
C IRCU IT DESCRIPTION AND CIRCUIT SIMULATION USING C++

Prrrustakaan <:; Jr.TM

ROZITA BT OTHMAN

W EKO J0397

Faculty Of Com1mtcr Science And Info rmation Technology,

University Of Mnlayn

Mac 2005 Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

Techniques used for circuit description have often been treated differently from

the methods used to simulate hardware. This report will attempt to demonstrate how a

common platform, and hence a uni form environment, can be established to both

describe and simulate hardware, using a programming paradigm known as objecr

oriented programming as supported by the C++ language. This paradigm is powerful

enough to allow a hierarchical description of the hardware and at the same time pro\'idc

an extensible method for its simulation.

This report will provide a brief overview of C 1 1 and its s11ppo11 for the ohjc 1-oricntcd

programming paradigm.

II

Univ
ers

ity
 of

 M
ala

ya

ACKNO\VLEDGF.1\IENT

Utter most gratitude goes to the almighty Allah for all the confidence and

patience in the complet ion of my thesis

I would like to express my deep gratitude to my supervisor Mr. Yamani ldna

Idris for the tremendous help he has given me during this project, technical advise and

thoughtful comment. And also to my moderator Ms. Rafidah Mohd Noor for her

valuable advise and motivation.

Also taking this opportuni ty expressing my thanks to all fe llow members nnd

especially the family of Computer Science and etworking for their support to fncc the

difficulties and challenging time.

Finally but not least, I am much obliged to my lo ely hu hand. Ma" ardi nad

and my parents who have been given invaluable support and inspiration to me

throughout my universi ty life.

111

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

Abstract. ··· ·· ·····

Acknowledgen1ent n

'f ab les of Contents 111

List of Figures ix

I CHAPTER I: INTRODUCTION

I . I Introduction

1.2 Problem Definit ion...... 3

1.3 Scope................................ 4

1.4 Obj ectives.. 5

1.5 Scheduling........ 6

I CHAPTER II: LITERATURE REVIEW

2. 1 C H Background and Ii i story.... 7

2. 1. I Features Borrowed from Other Languages

2. 1.2 C-1 Versus C. 9

2.2 Object Oriented Programming.. I 0

2.2. l The Problem of Complex it y.................................... 11

2.2.2 The Problem of Classification.............. 13

2.3 Features of Object-Oriented Programmi ng Languages............... 13

2.3. I Ontu Encupsulution...... 14

2.3.2 Inheri tance ... I -

2.3.3 Dynamic 13inding of Function Call 15

2.4 Vll DL (V llSIC' 1 lnrdware Description Language)................... 16

2.4. I Bnsic Lnnguuge Org1111 i:n1tio11 17

I\

Univ
ers

ity
 of

 M
ala

ya

I CHAPTER IV: SYSTEM ANALYSIS
--=

4.1 System Requirement Spccificm ion..... 40
4.2 Functional Requirement. 41

4.2.1 Classification of Circuit Components. 41

4.3 Non-Functional Requirement. 46

4.3. l Correctness. 47

4.3.2 Reliability...... 47

4.3.3 Response Time... 47

4.3.4 Expandability.... 48

4.4 Consideration of Programming Language.............. 48

4.5 Hardware Requirement. 50

I CHAPTER V: SYSTEM DESIGN

5.1 What is System Design............. 51

5.2 The Method of Designing........ 51

5.3 Hardware Description Component. 53

5.3. 1 Two-input AND Gate... 54

5.3.2 Three- Input AND Gate. 56

5.3.3 S-R Latch.............................. 5

5.3.4 Full-Adder. 6 1

5.4 Hardware Simulation Using C++.............. 62

5.4. I Circui t Simulation: Time and Queues.. 62

5.4.2 Signals and Signal Transmission.. 64

\' I

Univ
ers

ity
 of

 M
ala

ya

CHAPTER VI: SYSTEM IMPLEMENTATION AND CODING

6.1 Introduction..................... 68

6.2 Progran·1 Coding , 68

6.2. 1 Coding Style.. 69

6.2.2 Code Documentation. 69

6.2.3 Internal documentation... 69

6.2.4 Naming Convention............ 70

6.2.5 Modularity.. 70

6.2.6 Readability.... 70

6.2.7 Robustness. 70

6.2.8 Maintainability... 71

6.3 Implementation of the Simulation Algorithm.. 71

6.4 Virtual process () function.... 74

6 .5 Code Modules/ files 76

I CHAPTER VII : SYSTEM TESTING

7. 1 Introduction 7

7.2 Sample Simulation of Three-Input AND Gate.. 79

7.3 Sample Simulation of RS-Latch................ 3

I CHAPTER VIII : DISCUSSION

8. 1 Introduction.. 7

8.2 Problem Encountered and Solutions

8.2. I Problems in getting the resources

8.2.2 Luck of Knowledge in the Lunguagl!

8.2.3 Ti Ille C'onstrnint. 9

R.J Project Strength 89

8.3. I Predefined Librnry.. 9

\II

Univ
ers

ity
 of

 M
ala

ya

8.3.2 Easy to Create Sample Gate... 89
8.4 Project Limitation.... 90 "
8.5 Future Enhancement. ~ ~ 90

Conclusion.. 91

Appendix A: .C PP Files 92

con1p.cpp 93

con1plib.cpp 96

conncct.cpp... 99

port .cpp 101

signal.cpp 104

w1re.cpp................... 106

n1a1n.cpp.. .. l 09

Appendix B: Header Files... 11 7

con1p.h 11

complib.h . I 19

conncct.h . I 2 I

port .h ... 122

signal.h . 123

wirc.h

sim.h

124

1_5

Appendix C: Output. 126

Output I: Two-input AND Gate 127

Output 2: Three-input AND Gate.. 127

Output 3: RS-Latch. 12

Output 4: Hal f Adder........................ 129

References 130

\ 111

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Figure 2.1: The Problem of Complexity........... 12

Figure 2.2(a): Logic Symbol of T\ o-input AND Gate........ 18

Figure 2.2(b): VHDL Description ofa 2-input and operator......... 18

Figure 2.3(a) logic schema1ic....... 20

Figure 2.3(b) Vll DL description of majority function............... 20

Figure 2.4 : The Nimbus display of 3 threads of the UART model...... 27

Figure 2.5:. Viewing the Generated VHDL Code in Text Window

Figure 3.1 : The core work flows and the phases of the Unified Process........... .D

Figure 5.1: Standard logic symbols for the AND gate with two input. 54

Figure 5.2: Two-Input AND Gate with External Wires.. 56

Figure 5.3: Three-Input AND Gate with External Wires........................... 5

Figure 5.4: Active-LOW input S'-R' latch......................... 59

Figure 5.5: RS- Latch with External Wires............ 60

Figure 5.6(u): Full-Adder Logic Diagram for Sum 6 1

Figure 5.6(b): Pull-Adder Logic Diagram for Cuny.......... 62

Figure 7. 1: Three-Input AND Gate Before Simulation............................. . 79

Figure 7.2: Three- Input AND Gate Afler Sinrnlation....,

Figure 7.3: RS-Lutch Before Simulat ion.. 1:: 3

Fl~un• 7.4: RS-Lnlch A Iler Simulation.. (>

1\

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1

I NTRODUCTION

J. I Introduction

As high-level computer programm 111g languages become increasingly mon:

powerful and abstract, there is a tendency amongst the computing society to use such

general purpose languages for the benefi t of their own fi elds of research nnd study.

Instead of using highly specific languages, which arc usually restricted in their scope

and availabi li ty, members of both the software and hardware community nre tempted to

use higher level languages that arc more accessible and flex ible. This rcpon ' ill sho"

how one such high-level language and its support for the object-oriented progrnmming

paradigm can be used for both the description and simulation of hardware module ..

The advantages of using a popular general purpose language for hnrd" nrc

description and simulation arc n111ltifo ld. Firstl y. if the harth nrc de igncr is already

follli liar with the language frolll software development. then nil he or she hus to do is to

npply the lnngunge to the problem of hnrd wurc description and s1mulut1on. Thi. mean

Univ
ers

ity
 of

 M
ala

ya

that the designer does not have to team an cntird~' new l:mguagc with its own peculiar

syntax rules and idiosyncrasies. Secondly. gcncml purpose languages have a much

greater population of users thnn do l nng1111gc~ which specifically support hardware

description. Therefore, translators. compilers nndior interpreters for such high-level

languages arc usually more readi ly avai lable. efficient and reliable. Thirdly, using the

same language to both describe and simulate hardware creates a more uniform and

consistent environment for the user. This uni form environment results in more control,

since the designer docs not have to keep track of one language for circuit description and

an entirely different language for parsing the circuit description and simulating it.

Obviously. some high-level languages arc better suited for hardware description

and simulation than others. A language which can be used for hardwure description nnd

simulation must pem1i t the designer to specify the hardware 111 un intuitive and

hierarchical manner, consistent with how the designer th inks. In aclcl ition. such n

language must be easily extensible so that new modules can be eas ily added without any

modifications being made to the simulation code. Ideally, such n language must also

provide support for circuit designs ut several levels of abstraction and should ulso gi"c

the designer the choice of either using a "bottom-up" or a " top-down" approach 10

circuit description.

One language which appears to sutisfy ull the requirements for a hard" arc

description and simulation lnngungc is(' 1 1. In addition to providing upport for objcct

oricntcd pmgrununing. th is l1111gunge is also undergoing s11111dnrd11n11on hy AN l. "hich

')

Univ
ers

ity
 of

 M
ala

ya

means that the language mechanisms and fonturcs used by this report should be portable

across most C++ compilers. Since use of the hmguagc is undergoing exponential

growth, 1 1 compi lers 111\d translators have be " rittcn for n variety of platfom1s.

Therefore, Ct t is avai lable to a' idc community of programmers.

1.2 Problem Definition

When designing a hardware, commonly we used HDL or VHDL hardware

description language. There arc some major obstacles to do successful system-on-chip.

Some of the obstacles are:-

(i) There is a lack of a single system-level environment thnt can he used

throughout the design flow. While algorithms might be designed nt high

level in C, gates still have to synthesised out of II DL. Ench manunl fomrnt

translation, no matter how small, is a possible source of errors.

(ii) The designer has insufficient control over the design process. I le or she

has to accept the result that (synthesis) tools produce. This is result of

those tools being sold as closed boxes. Assembling u system level de ign

flow out of such tools however requires an open en ironment.

(iii) There is lack of a systematic verification strategy. There arc a many

testhenches ns there nrc tools used the de. ign flow.

3

Univ
ers

ity
 of

 M
ala

ya

Since hardware description languages arc closd . related to pn)gramming language, it is

natural to try lo adapt object-oriented technique to hnrdwnrc description.

1.3 Scope

In this project scope, there are two major sections dealing with C++ and the

object-oriented paradigm, circuit description and circuit simulation using C++.

I. The first section serves as an introduction to the basic mechanics and

techniques associated with the object-oriented paradigm and how C++

provides support for this paradigm.

2. Describe and simulate circuits using this paradigm. It will be shown how

concepts of object-oriented programming map cleanly into the problem of

hardware description.

1.4 Objectives

There arc two types of objective that must be achie e, so that the target of

system development can succssfu lly accomplish.

I. Gcncrnl/ovcrnll project objective

2. Explicit project objective.

Some of the ovcrnll project objectives arc:-

Univ
ers

ity
 of

 M
ala

ya

(i) To understand system process or system dc\'dopmcnt

(ii) To practice all the knowledge that we hm c kamed such as skill in system

analysis, system design and progmmming and also system development.

(iii) To adapt with all the sofh are that related in designing system.

(iv) To understand all the problem and constraint in developing system and

so fl ware.

Explicit project objectives are:-

(i) To discuss the advantages of C++ as object-oriented programmmg to

describe and simulate hardware.

(ii) To introduce classification of circuit components which 1s component.

connector, wi re and port programming in C 1 1.

(iii) To describe simple hardware using C·H programming which is AND gntc.

RS-Latch, Adder and the result of simulation.

1.5 Schcdulling

The bar chart below shows the activities of each process phase that will be

carried out through the development of the system. It will take an approx imate time of9

months to finish the whole thesis project. tarting on the first phase. "hich i) stem

analysis from June to July. At this phase. in fom1ation is collected on ystcms a' ni lnhk

nnd study is 11 111cle on methodology that will he used in this project.

5

Univ
ers

ity
 of

 M
ala

ya

The second phase star1s from August until Sc:pt~mbc:r. which is working on the

system design. At the beginning of October nnd sc:cond part t,)f the thesis wi ll be started

by the implementation of the system, which is the ~y~t em coding. System testing will be

carried out at the middle of December until the end of January. The system will be

tested to check if it's free from errors.

The last phase of system development is the system evaluation. It starts at the

end of January until the end of February. The required system output will be checked in

this phase.

System Development

No. Year 2004 2005

Phase & Month Jun Ju I Og Sep Okt Nov Dis Jnn Fdl ~Inc

- - - - ------ -I Ident ify Conwu1nt

and Objective<;

- - - ----2
Identify Information

- --------3 System Ana lysis

- - ------ - - -- -4 Sy\ tem Dc'l1gn

- - -- - -
5 Docume111a1ion and - ---11

Develop Software l -- - - -- - - -(i System TcMing und

Maintenance _l-1 - - - - --7 l111plcmcn1 & Sr tc111 - -I· v t1 hrn t mn I -- - - - -

6

Univ
ers

ity
 of

 M
ala

ya

CHAPT F. R 11

LITERATURE REVIE\V

2.1 C++ Background and History

C-i + is a programming language developed at AT&T Bell Laboratories by

Bjarne Stroustrup in the early 1980's. The language was designed wi th the intent of

merging the effi ciency and conciseness of C with the object-oriented programming

features of SIMULA-67. Since its creation, the language has evolved rapidly nnd SC\'Crnl

new features have been added since its initial release in 1985. The lnngungc nlso

promises to provide support for several other usefu l mechanisms such as pnrnmctcri1cd

types and exception handling in the near future. A fom1al AN 1-C 1 1 commincc

(X3J 16) has since been established to help develop an accurate and reliable stnndnrd for

the language which should eliminate most, if not all . ambiguities in the t 1 compilers

and translators of today. It is expected that this committee ' ill adopt most of the rules

present in the ANSI base document The A1111ow1ed C+ + Reference Ma1111al as \Hittcn

by Ellis and troustrup.

Univ
ers

ity
 of

 M
ala

ya

With a few modest exceptions. C+-i cnn be considct\.'<l a superset of the C

programming language. While C++ is similar to C in syntax and structure, it is

important to rea lize tlwt the two l:rngungcs are radically different. C++ and its support

for object-oriented programming provide 11 new methodology for designing,

implementing and case of maintaining software projects which C, a structured

programming language, is unable to support . Extensive libraries are available for the C

programming language; consequently, a deliberate effort was made on behalf of the

developers of C++ to maintain backward compatibi lity with C. Any major deviation

from the C programming language would have meant that all the libraries available for

C would have to be tediously rewritten for C++. This would have severely limi ted the

usefulness of C++ in an environment where C libraries were used extensively.

2.1.1 Features Borrowed from Other Languages

C++ is largely an amalgamation of severa l other progrnrnming lnngunges.

Obviously, C 1 ~ inheri ts most of its characteristics, such as its ~ynt nx. looping

mechanisms and the like, from C. A part from C. C 1 1 bon·ows most heavily from the

aforementioned SIMULA-67 programming language. Nearly all the support that C

provides for object-oriented programming comes from this language. The concept of a

class and the so-called vi rtual function mechanism arc a fc, of the features present in

SIMULA-67 which have been integrated in CI r.

To 11 limited extent. '1 1 nlso borrows some programming mcchnni ms from

Algol-ML Thc:-;c ind udc support for opcrutor overloading and the declaration of

Univ
ers

ity
 of

 M
ala

ya

variables almost anywhere in the code. The newer Ctt compilers will provide support

for parameterized types and exception handling. concepts bormwcd from Ada and Clu.

2.1.2 C++ Versus C

When a user defines a type in C++. support is provided in the language to permit

that type to behave in a manner similar to types already built into the language. The user

may define how the standard operators act upon these user defined types (operator

overloading) and how these type can be converted to another type (user defined

conversions). The user may also specify how memory is allocated or deallocated when

an instance of that type is created or destroyed. This is done through the use of

constructors and dcstructors which are called implicitly by the compiler ' hen an

instance of that type is brought into and taken out of scope respcc1ivcly.

C; 1 provides support for function prolotypcs. hence enabling strong type checking of

function parameters to take place during compila1ion. In addition, C 1 1 provides support

for the pass /Jy reference mechanism and also supports default arguments 10 functions.

This means that should a function require an argument that of\en has the same ' nluc. the

user can default lhe argument to thnt value and not puss that pnramctcr when the

function is called. In the few cases where the function has to be called with a di fTerent

value for the default argument. the user simply passes that argument into the function

und the new value overrides the default vnlue.

9

Univ
ers

ity
 of

 M
ala

ya

The most important features which C++ pro ides suppqrt for arc data encapsulation,

inheritance and runtime binding which form thl' foundation for the language's support

for object-oriented programming.

2.2 Object-Oriented Programming

The object-oriented paradigm was first conceived in the l 960's and implemented

in languages such as SlM ULA-67. One of the initial concerns with early object-oriented

languages was their effi ciency. Programs written using structured languages, such as

Pascal and C, executed fas ter than programs written using early object-oriented

languages. Although programs which used the object-oriented paradigm were more

ex tensible and easier to maintain from a programmer's point of view, nn unacccptnblc

price had to be paid in the program's runtime behaviour. Recently, hO\ c er. the runtime

execution of object-oriented programs has improved considerably. This has been due in

part to both the development of fas ter hardware and the creation of efficient languages

and compilers which support object-oriented programming, such as c~ . These fncts. in

addition to the ever-increasing accessibi lity of object-oriented languages to the common

programmer has created a major evolution in the area of son ware development.

There is, as yet, no univcrsully ngrccd upon definition of exactly what constitute

ohjcct-oricntcd programm ing. Hooch suggests:

10

Univ
ers

ity
 of

 M
ala

ya

" Object-oriented programming is a method of impkmcntation in which

programs arc organized as coopernt i\1c colkctions of objects. each of

which represents an instance of some class. nnd whose classes are all

members of a hierarchy of classes united via inheritance relationships."

From this definit ion, one can infer that object-oriented programming consists of

instantiating a number of objects which communicate with one another so as to achieve

some desired behaviour. This paradigm is natural with how humans see the world; as a

series of cause-effect relationships, where an action performed on one object has effects

on the objects with which it communicates.

2.2. l The Problem of Complexity

Object-oriented programm111g is particularly usefu l for reducing problems of

complexity associated with the writing of large scale sonwarc packages. It is useful to

think of a typical complex system as consisting of two orthogonnl plnnc. of

hierarchy (Figure 2. 1).

11

Univ
ers

ity
 of

 M
ala

ya

Objects

/ 0-<? ··7

· · · · · · · · · · · · · · · Eocapsulation

- - - - - -> Instantiation

lnheri lance

Figure 2.1: The Problem of Complexity

The fi rst plane consists of a set of classes, each of which acts 11s n ·' blueprint" for

the instantiation of objects. This plane contains a hierarchy known ns the " is n kind of'

relationship. Any class, D, in the plane which points to another class, 8, is snid to be a

kind of class /J . All the properties of cluss 8 (commonly called a base c/n s) arc pa cd

down to class D (referred to as a derh'cd class). As can be seen from the diagram. a

derived class can be used us the base class of another; and a class can be spcci ficd as

being .. a kind of" two or more classes. ·1 his .. is u kind or· hierarchy i supported in

ohjcct-oricntccl languages through the mechanism of i11hl'ntrmrc. The ~ ccond plnnc

consists of a series of ohjl.!cts which, as mentioned aho c, arc instanuntcd from the

12

Univ
ers

ity
 of

 M
ala

ya

classes of the first plane. This hierarchy is cnlkd the " is n part oC' relationship and is

achieved through the encapsulation, or nggn:gntion. of classes. The hierarchy suggests

that one object may be comprised of several objects: each of which can be made up of

even more objects.

2.2.2 The Problem of Classification

One of the major problems encountered by designers of object-oriented software

is classiflcatio11; that is, finding which classes should be grouped together under a shared

base class. When attempt ing to perfonn classification on the problem space, several

issues must be addressed. For example, the designer must decide which properties

should be used to detem1ine commonality. The classification should also be ncxiblc

enough to permit the introduction o f new objects into the system which appcnr to belong

to neither class nor appear to have properties of several classes.

2.3 Features of Object-Oriented Programming Languages

Object-oriented programmmg languages support three features: data

e11cups11/mio11. i11hcriw11ce and <~w1amic hi11di11g of f 1111c1io11 calls. Each helps the

programmer bui ld more abstract, powerful nnd malleable datn types.

13

Univ
ers

ity
 of

 M
ala

ya

2.3.1 Data Encapsulation

Data encapsulation, sometimes referred to ns data hiding. is the mechanism

whereby the implementation details of a class arc kept hidden from the user. The user

can only perfo rm a restricted set of operations on the hidden members of the class by

executing special functions commonly called merhods. The actions performed by the

methods are determined by the designer of the class, who must be careful not to make

the methods either overly nexible or too restrictive. This idea of hiding the details away

from the user and providing a restricted, clearly defined interface is the underlying

theme behind the concept of an absrrcrct data type.

The advantage of using data encapsulation comes when the impleme111ario11 of

the class changes but the interface remains the same. The concept of dnta cncnpsulntion

is supported in C++ through the use of the public , protect ed and pr i vatc kc) vords

which arc placed in the declaration of the class. Anything in the clnss placed ntk r the

public keyword is accessible to all the users of the class; clements placed ancr the

pro tected keyword arc accessible only to the methods of the class or classes dcri ed

from that class; clements placed aOer the pd vate keyword arc accessible only to the

methods of the class.

As a convention, calling a method of an object instantiated from a class is commonly

referred to us sending a m ('S.'it1Re to that object.

14

Univ
ers

ity
 of

 M
ala

ya

2.3.2 Inheritance

Inheritance is the mechanism whereby speci tic classes are made from more

general ones. The child or derived class inherits all the features of its parent or base

class, and is free to add features of its own. ln addition, this derived class may be used as

the base class of an even more specialized class.

Inheritance, or derivat ion, provides a clean mechanism whereby common classes can

share their common features, rather than having to rewrite them.

Inheritance is supported in C++ by plac ing the name of the base class afler the

name of the derived class when the derived class is declared. It should be noted thnt n

standard conversion occurs in C H when a pointer or reference to a bnsc clnss i

assigned a pointer or reference to a derived class.

2.3.3 Dynamic Binding of Function Calls

Quite ofien when using inheritance, one wi ll discover that a series of classes

share a common behaviour, but how that behaviour is implemented is difTerent from

class to class. Such a situation is a prime candidate for the use of dynamic or runtime

binding which is ulso rcfc1Tcd to as poly111orpliis111.

1 ... implements dynamic binding through the use of virwal functions. \ h1k

f\mction calls resolved nt runtime arc somewhat less efficient than function calls

15

Univ
ers

ity
 of

 M
ala

ya

resolved statically, Strouslrup notes that a typical virtual function invocation requires

just five more memory accesses than a static function invocat ion. This is a very small

penalty to pay for a mechanism which pro\'idcs significant flex ibility for the

programmer, as wi ll be shown Inter.

It is from inheritance and runtime binding of function calls that object-oriented

programming languages derive most of their power. Some problems lend themselves

very well to these two concepts, while others do not. As Stroustrup notes:

.. How much types have in common so that the commonality can be

exploited using inheritance and virtual functions is the li tmus test of the

applicability of object-oriented programming."

2.4 VHDL (VHSIC Hardware Description Language)

VHDL is one of the computer language for descrihing digital systems. VI IDL is

a hierarchical acronym denoting VllSIC Hardware Description Language: VH IC in

turn, denotes Very High Speed Integrated Circuits. The United States Department of

Defense Very I ligh Speed Integrated Circuits (VH SIC) Program initiated the design of

VllDL to support the development of a new generation of digital system technology.

The design of Vll DL formally began in 1983 and after a series of several iterations and

versions. culminated in I 987 with the acceptance of VI IDL as an IEEE (In titutc of

Elcctricul nnd Elcctrnnic Engineers) standard.

16

Univ
ers

ity
 of

 M
ala

ya

2.4.1 Basic Language Organization

f igure 2.2(a) shows the graphical symbol and VHDL model of a 2-input and

operation. The YHDL model shown in Figurc2.2(b) comprises a design entity, which is

the basic construct in VHDL for modeling a digital system. The digital system can be

physical piece of hardware that has been designed or a conceptual piece of hardware that

is being designed.

VHDL design enti ty is composed of two parts: an interface and a body . The

interface is denoted by the keyword entity and the body is denoted by the keyword

architecture. /\ convenient way to view the ro les of the interface anc.J n hO<~\ ' is to

imagine a digital system enclosed inside a casing or black box. The i111c•1:facc describes

aspects of the digital system visible outside the black hox that defin e the boundary

between the system and its environment , such as signals that now into nnd out of the

box. The body describes aspects of the digital system inside the black box thnt define

how the outputs respond to the inputs.

17

Univ
ers

ity
 of

 M
ala

ya

f

L

-- Interfac e
entity AND 0 0 is --- Input /Out~ut ports

p o r t
(A,B: i n BIT ;
Z : o u t Bilf } ~

e nd AND_OP;

--Body
a r c hitec t ure EX CONJUNCTION o f AND OP is
b e g i n

z <= A and B; --signal
end EX CONJUNCTION;

Figure 2.2(a): Logic Symbol Figure 2.2(b): VHDL Description of a 2-input and
operator

2.4.2 La nguage O rganization of VHDL

Libraries

Design Units

Statements

Expressions

Objects

Types

From the busc of pyramid, predefined and user-defined type define data

"templates" or sets. Ohjects. such as signals. hold values if the defined dntn type .

Expressions colllhinc operations with objects to yield nc' values, "hich arc used b

Univ
ers

ity
 of

 M
ala

ya

statements to describe aspects of digital hardwnrc. Statements arc contained within

design units and design units arc. in turn, contained within libn~ries .

The design units in VI IDL arc the fo llowing:

• Primary Design Units

I. Entity Declarat ion

2. Package Declaration

3. Configuration Declaration

• Secondary Design Uni ts

I. Architectural Body

2. Package Body

2.4.3 Structural Modeling in Vll DL

Modeling logic schematic or netlists introduces a descripti e style called

structural modeling. Structural modeling de fi nes the behavior of a design entity by

defi ning the components that comprise the design entity and their interconnection. A

structural model implicitly or indirectly defines function because the design entity

input/output transform can be derived knowing the constituent and their behaviors.

19

Univ
ers

ity
 of

 M
ala

ya

AJN _[u l"'
-r1L[) f ~'"''l

, A2 j 0 1 -
INl'

1
e jJ INT)

B_IN

C_IN

~f ·· ~
- - I nterface
entity MAJORITY is

-- Input/output ports
port

(A_IN , B_IN, C I N
Z OUT

end MAJORITY ;

--Body

in BIT;
out BIT) ;

architecture STRUCTURE of MAJORITY is
- -Declare logic operators
component AND2_0P

port (A, B : in BIT; Z : out BIT);
end component ;
c omponent OR3_0P

(a)

port (A, B, C in BIT ; Z out BIT) ;
end component ;

-- Declare signals to interconnect logic operators
signal INTl, INT2, INT3 : BIT;
begin

--connect logic operators to describe schematic
Al: AND2 OP port map (A_ IN, B_ I N, I NTl) ;
A2 : AND2_0P port map (A_IN, C_ I N, INT2);
A3 : AND2_0P port map (B_ I N, C_ I N, I NT3) ;
01 : OR3_ 0P port map (INTl, I NT2 , INT3, Z_OUT) ;

End STRUCTURE

Figure 2.3(a) and 2.3(b) show the logic schematic and VHDL description of
majority function.

20

Univ
ers

ity
 of

 M
ala

ya

From the Figure 2.3, the declarat ivc part qf th~- architecture STRUCTURE

contains three declarations: two component declarat ions and one signal declaration. The

signal declaration declares th ree signals.

Component declarations start with the reserved keyword component, fo llowed

by the name of the component. The AND2 _OP component has two input ports, A and

B, and one output port, Z, all of type BIT. The OR3 _ 0P compionent has three input

ports, A, B, and C and one output port z, all type BIT. Finally the keywords end

c omponent completes a component declaration.

We also n•eed signals to interconnect the component instances. The input/output

signals for the majority function, A IN, B_IN, C IN and Z OUT arc declared in the

definit ion of the dlesign interface. Port map clause defi nes the mapping between which

signal arc connected to which component ports, in other words, hm n component is

'wired-up '

2.5 Comparison In Object-oriented C++ Technology and VHOL

2.5.1 Object-oriented design strategics

00 progn1111111 i11g presents a number of powerful design strategics bnscd on

practical nnd pre> en sonwan: engineering techniques cx prcss1.!d by mean of the

21

Univ
ers

ity
 of

 M
ala

ya

corresponding object-oriented sofiwarc progr:unming h\nguagc structures. They are

fundamental and arc encountered in di ffcrcnt prohkm-solving contexts and without

doubt in hardware: design problem-solving cont c~t too.

Widely used standard hardware description languages like YHDL or Yerilog do

not support all of the variations of each of these strategies.. Therefore the 00

programming is not completely avai lable with standard HDLs.

2.5.2 Abstraction and Separation.

Abstraction: A named, tangible representation of the attributes and behavior

relevant to modeling a given entity for some particular purpose:." According to the

purpose of the design, a single entity may have muny valid abstractions. The ' idcly

used abstraction in hardware design is a hardware component or a "primitive" cxpn::s. cd

in the two domains:

(i) Structural domain: a component is described in terms of an interconnection

of more primitive components.

(i i) Behavioral domain: a component is defining by its inpulloutput response.

In VI IDL. the primary entity is called a design entity; it corresponds to a module

m SC. In VHDL only structural domain abstraction can be expressed. C provides

additional types of abstraction: communication abstractions can be cxprc cd through

the channels, 1111<1 the ordinury Ct t class concept can be used to c:xprcss the bchn' iornl

22

Univ
ers

ity
 of

 M
ala

ya

abstractions. These additional abstractions arc very important in H S co design. allowing

the designer to commit to a particular H/S pnrtit ioning hue in the design process. In the

pure hardwure modeling these abstractions arc also \'Cry important since they enable

transaction based modeling which arc very efficient regarding simulation performance.

They are also important in inheriting speci fie behaviors and attributes when designing a

library of components. CAD houses were forced to describe these libraries outside of

VHDL, due to the· lack of behavioral abstractions.

"Separation : the independent specification of an interface and one or more

implementations of that interface."

In VHDL, a design entity consists of two different types of descriptions: the

interface descript ion and one or more architectural bodies. In hardware design the

interface is presenited by the description of entity's inputs and outputs. The nrchitecturnl

bodies can specify the behavior of the entity or a structural decomposition of the entity

using more primitive components. In software engineering, an interface defin es an

external aspect that must be understood to use the sofl warc. This is a more general

notion than just object inputs and outputs, it can abstract the actions that the object can

use to interact with its environment, such as read, write actions for a bus object. The

abstraction and separation concepts in the 00 programming are expressed by means

classes and objects. Each class has private and/or public members. Access from outside

to private members is very limited allowing the notion of encapsulation.

23

Univ
ers

ity
 of

 M
ala

ya

"Encapsulation: can be defined as the restriction of access to data within an object to

only those methods defined by the object's clnss".

The last so ftware structure to which the nbstrac;tion and seJParation strategies are

mapped is an object.

"Object: a distinc:t instance of a given class that encapsulates its implementation details

and is structurally identical to all other instances of that class." Multiple instantiations

of a given class can be made and each of them represents a distinct object. In VHDL, the

notion of object c:orresponds to the one of a component instance that is used to create

unique references to lower-level components. In SC, we may have: a richer instantintion

mechanism when~ an instance of an object can be an instance of a subclass of the

declared type.

2.5.3 Composit ion

"Composition: an organized collection of components in11cracting to achieve a

coherent , common behavior." There arc two fom1s of composition:

(i) assoteiation

(i i) aggregation

In an aggregation. the whole is visible and therefore accessible. In association

the interacting pnrts may he shared by different composi tions. ms they arc externally

24

Univ
ers

ity
 of

 M
ala

ya

visible. The association purpose is to allow objects to he connected to each other or to

know about each other. The association method of huilding systems is known as the

plug-and-play tec:hniquc and is widely used in the \'Ulidntion amd evaluation of the

created system.

In hardwaire design the stnictural design decomposition is a basic modeling

technique and that is why the composition is naturally presented by syntactical HDL

structures. In VH DL the composit ion is presented, in our opinion, in the aggregation

form, the design entity is visible as a whole by the others ones. The association fom1 of

the composition, which is missing in VHDL can be very use ful in the high-level

descriptions of the designed system, in test-bench generations, in design exploration nnd

in application of the incremental refinement methodology to a design. The di ffercnt

associations of objects encapsulating some functionality can be va lidated or verified to

fi nd the optimal so lution.

2.5.4 Generalization.

"Gcncrali:zation: the identification, and possible orgarnia1tion, of common

properties of abst1raclions." The generalization identifies common11lit ies among a set of

ent ities. The commonality mny be established in tenns of att ri butes. behavior, or both.

The generali1.ati o111 design strategy is directly connected to rcusalbi lity. There are four

forms of generalization expressed by object-oriented sonware stnictures:

(i) • I lit:rarchy;

25

Univ
ers

ity
 of

 M
ala

ya

(ii) • Gencricity;

(iii) • Polymorphism;

(iv) • Paltcms;

2.6 Using the Synopsis Logic Synthesis Tools with Nimbus

Nimbus [14] is a tool set that allows the capture of digital systems models as a

collection of concurrent Algorithmic State Machine (ASM) models. Nimbus provides a

design editor, c:ompilcr, cycle-based simulator, and model translator to both

synthesizable VH'DL and Verilog HDL. The technology is industry-proven. hnving

been embodied in tools from another vendor for over a decade, and having been used h

such companies as 3-Com, Alcatel, Sony, Hitachi and Ricoh. The use of this technology

is as a design capture and architecture exploration medium, as we lll as a mcnns to clcnrly

communicate design intent.

The Design Analyzer is an older tool set, which primarily is used in logic

synthesis and anatlysis of circuit results for ASIC applications. The FPGA Compiler

(FC2) is used for t:he spcci fie needs of synthesizing circuits on FPGA de ices.

26

Univ
ers

ity
 of

 M
ala

ya

Nimbus - UART .nlm - Controller. 1~~--11-----

Figure 2.4: The Nimbus display of 3 threads of th l! UA RT moclcl

27

Univ
ers

ity
 of

 M
ala

ya

g Cansd•

!_lndow ~ It Qpdans -- --
j1mdav1s<isa1mp1t 15 ~more UART .v t1dl -- ••.•. .• •......• •••..•.•• .• ••••••
-- Genera.tt:d by N1mbus R100 (SOLARIS) R100
-- Wed Feb 4 20 : 44 : 28 2004 -- •••.• .•.......•
-- De!:1gn Information

Des119n
Des119ner
version
Date

: UART
: J PD/J EF
: v3
: 30 Jan . 2004

-- Translation Opt1on

If== r-
Tar·get
De!:1gn
Sta1te Encoding
Sta1te Signal

: Synopsys VHDL - Synthesis
: Fl at
: Enumerated
: I nternal

........ ..
Tys:•es PAcka.ge DeclarAt1on -- •..................•.••••.•...•

package UM!T_TYPES is

tys;•e STATE_l'la1tJ4LlM 1s
(

);

Wa1UE,
RE AD_DatA,
SET_WRITE,
SET_READ,
HOLD

type STATE_WAIT_Enable_SM is
(

);

WAIT_Enabl e.
WRITE_OUT,
READ_I N

tYP•e STATE_Wa i t_Recv_SM 1s
(

I I II*•'•••• ,_ =~

l'IA1LRecv,
Receive,

- -

Figure 2.5:. Viewing the Generated VHDL Code in Tcx:t WindO\ .

2

Univ
ers

ity
 of

 M
ala

ya

CHAPTER Il l

METHODOLOGY

3. t Methodol1ogy

A methodology is a system of methods and principles used in a particular sub

discipline of software design. There are a large number of these, reflecting the ' ay in

which software dc~s i gn in practice has specialized. Those which arc mature usually nrc

supported by specialist tools and techniques. A traditional view of design in software

engineering is analogous to building a cathedral: we make carefu l. comprehensive

blueprints; use th<~se as the reference point for coord inating architiccts and craftspeople;

and ensure that the individual components connect precisely in the way described in our

blueprints. We shall look at an example of this style of design: the Unified Process

this, however, is not the only approach available. We also can ad0tpt a less prescriptive,

opportunistic stylic of design where a greater emphasis is placed on rapid revision of

blueprints and the artifacts built from them.

Univ
ers

ity
 of

 M
ala

ya

In order to get the overview requirement of the Cirnuit Description and

Elementary Hierarchical Circuit Simulation sing C':t-+. nn analysis to this topic is

needed. The pu11pose of the analysis is to cktcnninc the entire fi,mctional requirement

and also non-functional requirement for the tool.

3.2 Unified Prrocess

The Unified Process is a software engineering process. It)provides a disciplined

approach to aasigining tasks and responsibilities within a development organization. Its

goal is to ensure the production of high-quality software that meets the needs of its cnd

uscrs, within a pre:dictable schedule and budget. (Ali Bahrami, 1999)

The Unified Process is a trad itional "cathedral" style of incrcmcntnl d1.:sign

driven by constructing views of system architecture. It has the fo llowing key fcnturcs:

(i) It is component based, commonly being used to coordinate object oril!ntcd

programming projects.

(i i) It uses UML - a diagrammatic notation for object oriented design - for all

for a II blueprints.

(i ii) The design process is anchored, and driven by, use-c:ases which help keep

sight. of the anticipated behaviors of the system.

(iv) It is architecture centric.

30

Univ
ers

ity
 of

 M
ala

ya

(v) Design is iterative and incremental - \'ia a prcscribe·d sequence of design

phas:es wi thin a cyclic process.

The Uni fi1:::d Process is a process product, developed and maintain by Rational

Software. The Unified Process is a guide for how to effectively use the Unified

Modelling Language (UML). UM L is the tool that we use to represent (Model) the

target so flware product. A major reason for using a graphical representation like UML

is best expressed by the old proverb, a picture is worth a thouseand words. UML

diagrams enable s:oflware professionals to communicate with one another more quickly

and more accuratc:ly than if only verbal descriptions were used ..

3.3 Iteration and Incrementation

In this project, I will use object-oriented modelling. The object-oriented

paradigm is an iterative and incremental methodology. Within the Unified Process. each

cycle contains folllr phases and each phase contains one or more iterations. Iterations is

a complete development loop resulting in a release (internal or external) of an

executable product, a subset of the final product under development ' hich grO\\ s

incrementally from iteration to iteration to become the final system. This is a system

that released with addit ional or improved functionali ty.

The advnntagcs of the Iterative and Incremental Approach compare \\ ith the

trad it io1111 I watcrfo ll process arc:

31

Univ
ers

ity
 of

 M
ala

ya

(i) Risks re mi tigated earlier.

(ii) Cha111ge is more manageable.

(iii) Higher level of reuse.

(iv) The project team can learn along the way.

(v) Better overall quality.

3.4 T he Phases of the Unified Process

The software life cycle is broken into few cycles, each cyc les working on a new

generation of the product. Unified Process divides one development cycle in four

consecutive phases. Those phases arc:

(i) Ince!Ption phase

(ii) Elaboration phase

(iii) Construction phase

(iv) Transition phase

Each phase wi ll end with the mi lestone as conclusion. A milestone means a

point to make the cri tical decision about whether to continue development.

32

Univ
ers

ity
 of

 M
ala

ya

Pl f..\SL:S
c:

c: ·S:: 2 c
c

~
:J £2

a 2
_8 - , .. _, J c u c ~ c ~ c --UJ v i-

I rnplc m \.! nta t J('ll)

IT ER/\ T l< >N S

Figure 3. 1: The core work flows and the phases of the Uni l!icd Process

3.4. 1 The I nee pt ion Phase

Inception is the fi rst phase for the life cycle, developers establish the business

case for the system and delimit the poject scope during th is pha:sc. The aim of the

inception phase is lo detenninc whether it is worthwhile to develop the target sofh arc

product. In other words, the primary aim of th is phase is to detem1inc "hether the

proposed sonware !Product is economically viable. The major mi lestone associated with

the inception phase is called life-cycle objectives. The evaluation criteria for the

inception phnsc ure :

33

Univ
ers

ity
 of

 M
ala

ya

• Stakeholder agree on the scope of the system.

• Bussincss case for the system is strong enough to continue development.

• Sets of criticnlhigh-levcl requirements are cclnrly addresses.

3.4.2 T he Elaboration Phase

The aim of the elaboration phase is to refine the initial requirements, refine the

architecture, monitor the ri sks and refine their priori ties, refine the business case and

poduce the software project management plan. The major activities of this phase are

refinements or elaborations of the previous phase.

Basically the primary goal of the elaboration phase is to establish the ability to

build the new system given the financial constraint, and other kinds of constrnints thnt

the development project faces. The elaboration phase also ensures the plnn. requirement

and architecture are stable enough and the risks arc sufficiently rnitigated.

The major milestone associated wi th this phase is called Li fe Cycle Architccn1rc.

At this point, developers examine the detailed system objectives and scope, the choice of

archi tecture and the resolution of the major risks. The indications that the project has

reached this mi lestone arc:

• Most of the functional requirements for the systems have been captured ' ith

use case diagram.

• The project team has an init ial project plan that describes how the

construct ion ph11sc wi 11 produce.

34

Univ
ers

ity
 of

 M
ala

ya

• The architecture baseline is a small , shinny system that will serve as a solid

foundation for ongoing development.

3.4.3 Construction Phase

The purpose of this phase is to build system that is capable of operating

successfu lly in beta customer environment. This means all remaining components and

application features are developed and integrated into the product and all features are

throughly tested during construction phase. The milestone for the construction phase is

initial peration capability. The project has reached this mi lestone if a set of beta

customers has more or less fully operational system in their hands.

3.4.4 Transition Phase

The aim of the transition phase is to ensure that the client's requirements have

indeed been meet. This phase is driven by feedback from the sites at ' hich the beta

version has been installes. Faults in the soflware product arc corrected. Also, all the

manuals arc completed. During this phase, it is important to try to disco er any

previously unidentified ri sks. The main objectives of the transit ion phase arc:

• Achieving user self-supportability

• Achieving stakeholder concurrence thct deployment baselines arc complete

and consistent with the evaluat ion criteria of the vision

• Achieving finnl product huscline as rapidly and cost effectively us practical

35

Univ
ers

ity
 of

 M
ala

ya

The mi lestone associated with this phase is called product release. At this point,

developers shouldl decide if the objectives were met. or should start another development

cylce.

3.5 Core Wor'kflows

The Uni ficd Process identifies core work flows that occur during the software

development process. These work flows include Business Mod1eling, Requirements,

Analysis, Design, Implementation and Test. The workflows are not sequential and likely

will be worked on during all o f the four phases. The work flows are described separately

in the process for darity but they do in fac t run concurrently, interacting and using each

other's artifac ts.

3.5.1 Rcquircmc!nt Workflow

• Capture the functional requi rement with case model.

• Describe what the system should do and allows the developers and the customer to

agree on that d1~scription .

36

Univ
ers

ity
 of

 M
ala

ya

3.5.2 Analysis Workflow

• Aimed at building the analysis model to help the dc\'cloper refine and structure the

functional requirement captured.

• This work now contains realizations of use cases that lend themselves better than the

use cases to design and implementation work.

3.5.3 Design Workflow

• Aimed at building the design model to describe the physical realizations of the use

cases

• Also focus on the deployment model , which defines physical organization of the

system in tem1s of computational nodes.

3.5.4 Implementation Workflow

• Aimed at building the implementation model, which describes ho\ the clements of

the design modicl arc packaged into software component.

3.5.S Test Worklllow

• Aimed at huildi'ng the test model . which describes how integratuon and system tests

will exercise executable components from the implementation model.

37

Univ
ers

ity
 of

 M
ala

ya

• Contains test case that are ofien derived di rectly from use cnscs.

3.6 Requirement Elicitation

During the analyzing process, many data and information are requiring to do

analysis. The data congregation is an essential part in order to have a throughout

understanding of the system to develop. There are few techniques are use to get useful

data and in formation at the beginning of the project.

To define the requirement, the followi ng techniques are used:

• Internet surfing

• Interview

• Library research

3.6.1 Internet Surfing

The internet is the largest infonnation pool in the world. Whatc er information

requires also can get from the internet such as the infonnation about circuit description

and circuit simulation using object-oriented language and the advantages compared to

other language.

38

Univ
ers

ity
 of

 M
ala

ya

3.6.2 Interview

At the beginning, I try to contact by e-mail ome o f the researcher that doing

their research and joumal writing on this topic. Luckily I get some respond from them

and here I make some discussion and Q & A session regarding on circuit description and

circuit simulation using C++ and why they did research on that.

3.6.3 Library Research

Co llecting some joumal paper, reference books and articles that related to the

project topic. Studies are done on various issues, problems and solutions that arc

detailed in the journal paper.

39

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I \'

SYSTEM ANALYSIS

4.1 System Requirement Specification

System analysis is the one of the important phase, which focuses on

understanding a system domain and the requirement. System analysis is conducted with

the following objectives:

{i) Determine the functional and non-functional requirement for Circuit

Description and Elementary Hierarchical Circuit Simulation Using C++.

(ii) To determine the tools that will be used.

(iii) To determine the programming language, soflware and hard\ arc needs for

Circui t Descri ption and Elementary Hierarchical Circui t Simulation Using

C++.

The system requirement need to drawn out to provide a guideline ' hen

developing a system. Therefore, the requirement analysis needs to co er the area of the

Univ
ers

ity
 of

 M
ala

ya

functional requirement and non-functional requi rement of Circuit Description and

Elementary Hierarchical Circuit Simulation Using C++.

4.2 Functional Requirements

Functional requirement is a function or feature that must be included in an

in formation system to satisfy business need and acceptable to the user. Functional

requirement describe an interaction between system and the environment. In this

project, the functional requi rement is circuit component and the class that will be used

in the circui t description.

4.2.1 Classification of Circuit Components

For the purpose of this report, objects which are at the digital level and above

will only be considered. Therefore, switch level devices such as transistors will not be.;

considered.

One possible way to classify these numerous objects is to consider all the circuit

enti ties at their highest level of abstraction and attempt to group objects which have

simi lar properties under the same base class. From this, three very general classes arc

formed:

41

Univ
ers

ity
 of

 M
ala

ya

• Component -- All elements derived from this ch1ss process input signals

and generate output signals to the objects to which they arc connected. It is

possible for one component to be part of another component. Circuit

clements which can be considered as kind of components would include

AND gates, RS-latches and random functional blocks.

• Connector -- All elements derived from this class would be responsible

for connecting components with other components or with the external

world. Each connector is part of a component at some level of abstraction.

Since a connector can .. feed" one or more components via fan-out, a list of

components can be considered part of a connector. Some circuit elements

which arc kind of connectors include wi res, and 1/0 ports.

• Signals -- Objects instantiated from th is class are passed from component

to component via the connectors. A list of signals also can be considered as

part of a wire. This report wi ll consider signals as two entities: a signnl value

(such as HIGH, LOW or X) and an associated unit of time.

As alluded to above, linked list classes arc required for components and signals.

The need wi ll also arise for a linked list class for 1/0 ports. Due to the current lack of

parameterized types in the C++ language, some duplication of code is necessary to

create the three linked list classes. Fortunately, the replication of code is relatively small.

42

Univ
ers

ity
 of

 M
ala

ya

The Component Class

Components arc responsible for getting inputs, processing them and producing

outputs. In order for components to get their inputs from and se11d their outputs to the

external world, ports must be made part of the components in some way. To increase the

case at which the simulation algorithm can access the component's ports, pointers to

both the input and output ports will be stored in separate linked lists within the

components. Therefore, there are at least two elements of the component class: two

linked lists of input and output port pointers. Since ports form the interface of a

component, these linked lists are placed in the public section of the class. However. the

operations that can be performed on this linked list are limited by the public interface of

the Port_List class.

Next, the user should be given the option of assigning some name to a

component, which will be useful from a debugging viewpoint. Therefore, a pointer to n

character (string) will be placed in the class. In addition, in this particular

implementation, every component maintains its own local time during the simulation.

Since nothing else outside of the class should be allowed to access the name or local

time, these two data members should be placed in the private section of the class so they

can be accessed only by methods of this class, such as the constructor.

Every component ulso has a delay which represents how long it takes to produce

its outputs upon receiving its inputs. During the simulation, objects derived from

ComponcnL should be permitted to chunge the <.lclay time of the component (for

43

Univ
ers

ity
 of

 M
ala

ya

example, the delay time could increase during the simulmion. modelling the effect of a

component getting warmer, hence increasing its resistance). Since classes derived from

component arc the only ones able to change the dclny. the de l a y data member is

protected in the class.

Two public methods are declared, which are used extensively during the simulation of

the circuit. These two methods arc process () and simulate () .

Finally, a constructor is requi red which is used to actually build the component.

Since a component is too abstract a concept to be useful from an instantiation

perspective, only specialized classes derived from Component may call this constructor.

Therefore the Component constructor is made a protected member of the class.

The Component_ List Class

The component_List class, maintains a linked list of components which may be

present in the fan-out of a connector.

The Connector Class

The connector class is responsible for connecting components together and for

connecting components with the outside world. In circuit description. there arc t\ o type

of connectors. wires and ports. The connector class wi ll be used as an abstract base

class from which aw l re class and a Poet class wi ll be derived.

44

Univ
ers

ity
 of

 M
ala

ya

The Wire Class

The wire class is derived from the connector class. Wires connect components

together and also maintain a history of signals which have tra\ielled through them during

the course of the simulation. Connections to components are achieved through the

fan_out data member as inheri ted from the connector class. However, in order for the

class to keep track of all the signals that have passed through it, it must maintain a

linked list of signals. Hence a new class, signal_List is created for this purpose. The

Wi re class defines two constructors. The fi rst one accepts an optional name and simply

passes that name up to its base class, connector, for ini tialization. The linked list of

signals is then initialized and a single signal is added to the wire to represent its initial

value.

The Port Class

Ports provide a means whereby components arc connected with the external

world. It is through ports that components send and receive signals. In addit ion to

maintaining a fan-out of the components that it feeds (which is inherited from

connector}, each port must also maintain a pointer to the connector that ·· feeds" it.

Note that a port can be fed by one, and only one, connector. This means that a port may

be fed by a single wire or by a single port ; and not by, for example. two wires. Note,

however, that a wire may feed one or more distinct ports. To keep track of the connector

that feeds it, the Port class maintains a pointer to the speci fi c connector.

45

Univ
ers

ity
 of

 M
ala

ya

Since ports are somewhat too gcncrali1cd. an r npu t and output class will be

derived from Port . To prevent the programmer from accidentally creating a Port

object, the constructor will be kept protected nnct is thcrcf-ore u~able only by the Input

and Output classes.

The Input and Output Class

The I npu t and output classes are almost the same with just one minor difference.

T he Port List Class

The Component class contains a Port_List (a linked list of pointers to ports) in the

public section of its class. The Port List class is almost identical to the

Component_List class. This similarity could be exploited using generic types or

templates. Since C++ docs not yet support templates, some code replication will be

necessary.

4.3 Non-Functional Requirement

A non-functional requirement or constraint describes a restriction on the system

that limits on choice for constructing a solution to the problem.

46

Univ
ers

ity
 of

 M
ala

ya

4.3.1 Correctness

Correctness is the extent to which program sntisfies its SJ}ecification and full fill

user's requirement and objective.

4.3.2 Reliability

The system wi ll be developed in a way that is reliable and will not cause any

unnecessary fai lure at the overall operation. System will not cause any technical or

costly failure when it is used in reasonable manner. Any information display will be

ri sk-free.

4.3.3 Response Time

The data retriever time should be considered wi th on a reasonable interval time.

All the desired information should be avai labe to user at any point in time. The user

should not be asked to tolerate with slow response time.

47

Univ
ers

ity
 of

 M
ala

ya

4.3.4 Expandability

Expandabi lity measures the capabi lity of a system to be upgraded or enhanced in

fu ture. It is important when an existing system needs enhancement to overcome

changes in environment and requirement. Expandability of a system also determines

whether the system can be integrated with sub-system to increase its functionality.

4.4 Consideration of Programming Language

To implement circuit description and simulation using object-oriented language,

I will use Microsoft Visual C++ 6.0. This is because this type of version are widely

used in university and other educational institution.

Microsoft's Visual C++ 6.0 (VC++ 6.0) lets programmers unlock the power of

Office and Internet Explorer and create custom Office and Windows apps. Every version

of Microsoft Office and Internet Explorer has powerful custom fcatures-dockablc

toolbars, tool tips, OLE automation, and ActiveX, for example. But to really put these

features to work you need a full-fledged programming language. Features provided by

VC++ 6.0 arc:

• Fully integrated editor, compiler, and debugger

• Abi lity to create complex software systems

48

Univ
ers

ity
 of

 M
ala

ya

The list of updates in version 6.0 is lengthy. but two tand above the rest. This

rendition of Microsoft's Visual C-1 + gets sm:ut wi th lntcll iScnse technology, Microsoft

lingo for auto-completion. Whnt this mcnns for you is a fier you type a period after a

variable name, a handy drop-down menu appears offering the soup dujour in the way of

the avai lable members for the aforementioned object. Enter a method name and an open

parenthesis and you are presented with prototypes, arguments and their types. Better yet,

lntclliSensc works with all the expected iterations and your code, saving quite a lot of

time. Also, the intuitive edit and continue feature allows you to incorporate common,

simple edits during your debugging without having to quit, rebuild and restart the

debugger.

Other new features include the HTML Help Workshop, a tool for creating

HTM L-bascd context-sensi tive help that can be integrated with the Web; a gallery of

prepackaged C++ components and ActiveX contro ls; and a slew of inline optimi1ation

switches, programs and codes.

49

Univ
ers

ity
 of

 M
ala

ya

4.5 Hardware Requirement

Specification Minimum Spec.

Requi red Operating System Microsoft Windows 95/98, Microsoft

Windows T 4.0 or later

Required Memory 24MB

Required Disk Space 290MB

Required Processor Class Intel Pentium

Required Processor Speed 90 MHz

Other Requi rement Mouse or compatible device, CD-

ROM

50

Univ
ers

ity
 of

 M
ala

ya

CHAPTER V

SYSTEM DESIGN

S.t What is Systems Design

In formation system design is define as those tasks that focus on a specification of

a detailed computer based solution. It is also called physical design. System designs

focuses on the technical or implementation concerns of the system.

Object-oriented design (000) is the newest design strategy. The aim of 000 is

to design the product in tem1s of objects, that is instantiations of the classes and

subclasses extracted during object-oriented analys is.

The Method of DeslJ!nln~

The t1.:chniq11c used to describe h11rdw11rc c1111 he outl ined in 1-1 ix 11111jor steps:

Univ
ers

ity
 of

 M
ala

ya

I. Identify the internal circuit elements of the component . A tier the end of this

step, one should have I input ports, 0 output ports. S subcomponents and IV

wires.

2. Create a class for the component . Make sure that this class is derived from

Compo nent so that it will inherit all the features of this base class. The

parameters passed to the constructor of the class should include I + 0 references

to connector objects, a parameter for the delay of the component and a parameter

for the name of the component. The constructor should be in the public part of

the class. The clements identified above should be encapsulated within the class.

Keeping them in the private portion of the class prevents the relationships

amongst the wires. subcomponents and ports from becoming corrupt by

something from outside the class.

3. Connect primary inputs and outputs. When defining the constructor. calls arc

made to the I + 0 port constructors. This expresses the connectivity between the

ports of the component and the connectors of the external environment. This

wi ll have the efTcct of connecting the 110 ports with the primary inputs and

outputs of the circuit. Calling the 1/0 port constrnctors nlso has the effect of

placing the ports in their respccti e linked lists. This is hidden from the user. It

is oflcn usefu l to disguise th\.! call to the pon cons1ruc1ors hy usi ng 11 CONNF.CT

mncro ('ONNEC'T (Poll, Wire. "Nmm:").

52

Univ
ers

ity
 of

 M
ala

ya

S,3

4. Call the W constructors for the wires. This will bring the win:$ into C'\istcncc

and place an initial value on each wire.

5. Construct each of the S suhcomponents. One importnnt point to remember

when construct ing the subcomponents is to pass only the wires and ports that are

declared within the component class to the subcomponent constructors. If the

external connectors passed to the encompassing component constructor are

passed to the encapsulated subcomponents, then the designer may risk corrupting

the description.

6. C reate I + 0 external wires, and instantiate the component. This is usually

done in the ma i n () program of the C11 code. The external wires act as signal

sources when hooked up to an input port . When connected to an output port, they

act as signal destinations.

Hardware Description Component

In this project. I wi ll concentrate on three type of hardware componc.!nt. The

hardware component arc two input ANO gate, Three Input AND Gate, RS-Latch and

F'ull-Addc.!r ..

53

Univ
ers

ity
 of

 M
ala

ya

5.3.J Two Input AND Gate

A

R

(a) Distinctive shape

0 &

x 0

o .

(b) Rectangular outline with the
AND(&) qual ifying symbol

Figure 5. 1: Standard logic symbols for the AND gate with rwo input

The Figure 5.1 shown standard logic symbols for the AND gate with two input.

The lines connected to each symbol arc the inputs and outputs. The inputs arc on left. of

each symbol and the output is on the right. A circuit that performs a specific logic

Operation AND is called a logic gate. AND gates can have any number of inputs.

An AND gate produces a lllGH output only when all of the inputs arc lllGll .

When any of the input is LOW, the output is LOW. Therefore, the basic purpose of an

AND gate is to determine when certain conditions arc simultaneously true, as indicated

by HIGH levels on all of its inputs and to produce a lllGll on its output to indicate that

all these conditions arc true. The gate operation cun be stated as fo llows:

For n 2-lnput ANO ~ntc, output X is 11 IGll If inputs A nnd B arc

ll Gll ; X is LOW if either A or B is 1.0\V, or if both A nnd B arc

LOW.

54

Univ
ers

ity
 of

 M
ala

ya

Since a two-input AND gate is at the lowest level of abstraction. the only

encapsulated circui t elements wi ll be two input ports and a single output port. \\' hen u

two-input AND gate is actually instantiated and connected to primary input and output

wires in the main C++ program, the data structure shown in Figurr 5.2 is produced.

A two-input AND class may be declared as follows:

class And2 : public Component
{
PUblic:

And2(Connector &, Connector&, Connector&,

void
Private:

ckt_time • lL, char* .. "And2");
procesa(ckt_ time);

Input

} ;
Output

Il,
01;

I2;

luld2: :And2(Connector &cil, Connector

{ }

ckt_time dly, char *name)
Component(dly, name),
CONNECT(Il, cil, "And2 Il"),
CONNECT(I2, ci2, "And2 I2"),
CONNECT (Ol, col, "And2 01")

&ci2, Connector &col,

The constructor is declared as taking three references to connector objects as

Parameters and the three ports arc hidden in the private section of the class. The delay

and the name of the component arc first passed to the component base class constructor

for initialization. The ports of the class arc then connected with its primary inputs and

outputs.

Since the AND gate has no nested wires nnd no nested components, the

description of the AND gntc is finished. Its functionality is specified by redefin ing the

v· 1rtuaJ p 1 oc oo < l method.

55

Univ
ers

ity
 of

 M
ala

ya

and2
cil

11
01

lZl
12 col

ci2

Figure 5.2: Two- Input AND Gate with External Wires

5.3.2 T hree-Input AND Gate

Next, a three-input AND gate will be bui lt using two two-input AND gates,

Which were created previously, and a single wire that will connect the output of the first

AND gate with the input of the second gate. Summarizing the fundamental components:

there arc three input ports, one output port, one wire and two-input AND gates.

The class declaration follows:

claoa And3 : public Component

PUblic :

Private :

) :

And3(Connector &, Connector&,
Connector &, Connector &,
ckt_tlme. UNDEF_TIME , c hot • . "And3") ;

Input 11, !2, I3;
Output 0 1;
Wi r" w· .
And2 nd2 . nd:?b;

56

Univ
ers

ity
 of

 M
ala

ya

And3: : And3(Connector &cil , Connec t or &ci2,
Connector &ci3, Connector &col,
ckt_time dly, char *name)

Componen t(dly, name),

{ }

CONNECT(Il, cil, "And3 Il"),
CONNECT(I2 , ci2 , "And3 I2 "),
CONNECT(I3, ci3, "And3 I3 "),
CONNECT(Ol, col , "And3 01"),
w("And3 wire"),
and2a (Il, I2, w, lL, "and2a"),
a nd2b(w, I3 , 01 , lL, "and2b")

The constructor now takes four connector objects since a three input AND gate

has a total of four ports. As usual , the ports, wire and two-input AND gates are

encapsulated in the private section of the class. The delay time of the three-input AND

&ate is defaulted to an undefined time because the delay of the gate actually depends

upon the delay associated with the two two-input AND gates.

To define the constructor of the three-input AND gate, all the connector objects

are connected with the ports accordingly; the wire is instantiated and the two two-input

AND gates arc constructed. The two inputs of the first two-input AND gate come from

the first two input ports of the three-input AND gate, while its output is connected to the

nested wire. The second two-input AND gate receives its first input from this wire and

gets its second input from the third input port of the three-input AND gate. The output

of this two-input AND gate is directed to the output port of the three-input A D gate.

Figure 5.3 shows how all the clements of the circuit arc connected ' hen a three-

input ANO gntc is instuntiutcd using cxtcnrnl wires. For clnrity, the linked list pointers

Which link the th ree input ports together huvc been omitted.

57

Univ
ers

ity
 of

 M
ala

ya

cil I1 and2a

ci2
0 1

col

[/ w

12

ci3

13 and2b

Figure 5.3: Three-Input AND Gate with External Wires

S.3.3 S-R (SET-RESET) Latch

A latch is a type of bistable logic device or multivibrator. An active- LOW input

S'-R' latch is fo rn1ed with two cross-coupled NANO gates as shown in Figure 5.4. The

output of each gates is connected to an input of the opposite gate. This produces the

regenerative feedback that is characteristic of all latches and nip-nops.

5

Univ
ers

ity
 of

 M
ala

ya

s

R

Figure 5.4: Active-LOW input S'-R' latch

An RS-latch has two input ports, two output ports and two two-input NANO

gates which can be described in a manner identical to the description of the two-input

AND gate. Note that un RS-latch docs 1101 have two wires embedded wi thin it. The

feedback mechanism means that the two output ports, Q and Qb, also act as input ports to

the two NANO gates. There fo re there arc no wires created by the RS-latch.

The four ports and the two NANO gates arc encapsulated in the R -latch class as

shown in the fo llowing class declaration:

Claoo RS Lntch : public Component
(-
PUblic:

Prlv t 1

RS_LJ tch(Connecto1 &, Connect.c t &,

Inpu t.
Ou put

Conn clot &. Conncctot &.
c kl. Lim • UNDEF TTME , c hol'• • "RS_ La tch");

s I ll /
0. Ob I

59

Univ
ers

ity
 of

 M
ala

ya

Nand2 nand2a, nand2b;
} i

RS_ Latch: :RS_Latch(Connector &cil , Connector &ci2,
Connector &col , Con nector &co2,
ckt_time dly , c har • name)

Component(dly , name) ,

{ }

CONNECT(S , cil, "S "), CONNECT(R , ci2, "R"),
CONNECT(Q, col, "Q"), CONN ECT(Qb, co2, "Qb"),
nand2a(S, Qb , Q, lL, "nand2a"),
nand2b (Q, R, Qb, 1 L, "nand2b")

Next, the constructor of the class is defined. The four ports are connected with

the four connectors passed into the constructor. The first NAND gate gets its first input

from the s input port and its second input from the Qb output port. It sends its output to

the Q output port . The second NANO gate gets its two inputs from the Q output port and

the R input port of the RS-latch. Its output is sent to the Qb output port.

A diagram showing the interconnectivity of the components within the RS-latch

ts presented in Figure 5.5. The pointers connecting the input and output ports arc

omitted for clarity.

[
cl1

[.
s o.

nand2a

nond2b

Q
I

a
_ .,

Fl~un~ 5.5: RS-Lutch with Ex ternal Wires

co1

co2

60

Univ
ers

ity
 of

 M
ala

ya

5.3.4 Full-Adder

Adders are important not only in computers hut nlso in many types of digital

systems in which numerical data arc processed. An understanding of th~ basic adder

operation is f undamcntal to the study of digital systems.

The full-adder accepts two input bits and an input carry and generates a sum

output and an output carry. A logic diagram for sum of full-adder is shown in figure 5.6

(a) and carry in fi gure 5.6 (b).

x -Li>·
y

[C>.J -:
z I [> ... :I .

--1)~ I S

Figure 5.6(a): r:ull -Addcr Logic Diagram for Sum

61

Univ
ers

ity
 of

 M
ala

ya

------f

c

y

z

Figure S.6(b): Full-Adder Logic Diagram for Carry

5.4 Hardware Simulation Using C++

An algorithm which implements the new simulation technique wi ll he examined

and the Signal class wi ll be analyzed. This method of simulation has also heen used in

various forms in other simulators.

5.4. t C ircuit Simulation: Time and Queues

Cent ral to the foundation of any simulator is the concept of time, and hO\ the

clements which make up a component move through it. I lcrc we wi ll look at methods of

treating time and how thut concept of time.: is manifested in the.: implcmc.:ntnt ion.

62

Univ
ers

ity
 of

 M
ala

ya

Distributed Event Queues

Here I will describe a new approach to hardware simulation which chnlkngcs the

commonly used technique described above. Bnsically, the npproach is to encapsulate

one or more queues within the components themselves. thereby eliminating all the

inherent problems of maintaining a global stnacturc. The queues are distributed

throughout the component and can exist at virtually any level of the description. Each

queue keeps a history of the signals which have been sent to it during the course of the

simulation and maintains a list of all the components which expect the signal. Therefore,

the distributed queue serves as a connector between two components and also serves as

the means by which signals may be propagated in parallel using a sequential

programming language.

With respect to hardware, the distributed event queues represent wires; signals

travel along wires and wires connect components together. Since the queues arc

encapsulated within the circuit components, an asynchronous signal would only affect

those components which receive it and would not force the enti re circuit buck in time.

Only those clements who use the asynchronous signal directly or indirectly will nctunlly

be moved backwards. The other components would continue to move fon ard in tinic

Where they lcfl off.

5.4.2 lgnnls and Signal Transmission

63

Univ
ers

ity
 of

 M
ala

ya

Every signal is composed of two elements: a signal value (for cxmnpk . HIGH.

LOW, X) and a time when that value was produced. They nre stor~d in linkl~l lists in

much the same way that the compone nt_List class stores components.

The Signal class is declared as fo llows:

c l ass Signal
{
fr i end ostream &operator <<(ostream &, const Signal &) ;
Public :

Signal(Sig_Val • x, ckt_time a I NIT_TIME);
operator Sig_Val() ;
ckt time get_time() ;

Priva te : -

} ;

Sig_ Val
ckt time

value;
t;

Si gnal : :Signal(Sig Val ov , ckt time ct)

{ }
value(sv) , t(ct)

The operator Sig_ Val() function is a special fu nction called a user-dc:fim•d

conversion. It retums the value fi eld whenever a signal object is used in the context

Where a Sig val is expected. This function essentially converts a signal into a signal

value.

Signal: :operator Sig Val()
{ -

return value ;

The get_ time (l method is simply an access method which retums the time that

the signal occurred.

Ckt t.lm
Sign" l : : g t. t. Im ()

Univ
ers

ity
 of

 M
ala

ya

{

}
return t;

The oatream &ope rator « (oa t ream &, canst Stgna l &) function enables

the signal's value and time to be output using the « operator. This function is made a

friend of the class so it has access to the hidden members of the class. Overloading this

operator enables signals to be treated just like other built-in types which are output using

the same technique.

The Si g na l _Lis t class is declared as follows:

class S i gna l List
{ -
Public :

Private:

} ;

S i gnal_ Li st () ;
vo i d
S ignal
vo id

S ignal_ No de

add (Si gnal) ;
find (ckt_ t i me) ;
dump() ;

• oi g_li at;

The constructor and the add () method arc identical to the corresponding

rnethods in the component List class. The add () function also checks to mnkc sure

that signals enter the list in the correct time order. hould a signal be found whose time

is less than or equal to the last signal on the wire, a warning message is displayed.

The f i nd (> method simply scans the nodes of the signal list searching for the

signal which occurred at the specified time. If u signal could not be found. an undefined

signnl i rctumcd.

Si gn l

65

Univ
ers

ity
 of

 M
ala

ya

Signal List : :find{ckt time t) { - -
II Make sure we are not looking too far in the fu ture .
if {sig_list->sig.get_time{) < t)

return Signal{UNDEF_SIG, UNDEF_TlME);
for {Signal_Node • list= sig_list; list 1~ O; l ist •

list - >next)

if (list - >sig.get_time{) •• t)
return list - >sig;

if (llot >next I • O && list - >next
>sig .get_time() <• t)

return list->next - >sig;

II If signal not found, return an error signal.
return Signal(UNDEF_SIG , UNDEF_TIME);

The display () method simply traverses the signal listt displaying each signal it

encounters using the overloaded « operator.

Void
Signal List: :dump {)
{ -

for (Signal_Node • list • s1g_list; list l• O; liot
Uot >next)

cout << list - >sig;

Signal transmission occurs using the get Signal () and oend_Signal ()

rnethods which arc defined as virtual methods in the wire und Po rt cluss. These two

functions were defined virtually because the method that a Port uses to get and send u

signal is quite difTerent from the method used by a wi re . A wi re gets a signal by sending

a find () message to its encapsulated signul list. A Port gets a signal by sending a

9et_Signal () message to the connector which feeds it. Hence. the get_Signal o

rncssugc for a wire nnd a port is ns fo llows:

Sign" I

66

Univ
ers

ity
 of

 M
ala

ya

Wire: :get Signal(ckt time t) { - -
return signals.find(t);

Signal
Port: :get Signal(ckt time t) { - -

return external - >get_Signal(t);

The send_Signal () command operates in a similar fashion except that in both

the wire and port class, the signal is propagated to all the components in the fan-out of

the wire/port.

Void
Wire: :send Signal(Signal s)
{ -

VO id

signals.add(s);
fan_out.propagate();

Port: :send Signal(Signal s) { -
external >ocnd_Si gnal (o);
fan_out . propagate();

67

Univ
ers

ity
 of

 M
ala

ya

CHAPTER VI

SYSTEM IMPLEMENTATION AND CODING

6.J Introduction

System implementation is a process that converts the system requirements and

design into program codes. This phase at a time involves some modifications to the

previous design. Techniques and approaches used to bui ld the system will be described

in more details manner. Basically, the implementation will try to match the design as

much as possible. If time allowed, then there will be some enhancement in certain area

that necessary.

6.2 Pro~ram Codin~

In this stage, the programs arc written using programming language. In this

Project, I' m using Microson Visual C H· 6.0. The components built during development

arc put into opcrnt ionul use. The system is built accord ing 10 the original design that

Was done.

Univ
ers

ity
 of

 M
ala

ya

6.2.1 Coding Style

Coding style is an important attribute of source code nnd it deten11ines the

intelligibility of a program. An easy to read source code makes the system easier -to

maintain and enhance. The clement of coding style includes internal (source code level)

documentation, method of data declaration and approach to statement constmction.

6.2.2 Code Documentation

Code documentation begin with the selection of identifier (variable and variable

names), continues with the composition of connectivity and end with the organization

program.

6.2.3 Internal documentation

Internal comment provides a clear guide during the maintenance phase of the

system. Comments provide the development with means of communicnting ' ith

readers of the source code. Statement of purpose indicating the function of the module

and a descriptive comment that embedded within the body of the source code is needed

to describe processing function.

Univ
ers

ity
 of

 M
ala

ya

6.2.4 Naming Convention

A good and meaningful nammg technique for the vnrinhks. controls tUld

modules provides easy idcnti fi cation for the progrnmnH.:r. The naming convention is

created wi th coding consistency and standardi.rntion in mind.

6.2.S Modularity

Before entering the coding phase, the project has been divided into several

modules. The main purpose of modularity is to reduce the complexity o f the system. In

order to reduce complexity and fac il itate changes that result in easier implementation by

encouraging para llel development of di ffcrcnt parts of the system.

6.2.6 Readability

Codes should be easy to understand. Adherence to coding conventions such as

naming conventions and indentat ion contribute to program readability.

6.2.7 Robustness

The codes should be able to handle cases for user error by responding

npproprintcly. It should he ahlc to uvoid any ubnapt tcr111i11atio11 or system fuilurc .

70

Univ
ers

ity
 of

 M
ala

ya

6.2.8 Maintainability

Codes should be easily revised or corrcctccl . To focil itate mnintcnnncc. code

should be readable, modular and as general ns possible.

6.3 Implementation of the Simulation Algorithm

All components are simulated in the same manner. In terms of pseudo-code, this

algorithm could be summarized as fo llows:

function simulate (component)

While (inputs to component are ready) do

increment local time of component

if (component has no subcomponents) then

call virtual process function

e lse for each (input port of component) do

for each (element i n fan ouL of port) do

execute simulate function for fan ouL

component

In the Component class. the o i mu lo tc <) method is defined us fo llows:

Void Component: :oimulot • ()
{

whl I (J Ll1n . lnpul11 1 1 • 1u 1dy(t oco l Lim)
{

71

Univ
ers

ity
 of

 M
ala

ya

local _ t i me++;
i f {I List . is lowest_level() •• TRUE) { - -

}
else
{

if (dela y <• o)

{
cerr << "Er ,ror : i nva l id

de l ay \n";
exit (1) ;

p r ocess{local time 1);

I _ List . descend{);

The simulate { > message is sent to a component that the user wishes to

simulate. In high-level tem1s, the method continues to execute until at least one of the

distributed queues (wires) which feeds the component runs out of signals to supply to it.

While there arc inputs available, the component advances forward in time one unit and

then detem1ines its level of abstraction. If it is at the lowest level, that is, this component

is not made up of any subcomponents; then the component's delay time is validated. If

the delay is less than or equal to zero, an error message is produced and the progrnm

terminates, otherwise the p roceoo (> method is executed. This method is responsible for

reading inputs from the incoming distributed queues via the input pons. processing them

and then placing the results on the outgoing distributed queues via the output pons. If

the component is not at the lowest level of abstraction, then the code descends n level

and sends the same oimu l ate () message to all the subcomponents. This method of

recursively descending a hierarchical circuit description has been done ' ith other

object-oriented simulators as well.

72

Univ
ers

ity
 of

 M
ala

ya

The three methods inputs_are_ready (), is_lowest_level () .and descend ()

are all members of the Port_List class. The inpu ts_are_ ready () method scnns all the

wires that feed the input ports of the component nnd determines if ench of the wires has

an input that corresponds to the local time of the component.

boolean
Port:: inputs are ready(ckt time t)
{ - - -

for (Port_Node •list • prt_list; list != O;
list • liat - >next)

Signals • list - >prt - >get_Signal(t) ;
if (s .get_ time() == UNDEF_TIME && s ==

UNDEF_SIG)
return FALSE;

return TRUE;

The io_ lowest_ level () method, as invoked by simulate() , scans all the input

ports and determines if their fan-outs arc empty. If they are all empty, then the

component is not made up of any subcomponents.

boolean
{ort_List: : is_lowest_level()

for (Port_Node • liot • p rt_list ; list ! • O; list •
list - >next)

if (lliot >prt >fan_out.io_ empty ())
return FALSE;

return TRUE;

The io_empty c) method is defined by Component_ Li st. It simply returns a

boolean indicating whether or not the linked list of components that it maintains is

empty.

73

Univ
ers

ity
 of

 M
ala

ya

The descend (> method of Port_List again scans the linked list of ports. However. this

time, a propagate () message is sent to the fan-out of cnch port. lt is impkmentcd as

follows:

Void
Port List : :descend ()
{ -

fo r (Po r t_Node • list • prt_list ; l ist !• O; list =
list->next)

i f (!list ->prt - >fan_out . is_empty ())
l ist >prt -> fan_out.propagate () ;

The propagate () method is implemented in the Component _List class. This

method scans all the components in the linked list and sends s i mu l ate c) messages to

them:

VO i d
Componen t Liot : :p ropngntc()
{ -

f o r (Component_Node • l at • comp_liot ; lot !• O; lot •
lst->next)

l st ->c mp >Si mu l a te() ;

6.4 Virtual process () function

Object-oriented programming o ffers a clean. extensible solution to the problem

through the use of irtuul functions. When the u lmu Io t () method sends a process()

ntcssnge. the process ro ut ine that is called depends upon which component the

74

Univ
ers

ity
 of

 M
ala

ya

simulate () message was sent to. Hence the process () message is rcsol\'cd during

runtime. For example, if the simul a te () message was sent to n NANO gate.

simul ate () would invoke NAN D's process () method. It: howc\'cr. the simulat~ ()

message was sent to a NOR gate, NO R's process () method would be in\'oked instead.

The p rocess () function is initia lly defined in the Component. class to output an error

message and tem1inate the execution of the program. Should a user forget to define a

process () method for a low-level component, then the component wi ll inherit the

Process () function from the base class. When the simul ate () method attempts to

invoke the proce ss () function for that component, an error message is displayed telling

the user that it was unable to invoke the component's proce ss<) method. The name of

the component is also displayed.

The purpose of the process<) method is to read inputs from the input ports,

Process them and generate the appropriate output signals to the output ports. For

example, a two-input AND gate would define its proccoo () function as fo llows:

Void And2 : :proceoa(ckt t i me t)
{ -

if (Il .get_Signal(t) •• HIGH ' ' 12 .get_Signal (t) •• HIGH)
0 1 .oend Signal(Signal(HlGH, t +delay));

e lse if (Il.get_Signal(t)•• LOW I I 12.get_Signal (t) LOW)
Ol .oend_Signal(Signal (LOW, t + dcl y));

else
01 .send_Signal(Signal(X, t ~delay));

75

Univ
ers

ity
 of

 M
ala

ya

When getting a signal from a port, there is no need to call an access ti.uu.: tion in

order to determine the value of the signal. This is because the user defined conversion.

operator Sig_ Val(), automatically converts a signnl to n signal vnluc when used in

the context of a signal va lue.

6.5 Code Modules/files

There arc six modules that arc created to implement the basic circuits. The modules are:

a) comp.cpp

This module contains all the definitions necessary for the manipulation of abstract

components.

b) complib. cpp

This module contains the behavioral definiti ons of all the actual components in the

predefined component library. These components arc instantiated and simulutcd by

the simulator engine.

c) co111iect. cpp

This module contains the method defin itions for the abstract Connector eta s.

Univ
ers

ity
 of

 M
ala

ya

d) port.cpp

This module contains the method definitions for ports and it ~ input and output sub

objects.

e) sig11al.cpp

This module contains all the methods for signal manipulation.

f) wire.cpp

This module contains the method definit ions for wire objects.

g) mai11.cpp

Main driver program for in it ializing the primary inputs, constructing and simulating

the circuit and displaying the primary outputs

77

Univ
ers

ity
 of

 M
ala

ya

CHAPTER VII

TESTING AND SAMPLE Sll\IULATIONS

7.1 Introduction

This chapter will trace through some sample simulations to demonstrate how the

algorithm works. In the following diagrams, the symbol · •' represents the init ial time.

The time when signals occur wi ll be represented as numbers beneath the signal in the

Wire queue. The signals themselves wi ll be represented as H, Land x, representing high.

low and unknown respectively. The time delay of the encapsulated subcomponents is

represented by a number inside the component's box. The time delay for the enclosing

component depends upon the delay for each of its encapsulated subcomponents and their

connectivity. The local time for all components at the start of the simulation is set nt · • '.

so when the local time of a component is fi rst incremented, it becomes Lero.

Univ
ers

ity
 of

 M
ala

ya

7.2 Sample Simulation of Three-Input AND Gate

We first start with a trace of a simple combinational circuit . n thn:c-input AND

gate. The initial confi guration of the circuit and the external wires is shown in Figure

7.1. Recall that the wire constructor places an x as the initial signal of all wires.

cil 11 and2a

1

ci2

w

col
01
-llll l lllx[/

12 65432 1 0• 6543 21 0 •

1

13 and2b

Figure 7. 1: Three-Input AND Gate Before Simulation

When the three-input AND gate receives the o lmulote < l message, the fi rst

thing the component docs is to detcm1ine if ull of its inputs nre ready. incc the

component is at time · •' and hecausc all wires initially have an unknown stored at that

initial time, the algorithm enters the body of the while loop and increments the local

time of th1.: component. I lcncc the local time of the three-input AND gutc is no'' 1cro.

The component then sends the lo l o w ot:_ lc1 v i1l () message 10 its input pon list 10

79

Univ
ers

ity
 of

 M
ala

ya

detennine if the component does not have any nested subcomponents. In this cnsc. the

three-input AND gate does have subcomponents, so the descend (l mcssngc is sent to

the input ports list. This method will start scanning nil the input ports, sending

simulate () messages to all the components which arc directly connected to the inputs.

It will be assumed that the fi rst subcomponent to receive the simulate ()

message is the and2a gate. As with the three-input AND gate, this component now

detennines if all of its inputs arc ready. Obviously, they are, so the local time of the

and2a gate is increased to zero and the is_l owest_l eve l (> message is sent to its input

ports to detennine if the component does not have any subcomponents. This is now the

case, so its virtual procea o () function is executed after the delay time is validated. The

Process () message reads the x signals rrom the wires ci l and ci2 at time ' • ' and

perfonns a logical AND operation on them producing another unknown x at time zero.

This signal is then sent and stored in the nested wire in the three-input AND gate. The

Wire then takes control and sends o i mu l a t e (> messages to all the components to which

it is connected. The only component in the wire's fan-out is the and2b gate.

Now the inputs to the and2b gate arc ready, so its local time is incremented to

Zero and its initial unknown inputs arc re~1d from the nested wire and the ci J wire hy the

Proceoo () method. The resulting signal , x. is sent to the output wire co1 at time r - 0.

Since this wire has no fan-out. any attempt it makes to propagate its signals is

111ln1ediately rejected. Control rctums buck to the ond2b gntc, where it dctcnnines that it

still hns i11p11ts wait ing to he 1m.lcessctl. Its locol time i11creuses to one and its irtual

0

Univ
ers

ity
 of

 M
ala

ya

process() method is invoked. The x input of the nested wire and the L input of the ci3

wire is read and an L signal is sent to the output wire at time r I. Wht:n control is

returned back to the and2b gate, it realizes that all of its inputs arc gone. and control

eventually returns back to a nd2a .

Since and2a has inputs ready at time t = 0, its local time is incremented to one

and the H and the L signals arc read from cil and ci2 respectively. The resulting L

signal is sent to the nested wire at time / = I. The wire once again passes control to the

and2b gate which increments its local time to two and reads the two L signals from its

input wires. It sends an L signal to the output wire which returns control back to the

and2b gate. Upon realizing that all its inputs have once again been consumed, control

returns yet again to the and2a gate.

The and2a gate detem1ines that it has two signals waiting for it at time / • I and

therefore increments its local time to two. The two H signals arc read from the wire and

processed with the resulting H signal being sent to the nested wire at time t 2. The wire

passes control to and2b which increments its local time to three and processes the t\ o H

signals from c i3 and the nested wi re. It then sends the resulting H signal to the output

Wire at time t ""' 3. Cont rol is returned back to and2 since and2b cun go no further.

After incrementing its locul time to three. the and2o gate reads the finnl L and x

signals from its two input wi res und sends the resulting L to the nested wire. When thi

Wire pusses contro l to the ,rnd :.tb gntc .. ntl2b notices that it hns a signal 1, wait ing for it

Univ
ers

ity
 of

 M
ala

ya

on the nested wire at time t = 3, but there is no corresponding signal on ci3 . Therefore.

control is eventually returned back to and2a which rea lizes th11t it too hns t' onsumed all

of its inputs. Control is fi nally passed back to the encompnssing three-input AND gate.

This component continues to trivial ly execute its outer whilr loop, incrementing its local

time through each iteration. Every time it tries to send a message to its subcomponents,

telling them to simulate, control is immediately returned back since all of its

subcomponents arc fini shed. Eventually, the local time of the three-input AND gate

reaches three, and it realizes that all of its inputs have been processed, hence terminating

the simulation. The final confi guration of the internal and external wires after the

simulation is shown in Figure 7.2.

cil

6 54321 0•

ci2

6 54321 0•

ci3

I1

w
12

13

and2a

1

6 5 4321 0 •

1

and2b

col
01
-1 11 lij ij ij~~7

6543210 •

FIJ:urc 7.2: Three-Input AN)) Gate After Simulation

2

Univ
ers

ity
 of

 M
ala

ya

7.3 Sample Simulation of RS-Latch

Next, the simulation of a component with feedback is traced. This trace will

demonstrate why it is necessary to increment the locnl time nt the top of the while loop

and why it is necessary for the Wire constructor to pince nn x nt the init ial time in the

wire queue. The initial configuration of the circuit nnd its corresponding wires is shown

in Figure 7.3. Note that the input wires have some empty time slots. This means that the

signal at that time is the same as the signal that was before it. For example, in ci 1, the

signal at time t -= I is the same as the signal at time t = 0, that is, L. It was necessary to

space out the input signals in order to avoid resonance during the simulation of the RS

latch.

cil

H H H LX

col
nand2a Q

...-----~11111111 lxl/
7 6 s 4 3 2 1 0 • 7 6 s 4 3 2 l 0 •

ci2 co2

7 6 s 4 l }. l 0 • R nand2b Qb
7 6 5 4 '). l 0 •

Figure 7.3: RS-Latch Before Simulation

3

Univ
ers

ity
 of

 M
ala

ya

As was the case with the three-input AND gate, the RS-latch n:ccivcs a message

telling it to simulate. The RS-latch, being at its initial time, hns inputs ready wniting for

it. It then increments its local time to zero and sends oinm late (l messages to nil its

subcomponents via the descend<) method.

At this point, it is assumed that nand2a is the fi rst component to receive the

simulate () message. It examines its two input wires, cil and co2 and discovers that

they both have inputs wait ing at times corresponding to its local initial time. Note that if

the Wire constructor had not placed an initial x input on the co2 wire, the simulation

would essentially stop at th is point producing no output. The nand2a gate increases its

local time to zero and sends its processed result (x) to the Q output port at time t = 0. Q

takes this signal and sends it to the wire col. Since col is not connected to anything,

control is passed back to Q. o then sends s i mulate (l messages to all the components in

its fan-out. Control is passed to nand2b since it is the only clement in the fan-out.

Upon receiving control, nand2b discovers that its input signals arc ready from

Wires ci2 and col. It increments its local time to lero and sends an x signal to Ob nt

time t 0. Upon receipt of th is signal, Qb sends the signal to co2 which passes control

back to Qb. Ob then sends the simulate message to all the components in its fan-out :

namely a nd2ll .

It is at this point that we rcali1.c the importance of increasing a component 's local

time immedintcly nflcr dctcr111ini118 whether nil its inputs nrc rcncly. 1 lud we postponed

Univ
ers

ity
 of

 M
ala

ya

the incrementing of the local time until after the process() method. nand:?a would still

be at its initial local time, causing it to re-read the signals it read prc\' iqusly. hence

resulting in an infini te loop. However, because nand2a previous!. incremented its time

to zero, it is able to look ahead at the next set of inputs. Upon discovering that more

inputs arc available, the local time is increased to one. The L from cil and the x from

co2 are nanded together to produce H which is sent to o at time r = l. After this signal is

sent lo the wire col, o sends a simulate() message to nand2b, at which point n and2b

increments its local time to one, reads the H and the x from ci2 and col respectively and

sends the result ing x to Ob at time t = I.

Afier placing this signal in the wire, control is again passed to nand2a which

detem1incs that all its inputs arc ready and therefore increases its local time to two. An L

signal is read from ci 1 (unchanged from the previous time) and is processed with the x

read from co2 . The result ing H signal is sent too at time t 2.

Aficr o places the signal on the wire, contro l is passed yet again to nand2b. All

its inputs are ready, so it increments its local time to two and processes the H signal from

c12 and the H signals from col to produce an L output at time t 2.

This method of pussing control hnck and fort h continues until all the inputs on

cil and c12 have been exhausted. Then, like in the three-input AND gate, the R -latch's

local time cutchcs up to the locnl timc of its subcomponents. All the messages which arc

Sent to the two NANI) gntes 11re csscntin lly ignored and the simulation ends when the

5

Univ
ers

ity
 of

 M
ala

ya

local time of the RS-latch exceeds the time of the last input on the wire. In this particular

example, the simulation will terminate when the local time of the R -lntd t reaches

seven.

A diagram illustrating the state of the RS-latch nficr the simulation is shown in

Figure 7.4.

cit
nand2a

7 6 5 4 3 2 l 0 • 7 65 4 321 0 •

ci2 co2

7 6 5 4 3 2 1 0 • R nand2b Qb 7 6 5 4 ~]. 1 0 •

Figure 7.4: RS-Latch After Simulation

6

Univ
ers

ity
 of

 M
ala

ya

CHAPTER VIII

DISCUSSION

8.1 Introduction

I have experienced many challenges during doing this project which is

"Hardware Description Using Object-Oriented Paradigm". The most important part is I

have to be clear in the concept of object-oriented language, the advantages of object

oricntcd language and how this language can be used for both the description and

simulation of hardware modules.

Nowadays as we know that most of the students taking course in computer field

wi ll leam C H language which is the powerful language in object-oriented paradigm.

So in this project I try to use the capabilities of C + + in order to support for circui t

designs at several levels of abstraction. Generally my objectives that stated in the

Proposal for this project were achieved.

Univ
ers

ity
 of

 M
ala

ya

8.2 Problem Encountered and Solutions

Throughout the development process, a few problem Wl.!rc cm·ountetX'd that were

eventually resolved. Some of the solution came easily but there" c:rc those that required

an alternative solution.

8.2.1 Problems in getting the resources

There was some difficulty in searching the information and reference book on

how to program using C++ for hardware description. However with the limited

resources by surfing the internet, reading reference book, discussion with some expertise

in this fi eld and depth discussion with my supervisor I coming out with the earlier stages

of development.

8.2.2 Lack of Knowledge in the Language

Due to the time constraint, the learning and developing process \ ns done in

Parallel. Although I have studied the language before but there arc still a lot of pan in

C++ language that I have to concentrate such as data structure and tandard Templntc

Library (STL). Besides that I also have to study on how the hardware and simulation

description can be program in C t 1 . Wi th this limited understanding of the

Programming language, a lot of time was spent in looking for the solutions that occurred

Wh ile coding the program .

Univ
ers

ity
 of

 M
ala

ya

8.2.3 T ime Constraint

This project had to be built in a semester's time. A lot or time wns needed to

learn new thing. So here I just concentrated on basic circuits such as AND gntc. The

basic modules which arc important already included in the workspace and for most

complicated circuit can be added and recommended for future enhancements.

8.3 Project Strength

8.3. J Predefin ed Library

All the basic modules that arc needed in running the hardware and simulation arc

included in the program. There arc also a module contains the behavioral definitions of

all the actual components in the predefined component library. These components arc

instantiated and simulated by the simulator engine.

8.3.2 Easy to Create Sample Gate

We can test the sample gate wi th some test inputs and then sinrnlute and display

the resultant output in the main program. We can change the inputs in order to be more

Understand how it 's work.

Univ
ers

ity
 of

 M
ala

ya

8.4 Project Limitation

The program is only running under DOS and the system only conc~ntmte on

basic circuit to simulate the hardware which arc AND gate and R -Latch.

8.5 Future Enhancement

For fu ture enhancement, the coding can be integrates to Graphic User lnterface

(GUI) so that it can be more user-friendly. Current stages, the user only can see the

output in signal HIGH, LOW or unknown. In future I hope that user can see the signal in

wave format.

90

Univ
ers

ity
 of

 M
ala

ya

CONCLUSIONS

The object-oriented programm111g paradigm appears to be better suited for

hardware description and simulation than the structured programming paradigm. As

shown throughout the report , the concepts of encapsulation, inheritance and runtime

binding are indispensable when attempting to describe and simulate hardware using the

same language. Since C 1-+ can be used for the modeling and testing of hardware

designs, the language creates a uni form environment for hardware description and

simulation.

The C 1 language is much more modular and powerful than tradit ional

structured programming languages. The source code for the description and simulation

consisted of only about 800 lines, with the most complicated method requiring less than

a dozen lines of code. C-i +- also pennits new components to be added to the library

quickly and eas ily with little threat of error. This makes C 1 1 and the object-oriented

Prograrnming paradigm very amicable to the fi elds of hardware design and simulation.

91

Univ
ers

ity
 of

 M
ala

ya

APENDICES A

.CPP FILES

1 . comp . cpp

2 . complib . cpp

3 . connect . cpp

4. port . cpp

5 . signal . cpp

6 . wire . cpp

7 . main . cpp

92

Univ
ers

ity
 of

 M
ala

ya

/****************** ******* ****** *** ************************** *****• · ···~
• comp.cpp
* ----- --------- ------ ------------------------------------- · • • ~cc ·· ::
•
• This module contains all the definitions ncccsary Cor the m3nipuldtion
• of abstract components
•
················ ···!

#i nclude
#include

#include
#include
#include
#include

<iostream>
<list>

"sim.h"
"port.h"
"signal.h"
"comp.h"

using namespace std;

using std : :endl ;
using std: :list;

I •

I • For generate_tabs() decl
I • Req'd by inputs_are_ready()
I • Req'd by i nputs_are_ready ()

• Method definitions o f the abstract base class for Component.
· 1

I ·
• Create a component object , i nitialize t he delay time, name, and
• local time of the object. This constructor is almost always
• called from the member initialization list of a component
• derived from Component.
· 1

Component: :Componenc(ckt_cime t , canst char • nm)
delay (t) . local _timc(CKT TIME_INIT)

I •

name • new char(strlen(nm) + 1);
(void) strcpy{name, nm) ;

• Deallocate the storage used co store the name of the component.
· 1

Component: :-Component()
{

delete () name;

I •

•1
• I
• I

• The main method responsible for simulating a component. It's inherited
• by all components. Basic approach io to conti nuo executing thie m thod
• whi le the component hao inputs available. When the component has all
* of its inputs ready at ito given local time, invoke its process() message
• passing it the time t he inputo were diocovorcd to oxiot (i.e. at time
• l ocal t.imc - 1) .
• I -

Void
Compon nt::oimu lat ()
(

II Ar ALL th inputs I ody J t lh' locol Lim o r tho Component ?
wh ile (i nputu_~r t ody () - · TRU~)

{
II It'. 110 , th n lnc t m nt locol t imf' h ti .

93

Univ
ers

ity
 of

 M
ala

ya

I•

II Otherwise, circuits with feedback go on forever.
local_time++;

II Send a process method to the component.
II This may trigger further simulate()
II messages depending upon the conncctiviLy
II of t he component.
process(local_time - l);

* Thie method determines if the signals which are directed to the input
* ports of the component are available at the given time. If t hey are a ll
* ready, return TRUE otherwise return FALSE.
*I

boolean
Component::inpute are ready() conet { - -

I •

list<Port *>: :conet_iterator p;

II Scan the linked list of port pointers.
for (p • I List.begin(); p I • !_List.end () ; p++ l
{ -

II Get the signal directed to the port at localtime
Signal s • (•p) ->get_signal(local_timel;

II If the signal does not exist at that time then
11 return FALSE.
if (s.get_timc() •• CKT TIME NULL && s.get_value()

return FALSE;

II Otherwise, all oignals are ready.
return TRUEi

SIG_NULL)

• All nonleaf components should i nherit this proccoo() function. I(n
* component is composed of sub-components , then descend t he three
* dimensional hierarchy, sending simul ate() messages to all the
• component'o subcomponents. The simulate() is sent by the propagate()
• message of t he Connector class . This method triggers the subcomponents
* of the enclosing component. It esencially descendo the
• t hree-dimensional hierarchy of components.
· 1

Void
Component: :process(ckt time)
{ -

I •

list<Port *>::conoc_itcrator p;

II Scan all the port pointers in the port list
II and activate ~11 the oubcomponents.
for (p • !_List .begin (); p l• ! _List.end () 1 pi •)

(•pl->propagatc();

• Dioplay n ll t.h output. o ignol u.
· 1

VO id
Compon nL 1 1 uhow out.put.11 (l c:onut.

94

Univ
ers

ity
 of

 M
ala

ya

/ *

list<Port *>::const iterator p;

for (p • O_List.begin(); p I • O_List.end(); p++)
(*p) - >show_signals();

* Display the component's name.
*/

void
Component::d i splay(os tream &os, int tabs) cons t
{

/ *

char • indent • generate_ tabs(tabs);

os << indent << "Component Name : • << name << endl;

os << indent << •component's Input Port List:\n";
display_ports(os, ! _List, tabs + 1) ;
os << indent << • --- end component's input ports -- -\n";

os << indent << "Component's Output Port List:\n";
display_ports(os, O_List, tabs+ l) ;
os << indent << "--- end component's output ports -- -\n";

delete II indent;

* Display the ports in the l i st.
• /

void
Component: :display_ports(ostream &os, listcPo rt *> po rts, i nt tabo l cono t
{

liat<Po rt *>:: conot_ iterator p;

char
int

• indent • generate_tabs(tabs);
counter • O;

for (p • ports.begin(); p I• ports.end(); p++)
{

oo << indent << "Port U" << ++counter << endl;
(• p) - >display(os, tabs+ l);

delete II indent;

95

Univ
ers

ity
 of

 M
ala

ya

/ ** **** ******************************* *•***************** *********•• • •• •
* complib.cpp
* ------------------------------------·------------------ --~• ••••••c~ -
*
* This module conta i ns t he behavioural definitions of all Ll\P actual
* components in t he predefined component library. Thcoo componc~nts

* are instantiated and simulated by the simulator engine.
* •.....•.......••••.......•.•...........•.....•• ,

#include "complib.h"

using nameepace std;

/ •
* Component library. Al l user defined components go here.
* Only components at the l owest level of abstract need to
* r edef ine t he virtual process() function.
* /

#define CONNECT(Port, Wire , name) Port(*this, Wire, name)

And2: :And2(Connector &cil, Connector &ci2, Connector &col,

{ }

void

ckt_time dly, char •n) :
Component (dly, n) ,
CONNECT (Il, cil, "And2 Il" l ,
CONNECT(I2, ci2, "And2 I2" l,
CONNECT(Ol, col, "And2 01")

And2 : :process(ckt time tl
{ -

Sig_ Val
Sig_ Val

oigvall • Il.gct_oignal(t) .gct_valuc() 1

sigval2 • 12.get_signal(t) .gct_value () ;

if (s igvall •• SIG_HIOH && sigval2 •• SIG_HIOH)
01. oend_oignal (Signal (t + delay, SIG_IHCH)) 1

else if (eigvall •• SIG_LOW I I sigval2 •• SIG_LOW)
0 1 .aend_signal(Signal (t +delay, SIG_ LOW));

else
01.send_s ignal(Signal(t +delay, SIG_X));

Nand2: :Nand2(Connector &cil , Connector &ci2, Connector &col,

{ }

void

ckt_ time dly, char •n) :
component (dly, n),
CONNECT (11, cil, "Nand2 I l "l .
CONNECT(I2, ci2 , "Nand2 12") .
CONNECT(Ol, col, "Nand2 0 1")

Nand2: :proce ee(ckt time tl
{ -

Sig_ Val
Si9_Vnl

oigvall • Il.gct_oignal (t) .9 t v lu () 1

oigvall • 12.gut_ ulgnol (L) .got_voluc l):

lf (oigvall • • SIO_LOW I I uigva ll •• SlO LOW)
0 1.IJ nd 0Ju11nl Wlgnal IL • d loy, S I O 1110 11)) I

c l n H (o1gvt\ ll •· nro_11ro11 u. uigvol l •• 9 10_ 111 011)
0 1 , qand ulgnnl IDlgnnl(L • d lay, Dt O IDW)) I

96

Univ
ers

ity
 of

 M
ala

ya

else
01.send_signal (Signal(t +delay , SIG_X));

Or 2: :Or2(Connector &cil, Connector &ci2, Connector &col,

{ }

void

ckt_time dly, char • n) :
Component(dly, n),
CONNECT(Il, cil, "Or2 Il"),
CONNECT (12, ci2, "0r2 12"),
CONNECT (01, col , "0r2 01")

Or2 : :process(ckt time t)
{ -

Sig_ Val
Sig_ Val

sigvall • Il.get_signal(t) .get_value();
sigval2 • 12.get_signal(t) .get_value(};

if (sigvall SIG_HIGH I I sigval2 • • SIG_HIGH)
01 . send signal(Signal(t +delay , SIG HIGH)) ;

else if (sigvall •• SIG_LOW && sigval2 •• SIG_LOW)
01 . send_signal(Signal(t +delay, SI G_LOW));

else
01.send_signal(Signal(t +delay , SIG_X));

Xor2::Xor2(Connector &cil, Connector &ci2, Connector &col,

{ }

void

ckt_time dly , char • n) :
Component(dly, n),
CONNECT(Il, cil, "Xor2 Il"),
CONNECT (!2, ci2, "Xor 2 !2"),
CONNECT (01, col , "Xor2 01")

Xor 2 : :process(ckt time t)
{ -

Sig_ Val
Sig_ Val

eigvall • Il.get_aignal(t) .got_voluc() 1
sigva12 • !2 .get_signal (t) .get_ value ();

if ((oigvall •• SIO_LOW && sigval2 •• SIO_HIGH) 11
(sigvall •• SIG_HIGH && sigva l2 •• SIG_LOW))

01.send_signal(Signal(t +delay , SIO_HIOH));
else if C (sigvall •• SIO_LOW && sigva12 •• SIO_LOW) 11

(sigvall •• SIO_HIGH && oigval2 •• SIG_llIOH))
01.eend_signal(Signal(t +delay , SIO_LOW));

else
01 .eend_signal(Signal(t +delay, SIG_X));

And3: :And3(Conncctor &cil, Connector &ci2,
Connector &ci3, Connector &col,
ckt_timc dly, char • n) :

(}

Component(dly , nl,
CONNECT(Il, cil, "And3 11"),
CONNECT (I2, ci2, "AndJ I 2"),
CONNECT(13, ciJ, "J\nd3 13"),
CONN ECT (01, col, 11 1\ndJ 01"),
w("J\nd3 wir "),
ond2o(ll, 12 , w, JL , "J\ndlo"),
ondlb(w, 13 , 0 1 , IL , "J\ndlb")

97

Univ
ers

ity
 of

 M
ala

ya

RS_Latch::RS_Latch(Connector &cil, Connector &ci2,
Connector &col, Connector &co2,
ckt_time dly, char •n) :

{ }

Component(dly, n),
CONNECT (R, cil, "R"),
CONNECT(S, ci2, "S"),
CONNECT(Q, col, "0"),
CONNECT(Qb , co2, "Ob"),
nand2a (R , Ob, Q, lL, "Nand2a"),
nand2b (Q, s, Qb, lL, "Nand2b")

Half_Adder: :Half_Adder(Connector &cil , Connector &ci2,
Connector &col, Connector &co2,
ckt_ time dly, char •n) :

{ }

Component(dly, n),
CONNECT (X, cil , "X") ,
CONNECT (y I c i 2 , II y II) •

CONNECT($, col, "$") ,
CONNECT(C, co2, "C"),
xor2a(X, Y, S, lL, "Xor2a"),
and2a(X, Y, C, lL, "And2a")

98

Univ
ers

ity
 of

 M
ala

ya

/**** *** **************** *** ***** ************************** ****•···~ ·····
* connect.cpp
*
* -- - -- - --- --- - ------- --------
*

..........
* This module contains the method definitions for the ~bs1.r. ~ t
* Connector class.
* .•.............•...•......•..................................•..•. ,

II include
#include

#include
#include
II include

<list>
<iostrcam>

"sim.h"
"comp.h"
"connect.h "

using namespace std;

using std: :list;
using std: :endl;

/ •

/ * For generate_tabs(l decl
/ * For propagate() & display() * /

* /

* Method definitions for t he Connector class. Connectors are responsible
* for connecting components with one another (Wires) and the outside world
* (Portal. It is through connectors that the transmission of signals
* occurs.
*/

/ •
* Trivial Connector constructor. Ass ign name passed
• in to the name of the Connector.
*/

Connector: :Conncctor(conot char • nm)
{

name • new char(strlen(nm) + 1);
(void) strcpy(name , nm);

/•
* Deallocate the storage
*/

uoed to store the name of the connector.

Connector: :-Connector()
{

delete I I name;
}

I •
* Return a constant pointer to the name.
• /

const char •
Connector: :get namo() conot
{ -

return name;

/ •
• When a Connoctor objocl. r c iv n o connect mooongo, it nddo th
* component pointer pooo d in to l.h Con-out of th conn ctor. Thio
• m t hod lu uu d xcluoiv ly by t 11 - Port conutructo1 whi ch lo paoocd a
• pointer to t ho compon nt. vlo th CONN!-;CT mno t o. Thio com1)on nt to odd d
• to t h fon 0 11t o r l. ho eonn c t or po@o d int.o t.h vo11. conut ruc1..or.

99

Univ
ers

ity
 of

 M
ala

ya

*I
void Connector: :connect{Component &cmp)
{

II Add the component pointer to the fan -out list.
fan_out. push_back(&cmp);

I*
• Inform each of the component' s in the connector 's fan -out list
• to simulate, thereby propagating signals into the circuit.
*I

void
Connector: :propagate() const
{

I •

list<Component *> : :const_iteratorc;

II Scan all the elements i n the component pointer list.
for (c • fan out.begin() ; c I • fan_out.end{); c++)
{ -

II Send simulate() messages to each component in the list.
(•c)->simulate() ;

* Display the connector name and its fan-out.
• /

void
Connector::display{ostream &os, i nt tabs) canst
{

char • indent • generate_tabs(tabsl;

os << indent << "Connector Name: " << name << endl;

oa << i ndent << •connector Fanout Liot: \ n";
list<Component *>::const_iterator cmp;
for {cmp • fan_out.begin(); cmp I• fan_out.end(); cmp•+)

(•cmp) - >display(os, tabs+ ll;

os << indent << "--- end fanout list ---\n";

delete (J i ndent;

100

Univ
ers

ity
 of

 M
ala

ya

/***•······ ···· ··· ~ ~ ···· ··
• port.cpp . ------- - -- --------- -- - - - ----------------- - - ------------ -- · ·· ·~ · :::::
•
• This module contains the method definitions for ports nd its
• i nput and output subobjects .
•
···················· ·· ······································ ~· · ~·~ ~· · · · !

#include

#include
#include
#include

<iostream>

"sim.h"
"port.h"
"comp.h"

using namespace std;

using std: :endl;
using std: :cerr;

I •

/ • For generate_ tabs () decl

I • Component's methods are called here • /

* /

• Constructor for a port. Set the name of the port by passing the name to
• the Connector base class constructor . Assign the encapsulated external
• Connector pointer member to the address of the connector passed to the
• constructor. External will point to the Connector that feeds the port
• (if the port is an inport port) or to the Connector that the port feeds
• (if the port is an output port).
*I

Port: :Port(Connector &con, conot char •nm)
Connector(nm), external(&con)

{ }

I •
• Me thod used to get and return a signal from a port which occurcd at tim
• t. Like the preceding method, this method will rccuroe until the
• get_signal(I messages is sent to a wire, after wh ich the recuroion
• unfolds.
· 1

Signal
Port: :get signal(ckt time t) const
{ - -

I •

II Send message to the external feeder to get its signal.
return external->get_signal(t);

• Method sends a supplied signal to the external wor l d . This method will
• rcc uroo until a ocnd signal() muooage ia aonL t o a Wire. Sine~ vu1y
• port connocLa ovonlu~lly LO wire, ~hlo rocutni on will vontunlly
• tcrminac . After sending Lh oignal to tho o uLoide world, an attempt io
• mado to propagate the oignal to any componento wh i ch arc at the same
• level of hierarchy and arc in the tonout liot o f Lh port.
· 1

void
Port: :send oignal(Signal e)
(-

11 S nd tho llignol L o tho XLt'lrnnl COrHleCL OL .
~xt rn l ~ocnd_oignnll•I 1

11 Pi-opnga t t'h' oignn l t1L Lh curr 111: l(wol o f Lh hl rorchy .
propag t () 1

101

Univ
ers

ity
 of

 M
ala

ya

I*
• Send a message to the external connector to display all the si9nnl s
• that have travelled along it.
*I

void
Port::show signals() const
(-

II Instruct the externa l connector to show its signal list .
external - >show_signals();

I •
• Display the port i nforma t ion .
*I

void
Port: :display(ostream &os, int tabs) const
(

I•

char • indent • generate_tabs(tabs);

os << indent << "Port's external connector: "
cc external->get_name() cc endl;

Connector: :display(os, tabs);

delete II indent;

• Input constructor. Invoke Port's constructor to do most of the work.
• Add the component passed in to the fan-out list external connector.
• Then add the Input port to the linked list of input ports already in the
• component.
· 1

Input::Input (Component &cmp, Connector &con, const char • n)
Port(con, n)

I •

II Send the connect message to the external feeding connector.
II Note: The message fan_out.add() could not be sent directly
II to the connector, since fan_out is an inaccessible member
II of Connector con -- this port constructor can only ace oo ito
II own fan -out, not the fan -out of another Connector.
external->connect(cmp);

II Add Input port to component's linked list of Input ports
II pointers. Note that 'add' takes a constant reference
II parameter. Therefore, we cannot pass 'this' explicity.
cmp.l_List.push_back((Port •)this);

• Method to warn about send_signal() messages b •ing ocnt to an Inpu t port.
· 1

void
Input: :send signal(Signal)
{ -

II Output a warning meosnge if an input signals trico to send a signal.
cerr << "Warning: Cannot send a signal via Input port.\n";

I •
• Output conotLuctor. lnvok
• Add th OuLpu l port LO Lh
• componont .
· 1

Port'o conetrucLot to do mooL o t the work.
llnk d lJot or output portu already in the

102

Univ
ers

ity
 of

 M
ala

ya

Output : :Output (Component &cmp , Connector &con , const clh\l' •n)
Port(con , n)

I I Add Output port: t:o component's l i nkl~ci l i :ll ot Out put i~~l:~i.l
11 pointcra. Not<· that ndd tclkcs n conflt :tnt 1,-.,1'1 •'llv\'
II paramet:er . ThercLore , we cannot pll!1fl 'thin' 1•xpl t\'H~' :
cmp. O_ L iot: . puah_h.ick { {Port *)thin) ;

103

Univ
ers

ity
 of

 M
ala

ya

/***••
* signal.cpp
*
* ------ --- ------··
*
* This module contains all the methods for signal mani pull'\t l on .
* •..............•....•.................. ...•.•.•••• ,

••
#include "signal.h"

I ·
* Method definit i ons for Signal c lass.
* I

I*
* Signal constructor. Assign the supplied signal value and signal time to
• the private members of t he signal class. This is the only place where
• such an assignment can be made.
*I

Signal: :Signal(ckt time c t, Sig_Val sv)
t (ct l , value< av)

{ }

Signal: :Signal(const Signal &sig)
{

value • sig.value;
t • sig.t;

Signal &
Signal::operator• (const Signal &sig)
{

i f {&s i g •• thi s)
return • this;

value • sig.value;
t • sig.t;
return • this;

I •
* User defined conver sion. Used to automatically convert a signal obj ec t
• i nto i ts signal value. This method is very useful in the proccoo()
* methods o f componento.
* I

Sig Val
Signal: :get value() canst
{ -

II Simply return the signal value.
return value;

I •
• Access method for getting the time of the oignal . Could not be
• implemented ao a uocr dc!inod conv roion bocoueo i to t turn value (l ong >
• claohoo with th r turn voluo o t oporoto r Sig_ Val () (int).
· 1

Ckt tim
SignoJ 11 9 t time() conut
{

II Simply 1 Lu 1n th ol9nol Im .

104

Univ
ers

ity
 of

 M
ala

ya

return t;

/*
* Modify the signal value. This method is required as ~ ro - d~l y
* components with feed back stabilize t heir outputo.
*/

void
Signal: :set value(Sig Val sv)
{ - -

value • sv;

I*
* Overloaded « operator. Thia enables signals to be output just like any
* other built in type in C++. Somewhat long but very straightforward.
*I

ostream &
operator <<(ostream &os, const Signal &el
{

OS << " {";

II Output special times as strings instead of numbers.
switch (s.t)
{

case CKT_TIME_INIT:
08 << " "i

break;
case CKT_TIME_NULL:

OB << "?";
break;

default:
II Get output times to line up nicely.
oo << o.t;
break;

OS << " ";

II Output Sig_Val enumerated type.
s witch (a.value)
{

case SIG LOW: -
OS << HLll;

break;
case SIG HIGH: -

OS << "H";
break;

case SIG X: -
00 << "Xu:
break;

case SIO NULL: -
OS << "?";
break;

default:
os << "BAD SIONAL I";
break;

II R t.urn ootr am in coo
rt.urn 011 .. , ") "1

•o or uo d in oucc uoion.

105

Univ
ers

ity
 of

 M
ala

ya

/ ********* ******* *** * ****** **** ********•*************** * ************•··~
• wire.cpp
•
* --- ------------------~ ~
•
• This module contains the method definitions for wire obj~ct s .
•
••• ••• • •• • •• ••• • • • ••••••• A

#include
#include

#include
#include

<iostream>
<list >

"sim.h"
"wire.h"

using namespace std;

using std: :cerr;
using std : :cout ;
using std: :endl;
using std : : list;

I •

I • For generate_ tabs() decl • I

* Trivial wire constructor. Pase the name to the base Connector constructor
* and initialize the Signal list by adding an unknown input at the initial
• time to the list.
* I

Wire: :Wire(conet char • nm)
Connector(nm)

I *

II Add initial signal.
add_ signal(Signal(CKT_TIME_INIT. SIG_X));

* Wire constructor used to add a series of signals to a wire.
• placing a set of initial signals on , say, an i npu t wire for

Useful for
circuit

• teating . A wire conotruccor ohould nloo bo prQvidod wh i c h 1

• signals from an input file.
• 1

Wire : :Wire(Signal s (J , int num , cha r • nm)
Connector(nm)

I •

II Add initial signal.
add_signal(Signal(CKT_TIME_ INIT, SIO_X)) 1

II Add signals which are in the signal array to the wire.
for (int i • O; i < num; i++)

add_signal(s(lJ);

c1n L hoo

• Add the specified signal to the wire. Thie function should be
• called to put initial signals on an input wire -- the eignalo
• wi ll not actually be propagated until t he oimulat1on bcgine.
· 1

void
Wire: :add oignol(Signol uig)
{ -

II /\pp 11d t ho u!gnol 1.0 1.h ulgnol liut .
oign lo.puuh bock(uiql /

106

Univ
ers

ity
 of

 M
ala

ya

I*
*Method used to find a signal in the wire's encapsulated siqn. l list . II
* the signal is not found, an undefined signal (undefined v.1 11< , µndet 1ne
* time) is returned.
*I

Signal
Wire: :get signal(ckt time t) const
{ - -

I ·

11 If the signal list is empty or if the time we are look1n9 for
II is greater than the time the last signal come into the wire ,
II then assume an undefined signal. We should also inform t he
II requesting component to not update its local time until i t can
II be verfied that this assumption is correct . (For now, we return
II an undefined signal until we can find a way to inform the
II component to not update its local time).
if (signals.empty() 11 signals . back() .get_time() < t)

return Signal(CKT_TIME_NULL, SIG_NULL);

list<Signal >: :const_iterator s (signals.begin());
Signal found;

II Otherwise, start the scan of the signal linked list .
whi le (s I• signa ls.end() && (• s).get_time() <• t)

found • • s++;
return found;

• Method used to ocnd an add() message to the encapsulated signal liot of
* Wire. After adding the signal to t he wire, a message is sent to the
* fan -out of the wire (inherited from Connector) to propagate the signal
• as far as possible.
· 1

void
Wire: :send eignal(Signal sig)
{ -

I •

add_signal(sig) ;
propagate();

* Display all t he signals in the wire . The output of this method
* is suitable for parsing by another application.
*I

void
Wire: :show signals() const
{ -

I ·

cout << "output:" << endl << "\tid: " << get_name() << ndl;
cout << "\tvalucs: ";

II Dump the signals on the wire.
display_oig n lo();
cout « cndl 1

• Thlo method in uo d Lo ohow th uoor oign l o (vnlu~ and ~imo) on the
• wire. In oddiL ion, ln l o rmoLi on p rt:t1inin9 to th wJ re' e connector
• information io oloo dioploy d.
· 1

void
Wir 11 dioploy(o~L1(nm • ou, in~ Lnbul conut

107

Univ
ers

ity
 of

 M
ala

ya

char •indent = generate_tabs(tabs);

II Output the name of the wire
os << indent << "Wire values: (";

II Output t he signal values in t he wire.
display_signals():
os << ") " << endl;

II Dump the connector information.
Connector::display(oa, tabs+ ll;

delete [) indent;

I*
* Replace a signal in the wire's signal list. The time of the signal to
replace and t he (possibly) new value is given by sig.
*I

void
Wire::replace(Signal sigl
{

list<Signal> : : iterator s;

for (s • signals.begin(); s I • signals.end(); s++)
if ((•s) .get_time(l • • sig .get_time())

(• s) .set_value(sig.get_value());

I*
• Method used to loop through all the signals in the encapsulated signal
* list, displaying them one by one. Output of the signals is of the
• form {o l} {s x} {6 l} (9 O} ... (i.e. {timel valuel} {timc2 value2} ...) .
• Only the deltas are reported.
· 1

void
Wire::display signals() const
{ -

list<Signal>: :const_iterator sig;
Sig_val prev_val • SIG_X;
i nt num • oignals . si ze();
boolean first • TRUE;

II Scan all the signals i n the list.
II Dump the signals on the wire.
for (sig • signalo.begin (); sig I• oignalo.cnd(); sig++}
{

num --;
if (first 11 (• oigl .get_valuc() I • prcv_val 11 num •• 0)
{

cout << • sig;
prov_val • (•o igl .gct_volu () 1

}
first • FALSE;

108

Univ
ers

ity
 of

 M
ala

ya

/***••·················~~~~ ··· ~·
* main.cpp
* 2-INPUT AND GATE . -- - -·---------- -----~~- -- - : ---
*
* Main drive r prog r am for i ntializi ng t he primary inputs , con ~truct~ng
* and simulating t he circuit a nd display i ng t he prim ry outpu t s .
*
**********•••********* ** ****** ** **•·· · · ···· · ··················· · · ·····••/

#include
#include
#include
#include

"sim.h"
"signal.h"
"wire.h"
"complib . h"

using namespace std ;

/*

/ • For gcnorate_tabs() decl

• Oenerate a string containing the specified number of tab characters
• for indenting output purposes.
• /

cha r *
generate tabs(int num)
{ -

char
int

• tabs • new char(num + 1);
t;

for (t • O; t < num; t i +)
tabs It I • ' \ t ' ;

tabsltl • '\0 ';
return tabs ;

/ •
• Main driver function:
• The main program will programmatically
• create a 2- input AND gate with oome teot inputo and then oimulatc
• and d isplay t he resul tant output .
*/

i nt
ma in ()
{

Signal Signal!() •
{

} I

Signal(O, SIO_HIGH),
Signal(l, SIG_ LOW),
Signal(2 , SIG_HIGH) ,
Signal(3 , SIG_LOW),
Signa l(4, SIG_LOW) ,
Signal (5, SIG_HIOll),
Signol(6, SIG_LOW),
Signal(?, SIG_LOW),
Signal(8, SIG_HIOH},

Signal Signal2 (J •
(

Signo l (0 , !JIO IA WI,
$1tJno l (I, S IO lll Cl ll J ,

*/

109

Univ
ers

ity
 of

 M
ala

ya

} ;

Signal(2, SIG_HIGH),
Signal(3, SIG_LOW),
Signal(4, SIG_HIGH),
Signal(S, SIG_LOW),
Signal(6 , SIG_HIGH),
Signal(?, SIG_HI GH) ,
Signal(S , SIG_HIGH),

Wire wl (Signall, sizeof (Signall) I sizeof (Signal) , "Main in_wl") ;
Wire w2(Signal2, sizeof(Signal21 I sizeof(Signal) , "Main in_w2 ") ;
Wire w3 ("2_input_AND");
And2 and2(wl, w2, w3, CKT_TIME_NULL, "and2") ;

and2.simulate();

and2 . s how_outputs();

return O;

11 0

Univ
ers

ity
 of

 M
ala

ya

/***** *************************** * ********** * ******* **** ****** ****~· ·~··
* main.cpp
* 3-INPUT AND GATE
* ---------------------------- -- --------- --------------------- E--:: ---
*
* Main driver program for i ntializing the primary i npu ts, con~tructin

* and simulating t he circuit and displaying the primary outputs .
*
******************* ** ***** * • ••·· · ····· ·· · · ··· · ···· · ···········~ ·· · · •••• }

#include
#include
#inc lude
#include

"sim.h"
"signal.h"
"wire.h"
"complib.h"

us i ng namespace std;

/ *

/ • Fo r gencrate_ tabs () decl

* Generate a string containing the specified number of tab characters
• for indenting output purposes.
• /

char •
generate tabs(int num)
{ -

char
i nt

• tabs • new char(num + 1);
t ;

for (t • O; t < num ; t++l
tabslt l • '\ t ';

tabs(t) • ' \0';
return tabs;

/ •
• Main driver function :
* The main program will programmatically
• create a 3- input AND gate with eome test i npu to and t hen simulate
• and d i splay t he resultant output .
• /

int
main()
{

COUt< <"3 Input AND Oate\n";
COUt << "---------------- \n\n";
Signal Signall() •
{

} ;

Signal (0, SIO_HIOH) ,
Signal I 1, SIO_IHOH),
Signal(2, SIO_ LOW),

Signa l Signal2() •
{

) I

Signal(O, SIO_ LOW) ,
Signal (l, s 10_11 1011) ,
Signal(l, SIO_X),

• /

I I I

Univ
ers

ity
 of

 M
ala

ya

Signal Signal3[] =
{

} ;

Signal(O, SIG_LOW),
Signal(l, SIG_LOW),
Signal(2, SIG_HIGH),

Wire wl(Signall, sizeof(Signall) / sizeof(Signal), "Mai n in_ wl ") ;
Wire w2 (Signal2, sizeof (Signal2) I sizeof (Signal), "Main ,in_ w2" l ;
Wire w3(Signal3, sizeof(Signal3) I sizeof(Signal), "Main i n_ w3") ;
Wire w4 ("Main out_ w4");
.A.nd3 and3(wl, w2, w3, w4, CKT_TIME_NULL, "and3") ;

and3.simulate();

and3 . show_outputs();

COUt<<"\n\n";
return O;

))2

Univ
ers

ity
 of

 M
ala

ya

/***************************************•***********************•· ·~ · ···
* mai n. cpp
* RS - LATCH
* ---------------- ----- ----- -------------------- -- -- ----------- ~~ - ~ ---
*
* Main driver program for i ntializing the primary inputs , conat nic ting
* and simulating the c ircuit and displaying the primary outpu t s .
*
******* * * * * ******* * * ** *** * **** * *** ** •·········· ··········· · ···· · *·· ···~ /

#i nclude
#include
#include
#i ncl ude

"eim.h "
"eignal.h"
"wire . h"
"compl i b. h"

u11ng n m •P c a ~d1

/*

/ • For gcncrate_ tabs () decl

• Genera t e a stri ng containing the specif i ed number of tab characters
• for i ndenting out pu t pur poueo .
* /

char •
generate_ tabs (int num)
{

/ *

char t tabs • new char(num + 1);
int t;

for (t • O; t < num; t++)
tabs(t) • '\t';

tabe(tl • '\0';
return tabs ;

* Main driver func tion:
• The mai n program will programmatically
* c reate a RS_Latch gate with oome t est inputs and t hen simulalo
* and display the resultant output.
* /

i nt
main ()
{

COUt<<"\n\n";
cout << "Rcoct - oct Latch (RS- Latch)\n"1
cout<< " ----- ------ ----- ---- ------\n\ n\n";

Signal Signal l () •
{

} ;

Si gnal (O, SIG_LOW) ,
Signal (2, SIO_ HIOH) '
Signal (4 , SIG_HIGH) .
Signal(6 , SIG_HlGH) .

Signal S ignollll •
{

S i9nol (0 , SI O_ IH Oll) ,
!3 ignnl (l, S IO_ll IOll) ,
S19nol (4, SIO l,()W) '

SICJlll'll (G, sro 11.I Oll) '

*/

113

Univ
ers

ity
 of

 M
ala

ya

} ;

Wire r(Signcill , siz<.!o((Sign.Jll) I :iiz(:ol (siqn.11), "M,lil\ ~ i\ ~~ 1 :q

Wire a(Signul2, aiz<•ol (Sigri.il2) I Hizcol (!;1qn.11), "M.1i11 l!~_,,·: 1q
wire O ("0" l ;
Wire Ob("Ob");
RS_Lu.tch r:n lat:ch(r, II, Q, Oh. C:KT TlME_Nm.1., "1':1_L11 ,~ t1111;

ra_lacch.simul~Cc();

rs_lucch. Bhow_out.put.o ();

coutr.r."\n\n";

return O;

I 14

Univ
ers

ity
 of

 M
ala

ya

Signal Signal2[) =
{

} ;

Signal(O , SIG_LOW),
Signal(l, SIG_HIGH),
Signal(2, SIG_HIGH),
Signal(3, SIG_LOW),
Signal(4, SIG_HIGH),
Signal(S , SIO_LOW),
Signal (6, SIO_HIOH),
Signal(?, SIG_HIOH),
Signal(8, SIG_HI OH),

Wire wl(Signall, eizeof{Signall) I sizeof(Signal), "Main in_wl");
Wire w2(Signal2, eizeof(Signal2) I eizeof(Signal), "Main in_w2");
Wire w3("main out_S");
Wire w4 ("main out_C");
Half_Adder half_adder2 (wl, w2, w3, w4, CKT_TI ME_NULL, "half_adder2");

half_adder2.eimulace();

half_adder2.ehow_oucpute();
cout<<"\n\n";

return O;

11 6

Univ
ers

ity
 of

 M
ala

ya

APPENDICES B

HEADER FILE

1 . comp . h

2 . complib . h

3 . connect . h

4 . port . h

5 . signal . h

6 . wire . h

7 . main . h

11 7

Univ
ers

ity
 of

 M
ala

ya

/ ** ****** ******************** ********************* ** ********** *** ******•
• comp.h
* ----------- - ----------------------------- ------------------------ -··
• Class declaration for component class .

* ************** ********** ***** *********** ****** *** **************·~· ·· ~ ~ · 1

#i f !defined(COMP H)
define COMP H - -

/• protect from multiple i nclusion • /

#include <iostream> / * For ostream declaration • /
#include "sim.h" / • For ckt time/boolean typedef -• /
#i nclude <list> / • Input/Output are linked lists • /

class Port; / • Forward declaration for I /O_list • /

/ • Component objects are t he functional units of t he circuit that process
• inputs and produce outputs. • /

c l ass Component
{
public:

virtual -Component();

std::list<Port *> !_List; //
std : :list<Port *> O_List; //
virtual void process(ckt time);//

void
void

simulate() ;
show_outputs() const;

II
II
II
II
II

List of input ports.
List of output ports.
Method responsible for
processing component inputs.
In general , t his is
different for all cmps .
Simulate t he component.
Display the output signals.

virtual void display(otd::ootream &, int) conot;// Display cmp.
11 information.

protected:
Component(ckt_time • lL, const char• • "Component");

ckt_time

private:
void

} ;

boolean

char
ckt_time

delay ;

II Only derived componento
II can be created .

II Transport delay of component.

display_ports(std::ostream &,
otd::liot<Port • :., inti conot;

II used t wice by dioplay().

inputs_are_ ready(} const;
II Io cmp roody !or eimulation?
II Used by simulate().

•name; // Nome of the component.
local_time ; // Local time of component.

11 8

Univ
ers

ity
 of

 M
ala

ya

/**************************** ***
• complib.h

* -- ----------------------
• Class definitions for the actual components to be simulated.
• Each of these components must be derived from the 'Component' clnsa . .•.............................•....••.•.••••....................... ,

#if !defined(COMPLIB H)
define COMPLIB_H_- -

/ • protect from multiple inclusion • /

/ • For ckt_time typedef • / #include
#include
#include
#i nc l ude

"sim.h"
"comp.h"
"port.h"
"wire.h"

/ • And2 etc. are derived from Component • /
/ • For definition of Input/Output ports • /
/ • For definition of wire class • /

class And2 public Component
{
public:

And2(Connector &, Connector&, Connector& ,
c kt_time • lL , c har• • "And2 " l ;

void process(ckt_time) ;
pr i vate :

};

I nput Il, I2 ;
Output Ol;

class Nand2 public Component
{
public:

Nand2(Connector &, Connector&, Connector &,
ckt_time • lL, char• • "Nand2");

void process(ckt_time);
private:

I nput 11, I2;

} ;
Output 01;

class And3 public Component
{
public :

And3(Connector &, Connector &,
Connector &, Connector &,
c kt_time • CKT_TIME_NULL , c ha r• • "And3 ") ;

pr ivate :

} ;

I nput Il , I2, I3;
Output 01;
Wire w;
And2 and2a, a nd2b;

class RS_Latch
{

public Component

public:
RS_ LatchCConncctor &, Connector &,

Connector &, Connector &,

private:
ckt_timc • CKT_TIME_NULL. char• • "RS_ Lotch") I

Input R, s I
Output O. Ob;
Nond2 nond2o, noncl2b1

11 9

Univ
ers

ity
 of

 M
ala

ya

class Half Adder
{ - public Component

public:
Half_Adder(Conn~ctor &, Connector &,

Connector &, Connector &,

private:
ckt_time rr.T _TT ME_NUJ,L , rh,u· • • "lid l I _Addt•l"");

Input x. Y;
Output S, C;
Xor2 xor2a;
And2 rnd2cJ:

llendif / • !COMPLIB_H_ •/

120

Univ
ers

ity
 of

 M
ala

ya

/ * * *** ***** ************* ***** ************************************ ******~
* connect.h
* --- - --- -- - - ----------- ----· ·
* Class declaration for the connector class.
*
* ******* * ** ********************************** **************** ** ***•· · ~ ~ ~ /

#if ldefined(CONNECT H)
define CONNECT_H_- -

#include
#include
#include

class

/*

<iostream>
"signal.h"
<list>

Component;

/ • protect from mul tiplo incluoion • /

/ • Por ostream declaration • /
/ * Signal size req•d by Connector• /
/ * 'fan out ' ls a linked list

/ • Porward declaration for 'fan out'

* Connectors are responsible for connecting components with one another
* and the outside world. It is through connectors that the transmission
• of signals occurs.
• /

class Connector
{
public:

virtual
virtual

virtual
virtual

Signal

void
void

-Connector () ;
get_signal(ckt_time) const • O;

II Retrieve signal
send_signal(Signal) • O; II Generate signal
show_signals() const • O; II Display signals.

virtual void display(ostream &, int) const; II Display info.

void
const char
void

protected:

connect(Component &) ;
•get_name() conot;
propagate() const;

Connector(const char• • "Connector") ;

private:

II Add comp. to fan-out
II Return the name
II Simulate fanout cmps

II Only derived
II connec tors can be
II created.

std: :list<Component *> fan_out;
char •name;

II Components in fan -out
// Name of connector.

} ;

#endif / • ICONNECT_H_ • /

121

Univ
ers

ity
 of

 M
ala

ya

/*********•*****************************•*******************************
* port.h *
* -- --------------------------
* Class declaration for port class and its input and output port
* subclasses.
*
*************** * ******•••··· ···· ······ ··· ··········· ·· ··············~ · · 1

#if ldefined(PORT H)
define PORT_H_- -

#include
#inc lude
#include

I*

<ioetream>
"sim.h"
"connect.h"

I* protect from multiple inclusion •I

I• For ostream declaration •I
I* For c kt_time typedef • I
I* Port is a derived class of Connector •I

* Ports connect components with the outside world.
*I

class Port : public Connector
{
public:

Signal
void
void
voi d

protected:

get signal(ckt time) const;ll Get signal from ext.
send_signal(Signall; II Send sig. to ext.
show_signals{) const; II Display ext. signs .
display(ostream &, int) const; II Display port info.

Port(Connector &, const c har• • "Port") ; II Only derived ports
II can be created .

Connector

} ;

/*

•external; II External connector (port or wire) to
II which the port is attached.

• Input ports can get eignalo trom the external wo rld but are unable to
* interpret a send_signal() message.
•1

class Input : public Port
{
public:

Input(Component &, Connector &, canst char• • "Input");

void send_signal(Signal); II Input ports can't send signals.
} ;

I •
• Output ports can receive oignalo and send them, so lnhcrit both
• send and get signal methods from Port.
•1 - -

class Output : public Port
{
publ ic:

} ;
Output(Component &. Connector &, conot char • • "Output");

#endif I • IPORT_H_ •I

122

Univ
ers

ity
 of

 M
ala

ya

/***
* s ignal.h ..
* ---------- --- - ------- - --- -- - --------- -·----- - ---- -------------------
* Class declaration for the signal class .

***** ***********************************···················· ··········· /

#if ldefined (SIGNALS H)
define SIGNALS H - -

/ • protec t from mult i pl inc lusion • /

#include
#include

<iostream>
"sim.h" / • For ckt_time typedef

using std : :ostream;

enum Sig_Val {SIG_LOW, SIG_HIGH , SIG_X, SIG_NULL};

/*
* Signal c lass declaration. Every signa l in t hi s implementation is
* comprised of two entities: a signals value (e.g . SIG HI GH, SIG LOW,
* SIG_X ...) and a time at wh ich the signal occurred d~ring the -
* simulation. The wire class is responsible for handling the signals.The
* Signal class is essentially a write once/read many structure. With the
* only write being done once by the constructor. Once a signal is set, it
* cannot be changed , either accidentally or intentionally.
*/

class Signal
{
II Overload << operator f or i ntuitive output o f s i gnals .
fr iend ostream &operator <<(ostream &, const Signal&);
public:

Signal (ckt_ time . CKT_TIME_ INIT, Sig_Val . SIG_X);
Signal(const Signal &s i gnal);
Signal &operato r • (const Signal &sig) ;

Sig_ Val
ckt_time

get_value() const;
get_ time() const;

II get the signal's value.
II return t he time of signal.

void
pri vate:

set_value(Sig_Val);

} ;

Sig_ Val
ckt time

value;
t ;

#endif / • ISIGNALS_H_ • /

II Value o f t he signal
II Time that the signal occurred.

123

Univ
ers

ity
 of

 M
ala

ya

/*** ****** ****************
* wire .h *
* -- -- ------ ----- ---- ---- ------- -------- - ------------------------ -----
* Class declaration for wire class.
*
** ******* **** •····· · · ···· ······ ····· ··········· ····················· ··~· 1

#if ldefined(WIRE H)
define WI RE_H_- -

I* protect Crom multiple inc lusion •I

#include
#include
#include
#include
#inc lude

<i ostream>
"sim.h"
"connect.h"
"s ignal.h"
<list>

I • For ostream declaration
I • For ckt_time typedef
I* Wire is a derived class of
I* Size of Signal required by
I* 'signals ' is a linked list

•1

Connec tor • I
Wire • I

*I

I*
• Wires connect components with each other. They store a history of
• signals <value , time> in addition to a linked list of components
• inherited from Connector.
*I

class Wire public Connector
{
public:

Wire(const char• • "Wire ") ;
Wire: :Wi re(Signal s (J, i nt num, c har •nm);

Signal get_signal(ckt_ time) const;
void send signal (Signal);
void show=signals() const;
void display(ostream &, i nt) const ;
void add_signal(Signal);

II Retrieve a signal.
II Put & propagate sig.
II Show wire signals.
II Show wire i nfo .
II Place initial
II signals on a wire.

pr i vate :
void display_signals() const; II Dump signals on wire.
void replace(Signall; II Replace a signal.
std: : list <Signal > signals ; II History of all the signals wh ich

} ;
II have travelled along t he wire.

#endif I * IWIRE_H_ * I

124

Univ
ers

ity
 of

 M
ala

ya

/ ********* ******** • *************************** *** ** ********** • ******** **
* sim.h
* - ---- --- --- - --- -- --- - --- ---------- - - -- --------------------- -- -------
* General purpose header f i le containi ng typedefs and constants
* which are usef ul to the simulator engine as a whole.
*
·· ··· ······••/

#if ldefined(SIM H)
define SIM H - -

I*

I* protect from multiple inclusion • I

* Define our t ypedefs, signal values and a f ew useful consts . This
* header file should be included by most sourc e fil e s i n the
* implementation .
*I

typedef i nt bool ean;
#if ldefined (TRUE)

const bool ean TRUE • l;
const boolean FALSE • O;

#endif I* !TRUE *I

typedef long ckt_ time;

const
const

ckt time CKT_TIME_I NIT • - 1;
ckt_ time CKT_TIME_NULL • - 2;

char •genera t e_tabs(int); II Defined i n main . cpp

#end if I • ISIM_H_ • /

125

Univ
ers

ity
 of

 M
ala

ya

APPENDICES C

OUTPUT

Output 1 : Two-input AND Gate

Output 2: Three - input AND Gate

Output 3 : RS-Latch

Output 4 : Half Adder

126

Univ
ers

ity
 of

 M
ala

ya

OUTPUT l

output:

id : 2_input_AND

values : {_ x} {? L} {o H} {1 L} {6 H}

Press any key to continue

OUTPUT 2

3 Input AND Gate

output :

id : Main out w4

values: {_ X} {l L} {3 H}

Press any key to continue

127

Univ
ers

ity
 of

 M
ala

ya

OUTPUT 3

Reset-set Latch (RS - Latch)

output:

id: Q

valueo: {_ x } {1 H} {6 L} {7 L}

output :

id : Qb

values: {_ x} {2 L} {s H} {7 H}

Press any key to continue

128

Univ
ers

ity
 of

 M
ala

ya

OUTPUT4

HALF ADDER

output:

id : main out S

values : {_ x} {l H} {3 L} {s H} {9 L}

OUlpul :

id : main o uL C

values: {_ x} {l L} {3 H} {4 L} {9 H}

Press any key to continue

129

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

I. Stephen R.Schach, 2005, Object-Orie111ed and Classical Software £11gi11eeri11g,
McGraw-Hill.

2. Deitel, Harvey M, 1998, C++ How to Program, 211
d ed, Prentice Hall.

3. Gary J. Bronson, 2000, Program Development and Design Using C++, 2"d ed,
Thompson Leaming.

4. Thomas L.Floyd, 2003, Digital F1111dame11rals 81
h ed,, Prentice Halli.

5. Allen Dewey, I 997, Analysis and Design of Digital Systems With Vl/DL, PWS
Publishing Com.

6. Douglas Perry, 1999, VllDL, 3rd ed., Mc-Graw Hill.

7. Bjame Stroustrup, The C-+ 1 Programming la11g11age, Addison-Wesley.

8. Stephen C. Dewh urst, I 989, Kathy T. Stark, Programming in C++, Prentice-Hall.

9. M. Morris Mano, Digital Design, Prentice-Hall , I 984.

10. Behrouz A.Forou:zan, 2004,Richard F. Gi lberg, Compwer Science.: A StruN111·cd
Programming Approaching Using C++, Thompson Leaming.

11 . Ron Waxman, · ' I lardwarc Design Languages for Computer Design and Test," IEEE
Complller, pp 90-97, Vol. 3. No. 2, Apri l 1986.

12. Wayne 11. Wolf. " llow to Build u llnrdwarc Description and Mcn:surcmcnt ystcm
on an Objcct-Oric:ntcd Progrnmming Languugc," 11~·H1~· 1iw1.wwtlmt.\' 011 Compuu:r
Aid('d Dcsi~n, pp 288-30 I, Vol. 8. No. 3. Murch 1989.

130

Univ
ers

ity
 of

 M
ala

ya

13. Wayne 11. Wolf, .. A Practical Comparison of I \\O Object Oncnlc1d I :1ngu.1µc:-..1i

IEEE Sofn"'are, pp 61-68, Vol. 6 No. 5, September 1989.

14. http: //www.csc.sc.c<lu/ ... j 1 mdavis/Tools/cxscd1a/11imh11s asm models .him

13 1

Univ
ers

ity
 of

 M
ala

ya

