

o Nimbus-UART.nim- Controller1
D]G D|&. al oy
=[O SO z7wlwl | [Sfem)

B]

| 3“

Lo

]

Figure 2.4: The Nimbus display of 3 threads of the UART model

6.2.4 Naming Convention

A good and meaningful naming technique for the variables, controls and

modules provides easy identification for the programmer. The naming convention is

created with coding consistency and standardization in mind.

6.2.5 Modularity

Before entering the coding phase, the project has been divided into several

modules. The main purpose of modularity is to reduce the complexity of the system. In
order to reduce complexity and facilitate changes that result in easier implementation by
encouraging parallel development of different parts of the system.

6.2.,6 Readability

Codes should be easy to understand. Adherence to coding conventions such as

Naming conventions and indentation contribute to program readability.

6.2.7 Robustness

The codes should be able to handle cases for user error by responding

dppropriately. It should be able to avoid any abrupt termination or system failure.

70

/"i**********t*tt*t*t*ﬁ*tt***l‘ll*i**'*l‘*I****ttt‘Iii!*t**t**‘**i**ttitﬂi

* main.cpp
* RS-LATCH

i P A g g e e e e S g S S S e I T

*

* Main driver program for intializing the primary inputs, constructing
* and simulating the circuit and displaying the primary outputs.
*
-

tttiitlittltl.ﬁitttt.liititit.liitlitt.l'.*l*i"-ﬁﬂiltltt*ii‘ﬂ“ltl“*/

#include "gim.h" /* For generate_tabs() decl %/
#include "gignal.h"

#include "wire.h"

#include “complib.h"

using namespace atd;

/I
* Generate a string containing the specified number of tab characters
* for indenting output purposes.
*/

char *

generate_tabs(int num)

char *tabs = new char([num + 1);
int t;

for (t = 0; t < num; t++)
tabs(t) = '\t';

tabs([t] = '\0';

return tabs;

* Main driver function:
* The main program will programmatically
create a RS_Latch gate with some test inputs and then simulate
* and display the resultant output.
"
/

int
main()

cout<<"\n\n";
cout<<"Reset-set Latch (RS-Latch)\n";
COULCE M mmmm e c e e cmcmmmnn \n\n\n";

Signal Signall(] =

Signal (0, SIG_LOW),

Signal (2, SIG_HIGH),

Signal (4, SIG_HIGH),

Signal (6, SIG_HIGH),
)i

Signal Signal2[] =

Signal (0, SIG_HIGH),
Signal (2, SIG_HIGH),
Signal (4, SIG_LOW),
Signal (6, SIG_HIGH),

113

OUTPUT 4

HALF ADDER

id: main out_S

values: { X} {1 H} {3 L} {5 H} {9 L}
output :

id: main out_C

values: {_ X} {1 L} {3 H} {4 L} {9 H)

Press any key to continue

129

