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ABSTRACT 

 

In this study, the comparison of the total concentration and mobilization of heavy 

metals (Pb, Zn, Mn, Cu and Ni) in soil from active and closed cells in Jeram Sanitary 

Landfill as well as the contamination factor and risk of heavy metals in soils were 

investigated. Soil samples from active and closed cell were dried and homogenized and 

sequentially extracted. The total heavy metal concentration were determined by pseudo 

total digestion procedure, while the speciation pattern of heavy metals were done using 

Tessier’s five steps sequential extraction procedure and further analyzed with ICP-MS.  

The results obtained from the analysis indicated that the concentration of heavy metals 

in open cell were higher than that from the closed cell. Level of Pb concentration in the 

active cell was higher than the closed cell in all samples. In a sequential extraction 

procedure, it is obvious that Mn was identified in the greatest amounts in mobile phase 

whereas Cu and Pb showed the greatest amount in immobile phase in soils at all 

stations. The heavy metal contamination factor was also determined in this study, based 

on the contamination factor values to indicate the degree of heavy metals risk to the 

environment. It was found that the soil was possibly polluted with Mn, Zn and Ni. RAC 

value calculated in this study showed medium risk for active cell and low risk for closed 

cell for most of the heavy metals except for Mn. Although Pb was found to be the 

highest concentration in all samples due to its non-mobility state in soil, it is at low risk 

to the environment. 

Univ
ers

ity
 of

 M
ala

ya



iv 

ABSTRAK 

Dalam kajian ini, perbandingan jumlah kepekatan dan pergerakan logam berat (Pb, 

Zn, Mn, Cu dan Ni) di dalam tanah dari sel aktif dan tertutup di Tapak Pelupusan 

Sanitary Jeram serta faktor pencemaran dan risiko logam berat dalam tanah telah dikaji. 

Sampel tanah dari sel aktif dan tertutup telah di keringkan dan diekstrakan secara 

berturutan. Jumlah kepekatan logam berat ditentukan dengan prosedur jumlah prosedur 

pencernaan, manakala corak penspesiesan logam berat telah dilakukan dengan 

menggunakan prosedur pengekstrakan lima langkah Tessier yang berurutan dan 

seterusnya dianalisis dengan ICP-MS. Keputusan yang diperolehi daripada analisis 

menunjukkan bahawa kepekatan logam berat dalam sel terbuka adalah lebih tinggi 

daripada yang dari sel tertutup. Tahap kepekatan Pb dalam sel aktif adalah lebih tinggi 

daripada sel tertutup dalam semua sampel. Dalam prosedur pengekstrakan berurutan, ia 

adalah jelas bahawa Mn telah dikenal pasti dalam jumlah yang besar dalam bentuk fasa 

bergerak manakala Cu dan Pb menunjukkan jumlah yang paling besar dalam fasa tidak 

bergerak dalam tanah di semua stesen. Faktor pencemaran logam berat juga telah 

ditentukan dalam kajian ini, berdasarkan nilai faktor pencemaran untuk menunjukkan 

tahap risiko logam berat risiko kepada alam sekitar. Telah mendapati bahawa tanah 

adalah mungkin tercemar disebabkan Mn, Zn dan Ni. Nilai RAC dikira dalam kajian ini 

menunjukkan risiko sederhana untuk sel aktif dan berisiko rendah untuk sel tertutup 

bagi kebanyakan logam berat kecuali Mn. Walaupun Pb didapati mempunyai kepekatan 

tertinggi dalam semua sampel, walaubagaimanapun di sebabkan sifatnya yang tidak 

bergerak dalam tanah, ianya berisiko rendah kepada alam sekitar. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Heavy Metals Pollution from Landfill 

The increase in the number of human and industrial activities has led to massive 

industrialization and urbanization (Ahmad et al., 2009). Various industrial and urban 

activities have resulted in the increment of waste being generated. Besides that, it also 

brings with it some disadvantages for instance an increase in the introduction of toxic 

heavy metals into the environment which would result in negative environmental 

impacts. Heavy metals contamination to the environment is a serious and global 

problem (Jiang et al., 2013). 

The presence of toxic heavy metals especially in the landfills may create an acute 

pollution of soil and water and also may pose health hazards to the people. Solid waste 

containing toxic heavy metal particularly in landfills are generated from various sources 

such as agricultural, industrial as well as residential and commercial activities such as 

electronic wastes, painting wastes, used batteries and others as illustrated in Figure 1.1 

(Agamuthu & Nagendran et al., 2010). Municipal Solid Waste (MSW) generation in 

Malaysia has exceeded 19,000 daily and 30,000 tonnes by the year 2011 (Agamuthu & 

Fauziah, 2011). However, in recent study by Intan (2015), Malaysia has recorded an 

increase in solid waste generation in 2012 by 58% (33,000 tonnes per day) as compared 

to the year 2009. The ever increasing waste generation has resulted in the release of 

waste containing toxic heavy metal into adjacent environment and eventually causing a 

serious threat towards environment and human health (Donald et al., 2010). 
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Figure 1.1: Various of waste in landfill (Source: National Geographic 2008) 

 

Time after time, soil in landfill received potentially toxic elements from both natural 

and anthropogenic activities including waste dumping (Ali et al., 2014). Contamination 

of heavy metals in soil may potentially occur at old landfill sites that received industrial 

wastes and other substances that may produce heavy metals (USDA NRCS, 2000). 

However, according to Karim et al. (2014) the effects of heavy metals are found to 

differ with the situations prevailing in the landfill and its binding forms. The active cell 

(landfill) that exposed to the atmospheric condition undergoes different effects due to 

oxygen diffusion where heavy metals are easily available and released. As a result, the 

increasing amount of waste in landfill has created a major ecological concern for the 

environment and human health (Ekanem et al., 2013). 

According to the United States Department of Agriculture, Natural Resources 

Conservation Services (USDA NRCS) (2000), metals in soil were retained from a lot of 

activities, mainly toxic anthropogenic activities (i.e. manufacturing, mining, agriculture, 

utilizing of synthetic products like paints, industrial wastes and pesticides) and a few 
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from natural activities which is rarely occurring at toxic levels. As a matter of fact, soil 

contamination from anthropogenic sources can affect the natural ecosystem in the world 

since the contamination occurs when the soil composition differs from the normal 

composition (Shayler et al., 2009). Indeed, soil pollution can be understood by the 

presence of some constituent in the soil resulted from the human activity, at certain 

concentration that there is a potential significant risk towards to users of the soil (Sparks 

et al., 2003). The risk can be categorized in many forms for example, impairment health 

for human, animals or plants. Also, contaminants may not be classified as pollutants 

unless they have some harmful effect to living organisms (Manta et al., 2002). 

Waste composition varies from one source to another depending on the type of 

industries ranging from manufacturing industries to household activities. The waste that 

contain high concentrations of heavy metals include food waste (Cu, Cr, Pb, Zn), 

plastics (Cd, Cu, Pb, Ni, Zn), coal cinders (Cu, Cr, Zn), glass (Cd, Cr, Ni, Zn), dust (Cu, 

Cr, Ni), and textile (Cu, Pb, Ni). The soil problem is worsened by the fact that many 

landfills lack of bottom liner and or collection system of leachate. This increase the 

possibility of dissipation of leachate through the landfill layers to contaminate the soil. 

On the other hand, the migration of leachate resulted from waste dumping could also 

lead to the contamination of   soil in landfill (Yadav et al., 2010).   

Excessive accumulation of heavy metals in soils could lead to toxicity amongst 

humans and animals through plant uptake and human consumption (USDA NRCS, 

2000). Due to excessive levels of heavy metals accumulated in soil, it may also 

jeopardize groundwater quality in which the chemicals and heavy metals may transfer 

from one environment to another. Hence, the prevalence of heavy metals in soil 

(depending on the concentration) is an environmental and public health concern. Table 

1.1 summarizes some of the possible chronic effects of several heavy metals towards 

human health. 
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Table1.1: Possible Chronic Health Effects from Selected Heavy Metals (USDA NRSC, 2000) 

Heavy Metals Possible Chronic Effect 
Lead Mental lapse 
Cadmium Affects kidney, liver and GI tract 
Arsenic Skin poisoning, affects kidneys & central nervous system 
Manganese Nervous system, lower visual reaction time, poorer hand steadiness, and 

impaired eye-hand coordination  
Nickel Respiratory effects, including a type of asthma specific to nickel, decreased 

lung function, and bronchitis 
Copper Damage the liver and kidneys 
 

In spite of the increasing active urban development and industrialization in Malaysia, 

waste management is relatively poor (Sreenivasan, 2012). Therefore, it has been a major 

public health and environmental importance in many countries including Malaysia as it 

may introduce danger to health and safety of the public. According to McAllister 

(2015), Hashim (2012) and Agamuthu & Fauziah (2010), failure in waste management 

would lead to detrimental effects on the environment.  

In order to ensure continuous preservation of the environment, a proper waste 

management is essential to reduce potential pollution from landfill. A proper waste 

management encompasses all the activities associated with the control of generation, 

storage, collection, transportation, processing or treatment, as well as, disposal of waste 

consistent with the best practices of public health, economics and finance, engineering, 

administration, legal and environmental considerations (Johari et al., 2014 and 

Sreenivasan et al., 2012). 

The growing concern over the need for a proper management of solid waste in 

Malaysia has prompted the Government to establish a comprehensive waste 

management and disposal system. The government has also taken comprehensive steps 

to mitigate waste problem by developing and implementing appropriate laws and 

guidelines (Department of Environment, 2010). Currently, the management and 

disposal of waste in Malaysia is controlled and guided by the Solid Waste and Public 
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Cleansing Management Act (SWPCMA), 2007 together with the Environmental Quality 

(Control of Pollution from Solid Waste Transfer Station and Landfill) Regulations, 

2009 (Ministry of Housing and Local Government, 2005).  

In Malaysia, landfill disposal is the most common option of waste management. The 

following Figure 1.2 illustrates the comparison between current and the targeted 

condition of waste management hierarchy in Malaysia (MHLG, 2005). 

 

 
Figure 1.2: Malaysian current and targeted waste hierarchy by 2020 (MHLG, 2005) 

 

1.2 Problem Statement  

Landfills pose a big problem to the environment in which different kinds of hazards 

are produced especially heavy metals. It can cause serious pollution when it gets in 

contact with the surrounding soil, surface water, and groundwater leading to detrimental 

effects to living organisms (Al Raisi et al., 2014). Many studies proved that several 

impacts from improper landfilling activities include, leachate contamination to surface 

and groundwater (Fauziah et al., 2005), release of landfill gases such as methane (40–

50%) and carbon dioxide (50%) (Agamuthu, 2001), infestation of pest (Ojeda-Benitez 
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et al., 2003) and in most cases accumulation of heavy metals in soil (Balkhair et al., 

2016).  

The amount of waste generated in Malaysia is increasing with daily amount of solid 

wastes produced has reached between 0.5-2.5 kg per capita per day (and a total of 

25000-30000 tons per day) (Johari et al., 2014 and Fauziah & Agamuthu, 2012). Thus, 

the escalated amount of waste in landfill has created a major ecological concern for the 

environment and human health (Ismail & Manaf, 2013 and Budhiarta et al., 2012). 

Various sources of waste disposed in landfills for example, food waste, industrial and 

domestic waste and agricultural waste had contributed to the leaching of different types 

of heavy metals in soil (Wuana & Okieimen, 2011). The build-up of heavy metal in 

soils (depending on the concentration) is considered an environmental concern. Heavy 

metals in soil would directly impacted human health because the uptake of heavy metals 

by plants and subsequent accumulation along the food chain is a potential threat to 

animal and human health (Liu et al., 2013; Nannoni et al., 2011; Sprynskyy et al., 2011; 

Singh and Kalamdhad, 2011 and O’Connell et al., 2008). Furthermore, leachate from 

landfills containing heavy metals could lead to the contamination of groundwater and 

surface water when it dissipate through soil and eventually causing detrimental effect to 

living organisms (Al Raisi et al., 2014).  

Numerous studies were conducted on heavy metals contamination in many soil 

types, but fewer had focused on landfill soil (active and closed). In addition, due to lack 

of information on speciation of heavy metal in landfills and its risk to the environment, 

this current study intended to determine the risk associated with heavy metal 

contamination in soil and to understand the behaviour of selected heavy metal in term of 

its mobilization in soil. 
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1.3 Scope of Study 

In this study, the determination of total concentration and its mobilization of heavy 

metal such as Mn, Ni, Zn, Cu and Pb in soil from active and closed cell of sanitary 

landfill were done. These five elements were selected since these are the most 

commonly found in domestic waste (Al Raisi et al., 2014; Chibuike & Obiora, 2014; 

Kanmani & Gandhimathi, 2013 and Bahaa-Eldin et al., 2008). In addition, these five 

elements were reported as the heavy metal of environmental and health concern. The 

soil samples were taken from two different types of cells; namely, active and closed 

cells from a sanitary landfill in order to compare the differences of total heavy metal 

concentration and heavy metals mobilization in soil. For example, soils from active cell 

are more exposed to the environmental changes such as sunlight and rainfall which may 

influence the soil condition chemically. On the other hand, soil from the closed cell has 

lining material which prevents much intrusion to the reaction that occurs below. In 

addition, soil from closed cells have become inactive therefore, no additional chemical 

reaction from surroundings. The risk of heavy metals contamination was also conducted 

as soil from closed cell is estimated to have less risk when compared to the soil from 

active cell. This is because active cells still received various types of wastes which 

contain different types of heavy metals thus producing more risks. Whereas, the risk of 

heavy metals contamination in closed cell only comes within its surrounding without 

interference from external factors. Overall, the differences in the characteristic of both 

active and close cells will show varying outcomes in terms of heavy metal 

contamination and mobilization in soil. In addition, it is very important to understand 

how the nature and movement of heavy metals differ in both cells. Besides that, this 

comparative study is relatively new in Malaysia. Therefore, the results of this study are 

expected to contribute to the existing database on heavy metal contamination in landfill 
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and other related studies. The results also likely serve as a baseline data for future 

research. 

 

1.4 Research Objectives 

The study was carried out with the following objectives: 

1. To compare the total concentration of heavy metals in soil from active and closed 

cells in sanitary landfill. 

2. To compare the mobilization of heavy metals in soil from active and closed cells 

in sanitary landfill. 

3. To determine the contamination factor and to conduct risk assessment for heavy 

metals in soils collected from active and closed cells in sanitary landfill. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Definition of Heavy Metals 

Numerous amount of toxic pollutants discarded into the environment have 

represented huge sinks of heavy metals ever since the introduction of Industrial 

Revolution (Forstner & Wittmann, 2012). Heavy metals are natural constituents of the 

earth's crust, but the indiscrimination of human activities has drastically altered their 

geochemical cycles and biochemical balance (Singh et al., 2011).  

Heavy metals are the metallic elements that have high or at least five times greater 

than water in terms of its atomic weight and a density with above 7 g/cm3 (Duruibe et 

al., 2007). For example mercury, chromium, cadmium, arsenic, and lead which can 

destruct living things at low concentrations and able to accumulate in the food chain 

(United States Environmental Protection Agency, 2015; Tchounwou et al., 2012). 

According to Duffus (2002) the term “heavy metals” has been broadly used as a group 

name for metals and semimetals (metalloids) that have been related with contamination 

and potential toxicity. 

In the world of environmental remediation, heavy metals are typically refers to one 

or more elements that may exist at toxic waste dumping sites. Heavy metals are often 

caused the greatest risk due to their toxicity or the present of high concentration. Apart 

from that, it is also known as trace elements since their presence in trace concentration 

in numerous environmental media. Moreover, the toxicity of heavy metal depends on 

many factors such as dose, chemical species, route of exposure, and duration and 

frequent of exposure (Heudorf et al., 2007). On the other hand, the physical factor such 

as temperature, adsorption and phase association, as well as, the chemical factors, such 

as lipid solubility, complexation kinetics and water partition give major influence on the 

bioavailability of heavy metals (Chibuike et al., 2014). According to World Health 

Univ
ers

ity
 of

 M
ala

ya



10 
 

Organization (WHO), 2011 cadmium (Cd), mercury (Hg), lead, (Pb), arsenic (As), iron 

(Fe), copper (Cu), zinc (Zn),cobalt (Co), manganese (Mn), and nickel (Ni) are listed as 

ten metals of major public concern.  

Heavy metals negatively affect the environment and human’s health (Robinson et al., 

2009). This is because heavy metals cannot be degraded nor destroyed and they are 

persistent in all environmental media. Heavy metals are naturally occurring in the 

environment; apart from that rapid growth of anthropogenic activities has also 

contributed to the elevation of heavy metals in the environment (Akan et al., 2013). The 

activities include burning of fossil fuels, enhancement of heavy industries, etc. that may 

lead to pollution of air, water especially the surface water and groundwater and soil 

(Mapanda et al., 2005). Figure 2.1 shows disposal of toxic waste resulting from 

anthropogenic activities (i.e. heavy industries). 

 

 

Figure 2.1: Disposal of toxic waste (Source: National Geographic, 2016) 
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2.2 Sources and Effects of Heavy Metals in Environment  

Heavy metal pollutions can arise from many sources. Nowadays, most of heavy 

metals were introduced into the environment through natural or anthropogenic sources 

(Duruibe et al., 2007). As reported by Khillare et al. (2015), sources of heavy metals in 

the environment include the geogenic, domestic effluents, industrial, agricultural, 

pharmaceutical and atmospheric sources. Two common sources of heavy metals 

pollution to the environment are point sources and non-point sources.  

According to the Department of Environment (DOE), Malaysia (2016), a point 

source is defined as pollution that can be readily identified from a specific source such 

as pollution from factory or treatment works. On the other hand, a pollution origin 

which cannot be specifically defined and mainly diffused for instance agricultural 

activities or surface runoff is known as non-point source (Pekey et al., 2015).  

In terms of point source pollution of soil contamination, soils may become 

contaminated by the accumulation of heavy metals through emissions from the rapidly 

expanding industrial areas, mine tailings, disposal of high metal wastes, leaded gasoline 

and paints, land application of fertilizers, animal manures, sewage sludge, pesticides, 

wastewater irrigation, coal combustion residues, spillage of petrochemicals, and 

atmospheric deposition (Zhang et al., 2011 and Khan et al., 2008). Soils in landfill are 

known as one of the major sink for heavy metals released into the environment. The 

major sources of heavy metals in landfills are the co-disposed industrial wastes, 

incinerator ashes, mine wastes and household hazardous substances such as batteries, 

paints, dyes, inks, etc. (Erses & Onay, 2003). 

Solid waste disposals (open dumps, landfills, sanitary landfills or incinerators) 

represent a significant source of metals released into the environment (Rizo et al., 2012; 

Bretzel & Calderisi, 2011; Iwegbue et al., 2010; Waheed et al., 2010 and Yarlagadda et 

al., 1995). Poor waste management poses a great challenge to the well-being of city 
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residents, particularly those living adjacent the dumpsites due to the potential of the 

waste to pollute water, food sources, land, air and vegetation. On the other hand, 

improper disposal and handling of waste can also leads to environmental degradation, 

destruction of the ecosystem and poses great risks to public health (Ahmed et al., 2011). 

In addition, lands near landfills are prone to heavy metal contamination by various 

wastes containing hazardous compound. Throughout the time, leachate produced from 

discarded wastes will infiltrate into the ground, seeping into surface and groundwater 

system and eventually result in water pollution (Gwenzi et al., 2016). An excessive 

discharge of heavy metal into the environment is a critical environmental concern and 

poses an adverse impact to public health and safety (Agamuthu & Fauziah, 2010). 

The distribution of heavy metals in the environment varies from place to place. The 

following section highlights the sources and effect of several heavy metals to 

environment and human health:  

 

a) Lead (Pb) 

According to USEPA (2015), lead is a naturally occurring element found in 

small amounts in the earth’s crust. While it has some beneficial uses, it can be toxic to 

humans and animals. Lead in environment can also negatively affect the human health. 

Lead can be found in all parts of our environment – the air, the soil, the water, and even 

inside our homes (Heudorf et al., 2007). Much of our exposure comes from human 

activities including the use of fossil fuels including past use of leaded gasoline, some 

types of industrial facilities, and past use of lead-based paint in homes (Gordon et al., 

2002). Lead and its compounds have been used in a wide variety of products found in 

and around our homes, including paint, ceramics, pipes and plumbing materials, solders, 

gasoline, batteries, ammunition, and cosmetics. These usually ended up disposed being 

in landfill. 
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It is known that lead accumulates in the soil, particularly soil with a high organic 

content (Greene, 2014; Finster et al., 2004). Lead deposited on the ground is transferred 

to the upper layers of the soil surface, where it may be retained for up to 2000 years 

(Greene, 2014 and Siccama et al., 1978). In undisturbed ecosystems, organic matter in 

the upper layer of soil surface retains atmospheric lead. Atmospheric lead in the soil 

will continue to move into the micro-organism and grazing food chains, until 

equilibrium is reached. 

Given the chemistry of lead in soil, Johansson (2001) suggests that the uneven 

distribution of lead in the ecosystems can displace other metals from the binding sites of 

organic matters. Lead may hinder the chemical breakdown of inorganic soil fragments 

and lead in the soil may become more soluble, thus being more readily available to be 

taken up by plants. Plants on land tend to absorb lead from the soil and retain most of 

the element in their roots. There is some evidence (Sharma et al., 2005) that plant 

foliage may also take up lead and it is possible that this lead is moved to other parts of 

the plant. Some species of plant have the capacity to accumulate high concentrations of 

lead (Howe et al., 2002). 

High levels exposure from lead to human can damage almost all organs and organ 

systems, most importantly the central nervous system, kidneys and blood, and death at 

excessive levels (Tong et al., 2000). At low levels, haem synthesis and other 

biochemical processes are affected while, psychological and neurobehavioral functions 

are impaired (Al-Terehi et al., 2015). There is a range of other effects for instance; lead 

can cause damage to the kidneys, liver, brain and nerves, and other organs. Exposure to 

lead may also lead to osteoporosis (brittle bone disease) and reproductive disorders 

(Flora et al., 2012).  
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Besides that, lead could affect the brain and nerves (Hsiang et al., 2011). Excessive 

exposure to lead causes seizures, mental retardation, behavioural disorders, memory 

problems, and mood changes (Dubovický, 2010). Low levels of lead damage the brain 

and nerves in foetuses and young children, resulting in learning deficits and lowered IQ 

(WHO, 2016). In addition, lead exposure causes high blood pressure and increases heart 

disease, especially in men (Navas-Acien et al., 2007). 

Lead exposure may also lead to anaemia, or weak blood (Gordon et al., 2002). On 

the other hand, lead could also potentially give adverse effect to the environment. Wild 

and domestic animals can ingest lead while grazing. They experience the same kind of 

effects as people who are exposed to lead. Low concentrations of lead can slow down 

vegetation growth near industrial facilities. Lead can also enter water systems through 

runoff and from sewage and industrial waste streams. Elevated levels of lead in the 

water can cause reproductive damage in some aquatic life and cause blood and 

neurological changes in fish and other animals (Solomon et al., 2008).  

 

b) Manganese (Mn) 

Manganese is naturally ubiquitous in environment (Vieira et al., 2012). Manganese is 

a very common compound that can be found everywhere on earth. Manganese 

compounds exist naturally in the environment as solids in the soils and small particles in 

the water. Manganese particles in air are present in dust particles. These usually settle to 

earth within a few days. Humans enhance manganese concentrations in the air by 

industrial activities and through the burning of fossil fuels. Manganese from human 

sources can also enter surface water, groundwater and sewage. Through the application 

of manganese pesticides, manganese will enter soils (Gavrilescu, 2005). Manganese is 

use primary in steel production to improves hardness, stiffness and strength. According 

to Al-Raisi et al. (2014), Mn in landfill proves to originate from the disposal of 
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considerable amount of steel. In addition, Mn can be related to the unregulated disposal 

of old batteries (Abu-Daabes et al., 2013). 

Manganese is one out of the three toxic essential trace elements. It is toxic when 

present at too high concentrations in a human body (Singare et al., 2012a). The uptake 

of manganese by humans mainly takes place through food, such as spinach, tea and 

herbs. The foodstuffs that contain the highest concentrations are grains and rice, soya 

beans, eggs, nuts, olive oil, green beans and oysters (Zaidan et al., 2013). After 

absorption in the human body manganese will be transported through the blood to the 

liver, the kidneys, the pancreas and the endocrine glands (Mohan et al., 2008). 

Manganese effects occur mainly in the respiratory tract and in the brains (Levy et al., 

2013). Symptoms of manganese poisoning are hallucinations, forgetfulness and nerve 

damage. Manganese can also cause Parkinson, lung embolism and bronchitis (Mohan 

and Sreelakshmi, 2008). When men are exposed to manganese for a longer period of 

time they may become impotent (Kukiattrakoon et al., 2010).  

For animals, manganese is an essential component for over 36 enzymes that are used 

for the carbohydrate, protein and fat metabolism. In animals with too little manganese, 

interference to normal growth, bone formation and reproduction will occur (Soldin and 

Aschner, 2007). For some animals the lethal dose is quite low, which means they have 

little chance to survive even smaller doses of manganese exceed the essential dose 

(Soldin and Aschner, 2007). Manganese can cause lung, liver and vascular disturbances, 

declines in blood pressure, failure in development of animal foetuses and brain damage 

(Jaishankar et al., 2014). When manganese uptake takes place through the skin it can 

cause tremors and coordination failures (Quremi and Ayodele, 2014). Finally, 

laboratory tests with test animals have shown that severe manganese poisoning would 

be able to cause tumour development in animals (Nadzirah et al., 2010). 
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In plants, manganese ions are transported to the leaves after the uptake from soils. 

When too little manganese can be absorbed from the soil, this causes disturbance in 

plant mechanisms (Millaleo et al., 2010). Manganese can cause both toxicity and 

deficiency symptoms in plants. When the pH of the soil is low manganese deficiencies 

are more common (Foy, 1984). Highly toxic concentrations of manganese in soils can 

cause swelling of cell walls, withering of leaf and brown spots on leaves (Singare et al., 

2012b). Deficiencies can also cause these effects. Between toxic concentrations and 

concentrations that cause deficiencies a small area of concentrations for optimal plant 

growth can be detected (Vose et al., 1982). 

 

c) Zinc (Zn) 

Zinc is an element commonly found in the Earth's crust. Naturally, there are variety 

of foods contain zinc for example, oysters contain more zinc but red meat and poultry 

provide the majority of zinc to human (Maret and Sandstead, 2006). Other good sources 

include beans, nuts, and certain types of seafood, whole grains, fortified breakfast 

cereals, and dairy products (US Department of Agriculture, 2000).  

Human activities may contribute to the abundant of Zn in the environment. Releases 

of Zn from anthropogenic sources exceed the release from natural sources (Tchounwou 

et al., 2012). The greatest sources of zinc in the environment are probably from the soil. 

These sources are related to mining and metallurgic operations involving zinc; and use 

of commercial products containing zinc which resulted from the disposal of batteries, 

fluorescent lamps, food waste, and burning tires in the landfill (Fekiacova et al., 2015). 

Zinc is a trace element that is essential for human health. When people has too little 

zinc in their body they can experience a loss of appetite, decreased sense of taste and 

smell, slow wound healing and skin sores (Walravens, 1979). Zinc-shortages can even 

cause birth defects (Raju and Naidu, 2013). Although humans can handle proportionally 
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large concentrations of zinc, too much zinc can still cause eminent health problems, 

such as stomach cramps, skin irritations, vomiting, nausea and anemia (Bojic et al., 

2009). Higher levels of zinc can damage the pancreas and disturb the protein 

metabolism, and cause arteriosclerosis (Oyaro et al., 2007). Extensive exposure to zinc 

chloride can cause respiratory disorders (Ihedioha et al., 2014). 

In the work place, environment zinc contagion can lead to a flu-like condition known 

as metal fever (Al-Teheri et al., 2015). This condition will pass after two days and is 

caused by over sensitivity. Zinc can be a danger to unborn and new-born children. 

When their mothers have absorbed large concentrations of zinc the children may be 

exposed to it through blood or milk of their mothers (Wassermen et al., 2006).  

The world's zinc production is still rising. This basically means that more and more 

zinc ends up in the environment. Water is polluted with zinc, due to the presence of 

large quantities of zinc in the improper treated industrial wastewater (Bojic et al., 2009). 

One of the consequences is that rivers are depositing zinc-polluted sludge on their 

banks. Zinc may also increase the acidity of waters (Raut et al., 2012). Water-soluble 

zinc that is located in soils can contaminate groundwater (Wu et al., 2010). 

Some fish can accumulate zinc in their bodies, when they live in zinc-contaminated 

waterways. When zinc enters the bodies of these fish it is able to biomagnify up the 

food chain. On zinc-rich soils only a limited number of plants have a chance of survival. 

That is why there is not much plant diversity near zinc-disposing factories. Zinc can 

interrupt the activity in soils, as it negatively influences the activity of microorganisms 

and earthworms. The breakdown of organic matter may seriously slow down because of 

the presence of zinc (Chukwuma et al., 2010). Plants often have a zinc uptake that their 

systems cannot handle, due to the accumulation of zinc in soils. The effects upon plants 

zinc is a serious threat to the productions of farmlands. Yet, of this zinc-containing 

manures are still applied (Chirila et al., 2008).  
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d) Nickel (Ni) 

Nickel is a naturally occurring constituent that exist in numerous mineral forms. 

Natural sources of atmospheric nickel comprise of wind-blown dust, derived from the 

weathering of rocks and soils, forest fires, volcanic emissions and vegetation (Cempel 

and Nikel, 2006). On contrary, the anthropogenic activities are the major contributor in 

sources of nickel which resulted from industrial and commercial uses. Generally Ni is 

found at low levels in the environment (US EPA, 2000). In landfill, Ni may have come 

from leaching of metals, electronic items, batteries and other waste type (Li et al, 

2009b). Furthermore, it may result in atmospheric accumulation of nickel from 

combustion of coal, diesel oil and fuel oil, and the incineration of waste. Nickel is an 

important metal, heavily utilized in industry mainly due to its anticorrosion properties. 

Humans use nickel for many different applications. The most common application of 

nickel is the use as an ingredient of steal and other metal products. It can be found in 

common metal products such as jewelry. As a consequence, nickel-containing wastes 

such as spent batteries and catalysts are generated in various processes (Iyaka et al., 

2011).  

Foodstuffs naturally contain small amounts of nickel while chocolate and fats have 

severely high quantities (Cempel and Nikel, 2006). Nickel uptake will boost when 

people eat large quantities of vegetables from polluted soils. Plants are known to 

accumulate nickel and as a result the nickel uptake from vegetables will be eminent 

(Andhale and Zimbare, 2012). Humans may be exposed to nickel by breathing air, 

drinking water, eating food or smoking cigarettes. Skin contact with nickel-

contaminated soil or water may also result in nickel exposure. In small quantities nickel 

is essential, but when the uptake is too high it can be a danger to human health. An 

uptake of too large quantities of nickel has the following consequences, higher chances 

of development of lung cancer, nose cancer, larynx cancer and prostate cancer, 

Univ
ers

ity
 of

 M
ala

ya



19 
 

respiratory failure, birth defects, asthma and chronic bronchitis, allergic reactions such 

as skin rashes, mainly from jewelry, heart disorders and others (Rezaei et al., 2011). 

Nickel is released into the air by power plants and trash incinerators. It will then 

settle to the ground or fall down after reactions with raindrops. It usually takes a long 

time for nickel to be removed from air. Nickel can also end up in surface water when it 

is a part of the wastewater streams (Ntengwe and Maseka, 2006). The larger part of 

nickel compounds that are released to the environment will adsorb to sediment or soil 

particles and become immobile. In acidic ground, however, nickel is bound to become 

more mobile and it will often rinse out to the groundwater (Rulkens, 2005). 

The high nickel concentrations on sandy soils can clearly damage plants and high 

nickel concentrations in surface waters and as a result, can diminish the growth rate of 

algae (Patil and Patel, 2012). Microorganisms can also suffer from growth decline due 

to the presence of nickel (Kuster et al., 2006). For animals, nickel is an essential 

foodstuff in small amounts. But nickel is not only favorable as an essential element; it 

can also be dangerous when the maximum tolerable amounts are exceeded (Rai et al., 

2012). This can cause various kinds of cancer on different sites within the bodies of 

animals, mainly of those that live near refineries. However, nickel is not known to 

accumulate in plants or animals. As a result Nickel will not biomagnify up the food 

chain. 

 

e) Copper (Cu) 

Copper (Cu) is introduced into the environment through a number of natural method 

and its origin in the waters is very diverse. The sources of copper in the environment are 

the extraction of copper from rock (rock weathering), minerals in soil, biological 

particles, including both living and dead organic material and volcanic action (Blossom, 

2007). Waste or by-products produced as a result of human activities, either directly or 
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indirectly may leach into the water, deposited on the land and infiltrated into the ground 

may be presented in different chemical forms in accordance with its processes, which 

can sometimes reach a toxic level for soil organisms and plants. These releases can be 

originated from sewer overflows, water treatment plants or diffuse, for example, the 

water runoff washing of land, roads and roofs (Nirel and Pasquini, 2010). The most 

mention sources of copper entering landfills are paint, blades, and bottles caps, 

insecticides, pharmaceuticals and cosmetics (Fekiacova and Pichat et al., 2015). 

According to Fraga (2005), copper can be found in many kinds of food, in drinking 

water and in air. The absorption of copper is necessary, because copper is a trace 

element that is essential to human health. Although humans can handle proportionally 

large concentrations of copper, too much copper can still cause eminent health problems 

(Pandey, 2013). Copper concentrations in air are usually quite low, that exposure to 

copper through breathing is negligible. But people that live near smelters that process 

copper ore into metal do experience this kind of exposure. People that live in houses 

that still have copper plumbing are exposed to higher levels of copper than most people, 

because copper is released into their drinking water through corrosion of pipes 

(Georgopoulos et al., 2001). 

Occupational exposure to copper often occurs. In the working environment, copper 

contagion can lead to a flu-like condition known as metal fever (Verghese et al., 2016). 

This condition will pass after two days and is caused by over sensitivity (Sengupta, 

2013). Long-term exposure to copper can cause irritation of the nose, mouth and eyes 

and it causes headaches, stomach-aches, dizziness, vomiting and diarrhea (Dalapati et 

al., 2011). Intentionally high uptakes of copper may cause liver and kidney damage and 

even death (Gaetke and Chow 2003). Whether copper is carcinogenic has yet been 

determined (Obiri et al., 2010). 

 

Univ
ers

ity
 of

 M
ala

ya



21 
 

Study done by Osredkar (2012) indicates a link between long-term exposure to high 

concentrations of copper and a decline in intelligence among young adolescents. 

Industrial exposure to copper fumes, dusts, or mists may result in metal fume fever with 

atrophic changes in nasal mucous membranes (Kumar and Singh, 2014). Chronic 

copper poisoning may results in Wilson’s disease characterized by a hepatic cirrhosis, 

brain damage, demyelization, renal disease, and copper deposition in the cornea 

(Pfeiffer, 2007). 

When copper ends up in soil it strongly attaches to organic matter and minerals. As a 

result it does not travel very far and hardly enters groundwater. In surface water, copper 

can travel great distances, either suspended on sludge particles or as free ions (Bentum 

et al., 2011). Copper does not break down in the environment and because of that it can 

accumulate in plants and animals (Tchounwou et al., 2012). On copper-rich soils only a 

limited number of plants have a chance of survival. That is why there is not much plant 

diversity near copper-disposing factories. Due to the effects upon plants copper is a 

serious threat to the productions of farmlands. Copper can seriously influence the 

proceedings of certain farmlands, depending upon the acidity of the soil and the 

presence of organic matter. Despite of this, copper-containing manures are still applied. 

Copper can interrupt the activity in soils as it can negatively influence the activity of 

microorganisms and earthworms. The decomposition of organic matter may seriously 

slow down because of this. When the soils of farmland are polluted with copper, 

animals will absorb copper and damage to their health (Ako et al., 2014).  
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2.3 Soil Pollution from Landfill 

 Landfilling is the most frequent waste disposal method worldwide (Spokas et al., 

2006). It is recognised as being an important option both now and in the near future, 

especially in low-income and middle-income countries. Malaysia is a South East Asia 

country where landfill is important and where the standard of waste management needs 

to be improved since waste generation continues to increase with the economy and 

population growth (Ismail and Manaf, 2013). According to Ihedioha et al. (2016) a 

steady increase in population and a corresponding increase in the rate of waste 

generation from industrial and human activities but without an efficient waste 

management system can pose risks to the environment and to public health.  

In Malaysia, landfills are being filled up rapidly due to the current daily generation of 

approximately 33,000 tonnes of municipal solid waste (Ministry of Urban Wellbeing, 

Housing and Local Government, 2005). Thus, this situation creates a need to improve 

landfilling practices for example, an implementation of a more sustainable landfilling 

technology. However, due to financial constraints, most landfills in Malaysia is usually 

lack of environmental abatement measures, such as leachate collection systems and 

lining materials in comparison to sanitary landfill which have appropriate leachate 

treatment pond and gas collection system, as well as, other sustainable landfilling 

technology (Ismail and Manaf, 2013).  

Any existing waste disposal management system is challenged by lack of appropriate 

management plan, institutional framework and financial resources (Leung et al., 2008). 

Without proper waste and landfill management especially in non-sanitary landfill 

environmental may occur. Non-sanitary landfill which consist of unlined cell pose a risk 

to the environment where leachate containing heavy metal from the soil may infiltrate 

into the groundwater and consequently result in groundwater pollution (Al Raisi et al., 

2014). The way the wastes are handled, stored, collected and disposed can caused 
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contamination to the surrounding environment and pose risks to public health (Misra 

and Pandey 2005). 

Landfills are reported to be one of the sources of soil pollution due of the production 

of leachate and its migration through waste (Tamer et al., 2011). Long term deposition 

of waste in landfill coupled with weathering could lead to accumulation of heavy metal 

in soil which will result in pollution. Previous studies have showed that improper 

collection, segregation, and disposing practices of municipal solid waste can produce 

leachates that contain high concentrations of ammonium, organic matter, and heavy 

metals (Tatsi et al, 2002). These leachates may lead to mobilization of organic and 

inorganic toxic matters into groundwater and soils, and pose potential threats to local 

ecosystem health (Liu et al, 2013). 

There is a growing concern, on the build-up of heavy metal in soil and groundwater. 

Different kinds of wastes such as electronic waste are responsible for the presence of 

heavy metals in the landfills. The recent increase of generation and disposal of waste 

such as food cans and scraps metal, dumping of household hazardous waste and 

electronic waste such as batteries and old computer raise the question about the quantity 

of metals in waste disposal sites and their fate in the environment. This is because such 

wastes mainly contain lead, cadmium, mercury, arsenic, copper, zinc and others (Shaibu 

et al., 2015). 

 

2.4 Total Heavy Metals in Landfill 

The term total metals refer to the concentration of metal determined in an unfiltered 

sample after vigorous digestion, or the sum of the concentration of metals in the 

dissolved and suspended fractions (Lindeburg, 2015).  

In a study done by Kanmani and Ghandhimati (2013), an assessment of total heavy 

metal was conducted using soil sample from two MSW landfills. The results showed 
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that Mn was the highest heavy metal found in all samples with the ranges between 

420.7 – 1711.6 mg/kg followed by Pb that ranged from 44.09 - 178.84 mg/kg. Based on 

the results obtained, the presence of heavy metals in all samples indicates that there is 

appreciable contamination of the soil due to leachate migration. This showed that the 

migration and distribution of the contaminants species are still localized and not 

diffused to a wider area. Similarly, Karim et al. (2014) reported that Cd and Co were 

insignificant, in two open dumping sites in Bangladesh. Cr, Cu, Mn, Ni and Zn are 

present at higher concentration in Matuail than in Khulna. Only Zn was observed to 

showed higher concentration in Khulna dumping sites than Matuail (Karim et al., 2014). 

Domestic wastes are mostly disposed on the dumping sites. On the other hand, 

resources from the MSW were recycled both at the secondary and final disposal sites. 

This is resulted as the main factor of the lower content of heavy metals in the wastes at 

both dumping sites examined (Karim et al., 2014). 

Furthermore, study conducted by Esakku et al. (2003) on heavy metal concentration 

of MSW from Perungudi dumping ground (PDG) showed that the concentration of As, 

Hg, and Cd were less as compared to other metals. The highest concentration was Zn 

with (284 mg/kg) followed by Cr, Cu, Pb, Ni, Cd, As and Hg in the dumping ground. 

This may be attributed to the dumping of Zn and Cr containing wastes.  The results 

obtained in this study were then compared with the Indian standard which showed Hg, 

Cr, and Pb exceeded the limit. However, when compared with USEPA standard the 

metals are within the standard limit. In another study by Hoque and Haque (2015) the 

concentration of Fe was the highest in both sampling locations with 14564 mg/kg and 

9830 mg/kg waste at Matuail and Aminbazar landfill sites respectively. Hoque and 

Haque (2014) concluded that the level of Fe, Cu, and Ni were found to remain beyond 

the Bangladesh standard. As a consequence, there might be high risk of surface and 
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groundwater contamination together with the risk of the heavy metals to enter the food 

chain.  

Oygard et al. (2008) conducted an assessment of heavy metal concentration in 

sediments from MSW sanitary landfill in Norway. The study was observed that, the 

sediments contained high concentration of Zn, Cu, Pb and Cd than those of Ni and Cr. 

The results can be explained by Ni and Cr being present in large area and surface 

density whereas Zn, Cr, and Pb are present in smaller area and surface density found in 

leachate. Seeping of leachate in soil would cause heavy metal with smaller area and 

surface densities accelerate their deposition and pre-concentration in the soil.  

 

2.5 Speciation and Mobilization of Heavy Metals in Landfill 

There is no doubt that speciation analysis offers a great challenge for analysts. The 

proper approach for the sequential extraction and application of appropriate analytical 

techniques and instruments can encourage wider use of speciation analysis in the 

laboratory. Elemental speciation information is crucial today because the toxicity and 

biological activity of many elements depend not only on their quantities, but also on 

their oxidation states and chemical forms (Chen & Ma, 2001). Thus, sequential 

extraction (SE) (Tessier et al., 1979) can provide information about the identification of 

the main binding sites, the strength of metal binding to the particulates and the phase 

associations of trace elements in sediment. This will provide better understanding on the 

geochemical processes governing heavy metal mobilization and potential risks induced 

(Isen et al., 2013). Among the sequential extraction schemes proposed to investigate the 

distribution of heavy metals in soil and sediment involve, the five-step extraction 

schemes were developed by Tessier et al. (1979) and Yuan et al. (2004). This procedure 

was used most widely and has been used in variety of matrices and successfully applied 

for the determination of heavy metal in soils including municipal and industrial solid 
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waste dumpsite (Egila et al., 2014; Oviasogie & Ndiokwere, 2008; Oygard et al., 2008; 

Yusuf, 2007; Xiaoli et al., 2007). 

 

2.5.1   Sequential Extraction Schemes 

Sequential extraction chemically leaches metals out of soil, sediment and sludge 

samples (Yang et al., 2009). The purpose of sequential “selective” extraction is to 

mimic the release of the selective metals into solution under various environmental 

conditions. One commonly used sequential extraction procedure is designed to partition 

different trace metals based on their chemical nature. The sequential extraction process 

is typically accomplished in four (4) steps using; (1) acetic acid to extract all 

exchangeable, acid and water soluble metals (2) hydroxy ammonium chloride to extract 

all reducible metals (3) hydrogen peroxide to extract all oxidizable metals and (4) aqua 

regia to extract all remaining, non-silica bound metals In each of the steps, calculated 

concentrations of chemicals and buffers are added and the sample is shaken on an end-

over-end shaker. The leachate from each step is then digested and analyzed. This multi-

step procedure assures that all the metals of concern are completely extracted from the 

sample.  

The results from all the different steps are calculated and used to determine the 

accurate concentrations under different conditions. Factors such as pH of the acid used 

for adjustment, temperature and duration of extraction are the critical factors that 

control the concentration of metal extracted from the sample. Sequential extraction 

procedure for Cd, Co, Cr, Cu, Fe, Mn Ni, Pb and Zn has been extensively studied in 

both river sediments and marine sediments. Total metal concentration is used as a 

criterion to assess the potential effects of sediment contamination which implies all 

forms of metals have equal impact on the environment. Although the total concentration 
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of trace elements in soil gives some indication on the level of contamination, it provides 

no insight into element bioavailability or mobility. 

Elements in soil are present in various physicochemical forms, which in turn 

influence its availability. Sequential chemical extraction techniques have been widely 

used to examine these physicochemical forms, and thus to better understand the 

processes that influence element availability (Khalil, 2012). In defining the desired 

partitioning of trace metals, care was taken to choose fractions likely to be affected by 

various environmental conditions. According to Tessier et al. (1979), heavy metals are 

associated with five fractions.  

 

(a) Exchangeable (F1) 

The exchangeable fraction involves weakly adsorbed metals retained on the solid 

surface by relatively weak electrostatic interaction and metals that can be released by 

ion-exchangeable processes (Fernandez et al., 2004). Remobilization of metals can 

occur in this fraction due to adsorption-desorption reactions and the lowering of pH 

(Lee and Saunders, 2003). Exchangeable metals are a measure of those traces metals 

which are released most readily to the environment. Corresponding metals in the 

exchangeable fraction represent a small fraction of the total metal content in soil and 

can be replaced by neutral salts. This fraction generally accounted for less than 2% of 

the total metals presents in soil (Filgueiras et al., 2002). Exchangeable fraction is also 

known as non-specifically adsorbed fraction, it can be released by the action of cations 

such as K, Ca, Mg or (NH4) displacing metals which weakly bond electro-statistically 

onto organic or inorganic sites. The common reagents used for the extraction of metals 

in this fraction are MgCl2 and sodium acetate (pH 5.4) by acetic acid. Reagents used for 

this purpose are electrolytes in aqueous solution, such as salts of strong acids and bases 

or salts of weak acids and bases at pH 7. Other reagents showing similar properties have 
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seldom been used, such as nitrate salts (to avoid complexation that is too strong) or 

calcium salts (Ca2+ being more effective than Mg2+ or NH4+ in removing exchangeable 

ions). Results obtained with these reagents give good correlation with plant uptake 

(Qasim et al., 2015). 

Heavy metals in this fraction is held by electrostatic adsorption and thus easily 

released through sorption and desorption processes (Kumar et al., 2011). Neutral salts 

for example, magnesium chloride and potassium nitrate at neutral pH of soils serve as 

ion displacing extractant to aid the release of metal ions attached by electrostatic 

attraction to negatively charged sites of soil particles (Yong et al., 2012). Furthermore, 

they can be replaced by competing cations because metals in this fraction are non-

specifically adsorbed and ion exchangeable. Metals in the exchangeable metal in soils 

and sediments is labile, highly toxic and the most bioavailable fraction (Wang et al., 

2010). 

 

(b) Carbonate or acid extractable (F2) 

Carbonate tends to be a major adsorbent for many metals when there is reduction of 

Fe-Mn oxides and organic matter in the aquatic system. The most popular use reagent 

for the extraction of trace metals from carbonates phases in soil and sediment is 1M 

sodium acetate adjusted to pH 5.0 with acetic acid (Gleyzes et al., 2002). The carbonate 

fraction is a loosely bound phase and bound to changes with environmental factors such 

as pH (Filgueiras et al., 2002). The time lag for the complete solubilization of 

carbonates depends on some factors such as the type and amount of the carbonate in the 

sample, and particle size of the solid (Kaplan et al., 2009). Extraction of metals from 

carbonates phases enhances the leaching of metals specifically sorbed to organic and 

inorganic substrates. In general, this fraction is sensitive to pH changes, and the metal 
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release is achieved through dissolution of a fraction of the solid material at pH close to 

5.0 (Peng et al., 2009). 

Metals bound to carbonate minerals are also bioavailable for gut environment of 

benthic organisms (Wang et al., 2010). Acidified acetate is used as an extractant to 

release metals precipitated or co-precipitated as natural carbonates (Yong et al., 2012). 

1 M solution of HOAc-NaOAc adjusted to pH 5 usually dissolves carbonate minerals 

such as dolomite and calcite releasing the metals bound to them without dissolving 

organic matter, oxides and clay minerals (Yong et al., 2012 and Kumar et al., 2011). 

Further, Tokalioglu et al., (2000) stated that carbonates of sediments containing 

significant concentration of heavy metals and concentrations have been observed to be 

pH sensitive.  

 

(c) Fe-Mn oxide (F3) 

Fe and Mn oxides exist as nodules, concretions, cement between particles or as a 

coating on particles and are excellent trace element scavengers (Kabata-Pendias, 2010 

and Ikem et al., 2003) and play important role in the mobility and behavior of trace 

metals (Kumar et al., 2011 and Wang et al., 2010). The residual phase represents metals 

largely embedded in the crystal lattice of the soil fraction and should not be available 

for remobilization except under very harsh conditions (Yusuf, 2007). The carbonate 

fraction is influenced by pH. Fe-Mn oxides are excellent scavengers of trace metals and 

sorption by these oxides tend to control Cu, Mn and Zn solubility in soils.  

 

(d) Oxidizable fraction or fraction bound to organic matter and sulphides (F4) 

In organic phase, metallic pollutant bound to this phase are assumed to stay in the 

soil for longer periods but may be immobilized by decomposition process (Giacalone et 

al., 2005). Under oxidizing conditions, degradation of organic matter can lead to a 
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release of soluble trace metals bound to metallic pollutant. The extracts obtained during 

this step are metals bound to sulphides (Kebir et al., 2014). The organic fraction 

released in the oxidisable step is considered not to be bioavailable due to the fact that it 

is thought to be associated with stable high molecular weight humic substances that 

release small amount of metals in a slow manner (Rodgers et al., 2015). The most 

commonly used reagent for the extraction of metals in organic phases is hydrogen 

peroxide with ammonium acetate re-adsorption or precipitation of released metals 

(Favas et al., 2011). Other reagents such as H2O2 / ascorbic acid or HNO3 + HCl have 

been used which can dissolve sulphides with enhanced selectivity, but on the other 

hand, silicates are attacked to some extent (Smichowski et al., 2005).  

Metals may bind to organic materials such as detritus, living organisms or coatings 

on mineral particles (Tokalioglu et al., 2000). Therefore, organic matter and sulphides 

are important factors controlling the mobility and bioavailability of heavy metals (Wang 

et al., 2010). For instance, sulphides are major solid phases controlling the 

concentration of dissolved heavy metals (Wang et al., 2010). Aside from soil organic 

matter effect on controlling the mobility of heavy metals, soil organic matter greatly 

affects sorption of heavy metal because they contain functional groups that are capable 

of complexing metals (Thomas, 2015). Thomas (2015) further reported that although 

metal bounded to the organic matter are temporarily inaccessible, they can be 

solubilized by chemical oxidation.  

 

(e) Residual fraction (F5) 

Residual phase serve as a useful tool in the assessment of the long-term potential risk 

of heavy metal or toxic metals entering the biosphere. Digestion in strong acid such as 

nitric acid, hydrochloric acid or acid mixture such as aqua regia that do not dissolve the 

silicate matrix have been commonly used to leach out the recalcitrant metals that are 
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bound to the sediment in the residual phase (Baran and Tarnawski, 2015). Residual 

phase give an estimate of the maximum amount of elements that are potentially 

mobilisable with the changes in environmental conditions (Cappuyns, 2012). Moreover, 

primary and secondary minerals containing metals in the crystalline lattice constitute the 

bulk of this fraction (Czaplicka and Buzek, 2011). Its destruction is achieved by the 

digestion with strong acids, such as HF, HClO4, HCl and HNO3. The amounts of 

associated metals are also associated by some authors as the difference between the total 

concentration and the sum of the fractions of the metals extracted during the previous 

extraction steps (Wali et al., 2015). 

Metals in this fraction are mainly from primary and secondary minerals which 

occlude or “close up” metals within their crystal structures (Tokalioglu et al., 2000). In 

natural conditions, metals in this fraction are practically inaccessible for living 

organisms and are said to be immobile (Soliman, 2012). Due to the fact that the 

concentration of metals in the residual fraction is largely controlled by the mineralogy 

and extent of their weathering (in the form which are not soluble under experimental 

conditions), they are considered to be held within the mineral matrix (Soliman, 2012). 

Therefore, metals in residual fraction are less toxic because they are not readily 

bioavailable (Soliman, 2012 and Wang et al., 2010). In addition, a high concentration of 

metals in this fraction is an indication that there is less pollution of an environment from 

anthropogenic sources (Yu et al., 2012). 

In general, the F1 and F2 fractions of metals are most readily available to the living 

environment. The F3 and F4 fractions of metals are available under extreme condition, 

while F5 fraction is not easily available for uptake by plants under natural conditions 

(Singh & Kalamdhad, 2013). Metal fractionation using sequential extraction for 

example in study done by Xiaoli et al., (2007) gave a good indicator of metal 

distribution in soil. Demonstrating the adsorption of trace metals in Fraction 1 
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(exchangeable). It was reported that, Zn and Cr were the highest in the exchangeable 

fraction, indicating that Zn has a high potential of creating hazardous effects on the 

environment (Xiaoli et al., 2007). On the other hand, only a small fraction of Pb and Ni 

was present in the exchangeable fraction, and Pb and Ni showed almost no content in 

the exchangeable fraction in all of the samples. In another study conducted by Oygard et 

al., (2008) small amounts of the Cd, Zn and Cu present in the soil were extracted in 

fraction 1, but Ni was the only metal where a significant fraction was extracted. This 

outcome is consistent with the findings by Xiaoli et al. (2007). 

Study by Egila et al. (2014) reported that in the study of Emir Palace dumpsites the 

carbonate fraction has the highest concentration of Zn with the value of 27.80 mg/kg. 

This could be as a result of waste containing zinc materials are deposited in the 

dumpsite. In contrary, Cd and Cr marked as the lowest in concentration, probably due to 

the absence of cadmium and chromium in the waste dump. On the other hand, 

Oviasogie & Ndiokwere (2008) conducted a study following modification of the 

sequential extraction procedure to determine the fractionation of the soil. The results 

showed that higher concentrations of Pb were detected in the carbonate fraction of the 

soil. The high level of Pb in the carbonate fraction implied that the carbonate fraction 

provided sites for binding of Pb (Mashal et al., 2009). 

Yusuf (2007), in his study on fraction of heavy metals in waste site soil had observed 

that Zn and Cu were largely associated with Fe-Mn oxides. Fe-Mn oxides are excellent 

scavengers of trace metals and sorption by these oxides tend to control Cu, Mn and Zn 

in soil. Zn and Cu were found to be strongly bound in this fraction because it have 

stability constant high enough to be concentrated in fraction 2. Oygard et al. (2008) 

determined that in all soil samples all heavy metals studied (Cd, Cu, Cr, Fe, Pb, Mn, Ni 

and Zn) were detected in large concentration in this fraction. These heavy metals might 

be presented as metal oxides, but it is more likely that the metals are adsorbed in or onto 
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the large amounts of iron oxide present in the sediments. In this case, this confirms the 

scavenging effect that precipitating iron has on heavy metals in landfill leachate and in 

aquatic systems in general (Oygard et al., 2008). 

Zakari et al. (2011) conducted a sequential extraction of Cu, Cd, Pd and Zn from soil 

around industrial waste dumpsite and reported that Cu is associated mainly with the 

organic matter in which a greater extraction percentage was obtained in the organic 

fraction of the sites. This is resulted as high affinity of Cu to organic matter. In 

consistence, this study is the outcome of an assessment of heavy metal availability and 

speciation in soil from MSW landfill in Marrakech city conducted by Kennou et al. 

(2015) who reported that, Cu and Pb are mostly bound to organic matter in the 

proportions of 96.12 % (Cu) and 84.38 % (Pb), respectively. In another study by Yusuf 

(2007), a sequential extraction was used to fractionate Cd, Cu, Zn and Pb from soils 

near waste site. It was reported that a large portion of Pb was associated with organic 

matter, thus a high fraction of Pb was found in organic fractions (Yusuf, 2007). 

According to Oygard et al. (2008), significant amount of Cr, Cu, Ni and Pb were 

found in residual fractions and only low concentration of Fe, Zn, and Cd were present in 

the residual fraction. This might be happened due to incomplete extraction of these 

metals in Fraction 3 but most likely due to the metals being present associated with 

poorly soluble minerals (Oygard et al., 2008). In a separate study by Xiaoli et al. (2007) 

on soil from Shanghai refuse landfill showed that, Ni, Cd and Pb were also found 

mainly in the residual fraction. Similarly, the result of a study conducted by Abdus-

Salam et al. (2011) determined that the major heavy metal constitute in residual fraction 

was Pb in association with the geochemical fractions.  
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2.6 Heavy Metals Pollution Indicator 

Landfills contain wastes that could produce heavy metal contamination to the 

surrounding environment especially the soil (Kanmani & Gandhimathi, 2013; Wuana & 

Okieimen, 2011). Generally, municipal waste landfills produce leachate that infects soil, 

surface and even the adjacent ground waters. Assessment of heavy metal pollution 

could be done by using different indicators. Commonly, in numerous previous studies 

on heavy metal pollution in soil, pollution load index (Demie & Degefa, 2015; Aydi, 

2015), index of geoaccumulation (Ihedioha et al., 2016; Salah et al., 2012), enrichment 

factor, contamination factor (Hassaan et al., 2016; Ololade, 2014), risk assessment code 

(Huang et al., 2015; Liu et al., 2013) and others were often used as indicators to access 

the level of heavy metals and its risk to the environment and human health. 

Akbari (2016) investigated the rate of soil pollution with Cd, Cr and Pb in landfill 

soil of Meshgin city, Iran using factors of contamination factor and index of geo 

accumulation. The result of contamination factor showed that in most of sampling 

points, Pb and Cr metals contamination factor were in the range between no pollution to 

moderate pollution class while Cd were in no pollution class.  

Furthermore, Demie & Degefa (2015) work on the heavy metals pollution of soil 

around open landfill of Shashemane city, Ethiophia and its potential of the environment 

and local community revealed that based on their contamination factor, the heavy 

metals were in order as Cd > Cr > Co > Pb > Mn > Ni, since the sampling area was 

highly strongly polluted by Cd and Cr while less contaminated by Ni. It is concluded 

that the area of study considerably polluted and deteriorated in terms of its quality 

(Demie & Degefa, 2015). 

In addition, Aydi (2015) described the contamination of Pb, Cu, Cr, Zn, Ni and Cd in 

soil of landfill of Bizerti, Tunisia which demonstrate low contamination level for Ni, 

Pb, Zn and Cu while moderate contamination levels for Cr and Cd. The Cf value for Cd 
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(3.81) and Cr (1.06) were found high in the samples studied indicating that the soil are 

highly polluted by this two heavy metals. The remaining Cf value for other heavy metal 

in the studied area follow the decreasing in order Ni (0.45) > Pb (0.39) > Zn (0.31) > Cu 

(0.34) which showed low in contamination (Aydi, 2015). 

Besides that, Hassaan et al. (2016) assessed soil contamination for some selected 

potentially hazardous element (Zn, Pb, Cd, Sr, Ni, Mn and Cr) in two landfill sites in 

Iraq using contamination factor where all elements showed moderate contamination 

except Cd that showed considerable contamination factor. The study suggested that the 

activities of the landfilling cause the contamination.  

On the other hand, the distribution of metal speciation associated with different 

geochemical fraction is a critical parameter to assess the potential mobility and 

bioavailability of heavy metals in sediments. Evaluating metal speciation can provide 

detailed information concerning the origin, mobilization, and importantly, the toxicity 

and risk of heavy metals. Therefore, it is of considerable interest to distinguish and 

quantify the forms of these elements to obtain a better estimate of the potential and 

environmental impact of contaminated sediments. Risk assessment code which consist 

of a five-level classification; no risk (<1%), low risk (1– 10%), medium risk (11–30%), 

high risk (31–50%), and very high risk (>50%) uses the exchangeable fraction of metals 

as the index, representing a portion of metals in sediment readily released to overlying 

water (Perin et al., 1985) and provides a potential risk assessment of metals to aquatic 

organisms (Bacon & Davidson, 2008 and Jain et al., 2004). 

Risk assessment code mainly applies the sum of exchangeable and carbonate bound 

fractions for assessing the availability of metals in sediments. It is widely known that 

the higher percentage of non-residual (F1 + F2 + F3) fractions the sediments contain, 

the easier it is for metals to be released and the more bioavailable they are. Metals in the 

acid-soluble fraction function as short-term ecological risk indicators, since they are the 
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metals with the weakest bonds in sediments (Smol, 2008). During the aqueous phase, 

they become more easily bioavailable. Risk Assessment Code (RAC) was used to assess 

the potential mobility and hazard of specific metals based on the percentages of 

exchangeable metals and bound-to-carbonate metals in the sediment (Liu et al., 2009). 

In a study by Wang et al. (2010), RAC established by Perin et al. (1985) was used to 

evaluate the risk of Cd, Cu and Pb in sediments of Jinzhou Bay where Cd was found to 

show high risk compared to Cu and Pb which indicate medium risk. On the other hand, 

RAC was applied in different type of sample which is sediment/soil from landfill. For 

example, Li et al. (2014) who had conducted study on landfill of electrolyte Mn residue 

had concluded that Mn showed to be at high risk as compared to other tested heavy 

metals. Similarly, Xiaoli et al. (2007) and Huang et al. (2011) in their study both have 

demonstrated the use of RAC to assess the risk of heavy metals in each study site. 

Speciation of heavy metals in soil/sediment influences their mobilizations which 

correspond to its toxicity. This has been proved in several studies (Yang et al., 2014a; 

Gonzales et al., 2013 and Yu et al., 2013) which have utilized RAC for the 

determination of potential risk of heavy metals in their study samples. These studies 

showed consistent outcome due to similar study samples in which Pb was found to 

exhibit lower risk compared to other tested heavy metals as it is found in high 

percentage in residual fraction (non-mobile). 
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CHAPTER 3: MATERIALS AND METHOD 

 

3.1  Jeram Sanitary Landfill 

Jeram Sanitary Landfill is operated by World Wide Landfill Sdn Bhd, under a 25 

year concession agreement with the Kuala Selangor state government. This landfill was 

built on a private land which was previously an oil palm plantation. This landfill is 

layered with marine clay which is suitable for agricultural purpose, but also offered 

additional protection for the landfill cell construction. The landfill operates 365 days per 

year and receives an average of 2500 tonnes of waste daily. 

The domestic and commercial wastes received by this landfill were from the city 

councils of Shah Alam and Petaling Jaya, the municipal councils of Subang Jaya and 

Klang, the district council of Kuala Selangor, and private waste collectors. The landfill 

began its operations on 1st January 2007, covering an area of about 160 acres. It is 

designed with a capacity to hold 6 million tonnes of waste. Waste was disposed into 

cells. The cells are alternately used that at any given year, there are active cells and 

closed cells. Active cell means the working surface of a landfill upon which MSW is 

deposited before placement of daily cover (Ministry of Environment, British Colombia, 

2016). While closed cell can be defined as landfill that has reached its permitted waste 

capacity and has been permanently capped and certified as closed by the appropriate 

state regulatory agency (Seth, 2015). Hence, this study was carried out in both cells to 

assess the soil contamination in order to make comparison in terms of heavy metal 

mobilization from each cell. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



38 
 

3.2 Samples Collection 

 Samples were collected from one active and one closed cell. Eight sampling points 

from each cell were selected and the coordinates of the point were recorded (Table 3.1) 

and the map of sampling points at Jeram Sanitary Landfill is shown in Figure 3.1.  

 

Table 3.1: Sampling locations for both active and closed cells 

Active Cell Closed Cell 

Points Coordinate Points Coordinate 

P1 
3º11’26.86’’ N  

101º21’53.42’’ E 
P1 

3º11’12.50’’ N 

101º22’1.53’’ E 

P2 
3º11’28.73’’ N 

101º21’53.72’’E 
P2 

3º11’12.07’’ N 

101º21’59.89’’ E 

P3 
3º11’29.36’’ N 

101º21’54.24’’E 
P3 

3º11’11.86’’ N 

101º21’58.65’’ E 

P4 
3º11’39.98’’ N 

101º21’54.96’’ E 
P4 

3º11’11.99’’ N 

101º21’57.49’’ E 

P5 
3º11’30.69’’ N 

101º21’5.62’’ E 
P5 

3º11’11.07’’ N 

101º21’57.66’’ E 

P6 
3º11’31.24’’ N 

101º21’56.31’’ E 
P6 

3°11’’10.96’’ N 

101°21’58.66’’ E 

P7 
3º11’32.15’’ N 

101º21’57.09’’E 
P7 

3°11’11.14’’N 

101°21’59.78’’ E 

P8 
3º11’31.36’’ N 

101º21’58.43’’ E 
P8 

3°11’11.33’’N 

101°22’1.28’’ E 
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Figure 3.1: Map of sampling points at Jeram Sanitary LandfillUniv
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  The soil samples were collected in polyethylene bags, 30 cm deep from the surface 

(Figure 3.2) in accordance to 2014 ASTME – 1197 Standard Guidelines for Conducting 

Terrestrial Soil-Core Microcosm Test. The samples were labeled and immediately 

brought back to the laboratory. Large objects including stones, pieces of brick, concrete 

and plant fragment were removed by passing the soil through 2mm sieve. 

 

 

 

 

 

 

 

 

 

                      Figure 3.2: Soil collection from the closed cell 

 

The samples were then air-dried overnight in a fume hood (Figure 3.3) prior to 

analysis to remove of hazardous volatile components. Soil samples were then ground 

and homogenized using pestle and mortar to smaller particle and fine. The soil samples 

were then sieved through severs (mesh size 100) and stored in polyethylene bags. The 

air-dried samples were then coned and quartered (approximately 20g) and two portions 

of 1g sub-samples were removed for each method for sequential extraction.  
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                                                        Figure 3.3: Air dried soil in fume hood 

 

3.3 Inductive Coupled Plasma-Mass Spectrometry Analysis 

An Inductive Coupled Plasma-Mass Spectrometry (ICP-MS, Agilent 7500a Series c) 

equipped with Babington nebulizer was used to determine the heavy metal 

concentration of Ni, Zn, Mn, Cu and Pb in soil samples. A glass double-path spray 

chamber and a standard quartz torch were operated at conditions as listed in Table 3.2. 

The operating parameters for working elements are set as recommended by the 

manufacturer. The solution was propelled into the nebulizer by a peristaltic pump. A 

centrifuge instrument, Kubota 2420 (speed range 0-6000 rpm, timer 0-60 min) were 

used to separate solid and liquid phases. A WTW 740 pH meter was used for pH 

reading of the solutions. A horizontal flask electrical shaker (220/60 Hz, Gallenkamp, 

England) was employed for the shaking of the samples at 3600 rpm. A water bath (96˚c) 

and hot plate (90˚c ± 5) was also used during sample digestion process. 
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Table 3.2: Instrumental parameters for trace element determination 

Parameters Conditions 
RF power 1350 W 
RF matching 1.6 V 
Carrier gas flow rate 1.10 L/min 
Peristaltic pump flow rate 0.1 rpm 
Sample Uptake Time  30 sec 
Sample Uptake Rate 0.4 r sec-1 

 

3.4 Preparation of Solution 

All reagents of analytical reagent grade and double deionized water (Milli-Q 

Millipore 18.2 M Ω/cm resistivity) were used for all dilutions. All standards, reagents 

solutions and samples were kept in polyethylene containers. Acetic acid (glacial, 100% 

Fischer Scientific, Loughborough, Leicestershire, UK), hydroxylammonium chloride 

(ACROS Organics, NJ, USA), Hydrogen peroxide (30% Fischer Scientific, 

Loughborough, Leicestershire, UK) and ammonium acetate and HNO3 (65% Suprapur 

Merck, Darmstadt, Germany) were from super pure quality. A multi-element standard 

solution IV for ICP-MS (Fluka, Switzerland) was used to prepare the series of standard 

solutions as listed below: 

i. Solution A (1 M of MgCl2) was prepared by dissolving 203.31g of MgCl2 in 

1000mL of deionized water and pH was adjusted by using NaOH. 

ii. Solution B (1 M of NaOAc) was prepared by dissolving 82.03g of NaOH in 

1000mL of deionized water and pH was adjusted by 1 M of HOAc.  1 M of HOAc was 

prepared by dissolving 57.24 mL of HOAc in 1000 mL of deionized water. 

iii. Solution C (0.04 M of Hydroxyl ammonium hydrochloride (NH2OH-HCL)) in 

25% HOAc was prepared by dissolving 0.28g of NH2OH-HCL in 250 mL of HOAc in 

1000 mL of deionized water. 
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iv. Solution D (0.02 mL of HNO3) was prepared by dissolving 1.4 mL of HNO3 in  

1000 ml of deionized water. 

v. Solution E (3.2 M of NH4OAc) was prepared by dissolving 246.66g of NH4OAc 

in 200 mL of HNO3 and 800 mL of deionized water. 

vi. Solution F (0.5 M of HNO3) was prepared by dissolving 35 mL of HNO3 in 

1000 mL of deionized water. 

 

3.5 Experimental Procedures  

3.5.1 Pseudo total metal digestion   

Pseudo total metal concentrations of heavy metal were determined by aqua regia acid 

digestion method (Ivezić et al., 2013).  A total of 1g of dry soil sample was weighed to 

the nearest 0.01 g and transfer to a 50 mL tube. For the digestion, 10 mL of 1:1 Nitric 

Acid (HNO3) was added into the samples and the slurry were mixed and covered with a 

watch glass. The sample were then heated on the hot plate at 90ºC ± 5ºC and refluxed 

for 10 to 15 minutes without boiling. Then, the samples were allowed to cool in room 

temperature before the addition of 5 mL of concentrated HNO3. The samples were 

further refluxed for 30 minutes. This step was repeated by adding of 5 mL of 

concentrated HNO3 until brown fumes emitted are no longer released, which indicates 

the complete oxidation reaction with HNO3. The volume of the solutions were then 

reduced to approximately 5 mL and allowed to cool. 

Next, 2 mL of deionized water and 3 mL of 30% Hydrogen Peroxide (H2O2) were 

introduced into the samples. The container were covered with watching glass and 

returned to hot plate to start the peroxide reaction. The procedures employed were 

conducted cautiously to ensure that the losses do not occur due to excessively vigorous 

effervescence. The process was allowed to continue until effervescence present subsides 

and the samples were then cooled. Suitable volumes of 30% of H2O2 were added 
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continuously into the solution until the bubble subsides. The samples were then heated 

during acid-peroxide digestion until the volume was reduced to approximately 5 mL. 

Lastly, 10 mL of concentrated Hydrochloric Acid (HCl) was added to the digested 

samples and the containers were covered with watching glass. The samples were then 

refluxed at 90ºC ± 5ºC for 10 to 15 minutes (Figure 3.4). 

 

 

 

 

 

 

 

 

 

                                 Figure 3.4: Samples refluxion 

 

After cooling, the samples were filtered through Whatman No. 41 filter using PE 

funnel and collected into 100 mL polyethylene volumetric flasks. Deionized water were 

added to the mark as diluting the samples (Figure 3.5) and extracts were the transferred 

into polyethylene container. Lastly, the extractant were stored at 4 ºC which ready for 

analysis by ICP-MS. 
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                                 Figure 3.5: Sample dilution 

 

3.5.2  Sequential extraction 

The sequential extraction procedure used in this study is based on Tessier et al. 

(1979) and Standard ISO 11466. The chemical extraction was carried out progressively 

on sieved samples with initial weight of 1.0 g. The extraction and procedures were 

detailed as follows: 

 

a) Fraction 1 (Exchangeable) 

1.0 g of soil samples were extracted with 10 ml of Solution A 

[1M Magnesium Chloride (MgCl2)] at pH 7 for 2 hours in room 

temperature with continuous agitation. 

b) Fraction 2 (weakly complexed and bound to carbonate) 

The residues from Fraction 1 were continuously agitated with 10 

ml of Solution B [1M Sodium Acetate (NaOAc)] which already adjusted 

to pH 5 with Acetic Acid (HOAc) at room temperature for 5 hours. 
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c)   Fraction 3 (Bound to Fe-Mn oxides) 

Residues from Fraction 2 were mixed with Solution C [20 mL of 

0.04M Hydroxyl ammonium hydrochloride (NH2OH-HCl)] in 25% (v/v) 

of HOAc for 6 hours at 96 °C with occasional agitated. After the samples 

were allowed to cool, 20 mL deionized water were added. 

d) Fraction 4 (Bound to organic matter and sulphide) 

Residue from Fraction 3 was extracted with 3 mL of Solution D 

[0.02M HNO3 and 5 mL of 30% H2O2 (adjusted to pH 2 with HNO3)]. It 

was then heated to 85 °C for 2 hours. Then, 3 mL aliquot of 30% H2O2 

(adjusted to pH 2 with HNO3) was added into the samples at 85°C for 3 

hours with intermittent agitation. After the samples were allowed to cool, 

5 mL of Solution E (3.2 M NH4OAc in 20% (v/v) HNO3) were added, 

with continuous agitation for 30 min. 

e) Fraction 5 (Residual) 

The residues from Fraction 4 were digested with 9 ml of 12 M 

HCl followed by 3 ml of drop by drop 15.8 M HNO3  to reduce foaming. 

After that, 5 mL of Solution F (0.5 M HNO3) were added and kept for 16 

hours at room temperature to oxidize the organic matter in the soil. The 

mixture then were heated and maintained for 2 hours before cooled. 

 

The samples were centrifuged at 3500 rpm for 8 min at room temperature for each 

extraction and the supernatants from each extraction were subjected to ICP-MS 

analysis. Prior to the initiation of the next extraction step, 10 mL deionised water was 

used to wash the samples and then the washed solution was discarded after centrifuged. 

All the experiments were carried out in triplicates to reduce the systematic error. 
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3.6 Heavy Metals Pollution Indicator 

In order to assess the degree of heavy metals contamination in soil samples from 

active and closed cell of Jeram sanitary landfill, individual contamination factors (Cf) of 

heavy metals and risk assessment code (RAC) were applied in this study. The results 

obtained indicate the potential implication of heavy metals found in soil to the 

environment. 

 

3.6.1 Contamination factor (Cf) 

The determination of heavy-metal contamination factor is an important aspect that 

indicates the degree of heavy metals risk to the environment in relation with its 

retention time. A high contamination factor of heavy metals shows low retention times 

and high risk to the environment. The individual contamination factor (Cf) of heavy 

metals was used to estimate the relative retention time of heavy metals in the soil. It is 

determined by dividing the sum of each heavy metal concentration in the mobile phase 

(non-residue phase) by its concentration in the residual phase (Ololade et al., 2014; 

Salah et al., 2012 & Nemati et al., 2011). The level of soil contamination by heavy 

metals is expressed in terms of a contamination factor calculated as the following 

equation: 

𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐶𝑓) 𝑜𝑓 𝑒𝑎𝑐ℎ ℎ𝑒𝑎𝑣𝑦 𝑚𝑒𝑡𝑎𝑙𝑠 =  
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝐹5
 

 

The corresponding values were compared to the following classification and 

description by Hakanson, (1980) (Table 3.3). 
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Table 3.3: Contamination factor (Cf) and level of contamination 

                Contamination factor                     Contamination Level 
                           < 1                    Low contamination 
                      1 ≥ Cf ≥ 3                 Moderate contamination 
                     3 ≥ Cf ≥ 6               Considerable contamination 
                           > 6                   Very high contamination 

 

3.6.2 Risk Assessment Code (RAC) 

Risk Assessment Code was applied to measure the risk of heavy metals in soil from 

landfill to the environment. The risk value was determined based on the percentage of 

the total metal content found in the first soil fraction by adding the percentage of F1 

(exchangeable) and F2 (carbonate) (Yang et al., 2014a). The values were compared to 

the following classification as described by Perin et al., 1985 (Table 3.4). 

 

Table 3.4: Classification of risk assessment code (RAC) 

Criteria                        Percentage (%) 
No risk <1 

                           Low risk 1 – 10 
                         Medium risk 11-30 
                           High risk 31-50 
                       Very high risk >50 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Pseudo Total Heavy Metals Concentration  

In this study, soil samples were collected from two different cells (active and closed 

cells) in Jeram Sanitary Landfill. Eight samples were collected from each cell. The 

following section highlights the result of this study. 

Figure 4.1 and 4.2 show the total concentration of Pb in soil from active and closed 

cell, respectively.  Pb was the highest in all samples from both cells. The highest 

concentration of Pb was found to be at active cell Point 2 with 185.6 µg/g. This is 

because, Point 2 was observed to have many discarded electronics items. Pb may 

possibly originated from electronic wastes as supported by Leung et al. (2008) who 

mentioned that, the main sources of Pb are from electronic wastes. This result is 

consistent with studies conducted by Li et al. (2009b) in which Pb was also recorded as 

the highest concentration among other heavy metal tested. Disposal of Pb-based 

batteries, paints and pipes seen at the site may possibly contribute to the increased of Pb 

concentration level in soil. This statement is supported by Al Raisi et al. (2014); 

Kanmani & Gandhimathi (2013) and Moturi et al. (2004) who stated that household 

hazardous wastes (e.g. batteries, paints, Pb contaminated toys and cleaners) discarded in 

landfill would cause Pb contamination in soil. 
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Figure 4.1: Concentration of Pb in active cell 

 

On the contrary the concentration of Pb was found to be much lower in closed cell with 

the highest concentration at 29.21 µg/g. Pb in soil samples from closed cell was 

possibly from the disposal of waste prior to the closure of the cells. The concentration is 

much lower by 84.26 % because the closed cell has been inactive for more than five 

years. 

 

 

Figure 4.2:  Concentration of Pb in closed cell 
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Figure 4.3 and Figure 4.4 represent the concentration of Mn, Zn, Cu and Ni for each 

cell, respectively. Figure 4.3, shows that the active cell have high range concentration of 

Cu with 3.82 - 16.52 µg/g followed by Zn with 5.35 - 14.05 µg/g, Mn with 2.66 - 12.87 

µg/g and Ni 2.51 - 7.24 µg/g.  

 

 
Figure 4.3: Mean of Total concentration of Mn, Ni, Cu and Zn in active cell 

 

Cu has been reported to be in high concentration in most points. The high concentration 

of Cu may possibly originate from metals and electronic based waste. This agrees with 

the study done by Needhidasan et al. (2014) and Khaliq et al. (2014) which stated that 

most metal extracted by metals and electronic wastes is Cu. On the other hand, Ni was 

in low concentration in most samples from active cell with the lowest value of 2.51 

µg/g. This is due to the fact that in general Ni is found at low level in environment (US 

EPA, 2000). The traces of Ni detected in this study may have come from the leaching of 

metals, electronic items, batteries and other waste type similar to the observation 

reported by Li et al. (2009b).  
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As illustrated in Figure 4.4, closed cell has high range concentration of Mn with 3.32 

– 4.58 µg/g followed by Cu with 0.82 - 4.40 µg/g, Zn with 0.80 - 2.88 µg/g and Ni 0.77 

– 4.84 µg/g.  

The soil sample from closed cell had high concentration of Mn which may probably 

resulting from the leaching of various waste disposed at site such as bottle caps, blades, 

cosmetics and others which can be seen along with garbage. According to Kanmani & 

Gandhimathi et al. (2013), a very high concentration of Mn and Cu was noticed in most 

area in the landfill they studied. It is concluded that sources of these metals are from 

paints, pigments, insecticides and pharmaceuticals. Therefore, this outcome supported 

the current findings. On the contrary, Ni has the lowest concentration of heavy metal in 

most sampling points except at point 2. It can be suggested that Ni was high at point 2 

because it is not only link to the disposal of waste material but natural sources of Ni 

must be taken into consideration (Tangahu et al., 2011). In addition, 

batteries containing nickel cadmium become the recycling option thus less disposal in 

the active cell (Bernardes et al., 2004). Ni concentration at all sampling points in active 

cell were higher than closed cell except at point 2 of closed cell.  

According to Filho and Miguel (2017), Cd and Ni are used in batteries and 

rechargeable batteries and are often discarded in household waste. Therefore, most 

likely the type of waste disposed at P2 containing batteries. Also, disposal of other 

electronic waste may contribute to the presence of Ni in soil as it contained Ni based 

printed circuit boards. Therefore, a higher Ni concentration found at P2.  

In addition, According to Kjeldsen et al. (2002), sulfide is formed from sulfate 

reduction during waste decomposition in landfills. Sulfides and carbonates are capable 

of forming deposition of Cd, Ni, Zn, Cu, and Pb. Thus, decomposition processes 

causing in high concentration of Ni in closed cell. 
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Figure 4.4: Mean of Total concentration of Mn, Ni, Cu and Zn in closed cell 

 

Table 4.1 and Table 4.2 show the comparison of total concentration for each heavy 

metal between active and closed cells correspond to each sampling points. From the 

data obtained, the mean concentrations of all heavy metals tested were computed. For 

active cell, it can be reported that the highest heavy metals concentration was Pb with 

47.49 µg/g.  On the other hand, for closed cell Pb also showed the highest concentration 

with 12.46 µg/g. Second highest concentration heavy metal in both cells is Mn followed 

by Zn, Cu and Ni.  

Both soil samples collected from active and closed cells at Jeram Landfill were 

contaminated by Pb, Zn, Ni, Cu and Mg. However, as showed in the subsequent Table 

4.1 and Table 4.2, it can be concluded that active cell showed higher concentration of 

heavy metals as compared to closed cell. This is because active cell are presently 

operating and continuously receiving disposed materials and wastes, that the heavy 

metals can be presumed to be coming from the disposed wastes. While, the heavy 

metals contamination in closed cell was originated mainly from previous disposal of 
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wastes. However, the landfill liner and final cover systems of the closed landfill makes 

the soil unexposed to the environmental conditions such as rain, sunlight and wind 

which prevent further chemical reaction taking place in soil. These results showed that 

the soil cover used in the closed cell managed to control the heavy metals from 

infiltrating into the soil (Natrah et al., 2009). 
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Table 4.1: Total Concentration of Heavy Metals (active cell) 

Heavy metals  
 

Total Concentration of Heavy Metals at Different Sampling Point (µg/g)  

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Mean 

Mn 6.91 ± 0.26 2.66 ± 0.21 4.42 ± 0.35 12.18 ± 0.22 12.60 ± 0.31 12.87 ± 1.66 8.04 ± 0.35 10.3 ± 0.33 8.75 ± 0.46 

Ni 3.20 ± 0.74 3.22 ± 0.61 2.80 ± 0.50 3.38 ± 0.43 3.00 ± 0.31 2.51 ± 0.25 7.24 ± 0.9 3.10 ± 0.47 3.56 ±  0.53 

Cu 3.82 ± 0.12 5.20 ± 0.35 10.80 ± 0.23 16.52 ± 0.34 13.79 ± 0.34 8.97 ± 0.57 5.42 ± 0.24 4.46 ± 0.47  8.63 ±  0.33 

Zn 12.03 ± 0.36 10.38 ± 0.19 8.89 ± 0.66 6.46 ± 0.65 14.05 ± 0.33 6.6 ± 0.71 6.08 ± 0.07 5.35 ± 0.28 8.73 ±  0.41 

Pb 28.80 ± 6.72 185.60 ± 3.00 24.94 ± 0.49 28.86 ± 3.78 31.58 ± 7.75 34.86 ± 2.83 13.07± 0.45 32.3 ± 1.57 47.49 ±  2.46 

 
 

Table 4.2: Total Concentration of Heavy Metals (closed cell) 

Heavy metals  
 

Total Concentration of Heavy Metals at Different Sampling Point (µg/g) 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Mean 

Mn 3.32 ± 0.04 4.51 ± 0.13 3.44 ± 0.15 3.85 ± 0.19 4.58 ± 0.04 4.04 ± 0.07 3.94 ± 0.16 4.47 ± 0.02 4.02 ± 0.10 

Ni 1.40 ± 0.16 4.84 ± 0.02 2.36 ± 0.21 0.77 ± 0.11 1.67 ± 0.04 1.85 ± 0.24 1.23 ± 0.13 1.42 ± 0.16 1.94 ±  0.13 

Cu 1.79 ± 0.12 2.57 ± 0.03 1.63 ± 0.02 0.80 ± 0.06 4.40 ± 0.13 4.35 ± 0.17 3.93 ± 0.23 1.81 ± 0.1  2.66 ±  0.12 

Zn 1.91 ± 0.27 1.51 ± 0.03 2.88 ± 0.14 0.80 ± 0.01 1.82 ± 0.1 2.41 ± 0.04 1.85 ± 0.12 2.79 ± 0.1 1.20 ±  0.10 

Pb 7.83 ± 0.52 8.97 ± 0.99 29.21 ± 0.89 12.88 ± 0.09 14.35 ± 0.07 14.42 ± 0.09 6.14 ± 0.09 5.91 ± 0.4 12.46 ±  0.39 
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Overally, for active cell, the sequence of heavy metals concentration in the soil 

sample is Pb > Mn > Zn > Cu > Ni. Meanwhile, the sequence of heavy metals 

concentration in the soil sample for closed cell is Pb > Mn > Cu > Ni > Zn.  

 

4.2 Speciation of Heavy Metals in Jeram Sanitary Landfill 

Table 4.3 and 4.4 show the results obtained after the application of sequential 

extraction on all soil samples. Fraction 1 is the exchangeable fraction which is highly 

toxic and the most bioavailable fraction (Wang et al., 2010). In this study, high 

concentration of Mn was found in most sampling points of active cell with 1.15 µg/g. A 

high concentration of Mn was also found for closed cell with 1.21 µg/g. A high 

concentration of Mn was extracted in this fraction because of the action of cations such 

as K, Ca, Mg, or NH4 in soil which displace the metals that is weakly bound to soils 

(Milivojević et al. 2011; Kaplan & Yaman (2009). On the other hand, the lowest 

concentration of heavy metal extracted in Fraction 1 was Pb with 0.03 µg/g and 0.04 

µg/g in both cells, respectively. Yusuf (2007) also reported that, Pb was the least heavy 

metal extracted in exchangeable fraction because Pb is commonly associated with the 

oxidizable, Fe/Mn oxides (reducible forms) and carbonate species in the soil. In 

addition Jimoh and Sabo (2013) reported that, water soluble fractions of Pb were found 

in a very small percentage. This suggested that Pb in this soil may not be biologically 

available because water soluble fractions consist of metals species found in the soil 

solution. 

Fraction 2 is the fraction in which metal bound to carbonate mineral. In Fraction 2 it 

can be seen that both Mn and Zn were mostly found in active cell with 11.11 µg/g and 

2.27 µg/g, respectively. However, for closed cell only Mn was found at this fraction 

with 1.26 µg/g. According to Billion et al. (2002) calcite in this phase has strong 

affinity for tested parameter especially Mn. Therefore, Mn was significantly extracted in 
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Fraction 2. Meanwhile, in this fraction, the lowest heavy metal concentration extracted 

for active cell was Cu with 0.07 µg/g while for closed cell, it was Ni with 0.03 µg/g. 

This outcome is similar to the finding by Jimoh & Sabo (2013) who reported that both 

Cu and Ni were less extracted in exchangeable and carbonate fractions. These results 

indicate a high Cu and Ni adsorption capacity by the soils affecting the concentration of 

Cu and Ni being extracted in this fraction (Nascimento et al., 2003). 

Fraction 3 is where metal bound to hydrous Fe-Mn oxide. Due to the large surface 

area, amorphous hydrous Fe-Mn oxide is one of the most important geochemical phases 

influencing the mobility and behaviour of traces metal (Violante et al., 2010). In this 

fraction, Zn was the most extracted metal in both active and closed cell with 1.67 µg/g 

and 2.67 µg/g, respectively. This result is similar to findings from Jimoh & Sabo (2013) 

and Yusuf (2007) which reported high concentration of Zn in Fraction 3. This could be 

attributed to the high stability of Zn oxides in soils. On the other hand, Cu was found in 

low concentration for both cells at only 0.09 µg/g.  Cu were the least extracted element 

because Cu were mainly associated organic and residual fractions (Li et al., 2000). 

Fraction 4 is the fraction in which metal bound to organic matters and sulphides. 

Organic matter and sulphides are important factors that determine the mobility and 

bioavailability of heavy metal. In this fraction, in active cell a high concentration of Zn 

was found to bind to organic matter and sulphides with concentration of 2.04 µg/g. The 

same result was obtained for closed cell in which Zn extracted the most with 1.01 µg/g. 

Rozan et al. (2000) reported that Zn was the most extracted metal in Fraction 4. 

However, in most previous studies (Xiaoli et al., 2007; Yusuf, 2007; Oviasogie and 

Ndiokwere, 2008; Wang et al., 2010) Cu, Cd and Pb are the most commonly heavy 

metals associated in Fraction 4.  The variation of these outcomes indicates that organic 

matter and sulphide are not the primary factor impacting the type of heavy metals to be 

extracted in Fraction 4 (Wang et al., 2010).On the other hand, Pb was found to be the 
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lowest extracted heavy metal in both cells with 0.02 µg/g and 0.05 µg/g, respectively. 

Although, Pb is known to bind strongly to organic materials this current study show a 

low concentration of Pb was extracted in Fraction 4. As mentioned by Oygard et al. 

(2007), the level of organic matter in the soil does not necessarily indicate the types of 

metals to be extracted.    

In Fraction 5 which is the residual fraction, metal are usually less toxic toward the 

environment. In this study, in both active and closed cells, Pb was mostly extracted in 

this fraction with 1.28 µg/g and 1.29 µg/g respectively. Egila et al. (2013), Abdus-

Salam et al. (2011) and Oygard et al. (2007) have found a significant amount of Pb in 

this fraction. It was concluded in their study that the presence of Pb in this fraction 

might be due to incomplete extraction of Pb in Fraction 4 but most likely due to the 

metals being present associated with poorly soluble minerals. On the other hand, Ni was 

found to be less extracted compared to other metals with only 0.11 µg/g in both cells 

because it is concentrated in exchangeable and oxidable fractions (Sepahvand and 

Forghani, 2012). In addition, according to Oygard et al. (2008) the low proportion of Ni 

in residual fraction is due to its conversion to carbonate in Fraction 2. Thus, it is highly 

extractable in Fraction 2.  

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



59 
 

Table 4.3: Concentration of metals extracted from each fraction of the Tessier sequential extraction 
(active cell) 

Point  Fraction Concentration of Heavy Metal (µg/g) 

Mn Ni Cu Zn Pb 

Point 1 
 

Extraction 1  0.73 ± 0.05 0.09 ± 0.01 0.10 ± 0.00 0.12 ± 0.01 0.17 ± 0.04 

Extraction 2 6.89 ± 0.20 0.08 ± 0.004 0.08 ± 0.00 0.32 ± 0.01 0.14 ± 0.03 

Extraction 3 1.66 ± 0.03 0.12 ± 0.003 0.10 ± 0.00 1.10 ± 0.02 0.74 ± 0.01 

Extraction 4  0.68 ± 0.01 0.18 ± 0.003 0.37 ± 0.02 0.73 ± 0.01 0.05 ± 0.01 

Residue  0.43 ± 0.03 0.21 ± 0.004 0.38 ± 0.00 0.67 ± 0.01 0.93 ± 0.02 
 

Point 2 
  

Extraction 1  0.83 ± 0.01 0.46 ± 0.65 0.10 ± 0.00 0.13 ± 0.02 0.09 ± 0.01 

Extraction 2 11.11 ± 0.11 0.24 ± 0.03 0.10 ± 0.01 1.12 ± 0.04 0.44 ± 0.03 

Extraction 3 1.53 ± 0.02 0.09 ± 0.00 0.11 ± 0.10 1.08 ± 0.01 1.67 ± 0.02 

 Extraction 4  0.10 ± 0.01 0.11 ± 0.00 0.22 ± 0.01 0.87 ± 0.03 0.2 ± 0.02 

Residue  1.07 ± 0.03 0.18 ± 0.01 0.80 ± 0.02 0.62 ± 0.03 1.22 ± 0.01 
 

Point 3 Extraction 1  0.86 ± 0.04 0.59 ± 0.10 0.41 ± 0.01 0.72 ± 0.03 7.30 ± 0.22 

Extraction 2 0.15 ± 0.02 0.11 ± 0.00 0.07 ± 0.01 0.19 ± 0.03 0.14 ± 0.02 

Extraction 3 0.22 ± 0.01 0.02 ± 0.00 0.09 ± 0.00 0.21 ± 0.01 0.39 ± 0.01 

Extraction 4  0.96 ± 0.00 0.40 ± 0.02 0.22 ± 0.00 1.72 ± 0.03 0.04 ± 0.00 

Residue  0.31 ± 0.02 0.13 ± 0.01 0.40 ± 0.03 0.35 ± 0.01 0.74 ± 0.01 
 

Point 4 Extraction 1  1.15 ± 0.04 0.10 ± 0.02 0.11 ± 0.01 0.30 ± 0.03 0.09 ± 0.03 

Extraction 2 0.16 ± 0.04 0.10 ± 0.02 0.09 ± 0.00 0.18 ± 0.02 0.29 ± 0.02 

Extraction 3 0.25 ± 0.00 0.02 ± 0.00 0.11 ± 0.00 0.20 ± 0.00 0.22 ±0.01 

Extraction 4  0.36 ± 0.00 0.09 ± 0.00 0.22 ± 0.00 1.12 ± 0.03 0.15 ± 0.01 

Residue  0.42 ± 0..02 0.11 ± 0.00 1.02 ± 0.02 0.22 ± 0.01 0.88 ± 0.03 
 

Point 5 Extraction 1  0.92 ± 0.10 0.10 ± 0.01 0.09 ± 0.00 0.17 ± 0.02 0.08 ± 0.04 

Extraction 2 0.07  ± 0.01 0.10 ± 0.02 0.08 ± 0.00 0.16 ± 0.02 0.20 ± 0.00 

Extraction 3 0.11 ± 0.00 0.13 ± 0.01 0.09 ± 0.03 0.41 ± 0.01 0.14 ± 0.01 

Extraction 4  0.79 ± 0.01 0.68 ± 0.01 0.93 ± 0.00 2.04 ± 0.01 0.50 ± 0.00 
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Table 4.3: Concentration of metals extracted from each fraction of the Tessier sequential 
extraction (active cell) (continued) 

 
  Concentration of Heavy Metal (µg/g) 

Points Fraction Mn Ni Cu Zn Pb 

 Residue  0.23 ± 0.01 0.49 ± 0.02 0.25 ± 0.01 0.41 ± 0.01 1.28 ± 0.00 
 

Point 6 Extraction 1  0.76 ± 0.07 0.09 ± 0.02 0.12 ± 0.00 0.27 ± 0.01 0.06 ± 0.00 

Extraction 2 6.31 ± 0.08 0.42 ± 0.02 0.20 ± 0.01 2.27 ± 0.04 0.70 ± 0.10 

Extraction 3 4.25 ± 0.01 0.26 ± 0.01 0.22 ± 0.00 1.97 ± 0.02 1.20 ± 0.01 

Extraction 4  1.24 ± 0.02 0.50 ± 0.01 0.71 ± 0.00 1.22 ± 0.00 0.10 ± 0.01 

Residue  0.97 ± 0.00 0.32 ± 0.02 0.33 ± 0.01 0.27 ± 0.00 0.92 ± 0.01 
 

Point 7 
 
 
 
 
 

 
 

Extraction 1  0.59 ± 0.03 0.08 ± 0.00 0.08 ± 0.00 0.12 ± 0.01 0.04 ± 0.01 

Extraction 2 0.17 ± 0.01 0.08 ± 0.01 0.08 ± 0.00 0.22 ±0.03 0.17 ± 0.01 

Extraction 3 0.19 ± 0.01 0.12 ± 0.00 0.09 ± 0.01 0.63 ± 0.01 0.15 ± 0.01 

Extraction 4  0.40 ± 0.02 0.23 ± 0.01 1.15 ± 0.01 0.94 ± 0.00 0.02 ± 0.00 

Residue  0.13 ± 0.02 0.12 ± 0.01 0.17 ± 0.01 0.28 ± 0.01 0.96 ±0.02 
 

Point 8 Extraction 1  0.60 ± 0.04 0.08 ± 0.01 0.08 ± 0.00 0.11 ± 0.02 0.03 ± 0.00 

Extraction 2 1.19 ± 0.03 0.13 ± 0.02 0.11 ± 0.00 2.13 ± 0.10 0.89 ± 0.00 

Extraction 3 0.50 ± 0.01 0.16 ± 0.02 0.12 ± 0.04 0.90 ± 0.01 0.57 ± 0.01 

Extraction 4  2.21 ± 0.01 0.39 ± 0.02 0.20 ± 0.01 1.05 ± 0.03 0.03 ± 0.00 

Residue  0.35 ± 0.03 0.11 ± 0.00 0.35 ± 0.02 0.34 ± 0.01 0.71 ± 0.01 
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Table 4.4: Concentration of metals extracted from each fraction of the Tessier sequential extraction 
(closed cell) 

Point  Fraction Concentration of Heavy Metal (µg/g) 

Mn Ni Cu Zn Pb 

Point 1 
 

Extraction 1  0.97 ± 0.05  0.11 ± 0.01 0.08 ± 0.01 0.26 ± 0.02 0.06 ± 0.03 

Extraction 2 0.49 ± 0.06 0.03 ± 0.00 0.07 ± 0.00 0.04 ± 0.01 0.11± 0.02 

Extraction 3 0.37 ± 0.01 0.22 ± 0.02 0.12 ± 0.01 1.28 ± 0.02 1.19 ± 0.11 

Extraction 4  0.60 ± 0.01 0.15 ± 0.00 0.27 ± 0.01 0.63 ± 0.00 0.14 ± 2.02 

Residue  1.13 ± 0.02 0.18 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 1.24 ±0.06 
 

Point 2 
  

Extraction 1  0.70 ± 0.03 0.09 ± 0.01 0.08 ± 0.01 0.23 ± 0.01 0.13 ± 0.04 

Extraction 2 0.23 ± 0.02 0.03 ± 0.01 0.07 ± 0.00 0.09 ± 0.02 0.16 ± 0.04 

Extraction 3 0.20 ± 0.02 0.17 ± 0.02 0.11 ± 0.01 0.80 ± 0.14 0.97 ± 0.04 

Extraction 4  0.92 ± 0.01 0.16 ± 0.01 0.43 ± 0.00 0.67 ± 0.02 0.15 ± 0.01 

Residue  0.61 ± 0.01 0.15 ± 0.00 0.40 ± 0.01 0.42 ± 0.01 0.88 ± 0.00 

Point 3 Extraction 1  0.57 ± 0.01 0.07 ± 0.00 0.07 ± 0.00 0.28 ± 0.02 0.08 ± 0.01 

Extraction 2 1.26 ± 0.01 0.06 ± 0.01 0.08 ± 0.00 0.25 ± 0.05 0.11 ± 0.03 

Extraction 3 1.08 ± 0.10 0.27 ± 0.04 0.10  ± 0.01 2.02 ± 0.03 0.61 ± 0.04 

Extraction 4  0.12 ± 0.00 0.18 ± 0.01 0.15 ± 0.01 0.67 ± 0.02 0.13 ± 0.00 

Residue  0.66 ± 0.01 0.18 ± 0.00 0.92 ± 0.02 0.95 ± 0.03 1.21 ± 0.04 

Point 4 Extraction 1  0.30 ± 0.01 0.05 ± 0.01 0.08 ± 0.01 0.06 ± 0.00 0.04 ± 0.00 

Extraction 2 0.80 ± 0.03 0.07 ± 0.02 0.07 ± 0.00 0.07 ± 0.03 0.07 ± 0.01 

Extraction 3 1.15 ± 0.01 0.13 ± 0.03 0.11 ± 0.00 0.80 ± 0.00 0.67 ± 0.05 

Extraction 4  0.15 ± 0.01 0.06 ± 0.00 0.12 ± 0.00 0.40 ± 0.01 0.08 ± 0.00 

Residue  0.70 ± 0.10 0.12 ± 0.00 0.22 ± 0.02 0.31 ± 0.01 0.72 ± 0.03 

Point 5 Extraction 1  1.21 ± 0.02 0.08 ± 0.01 0.07 ± 0.00 0.44 ± 0.06 0.04 ± 0.01 

Extraction 2 0.83  ± 0.04 0.07 ± 0.00 0.10 ± 0.03 0.55 ± 0.01 0.23 ± 0.03 

Extraction 3 0.64 ± 0.06 0.31 ± 0.01 0.13 ± 0.01 2.67 ± 0.42 0.91 ± 0.12 

Extraction 4  0.10 ± 0.01 0.07 ± 0.01 0.12 ± 0.00 0.73 ± 0.01 0.02 ± 0.01 
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Table 4.4: Concentration of metals extracted from each fraction of the Tessier sequential 
extraction (closed cell) (continued) 

 
Point  Fraction Concentration of Heavy Metal (µg/g) 

  Mn Ni Cu Zn Pb 

 Residue  1.52 ± 0.07 0.21 ± 0.00 1.62 ± 0.07 1.15 ± 0.02 1.13 ± 0.02 
 

Point 6 Extraction 1  1.08 ± 0.03 4.96 ± 0.00 0.07 ± 0.00 0.20 ± 0.02 0.05 ± 0.01 

Extraction 2  1.04 ± 0.05 0.06 ± 0.00 0.12 ± 0.01 0.23 ± 0.02 0.18 ± 0.01 

Extraction 3 0.71 ± 0.03 0.19 ± 0.01 0.11 ± 0.01 1.43 ± 0.07 0.59 ± 0.04 

Extraction 4  1.87 ± 0.02 0.18 ± 0.01 1.15 ± 0.02 1.01 ± 0.00 0.45 ± 0.02 

Residue  1.13 ± 0.03 0.20 ± 0.01 0.94 ± 0.03 1.08 ± 0.00 1.15 ± 0.01 

Point 7 Extraction 1  0.65 ± 0.01 0.06 ± 0.00 0.08 ± 0.00 0.20 ± 0.03 0.09 ± 0.01 

Extraction 2 0.97 ± 0.05 0.05 ± 0.00 0.17 ± 0.02 0.23 ±0.04 0.26 ± 0.01 

Extraction 3 0.33 ± 0.02 0.18 ± 0.01 0.14 ± 0.01 1.04 ± 0.12 0.89 ± 0.10 

Extraction 4  0.09 ±0.01 0.05 ± 0.01 0.11 ± 0.00 0.41 ± 0.02 0.05 ± 0.00 

Residue  0.91 ± 0.01 0.21 ± 0.00 1.14 ± 0.02 0.87 ± 0.01 1.29 ± 0.00 

Point 8 Extraction 1  0.57 ± 0.04 0.04 ± 0.01 0.07 ± 0.00 0.13 ± 0.02 0.06 ± 0.00 

Extraction 2 1.24 ± 0.03 0.06 ± 0.02 0.08 ± 0.00 0.26 ± 0.10 0.14 ± 0.00 

Extraction 3 1.49 ± 0.01 0.18 ± 0.02 0.09 ± 0.04 1.23 ± 0.01 0.36 ± 0.01 

Extraction 4  0.29 ± 0.01 0.07 ± 0.02 0.35 ± 0.01 0.43 ± 0.03 0.43 ± 0.00 

Residue  0.62 ± 0.03 0.11 ± 0.00 0.54 ± 0.02 0.49 ± 0.01 1.12 ± 0.01 
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4.3 Potential Mobility of Heavy Metals in Jeram Sanitary Landfill 
 

The mobility and immobility of heavy metals along with their availability in soil 

largely depend on their types of binding forms. Table 4.5 and Tables 4.6 shows the 

order of mobility (from most to least bioavailable) of heavy metals from F1 until F5 in 

both cells and each fraction is presented as a percentage of all fractions. The percentage 

of metals in each fraction was calculated as below; 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑎𝑣𝑦 𝑚𝑒𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑥 100% 

 

 Metals extracted from the F1, F2 and F3 are referred to the mobile fraction and the 

last two fractions (F4 and F5) are referred to as the non-mobile fractions. 

In active cell (Table 4.5), Mn showed the greatest amounts in the bioavailable 

fractions, which ranged from 60 - 92 % extracted of the total contents in the F1, F2 and 

F3. The mobile fractions of Mn were higher than immobile fractions possibly from 

human-induced effects such as disposal of hazardous and industrial waste (Sungur at 

el., 2016). As for closed cell (Table 4.6), Mn also recorded highest percentage in mobile 

fraction ranging from 13.9 - 28.2 %. 

Meanwhile, for active cell the percentage of Cu in immobile fraction was higher than 

mobile fractions with 84 %. In closed cell, Cu was also found to be the most extracted 

in immobile fraction with compared to mobile fraction which only 14 %. It is noticeable 

that in both cell Cu showed higher percentages in the immobile fractions than mobile 

fractions. This finding is similar to Yusuf (2007) where Cu was largely associated with 

immobile fraction. A high percentage of Cu was found in carbonate and residual 

fraction in the landfill soil since Cu has a high stability state in the soil (Kabala and 

Singh, 2001 & Yusuf, 2007). 
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Table 4.5: Mobility of elements based on fractions for active cell 

Samples Mobile % (F1+F2+F3) Non-mobility % 
(F4+F5) 

P1 Mn (89.30) > Zn (52.38) > Pb (51.72) > Ni (42.65) > Cu (27.18) Cu (72.82) , Ni (57.35) 

P2 Mn (92.00) > Ni (73.14) > Zn (60.99) > Pb (60.77) > Cu  (23.30) Cu (76.69) , Pb (39.22) 

P3 Pb (90.94) > Ni (57.60) > Mn (49.20) > Cu (47.80) > Zn (35.10) Zn (64.89) , Cu (52.10) 

P4 Mn (66.66) > Ni (52.38) > Pb (36.80) > Zn (33.60) > Cu (20.00) Cu (80.00) , Zn (66.33) 

P5 Mn (51.89) > Zn (23.19) > Ni (22.00) > Pb (19.09) > Cu (18.05)  Cu (81.00) , Pb (80.00) 

P6 Mn (83.66) > Zn (75.20) > Pb (65.14) > Ni (48.42) > Cu (34.17) Cu (65.82) , Ni (51.57) 

P7 Mn (62.18) > Ni (44.44) > Zn (44.29) > Pb (26.87) > Cu (15.92) Cu (84.08) , Pb (73.13) 

P8 Zn (69.32) > Pb (66.82) > Mn (47.22) > Ni (41.86) > Cu (36.02) Cu (63.95) , Ni (58.14) 

 

Table 4.6: Mobility of elements based on fractions for closed cell 

Samples Mobile % (F1+F2+F3) Non-mobility % 
(F4+F5) 

P1 Zn (53.92) > Ni (52.17) > Mn (51.40)  > Pb (49.63) > Cu (21.60) Cu (78.40) , Pb (50.36) 

P2 Pb (55.02) > Zn  (50.67) > Ni (48.33) > Mn (42.48) > Cu (23.85) Cu (76.15) , Mn (57.52) 

P3 Ni (78.88) > Mn (78.86) > Zn (61.15) Cu > (18.93) > Pb (37.80)  Cu (81.06) , Pb (62.62)  

P4 Mn (72.58) > Ni (58.14) > Zn (56.71) > Pb (49.37) > Cu (43.33)  Cu (56.67) , Pb (50.63)  

P5 Zn (66.06) > Ni (62.16) > Mn (51.71) > Pb (50.64) > Cu (14.71)   Cu (85.29) , Pb (49.36) 

P6 Ni (93.20) > Mn (48.54) > Zn (47.09) > Pb (33.88) > Cu (12.55)  Cu (87.45) , Pb (66.12) 

P7 Mn (66.10) > Ni (52.73) > Zn (53.45) > Pb (48.06) > Cu (23.78) Cu (76.22) , Pb (51.94) 

P8 Mn (78.38) > Zn (63.78) > Ni (60.87)  > Pb (26.54) > Cu (21.23)  Cu (78.76) , Pb (73.46) 
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4.3.1 Comparison of Potential Mobility of the Heavy Metals in Active and 

Closed Cells in Jeram Sanitary Landfill 

  
In this study, comparison of the overall potential mobility of heavy metals observed 

in active cell and closed cell is shown in Figure 4.5. The potential mobility was 

calculated in terms of the average of metal percentages in mobile fraction (F1+ F2+F3).  

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑢𝑚 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑏𝑖𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

8
 

 

 

Figure 4.5: Potential mobility of heavy metals in active and closed cell in Jeram Sanitary Landfill 

 

The dominant heavy metal in active cell was Mn (67.76%) followed by Pb (52.26%), 

Zn (49.26%), Ni (47.81%) and Cu (27.81%). Meanwhile, the dominant heavy metal in 

closed cell was Ni (63.31%) followed by Mn (61.26%), Zn (56.61%), Pb (43.82%) and 

Cu (22.5%). The overall mobility trend of heavy metals in each cell can be summarized 

as follow: 

In active cell, Mn>Pb>Zn>Ni>Cu 

In closed cell, Ni>Mn>Zn>Pb>Cu 

The trend of mobility of heavy metals is different between active cell and closed cell. 

This could be due to the variation in the composition of waste materials received in both 
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cells. It was observed that in active cell, most of the wastes were steel-based waste in 

which could lead to the leaching of manganese into the soil. The finding is supported by 

Umm-khulthum et al. (2016) who stated that waste composition in soil affects the heavy 

metals mobility. Besides that, the difference of mobility trend between both cells could 

be due to the age and the status (inactivity) of the cell. According to Xiaoli et al. (2007), 

although the waste residue in closed landfill contained relatively high levels of heavy 

metals, it will only discharge a small quantity of trace heavy metals because the heavy 

metals have become stabilized overtime. 

The implication of mobility of heavy metals to the environment is their potential for 

environmental toxicity due to bioavailability to flora and fauna. In active cell, the 

concentration of Pb was high. Based on the mobility trend, Pb was reported as mobile 

therefore it may present a threat to the environment. It can pose a threat towards the 

environment heavy metal that are in mobile fraction are most bio available, labile, can 

be easily release through sorption and desorption process and highly toxic. In closed 

cell, Pb concentration is also high but due to its immobility state, it may not present 

immediate threat to the environment. On the other hand, Mn was observed to be in 

mobile state in both cells. Therefore, based on this study, Mn is considered to have high 

mobility and bioavailability in the environment. 

 

4.4      Heavy Metals Pollution Indicator in Jeram Sanitary Landfill 

4.4.1 Contamination Factor (Cf) 

The contamination factor (Cf) is widely used to evaluate the degree of heavy metal 

pollution in the soils. In this study, the Cf was computed for all soils samples using the 

concentration of the heavy metals. The calculated Cf for the studied heavy metals in 

soils of Jeram sanitary landfill is listed in Table 4.7 for active cell and Table 4.8 for 

closed cell. 
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Contamination factor for soil from active cell showed that the soil were in moderate 

to very high contamination class. The Cf value for Mn (12.29) and Zn (7.83) are 

relatively high indicating that the soils from active cell are highly polluted. The Cf value 

for heavy metals in the study follow the decreasing order of Ni (3.80) > Pb (2.74) > Cu 

(1.85) and demonstrated considerable contamination to moderate contamination.  

 

Table 4.7: The value of contamination factor for soils from active cell 

Heavy 
metals 

Mean concentration Contamination 
factor (Cf) 

Classification 
F1 F2 F3 F4 F5 

Mn 6.43 26.05 8.71 6.74 3.91 12.29 Very high 
contamination 

Ni 1.58 1.26 0.92 2.58 1.67 3.80 Considerable 
contamination 

Cu 1.09 0.81 0.93 4.02 3.7 1.85 Moderate 
contamination 

Zn 1.95 6.59 6.5 9.69 3.16 7.83 Very high 
contamination 

Pb 7.81 2.97 5.08 5.08 7.64 2.74 Moderate 
contamination 

 

In this study, the Cf for closed cell is represented in Table 4.8. Most of the heavy 

metals studied were in moderate contamination except for Ni which indicates very high 

contamination level. The trend is such that the highest Cf was observed for Ni while Cu 

showed low contamination value. In general, the increasing order of Cf value for all 

heavy metals is Cu (0.79) > Pb (1.08) > Mn (3.16) > Zn (3.83) > Ni (6.22). 

 

Table 4.8: The value of contamination factor for soils from closed cell 

Heavy 
metals 

Mean concentration Contamination 
factor (Cf) 

Classification 
F1 F2 F3 F4 F5 

Mn 6.05 6.86 5.97 4.14 7.28 3.16 Moderate 
contamination 

Ni 5.46 0.43 1.65 0.92 1.36 6.22 Very high 
contamination 

Cu 0.6 0.91 0.91 2.7 6.49 0.79 Low contamination 
Zn 1.8 4.95 11.27 4.95 5.99 3.83 Moderate 

contamination 
Pb 0.55 1.26 6.19 1.45 8.74 1.08 Moderate 

contamination 
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Figure 4.6 demonstrates the comparison of heavy metals contamination between 

active and closed cells. It can be seen that all heavy metals recorded high Cf value in 

active cell than in closed cell except for Ni. Three heavy metals have recorded very high 

Cf; Mn, Zn and Ni.  

 

 

Figure 4.6: Comparison of contamination factor values between active and closed cell 

 

4.4.2 Risk Assessment Code (RAC) 

Risk Assessment Code was applied to measure the risk of heavy metals in soil from 

landfill to the environment. The risk assessment code for each heavy metal in all 

samples were determined based on the percentage of the total metal content that was 

found in the first soil fraction based on Tessier method. The values of RAC were 

obtained by adding the percentage of F1 and F2. The results obtained from RAC 

calculation indicate potential risk of heavy metals and the value were further compared 

to the following classification as described by Perin et al. (1985), >0% reflects no risk; 
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1 – 10% reflect low risk; 11-30% medium risk; 31-50% high risk; above 50%, the soil 

poses a very high risk and is considered dangerous, with metals easily able to enter the 

food chain. 

 

Table 4.9 shows RAC value for each heavy metal in active cell. The results indicate a 

medium risk for most heavy metals with value between 11 – 30% except for Mn which 

was found to be at high risk in most samples. Based on previous sequential extraction 

results, Mn was found to be the most extracted heavy metal in Fraction 1 and 2 which 

indicate the most bioavailable metals. In addition with the RAC value, the percentage of 

Mn reflects very high risk (36.9 – 81.56 %). 

 

Table 4.9: Comparison of RAC value for active cell 

Samples Parameters 

Mn Ni Cu Zn Pb 

P1 VH M M M M 

P2 VH VH M H M 

P3 H VH H M VH 

P4 VH H M M M 

P5 H M M M M 

P6 VH H M H M 

P7 VH M M M M 

P8 H M M H H 

L – Low risk; M – Medium risk; H – High risk; VH – Very high risk  

 

On the contrary, the soil samples for the closed cell (Table 4.10) showed low 

risk for most heavy metal with RAC value 1 – 10 % except for also Mn which indicate 

medium to high risk with RAC value 9.71 – 41.01 %. On the other hand, Ni showed to 

Univ
ers

ity
 of

 M
ala

ya



70 
 

be very high risk at P6 with RAC value of 89.80%. These conditions may possibly pose 

risk to the environment as it is most labile, exchangeable and easily leach to the 

environment. This current finding is supported by previous studies done by Karim et al. 

(2014); Nda-Umar et al. (2012) and Prechthai et al. (2008). 

 

Table 4.10: Comparison of RAC value for closed cell 

Samples Parameters 

Mn Ni Cu Zn Pb 

P1 H M M M L 

P2 H M M M M 

P3 M L L L L 

P4 L M M L L 

P5 M M L L L 

P6 M VH L L L 

P7 M M L L L 

P8 M L L L L 

 L – Low risk; M – Medium risk; H – High risk; VH – Very high risk  
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CHAPTER 5: CONCLUSIONS 

 

The results obtained from the analysis indicated that the mean concentration of heavy 

metals in active cell were higher than that in closed cell. The mean concentration of Pb 

in active cell was higher (47.49 µg/g) than that in the closed cell (12.46 µg/g). Similar 

results were also obtained for Mn, Zn, Cu and Ni. 

For the sequential extraction, Mn was detected in greatest amounts in mobile 

fractions in both active and closed cells. Meanwhile, Cu was at the highest 

concentration in immobile fractions in active and closed cell. On the other hand, the 

highest percentage of Pb in immobile fraction in active and closed cell was 80.0% and 

50.36%, respectively. Thus, Cu and Pb showed the most non-mobile element in soils in 

both cells. 

The potential mobility trend of heavy metals in Jeram Landfill can be concluded as; 

for active cell, the sequence is Mn>Pb>Zn>Ni>Cu. Meanwhile, the sequence for closed 

cell is Ni>Mn>Zn>Pb>Cu. 

In this study, it was found that, the soil is possibly polluted particularly with Mn, Zn 

and Ni based on their contamination factor values. The high contamination factor of 

these heavy metals shows the increased possible risk to the environment. The results 

showed medium risk for active cell and low risk for closed cell for most heavy metals 

except for Mn which showed high risk in both cells. Overall, although Pb was found to 

be the highest concentration in all soil samples it is at low risk to the environment, due 

to its non-mobility state in soil.  
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