

IMAGE EDGE DETECTION SYSTEM

 AZIMAH BINTI RAZALI

FACULTY OF COMPUTER SCIENCE & INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2002/2003

Univ
ers

ity
 of

 M
ala

ya

Abstract

lmage edge detection is not a new thing in image processing. It has been applied

so many years ago as one of the technique or method to produce a variation of image

display either for medical, research or art. For example in medical field, they used this

method for X-Ray.

This thesis describes edge detection in details including the edge definition, the

types of edge, detection methods, the problems with edge, the advantages and

dis~dvantages and the most important is how to detect edge in digital image, either two­

dimensional or three-dimensional images.

In this system, two main methods that are implemented are Laplacian and

Gaussian. For the Gaussian method, it divides to two parts, the first one for one­

dimensional image called One Dimensional Gaussian and the other one is fir two­

dimensional image called Two Dimensional Gaussian. Beside these three methods, there

are three other operators that are also used in image detection process. They are Robert

operator, Sobel operator and Prewitt operator. But the user does not need to use all of

these operators, they just need to chose any one of them to be applied on their scanned

images. Though all of these operators are functioning in three different ways, the result is

still the same.

In other word, this thesis explores the methods or techniques of image edge

detection in detail until software that can detect edge was developed and available to use

by users.

ti

Univ
ers

ity
 of

 M
ala

ya

AcknJ>wledgement

This thesis is written as lecturers, friends and family provide technical and

emotional support. It is impossible to list here all those who helped to sustain the author

during the development of this thesis and the author apologize in advance for any

omissions.

First and foremost the author wishes to express her deepest gratitude to her

supervisor, Puan Nomazlita Hussin, who had inspired and supervised the author form

time to time until the completion of this thesis. Without her guidance, this thesis would

not have propelled in the right direction to achieve the goals.

Particular thanks go to Miss Nur Aniza Abdullah as a moderator that willing to sit

and discuss ideas and provided suggestions regarding the initial proceeding of system

development. Also, I wish to express my appreciation to my new moderator, Mr. Phang

Keat Keong. for his advice and pleasure to evaluate my thesis. The author also

appreciates the guideline that the Faculty of Computer Science and Information

Technolof:,>y had in making this thesis possible.

Finally, the author want to express her deep appreciation for the support and

encpuragement of her parent, Erwik Razalj Mohd Yusof and Puan Noor Asiah Said,

family, friends and as always, Maznan Mazlan.

iii

Univ
ers

ity
 of

 M
ala

ya

Lisf of content

Abstract.. n

Acknowledgement ··.·................................... 111

List of content... 1v

List of table... ix

List of figure... x

1.0 Introduction.. 01

1.1 project overview......... 01

1.2 Goals and objectives... 01

1.3 Scope... 02

1.3.1 System scope... 02

1.3.2 User scope... 02

1.4 Project planning. 03

1.5 Project schedule... 04

1.6 Chapters summary... 05

1.7 Chapter summary... 07

2.0 Literature Review.. 08

2. 1 Research methods... 08

2.2 Introduction... 09

2.3 What is edge detection?. 09

2.3.1 Edge types... 10

2.3.2 Finding edges... 1 1

iv

Univ
ers

ity
 of

 M
ala

ya

2.3.3.Tbe importance of edge... I 1

2.3.4 Edge detection concepts... I 1

2.3.5 Edge detectors.. 12

2.3.6 Other methods of edg~ detection ~ 15

2.4 What is Matlab? 20

2.4. I The Matlab system............ ... 22

2.5 Current available system... 23

2.6 Chapter summary.. 25

3.0 Methodology....... 26

3.1 Introduction and concept of methodology... 26

3.2 System development methodology.. .. 27

3.2.1 Requirement analysis.... 29

3.2.2 System analysis. 29

3.2.3 System design.. 29

3.2.4 Program design.. 30

3.2.5 Coding... 30

3.2.6 Unit and integration testing..... 30

3.2. 7 System testing... 30

3.2.8 Acceptance testing. 30

3.2.9 Operation and maintenance... 31

3.3 Chapter summary. 31

4.0 System analysis 32

4.1 Problem analysis.................... 32

v

Univ
ers

ity
 of

 M
ala

ya

4.2 Requirement analysis.. 33

4.2. 1 Functional requirements.. 34

4.2.2 Non-functional requirements.. 36

4.3 Development tools analysis ~ 37

4.3. 1 Hardware requirements... 37

4.3.2 Software requirements.. 38

4.4 Chapter summary... 38

5.0 System design... 39

5.1 Introduction ... 39

5.2 Architectural or process design... 39

5.2. 1 Context diagram of image edge detection.................. 39

5.2.2 Structure chart of image edge detection.................................... 40

5.2.3 User interface design.. 42

5.4 Chapter summary... 43

6.0 System Implementation.. 44

6.1 Introduction...................................... 44

6.2 System Development. 44

6.2.1 Development Tools... 45

6.2. 1. J Hardware Requirements... 45

6.2. I .2 Software Requirements... 45

6.2.2 Methodology.... . .. 45

6.2.3 System Coding... 46

6.2.3. 1 Coding Approach.. 46

vi

Univ
ers

ity
 of

 M
ala

ya

6.2.3.1.1 Readability........... 46

6.2.3. 1.2 Naming Technique... 46

6.2.3.1.3 Internal Documentation.. 46

6.2.3. 1.4 Modularity ·.................................... 47

6.2.3.2 Coding Style.. 47

6.2.4 System Coding Tool. ... 48

6.2.5 Coding Concept... 49

6.3 Chapter Summary... 50

7.0 System Testing... 51

7.1 Introduction.. 51

7.2 Objective of Testing............ .. 51

7.3 Testing Technique... 52

7.3. l White Box Testing... 52

7.3.2 Black Bow Testing... 53

7.4 Testing Strategy... 53

7.4.1 Unit Testing..... 54

7.4.1.1 Unit Testing Example.................. ... 55

7.4.2 Control Object Testing... 55

7.4.3 Integration Testing.. 55

7.4.4 System Testing.............. 56

7.5 Chapter Summary... 56

8.0 System Evaluation.. 58

8.1 Introduction.. 58

vii

Univ
ers

ity
 of

 M
ala

ya

8.2 Problems Encountered and Solutions... 58

8.3 System Strengths............ .. 60

8.4 System Constraints.. 6 1

8.5 Future Enhancement :-.................................... 6 l

8.6 Knowledge and Experience Gained... 63

8. 7 Chapter Summary... 64

Conclusion.. 65

Appendices.................................. ... 66

Reference........................ 85

viii

Univ
ers

ity
 of

 M
ala

ya

List of table

1.0 Project planned schedule... 05

7.0 Unit Testing Example ~ 55

ix

Univ
ers

ity
 of

 M
ala

ya

List of figure

2.0 Sharp step, gradual step, roof and through ···: ··................................. lO

2.0 Highlights and lowlights... 11

2.2 1st and 2nd derivative of an edge illustrated in one dimension...................... 13

2.3 Various edge detection filters ... 16

2.4 Vertical and horizontal edges... 17

2.5 Vertical Sobel filter........................ ... 18

2.6 Horizontal Sobel filter.................. I 8

2.7 Sobel filtered common edges - Jim. 19

2.8 Sobel filtered common edges - Roger.. ... 19

2.9 Haar wavelet transformed image... 20

3.0 Waterfall Methodology. ... 28

4.0 The process of determining requirements system.................................... 34

5.0 Context diagram of image edge detection system.................................... 40

5.1 Structure chart of image edge detection system........................... 41

5.2 Data flow diagram of image edge detection system............... 41

5.3 Main menu... 42

5.4 Detection page.. 43

6.0 Matlab add-In Toolbar....................... 49

7.0 Unit Testing....... 54

x

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 : Introduction

1.1 Project Overview

Image edge detection is a system which able to detect edge line or boundary of

an images. It is one of the image manipulation processes in recent image processing

to create an edge image that usually used in medical and educational field.

In this system, the two main methods that are implemented are Laplacian and

Gaussian. For the Gaussian method, it divides to two parts; the first one for one­

dimensional image called One Dimensional Gaussian and the other one is for two­

dimensional image called Two Dimensional Gaussian. Beside these three methods,

there are three other operators that are also used in image detection process. They

are Robert operator, Sobel opef'1tor and Prewitt operator. But the user does not need

to use all of these operators; they just need to choose any one of them to be applied

on their scanned images. Though all of these operators are functioning in three

different ways, the result is stiJI the same.

For the development of this system, waterfall model has been chosen. It is

because this waterfall methodology is easy to understand especially for those who

really new in system development. The process of the development is shown clearly

step-by-step, so it is much easier to follow.

All the source cord was written in Matlab 6. I , which is one of the programming

languages that specialized in mathematical, based programming.

1.2 Goals and Objectives

The main purpose of this thesis to do a thorough study and analysis on image

edge detection as well as their characteristic in order to have a clear understanding

about edge detection method, their relation and importance in the real world images.

l

Univ
ers

ity
 of

 M
ala

ya

rt is also to gain knowledge and experience on how to developed a system or

software.

The objectives of this system are:

• To provide an easy way to detect edge

• To minimize the time spent of edge detection process

• To create a good but simple way to let the users express their idea

about the edges they have in mind regarding a specific image

• To implement a method to detect the type of edges a user ordered

1.3 Scope

1 .3. I System scope

Generally, this system performed a process of image edge detection based on

the value of threshold that included by user. Basically the process that includes

in this system are input the image from user, pre-procession to make sure the

detection is accurate, detection process, display the preview image, print out the

original image and the edge image. There are two methods used in detection

process, the Laplacian and the Gaussian. All of the coding was written in

MATLAB, which is one of the programming languages that specialized in

mathematical based programming.

1.3.2 User Scope

Image edge detection system consists of four main users, which are:

• Kindergarten teacher

The edge detection is u~ful for touching up scanned drawing or cartoon

pictures. It helps a teacher, which wants to scan pictures and get rid of the

colour, so that the kids could then colour it in.

2

Univ
ers

ity
 of

 M
ala

ya

• Pictures editor

rt is very important to the pictures editor to be creative on displaying images

in alJ types of printed media such as magazine and newspaper and also in

virtual media like web page. They can manipulate the edge images to makes

their pictures looks more interesting or artistic.

• University or College stud~nt

Students who studying in image processing (usually in majoring of

information technology) will have opportunities to practice the edge

detection theory that they)lad learn in class by using this system.

1.4 Project Planning

The compulsory step of doing any project is project planning. After defining

the project and the problems, setting the project objectives and ensuring the

scope of the project, the next step is project planning. This step is very crucial in

terms of getting on to the right course in the remaining studies of the new

system.

There are a few planning that must be made here which are important to

gather useful and related infonnation in the development of the new system. The

planning are:

1. Deciding the source of information

ii. Extracting only useful and related information

iii. Studies made on the information gathered

1v. Analysis and make sySJem draft

v. Decide type of system development tools

Vt. Design the system

3

Univ
ers

ity
 of

 M
ala

ya

vii . Test the new system

vm. Adjustment and enhancement

ix. lmplement the system

x. Maintenance of the system

Usually the planniog phase is carried out indirectly because some ways not

prepare on paper and just base on the idea of the plannjng itsel(However for

this project, the planning is done quite formaJ and the foJlow-ups are vel)' much

according to the planning itself.

However there are some works that were carried out without planning or that

is exclude from the planning lists. For example types of reading materials were

not picked according to what is planned but based in what is available. But onJy

materials that related to what we have planned is considered and extracted.

The unplanned activities can be managed properly with a project

management. This is good for final review of the overall process of the project

itself.

1.5 Project Schedule

Project schedule plays an important role in planning and developing the

system. It specifies aU the activities involve in system development and the

duration of time for each activity to successfully implement the project. The

project scheduJe for this projeff is shown in beJow:

4

Univ
ers

ity
 of

 M
ala

ya

Table 1.0 ; Project Planned Schedule

1.6 Chapters Summary

a. Chapter I - Introduction

This chapter gives an Uitroduction to the system and its objectives, as well as an

overview of the proposal of the project. Sections contained here are the project

overview, the goals and object]ves, project scope, plan and last but not least the

schedule of the project.

b. Chapter 2 - Literature Review

In this chapter, the review of literature will be presented and existing similar

system will be analyzed. Research finding, review of literature survey,

summarization on analysis and synthesis of all the literature reviewed will be

indicated. This chapter required reference from the Internet, books, articles in

journals, newspaper and other relevant sources.

c. Chapter 3 - Methodology

5

)
/

Univ
ers

ity
 of

 M
ala

ya

This chapter clearly identifies the methodology, mechanism and approach to be

adopted. The qua1ity of the proposed tools refers to the practicality of the chosen

tools, effectiveness and appropriateness in solving the problem is presented.

d. Chapter 4 - System Analysis

This chapter describes all the system and user's requirement. In this phase, aJJ

the system requirements like functional and non-functional requirements;

hardware and software requirements are identified and analyzed the problems

possibilities.

e. Chapter 5 - System Design

The various components of the proposed system are clearly identified and

explained in this chapter. The components include the architectural design,

database design, functionaJ design and also user interface design.

f. Chapter 6 - System Implementation

Under the specified design and development - operating environment and in

accordance to the design blueprints, the system is developed. Following that, the

system is implemented in the usuaJ environmentaJ.

g. Chapter 7 - Testing and EvaJuation

The approaches for debugging and testing of the system are described here. The

objectives, both achieved an~ unachieved are outlined and the proposaJs of

future work are considered. The problem faced and solutions taken during the

development period are highlighted.

b. Chapter 8 - Conclusion and Future Enhancements

Following the conclusion on the finished system, the strength and limitations of

the final product are confirmefi. A proposal for future enhancement is forwarded

6

Univ
ers

ity
 of

 M
ala

ya

here and also an overall conclusion based on the project development proposal is

provided.

I. 7 Chapter Summary

TI1is chapter describes the project to be developed. The project overview or

introduction descnl>ed au the phase involved in system development Each phase

have different activities and all the activities are explained briefly in this part. The

objectives, goals and scope were explained clearly so that the system will be

developing based on these mafo thing. There is also project plan schedule in order to

make sure the development process successfuUy complete in effective way.

7

Univ
ers

ity
 of

 M
ala

ya

2.1 Research methods

i. Book and references

Chapter 2: Literature review

Material such as books, magazines, journals, newspapers and thesis were read

through for new ideas and to make comparisons. New methods were analyzed to see

if they are suitable in the system epvironment.

ii. Internet research

Researched on the World Wide)Veb was done to look out for similar system and

new technologies of the current software developments tools. The Internet search

engines those were useful jn the qµest are as follow:

iii. Newsgroup

http://www.google.com

http://www.lycos.com

http://www.altavism.com

Newsgroups w~re also useful to discuss FAQs, topics such as development tools,

system architectures, database, programming codes and others. Questions can be

posted and respondents would give their ideas and suggestions. The useful

newsgroups are as follow:

http://www.ask.yal)oo.com

http://www.tanya@putera.com

http://www.e-pedoman.com

8

Univ
ers

ity
 of

 M
ala

ya

iv. Docwnent room

There are a lot of theses from ~niors stored at the document room of Faculty of

Computer Science and InfolllllJtion Technology (FSKTM). Therefore, aU the

documents can provide some of the guidelines on how to do this thesis. These

samples are usefuJ to proyide basic guideline and idea on how to generate a good

report, by evaluating the s~engtb imd weakness of their work.

1.2 lnJroduction

Unlike the real world, images do not have edges. Images have abrupt

changes in intensity. Therefore, the tenn edge detection is not actually an accurate

phrase. But, since the overall goal is to locate edges in the real world via an image,

the term edge detection is commonly used.

An edge is not a physical entity, just like a shadow. It is where the picture

ends and the wall starts. It is where the vertical and the horizontal surfaces of an

object meet. In reality, what appears to be an edge from the distance may even

contain other edges when looked close-up. Edges are scale-dependent and an edge

may contain other edges, but at a certain scale, an edge still has no width

1.3 What is edge detection?

Extracts and localizes points (pixels) around which a large change in image

brightness has occurred. The performance of higher -level processes such as

extraction of object contours and object recognition rely heavily on the

correctness and completeness of edges. Noise produced by imaging and

sampling processes causes the majority of problems in edge detection. There are

two classes of edge detection algorithms with noise smoothing. One of these

9

Univ
ers

ity
 of

 M
ala

ya

classes is based on reguJarization, which is achieved by imposing smoothness

constraints on the solution of edge points in various forms such as minimizing

energy functional. Another class of edge detection aJgorithms employs various

noise smoothing processes before the actual detection procedure. A low pass

filter can achieve noise smoottiing, which is a convolution with a kernel.

2.3.1 Edge types

v
(a) (b) (c) (d)

Figure 2.0 : Sharp Step, Gradual Step, Roof and Through.

All edges are locaJly directionaJ. Therefore, the goal in edge detection is to

find out what occurs perpendicuJar to an edge. The following is a list of commonly

found edges. A Sharp Step, as shown in Figure 2.0(a), is an idealization of an edge.

Since an image is aJways band limited, this type of graph cannot ever occur. A

Gradual Step, as shown in Figure 2.0(b) is very similar to a Sharp Step, but it has

been smoothed out. Tue change in intensity is not as quick or sharp. Many changes

in image intensity will be a continuum of widths or spatial extents between the

Sharp Step and the Gradual Step.

A Roof, as show in Figure 2.0(c) is different than the first two edges. The

derivative of this edge is discontinuous. A Roof can have a variety of sharpness,

widths, and spatial extents. The Trough. aJso shown in Figure 2.0(d) is the inverse of

a Roof

10

Univ
ers

ity
 of

 M
ala

ya

)\ _r-
(a) (b)

Figure 2.1 : Highlights and Lowlights

Edges can also found to b~ any combination of all the above. Figure 2.1 shows a few

such variations.

2.3.2 Finding edges

There is no single \mage filter that wil1 detect all of the previously mentioned

image edges and all their intennediates. This is due to the fact that edges can have

many different profile shapes and spatial scales. There bave been a few theories

concerning edge predictiop, which help in the efficient detection and localization of

edges.

2.3.3 The importance of edge

Edges contain most of the infonnation in an image while being represented

far more compactly than ~e image itself and the first step in image segmentation,

the partitioning of an image into meaningful regions.

2.3.4 Edge detection concepts

Edge detection is a hill defined tenn, because it makes think that the

algorithm gives contours as result In fact these algorithms give images, which show

higher intensity in pixel near gray value transitions. In some way, this task is only

contour enhancement. Our conclusion from this experience is that real edge

detection must produce as outpµt: vector data representing contours. Any other

results are only pretty images to make demos for visitors. In other word, the quality

11

Univ
ers

ity
 of

 M
ala

ya

of an edge detection algorithm can only be evaluated objectively when it is used to

extract contour represented in vector format (as a sequence of connected points).

The now widely accept~d method of contour detection consists of a

smoothing filtering followed by a derivative filtering. Smoothing is intended to

reduce noise in the image without eliminating contours, usually a compromise

should be found to the degree of smoothing with respect to the type of noise present

in the image and the sharpness of contours. The derivative filter detects transitions

or changes in gray levels in the image. Usually second derivative are used to

determine precisely the location of maximum rate of change in gray level.

2.3.5 Edge Detectors

Edges are places in the image with strong intensity contrast. Since edges

often occur at image locations representing object bouodarie

s, edge detection is extensively used in image segmentation when we want to

divide the image into areas corresponding to different objects. Representing an

image by its edges has the further advantage that the amount of data is reduced

significantly while retaining most of the image information.

Since edges consist of mainly high frequencies, we can, in theory, detect

edges by applying a highpass frequency filter in the Fourier domain or by

convolving the image with an appropriate kernel in the spatial domain. In practice,

edge detection is performed in the spatial domain, because it is computationally less

expensive and often yields better results.

Since edges correspond to strong illumination gradients, we can highlight them by

calculating the derivatives of the image. This is illustrated for the one-dimensional

case in Figure 2.2.

12

Univ
ers

ity
 of

 M
ala

ya

Functon ftl)

__ /
1st derlvatlfe

2nd derlva111t'e

Figure 2.2 1st and 2nd derivative of an edge illustrated in one

dimension.

We can see that the position of the edge can be estimated with the maximum of the

I st derivative or with the zero-crossing of the 2nd derivative. Therefore we want to

find a technique to calculate the derivative of a two-dimensional image. For a

discrete one-dimensional function/(/), the first derivative can be approximated by:

d:c;:> = /(i + 1)- /(i)

Calculating this formula is equivalent to convolving the function with [-1 l].

Similarly the 2nd derivative can be estimated by convolving/(ij with [1 -2 1].

Different edge detection kernels, which :are based on the above fonnula,

enable us to calculate either the 1st or the 2nd derivative of a two-dimensional

image. There are two common approaches to estimate the 1st derivative in a two­

dimensional image, Prewitt compass edge detection and gradient eqge detection.

13

Univ
ers

ity
 of

 M
ala

ya

Prewitt compass edge detection involves convolving the image with a set of (usuaJly

8) kernels, each of which is sensitive to a different edge orientation. The kernel

producing the maximwn r¢spons~ at a pixel location detennines the edge magnitude

and orientation. Different sets of kernels might be used: examples include Prewitt,

Sobel, Kirsch and Robinson kem~ls.

Gradient edge detection is the second and more widely used technique. Here,

the image is convolved with only two kernels, one estimating the gradient in the x­

direction, Gx, the other the gradient in the y-direction, Gy. The absolute gradient

magnitude is then given by:

IGI = /G:z:" + Gy"

and is often approximated with:

IGI = IG :z; I + IGYI

Io many implementations, the gradient magnitude is the only output of a gradient

edge detector, however the ed.ge orientation might be calculated with:

8 = arctan(Gy/G:z:)- 31r/4

The most common kernels used for the gradient edge detector are the Sobel, Roberts

Cross and Prewitt operators.

After having calculated the magnitude of the l st derivative, we now have to

identify those pixels corresponding to an edge. The easiest way is to threshold the

gradient image, assuming that all pixels having a local gradient above the threshold

must represent an edge. An alternative technique is to look for local maxima in the

gradient image, thus producing one pixel wide edges. A more sophisticated

technique is used by the Canny edge detector. It first applies a gradient edge detector

to the image and then finds the edge pixels using non-maximal suppression and

hysteresis tracking.

14

Univ
ers

ity
 of

 M
ala

ya

An operator based on the 2nd derivative of an image is the Marr edge

detector, also known as zero crossing detector. Here, the 2nd derivative is calculated

using a Laplacian of Gaussian(LoG) filter. The Laplacian has the advantage that it is

an isotropic measure of the 2nd derivative of an image, i.e. the edge magnitude is

obtained independently from the edge orientation by convolving the image with only

one kernel. The edge positions are then given by the zero-crossings in the LoG

image. The scale of the edges which are to be detected can be controlled by

changing the variance of the Gaussian.

A general problem for edge detection is its sensitivity to noise, the reason

being that cajcuJating the derivative in the spatial domain corresponds to

accentuating high frequencies and hence magnifying noise. This problem is

addressed in the Canny and Marr operators by convolving the image with a

smoothing operator (Gaussian) before calculating the derivative.

2-3.6 Other Methods ofEdge Detection

There are many ways to perform edge detection. However, the most may be

grouped into two categories, gradient and Laplacian. The gradient method

detects the edges by looking for the maximum and minjmum in the first

derivative of the image. The Laplacian method searches for zero crossings in the

second derivative of the image to find edges. TI1is first figure (figure 2.3) shows

the edges of an image detected using the gradient method (Roberts, Prewitt,

Sobel) and the Laplacian met.bod (Marrs-Hildreth).

15

Univ
ers

ity
 of

 M
ala

ya

20

40

SQ

80

100

Fi~ 2.3 Various Edge Detection Filters

Notice ~hat the facial features (eyes, nose, mouth) have very sharp edges.

These also happen to be the best reference points for morphing between two images.

Notice also that the Marr-Hildreth not only has a lot more noise than the other

methods, the low-pass filtering it uses distorts the actual position of the facial

features. Due to the natur~ of the Sobel and Prewitt :filters we can select out only

vertical and hotizontal ed~es of the image as shown below. This is very useful since

we do not want to morph a vertical edge in the initial image to a horizontal edge in

the final image. This woul~ cause a lot of warping in the transition image and thus a

bad morph.

16

Univ
ers

ity
 of

 M
ala

ya

Sobel(verticcl)

20

40

60

80

100

120

20 40 60 eo 100 120

Pre'#ltt(vertieal)

20

40

60

100

20 40 so eo 100 120

Figure 2.4 Vertical and Horizontal Edges

The next pair of images (figure 2.4) shows the horizontal and vertical edges

selected out of the group members images with the Sobel method of edge

detection. You will notice the difficulty it had with certain facial features, such

as the hairline of Sri and Jitp. This is essentially due to the lack of contrast

between th~ir hair and their foreheads.

17

Univ
ers

ity
 of

 M
ala

ya

20

4-0

60

80

100

120

20

40

60

80

100

120

20 4-0 60 90 100 120 20 40 60 so 100 t20

20 40 60 90 100 1io

Figure 2.5 Vertical Sobel Filter

20 40 6C 90 100 120

Figure 2.6 HorizonataJ Sobel Filter

We can then compare the feature extraction using the Sobel edge detection to

the feature extraction using the LapJacian.

18

Univ
ers

ity
 of

 M
ala

ya

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

ed9e$

20 40 60 80 101) 120

Target inage with rnorphng lines morphing Ines

20

40

60

80

20

40

60

80

100

120

20

40

60

80

100

120

20

40

60

80

100

120

20 40 60 80 100 120 20 40 60 80 100 120

Figure 2.7 Sobel Filtered Common Edges: Jim

Onglnal Start ltnage edt;ies

20

40

60

80

100

120

20 40 60 80 100 120 20 40 60 80 100 120

Start image with morphing ltne.~ morphing lines

20

40

60

80

100

120

20 40 60 80 100 120

Figure 2.8 Sobel Filtered Common Edges: Roger

We see that although it does do better for some features (ie. the nose), it still

suffers from mismapping some of the lines. A morph constructed using

19

Univ
ers

ity
 of

 M
ala

ya

individually selected points would still work better. It should also be noted that

this method suffers the same prawbacks as the previous page; difficulties due to

large contrast between images and the inability to handle large translations of

features. Another metbod of detecting edges is using wavelets. Specifically a

two-dimensional Haar wavelet transform of the image produces essentially edge

maps of the vertical, horizontal, and diagonal edges in an image. This can be

~een in the figure 2.9 of the transform below.

20 40 eo eo 100

Figure 2.9 Ha;rr Wavelet Transformed Image

2.4 What is MATLAB?

MATLAB® is a high-performance language for technical computing. It

integrates computation, visualization, and programming in an easy-to-use

environment w~ere problems and solutions are expressed in familiar mathematical

notation. Typic~ uses include:

20

Univ
ers

ity
 of

 M
ala

ya

• Math and computation

• Algorithm development

• Modelit)g, simulation, and prototyping

• Data 31l{llysis, exploration, and visualization

• Scientiflc and engineering graphics

• Applicapon development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does

not require dimensioning. This allows you to solve many technical computing

problems, espe~ially those with matrix and vector fonnulations, in a fraction of the

time it would take to write a program in a scalar noninteractive language such as C

or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINP ACK and

EJSPACK projects. Today, MATLAB uses software developed by the LAPACK

and ARP ACK projects, which together represent the state-of-the-art in software for

matrix compu~tion. MATLAB has evolved over a period of years with input from

many users. 111 university environments, it is the standard instructional tool for

introductory ~d advanced courses in mathematics, engineering, and science. In

industry, MATLAB is the tool of choice for high-productivity research,

development, apd analysis.

MATLAB features a family of application-specific solutions called toolboxes.

Very important to most users of MATLAB, toolboxes allow you to learn and apply

specialized technology. Toolboxes are comprehensive collections of MATLAB

functions (M-files) that e~end the MATLAB environment to solve particular classes

of problems. Areas in which tqolboxes are available include signal processing,

21

Univ
ers

ity
 of

 M
ala

ya

control systems, neural ~etworks, fuzzy logic, wavelets, simulation, and mapy

others.

2.4. f The MATLAB System.

The MATLAB system co~sists of five main parts:

i. :Qevelopment Environment

This is the set of tools and f~cillties that help you use MATLAB functions and

files. Many of these tools are graphical user interfaces. It includes the MATLAB

desktop and Command Window, a command history, and browsers for viewing

help, the workspace, files, and the search path.

ii. The MATLAB Mathem=Jtical Function Library.

This is a vast collection of computational algorithms ranging from elementary

functions like sum, sine, cosine, and complex arithmetic, to more sophisticated

functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast

Fourier transfonns.

iii. The MATLAB L~nguage.

This is a high-level matrix/array language with control flow statements,

functions, data structures, input/output, and object-oriented programming

features. It aUows both ''programming in the small" to rapidly create quick and

dirty throw-away programs, and "programming in the large" to create complete

large and complex application programs.

iv. Handle Graphics®.

This is the MATLAB ~phics system. It includes high-level commands for two

dimensional and three-dimensional data visualization, image processing,

animation, and presenta.tion graphics. It also includes low-level commands that

22

Univ
ers

ity
 of

 M
ala

ya

allow you to fully customize the appearance of graphics as well as to build

complete graphical user interfaces on your MATLAB applications.

v. The MATLAB Application Program Interface (API).

This is a library that l\11ows you to write C and Fortran programs that interact

with MATLAB. It include facilities for calling routines from MATLAB (dynamic

linking), calling MA~ as a computational engine. and for reading and writi.µg

MAT-files.

2.5 Cu"ent available system

One of the application that used edge detection is Adobe Photoshop 5.5,

which is one of the hottest authoring tools nowadayas. This application does not just

detect edge, but it manipulated the detection of edge as a way to produce a variation

of image display. It provides some types of filters function that implemented the

edge detection process. The types of filters function that used edge detection process

are :

1. Blur named as "Gaussian blur"

..
... '!· •· •... :. . \.. \'.

'I ;,. • , ! l I . ,.,·: (. "\ i:·l. . . -.. -~'}'. ~'.~ .·. ,,; . . r· .. -, \If $.\
.·· f .. ~{ ~ ...

' " (, . '- . I
If' ~

OrigimaJ Imag~ After "Gaussian Blur'

23

Univ
ers

ity
 of

 M
ala

ya

n. Brush strokes named as "Accented edges"

OrigimaJ lmage After "Accented edges"

a. Sharpen named as "Sharpen edges"

Origimal lmage

b. Stylize named as:

a) "Find edges"

After "Sharpen edges"

After "Find edges"

24

Univ
ers

ity
 of

 M
ala

ya

b) "Glowing edges"

'. \ I

~ \

. ,~ ;·~ ~· '
t: j t • j··' "·· ~ ·~· .f:"~' • i . . ·1~t ... · ~\ . I : : . . ' ·, ~-· . ' / ...
,. \' J /· . ._ i

~:.

Origim~ Image

2.6 Chapter Summary

After "Glowing edges"

Tn this chapter, literature review is carried out. Literature review helps to

understand the system to be developed as well as the tools using to develop this

system. The comparison was being carried out between the current system and the

system to be developed in order to identify the main function, how the function

operated and the application of the functions. All this review will then give some

view for the developers to build their system and also to improve the system so that

it can cover the current system constraints or drawbacks.

A few technologies are reviewed in order to choose the best approach to

implement the system. There are many development tools that are available in the

market. Different development tool offers different approach. Each tool has its own

strengths and weakness. So, this chapter intends to present some of the features

offered by certain development tools and platforms. The development tool reviewed

is programming language, which is MATLAB.

After the literature review was carried out, it is definitely resulted a more

understanding of the system to be developed.

25

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 : Methodology

3.1 Introduction and concept of methodology.

Methodology is the study that deals with the science of method concerned

with the application or the principles of reasoning scientific and philosophical

enquiry. It deals with the philosophical assumptions underlying the development

process.

A system development methodology is a very formal and precise system

development process that defines a set of activities, methods, best practices,

deliverables and automated tools for system developers to use to develop and

maintain most or all information system and software. Therefore, any methodologies

chosen for image edge detection will ensure that a consistent and reproducible

approach is applied to this project. Methodologies will reduce the risk associated

with shortcuts and mistakes as well as produces a complete and consistent

documentation.

Methodologies enable one to follow a certain procedures, where it basis is

laid down in the way a problem is encountered. Methodologies are also flexible

enough to provide for different types of projects and strategies. In general, a

methodology should fulfill two basic requirements that are effective support of

design process and efficient control of project.

1. Effective support of design process.

• Provide th~ mearis to identify the different steps in the system

developrnent process. It involved from system logic reasoning,

~emantic modeling towards syntax specification.

26

Univ
ers

ity
 of

 M
ala

ya

• Provide th~ means to set boundaries to system environment. It is

required to set boundaries and to take relevant aspects into

consideration.

• An immed\ate consequence of the previous requirement that the

methodology should support stepwise refinement in the design

process. The concept of decomposition of a total system into

subsystems is required in order to reduce complexity.

2. Efficient control of project.

• Provide tools to an efficient control of a project. Most of the time, a

methodology uses the well-known concept of activity planning,

deliyerable and milestone definition in the different stages of a system

dev~lopment project, no matter how it applies to the design phase or in

the implementation phase.

3.1 System Development Methodology.

For the ~evelopment of image edge detection~ waterfall model has been

chosen to assist in this project. The waterfall methodology is an industry standard, a

time-proven approach to system development. This is very powerful methodology. It

simply states that first, one should think about what is being built, and then establish

the plan for how it should be built and then built it.

The wa~erfall methodology forces analysis and planning before actions are

taken. This is gpad advice in many situations. The process forces analysis to be done

and to be precisely define the requirements of the system. It is much easier to build

something if it is known what that something is. It forces a discipline process to

avoid the pressure of writing code long before it is known what is to be built.

27

Univ
ers

ity
 of

 M
ala

ya

This provides an orderly sequence of development steps and helps ensure the

adequacy of documentation and design reviews to ensure the quality, reliability and

maintainability of the development system. It is called the waterfall methodology

because each phase flows naturally into the next phase like water over a series of

falls. Some oftf.ie advantages of waterfall methodology are:

• Easy to follow during system development and maintenance could be

donf at each phase.

• The process of the development is systematic as each phase is fix and

detennine in the beginning of the system development.

• Good visibility becaus~ each process produce some deliverables.

The waterfall methodology does one thing very nicely that is to outlines the

steps required for developing software. What it does not do is take into account truly

iterative development or properly mode] the process of software creation. Many

methodologies start with the waterfall process with modifications to address these

problems. Figure 3.0 below illustrates this methodology:

Requirement Analysis

System Desi211

Program Desi~

Coding

Unit & Integration Test

System Testing

Acceptance Testing

Operation & Maintenance

Figure 3,0 Wate all Methodology

28

Univ
ers

ity
 of

 M
ala

ya

From figure 3.0, the waterfall methodology is very important in order to

make sure that the project has been well planned from the beginning stage until the

end of this project. To guarantee the success of this project, researches have been

made on the related fields and system planning has been done based on the

approaches provided by t~is methodology. Besides that, experiment could also be

done to deterqline the usage of techniques and design ideas. All the steps are

explained and elaborated i~ the followings:

3.2.1 Requirement Analy.ws

The first is to ide1\tify the problems, objective and the scope of developing

image edge detection system. This step is very important because addressing the

wrong objectives and scope of this system will pretty much affect the outcome of the

project. Beside~ that, other task carried out in this phase will be literature review on

edge such as the types of edge, bow to finding edge, and edge detection concept.

3.2.2 System Analysis

l11e next phase is to analysis the system needs and chooses the suitable

system development technology to develop image edge detection. Besides that,

analysis on the system architecture, the functional requirements and non-functional

requirements of the system is also made during this phase. All of the analyses done

on this phase are very crucial and important for the following step, which is the

system design.

3.2.3 System D~sign

In this phase of the system development, the information gathered is needed

to accomplish the logic~ design of the system. It is as guidance before the

implementation of the real systeni. Here, the design of overall system structure, flow

charts, page flows and accurate data flow diagrams are planned, so that the processes

29

Univ
ers

ity
 of

 M
ala

ya

within the system are functionaJ and correct. The objective of this phase is to

visualize each module to be developed in the system.

3.2.4 Program Design

Program design of the system involved the translation of the software

representation produce by the design phase into a computer readable fonn.

Therefore, this portion involves the coding of the system and also the use of

development tools.

3.2.5 Coding

After all the codes or scripts and the system requirements are ready, the next

step is to implement that codes. Implementation is a procedure to integrate the entire

system that is being developed, which includes all the hardware and software in

order for it to function properly and as a complete system.

3.2.6 Uni/ and Integration Testmg

During f11is phase, the software design is realized as a set of program units.

Unit testing involves verifying that each unit meets its specifications. The individual

program units are integrated and tested as a complete system to ensure that the

system requirements have been met. After testing, the system is approved by

supervisor.

3.2. 7 System Jesting

System testing is very important to assure the quality of the system. The

main objectives of system testing are to detect the faults or errors in developed

system so that it can be corrected before the system is fully operational.

3.2.8 Acceptan9e Testing.

After the system is fully operational and ready to use by users, its need to be

test by some users first. Usually, users were chosen randomly. They will use the

30

Univ
ers

ity
 of

 M
ala

ya

completed system and give feedback to the developer whether the system fuJfiJI their

specification needs or not.

3.2.9 Operation andMamtenance

Maintenance of th~ system can be described as the process of changing the

system after it is under operation. Tile changes may involve simple changes to

correct existing errors, more extensive changes to correct design errors or significant

enhancement t9 correct certain specification.

3.3 Chapter Summary

The methodology chosen to develop Image Edge Detection System is

Waterfall Model. This methodology will serve as the base of the whole

development. ln this chapter, the reason why this methodology has been chosen was

explained in detail. Each steps in this methodology is briefly described, so that the

developer can easily understand the concept of this methodology.

The advantages of Waterfall Model also included in this chapter. Some of the

advantages of waterfall methodology are easy to follow during system development

and maintenance could be done at each phase, the process of the development is

systematic as each phase is fix and determine in the beginning of the system

development filld good visibility because each process produce some deliverables.

31

Univ
ers

ity
 of

 M
ala

ya

Chapter 4: System Analysis

4.1 Problem Analysis

The first step that the developers must do before deciding a system and user

requirements is defining the possibility of problems that will exist in the system. The

problems defined then should be as one of the developer's guideline in developing

their system. In this image edge detection system, there are a few problems that will

possibly faces by user, wh\ch are:

1. The system does not have ability to support all the types of images that

input by user. It depends on the texture or the pattern of the image.

11. The system cannot detect edge accurately if there have any noises on the

image. Usually, noises are difficult to detect by user' s naked eye.

iii. The end-user will not know the use of threshold value, what is applicable

value that they suppose to key in, or the importance of that in edge

detection process; how's the value impressed their edge detection

process.

iv. This system provided a variety of edge detection methods or operators

that are Laplacian, Gaussian, Sobel, Prewitt and Robert operators.

Although all these operators produce the same result, which is edge

image, there will be some confusing in user' s thoughts ip deciding which

operators that they mµst use and what's the difference between all the

operators.

v. Extensive user's learning time. The user needs to explore all the

operators provided in the system.

32

Univ
ers

ity
 of

 M
ala

ya

Based on these problems, the approaches or the solutions that suitable to

implement in this system are:

1. Give a brief description on edge detection process in general way

includes the concept of edge detection, the threshold value and

the types of image that system supported. This description will be

one of the elements in user interface.

ii. Provide a pre-processor to clean out the image noises. This

process should be able to running automatically before the edge

detection process. It seems like the user does not realize the

existence of this process in the system.

iii. Give a short description about each operator that contains any

related information like the advantages and drawbacks of the

operato~s.

4.2 Requirement Analysis

A requirement is a feature of the system or a description of something the

system is capable of doing in order to fulfilJ the system's purpose or in other word,

requirements are description about what system can do and their constraint.

To determine the system requirement, first the developer must do an

interaction between customers to elicit the requirements, by asking questions,

demonstrating similar or even developing prototypes of all or part of the proposed

system. Next, capturing those requirements in a document or database. The

requirements are written first so that the developers and their customers agree on

what the system should do. Then, the requirements are often rewritten, usually in a

more mathematical representation, so that the designers can transform the

33

Univ
ers

ity
 of

 M
ala

ya

requirements into a good system design. A verification step ensures that the

requirements are complete, correct and consistent and a validation step makes sure

that the developer described what the customer intends to see in the final product.

REQUIREMENTS ELICITATION ANO ANALYSIS REQUIREMENTS DEFINITlON ANO SPECIFICATION

Prototyping ---;+--­
and Taslln

Oocumenta1ion and
validalion

Have~capu-ed _!!ewe~lhe

al the user needs? r9t tectriques
or views?

Have we cept.red ~the

_ _L

Figure 4.0 The process of determining requirements.

The requirement analysis can never be skipped but it can iptegrate with the

problem analysis into a single phase. New system will always be evaluated on

whether or not they fulfilled the system's objectives and requirements, regardless of

how impressive or compl~ the technological solution might be. It can be divided

into functional requirements and non·functional requirements.

4.2 1 Functional Requirements

A functjonal requi{ement is a description of activities and services a system

must provide. Functional requirements are frequently identified in terms of inputs,

outputs, processes and stored data that are needed to satisfy the system improvement

objectives.

Besides that, functional n:quirements are functions, features and subsystems

that must be included in an infonnation system to satisfy the system needs and be

accepted to thy users. The absepce of the functional requirements will make the

whole system incomplete. The following are the functional requirements of image

edge detection:

34

Univ
ers

ity
 of

 M
ala

ya

i. Upload images

The user needs to upload image first before the system running the edge

detection process. User can upload images from any source they have or they

want such as from Internet, scanned images or they just simply choose any one

of the images from image collection that provided in the system.

ii. Image Pre-processor

Before the edge detection process, pre-processor will be running first

automatically in order to makes the edge are detected precisely.

iii. Detect edge

This is the main function in this system and that is the reason why this system

built up; to detect edge. The system detects an edge based on the value of

threshold. This value is detennined by user due on the level of detection that

they want, but for those user who are not familiar with edge detection or the

using of threshold value, they can ignore that value because the system will still

running the detection process based on the default value that was programmed

by system developer.

iv. Preview image

lt is important to know how's the image looks like after detection process

generated. If the result does not meet the user needs. they will be able to undo

the process and do it again by trying key in another threshold value till they

satisfied with the result. This approach is usual ly referred as "try and error"

method.

JS

Univ
ers

ity
 of

 M
ala

ya

v. Print image

This function will be optional to user, they can choose either to print out their

edge image or they just simply save the image in their own output device such as

floppy disk or compact disk.

4.2.2 Non-funcllonal Requirements

A non-functional requirement is a description of other features,

characteristics, attributes of the system as well as constraints that way limit the

boundaries of a satisfactory system. It is an essential definition of requirements

which how a system must operate.

While these criteria are not actual actions taken by the system, they are

further restrictions on what the system must be able to handle. The non­

functional requirements that have to embedded into image edge detection

include the following aspects:

i. User interface

A standard user interface refers to the consistency usage of colour, font size,

position of text. graphics and also functional menus. It helps users get the result

they need in and out o\the system by addressing user interface objectives, which

also results in being a user-friendly interface to user.

ii. User-friendliness

Building a good flow of navigation can help users to be able to understand with

little effort or at ease about what is going on as users navigate through the

system.

36

Univ
ers

ity
 of

 M
ala

ya

m. Reliability

A system is considered reliable if it does not produce dangerous or costly

failures when used in ways that the designer might not expect it to be used and

the system must be ablr to handle these situations.

iv. Accuracy

Accuracy refers to the precision of the edge detection process provided. It

provides various accuracy measures to maintain the accuracy of detection

process.

v. Maintainability

Maintainability can be defined as the ease with which software can be

understood, corrected, adapted or enhanced in the future.

vi. Efficiency

Efficiency in computer technology means a procedure that able to called or

accessed in many times and it will give that same outputs, not the different

outputs.

4.3 Development tools analysis

.J.3. 1 Hardware specifications:

Processor : Pentium II 166 Mhz and above.

Memory : 56.0 Mbytes of RAM.

Hard disk: at least 4.75 Gigabytes.

Input device : Mouse, keyboard, scanner, floppy drive and disk drive.

Output device : Printer, monitor.

Graphics adapter : 8-bit (for 256-simuJtaneous colours)

37

Univ
ers

ity
 of

 M
ala

ya

./.3.2 Software Specifications:

Operation system : Microsoft Windows 95, Windows 98, Windows

Millennium Edition (ME), Windows NT 4.0, or Windows

2000.

Development Tools : Vis4al Basic.

Programming Language : MATLAB 6.1 .

4.4 Chapter Summary

Before the system requireJDents are identified, the possibility problems have

to be analyzing first so that the requirement can be determined based on the

problems. Requirement analysis was done in this chapter as well. The requirements

are categorized into a few sub-functions that are upload image, pre-processor, detect

edge, preview and print image. TI1ese will be the functions that this system provides.

Whereas, non-functionaJ defines the description of other features and system

constraints that define a satisfactory system.

This chapter also concludes the hardware and software requirements that will

be using in the development pha~.

38

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 : System Design

5.1 lntroduction

System design is defined as those tasks that focus on the specification of a

detailed computer-based solution, on the technical or implementation. It is also

called physical design. The purpose of system design is to determine how to

construct the information system to best satisfy the document requirements.

Meanwhile. the goal of the system design is to design the detection system that is

effective, reliable and maintainable. In general, the design processes begin with

output progresses to input, then data storage and system processing. The design

phase are focused on architectural or process design, and user interface design.

5.2 Arcl1itectural or process design

In architectural design, the system is decomposed to sub-system that provide

almost all related set of services. ll1is is the initial design of identifying sub­

systems, establishing a framework for sub-system control and communication.

Besides, the sub-systems that make up the whole system and their relationship are

identified and documented. The following designs are:

5.2. l Context Diagram of Image Edge Detection System

The diagram in figure 5.0 shows a general interaction or

communication between system and its environment, identified all the

entities related to system and what's the system's input and output.

5.2.2 Stntcture Chari of Image Edge Detection System

In this chart that shows in figure 5.1, the system's functions are

specified where all the fuqction that be able to run by user are listed down.

39

Univ
ers

ity
 of

 M
ala

ya

5.2.3 Structure Chart of Image Edge Detection Sy~1em

In this chart (figu{e 5.2), the system's functions are specified where

aJI the function that be able to run by user are listed down.

select or load imaa e
Image Edge

select detection methods ...
Detection ...

in put thresho Id value ... System ..

USER ~
edge image

Figure 5.0 Context Diagram of Image Edge Detection System

40

Univ
ers

ity
 of

 M
ala

ya

USER

Image Edge Detection S ystem

select detection
methods

Apply edge
detection

User

,___ ____ ,

Upload or select
1ma e

Enter the threshold
value

Preview edge image
1-----1

Print original or edge
1
____ _,

ima e

Figure 5.1 Structure Chart of Image Edge Detection

LO
in ut ima e or select from s stem's colleci1on loading show 1ma e £elected

ima9e ima e seleded

mage colecllon

20
detectJOn methods seledtd Pre-

PfOC8SSOI'

Uer noises

3.0
tlveshold value Detect Edge edeimae

40
seltd

Figure 5.2 Data Flow Diagram of Image Edge Detection

41

Univ
ers

ity
 of

 M
ala

ya

5.3 User lnteeface Design

User interface design is concerned with the dialogue between a user and the

computer. It is concerned wid1 everything from starting the system to the eventually

presentation of desired outputs and inputs. User interface design is very important to

offer a user-fiiendly, reliability, intuitive, minimize the need for users to memorize

the process and events, and at the same time give a good impression to the users.

Below are a few screenshots of user interface of Image Edge Detection System.

IMAGE EDGE DEfECflON SYSTEM

Detection Mett!ods:

I

This system win Pfovlde you the 11rnpfest ~

to det9c:tedge. Just simply choose enyopermors

or methods ttlet you went to implement on your ime.ge.

You not need to confusingwith these five dilerent

opetetors beceuse therw't e guide when you diCk

et each oparetofs function.

Figure 5.3 Main menu

42

Univ
ers

ity
 of

 M
ala

ya

· RfilEI'

Figure 5 .4 Detection page

5.4 Cllapter Summary

System design is ~efined as those tasks that focus on the specification of a

detailed computer-based solution, on the technical or implementation. There are

kinds of design defined ~ this chapter, which are architectural design and user

interface desigq.

Architectural design partitions the system into subsystems and functions. It

shows the overall system to be developed. It also provides the beginnings an outline
I

for drawing the data flow diagrams. User interface design is concerned with the

interaction medium between a user and the computer. Too complfoated user

interfaces will prevent users froll) using the system. Thus, the user interface should

be user friendliness. A few scr~nshot of user interface of Image Edge Detection

System are captured in thi~ chaptyr.

43

Univ
ers

ity
 of

 M
ala

ya

Chapter 6 : System Implementation

6. 1 Introduction

The process of assuring that the information system is operational and then

allowing users to take over its operation is called system 1mplementation. System

imp1ementation is further defined as the consnuction of the new system and the

delivery of that system into production in a day-today operation. It involves coding

step that translates a detailed design representation of software into a progrcµn

language realization. System implementation implements the various components of

the system based on the colJected requirements, where the design is translated into a

machine-readable form.

During implementation, aU functionality planned in design phased is

checked. It should be able to process the correct data and produce accurate

information to end-users. Any problem or malfunction occurred id revised carefully

and fixed accordingly.

6.2 System development

The development environment is crucial for the completeness and

successfulness of any computer system. Development environment plays a major

role in determining the speed of developing the system. During development, the

weaknesses will be noticed and improved; while the errors found will be removed.

Using suitable hardware and software will help to speed up syste:in

development. Thus, the hardware and software are carefully considered to facilitate

the development of the Image Edge Detection System. System development consists

the used of methodology thosen, forms coding, development tools. The details are

ilJustrated as below:

44

Univ
ers

ity
 of

 M
ala

ya

6.2.1 Development Tools

6.2.l.l Hardware Requirements

The following hardware specifications are required to develop Image Ed~e

Detection System:

• Processor : Pentium II 166 Mhz and above.

• Memory: 56.0 Mbytes of RAM.

• Hard disk : at least 4.75 Gigabytes.

• Input devi~ : Mouse, keyboard, scanner, floppy drive and disk drive.

• Output device : Printer, monitor.

6.2.1.2 Software Requirements

The following software specifications have been used to develop Image Edge

Detection system:

• Operating system : Microsoft Windows 2000.

• Development Tools: Visual c-H-

• Programming Language : C

6.2.2 Methodology

This project is developed using the waterfall approach. The development of

tills project will consist of five st~es, which are requirement, design, coding, testing

and operation. The system is design using logical flow and it allows the estimation

of the milestones. Each stape mu~t be completed before proceed to the next stage to

ensure that the system is bµilt accprding to the requirements and specifications.

45

Univ
ers

ity
 of

 M
ala

ya

6.2.3 System Codmg

System coding is a set of instruction written in order to enable the code to be

executed and perfonn the required functionality. A good and well-managed program

coding will enhance the readability of the whole program. In addition, it provides an

easy understanding to the program flow especially for those programs with hjgh

degree of compJexity.

6.2.3. 1 Coding Approach

Some of the approaches used in the coding development are listed as below:

6.2.3.1./ Readability

Code document is important to ease the readability of a system. It begins with the

selection of identifier (such as vjiriables and labels) names and continues with the

composition and organizing the whole program.

6.2.3.J.2 Naming Technique

This is good and meaningful technique of variables, controls and modules that

provide easy identification for the program. The naming convention is created with

the consistency and standardization in coding.

6.2.3.1.3 Internal Documentation

This provides a clear guideline to developers and readers about the function of a

particular source code in the program. Therefore, comments provide the developer

with the means of communicatjon with other readers of the source code. The

46

Univ
ers

ity
 of

 M
ala

ya

statement of the module and descriptive comments are embedded within the body of

the source code is used to describe the processing function.

6.2.3.1..I Modularity

The main purpose of modularity is to reduce complexity of system and to faciJitate

the developer to implement the system by encouraging parallel development of

different parts of the system. With the approach of modularity, developer can

implement all modules at the S31J1e time and does not have to wait for a particular

module to complete before going into another module.

6.2.3.2 Coding Style

Coding style is an important component of the source code and it determines

the intelligibility of a program. An easy to read source code makes the system easier

to be maintained and enhanced in future. Listed below are some of the coding styles

used during the coding phase of this project:

• Selection of meaningful identifier names (variables, forms, labels, images

and pictures).

• Description and an appropriate comment written in the source code to make

it easier for the readers to understand the source code.

• Indentation of codes will increase the readability of the program and for a

neater look.

• Meaningful and understandable function and method declarations.

• Keep all complex statement as simple as possible to avoid confusion.

47

Univ
ers

ity
 of

 M
ala

ya

6.2.4 System Coding Tool - Visual C++ 6.0

Visual C++ is a powerful and complex tool for building 32-bit applications

for Window 95 and Windows NT. These applications are much larger and more

complex than their predecessors for 16-bit Windows or older programs that did not

use a graphical user interface. Y ~t, as program size and complexity has increased,

programmer effort has decreased, at least for programmers who are using the right

tools.

Visual C++ is one of the right tools. With its code-generating wizards, it can

produce the shell of a working Windows application in seconds. The class library

included with Visual C++, the Microsoft Foundation Classes (MFC), has become

the industry standard for Windows software development in a variety of C++

compilers. The visual editing tools make layout of menus and dialogs a snap.

Actually, the development tool that was chosen in requirement analysis to

implement this system is Visual Basic 6.0 and MATLAB 6.1, but because of some

reason, the development tool was changed. For supporting MATLAB to be a stand­

alone program, it is easy to used Visual C++ rather than Visual Basic because in

Visual C++ there is an add-in function which is simply convert MATLAB files (M­

file) to extension program (*.exe). The MATLAB add-in adds a MATLAB Wizard

to the New Project dialog box and a toolbar to the Developer Studio user interface.

The actions associated with the toolbar buttons are: adding a file to the proje~t;

opening the matrix viewer whil~ debugging; packaging a completed program for

redistribution; cµid viewing this h~lp file.

48

Univ
ers

ity
 of

 M
ala

ya

,-
noolbar1 r i

ftl!al
Figure 6.0 : Matlab add-la Toolbar

That is the main reason why the development has been changed. But the big

problem with Visual C++ is it cannot support any types of image from M-files.

Though the M-files executed successfully in Visual C++, but the compiler failed to

read the image. To solve this problem, all the coding was rewrite in C language.

6.2.5 Coding Concept

Generally, the concept of edge detection that used in this system is scan every

pixel in the image one by one, then subtract the pixel with the adjacent pixels

(right, bottom & bottom-right pixels). The system subtracts it to find the

different between the scanned pixel and it's adjacent pixel. Then find which

value is the biggest one (the most obvious different value) and put it into the

scanned pixel as the edge. Because the scanning moves from left to right and

from top to bottom, it only scan the pixel that are in front of it ie:right, bottom &

bottom-right pixels. Bellow are the code that execute the comparison process:

1/get center color(currently scanned pixel)

cc - getPixell (img, x, y, channel);

compare center color with right side color

if(x img->sizeX-1) /check if we are not out of the image boundary

compare center color with bollom color

if(y<img->sizeY-1)//check if we are not out of the image boundary

49

Univ
ers

ity
 of

 M
ala

ya

6.3 Chapter Summary

This chapter describes the implementation of the system being developed. It

begins with the introduction to the system implementation. System

implementation implements the various components of the system based on the

collected requirements, where the design is translated into a machine-readable

form.

TI1en, the chapter describes the development environment of the system. The

system development includes of hardware and software requirements,

methodology chosen, system coding and development tools and coding concept.

A sample code is included in Appendices to show the coding environment.

50

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 : System Testing

7. 1 lntl'oduction

System testing is a critical element of software quality assurance. It is

required to ensure that the system is developed according to its specifications and in

line with the users requirements and expectations. Testing is not the first place

where faults finding taJce place but it is focused on finding faults and errors. There

are many ways to increase the effectiveness and efficiency of the testing efforts,

which will be discussed later in this chapter. Failure of a system can be the results of

several reasons:

• The specification may be wrong of have missing requirement and do not

state exactly what the customer needs.

• The specification may contain a requirement that is impossible to implement

by the given predescribed hardware, software and resources.

• The system design phase may contain fault or error that carried forward to

the implementation phase.

• The program code may be wrong. Perhaps the algorithm is implemented

improperly.

Faults identification is the process of determining what fault causes the failure of

the system. The fault correction or removal is the process of making changes to

the system so that the fault can be removed.

7.2 Objective of Testing

The reason and objectives for performing extensive tests during the design

and development of the system are as followed :

51

Univ
ers

ity
 of

 M
ala

ya

• Achieve high quality assurance such as completeness, accuracy, reliability

and maintainability of the software program and its documentation.

• Ensure that the system can perfonn its functions as expected.

• Reduce cost in maintaining the system.

• A method for detection and removal errors.

7.3 Testing Technique

The component of a system will be allowed to manipulate the data, and the

output will be observed. Thus, a wide range of inputs and conditions are chosen in

order to test that particular component. A test point/test case is a particular choice of

input data to be used in testing program.

7.3. 1 White Box Testing

White box testing is a testing case design method that uses the control

structure of the procedural design to derive test cases. By using white box testing

methods, the test cases with the following characteristics can be driven:

• Exercise all logical decision on their true or false side.

• Exercise all loops at their bowidaries and within their operational bounds.

• Exercise internal data structure to ensure their validity.

• Guarantee that all indepeqdent paths witrun a module have been exercised at

least once.

52

Univ
ers

ity
 of

 M
ala

ya

7.3.2 Black Box Testing

Black box testing focuses on the functionality requirements of the system. It

enables the developer to derive sets of inputs condition that will fully exercise all

functional requirements for an application. Black box testing was not used as an

alternative to white box testing technique rather than this technique is used as a

complementary approach that is likely to uncover a different class of errors. Black

box testing attempts t find errors in the following categories:

Incorrect or missing functions

• Interface errors

• Errors in data structures or external data access

• Performance access

• Initialization and termination errors.

It also tests the functionality of tbe system in an ad hoc basis without knowing the

logic structure of the code. Input is provided and output is verified manually to

check for accuracy.

7.4 Testing Strategy

A strategy to test this system is actually a series of steps that are

implemented sequentially. After a program is completely coded, it will be tested

under unit testing. Module testing will start when alJ the programs under a particular

module have been completely coded and tested under unit testing. The integration

testing is to recover errors associated with interfacing when integrating all the

modules.

53

Univ
ers

ity
 of

 M
ala

ya

7.-1. I Unit Testing

Unit testing focuses on verification effort on the smallest component of the

system design. Each component is treated as a standalone entity and tested

individually to ensure that they operate correctly. The unit test is usually white-box

oriented and the step can be conducted in parallel for multiple components.

The test that occurs as part of unit tests is illustrated schematically in Figure

6.1 . The module interface is tested to ensure that infonnation properly flows into and

out of the program unit under test. The local data structure is examined to ensure

that data stored temporarily maintains its integrity during alJ steps in an algorithm's

execution. Boundary conditions are tested to ensure that the module operate properly

at boundaries established to limit or restrict processing. AU independent paths (basis

path) through the executed at least once. Finally, all error - handling paths are tested.

Module Interface
Local data structures
Boundary conditions
Independent paths

Error handling paths

Test Cases

Figure 7.0: Unit Testing

54

Univ
ers

ity
 of

 M
ala

ya

7.-1.1.1 Unit Testing Example

Table below shows the test cases for unit testing on the edge detection

program.

Table 7 .0 : Unit testing example

Step Test Procedure Expected Outcome Test Result

Analyzing

1 Load new image The image is loaded and The image displayed

either m jpeg or showed in work stage successfully

bitmap fmmat to the

system

2 Click edge detection The image is processed The edge image

function to detect and the edge image shown successfully

edge shown.

3 Click Reload Image The original image The original image

function to get the loaded and showed lil shown successfully

original image work stage with the

current size of previous

edge image

7.4.2 Control Object Testing

All the menus are clicked to test their functionality and work stage are tested

with the image format supported by this system which are jpeg and bitmap.

7.4.3 Integration Testing

Integration testing is a systematic technique for constructing the prograJD

stmcture while at the same time conducting tests to uncover errors associated wjth

interfacing. Testing a specific featQre together with other newly developed feature is

known as integration testing. In other words, when the individual components a.re

55

Univ
ers

ity
 of

 M
ala

ya

working correctly and meet the objectives, these components are combined into a

working system.

In this system, a bottom-up approach has been used. Bottom-up integration

testing begins construction and testing with modules at the lowest levels of ~e

system and then moving upward to the modules at the higher levels of the system.

Regression testing is the re-execution of some subset of tests that already been

conducted to ensure that changes have not unintended side effects. It is the activity

that helps to ensure that changes (due to testing or other reason) do not introduce

unintended behavior or additional errors.

7.4.4 System testing

System testing is a series of different tests designed to ti.illy exercise the

software system to uncover its limitations and measure its capabilities. The objective

is to test an integrated system and verify that it meets specified requirements.

Although each test in this system has a difference, all work to verify that the system

elements have been properly integrated and perform allocated functions.

7.5 Chapter Summary

This chapter is all about testing. These testing include unit testing, control

object testing, integration testing and system testing.

Image edge detection system has been tested and debugged effectively to

achieve the objectives of the system. Through all the testing phases, it is easier to

ensure the system's qualities and strengths. Debugging and fixing of the program

can be done. The limitations of the system's functionalities can be found and

improved.

56

Univ
ers

ity
 of

 M
ala

ya

As a conclusion, testing phase is a very important phase in image edge

detection system and it must be done repeatedly and carefully to assure good

software quality.

57

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 : System Evaluation

8.1 Introduction

ln the process of developing a system, various problems have been identified

which some have been solved and some of them are yet to be discovered and

overcome. These problems were solved through research and reference books.

Besides, a lot of system analysis has been done on technological and programming

concepts to grasp the concept of Internet programming.

After all the designing and developing as well as implementing of image

edge detection system, the end product of the project is brought up for evaluation.

Image edge detection system was evaluated to identify the strengths and the

limitations of the system. Besides, proposal and recommendations are made for the

future enhancements of the system.

8.2 Problems Encountered and solutions

• Difficulty in choosing a suitable development tools

There are too many software tools that are available for developing

image edge detection system. It is difficult to choose the most suitable

development tools from ~ wide variety of choices. Choosing a suitable

technology and tools was a critical process as all tools possesses their own

strengths and weakness. Besides, the availability of a technology, hardware

and supporting software to support, its learning curve, compatibility with the

existence operating system and technologies are also the major

consideration.

58

Univ
ers

ity
 of

 M
ala

ya

In order to solve the problem, seeking advices and views from project

supervisor, course-mates and even seniors engaging in similar project were

carried out. Furthermore, a great deal of reading and research from many

resources like books and Internet regarding the problems helped to solve the

problem and choose the ~uitable tools were done before any decision \'Vas

made.

• Lack of knowledge in Visual C++

Since there was no prior knowledge of programming in Visual C++

6.0, there was an uncertainly on how to organize the codes. These new

programming languages and concepts were never taught before and to

implement such as application requires a fair grasp of the languages. These

programming approaches seem to be totally different from the traditional

programming languages. Although it really cause a lot of time to learn the

new technology, but choosing to program in Visual C++ proved to be a wise

move. Most of the problems faced were manageable throqgh browsing the

Internet for related materials and referring to the help function provided in

the software. Discussion ,-ith friends especially course-mate using the same

technology was a great heJp. A more efficient method was through trail and

error during the coding phjiSe.

• Difficulties in defining the flow logic of the system

This system is only based on the information gathered from reference

books and Internet; as a result, the flow of the system is very bard to define.

This system is merely following the flow logic based on my understanding of

59

Univ
ers

ity
 of

 M
ala

ya

the requirements and the important of ease of use. The iµiage processing

knowledge that gained frpm the lecture session also useful to design the

flow.

• No multi-fanction in the system

Based on the system title, which is ' Image Edge Detection System',

of course the system will only detect the edge of image. If MATLAB 6. 0

were used in building all the codes, there will have a types of detection like

Sobell, Prewitt, Robert and Gaussian, unfortunately Visual C++ cannot read

image from M-files. This problem solved by rewrite the source code based

on new algorithm in C language.

The effect function was added in this system in order to make it more

fun and useful rather than just detect edges. The effects included are blur,

blur more negative, line art and diffuse.

8.3 System Strengths

• Simple, user-friendly and easy to use

The design of the interface of this system is based on Visual C++ wizard. It

is design to be as user-friendly as this system is relatively easy to learn and

use. All the menus used to ease the user explore and try this system by

themselves. An action is just a click away and the user just needs minimal

knowledge of mouse and keyboard to use this system.

• Support colour image

Although MATLAB has a variety types of edge detection, the detection only
'

process the .tiff image, tliat is black and white or grayscale image. This

60

Univ
ers

ity
 of

 M
ala

ya

system support two types of image which are jpeg and bitmap fonnat, it does

not matter either the imag~ is in two or three dimensional, colourful or bl&ck

and white.

8.4 System Constraints

• No print function

No print function in this system. The user needs to save the image processed

first in the IMG file that created in this system before they transfer the I.MG

file to their local disk and print the image.

• No report generation

In this system, only the processed image will be shown. No other reports or

information about the threshold value, edge intensity or other related

information.

• Not so effective

The original image should be display beside image processed so that the user

can compare the result with the original version. The image processed must

be save in IMG fonnat that only readable in the system, that's mean the

image cannot be display a:qy platform except the system.

8.5 Future Enhancements

System development is a dynamic process and changes must be expected.

Due to the limited resources that the author have, especially time, this cause the

author miss or overlooks certam aspect of the system. However, after the

development system has been completed and valuable advices and suggestions from

my project supervisor and moderator, the author have identified certain important

61

Univ
ers

ity
 of

 M
ala

ya

aspects that can add on for future enhancement. The additional features that can be

implementing in future are as followed:

• Report Generation

In current edge detection system, there is no report about the edge. This is

certainly not enough for the user especially for those who used this system in

learning image processing. Thus, in the future, more reports about the edge

detected should be generated. These reports might include the edge intensity,

the detection persistence apd other information related.

• Support variety of image format

Since there are many types of image now, the system should be able to
'

support all the types to make it widely use.

• Add more detection types

To make this system more useful in the future, a number of detection types

should be included. The user can choose any method they want and compare

the result or the difference between each type.

• Add more useful function

The current system does not allowed user to save image processed in other

format besides IMG. In the fiJture, the system should add a function that allow

user to save their image in al}Y format they want and a print function to make

their image available in hard cppy version.

62

Univ
ers

ity
 of

 M
ala

ya

8. 6 K11owledge and Experience Gained

Towards the accomplishm~nt of the Image Edge Detection System, from the

beginning to the end of the development and finaJ documentation, a number of

problems and difficulties are encoµntered. However, the solutions to these problems

and difficulties bave brought num~rous valuable knowledge and experience. The

benefits and knowledge gained ar~ as followed:

• The imP,ortance of all phase in SDLC

System analysis is an important phase in the System Development Life

Cycle (SDLC). This phase is capturing user requirements aqd the goaJ of the

system. If this phase is wrong defined, it will cause faulty to the system

development and later progress. With a complete and thorough system

anaJysis, the system that is developed will fulfill all the requirements and

achieve it goals.

System testing is also an \Jnportant and critical phase in SDLC. There is no

application that is free of error in this world. However, with the procedures

in the system-testing phase, errors and faults in the system can be minimized.
'

• Development tools knowledge

This project is developed using Microsoft Visual C++ 6.0 (VC-++). VC++ is

a very suitable developIQent tools for developing Windows environment

application. It is easy to use and provides the simple layout and many

examples to follow and also improved the author knowledge in C language.

63

Univ
ers

ity
 of

 M
ala

ya

8. 7 Chapter Summary

Evaluation of system is indeed to ensure its objectives and intended

functions have been achieved. This chapter covers all the aspects of the evaluating

application software.

The successful development of the system at the present is the first st~p

towards the future expansion of the system. The problem encountered and

experience gained during the development phases should be helpful 1n future efforts.

Besides, this chapter also summarizes the system strengths, system

constraints and future enhancements that can be added. The future enbanceme11ts

will equip the system towards more capabilities of doing its daily operations aµd
'

activities.

64

Univ
ers

ity
 of

 M
ala

ya

Conclusion

Image Edge Detection System is one of the images processing system to

detect edge of digital image. Besides, it also provides some types of effect that

allowed user to apply on their image. However, the systerriwill become more

complete and capable of performing more tasks when the enhancement and the new

features are added on in the near future.

In the process of developing this system, invaluable insight was gained into

complexities &nd intricacies of programming. The application of Software

Engineering principles, :fi:mdamentals and additional knowledge in programming

languages, skills coding writing and others all added up to contribute to the success

of developing this system. Adhere to development schedule is crucial in determining

that a system will be completed in time. The experience gathered in this project will

defutitely provide a soJid foundation in the system development in the future.

With target goals and objectives in mind even before the development takes

place, makes the development process more systematic. Sometimes, conflicts in real

world situation and programming tools capabilities make the programming difficult.

However, as an overall review, tl}is project has achieved and fulfilled the objectives

though its not meets the requirem~nts determined during the analysis phase entirely.

65

Univ
ers

ity
 of

 M
ala

ya

Appendices

New User Interface

Figure 1.0 : Main display

~-----------~

.r"r;:..:~::,..~ : :_.:_-~· :.:_::~~::_::_ ; __ .~ -,~~~:r~~:.-.. ·:~· ~ ,·E~:.~~-~:.~~~~::.: ,·:..:i/:fl:~·~'; :~J;a·~;,;;.·~:~::.~~i~~~<;!ftJ

Figure 2.0: The list of main menu

Figure 3.0 : ipe list of function in File menu

66

Univ
ers

ity
 of

 M
ala

ya

67

Univ
ers

ity
 of

 M
ala

ya

Creating a Project in VJSual C ++

Select FilelNew from the menu. The "New" dialog box will appear.

Cluster Resource Type Wizard
Custom App\ifszard
Database Project
DevStudio Add-in Wizard
ISAPI Extension Wizard

;jJ Makefile
MFC Activ~ ConboW"szard
MFC AppWizard (di}

MFC App\lf12ard (exe)
fl Utity Project
• Win32 Appication

Win32 Console Appication
~ Win32 Dynamic-Link L.bary
~ Win32 Static Lbrar_y

From the list at the left, select "Win32 Console Application." ln the Location text

box on the right, type the name of the ctirectory you wish to create this project's

ctirectory in. Alternately, you may select the base ctirectory from a ctialog box by

selecting the " ... " button to the right of the text box. Type in a name for the project in

the textbox "Project Name". As you type, notice that the project's name is added to

the directory in the directory text box. VC++ will automatically create a pew

ctirectory with tpe same name as your project in the base directory.

68

Univ
ers

ity
 of

 M
ala

ya

.!i) ATL COM AppWizard
Cluster Resouce T we Wizard
Custom App\lf izard
Database Project
DevStudio Add-in Wizard
ISAPI E11tensioo Wizard

" Makefie

Select OK to set up the project. Click OK on the next two screens.

Creatingsourcejile

Visual C-H- will return to the startup screen, but will add two tabs ("Classview" and

"File View") to the leftmost window. You will need to add any source files needed

for your project. Select "ProjectlAdd to Project!New" from the menu. This will bring

up the "New" dialog box again, only this time the "Files'' tab will be selected. Select

"C-H- Source FiJe" from the list at the left. Enter a name for the file in the "File

name" text box. Press OK to create the blank file. Now you can enter the code for a

your program either in C language or C-H-.

69

Univ
ers

ity
 of

 M
ala

ya

Sample Code : Image processinq

#include "image.h"

11==
//copy from imgl to img 2
//==============================
boot copylmage(JMAGE *imgl, IMAGE *img2)
{

//copy image size
img2->sizeX = imgl ->sizeX;
img2->sizeY = imgl->sizeY;

//allocate memory for destination image
int sizeimg = sizeof{GLubyte)*imgl->sizeX*imgl->sizeY*3;//<- times by 3 because image

has 3 channel (RGB)

}

img2->data = (GLubyte*)malloc(sizeimg);
m!img2->data)retum false: //if unable to allocate memory, return

//copy image pixel from imgl to img2
for(int i=O; i<sizeiJng; i++)
{

img2->data[i) = imgl->data[i];

return true:

//'==
//free memory of image
II
void destroylmage(IMAGE *img)
{

}

if\img->data)
free(img->data);

//'==
//set color of entire pixel in an image
//'==
void setColor(IMAGE *img, GLubyte R, GLubyte G, GLubyte B)
{

}

//set every pixel to R, G & B
for(int x=O; x<img->sizeX; x++)

for(int y=O; y<img->sizeY; y++)
{

putPixell(img, x, y, _RED, R);
putPLxell(img, x, y, _GREEN, G);
putPixell(img, x, y, _BLUE, B);

//'==
//process images to find edges
//'==
I*
what this code is doing is scan every pixel in the image one by one,
then subtract the pixel with the adjacent pixels(right, bottom & bottom-right
pixels). We subtract it to find the differeqt between the scanned pixel and
it's adjacent pixel. Then we find which value is the biggest one(the most obvious

70

Univ
ers

ity
 of

 M
ala

ya

different value) and put it into the scarmed pi.xel as the edge.

Because the scarmfog moves from left to right and from top to bottom.
it only scan the pixel that are infront of it ie:rigbt, bottom & bottom-right

pixels . . ,
//this macro will return the biggest num~r between x, y & z
#define biggest(x,y,z) x>y? (x>i! x:z):(y>z? y:z)

\Oid Edge(IMAGE •img)
{

int x, y,
xplusl, yplusl,
channel;

GLubyte cc, re, be, rbc;

//check e\'ery pi.xel in the image
for(x=O; x<img->sizeX: x++)//scan in x axis
{

for(y=O; y<img->sizeY; y++)//scan in y axis
{

//process all 3 channels(RGB) one by one
for(channel=O; channel<3; channel++)
{

xplus I = x+ 1; /Ito get the right side pi.xel
yplus 1 = y+ I: /Ito get the bottom side pbcel

//get center color(curreotly scanned pixel)
cc : getPixell(img, x, y, channel);

//compare center color ,,;th right side color
if(x<img->sizeX-1)//check if we are not out of the image

boundary

boundary

of the image bowidary

//get cc minus rightside color
re = abs(cc - getPixell (img, xplus I, y, channel));

//i f we are out ofbowidary, set 11 to 0
else re = O:

//compare center color with bottom color
if(y<img->sizeY-1)//check if we are not out of the image

//get cc minus bottom s ide color
be = abs(cc - getPixell(img, x, yplusl , channel)):

//if we are out of boundary, set it too
else be = O;

'.lco"?pare center color with right-bottom color
1ftx<1mg->sizeX-I && y<" > · · tmg- sizeY-1)//check if we are not out

//get_ cc minus bottom-right side color
rbc - abs(cc - getPixelJ(img, J\."J)lusl , yplus I channel))"

//if we are out ofbo d . ' '
wi ary, set 1t to o

71

Univ
ers

ity
 of

 M
ala

ya

else rbc = O:

//find the the biggest value between re, be & rbc(the most
obvious edge)

}//y
}/Ix

}

cc = biggest(rc, be, rbc);

}
}//channel

//set the pixel as edge
putPi.-<ell(img. x_ y, channel. cc):

//'======================~===========================
II blur an image - take a very long time if too much value
//'=== ,.
To do blur effect. scan every pixel in the image one by one,
then add the value with all pixels adjacent to it. Then divide
the value by the number of pixel that we add and put it into
the scanned pixel back.
in other word we get the average color of a pi.xel with it's surrounding pixels . . ,
YOid Blur(IMAGE •img, int value)
{

IMAGE templMG; //temporary image for processing
int x, y, xx, yy, xplusxx, yplusyy;
GLubyteccR, ccO, ccB:
int totalColorR=O, totalColorG=O. totalColorB=O:
int div = (vatue•2+ 1)•(valu~2+ 1); //total number of pixel the we add

it{value<=O) return:

//copy the image into the temporary image
copylrnage(img, &tempIMG);

//scan all pixel
for(x=O; x<img->sizeX: x++)
{

for(y=O; y<img->sizeY; y++)
{

//get center color
ccR = getPixel2(tempIMG, x, y, _RED);
ccG= getPixel2(templMG, x, y, _GREEN);
ccB = getPixel2(templMG, x, y. _BLUE):

//get color sunounding center color
for(xx=-value; xx< value+ l ; xx++)
{

for(yy=-value; yy<value+ I; yy++)
{

xplusxx = x + ~
yplusyy = y + }Y;

//sum up all color
~xplusxx>=O && xplusxx<img->sizeX

&& yplusyy>=O && yplusyy<img-
>sizeY)//check the we are not out of the image boundary

{

72

Univ
ers

ity
 of

 M
ala

ya

totalColorR += getPixel2(tempIMG. xplus>.."X.
yplusyy, _RED);

yph.IS)y, _GREEN):

yplusyy, _BLUE):

totalColorG += getPixel2(tempIMG. X']>lusxx.

totalColorB +- getPixel2(tempIMG. 'plusxx..

}

}//y
}//x

}//yy
}//xx

}
else
{

totalColorR += ccR;
totalColorG += ccG:
totalColorB += ccB;

//get average color and put in image
totalColorR /= div;
totaIColorG /= div;
totalColorB /= div;

//put back the aver~e color into the scanned pixel
putPixell(img, x, y, _RED. totalColorR):
pu1Pixel I (irng, x, y, _GREEN, totalColorG);
putPixell(irng, x, y, _BLUE, totalColorB);

//reset the total color for the next pixel
totalColorR = O:
totaIColorG = O;
totalColorB = O;

//free memory
destroylrnage(&tempIMG):

//===
//set an image to negative color
//===
1•
Every channel in a pixel has a value rang~ from 0 to 255 (1 byte)
to get the negative value, the formula is 255-value.
•1

void Negarive(IMAGE *img)
{

int x,y:

for(x=O; x<img->sizeX; x++)
{

for(y=O: y<img->sizeY; y++)
{

//put in the pixel the negative value of it own
putPi.xell(img, x, y, _RED, 255-getPixell(img, x, y, _RED)):
putPixell(img, x, y, _GREEN, 255-getPixell(img, x, y, _GREEN));
putPixell(irng, x, y, _BLUE, 255-getPixel l(img, x, y, _BLUE));

73

Univ
ers

ity
 of

 M
ala

ya

}
//'===
//diffuse an image pixels
//======================== =
void D1ffuse(1MAGE •img, int value) ,.
we get a pixel, and put it a1 a random position.
value is the random limit so that the pixel will oot go too far .,

int x. y, xplusrx, yplusry;

if(value<O)value = O:

//scan e\ery pixel one by one
for(x=O; x<img->sizeX: x++)
{

for(y=O; y<img->sizeY; y++)
{

//get the random position for the pixel
xplusrx = x + (randO%value)-value/2;
yplusry = y + (rand0%value)-value/2;

//check that we do not get out of the image boundary
if(xplusrx>=O && xplusrx<img->sizeX-1

&& yplusry>=O && yplusry<img->sizeY-1)
{

//put the pixel at the random position
putPixel I (img, xplusrx, yplusry, _RED, getPixell (img, x. y,

_RED));

_GREEN));

_BLUE)):

putPixell(img, xplusrx, yplusry, _GREEN, getPixell(img, x, y,

putPixel I (img, xplusrx, yplusry, _BLUE, getPixeH(img, x, y,

}
//====================:=..==================================
//LineArt effect - like a photostat quality
//value from 0 to I 00
II ,.
scan every pixel one by one, then check wether it is larger or
smaller then the value. if it is larger, put back 255(white color) else
put back O(black color) .,
void LineArtOMAGE ~mg, int value)
{

int
int

x., y:
brightness:

if(value<O)value = O;
if'(value>IOO)°value= 100;

value = (value•255•3)/ IOO;

for(x=O; x<img->sizeX. x++)

74

Univ
ers

ity
 of

 M
ala

ya

{

}

}

for(y=O: y<img->s:izeY; y++)
{

brightness =
getPixell(img, x, y, _RED)+
getPjxell(img, x, y, _GREEN)+
getPixel 1 (jmg, x, y, _BLUE):

if\brightness>value)
{

putPixell(img, x, y, _RED, 255)~
putPixell(img, x, y, _GREEN, 255);
putPixell(img, x, y, _BLUE, 255);

}
else
{

putPixell(img, x, y, _RED, O);
putPixel 1 (img, x, y, _GREEN, O);
putPixell(img, x, y, _BLUE, O);

fi'===
fi===
I*
This wilJ be our own image file fonnat when reading/saving the IMG file

first 3 letters will be the file identification

*/

char 'I'
char
char

'M'
'G'

next 2 integers are the width and heigth
int s:izeX
int sizeY

then all the pixel data
unsigned char data[s:izeX * sizeY * 3channels]

fi'==
//Load our own image format
fi===
bool LoadIMG(char *filename, IMAGE *img,

int *actualWidth:, int *actuaJHeigth)

FILE *file;
rMAGE tempIMG:

char ID[J] ={'I', 'M', 'G'},
id;

//try to open the file
file = fopen(filename, "rb");
ii(!file)retum false;

//check for correct IMG file opened
for(int i=O; i<3: i++)
{

fscant{file, "o/oe", &id);

75
I

Univ
ers

ity
 of

 M
ala

ya

if(id J= ID[i])
{

fclose(file):
MessageBox(NULL, "Not an lMG file", "Error'', MB_OK);
return false;

f~nf(file "%i ". &tempTMG c;jn~X)"
fscanf'(file, "%i", &tempIMG.sizeY);

int c;i/eimo = c:i.1P<lf\GI 11nvtp)*ti>mnIMG c;j7pX*tPmnfMG c:i.rPV*1·

tempIMG~data = (GLubyt~*)~~o~sizeimg); •

GLubvte R. G. B:
for(ini y=O; y<tempIMG.sizeY; y++)
{

for(int x=O: x<tempJMG.sizeX: x++)
{

fclose(file):

fscanf(file, "o/oeo/oc%c", &R, &G, &B);

putP1xel2(templMG. x y _ RF.O R):
putPixel2(templMG, x, y, _ GREEN,G):
putPixel2(templMG. x. y. _BLUE. 8):

//eel compatihle openrn . image si7e
//because openGL texture width and height can only be in
//be these number ie: 8. 16. 32. 64. 128. 256. 512. 1024 only

#define compatibleSiLe(x) x<=8? 8:x<=l6? 16:x<=32? 32:x<=64? 64:x<=l28? 128:x<=256?
2'i6·x<='i12? 'i1 2·x<= I024? 1024·0

//save img si7.e into temporary variables
int tempSizeX = img->sizeX;
int IPmpSi7eY = ime->c:i7eV·

img->sizeX = compatibleSize(tempIMG.si1.eX):
img->sizeY = compatibleSize(t~mpIMG.sireY);

//ifc;i.1e is vnlict c-.onrin11e
it{img->sizeX!=O && img->sizeY!=O)
{

//free img memory from previous data first
npc;tmylm11efll(ime);

//reallocate image memory
sizeimg = sizeof(GLubyte)*img->sizeX*img->size Y*3;
ime->'1ata = (GLttbyte *)ma!lor(c:i7eimg);

//copy from tempIMG to img
GLubyte lastColor[3);
for(int ,-=0; x<img->!!i7eX: x++)
{

for(inty=O: y<img->si1eY: y++)
{

for(int channel=O: channel<3: channel++)
{

76

Univ
ers

ity
 of

 M
ala

ya

if(x<tempIMG.siLeX && y<templMG.sileY)
{

lastColor[channell = getP1xel2(templMG, x. y,
channel);

last Color{ channel]);

last Color{ channel]):

}
else
{

•actual Width
*actualHeigtb

putPixel I (img.

}
else

putPixel I (img,

= tempIMG.sizeX;
= tempIMG.sizeY;

//if size is not valid(too big) get back the old size

y. channel.

y. channel.

MessageBox(NULL, "Bitmap file too large to display". "ERROR". MB_OK):
img->sizeX = tempSizeX;
img->si.teY = tempSizeY:

destroylmage(&tempIMG):

return true:
)
//'===
//save IMG file format
//==
bool SaveIMG(char *filename, IMAGE •1mg, int actualWidth, int actualHeigth)
{

file = fopen(filename, '\vb"):
if(!file)retum false:

fprintf(file, "I");
fprintf(file, "M");
fprintf(lile, "G"):
fprintf(file, "%i ", actualWidth);
fprintf(file. "%i", actualHeigth):

for(int y=O: y<actualHei~ y++)
{

for(int x=O: x<actualWidth: x++)
{

fclose(file):

return true:

fprintf(file. "o/oe", getPixell(img, x, y, _RED));
fprintf(file. "%c". getPixell(img, x, y, _GREEN));
fprintf(file. "%c". getPixel I (img. x. y, _BLUE)):

77

Univ
ers

ity
 of

 M
ala

ya

User Manual

Image Edge Detection is one of the images processing software that is not a

server-based architecture. It is a stand-alone application that able to run in any

version of Windows platform. There is no installation and configuration needed

before this system available to use. AJI you have to do is just grab the software and

nm the system directly through the compact disk. The hardware and software

requirements for Image Edge Detection System are as followed:

1.1 Hardware requirements

The hardware specifications are:

Processor: Pentium II 166 Mbz and above.

Memory : 56.0 Mbytes of RAM.

Hard disk: at least 4.75 Gigabytes.

1.2 Software Requirements

The software specifications are:

Operating system platfonn: Microsoft Windows 95, Windows 98, Windows

Millennium Edition (ME), Windows NT 4.0, or

Windows 2000.

To start using the system, double click the edge detection program icon and

the main display will pop-up as below:

78

Univ
ers

ity
 of

 M
ala

ya

Figure 1.0 : Main display

Before you start loading your own image, you can try all the function first on the

defauJt image djsplayed. For example, by clicking the Detect Edge menu, the edge

image will be show automatically right after the menu clicked.

Figure 2.0 : Edge image

79

Univ
ers

ity
 of

 M
ala

ya

If you want to get back to the original image, click the Reload Image menu.

This menu works like undo function but it cannot tum back to the previous image

process. For example, if you apl'IY another effect to the edge image, when the

Reload Image clicked, it will show the original image, not the edge image.

The Zoom In and Zoom Out menu is for enlarge or decrease the image size.

All the function under the Other Effects menu is just a peripheral function that is

included in this system. The alplu\betical beside the function is a short key that you

can press to apply the effect on image. This is the alternative and easy way to apply

the function rather than click each function manually. The results of each function

are as below:

• Blur

Fioi1rP ~ () Rl11r im~o-P

Univ
ers

ity
 of

 M
ala

ya

• Blur more

• Negative

Figure 4.0 : Blur more image

Edge
Detection

Figure 5.0 : Negative image

81

Univ
ers

ity
 of

 M
ala

ya

• Line art

Figure 6.0: Line art image

Note : This function is to convert the image to black and white. If you apply the

line art function on the default image, Edge Detection there will no effect on the

image because the image is already in black and white.

82

Univ
ers

ity
 of

 M
ala

ya

• Diffuse

Figure 7.0 : Diffuse image

Finally, 1be iost right menu is all ~-out the ~eveloper.

Figure 8.0 The developer information

After the trial session, now you can try to load your own image but remember

that this system only supports two kind of image, that is jpeg and bi1map. Click

the Open Bitmap to load the .bmp image format and Open Jpeg to load the .jpg

format. The Load !MG fimction is for retrieve the processed image that has been

save in .img format. To save the processed image, click Save !MG function.

83

Univ
ers

ity
 of

 M
ala

ya

Please note that all the processed image that you save are automatically

formatted to .img, which mean the image saved can only be display in this

system, not your computer. Your computer cannot read this format because this

is not a sta11dard format like jpeg and bitmap. To exit this system just clicks Exil

function or the 'x' button on the right side comer.

84

Univ
ers

ity
 of

 M
ala

ya

Reference

1. Pfleeger, Shari Lawrence. (200 I). Software Engineering Theory and

Practice. 2nd ed. Prentice Hall Inc.

2. Sommerville, Ian. (2001). Software Engineering. 6th ed. Addison-Wesley.

3. Lee Yew Fei. (2000/2001). E-courier (Package Tracking System). Bach.

Thesis. Uruversity of Malaya

4. Christina Shanti. (1999/2000). MR Image 30 Reconstruction and Volume

Visualiz.ation. Bach. Thesis. University of Malaya.

5. MATLAB Application Program Interface Guide, The Mathwork Inc, J 998.

6. Computer Vision & Image Processing a practical approach using CVIP tools,

Scott E. Umbaugh, Prentice-Hall, Inc 1998

7. Introductory remote sensing : digital image processing & applications, Paul

J. Gibson & Clare H. Power, 2000, St. Edmundsbury Press, Bury St.

Edmundssuffolk

8. Angel, E. Interactive Computer Graphics: A Top-Down Approach with

OpenGL. Reading, .MA Addison-Wesley, 2000.

9. Davies, A., and P. Fennessy. Digital Imaging for Photographers. Boston:

Focal Press, 1998.

10. Foley, J. , A. van Dam, S. Feiner, and J. Hughes. Computer Graphics:

Principles and Practice. Reading, MA Addison-Wesley, 1990.

11. GonzaJ(fz, R. C., and P. Wintz. Digital Image Processing. Reading, MA:

Addison-Wesley, 1977.

12. Hall, E. L. Computer Image Processing and Recognition. New York:

Academic Press, 1979.

13. Hill, F. S. Computer Graphics. New York: Macmillan, 1990.

85

Univ
ers

ity
 of

 M
ala

ya

14. Holzmann, G. J. Beyond Photography: The Digital Darkroom. Englewood

Cliffs, NJ: Prentice Hall, 1988.

l 5. Hough, T., ed. The Joy of Photography. Reading, MA: Addison-Wesley,

1991.

16. Kruglinski, D. J., G. Shepherd, and S. Wingo. Programming Microsoft

Visual C + Fifth Ed/lion. Redmond, WA: Microsoft Press, 1998.

17. Lindley, C. A Practical Image Processing in C. New York: John Wiley &

Sons, Inc., 1991.

18. Lyon, 0. A Image Processing in Java. Upper Saddle River, NJ: Prentice

Hall PTR 1999.

19. Martinez, B. and 1. Block. Visual Forces: An Introduction to Design.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995.

20. Parsons, T. W. Introduction to Algorithms in Pascal. New York: John Wiley

& Sons, Inc., 1995.

21. Pitas, I. Digital Image Processing Algorithms and Applications. New York:

John Wiley & Sons, Inc., 2000.

22. Seul, M., L. O'Gonnan, and M. Sammon. Practical Algorithms for Image

Analysis: Description, Examples, and Code. Cambridge: University Press,

2000.

23. Sphar, C. Learn Microsoft Visual C t+ 6.0 Now. Redmond, WA: Microsoft

Press, 1999.

24. Teuber, J. Digital Image Processing. New York: Prentice Hall, 1993.

25. http://~.mathworks.com

26. http://hwr.nici.kun.nl

27. http://peipacssex.ac.uk

86

Univ
ers

ity
 of

 M
ala

ya

28. http://www.cs.cmn.edu/afs/cs/project/cil/ftp/html/vision.html

29. http://www.sci.lib.uci.edu/HSG/Medicallmage.html

30. http://www.rz.go.dlr.de:8081 /softarch.html

3 I. http://www.eecs.wsu.edu/lpdb/title.html

32. http://www-isis.ecs.sotoo.ac. uk/research/visiofo/rgroup.html

33. http://george.lbl.gov/computer vision.html

34. http://george.lbl.gov/ITG.html

35. http://www.video.eecs.berkeley.edu/

36. hJtp://www.cg.tuwien.ac.at/studentwoik/CESCG97/boros/

37. http://www.ping.be/- pingl 339/polar.htm

38. http://www-sop.inria.fr/chir/personoel/devernay/publis/distcalib/

39. http://www.pcigeomatics.com/cgi-bin/pcihlp/IHS

40. http://www. webmonkey.corn/programming/

41 . http://www.nada.kth.se/- tony/ceru-review/ceru-htrnllnode I I .html

42. http://www.www.math.mtu.edu/- msgocken/intro/intro.htrnl .

87

Univ
ers

ity
 of

 M
ala

ya

