IMAGE EDGE DETECTION SYSTEM

AZIMAH BINTI RAZALLI

FACULTY OF COMPUTER SCIENCE & INFORMATION
TECHNOLOGY
UNIVERSITY OF MALAYA
KUALA LUMPUR

2002/2003

Abstract

Image edge detection is not a new thing in image processing. It has been applied
so many years ago as one of the technique or method to produce a variation of image
display either for medical, research or art. For example in medical field, they used this
method for X-Ray.

This thesis describes edge detection in details including the edge definition, the
types of edge, detection methods, the problems with edge, the advantages and
disadvantages and the most important is how to detect edge in digital image, either two-
dimensional or three-dimensional images.

In this system, two main methods that are implemented are Laplacian and
Gaussian. For the Gaussian method, it divides to two parts, the first one for one-
dimensional image called One Dimensional Gaussian and the other one is fir two-
dimensional image called Two Dimensional Gaussian. Beside these three methods, there
are three other operators that are also used in image detection process. They are Robert
operator, Sobel operator and Prewitt operator. But the user does not need to use all of
these operators, they just need to chose any one of them to be applied on their scanned
images. Though all of these operators are functioning in three different ways, the result is
still the same.

In other word, this thesis explores the methods or techniques of image edge
detection in detail until software that can detect edge was developed and available to use

by users.

e

Acknowledgement

This thesis is written as lecturers, friends and family provide technical and
emotional support. It is impossible to list here all those who helped to sustain the author
during the development of this thesis and the author apologize in advance for any
omissions.

First and foremost the author wishes to express her deepest gratitude to her
supervisor, Puan Nornazlita Hussin, who had inspired and supervised the author form
time to time until the completion of this thesis. Without her guidance, this thesis would
not have propelled in the right direction to achieve the goals.

Particular thanks go to Miss Nur Aniza Abdullah as a moderator that willing to sit
and discuss ideas and provided suggestions regarding the initial proceeding of system
development. Also, | wish to express my appreciation to my new moderator, Mr. Phang
Keat Keong, for his advice and pleasure to evaluate my thesis. The author also
appreciates the guideline that the Faculty of Computer Science and Information
Technology had in making this thesis possible.

Finally, the author want to express her deep appreciation for the support and

encouragement of her parent, Encik Razali Mohd Yusof and Puan Noor Asiah Said,

family, friends and as always, Maznan Mazlan.

iii

List of content

ACKHOWIOADEMBIEo cnesorcsnron aivise sonnsssve ossasashaimyssn sassunvion wosssbtinssssanes

B T A S A e L R) IR TS el AR

D O I e i sl i B op R e e b e L A i R A A RS s

B O TR i i s e o e A R o X P SRSV SRR A S Um0

LOIOUDIRCHON. . 0ot s s a b s b e N e s s v

11 PYOIOCE ONCIVIEW, o, .o e dinis i son e 2 S ERA S A R AT S m sl e s P g B s e
1.2G0a1s and OBECLIVES.oo it v dummnb danisentan nipigese st s My Qo

133 SUSIEN SO0, ooyt kv b o A7 oS AR Sy eSS s i

LA PIOTOCEPIRIMIORE. .. - oovos v O s s s v b S oAb o B A s S ks T

LS PrOIect SCROMRIES . oo oo N T -2 il in 8 e e AR5 58 TS R b in S

1.6 CRBDRETS STITBBAEY ... A . st 5 ot vdhoes s e S Mo Hin S om0

0T ol N R S S A e P S

2.0 Literature ReVIEW.. covvor i oo

2T RESCHOR IBTHOEE. - ... oo s s oo gk sds Sl A S TS s
L2 TORTOONCIRON -5 v 3o P e s S b O T SRS o o r v s i
2.3 What 35 o008 GEACHORD55 00, v lnmivnn dnekne Sw.o s Beban koo a viamsss

FACIR I T T el S S LT I e SRS o IS

Fo B T T e I ST S e S B

i

v

X

01

01

01

02

02

02

03

04

05

07

08

08

09

10

11

iv

2 T HE SRPOICE OF CURE - -5 viv oo vs oasimestonmsea drasaa AR v s
234 Bige detoction OONOOPD.. . .. oveoonoen o 28 E anvitinss s anin s nh Ak e b ahES
B S R PR NOE NS o vx oo onsanc s e s a bebdwm sredhns
2.3.6 Other:methods of edge detection. J10 coe v cevcissarmecon crscsssanions
P s L E T e e o SR R SRR N R
240 ThHE MR SYBIERI. .. o oo sviniasiidnsieisinw siaiismnvinoss
2 Cinrent avRlabIE SYSIEMo oo svebiFinsinasinm ws e TR AR
LI SOMITIY . .. ovi conirieimariiesiidopermarinfissninpmas s scideteb mn g i o
S MICIBOBDIOEY 12 o v miom s sy v S samsssiion s o o o maicscon st g e o s
3.1 Introduction and concept of methodology.....................oolL
3.2 System development methodology.............cc o iie i
3.2.1 RequirtemeBt analysis. ..o 5 von 2B LicveRevvicusnsisinssvegminive ass
322 B or IR N (i i e Rk B oh 3 o d S0 s oA oA by s el b e
R DSTRONUIERIITI. ... Sy PN S iviasscishosinvislom ot onvi sioeies
B P RORYAIEGRRIEIL L . 7. M= homisn esss ovy b K ob e et S s 5 s R A F N
3.2.6 Unit and integration testing...................ccceevvnieeanns
B2 ORI . 0k s e e AR e ek e e
SR ACPEPRCE TERUNEr 0 ST o iy e AT S e e B e e
3.2.9 Operation and MAMMENANCE covvivsirmrecesaserammnnsnsansers:
3.3 DRDICT SRR 5. . s v v i i 0556 kNS s s R (e S 5 i AN % i3
4.0 Systenn MERYEIRT LRL N o iR e R PR SRS AR

4.1 Problent aniipees.;. ..; it mirs s s pidvaos

11

11

12

15

20

22

23

25

26

26

27

29

29

29

30

30

30

30

30

31

31

32

32

4.2 ROGUIreIICHE MORIYEIS L0 10 o it simnumansvashnmamtmni asxiosls shisn Mesuasionas
4.2.]1 Functional reqmiTemiets.o .iucomsaint i nas siisessie son sasioonas
4.2.2 Non-functional requirements.ccooevviuineins i ineins cenees
4.3 Development tools analysis.c.oe o330 coniee sanvincie cininn st ove avaens
4.3 1 HArIWRTS TOGUHTOIMBINS. . . - oo v s v minsa e B .43 28§ Mo 080 A SR e A g
A D ROPEVED PRCIIEOIEIIG. ... oo avaruansisdstam o sd b Sau e seabusss
G T T e S R PO R SR A AR e e
50 SyBEEOY DERIPINL 1007w veas s sos dis sty il ibusiN e ssays T s vyt e R
S IIMTOUNCHION .- s fo idion i v ase i e e TS R S R e s s O s R o
5.2 Architectrnl Of PrOCESS QOBIENo io i imsiesmnrs o SR Ve resnsitmn sabrr
5.2.1 Context diagram of image edge detection.........................cooe .
5.2.2 Structure chart of image edge detection................cc.coveviirvaneenn.
S23Userimteripcedetign. B N ciiiaiincisi seess
S8 DT BUIMINALY . il i o Bes N o sl s siolos Saniie awul o us R IoRY S5o s sa SN oS4
6.0 SyStern TOpICISRaBION. - R T i oo i e s e e w6 AR ke o
BT B, R o R T B R Y | S S
6.2 Systenmt DEVElOpMICIIET . L1000l it cesmssmmiianraan s sximmacas vt mnam se smmimem axs-knabnise
G DCTOIOINEIE T OIS L oo oo o vieiiiamabiswamassscahn SN s R wios e 4
6.2: 191 HarOware ROQUITBIACHES. v, o uns v sokiossns cishas i anaids seasshiass
6.2.1:2 SoRtware REQUITCINCNS.o cvoviiiiissvsisiasisaimm verssnsinins
O AR o 5 053 vvsrvivr o i s Es s e s A PSS TN SH ol el Tt oate s Mt
RS T R U DA A W AN LR e R R DO

6.2 VCOBOE APDIOREIL. .. .ov oo samapsssnmbsommmmsbonsnasmasssnss s s

33

34

36

37

37

38

38

39

39

39

39

40

42

43

S

e

45

45

45

45

46

46

vi

T ey T I T S T R RS
0.2 B NaMIAg TOCIIGIE .- - - . o e srsisesonenobamaarsssossnins

6.2.3. 1 3 Mternal Documentalion.oiciviciivivuisrsrssnros svaessvee

G RO BB S NSNS o o onr ot ed s wad mras st ea st e PR 55
G2 BVSIN GO TOOL... .. von s enversrnisrnmsrmmnssiasnassissnmssiins nnysgnsests
SR T O TS i . SR s B S P Ao
B3 CHAET BURMABLY . .. oo vsiiivnsastimns savmiinsimusrinssnvasannveecsgifloRgrs:
TR BBt TOYOE . - i vonm ety s oA S AR Vi s ol g e TR -
Ay G RN AR S e DU, e T
2GRV O DRI .- . oo st et et RN T e S Sl s et
73 Testing TOEBMGIIL:o concocimsminnsinss s scrsann o sn sagosnonssrysnssas sssnnsss
7 3P WD ORI, o L T e Wi omenmiain v b s s et meaains
P32 DIaCK BOW TESURE . -« e N0 o sin ovo st cie wonisinas sas sis ssosan s
T TR SUBBRY o w5 v T 2 R i v s /o0s 5 R S G s oo e a2 S A v A e AR5
T T e o o T e
T AT LUt CeMMD EXRIDI0. ... o.. . coiis o ihihs eimsimesgmnttorsn nmn sowiams neemasions
7.4.2 CoBrBl ODJECt TESHDE. oe. s coe convossesmnmsdesssernxmemen ssnssinssms

P, SR T e S SO O S N

7.4.4 System Testing..................

T CHapter SRIMIIREY (2. e on b v sas s b Ui m il sxrias whI o S e s e R s S5 m5s
SO0 Syt BRI - .- oo s s e s e e GRS R R R e e bl e

L 5T es o T L e N b e o~ H e N N)

46

46

46

47

47

48

49

50

51

51

51

52

52

53

53

54

55

55

55

56

56

58

58

vii

8.2 Problems Encountered and Solutions................cocoovvi e i

8.3 SYBtOn SIOMEINE. v ssiiananin susisonsar saimen soo posanasnnaapanason Sosisnes

8.4 SYSIEMICORSIRININ. .. .« royiaosreis s vos sns mosine cvasiuns vonssn s sewassmen 3as-ssn sa s

S SR EORENCEIMERE . .. oo oo o hicahihian PP s s sas avs dasiansbre saniss

8.6 Knowledge and Experience Gained...cco oo vvninins i ian i
LY eI e Ml Jro o5 s R BN A A e T o o
APRCNICEE.o s dhiseisr/nis-s Smwst 3o R R e R wasias s s s mwmnis sy 4o g

REFOIEBOR o i vant s i de s e s NS e gy e wa s A enia s i s sy PR s s

58

61

61

63

65

66

85

viii

List of table

}.0-Project plarmed SChedale. .« .. vi s s s e e SR

FRIERIT < SR T R R T B N R S

05

55

ix

List of figure

2.0 Sharp step, gradual step, roof and through...................................
FA VP T e S T R e e B i 0 A ST R
2.2 1" and 2™ derivative of an edge illustrated in one dimension......................
2.3 Various edge detecton TMErS ..«ot s asis sy R e
2.4 Vertical and Horizontal'edges. ... oo v vniivinn s v i

2.5 Neracal Bobel Her. ..o o it n i s e e R PR s
2.6 HotZDIRl SODELRIEY. L.z incroninesl i bbiciosatadsn annrn siva Migso lzdon s e oo ssanse
2.7 Sobel filtered common edges — JIM... covvessossunctlne ol sah rresosnrscnssns anas
2.8 Sobel filtered common edges —ROZET... ... c.cmaervolbonert cannecarses sagass snsvrns
2.9 Haar wavelet transformed Smage i.. ... 4% M e ivisss ssmisonosbisssiniesons
3.0 Wateelall Methodolopy oo 0 S it v s vaimianassvadsdsansos s s avass
4.0 The process of determining requirements SYStemM.oooeveiiieiiiann.,
5.0 Context diagram of image edge detection system...........................o... ...
5.1 Structure chart of image edge detection system......................cooeeviinean.

5.2 Data flow diagram of image edge detection system.................................

S AN EAR " s e

S DCICCTION PBBE. .v'voirssaiassivni e ineiss s iaiardenhn s SN Srs R vam iy S sy s Sep e
6.0 Matlab add-In TOOIBEEc.ooocvininniis s viomm sies saat st w3 han Koo me pammtta

RIS L o h s i anewe o P S D s w S VA H D iia sl i s b v xR o2 o

10

11

13

16

18

18

19

19

20

28

34

40

41

41

42

43

49

54

Chapter 1 : Introduction

1.1 Project Overview

Image edge detection is a system which able to detect edge line or boundary of
an images. It is one of the image manipulatioﬁ processes in recent image processing
to create an edge image that usually used in medical and educational field.

In this system, the two main methods that are implemented are Laplacian and
Gaussian. For the Gaussian method, it divides to two parts; the first one for one-
dimensional image called One Dimensional Gaussian and the other one is for two-
dimensional image called Two Dimensional Gaussian. Beside these three methods,
there are three other operators that are also used in image detection process. They
are Robert operator, Sobel operator and Prewitt operator. But the user does not need
to use all of these operators; they just need to choose any one of them to be applied
on their scanned images. Though all of these operators are functioning in three
different ways, the result is still the same.

For the development of this system, waterfall model has been chosen. It is
because this waterfall methodology is easy to understand especially for those who
really new in system development. The process of the development is shown clearly
step-by-step, so it is much easier to follow.

All the source cord was written in Matlab 6.1, which is one of the programming

languages that specialized in mathematical, based programming.

1.2 Goals and Objectives
The main purpose of this thesis to do a thorough study and analysis on image
edge detection as well as their characteristic in order to have a clear understanding

about edge detection method, their relation and importance in the real world images.

It is also to gain knowledge am:.l experience on how to developed a system or
software.
The objectives of this system are;
« To provide an easy way to detect edge
« To minimize the time spent of edge detection process
» To create a good but simple way to let the users express their idea
about the edges they have in mind regarding a specific image

« To implement a method to detect the type of edges a user ordered

1.3 Scope

1.3.1 System scope

Generally, this system performed a process of image edge detection based on
the value of threshold that included by user. Basically the process that includes
in this system are input the image from user, pre-procession to make sure the
detection is accurate, detection process, display the preview image, print out the
original image and the edge image. There are two methods used in detection
process, the Laplacian and the Gaussian. All of the coding was written in
MATLAB, which is one of the programming languages that specialized in
mathematical based programming.
1.3.2 User Scope

Image edge detection system consists of four main users, which are:
* Kindergarten teacher

The edge detection 1s useful for touching up scanned drawing or cartoon

pictures. It helps a teacher, which wants to scan pictures and get rid of the

colour, so that the kids could then colour it in.

e Pictures editor
It is very important to the pictures editor to be creative on displaying images
in all types of printed media such as magazine and newspaper and also in
virtual media like web page. They can manipulate the edge images to makes
their pictures looks more interesting or artistic.

e University or College student
Students who studying in image processing (usually in majoring of
information technology) will have opportunities to practice the edge

detection theory that they had learn in class by using this system.

1.4 Project Planning

The compulsory step of doing any project is project planning. After defining
the project and the problems, setting the project objectives and ensuring the
scope of the project, the next step is project planning. This step is very crucial in
terms of getting on to the right course in the remaining studies of the new
system.

There are a few planning that must be made here which are important to
gather useful and related information in the development of the new system. The
planning are:

i Deciding the source of information

ii. Extracting only useful and related information
iii. Studies made on the information gathered

iv. Analysis and make sysfem draft

V. Decide type of system development tools

Vi. Design the system

vii. Test the new system

viii. Adjustment and enhancement
iX. Implement the system

X. Maintenance of the system

Usually the planning phase is carried out indirectly because some ways not
prepare on paper and just base on the idea of the planning itself. However for
this project, the planning is done quite formal and the follow-ups are very much
according to the planning itself.

However there are some works that were carried out without planning or that
is exclude from the planning lists. For example types of reading materials were
not picked according to what is planned but based in what is available. But only
materials that related to what we have planned is considered and extracted.

The unplanned activities can be managed properly with a project
management. This is good for final review of the overall process of the project

itself.

1.5 Project Schedule
Project schedule plays an important role in planning and developing the
system. It specifies all the activities involve in system development and the
duration of time for each activity to successfully implement the project. The

project schedule for this projegt is shown in below:

This chapter clearly identifies the methodology, mechanism and approach to be
adopted. The quality of the proposed tools refers to the practicality of the chosen
tools, effectiveness and appropriateness in solving the problem is presented.

d. Chapter 4 - System Analysis

This chapter describes all the system anti user’s requirement. In this phase, all
the system requirements like functional and non-functional requirements;
hardware and software requirements are identified and analyzed the problems
possibilities.

e. Chapter 5 — System Design

The various components of the proposed system are clearly identified and
explained in this chapter. The components include the architectural design,
database design, functional design and also user interface design.

f. Chapter 6 — System Implementation

Under the specified design and development - operating environment and in
accordance to the design blueprints, the system is developed. Following that, the
system is implemented in the usual environmental.

g. Chapter 7 — Testing and Evaluation

The approaches for debugging and testing of the system are described here. The
objectives, both achieved and unachieved are outlined and the proposals of
future work are considered. The problem faced and solutions taken during the
development period are highlighted.

h. Chapter 8 — Conclusion and Future Enhancements

Following the conclusion on the finished system, the strength and limitations of

the final product are confirmegd. A proposal for future enhancement is forwarded

here and also an overall conclusion based on the project development proposal is

provided.

1.7 Chapter Summary

This chapter describes the project to be developed. The project overview or
introduction described all the phase involved in system development. Each phase
have different activities and all the activities are explained briefly in this part. The
objectives, goals and scope were explained clearly so that the system will be
developing based on these main thing. There is also project plan schedule in order to

make sure the development process successfully complete in effective way.

Chapter 2 : Literature review

2.1 Research methods

i. Book and references

Material such as books, magazines, journals, newspapers and thesis were read
through for new ideas and to make comparisons. New methods were analyzed to see
if they are suitable in the system environment.

ii. Internet research

Researched on the World Wide Web was done to look out for similar system and
new technologies of the current software developments tools. The Internet search
engines those were useful in the quest are as follow:

http://www.google.com

http://www.lycos.com

http://www.altavista.com
iii. Newsgroup
Newsgroups were also useful to discuss FAQs, topics such as development tools,
system architectures, database, programming codes and others. Questions can be

posted and respondents would give their ideas and suggestions. The useful

newsgroups are as follow:
http://www.ask. 0.com
http://www.tan utera.com

http://www.e-pedoman.com

iv. Document room

There are a lot of theses from seniors stored at the document room of Faculty of
Computer Science and Information Technology (FSKTM). Therefore, all the
documents can provide some of the guidelines on how to do this thesis. These
samples are useful to proyide basic guideljné and idea on how to generate a good

report, by evaluating the strength and weakness of their work.

2.2 Introduction

Unlike the real world, images do not have edges. Images have abrupt
changes in intensity. Therefore, the term edge detection is not actually an accuralte
phrase. But, since the overall goal is to locate edges in the real world via an image,
the term edge detection is commonly used.

An edge is not a physical entity, just like a shadow. It is where the picture
ends and the wall starts. It is where the vertical and the horizontal surfaces of an
object meet. In reality, what appears to be an edge from the distance may even
contain other edges when looked close-up. Edges are scale-dependent and an edge

may contain other edges, but at a certain scale, an edge still has no width

2.3 What is edge detection?

Extracts and localizes points (pixels) around which a large change in image
brightness has occurred. The performance of higher -level processes such as
extraction of object contours and object recognition rely heavily on the
correctness and completeness of edges. Noise produced by imaging and
sampling processes causes the majority of problems in edge detection. There are

two classes of edge detection algorithms with noise smoothing. One of these

classes is based on regularization, which is achieved by imposing smoothness
constraints on the solution of edge points in various forms such as minimizing
energy functional. Another class of edge detection algorithms employs various
noise smoothing processes before the actual detection procedure. A low pass

filter can achieve noise smoothing, which is a convolution with a kernel.

2.3.1 Edge types

A

e AN N

» > > >
(a) (b) (c) (d)

Figure 2.0 : Sharp Step, Gradual Step, Roof and Through.

All edges are locally directional. Therefore, the goal in edge detection is to
find out what occurs perpendicular to an edge. The following is a list of commonly
found edges. A Sharp Step, as shown in Figure 2.0(a), is an idealization of an edge.
Since an image is always band limited, this type of graph cannot ever occur. A
Gradual Step, as shown in Figure 2.0(b) is very similar to a Sharp Step, but it has
been smoothed out. The change in intensity is not as quick or sharp. Many changes
in image intensity will be a continuum of widths or spatial extents between the
Sharp Step and the Gradual Step.

A Roof, as show in Figure 2.0(c) is different than the first two edges. The
derivative of this edge is disconfinuous. A Roof can have a variety of sharpness,
widths, and spatial extents. The Trough, also shown in Figure 2.0(d) is the inverse of

a Roof.

10

» | > : > >

(a) (b)

Figure 2.1 : Highlights and Lowlights
Edges can also found to be any combination of all the above. Figure 2.1 shows a few

such variations.

2.3.2 Finding edges

There is no single image filter that will detect all of the previously mentioned
image edges and all their intermediates. This is due to the fact that edges can have
many different profile shapes and spatial scales. There have been a few theories
concerning edge prediction, which help in the efficient detection and localization of

edges.

2.3.3 The importance of edge
Edges contain most of the information in an image while being represented
far more compactly than t_Ihe image itself and the first step in image segmentation,

the partitioning of an image into meaningful regions.

2.3.4 Edge detection concepis

Edge detection is a hill defined term, because it makes think that the
algorithm gives contours as result. In fact these algorithms give images, which show
higher intensity in pixel near gray value transitions. In some way, this task is only
contour enhancement. Our conclusion from this experience is that real edge
detection must produce as output: vector data representing contours. Any other

results are only pretty images to make demos for visitors. In other word, the quality

11

of an edge detection algorithm can only be evaluated objectively when it is used to
extract contour represented in vector format (as a sequence of connected points).
The now widely accepted method of contour detection consists of a
smoothing filtering followed by a derivative filtering. Smoothing is intended to
reduce noise in the image without eliminating Icontours, usually a compromise
should be found to the degree of smoothing with respect to the type of noise present
in the image and the sharpness of contours. The derivative filter detects transitions
or changes in gray levels in the image. Usually second derivative are used to

determine precisely the location of maximum rate of change in gray level.

2.3.5 Edge Detectors

Edges are places in the image with strong intensity contrast. Since edges
often occur at image locations representing object boundarie

s, edge detection is extensively used in image segmentation when we want to
divide the image into areas corresponding to different objects. Representing an
image by its edges has the further advantage that the amount of data is reduced
significantly while retaining most of the image information.

Since edges consist of mainly high frequencies, we can, in theory, detect
edges by applying a highpass frequency filter in the Fourier domain or by
convolving the image with an appropriate kemel in the spatial domain. In practice,
edge detection is performed in the spatial domain, because it is computationally less
expensive and often yields better results.

Since edges correspond to strong illumination gradients, we can highlight them by
calculating the derivatives of the image. This is illustrated for the one-dimensional

case in Figure 2.2.

12

Function fil)

1stderivative

Znd derivative

2O

Figure 2.2 1st and 2nd derivative of an edge illustrated in one

dimension.
We can see that the position of the edge can be estimated with the maximum of the
1st derivative or with the zero-crossing of the 2nd derivative. Therefore we want to
find a technique to calculate the derivative of a two-dimensional image. For a

discrete one-dimensional function f{7), the first derivative can be approximated by:

d j(i)
d(i)

Calculating this formula is equivalent to convolving the function with [-1 1].

= fli +1)— £0)

Similarly the 2nd derivative can be estimated by convolving /i) with [1 -2 1].
Different edge detection kernels, which are based on the above formula,

enable us to calculate either the lst or the 2nd derivative of a two-dimensional

image. There are two common approaches to estimate the 1st derivative in a two-

dimensional image, Prewitt compass edge detection and gradient edge detection.

13

Prewitt compass edge detection involves convolving the image with a set of (usually
8) kemels, each of which is sensitive to a different edge orientation. The kernel
producing the maximum response at a pixel location determines the edge magnitude
and orientation. Different sets of kernels might be used: examples include Prewitt,
Sobel, Kirsch and Robinson kernels.

Gradient edge detection is the second and more widely used technique. Here,
the image is convolved with only two kemels, one estimating the gradient in the x-
direction, Gx, the other the gradient in the y-direction, Gy. The absolute gradient

magnitude is then given by:

G = Gz + Gy

and 1s often approximated with:
|Gl = |G=| + |Gyl

In many implementations, the gradient magnitude is the only output of a gradient

edge detector, however the edge orientation might be calculated with:

8 = arctan{Gy/Gz) — 3n 4
The most common kemels used for the gradient edge detector are the Sobel, Roberts
Cross and Prewitt operators,

After having calculated the magnitude of the 1st derivative, we now have to
identify those pixels corresponding to an edge. The easiest way is to threshold the
gradient image, assuming that all pixels having a local gradient above the threshold
must represent an edge. An altenative technique is to look for local maxima in the
gradient image, thus producing one pixel wide edges. A more sophisticated
technique is used by the Canny edge detector. It first applies a gradient edge detector
to the image and then finds the edge pixels using non-maximal suppression and

hysteresis tracking.

14

An operator based on the 2nd derivative of an image is the Marr edge
detector, also known as zero crossing detector. Here, the 2nd derivative is calculated
using a Laplacian of Gaussian(LoG) filter. The Laplacian has the advantage that it is
an isotropic measure of the 2nd derivative of an image, i.e. the edge magnitude is
obtained independently from the edge orientation by convolving the image with only
one kernel. The edge positions are then given by the zero-crossings in the LoG
image. The scale of the edges which are to be detected can be controlled by
changing the variance of the Gaussian.

A general problem for edge detection is its sensitivity to noise, the reason
being that calculating the derivative in the spatial domain corresponds to
accentuating high frequencies and hence magnifying noise. This problem is
addressed in the Canny and Marr operators by convolving the image with a

smoothing operator (Gaussian) before calculating the derivative.

2.3.6 Other Methods of Eidge Detection
There are many ways to perform edge detection. However, the most may be
grouped into two categories, gradient and Laplacian. The gradient method
detects the edges by looking for the maximum and minimum in the first
derivative of the image. The Laplacian method searches for zero crossings in the
second derivative of the image to find edges. This first figure (figure 2.3) shows
the edges of an image detected using the gradient method (Roberts, Prewitt,

Sobel) and the Laplacian method (Marrs-Hildreth).

15

vaerﬁ!d_) Sobei(horizontal)

20 40 B0 80 100 120

20

40 60 80 100 120

Prewitt{vertical) Prawitt(horizontal)

20 40 60 80 100 120 20 40 B0 €0 100 120

Figure 2.4 Vertical and Horizontal Edges

The next pair of images (figure 2.4) shows the horizontal and vertical edges
selected out of the group members images with the Sobel method of edge
detection. You will notice the difficulty it had with certain facial features, such
as the hairline of Sri and Jim. This is essentially due to the lack of contrast

between their hair and their foreheads.

17

B 8 8§ B

20 40 60 80 100 120 20 40 B0 80 100 120

8 8 8 B

120

; i\ £
20 40 60 80 100 120 20 40 60 80 100 120

Figure 2.5 Vertical Sobel Filter

20 40 S0 80 100 120

8 88 8

20 40 60 B0 100 120 20 40 ©0 BO 100 120

Figure 2.6 Horizonatal Sobel Filter

We can then compare the feature extraction using the Sobel edge detection to

the feature extraction using the Laplacian.

18

individually selected points would still work better. It should also be noted that
this method suffers the same drawbacks as the previous page; difficulties due to
large contrast between images and the inability to handle large translations of
features. Another method of detecting edges is using wavelets. Specifically a
two-dimensional Haar wavelet transform of the image produces essentially edge
maps of the vertical, horizontal, and diagonal edges in an image. This can be

seen in the figure 2.9 of the transform below.

20 40 60 80 100 BT
Figure 2.9 Haar Wavelet Transformed Image

2.4 What is MATLAB?

MATLAB® is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar mathematical

notation. Typical uses include:

20

control systems, neural petworks, fuzzy logic, wavelets, simulation, and many

others.

2.4.1The MATLAB System.

The MATLAB system consists of five main parts:
i. Development Environment.
This is the set of tools and facilities that help you use MATLAB functions and
files. Many of these tools are graphical user interfaces. It includes the MATLAB
desktop and Command Windpw, a command history, and browsers for viewing
help, the workspace, files, and the search path.
ii. The MATLAB Mathemgtical Function Library.
This is a vast collection of computational algorithms ranging from elementary
functions like sum, sine, cosine, and complex arithmetic, to more sophisticated
functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast
Fourier transforms.
iti. The MATLAB Language.
This is a high-level matrix/array language with control flow statements,
functions, data structures, input/output, and object-oriented programming
features. It allows both "programming in the small" to rapidly create quick and
dirty throw-away programs, and "programming in the large” to create complete
large and complex application programs.
iv. Handle Graphics®.
This is the MATLAE graphics system. It includes high-level commands for two
dimensional and three-dimensional data visualization, image processing,

animation, and presentation graphics. It also includes low-level commands that

22

allow you to fully customize the appearance of graphics as well as to build

complete graphical user interfaces on your MATLAB applications.

V. The MATLAB Application Program Interface (API).

This is a library that allows you to write C and Fortran programs that interact
with MATLAB. It include facilities for calling routines from MATLAB (dynamic
linking), calling MATLAB as a computational engine, and for reading and writing

MAT-files.

2.5 Current available system

One of the application that used edge detection is Adobe Photoshop 5.5,
which is one of the hottest authoring tools nowadayas. This application does not just
detect edge, but it manipulated the detection of edge as a way to produce a variation
of image display. It provides some types of filters function that implemented the
edge detection process. The types of filters function that used edge detection process
are :

1. Blur named as “Gaussian blur”

Origimal Image After “Gaussian Blur”

Chapter 3 : Methodology

3.1 Introduction and concept of methodology.

Methodology is the study that deals with the science of method concerned
with the application or the principles of reasoning scientific and philosophical
enquiry. It deals with the philosophical assumptions underlying the development
process.

A system development methodology is a very formal and precise system
development process that defines a set of activities, methods, best practices,
deliverables and automated tools for system developers to use to develop and
maintain most or all information system and software. Therefore, any methodologies
chosen for image edge detection will ensure that a consistent and reproducible
approach is applied to this project. Methodologies will reduce the risk associated
with shortcuts and mistakes as well as produces a complete and consistent
documentation.

Methodologies enable one to follow a certain procedures, where it basis is
laid down in the way a problem is encountered. Methodologies are also flexible
enough to provide for different types of projects and strategies. In general, a
methodology should fulfill two basic requirements that are effective support of
design process and efficient control of project.

1. Effective s f design pr
e Provide the means to identify the different steps in the system
development process. It involved from system logic reasoning,

Temantic modeling towards syntax specification.

26

completed system and give feedback to the developer whether the system fulfill their
specification needs or not.
3.2.9 Operation and Maintenance

Maintenance of the system can be described as the process of changing the
system after it is under operation. The changes- may involve simple changes to
correct existing errors, more extensive changes to correct design errors or significant

enhancement to correct certain specification.

3.3 Chapter Summary

The methodology chosen to develop Image Edge Detection System is
Waterfall Model. This methodology will serve as the base of the whole
development. In this chapter, the reason why this methodology has been chosen was
explained in detail. Each steps in this methodology is briefly described, so that the
developer can easily understand the concept of this methodology.

The advantages of Waterfall Model also included in this chapter. Some of the
advantages of waterfall methodology are easy to follow during system development
and maintenance could be done at each phase, the process of the development is
systematic as each phase is fix and determine in the beginning of the system

development and good visibility because each process produce some deliverables.
|

31

Chapter 4 : System Analysis

4.1 Problem Analysis

The first step that the developers must do before deciding a system and user

requirements is defining the possibility of problems that will exist in the system. The

problems defined then should be as one of the developer’s guideline in developing

their system. In this image edge detection system, there are a few problems that will

possibly faces by user, which are:

ii.

1ii.

iv.

The system does not have ability to support all the types of images that
input by user. It depends on the texture or the pattern of the image.

The system cannot detect edge accurately if there have any noises on the
image. Usually, noises are difficult to detect by user’s naked eye.

The end-user will not know the use of threshold value, what is applicable
value that they suppose to key in, or the importance of that in edge
detection process; how’s the value impressed their edge detection
process.

This system provided a variety of edge detection methods or operators
that are Laplacian, Gaussian, Sobel, Prewitt and Robert operators.
Although all these operators produce the same result, which is edge
image, there will be some confusing in user’s thoughts in deciding which
operators that they must use and what’s the difference between all the
operators.

Extensive user’s learning time. The user needs to explore all the

operators provided in the system.

32

i Upload images

The user needs to upload image first before the system running the edge
detection process. User can upload images &om any source they have or they
want such as from Internet, scanned images or they just simply choose any one
of the images from image collection that provided in the system.

ii. Image Pre-processor

Before the edge detection process, pre-processor will be running first
automatically in order to makes the edge are detected precisely.

il Detect edge

This is the main function in this system and that is the reason why this system
built up; to detect edge. The system detects an edge based on the value of
threshold. This value is determined by user due on the level of detection that
they want, but for those user who are not familiar with edge detection or the
using of threshold value, they can ignore that value because the system will still
running the detection process based on the default value that was programmed
by system developer.

iv. Preview image

It is important to know how’s the image looks like after detection process
generated. If the result does not meet the user needs, they will be able to undo
the process and do it again by trying key in another threshold value till they
satisfied with the result. This approach is usually referred as “try and error”
method.

\ Print image
This function will be optional to user, they can choose either to print out their
edge image or they just simply save the image in their own output device such as

floppy disk or compact disk.

4.2.2 Non-functional Requirements

A non-functional requirement is a description of other features,
characteristics, attributes of the system as well as constraints that way limit the
boundaries of a satisfactory system. It is an essential definition of requirements
which how a system must operate.

While these criteria are not actual actions taken by the system, they are
further restrictions on what the system must be able to handle. The non-
functional requirements that have to embedded into image edge detection
include the following aspects:

i. User interface

A standard user interface refers to the consistency usage of colour, font size,
position of text, graphics and also functional menus. It helps users get the result
they need in and out ot: the system by addressing user interface objectives, which
also results in being a user-friendly interface to user.

ii. User-friendliness

Building a good flow of navigation can help users to be able to understand with
little effort or at ease about what is going on as users navigate through the

system.

iii. Reliability

A system is considered reliable if it does not produce dangerous or costly
failures when used in ways that the designer might not expect it to be used and
the system must be able to handle these situations.

iv. Accuracy

Accuracy refers to the precision of the edge detection process provided. It
provides various accuracy measures to maintain the accuracy of detection
process.

V. Maintainability

Maintainability can be defined as the ease with which software can be
understood, corrected, adapted or enhanced in the future.

vi. Efficiency

Efficiency in computer technology means a procedure that able to called or
accessed in many times and it will give that same outputs, not the different

outputs.

4.3 Development tools analysis
4.3.1 Hardware specifications:
Processor : Pentium 11 166 Mhz and above.
Memory : 56.0 Mbytes of RAM.
Hard disk : at least 4.75 Gigabytes.
Input device : Mouse, keyboard, scanner, floppy drive and disk drive.
Output device : Printer, monitor.

Graphics adapter : 8-bit (for 256-simultaneous colours)

37

4.3.2 Software Specifications:
Operation system : Microsoft Windows 95, Windows 98, Windows
Millennium Edition (ME), Windows NT 4.0, or Windows
2000.
Development Tools : Visyal Basic.

Programming Language : MATLAB 6.1.

4.4 Chapter Summary

Before the system requirements are identified, the possibility problems have
to be analyzing first so that the requirement can be determined based on the
problems. Requirement analysis was done in this chapter as well. The requirements
are categorized into a few sub-functions that are upload image, pre-processor, detect
edge, preview and print image. These will be the functions that this system provides.
Whereas, non-functional defines the description of other features and system
constraints that define a satisfactory system.

This chapter also concludes the hardware and software requirements that will

be using in the development phase.

5.2.3 Structure Chart of Image Edge Detection System

In this chart (figure 5.2), the system’s functions are specified where

all the function that be able to run by user are listed down.

select or load image

")

select detection methods

input threshold value

g Image Edge
¥ Detection
» System

= o

USER |«

edge image

Figure 5.0 Contex{ Diagram of Image Edge Detection System

Image Edge Detection System

User

Upload or select

image
select detection
methods L
Enter the threshold
value
Apply edge
datection

Preview edge image

Print original or edge
image

Figure 5.1 Structure Chart of Image Edge Detection

input image or select from system’s collection N

show image selected

I detection methods selecled |
USER USER
y 4 A
30
Irmimidvalg » etect Edge edge mQ‘
el
v
40
seled image{original or edge image) | Primage ha of original or edge
e

Figure 5.2 Data Flow Diagram of Image Edge Detection

41

5.3 User Interface Design
User interface design is concerned with the dialogue between a user and the

computer. It is concerned with everything from starting the system to the eventually
presentation of desired outputs and inputs. User interface design is very important to
offer a user-friendly, reliability, intuitive, minimize the need for users to memorize
the process and events, and at the same time give a good impression to the users.

Below are a few screenshots of user interface of Image Edge Detection System.

Figure 5.3 Main menu

42

Chapter 6 : System Implementation

6.1 Introduction

The process of assuring that the information system is operational and then
allowing users to take over its operation is called systemr implementation. System
implementation is further defined as the construction of the new system and the
delivery of that system into production in a day-today operation. It involves coding
step that translates a detailed design representation of software into a program
language realization. System implementation implements the various components of
the system based on the collected requirements, where the design is translated into a
machine-readable form.

During implementation, all functionality planned in design phased is
checked. It should be able to process the correct data and produce accurate
information to end-users. Any problem or malfunction occurred id revised carefully

and fixed accordingly.

6.2 System development

The development environment is crucial for the completeness and
successfulness of any computer system. Development environment plays a major
role in determining the speed of developing the system. During development, the
weaknesses will be noticed and improved; while the errors found will be removed.

Using suitable hardware and software will help to speed up system
development. Thus, the hardware and software are carefully considered to facilitate
the development of the Image Edge Detection System. System development consists
the used of methodology chosen, forms coding, development tools. The details are

illustrated as below:

6.2.1 Development Tools

6.2.1.1 Hardware Requirements

The following hardware specifications are required to develop Image Edge

Detection System:

Processor : Pentium II 166 Mhz and above. \

Memory : 56.0 Mbytes of RAM.

Hard disk : at least 4.75 Gigabytes.

Input devic? : Mouse, keyboard, scanner, floppy drive and disk drive.

Output device : Printer, monitor.

6.2.1.2 Software Requirements

The following software specifications have been used to develop Image Edge

Detection system:

Operating system : Microsoft Windows 2000.
Development Tools : Visual ¢++

Programming Language : C

6.2.2 Methodology

This project is developed using the waterfall approach. The development of

this project will consist of five stages, which are requirement, design, coding, testing

and operation. The system is design using logical flow and it allows the estimation

of the milestones. Each stage must be completed before proceed to the next stage to

ensure that the system is built according to the requirements and specifications.

6.2.3 System Coding

System coding is a set of instruction written in order to enable the code to be
executed and perform the required functionality. A good and well-managed program
coding will enhance the readability of the whole program. In addition, it provides an
easy understanding to the program flow especially for those programs with high

degree of complexity.

6.2.3.1 Coding Approach

Some of the approaches used in the coding development are listed as below:

6.2.3.1.1 Readability
Code document is important to ¢ase the readability of a system. It begins with the
selection of identifier (such as variables and labels) names and continues with the

composition and organizing the whole program.

6.2.3.1.2 Naming Technique
This is good and meaningful technique of variables, controls and modules that
provide easy identification for the program. The naming convention is created with

the consistency and standardization in coding.

6.2.3.1.3 Internal Documentation
This provides a clear guideline to developers and readers about the function of a
particular source code in the program. Therefore, comments provide the developer

with the means of communicatjon with other readers of the source code. The

statement of the module and descriptive comments are embedded within the body of

the source code is used to describe the processing function.

6.2.3.1.4 Modularity

The main purpose of modularity is to reduce complexity of system and to facilitate
the developer to implement the system by encouraging parallel development of
different parts of the system. With the approach of modularity, developer can
implement all modules at the same time and does not have to wait for a particular

module to complete before going into another module.

6.2.3.2 Coding Style
Coding style is an important component of the source code and it determines
the intelligibility of a program. An easy to read source code makes the system easier
to be maintained and enhanced in future. Listed below are some of the coding styles
used during the coding phase of this project:
* Selection of meaningful identifier names (variables, forms, labels, images
and pictures).
e Description and an appropriate comment written in the source code to make
it easier for the readers to understand the source code.
e Indentation of codes will increase the readability of the program and for a
neater look.
e Meaningful and understandable function and method declarations.

e Keep all complex statement as simple as possible to avoid confusion.

47

6.2.4 System Coding Tool — Visual C++ 6.0

Visual C++ is a powerful and complex tool for building 32-bit applications
for Window 95 and Windows NT. These applications are much larger and more
complex than their predecessors for 16-bit Windows or older programs that did not
use a graphical user interface. Yet, as program size and complexity has increased,
programmer effort has decreased, at least for programmers who are using the riéht

tools.

Visual C++ is one of the right tools. With its code-generating wizards, it can
produce the shell of a working Windows application in seconds. The class library
included with Visual C++, the Microsoft Foundation Classes (MFC), has become
the industry standard for Windows software development in a variety of C++

compilers. The visual editing tools make layout of menus and dialogs a snap.

Actually, the development tool that was chosen in requirement analysis to
implement this system is Visual Basic 6.0 and MATLAB 6.1, but because of some
reason, the development tool was changed. For supporting MATLAB to be a stand-
alone program, it is easy to used Visual C++ rather than Visual Basic because in
Visual C++ there is an add-in function which is simply convert MATLAB files (M-
file) to extension program (*.exe). The MATLAB add-in adds a MATLAB Wizard
to the New Project dialog box and a toolbar to the Developer Studio user interface.
The actions associated with the toolbar buttons are: adding a file to the project;
opening the matrix viewer while¢ debugging; packaging a completed program for

redistribution; and viewing this help file.

Figure 6.0 : Matlab add-In Toolbar

That is the main reason why the development has been changed. But the big
problem with Visual C++ is it cannot support any types of image from M-files.
Though the M-files executed successfully in Visual C++, but the compiler failed to

read the image. To solve this problem, all the coding was rewrite in C language.
6.2.5 Coding Concept

Generally, the concept of edge detection that used in this system is scan every
pixel in the image one by one, then subtract the pixel with the adjacent pixels
(right, bottom & bottom-right pixels). The system subtracts it to find the
different between the scanned pixel and it's adjacent pixel. Then find which
value is the biggest one (the most obvious different value) and put it into the
scanned pixel as the edge. Because the scanning moves from left to right and
from top to bottom, it only scan the pixel that are in front of it ie:right, bottom &
bottom-right pixels. Bellow are the code that execute the comparison process:
//get center color(currently scanned pixel)

cc = getPixell (img, x, y, channel);

“compare center color with right side color

if(x<img->sizeX-1)//check if we are not out of the image boundary

‘compare center color with bottom color

if(y<img->sizeY-1)//check if we are not out of the image boundary

49

6.3 Chapter Summary

This chapter describes the implementation of the system being developed. It
begins with the introduction to the system implementation. System
implementation implements the various components of the system based on the
collected requirements, where the design is translated into a machine-readable
form.

Then, the chapter describes the development environment of the system. The
system development includes of hardware and software requirements,
methodology chosen, system ¢oding and development tools and coding concept.

A sample code is included in Appendices to show the coding environment.

Chapter 7 : System Testing

7.1 Introduction

System testing is a critical element of software quality assurance. It is
required to ensure that the system is developed according 1o its specifications and in
line with the users requirements and expectations. Testing is not the first place
where faults finding take place but it is focused on finding faults and errors. There
are many ways to increase the effectiveness and efficiency of the testing efforts,
which will be discussed later in this chapter. Failure of a system can be the results of
several reasons:

¢ The specification may be wrong of have missing requirement and do not
state exactly what the customer needs.

e The specification may contain a requirement that is impossible to implement
by the given predescribed hardware, software and resources.

e The system design phase may contain fault or error that carried forward to
the implementation phase.

® The program code may be wrong Perhaps the algorithm is implemented
improperly.

Faults identification is the process of determining what fault causes the failure of

the system. The fault correction or removal is the process of making changes to

the system so that the fault can be removed.
7.2 Objective of Testing

The reason and objectives for performing extensive tests during the design

and development of the system are as followed:

51

e Achieve high quality assurance such as completeness, accuracy, reliability
and maintainability of the software program and its documentation.

e Ensure that the system can perform its functions as expected.

e Reduce cost in maintaining the system.

¢ A method for detection and removal errors.

7.3 Testing Technique

The component of a system will be allowed to manipulate the data, and the
output will be observed. Thus, a wide range of inputs and conditions are chosen in
order to test that particular component. A test point/test case is a particular choice of

input data to be used in testing program.

7.3.1 White Box Testing
White box testing is a testing case design method that uses the control

structure of the procedural design to derive test cases. By using white box testing
methods, the test cases with the following characteristics can be driven:

e Exercise all logical decision on their true or false side.

» Exercise all loops at their boundaries and within their operational bounds.

e Exercise internal data structure to ensure their validity.

¢ Guarantee that all independent paths within a module have been exercised at

least onge.

52

7.3.2 Black Box Testing
Black box testing focuses on the functionality requirements of the system. It

enables the developer to derive sets of inputs condition that will fully exercise all
functional requirements for an application. Black box testing was not used as an
alternative to white box testing technique rather than this technique is used as a
complementary approach that is likely to uncover a different class of errors. Black
box testing attempts t find errors in the following categories:
Incorrect or missing functions

e [nterface errors

e Errors in data structures or external data access

e Performance access

¢ Initialization and termination errors.
It also tests the functionality of the system in an ad hoc basis without knowing the
logic structure of the code. Input is provided and output is verified manually to

check for accuracy.

7.4 Testing Strategy

A strategy to test this system is actually a series of steps that are
implemented sequentially. After a program is completely coded, it will be tested
under unit testing. Module testing will start when all the programs under a particular
module have been completely coded and tested under unit testing. The integration
testing is to recover errors associated with interfacing when integrating all the

modules.

7.4.1 Unit Testing

Unit testing focuses on verification effort on the smallest component of the
system design. Each component is treated as a standalone entity and tested
individually to ensure that they operate correctly. The unit test is usually white-box
oriented and the step can be conducted in parallel for mulliple components.

The test that occurs as part of unit tests is illustrated schematically in Figure
6.1. The module interface is tested to ensure that information properly flows into and
out of the program unit under test. The local data structure is examined to ensure
that data stored temporarily maintains its integrity during all steps in an algorithm’s
execution. Boundary conditions are tested to ensure that the module operate properly
at boundaries established to limit or restrict processing. All independent paths (basis

path) through the executed at least once. Finally, all error —handling paths are tested.

Module Interface
i B Local data structures
________ Boundary conditions
_______ Independent paths
Error handling paths

)

]
I

=
Test Cases

Figure 7.0 : Unit Testing

7.4.1.1 Unit Testing Example

Table below shows the test cases for unit testing on the edge detection

program.

Table 7.0 : Unit testing example—

Step Test Procedure | Expected Outcome Test Result

Analyzing

1 Load new image | The image is loaded and | The image displayed
either in jpeg or showed in work stage successfully
bitmap format to the

system

2 Click edge detection | The image is processed | The edge image
function to detect and the edge image | shown successfully

edge shown.

3 Click Reload Image | The original image | The original image
function to get the | loaded and showed in | shown successfully

original image work stage with the
current size of previous

edge image

7.4.2 Control Object Testing

All the menus are clicked to test their functionality and work stage are tested
with the image format supported by this system which are jpeg and bitmap.
7.4.3 Integration Testing

Integration testing is a systematic technique for constructing the program
structure while at the same time conducting tests to uncover errors associated with
interfacing. Tesﬁng a specific featyre together with other newly developed feature is

known as integration testing. In other words, when the individual components are

55

working correctly and meet the objectives, these components are combined into a
working system.

In this system, a bottom-up approach has been used. Bottom-up integration
testing begins construction and testing with modules at the lowest levels of the
system and then moving upward to the modules at the hl:gher levels of the system.
Regression testing is the re-execution of some subset of tests that already been
conducted to ensure that changes have not unintended side effects. It is the activity
that helps to ensure that changes (due to testing or other reason) do not introduce

unintended behavior or additional errors.

7.4.4 System testing

System testing is a series of different tests designed to fully exercise the
software system to uncover its limitations and measure its capabilities. The objective
is to test an integrated system and verify that it meets specified requirements.
Although each test in this system has a difference, all work to verify that the system

elements have been properly integrated and perform allocated functions.

7.5 Chapter Summary

This chapter is all about testing. These testing include unit testing, control
object testing, integration testing and system testing.

Image edge detection system has been tested and debugged effectively to
achieve the objectives of the system. Through all the testing phases, it is easier to
ensure the system’s qualities and strengths. Debugging and fixing of the program
can be done. The limitations of the system’s functionalities can be found and

improved.

As a conclusion, testing phase is a very important phase in image edge
detection system and it must be done repeatedly and carefully to assure good

software quality.

Chapter 8 : System Evaluation

8.1 Introduction

In the process of developing a system, various problems have been identified
which some have been solved and some of them are yet to be discovered and
overcome. These problems were solved through research and reference books.
Besides, a lot of system analysis has been done on technological and programming
concepts to grasp the concept of Internet programming.

After all the designing and developing as well as implementing of image
edge detection system, the end product of the project is brought up for evaluation.
Image edge detection system was evaluated to identify the strengths and the
limitations of the system. Besides, proposal and recommendations are made for the

future enhancements of the system.

8.2 Problems Encountered and solutions
* Difficulty in choosing a suitable development tools

There are too many software tools that are available for developing
image edge detection system. It is difficult to choose the most suitable
development tools from a wide variety of choices. Choosing a suitable
technology and tools was a critical process as all tools possesses their own
strengths and weakness. Besides, the availability of a technology, hardware
and supporting software to support, its learning curve, compatibility with the
existence operating system and technologies are also the major

consideration.

In order to solve the problem, seeking advices and views from project
supervisor, course-mates and even seniors engaging in similar project were
carried out. Furthermore, a great deal of reading and research from many
resources like books and Internet regarding the problems helped to solve the
problem and choose the suitable tools were done before any decision was

made.

Lack of knowledge in Visual C++

Since there was no prior knowledge of programming in Visual C++
6.0, there was an uncertainly on how to organize the codes. These new
programming languages and concepts were never taught before and to
implement such as application requires a fair grasp of the languages. These
programming approaches seem to be totally different from the traditional
programming languages. Although it really cause a lot of time to learn the
new technology, but choosing to program in Visual C++ proved to be a wise
move. Most of the problems faced were manageable through browsing the
Internet for related materials and referring to the help function provided in
the software. Discussion with friends especially course-mate using the same
technology was a great help. A more efficient method was through trail and

error during the coding phase.

Difficulties in defining the flow logic of the system
This system is only based on the information gathered from reference
books and Internet; as a result, the flow of the system is very hard to define.

This system is merely following the flow logic based on my understanding of

59

the requirements and the important of ease of use. The image processing
knowledge that gained from the lecture session also useful to design the

flow.

No multi-function in the system

Based on the system title, which is ‘Image Edge Detection System’,
of course the system will only detect the edge of image. [f MATLAB 6.0
were used in bujldiﬁg all the codes, there will have a types of detection like
Sobell, Prewitt, Robert and Gaussian, unfortunately Visual C++ cannot read
image from M-files. This problem solved by rewrite the source code based
on new algorithm in C language.

The effect function was added in this system in order to make it more
fun and useful rather than just detect edges. The effects included are blur,

blur more negative, line art and diffuse.

8.3 System Strengths

Simple, user-friendly and easy to use

The design of the interface of this system is based on Visual C++ wizard. It
is design to be as user-friendly as this system is relatively easy to learn and
use. All the menus used to ease the user explore and try this system by
themselves. An action is just a click away and the user just needs minimal
knowledge of mouse and keyboard to use this system.

Support colour image

Although MATLARB has a variety types of edge detection, the detection only

process the .tiff image, that is black and white or grayscale image. This

system support two types of image which are jpeg and bitmap format, it does

not matter either the image is in two or three dimensional, colourful or black

and white.

8.4 System Constraints

No print function

No print function in this system. The user needs to save the image processed
first in the IMG file that created in this system before they transfer the IMG
file to their local disk and print the image.

No report generation

In this system, only the processed image will be shown. No other reports or
information about the threshold value, edge intensity or other related
information.

Not so effective

The original image should be display beside image processed so that the user
can compare the result with the original version. The image processed must
be save in IMG format that only readable in the system, that’s mean the

image cannot be display any platform except the system.

8.5 Future Enhancements

System development is a dynamic process and changes must be expected.

Due to the limited resources that the author have, especially time, this cause the

author miss or overlooks certain aspect of the system. However, after the

development syétem has been completed and valuable advices and suggestions from

my project supervisor and moderator, the author have identified certain important

61

aspects that can add on for future enhancement. The additional features that can be

implementing in future are as followed:

Report Generation

In current edge detection system, there is no rep(;rt about the edge. This is
certainly not enough for the user especially for those who used this system in
learning image processing. Thus, in the future, more reports about the edge
detected should be generated. These reports might include the edge intensi'ty,

the detection persistence apd other information related.

Support variety of image format
Since there are many types of image now, the system should be able to

support all the types to make it widely use.

Add more detection types
To make this system more useful in the future, a number of detection types
should be included. The user can choose any method they want and compare

the result or the difference between each type.

Add more useful function

The current system does not allowed user to save image processed in other

format besides IMG. In the fiture, the system should add a function that allow

user to save their image in any format they want and a print function to make

their image available in hard cppy version.

62

8.6 Knowledge and Experience Gained

Towards the accomplishment of the Image Edge Detection System, from the
beginning to the end of thel development and final documentation, a number of
problems and difficulties are encopntered. However, the solutions to these problems
and difficulties have brought numerous valuable knowledg_e and experience. The

benefits and knowledge gained arg as followed:

» The importance of all phase in SDLC

System analysis is an important phase in the System Development Life
Cycle (SDLC). This phase is capturing user requirements and the goal of the
system. If this phase is wrong defined, it will cause faulty to the system
development and later progress. With a complete and thorough system
analysis, the system that is developed will fulfill all the requirements and
achieve it goals.

System testing is also an jmportant and critical phase in SDLC. There is no
application that is free of error in this world. However, with the procedures

in the system-testing phase, errors and faults in the system can be minimized.

e Development tools knowledge
This project is developed using Microsoft Visual C++ 6.0 (VC++). VCH+is
a very suitable development tools for developing Windows environment
application. It is easy to use and provides the simple layout and many

examples to follow and also improved the author knowledge in C language.

8.7 Chapter Summary

Evaluation of system is indeed to ensure its objectives and intended
functions have been achieved. This chapter covers all the aspects of the evaluating
application software.

The successful development of the system at th;a present is the first step
towards the future expansion of the system. The problem encountered and
experience gained during the development phases should be helpful in future efforts.

Besides, this chapter also summarizes the system strengths, system
constraints and future enhancements that can be added. The future enhancements
will equip the system towards more capabilities of doing its daily operations and

activities.

Conclusion

Image Edge Detection System is one of the images processing system to
detect edge of digital image. Besides, it also provides some types of effect that
allowed user to apply on their image. However, the system will become more
complete and capable of performing more tasks when the enhancement and the new
features are added on in the near future.

In the process of developing this system, invaluable insight was gained into
complexities and intricacies of programming. The application of Software
Engineering principles, fundamentals and additional knowledge in programming
languages, skills coding writing and others all added up to contribute to the success
of developing this system. Adhere to development schedule is crucial in determining
that a system will be completed in time. The experience gathered in this project will
definitely provide a solid foundation in the system development in the future.

With target goals and objectives in mind even before the development takes
place, makes the development process more systematic. Sometimes, conflicts in real
world situation and programming tools capabilities make the programming difﬁCl‘l[t.
However, as an overall review, this project has achieved and fulfilled the objectives

though its not meets the requirements determined during the analysis phase entirely.

65

Appendices

New User Interface

Edge
Delection

Figure 1.0 : Main display

tmage F dge Detection

Figure 2.0 : The list of main menu

Figure 3.0 : The list of function in File menu

orwn A N - Tha lick Af Hamadsan 3o MHthar DEFAnt smamg

g 1]
e TR LAl A ALY SANNAREE

g g SrE————— - — -

Image Edge Datect

67

Sample Code : Image processing

#include "image.h"

I
//copy from imgl to img 2
;{'
bool copylmage(IMAGE *imgl, IMAGE *img2)
{

/lcopy image size
img2->sizeX = imgl->sizeX;
img2->sizeY = imgl->sizeY;

//allocate memory for destination image

int sizeimg = sizeof(GLubyte)*imgl->sizeX*imgl->sizeY*3,//<- times by 3 because image
has 3 channel (RGB)

img2->data = (GLubyte*)malloc(sizeimg);

if(!img2->data)return false; //if unable to allocate memory, return

/lcopy image pixel from imgl to img2
for(int i=0; i<sizeimg; i++)

img2->datai] = imgl->datali};

H
return true;
i
It
//free memory of image
/F
void destroylmage(IMAGE *img)
{
if{limg->data)
free(img->data):
}

I
//set color of entire pixel in an image
1/
void setColor(IMAGE *img, GLubyte R, GLubyte G, GLubyte B)
{

/fset every pixel o R, G & B
for(int x=0; x<img->sizeX; x++)
for(int y=0; y<img->sizeY; y++)
{
putPixell(img, x, y, RED, R);
putPixell(img, x, y, GREEN, G);
putPixell(img, x, v, BLUE, B):
H
}
1
//process images to find edges
!‘(f,
‘,‘*

what this code is doing is scan every pixel in the image one by one,

then subtract the pixel with the adjacent pixels(right, bottom & bottom-right
pixels). We subtract it to find the different between the scanned pixel and

it's adjacent pixel. Then we find which value is the biggest one(the most obvious

70

different value) and put it into the scanned pixel as the edge.

Because the scanning moves from lefl to right and from top to bottom,
it only scan the pixel that are infront of it ieright, bottom & bottom-right

pixels.
)

//this macro will return the biggest number betweenx, y & z
#idefine biggest(x.y,z) x>y? (x>2? x:2):(y>2? y:z)

void Edge(IMAGE *img)
{

int

GLubyte cc, rc, be, rbe;

XY,

xplusl, yplus],
channel;

//check every pixel in the image :
for(x=0; x<img->sizeX; x++)//scan in x axis

t

for(y=0; y<img->sizeY y++)//scan in y axis

/Iprocess all 3 channels(RGB) one by one
for(channel=0; channel<3; channel++)

{

{

xplusl = x+1: //to get the right side pixel
yplusl = y+1; //to get the bottom side pixel

//get center color(currently scanned pixel)
cc = getPixell(img, x, v, channel);

//compare center color with right side color
f(x<img->sizeX-1)//check if we are not out of the image

//get cc minus rightside color
rc = abs(cc - getPixell(img, xplus], v, channel));

/if we are out of boundary, set it to 0
else rc=0;

;_’icompare center color with bottom color
if(y<img->sizeY-1)//check if we are not out of the image

//get cc minus bottom side color
be = abs(cc - getPixel1(img, x, yplus], channel));

/Af we are out of boundary, set it to 0
else be = 0;

//compare center color with right-bottom color

ifix<img->sizeX-1 && y<img->sizeY-1)//check if we are not out

//get cc minus bottom-right sid
X : ! e color
| rbe = abs(cc - getPixel 1 (img, xplus], yplusl, channel)):
/Af we are out of boundary, set it 10 ¢

71

else rbc = 0;
/ffind the the biggest value between rc, bc & rbe(the most

obvious edge)

cc = biggest(rc, be, rbe);

{
//set the pixel as edge
putPixell (img, x, v, channel, cc).

} -

}//channel
iy
Yix

H
I
// blur an image - take a very long time if too much value
If
f"

To do blur effect, scan every pixel in the image one by one,

then add the value with all pixels adjacent to it. Then divide

the value by the number of pixel that we add and put it into

the scanned pixel back.

in other word we get the average color of a pixel with it's surrounding pixels.
o

void Blur(IMAGE *img, int value)

{

IMAGE tempIMG: //temporary image for processing

int X, ¥, XX, ¥, xplusxx, yplusyy:

GLubyteccR, ccG, ccB;

int totalColorR=0, totalColorG=0, totalColorB=0:

int div = (value*2+1)*(value*2+1); //total number of pixel the we add

if{value<=0) return;

//copy the image into the temporary image
copylmage(img, &tempIMG);

//scan all pixel

for(x=0; x<img->sizeX; x++)

{
for(y=0; y<img->sizeY; y++)
{

/lget center color

ccR = getPixel2(tempIMG, x, y, RED),
ccG = getPixel2(tempIMG, x. y, GREEN);
ccB = getPixel2(1lempIMG, x, v, BLUE);

//get color surrounding center color
for(xx=value; xx<value+1; xx++)
{
for(yy=-value; yy<value+1; yy++)
{

xplusxx = x + xx;
yplusyy =y +yy,

//sum up all color
if(xplusxx>=0 && xplusxx<img->sizeX
&& yplusyyv>=0 && yplusyy<img-
>sizeY)//check the we are not out of the image boundary
{

totalColorR += getPixel2(tempIMG, xplusxx,

yplusyy, RED):
totalColorG += getPixel2(tempIMG, xplusxx,
yplusyy, GREEN); }
totalColorB += getPixel2(tempIMG. xplusxx,
yplusyy, BLUE);
H
else
{
totalColorR += ccK;
totalColorG += ccG:
totalColorB += ccB;
}
vy
Hixx
[/get average color and put in image
totalColorR /= div;
totalColorG /= div;
totalColorB /= div;
//put back the average color into the scanned pixel
putPixell(img, x, v, RED, totalColorR);
putPixell(img, x, v, GREEN, totalColorG);
putPixell(img, x, v, BLUE. totalColorB);
//reset the total color for the next pixel
totalColorR = 0;
totalColorG = 0:
totalColorB = 0;
A
HS
//free memory
destroylmage(&tempIMG),

i

!J'

//set an image to negative color

;J‘
l“

Every channel in a pixel has a value rangg from 0 to 255 (1 byte)
to get the negative value, the formula is 255-value,

*/

void Negative(IMAGE *img)

{

int

Y

for(x=0; x<img->sizeX; x++)

{

for(v=0; y<img->sizeY; y++)
{

/fput in the pixel the negative value of it own

putPixell(img, x, y, RED, 255-getPixel1(img, x, v, RED));
putPixell(img, x, y, GREEN, 255-getPixel1(img, x, y, GREEN));
putPixell(img, x, y, BLUE, 255-getPixel I(img, x, y, BLUE));

}
I
//diffuse an image pixels

void Diffuse(IMAGE *img, int value)

{*

we get a pixel, and put it at a random position.

value is the random limit so that the pixe} will not go too far
*!

{
int X, v, xplusrx, yplusry;

iflvalue<0)value = 0;

/Iscan every pixel one by one

for(x=0; x<img->sizeX; x++)

{
for(y=0; y<img->sizeY: y++)
{

//get the random position for the pixel
xplusrx = x + (rand()%value)-value/2;
yplusry = y + (rand()%value)-value/2;

//check that we do not get out of the image boundary
if(xplusrx>=0 && xplusrx<img->sizeX-1

&& yplusry>=0 && yplusry<img->sizeY-1)
{

//put the pixel at the random position

putPixell1(img, xplusrx, yplusry, RED, getPixell(img, X, v,
_RED));

putPixell(img, xplusrx, yplusry, GREEN, getPixell(img, x, v.
_GREEN));

putPixell(img, xplusrx, yplusry, BLUE, getPixell(img, x. v,
_BLUE)):

}
I
//LineArt effect - like a photostat quality
/Ivalue from 0 to 100

I
.("

scan every pixel one by one, then check wether it is larger or
smaller then the value. if it is larger, put back 255(white color) else
put back 0(black color)

*/

void LineArt(IMAGE *img, int value)
{

nt 35

int brightness;

if{value<O)value = 0,
if{value>100)value = 100;

value = (value*255*3)/100;

for(x=0; x<img->sizeX; x-++)

74

)

for(y=0; y<img->sizeY; y++)

brightness =
getPixell(img, x, v, _RED) +
getPixell1(img, x, v, GREEN) +
getPixell1(img, x, y, _BLUE);

if(brightness>value)

{
putPixell(img, x. y. RED, 255);
putPixell(img, x, y, GREEN, 255);
putPixell(img, x, y. BLUE, 255);

}

else

{
putPixell(img, x, v, RED, 0);
putPixell(img, x, y. GREEN, 0);
putPixell(img, x, y, BLUE, 0);

i

If
/¥

This will be our own image file format when reading/saving the IMG file

first 3 letters will be the file identification

char T
char ‘™M
char 'G
next 2 integers are the width and heigth
int sizeX
int sizeY
then all the pixel data
unsigned char data[sizeX * sizeY * 3channels]
L/
fl‘
//Load our own image format
I

bool LoadIMG(char *filename, IMAGE *img,

{

int *actualWidth, int *actualHeigth)

FILE *file;

IMAGE tempIMG:

char ID[3] = {T','M", 'G'}.
id;

//try to open the file
file = fopen(filename, "rb");
if{(!file)return false;

//check for correct IMG file opened
for(int i=0; i<3; i++)

{
fscanf{(file, "%c", &id);

75

iftid 1= TDIi])
{

felose(file):
MessageBox(NULL, "Not an IMG file", "Error", MB_OK);

return false;
}

fscanflfile. "%i ", &tempIMG sizeX); =
fscanfifile, "%i", &tempIMG sizeY);

int sizeimg = sizeofl GLubvte)*tempIMG sizeX*tempIMG sizeY*3:
tempIMG.data = (GLubyte*)malloc(sizeimg);

GLubvte R. G. B:
for(int v=0; y<tempIMG sizeY; y++)
{

for(int x=0: x<tempIMG.sizeX; x++)

{
fscanf{file, "%c%c%c", &R, &G, &B);

nutPixel2(tempIMG. x. v. RED. R):
putPixel2(tempIMG, x, vy, GREEN,G):
putPixel2(tempIMG. x. v. BLUE, B):

}
fclose(file):

/Iget compatible openGil. image size

//because openGL texture width and height can only be in

//be these number ie: 8. 16. 32, 64, 128. 256. 512, 1024 only
#define compatibleSize(x) x<=87 B:x<=167 16:x<=327 32:x<=647 64:x<=1287 128:x<=2567
256'x<=5127 §12:x<=1024" 10240

//save img size into temporary variables
int tempSizeX = img->sizeX;
int tempSizeY = imp->sizeY’

img->sizeX = compatibleSize(tempIMG sizeX):
img->sizeY = compatibleSize(tempIMG.sizeY);

/hif size is valid continue
if(img->sizeX!=0 && img->sizeY!=0)
£
/ffree img memory from previous data first

destroyimage(img):

//reallocate image memory
sizeimg = sizeof{GLubyte)*img->sizeX*img->sizeY *3;
img->data = (GLubvte*)malloc(sizeimg);

/fcopy from tempIMG to img
GLubyte lastColor{3];
for(int x=0; x<img->sizeX: x++)
{
for(int v=0: v<img->sizeY: v-++)
{
for(int channel=0: channel<3: channel++)
{

76

if(x<tempIMG sizeX && y<tempIMG.sizeY)

{
lastColor{channel] = getPixel2(tempIMG, x, v.

channel);
putPixel 1 (img. X. y. channel.
lastColor{channel]):
}
else
putPixell(img. _ x, : 2 channel,
lastColor{channel]):
H
H
}
*actualWidth = 1empIMG sizeX;
*actualHeigth = tempIMG.sizeY;
H
else
{
[/if size is not valid(too big) get back the old size
MessageBox(NULL, "Bitmap file too large to display”. "ERROR". MB_OK):
img->sizeX = tempSizeX:
img->sizeY = tempSizeY:
}
destrovimage(&tempIMG):
return true;
}
’l’
//save IMG file format

,:
bool SavelMG(char *filename, IMAGE *img, int actualWidth, int actualHeigth)

{
FILE *file;

file = fopen(filename, "wb");
if{!file)return false;

fprintf{file. "1");

fprintf{file. "M");

fprintf{file, "G"):

fprmtf{file, "%i ", actualWidth);
fprintf{file, "%i", actualHeigth);

for(int y=0; y<actualHeigth: y++)

{
for(int x=0; x<actualWidth; x++)
{

fprintf{file, "%c", getPixell(img, x, y, RED));
fprintf{(file, "%c", getPixell(img, x, y, GREEN));
fprintf{file, "%c", getPixel1(img, x, y. BLUE)):

H

fclose(file):

return true;

77

User Manual

Image Edge Detection is one of the images processing software that is not a
server-based architecture. It is a stand-alone application that able to run in any
version of Windows platform. There is no installation and configuration needed
before this system available to use. All you have to do is just grab the software and
run the system directly through the compact disk. The hardware and software
requirements for Image Edge Detection System are as followed:

1.1 Hardware requirements
The hardware specifications are:
Processor : Pentium II 166 Mhz and above.
Memory : 56.0 Mbytes of RAM.

Hard disk : at least 4.75 Gigabytes.

1.2 Software Requirements
The software specifications are:
Operating system platform: Microsoft Windows 95, Windows 98, Windows
Millennium Edition (ME), Windows NT 4.0, or

Windows 2000.

To start using the system, double click the edge detection program icon and

the main display will pop-up as below:

78

Image Edge Detection
¢ st Edon

£Edge
Pelfection

Figure 1.0 : Main display
Before you start loading your own image, you can try all the function first on the
default image displayed. For example, by clicking the Detect Edge menu, the edge

image will be show automatically right after the menu clicked.

Image Edge l}'e{ec[_l_on

Figure 2.0 : Edge image

79

If you want to get back to the original image, click the Reload Image menu.
This menu works like undo function but it cannot turn back to the previous image
process. For example, if you apply another effect to the edge image, when the
Reload Image clicked, it will show the original image, not the edge image.

The Zoom In and Zoom Out menu is for enlarge or decrease the image size.
All the function under the Other Effects menu is just a peripheral function that is
included in this system. The alphabetical beside the function is a short key that you
can press to apply the effect on image. This is the alternative and easy way to apply
the function rather than click each function manually. The results of each function

are as below:

Fionre 3) Rlur imaoe

e Blur more

image Edge Detection

Figure 4.0 : Blur more image

e Negative

Figure 5.0 : Negative image

81

e Line art

f Image Edge Detection
§ Lt AT

Figure 6.0 : Line art image

Note : This function is to convert the image to black and white. If you apply the

line art function on the default image, Edge Detection there will no effect on the

image because the image is already in black and white.

82

il =i
Image Edge Detecton : - e = :

Figure 7.0 : Diffuse image
Finally, the rmst right menu is all about the developer.

Aboul Image Edge Detechion

Figure 8.0 The developer information

After the trial session, now you can try to load your own image but remember
that this system only supports two kind of image, that is jpeg and bitmap. Click
the Open Bitmap to load the .bmp image format and Open Jpeg to load the .jpg
format. The Load IMG function is for retrieve the processed image that has been

save in .img format. To save the processed image, click Save IMG function.

Please note that all the processed image that you save are automatically
formatted to .img, which mean the image saved can only be display in this
system, not your computer. Your computer cannot read this format because this
is not a standard format like jpeg and bitmap. To exit this system just clicks FExir

function or the ‘x’ button on the right side corner.

Reference

10.

11.

12.

13.

Pfleeger, Shari Lawrence. (2001). Software Engineering Theory and
Practice. 2™ ed. Prentice Hall Inc.

Sommerville, Ian. (2001). Software Engineering. 6™ ed. Addison-Wesley.
Lee Yew Fei. (2000/2001). E-courier (Package Tracking System). Bach.
Thesis. University of Malaya.

Christina Shanti. (1999/2000). MR Image 3D Reconstruction and Volume
Visualization. Bach. Thesis. University of Malaya.

MATLAB Application Program Interface Guide, The Mathwork Inc, 1998.
Computer Vision & Image Processing a practical approach using CVIP tools,
Scott E. Umbaugh, Prentice-Hall, Inc 1998

Introductory remote sensing : digital image processing & applications, Paul
J. Gibson & Clare H. Power, 2000, St. Edmundsbury Press, Bury St.
Edmundssuffolk

Angel, E. Interactive Computer Graphics: A Top-Down Approach with
OpenGL. Reading, MA: Addison-Wesley, 2000.

Davies, A., and P. Fennessy. Digital Imaging for Photographers. Boston:
Focal Press, 1998.

Foley, J., A. van Dam, S. Feiner, and J. Hughes. Computer Graphics:
Principles and Practice. Reading, MA: Addison-Wesley, 1990.

Gonzalez, R. C., and P. Wintz. Digital Image Processing. Reading, MA:
Addison-Wesley, 1977.

Hall, E. L. Computer Image Processing and Recognition. New York:
Academic Press, 1979.

Hill, F. S. Computer Graphics. New York: Macmillan, 1990.

14. Holzmann, G. J. Beyond Photography: The Digital Darkroom. Englewood
Cliffs, NJ: Prentice Hall, 1988.

15. Hough, T., ed. The Joy of Photography. Reading, MA: Addison-Wesley,
1991.

16. Kruglinski, D. J., G. Shepherd, and S. Wingo. Programming Microsofi
Visual C++ Fifth Edition. Redmond, WA: Microsoft Press, 1998.

17. Lindley, C. A. Practical Image Processing in C. New York: John Wiley &
Sons, Inc., 1991.

18. Lyon, D. A. Image Processing in Java. Upper Saddle River, NJ: Prentice
Hall PTR, 1999.

19. Martinez, B. and J. Block. Visual Forces: An Introduction to Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995.

20. Parsons, T. W. Introduction to Algorithms in Pascal. New York: John Wiley
& Sons, Inc., 1995.

21. Pitas, 1. Digital Image Processing Algorithms and Applications. New York:
John Wiley & Sons, Inc., 2000.

22. Seul, M., L. O'Gorman, and M. Sammon. Practical Algorithms for Image
Analysis: Description, Examples, and Code. Cambridge: University Press,
2000.

23. Sphar, C. Learn Microsoft Visual C++ 6.0 Now. Redmond, WA: Microsoft
Press, 1999.

24. Teuber, J. Digital Image Processing. New York: Prentice Hall, 1993.

25. http://www.mathworks.com

26. http://hwr.nici kun.nl

27. http://peipa.cssex.ac.uk

28. http.//www.cs.cmn.edu/afs/cs/project/cil/ftp/html/vision. html
29. http://www.sci.lib.uci.edwHSG/Medicallmage html

30. http://www.rz.go.dlr.de:8081/softarch html

31. http:// eecs.wsu.edu/Ipdb/title html

32. hitp://www-isis. ecs.soton. ac. uk/research/visinfo/rgroup.html
33. hitp:/george.Ibl. gov/computer_vision.html

34. http://george.1bl. gov/ITG.html
35. http://www.video.eecs.berkeley.edu/

36. http://www,cg.tuwien.ac.at/studentwork/ CESCG97/boros/

37 J/IwWwWw.pi ing1339/polar.htm
38. http://www-sop.inria.fr/chir/personnel/devernay/publis/distcalib/
39. http:// .pcigeomatics.com/cgi-bin/pcihlp/IHS

42. http://www.www.math mtu edu/~msgocken/intro/intro.html

87

