 

1) Phone state, internet, and record audio 
2) Outgoing or incoming calls, record audio, and internet 
3) Receive SMS and write SMS 
4) Send SMS and Write SMS 

2 An app should be downloaded from the user-listed app stores. For instance, 
if user listed only Google Play store for downloading of apps, then apps 
cannot be downloaded from any app stores except Google Play store. 

3 User can block specific developers. An app cannot be downloaded from a list 
of developers who the user has blacklisted. 

 

The rules defined above only require the knowledge of the permission labels that are 

requested by an app, as well as the action strings used in the intent filters. A rule indicates 

the combinations of permission labels and action strings that should not be used by third-

party apps. Each rule is the conjunction of sets of permissions and action strings received. 

A simple logic to represent a set of rules can be defined. Let 𝐼𝑅 be the set of all security 

and privacy rules for installation-checker, and let 𝐼𝑃 be the set of all possible permission 

labels used by the app and 𝐼𝐴 be the set of all possible action strings used by activities, 

broadcast receivers, and services to receive intents. Then, each rule 𝑖𝑟𝑖 is a tuple 

(2𝐼𝑃, 2𝐼𝐴)1, where 𝑖𝑟𝑖 ∈ 𝐼𝑅. Each rule 𝑖𝑟𝑖 can be defined with the notation 𝑖𝑟𝑖 = (𝐼𝑃𝑖 , 𝐼𝐴𝑖) 

to refer to a specific subset of permission labels and action strings for rule 𝑖𝑟𝑖, where 𝐼𝑃𝑖 ∈

2𝐼𝑃 and 𝐼𝐴𝑖 ∈ 2𝐼𝐴. Next, a configuration based on package manifest contents is defined. 

let 𝐼𝐶 be the set of all possible configurations extracted from a package manifest. Here, 

it is only required to get the set of permission labels used by the app and the set of action 

strings used by its activities, broadcast receivers, and services. Then, each 

configuration 𝑖𝑐 can be defined as a tuple (2𝐼𝑃, 2𝐼𝐴), where 𝑖𝑐 ∈ 𝐼𝐶. Consequently, the 

                                                 

1 A standard notation 2𝑋  is used to represent the power set of a set X, which contains the set of all subsets including ∅. 
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notation 𝑖𝑐𝑡 = (𝐼𝑃𝑡, 𝐼𝐴𝑡) is used to refer to a specific subset of permission labels and 

action strings used by a target app 𝑡, where 𝐼𝑃𝑡 ∈ 2𝐼𝑃 and 𝐼𝐴𝑡 ∈ 2𝐼𝐴. It is possible now to 

define the semantics of a set of installation rules. A function 

𝑓𝑎𝑖𝑙 ∶ 𝐼𝐶×𝐼𝑅 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

is defined to test if an app configuration fails for a particular rule 𝑖𝑟𝑖. Let 𝑖𝑐𝑡 be the 

configuration for target app 𝑡 and 𝑖𝑟𝑖 be a rule. So we can define 𝑓𝑎𝑖𝑙(𝑖𝑐𝑡, 𝑖𝑟𝑖) as:  

(𝐼𝑃𝑡, 𝐼𝐴𝑡) = 𝑖𝑐𝑡, (𝐼𝑃𝑖, 𝐼𝐴𝑖) = 𝑖𝑟𝑖, 𝐼𝑃𝑖 ⊆ 𝐼𝑃𝑡 ∧ 𝐼𝐴𝑖 ⊆ 𝐼𝐴𝑡 

So the permissions and actions strings (i.e., the permissions and actions strings that 

are defined in the rule should not access any app, because it is a dangerous combination, 

and the app who is accessing this can act maliciously) must not be accessed by the target 

app, but according to the above equation it is in the target app configuration, so this app 

fails the defined rule. 

iv. Definition 4 (installation condition): 

Let 𝐹𝐼𝑅: 𝐼𝐶 → 𝐼𝑅 be a function that returns the set of all rules in 𝐼𝑅 ∈  2𝐼𝑅 for which 

an app configuration fails: 

𝐹𝐼𝑅(𝑖𝑐𝑡) = {𝑖𝑟𝑖|𝑖𝑟𝑖 ∈ 𝐼𝑅, 𝑓𝑎𝑖𝑙(𝑖𝑐𝑡, 𝑖𝑟𝑖)} 

The configuration 𝑖𝑐𝑡 passes a given rule-set 𝐼𝑅 if 𝐹𝐼𝑅(𝑖𝑐𝑡) = ∅. Hence, the result of 

this function 𝐹𝐼𝑅(𝑖𝑐𝑡) defines the installation condition for an app, which is tested upon 

installation and, if a non-empty set, will lead to the enforcement of the associated 

restrictions defined by the corresponding installation policy. 
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4.2.4.3 Policy definition 

A policy in MASF is the combination of a policy condition and the policy restriction 

associated with it. 

v. Definition 5 (policy) 

Let 𝑃𝑅 be a policy restriction as defined in definition 1 and 𝑐 be a condition such as 

the one defined by definition 2 or the one defined by definition 4. A policy 𝑃 is defined 

as a tuple [𝑃𝑅, 𝑐]. The following example illustrates a context policy: 

𝑷 = [[∗, 𝒂𝒏𝒅𝒓𝒐𝒊𝒅. 𝒑𝒆𝒓𝒎𝒊𝒔𝒔𝒊𝒐𝒏. 𝑪𝑨𝑴𝑬𝑹𝑨, 𝑹𝒆𝒗𝒐𝒌𝒆_𝑷𝒆𝒓𝒎𝒊𝒔𝒔𝒊𝒐𝒏],

[𝑯𝒐𝒔𝒑𝒊𝒕𝒂𝒍_𝑨(𝟎𝟏 − 𝟎𝟓 − 𝟐𝟎𝟏𝟔 − 𝟏𝟎: 𝟎𝟎: 𝟎𝟎, 𝟑𝟎 − 𝟎𝟔 − 𝟐𝟎𝟏𝟔 − 𝟏𝟔: 𝟎𝟎: 𝟎𝟎, 𝑾)]] 

The example policy shown above disables all the apps from having the camera 

permission weekly between 10.00 AM to 4.00 PM for two months in Hospital-A. 

4.3 Framework Operation 

This section explains interactions between different components of MASF. Some of 

the use cases are presented to describe the functionalities of the framework and how it 

protects the user data from unauthorized access. 

4.3.1 Use Case I: Installation of a New App 

To explain how installation-checker works and how the corresponding installation 

policies behave during the installation of a new app, a use case (installation of a new app) 

is depicted in Figure 4.5. This use case shows how MASF and its corresponding policies 

behave when user tries to install a new app. Arrows 1 and 2 are showing the installation 

of a new app from the app store. For installation, Android app installer first handles the 

app, and before it completes its installation process the SML manager intercepts the 

installation process and asks the installation-checker to check the app manifest file and 

look at the permission labels requested by the app, as well as the action strings used in 

Univ
ers

ity
 of

 M
ala

ya



98 

 

the intent filters (arrow 4). This checker then returns a result to the manager as per 

definition 4 above (arrow 5). The manager reads the relevant installation policies from 

the policy-database (arrow 6), and follows the policy defined in definition 5 to decide 

whether to prevent or proceed with the installation process. The decision is delegated to 

the action-performer (arrow 7), which enforces it upon Android installer (arrow 8).  

 
Figure 4.5: Use Case 1 - Installation of a New App 

4.3.2 Use Case II: Privacy Enhanced Content Providers and System Services 

System Services and Content Providers are an integral part of the Android application 

framework and implement the API exposed to third party apps. Prominent services are 

the LocationManager and the Audio Services, while prominent content providers are the 

Contacts app and SMS/MMS app. Android enforces permission checks on access to the 

interfaces of these services and providers. 

However, the default permissions of Android are too coarse-grained and protect access 

only to the entire service/provider but not to specific functions or data, and once these 

permissions are granted then users are not aware how the permissions are being used. 

Thus, the user cannot control in a fine-grained fashion which sensitive data can be 

accessed, how, when and by whom. For example, the Facebook have access to the entire 

contacts database although only a subset of the data is required for their correct 

functioning. 
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MASF deploys some hooks into each service interface and function. The SIL inserts a 

hook into each of the AutdioService, LocationManager, and SensorManager to achieve 

fine-grained access control on these functions. To show how MASF protects the content 

providers and system services, an example of protecting a content provider (e.g. the 

Contacts) is shown in Figure 4.6. 

 
Figure 4.6: Use Case 2: Protecting Contents 

When an app requests for some content such as the contacts, the request first goes to 

a content resolver (arrow 1). Afterwards it goes to Android permission check, a 

mechanism that is provided by Android OS to check the permissions granted for an app 

before allowing it to access the protected resources (arrow 2). The manager takes the 

control here (arrow 3), and decides whether it is safe to grant the app an access to the 

requested content. In order to reach a decision, the manager might resort to the taint-

analyser to examine the app and track the path of the requested data through its code. 

This could reveal whether the requested data are leaked out to the untrusted domain or 

are just consumed locally (arrows 4 and 5). The manager can also make use of the 

context-checker to check the conformity of the access to context-related policies (arrows 

4 and 5).  Based on the results and the policies read from the policy-database (arrow 6), 
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the manager either instructs the action-performer to grant the required access or to take 

one of the following actions: provide shadowed contents, or deny the access to contents. 

4.3.3 Use Case III: Context-Aware Fine-Grained Access Control 

As mentioned earlier, MASF can provide a context-aware and fine-grained access 

control mechanism, so that the user can control the access to sensitive resources according 

to the current context (e.g., location or time). Figure 4.7 shows an example of providing 

context-aware access control based on the current location.  

 
Figure 4.7: Use Case 3: Context-Aware Fine-Grained Access Control 

A context-aware fine-grained access control mechanism is demonstrated in Figure 4.7. 

This figure is showing a use case for location-based context-aware fine-grained access 

control. As depicted in the figure, when an app sends a request to use a system service or 

to access resources (arrows 1 and 2), first the Android permission check system verifies 

the permissions for the corresponding activity, if it allows to access the service or 

resource, then the SML manager intercepts the request (arrow 3). From there, the 

manager refers to the context-checker (arrow 4), which in turn reads the location data 

from Android’s location-manager (arrow 5), and returns a result to the manager in terms 

of a tuple that was defined in definition 2 in section 4.2.4.2 (arrow 6). The manager then 

compares the returned context with the defined context policies in the policy-database 

access (arrow 7). To achieve its job, the context-checker refers to the system-provided 
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location-manager (arrow 5) to learn about the current GPS and other location-related 

measurements. Finally, the enforcement of the decision made by the manager based on 

the context policies is delegated to the action-performer (arrow 8). 

4.3.4 Use Case IV: Mitigating the DMB Attacks when Connecting to Devices 

This use case defines how MASF mitigate the DMB attack (DMB attack definition is 

provided in Chapter 2). Considering this case is important in mHealth apps, as these apps 

usually communicate with medical sensors and other external medical devices. mHealth 

apps generally collect measurements from external devices (e.g., heartbeat reader) and 

sensors to accomplish their medical services. During this process, medical information 

might be stolen by an adversary through a malicious app that is installed on the same 

smartphone, or the adversary can inject fake data, which could be very dangerous for the 

user. 

MASF deploys the device-checker to detect these attacks. When an app tries to access 

data from external resources. Figure 4.8 illustrates the architecture for Bluetooth socket 

communication on Android 4.3, and it also depicts how MASF works against DMB 

attacks. Android platform supports pairing a device programmatically, using the system 

calls 𝑠𝑒𝑡𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 and 𝑠𝑒𝑡𝑃𝑖𝑛 or 𝑆𝑒𝑡𝑃𝑎𝑠𝑠𝑘𝑒𝑦 of the 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ𝐷𝑒𝑣𝑖𝑐𝑒 

class. To unpair a device, the app uses the API call 𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑜𝑛𝑑. Otherwise, the app 

can invoke the built-in settings program to control the Bluetooth adapter. In both cases, 

an IPC request needs to be sent to 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑣𝑖𝑐𝑒 to control the Bluetooth device. Once 

a bond is established between the app and the device, the app can make a socket 

connection to access the device. It first needs to talk to the 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ𝐴𝑑𝑎𝑝𝑡𝑒𝑟, to get a 

list of paired devices. From this list, the app identifies the target device (MAC) and further 

requests a socket through the object 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ𝐷𝑒𝑣𝑖𝑐𝑒. This request is also delivered 
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using an IPC, through the 𝐼𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ interface, to 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒, which creates the 

socket for the connection. 

 

Figure 4.8: Use Case 4: Collect Data from External Devices/Sensor (DMB Attacks) 

Once an external device is activated, it is paired with its authorized app by the user. 

MASF observes this pairing process and then generates a bonding policy that associates 

each device (name, MAC) to its official app (UID). In MASF, users can also define their 

own policy rule, such as the rule that a particular device can only be accessed by a specific 

app, as well as rules based on the context. Furthermore, users can also use save state 

policies (policies related to system peripherals) to control access of apps to the Bluetooth 

interface (i.e., they can use policies to stop toggling of Bluetooth). 

Whenever Android receives a Bluetooth socket-connection request from an app, the 

manager component of MASF asks the device-checker to check whether the app is 

associated in the bonding policy to the device it is trying to talk to: if the app is not on the 

device’s bonding policy, the request is denied; otherwise, it is allowed to proceed. In this 

way, MASF can mitigate data stealing attacks. The framework can also provide policies 

for unpairing, to dissolve a pairing relation between the smartphone and a device, so user 
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can stop the unauthorized unpairing attempts to defeat the data injection attack, because 

this attack is contingent on resetting the link key for the phone-device communication, so 

it cannot work without unpairing the phone from the device. 

Referring to Figure 4.8, 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒 controls socket establishment and manages 

the unpairing operation. MASF inserts a Reference Monitor into the 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒 

through the SIL, in order to control the bonding (pairing) between apps and Bluetooth 

devices. First, any request by an app to pair/unpair to a Bluetooth device is delivered to 

the SML manager (arrow 1), which might perform several tests including the ones directly 

related to the communicating app/device pair and the parameters of the communication. 

For the latter, the manager calls upon the device-checker (arrow 2) to receive a direct 

input from the reference monitor via the System Interface Layer (arrow 3) and then report 

the obtained information about the app/device pair and the communication parameters to 

the manager (arrow 4). As per all other checks, the manager refers to the policy-database 

to read the policies related to external-device connections (arrow 5), and then to make a 

decision on the current connection, and to inform the action-performer of the decision 

(arrow 6), in order to enforce the required actions (arrow 8). 

4.4 Chapter Summary 

In this chapter, the detailed design of the proposed MHealth Apps Security Framework 

(MASF) is presented. MASF is meant to be a practical and lightweight framework to 

secure sensitive medical data that is handling by mHealth apps. The framework consists 

of two major layers: the Security Module Layer and the System Interface Layer. The main 

contribution of this thesis lie in the SM layer, which comprises several components to 

fulfil the framework functionality. This chapter explains how the core component of 

SML, which is called the manager, relies on a set of special checker tools and a repository 

of policies to make decision on the various requests and actions made by mHealth apps 
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to access system resources. With special monitors for the context, installation, malware, 

external devices, as well as a special taint analyser, the manager can acquire a fair idea 

on the events on the smartphone, and can delegate the enforcement of security decision 

to a dedicated component called the action-performer. SML cannot function at all without 

a window into the internals of the underlying Android system, which is provided by the 

SI layer. The final part of the chapter discussed four different scenarios in which MASF 

can operate to further clarify the expected operation of the framework. 
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CHAPTER 5:  IMPLEMENTATION AND EVALUATION 

This chapter explains the process of validating and evaluating the proposed 

framework. It commences with a brief overview of the implementation of MASF in 

Section 5.1, where the implementations of different components of the framework are 

briefly explained for the purpose of validating the design presented on the previous 

chapter. 

MASF achieves all its security and privacy objectives with a minimal trade-off 

between security and performance. The implemented solution induces a small overhead 

both in terms of time and energy consumption. Further, all security and privacy checks 

and extensions are incorporated in the Android system with minimal changes to the 

codebase of the Android stock version, and to the user interface of the existing security 

architecture. The framework is also backward compatible with the current security 

mechanism for better acceptability in both the Android ecosystem and its healthcare 

community. Section 5.2 explains the process and results of evaluation of this framework 

in terms of effectiveness and performance overhead (for example induced computational 

time and energy consumption), compared to the stock version of an Android system. 

Section 5.3 discusses the overall performance of MASF, while Section 5.4 provides a 

summary of the chapter. 

5.1 Implementation Details 

This section presents the technical details of MASF’s implementation. As discussed 

earlier in Chapter 4, the design of MASF encompasses two main layers, one of which 

provides the main functionality of security checks and in turn consists of several 

components and is written in Java; the second layer is providing the necessary integration 

with the Android platform, and as such, entails modifications to the Android OS. This 
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section starts with the latter layer, the System Interface Layer (SIL), then proceeds to 

present the Security Module Layer (SML). 

5.1.1 Implementation of the System Interface Layer 

Starting from the bottom of MASF architecture, this layer is essential for integrating 

the functionality of the whole framework, mainly provided by the upper SM layer, into 

the underlying Android platform internals. SML is implemented as a set of user-space 

modules; therefore, it must be provided with some interface to access the Android system. 

This interface should include adequate function calls and event triggers to enable the 

functionality of MASF. Providing this kind of Application Programming Interface (API) 

is the purpose of SIL.  

Because the stock version of Android does not allow that kind of hooking into its 

internal workings, SIL must modify the Android stock code to fulfil its intended purpose. 

To this end, there are two options for SIL: either to be built from scratch, or to be adopted 

from any available API system that does provide the required hooks into the Android OS. 

Following the first option entails a significant amount of work on an essential part of 

MASF but nevertheless not the main focus of the framework, which is the set of security 

checks against mHealth apps, not how to integrate them into Android specifically.  

The problem with the second option is that the needed API should be specialized on 

the one hand, providing hooks into specific Android internals that relate to its security 

model in particular, and should be generic on the other hand, allowing other modules to 

implement their own logic; i.e. it should not enforce a specific security model or policy 

on the calling modules. Fortunately, such an API system do exist, and one particular 

generic framework is selected to provide the basic interfacing needs of MASF to the 

Android platform. This solution is adjusted for the purpose of MASF and wrapped in the 

bottom layer, SIL. 
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SIL implementation relies on Android Security Framework (ASF) (Backes, Bugiel, et 

al., 2014). ASF is an extensible and model-agnostic security infrastructure. The basic idea 

behind ASF is to extend Android with a new security API that allows to write and 

integrate general security policies. This function perfectly fits the need of MASF. In that 

way, SIL allows for the development of security extensions against a well-defined 

security API in the form of security modules that integrate nicely in the Android’s 

platform security. Those modules are located in the upper SM layer. 

Technically, ASF provides necessary hooks into different layers of Android: the 

applicatios, the middleware as well as the kernel. Those hooks take the form of reference 

monitors that are planted at various points in the Android security architecture and are 

being called each time a protected resource in invoked. For each reference monitor, there 

is an associated API function that should be implemented by some security module 

written as a normal Android app. The API function is provided by ASF (and hence by 

SIL in MASF), while the security modules reside in the SM layer of MASF and are 

implemented in this thesis to enforce security-related policy on direct ICC, broadcast 

intents, and other channels through system content providers and system services.  

ASF infrastructure has been prototypically implemented for Android v4.3 and is 

available in source code. It currently comprises 4606 lines of code. As mentioned earlier, 

SIL uses the implementation of ASF, which occurs at three different levels, each of which 

are briefly presented below. 

5.1.1.1 Kernel space 

To provide access to Android kernel and enable enforcing policies at that level, SIL 

adopts the mature Linux Security Module (LSM) (Wright, Cowan, Smalley, Morris, & 

Kroah-Hartman, 2002) framework. LSM itself implements mandatory access control at 

the kernel level and enables other modules to register for enforcement hooks to kernel 

Univ
ers

ity
 of

 M
ala

ya



108 

 

components such as process management and the virtual file system. A submodule of SIL 

is no more than a standard LSM module that registers for LSM hooks using the LSM 

API. Then, this submodule provides its own kernel API to other modules in the upper 

layer of MASF (i.e. Security Modules Layer), to implement mandatory access control at 

the kernel level through the SIL API, which is ultimately using the LSM API. Several 

other known solutions depend on LSM, including SELinux (Smalley, Vance, & Salamon, 

2001), and TOMOYO (Harada, Horie, & Tanaka, 2004). 

5.1.1.2 Middleware layer 

Android architecture contains a set of system services (e.g. activity manager service, 

location manager service and network manager service) and system apps (e.g. Dial app, 

Calendar app and Camera app) that offer the Android API available to developers of other 

apps, including mHealth apps. SIL extends this middleware of the Android security 

model using a large number of reference monitors embedded inside Android system 

services and system apps. These reference monitors act as hooks that are linked to any 

module in the upper SM layer through SIL middleware API, in contrast to SIL kernel API 

mentioned in the previous subsection. SML modules are expected to implement access 

control and security policy decisions in the functions of this middleware API, through 

which the hooks would enforce them upon the control flow within Android middleware. 

SIL middleware API contains 168 functions (full listing of these functions is provided 

in Appendix B). These functions define the bulk of functionality available to the upper 

components of MASF. This API can be broken down into several categories, the most 

important of which is the category of enforcement functions, which is composed of 136 

methods and are called by SIL whenever the enforcement hooks in system apps and 

services are triggered. Each hook has a corresponding function in the API that implements 

the policy decision logic for this hook. Enforcement functions receive the same 
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parameters as their hooks, and they can modify the program flow at run time by passing 

arguments by reference or returning objects as return values. 

Another category of middleware API functions provided by SIL is life-cycle 

management. SML modules implement functions to manage the system life-cycle, such 

as initialization or shutdown. For example, modules can use these functions to initiate 

their policy engines or to save internal states to persistent storage before the device turns 

off. Furthermore, SIL middleware API include event notification interfaces used to 

propagate important system events to SML modules. For instance, modules should be 

immediately informed when an app was successfully installed, replaced, or removed. 

SML modules can also use callback interfaces for communicating in a more direct manner 

with system services, such as the PackageManagerService, and avoids the need to go 

through the Android API. For example, this category of SIL API includes functions that 

allow modules to efficiently resolve PIDs to application package names. 

SIL also provides a special callModule function that allows SML modules to 

implement communication with front-end apps (e.g. the user-interactor module in SML 

that enables users to provide custom security policies). When using callModule(), this 

communication is based on Bundles, which are key-value mappings used to send arbitrary 

data from one activity to another by way of intents. 

5.1.1.3 Application layer 

At the application layer, SIL allows modules of SML to hook inside mHealth apps 

themselves, using the technique of Inlined Reference Monitors (IRM), introduced by 

Erlingsson and Schneider (Erlingsson & Schneider, 2000). This mechanism rewrites an 

mHealth app such that the reference monitor is embedded right into the app itself. The 

security module at SML can use an instrumentation API provided by SIL to hook any 
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Java function within a selected app, then function calls are redirected to the embedded 

inlined reference monitor, which in turn enforces policy decisions made by the module. 

Hooks injected via the instrumentation API are local to the app process that the API is 

called from. The main advantage of policy enforcement in the caller’s process context is 

that the hook and subsequently the security module has full access to the internal state of 

the app and can thus provide rich contextual information about the caller. In contrast to 

the hooks placed in the Android middleware, application layer hooks are dynamic, which 

means that hooks are injected by directly modifying the target app’s memory when a new 

app process is started. 

5.1.2 Implementation of the Security Modules Layer 

The detailed design of the Security Modules Layer (SML) is presented in Chapter 2. 

As explained in that chapter, SML consists of a set of modules including the manager, 

the policy-database, the user-interactor, the action-performer and a set of security 

checkers. This section describes the structure of such security modules within SML. Each 

of these modules is no more than a user-space Android app, created using the Android 

SDK. What differentiates most of these modules from normal Android apps is the use of 

the security API provided by SIL. Modules within SML are installed in a protected 

location on the file system, and are loaded during the system boot. Similar to any Android 

app, the package of an SML module is a jar file that contains program code in terms of 

Java classes, resources, and the manifest file (Figure 5.1). 

The manifest file is an XML-based file that declares the main properties of a module, 

such as the module author or code version, and, more importantly, the name of the main 

Java class that forms the entry point for the module. As in regular apps, the classes.dex 

file contains the Java code compiled to Dalvik executable bytecode (DEX). It contains all 

Java classes that implement the security module’s logic. During the load process of the 
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security module, the SIL middleware uses the Java reflection API to load the module’s 

main class (as specified in the manifest file) from classes.dex. To ensure that the reflection 

works error-free, the main class must implement the SIL API discussed in the previous 

subsections.  

Security modules also contain a native library liblsm.so written in C, and a 

corresponding Java class LSM.java, which exposes the native library via the Java Native 

Interface. The purpose of this code is to implement a proprietary interface between the 

user-space processes of security modules that uses SIL middleware API and those that 

uses SIL kernel API, which are implemented as Linux security module in the kernel 

(Section 5.1.1.1). LSM.java has to implement the generic interface for the communication 

with the kernel. The generic kernel module interface of SIL loads LSM.java through the 

Java reflection API into Android’s application framework. This allows apps and services 

to communicate via SIL (and reflectively through LSM.java) with the kernel module and 

avoids a policy-specific interface. 

Finally, each module can ship with proprietary resources, such as initial configuration 

files or required binaries. During module initialization, Android informs the module about 

the location of its Jar file, enabling the module to extract these resources on-demand from 

its file. 

Middleware Sub-Module (Middleware Security 
Module)

Manifest.xml Classes.dex

LSM.java / liblsm.so Resources
 

Figure 5.1: Middleware Security Module Structure 

SML modules aim to enforce access control policies as explained in the previous 

chapter, the implementation of these access control and policy enforcement mechanisms 

are presented in the following sub sections. 
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5.1.3 Enforcement of Fine-Grained Access Control Policies 

Enforcing fine-grained access control policies on apps is implemented by restricting 

third party apps’ ability to access critical system resources. To realize this goal, SML 

modules mostly use two mechanisms provided by SIL: the middleware-level enforcement 

functions, and the application-level IRM. In general, the manager component would 

implement several reference monitors or hooks embedded within Android’s system 

services and apps to intercept important events and also respond with decided actions. 

Each reference monitor protects one specific privileged resource and is placed such that 

it is always invoked by the control flow between the Android API and access to the 

resource. In total, all monitors enable powerful and semantically rich security policies. 

For example, fine-grained filtering of requests for data from content providers can be 

achieved using the pre-query hooks on Android ContentProvider system service to 

modify selection arguments and retrieve only contacts that are allowed for the current 

caller specified via a policy entry. 

Using the IRM instrumentation API, SML modules dynamically hook selected Java 

functions within the mHealth app process. Function calls are redirected to an inlined 

reference monitor that enforces fine-grained policy decisions made by the module, which 

are difficult to enforce using the native Android security model. For example, functions 

that setup the registration with sensors can be hooked to enforce low data resolutions, and 

functions that access the web can be enforced to use encryption through https rather than 

the use of http.  

In SML, most policy decision logic is implemented by the manager referring to 

policies in the policy-database persistent storage. The manager responds to reference 

monitors at various levels in the Android architecture, selects the apps into which IRMs 

are injected, and when necessary makes use of other checkers to make security logic 
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decisions. The response of the manager includes taking a decision about the requested 

access or intended action and then invoking the action-performer to execute one of pre-

determined set of actions that have been defined in Section 4.2.1.5.  

5.1.3.1 Context-aware access control 

A pertinent example of fine-grained access control is context-aware access control. A 

context is based on the geolocation of the device as well as the time. Depending on this 

context, MASF either allows or denies apps access to security and privacy sensitive 

information. To accomplish that, the manager invokes the context-checker component 

upon the start of an mHealth app. The context-checker in its turn registers as a listener for 

location updates to detect context changes. When the app requests a resource or service, 

the manager checks if there is any policy that is associated with the app request. If such 

a policy exists, the manager asks the context-checker to report the context of the device 

in terms of location and current time. The manager then matches the reported context 

with the context defined in the policy. In case of a match, the manager enforces the 

corresponding policy restrictions by invoking the action-performer to apply those 

restrictions on the app request. 

5.1.3.2 One-time checks 

As an example of the implementation of other security checks, event functions 

provided by SIL are used to trigger malware checks and taint analysis upon the event of 

installing a new app. These checks are necessary only once per installation of an app or 

its updates, and the event of installation is registered with SIL by the manager. There is 

no reason for waiting until the app actually runs and makes access requests to check for 

malware behaviour or information leakage. To guard against these threats, the manager 

is notified whenever a new app is installed, upon which it asks the malware-checker to 

exam the app against malware behaviour. In the current implementation, this is achieved 
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by simply invoking an installed anti-malware app, specifying the app as the target for the 

scan process. The results of the scan are delivered back to the manager. In addition, the 

taint-analyser is also invoked by the manager to perform taint analysis on the newly 

installed app. As explained earlier in Chapter 4, the implementation of the taint-analyser 

is based on FlowDroid (Arzt et al., 2014) and extended by (He, 2014). Taint analysis 

could be very efficient in revealing special threats such as the privilege escalation attack. 

5.1.3.3 Permission management 

In Android, all the resources that require explicit permissions to access are protected 

by the ActivityManagerService class through the checkComponentPermission method, 

which is called to verify that calling app has the right permission(s) to access a resource. 

Among the hooked system services, the SIL layer of MASF provides 10 hooks for the 

ActivityManagerService. The SML manager implements the enforcement functions 

corresponding to the checkComponentPermission hook, and thereby intercepting the 

permission checks before they are performed by the Android system and then enforcing 

more fine-grained control permissions that better reflect the app function and narrow 

down its accessibility to system resources. For example, the READ_PHONE_STATE 

permission provides apps with access to a large set of information on the phone number, 

the IMEI/MEID identifier, subscriber identification, phone state (busy/available), SIM 

serial number…etc., while only a subset of this information might be adequate. 

5.1.3.4 Data shadowing 

Data shadowing means that an app that wants to retrieve sensitive information (e.g., 

contacts information, location data, or IMEI number) only gets empty, fake, or filtered 

data. This is one of the possible actions that could be enforced by the action-performer 

component based on the manager decision, though its implementation might not be 

obvious like other straightforward actions such as blocking or revoking permissions. Data 
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shadowing is implemented using edit automaton hooks in the ContectProvider.Transport 

class, the ContactsProvider-specific hooks, the Telephony service and Location service. 

For ContentProvider and ContactsProvider, the SIL pre-query and post-query hooks 

allow a fine-grained filtering or replacing (faking) of the returned data as well as returning 

an empty data set. However, the current coverage of enforcement hooks does not include 

some of the data shadowing points, such as microphone, logs, or camera, and are left for 

the future work. 

5.1.3.5 Installation checks 

MASF also extends Android’s app installation process with policy-based checks and 

denies the installation of a new app when it violates the relevant policies. The manager 

component makes use of a special module called the installation-checker. This module 

performs a set of investigations based on the permissions requested by an app and the 

interfaces (e.g., Broadcast receivers) it wants to register in the system. The result of that 

examination is then returned to the manager and the installation of the app is rejected if 

the relevant policy dictates so. To implement this security service, the manager uses the 

scanPackage hook in the PackageManagerService, checks the new app against the policy 

and aborts its installation in case the policy rejects the app. 

5.1.3.6 Intent management 

MASF can enforce a number of controls/restrictions on different activities by 

intercepting intents for purposes such as launching an app (to prevent certain apps from 

running on the device), app installation and uninstallation (to prevent an app from sending 

an intent to install or uninstall an app), services (to prevent apps from starting background 

services), locking and unlocking the device (to prevent requesting pin code to unlock the 

device), broadcasts (to prevent apps from broadcasting intents), or app multitasking (to 

prevent running multiple user-apps simultaneously). The implementation of intent 
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interception is achieved by the manager using SIL-provided enforcement functions. In 

particular, the manager implements the function associated with the hook of the intent 

broadcasting subsystem of the ActivityManagerService. 

5.1.3.7 Managing system peripheral state 

MASF also enables users of configuring policies to restrict access to peripheral devices 

such as the Bluetooth, based, for example, on a certain context. Users can configure their 

devices to prevent apps from modifying the state of a device (whether the device is 

enabled or disabled). The manager uses enforcement functions into BluetoothAdapter 

and WifiManager classes to implement the control over peripherals state rather than 

permission management. In that way, MASF prevent apps from crashing if they lack the 

necessary code to handle exceptions that may result from just revoking permissions. 

5.2 Experimental Evaluation 

This section presents the results of evaluating MASF from two distinct perspectives: 

effectiveness and practicality. Through a series of experiments, the aim of the evaluation 

is to verify that MASF can actually protect private information, and can control the access 

to sensitive data in accordance with users’ policies. Users are expected to be able to 

(re)adjust and enforce security and privacy policies after installation even at runtime 

without affecting app functionality. This section presents the experimental results of 

various checks that control the privacy and security of user in the context of mHealth 

apps. Further, the impact of MASF on user experience is also evaluated and discussed. A 

number of mHealth apps are tested to check the effectiveness and performance impact of 

the framework, most of which are explained in Section 5.2.1. 

In addition to evaluate the implementation MASF to understand its effectiveness in 

protecting sensitive data, the conducted experiments also aimed to evaluate the 

framework’s performance impact on the phone’s normal operations. All the experiments 
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were conducted on a Samsung Galaxy S3 device with a Quad-core 1.4 GHz Cortex-A9 

and 1GB memory, running the Android 4.3 operating system (API level v. 18). At the 

time of evaluation, the top 100 apps from the Google Play market were run for testing 

and evaluating the modifications to the stock Android. 

A number of experiments were performed to evaluate the effectiveness and efficiency 

of MASF against different attacks and in various scenarios. The results of these 

experiments are presented in the following subsections.  

5.2.1 Experiment 1: Effectiveness 

This section presents a number of experiments that were conducted to show how 

effectively can MASF protect user data against security threats. A sample of 100 mHealth 

apps was used to check how the framework works against leakage of private information, 

and what steps it takes to prevent this leakage. As a first step, the sample apps were 

executed on a stock Android version to establish an insight into the scene of mHealth 

apps security. The complete list of the sample apps is given in Appendix A. 

Figure 5.2 presents the results of examining the set of apps, showing a number of 

threats faced by mHealth apps on the stock Android operating system. During the 

experiment, it was observed that a lot of apps are disclosing users’ data (73 out of 100) 

without the knowledge of users. Only 11 apps out of 100 were accessing the external 

devices. Those apps were checked against DMB attacks (for both data injection and data 

stealing variations of the DMB attacks), with no single app being able to defend against 

these attacks. Furthermore, 53 apps had the potential to perform privileges escalation 

attacks. Only 7 apps used encryption to secure user data. Some apps accessed user 

information that was not necessary at all to fulfil their functionalities. Only 45 percent of 

the apps employed authentication to secure user information. 
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Figure 5.2: Security Assessment of a 100 mHealth Apps on Stock Android OS 

 
Figure 5.3: Number of Apps Attempting to Access Various Resources Containing 

Sensitive Data  

Most of the examined apps attempted to access the device location, list of contacts, 

call logs, phone identity, camera, account information and Bluetooth, as can be seen in 

Figure 5.3. Figure 5.3 shows how many out of the 100 target apps accessed these 

resources and how frequently, which also reflects the relative importance of the resources. 
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location information, 43 apps sent the IMEI number, and 24 apps leaked both the IMEI 

number and location information. Although most of them do not need to do, 32 apps did 

access the contacts information, 21 apps had permission to access Bluetooth, which can 

cause DMB attacks in the case of mHealth apps. Other apps attempted to access the logs, 

microphone and other sensitive resources, which leads to disclosure of sensitive user data. 

In later experiments, the same set of 100 mHealth apps were installed on the device 

containing Android 4.3 enhanced with MASF, which provides a set of privacy and 

security policies to effectively prevent leakage of private information, DMB attacks and 

privilege escalation attacks. MASF can provide apps with shadow data, and deny 

permissions to access Bluetooth by untrusted apps. MASF indeed prevented all the 73 

apps from leaking information that was detected in the previous experiment. MASF also 

successfully defended against DMB and privilege escalation attacks. MASF solved the 

encryption problem by providing shadow or empty data so that apps cannot expose actual 

sensitive data in plain text.  

A number of experiments was performed to test the effectiveness of MASF against 

different attacks, and experimental results show that the framework is very effective to 

control unauthorized access of user data and other system services and resources. 

Experimental results of three scenarios are presented below. 

Scenario 1. In this example, an app named Heart Rate Monitor was used, which was 

known to request the permission to access the location, even though this app does not 

need to access the location to perform its operations. When this app was installed and run 

on the stock Android, after granted the permission to access location, the app leaked the 

phone location information, and sent that information to a remote server. However, when 

MASF was installed on the smartphone, and then the same app was installed and run, the 

app provided empty/fake location to the remote server. That was the effect of checking 
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the rules and policies related to privacy of location by the framework. Furthermore, the 

experiment showed that no app was affected by enabling MASF on the smartphone; they 

were running smoothly and working normally. 

Scenario 2. Another two experiments were performed on the app named Diabetes, one 

without, and the other with, the protection of MASF. At the time of installation, this app 

declared the permission to access the phone identity, but this information was leaked to a 

remote server. In the first experiment, this app sent the IMEI number of the smartphone 

to a remote server. The leaked IMEI number (376855633798032) was in the query string 

of HTTP GET request to the server. After the confirmation of leakage on stock Android, 

the second experiment started on Android enhanced with MASF. The same app was run 

again to check the effectiveness of MASF. Although the app was again sending an IMEI 

number, but this time the IMEI number was not the original one, the framework sent a 

fake IMEI number. The reason here to send the fake value instead of blocking the access 

is to make sure that the app continues its operation without crashing. 

Scenario 3. To check the effectiveness of MASF against DMB attacks, several attack 

scenarios are attempted against a set of apps as described in Naveed et al. (2014), 

including DMB data-injection and data-stealing attacks. All these attack attempts were 

thwarted. In particular, for all data-stealing attacks, MASF stopped the malicious app 

from making socket connections to the target device, as these connections violated the 

policies. MASF also did not allow access to system peripherals (i.e. Bluetooth devices) 

for apps that were not explicitly allowed by the phone user through the policies. For the 

data-injection attacks, MASF blocked all the attempts to unpair the phone from the 

devices and therefore defeated the data-injection attacks. 
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5.2.2 Experiment 2: Malware Test Suite 

This set of experiments adopts the malware test suite that was presented by (Bugiel, 

Davi, Dmitrienko, Fischer, et al., 2011). MASF was evaluated by applying that malware 

test suite, which constitutes a set of recent privilege escalation attacks (Davi et al., 2011; 

Enck, Ongtang, & McDaniel, 2008; Lineberry, Richardson, & Wyatt, 2010; Schlegel et 

al., 2011). The test suite exploits transitive permission usage to perform attacks against 

user privacy or to gain unauthorized access to protected system interfaces. A group of 6 

example attacks were chosen for the experiment, which are defined in Table 5.1. Each 

row in the table shows the granted set of permissions for two colluding malicious apps, 

in a given scenario attack. Attack scenarios 2-4 are proof-of-concept examples of 

malware, while scenarios 1, 5 and 6 emulate the attacks in (Davi et al., 2011; Enck et al., 

2008; Lineberry et al., 2010; Schlegel et al., 2011). 

Table 5.1: Malware Test Suite 

# 1st App 2nd App 
1 Malicious voice recorder RECORD_AUDIO 

and PHONE_STATE or 
PROCESS_OUTGOING_CALLS 

Malicious wallpaper (Schlegel et 
al., 2011) INTERNET 

2 Malicious step counter 
ACCESS_FINE_LOCATION 

Malicious wallpaper INTERNET 

3 Malicious contacts manager 
READ_CONTACTS 

Malicious wallpaper INTERNET 

4 Malicious SMS widget READ_SMS Malicious wallpaper INTERNET 
5 Malicious app no INTERTNET  Vulnerable browser (Lineberry et 

al., 2010) INTERNET 
6 Malicious app no SEND_SMS Vulnerable SMS widget (Davi et 

al., 2011) SEND_SMS 
 

Attacks 1 to 4 involve two colluding malicious apps, where one app gets the Internet 

access, and another one can gain access to sensitive user data, such as contact, user 

location, SMS database and recorded audio. In the attack scenario 1, the malicious voice 

recorder also requires the PROCESS_OUTGOING_CALLS or PHONE_STATE 

Univ
ers

ity
 of

 M
ala

ya



122 

 

permission, because this permission is required to be notified at what time the incoming 

or outgoing call starts. Apps collude to send private user information to the remote 

adversary. In attack scenarios 2 to 4, apps establish the ICC communication link between 

them, whereas in scenario 1 they communicate through a covert channel. 

In scenarios 5 and 6 a malicious app misuses a vulnerable app that has the permission 

to access Internet, voice call or SMS services to get unauthorized access to these system 

interfaces. Scenario 5 emulates attacks reported in (Egele, Kruegel, Kirda, & Vigna, 

2011; Lineberry et al., 2010), which exploits an unprotected interface of the Android web 

browser to do unauthorized download of malicious files. In scenario 6 the malicious app 

sends unauthorized text messages, similar to the attack shown in (Davi et al., 2011). 

MASF is tested to evaluate its effectiveness in detecting the malware presented in the 

above description. All tests were performed on the device running Android 4.3 and 

MASF. After enforcing MASF access control, the malicious apps were installed from the 

test suite and performed the corresponding attacks. All attacks were successfully detected 

and prevented by MASF. 

5.2.3 Experiment 3: Impact of Permission Restrictions 

This experiment was conducted to find the impact of permission-related policy 

restrictions on apps. In particular, the experiment aimed to check whether an app crashes 

or not when a permission that was granted at the time of installation is denied. A stress 

test was performed on each app, and the impact of revoking the permissions of each app 

was observed when it was requesting for a service or resource. The experiment was also 

performed on a set of 100 apps and used the ADB logging utility to view the permission 

being revoked when the checkComponentPermission hook is invoked. 
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Figure 5.4 shows both the number of apps that crashed and those that did not, upon 

performing the test on each permission. An app was considered as crashed if it failed 

during the execution of any part of its functionality, whether major or minor. The primary 

cause of crashes of an app is the lack of developer’s skills to handle the denial of 

previously granted permissions. App crashes can be prevented or reduced if error-

handling was added whenever an app tries to access resources or request for a service. 

5.2.4 Experiment 4: Impact of Data Shadowing 

The aim of this experiment was to observe the impact of data shadowing or blocking 

access to user data. In data shadowing, when an app tries to access sensitive information, 

MASF returns a fake copy of data. For example, when an app tries to access device 

geographical location, MASF sends fake location information if the defined policies 

restrict such access. The data shadowing effect was tested on the same sample of 100 

apps used in the previous experiments. The result of this experiment is shown in Figure 

5.5. The effect of blocking access to user data was also checked in this experiment. 

 
Figure 5.4: Impact of Permission Revoking on Applications 
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successfully protect the user information without giving access to original data; as can be 

0
10
20
30
40
50
60
70
80
90

100

No Crash Crash

Univ
ers

ity
 of

 M
ala

ya



124 

 

seen in Figure 5.5, only 9 out of the 100 apps were crashed during the experiment (as 

previously, an app is counted as crashed even if it is failing to perform a minor 

functionality). Actually, data shadowing works very successfully where revoking 

permissions does not work, because sometimes the user has to give the permission for 

particular data, service or resource in order to make sure that apps behave normally, so 

revoking permission does not work all the time. MASF can also deny access to sensitive 

data when a particular app attempts to access user data. Hence, the result of blocking 

access to sensitive data is also demonstrated in Figure 5.5. Blocking access to sensitive 

data causes crashes for more apps; as evident in Figure 5.5, 23 out of 100 apps crashed 

during the experiment when using the blocking access option. Thus, data shadowing is 

more effective and robust compared to data blocking. However, both options are 

successfully protecting the user sensitive data. 

 
Figure 5.5: Impact of Data Shadowing on mHealth Apps 

5.2.5 Experiment 5: Impact of Disabling/Blocking Intents 
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tested how intent disabling can affect apps functionality. The results of this experiment 

are shown in Figure 5.6.  

Disabling intents is effective against certain types of attacks (e.g., to mitigate privilege 

escalation attacks and data leakage). As can be seen in Figure 5.6, only 17 out of the 100 

apps crashed during the experiment. Intent disabling is working very fine with 83 out of 

100 apps, and it does not affect the app’s main functionality. Disabling some intents may 

affect the functionality that is related to the disabled intent; however, this is done 

intentionally to protect sensitive data, resources and services. Generally, disabling Intent 

is very useful to protect the sensitive information. 

 
Figure 5.6: Impact of Intent Disabling on Apps 

5.2.6 Experiment 6: Impact of Enabling/Disabling System Peripherals 

The main objective of this experiment is to find the impact of denying the access to 

system peripherals (e.g., Bluetooth). In this experiment, the behaviour of apps was 

checked when apps try to access the Bluetooth, and MASF policy restrictions do not allow 

that. Similar to previous experiments, this experiment tested how many apps crash or 

cannot achieve their main objective when restricting access to peripherals. The 

experiment was again performed on the sample of 100 apps; however, only 43 out of the 

100 apps were accessing the system peripherals (i.e., Bluetooth). The results of this 

experiment are illustrated in Figure 5.7. 
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The results of the experiment show that only 11 out of 43 apps crashed during the 

experiment. If denying the access to system peripherals affect the main functionality of 

the app, then the case was considered as a crash. The experiment proved that MASF can 

successfully revoke access to system peripherals in order to protect sensitive user data.  

 
Figure 5.7: Impact of Enabling/Disabling System Peripherals 

5.2.7 Experiment 7: ICC False Positives 

Although MASF was shown to be effective in enforcing security restrictions, it is 

possible that some of the framework decisions may be too restrictive and can be 

considered as false positives. For example, denying an access request or revoking a 

permission when there is no real reason to do that is a wrong decision (false positive). To 

evaluate this possibility and study how MASF affects third party apps in this regard, the 

sample of 100 apps was employed again. During the experiment, all apps were installed 

and thoroughly used in a test set in an arbitrary order, with interleaving installation, 

uninstallation, and usage of the apps. To quantify the evaluation, the collected 

measurements focused on the Inter-Component Communication (ICC) issued and denied 

requests, since ICC is the primary mechanism of communications between apps and 

access control on ICC is important for the enforcement of security and privacy policies 

in the middleware. 

The apps were tested and their behaviour was checked with and without MASF. Figure 

5.8 shows that MASF performed a number of policy checks during the test of 100 apps, 
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and in response to these checks, some ICC attempts were denied during the experiment 

that are also shown in the figure. The number of denied ICC is very little as compared to 

a static system like Kirin (Enck et al., 2009). If MASF policies restrictions would be 

enforced with Kirin, then each of 100 test apps would in average conflict with 54 other 

apps from the set. 

 
Figure 5.8: Denied ICCs by Different Policy Checks 

Manual inspection of each message along with the network packet trace confirmed 

that there were very few false positives. The denied ICCs were evaluated, which revealed 

that very few of the denied ICCs were false positives, as shown in the Figure 5.8. In 

particular, the following were the main sources for false positives: (1) for direct ICC, 5 

apps were the main source for the false positives, because they held a high number of 

permissions. Those apps caused 3 false positives out of the 38 denied ICCs; (2) the power 

system service provider, caused only 2 false positives out of the 18 denied ICCs with 

system service providers; and (3) the system settings content provider, caused just 4 false 

positives out of the 42 denied ICCs in this case. False positives for apps can be prevented 

by adjusting and refining the policies. 
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5.2.8 Analysis of the Impact on Android Security 

This section presents results of some experiments and observations that were 

conducted to analyse the impact of MASF on Android security itself. This section also 

presents a security analysis of possible threats from malicious users or apps that can 

bypass the framework’s policy restrictions. 

First of all, it is noted that MASF does not reduce the Android OS security itself. For 

each requested access to an app or system service, MASF only introduces further checks, 

and these checks depend on the security and privacy policies. However, each access that 

is not denied by MASF is still passed on to the Android Permission Check system and 

not influenced by MASF anymore. As a result, MASF can only reduce the number of 

accesses allowed, not reducing the security. 

In Android platform, each app is assigned a unique UID that the system uses to refer 

to an app. However, if two apps are created and signed by the same developer, then the 

system gives both apps the same UID, so these apps can share the same processes if 

needed (Bugiel, Davi, et al., 2012). The Android OS enforces its security policies not 

based on the app label or its package name, but rather on the process UID. MASF, on the 

other hand, obtains the name of the package (app) which is performing an action by 

calling the PackageManager’s getPackagesForUid (int uid). In this way, MASF policy 

restrictions are not dependent on the UID but are transformed to refer to the package 

name. For instance, if two apps, app X and app Y, are sharing the same UID, and the user 

has blocked the access to GPS from app X, this app may still be able to get information 

about the device’s geographical location because App Y was still able to access GPS 

according to the policies. MASF prevents such threat through blocking all package names 

associated with a UID using the getPackagesForUid method. 
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In MASF, user can define security policies to limit the access to resources in some 

necessary situations. For example, the user can define a policy for a particular set of apps 

allowing to use Bluetooth only at home. As mentioned earlier, users can configure policy 

restrictions based on the context (i.e., time and location), and these policy restrictions are 

either enforced system-wide or per app. If apps can modify these policies, then any 

malicious app can execute specific attacks based on policy configurations. In order to 

protect the policies, MASF does not allow write privileges to be granted on policies 

directly for any other app, thus preventing policies from being modified. All writes are 

performed by MASF through the user-interactor component. 

Further, a malicious app that is aware of MASF policies may attempt to drop a policy 

or modify the device’s identified context so that the wrong policy is applied. 

Nevertheless, in MASF implementation, the context information is directly retrieved 

from the system protected APIs that cannot be modified by apps. Context information is 

managed by the context-checker that collects such information regardless of which apps 

are running on the device or which services are requested by apps, based on requests from 

the manager. This independency of the context-checker gives robustness in gathering 

context data that is forwarded to the manager. 

Once an app requests access to a resource, the Android OS verifies whether this app 

has permission(s) for the requested resource only at the time of the request. However, 

some processes associated with certain resources may continuously run even if the device 

is later moved to a different context for which the user has not allowed access to this 

resource. The reason behind this is that permission granting is not checked continuously 

while the process is running, instead it is only checked once the request is issued. 

Malicious apps may take advantage of this, e.g., by continuously recording audio in one 

context while transitioning to another context. The Android OS does not continuously 
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verify whether an app has audio recording permission during recording. It verifies the 

permission each time a request is made, after that when the permission is approved the 

app can continue using the permission for that particular session. MASF implementation 

thwarts this type of attacks. When a registered location is associated with a policy 

restriction on audio or video access, MASF forces the apps with the associated 

permissions in their AndroidManifest.xml to close. 

Finally, it is important to make sure that an adversary cannot skip MASF enforcement. 

As mentioned, MASF is designed as an extension of Android platform, and it is deployed 

to a protected location on the file system, from where it is loaded during boot. To avoid 

the adversary modifying the operating system of the phone itself (drivers and MASF 

included), Trusted Computing mechanisms leveraging Trusted Platform Module (TPM) 

can be used. However, the discussion of these mechanisms is outside the scope of this 

thesis. 

5.3 Performance Evaluation 

This section presents the experimental results conducted to evaluate the performance 

of MASF. Particularly, time and energy consumption are evaluated by running different 

features of MASF because energy consumption and time performance are two main 

limitations of smartphone. All performance evaluation experiments were conducted on 

Android v4.3. As mentioned earlier, the custom system image of Android that includes 

MASF was installed on this smartphone. Details of the experiments and how MASF 

induces overhead are given in the following subsections. 

5.3.1 SML Performance Overhead 

5.3.1.1 Performance overhead of permission checks 

First, the overhead induced by MASF permission check system is examined. This is 

the induced overhead caused by each request that leads MASF to check the permissions 
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of an app. Experiments were conducted to find the amount of overhead induced by MASF 

permission check with respect to both time and energy consumption. To find time 

overhead, an experiment is conducted to measure the time induced by MASF’s checks. 

MASF permission check works through a hook before the Android permission check 

mechanism is taking control. The time interval is measured between the request of a 

resource (app or system service) and the moment that request is fulfilled and MASF is 

finished with the permission checking. MASF hooks into both access requests by apps 

and system services, but not much differences were noticed between these two cases. In 

fact, both requests are treated in the same way by MASF. Further, for some resources, 

MASF does not influence the results with any overhead.  

The results of this experiment are shown in Figure 5.9. In the graph, Y-axis shows the 

time overhead measured in milliseconds, and X-axis shows the number of rules examined 

in response to permission checks. This graph is plotted by obtaining the average of 200 

measurements. As evident from the figure, the time overhead induced by MASF for its 

permission checks is negligible, with all measured delays even corresponding to larger 

number of rules being under 0.5 ms. As expected, the time overhead increases as the 

number of active policies are increasing. 

 

Figure 5.9: Time Overhead of MASF Permission Check System  
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As mentioned earlier, energy consumption is an important issue in smartphones, so 

energy overhead induced by MASF permission check system was also investigated to 

ensure that this framework is a practical solution. To investigate energy overhead, all 

MASF functions and policies were enabled during the experiment to estimate the 

maximum energy demand of MASF. The experiment was started with fully charged 

battery, and then a number of different functions was performed on the smartphone every 

ten minutes during the experiment, such as sending of SMSs, making phone calls, running 

different medical and non-medical apps. The experiment was repeated 30 times for each 

of two cases when the smartphone was running Android as well as when it was running 

Android with MASF.  

The results of the experiment are shown in Figure 5.10. Android with MASF consume 

higher energy as compared to the original Android. This is due to the energy consumption 

of different checkers in the MASF. In particular, 4571 permission checks were called 

during the experiment for 24 different resources. Further, as expected, consumed energy 

by MASF increases as the number of active rules increases. As shown in Figure 5.9, the 

energy consumption of MASF is almost 5 % of the battery when 15 rules are active, 

whereas it turns into almost 9% of the battery when 45 rules are active. It can also be seen 

from the figure that the energy consumption of MASF does not increase linearly with the 

increase in number of active rules. This is because some basic actions of MASF remain 

the same for a number of rules. 

In conclusion, according to the experiment results, the energy consumption of the 

MASF permission check system is reasonable. However, most probably it would be very 

rare cases in which the framework would need 45 active rules or more, which makes 

MASF a quite reasonable solution because very few rules would be active for a particular 

event and for a specified period of time. It should also be noted that this solution, to the 
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best of the author knowledge, is the first of its nature, and hence no particular attention is 

paid towards any possible optimizations. 

 

Figure 5.10: Energy Overhead of MASF Permission Check System 
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According to the measurement, if the context-checker registers for context information 

updates every 5 minutes, then it consumes 15% of the battery. However, if the period of 

checking the context extends to every 10 minutes, then it consumes only 7% of the 

battery. If the context update period further extends to every 15 minutes, then it consumes 

just 3.25% of the battery energy. This can be seen in Figure 5.11 by noticing the battery 

percentage displayed on the device with and without enforcing MASF policies.  

 

Figure 5.11: Comparison of Device Battery Consumption while Checking for 
Context Updates 

In the first case, the overhead is not negligible, while in the third case, the energy 

consumption for checking every 15 minutes is quite promising. Moreover, optimizations 

are possible to the current implementation, for example, the context checking frequency 

might be reduced while the value of a variable of interest (e.g., location) is far from the 

current value of the context. The experiment results also demonstrate the importance of 

the issue of energy consumption in the context of smartphones. In conclusion, MASF has 

a reasonable amount of context-check overhead in terms of energy consumption.  

5.3.1.3 Java microbenchmark 

The Java CaffeineMark 3.0 benchmark tests were employed to measure the overall 

performance overhead of MASF. This benchmark contains a set of programs to evaluate 
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the app runtime overhead. For evaluating MASF, an Android port of the standard 

CaffeineMark 3.0 [Pendragon Software Corporation 1997] was used.  

The CaffeineMark 3.0 is a series of tests that measure the speed of Java programs 

running in various hardware and software configurations. CaffeineMark scores roughly 

correlate with the number of Java instructions executed per second, and do not depend 

significantly on the amount of memory in the system or on the speed of a computer’s disk 

drives or Internet connection. CaffeineMark uses several tests to measure various aspects 

of Java virtual machine performance. Each test runs for approximately the same length 

of time period. The score for each test is proportional to the number of times the test was 

executed divided by the time taken to execute the test.  

The following is a brief description of each test, originally presented in (Pendragon 

Software Corporation, 1997):  

• Sieve: the classic sieve of Eratosthenes finds prime numbers.  

• Loop: the loop test uses sorting and sequence generation as to measure compiler 

optimization of loops.  

• Logic: tests the speed with which the virtual machine executes decision-making 

instructions.  

• Method: the Method test executes recursive function calls to see how well the 

VM handles method calls.  

• Float: simulates a 3D rotation of objects around a point.  

The overall CaffeineMark score is the geometric mean of the individual scores. 

The CaffeineMark 3.0 benchmark was run on both stock Android and the Android 

with MASF. The results for both experiments are shown in Figure 5.12. This figure shows 

the score for all the tests, where a higher score is better in terms of performance. During 
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the experiment, the Sieve score was 9830 for stock Android and 9339 for Android with 

MASF. CaffeineMark gave Loop scores of 21833 and 19651 for stock Android and 

Android with MASF respectively. Logic test obtained 18880 for stock Android while 

17370 for MASF. Stock Android acquired a score of 15184 for the String test while 

MASF Android attained a score of 13362. Float score is 9617 for stock Android and 9040 

for Android with MASF. Further, MASF achieved a score of 7009 for the Method test as 

compared to 7875 for the same test with stock Android. The unmodified Android system 

had an average score of 12924, while the average score of MASF was 11799, which 

shows that MASF has an 8.7% overhead as compared to the stock Android according to 

the CaffeineMark benchmark tests. 

In conclusion, the results of performance overhead indicate that MASF is a lightweight 

framework that is capable enough to effectively protect user private and sensitive medical 

information. 

 

Figure 5.12: The Result of CaffeineMark 3.0 Benchmark / Microbenchmark of 
Java Overhead. 
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5.3.1.4 Macrobenchmarks 

To measure the overhead of MASF on a higher-level, several macrobenchmarks were 

conducted for high-level smartphone operations. The experiments were performed on the 

device running Android with and without MASF. Each experiment was run at least 50 

times. Average results with 95% confidence interval are shown in Table 5.2. During the 

study, only limited performance overhead was observed as detailed below. 

Table 5.2: Macrobenchmark Results of Time Overhead for Modified Core 
Android Methods 

Method / Benchmark Android MASF Overhead 
App Load Time 109 ms 113 ms 3.66 % 
Check Component Permission  101 ms 108 ms 6.93 % 
App Filter 140 ms 142 ms 1.42 % 
Intents to Start Activity 116 ms 125 ms 7.75 % 
Network Access 90 ms 91 ms 1.1 % 
Policy Change/Alteration - 2 ms - 
Intent to Start Service 73 ms 76 ms 3.94 % 
Intent to Send Broadcast 69 ms 71 ms 2.89 % 
Phone Call 159 ms 170 ms 6.9 % 
User Data Content Resolver 107 ms 115 ms 7.47 % 
Device Peripherals Set Enable/Disable 83 ms 88 ms 6.02 % 

 

To evaluate the timing overhead introduced by MASF modifications to Android, the 

amount of time that takes MASF modified methods to fully execute was calculated during 

the experiment. The execution times of these modified methods before the modifications 

were also calculated (i.e., the time of execution of these methods on stock Android). The 

two sets of times were compared to estimate the overhead of MASF modifications. 

Specifically, this experiment measured the overhead time caused by “intercepting app 

permissions”, “intent messages to start activity, service or send broadcast”, “app load 

time”, “network access check”, “user data accesses” (e.g., contacts), “phone call”, 

“policy change”, and “access to system peripherals” (e.g., Bluetooth). Detailed 

descriptions of these parameters are given in next paragraph. Table 5.2 reports in 
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milliseconds the time imposed on these methods. As the results show, the overall delay 

introduced by enforcing MASF policies is not perceivable by the end-user. 

• In “app load time”, the time to start an app in MASF was compared to a baseline 

app load time in Android. The app load time measures starting from when 

ActivityManager receives a command in order to start an activity component to 

the time the activity thread is displayed. This time includes app resolution by 

the ActivityManager, IPC, and graphical display. The average overhead for 

loading apps is 4 ms, which is negligible. It means MASF adds only 3.66% 

overhead, as the operation is dominated by native graphics libraries.  

• In “check component permission”, the time overheads for both Android and 

MASF were measured to find how much additional time MASF consumes to 

check component permission for the enforcement of policies. In this case, 

MASF only takes 7 ms more as compared to stock Android, which shows that 

MASF adds 6.93% overhead.  

• In “app filtering”, MASF filters the potential target apps when Android uses an 

implicit intent to start an activity component. The time between sending an 

intent message and the resolution of the final list of apps presented to the user 

was measured during the experiment. MASF only causes a negligible delay of 

2 ms, which means it introduces a mere 1.42% overhead.  

• The time delay caused by “intents to start activity” was also measure during the 

experiment. On stock Android, it takes 116 ms, however, for MASF it takes 125 

ms. Hence, MASF adds 9 ms, which translates to 7.75% overhead.  

• In “network access check”, a hook is placed in the kernel by MASF, which is 

called every time a process attempts to access the network. This experiment was 

conducted by using an app which attempts to access the network repeatedly. 

Since Android already performs similar check to enforce its INTERNET 
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permission, MASF’s additional checks have negligible impact (i.e., it causes a 

negligible delay of 1 ms, which entails only 1.1% overhead).  

• In “policy change”, the time to change the policies and contexts, and the time 

for reassignment of services and resource to all apps is also measured during 

the experiment. This policy re-enforcement only takes 2 ms.  

• The time delay caused by “intent to start service” was also measured during the 

experiment. On stock Android it takes 73 ms, however, for MASF it takes 76 

ms. Hence, MASF brings 3 ms, which means it adds only 3.94% overhead.  

• The time delay for “intent to send broadcast” was also measured, which takes 

69 ms for stock Android and 71 ms for MASF. It causes a negligible delay of 2 

ms, which means MASF adds only 2.89% overhead.  

• The “phone call” benchmark measured the time from pressing “dial” to the 

point at which the audio hardware was reconfigured to “in call” mode. MASF 

adds less than 11 ms per phone call setup, which means 6.9% overhead, which 

is significantly less than call setup in the network that takes time on the order 

of seconds.  

• The time overhead for “user data content resolver” was 107 ms and 115 ms for 

stock Android and MASF respectively. This means a delay of 8 ms, which 

translates to a 7.47% overhead.  

• MASF also needs to enable or disable some of the system peripherals to enforce 

policies, the time delay to “enable or disable a device peripheral” was further 

measured during the experiment. The result shows that it causes only a delay of 

5 ms, which means MASF adds a negligible 6.02% overhead. 

5.3.1.5 System memory overhead 

An experiment was conducted to measure the amount of memory overhead placed by 

MASF on the system. Mainly, the purpose of this experiment was to observe the changes 
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in memory usage caused by MASF restrictions and by the context detection mechanism 

(i.e., LocationService) that continuously run in the background for context updates. 

Figure 5.13 depicts that the memory usage when enforcing MASF policies closely 

matches the memory usage when these policies are not enforced. As the figure shows, 

memory usage due to permission checks in Android is 9.25% of the memory while the 

same is 10.36% of the memory during the experiment on Android with MASF policy 

enforcement. Further, usage ratio due to intents is 6.22% of the memory in case of 

Android whereas it is 8.11% of the memory in the case of MASF. Likewise, user data 

cause a memory usage of 18.53% and 21.37% in the cases of Android and Android with 

MASF, respectively. Finally, system peripherals are taking 9.93% of memory space 

during the operation on stock Android and 12.43% of memory when using MASF.  

 
Figure 5.13: Total Memory Overhead Comparison with and without MASF Policy 

Restrictions 

The maximum memory overhead caused by MASF during these tests was about 2.84% 

of the memory, thus it is within an acceptable range. The average memory footprint of 

MASF is 1.5 MB with a standard deviation of 389.4 KB. 
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5.3.2 SIL performance overhead 

Most of the actual performance overhead comes from the Security Model layer in 

MASF; nonetheless, it is also interesting to check the impact of SIL on the system 

performance. SIL is based on LSM at the kernel level, and the performance of the latter 

was already evaluated separately, e.g., for SE Android (Smalley & Craig, 2013). The 

focus here is to check the effect of SIL middleware security framework on the 

performance of instrumented middleware system services and apps. 

SIL is implemented as a modification to the Android OS code base in version 4.3_r3.1 

(“Jelly Bean”) and used the Android Linux kernel in branch android-omap-tuna-3.0-jb-

mr1.1. Microbenchmarks were performed for all execution paths on which a hook diverts 

the control flow to SIL’s middleware framework. First, the execution time of each hooked 

function was measured without loading SML models and allowing by default all access. 

Afterwards this test was repeated with hooks disabled to measure the default performance 

of the same functions and thus operating like a stock Android. All those microbenchmarks 

were performed on Android version 4.3, which was booted and then used according to a 

test plan for different daily tasks such as sending SMS and emails, browsing the Internet, 

contacts management, and installing and uninstalling third party apps. 

Table 5.3 reports the number of measurements for each test case and their mean values. 

To exclude extreme outliers, the highest decile in both measurement series was excluded 

from the measurements. For SIL, the mean is the weighted mean value with consideration 

of the frequency of each single hook. During the experiment, the mean time of stock 

Android was 106.556 µs, whereas SIL without loading SML models imposed 118.924 

µs, which is approximately only 11.61% overhead compared to stock Android. Figure 

5.14 presents the relative cumulative frequency distribution of the measurements series 

and further illustrates this low performance overhead. 
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Table 5.3: Weighted Average Performance Overhead of Executing Hooked 
Functions in Stock Android and in SIL. The Margin of Error is given for the 95% 

Confidence Interval. 

Type (System) Frequency Mean (µs) 

Stock Android 6743 106.556 

SIL 5535 118.924 

 

 
Figure 5.14: Relative Cumulative Frequency Distribution of Microbenchmarks in 

Stock Android vs SIL 

5.4 Chapter Summary 

This chapter presents the technical details of the implementation of the proposed 

framework, MASF. The implementations of the two main layers, SML and SIL, along 

with their components are discussed. The resulting prototype is meant to validate the 

design of the framework in previous chapters via a proof-of-concept implementation. 

This chapter also describes the evaluation of MASF through a number of experiments 

that show its effectiveness in thwarting attacks on mHealth apps, and preventing 

intentional as well as unintentional disclosure of user privacy. Furthermore, experimental 

results of performance evaluation showed that MASF’ overhead is not human 

perceivable, suggesting that this framework is a practical and lightweight solution viable 

for deployment in smartphone platforms. 

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1200 1400 1600

R
el

at
iv

e 
C

um
ul

at
iv

e 
Fr

eq
ue

nc
y

Time (µs)

Android

SIL

Univ
ers

ity
 of

 M
ala

ya



143 

 

CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 

This chapter concludes the presentation of the work on developing a security 

framework for mHealth apps on the Android platform. Besides summarizing the main 

points of the research work, this chapter re-evaluates the research objectives and puts 

forward the accomplishments of this study. Furthermore, it summarizes contributions of 

the research and discusses its limitations. Finally, it presents a few potential future 

directions to improve this work. 

The complete organization of this chapter is as follows. Section 6.1 discusses the 

reappraisal of the objectives of this research work. The contributions of this research are 

highlighted in Section 6.2. Moreover, Section 6.3 discusses the limitations of this research 

work, while Section 6.4 proposes several directions for future work. 

6.1 Research Summary and Objectives Achievement 

Smartphones and their apps have dramatically changed the way of communication, 

computation, and the model of many traditional and new services. One active area of 

smartphone apps that has witnessed an astonishing growth is the mHealth apps. mHealth 

apps are defined in this thesis as software programs that provide health related services 

through smartphones and tablets. Using mHealth apps in the delivery of healthcare is 

rapidly proliferating. mHealth apps have several potentials that drive this popularity, 

including the ability to increase patient satisfaction, improve doctor efficiency, reduce the 

cost of healthcare, and to improve the availability, affordability and effectiveness of 

healthcare services. 

The problem of this thesis starts with the observation that despite all those benefits, 

mHealth apps bring about new risks to the security of user’s sensitive medical data. 

Existing smartphone operating systems, particularly Android, are not sufficient to ensure 

Univ
ers

ity
 of

 M
ala

ya



144 

 

privacy and security of users’ data, particularly in the case of mHealth apps. The lack of 

that privacy protection is one of the major barriers to the widespread use of mHealth apps. 

This observation leads to the need for better solutions to secure mHealth apps, and ensure 

the confidentiality, integrity and availability of medical data, and consequently facilitate 

the adoption of these apps by the healthcare system. 

Motivated by the above argument, this thesis aimed to improve the security of medical 

data associated with Android mHealth apps, as well as to protect the privacy of users from 

threats that might be imposed by those apps. Because the required functions to achieve 

such a goal cannot be implemented using a single app that is running in the user space, 

there is a need to develop a complete framework of multiple components that roots deep 

in the internals of the system and effectively protects the target data. The overall goal of 

this research was to design and implement such a framework that is both practical and 

effective, directed specifically to the Android platform. To achieve this goal, this research 

had set five objectives, listed in Section 1.4. These objectives are revisited and 

commented in the following paragraphs. 

To identify the outstanding issues related to the security and privacy of mHealth apps, 

and find out research gaps in this area, the literature was comprehensively reviewed as a 

first objective of this research. This review also covered the Android security architecture 

and the corresponding issues in the Android platform. A thorough investigation and 

analysis were performed on the field of mHealth apps, producing a thematic taxonomy of 

research works on mHealth apps (Section 2.1). This taxonomy classified the research 

field on mHealth apps into four main classes (with further sub-classes). Then, a brief 

introduction of Android operating system and its security mechanisms was presented 

(Section 2.2). Subsequently, the existing solutions in the literature to protect Android 

platform were discussed, and specific security weaknesses of the Android platform were 
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explained, mainly reporting on privacy threats exposed by works in the literature. After 

that, a comprehensive survey on security and privacy threats to mHealth apps was 

provided (Section 2.3). An analysis on a set of mHealth apps was performed to further 

investigate the security issues of mHealth apps. Hence, the challenges mHealth apps are 

facing were discussed thoroughly. Finally, existing security solutions that are specifically 

designed for mHealth apps were examined, highlighting their weaknesses. 

As the main objective of the thesis, a MHealth Apps Security Framework (MASF), 

was proposed to secure the execution of mHealth apps and their users’ data (Section 4.1). 

MASF addresses various security and privacy threats of mHealth apps, such as data 

leakage, DMB attacks, privileges escalation attacks, and misuse of permissions. This 

framework provides mechanisms for fine-grained access control, context-aware access 

control, and protection of private information through taint analysis and data shadowing. 

Moreover, MASF provides the users the ability to define their own policies according to 

their requirements to control apps’ access to system resources based on several criteria, 

including the current context of the device such as the time and location. The framework 

can revoke certain permissions, revoke access for system peripherals, disable intents, and 

provide shadow data. 

The proposed design was then implemented in a real environment to meet the objective 

of evaluating the framework. According to the design of MASF, its implementation 

consists of two main parts: the Security Module Layer (SML) and the System Interface 

Layer (SIL). SML performs all the necessary security checks and tests and defines all 

security policies to be enforced on the apps in runtime, while SIL provides SML with the 

necessary interface into Android internals. As such, SML is the main part, and user can 

only interact with this layer. Users can define their own policies and store them within 

SML databases. SML comprises several components and works on top of the SIL. As a 
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result of the implementation, a stock Android version was extended with several hooks 

and new components to implement MASF. 

The proposed framework was evaluated and analysed in terms of effectiveness and 

efficiency. Effectiveness was shown by demonstrating that the framework can 

successfully protect the system from a particular set of attacks, while efficiency was 

evaluated by examining the performance overhead in terms of energy consumption, 

memory and CPU utilization. Experiments conducted to evaluate efficiency included 

testing MASF against different attacks and malware, as well as testing the impact of data 

shadowing, permission restrictions, disabling intents, and the impact of 

enabling/disabling system peripherals. The results of those experiments showed that 

MASF is very effective against all the listed attacks, and it successfully protected the 

mHealth apps and their users’ data in the tested scenarios. Subsequently, false positive 

and usability tests were also performed, which showed a very small number of false 

positives.  

Another set of experiments tested the performance of MASF in terms of processing 

time, energy consumption and memory. These experiments demonstrated clearly that 

MASF induce negligible overhead in the process of deploying all the checks and 

enforcing all the policies. Hence, MASF proved itself as a lightweight and a practical 

solution. From the above summary, it can be concluded that all the objectives of this 

research have been successfully achieved. 

6.2 Contribution of the Research 

As discussed in the previous section, it is possible to refer to the targeted objectives 

and list the successful output in meeting them to derive the list of contributions. For a 

one-to-one mapping, please refer to Table 1.1 in Chapter 1. The aim of this section, 
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however, is to highlight the contributions of the thesis in a more perceptive manner, to 

help appreciate the real value of the work. 

(i) This work provides a comprehensive survey on mHealth apps and on their 

security issues. It summarizes some serious security and privacy issues 

associated with the use of Android mHealth apps, including DMB attacks, 

side channel threats, and usage of third party storage and services without 

encryption. Considering the relative recency of the topic, such survey has its 

own value to research community. 

(ii) This work assessed the security of mHealth apps by testing a sample of top 

100 free mHealth apps to find state-of-the-art security threats, which revealed 

many threats to Android mHealth apps, such as lack of authentication, 

authorization, confidentiality, and the leak of sensitive medical information 

by many apps. 

(iii) This thesis also specifies the basic requirements that are needed to secure 

users’ data in mHealth apps and to propose security framework on Android 

platform. As an emerging field with no or little previous guidelines, this thesis 

contributes a set of basic parameters needed to secure information in mHealth 

apps. 

(iv) This thesis proposes a security framework to protect mHealth apps’ user data. 

To the best of the author’s knowledge, this is the first comprehensive 

framework for mHealth apps. A policy framework has been proposed 

previously in the literature (Mitchell et al., 2013), which only provides some 

guidelines to mitigate mHealth apps threats. This thesis, on the other hand, 

proposes a practical framework that could be installed and work on Android 

platform. This framework comprises two software layers, a Security Module 

Layer (SML), and a System Interface Layer (SIL). These are to be installed 
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on Android OS to protect user information against security and privacy 

threats. 

(v) The proposed framework is demonstrated and evaluated using proof-of-

concept implementation on real Android devices. For evaluation, the 

effectiveness and performance overhead of the framework were examined. 

For effectiveness, a sample of mHealth apps is checked against information 

leakage, confidentiality and other attacks that are stated in section 1.3. For 

performance overhead, and due to lack of similar framework implementations, 

the framework was benchmarked with the stock version of Android 4.3, in 

terms of memory, processing and battery consumption. The unmodified 

Android system was considered a baseline against which to compare the 

performance impact of MASF. 

6.3 Research Limitations 

The scope of this research is limited to investigating and analysing the security and 

privacy threats of mHealth apps specifically, and then to propose a security framework 

to protect that class of apps. Although the analysis and evaluation did not explicitly 

include other classes of smartphone apps (e.g. banking, educational, and communication 

apps), there is no reason that the proposed solution cannot be applied to other apps. 

This solution was also implemented on Android platform exclusively, and no other 

mobile platforms was considered for the implementation of the framework. Porting the 

solution to other platform is feasible in theory, though the amount of changes may be 

significant in practice due to the intimate relation between the design of the framework 

and the internals of Android operating system. Nevertheless, Android is by far the most 

widespread used smartphone platform, and choosing it for the development of the target 

framework seems a reasonable decision. 
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This research also suffers from the rapid evolution of the technology in the field of 

smartphone computing. Google is working hard to enhance the user experience as well 

as the security of its Android platform with each new release of the operating system. By 

the time this research has finished, there will probably be few enhancements to the 

platform that were not considered by the produced solution. This is a common issue in 

information technology-related long-term research. However, the value of the research is 

not diminished because of such advancements, and the produced solutions can usually be 

deployed in newer versions with no or little modifications.    

Because of the nature of the addressed problem, the proposed solution had to go 

through a modification to the stock-based Android version, which might limit the wide 

acceptance of the solution. This limitation is common with all other similar solutions at 

the same level of effectiveness. In fact, the ability to access and modify the open source 

Android platform is a main motivation and enabler for such line of research, which 

increases innovation and contributes to the overall good of the technology. The ideal 

scenario for such proposals is to be adopted by Google in their main code base for next 

Android releases. 

Finally, it might be worthy to note that during the design of MASF, the underlying 

Linux kernel and the Android middleware were considered as trusted base. Therefore, 

MASF does not attempt to prevent an adversary from compromising this base itself. 

6.4 Future Work 

This work is simply the first step in a longer journey towards realizing practical 

mHealth apps security. To increase the deployment opportunity of the proposed 

framework, further research and development work is needed, in part to cover for the 

current limitations, and also to introduce more features and improvements. Few 

suggestions for potential future work are listed below. 
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• One possible way to enhance the applicability of the proposed framework is to 

evaluate its performance against other classes of apps besides mHealth apps. 

For example, banking apps might require few special considerations to be taken, 

which might lead to the introduction of more security checkers, such as for key 

certificates and specific phishing attacks.  

• It is also tempting to consider porting the framework to other smartphone 

platforms, e.g. Apple iOS. 

• It is important to note that the successful deployment of the proposed 

framework would probably rely on the regular update of its implementation to 

cater for new developments introduced by Google the incremental releases of 

Android. For example, the introduction of dynamic run-time permissions might 

render few of the security checks performed by MASF redundant. The 

framework should also adopt newer capabilities of the underlying platform to 

provide better results and user-experience. 

• The context-checker of MASF considers only the time and location as criteria 

for context-aware access control. It is possible to consider other types of 

context, such environmental variables, the presence of other devices and 

sensors, or a particular type of interaction between the smartphone and user. 

• The current version of MASF uses static tainting to track sensitive data flows. 

Though the choice of static tainting has been justified in Chapter 3, there may 

be situation in which dynamic tainting can provide better results.Univ
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APPENDICES 

APPENDIX A: SAMPLE SET OF APPLICATIONS 

Table A-1: List of the Sample Set of Apps 

# Apps URL 

1 Blood Pressure Diary 
https://play.google.com/store/apps/details?id=org.fruct.yar.bloo
dpressurediary 

2 Ob (Pregnancy) Wheel 
https://play.google.com/store/apps/details?id=com.quartertone.
medcalc.obwheel  

3 Contraction Timer 
https://play.google.com/store/apps/details?id=com.ianhanniballa
ke.contractiontimer  

4 Baby Care 
https://play.google.com/store/apps/details?id=com.kolsoft.babyc
are  

5 
Pregnancy Test & 
Symptom Quiz 

https://play.google.com/store/apps/details?id=com.tsavo.amipre
gnant  

6 Medical Calculators https://play.google.com/store/apps/details?id=Pedcall.Calculator  

7 BP (Blood Pressure) Diary 
https://play.google.com/store/apps/details?id=kr.co.openit.bpdia
ry 

8 
Feed Baby - Tracker & 
Monitor 

https://play.google.com/store/apps/details?id=au.com.penguinap
ps.android.babyfeeding.client.android  

9 
Baby Care - track baby 
growth! 

https://play.google.com/store/apps/details?id=com.luckyxmobil
e.babycare  

10 
Pregnancy Due Date 
Calculator 

https://play.google.com/store/apps/details?id=surebaby.pregnan
cy.calculator  

11 My Menstrual Diary 
https://play.google.com/store/apps/details?id=com.ecare.menstr
ualdiary 

12 BMI Calculator (free) 
https://play.google.com/store/apps/details?id=free.wk.mybodym
ass  

13 Menstrual Calendar 
https://play.google.com/store/apps/details?id=com.guillaumegra
nger.mc  

14 My Ovulation Calculator 
https://play.google.com/store/apps/details?id=com.ecare.ovulati
oncalculator  

15 Pregnancy + 
https://play.google.com/store/apps/details?id=com.hp.pregnancy
.lite 

16 Blood Pressure (My Heart) https://play.google.com/store/apps/details?id=com.szyk.myheart  

17 Migraine Buddy 
https://play.google.com/store/apps/details?id=com.healint.migra
ineapp  

18 Dosage Calc 
https://play.google.com/store/apps/details?id=com.sekos.dosage
calc 

19 Figure 1 - Medical Images 
https://play.google.com/store/apps/details?id=com.figure1.andro
id 
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Table A-1, Continued 

# Apps URL 

20 Ovia Pregnancy Guide 
https://play.google.com/store/apps/details?id=com.ovuline.preg
nancy  

21 Blood Pressure 
https://play.google.com/store/apps/details?id=com.freshware.blo
odpressure  

22 OnTrack Diabetes 
https://play.google.com/store/apps/details?id=com.gexperts.ontr
ack  

23 
Glucose Buddy : Diabetes 
Log 

https://play.google.com/store/apps/details?id=com.skyhealth.glu
cosebuddyfree  

24 Pediatric OnCall 
https://play.google.com/store/apps/details?id=com.pediatriconca
ll 

25 PMCare+ 
https://play.google.com/store/apps/details?id=com.mosync.app_
PMCare_Mobile 

26 Weight Calorie Watch 
https://play.google.com/store/apps/details?id=com.ecare.weight
caloriewatch  

27 
Ramsay Sime Darby 
Health Care 

https://play.google.com/store/apps/details?id=com.lanewaysoft
ware.ourdoctors  

28 Diabetes:M https://play.google.com/store/apps/details?id=com.mydiabetes  

29 FaceLift 
https://play.google.com/store/apps/details?id=com.modiface.fac
elift.free  

30 
iMom • Pregnancy & 
Fertility 

https://play.google.com/store/apps/details?id=com.obscience.im
amma  

31 
Couple Counseling & 
Chatting 

https://play.google.com/store/apps/details?id=com.abma.couple
counseling  

32 
BMI Calculator. Healthy 
Weight 

https://play.google.com/store/apps/details?id=com.despdev.weig
ht_loss_calculator  

33 
MoodTools - Depression 
Aid 

https://play.google.com/store/apps/details?id=com.moodtools.m
oodtools 

34 Spo2 
https://play.google.com/store/apps/details?id=com.berry_med.sp
o2_bt 

35 Lady Pill Reminder 
https://play.google.com/store/apps/details?id=com.baviux.pillre
minder  

36 Health-Tracker 
https://play.google.com/store/apps/details?id=com.benoved.phr_
lite  

37 
Woman Calendar / 
Feminap 

https://play.google.com/store/apps/details?id=com.kolsoft.femin
ap 

38 
HEART ATTACK 
ALERT SYSTEM 

https://play.google.com/store/apps/details?id=com.ha.home 

39 Menstrual Calendar 
https://play.google.com/store/apps/details?id=com.indhay.menst
rualcalendar 

40 Ob Wheel Extra data 
https://play.google.com/store/apps/details?id=com.quartertone.
medcalc.obwheel.extras 
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Table A-1, Continued 

# Apps URL 

41 Blood Pressure - MyDiary 
https://play.google.com/store/apps/details?id=com.zlamanit.bloo
d.pressure  

42 f-Ready https://play.google.com/store/apps/details?id=com.sssllc.fready  

43 
Menstruation Fertility Pro 
Lte 

https://play.google.com/store/apps/details?id=com.cbgsolutions.
mfprotrial  

44 Baby growth 
https://play.google.com/store/apps/details?id=com.melunasoft.k
ampylesanaptykshs  

45 
Depression CBT Self-Help 
Guide 

https://play.google.com/store/apps/details?id=com.excelatlife.de
pression  

46 
Mom 2 Be Pregnancy 
Tracker 

https://play.google.com/store/apps/details?id=com.instanceone.a
ndroid.mom2befree  

47 Weight Diary 
https://play.google.com/store/apps/details?id=org.fruct.yar.weig
htdiary 

48 Breastfeeding 
https://play.google.com/store/apps/details?id=com.whisperarts.k
ids.breastfeeding  

49 
Contraction Timer for 
Labour 

https://play.google.com/store/apps/details?id=au.com.penguinap
ps.android.beautifulcontractiontimer.app  

50 
Framingham Risk 
Calculator 

https://play.google.com/store/apps/details?id=com.calculaterx.fr
aminghamriskcalculator  

51 Baby Growth Apps FREE 
https://play.google.com/store/apps/details?id=standard.android.a
pp.BabyApps  

52 
Kidfolio Baby Tracker & 
Book 

https://play.google.com/store/apps/details?id=com.alt12.kidfolio  

53 GFR & BSA Calculator 
https://play.google.com/store/apps/details?id=com.medcomis.de
vice.android.egfr  

54 Scanadu Scout https://play.google.com/store/apps/details?id=com.scanadu.schs  

55 Pilluling 
https://play.google.com/store/apps/details?id=ru.pilluling.androi
d  

56 
Doctor On Demand: MD & 
Therapy 

https://play.google.com/store/apps/details?id=com.doctorondem
and.android.patient  

57 My Glycemia 
https://play.google.com/store/apps/details?id=com.insyncapp.di
abete  

58 Diabetes Journal 
https://play.google.com/store/apps/details?id=com.suderman.dia
beteslog 

59 Diabetes - Glucose Diary https://play.google.com/store/apps/details?id=com.szyk.diabetes 

60 Diabetes Plus 
https://play.google.com/store/apps/details?id=com.squaremed.di
abetesplus.typ1 

61 
Doctor Mole - Skin cancer 
app 

https://play.google.com/store/apps/details?id=com.revsoft.docto
rmole 
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https://play.google.com/store/apps/details?id=com.zlamanit.blood.pressure
https://play.google.com/store/apps/details?id=com.zlamanit.blood.pressure
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https://play.google.com/store/apps/details?id=com.instanceone.android.mom2befree
https://play.google.com/store/apps/details?id=com.instanceone.android.mom2befree
https://play.google.com/store/apps/details?id=org.fruct.yar.weightdiary
https://play.google.com/store/apps/details?id=org.fruct.yar.weightdiary
https://play.google.com/store/apps/details?id=com.whisperarts.kids.breastfeeding
https://play.google.com/store/apps/details?id=com.whisperarts.kids.breastfeeding
https://play.google.com/store/apps/details?id=au.com.penguinapps.android.beautifulcontractiontimer.app
https://play.google.com/store/apps/details?id=au.com.penguinapps.android.beautifulcontractiontimer.app
https://play.google.com/store/apps/details?id=com.calculaterx.framinghamriskcalculator
https://play.google.com/store/apps/details?id=com.calculaterx.framinghamriskcalculator
https://play.google.com/store/apps/details?id=standard.android.app.BabyApps
https://play.google.com/store/apps/details?id=standard.android.app.BabyApps
https://play.google.com/store/apps/details?id=com.alt12.kidfolio
https://play.google.com/store/apps/details?id=com.medcomis.device.android.egfr
https://play.google.com/store/apps/details?id=com.medcomis.device.android.egfr
https://play.google.com/store/apps/details?id=com.scanadu.schs
https://play.google.com/store/apps/details?id=ru.pilluling.android
https://play.google.com/store/apps/details?id=ru.pilluling.android
https://play.google.com/store/apps/details?id=com.doctorondemand.android.patient
https://play.google.com/store/apps/details?id=com.doctorondemand.android.patient
https://play.google.com/store/apps/details?id=com.insyncapp.diabete
https://play.google.com/store/apps/details?id=com.insyncapp.diabete
https://play.google.com/store/apps/details?id=com.suderman.diabeteslog
https://play.google.com/store/apps/details?id=com.suderman.diabeteslog
https://play.google.com/store/apps/details?id=com.szyk.diabetes
https://play.google.com/store/apps/details?id=com.squaremed.diabetesplus.typ1
https://play.google.com/store/apps/details?id=com.squaremed.diabetesplus.typ1
https://play.google.com/store/apps/details?id=com.revsoft.doctormole
https://play.google.com/store/apps/details?id=com.revsoft.doctormole
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Table A-1, Continued 

# Apps URL 

62 Six-Min Walk Test 
https://play.google.com/store/apps/details?id=com.stepic.sixmin
wt  

63 Fluid & Electrolytes 
https://play.google.com/store/apps/details?id=com.quartertone.
medcalc  

64 LabLink On The Go 
https://play.google.com/store/apps/details?id=com.kpjlablink.lot
g  

65 Heart Rate Monitor 
https://play.google.com/store/apps/details?id=com.mobmaxime.
heartrate  

66 MedTouch HD 
https://play.google.com/store/apps/details?id=mr.ultrasound.ista
tionpad  

67 MedSight HD 
https://play.google.com/store/apps/details?id=mr.ultrasound.me
dsightpad  

68 Period Calendar / Tracker 
https://play.google.com/store/apps/details?id=com.popularapp.p
eriodcalendar 

69 
BMI Calculator - Weight 
Loss 

https://play.google.com/store/apps/details?id=tools.bmirechner  

70 
Calorie Counter - 
MyFitnessPal 

https://play.google.com/store/apps/details?id=com.myfitnesspal.
android  

71 Mi Fit 
https://play.google.com/store/apps/details?id=com.xiaomi.hm.h
ealth  

72 Instant Heart Rate 
https://play.google.com/store/apps/details?id=si.modula.android
.instantheartrate  

73 Period Tracker 
https://play.google.com/store/apps/details?id=com.period.tracke
r.lite 

74 
RunKeeper - GPS Track 
Run Walk 

https://play.google.com/store/apps/details?id=com.fitnesskeeper
.runkeeper.pro  

75 Nike+ Running https://play.google.com/store/apps/details?id=com.nike.plusgps  

76 Monitor Your Weight 
https://play.google.com/store/apps/details?id=monitoryourweigh
t.bustan.net  

77 
Runtastic Running & 
Fitness 

https://play.google.com/store/apps/details?id=com.runtastic.andr
oid 

78 
Noom Walk Pedometer: 
Fitness 

https://play.google.com/store/apps/details?id=com.noom.walk 

79 
My Diet Coach - Weight 
Loss 

https://play.google.com/store/apps/details?id=com.dietcoacher.s
os 

80 Google Fit 
https://play.google.com/store/apps/details?id=com.google.andro
id.apps.fitness 

81 My Tracks 
https://play.google.com/store/apps/details?id=com.google.andro
id.maps.mytracks 

82 Pedometer 
https://play.google.com/store/apps/details?id=com.tayu.tau.pedo
meter 

83 
Ovulation & Period 
Calendar 

https://play.google.com/store/apps/details?id=com.ladytimer.ov
ulationcalendar 
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https://play.google.com/store/apps/details?id=com.stepic.sixminwt
https://play.google.com/store/apps/details?id=com.stepic.sixminwt
https://play.google.com/store/apps/details?id=com.quartertone.medcalc
https://play.google.com/store/apps/details?id=com.quartertone.medcalc
https://play.google.com/store/apps/details?id=com.kpjlablink.lotg
https://play.google.com/store/apps/details?id=com.kpjlablink.lotg
https://play.google.com/store/apps/details?id=com.mobmaxime.heartrate
https://play.google.com/store/apps/details?id=com.mobmaxime.heartrate
https://play.google.com/store/apps/details?id=mr.ultrasound.istationpad
https://play.google.com/store/apps/details?id=mr.ultrasound.istationpad
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https://play.google.com/store/apps/details?id=mr.ultrasound.medsightpad
https://play.google.com/store/apps/details?id=com.popularapp.periodcalendar
https://play.google.com/store/apps/details?id=com.popularapp.periodcalendar
https://play.google.com/store/apps/details?id=tools.bmirechner
https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health
https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate
https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate
https://play.google.com/store/apps/details?id=com.period.tracker.lite
https://play.google.com/store/apps/details?id=com.period.tracker.lite
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.nike.plusgps
https://play.google.com/store/apps/details?id=monitoryourweight.bustan.net
https://play.google.com/store/apps/details?id=monitoryourweight.bustan.net
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.noom.walk
https://play.google.com/store/apps/details?id=com.dietcoacher.sos
https://play.google.com/store/apps/details?id=com.dietcoacher.sos
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.maps.mytracks
https://play.google.com/store/apps/details?id=com.google.android.maps.mytracks
https://play.google.com/store/apps/details?id=com.tayu.tau.pedometer
https://play.google.com/store/apps/details?id=com.tayu.tau.pedometer
https://play.google.com/store/apps/details?id=com.ladytimer.ovulationcalendar
https://play.google.com/store/apps/details?id=com.ladytimer.ovulationcalendar
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Table A-1, Continued 

# Apps URL 

84 
My Days - Period & 
Ovulation 

https://play.google.com/store/apps/details?id=com.chris.mydays  

85 
Endomondo Running 
Cycling Walk 

https://play.google.com/store/apps/details?id=com.endomondo.a
ndroid  

86 
I’m Expecting - Pregnancy 
App 

https://play.google.com/store/apps/details?id=org.medhelp.iame
xpecting  

87 
My Cycles Period and 
Ovulation 

https://play.google.com/store/apps/details?id=org.medhelp.mc  

88 
Strava Running and 
Cycling GPS 

https://play.google.com/store/apps/details?id=com.strava  

89 
Runtastic Pedometer Step 
Count 

https://play.google.com/store/apps/details?id=com.runtastic.andr
oid.pedometer.lite  

90 
Woman's DIARY period・
diet・cal 

https://play.google.com/store/apps/details?id=jp.kirei_r.sp.diary
_free  

91 
LoveCycles Menstrual 
Calendar 

https://play.google.com/store/apps/details?id=in.plackal.lovecyc
lesfree  

92 Pedometer 
https://play.google.com/store/apps/details?id=cc.pacer.androida
pp 

93 
Runtastic Heart Rate 
Monitor 

https://play.google.com/store/apps/details?id=com.runtastic.andr
oid.heartrate.lite  

94 Garmin Connect™ Mobile 
https://play.google.com/store/apps/details?id=com.garmin.andro
id.apps.connectmobile  

95 Pregnancy Tracker https://play.google.com/store/apps/details?id=com.wte.view  

96 
My Diet Diary Calorie 
Counter 

https://play.google.com/store/apps/details?id=org.medhelp.mydi
et 

97 
Calorie Counter by 
FatSecret 

https://play.google.com/store/apps/details?id=com.fatsecret.andr
oid 

98 
WomanLog Pregnancy 
Calendar 

https://play.google.com/store/apps/details?id=com.proactiveapp.
womanlogpregnancy.free  

99 Cardiograph 
https://play.google.com/store/apps/details?id=com.macropinch.h
ydra.android 

100 
Blood Pressure (BP) 
Watch 

https://play.google.com/store/apps/details?id=com.boxeelab.hea
lthlete.bpwatch 
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https://play.google.com/store/apps/details?id=com.chris.mydays
https://play.google.com/store/apps/details?id=com.endomondo.android
https://play.google.com/store/apps/details?id=com.endomondo.android
https://play.google.com/store/apps/details?id=org.medhelp.iamexpecting
https://play.google.com/store/apps/details?id=org.medhelp.iamexpecting
https://play.google.com/store/apps/details?id=org.medhelp.mc
https://play.google.com/store/apps/details?id=com.strava
https://play.google.com/store/apps/details?id=com.runtastic.android.pedometer.lite
https://play.google.com/store/apps/details?id=com.runtastic.android.pedometer.lite
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https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.wte.view
https://play.google.com/store/apps/details?id=org.medhelp.mydiet
https://play.google.com/store/apps/details?id=org.medhelp.mydiet
https://play.google.com/store/apps/details?id=com.fatsecret.android
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https://play.google.com/store/apps/details?id=com.boxeelab.healthlete.bpwatch
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APPENDIX B: LIST OF SYSTEM INTERFACE LAYER FUNCTIONS 

Listing B-1: A Complete List of System Interface Layer Functions Based on 
ASF (Backes, et al., 2014) 

1  public interface IAccessControlModule { 
2  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
3  ∗ General functions 
4  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
5  public boolean init(); 
6  public ModuleConfiguration getConfig(); 
7  public void shutdown(); 
8  
9  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
10  ∗ Package life−cycle event hooks 
11  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
12  public void security_event_installNewPackage(PackageParser.Package pkg, 

  UserHandle user); 
13  public void security_event_replacePackage(PackageParser.Package oldPkg, 

  PackageParser.Package newPkg, UserHandle user); 
14  public void security_event_deletePackage(String packageName, int uid, int 

  removedAppId, int removedUsers[], UserHandle user); 
15 
16  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
17  ∗ Generic hooks 
18  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
19  public void security_generic_checkPolicy(Bundle arguments); 
20  public void security_generic_callModule(Bundle arguments); 
21  public boolean security_generic_instrumentApp(String packageName); 
22 
23  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
24  ∗ Broadcast hooks 
25  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
26  public boolean security_broadcast_deliverToRegisteredReceiver(Intent intent, 

  ComponentName targetComp, String requiredPermission, int targetUid, 
  int targetPid, String callerPackage, ApplicationInfo callerApp, int  
  callingUid, int callingPid); 
27  public boolean security_broadcast_processNextBroadcast(Intent intent, 

  ResolveInfo target, String requiredPermission, String callerPackage, 
  ApplicationInfo callerApp, int callingUid, int callingPid); 

28 
29  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
30  ∗ ContentProvider.Transport hooks 
31  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
32  public boolean security_cp_applyOperation(ContentProviderOperation op, int 
  uid, int pid); 
33  public boolean security_cp_preQuery(String callingPkg, Uri uri, String[] 

  projection, String selection, String[] selectionArgs, String sortOrder, int 
  uid, int pid); 
34  public Cursor security_cp_postQuery(Cursor result, String callingPkg, Uri uri, 

  String[] projection, String selection, String[] selectionArgs, String 
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  sortOrder, int uid, int pid); 
35  public boolean security_cp_insert(Uri uri, ContentValues initialValues, int uid, 
  int pid); 
36  public boolean security_cp_bulkInsert(Uri uri, ContentValues[] initialValues, 
  int uid, int pid); 
37  public boolean security_cp_delete(String callingPkg, Uri uri, String selection, 

  String[] selectionArgs, int uid, int pid); 
38  public boolean security_cp_update(String callingPkg, Uri uri, ContentValues 

  values, String selection, String[] selectionArgs, int uid, int pid); 
39  public boolean security_cp_openFile(Uri uri, String mode, int uid, int pid); 
40  public boolean security_cp_preCall(String providerClass, String method, String 

  arg, Bundle extras, int uid, int pid); 
41  public Bundle security_cp_postCall(Bundle result, String providerClass, String 

  method, String arg, Bundle extras, int uid, int pid); 
42 
43  public boolean security_contacts_preQueryDirectory(Uri uri, String 

  directoryName, String directoryType, String[] projection, String  
  selection, String[] selectionArgs, String sortOrder, int uid, int pid); 
44  public BulkCursorDescriptor 

  security_contacts_postQueryDirectory(BulkCursorDescriptor result, 
  String directoryName, String directoryType, String providerName, Uri 
  uri, String[] projection, String selection, String[] selectionArgs, String 
  sortOrder, int uid, int pid); 
45 
46  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
47  ∗ Activity related hooks 
48  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
49  public boolean security_ams_startActivity(Intent intent, String resolvedType, 

  ActivityInfo aInfo, String resultWho, int requestCode, int startFlags, 
  Bundle options, ApplicationInfo callerInfo, int callingPid, int callingUid, 
  int callingUserId); 
50  public boolean security_ams_finishActivity(ComponentName origActivity, 

  ComponentName realActivity, Intent intent, int userId, ApplicationInfo 
  info, int resultCode, Intent resultData, int uid, int pid); 

51  public boolean security_ams_moveTaskToFront(ComponentName  
  origActivity, ComponentName realActivity, Intent intent, int userId, 
  ApplicationInfo info, int flags, Bundle options, int uid, int pid); 
52  public boolean security_ams_moveTaskToBack(ComponentName origActivity, 

  ComponentName realActivity, Intent intent, int userId, ApplicationInfo 
  info, int uid, int pid); 

53  public boolean security_ams_clearApplicationUserData(String packageName, 
  int pkgUid, int userId, int uid, int pid); 
54 
55  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
56  ∗ Permission check overrides 
57  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
58  public int security_ams_checkComponentPermission(String permission, int 

  origUid, int origPid, int tlsUid, int tlsPid, int owningUid, boolean 
  exported, int callerUid, int callerPid); 

59  public boolean security_ams_checkCPUriPermission(Uri uri, ProviderInfo cpi, 
  int processUid, int processPid, boolean procesIsolated, int   
  processUserId, String processName, ApplicationInfo info, int uid, int 
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  pid); 
60  public boolean security_ams_checkCPUriPermission(Uri uri, ProviderInfo cpi, 
  int uid, int pid); 
61  public boolean security_ams_checkGrantUriPermission(int callingUid, String 

  targetPkg, int targetUid, Uri uri, int modeFlags); 
62  public int security_ams_checkUriPermission(Uri uri, int origUid, int origPid, 
  int tlsUid, int tlsPid, int modeFlags); 
63 
64  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
65  ∗ PackageManagerService hooks 
66  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
67  public boolean security_pms_getPackageInfo(PackageInfo pi, int flags, int 
  userId, boolean isUninstalled, int uid, int pid); 
68  public boolean security_pms_getPackageUid(ApplicationInfo info, int userId, 
  int uid, int pid); 
69  public boolean security_pms_getPackageGids(ApplicationInfo info, int[] gids, 
  int uid, int pid); 
70  public String[] security_pms_getPackagesForUid(int forUid, String[] packages, 
  int uid, int pid); 
71  public boolean security_pms_getNameForUid(int forUid, String name, int uid, 
  int pid); 
72  public boolean security_pms_getUidForSharedUser(String sharedUserName, 
  int suid, int uid, int pid); 
73  public boolean security_pms_findPreferredActivity(Intent intent, String 

  resolvedType, int flags, ResolveInfo ri, int priority, int userId, int uid, 
  int pid); 
74  public List<ResolveInfo>        
  security_pms_queryIntentActivities(List<ResolveInfo> currentList, 
  Intent intent, String resolvedType, int flags, int userId, int uid, int pid); 
75  public List<ResolveInfo>        
  security_pms_queryIntentReceivers(List<ResolveInfo> currentList, 
  Intent intent, String resolvedType, int flags, int userId, int uid, int pid); 
76  public List<ResolveInfo> security_pms_queryIntentServices(List<ResolveInfo> 

  currentList, Intent intent, String resolvedType, int flags, int userId, int 
  uid, int pid); 
77  public ArrayList<PackageInfo> 

  security_pms_getInstalledPackages(ArrayList<PackageInfo> currentList, 
  int flags, int userId, int uid, int pid); 

78  public ArrayList<PackageInfo> 
  security_pms_getPackagesHoldingPermissions(ArrayList<PackageInfo> 
  currentList, int flags, int userId, String[] permissions, int uid, int pid); 

79 public ArrayList<ApplicationInfo> 
  security_pms_getInstalledApplications(ArrayList<ApplicationInfo> 
  currentList, int flags, int userId, int uid, int pid); 

80  public ArrayList<ApplicationInfo> 
  security_pms_getPersistentApplications(ArrayList<ApplicationInfo> 
  currentList, int flags, int uid, int pid); 

81  public boolean security_pms_getProviderInfo(ProviderInfo pi,   
  ComponentName component, int flags, int userId, int uid, int pid); 
82  public boolean security_pms_getActivityInfo(ActivityInfo ai, ComponentName 

  component, int flags, int userId, int uid, int pid); 
83  public boolean security_pms_getReceiverInfo(ActivityInfo ai,   
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  ComponentName component, int flags, int userId, int uid, int pid); 
84  public boolean security_pms_getServiceInfo(ServiceInfo si, ComponentName 

  component, int flags, int userId, int uid, int pid); 
85  /∗ Pre−init function (packages are scanned before init is called) ∗/ 
86  public boolean security_pms_scanPackage(PackageParser.Package pkg); 
87  public boolean security_pms_deletePackage(PackageParser.Package pkg, 
  boolean isSystemApp, boolean dataOnly, int flags); 
88  public boolean security_pms_deletePackageSingleUser(PackageParser.Package 

  pkg, boolean isSystemApp, int flags, int user); 
89 
90  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
91  ∗ Content Provider (general) related hooks 
92  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
93  /∗ Changed ProcessRecord to public for our module SDK ∗/ 
94  public boolean security_ams_checkContentProviderPermission(ProviderInfo 
  cpi, String permission, int processUid, int processPid, boolean  
  procesIsolated, int processUserId, String processName, ApplicationInfo 
  info, int uid, int pid); 
95  public boolean security_ams_checkContentProviderPermission(ProviderInfo 
  cpi, String permission, int uid, int pid); 
96  public boolean security_ams_checkPathPermission(ProviderInfo cpi, 

  PathPermission pp, String permission, int processUid, int processPid, 
  boolean procesIsolated, int processUserId, String processName, 
  ApplicationInfo info, int uid, int pid); 

97  public boolean security_ams_checkPathPermission(ProviderInfo cpi,  
  PathPermission pp, String permission, int uid, int pid); 
98  public boolean security_ams_checkAppSwitchAllowed(int uid, int pid); 
99 
100  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
101  ∗ Service related hooks 
102  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
103  public List<ActivityManager.RunningServiceInfo> security_ams_getServices 

(ArrayList<ActivityManager.RunningServiceInfo> srvList, int uid, 
int pid); 

104  public boolean security_ams_peekService(Intent service, String resolvedType, 
  ServiceInfo serviceInfo, ApplicationInfo appInfo, String packageName, 
  String permission, int uid, int pid); 

105  public boolean security_ams_startService(Intent service, String resolvedType, 
  ComponentName name, String shortName, ServiceInfo serviceInfo, 
  ApplicationInfo appInfo, int srvUserId, String packageName, String 

processName, String permission, int callingPid, int callingUid); 
106  public boolean security_ams_stopService(Intent service, String resolvedType, 

  ComponentName name, String shortName, ServiceInfo serviceInfo, 
  ApplicationInfo appInfo, int srvUserId, String packageName, String 

processName, String permission, int callingPid, int callingUid); 
107  public boolean security_ams_bindService(Intent service, String resolvedType, 
  int flags, ComponentName name, String shortName, ServiceInfo  
  serviceInfo, ApplicationInfo appInfo, int srvUserId, String   
  packageName, String processName, String permission, int callingPid, int 
  callingUid); 
108 
109  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
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110  ∗ LocationManagerService hooks 
111  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
112  public void security_location_getAllProviders(List<String> providerList, int 
  uid, int pid); 
113  public void security_location_getProviders(List<String> providers, Criteria 

criteria, boolean enabledOnly, int uid, int pid); 
 

114  /∗ Unhide LocationRequest for our module SDK ∗/ 
115  public void security_location_requestLocationUpdates(LocationRequest  
  request, PendingIntent pi, int uid, int pid); 
116  public void security_location_removeLocationUpdates(PendingIntent pi, int 
  uid, int pid); 
117  public Location security_location_getLastLocation(Location currentLocation, 

  LocationRequest request, int uid, int pid); 
118  public boolean security_location_addGpsStatusListener(int uid, int pid); 
119  public boolean security_location_sendExtraCommand(String provider, String 

  command, Bundle extras, int uid, int pid); 
120  /∗ Unhide Geofence class for our module SDK ∗/ 
121  public void security_location_requestGeofence(LocationRequest request,  
  Geofence geofence, PendingIntent intent, int uid, int pid); 
122  public void security_location_removeGeofence(Geofence geofence,  
  PendingIntent intent, int uid, int pid); 
123  public boolean security_location_isProviderEnabled(String provider, int uid, 
  int pid); 
124  public Location security_location_reportLocation(Location location, boolean 

 passive, int uid, int pid); 
125  public ProviderProperties security_location_addTestProvider(String name, 

ProviderProperties properties, int uid, int pid); 
126  public boolean security_location_removeTestProvider(String provider, int uid, 
  int pid); 
127  public boolean security_location_setTestProviderLocation(String provider, 

  Location location, int uid, int pid); 
128  public boolean security_location_clearTestProviderLocation(String provider, 
  int uid, int pid); 
129  public boolean security_location_setTestProviderEnabled(String provider, 
  boolean enabled, int uid, int pid); 
130  public boolean security_location_clearTestProviderEnabled(String provider, int 

  uid, int pid); 
131  public boolean security_location_setTestProviderStatus(String provider, int 
  status, Bundle extras, long updateTime, int uid, int pid); 
132  public boolean security_location_clearTestProviderStatus(String provider, int 
  uid, int pid); 
133  public boolean security_location_sendLocationUpdate(Location location, String 

  receiverPackageName, int pid, int uid); 
134  public boolean security_location_updateFence(Location location, Geofence 
  fence, PendingIntent fenceIntent, String fencePackageName, int uid); 
135 
136  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
137  ∗ AudioService hooks 
138  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
139  public boolean security_audio_adjustStreamVolume(int streamType, int  
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  direction, int flags, int uid, int pid); 
140  public boolean security_audio_setStreamVolume(int streamType, int index, int 

flags, int uid, int pid); 
141  public boolean security_audio_setMasterVolume(int volume, int flags, int uid, 
  int pid); 
142  public boolean security_audio_setRingerMode(int mode, int uid, int pid); 
143  public boolean security_audio_setSpeakerphoneOn(boolean on, int uid, int 
  pid); 
144 
145  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
146  ∗ TelephonyService hooks 
147  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
148  public boolean security_telephony_call(String number, int uid, int pid); 
149  public List<NeighboringCellInfo> 

  security_telephony_getNeighboringCellInfo(List<NeighboringCellInfo> 
  currentList, int uid, int pid); 

150 
151  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
152  ∗ SMS and MMS Service hooks 
153  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
154  public boolean security_sms_copyMessageToIcc(int status, byte[] pdu, byte[] 

  smsc, int uid, int pid); 
155  public boolean security_sms_getAllMessagesFromIcc(int uid, int pid); 
156  public List<RawByteData> 

  security_sms_getAllMessagesFromIccFilter(List<RawByteData>  
  rawSms, int uid, int pid); 
157  public boolean security_sms_sendData(String destAddr, String scAddr, int 

  destPort, byte[] data, PendingIntent sentIntent, PendingIntent  
  deliveryIntent, int uid, int pid); 
158  public boolean security_sms_sendText(String destAddr, String scAddr, String 
  text, PendingIntent sentIntent, PendingIntent deliveryIntent, int uid, int 
  pid); 
159  public boolean security_sms_sendMultipartText(String destAddr, String  
  scAddr, List<String> parts, List<PendingIntent> sentIntents,  
  List<PendingIntent> deliveryIntents, int uid, int pid); 
160  public boolean security_sms_updateMessageOnIccEf(int index, int status, 
  byte[] pdu, int uid, int pid); 
161 
162  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
163  ∗ WiFi Service hooks 
164  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
165  public List<ScanResult> security_wifi_getScanResult(List<ScanResult> result, 
  int uid, int pid); 
166  public boolean security_wifi_startScan(int uid, int pid); 
167  public boolean security_wifi_setWifiEnabled(boolean enable, int uid, int pid); 
168  public boolean security_wifi_setWifiApEnabled(WifiConfiguration wifiConfig, 

  boolean enabled, int uid, int pid); 
169  public boolean security_wifi_setWifiApConfiguration(WifiConfiguration 

  wifiConfig, int uid, int pid); 
170  public boolean security_wifi_disconnect(int uid, int pid); 
171  public boolean security_wifi_reconnect(int uid, int pid); 
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172  public boolean security_wifi_reassociate(int uid, int pid); 
173  public List<WifiConfiguration> 

  security_wifi_getConfiguredNetworks(List<WifiConfiguration> 
currentList, int uid, int pid); 

174  public boolean security_wifi_addOrUpdateNetwork(WifiConfiguration config, 
  int uid, int pid); 
175  public boolean security_wifi_removeNetwork(int netId, int uid, int pid); 
176  public boolean security_wifi_enableNetwork(int netId, boolean disableOthers, 
  int uid, int pid); 
177  public boolean security_wifi_disableNetwork(int netId, int uid, int pid); 
178  public boolean security_wifi_getConnectionInfo(WifiInfo info, int uid, int pid); 
179  public boolean security_wifi_setCountryCode(String countryCode, boolean 

persist, int uid, int pid); 
180  public boolean security_wifi_setFrequencyBand(int band, boolean persist, int 
  uid, int pid); 
181  public boolean security_wifi_startWifi(int uid, int pid); 
182  public boolean security_wifi_stopWifi(int uid, int pid); 
183  public boolean security_wifi_addToBlacklist(String bssid, int uid, int pid); 
184  public boolean security_wifi_clearBlacklist(int uid, int pid); 
185  public boolean security_wifi_getWifiServiceMessenger(int uid, int pid); 
186  public boolean security_wifi_getWifiStateMachineMessenger(int uid, int pid); 
187  public boolean security_wifi_getConfigFile(String currentConfig, int uid, int 
  pid); 
188 
189  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
190  ∗ ClipboardService hooks 
191  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
192  public ClipData security_clip_getPrimaryClip(ClipData currentPrimary, int 

  clipUid, int uid, int pid); 
193  public boolean security_clip_setPrimaryClip(ClipData clip, int uid, int pid); 
194  public boolean security_clip_informPrimaryClipChanged(ClipData 

  currentPrimary, int setByUid, String packageName, int uid); 
195  public ClipDescription        
  security_clip_getPrimaryClipDescription(ClipDescription   
  currentDescription, int clipUid, int uid, int pid); 
196  public boolean security_clip_hasPrimaryClip(boolean hasClipboard, int  
  clipUid, int uid, int pid); 
197  public boolean security_clip_hasClipboardText(String currentText, int clipUid, 
  int uid, int pid); 
198 
199  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
200  ∗ PowerManagerService hooks 
201  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
202  public boolean security_power_acquireWakeLock(String tag, WorkSource ws, 
  int uid, int pid); 
203  public boolean security_power_userActivity(long eventTime, int event, int 
  flags, int uid, int pid); 
204  public boolean security_power_goToSleep(long eventTime, int reason, int uid, 
  int pid); 
205  public boolean security_power_wakeUp(long eventTime, int uid, int pid); 
206  public boolean security_power_nap(long time, int uid, int pid); 
207  public boolean security_power_setBacklightBrightness(int brightness, int uid, 
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  int pid); 
208  public boolean security_power_reboot(boolean confirm, String reason, boolean 

  wait, int uid, int pid); 
209 
210  /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
211  ∗ PhoneSubscriberInfo hooks 
212  ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/ 
213  public String security_phonesubinfo_getDeviceId(String id, int uid, int pid); 
214  public String security_phonesubinfo_getDeviceSvn(String svn, int uid, int pid); 
215  public String security_phonesubinfo_getSubscriberId(String id, int uid, int pid); 
216  public String security_phonesubinfo_getGroupIdLevel1(String groupid, int uid, 
  int pid); 
217  public String security_phonesubinfo_getIccSerialNumber(String icc, int uid, int 

  pid); 
218  public String security_phonesubinfo_getLine1Number(String number, int uid, 
  int pid); 
219  public String security_phonesubinfo_getLine1AlphaTag(String tag, int uid, int 

  pid); 
220  public String security_phonesubinfo_getMsisdn(String msisdn, int uid, int pid); 
221  public String security_phonesubinfo_getVoiceMailNumber(String number, int 
  uid, int pid); 
222  public String security_phonesubinfo_getVoiceMailAphaTag(String tag, int uid, 
  int pid); 
223  public String security_phonesubinfo_getIsimImpi(String impi, int uid, int pid); 
224  public String security_phonesubinfo_getIsimDomain(String domain, int uid, int 

pid); 
225  public String[] security_phonesubinfo_getIsimImpu(String impu[], int uid, int 
  pid); 
226 } 
 

Interface for Access Control Policy Modules to Linux Security Module 
 
1  public interface KMACAdaptor { 
2  public boolean init(); 
3  public boolean isEnabled(); 
4  public boolean isEnforcing(); 
5  public boolean setEnforcing(boolean value); 
6  public boolean setContext(String path, Bundle context); 
7  public boolean restoreContext(Bundle context); 
8  public Bundle getContext(String path); 
9  public Bundle getPeerContext(FileDescriptor fd); /∗ wrapper around  
  getsockopt call to LSM ∗/ 
10  public Bundle getCurrentContext(); 
11  public Bundle getProcessContext(int pid); 
12  public Bundle getConfig(Bundle args); /∗ e.g., get list of defined booleans or 
  one specific boolean value ∗/ 
13  public boolean setConfig(Bundle conf); /∗ e.g., set a boolean value ∗/ 
14  public boolean checkAccess(Bundle args); /∗ args can be, e.g., quadruple of 

  subject ctx, object ctx, object class, op ∗/ 
15 
16  /∗ Zygote is statically integrated with the Kernel MAC, thus, each   
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  KMACAdaptor must implemented these hooks in ZygoteConnection ∗/ 
17  public boolean security_zygote_applyUidSecurityPolicy(Credentials creds, 

 Bundle peerSecurityContext); 
18  public boolean security_zygote_applyRlimitSecurityPolicy(Credentials creds, 

 Bundle peerSecurityContext); 
19  public boolean security_zygote_applyCapabilitiesSecurityPolicy(Credentials 

 creds, Bundle peerSecurityContext); 
20  public boolean security_zygote_applyInvokeWithSecurityPolicy(Credentials 

creds, Bundle peerSecurityContext); 
21  public boolean security_zygote_applySecurityLabelPolicy(Credentials creds, 
  Bundle peerSecurityContext); 
22 } 
 

Methods for IRM Instrumentation 
 
1  public class Instrumentation { 
2  public static void initClass(Class<?> clazz); 
3  
4  public static int redirectMethod(String fromDescriptor, String toDescriptor); 
5  public static int redirectMethod(Signature from, Signature to); 
6  
7  public static void callVoidMethod(Class<?> caller, Object _this, Object... args); 
8  public static void callVoidMethod(String id, Object _this, Object... args); 
9  public static void callVoidMethod(int methodId, Object _this, Object... args); 
10  public static int callIntMethod(Class<?> caller, Object _this, Object... args); 
11  public static int callIntMethod(String id, Object _this, Object... args); 
12  public static int callIntMethod(int methodId, Object _this, Object... args); 
13  public static boolean callBooleanMethod(Class<?> caller, Object _this,  
  Object... args); 
14  public static boolean callBooleanMethod(String id, Object _this, Object... 
  args); 
15  public static boolean callBooleanMethod(int methodId, Object _this, Object... 

  args); 
16  public static Object callObjectMethod(Class<?> caller, Object _this, Object... 

  args); 
17  public static Object callObjectMethod(String id, Object _this, Object... args); 
18  public static Object callObjectMethod(int methodId, Object _this, Object... 
  args); 
19  public static void callStaticVoidMethod(Class<?> caller, Class<?> _clazz, 
  Object... args); 
20  public static void callStaticVoidMethod(String id, Class<?> _clazz, Object... 

  args); 
21  public static void callStaticVoidMethod(int methodId, Class<?> _clazz,  
  Object... args); 
22  public static Object callStaticObjectMethod(Class<?> caller, Class<?> _clazz, 

  Object... args); 
23  public static Object callStaticObjectMethod(String id, Class<?> _clazz,  
  Object... args); 
24  public static Object callStaticObjectMethod(int methodId, Class<?> _clazz, 
  Object... args); 
25 } 
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