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ABSTRACT

Cloud computing, a user-centric computational model, is flexible paradigm of de-

ploying and sharing distributed services and resources with the pay-per-use model. With

virtual machine (VM) technology and data centers (DCs), computational resources, such

as memory, central processing unit (CPU), and storage, are dynamically reassembled and

partitioned to meet the specific requirements of end users. The demand’s growth for cloud

services is presenting considerable challenges for cloud providers to meet the require-

ments and satisfaction of end users. Virtualization technology reduces cloud operational

cost by increasing cloud resource utilization level. In addition, the ever growing com-

putational demands of users call for efficient cloud resource management to avoid SLA

violation. Virtualization co-locates multiple virtual machines (VM) on a single physical

server to share the underlying resources for efficient resource management. However, the

decision about ”what” and ”where” to place workloads significantly impacts performance

of hosted workloads. Load balancing between physical servers is important to avoid dan-

gerous hot spots in the Cloud; in fact, overload situations are dangerous since they can

easily lead to resource shortage and, at the same time, they can affect hardware life-

time, thus undermining data center reliability. Existing cloud schedulers consider a single

resource (RAM) to co-locate workloads that as a result lead to SLA violation due to non-

optimal VM placement. In addition, allocation of VMs based on traditional scheduler

inefficiently balance the workload distribution that leads to extended the application ex-

ecution time. Furthermore, exiting studies incorporates the migration technique in order

to balance the load after the initial placement of workload, which leads to the maximum

numbers of migrations. Therefore, to overcome these issues, this study propose the ef-

ficient load balancing solutions to uniformly distribute the workload among the physical

servers. The initial VM placement method called Static Multi Resource based Sched-
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uler (SMRS), is designed to enhance the application execution time while balancing the

CPU utilization without VM migrations. In addition, the Dynamic Multi Resource based

Scheduler (DMRS) method is proposed to minimize the number of migrations after the

initial placement of workload. We performed the real time experiments using the Open-

Stack cloud to highlight the efficiency of SMRS and DMRS solutions. Moreover, this

study proposed the mathematical model for SMRS and DMRS method. To validate the

correctness of the mathematical model, the empirical results and mathematical results are

compared based on the CPU utilization, application execution time, and numbers of VM

migrations as a performance metrics. The effectiveness of the proposed solution is eval-

uated by comparing their empirical results with well-known standard OpenStack nova

scheduler. Experimentally, we have shown that our proposed method has lessened appli-

cation execution time by 50% when compared with standard OpenStack cloud in static

environment. In dynamic environment, the performance gain is reported up to 85% and

94.4% based on application execution time and CPU utilization. The improvement in

application execution time increases the usability of cloud data centers.
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ABSTRAK

Cloud computing, model pengiraan user-centric, adalah paradigma fleksibel melak-

sana dan perkongsian perkhidmatan diedarkan dan sumber dengan model bayar-per-use.

Dengan teknologi mesin maya (VM) dan pusat-pusat data (DC), sumber pengiraan, se-

perti memori, unit pemprosesan pusat (CPU) dan penyimpanan, secara dinamik dipasang

semula dan dibahagikan untuk memenuhi keperluan khusus pengguna akhir. Pertumbuh-

an permintaan bagi perkhidmatan awan membentangkan cabaran yang besar untuk pem-

bekal awan untuk memenuhi keperluan dan kepuasan pengguna. teknologi virtualisasi

mengurangkan awan kos operasi dengan meningkatkan tahap penggunaan sumber awan.

Di samping itu, permintaan pengiraan semakin meningkat dari pengguna menggesa pe-

ngurusan sumber awan berkesan untuk mengelakkan SLA pelanggaran. Virtualization

bersama menempatkan pelbagai mesin maya (VM) pada pelayan fizikal tunggal untuk

berkongsi sumber asas untuk pengurusan sumber yang cekap. Walau bagaimanapun, ke-

putusan mengenai apa dan di mana untuk meletakkan beban kerja dengan ketara pres-

tasi kesan beban kerja menjadi tuan rumah. Beban mengimbangi antara pelayan fizikal

adalah penting untuk mengelakkan tempat-tempat berbahaya panas dalam Awan; sebe-

narnya, keadaan beban adalah berbahaya kerana mereka dengan mudah boleh membawa

kepada kekurangan sumber dan, pada masa yang sama, mereka boleh mempengaruhi hi-

dup perkakasan, dengan itu melemahkan kebolehpercayaan pusat data. penjadual awan

sedia mempertimbangkan sumber tunggal (RAM) untuk bekerjasama mengesan beban

kerja yang akibat membawa kepada SLA pelanggaran kerana tidak optimum penempat-

an VM. Walau bagaimanapun, peruntukan VMS berdasarkan penjadual tradisional tidak

cekap mengimbangi pengagihan beban kerja yang membawa kepada memanjangkan ma-

sa pelaksanaan permohonan. Walau bagaimanapun, keluar kajian menggabungkan teknik

penghijrahan bagi mengimbangi beban selepas penempatan awal beban kerja, yang mem-
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bawa kepada nombor maksimum migrasi. Oleh itu, untuk mengatasi isu-isu ini, kajian

ini mencadangkan penyelesaian pengimbangan beban berkesan untuk seragam menga-

gihkan beban kerja di kalangan pelayan fizikal di penempatan awal VMS. Kaedah yang

dicadangkan awal VM penempatan, yang dipanggil Content Multi Sumber Scheduler ber-

dasarkan (SMRS), direka untuk meningkatkan masa pelaksanaan permohonan manakala

mengimbangi penggunaan CPU tanpa migrasi VM. Di samping itu, kajian ini menca-

dangkan Scheduler Dynamic Multi Berasaskan sumber (DMRS), untuk mengurangkan

jumlah migrasi selepas penempatan beban kerja. Kami melakukan eksperimen masa nya-

ta menggunakan awan OpenStack untuk menyerlahkan kecekapan penyelesaian SMRS

dan DMRS. Selain itu, kajian ini mencadangkan model matematik untuk SMRS dan

kaedah DMRS. Untuk mengesahkan ketepatan model matematik, keputusan empirikal

dan keputusan matematik dibandingkan berdasarkan penggunaan CPU, masa pelaksana-

an aplikasi, dan bilangan migrasi VM sebagai metrik prestasi. Keberkesanan penyele-

saian yang dicadangkan itu dinilai dengan membandingkan keputusan empirikal mereka

dengan terkenal ditanda aras OpenStack nova penjadual. Uji kaji, kita telah menunjukkan

bahawa kaedah yang dicadangkan kami telah berkurangan masa pelaksanaan permohonan

sebanyak 50 % berbanding dengan penanda aras dalam persekitaran statik. Dalam perse-

kitaran yang dinamik, keuntungan prestasi dilaporkan up-to 85 % dan 94.4 % berdasarkan

masa pelaksanaan aplikasi dan penggunaan CPU. Peningkatan dalam masa pelaksanaan

permohonan meningkatkan kebolehgunaan pusat data awan.
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CHAPTER 1: INTRODUCTION

Cloud computing is evolving and increasing as an embryonic computing paradigm. By

design, it is assembled with diverse computing technologies such as grid and utility com-

puting, high performance computing, networking, virtualization, storage, distributed sys-

tems, and security (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009), (Stawski, 2015).

In addition, virtualization offers the potential for on-the-fly and on demand configuration

of physical machines to run various tasks and virtual machines (Espadas et al., 2013).

Clouds adopt the virtualization concept for many reasons, such as (a) server consolida-

tion, (b) applications’ adaptive and dynamic configuration, (c) high availability, (d) and

responsiveness. All virtualization features provide clouds a basis to meet service level

(SLA) requirements. Moreover, virtualization is the crucial solution to reduce the en-

ergy consumption, cost of ownership and to attain better resource utilization in data cen-

ters (Barham et al., 2003). By providing physical resource sharing, live migration and

fault isolation multiple virtual machines (VMs) can share resources on a single physical

machine.

To ensure the network performance along with dynamic resource provisioning, virtu-

alization tries to balance the load of the whole system dynamically (Espadas et al., 2013)

there is always a chance of over utilization or under utilization of resources. Overloaded

servers lead to performance degradation whereas under loaded servers cause poor utiliza-

tion of resources. Due to inefficient distribution of load more heat will be generated by the

overloaded servers which in turn increase the cost of cooling system and substantial emis-

sion of CO2 contributing to greenhouse effect (Shaw & Singh, 2014). Therefore, there

is a need to provide right amount of resource dynamically to the applications running in

VMs and develop an energy-efficient schemes.

Load balancing is commonly deployed function, which plays a vital role in cloud
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and virtualized data centers realization (Singh, Korupolu, & Mohapatra, 2008), (Chaczko,

Mahadevan, Aslanzadeh, & Mcdermid, 2011). Load balancing is the evenly distribution

of the resources among users or requests in a uniform manner so that no node become

overloaded or idle in the cloud. In the absence of load balancing establishment, effi-

ciency of overloaded nodes abruptly reduced with time and leads to SLA violation (Singh,

Juneja, & Malhotra, 2015). In addition, load balancing is an essential aspect in In-

ternet based all others distributed computing tasks (Foster, Zhao, Raicu, & Lu, 2008).

Besides, Cloud Service Provider (CSPs) also provide the efficient load balancing solu-

tions to the users in their own cloud computing platforms (Mondal, Dasgupta, & Dutta,

2012). Toward this goal numerous load balancing schemes such as Minimum Execution

Time (MET) (Armstrong, Hensgen, & Kidd, 1998), Min-Min scheduling (Etminani &

Naghibzadeh, 2007), Cloud Analyst (Sefraoui, Aissaoui, & Eleuldj, 2012) exists in liter-

ature and a comprehensive study is also done with and First Come First Serve (FCFS) and

Round-robin. The main goal of job scheduling is to achieve a high performance comput-

ing and the best system throughput. Traditional job scheduling algorithms are not able to

provide scheduling in the cloud environments.

The rest of the chapter is organized as follows. Section 1.1 presents the preliminary

background related to the research field. Section 1.2 explain the research motivations to

carry out proposed research presented in this thesis. The research aim and objectives are

described in section 1.3. Further, in section 1.5 research methodology is proposed in order

to address the research problem. The scope of the research is explained in section 1.6.

Finally, the thesis layout is stated in section 1.7.
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1.1 Background

Cloud computing is a computing model that vigorously extends virtual resources includ-

ing computing power, network resources, and storage, which helps users to approach re-

sources on demand using pay-as-you-go service models through web services. Cloud

computing comprises of a compilation of service models, functioning as Platform as

a Service (PaaS) (Dash, Sahoo, Mohapatra, & Pati, 2012), Infrastructure as a Service

(IaaS) (Erdogmus, 2009), and Software as a Service (SaaS) (Grossman, 2009), which are

reachable over cloud layers (e.g client layer, application layer, infrastructure layer, server

layer and platform layer). Though, Cloud service model results in reduction of delivery

time and costs as well as enhances flexibility and efficiency. Cloud computing adopts

the virtualization concept as an indispensable feature. Virtualization enables physical re-

sources to utilize IT infrastructure on cloud computing platforms as a virtual resource.

Furthermore, virtualization is dynamic in nature, whereby cloud computing services are

automatically provisioned as and when needed by users (Jararweh et al., 2014).

During the last one decade, due to extensively increasing demand for high-end com-

putational servers, efficient cloud resource management has become a must to meet re-

quirements for cloud providers (Buyya et al., 2009) (Jararweh et al., 2014). Virtualization

configures and runs numerous workloads on a single physical server to attain high re-

source utilization for effective cloud resource management (Barham et al., 2003) (Espadas

et al., 2013). However, aggressive workload co-location leads to resource over utilization

that significantly impacts application performance in terms of SLA violation. Therefore,

the decision about what and where to place workloads is very important as efficient work-

load distribution surges in application performance due to diminishing hotspots with data

centers (DC). Alternatively, cloud resource under utilization significantly impacts Return

On Investment (ROI) for cloud operators. Load balancing within cloud data centers fairly
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distributes a workload onto a set of physical servers to, (i) increase ROI, (ii) minimize the

number of hotspots, (iii) reduce SLA violation, and (iv) minimize cloud operational cost.

Load balancing guarantees that all physical resources within cloud DC have a uni-

form workload. The VM placement schemes are divided into static and dynamic load

balancing based on the migration criteria. In static load balancing VMs are not migrated

to other servers whereas in dynamic load balancing VMs are migrated other hosts in order

to balance the system load. Numerous existing load balancing schemes such as, Round

Robin (Sidhu & Kinger, 2013), Min-Min scheduling (H. Chen, Wang, Helian, & Akanmu,

2013) (S.-C. Wang, Yan, Liao, & Wang, 2010) (Etminani & Naghibzadeh, 2007), Max-

Min Algorithm (Elzeki, Reshad, & Elsoud, 2012), OpenStack Scheduler (Litvinski &

Gherbi, 2013), Min-min Algorithm (Patel, Mehta, & Bhoi, 2015), and Improved Max-

min (Elzeki et al., 2012), have considered static load balancing (single-resource) to co-

locate VMs. All aforementioned schemes opted VM placement scheduler that overlooks

queuing user requests, and a fair-share algorithm enabled resources provisioning within

data centers.

In VM migration process, number of VMs are migrated from one host to another in

order to balance the load of over-provisioned or under-provisioned hosts. Migration tech-

nique keep the same performance of the VM as it is expected. Therefore, based on mi-

gration impact, numerous studies have been presented dynamic load balancing strategies

based on VM migration for the sake of efficient load balancing because cloud load balanc-

ing is an extremely important topic due to economic issues (Corradi, Fanelli, & Foschini,

2014)and (Liaqat, Ninoriya, Shuja, Ahmad, & Gani, 2016), (Calcavecchia, Biran, Hadad,

& Moatti, 2012), (Wuhib, Stadler, & Lindgren, 2012) , (Wuhib et al., 2012), (Beloglazov

& Buyya, 2012), (Beloglazov, Abawajy, & Buyya, 2012), and (Bobroff, Kochut, & Beaty,

2007).

A dynamic resource allocation architecture is presented for the sake of load balanc-
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ing and minimizing the energy consumption among the different services of cloud (Wuhib

et al., 2012). Based on management objectives, the architecture focus on the three compo-

nents in terms of (i) admission control policy of VMs, (ii) Placement controller for VMs,

and finally (iii) the implemented is done as an extension of OpsnStack cloud (Corradi et

al., 2014). The shortfall of this architecture is that it only balance the load based on mi-

gration concept and after the allocation of VMs. For the migration of VM, black box and

gray box algorithms are proposed in (Wood, Shenoy, Venkataramani, & Yousif, 2007).

The black box algorithm decides when to migrate, while the decision based on what and

where to migrate is determined from gray box algorithm. To move the VM from over-

loaded to least overloaded host (Wood et al., 2007) uses a greedy heuristic. The VectorDot

scheme is proposed in (Singh et al., 2008), which considers the load on the communica-

tion paths that connect servers to shared network storage. Moreover, Entropy approach

reduce migration time as well as the number of nodes acquiring low performance over-

head.

Based on cloud load balancing schemes it is observed that serval studies have been

conducted based on the static load balancing. Static load balancing do not efficiently

balance the workload. The shortcoming of static load balancing is that it only consider

the number of CPUs and memory while the placement of VM without considering the

effect of load on physical host. Therefore, dynamic load balancing is used to address the

issues of static load balancing. The shortfall of this method is that it only balance the

load based on migration concept and after the allocation of VMs. However, in order to

balance the load based on migration techniques number of migration should be minimized

and controlled because it effects the performance of other VMs running on source and

destination hosts. In aforementioned studies, load is balanced after the deployment of

VMs using the migration concept. Therefore, there is a need to balance the load at the
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deployment time of the VM.

1.2 Motivation

According to the forester research the business of cloud computing will grow upto $241

billion in 2020 whereas it is represented as $40.7 billion in 2010 (Truong, 2010). Besides,

several open-source IaaS-cloud management platform have been developed in order to fa-

cilitate the creation of private clouds such as OpenNebula, Nimbus, OpenStack (Sefraoui

et al., 2012), and Eucalyptus (Nurmi et al., 2009). These IaaS platforms have huge im-

pact the adoption of cloud computing technology. OpenStack cloud is one of the most

widely used open-source cloud among all and revenue will grow to $3.3 billion in 2018

(Fig. 1.1) whereas it will be $5.3 billion in 2020 as presented in Fig. 1.2. So, in order

to undertake our research, we are using OpenStack cloud. According to crisp research

190,000 individuals and 114 showing the worldwide support to the OpenStack.

1
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o
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Figure 1.1: Top Cloud Infrastructures as a Service Projects

Latest research shows that cloud data centers consumes 70 billion kilowatt-hours of

energy, examined in recent year, which is the 2% of the total energy consumption of the
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country (NRDC, 2014). Furthermore, the cloud infrastructures will consume more energy

up-to 1,963.74 TWh in 2020 (Greenpeace, 2010). In last five years, the growth rate of

DCs is doubled. According to the (gignet, 2011) 52% of the cloud resources remains

underutilized. DC resources in underutilized or idle state consume 70% to 80% of the

energy, which is consumed during the peak utilization (Heller et al., 2010). Therefore;

to handle the issues related to underutilization and overutilization of the resources an

efficient workload distribution is required to fairly distributes resources in cloud.

Cloud load balancing efficiently distributes the cloud resources. Several studies

presents that cloud load balancing address the resource utilization issues with the al-

location of the VMs to the physical hosts based on static and dynamic load balanc-

ing. Majority of the study discuss the static load balancing including (Samal & Mishra,

2013), (Gautam & Bansal, 2014), (Kaur & Kaur, 2015), and (Domanal & Reddy, 2013).

In contrast, number of dynamic load balancing schemes have been presented to address

the inefficient workload distribution issues (Ghribi, Hadji, & Zeghlache, 2013), and (Guo

et al., 2010). The static load balancing schemes highlights that while the initial deploy-

ment of workload CPU utilization behavior is not studied. The dynamic load balancing

mitigates the shortfall of static load balancing and balanced the load after the migration of

VMs. The limitation of the dynamic load balancing is that it only consider the workload

using the migration technique and maximum number of migrations minimize the cloud

performance in terms of energy consumption. Therefore; an efficient load balancing so-

lution is required address the limitations of static load balancing as well as the shortfalls

of dynamic load balancing in order to enhance the cloud resource utilization.
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Figure 1.2: Worldwide Support to OpenStack Cloud

1.3 Statement of Problem

Load balancing is considered as a vital feature in Internet based distributing tasks as well

as in cloud computing. Regarding the static load balancing, researchers (Mills, Filliben,

& Dabrowski, 2011), (Mills et al., 2011), (Kousiouris, Cucinotta, & Varvarigou, 2011),

considered VM placement at the time of creation and investigate different factors such as,

deployment scenarios, real-time scheduler’s decisions, and types of workload, to identify

the parameters influencing VMs co-location. On the other hand, researchers (Q. Wang &

Varela, 2011) considered the relationship among three categories of workload based on

several virtual network configuration strategies in terms of the number of VMs, vCPUs

usage per VM, and memory size for each VM. However, these techniques overlooked the

impact of CPU utilization while the initial placement and only distribute the workload

based on the number of CPU used and the available amount of RAM.

Numerous studies have been conducted based on the dynamic VM placement to

provide the efficient solutions in order to assign the clients requests to available cloud
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nodes.Various aspects of cloud load balancing schedulers are extensively presented in (Kllapi,

Sitaridi, Tsangaris, & Ioannidis, 2011), (Phan, Zhang, Zheng, Loo, & Lee, 2011), and (Sotiriadis,

Bessis, Xhafa, & Antonopoulos, 2012). For the apprehension of resource reservation

based on VMs, VM migration is the fundamental scheme. Authors in (Zhao & Figueiredo,

2007) projected migration cost in order to find the accurate estimation of migration time

for preparing resource reservation.

Based on literature review it is perceived that in static load balancing cloud sched-

ulers do not consider the CPU utilization at the deployment of VMs. Besides, most of

the current state-of-the-art load balancing schemes considered dynamic load balancing to

handle the static load balancing issues. In aforementioned dynamic load balancing stud-

ies, load is balanced after the deployment of VMs using the migration concept. Maximin

number of migrations degrade the cloud performance. Therefore, there is a need to bal-

ance the load at the deployment time of the VM. Based on the aforementioned research

gap the problem statement of this thesis is stated as.

Majority of the cloud load balancing algorithms incorporate the static parameters

while the initial placement of resources. The static load balancing does not consider

the CPU utilization on physical hosts. Moreover, in order to address the limitations of

static load balancing the dynamic load balancing handle the over-utilization and under-

utilization of the hosts by adapting the migration solution when the resources are initially

deployed. However, in static load balancing the absence of dynamic state of CPU load,

during the scheduler’s decision making leads to inappropriate workload distribution on

physical hosts and when the workload is balanced through the migration it leads to the

high migration overhead. As a result, the inappropriate workload distribution surges

application execution time. Therefore, there is a need of a solution that should efficiently

manage the CPU utilization (CPU load) for initial placement to minimize number of VM

migrations.
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1.4 Statement of Objectives

In this section the problem of inefficient distribution of workload while the allocation and

reallocation of VM is addressed. The aim of the research is to minimize the inefficient

distribution of load during the placement of VM and to enhance the execution time of

VMs. The objective of the research are as follows.

• To critically review the current state-of-the-art cloud load balancing schemes while

the placement of VMs to gain insight to the performance limitations.

• To investigate the workload distribution of cloud load balancing schedulers to re-

veal inefficiencies in existing schemes without considering the CPU utilization and

current load while the placement of VMs.

• To design and propose a multi resource-based scheduler to minimize the deficien-

cies of current cloud schedulers based on CPU utilization, and application execution

time while the placement and migration of VMs.

• To evaluate the performance of proposed multi resource based algorithms and com-

pare it with the state-of-the-art current VM placement cloud scheduler, and to vali-

date the developed mathematical model.

1.5 Proposed Methodology

The proposed methodology is highlighted in Fig. 1.3, which is followed to conduct this

research. The research is divided into four objectives such as literature review, problem

analysis, design of static and dynamic cloud load balancing scheduler, evaluation of the

proposed scheduler, and validation of the proposed solution.

In the first phase, existing literature work is extensively reviewed in order to highlight

the strength and weaknesses of state-of-the-art cloud load balancing schemes. The load

balancing schemes are categorized based on the proposed thematic taxonomies. Based on
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the proposed taxonomies the existing schemes are compared with respect to the objective

functions to highlight the commonalities and differences among them. Moreover, the

issues that affects the performance of existing schemes are also discussed.

To extensively review 

the current state-of-the-

art cloud load balancing 

schemes 

Identified

research 

gap

• Identifying the strength and 

weaknesses of existing 

works

• Classifying the literature 

into static and dynamic 

load balancing schemes

• Conducting the qualitative 

comparison

• Identifying the open 

research issues

Established 

problem

• Performing the experiments 

on the distribution of 

workload enabling the 

OpenStack cloud 

benchmark 

• Analyzing the results for 

CPU utilization, and 

application execution time

To investigate the 

workload distribution of 

cloud load balancing 

schedulers while the 

placement of VMs 

To design and propose a 

multi resource-based 

scheduler to minimize the 

deficiencies of current 

cloud schedulers

Formulated 

multi 

resource-

based 

scheduler 

• Developing the multi 

resource-based scheduler 

based on global decision 

engine and local decision 

engine

• Developing the load 

analyzer, load filter, and 

compute filter algorithms 

to statistically predict the 

CPU utilization of each 

compute node

• Proposing the static and 

dynamic algorithms for 

initial VM placement and 

VM migration

Verified 

and 

validated 

the 

proposed 

methods

• Identifying the 

performance measuring 

parameters (CPU 

utilization, application 

execution time)

• Selecting the existing 

cloud scheduler for 

comparison 

• Comparing it with the 

state-of-the-art current VM 

placement scheduler via 

experimental testbed

• Validating the results of 

performance evaluation of 

proposed methods using 

the linear programming 

model 

To evaluate and validate 

the performance of 

proposed scheduler for 

selected parameters

Figure 1.3: Research Methodology

The second phase is described as the problem establishment phase. In this phase,

research problem is investigated by analyzing the performance of current cloud scheduler

while the placement of VMs. The benchmark OpenStack filter scheduler along with the

set of filters including Ram filter, Availability zone filter, Core filter, All-Hosts Filter filter

is used to investigate the CPU utilization and application execution time when the VM

are deployed using the 100% CPU resources. The performance parameters are examined

based on the static and random load distribution factors while the placement of VMs to

PMs. Moreover, in order to fully utilize the CPU resources a CPU intensive algorithm

is designed. Besides, the analysis is exercised to reveal the performance of current cloud

scheduler based on CPU utilization and application execution time.
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In the third phase of the research multi resource-based scheduler is proposed to min-

imize the deficiencies of the current cloud scheduler. The basic objective of the proposed

scheduler is to minimize the application execution time and efficiently utilize the CPU

resources. The proposed multi resource-based scheduler is comprised with two modules

named as global decision engine and local decision engines. The local decision engine

is consists of two algorithms including load analyzer and compute load. These algo-

rithms are implemented at compute nodes where another algorithm is designed for global

engine and represented as load filter. To reduce the application execution time, the pro-

posed scheduler is designed for the static (initial VM placement) and dynamic (and VM

migration) scenarios. Based on the static algorithm the proposed scheduler balance the

CPU utilization and minimize the application execution time. In contrast, for dynamic

algorithm the CPU utilization is balanced at the deployment time of VM and the CPU

capacity is increased and affects the application execution time at time interval t the VM

is migrated to the least loaded host to efficiently utilize the CPU resources.

In the fourth phase, the significance of the proposed scheduler is evaluated while

conducting the real experiments using the benchmark application. The behavior of the

proposed multi resource-based scheduler is verified based on the benchmark application.

The performance of the proposed static scheduler is analyzed based on its CPU utilization,

application execution time, and the sequence if the VM deployments when the resources

are homogeneous and heterogeneous based on the RAM availability and number of vC-

PUs associated to each VM. Further, the behavior of dynamic resource based scheduler is

evaluated based on the number of migrations, CPU utilization, and application execution

time. In addition, the empirical date is conducted while varying the number of vCPUs and

workload associated to each VM. In this last phase the findings of the proposed sched-

uler algorithms are compared with existing solution to validate the efficiency of proposed
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scheduler. Moreover, the scheduler is validated using the statistical based analysis by

conducting the average, mean, and standard deviations results. In contrast, a mathemati-

cal model based on the linear programming of static and dynamic algorithms is proposed

in order to efficiently balance the CPU utilization among physical servers. Furthermore,

the effectiveness of mathematical model is validated by experimentations.

1.6 Scope

Virtualization technology assists to achieve computing-as-a-service vision of cloud-based

solutions. VM process helps to achieve various management goals, such as, load balanc-

ing, fault tolerance, and green cloud computing. It transfers system state from one server

to another to offer uninterrupted services. However, VM migration is not free and con-

sumes a significant amount of sender and receiver resources in terms of power to carry

out migration process successfully. This study does not consider the power consumption

constraints when the VMs are allocated on the physical hosts. In addition, this research

consider the effect of optimal combination of multi resources such as number of vCPUs,

RAM and CPU load through VM provisioning for the maximum resource utilization.

This study does not reflecting the effects of I/O resources and network communication

pattern. Therefore, the scope of this research is limited to the VM efficient distributions

of VMs while satisfying the load balancing constraints.

1.7 Thesis Structure

The thesis entitled as “Distribution of Virtual Machines using Static and Dynamic Load

Balancing in Cloud Computing” comprises a detailed study of this research. Therefore,

for the better understanding to readers this research is structured based on seven chapters.

The thesis outline is presented in Fig. 1.4.
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Figure 1.4: Thesis Organization

Chapter 2 presents the state-of-the-art cloud load balancing schemes. This chap-

ter presents the detailed discussion and review on the current load balancing techniques

and classify these techniques into static and dynamic load balancing categories based

on the characteristics presents in the thematic taxonomy. The strength and weaknesses

of each scheme is highlighted based on the objective functions stated in the taxonomy.

Furthermore, a critically qualitative analysis is presented for the static and dynamic load

balancing schemes. This chapter compose the details taxonomy based on the issues and

challenges regarding to the cloud resource management. This chapter highlights the sev-

eral open research issues as well as the discuss issues that are addressed in this research

work.

Chapter 3 analyze the issues of legacy load balancing method. The OpenStack cloud is

used as a benchmark for the distribution of the resources in the cloud. The performance
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overhead in terms of CPU utilization and application execution time is analyzed to gather

insight the computational limitations while varying the number of resources including

RAM, vCPUs, and disk space associated to VMs. The analysis presents that the exist-

ing study report the inefficient distribution of resources while the deployment of VMs.

Further, the performance analysis study reveal the need for an efficient distribution of the

resources within cloud.

Chapter 4 presents the proposed multi resource-based VM deployment solution to ad-

dress the issues of the legacy VM deployment methods. In this chapter the proposed

solutions static load balancing solution is described in detailed based on three algorithms

including load filter, compute load, and load analyzer. Based on the dynamic load balanc-

ing the dynamic multi resource based scheduler is proposed. The working of the dynamic

load balancing method is presented with the system flow diagrams. Further, the assump-

tions and constraints in terms of resource constraints, operational constraints, and load

balancing constraints are described in this study as a equation for the static and dynamic

load balancing solutions.

Chapter 5 shows the data collection methodology for the proposed solutions. The study

describes the detailed experimental setup accompanying with the benchmark and devices.

Further, the data collection method is also explained for empirical results for static and

dynamic solution. The validation model and its equation are implemented using A Math-

ematical Programming Language (AMPL) tool by using the gurobi solver. Besides, the

tools, and hardware level specifications are described to in order to perform the experi-

ments.

Chapter 6 validates the proposed solutions by comparing the results of empirical eval-

uations with the results of mathematical model. This study presents the effectiveness of

proposed solution based on (i) CPU utilization, (ii) number of migrations, and (iii) appli-

cation execution time. In this study, the performance of proposed multi resource based
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schedulers is also compared with the legacy benchmark application.

Chapter 7 concludes this thesis by revising the research objectives. This, study summa-

rizes the contributions of this thesis and highlights significance and limitations. Moreover,

the future research directions are also provided in this chapter.
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CHAPTER 2: LOAD BALANCING SCHEMES FOR CLOUD DATA CENTERS

This chapter briefly reviews the importance of cloud load balancing, and cloud resource

management. In this chapter, critical aspects and significant features of existing frame-

works are investigated through qualitative analysis. Moreover, this chapter critically re-

view the state-of-the-art of cloud load balancing schemes and present the a detailed the-

matic taxonomy, which covers the load balancing characteristics and classifies the exist-

ing literature. In order to compare the performance of existing load balancing schemas

critical parameters are considered from the literature. The comparison parameters are: (a)

reliability, (b) availability, (c) energy efficiency, (d) delay time optimization, (e) scalabil-

ity, and (f) latency. In addition, this survey provides a detailed taxonomy and discussion

of various open research issues and challenges based on selected functions in terms of (a)

resource selection, (b) resource allocation, (c) resource monitoring, (d) resource discov-

ery, (e) resource prizing, and (f) disaster management to pave the way for future research

directions.

This chapter is comprised of eight main sections. The essential background and ba-

sic terminologies are presented in section 2.1 in order to describe fundamental concepts

of cloud computing and virtualization. Section 2.2 discusses the importance of cloud load

balancing and presents a thematic taxonomy for load balancing characteristics. This sec-

tion compares and reviews existing state-of-the-art load balancing schemes based on static

and dynamic load balancing schemes to address the commonalities and differences among

them. Section 2.3 presents the necessary background of cloud resource management and

a review of substantial resource management techniques covering resource management

functions in terms of resource selection and allocation. Furthermore, the main features of

cloud deployment tools are explained in section 2.4. Section 2.5 presents a detailed the-
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matic taxonomy of open research issues and challenges that hinder designing optimized

resource management technologies for cloud environment. Section 2.6 discusses a brief

summary on load balancing schemes based on initial VM provisioning and migration to

analyze the most significant issues in cloud load balancing research domain. Finally, an

overview on findings and the complete chapter conclusion is presented in section 2.7.

2.1 Background

This section discuss the concept of the cloud computing and virtualization.

2.1.1 Cloud Computing

Information Technology (IT) industry has evolved from its birth in the last century into

one of the most prominent industry in today’s world. Along with its rapid growth, IT is

changing daily lifestyles and is becoming a technology enabler for many veteran indus-

tries and businesses (Liaqat et al., 2016). Cloud computing technologies have emerged

as a backbone of all IT services. Cloud computing is assembled with diverse computing

technologies such as grid and utility computing, high performance computing, network-

ing, virtualization, storage, distributed systems, automation and security, etc (Buyya et

al., 2009). With the assistance of cloud computing definition, elasticity is defined as the

creation of numbers of virtual machines instances depending on user’s demand. There-

fore, in order to fulfill the user demands cloud must provide the high performance gain

and at the same time must be beneficial for the CSP (Shaw & Singh, 2014).

Cloud computing provides a holistic storage solution for data storage in a remote

location using a third-party server. For instance, Google File System (GFS), BigTable,

Amazon’s Simple Storage Service (S3), Simple DB, Hadoop Distributed File System

(HDFS), and OpenStack, are available cloud storage applications that are accessed by

numerous types of clients (Xu, Zheng, Wu, Huang, & Xu, 2010). With the assistance of
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cloud computing definition, elasticity is defined as the creation of numbers of virtual sen-

sor instances depending on user’s demand. Therefore, in order to fulfill the user demands

cloud must provide the high performance gain and at the same time must be beneficial for

the Cloud Service Provider (CSP) (Shaw & Singh, 2014). Major characteristics of cloud

computing which are important in data analysis and processing, can be defined as follows:

• On-demand self-service: each cloud user can deploy and configure the cloud servers

and services himself, no interactions with service providers are necessary

• Multitenancy: the resources and costs are shared across a large community of cloud

users

• Scalability: an efficient and low-cost configuration and assignment of the system

resources according to consumer demand

• Easy system access: cloud resources and services are accessed through standard

(Internet) protocols, using standard web browsers regardless of their location and

platform, e.g., smart phones.

2.1.1.1 Cloud services

Cloud computing consists of a collection of service models (Mell & Grance, 2009), such

as PaaS (Dash et al., 2012), IaaS (Erdogmus, 2009), and SaaS (Grossman, 2009), which

are available over cloud layers (e.g client layer, infrastructure layer, application layer,

platform layer, and server layer) as presented in Fig. 2.1. At the infrastructure level, CC

provides a service to an end user by provisioning the servers, networks, storage and fun-

damental computing resources, and the user can deploy and run the software that includes

the applications and operating systems. Cloud computing offers a number of advantages

by allowing users to utilize platforms (e.g., middleware services and operating systems)
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for the deployment of user-created applications using the cloud providers’ supported lan-

guages, libraries and tools (e.g., Amazon, Google, and Salesforce) at low cost. At the

platform level, users have control of the deployed applications and configuration settings

of the environment hosted by the applications. In addition, cloud computing facilitates the

elastic utilization of resources in on-demand manner. However, the cloud service model

reduces delivery time and costs as well as improves flexibility and efficiency.
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Figure 2.1: Cloud computing service model

2.1.1.2 Cloud Types

Cloud computing have four types of deployment models such as community, public, pri-

vate, and hybrid cloud (Dash et al., 2012), (Erdogmus, 2009). In a public cloud, resources

are dynamically provided to the general public on fine-grained and general third party pay
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the bill based on computing. Moreover, the popular services are public clouds, including

EC2, Amazon, Google App-Engine, S3 and Force.com. The publicly availability of these

services often called public cloud. In contrast, the infrastructure used for the particular

organization is known as a private cloud (Tolba & Ghoneim, 2015). It is hosted internally

or externally by the third party where the cost is divided on the several users not on the

general users. For example, EUCALYPTUS is a software environment which is used for

the deployment of the private cloud and has compatibility related concern with Amazon’s

EC2. Furthermore, it represents the extensible and modularized policy for the allocation

of resources. Currently, EUCALYPTUS supports the two simple types of polices such as,

round robin and greedy (Sotomayor, Montero, Llorente, & Foster, 2009). Hybrid cloud

is made up from two or more clouds like public, community or private cloud, which

provides the advantages of numerous deployment models. Private cloud is made for the

single organization. It is hosted internally and externally or managed by the third party.

2.1.2 Virtualization

Virtualization was devised as a resource management and optimization technique for

mainframes having scaleless computing capabilities. Virtualization in mainframes results

in efficient management of coarse-grained resources with limited overhead (Liaqat et al.,

2016). However, virtualization techniques have been able to make their way to multi-

core (Petrides, Nicolaides, & Trancoso, 2012) and commodity server designs (Egi et al.,

2010). The multi-core processor, blade server, and System on Chip (SoC) designs also

provide virtualization techniques opportunity for resource consolidation and optimiza-

tion where fine-grained resources are assembled to provide a virtual scalable platform for

cloud applications. Virtualization techniques benefits data centers in many ways, such as:
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• Scalability: cloud users and applications view heterogeneous hardware and soft-

ware resources as a single scalable platform. Virtual devices are scalable in terms

of hardware resources. Server, memory, and I/O power can be added to a virtual

machine when its resource utilization nears 100%.

• Consolidation and utilization: virtual resources can be easily consolidated over

few physical resources that results in higher resource utilization levels and energy

efficiency (Younge et al., 2011).

• Isolation: performance and faults are isolated between applications of the same

resource (Uhlig et al., 2005).

• Manageability: virtualization offers variety of resource management options such

as VM creation, deletion, and migration.

• Robustness: virtualization leads to system robustness as clients spread across mul-

tiple VMs.

Due to the aforementioned benefits, virtualization is globally adopted in cloud data

center environments (Goiri et al., 2012), (Ahmed, Gani, Khan, Buyya, & Khan, 2015). In

a virtualized data center architecture, each cloud client (application or user) is assigned

a chunk of data center resources. The data center resources close to the hardware plat-

form can be categorized into physical resource set and virtual resource set (Lenk, Klems,

Nimis, Tai, & Sandholm, 2009). The virtual resource set works as a management platform

over the physical resource set to provide the illusion of a single scalable platform to all

cloud clients. A hypervisor or Virtual Machine Monitor (VMM) is hardware independent

technology that manages virtual machines over heterogeneous hardware platforms. The

hypervisor is a set of computer hardware, firmware, and software that lies between the

hardware and the Operating System (OS). The hypervisor has the ability to initiate one or
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more than one OSes over a single hardware resource set (Younge et al., 2011). Inside a

virtualized data center, clients reside over a pool of virtual resource sets.

Figure 2.2: Architecture of a virtual data center

When a new client request arrives at the cloud data center, it is forwarded by the

dispatcher to corresponding VMM. The dispatcher requests physical resources according

to the client SLA, pricing model, and application QoS requirements (Buyya, Garg, &

Calheiros, 2011), (Shiraz, Gani, Shamim, Khan, & Ahmad, 2015). Fig. 2.2 illustrates the

architecture of a virtualized data center consisting of multi-core servers. In a virtualized

data center architecture, multiple clients often share same hardware resources with the

23

Univ
ers

ity
 of

 M
ala

ya



help of virtualization techniques. Moreover, hardware resources provisioned for a data

center client can be scaled dynamically according to varying workload. The resource

scaling can be done with a variety of virtualization methods such as VM creation, dele-

tion, and migration. A workload can be consolidated or migrated onto a lesser number

of resources using VM migration. The resultant resource set provides energy efficiency

and higher resource utilization. The CPU power along with other computing resources

such as memory and I/O can be scaled gracefully with the help of virtualization tech-

nologies (Younge et al., 2011). When a hardware resource is underutilized due to lesser

client requests, it represents and opportunity for resource consolidation. The workload of

underutilized hardware is transferred to another suitable hardware with the help of hyper-

visor. The workload consolidation and migration technique is depicted in Fig. 2.4.

Figure 2.3: Workload Consolidation and Migration
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Clouds adopt the virtualization concept for many reasons, such as a) server consol-

idation, b) applications’ adaptive and dynamic configuration, c) high availability, d) and

responsiveness (Foster et al., 2008). All virtualization features provide clouds a basis

to meet SLA requirements (Ahmad et al., 2015). To ensure the network performance

along with dynamic resource provisioning, virtualization tries to balance the load of the

whole system dynamically (Espadas et al., 2013) there is always a chance of over utiliza-

tion or underutilization of resources. Overloaded servers lead to performance degrada-

tion whereas under loaded servers cause poor utilization of resources. Due to inefficient

distribution of load more heat will be generated by the overloaded servers which in turn

increase the cost of cooling system and substantial emission of CO2 contributing to green-

house effect (Shaw & Singh, 2014). Therefore, there is a need to provide right amount

of resource dynamically to the applications running in virtual machines and develop a

efficient load balancing technologies not only for reducing operational cost but also for

decreasing its influence on system’s reliability in order to meet the QoS requirement.

2.2 Cloud Load Balancing

Load balancing, a deployed function, plays its vital role in cloud and cloud data center do-

mains for efficient resource management (Chaczko et al., 2011). Load balancing ensures

even distribution of resources among a set of users in a uniform way such that underly-

ing servers do not become overloaded and idle at any time within cloud operation time

line. Overlooking load balancing establishment abruptly decreases system throughput

due to overloaded servers and ultimately leads to SLA violation. It has become an inte-

gral part of all distributed internet based systems as distributed computing comes with the

challenges of high resource demands that overload servers. Load balancer increases the

capacity and reliability of applications by decreasing the burden on a server. In addition,
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load balancing is an essential aspect in Internet based all others distributed computing

tasks (Foster et al., 2008). Cloud service providers (CSP) also provide the efficient load

balancing solutions to the users in their own cloud computing platforms. Furthermore, an

inter CSP load balancing algorithm is required to build the low cost and infinite resource

pool for the customers (Mondal et al., 2012). Toward this goal numerous load balancing

schemes such as Minimum Execution Time (MET) (Armstrong et al., 1998), Min-Min

scheduling (Etminani & Naghibzadeh, 2007), Cloud Analyst (Sefraoui et al., 2012) ex-

ists in literature and a comprehensive study is also done with and First Come First Serve

(FCFS) and Round-robin. The main goal of job scheduling is to achieve a high perfor-

mance computing and the best system throughput. Traditional job scheduling algorithms

are not able to provide scheduling in the cloud environments.

2.2.1 Taxonomy of State-of-the-art Cloud Load Balancing Schemes

This section define the thematic taxonomy of the classification and characterization of

cloud load balancing algorithms used to attain the various objectives such as, fair allo-

cation, efficient utilization of resources, cost effectiveness, scalability and flexibility, and

resource prioritization. Load balancing algorithms are characterized based on ten char-

acteristics, namely (a) environment, (b) system topology, (c) VM placement function,

(d) task scheduling, (e) resource allocation, (f) provisioning decision, (g) cloud type, (h)

cloud resource type, (i) load balancing policies, (j) objective function.

2.2.1.1 Environment

The environment of the load balancing algorithms states that weather the nature of algo-

rithms is static or dynamic. In load balancing algorithms, environment is either mobile

or immobile based on run time state information to make efficient decision in order to
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Figure 2.4: Taxonomy of Cloud Load Balancing Schemes

share the system load. In static load balancing, algorithms assumes that all the prior

knowledge of the nodes related to network resources, computing resources, memory, pro-

cessing power, and storage capacity are known and provided. Static algorithms assign the

tasks to the nodes based on their new request’s acceptance capabilities. The attractive-

ness of the static algorithms is that it offers minimum execution time. However, it has

two major limitations. Firstly, in static approach load balancing decisions are taken into

account at compile time probabilistically or deterministically and cannot respond at run-

time. Secondly, it assumes all the prior information of nodes will remain same. Therefore,

such an assumption may not suitable for distributed environments. In contrast, dynamic
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approaches consider the network bandwidth, and nodes properties at runtime. Most of

the dynamic load balancing algorithms rely on the combination of information based on

prior gathered knowledge in the cloud and runtime properties of the nodes. These algo-

rithms can allocate and dynamically reallocate the tasks based on gathered and collected

attributes of the system. The limitation of this approach is that continuous monitoring of

the nodes and task progress is required which is hard to implement. However, dynamic

schemes are more accurate in order to provide the efficient load balancing. Therefore,

dynamic scheme is used in modern load balancing techniques because of its flexibility

and robustness.

2.2.1.2 Allocation method

Allocation method is defined as the mapping of the tasks to the cloud resources based on

demands. In cloud, resources must be allocated in such a manner that no node/ host be-

come under loaded and over loaded and all the available resources do not endure any kind

of wastage in terms of core, bandwidth, and memory etc. Therefore, mapping is further

classified into two categories such as (a) VM mapping on host, and (b) task’s mapping

on VMs. VMs are deployed on physical hosts. Based on the physical host capabilities

and availabilities several VMs can mapped on a single host. Host is accountable in order

to allocate the number of core to VMs. Algorithms with the VM mapping on hosts are

provider oriented and as well as customer oriented. In allocation policy to ensure that

characteristics of host and VM are not mismatched is challenging task. Moreover, better

allocation policy provide the efficient utilization of resources and minimize the makespan

time of the resources. Cloud users can execute their VM efficiently with limited number

of physical machines. Hence, this approach will lead to an efficient utilization of re-

sources available to facilitate maximum computing with minimum physical data centers
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infrastructures. Besides, based on task’s mapping on VMs applications are executed on

VMs. For the completion of task each application requires a certain amount of energy.

So, VM must offer the required amount of energy in order to accomplish the mapped

tasks. Moreover, based on VM availability and configuration tasks should be mapped on

appropriate VMs. The objective of that policy is to achieve the minimum execution time

with high performance.

2.2.1.3 Task Scheduling

Task scheduling is done when the resources are allocated to the cloud. Task scheduling is

described as a method in which allocated resources are offered to end users (weather the

resources are available based on sharing or fully available until task is complete). In cloud

environment, it provides the multiprogramming capabilities. Moreover, task scheduling

is further classifies in two modes such as, a) space sharing, and b) time sharing. Both

hosts and VM provisioned to users based on time shared mode or either in space shared

mode. In space shared scheduling one task is scheduled to the VM at a given instance of

time and after its accomplishment another task is assigned to VM. Moreover same strat-

egy is used to schedule the VM onto hosts. This policy behave same as the first come first

serve algorithm (FCFS). This allocation policy enables the task units to be scheduled at an

earlier time, but significantly affecting the completion time of task units that are ahead the

queue. In Time-Shared scheduling policy it schedule all tasks on virtual machine at the

same time. It shared the time among all tasks and schedule simultaneously on the virtual

machine. This policy is also used to schedule the virtual machine on the host. The concept

of round-robin (RR) scheduling algorithm is used in this policy. Space shared scheduling

policy shows better results as compared to Time-shared scheduling policy when number

of tasks are increased.
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2.2.1.4 Provisioning decision

An algorithm is centralized if the parameters necessary for making the load balancing

decision are collected at, and used by, a single resource i.e. only one resource acts as

the central controller and all the remaining resources act as slaves. The centralized ap-

proach is more beneficial when the communication cost is less significant e.g. in the

shared-memory multi-processor environment. Its limitation is single point of failure and

non-scalable. However, in decentralized approach all the resources are involved in mak-

ing the load balancing decision. In Distributed approach, nodes individually forms their

particular load vector by gathering the load data of other nodes. Based on the local load

vectors the conclusions are accomplished locally. In addition, for the widely used dis-

tributed systems such as cloud computing this method is more appropriate. Decentralized

algorithms are more scalable and have better fault tolerance. Hierarchical load balancing

is presented with the multiple number of tiers of cloud while the load balancing decision.

Besides, these schemes works based on the modes of master and slave where master node

is responsible for all the slaves nodes in order to collect their data by using the light weight

agent processes.

2.2.1.5 Load balancing policies

An algorithm for the load balancing problem can be broadly categorized in terms of four

policies in terms of (i) location policy, (ii) transfer policy, (iii) threshold policy, and (iv)

information policy. Moreover, the location policy it is the policy that affects the finding

of a suitable node for migration. The common technique followed here is polling, on a

broadcast, random, nearest-neighbor or roster basis. Transfer policy it is that which de-

termine whether a node is suitable for participating in a process migration. One common
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technique followed is the threshold policy, where a node participates in a negotiation only

when its load is less than (in destination-initiated algorithm) or greater than (in sender-

initiated algorithm) a threshold value. Selection policy it is the policy that deals with the

selection of the process to be migrated. The common factors which must be considered

are the cost of migration (communication time, memory, computational requirement of

the process, etc.) and the expected gain of migration (overall speedup of the system,

etc.). Information policy it is that component of the algorithm that decides what, how and

when the information regarding the state of the other nodes in the system in gathered and

managed. They can be grouped under demand-driven, periodic, or state-change-driven

policies.

2.2.1.6 System topology

In order to understand the functionality of load balancing the schemes are classified into

the topology depended and independent categories. Topology depended algorithm is de-

scribed as the mechanism which is designed for the specific topology where its function-

alities and logics are predefined. The topology depended algorithms are further classified

into two groups names as synchronous and asynchronous algorithms. Synchronous al-

gorithms are appropriate for exceedingly parallel schemes whereas the asynchronous are

suitable for parallel systems because of their local behavior. In contrast, the independent

algorithm are not designed for the specific topologies and their functionalities are also not

defined in advance. Moreover, the independent algorithm does not face the compatibility

issues based on topology designed parameters. Furthermore, the drawback of topology

depended algorithm is that it leads to high communication overhead as compare to inde-

pendent algorithms.
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2.2.1.7 Objective function

The objective function defines the aim of state-of-the-art SC frameworks. The metrics on

which the existing load balancing techniques have been measured are discussed below:

• Reliability: It can be defined as the efficiency of the system. This has to be im-

proved at a reasonable cost, e.g., reducing the response time though keeping the

acceptable delays.

• Resource Utilization: It is used to ensure the proper utilization of all those re-

sources, which comprised the whole system. This factor must be optimized to have

an efficient load balancing algorithm. It should be maximum for an efficient load

balancing system.

• Scalability: The quality of service should be same if the number of users increases.

The more number of nodes can be added without affecting the service. It is the

ability of an algorithm to perform uniform load balancing in a system with the

increase in the number of nodes, according to the requirements. Algorithm with

higher scalability is preferred.

• Execution Time: This metric is used to estimate the total time required to execute

the specific application. Minimum execution time is necessary for overall system

performance.

• Overhead: Overhead associated with any load balancing algorithm indicates the ex-

tra cost involved in implementing the algorithm. Overhead Associated determines

the amount of overhead involved while implementing a load-balancing algorithm.

It includes overhead due to movement of tasks, inter-processor and inter-process

communication. It should be as low as possible.
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• Fault Tolerance: It measures the capability of an algorithm to perform uniform load

balancing in case of any failure. A good load balancing algorithm must be highly

fault tolerable.

• Migration Time: It is defined as, the total time required in migrating the jobs or

resources from one node to another. It should be minimized.

• Response Time: It can be measured as, the time interval between sending a request

and receiving its response. It should be minimized to boost the overall performance.

2.2.2 Review of load balancing schemes for cloud environments

This section briefly describes the state-of-the-art load balancing schemes. Load balancing

algorithms are further categorized as static and dynamic load balancing techniques.

2.2.2.1 Static load balancing schemes

This section addresses state-of-the-art load balancing algorithms based on static load bal-

ancing. Moreover, Table 2.1 represents the load balancing schemes along with their ob-

jectives, strengths, and weaknesses as a future directions. Besides, based on the taxonomy

the comparison of static load balancing algorithms is explained in Table 2.2.

Author in (Samal & Mishra, 2013) presented the static load balancing algorithm.

This study uses the round robin algorithm for the allocation of VMs on PMs. The main

objective of this scheme is to equally distribute the load to each PM. The process of

round robin scheduling in cloud is very similar to the round robin scheduling in a process

scheduling. While the deployment of VMs, the scheduler randomly selects the first node

and then allocate the VMs to PMs in a circular motion until one VM is allocated to each

node and then the scheduler return to the first node again. The advantage of this scheme

33

Univ
ers

ity
 of

 M
ala

ya



Table 2.1: Summary of Static VM placement schemes in a cloud environment.

Schemes Description/ Objective Strength Weakness
(Kaur & Kaur,

2015)
The states of VMs are recorded in record table in
terms of idle or busy states. The -1 is returned when
the record is not matched in table and request is
queued until value is not 1

TLB attempts to equally
distributes the load
among VMs

Do not consider the cur-
rent load of VMs

(Domanal &
Reddy, 2014)

Requests are assigned to the VM which available re-
sources in terms of RAM and VM is not selected for
the allocation of previous request

VMs are utilized com-
pletely and properly

Overlooks the experi-
mental setup along with
its parameters

(Ashwin, Do-
manal, & Gud-
deti, 2014)

Any available VM is selected for the assignment
of request. This algorithm handles the overloading
while the placement requested to the VMs

Job processing time
and response time is
enhanced

Not a fault tolerant solu-
tion when single node is
failed

(Shaw &
Singh, 2014)

Based on existing processing power weight is allot-
ted to each VM. Task are allocated to more powerful
and least loaded VMs

Consider the energy con-
sumption and load of
available VMs

Weight consignment
maximize the complex-
ity of algorithm

(Gautam &
Bansal, 2014)

Weight is allotted to each VM based on its power
capacity. Maximum number of requests are assign
to the VM which is associated with high power

Efficient resource uti-
lization

Overlooks the applica-
tion processing time

(Samal &
Mishra, 2013)

Only first request is assigned to the randomly se-
lected VM. The rest of the requests are allocated in
circular order

Equally distribute work-
load in circular order

Execution time is not
considered

(Adhikari &
Patil, 2013)

This algorithm is based on two rules : i) Retiring
State of VM and ii) Retirement Threshold and mi-
gration of VMs

Reduces the power con-
sumption cost

Does not scale up for
large data centers

(Domanal &
Reddy, 2013)

For the request allocation the record table is
searched from the next to already allocated VM

Enhance the response
time

While the placement of
the request state of index
table may change

(H. Chen et al.,
2013)

Similar to the min-min algorithm the smallest job’s
completion time is calculated through the maximum
loaded resources on each PM

Minimize the application
completion time and bal-
anced the load

While scheduling does
not consider the priority

(James &
Verma, 2012)

VM allocation is like Throttled but based on prior-
ity which calculated using CPU speed and memory
capacity of VM

Appropriate for hetero-
geneous cloud environ-
ment

Priorities are predefined

(Elzeki et al.,
2012)

Similar to min-min algorithm where are jobs with
the maximum execution time are completed first

Decreases the makespan Smallest tasks have to
wait for long time

(Kokilavani
& Amalarethi-
nam, 2011)

The smallest job is allocated to the fastest resources.
Once the allocation process is complete the job is
detached from the list and again the same process is
repeated

Efficient algorithm Does not consider the
existing load

(Bramson, Lu,
& Prabhakar,
2010)

Jobs are randomly assigned to available VMs Efficient algorithm Not considered the cur-
rent load of VMs

(S.-C. Wang et
al., 2010)

The selects jobs are assigned to the available VMs
based on random selection criteria

Each VM is reserved
into busy state

Overlooks the execution
time of tasks

(Hu, Gu, Sun,
& Zhao, 2010)

The proposed model is divided into three sub models
where at first stage the tasks are received at request
manager and sent it to service manager in second
stage. The service manager allocate them to the ser-
vice nodes for their execution as sub tasks

Availability of VM and
RAM is considered, en-
hance the task execution
time

Overlooks the node se-
lection for the compli-
cated tasks

(Rahmeh,
Johnson, &
Taleb-Bendiab,
2008)

TAt a specific node the sampling walk is started and
move forward by selecting the random neighbors.
Moreover for the distribution of load the last node
elected

Proposed a suitable
decentralized scheme
which is suitable for
large scale networks

Not appropriate for dy-
namic environments

is that it allocates the equal number of VMs to each PM, which ensures the fairness. In

contrast, this algorithm overlooks the resource exhaustion of a specific node based on

the circular deployment and before moving to the next node. In addition, this algorithm

performs well when the workload nature is uniform on each VM. This algorithm is not

suitable when the workload nature is non-uniform in this situation some nodes get lightly

loaded and some get heavily loaded.

Authors in (S.-C. Wang et al., 2010) proposed the static load balancing algorithm. For
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the resource deployment, OLB algorithms tries to keep every singles node busy and deals

in random order with the non-executed tasks to the current available nodes. Without

providing the satisfactory results this algorithm deals with the balanced load scheduling

technique. Moreover, the positive aspect of OLB algorithm is that it provides the work-

load to the nodes in free order. In contrast, the drawback of that technique is that does not

compute the current execution time for every single node.

The proposed algorithm computes the completion and execution time of unassigned tasks

thats waits in queue (Kokilavani & Amalarethinam, 2011). Authors focused on the static

load balancing algorithm, therefore, resources related to the tasks are known in advance.

Min-Min algorithm algorithm first deals with the tasks which have the minimum execu-

tion time by allocating them to the processor according to the capability of task comple-

tion time. In this algorithm the task with minimum time value is scheduled to the corre-

sponding machine. After task assignment the execution time of the remaining resources

is updated for further allocation. In addition, completed tasks are removed from the list

after their completion when assigned to machine. The advantage of that algorithm is that

it performs well when each task has the minimum execution. The negative point of that

algorithm is that the tasks with the maximum execution time have to wait for unspecified

period of time until the small tasks are not completely executed. The major drawback of

this approach it leads to starvation when deals with tasks having the maximum execution

time.

Max-min algorithm is vise-versa to the min-min algorithm. Min-min algorithm first deals

with the task which has minimum execution time. In contrast, Max-min algorithm first

handles the job which has maximum execution time (Elzeki et al., 2012). Moreover, in

that algorithm the task execution time is known in advance. The methodology of the task

selection and assignment is same as presented in (Kokilavani & Amalarethinam, 2011).

In Max-min after the execution of jobs with higher time are completed first and removed
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from the task list. Moreover, this algorithm presents the enhanced version of min-min

algorithm. In order to reduce the execution time of meta-tasks contains homogeneous

tasks are allocated on same hosts. This approach improves the efficiency of the scheme

by adapting the opportunity of concurrent execution of tasks on resources.The drawback

of algorithms is that the small tasks have to wait for long time.

Weighted round robin is the extended version of round robin algorithm (Gautam & Bansal,

2014). I weighted round robin weight is allocated to each VM based on their capacity.

Based on the associated weightage higher capacity VMs are allocated with multiple num-

ber of tasks. The weighted round robin algorithm performs well based on the processing

capability of higher capacity VMs. Though, this algorithm leads to imbalance load among

servers if the loads on VMs vary highly. Therefore, there is a possibility that the largest

request with maximum execution time may be allocated to same VM. The shortcoming

of that technique is that it does not consider the length of the task in order to select the

appropriate VM.

The proposed algorithm scans the VMs and jobs which are listed in queue for execu-

tion. The objective of the algorithm is to assigned the queued up job to the available

VMs (Domanal & Reddy, 2013). Proposed load balancer frequently examine the over-

loaded situation of the VM and based on the load conditions distributes the some of its

jobs to another VM which is least loaded in order to make the equal distribution of load.

This load balancer manage the list of allocated VMs which helps to identify that VMs are

free and available to host the new jobs. The performance analysis of the proposed algo-

rithm is done based on the cloud analyst simulations. The advantage of this algorithm is

that it tries to improve the processing time and response time of task by picking it when

there is a match available.

Authors in (Kaur & Kaur, 2015) proposed the throttled Load Balancer algorithm. This

algorithm manage record of idle and busy states in an index table of VMs. In order to
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allocate the request to suitable VM, server and clients make request to the data center

to perform recommended task. The data center send requests to load balancer regarding

the distribution of VMs. The load balancer identifies the VM id in the index table from

top until the requested VM is matched and after the identification process load balancer

update to the data center for the requested VM deployment. Moreover, the load balancer

sent -1 If the suitable VM is not matched. In addition, the acknowledgement is sent to

data center after the completion of the allocated task to VM. The data center apprised to

load balancer in order to de-allocate the same VM which has completed its assigned tasks

and reallocate it for the next jobs.

Proposed algorithm estimates the total execution tine in three phases based on (i) VM

deployment, (ii) task allocation to VM’s, and (iii) VM reallocation process once the as-

signed task is completed (Shah, Kariyani, & Agrawal, 2013). This algorithms estimate

the throughput based on the total number of assigned tasks to VMs within the required

time-span without considering the third phase of VM reallocation. The positive point of

this algorithm is that it enhance the performance by providing the on-demand resources.

Moreover, it minimize the rejections rate of the submitted requests. The disadvantage of

this algorithm is that is overloaded the initial deployed VMs and under utilizes the VMs

which are deployed at the end.

This study presents the load balancing approach with the consideration of uniform load

balancing among VMs and the availability of VMs based on requests (Domanal & Reddy,

2013). Proposed study focus on the two main objective. First one is depicted as a response

time which is required for the task allocation and second one is described as the load

distribution among the existing VMS. Based on throttled algorithm, modified throttled

algorithm also manage the index table with the records of VM with their states. The first

VM selection procedure is same as described in (Shah et al., 2013). Afterward, when next

request is arrived, VM to the index next to the already allocated VM is selected based on
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the idle or busy states of VM. This algorithm maximize the response time as compared to

throttled. The shortcoming of this algorithm is that in index table while the deallocation

of VMs the states of VM may change. Therefore, it is not beneficial to allocate the new

request using the next to assigned VM technique. There is a need to focus on the focus

on the data structures while managing the index tables for the allocation of new tasks.

The enhanced version of throttled algorithm is represented in (Bhadani & Chaudhary,

2010). Based on the priority of VMs the state table is also maintained in this algorithm

similar to throttled algorithm. The priority is computed based on the RAM capacity and

speed of CPU. The VMs with high priorities will selected first by using the high priority

based selection criteria. Moreover, if the selected VM is busy then it neighboring VM

is selected and the process will continue until the VM is availability is not checked in

whole table. Proposed algorithm only balanced the load in heterogeneous environments

and leads to inefficient deployment when number of requests and increased because all

request are entertained at central load balancer. In addition, in this scheme the priorities

are predefined and calculated using a static method and the priorities are not modified

after the allocation of jobs.

This scheme handles the allocation of requests at VM level (James & Verma, 2012).

Information about each VM requests that are allocated to each VM is handled by this

algorithm. While the allocation of requests the proposed algorithm selects the VM with

the least load and if there are number of VMs are chosen with the same load the 1st

VM is identified for the placement of request. Proposed algorithm address the problem

of (Bhadani & Chaudhary, 2010) algorithm and update the load value after the allocation

of requests to the VM. In contrast, proposed algorithm does not assign the priorities to

the VMs. Moreover, in order to handle the load the id of specific VM where the request

is allocated is send to the active load balancer. The proposed algorithm focuses on the

current load value and overlooks the load current load at host level. Moreover, the energy
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consumption parameter is not considered while the allocation of requests at VM level.

Table 2.2: Comparison of state-of-the-art static load balancing schemes in a cloud envi-
ronment

Algorithm Parameters
used

Resources
considered

Task schedul-
ing

Objective
functions

Allocation
method

System topol-
ogy

(Kaur &
Kaur, 2015)

Bin Packing memory, net-
work,

time-share resource uti-
lization

VM-level dependent

(Gautam
& Bansal,
2014)

Constraint
Program-
ming

memory and
I-O

space-share resource
utilization,
scalability

host-level depended

(Ashwin et
al., 2014)

Stochastic
integer pro-
gramming

memory as a
constraint

time-share response time VM-level independent

(Domanal &
Reddy, 2014)

Bin Packing memory time-share response time VM-level -

(Shaw &
Singh, 2014)

Bin Packing CPU space-share energy con-
sumption

host-level dependent

(Samal &
Mishra,
2013)

Constraint
Program-
ming

memory space-share resource uti-
lization

host-level dependent

(Adhikari &
Patil, 2013)

Constraint
Program-
ming

CPU, mem-
ory

time-share energy con-
sumption

host-level dependent

(H. Chen et
al., 2013)

Bin Packing CPU, mem-
ory

time-share application ex-
ecution time

host-level dependedt

(Domanal &
Reddy, 2013)

Bin Packing memory time-share resource uti-
lization

VM-level -

(James &
Verma, 2012)

Bin Packing memory space-share resource uti-
lization

VM-level dependent

(Elzeki et al.,
2012)

Genetic
Algorithm

memory,
storage

space-share overhead host-level -

(Kokilavani
&
Amalarethi-
nam, 2011)

Genetic
Algorithm

memory space-share response time host-level independent

(S.-C. Wang
et al., 2010)

Bin Packing memory time-share reliability VM-level independent

(Hu et al.,
2010)

Constraint
Program-
ming

memory,
storage

- scalability host-level dependent

(Bramson et
al., 2010)

Stochastic
bin packing

memory space-share scalability VM-level independent

(Rahmeh et
al., 2008)

Genetic
Algorithm

memory space-share fault tolerant host-level dependent

The extended version of (James & Verma, 2012) is presented in (Domanal & Reddy,

2014). Upon the request placement to VM all the VMs availability is checked from the

search table. If the VM is not available and others VM which are not selected in the

previous assignment will be selected for that request and the least loaded VM is selected

from table. Moreover, the proposed scheme not used the VM which is assigned to the

request in preceding assignment. As compare to (James & Verma, 2012) the proposed

algorithm efficiently utilize the VMs. In order to check the subsequent minimum loaded

VM a task is evenly distributed to equally loaded VMs and the least loaded VM with the
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high processing power is selected regardless of the 1st VM. Moreover this algorithm not

consider the statistic that whether it is used in the latest iteration or not. In contrast, using

this algorithm most of the VMs are taking maximum time for the request allocation along

with the greater response time. Moreover the proposed work not clearly defined how the

least loaded VM selection policy works.

2.2.2.2 Dynamic load balancing schemes

This section discusses the state-of-the-art load balancing algorithms based on dynamic

load balancing. Moreover, Table 2.3, and Table 2.4 compares the load balancing schemes

based on their their objectives, strengths, and weaknesses.

Table 2.3: Summary of dynamic load balancing schemes in a cloud environment

Algorithm Objectives Strength Weakness
(Ghribi et al., 2013) To reduced the energy consumption while the

scheduling of VMs in cloud data centers
Reduced energy con-
sumption

Need for extension to
multiple resources

(Nicolae & Cappello,
2012)

To efficiently manage the energy usage in cloud
data centers

Reduced the number
of APMs, Improved
CPU utilization

Overhead of large
searching spaces

(M. Chen et al., 2011) To control the size of VM placement in cloud Reduced the number
of APMs & O (1) ap-
proximation

Need for extension to
multiple resources

(Mishra & Sahoo,
2011)

To efficiently place the VMs and to mitigate the
overhead using the vector based approach

Considered the migra-
tion overhead

Overlooks the details
of experimentations

(Guo et al., 2010) To guarantee the efficient bandwidth rate for the
virtualized data centers

Reduced energy con-
sumption and network
traffic

More VM migration
cost

(Beloglazov & Buyya,
2010)

To efficiently utilize the energy while the allo-
cation of resources

Reduced cost of relo-
cation

Uses slightly more
number of bins

(Wood, Shenoy,
Venkataramani, &
Yousif, 2009)

To detect and identify the hotspots, and recon-
figuring/ remapping VMs when required

Hot-spot detection &
mitigation, Load bal-
ancing

VM resizing & Migra-
tion overhead

(Stage & Setzer, 2009) To efficiently manage the network utilization by
adapting the migration concept

Meets SLA targets Need for extension to
multiple resources

(Bobroff et al., 2007) To dynamically balance the workload to man-
age the SLA violation

Reduced the number
of APMs, Reduced
migration cost

Slightly slow execu-
tion

(Kang & Park, 2003) To address the problem of variable size bin
packing

Hot-spot mitigation,
Load balancing

SLA violation

Authors in (Nicolae & Cappello, 2012) have used a testbed of a head node and 5 VM

hosts to study the effects of VM live migrations in a data center hosting Web 2.0 applica-

tions. The VM hosts run olio that defines a simple Web 2.0 application while Faban load

generator is used for workload generation. A downtime of 3 seconds was observed near

the end of a 44 second migration. Although no request was dropped during the downtime,
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the delay does affect the service level agreement (SLA). While each VM had a 2GB of

memory allocation in the experimental setup, in real data center environments the size of

a VM can scale up to hundreds of GB. Therefore the effects of migrating large VM’s can

be more severe. Furthermore the results showed that 2 VMs migrations occurring in close

time proximity lead to sever SLA violations. Hence the modeling of live migration as a

queuing system comes under consideration.

(Stage & Setzer, 2009) discusses the impact of VM live migration on the network re-

sources. The proposed architecture consists of VM workload classifier, an allocation

planner, a nonconformance detector, and a live migration scheduler. The VM workload

classifier assigns the workload to a relevant cluster class based on the attributes of the

workload. The allocation planner determines the resource bottlenecks that can occur af-

ter an allocation. The non-conformance detector classifies the bottlenecks detected on

the basis of pre-defined performance thresholds. The migration requests are made by al-

location planner and non-conformance detector to the migration scheduler. A migration

scheduler determines the optimal schedule for the migrations, based on the knowledge of

their duration, starting time and deadline. The optimal scheduler schedules the live mi-

grations in such a way that the network is not congested by the VM live migration load.

The live migrations are also fulfilled in time. The following diagram shows the differ-

ence between an uncontrolled and controlled migration scheduling algorithm. The lower

timeline depicts a controlled migration in which three migration requests are executed as

compared to two requests in an uncontrolled environment.

Authors in (Beloglazov & Buyya, 2010) have proposed that live migration of VMs can

be used to concentrate the jobs on a few physical nodes so that the rest of the nodes can

be put in a power saving mode. The allocation of VMs is divided into two sub-problems:

(a) the admission of new requests and (b) optimization of current VM allocations. The

allocation, of new requests for VMs, is done by sorting all the VMs in a Modified Best
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First Decreasing (MBFD) order with respect to the current utilization. The VM is then

allocated to a host based on the least deterioration in the power consumption among the

hosts. The current allocation of VMs is optimized by selecting the VMs to be migrated

on the basis of heuristics related to utilization thresholds. If the current utilization of a

host is below a threshold, then all the VMs from that host should be migrated and the host

is put in the power saving mode. Again the allocation of VMs to hosts is done by MBFD

algorithm.

A similar approach achieves energy efficiency with the help of Limited Look Ahead Con-

trol (LLC) (Kusic, Kephart, Hanson, Kandasamy, & Jiang, 2009). The LLC predicts the

next state of the system by a behavioral model that depends on the current state, environ-

ment input and control input. A profit maximization problem, based on the non-violation

of SLA and the energy conservation, is formulated to calculate the maximum number

of physical hosts that can be powered off. The optimization problem suffers the curse

of dimensionality as more control options and longer look ahead horizon are considered

during formulation. To avoid the curse of dimensionality, the problem is decomposed

into two sub-problems with respective sub-controllers. Although this approach caters for

most of the virtualized environment dynamics, such as SLA and energy efficiency, it does

not consider the effects of live migration on network dynamics.

In SecondNet (Guo et al., 2010), a central Virtual Data Center (VDC) manager controls

all the resources and VM requests. When the VDC manager creates a VM for the VDC,

it assigns the VM, a VDC ID and a VDC IP address, reserves the VM-to-VM and VM-to-

core bandwidths, as mentioned in the Service Level Agreement (SLA) for the application

using the VM. The inputs to the VM allocation algorithm are the m VMs and the m ∗

m bandwidth matrix R9. The output is m physical server and the 4 paths corresponding

to the bandwidth matrix R9. Cluster of servers are formed based on the number of hops

from one cluster to another. A cluster is chosen, Ck, such that: (a) it has more ingress and
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egress bandwidth then that specified in R9 and (b) the number of servers in the cluster is

larger than the number of VMs i.e. m. A bipartite graph is formed from the VMs (m) and

physical servers in the cluster Ck. Mapping from VMs (m) are made to physical hosts in

Ck based on individual VMs memory, CPU and bandwidth requirements. A bandwidth

defragmentation algorithm is also devised to reduce inter-cluster bandwidth and improve

network utilization. A VM migration is scheduled if meets the following criteria (a) it in-

creases the residual bandwidth of the data center and (b) the bandwidth requirements can

be met by the cluster where VMs are reallocated. Simulations demonstrate that the sys-

tem provides a guaranteed bandwidth and high network utilization. This approach does

consider the residual bandwidth for VM allocation optimization, but it does not consider

the bandwidth required during the process of reallocation.

A study to measure the impact of virtualization on network parameters, such as through-

put, packet delay, and packet loss has been conducted by (G. Wang & Ng, 2010). The

study is carried out on the Amazon EC2 data center where each instance of the data center

is a Xen VM. Processor utilization and TCP/UDP throughput are measured by CPUTest

and TCP/UDPTest programs, respectively. The packet loss is measured by the Badabing

tool (Sommers, Barford, Duffield, & Ron, 2005). The results show an unstable TCP/UDP

throughput and a very high packet delay among EC2 instances. It is concluded that these

results are obtained due to virtualization and sharing of drivers among several VMs.

The VectorDot scheme as discussed in (Mishra & Sahoo, 2011) has considered the current

load on the communication paths connecting physical servers and network attached stor-

age. Furthermore, VectorDot has addressed the overloaded servers, switches, and storage

entities while meeting the desired objective function. Moreover, using constraint pro-

gramming paradigm, tasks are migrated within nodes located in a cluster and has proved

that consolidation overhead is indomitable while choosing a new configuration and also

it is affected from the total migration time with that configuration (Hermenier, Lorca,
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Menaud, Muller, & Lawall, 2009). Furthermore, employed Entropy has significantly re-

duced total VM migration duration in addition to the total number of nodes acquiring

low performance overhead. Consequently, the authors of (Zhao & Figueiredo, 2007) has

accurately projected the total migration cost in order to have an accurate estimation guess

of migration time, so that sufficient resource can be prepared and reserved on the basis

of VMs count and the performance degradation period instigated by VM migration, that

is higher than actual total migration duration. Moreover, the proposed scheme has also

presented the migration cost based on the migrating VM configuration and size.

Table 2.4: Comparison of state-of-the-art dynamic load balancing schemes

Algorithm Parameters
used

Resources
considered

Task schedul-
ing

Objective
functions

Allocation
method

Performance
Better Than

(Ghribi et al.,
2013)

Stochastic
bin packing

CPU, band-
width

space-share energy con-
sumption, fault
tolerant

VM-level First-fit, FFD &
Harmonic algo-
rithm

(Nicolae &
Cappello,
2012)

Genetic
Algorithm

CPU, request
forecasting
and Recon-
figuration
searching
module

time-share energy con-
sumption

- TSSP Ap-
proach

(M. Chen et
al., 2011)

Stochastic
integer pro-
gramming

CPU, mem-
ory, server
overflow
probability
‘p’

- energy con-
sumption

VM-level FFD algorithm

(Mishra &
Sahoo, 2011)

Bin Packing CPU, mem-
ory, network,
i/o band-
width,
storage

space-share migration over-
head

VM-level Best-fit, First
fit, Worst-fit

(Beloglazov
& Buyya,
2010)

Bin Packing CPU, upper
bound on
cost of VM
relocation

time-share reource utiliza-
tion

VM-level Best-fit, First-
fit

(Guo et al.,
2010)

Constraint
Program-
ming

CPU, net-
work band-
width

time-share energy con-
sumption and
network traffic

VM-level Random algo-
rithms

(Stage & Set-
zer, 2009)

Stochastic
integer pro-
gramming

CPU, time
interval of
length ‘IJ’

time-share - reliability Static algo-
rithm

(Wood et al.,
2009)

Bin Packing CPU, mem-
ory, network,
VSR (Vol-
ume to Size
ratio)

time-share resource uti-
lization

VM-level -

(Bobroff et
al., 2007)

Constraint
Program-
ming

CPU space-share execution time host-level Best-fit heuris-
tic

(Kang &
Park, 2003)

Bin Packing memory space-share hot-spot miti-
gation

host-level -

An efficient energy scheduling algorithm is presented in (Ghribi et al., 2013) for

the exact provisioning and consolidation of VMs in cloud DC based on two algorithms.
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Proposed algorithm decrease the consumption of energy and leads us to the optimal con-

solidation solution by adapting the migration concept at the service departure of VM.

The first algorithm is designed as a bin packing problem with the aims of minimal power

depletion. Moreover the performance of the proposed allocation based algorithm is com-

pared with the best fit algorithm based on the energy parameter. Furthermore, the second

algorithm based on the exact migration concept results based on the interwar formulation

and linear programming in order to adjust the placement of VMs when resources are un-

constrained. Proposed algorithm handles the number of migrations as well as the energy

consumption based on the number of constrained and the set of inequalities. Moreover,

this algorithm reports the minimum coverage time with the comparison of best fit heuris-

tic. Besides, it does consider the CPU utilization while the allocation and consolidation

of VMs.

The authors in (Bobroff et al., 2007) proposed the dynamic algorithm for the allocation

of resources in the cloud. The objective of this algorithm is to minimize the running

cost of DC. The cost is stated as the capacity of servers which is represented with the

performance parameters named as overutilization and underutilization. The cost directly

effects the performance of the application and leads to SLA violations. SLA is denoted

with the response time factor of the applications and as well as the CPUs associated to

that application. Moreover, with the perspective of business process spanning number

of VMs are assigned with the assurance of CPUs associates to that VMs. Besides, the

algorithm is characterized as measure forest remap (MFR). The MFR algorithm is the

divided into three modules based on (i) historical data measurements, (ii) future demands

anticipation, and (iii) VMs re-mapping to Physical machines (PMs). These three modules

works in repetitive manners with the time interval t with the same sequence as represented

with MFR. In addition, the proposed algorithm used the bin packing and time sequence

predicting procedures in order to handle the workload to PMs. The performance gain of
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proposed algorithm is upto 50% when compared with the static algorithms by adapting

the minimum SLA violations. In contrast, the limitation of the algorithm is that it works

based on the probabilistic SLA assurances.

In this paper, the authors handle issue of server combination in virtualized DCs with

respect to estimation schemes (M. Chen et al., 2011). The proposed framework is pre-

sented as a stochastic bin packing, where the servers limit and a permitted probability p

is assigned based on the overflow criteria of servers. The objective of the proposed pro-

tocols is to allocate VMs to a number of PMs based on the associated load capacity to

the servers. The proposed framework consider the effective VM sizing approach based

on the stochastic optimization by correlating the dynamic load of VM based on the stable

demands. Based on the principles of multiplexing the resource demand of VMs is de-

cided using the proposed effective sizing algorithm. The proposed algorithm impacts on

the aggregation of resource demands considering the multiple factors of hosts where the

VM might be allocated. While considering the effective sizing, an algorithm is designed

with the time parameter T for the VM allocation for the migration cost-aware and VM mi-

gration cost-obvious situations. The proposed algorithm showing the 24% better results

when compared with the optimal solutions and enhance the energy saving upto 23%.

The authors in (Wood et al., 2009) presented the Sandpiper framework for detecting and

identifying the hotspots, and reconfiguring/ remapping VMs when required. Sandpiper is

explained as a framework that systematizes the undertaking of checking and distinguish-

ing hotspots, deciding alternative representation of physical to virtual resources, resizing

VMs to their new assignments to PMs, and starting any essential migrations. Sandpiper

executes a black method that is completely OS-and application-rationalist and a gray box

method that adventures OS-and application-level insights. Authors in proposed frame-

work executes the schemes in Xen and lead a point by point assessment utilizing a net-

work, memory and CPU intensive requests. The outcomes of Sandpiper demonstrate
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that it can determine single machine hotspots inside 20 s and scales well to large size

DCs. The proposed work additionally demonstrate that the gray box method can assis-

tance Sandpiper settle on more educated choices, especially with respect to the memory

weight. While selecting that which VMs to relocate, Sandpiper migrate them utilizing a

volume-to-size-ration (VSR) based on memory, CPU, and network load. Sandpiper relo-

cate the most loaded VM from an over-burdened PM to one with suitable capacity.

2.3 Cloud Resource Management

A cloud computing infrastructure, whether single or federated cloud, is a complex dis-

tributed system composed of a multitude of computational resources. These resources

handle the unpredictable client requests and the effects of external events beyond user

and system administrator control. Cloud resource management significantly affects the

performance, functionality, and cost factors of system evaluation. Cloud resource man-

agement also involves complex decisions and policies for multi-objective optimization.

This task is challenging because of the complexity, geographical span, and unceasing and

unpredictable interactions with the system, thereby making a precise global information

state impossible.

Cloud resource management strategies related to the three delivery models of cloud,

namely, PaaS, IaaS and SaaS, differ from one another. In all cases, the CSPs are faced

with fluctuating, large workloads that challenge the claim of cloud elasticity. In some

cases, when they can predict a workload spike, they can provide resources through ad-

vance reservation, e.g., seasonal web application may be subject to spikes.

For an unplanned spike, the situation is complicated. Auto scaling can be used for un-

planned spike loads, provided that a monitoring system that justifies the decision to allo-

cate, reallocate, or release resources on demand in real time exists. Auto scaling services
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are given by PaaS providers, such as Google App Engine . Auto scaling for IaaS is com-

plex because of the lack of and the deficiencies in the available standards.

In cloud computing, whether single or federated, variation is unpredictable and frequent,

and centralized management and control may be unable to provide uninterrupted services

and functional guarantees. Thus, centralized management cannot support adequate solu-

tions to cloud resource management policies.

Several problems should be considered while managing the resources in a federated cloud

computing environment. In this section, we present a review of significant resource man-

agement techniques covering federated resource management functions, selection, and

allocation.

2.3.1 Resource Selection

The resource selection process finds a configuration that fulfills all user requirements and

optimization of the infrastructure. The cornerstone of the resource or service selection is

an optimization algorithm that considers all variables influencing the allocation. A gen-

eral survey on selection solutions for federated infrastructures is presented in next section.

Moreover, the summary of the reviewed resource selection schemes in a federated cloud

environment is given in Table 2.5.
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Table 2.5: Summary of resource selection schemes in a cloud environment.

Schemes Objective Strength Weakness
(Jaikar & Noh,
2015)

To support the dynamic load while se-
lecting the best position for allocating the
request to attain the better performance.

Minimize the cost with ac-
ceptable performance

The failure index and energy
consumption index of data
centers are not included in
decision making.

(Fan, Yang, Per-
ros, & Pei, 2015)

To select trustworthy cloud services for
cloud users.

Feedback driven trust basis. The granularity of the histor-
ical data for decision making
is not considered so that out-
dated history does not impact
in decision making.

(Farokhi, Jrad,
Brandic, & Streit,
2014)

To automatically select infrastructure
services for SaaS provider such that the
SLA claims of the SaaS provider for their
customers are captured.

Cover functional and non-
functional parameters of
Inter-Cloud SLAs.

No SLA violation detection
and penalty in case of viola-
tions.

(Gutierrez-Garcia
& Sim, 2013)

Automating the service selection in
the presence of incomplete information
about cloud providers and their services.

Constantly changing con-
sumer’s needs are captured.

In the case of service migra-
tions maintaining the agents
and can be a difficult prob-
lem.

(Son, 2013) To select the best provider in term of cost
and requirements of the user.

The system components are
pluggable with other pro-
grams and not depended on
each other

The systems need human
interaction to populate the
database of the candidate
CSPs and their characteris-
tics.

(Vilutis,
Butkiene,
Lagzdinyte Bud-
nike, Sandonavi-
cius, & Paulikas,
2013)

Selection of suitable cloud in inter-cloud
of computing services when there are no
relevant resources available in the public
and private cloud.

Minimizing the number of
test tasks for quantifying the
CSPs.

Networking factors are not
used in the selection of a CSP.

(Sundareswaran,
Squicciarini, &
Lin, 2012)

To simplify and increase the speed of
searching the CSP database for the best
vendor selection.

100 times faster than brute-
force search algorithm.

No opportunity for users to
negotiate some terms of the
SLAs.

(Jrad, Tao, &
Streit, 2012)

To find the most worthy CSPs in order
to fulfill the user’s service requirements
non-functional and functional SLA pa-
rameters.

Handling the interoperability
and heterogeneity.

No Experimental evaluation
to show its efficacy compared
to existing schemes.

(Sim, 2012) How software agents are employed for
cloud resource selection in a multi-cloud
marketplace where consumer selects the
best cloud provider based on their utility
function.

Concurrent negotiating
agents for the best SP
selection.

Changing user requirements
are not captured.

2.3.1.1 Review of resource selection based strategies for cloud environments

An index structure was designed by Sundareswaran et al. in (Sundareswaran et al., 2012)

based on B+-tree (Bayer & Unterauer, 1977) to simplify a process of information in-

sertion and retrieval for CSPs. In the proposed structure, different properties, such as

security, service type, pricing units and measurement, and QoS had precise position to

be considered and stored. Service vendors with the same characteristics should be stored
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together in adjacent rows to increase the speed at which the information management op-

erators are executed and appropriate vendor queries could be found. The researchers also

proposed a query algorithm based on a designed structure to search the provider database

for the best vendors. The proposed architecture was compared with a brute-force search

algorithm and showed almost 100 times better execution speed for solving the cloud com-

puting service composition problem with 10,000 service providers.

A high-level generic brokerage architecture to find the most worthy CSP fulfilling the ser-

vice requirements of the user in terms of non-functional and functional SLA parameters

was proposed in (Jrad et al., 2012). The proposed architecture integrated a brokerage-

based technology for assisting the user in SLA negotiation and finding the best provider

for his service needs with respect to specified SLA.

The way software agents are employed for cloud resource/service selection in a multi-

cloud marketplace, where the consumer selects the best cloud provider based on their util-

ity function, was explored in (Sim, 2012), (Sim, 2008), (Sim, 2006). In their work, they

proposed a negotiation protocol based on Rubinstein’s alternating offer protocol (Rubinstein,

1982) and a negotiation strategy based on the functions of time, opportunity, and com-

petitiveness for multiple consumer–broker agents negotiating simultaneously. Further-

more, they proposed service capability tables (SCTs) to store their services and the cloud

agent’s list. The coordination of self-organizing participants in a multi-cloud environment

for automating a service selection in the presence of incomplete information about CSPs

and their resources was investigated in (Gutierrez-Garcia & Sim, 2013). To handle this

problem, a collection of two agent-based distributed problem-solving techniques, namely,

SCTs and a semi-recursive contract net protocol, was integrated and devised into agent

behavior to cope with (i) service selection based on dynamic services fees and (ii) incom-

plete knowledge about the existence and location of service providers and the cloud re-

sources they offer. An agent-based cloud service composition testbed was implemented to
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support persistent, one-time, vertical, and horizontal cloud service compositions. Mecha-

nisms to update and create service compositions based on constantly changing consumer

needs were designed using self-organizing agents as building blocks.

In (Son, 2013), a resource selection decision maker (RSDM) was presented. The pro-

posed decision maker listed the suggested resource providers and their resources by an-

alyzing user demands. Users initially provided their requirements for the cloud service.

According to these requirements, the RSDM retrieved all resources that match the re-

quirements from a cloud information database. Once all candidate resource providers

and their service types were retrieved, the estimated price was calculated. After the cal-

culation of prices for each provider and service, the provider list was recorded by price

and given to the user. Each item of the recommended list comprised information, includ-

ing the resources to be allocated, name of the cloud provider, contract period, service

type, and expected price. The selection of a suitable CSP in the inter-cloud of computing

services for fulfilling the user task when no relevant resources are available in the public

and private clouds was analyzed in (Vilutis et al., 2013). The Quality of Grid Services

QoGS (Wickremasinghe, Calheiros, & Buyya, 2010) method was selected to determine

the appropriate CSP. However, the QoGS method works appropriately only if the correct

set of weighted coefficients (SoWC) is elected. Therefore, an algorithm was designed for

selecting the best SoWC. Experimental results showed that the proposed methodology

minimized the workload of inter-cloud by test tasks significantly.

The selection of cloud resource in a federated cloud environment was divided into two

subproblems by (Jaikar & Noh, 2015), namely, DC selection and physical machine selec-

tion. The DC collection played a vital role in improving the performance and reducing the

cost. An algorithm for selecting a DC in a federated cloud computing environment was

presented. The approach was validated using a Cloud Analyst toolkit (Wickremasinghe

et al., 2010). Results described that the DC selection algorithm offered considerable per-
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formance gains with respect to throughput, cost, and response time.

A SLA-based hierarchical service selection was presented for multi-cloud environments

in (Farokhi et al., 2014). In their efforts, the authors adopted the idea of the algorithm

presented in (Yau & Yin, 2011) and developed it to support service selection for a cloud

composite service and to cover all the functional and non-functional parameters of inter-

cloud SLAs. The architecture and phases involved in the selection process were based

on prospect theory to evaluate the infrastructure services on the basis of the given SLAs

and the degree of user satisfaction. The evaluation and a comparison of the utility-based

matching algorithm showed that the approach effectively selected a set of services for the

composition that satisfied SLA parameters.

Based on multi-attribute trust value evaluation cloud service selection was studied by

Wenjuan et al. in (Fan et al., 2015). Their trust value estimation was based on two trust’s

characteristics, namely, reputation-based trust and perception-based trust, in which the

trust facts were recorded on the trust reputation base and value base. Users could obtain

the trust facts from the two bases and then apply the evidential reasoning approach to

achieve the final trust results. After the service users used the service, they would give

their feedback evaluation to the cloud system, which would be stored in the trust value

base and reputation value base for other users to generate the indirect trust evidence. In

the proposed framework, the trust value was produced from both the personalized indirect

trust evidence and direct trust evidence, which was reliable with the service’s requirement

of users.

Table. 2.6 lists the extracted performance metrics from the federated resource selection

schemes.
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Table 2.6: Performance Metrics for resource selection in federated cloud

Scheme Cost QoS Load-
aware

Energy-
aware

Feedback-
Driven

Selection
Method

Experimental Platform

(Jaikar & Noh,
2015)

Yes Yes Yes No No Matrix Based Cloud Ana-
lyst (Wickremasinghe
et al., 2010)

(Fan et al., 2015) No Yes No No Yes Evidential
Reasoning

Formal Analysis

(Farokhi et al.,
2014)

No Yes No No Yes Prospect
Based

Custom Java Based

(Sundareswaran
et al., 2012)

No Yes No No No Search based Custom C Based

(Gutierrez-Garcia
& Sim, 2013)

Yes No Yes No No Negotiation JADE (Bellifemine,
Bergenti, Caire, & Poggi,
2005)

(Son, 2013) Yes No No No No Search based CloudSim (Calheiros, Ran-
jan, Beloglazov, De Rose,
& Buyya, 2011)

(Vilutis et al.,
2013)

No Yes Yes No No Weighted
Rank

Not mentioned

(Jrad et al., 2012) No Yes No No Yes Simple
Match Mak-
ing

CloudSim (Calheiros
et al., 2011) +

OCCI4Java (Liaqat et
al., 2017)

(Sim, 2012) Yes No No No No Negotiation JADE (Bellifemine et al.,
2005)

2.3.2 Resource Allocation

Resource allocation is integral for obliging unpredictable resource requirements and cap-

ital return in cloud federation. In the context of federated clouds, application developers

can lease resources in a pay-per-use manner from multiple geographically distributed

CSPs to minimize the cost and SLA violation, and to enhance the application availabil-

ity and fault tolerance. In addition, a summary of several resource allocation schemes

is presented in Table 2.7 and Table 2.8 lists the performance metrics extracted from the

federated resource allocation schemes. Besides, a general review of several resource al-

location and scheduling strategies for federated cloud environments is presented in next

section.
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Table 2.7: Summary of resource allocation schemes in a cloud environment.

Scheme Objective Strength Weakness
(Hassan, Hossain,
Sarkar, & Huh,
2014) (Hassan,
Song, & Huh,
2011)

To meet end-user QoS and economies of
scale without increasing and enhancing a
number of physical resources.

Maximizing the total utility
of the federation.

The problem with this ap-
proach is that they model the
resources as a single type.

(Woo &
Mirkovic, 2014)

To study the benefits of allocating com-
ponents of a distributed application on
multiple public clouds.

Search based technique
to meets the set of SLA
constraints and achieve
the performance and cost
constraints.

The search time in case of a
very large federation of cloud
and large workflows.

(HoseinyFarahabady,
Lee, & Zomaya,
2014)

To handle the scaling out of cloud re-
sources while executing CPU-intensive
applications with the non-proportional
cost to performance ratios multi-cloud
environment.

Fully polynomial-time ran-
domized approximation al-
gorithms for the task with
known and unknown running
time.

The scheduling decision does
not take into consideration
the fault tolerance.

(Zuo, Zhang, &
Tan, 2014)

To provision the user’s tasks in order
to enhance the revenue of IaaS provider
while satisfying QoS.

A high-quality scheduling so-
lution by adaptively updating
strategies.

The computational complex-
ity of the proposed technique.

(Papagianni et al.,
2013) (Papagianni
et al., 2013)

Networking and computing resources are
jointly optimized and treated for dynami-
cally allocating virtual resources to phys-
ical resources within cloud network.

Handling both resource map-
ping and link mapping.

Overlooks the dynamic het-
erogeneous infrastructures
and environments.

(Palmieri, Buo-
nanno, Ven-
ticinque, Aversa,
& Di Martino,
2013)

To take into account the possible contra-
diction between the interests of service
provide r and client in the cloud.

This scheme had great ben-
efits in a huge cloud organi-
zation which have maximum
number of nodes with a wide
varaity of tasks to be served.

Unpredicted situations and
deviations in the environ-
ment.

(Di, Wang, &
Chen, 2013)

To manage the social competition rela-
tions among resource contributors and
consumers where everyone satisfied with
its payoff.

Polynomial time complexity
to find the best solution and
ex-post incentive compatibil-
ity.

The fault tolerance and se-
curity mechanism is not dis-
cussed.

(Ardagna, Caso-
lari, Colajanni, &
Panicucci, 2012)

To handle the unpredictable workload
fluctuation while guaranteeing SLA con-
straints by the coordination of multiple
geographically distributed clouds.

Capacity allocation and load
redirection distributed algo-
rithms acting upon two an-
gles, time scale, and work-
load prediction.

They did not study the capac-
ity of the running instances
while decision making and
also overlooked the network
latency.

(Ai, Tang, &
Fidge, 2011)

To handle the deadline-constrained
scheduling and resource allocation
problem for multiple web services.

The algorithm depends on
the credit assignment and the
collaborator selection strat-
egy method making it highly
adaptable.

Only one process can be as-
signed to a machine at a time.

2.3.2.1 Review of resource allocation and scheduling strategies for cloud environments

In (Malet and Pietzuch, 2010), middleware for cloud management was presented to mi-

grate part of user’s services (represented by number of VMs) among DC in order to man-

age the workload at the DC and to minimize total response times. Based on the monitor-

ing of workload in DC, the middleware initiated VM migration to shift the components

of application closer to the customer. The proposed approach was mainly designed for

54

Univ
ers

ity
 of

 M
ala

ya



multiple DCs under a single cloud provider, but the formulation was still worthwhile for

multiple cloud providers.

Authors in (Ai et al., 2011) considered the deadline-constrained scheduling and resource

allocation in a hybrid cloud environment for various composite web services. The authors

also took into account the running cost because in a hybrid cloud, the in-house private

cloud resources were cheaper than their counterparts from public clouds. They proposed

a cooperative coevolutionary genetic algorithm (CCGA). In the proposed CCGA, the co-

operation among populations occurred while evaluating the individual’s fitness (resource

component) in a subpopulation. In population, the fitness value of specific entity was an

estimate of how well it cooperated with different classes to generate good results. The

populations worked cooperatively in order to explain the crises which are guided by the

fitness value. This communication among the populations involved a selection of greedy

collaborator and the credit assignment based on the fitness value. The performance of

their algorithm depended on the credit assignment and the collaborator selection strategy

method. However, only one process could be assigned to a machine at a time, thereby

preventing the system from using many configurations.

The game-theoretic resource allocation scenario was studied in a federated cloud environ-

ment in (Hassan et al., 2014) (Hassan et al., 2011). The authors considered a horizontal

dynamic cloud federation (HDCF), in which various CSPs cooperated dynamically for

expanding their infrastructure capacity to meet end user QoS to gain economies of scale

and to handle heterogeneous cloud resource demands without increasing and enhancing

a number of physical resources. In this prospect, the authors proposed game-theoretic

cooperative/non-cooperative price-based centralized and distributed resource allocation

strategies to ensure that this horizontal cooperation was beneficial for each CSP. The au-

thors formulated two resource provisioning games (i.e., cooperative and non-cooperative)

in HDCF platforms to enhance the utility of the federation, specified as the total of the
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CSP utilities of the buyers. The authors applied a direct search method with multiple

startup guesses to determine the best price (Kolda, Lewis, & Torczon, 2003). In both

games, a buyer CSP publicized and defined the total amount of virtual resources pro-

vided. On the basis of this information, each seller CSP then updated its own strategy

to maximize its utility. They concluded the existence of non-unique equilibrium states

that yield an undesirable outcome under a non-cooperative game through experimental

and theoretical analysis. Under the cooperative setting for resource allocation, the game

was scalable and cost effective. The problem with this approach was that it modeled the

resources as a single type.

The unpredictable workload fluctuation in a cloud computing environment to reduce the

allocation costs in terms of VMs to meet the SLA constraints was studied in (Ardagna

et al., 2012). They applied the open queuing model for modeling the coordination of

multiple cloud providers operating in geographically distributed sites and presented a so-

lution based on capacity allocation and load redirection distributed algorithms acting upon

two angles, namely, time scale and workload prediction employing a closed-loop queu-

ing technique with nonlinear optimization models. Furthermore, they investigated and

demonstrated their solutions to be close to the solutions found by an oracle with perfect

information about future workload. The workload prediction improved content locality.

Aside from the comprehensiveness and rigorous evaluation of the work, the proposed

method considered only the response time of server and did not take network latency into

account. They also did not study the capacity of the running instances while making the

decision.

(Di et al., 2013) considered the allocation of resources in a fully distributed self-organizing

cloud (SoC), such that both resource consumers and contributors were satisfied with their

prior results based on the declaration of their resource. In SoC, each host was deployed

with an autonomous VM monitor and a resource state collector to act both as resource
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contributor and task scheduler. They constructed a VM with resource distribution con-

cept from the execution nodes to optimize the efficiency of task execution and proposed a

novel next-price bidding double-sided strategy based on the traditional second-price bid-

ding to achieve ex-post incentive compatibility. For the resource query protocol, a random

index diffusion strategy was adopted to reduce network traffic on query-message propaga-

tion. In this study the resource provisioning problem is devised as a convex optimization

problem considering task characteristic, user budget demand, and resource availability. A

polynomial time algorithm, local optimal VM resource allocation, was also designed to

locate the optimal solution. Moreover, the basic idea was to temporarily remove the re-

source availability constraint and then recursively tune the solution with the constraint of

resource availability until a distribution that satisfies this constraint was found. However,

the system might be compromised because of the fully distributed and self-organizing

nature, given that the fault tolerance and security mechanism were not discussed but were

suggested as prominent future directions.

Networking and computing resources were jointly optimized and treated for dynamic al-

location of virtual resources to the physical resources inside networked clouds in (Papagianni

et al., 2013) and (Papagianni et al., 2013). To manifest the joint resource allocation solu-

tion for a federation of cloud network, the federated cloud resource mapping problem was

formulated as a mixed integer programming (IP), taking into account the cost efficiency

objective, such that QoS for user requests was met. Link mapping was formulated as the

corresponding multi-commodity flow problem. Subsequently, a heuristic methodology

for efficient mapping of networked cloud resources on shared substrate was proposed.

The proposed framework did not consider dynamic heterogeneous infrastructures and

environment beyond the conventional Internet (e.g., wireless), which presented further is-

sues owing to wireless environment (e.g., uniqueness of nodes, isolation, and coherence),

the stochastic environment of the corresponding resources, and the challenges related
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with the existence of mobile nodes.

A fully distributed scheduling scheme was proposed in (Palmieri et al., 2013) for un-

coordinated federated environment of cloud. The scheduling framework was based on

self-organized and independent agents, which did not depend on any centralized control

that covered NE solution, with the potential contradiction between the interests of service

provider and client in the cloud environment taken into account. A high performance was

gained based on the completion time. This study had reliable results in the huge organi-

zations where the wide variety of complex tasks can be observed by using the efficient

partitioning strategy.

The effect of multi-cloud over a single provider for allocating components of distributed

application for a variety of realistic scenarios was studied in (Woo & Mirkovic, 2014).

The distributed cloud application workflow was modeled as a sequence of transactions

composed of micro-tasks. The resource allocation for a given application workflow was

formulated as the problem of determining a set of resources from the multiple clouds that

met the SLA, cost, and performance constraints. Subsequently, an algorithm for resource

allocation was proposed to find the best allocation for components of the distributed ap-

plication over the multi-cloud environment. The algorithm worked by considering all

possible allocations for each transaction and selected the one that met the respective SLA,

cost, and performance constraints. The algorithm exhaustively searched from the cheap-

est to the expensive solution until a viable allocation was found. This exhaustive search

could lead to a scalability problem in case of a very large environment.

The issue of scaling out cloud resources while executing CPU-intensive applications with

non-proportional cost to performance ratios was resolved for the cost-effective deploy-

ment of an application into multiple cloud environments by (HoseinyFarahabady et al.,

2014). The authors indicated that the degree of performance gain had no strong correla-

tion with the usage cost of cloud resources. They presented fully polynomial-time ran-
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domized approximation algorithms to enable the execution of bag-of-tasks with known

and unknown running time spanning beyond the private system/cloud (i.e., hybrid cloud)

by explicitly taking into account the cost efficiency, that is, the cost-to-performance ratio.

Meeting the peak demand while preserving QoS proactive machine purchasing, cloud

federation resolves the problem of achieving economies of scale for IaaS. However, the

former is not economic, and the latter is difficult in practice. In (Zuo et al., 2014), an

allocation framework of resource was proposed where the providers of IaaS could out-

source their tasks to ECs when their own resources were not adequate to fulfill the user’s

demand. This framework did not require any inter-cloud formal agreement for federa-

tion of cloud. The key challenge was how to assign user tasks to enhance the revenue

of IaaS provider while satisfying the QoS. In this study the problem was devised as an

IP model and solved by a self-adaptive learning particle swarm optimization (SLPSO)-

based scheduling mechanism for scheduling the inter-cloud resources. In SLPSO, each

aspect of a particle represented a particle, and task as a whole represented the priorities

of all tasks. This scheme could acquire a high-quality scheduling by adaptively selecting

velocity updating strategies to update each particle. The scheduling approach could find

the suboptimal or optimal allocation scheme of external and internal resources to greatly

improve the profit of IaaS providers and maximize the quality of scheduling solution.

Table 2.8: Performance Metrics for resource allocation in the federated cloud.

Scheme Cost Scalability Load Bal-
ancing

Energy-
aware

Makespan Availability Fault Tol-
erance

(Hassan et al.,
2014) (Hassan et
al., 2011)

Yes Yes No No No No No

(HoseinyFarahabady et
al., 2014)

Yes Yes No No Yes No No

(Woo & Mirkovic, 2014) Yes No Yes No Yes No Yes
(Zuo et al., 2014) Yes No No No No No No
(Papagianni et al.,
2013) (Papagianni et al.,
2013)

Yes No No No No No No

(Palmieri et al., 2013) Yes Yes Yes No No Yes No
(Di et al., 2013) Yes No No No Yes Yes No
(Ardagna et al., 2012) Yes No Yes No Yes No No
(Ai et al., 2011) Yes No No No Yes No No
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2.4 Performance Analysis Tool for Cloud Deployment

This section explain the OpenStack cloud architecture, and VM provisioning in cloud.

2.4.1 OpenStack Architecture

OpenStack is feature rich, simple to implement and has all types of characteristics like the

private and public cloud. Based on interconnected services OpenStack is deployed as an

IaaS solution. By using the API and web-based dashboard, and command line tools users

can manage the network resources, storage, and control pool of resources throughout the

datacenters (Corradi et al., 2014). OpenStack maintains the number of components in-

stalled independently with distinct APIs that controls the both computations and storage

resources in order to facilitate the dynamic allocation of VMs. In addition, according to

the need of cloud, installed components communicate and work with each other through

the RabbitMQ protocol and RPC. OpenStack includes the number of services such as,

Networking, Compute, Identity Service, Object Storage, Image Service, Orchestration,

Block Storage, Telemetry, and Database. Further, Network is used to create the topolo-

gies of virtual network whereas Image Service known as Glance is designed for the im-

age management. In addition, Dashboard represented s web-based GUI service is used

to manage the starting/stopping of the VMs and for the configuration of tenants while

Identity Service is installed for authentication. Moreover, Compute service provides the

IaaS characteristics comparable to Amazon EC2. Compute service is represented as Nova

and considered as a primary module of OpenStack. In addition, while assessing the most

suitable hypervisor Compute service deals with the resource provisioning and life-cycle

management of VMs as shown in Fig 3.1.
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2.4.2 Request Flow for Provisioning VM in Openstack

Figure 2.5: Request Flow for Provisioning of VM in Openstack

A provisioning of VM in any cloud is considered as one of the most essential use-case.

This section discuss about the provisioning of VM in an OpenStack based cloud (Rosado

& Bernardino, 2014). Moreover, this section describes the interaction of components and

the request flow in order to boot a new VM under OpenStack. Based on section 2.4.1

the basic interaction of the services is defined whereas the current section elaborates the

request flow for the deployment of VM as shown in Fig 3.1. A REST call is forwarded

to the Keystone for the authentication process when the user credential is received at

CLI. Upon the credential’s authentication the Keystone sent back the auth-token which is

further used for the communication with other components and for sending the requests

using the REST-call. A new instance request is converted in the nova-boot or launch-

instance form to REST API and forwarded to nova-api whereas it forward the request

to keystone for access permission and validation of auth-token. Moreover, the updated

headers with the permissions and roles are transferred by the keystone. Besides, nova-

61

Univ
ers

ity
 of

 M
ala

ya



database and nova-api communicates with each other for the creation of initial record for

new instance. Moreover, an rpc.call request is sent by the nova-api to nova-scheduler

excepting to acquire updated instance record with specification of host ID (Wuhib et al.,

2012).

A request from the queue is picked from the nova-scheduler whereas is communi-

cates with the nova-database in order to choose the appropriate host by using the filtering

and weighing methods. After going through the filtering and weighing process nova-

scheduler return the updated information regarding the host Id and direct the rpc.cast

application to nova-compute in order to launch the new instance on the appropriate host.

In order to get the information regarding the flavor and host ID (CPU, RAM, Disk space)

nova conductor receive rpc.call request from nova-compute and picks that request from

queue. Furthermore, after picking up the request from queue nova-conductor coordinates

with nova-database and sent back the instance record to it. In addition, nova-compute

picks the information of instance from queue and send the REST call in order to attain

the image URI with the ID of image from glance by passing the auth-token to glance-api

and upload the image from image storage. Further, auth-token is validated by the glance-

api with the keystone. Nova-compute get the metadata of an image and send REST-call

to Network API by passing the auth-token in order to configure and allocate the instance

with the private/ public IP address whereas with the keystone the auth-token is validated

by the quantum-server. Nova-compute get the information of the network and send the

REST call to Vloume API for the attachment of volume to the instance. In addition,

auth-token with keystone is validated by cinder-api and the block storage information

is provided to the nova-compute where it creates the data for hypervisors and execute

request on hypervisors via api or libvirt.

In cloud, VMs are arranges and launched within physical machines. The libvirt

library is used by the OpenStack in order to establish the contact with virtual operating
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systems those are deployed and running on physical nodes. In addition, a set of hypervisor

independent APIs is represented by the libvert which is used to manage, enumerate, and

monitor the VMs that are executing on physical machines. Moreover, physical server uti-

lization is achieved by using the interface of an operating system (/proc) whereas through

the libvirt library the VM utilization is obtained. OpenStack Nova assists administrators

to deploy one or multiple hypervisors in virtual environment so that VM initiation and

termination is facilitated based on different quires and performance metrics to VM load

indicators. OpenStack support the XenServer, KVM, QEMU, ARM, and different types

of hardware architectures (Ammal, Kumar, Alka, & Renjith, 2015). The XenServer and

KVM are the most suitable choices for most of the use cases although KVM provides

the solutions of full virtualization on x86 architectures. In addition, LXC technology is

also used in order to offer the efficient solution with minimum overhead of virtualiza-

tion. In addition, Openstack offers the characteristics of live migration with the condition

when NFS is used for network storage and KVM is used as a hypervisor. Besides, in

case of QEMU hypervisor CPU resources are multiplexed, which is currently used in our

implementation. Further, through QEMU the differentiation among VM is achieved by

assigning the different priorities which are assigned to the process that launches the VMs.

Moreover, based on OpenStack scheduler, the controller node decides which compute

node is suitable for the deployment of specific VM based on its associated resources.

2.5 Issues and Challenges

Several problems should be considered while managing the resources in a cloud comput-

ing environment. In this section, we present a taxonomy of significant resource manage-

ment issues covering resource management functions, such as pricing, discovery, selec-

tion, monitoring, and allocation as presented in Fig 2.6.
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2.5.1 Resource Selection

Selecting worthy resources from a federated resource set is difficult because of the differ-

ent requirements relevant to the provider, the high algorithm complexity, and dynamicity.

The selection process should also consider behavioral aspects to maintain a user satisfac-

tion level.

The dynamic changes in the resource utilization of the resources in a federated envi-

ronment and the changes in the workload characteristics turn the resource selection into

an iterative repetitive task considering user-specified functional and non-functional con-

straints. However, the task is difficult and has the following open issues, which should be

addressed to make the resource selection in a multi-cloud environment feasible:

1. Monitoring data should be integrated as historical feedback to judge the credibility

and effectiveness of the resources to be considered for selection.

2. Workflow modeling, breakdown, and mapping should be enhanced to utilize the

full potential of the federated environment by selecting resources from the feder-

ated resource pool for individual components of the workflow according to some

constraints.

3. Resource selection mechanism should consider the combination of networking fac-

tors and failure and energy indexes.

4. The effect of the selected resources on the utility of the CSP in the federation should

be evaluated to verify whether this selection really improves the utility in the long

run.
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Figure 2.6: Taxonomy of Cloud Resource Management Issues
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2.5.2 Resource Allocation

Resource allocation is integral for obliging unpredictable resource requirements and cap-

ital return in cloud federation. Considerable work on resource allocation mechanisms

for federated clouds is being conducted, but these mechanisms still need improvements.

From analysis, we find that controlling the effect of reconfiguration cost over the feder-

ation and cloud utility is not studied. Another shortcoming is the lack of generality to

make the allocation scheme visible for all type of service provisioning. Several open is-

sues required to be addressed to achieve efficient resource allocation mechanisms.

1. Interoperability among virtualization engines, such as VMware ESX (Zhang, Den-

niston, Baskakov, & Garthwaite, 2013), KVM, and Xen should be investigated to

realize seamless flow of data between their local applications and across clouds.

2. VM migration across subnets and realization of maintaining network flows by de-

coupling should be analyzed (Kalim, Gardner, Brown, & Feng, 2013).

3. VM behavior modeling and workload of a federated cloud environment should be

evaluated to realize the peculiarities of the workload and VM.

4. Precise forecasting in a distributed and heterogeneous federated environment, where

the common information among the entities is lacking because of the different ad-

ministrative policies, is needed.

5. Security: Inter-VM attacks when a malicious VM is being migrated from a mali-

cious provider.

2.5.3 Resource Monitoring

The function of cloud resource monitoring is to provide wide monitoring information

data about service management and infrastructure, such as access control, service elas-
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ticity, service billing, and SLA management (Bernsmed, Jaatun, Meland, & Undheim,

2011) (Carlini, Coppola, Dazzi, Ricci, & Righetti, 2011). Monitoring data about their

running services deployed in federated clouds are provided to customers. In the federated

environment, resource monitoring is important for CSPs to maintain the federation and

fairness in the distribution of revenue generated by the cloud clients.

From our analysis of the literature on monitoring solutions for federated cloud environ-

ments, the capability of monitoring cross-domain services has been regarded as a privacy

and security risk and monitoring as an attack tool (Ristenpart, Tromer, Shacham, & Sav-

age, 2009). This fact leads to a no-production-level monitoring solution with a federation

of cloud members having different business objectives and enterprise policies. The ex-

pensiveness of the monitoring solutions and their effects on the application QoS are not

explored for most of the solutions. Open issues pertaining to the efficacy of resource

monitoring in federated environments are listed below.

1. Standardization is lacking when logical or physical domain boundaries are crossed,

and monitoring activities is a challenge because of vendor lock-ins and heteroge-

neous infrastructures and architecture.

2. Architectural standardization efforts should be made to standardize APIs for gath-

ering monitoring data from CSPs.

3. Energy monitoring of federated CSPs should be conducted to encourage efficient,

green cloud computing by scheduling and rescheduling an application according to

the energy consumption index monitored to reduce the energy consumption.

4. Cross-domain data leakage of applications and the internal configurations of a cloud

member need to be addressed to enable third-party monitoring and unified moni-
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toring of federated environments.

5. An autonomous monitoring tool for validation and performance measuring of het-

erogeneous application sets deployed in a federated cloud environment is required.

6. No monitoring data of single or federated cloud environment are publicly available,

and no workload traces of the monitoring solutions themselves exist to analyze the

data by statistical tools to acquire more insight into the monitoring process.

2.5.4 Resource Discovery

The resource discovery function describes how a CSP exposes its resources and service

to enable other CSPs in the federation to find these resources and services for automat-

ing the resource selection process and ensuring easy use of services, thereby complying

with requests. The responsibility of resource discovery in the federated environment is

extended to handle physical and geographical proximities and the costly inter-domain

traffic of resources.

The literature has indicated that the resource discovery solutions for federated cloud are

mostly inspired by P2P systems given the autonomic nature of the federation members.

Moreover, several of the discovery solutions employ a central brokerage for the discov-

ery process. In addition to the issues of P2P resource discovery mechanisms discussed

in (Meshkova, Riihijärvi, Petrova, & Mähönen, 2008), a few open issues pertaining to the

efficiency of federated cloud resource discovery are listed below.

1. Controllable resource advertising protocols taking the peculiarities of the federated

clouds should be designed.

2. The semantic description of resources should be standardized to enhance cross-

domain discovery and interoperability.
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3. Runtime SLA negotiation in ad hoc federation should be empowered by first dis-

covering and then negotiating, but this could be turned into an attack tool. Thus, a

trusted third party can be involved, thereby leading to the use of resource discovery

as a service.

4. QoS-differentiated resource discovery is an interesting aspect in a large federation

with numerous users.

2.5.5 Resource Prizing

In federated cloud computing, consumers leverage various types of computational and

storage resources and services from one or more than one resources or service providers

using a fixed or variable (pay-per-use) pricing schemes. In federated clouds, consumers

and suppliers of cloud resources are rational players and inclined toward maximizing

their own benefits when contributing and utilizing shared resources and services (Nielson,

Crosby, & Wallach, 2005). In a federated cloud environment, resource supply and demand

fluctuate as consumers and providers join and leave the federation. Pricing function is

subsequently used to manage the individual rationality of the consumers and providers.

The oscillation in the workload and resource availability in the federation is confined to

the need of dynamic pricing strategies in federated cloud based on the principles of de-

mand and supply.

From analysis of the different federated resource pricing schemes, the association be-

tween SLA and pricing model is not clear, and incomplete information exists about the

resources of the federated environment. We present the most recent available pricing

models to qualitatively measure their applicability and relevance. However, most of them

have a bias and do not work in improving the overall utility of the federation. In addition,

an individual model does not fit all potential scenarios because of the varying nature of

the business objectives and enterprise policies of the federation members. Our analysis
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also indicates that the functions and features of auditing and accounting are insufficiently

included in these models because of the distributed administration of the federation to

follow up legal requirements. Several open issues listed below still need to be resolved.

1. The effect and overhead of pricing model on the multi-tier hierarchy of the federa-

tion of CSPs should be evaluated.

2. QoS-differentiated pricing schemes are not yet considered for federated setup.

3. In case of ad hoc federation with no prior agreement among the federation mem-

bers, a malicious member that reveals untruthful resource prices to the marketplace

can comprise the efficiency of the pricing model.

4. Pricing model should consider the workflow characteristics of composite web ser-

vices.

5. The effect of utilizing business intelligence and integration services should be in-

vestigated to analyze the federated cloud marketplace and price predictions for han-

dling misreporting resource bidding functions (Chang, 2014) (Chang, Walters, &

Wills, 2012).

2.5.6 Disaster Management

Disaster management and fault tolerance play an important role in restoring organiza-

tional data in case of natural hazards or man-made disasters. Disaster management func-

tions enable a system or component to continue normal operation despite hardware/software

failures or compromises. In scenarios of federated cloud environment disaster, manage-

ment functions should be distributed and coordinated among each node of the federated

setup to enable a micro-level disaster-aware federated cloud infrastructure, which ensures

the QoS level required by members of the federations.
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Considerable literature is available on handling the DR issue in federated cloud environ-

ments. The primary site becomes unavailable when a disaster happens, and the secondary

site has to be activated. In this case, in a backup site no sync or async replication abil-

ity exists, but system and data states can only be locally stored. This phenomenon is a

serious threat to the system, yet it is temporary and will be removed after recovery of

the primary site. However, all risky situations should be considered to attain the best DR

solutions, especially in high-availability services (such as business data storage). Several

open research issues are briefly stated below.

1. In order to provide true business continuity for a DR service, it must assist seamless

reconfiguration of the network for an application once it is brought online in the

backup site.

2. Synchronizing the in-memory intermediate states is part of the DR process to save

computation rather than data.

3. The cost of DR mechanism should be analyzed to identify which DR mechanism is

more suitable and does not reduce the net system utility.

4. The time required to detect a failure strongly affects the service downtime and initi-

ation of a DR process. However, while replicating across multiple mirror sites, the

problem is how to differentiate between network failure and component failure.

5. As mentioned before, DR can be be human made or it can formed by nature. A

cyberterrorism attack is a human-made disaster that is accomplished for many rea-

sons. In this case, recovery and protection of essential data will be the major objec-

tive in DR plans aside from system restoration.
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2.6 Discussion on Cloud Load Balancing

Virtualization is the most adopted power management and resource allocation technique

used in cloud computing infrastructure and data centers. Virtualization in network do-

main does not provide for energy efficiency. In effect, network resources are burdened by

the virtualization techniques. Live migration of VMs in the data center is an active area

of research as data has to be transferred from one physical host to another, generating a

significant amount of traffic (Voorsluys, Broberg, Venugopal, & Buyya, 2009). The live

migration of a VM essentially requires the copying of VM memory pages from the cur-

rent location to a new location across the network while the VM does not stop its services

at the current location. The pages that are modified during the process of live migration

are marked as dirty and have to be re-transferred after the first iteration of the copy.

Nowadays, power consumption within cloud data centers is a big challenge due to high

power consumption by DC equipment because of hosting and deploying high resource de-

manding applications within data centers. Server consolidation is a mechanism that packs

maximum possible VMs on a single server so that rest of the servers can be switched off

to minimize power consumption budget. Moreover, applying dynamic voltage frequency

scaling (DVFS) also helps to minimize power consumption budget. However, decisions

about where to place services while keeping in mind customer’s location and needs is a

big challenge that needs significant attention to surge data center performance.

Lightweight VM migration design will help to minimize the resource usage of VM migra-

tion process as lightweight design uses low system resources. Incorporating lightweight

design feature in current VM migration schemes will help to accelerate DC performance.

Moreover, proposing three dimensional queuing modeling based approach can be pro-

posed to effectively highlight the objective and constraints of VM migration technology.

In virtual data center infrastructures, the goals of energy efficiency and resource utiliza-
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tion arise along with the problem of non-optimized placement of VMs on different phys-

ical hosts (Chernicoff, 2009). The non-optimal placement of VMs results in two VMs

with large mutual (VM-to-VM) traffic being placed in different network domains with

multiple-hop distances. The VM-to-VM traffic consumes a significant part of available

network bandwidth. Energy-efficiency, higher resource utilization and optimal VM place-

ment can be achieved by VM live migrations. The main disadvantage of live migration

is that it can consume significant network bandwidth during the process of VM memory

image transfer from one physical host to another.

Transferring large sized data over the shared network link is a big challenge, especially

when several goals in terms of SLA violation avoidance, minimum end to end delay, high

throughput, and high service quality has to meet. To improve energy efficiency, network

management policies employ visualization technology to fully utilize the peak capacity of

existing resources. Server consolidation methods collocate the most potential VMs based

on (a) memory similarity ratio, (b) network communication pattern, (c) degree of work-

load on the server, and (d) flexibility to security concerns, to switch off the idle servers

such that the total power budget is minimized. State-of-the-art VM migration schemes

suppress VM contents using de-duplication, compression, write throttling, and various

innovative ways (workload enabled compression) to efficiently utilize bandwidth capac-

ity. However, applying all these optimizations consumes significant amount of system

resources which ultimately affects co-hosted application performance in terms of SLA

violation. For effective resource utilization, VMs are packed on a few servers. However,

the decision about co-location is affected by the type of workload hosted within VMs,

CPU capacity, memory availability, and communication pattern of VMs. Degree of SLA

violation is increased if infeasible VMs are co-located. Therefore, it is must to decide

which VMs should be co-located. Parameters, such as, application profiling and statisti-

cal analysis helps in identifying the most suitable VMs.
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Overlooking load balancing establishment abruptly decreases system throughput due to

overloaded servers and ultimately leads to SLA violation. Within the cloud, effective re-

source management is very important, as cloud resources are not infinite in reality. To

manage resources within the cloud, underlying resources are shared fairly among a set of

users. VM migration is one of the processes that effectively manage cloud resources by

ensuring load balancing, fault tolerance, server consolidation, and in-time service main-

tenance provisioning. However, VM migration itself is a time and resource consuming

activity and it impacts the performance of co-hosted applications. Co-hosted applica-

tions share the underlying resources to optimally utilize existing resources. However, in

co-hosting multiple VMs, the challenge with isolating performance is very big. Also, co-

hosting affects SLA if resources are not fairly distributed among legitimate users based

on their requirements. Moreover, privacy and security concerns are also present due to

VM co-location.

2.7 Conclusion

Virtualization is a technique that allows the sharing of one physical host among multiple

VMs, where each VM can serve different applications. The CPU and memory resources

can be dynamically provisioned for a VM according to the current performance require-

ments. This makes virtualization perfectly fit for the requirements of resource allocation

and management in data centers. This chapter extensively review the resource allocation

schemes based on load balancing techniques. Load balancing schemes are further classi-

fied into static and dynamic load balancing. A detailed taxonomy based on load balancing

characteristics is derived in this chapter in order to attain the various objectives such as,

efficient utilization of resources, cost effectiveness, fair allocation, resource prioritization,

scalability and flexibility. Moreover, this chapter discusses the issues related to the cloud

74

Univ
ers

ity
 of

 M
ala

ya



resource management based on, resource selection, resource allocation, resource moni-

toring, disaster management, resource discovery parameters. In addition, based on the

literature review of existing cloud load balancing schemes the number of open research

issues are discussed in detailed and thematic taxonomy is proposed with remarks in order

to handle the issues.

Load balancing has become an integral part of all distributed internet based systems as

distributed computing comes with the challenges of high resource demands that overload

servers. Load balancer increases the capacity and reliability of applications by decreasing

the burden on a server. Load balancer starts with identification of hot spot, an overloaded

server, and start migrating its load on a server which has sufficient resources such that the

resources are evenly distributed.

Based on the static load balancing schemas it is observed that majority of the algorithms

do not incorporate the application execution time parameter and overlooks the CPU uti-

lization at the time of VM deployment. In contrast, the CPU utilization is considered in

dynamic algorithms based on migration techniques after the deployment of the workload

on underutilized physical hosts. In order to stable the load the VMs are migrated after

their placement which leads to the migration overhead. Based on analysis of existing

static and dynamic schemes it is concluded that inefficient load balancing schemes max-

imize the application execution time when the CPU is overutilized and ultimately leads

to performance degradation. However, the criterion of where, which, and how to migrate

workloads from the physical servers pose challenges that cloud operator has to consider

during all these decision makings. Therefore, based on analysis a solution is required that

efficiently balance the load at the time of initial deployment of VMs and migrate the load

from highly utilized server to under underutilized server to controls the total number of

migrations.

75

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 3: PROBLEM ANALYSIS OF DYNAMIC LOAD BALANCING IN
CLOUD THROUGH VIRTUAL MACHINE PLACEMENT

This chapter analysis the performance of existing static load balancing schemes. It dis-

cusses the methods, experimentation tools, and the test programs designed for the prob-

lem analysis for traditional load balancing methods. The objective of this chapter is to

establish the problem, which is highlighted in Chapter 1. In order to show the severity of

the problem we performed the in depth investigation of the problem. Therefore, in this

chapter we conducted the set of experiments under the existing VM deployment condi-

tions.

This chapter is divided into four main sections. Section 3.1 shows the experimental

methodology, evaluation method, and test program design in order to conduct the exper-

iments. Section 3.2 shows the performance analysis of existing load balancing scheme

based on static and random based load distribution and illustrates the VM deployment in

OpenStack cloud, load distribution analysis, and load distribution behavior study based

on performance parameters in terms of core utilization, CPU utilization, and application

execution time. Section 3.3 conclude the findings of this chapter.

3.1 Experimental Methodology

This section briefly discusses tools, test program designs, and highlights experimentation

equipments for performing the experiments on the traditional load balancing methods. In

this study, the experimentation is conducted on real hardware equipments to analyze the

performance of VM deployment in cloud in terms of average CPU utilization and execu-

tion time.

The proposed study has considered a small in house data center to conduct the experi-

mentation for problem analysis in traditional load balancing methods. We have selected

the OpenStack cloud for experiments. During the experiments, a control environment is
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modeled to deploy VM using OpenStack scheduler. Moreover, it has used the traditional

computers rather than expensive and powerful machines (small industrial cloud replica).

For the analysis, we deployed our small OpenStack cloud infrastructure comprising of

four physical machines connected through a flat-DHCP networking module. The config-

ured servers are heterogeneous in terms of their resource capacity such as RAM, System

cache, bus speed, and CPU. One of the servers is set responsible to act as a controller node

with distinguished resource specifications in terms of, Xeon(R), Intel(R), CPU E5620

with 2.40GHz, and QEMU hypervisor as presented in Table 3.1. In first set of experiment

the controller node installed using 32 GB RAM. Besides, for the rest of three servers

called compute nodes carries 16 GB RAM capacity. Moreover, experiments are also con-

ducted using the homogeneous RAM with the configuration of 16GB for each compute.

However, the forth compute node is configured on the controller node.

During experiments, to analyze the behavior of traditional load balancing methods, the

workload is generated for analyzing the CPU resource consumption rate. In the current

study, to analyze the traditional static load balancing methods, CPU bound applications

are designed to fully (100%) utilize the peak capacity of CPU within deployed VM. In

order to analyze the CPU utilization behavior, all the unnecessary applications including

users and background system were turned off prior to experiments. To analyze accurate

CPU utilization all experiments are conducted with the 100% utilization of each deployed

VM.

This study has performed each experiment 15 times to report the average of data for sup-

pressing the noise due to uncontrollable system background activities such as garbage

collection, dynamic voltage frequency scaling, and frequent context switching. The aver-

age of 15 times run is discussed in this chapter.
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Table 3.1: Physical Server Specification Profile

Capacity Physical Server(s)
CPU type Xeon(R)
Thread(s) per socket 2 with flavor id 1
Thread(s) per socket 4 with flavor id 2
Hypervisor QEMU
CPU(s) 8
CPU Freq, (GHz) 2.40
Architecture x86 − 64
Kernel 3.11.0-26-generic
L1 Cache (KB) 128
L2 Cache (MB) 1
L3 Cache (MB) 12

3.1.1 Evaluation Method

This study has conducted experimentation on a small in house cloud data center using the

open source cloud platform (OpenStack) to analyze the impact of load distribution. To

analyze load distribution among physical machines, the load is characterized as static or

dynamic. To generate static and random load, it has considered a CPU bound application

that executes the multi-core Python application to increase CPU load. In order to conduct

the behavior of VM distribution in cloud, VMs are deployed using the 2 different flavors

as presented in Table 3.2. For static load generation case, VMs are created using flavor

ID 1 with the specification of 512MB RAM, 1GB Disk Space, and 2 vCPUs, 32 GB

controller node (Edge1) and 16GB compute nodes names as, Edge2, Edge3, and Edge4,

respectively.

For static analysis equal numbers of VMs are deployed on each physical server. More-

over, it has considered same CPU bound application (synthetic test program) for each

vCPU to generate the workload. In contrast, for random load based VM distribution sce-

nario, the VM deployment is considered using the flavor ID 1 and 2. While, using the

flavor ID 1 all experiments are conducted using the same specifications as used in static
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scenario, but for the second time the experiments are conducted using the homogeneous

RAM (16GB) for each compute and controller node using 2vCPUs. Moreover, random

load based VM deployment behavior is also conducted using the 4vCPUs per VM with

the 16RAM for each compute node. For the random load distribution, test program has

developed an application that randomly generates workload of different capacity based

on flavor ID. For simplicity and randomness, load generator’s generated load is mapped

between 0 and 2 random values when the VM is deployed with flavor ID 1. The number 0

specify that no CPU intensive application is executing on VM; whereas, values, including

1 and 2 states that only 1 and 2 cores are fully utilized. In addition, when the VMs are

deployed with 4 Vcpus using the flavor ID 2 the random load generator function generates

the value between 0 and 4. The value 0 shows that no application is executed on this VM;

whereas, values 1,2,3, and 4, specify that 1, 2, 3, and 4 number of vCPUs are fully loaded

for that VM.

In order to examine the CPU resource consumption rate, the design of proposed synthetic

benchmark program is presented in the next section of this chapter. Moreover, to capture

the system CPU consumption rate during synthetic benchmark execution within a VM,

the proposed study has used top Linux utility. Top shows the CPU load that is average

based on average of, current CPU load, last five minutes load, and last fifteen minutes

load. In addition, load average is measured based on the number of processes that are

waiting for their CPU turn for execution. The proposed study has used awk command to

acquire the average load as captured by the top Linux utility.

Table 3.2: VM Configuration Profile

Flavor Type Flavor ID Disk Space(GB) RAM(MB) vCPUs
2Core_based_flavor 1 1.0 512 2
4Core_based_flavor 2 1.0 512 4
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3.1.2 Test Program Design

In order to investigate the performance of CPU utilization, a CPU bound test program is

designed comprising the different size of loops performs the basic arithmetic operations.

For instance, CPU bound test program is comprised of multiple nested loops along with

the set of statements performing the arithmetic operation on the unsigned integers values.

The name of the test program is chosen while considering the size of test program in terms

of its loops count. Test program generates the workload to fully utilize the capacity of

CPUs allotted to a particular VM. The test program is designed such that the VM utilizes

100% capacity of the CPU resources until the test program complete its execution. In

order to generate the 100% load test program is executed based on the number of core of

specific VM. For example, if the VM is deployed with the 2 cores the two test programs

are executed for the fully utilization of CPU resources. Moreover, the size of the CPU-

bound-test is associated based on the loop size within the program. For instance, in the

2000000K test program the body of the loop is executed for 2.0 × 108 number of times.

We have designed the test program because there is no benchmark program available in

order to check out the performance of OpenStack cloud.

3.2 Performance Analysis of Existing Load Balancing Schemes

The core motivation of this study is to analyze the behavior of scheduler at the time of VM

deployment or when it is shielded from any external influence. By using the initial set of

experiments, the performance of each compute node is evaluated based on the launched

VMs to analyze the CPU utilization rate based on the load factors.
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3.2.1 Illustration of VM deployment in Open Stack

In OpenStack Nova scheduler (standard scheduler) is used for scheduling VMs to map the

nova-API calls to suitable components. Schedulers took the decisions based on multiple

factors such as memory, number of vCPUs, distance to the availability zone, and CPU

architecture, etc. Moreover, OpenStack Nova is composed of three types of schedulers

including, Filter, Chance, and Simple. Chance scheduler randomly chooses an available

node regardless of its characteristics whereas Simple scheduler identifies the available

node with the least load to deploy first VM. In contrast, filter scheduler is used for VM

scheduling purpose, which maps the nova-api calls to appropriate component. Number

of different filters are supported by the nova scheduler including the core filter, RAM fil-

ter, availability zone filter, disk filter, image-based filter, host-based filter, and net-based

filter. In the resource based filter the decisions are taken based on the available resources

in terms of memory, disk space, and number of CPU cores. The image-based filter de-

cisions depends on the properties of image while the properties are describes based on

hypervisor, architecture of CPU, and mode of VM including suspend, unsuspended, run-

ning, terminated, and created. In contract, in host-based filter hosts are selected using

the grouping criteria while considering the availabilityzone, location, and host aggregate

properties.

W = weight1_multipl∗norm(weight1)+weight2_multipl∗norm(weight2)+ ... (3.1)

In addition, the default scheduler used for the deployment in OpenStack cloud is known

as the filter scheduler. At the deployment of VM filter scheduler creates a disk image for

the VM and calls the hypervisor to boot the VM. The parameters to this call may include

the type of the (virtual) vCPUs, the number of cores, the amount of memory, the hard

disk image to boot from, and the local CPU allocation policy.
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Figure 3.1: Selection of Hosts based on OpenStack Cloud Standard Scheduler

Filter scheduler contains two generic functions filtering and weighting as discussed

in Fig. 3.1. In the filtering phase the capacity of the hosts is determined based on the

requested resource. Filter function selects the set of compute servers capable of running

a given VM (Litvinski & Gherbi, 2013). In Fig. 3.1 host2 and host6 are not considered

for the deployment of next VMs based on their available resources. In the second phase,

the weights are associated to each hosts that are selected using the filtering phase in order

to choose the best one host. Alternatively, a cost function ranks the filtered set of servers

according to their suitability as shown in Equ. 3.1. By default the weight is assigned to

the hosts based on the available RAM capacity using the RamWeigher.
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Algorithm 1 Legacy Compute Scheduler Based on RAM Filter Algorithm
Require: self, Stateo f Hosts, properties, InstanceTypei, Rar,

1: procedure HostPasses(self, Stateo f Hosts, properties)

2: Typei ← p.get(InstanceTypei)

3: ReqRAM ← Typei[memory]

4: FreeRAM ← getFreeRAM (InstanceT ypei)

5: Rar← sel f .getRAMllocationRatio(Stateo f Hosts,properties)

6: TotalUsableRAM← Stateo f Hosts.TotalUsableRAM

7: UsedRAM← TotalUsableRAM − FreeRAM

8: return TotalUsableRAM ∗ FL AGS.Rar − UsedRAM >� ReqRAM

9: end procedure

When the VMs are launched using the RamWeigher it balanced the usage of the

RAM among all hosts by deploying the other VMs as represented in Fig. 3.1. Moreover,

the selection procedure of RamWeigher is presented in Algorithm 1.

3.2.2 Load Distribution Analysis

This section demonstrates the scheduling flow in open stack. To analyze the scheduling

flow behavior, it appropriately places the VMs on the physical server based on CPU usage

level.

Fig. 3.2 has presented the scheduling flow of VMs based on CPU utilization for each

physical machine. In VM deployment model for the existing OpenStack compute sched-

uler, VMs are differentiated using distinct color schemes. The light-gray color shows that

first eight VMs are deployed on Edge 1. The VMs with dark gray-color represents that

VM is fully loaded when CPU bound application is executed. Alternatively, white-color

based VMs represents that VMs are deployed without load. Based on CPU utilization fac-
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tor, Edge 2 represents the current CPU usage capacity, which is 97.9% while four VMs

are hosted on it at time "t". Alternatively, Edge 3 and 4 represent 75.8% and 52.3% CPU

usage statistics at time "t".

Considering Fig. 3.2, for legacy non-optimized OpenStack scheduler, when 21st VM is

deployed (edge 2) it is placed on the highly loaded physical host based on spread tech-

nique criteria to balance the RAM.

Figure 3.2: VM Deployment Using OpenStack Cloud Scheduler

3.2.3 Load distribution Behavior Study

This section discusses the load distribution behavior for the legacy cloud scheduler based

on the static and random load distributions.

3.2.3.1 Static Load Based VM distribution

In this section a discussion on analyzing the relation between number of core’s utiliza-

tion and VM deployment sequence for four physical hosts (Edge1, Edge2, Edge3, and

Edge4) is presented. Fig. 3.3 has presented the aforementioned study. In the said figure,
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x-axis shows the utilization of number of cores whereas the VM deployment is repre-

sented on the Y-axis. As can be seen from the Fig. 3.3, the function of total number of

cores utilization is highly dependent on the number of VMs deployed. Also, it is shown

that different cores are utilized on different physical machines. In order to highlight the

deployment of VM on a specific physical machine for the clarity, the compute nodes are

denoted with different types of shapes. For instance, Edge 1, Edge 2, Edge 3, and Edge 4,

are represented with triangle, circle, diamond, and rectangle, respectively. Also, count of

shapes for each particular instance of a shape is same because of the fact that every single

physical carries equal 8 VMs.

Physical machines are configured to host 8 VMs as the number of cores allocated to

each physical machine are 8. Therefore, in total there are 32 VMs deployed on compute

nodes. In the here mentioned figure, the first plot has shown eight consecutive triangles.

The consecutive 8 triangles plotted in Fig. 3.3 has shown that first 8 VMs are deployed on

Edge 1 compute node. Every single VM is deployed to use 2 vCPUs as mentioned in the

experimental details. In addition, it was noticed that once VMs has utilized 8 cores, the

deployment sequence repeat its behavior for Edge 2, Edge 3, and Edge 4 nodes, respec-

tively. Based on the behavior of Fig. 3.3 it was observed that compute node Edge 1 being

having the highest RAM capacity is selected first for the deployment of VMs. Further,

the repetitive sequence shows that the Edge 2, Edge 3, and Edge 4 have the same RAM

16 GB; as a result, the compute scheduler balanced the RAM utilization for each compute

node.
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Figure 3.3: Core Utilization vs VM Deployment Sequence based on Static Load

The load or utilization of a physical server measures the extend to which a VM

has used its resources. In terms of resource utilization, the most essential resource is

represented as CPU. Performance degradation is highlighted in Fig. 3.3 when multiple

co-located VMs compiles extensive computational tasks. In addition, Fig. 3.4 presents

the number of VMs deployed on x-axis and CPU utilization across that deployment on

y-axis. The performance of each single VM is measures by running a CPU intensive

application to impose load upon a particular vCPUs. In order to deploy the same load,

same program is executed for each VM. When the first VM is deployed and load is gen-

erated, the CPU utilization ratio is increased up-to 25% which is represented as 0.2% in

the aforementioned figure. When the second VM is deployed and the same CPU inten-

sive application is executes on same physical machines, the load value is surges to 28%.

Moreover, the graph shows that the Edge 1 is selected again and again until it reaches to

the 99% CPU utilization even though the other physical machines have minimum CPU

utilization as compared to Edge 1. Furthermore, if the CPU utilization is too high, it
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seems that the VMs that are deployed on the given physical server are not receiving the

required capacity of CPU resources and waits in order to accomplish their tasks. It is

observed that during launching VMs, first eight VMs are created on Edge1 due to avail-

ability of sufficient RAM capacity. From ninth to onward, all VMs are launched on Edge

2, 3, and 4 (physical hosts/ compute nodes) in a sequence because of spread technique

(nova-scheduler) that evenly distributes the VMs in order to manage the RAM. It was also

observed that vCPUs load surges to 25%, 50%, 75%, and 99% when the number of VMs

are increased on each single physical server. Moreover, the value from 9 to 32 at x-axis

shows that there is a specific deployment sequence which is followed for other compute

nodes with the increased CPU load value.
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Figure 3.4: Analysis of VM deployment vs CPU Load based on Static Load

3.2.3.2 Random Load Based VM distribution

This section analyzes the deployment behavior of VMs using OpenStack while consider-

ing its legacy scheduling method. In order to differentiate the deployment from the static
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load based scenario, this study deploys VMs based on random load generator function.

In this scenario, a random program is generated to predict the load. For the better under-

standing, the name of the program is designated as the random load generator function.

At the deployment time, the specification of the VM shows that each VM is deployed us-

ing the 2 vCPUs as shown in Fig. 3.1. Therefore, based on number of vCPUs, the random

load generator function generates the discrete numbers between range 0-2 for each VM

for generating the load on each VM as described in section 3.1.1. Fig. 3.5 presents the

sequence of VMs deployed on the physical servers. The physical servers are highlighted

with different shapes to differentiate them. In order to present the distribution of VMs

on the physical servers based on dynamic load balancing, the graph is plotted between

core utilization and virtual machine deployment. In the said figure, the VM deployment

sequence presents the true deployment of VMs on the physical servers. During VM de-

ployment, firstly, VMs are deployed on Edge 1 node as it carries the maximum RAM

capacity compared to the remaining three physical servers. Moreover, in the said figure,

the scheduler followed the same deployment sequence as presented in Fig. 3.3 except the

decision for node selection for VM deployment. For instance, in Fig. 3.3, the scheduler

choose the sequence of Edge2, Edge3, and Edge4 for VM deployment. In contrast, in the

current scenario, the order of physical server selection changes due to random function

based scheduling that has chosen Edge4 and Edge2 for the initial set of VMs deploy-

ment. The physical machines repetition is again followed for the random load based on

the RAM available RAM balancing criteria.
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Figure 3.5: Core Utilization vs VM Deployment Sequence based on Random Load

Based on VM deployment sequence as presented in Fig. 3.5, Fig. 3.9 has shown the

CPU utilization behavior. The CPU utilization rate is estimated by generating the load on

VMs using the load generator function. It was noticed that when Edge 1 is selected for the

first VM deployment, the CPU utilization was observed 0.2% for 2 test programs execut-

ing for each core. For static balancing case, for the second VM deployment, again Edge 1

is selected based on RAM filter. For the second VM, it only runs one program and it was

noticed that the CPU consumption surge to 0.25% of total CPU capacity. Moreover, after

deployment of 2nd, 3rd, and 4th VMs, the CPU utilization approaches to 0.6%. Besides,

the 6th and 7th VMs are deployed and the generation of load on single core and two cores,

respectively. As a result, the CPU utilization is reached to the 0.8%. In addition, for the

deployment of 8th VM, the Edge 1 is decided by the compute scheduler even though it is

showing the maximum utilization of CPU as compared to other PMs in cloud.

For better understanding, based on OpenStack scheduler, first eight VMs are deployed on

Edge 1, which has increased the aggregate CPU usage capacity to 95.90%. At the time of
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deployment of the ninth VM, the load on the Edge2 is noticed reaching to 25.2%. More-

over, for the Edge 3 and Edge 4, the load rises to 20.1% and 25.6%, respectively when

the tenth and eleventh VMs are deployed based on scheduler selection criteria. Moreover,

12th, 13th, and 14th VMs are deployed on Edge 2, 3, and 4, respectively. The Edge2, and

Edge4 reaches to their highest CPU utilization as compared to Edge3. Based on random

load generator function, the Edge3 has shown the minimum load compared to the other

nodes because at the time of deployment of 14th VM, no core was utilized. At the de-

ployment of fifteen VM based on placement criteria, VM is deployed on the maximum

loaded host without considering the CPU utilization as shown in Fig. 3.5 and Fig. 3.9.

The behavior of the deployment is showing the scheduler is not considering the CPU uti-

lization except RAM and the repetitive selection criteria of PMs.
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Figure 3.6: Analysis of VM deployment vs CPU Load based on Random Load

First two scenarios as presented in Fig. 3.3 and Fig. 3.5 shows the deployment se-

quence based on the deployment of VMs using the 2 vCPUs per VM. In order to highlight
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the deployment with the dynamic load, the VMs are deployed with the homogeneous

RAM and with flavor ID 2. The behavior of VM distribution is presented in Fig. 3.7. For

the first four deployed VMs, the random load generated function has generated the 2, 0,

2, and 1 values. Based on the above mentioned values, deployed VMs have executed the

CPU intensive programs. For instance, first VM placed on Edge 1 fully loads the CPU by

executing the CPU intensive program on 2 vCPUs. The second VM on Edge4 is showing

0.4% usage of CPU when there is no program is executed. Edge3 and Edge2 are showing

the 25.4% and 15.2% of CPU usage with the execution of 2 and 1 programs, respectively.

For 5th, 6th, 7th, and 8th VMs, the load generator function has generated values based on

1, 2, 2, and 1 random umber as shown in Fig. 3.7. Moreover, the Edge3 has shown the

same load on the deployment of VM 6, 7, and 8. The figure shows that the CPU usage

is fluctuating between 55.6% and 55.8%. The fluctuation shows that the load generator

function has randomly generated the 0 value for the Edge3 using its sequence though no

CPU intensive program was executing for these VMS. The overall deployment behavior

with the random load based characteristics illustrates that the CPU load is not considered

while the deployment.
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Figure 3.7: VM Distribution Behavior with Homogeneous RAM

Fig. 3.3 and Fig. 3.5 shows that the first 8 VMs are continuously deployed on Edge1

node based on the maximum and RAM availability criteria. In contrast, Fig. 3.7 has

shown that each compute node is selected cyclically with the same repetition. For the

allocation of first VM, the Edge2 is selected where the VM is fully utilizing the 4 vCPUs

and surges the CPU consumption up-to 50.5%. The second VM is deployed on Edge 1

and increases the CPU consumption rate to 50.5% of its total capacity. During the third

VM placement on the Edge3, the random load generator function generates the 0 valu;

therefore, no CPU intensive application is executed on it and the CPU utilization is 0.3%

only. In addition, the forth VM is deployed on Edge4 and executes the CPU bound test

programs based on random load generator function. Based on the distribution of first four

VMs, the Edge3 node is showing the minimum CPU utilization. Among others, Edge3

has the least value. However, for the allocation of fifth VM, the CPU scheduler has se-

lected Edge2 based on spread technique and overlooks the CPU utilization behavior. The

figure has shown that rest of the VMs are deployed in a circular order.
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Figure 3.8: VM Distribution Behavior with Random Load and 4vCPUs

3.2.4 Execution Time Analysis

This study analysis the application execution time for different CPU usage levels for one

physical machine by varying the number of VMs as shown in Fig. 3.9. On compute

node, firstly the program was executed without the deployment of VMs to acquire the

actual time taken by the test program program. During second experiment, 1 VM was

deployed using the 2 vCPUs on the single VM. In order to check its behavior, the VM

was fully loaded while CPU intensive programs were executing for each core associated

with VM. In order to check the behavior for 3 VMs based configuration, only three VMs

were deployed with the CPU intensive programs. Moreover, as explained in experimental

setup, physical machines have the 8 physical CPUs; therefore, we have checked the CPU

behavior with the utilization of physical CPUs. It is observed from the said figure that

when no VM is deployed, the program has finished its execution in 1400 rounds and it

has utilized the CPU resources up-to 15%. Moreover, CPU usage reached up-to 25.5%,
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51.0%, 75%, and 99.8%5, when the 1, 2, 3, and 4 VMs were deployed on physical ma-

chine. For 2 VMs, the same CPU bound test program was executed for 1675 rounds. In

addition, when 3 VMs executed simultaneously, the execution time has increased with

little bit change as compared to the time taken by 2 VMs. For 3VMs, the total completion

time was completed in 1700 rounds. In addition, the execution time for 3 and 4 VMs

was noticed approximately similar; For instance, the time was noticed 1715 and 1720,

respectively.
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Figure 3.9: Application Execution Time vs CPU Usage with Different VMs

In second study, the experiment was conducted to relate execution time of an appli-

cation to its CPU utilization for each compute nodes. The Fig. 3.10 shows the results

based on application execution time on each VM for single server while Fig. 3.3 has

shown the behavior for each compute node in the cloud. The analysis is conducted based

on static load distribution, as shown in Fig. 3.3 in order to check the performance of com-

pute scheduler. The figure based on Edge1 has shown the maximum execution time due
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to the availability of RAM as nodes deployed on Edge1 shares the CPU resources until

it reaches to the 100% utilization. Rest of the compute nodes with the 16GB RAM has

shown the same execution time. In order to compute the total execution time of each

compute nodes, the programs for each VM were started, instantaneously. The graph is

showing the 1910 sec execution time for Edge1 when it fully loaded with the distribution

of 8 VMs whereas for the Edge2, Edge3, and Edge4 it has shows the same time when it

was fully loaded with the execution time of 1675 rounds.
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Figure 3.10: Execution Time Based On Static Load Based Distribution

The experiment in Fig. 3.10 shows the execution time when physical machines are

deployed when configured with the heterogeneous amount of RAM. Fig. 3.11 shows the

execution time for each compute node based on the deployment sequence on the PMs as

plotted in Fig. 3.7 which is measured in seconds. Based on the random load based distri-

bution of VMs, Fig. 3.10 has depicted that each compute node has completed its processes

on the same finishing time which were running inside the VMs. The behavior of the said
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figure has shown that each physical machine has same execution time in case of static and

random load based scenarios when the RAM criteria is same for each compute node. For

all the compute nodes the total execution time is calculated and was noticed up-to 1650

rounds.
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Figure 3.11: Execution Time Based On Dynamic Load Based Distribution

3.3 Conclusion

In this chapter, our focus is to critically analyze the OpenStack’s scheduler for VM place-

ment in controlled environment in perspective of small-scale private cloud using four

compute and one controller node. In addition, the agency compute scheduler is an overall

solution to allocate resources, and the multiple available filters give a comprehensive set

of choices. However, filter only provides the reservation of requests based on vCPUs and

memory parameters and generated the list of servers that are ready to use. Besides, they

overlooks the performance maximization strategies. Based on the balanced load factor

it is the weigher’s responsibility of allocate the request to efficiently utilize the available
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resources.

The current strategy of only weighing against memory usage, by way of the Ram Weigher,

is limited in effectiveness. This is because each VM has its own separate memory space,

and random-access memory performance is not largely impacted simply by memory con-

sumption. Further, the OpenStack OS base, namely Linux, always harnesses unused

memory for caching and performance improvement. In contrast, if a VM is launched

on a host with heavy CPU utilization, the VM performs poorly. On a compute heavy

host, contention for CPU time slices results in the VMs on the host enduring a perfor-

mance penalty. The key problem is that the current weighting strategy is weak and leads

to inefficient usage of resources. Weighers should measure more than RAM usage. VM

performance is largely affected by the host’s computation ability and its usage. Those

factors can be CPU utilization rate, vCPU usage, and processor characteristics including

frequency and model. It is better to dispatch a VM to an idle host with powerful CPUs

and less memory. In particular, if a VM requires more cores and is compute intensive,

more attention should be paid to a host CPU utilization than its available memory to en-

sure better performance.
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CHAPTER 4: PROPOSED STATIC AND DYNAMIC LOAD BALANCING
METHODS

The empirical study based on the load distribution behavior presented in the previous

chapter established the problem of the impact of CPU utilization on the application exe-

cution time while the initial deployment of VMs. The purpose of this chapter is to pro-

pose the solution to solve the problem as highlighted in chapter 3. We proposed the Static

Multi Resource based Scheduler (SMRS) and Dynamic multi resource based schedulers

(DMRS) as a solution of the problem. In this chapter initial VM placement algorithm

(static algorithm) and VM migration based algorithm (dynamic algorithm) is proposed

while considering the CPU utilization of physical hosts. In static algorithm the load is

balanced when the VM is newly launched. In contrast, in dynamic algorithm, load is also

balanced after the deployment of VMs by adapting the migration solution. The proposed

solutions are modeled mathematically in order to balance the load of the physical servers

based on the CPU utilization and in dynamic method along with the balanced load distri-

bution the number of migrations are minimized.

The organization of this chapter is as follows. Section 4.1 present cloud architecture based

on the proposed algorithm Section 4.2 discuss the proposed SMRS method based on com-

pute load, load analyzer, and load filter. Section 4.3 presents the proposed dynamic multi

resource based scheduling algorithm. Section 4.4 presents the system flow diagram of

proposed DMRS method while adapting the minimum migration objective. Section 4.5

mathematically model the proposed algorithms based on resource constraints, operational

constraints, and migration constraint while considering the load balancing objective. It

also discusses assumptions that are considered while balancing the load within a data

center. Section 4.6 discusses the data design that is considered to evaluate the proposed

methods based on the CPU utilization, application execution time, and number of VM

migration parameters. In addition, section 4.7 highlights the distinguishing features of
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the proposed work. Finally, section 4.8 conclude the proposed methods.

4.1 Multi Resource Based Scheduler Cloud Architecture

Load balancing fairly distributes the workload on the physical machines for efficient re-

source utilization. In this section, an overview of cloud deployment architecture is pre-

sented that this study has considered for load balancing.

Fig. 4.1 presents an overview of the proposed VM deployment architecture in OpenStack

cloud. In the said figure, OpenStack cloud controller represents the physical host that

runs the API components, schedulers, and compute servers. Each compute server is de-

ployed with the OpenStack compute component. The functionality of a request handler is

apprehended in OpenStack scheduler and API components. The request handler accepts

the VM placement requests, as long as CPU demand remains below the cloud capacity

(i.e. Utilization of CPU does not exceed the defined threshold). Otherwise, it rejects

the VM placement request due to low resource availability. The placement architecture

is split in two engines including Global Decision Engine (GDE) and Local Monitoring

Engine (LME). The Load Filter module of open stack runs inside the controller which is

hosted within GDE. The GDE performs the initial placement of VM based on set of deci-

sion making parameters collected through the LME. LME shows the Compute Load and

Load Analyzer components to perform computations and load analysis, respectively. In

the non-optimized model of open stack, compute load component performs computations

based on CPU states. In contrast, Load Analyzer collects the aggregated results of CPU

utilization from each compute server and transfers it to the LME module.
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Figure 4.1: Proposed SMRS based VM Deployment Cloud Architecture

4.2 Static Load Balancing Method for initial VM placement

In this section, discussion on the design of proposed static load balancing algorithms is

provided. Table 4.1 represents a set of symbols that are used in the design of proposed

algorithms. The responsibilities and flow of execution for compute load, load analyzer,

and load filter is discussed below.
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Table 4.1: Algorithm’s Symbols and their Description

Symbol(s) Description
ul User Load

sl System Load

nl Nice state

ncl Idle state

SP System’s previous load

SR System’s resent load

AvgLoad Average Load

N Total number of physical hosts

n specific physical hist

s Host state

p Filter properties

TUi requested instance type from users

i i is instance type

car CPU allocation ratio

d Database

TvCPUs Total number of vCPUs

4.2.1 Compute Load

Compute Load (CL) calculates the average load and updates it in a local database. It ex-

ploits current and previous CPU utilization states to compute average load on CPU. Initial

phase in CL as highlighted at line 3-6 calculates the CPU utilization based on user state,

system state, nice state, and idle state. Moreover, subsequent stages as highlighted at line

7-11 in algorithim 1 refers to average load estimation process. Average load is computed

based on the ratio of CPU used to total CPU capacity as presented in Algorithm 2.
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Algorithm 2 Compute Load
1: tsecond← 30

2: while (1) do
3: ul← getUserProcessLoad()

4: sl← getSystemProcessLoad()

5: nl← getnice()

6: ncl← getNotUsedCPUpercentage()

7: SR1 ← {ul, sl, nl }

8: SR2 ← {ul, sl, nl, ncl}

9: SP1 ← {ul, sl, nl }

10: SP2 ← {ul, sl, nl, ncl}

11:

AvgLoad ←

∑ length(SR1)
IεSR1

Cost (i) −
∑ length(SP1)

jεSP1
Cost ( j)∑ length(SR2)

IεSR2
Cost (i) −

∑ length(SP2)
IεSP2

Cost ( j)

12: Wait(tsecond)

13: Load-DB-update(AvgLoad)

14: Goto step 2

15: end while

4.2.2 Load Analyzer

Load Analyzer (LA) computes system load based on the Algorithm 2 for all physical

servers and share it with GDE as shown in Fig. 4.1. Later on, LA (Algorithm 3), transfers

the CPU load by establishing a one-to-one communication link between GDE and Load

Analyzer for every compute node (line 2-3).

Algorithm 3 Load Analyzer
1: for each node n ∈ N do

2: Loadinfo< n, val > ← ComputeLoad(n)

3: send-LoadInfo-GDE(ComputeLoad(n))

4: end for

102

Univ
ers

ity
 of

 M
ala

ya



4.2.3 Load Filter

Load Filter (LF) decides whether a particular compute server is feasible to host a VM or

not based on its resource capacity. Load Filter follows four steps to decide feasibility of

a physical server for VM placement. It starts with a verification process to see that the

user requested instance fulfills the deployment criteria or not (see line 2-5). In the second

step, it investigates available resources based on vCPUs’s current utilization level (see

line 6-11). During step 3, LF collects the load information across each physical server

from GDE as gathered by Algorithm 2 (line 12). Moreover, it sets flag as TRUE if it finds

a compute node with a minimum load or vCPUs used are maximum but the target server

has minimum CPU utilization as discussed at line 14-18 in Algorithm 4.

Algorithm 4 Load Filter
Require: self, s, p, TUi, i, car, d, N, threshold

1: procedure HostPasses(self, s, p)

2: Typei ← p.get(i) . i is instance type

3: if Typei � TUi then
4: return True

5: end if
6: vCPU← getVCPU()

7: car← sel f .getCPU AllocationRatio(s,p)

8: TvCPU← s.TvCPU ∗ car

9: if Tvcpu > 0 then
10: vCPU← TvCPU

11: end if
12: l← ∀n∈N LoadInfo-GDE-DB(n)

13: MinLoad = d(s.vcpus − used)e ∗ l

14: if l > threshold then
15: return Tvcpu - s.vcpus − used >� TUi.reqvcpu

16: else
17: return Tvcpu - (s.vcpus−used ∗MinLoad) >� TUi.reqvcpu)

18: end if
19: end procedure
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4.3 Dynamic Load Balancing Method (DMRS)

Dynamic load balancing algorithm balanced the load based on the migration technique in

cloud. Dynamic method initially place the VM while satisfying the minimum workload

criteria and migrate the VMs after their deployment. This method controls the number of

migrations to enhance the cloud performance. Proposed method presented as a Dynamic

Multi Resource Based Scheduler (DMRS) is consists on number of algorithms including,

(a) time slot, (b) allocation of VM to PM algorithm, (c) balanced load, and (d) load

balanced algorithms. In the following the working of algorithms is explained in detail.

4.3.1 Time Slot

Time Slot algorithm as presented in Algorithm 5 placed the newly launched VMs on the

physical servers based on the allocation criteria described in Algorithm 6. It also balanced

the load after the placement of VMs using the Algorithm 7.

Algorithm 5 Time Slot
1: for each timeslot ti do

2: for each newVM vi do

3: AllocatePhy(vi)

4: end for

5: BalancedLoad( );

6: end for

4.3.2 Allocation of VM to PM

Algorithm 6 allocated the physical VMs to the PMs. It calculates the load of all physical

machines as mentioned at line 2. It assign the VM to the physical host which has the

minimum load in term of CPU utilization (line 4-5).
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Algorithm 6 AllocatePhy(v j)

1: for each Phy Pk do

2: Loadk ← getLoad(Pk)

3: end for

4: Pmin ← min(PLoadk
) . for all k

5: P(v j)← Pmin

4.3.3 Balanced Load

Balanced load algorithm 7 balanced the loads when the VMs are initially deployed using

the Algorithm 6. This algorithm controls the status of the unbalanced state of servers and

total numbers of migration. As presented at line 4, the load of each host is computed.

Moreover, the under loaded and over loaded PMs are categorized by this algorithm (from

line 6-9). Afterward, the load of each VM on the PMs is computed by this algorithm.

Later, the one VM with the minimum load is migrated to the PMs which are showing

the minimum load (see line 11-12). Based on this algorithm one number of migrations

are taken place among the servers to balance the CPU utilization. The proposed algo-

rithm minimized the numbers of migrations as initially the VMs are deployed using the

balanced load criteria. This algorithms migrates the VMs based on minimum load factor

because if the highly load VMs are migrated the host became overloaded; therefore; the

migration criteria is set less then five time and greater than one in order to fairly distribute

the workload.
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Algorithm 7 BalancedLoad( );
1: migrations ← 0

2: while (!LoadBalanced( ) && migrations<5) do
3: for each Phy Pk do
4: Loadk ← getLoad(Pk)

5: end for
6: Pmax ← max(Loadk) . for all k

7: Pmin ← min(Loadk) . for all k

8: for each v j on Pmax do
9: Load j ← Loadvi

10: end for
11: vmin ← min(vLoad j ) . for all j

12: Pmin ← vmin

13: migrations++;

14: end while

4.3.4 Load Balanced

Algorithm 8 check out the balanced load based on the difference of load calculated be-

tween the physical hosts. This algorithms shows that if the difference among the servers is

greater than one physical core that load is not balanced and the algorithm will return false.

In contrast, if the difference is less than to core the load is balanced and the algorithm will

written true.
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Algorithm 8 LoadBalanced( );
1: for each Phy Pk do
2: Loadk ← getLoad(Pk)

3: end for
4: for i in Pk do
5: for j in i← Pk do
6: DiffLoadi j ← abs(LoadPi - LoadP j )

7: end for
8: end for
9: for each DiffLoadi j do

10: if DiffLoadi j > (minPhycores - 1)/(minPhycores) then
11: return False

12: end if
13: end for
14: return True

4.4 System Flow Diagram with Dynamic Load Balancing

A VM provisioning in cloud is an vital use-case as presented for existing placement so-

lution in section 2.4.2. This section explains the VM placement and interaction flow of

components of the proposed model. The flowchart describes that the load of every com-

pute node is analyzed using the load analyzer algorithm and load aggregator collect the

load of each PM and send the load information to the admission controller. As it is per-

ceived when the VMs are deployed on PMs the load of each PM is varied based on the

VMs and the programs associated to that VMs; therefore, admission controller checks the

threshold based criteria in order to update the load value for each PM took the decision

based on the threshold. The decision maker checks that if the value of threshold is less

than the load update time the load value is not updated and at that time the request time

is expired and again send to the admission controller otherwise the load value is aggre-

gated again and transfer to the admission controller in a recursive order. In addition, at

the same time admission controller receives the requests from the request handle for the
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provisioning of the VMs in cloud.

The compute node related information regarding the load parameter is stored in admis-

sion controller then based on this information the request is forwarded for further decision

related to the PM availability. The decision maker checks if the PM is not available the

request is put in the wait state and checks for the available PM through the PM avail-

ability decision maker in iterative mode. Otherwise, if the PMs are available the further

decision is taken place on it. At this stage the decision maker with check the capacity of

each PM and the requested resources in terms of CPU, RAM, etc. If the decision maker

fulfills the criteria of requested VM it pass the request and chose the feasible PM for the

placement of that VM. Moreover, if the request is not accomplished the migration will be

taken place for that request. Based on migration criteria the request is again forwarded to

PM availability decision maker and that process is followed is repetitive order until the

feasible PM is not associated with requested VM.
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Figure 4.2: System Flow Diagram for VM Placement and Migration
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4.5 Optimization Model

This study has proposed a linear programming based optimization model that balances

the workload on each physical server. The proposed optimization model computes bound

on the load balancing of physical machine with the given computational load on VM as

input for the optimal VM placement. For the better understating of the model, it proposes

a set of symbols representing constants and variables as listed in Table 1.

Table 4.2: Notations and Description

Notation Description
N the request’s size as a number of requested

VMs
M total number of physical machines (PM) in

data center
Vcpui shows the requested core (s) of V Mi

Xi j bivalent variable which is representing the
V M i assignment to the PM j

Vcpu j indicates the maximum number of virtual
cores of server j

Phy denotes the physical servers
Loadmax denotes the maximum value of load
vmin denotes the VM with the minimum load
Pmin describes the physical server with minimum

load value
Pmax describes the physical server with maximum

load value
Pv j represents the VM on the physical machine j

4.5.1 Assumptions

For the VM placement, following assumptions and limitations are considered by the pro-

posed optimization model for load balancing on physical server within a Data center.

1. Virtual machine load does not vary over time. Therefore, it is assumed that through-

out the execution time window it will remain same.

2. When VM is running, the workload running inside it will surge CPU utilization to
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its 100% before its execution time.

4.5.2 Linear Programming Formulation

This section discuses the decision variables, constraints, and objective function of the

model.

4.5.2.1 Decision variables

The optimization model computes the deployment of V Mi on the physical server j in time

slot t. This is explained by decision variableXi jt as shown below. The value of Xi jt=1

when V Mi is deployed; otherwise, Xi jt= 0.

Xi jt =




1, i f the V Mi is placed on server j in time interval t

0, otherwise.
where∀i = 1..,M ,∀ j = 1..,N , ∀t = 1..,T .

Cit =




1, i f the V Mi is not migrated on server j in time interval t

0, otherwise.
where∀i = 1..,M , ∀t = 1..,T .

Cost Cit is an integer variable. Based on each VM in every single time slot the value of

C is represented as 0 or 1. It represents that the VM (i) is running on specific PM (j) in

time slot (t), if it is running on same PM in next time slot (t+1) the cost value will be 0;

otherwise; it will be denoted with 1 when the VM is migrated to other PM.

4.5.2.2 Load balancing constraint

The proposed static and dynamic load balancing algorithm ensures that the same work-

load is hosted on all physical machines. In the following model, the fair share load on the

PM is presented.
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M∑
i=1

Xi jt −

M∑
i=1

Xikt ≤ 1 ,∀ j = 1..,N,∀k = 1..,N,where j , k

The load balancing constraint presents that the load is equally balanced when the differ-

ence between the serves is reported ≤ to 1 based on the numbers of VMs allocated to the

servers.

4.5.3 Optimized Static Load Balancing Method

This section presents the resource constraints, operational constraints, and objective func-

tion of optimization static load balancing method. This model considers load factor while

scheduling initial placement of VMs within a data center.

4.5.3.1 Resource constraints

The number of linear constraints based on the optimization concept reflects the capacity

limit of PMs, which subjects the obvious facts that a PM can only host the number of

VMs based on its remaining resources. Each server carries limited number of cores (vC-

PUs). Also, Vcpu j that cannot be exceeded when hosting or serving the VMs based on

the remaining resources as presented in the following equation.

M∑
i=1

Vcpui ∗ Xi jt ≤ Vcpu j ,∀ j = 1..,N,∀t = 1..,T

Similarly, during VM deployment, the capacity of RAM available should be higher than

the one required by the hosting VM for each physical host. This behavior is modeled in

below equation.

M∑
i=1

Ri Xi jt ≤ R j ,∀ j = 1..,N,∀t = 1..,T
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Each VM is scheduled for execution when its time slot comes. The following constraint

represents that V Mi should not be scheduled before its start time.

TSi−1∑
t=1

Xi jt ≤ 0 ,∀i = 1..,M,∀ j = 1..,N

4.5.3.2 Operational constraints

The cloud providers have to fulfill the request within the prescribed quota. A single VM

can only be deployed to one PM at time "t" as modeled below.

N∑
j=1

Xi jt ≤ 1where,∀t = 1..,T, ∀i = 1..,M

The following constraint present that execution time of every VM at all intervals should

be less then or equal to its total execution time.

T∑
t=1

N∑
j=1

Xi jt = ET ,∀i = 1..,M

4.5.3.3 Objective function

The objective function along with the complete set of constraints are listed in Equa-

tions 4.1, 4.2, 4.3, 4.4, 4.5, and 4.9.

Max
M∑

i=1

N∑
j=1

T∑
t=1

Xi jt −

M∑
i=1

N∑
j=1

T∑
t=T/2

Xi jt

Subject to:
M∑

i=1

Vcpui ∗ Xi jt ≤ Vcpu j ,∀ j = 1..,N,∀t = 1..,T (4.1)

M∑
i=1

Ri Xi jt ≤ R j ,∀ j = 1..,N,∀t = 1..,T (4.2)
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TSi−1∑
t=1

Xi jt ≤ 0 ,∀i = 1..,M,∀ j = 1..,N (4.3)

N∑
j=1

Xi jt ≤ 1where,∀t = 1..,T ,∀i = 1..,M (4.4)

T∑
t=1

N∑
j=1

Xi jt = ET ,∀i = 1..,M (4.5)

M∑
i=1

Xi jt −

M∑
i=1

Xikt ≤ 1 ,∀ j = 1..,N,∀k = 1..,N,where j , k (4.6)

4.5.4 Optimized Dynamic Load Balancing Method

This section presents the resource constraints, operational constraints, and objective func-

tion of optimization dynamic load balancing method.

4.5.4.1 Resource constraints

A VM must be scheduled during its scheduled slots between start and end slots. More-

over, in single time slot the VM should be scheduled on exactly 1 PM. It shows that when

the value is one for one specific server for others its value will be 0 and VM will not

scheduled to that servers. The following constrain ensures the continuous allocation of

V Mi on the PMj in each slot.

N∑
j=1

Xi jt ≤ 1,∀t = 1..,TS,∀i = 1..,M

4.5.4.2 Operational constraints

The constraint represents that the VM is not scheduled to any PM until its start slot is

not allocated to any PM before that interval the value of this VM will be 0. Moreover, in

single time slot only 1 VM is assigned to 1 PM.
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N∑
j=1

Xi jt ≤ 0 ,∀i = 1..,M,∀t = 1..,T and1 ≤ t ≤ Ts

The VM no more scheduled when its value of end slot comes. The two constraints are

presenting the VM is not scheduled before its start slot and after its end slots. That inter-

val is showing VM has completed its task between start and end slots.

T∑
t=1,t>TE

N∑
j=1

Xi jt ≤ 0 ,∀i = 1..,M

4.5.4.3 Migration based constraint

Migration constraint is represented as the V Mi in t time interval should be scheduled on

PMi. For instance, if the VM is deployed on PM 1 and in next time slot the same VM is

still placed on it the cost values is 0 to 0 which means VM is not migrated. The migration

constraint shows the difference of two transmission. Therefore, if the value of C changes

from 0 to 1 or 1 to 0 it means the migration is taken place and VM is transferred from one

server to another in same time interval t. In contrast, if the values of C is 1 to 1 VM is

not migrated to other server. The 2 following constraints shows the absolute value of mi-

gration constrains. In order to cancel out the absolute values the constraints are derived as,

Xi jt − Xi jt+1 ≤ − Cit ,∀t = 1..,TSchandt , TE ,∀M ,∀N

Xi jt − Xi jt+1 ≥ − Cit ,∀t = 1..,TSchandt , TE ,∀M ,∀N
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4.5.4.4 Objective function

The objective function along with the complete set of constraints are listed in Equa-

tions 4.7, 4.8, 4.9,4.10, 4.11, 4.12.

Max
M∑

i=1

N∑
j=1

T∑
t=1

Xi jt −

N∑
j=1

T∑
t=1

Cit

Subject to:
N∑

j=1

Xi jt ≤ 0 ,∀i = 1..,M,∀t = 1..,T and1 ≤ t ≤ Ts (4.7)

T∑
t=1,t>TE

N∑
j=1

Xi jt ≤ 0 ,∀i = 1..,M (4.8)

M∑
i=1

Xi jt −

M∑
i=1

Xikt ≤ 1 ,∀ j = 1..,N,∀k = 1..,N,where j , k (4.9)

N∑
j=1

Xi jt ≤ 1,∀t = 1..,TS,∀i = 1..,M (4.10)

Xi jt − Xi jt+1 ≤ − Cit ,∀t = 1..,TSchandt , TE ,∀M ,∀N (4.11)

Xi jt − Xi jt+1 ≥ − Cit ,∀t = 1..,TSchandt , TE ,∀M ,∀N (4.12)

4.6 Data Design

This section explains the metrics in order to evaluate the proposed method.

4.6.1 CPU utilization

CPU utilization states the amount of the CPU capacity that a program required during

its execution. CPU is a shared resource and its utilization varies based on the amount of

resources handled by it. The utilization of the CPU is modeled based on the following

Equ. 4.13
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CPU utilization = user + nice + system + idle (4.13)

CPU utilization is represented as the sum of user state, system state, nice state, and idle

state. User time states the amount of time taken by CPU in order to execute the program

in user space. In addition, program executed in user state with high (nice) priority is pre-

sented in nice state. Moreover, system time is explained as the time in which the CPU is

busy in order to execute the program in kernel space. Idle time is also measured based

on the unused CPU capacity and it represents the CPU state when the CPU not executing

any processes.

4.6.2 Execution Time

Application execution time states the system time that application takes to finish its exe-

cution. Total execution time is derived from the product of three parameters as discussed

in terms of I, CPI, and C whereas it is measured in seconds.

ExecutionTime =

n∑
i=1

CPIi × Ci (4.14)

Where the parameter I is explained as a program is consists of a multiple instructions

that are executed, which are measured as number of instructions/ program. Moreover,

each instruction acquire a number of cycles in order to accomplish the execution which

is presented as, verage cycle / I and denoted with cycle per instruction (CPI) whereas CPI

is also presented as Instructions per cycle IPC= 1/ CPI. In contrast, CPU takes the stable

clock cycle time and explained as seconds/ cycle which is represented in the form of C =

1/f.
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4.6.3 Numbers of migration

Number of migrations shows the total migrations within the cloud in order to balance the

load when the VMs are deployed and running. In the static algorithm VMs are initially

placed to balance the CPU utilization among all physical servers. When the VMs start

their execution the physical servers become overloaded again in order to balance the load

after the deployment of VMs the number of migrations are considered. Overlooking load

balancing establishment abruptly decreases system throughput due to overloaded servers

and ultimately leads to SLA violation. It has become an integral part of all distributed in-

ternet based systems as distributed computing comes with the challenges of high resource

demands that overload servers.

4.7 Distinguishing Features of Proposed Method

This section explains the distinguishing features in comparison of traditional VM place-

ment algorithm.

4.7.1 Efficient Resource Utilization

Resources within a cloud data centers are usually over-provisioned to avoid SLA viola-

tions. Inside the cloud, the controller is responsible for managing the resources such as

physical servers, virtual machines, and network connectivity equipment. The traditional

static load balancing methods inefficiently utilize the resources of a data center owing

to improper VM placements. The proposed algorithms efficiently utilize the underlying

resources of a data center for better resource management. Therefore, the proposed study

helps in resource scheduling policies.
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4.7.2 Ground for Energy Efficiency

Cloud data centers consume a significant amount of energy due to the provisioning of

equipment to cool the data centers. Servers are switched on to provision the services on

24/7 basis. However, due to non-optimized VM placement, the majority of the server re-

mained on while doing the limited activity. Existing non-optimal load balancing methods

do not consider all the resources of a server such as RAM, CPU, network bandwidth, and

degree of interaction among hosted VMs during placement. As a result, the energy con-

sumption of cloud data center increases. The proposed research as it considers multiple

resources at the time of VM placement creates a ground to switch off servers which are

under loaded by efficiently placing the load on remaining servers.

4.7.3 Hot Spot Elimination

Over resource utilization usually, leads to hot spot within cloud data centers. Existing

static load balancing methods lead to resource provisioning as it adds VMs on highly

loaded physical servers (chapter 3). As a result, the performance of the whole network

gets down. The proposed research isolates overloaded servers. It does not place a VM

on a server that is already loaded. Rather, it wisely places it on most appropriate server

devices. As a result, the host spots in the data centers are minimized. The cloud manage-

ment policies migrate the VMs from the hot spot server to another server that increases

the cost of the data center as VM migration is resource expensive process.

4.7.4 SLA Violation Avoidance

The performance of a VM is affected when it shares the resources with the tenant appli-

cations. Hosting so many applications on a single device lead to SLA violation. The SLA

is a measure of reliability, availability, user service time, latency, and an end to end delay.
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Existing conventional load balancing schemes are inefficient in terms of handling the op-

timal resource placement for initial VM placement. The proposed research is effective as

it optimally places VMs for minimizing the SLA violation.

4.8 Conclusion

In this chapter the static and dynamic load balancing algorithms are proposed in order to

efficiently utilize the cloud resources. In order to enable this experiment, we presented

the lightweight extension of OpenStack compute service as a multi resource scheduler,

which is based on three modules: (a) Request Handler, (b) Global Decision Engine, and

(c) Local Monitoring Engine. Static load balancing algorithm minimize the application

execution time based on the fair distribution of the resources. Moreover, for dynamic

load balancing a dynamic multi resource based scheduler method is proposed that incor-

porates the migration technique in order to balance the load after the placement of VMs.

Dynamic method minimize the number of migrations and enhance the cloud performance

while minimizing the running time of an application. This extension allowed us to com-

pare our experimentation results with the standard OpenStack Nova scheduler according

to load distribution principles. In addition, the mathematical models are proposed for

the static and dynamic load balancing methods. The subsequent chapter presents the

implementation details of the proposed methods, details of data design, evaluation, and

validation of the mathematical model.
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CHAPTER 5: EVALUATION

The aim of this chapter is to discuss the data collection process adapted to evaluate the

performance of proposed multi resource schedulers for static and dynamic cloud envi-

ronment. The objective of the chapter is to discuss the experimental setup, tools, bench-

mark applications, data collection technique, which are used to test the performance of

proposed algorithms. In addition, this chapter also explain the mathematical model pa-

rameters and statistical method in order to examine the correctness of collected data. The

performance of proposed algorithms is explained based on different components includ-

ing (a) application execution time, (b) CPU utilization as a load, and (c) numbers of VM

migration.

This chapter is comprised based on seven sections. Section 5.2 discusses the eval-

uation setup, experimental devices, benchmark method, performance metrics, and data

gathering and data processing. Section 5.3 present the data collected to evaluate the per-

formance of SMRS algorithm based on initial VM deployment by comparing it with the

benchmark method. Section 5.4 report the data collected for to validate the accuracy of

developed mathematical model by comparing its obtained results with the results of ex-

periments. Section 5.5 presents the collected data of proposed DMRS algorithm based on

performance parameters in terms of CPU utilization, number of migration, and applica-

tion execution time. Section 5.6 presents the data collected to analyze the impact of VM

deployment with the execution time for the mathematical model, and proposed solution.

Finally the section 5.7 highlight the conclusive remarks.

5.1 Introduction

Static multi resource scheduler is proposed to initially place the VM on the physical server

based on CPU utilization factor with the minimum application execution time. The signif-
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icance of the SMRS analyzed by comparing it with the benchmark method as explained

in chapter 3. The performance of SMRS is evaluated by varying the VM deployment

parameters based on (a) number of vCPUs, (b) RAM, and (c) disk space criteria using the

different flavors for different data traces. In order to statistically analyze the performance

of SMRS the mean, standard deviation, and confidence intervals are also calculated which

shows the significance of the proposed static solution.

Dynamic Multi resource scheduler is proposed to initially place the VMs using the SMRS

deployment criteria and after the placement balance the load based on VM migration. The

objective of this algorithm is to minimize the number of VM migration while considering

the CPU load. The significance of the DMRS is evaluated with the mathematical model

and statistical analysis. Moreover, the performance of DMRS is compared with the legacy

benchmark method. The performance of the proposed algorithm is evaluated with respect

to CPU utilization, application execution time, and the numbers of migration. The sample

mean of the sample space is determined based on 30 values that shows the significance of

results by finding the error estimate for 95% confidence interval.

5.2 Evaluation of Proposed Multi-resource based Scheduler

This section briefly discusses the evaluation methodology used to perform the evaluation

of proposed algorithms.

5.2.1 Evaluation Setup

It states the tools, discusses test program designs, and highlights experimentation equip-

ments for performing the experiments. In this study, the experimentation is conducted

on real hardware equipments to analyze the performance of VM deployment in cloud in

terms of average CPU utilization and execution time.

The proposed study has considered a small in house data center to conduct the ex-
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perimentation for problem analysis in traditional load balancing methods. It has selected

the OpenStack cloud for experiments. During the experiments, a control environment is

modeled to deploy VM using OpenStack scheduler. Moreover, it has used the traditional

computers rather than expensive and powerful machines (small industrial cloud replica).

5.2.2 Experimental Devices

We implemented the static and dynamic multi resource algorithms on small-scale cloud

data center using Linux operation system. In order to conduct the experiment, a private

cloud setup is installed using the OpenStack Havana which is represented as OpenStack

cloud. The cloud setup is comprised of 4 compute node. Each compute node is deployed

with the homogeneous characteristics in terms of their resource capacity based on their

vCPUs, CPUs, RAM, and system cache. In this setup each physical machine exactly have

16GB RAM capacity, CPU with 2.40GHZ, QEMU hypervisor as presented in chapter 3.

Among the 4 servers one server is deployed with the specification of controller node as

well as the compute node and it can manage the all compute nodes in the system. The

compute nodes communicate with each other using the flat-DHCP networking module.

Table 5.1 presents the system specifications of deployed OpenStack cloud based on their

resource capacities.

Table 5.1: System specifications

Specification Capacity
Processor 2.40GHz
RAM 16GB
Compute Nodes 3
Controller Nodes 1
Operating System Ubuntu 12.04 LTS
Over-provisioning frequency 2
Storage capacity 242GB
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In order to check the performance of OpenStack cloud number of VMs are deployed.

At the time of VM deployment the CPU utilization is captured while running the client

server application that provides the continuous CPU utilization to the controller node

using the load analyzer algorithm. During the evaluation, the behavior of proposed algo-

rithms is analyzed based on the load and application execution time parameter. In order

to consider load while running the VMs a CPU intensive application is executed inside

each VM. For the SMRS known as static load balancing algorithm the behavior of CPU

usage is observed with the static and random load distribution factors. For the static load

analysis each VM is fully utilizing its number of vCPUs by executing the CPU bound test

application. CPU bound test program is performing the simple arithmetic operation and

it is designed including the nested loops of different sizes. CPU bound test program is

executed to generate the workload inside the VM. Furthermore, the random distribution

of loads inside the VMs the test program is executed with the VM based on random load

generator function. The random load generator function produce the values between 0

and 2. The value 0 presents that no application is running for specific VM. In contrast the

values 1 shows that only one CPU intensive program is running inside the VM whereas

the two applications are running for value 2 as generated by the function.

In dynamic load balancing as represented with DMRS, VMs are executed at time

interval t at the time of their creation. The VMs are migrated when the CPU load is varied

at certain point and it fulfill the CPU overprovisioning criteria. In DMRS and SMRS

workload is generated based on the number of VMs by executing the CPU intensive

application. The CPU utilization value is captured using the top and gripped with the awk

command. Moreover, the application execution time is calculated using the script which

is designed using the shell script command.
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5.2.3 Test Program

To evaluate the performance of proposed algorithm the synthetic test program is designed

that keep the VM busy and 100% utilize the capacity of CPU resources assign to VM.

In order to generate the 100% load each VM executed the number of programs equal

to its number of cores. The program is designed considering the factors that proposed

algorithms targets the CPU load; therefore, it should measure the performance of CPU

utilization and does not entail the human interaction while its execution. CPU intensive

program is composed of the set of basic arithmetic operation within the nested loops. The

program within the loops perform the operations on an array. The CPU intensive program

is designed to fully utilize the CPU resources when executed inside the VM.

5.2.4 Performance metrics

To evaluate the performance of proposed load balancing algorithms cloud environment

following performance measuring metrics are studied.

1. Application execution time

2. CPU utilization

3. Numbers of VM migration

Application execution time is computed based on how long applications are running

inside the VMs and the time taken to complete the computations inside the cloud. The

application execution time is capture for individual VMs running on each physical server.

Moreover, it is also observed the overall system time when the numbers of VMs are

running in order to show the effect of CPU load on the application execution time.

CPU utilization is presented as the capacity of CPU which is required to perform

the computations. CPU utilization is measured based on the processes running inside the

user state, system state, nice state, and idle state. The CPU utilization varies based on
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the number of resources handle by it. In this study CPU utilization is measured using the

compute load filter. In the static environment we assumed that all VMs are running with

the 100% utilization of load. Based on the number of cores allocated to each VM the test

program is executed inside the VM and captured to analyze the CPU utilization.

Numbers of migration states the total migration required to balance the load when

the physical servers are overloaded. Load balancing ensures even distribution of resources

among a set of users in a uniform way such that underlying servers do not become over-

loaded and idle at any time within cloud operation time line. in our proposed DMRS al-

gorithm load balancer increases the capacity and reliability of applications by decreasing

the burden on a server. Load balancer starts with identification of hot spot, an overloaded

server, and start migrating its load (VMs) on a server which has sufficient resources such

that the resources are evenly distributed. However, the criterion of migration is set based

on minimum CPU utilization.

5.2.5 Data gathering and data processing

The performance measuring parameters are investigated in diverse environments by vary-

ing the system variables such as number of vCPUs associated to each VM. The effects of

system variables are analyzed on the performance measuring metrics. First of all we com-

pared the performance of our static SMRS algorithm with the standard OpenStack based

filter scheduler. In second phase, we compared the results of mathematical model with

the results of our proposed DMRS algorithm to validate the correctness of mathematical

model. Thereafter, we used the mathematical model to collect the results considering

the measurement metrics. Finally, the performance of the propose algorithms is critically

evaluated by comparing the proposed algorithms results with the standard algorithms and

with the mathematical model.

The primary data is collected by testing the SMRS and DMRS algorithms in cloud
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environment in different scenarios based on statics, random, and dynamic load. The im-

pact of numbers of VMs deployment on the CPU utilization is analyzed based on thirty

values. The collected data for the application execution time and CPU utilization based

on thirty data traces. The impact of CPU utilization on application execution time is an-

alyzed by varying the CPU load. Moreover, the impact of application execution time for

individual VM is evaluated based on the number of core utilization inside the VMs. The

impact of numbers of VM migration are also analyzed when the load on physical server

is not balanced. Furthermore, the data is collected for the comparison of the proposed

solutions (SMRD and DMRS) with the state-of-the-art standard OpenStack scheduler for

application execution time, CPU utilization, and numbers of VM migration.

5.3 Data Collection for Initial VM Deployment (SMRS)

In order to extensively analyze the behavior of number of VM deployment on the CPU

utilization the VMs are launched considering the 2 vCPU per VM while considering the

static environment. In this section CPU utilization behavior and application execution

time is studied based on the static load factor and random load distribution factor.

5.3.1 Impact of Static and Random Load based VM Distribution on CPU utiliza-
tion

In order to analyze the effect of VMs distribution on the CPU utilization two sceneries are

analyzed while considering the static and random load on VMs. The deployment decision

is taken by the SRMS based scheduler based on the distribution behavior of VMs and the

load that is computed while the execution of VMs. The collected data presents the number

of VMs placement on the physical host based on the static and random load. Each VM is

placed using the 2 vCPU criteria.
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5.3.1.1 Static Load based VM Distribution

Table 5.2 represents the distribution behavior of VMs on the physical hosts along with

the CPU utilization of that server. The data values are evaluated based on the average of

thirty values. The table presents the VMs deployment in the cloud on Edge1, 2,3, and 4

compute nodes. Moreover, it shows that in order to balance the load number of VMs are

deployed based on CPU utilization factor. Each VM is placed using the 2vCPUs criteria.

The deployment sequence shows that considering the load factors first, second, third, and

fourth VMs are deployed on Edge1, 2,4,and 3 with the CPU utilization of 5.3%, 25.4%,

25.6%, and 25.3%. The sixth and seventh VMs are deployed on same physical server

in order to balance the load and showing the CPU usage up-to 12.8%, and 25.4%. At

that point each physical server is showing the CPU usage up-to 25%. The CPU load is

increased until the actual physical cores criteria is fulfilled. For VMs seventh, eighth,

ninth, and tenth the load is reached at 50% of the CPU utilization.

The physical servers exactly have the 8 physical cores when two VMs are deployed

on each physical server it shows that 4 physical cores are used by the VMs. Each VM

has executed the CPU intensive program in order to fully utilize the CPU resources of

that VM. Moreover, the fifteen, sixteen, seventeen, and eighteenth VMs are showing the

CPU capacity upto 96.94%, 98.99%, 94.64%, and 97.59%, respectively. Theses values

shows that physical servers have fully utilized its physical cores. As the overprovisioning

criteria is set for each physical server the more VMs are divided on the Physical hosts.

5.3.1.2 Random Load based VM Distribution

Table 5.3 presents the collected data for the CPU utilization when each VMs is deployed

using the random load values. The table is comprised with four columns. The first column

shows the number of VMs on single physical host. The second column presets the CPU
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Table 5.2: CPU utilization Analysis with the static load based distribution of VMs

Deployment Sequence Edge1
CPU%

Edge2
CPU%

Edge3
CPU%

Edge4
CPU%

Virtual Machine 1 5.3 0 0
Virtual Machine 2 0 25.4 0 0
Virtual Machine 3 0 0 0 25.6
Virtual Machine 4 0 0 25.3 0
Virtual Machine 5 12.5 0 0 0
Virtual Machine 6 25.4 0 0 0
Virtual Machine 7 0 0 0 50.8
Virtual Machine 8 0 51.2 0 0
Virtual Machine 9 0 0 49.6 0
Virtual Machine 10 50.4 0 0 0
Virtual Machine 11 0 0 0 75.89
Virtual Machine 12 0 75.1 0 0
Virtual Machine 13 0 0 74.63 0
Virtual Machine 14 72.24 0 0 0
Virtual Machine 15 0 0 0 96.94
Virtual Machine 16 0 98.99 0 0
Virtual Machine 17 0 0 94.64 0
Virtual Machine 18 97.59 0 0 0
Virtual Machine 19 0 0 0 98.18
Virtual Machine 20 0 97.59 0 0
Virtual Machine 21 0 0 99.68 0
Virtual Machine 22 96.12 0 0 0
Virtual Machine 23 0 0 0 99.68
Virtual Machine 24 0 99.96 0 0
Virtual Machine 24 0 0 0 0
Virtual Machine 25 0 0 99.51 0
Virtual Machine 26 0 0 0 98.37
Virtual Machine 27 0 98.96 0 0
Virtual Machine 28 0 0 99.64 0
Virtual Machine 29 99.64 0 0 0
Virtual Machine 30 0 0 0 98.96
Virtual Machine 31 0 99.50 0 0
Virtual Machine 32 0 0 99.52 0

utilization effected by the number of VMs. CPU utilization is presents the average value.

Moreover, third and the fourth columns shows the statistical analysis based on the confi-

dence interval and the standard deviation in order to proof that the results are significant

or not.
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Table 5.3: CPU utilization Analysis with the random load based distribution of VMs

Number Of VMs CPU utilization(%) Standard Deviation Confidence Interval
Virtual Machine 1 15.06 0.0230 ±0.0127
Virtual Machine 2 25.4 0.2078 ±0.1151
Virtual Machine 3 0.3 0.0404 ±0.0223
Virtual Machine 4 25.4 0.1385 ±0.0767
Virtual Machine 5 15.2 0.3002 ±0.1662
Virtual Machine 6 39.4 0.0230 ±0.0127
Virtual Machine 7 25.6 0.2540 ±0.1406
Virtual Machine 8 55.6 0.3117 ±0.1726
Virtual Machine 9 45.2 0.2424 ±0.1342
Virtual Machine 10 50.05 0.0577 ±0.0319
Virtual Machine 11 38.9 0.0519 ±0.0287
Virtual Machine 12 55.8 0.1270 ±0.0703
Virtual Machine 13 96.1 0.2944 ±0.1630
Virtual Machine 14 75.07 0.3637 ±0.2014
Virtual Machine 15 50.5 0.2598 ±0.1438
Virtual Machine 16 55.7 0.3637 ±0.2014
Virtual Machine 17 98.8 0.4156 ±0.2302
Virtual Machine 18 95.5 0.2598 ±0.1438
Virtual Machine 19 65.5 0.2598 ±0.1438
Virtual Machine 20 75.99 0.0057 ±0.0031
Virtual Machine 21 98.9 0.0577 ±0.0319
Virtual Machine 22 98.8 0.4156 ±0.2302
Virtual Machine 23 98.4 0.2078 ±0.1151
Virtual Machine 24 98.7 0.3637 ±0.2014
Virtual Machine 25 98.8 0.1847 ±0.1023
Virtual Machine 26 98.8 0.1270 ±0.0703
Virtual Machine 27 98.7 0.0173 ±0.0095
Virtual Machine 28 98.7 0.3059 ±0.1694
Virtual Machine 29 98.8 0.4156 ±0.2302
Virtual Machine 30 98.6 0.2540 ±0.1406
Virtual Machine 31 98.5 0.2598 ±0.1438
Virtual Machine 32 97.2 0.1039 ±0.0575

The table 5.3 shows that when the first VM is deployed it used 15.06% of the CPU

capacity. The load is generated in each VMs based on the random number generated

by the load generator function. The load generator function generated the values such as

1,2,0,2,1,0,0,1,2,2,0,2,2,1,2,0, respectively for the first 16 VMs deployed on four compute

nodes. Using that values the CPU bound test program generated the load inside the VMs

which shows the CPU utilization such as, 15.06%, 25.4%, 0.3%, 25.4%, 15.2%, 39.4%,

25.6%, 55.6%, 45.2%, 50.05%, 38.9%, 55.8%, 96.1%, 75.07%, 50.5%, and 55.7%, re-

spectively. The first VM is deployed on Edge1 and based on the random load generator

function it utilized the 15.06% of the CPU resources. The second VM is deployed on

Edge4 and fully utilized the vCPUs with the workload value 25.4%. Based on the data

collection the VMs are deployed using the random load based criteria and deployed on

physical servers while satisfying the minimum load criteria. The deployment sequence of
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sixteen VM is reported as the third, fourth, fifth, and sixth VM is deployed on Edge2, 3,

1, and 4. Moreover, the next five VMs are deployed on servers Edge 2, 2, 3, 2, and 1. The

deployment sequence is showing that four VMs are deployed on the Edge2 among the 11

VMs. This is because the load of that server is minimum as compare to other physical

server and the random load generator function produced the 0 values for 2 VMs, which

shows that these VMs are not execution any program.

Furthermore, the values generated for the next VMs from sixteen VMs from sev-

enteen to thirty two are reported as 1, 2, 2, 2, 2, 1, 0, 2, 2, 2, 2, 2, 1, 1, 0, 2, and 1,

respectively. Based on load generator function generated values, the VMs are deployed

on a physical servers such as Edge 2, 3, 4, 4, 1, 2, 2, 3, 1, 3, 1, 2, 4, 3, 2, and, 1 while sat-

isfying the balanced load criteria. According to the deployment, number of programs are

executed inside the VMs and the CPU utilization is presented as 55.5%, 98.8%, 95.5%,

65.5%, 75.99%, 98.8%, 98.4%, 98.7%, 98.2%, 98.8%, 98.7%, 98.8%, 98.6%, 98.5%, and

97.2% along with the confidence interval presented in the collected data.

5.3.2 Application Execution Time

Descriptive analysis of benchmarking results and proposed SMRS algorithm with the

static and random load factors are summarized in table 5.4. Comparison tables shows the

execution time values captured when the workload is deployed on physical nodes. Based

on the static workload the proposed methods is showing the same results as computed

with the default scheduler. When the VMs are deployed based on the CPU utilization and

RAM based criteria using the SMRD and Nova scheduler each VM is running the 100%

of the CPU capacity; therefore; the difference between the proposed and legacy methods

is very small amount in seconds. In contrast, when the workload is deployed using the

random load based distribution criteria it shows the successful results when analyzed

based on SMRS method. The SMRS shows the 940, 800, 1160, and 1166 seconds in order
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to complete the computation of the tasks running inside the VM whereas the default nova

scheduler is showing more computation such as 1667, 1664, 1668, and 1667 for Edge1,

Edge2, Edge3, and Edge4, respectively. From the analysis it is observed that the behavior

of SMRS is different based on the CPU utilization factor whereas the legacy scheduler is

taking the same time in order to complete the task without considering the impact of CPU

usage. As evaluation unveil that execution time increases as the workloads intensify on

the physical hosts.

Table 5.4: Execution Time

Execution Time Static Random
Nova Scheduler SMRS Nova Scheduler SMRS

Edge1 1669 1665 1667 940
Edge2 1667 1663 1664 800
Edge3 1668 1661 1668 1160
Edge4 1664 1662 1669 1179

5.4 Data Collection For Model Validation

The validation results via mathematical modeling are presented in table 5.5. Using the A

Mathematical Programming Language (AMPL) the unbalanced load distribution problem

is solved in order to achieve the balanced load objectives. Using the DMRS mathematical

model as discussed in Chapter 3 the validation model presents the distribution o VMs and

the three physical hosts. The terms mathematical model and validation model are used

interchangeably.

Table 5.5 is comprised of VMs placement vs time slots. Based on time slot 1 the time

in seconds is computed as t × 60 × 5 in seconds. Each time slot represents the 5 minuets

time. At time slot 1 two VMs are deployed on Edge2, and Edge1. While studding the

number of VMs deployment parameter first VM is continuously deployed on Edge2 while

satisfying the operational constraint of validation model. The second Vm is deployed on

Edge1 and complete its execution is first 5 slots. The VMs including third, fourth, fifth,
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sixth, and seventh are deployed on Edge3, Edge2, Edge3, Edge1, Edge1, and Edge2 as

discussed in table with the representation of E1, E2, and E3. Based on the VM creation

specification three VM launched using the 3vCPUs. Based on the deployment sequence

the fourteenth, twenty third, twenty seventh VMs are deployed with 3vCPUs whereas

other VMs are deployed by exactly using the of 1vCPU.

Table 5.5: Time Slots

Number of Time Slots
# of
VMs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

VM 1 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 2 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 3 0 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 4 0 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 5 0 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 6 0 0 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 7 0 0 0 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 8 0 0 0 E1 E1 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 9 0 0 0 0 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 10 0 0 0 0 0 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 11 0 0 0 0 0 E2 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 12 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0 0 0
VM 13 0 0 0 0 0 0 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 14 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0 0 0 0 0
VM 15 0 0 0 0 0 0 0 E2 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0 0 0
VM 16 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0
VM 17 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0
VM 18 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0 0
VM 19 0 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0
VM 20 0 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0
VM 21 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0
VM 22 0 0 0 0 0 0 0 0 0 0 E2 E2 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0
VM 23 0 0 0 0 0 0 0 0 0 0 E2 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0
VM 24 0 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0
VM 25 0 0 0 0 0 0 0 0 E2 E2 E2 E2 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0
VM 26 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0 0
VM 27 0 0 0 0 0 0 0 0 0 E2 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0 0 0
VM 28 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0
VM 29 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0
VM 30 0 0 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0
VM 31 0 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0
VM 32 0 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0
VM 33 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0 0
VM 34 0 0 0 0 0 0 0 0 0 0 E2 E2 E2 E2 E2 E2 E2 E2 0 0 0 0 0 0 0
VM 35 0 0 0 0 0 0 0 0 0 0 E3 E3 E3 E3 E3 E3 E3 0 0 0 0 0 0 0 0
VM 36 0 0 0 0 0 0 0 0 0 0 E1 E1 E1 E1 E1 E1 E1 0 0 0 0 0 0 0 0

The VMs with the 3 vCPUs are deployed on Edge3, Edge2, and Edge2. Total number

of twelve VMs are deployed on Edge2 and Edge3 whereas Edge1 is showing the thirteen

VMs in total. Based on the time slots, at time slot 1 VM is running at Edge1 while 2 VMs

are allocated on Edge2, and Edge3. In addition, the equal number of VMs are deployed
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at time slot 4. At slot 5 and 6 there are four VMs are running on Edge2, three VMs

are running on Egde3 whereas the Edge1 is showing three and four VMs, respectively.

At slot 7 one more VM (thirteenth VM) is launched on Edge2 while for Edge3 one VM

(fifth VM) has completed its execution. Edge3 is showing that nine VMs are deployed

on Edge3. Moreover, time slots 11 and 12 are that servers resources based on number of

vCPUs are fully utilized by the VMs.

Considering the number of VMs parameter in first column, each VM from eight

to twenty four completed their execution on the single server showing that the load is

balanced even if the new VMs are launched or the exiting VMs are terminated once their

computations are completed. The VM twenty fifth shows that for the starting four slots

(from time slot 9 to 12) when the VM is deployed it starts its executions on Edge2 and

then it is migrated to Edge3 in order to balance the load on Egde2. After the migration,

at time slot 13 and 14 the load of Edge2, Edge3, and Edge1 is balanced.

5.5 Data Collection for Dynamic Multi Resource based Scheduler (DMRS)

In this study data is collected for the proposed Dynamic Multi Resource based Scheduler

to evaluate its performance based on the CPU utilization, Application execution, and

number of migrations. The VM deployment is same as presented in the previous section

using the DMRS algorithm. This behavior and CPU utilization of this study validates the

correctness of the mathematical model.

5.5.1 Impact of Dynamic Load based VM Distribution on CPU Utilization

This section presents the CPU utilization behavior of three compute nodes Edge1, Edg2,

and Edge3. The evaluated data is collected based on the VM execution intervals when

the VMs are deployed on the specific physical servers while satisfying the balanced load

criteria. In DMRS VMs are deployed using the different numbers of vCPUs and each VM

is running with the 100% utilization for its required vCPUs. The data collection for the
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three different compute nodes is discussed for the thirty data traces and average, standard

deviation, and confidence interval is computed to show the significance of the conducted

studies.

Table 5.6: Impact of VM execution interval on time CPU utilization for Edge

VM Execution
Interval
(seconds)

120 240 360 480 600 720 840 960 1080 1200 1320 840

Data Trace-1 18.7 40.7 55 67.7 95.6 94.8 95.8 94 95.2 96.4 94 94.1
Data Trace-2 20.7 42.8 55 66.6 96.6 95.6 95.8 94.8 94.9 96.4 93.9 94.6
Data Trace-3 17.2 46.1 55.7 62.2 96.8 96.1 96.2 95.3 94.4 96.1 92.9 96.2
Data Trace-4 16.6 40.9 54.7 66.6 94.4 95.7 95.3 92.7 92.4 95.6 95.6 96.4
Data Trace-5 20.7 39.8 54.5 60.6 95.4 95.5 95.3 94.8 96.2 95.5 95.6 88.9
Data Trace-6 18 43.6 55.7 62.7 95.7 96.2 95.9 94.6 95.3 95.7 96 87.9
Data Trace-7 19.4 49.4 58.5 59.2 95.8 96 95.8 95.1 95.2 95.3 94.6 88.1
Data Trace-8 17.7 40.6 58.1 64.9 96.6 96.9 95.7 95.4 93.5 95.8 94.4 89.4
Data Trace-9 28.5 43.3 53 64.9 96.1 96.4 95.4 94 91.2 95.6 94.1 87.1
Data Trace-10 16.5 40.9 57.9 61.8 96.3 95.8 95.5 94.4 90.3 96.3 94.8 88.2
Data Trace-11 20.7 46.5 55.8 57.6 96.5 96.3 95 94.9 89.2 96.3 94.1 87.4
Data Trace-12 19.5 46.9 55.5 56.8 96.3 96.5 95.6 95.6 89.7 96.6 94.2 87.3
Data Trace-13 16.3 44 50.5 56.8 96.6 96.3 96.7 95.6 89.2 95.9 95.3 84.2
Data Trace-14 19.9 46.8 57.1 66.8 96.1 96.4 94.5 95.9 89.1 95.4 94.7 87.6
Data Trace-15 17.7 45 50.5 64.6 95.6 96.1 96.2 95.4 89.9 95 93.1 86.8
Data Trace-16 21.4 43.3 53.8 64.1 96.3 96.1 95.8 96.1 90.9 95.4 93.2 89.8
Data Trace-17 21.4 42.4 54.3 62.9 96 96.4 95.7 95.6 89.8 95.5 93.9 86.5
Data Trace-18 18.3 40 54.4 60.7 96.3 96.1 95.6 97.3 89.3 95.9 94 86.9
Data Trace-19 17.3 42.3 55.1 62.9 95.8 94.8 96.6 96.9 86.3 96.5 91.4 82.4
Data Trace-20 22.1 42.6 57.9 66.6 96.5 94.8 95.8 96.3 85 95.9 93.6 86.7
Data Trace-21 18.3 40 54.4 60.7 96.3 96.1 95.6 97.3 89.3 95.9 94 86.9
Data Trace-22 17.3 42.3 55.1 62.9 95.8 94.8 96.6 96.9 86.3 96.5 91.4 82.4
Data Trace-23 22.5 43.8 55.5 62.6 95.9 94.9 95.4 95.5 87.7 94 93 85.7
Data Trace-24 22.9 44.4 54.9 63.6 96.4 93.9 96.1 95.9 95 95.7 94 85.1
Data Trace-25 17.2 40.4 55.5 64.6 96.7 94.3 94.6 95.5 94.1 96 94.6 83.6
Data Trace-26 16.7 43.8 55.7 62.1 96.2 95.4 94.8 96 93.6 95.4 94.7 84.5
Data Trace-27 19.9 45.2 50.4 66.9 95.8 95.6 96 94.8 94.8 95.5 95 86.7
Data Trace-28 20.8 39.8 55.8 66.4 94.7 95 95.2 94.6 95.1 94.1 95.5 84.9
Data Trace-29 18.3 39.6 55.8 62.9 96.3 94.4 95.9 95.1 95.2 93.8 94.7 84.3
Data Trace-30 20.8 39.8 55.8 66.4 94.7 95 95.2 94.6 95.1 94.1 95.5 84.9

Mean 19.39 43 55.03 63.09 96.04 95.62 95.66 95.38 91.65 95.65 94.14 87.60
Standard
Deviation

2.61 2.56 2.03 3.02 0.55 0.77 0.54 1.01 3.25 0.71 1.09 3.67

Confidence
Interval

±0.97 ±0.95 ±0.75 ±1.12 ±0.20 ±0.28 ±0.20 ±0.38 ±1.21 ±0.26 ±0.41 ±1.37

Table 5.6is comprised of thirteen columns. Based on the VM execution intervals the

CPU utilization values are captured. The load values changes at time interval t whenever

the new instance is launched and load is generated on that VM for each compute node.

At time interval 120 the average value of the CPU utilization is shown as 19.39%. It

presents that at that interval one VM is deployed on the Edge one and the CI is represented

for the VM is ± 0.97 based on the standard deviation 2.61. The estimated CI values
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for the specific deployed VMs are presented as 0.95, ±0.75, ± 1.12, ± 0.20, ±0.28, ±

0.20, ± 0.38, ±1.21, ±0.26, ±0.41,and ±1.37. The Edge1 is showing maximum CPU

utilization at time interval 720, 840, 960, 1080, 1200, and 1320. At that time VMs are

utilizing the 100% of the CPU resources. And Edge1 is fully loaded while utilizing the

overprovisioning criteria.

Table 5.7: Impact of VM execution interval on CPU utilization for Edge2

VM Execution
Interval
(seconds)

120 240 360 480 600 720 840 960 1080 1200

Data Trace-1 20.7 47.2 51.9 95.5 92.3 94.3 95.8 92.2 64.3 37.4
Data Trace-2 18.9 45.9 50.8 94 93.6 94.1 97 89.4 63.7 34.2
Data Trace-3 20.6 40.7 48 95.7 93.1 94.3 97.1 89.1 63.3 36.6
Data Trace-4 17 43.3 52 96 94.8 94.8 95.2 88.8 68.9 36.3
Data Trace-5 23.9 40.5 52.1 95.8 93.6 94.5 96.2 89.7 64.1 32.5
Data Trace-6 21.3 44.1 48 95.8 91.7 93.7 96.2 90 66.5 19.5
Data Trace-7 20.7 44.4 51.3 96.1 90.3 92.7 95.9 90 65.3 18.1
Data Trace-8 16.4 44.3 52 96.2 92.8 93.7 97.1 86 65.6 16.1
Data Trace-9 17.2 45.3 51.6 96.3 94.1 94 96.2 86.8 63.1 16.6
Data Trace-10 21.7 42.7 47.3 95.2 96.5 94.4 95.5 91 63.4 17.3
Data Trace-11 23.1 45.8 53.3 93.9 96.8 94.3 95.4 88 71.2 20.8
Data Trace-12 19.4 41.2 50.8 94.6 96.6 94.9 94.4 88.6 69.2 19.8
Data Trace-13 19.7 41.1 50.6 94.1 97.2 94.4 95.7 88.4 62.8 23.2
Data Trace-14 21.1 40.8 49.3 94.7 96.1 95.4 95.1 87.8 63.4 16.5
Data Trace-15 21.8 43.4 48.1 93.9 96.3 95.2 94.8 88.8 63.3 17.2
Data Trace-16 19.1 45.6 48.4 94.4 96.3 95.8 95.1 92.1 64.5 17.6
Data Trace-17 20.9 43.8 52.5 95.6 96.8 96.2 94.6 92.7 57.3 17.2
Data Trace-18 20.3 42.5 52.2 93.8 96 96.3 95.8 91.9 61.2 21.7
Data Trace-19 20.8 45 52.4 96 96.1 94.9 95.5 93.7 61.5 24.2
Data Trace-20 16.7 48.9 52.3 95.3 94.1 95.1 93 93.7 63.4 22.7
Data Trace-21 19 44.9 52.4 93.7 95.5 94.7 90.9 94.9 59.2 27.5
Data Trace-22 19.8 46.4 49.2 94.4 95.8 95.3 93.3 94.3 55.8 20.6
Data Trace-23 19.5 40.5 47.5 92.2 95.3 95.8 95 92.3 52.9 21.3
Data Trace-24 24.8 40.5 52.6 94.9 95.8 94.3 96.1 83.3 59 25.3
Data Trace-25 19.5 39.9 47.5 95.9 96.1 95.4 95.7 86.3 54 17.1
Data Trace-26 22.1 42.5 48.1 96.8 96.4 95.9 95.5 87.9 53.8 16.9
Data Trace-27 19.8 44.8 49.2 95.8 94.9 96.1 95.3 86.7 53.9 16.8
Data Trace-28 20.8 46.8 52 95.3 97.4 96.4 95.6 85 60.5 17.2
Data Trace-29 21.6 40.4 52.1 95.8 96.2 95.9 95.6 90.8 57 19.3
Data Trace-30 21.7 48.9 52.3 95.3 94.1 95.1 93 93.7 63.4 22.7

Mean 20.28 43.55 50.53 95.09 95.12 94.92 95.33 89.66 61.79 22.32
Standard
Deviation

1.98 2.44 1.95 1.03 1.78 0.90 1.25 2.90 4.78 6.75

Confidence
Interval

±0.73 ±0.91 ±0.72 ±0.38 ±0.66 ±0.33 ±0.46 ±1.08 ±1.78 ±2.52

Table 5.7 presents the distribution of VMs in the Edge2 while considering the impact

of VM execution interval on CPU utilization. When the first VM is place on Edge2 the

computed average is presented as 20.28% od the CPU usage. This table is only presents

the VMs deployed on Edge2. However, the VMs deployed on that servers based on the
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CPU utilization of the others servers to balance the load in cloud. The average load

values is computed as 20.28%, 43.55%, 50.53%, 95.09%, 95.12%, 94.92%, 95.33%,

89.66%, 61.79%, 22.32% based on the time interval varying from 120 to 1200 with the

different number of VMs. In addition, teh confidence interval plotted for the computed

load average such as ±0.73, ±0.91, ±0.72, ±0.38, ±0.66, ±0.33, ±0.46, ±1.08, ±1.78, and

±2.52. The CI is showing less the 1 for the first seven time intervals. For the time inter

eight, nine, and tenth the confidence CI value is reported > 1. Theses values shows that

all VMs are started before the time interval 600; therefore, the CPU utilization is upto

99%. As the average and CI is computed for the 30 iterations the VMs have completed

their executed little bit faster in these interval which shows that the CPU utilization values

is varying from 85% to 93.7%, 54% to 71.2%, and 17.1% to 34.2% at time interval 900,

1080, and 1200.

Table 5.8 presents the values of VM execution at time t. The load is varies based on

the CPU resources because number of other VMs are deployed on one server to perform

their computations. The load values are changing when number of VMs are allocating to

the cloud. At time inter 120 the load value varies from 16.8% to 30.2%, which shows that

the data traces are recoded based on thirty value. When the first data trace is recorded

the CPU usage low as compare to other data traces thats shows that at this time only one

VM is deployed on Edge3. Moreover, for values from data traces 2 to 30 the 2 VMs

are executed on that machine in first time slot. The difference is reported because top

command save the values after every 3 seconds; therefore, the exact value is computed

based on the average of 30 runs. Based on the average values of CPU utilization recorded

as 29.05%, 29.88%, 28.16%, 17.85%, 70.78%, 95.7%, 95.09%, 96.36%, 96.59%, and

88.91%, the CI is presented with the significant results for that values ±1.13, ±0.83,
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Table 5.8: Impact of VM execution interval on time CPU utilization for Edge3

VM Execution
Interval
(seconds)

120 240 360 480 600 720 840 960 1080 1200

Data Trace-1 16.8 29.6 29.1 15.3 71.5 96.3 95.6 95.9 96.1 96.3
Data Trace-2 27.6 28.2 29.3 19.6 74.4 94.3 96.3 96.5 96.2 96.2
Data Trace-3 27.4 28.2 26.8 16.2 71.4 95.2 96.1 94.2 95.6 95.6
Data Trace-4 30.3 28.9 26.9 15.8 70.4 94.6 97.9 96.2 94.8 96.5
Data Trace-5 27.6 29 31.4 16.3 69 94.8 97.5 96.9 95.7 95.3
Data Trace-6 29.4 27.7 27.6 15.7 69.8 97 94.9 97.3 94.8 93.9
Data Trace-7 29.2 34.3 33.3 18.1 70 97.8 94.7 98.4 97.4 93.8
Data Trace-8 33.2 31.6 28.6 20.4 73.6 96.1 94.6 97.3 96.3 93.7
Data Trace-9 29.7 33.9 33.2 15 71.8 95.4 94.5 97.9 96.4 94.2
Data Trace-10 30 28.8 30.3 25.6 72.7 95.5 94.2 97.3 94.8 95.5
Data Trace-11 26.6 30.2 28.3 19.7 71.6 95.8 94.5 97 98.2 95.5
Data Trace-12 29.6 27.9 29.2 15.3 71 95 95.4 97.5 97.5 95.9
Data Trace-13 31.8 33.6 30.3 17.8 67.8 93.9 94.6 97.3 96.7 94.3
Data Trace-14 29.4 31.4 28.3 19.3 65.4 95.4 96.4 96.8 98 96.8
Data Trace-15 27.2 29.7 30.7 17.8 67.6 96.9 95.7 97.3 96.6 84.3
Data Trace-16 27.8 26.7 29.5 19.4 73.5 94.6 96 96 96.7 86.4
Data Trace-17 30.1 30.3 31 19.3 71.4 95.7 95.9 95.3 96.9 81.2
Data Trace-18 26.1 27.5 28.1 15.7 66.7 96 93.8 96 97.3 83.2
Data Trace-19 27.1 27.4 26.9 15.7 70.3 96.8 95.4 95.3 95.5 82.4
Data Trace-20 29.9 29.6 24.7 18.3 72.6 96.5 96.9 95 96.4 87.9
Data Trace-21 28 30.7 29.2 16.1 70.4 95.2 89.3 95.4 96.8 82.4
Data Trace-22 31.6 27.8 28.2 15.6 67.8 94.5 91.5 96.2 96.6 88
Data Trace-23 31.5 31.8 25.6 19 70.9 95 88.7 95.6 96.7 82.1
Data Trace-24 29.3 35.1 24.5 17.8 71.9 97.5 95.7 96.4 97.5 81.8
Data Trace-25 32.6 27.6 21.9 18.4 77 97.4 95.6 95.6 97.3 81.1
Data Trace-26 34 29.8 28.5 19.6 72.9 96.9 97.6 95.9 96.6 85
Data Trace-27 27.4 30.7 28.2 19.6 68.8 96.2 95.6 96 97.8 81.8
Data Trace-28 30.6 29 28 18.5 72.8 94.3 95.1 95.8 97.2 81.8
Data Trace-29 29.6 31.6 19.7 17.1 70.7 95 97.3 96.3 96.6 82.3
Data Trace-30 30.2 27.9 17.6 67.9 95.4 95.6 96.4 96.8 52.1

Mean 29.05 29.88 28.16 17.85 70.78 95.7 95.09 96.36 96.59 88.91
Standard
Deviation

3.04 2.22 2.88 2.20 2.47 1.04 2.09 0.93 0.89 6.292

Confidence
Interval

±1.13 ± 0.83 ±1.07 ±0.82 ±0.92 ±0.39 ±0.78 ±0.34 ±0.33 ±2.34

±1.07, ±0.82, ±0.92, ±0.39, ±0.78, ±0.34, ±0.33, and ±2.34. Moreover, the CPU is fully

utilized at time interval 720, 840, 960, 1080, and 1200. It shows that the VMs running

inside the Edge3 using the CPU resource in order to complete their computations. The

CPU utilization effects the application execution time because its resources are shared

among the VMs. The impact of CPU utilization on execution time is studied in next

section.

5.5.2 Application Execution Time

Table 5.9 presents the application execution time conducted for the legacy OpenStack

nova scheduler and proposed DMRS method. The experiments environment is same in

order to evaluate the CPU utilization behavior when VMs are running inside the physical
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servers to complete their execution. The table first column and first row of the table shows

the number of times slots and CPU load of existing and proposed solution. The second,

third, and forth column presents the data collected using the existing nova scheduler.

Beside the last three columns shows the CPU usage for proposed DMRS methods. The

time is captured based on the usage of CPU percentage which reflects the information

regarding how many tasks are executing at time instance t. While considering the data

of default nova scheduler the overall workload distribution of cloud is analyzed based on

three physical server.

Table 5.9: Performance comparison of proposed DMRS model and Validation Model

Time Slots NovaSch
Edge1

NovaSch
Edge2

NovaSch
Edge3

DMRS
Edge1

DMRS
Edge2

DMRS
Edge3

1 19.51 16.69 18.5 19.96 20 12.15
2 31.05 29.23 30.11 20.13 31 29.52
3 31.34 29.33 29.55 31.59 42 29.052
4 40.277 41.83 39.95 43.591 43 29
5 31.3 42.89 27.488 42.561 53 29
6 37.966 41.88 28.833 55.289 52 17
7 43.46 54.82 30.93 56 54 17
8 43.599 60.23 28.082 55 64 18
9 65.75 93.88 28.224 66 89 53
10 85.852 95.54 40.83 94 95 72
11 95.367 95.54 83.91 95 95 92.84
12 94.84 95.6 83.424 95 95 95.45
13 94.22 95.54 83.374 95 95 95.18
14 93.82 95.42 81.811 94 94 95.29
15 94.30 95.47 80.64 94 95 95.36
16 94.11 94.64 83.49 94 94 95.57
17 93.93 93.60 83.90 94 92 95.97
18 91.45 91.75 83.64 91 74 77.08
19 91.61 94.80 80.55 57 36 40.26
20 91.08 93.92 82.67 22 0 29
21 93.72 94.27 83.2 - - -
22 59.61 59.92 45.55 - - -
23 31.88 47.21 31.67 - - -
24 23.24 23.71 23.2 - - -
25 23.71 - 24.91 - - -
26 18.5 - 12.2 - - -
27 - - 16.69 - - -

Total Exe-
cution Time
(seconds)

7800 8100 7200 6000 6000 5700

For time slots 1 to 8, the load is continuously varying for each server. For time

slots, 10 to 19 only two servers (Edge1 and Edge2) are showing the maximum CPU load

with the load average of 95% whereas for remaining server (Edge3) the CPU usage is
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presented less then 83.90%. The deployment behavior of VMs shows that VMs are not

fairly distributed. In contrast, proposed DMRS solution presents the stable CPU usage for

each physical server from time slots 11 to 17. Moreover, it shows the minimum execution

time such as 600, 600, and 5700 for Edge1, Edge2, and Edge3, respectively. Besides, the

default scheduler shows the maximum execution time including 7800, 8100, and 7200

seconds for Edge1, Edge2, and Edge3, respectively. The analysis shows that proposed

solution presents the minimum execution time and evenly distributes the workload when

compared with the default solution. Moreover, from the analysis it is evaluated that inef-

ficient CPU utilization affect the application execution time.

5.6 Data Collection For Performance Comparison of DMRS and Validation Model

The accuracy of validation model is evaluated by collecting the results obtained by math-

ematical model with the empirical results. The CPU utilization, numbers of migrations,

application execution times metrics are used to validate the mathematical model.

5.6.1 Impact Of CPU Utilization on Application Execution Time

Table 5.10 represents the comparison of application execution time based on CPU utiliza-

tion through experiments and validation model.The first column and first row of the table

shows the time slots for which the CPU utilization is studied and the type of experiments,

respectively. The application execution time is presented for different time slots for three

physical servers. The VM deployment behavior of evaluation model is presented in ta-

ble 5.5. Moreover, exactly the same deployment behavior is selected by our proposed

DMRS algorithm.

The distribution behavior chosen by DMRS for every single server is presented in

previous section. The sum of total time slots values is showing the overall execution time

taken by the physical server for all VMs running inside that machine. The validation
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Table 5.10: Performance comparison of proposed DMRS model and Validation Model

Time
Slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Exp
Edge1

19.96 20.13 31.59 43.59 42.56 55.28 56 55 66 94 95 95 95 94 94 94 94 91

Math
Edge1

12.5 12.5 25 37.5 37.5 50 50 50 62.5 87.5 100 100 100 100 100 100 50 12.5

Exp
Edge3

20 31 42 43 53 52 54 64 89 95 95 95 95 94 95 94 92 74

Math
Edge3

12.5 25 25 37.5 50 50 62.4 50 62.5 87.5 100 100 100 100 100 100 75 12.5

Exp
Edge2

2.15 29.05 29 29 17 17 18 53 72 92.84 95.45 95.18 95.29 95.36 95.57 95.97 77 40.2

Math
Edge2

0 25 25 37.5 37.5 37.5 50 37.5 75 100 100 100 100 100 100 100 62.5 12.5

1. Exp : Experiments, Math : MathematicalModel

model is showing vary small difference when compared with the experiments. The exper-

iments are running for two more slots in order to complete the execution of running task.

It is because in validation model there is no overhead is considered while running the

number of processes while in real time experiments a top command is executed to contin-

uously monitor the CPU behavior which shows the CPU usage from 0.9% to 4.5%. While

considering the VMs distribution no VM is deployed and executed on Edge3 in time slot

1; therefore’ the validation model Edge3 is showing 0 value whereas the experiments are

showing 2.15%.

Moreover, based on the load balancing constraint in validation model the load is

balanced if the difference among all the physical servers is reported less than or equal

to 1 VM. The difference of 1 vCPU is reported in time slots 1 to 3 for Edge1 which

shows the load is balanced as analyzed through experiments and validation model. In

addition, when the all VMs are deployed and used the CPU resources the mathematical

model presents the 100% CPU utilization while for experiments when the value is > 90

it shows that CPU is fully utilized. For time slots 4 to 16 the CPU load is same with the

equal numbers of VMs for Edge1. With respect to the time slots the CPU utilization for

validation model it is reported as 37.5%, 37.5%, 50%, 50%, 50%, 62.5%, 87.5%, 100%,

100%, 100%, 100%, 100%, and 100 while the experiments shows the CPU usage such as

43.59%, 42.56%, 55.2%, 89%, 56%, 55%, 66%, 94%, 95%, 95%, 95%, 94%, 94%, and
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94%.

At time slot 11 to 16, Edge1, Edge2, and Edge3 are fully loaded for both validation

model and the experimental models. Moreover, the time slots with the balanced load

factor and with the difference of 1 vCPU are highlighted. These results shows that the

results conducted using the mathematical model are significant when compared with the

experiments. The load behavior using the mathematical model is same as observed with

the experiments which proves the validity of mathematical model.

5.6.2 Analysis of Application Execution Time for Individual VMs

Table 5.11 presents the comparison of empirical and validation model results based on ex-

ecution time parameter for individual VM deployed inside the cloud on multiple servers.

The first row and first column of the table depicts the numbers of VM in the cloud and ap-

plication execution time. The application execution time is studied using the experiments

and validation models results. Moreover, to validate the model results the percentile dif-

ference is also calculated. The VMs execution is reported based on their deployments as

reported in table 5.5. In experiments the VMs runs the CPU bound intensive program

to generate the load inside the VMs. In contrast, in order to execute the program inside

the VMs script is written which produced the same load as generated by the experiments.

While considering the Table 5.5, for first VM deployed on Edge2 it is running for the

continues 5 slots. Each slots represents the 5 minutes time. When fist VM deployed there

is no other resources are running; theretofore; the time computed by the experiments is

presented as 1551 whereas the validation model shows the 1500 values for the same VM.

The percentile difference of theses 2 values shows the minimum difference such as 3.28%.

The percentile difference < 15% is accepted while satisfying the load balancing criteria

because the load is computed while observing the load balancing constraint in DMRS

validation model.
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Table 5.11: VM deployment vs Application /Execution Time

Number of VMs Execution Time Percentile Difference
Experiment Validation

Model
Virtual Machine 1 1551 1500 3.28
Virtual Machine 2 1529 1500 1.89
Virtual Machine 3 1954 1800 7.88
Virtual Machine 4 1324 1200 9.36
Virtual Machine 5 2419 2100 13.18
Virtual Machine 6 1339 1200 10.38
Virtual Machine 7 3168 3000 5.30
Virtual Machine 8 1805 1800 0.27
Virtual Machine 9 1531 1500 2.02
Virtual Machine 10 2415 2400 0.62
Virtual Machine 11 3475 3000 13.66
Virtual Machine 12 1647 1500 8.92
Virtual Machine 13 1359 1200 11.69
Virtual Machine 14 2631 2400 8.77
Virtual Machine 15 3533 3300 6.50
Virtual Machine 16 3145 2700 14.14
Virtual Machine 17 3239 3000 7.37
Virtual Machine 18 2789 2700 3.19
Virtual Machine 19 2829 2700 4.55
Virtual Machine 20 3549 3000 15.46
Virtual Machine 21 3040 2700 11.18
Virtual Machine 22 2540 2400 5.51
Virtual Machine 23 3203 3000 6.33
Virtual Machine 24 3416 3000 12.17
Virtual Machine 25 3330 3300 0.90
Virtual Machine 26 3364 3000 10.82
Virtual Machine 27 2776 2400 13.54
Virtual Machine 28 3111 2700 13.21
Virtual Machine 29 3261 3000 8.00
Virtual Machine 30 2331 2100 9.90
Virtual Machine 31 2714 2700 0.51
Virtual Machine 32 2783 2400 13.76
Virtual Machine 33 2711 2400 11.47
Virtual Machine 34 2724 2700 0.88
Virtual Machine 35 2775 2700 2.70
Virtual Machine 36 1908 1800 5.66

The execution time reported by the experiments for second VM to the tenth VM such

as 1529, 1954, 1324, 2419, 1339, 3168, 1805, 1531, and 2415. In addition, for the

same numbers of VMs the validation model presents the execution time based on 1500,

1800, 1200, 2100, 1200, 3000, 1800, 1500, and 2400 seconds. The percentile difference

reported for theses values is discussed such as 1.89%, 7.88%, 9.36%, 13.18%, 10.38%,

5.3%, 0.2%, 2.02%, and 0.62%. Although, VMs are deployed using 1 vCPU excepting

the three VMs the execution time is not same for each VM. The reason is that VMs not

running at same time, it depends on the numbers of VMs running at that time interval

and sharing the CPU resources to complete their tasks. When the number of VMs are
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greater the execution time will exceed it also depend on the VM for how long time it

was running and launched inside the server. The differences in evaluation and validation

results are shown insignificant which advocates reliability and validity of our model. The

model shows minimum amount as compare to the experiment results because there is no

computation overhead is considered whereas the experiments presents the results with the

amount of computations overhead. The differences in experiments and validation results

are shown < 15%, which advocates reliability and validity of our model. The evaluation

shows 85% accuracy of the mathematical results when compared with the experiments

and percentile difference is computed for theses values.

5.7 Conclusion

In this chapter, proposed solutions SMRS, DMRS are evaluated by comparing it with

benchmarks results. The benchmarking is done by collecting the results using the Open-

Stack filter scheduler (default scheduler). The data is collected by sampling the parame-

ters for thirty data traces. The best estimation point is measured by calculating the mean

of 30 values for each experiment which shows the significant results by computing the

95% confidence interval. Based on the exterminates the validate of mathematical model

is also proved by observing the CPU utilization and application execution time.

It is concluded that SMRS, successfully reduce the application execution time when

the load nature is random in side the cloud. Besides, with static load distribution behavior

it shows the similar results as gathered by the legacy scheduler. The SMRS algorithms

balanced the load when the VMs are initially placed in the cloud without considering the

migrations. In addition, the DMRS presents dynamic load balancing and initially placed

the VMs while considering the CPU utilization and also it fairly distributes the workload

based on migration technique. DMRS presents the minimum execution time when its

results are compared with the standard scheduler. The DMRS shows the performance
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gain while satisfying the minimum numbers of migration objectives in order to balance

the workload. The accuracy of the optimized DMRS validation model is validated upto

85% when compared with the DMRS experiments results.
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CHAPTER 6: RESULTS AND DISCUSSION

This chapter validates the system model of proposed methods SMRS and DMRS against

their empirical evaluation results. The performance of proposed solutions is compared

with the benchmark solution. Moreover, the Mathematical model results of DMRS method

are also compared with the empirical results of DRMS to validate the correctness of the

proposed model. The evaluation parameters such as CPU utilization, execution time, and

numbers of migrations are considered to analyze the performance of proposed solution.

This chapter is organized into six main section. Section 6.1 analyze the perfor-

mance of proposed initial VM placement algorithm (SMRS) by comparing it results with

default OpenStack scheduler. This section is further classified into two subsection. Sec-

tion 6.1.1.1 analyze the VM distribution behavior based on the static load whereas sec-

tion 6.1.1.2 studied the VM distribution while considering the random load as a factor.

Moreover, Section 6.2 compares the DMRS method results with the benchmark sched-

uler based on the dynamic load. Section 6.3 validated the mathematical model results

by comparing it with the experimental results of DMRS. Section 6.4 presents the perfor-

mance analysis based on the results of purposed DMRS, optimized DMRS, and default

scheduler. Finally, section 6.5 conclusively presents the main findings of the chapter.

6.1 Performance Evaluation of Proposed SMRS Method

This section evaluates the static multi resource based scheduler performance by compar-

ing it with nova scheduler. In order to analyze the SMRS performance, CPU utilization

and application execution time parameters are considered based on the number of VM

provisioning on physical hosts.
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6.1.1 Analysis of CPU Utilization

In this section, CPU utilization behavior is studied based on two scenarios, including

static and random load factor while the initial placement of VMs. In order to generate the

load, a CPU intensive application is executed inside the VM. In static analysis, each VM

executes the number of applications equal to its number of cores (vCPUs) allocated to that

VM. Besides, considering the random load based distribution, load generator function

will decide for how many cores the application needs to execute based on the values

produced by the it.

6.1.1.1 Static Load Based Distribution Considering Load as a Factor

Fig. 6.1 shows the relationship between CPU utilization and VM deployment sequence on

four physical servers, including Edge1, Edge2, Edge3, and Edge4. In said Fig, number

of core utilization across the VM deployment sequence is represented to highlight that

how the VMs are deployed on the physical servers at time interval t considering CPU

utilization factor. In order to show their deployment on the physical hosts different shapes

such as triangle, circle, diamond, and square are selected to show the Edge1, Edge2,

Edge3 , Edge4, respectively. The figure shows that second, third, and forth VMs are

placed on the Edge2, 4, and 3. While, conducting the static analysis as mentioned in

chapter 3 the cloud environment is heterogeneous based on the system memory. The VM

placement shows that like the default scheduler deployment as presented in Fig. 3.3, VMs

are not place in a unique and recursive order. The VM fifth and sixth are deployed on

Edge1 while considering the CPU usage based distribution. The VMs are distribution is

selected by the proposed static load balancing algorithm using the load filter, compute

filter, and load analyzer.
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Figure 6.1: Core utilization vs VM deployment (Static Load Analysis)

Fig. 6.2 depicts the CPU utilization when the number of VMs are deployed in cloud.

The figure presents that at x-axis VM deployment is plotted using the deployment se-

quence presented in Fig. 6.1. At y-axis CPU utilization behavior is reported. When first

VM is placed the load values is reported 9%, and 23% to 25%, for Edge1, Edge2, 4, and

3, respectively. At the deployment of sixth VM the CPU load is computed by the SMRS

method and this VM is place on the least loaded host (Edge1). Seventh VM is also placed

on the Edge1 because other three physical hosts are showing maximum CPU utilization

when compared with the Edge1. Moreover, when the seventh, eight, ninth, and tenth VMs

are placed the CPU usage is reported as 54% 53.5%, 52.5%, 50.9%, respectively. Each

VM is deployed using 2 vCPUs and the physical CPUs, which are reported 8 for each

physical host are completely allocated when the total 4 VMs are deployed on each server.

Therefore, for VMs from fourteenth to onward the physical servers are showing the CPU

utilization > 90%.
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Figure 6.2: Core Utilization vs VM Deployment Sequence of SMRS

6.1.1.2 Random Load Based Distribution Considering Load as a Factor

This experiment used the same random load generator function as discussed in Fig. 3.5

to distribute a dynamic load. Using proposed SMRS method, first four VMs among a

sequence of VMs are deployed on Edge 1, 4, 2, and 3 as shown in Fig. 6.3. This happened

due to random load generation, which causes each VM to have dissimilar CPU utilization.

This figure presents the VMs distribution behavior when the number of cores (vCPUs)

requested by the VM at x-axis and y-axis. In order to balance the load, the seventh,

eighth, and tenth VMs are placed on Edge2 whereas the twelfth and thirteenth VMs are

placed on Edge1. The sequence shows that VMs are not deployed while considering the

same placement behavior as studied in Fig. 3.5 in chapter 3. Moreover, in order to better

understand the VMs deployment sequence, CPU utilization is plotted in Fig. 6.4
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Figure 6.3: VM Distribution Behavior of SMRS (Random Load Analysis)

In Fig. 6.3, VM deployment sequence is plotted across CPU usage at x-axis and y-

axis. Fig. 6.3 represents that when initial VM is deployed on Edge1, the CPU utilization

is 5%. After first VM placement, the other compute hosts are loaded with minimum load

compared to Edge 1. However, the second, third, and forth VMs are placed on Edge 4,

2, and 3, respectively. After the deployment of first four VMs, GDE (Fig. 4.1) perceived

that Edge1 has a minimum load. Therefore, it chooses Edge1 to place next incoming

VM. Moreover, at the time of ninth and tenth VM, the CPU utilization is 23% and 45%,

respectively. In the said figure, second VM on Edge2 presents minimum CPU utilization

as no execution profile is running on it because of the lowest load generated by the random

function generator.

Based on deployment sequence in Fig. 6.4, the CPU utilization is minimum for

Edge2 as compared to rest of the nodes. Therefore, seventh and eighth VMs are deployed

on Edge2 in order to balance the load factor. Furthermore, ninth VM that is second VM

for Edge3 shows the maximum CPU utilization as it executes four different execution
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profiles. Therefor, after third, seventh, and eighth VM’s deployment, Edge2 again lever-

ages minimum load due to random load generator. As a result, tenth VM is also deployed

on Edge2. Based on comparison VM deployment sequence of proposed algorithms is not

same as in existing algorithm presented Fig. 3.5.
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Figure 6.4: Core Utilization of SMRS (Random Load Analysis)

6.1.2 Analysis of Application Execution Time

This study analysis the application execution time while varying the CPU load as shown

in Fig. 6.2 and Fig. 3.3 for static load based distribution and Fig. 6.4 and Fig. 3.5 for

the random load based distribution. Based on static load distribution, as in Fig. 6.2 and

Fig. 3.3 application execution time within VM is plotted in order to check the perfor-

mance of proposed SMRS method and existing nova scheduler. In order to understand

the results we have plotted the graph of each compute node where SMRS Edge 1, 2, 3,

and 4 represents the results proposed algorithm while NovaScheduler Edge 1, 2, 3 and

4 presets the results of existing OpenStack default scheduler. Fig. 6.5 shows that exist-

ing, and proposed SMRS scheduler behavior is same when the load distribution nature is

based on uniform or static load. The difference between proposed and existing algorithm
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is captured as a small amount of time in seconds. Each physical server is taking the 1660

to 1669 seconds in order to complete the tasks running inside the VMs.
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Figure 6.5: Execution Time vs CPU Utilization of SMRS based on Static Load

Moreover, Fig. 6.6 is reflecting the minimum execution time for each compute node

when the VMs are deployed based on random distribution. In comparison of existing

scheduler, our proposed scheduler method enhanced the performance of Edge1, Edge2,

Edge3, and Edge4 up-to 33%, 50%, 33%, 44%, respectively.
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Figure 6.6: Execution Time vs CPU Utilization of SMRS based on Random Load

Based on execution time analysis (Fig. 6.5 and Fig. 6.6), it is concluded that SMRS

efficiently utilize the CPU resources when the load distribution is random. It is observed

that when the load nature is static the proposed and existing schedulers uniformly utilize

the CPU resource and the execution time taken by each server to complete the task is

same. The application execution time is similar when the CPU load is kept similar for

each VM. In general increase in CPU usage is directly increase the application execution

time because the CPU resources are shared among the deployed VMs. In addition, when

the load is distributed randomly the CPU utilization of each machine is not same as re-

ported in Fig. 6.4. Therefore, based on distribution behavior each physical server is taking

different time to execute the application running on that physical host. However, the data

observed in case of random load based distribution scenario proves that the execution time

is not only depended on the CPU usage but also the placement and deployment sequence

criteria for the allocation of VMs to physical host based on load factor.
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6.2 Performance Evaluation of Proposed DMRS Method

This section analyze the performance of DMRS method based on the dynamic load factor.

This analysis presents the impact of CPU utilization on the application execution time.

6.2.1 Analysis of CPU Utilization over Execution Time

Fig. 6.7 presents the execution time as time slots at x-axis and y-axis show sows the CPU

utilization. This figure shows that how the application execution time affect the CPU

utilization in dynamic environments when the new VMs can be launched any time and

migrated to another host when load is maximum. The time slot parameter is measured

in seconds. The graph show that until slot 5 the CPU utilization is minimum because the

new VMs are launched at time interval t on the physical servers. The execution time is

plotted for every single physical host. The servers are represents with the DMRS Edge n

when the VMs are deployed using the proposed method. In contrast the Nova Scheduler

Edge n the physical hosts when VMs are placed using the default OpenStack scheduler.
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Figure 6.7: Comparison of Proposed DMRS and Default Nova Scheduler

Based on the time slots the DMRS Edge 1, 2, and 3 are showing the similar values
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when all VMs have completed their executions on the physical hosts. Moreover, DMRS

shows that balanced load for each server when the physical CPUs allocation criteria is

fulfilled with the deployment of VMs. From slot 10 to 19 the DMRS Edge1, 2, and 3

shows the equal utilization of CPU and as a results every physical hosts completed their

execution at same time. In contrast, using the existing nova scheduler Edge 3 is showing

the 82% of CPU utilization whereas the Edge2, and 1 are showing the maximum usage

with the average load values presented as 94%. The physical server with the default

scheduler impacts the CPU utilization and not evenly distributes the workload which as a

result exceeds the application execution time as presented up-to 7200 seconds for Edge3,

7800 for Edge2, and 8100 reported for Edge1.

6.3 Model Validation

The accuracy of the mathematical model is validated by comparing its results with the

experiments. The VM deployment behavior, execution time of individual VMs running

on the physical hosts, overall execution time taken by individual physical server when

multiple VMs are deployed, CPU utilization, and number of migrations are the parameters

studied to evaluate the results of validation model and the results obtained from empirical

studies.

6.3.1 Analysis of VM Placement

Figure. 6.8 presents the number of VMs placement on the physical hosts at x-axis and

at y-axis the execution time of individual VM is plotted. The placement sequence is

decided by based on the balanced load criteria in order to fairly deploy the workload

on the physical machines. In order to presents the distribution of VMs on the specific

PMs different colors are selected such as green presents Edge1, blue shows Edge2, and

yellow presents Edge3. The first three VMs are placed on Edge2, Edge1, and Edge3,and

it completed their execution in 1500, 1500, and 1200 seconds. In start VM 1, and 2
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have assigned the 5 slots to complete their tasks, which shows that the VMs completed

their executions without any interruption when their is exactly one VM is deployed on

each server. The forth, fifth, and sixth VMs are taking 1800, 1200, and 2100 in order to

complete their execution. While considering the VM placement the VM 25 shows that

initially it is executed on Edge2 for 1200 seconds and later on it is migrated to Edge3 and

completed the remaining compactions in 1500 seconds. Form results it is observed that

when numbers of VMs are maximum the CPU resources are shared among the VMs and

execution time is depended on CPU utilization as studied in next section.
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Figure 6.8: VM Distribution based on Mathematical Model

6.3.2 CPU utilization

Figure. 6.9 presents the CPU utilization for physical servers Edge 1, 2, and 3 at time slot t

plotted on x-axis and y-axis, respectively. The CPU utilization is presented for how long

the load is running inside the VMs for each physical server. Based on migration constraint

the load is balanced if the difference is reported equal to 1 vCPU. Based on experiments

it is observed that when only 1 vCPUs is utilized by the VMs the load is generated by the

VM reported as 12.5% to 15% of CPU usage. Until the time slot 10 the load is reported
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<80% of the whole CPU utilization for three servers.
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Figure 6.9: CPU Utilization of Physical Servers

The graph shows the load is increases evenly for three physical host. At slot 7 the

Edge 2 is showing higher load as compare to the others. The Edge1 and Edge3 presented

the CPU utilization up-to 52% whereas the Edge1 shows the 61.2%, as discussed before

the difference between theses values of the servers is reported < 12% (1 vCPU), which

proved that load is fairly distributed among the servers. From slot 10 to 17 the servers

shows the 100% usage of CPU resources. Moreover, the time slots shows that every single

host completed its execution between 18 to 19 slots.

6.3.3 Number of Migrations

Figure. 6.10 the number of migrations. The graph shows that only Vm 25 is migrated

in order to balance the load when the CPU is maximum and affecting the application

execution time. As presented Figure. 6.8 the VM 25 performs migration at the 13th

time slot from Edge 2 to Edge 3. The migration action is justified according to the load

variations of the physical hosts recorded in Figure. 6.11.
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Figure 6.10: Number of VM migrations

Figure 6.11 presents the number of time slots in which VMs are allocated to the

physical servers and completed their execution. The graph is plotted to shows the CPU

utilization when VMs are placed requesting the different number of vCPUs. The said

figure depicts that load values reaches to its maximum when 8 cores (actual physical

cores) are utilized. At 11th and 12th time slots for all the three physical hosts more

than 8 cores are allocated by VMs. At the 13th time slot, mathematical model decides

to migrate the VM number 25 from Edge 2 to Edge 3. By the 13th time slot, the load

becomes balanced between the three hosts and the system maintains its stability (remains

stable) for two slots. For slots 15th the load is also balanced and only the one extra VM is

running on Edge3 which has completed its execution in 16th time slot. The graph results

shows that balanced load criteria is fulfilled while considering the minimum number of

migrations criteria when the load is not stable after the distribution of VMs.
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Figure 6.11: Impact of Migrations on the CPU Utilization

6.3.4 Execution Time of Individual VMs

Figure 6.12 shows the total number of VMs on each PM. The graph is plotted across the

number of VMs and the execution time required for that VMs to complete the executions.

The first VMs deployed on each host are taking the execution time from 1200 to 1551

seconds the execution time depends on the arrival of VMs while it is affected if there

are number of VMs deployed equal to the physical capacity of the PMs. The graph

compares the execution time taken from the experiments and also from the validation

model. Moreover, it represents that in order to validate the correctness of model the

distribution of VMs is same, which is selected by the validation model represented as

optimized DMRS and proposed dynamic multi resource based scheduler based on the

CPU utilization criteria. The graph results shows that VMs execution time is similar

when executed based on validation model and the experiments. Based on the results the

accuracy of the model is validated up-to 85% while considering the application execution

time.
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Figure 6.12: Performance Comparison of Validation Model, and DMRS Method

6.4 Comparison of DMRS, Optimized DMRS, and Nova Scheduler

In this section the performance of proposed DMRS, optimized DMRS (validation model),

the default scheduler is compared based on the VM distribution and execution time pa-

rameters.

6.4.1 CPU utilization

Figure. 6.13 presents the time slots in minutes and the CPU utilization in in percentage

values at x-axis and y-axis, respectively. The proposed DMRS method is compared with

the optimized DMRS. The CPU utilization of optimized DMRS is obtained through the

validation model results. The distribution behavior of physical servers is presents using

the different marker styles. In addition, the physical server shows the results conducted

using the experiments and the validation model. In the said figure the values taken by

the mathematical model shows the 100% CPU usage whereas the values plotted using the

experimentations shows the values >90%. In actual the load in the real environment do
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not reaches to the 100%; therefore’ when the load is greater then 90% the server is fully

utilized.
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Figure 6.13: CPU Usage Comparison DMRS Experiment Vs Validation Model

The graph values from time slots 11 to 16 shows the equal utilization of the CPU.

Moreover, every physical server completed their task in a same time as using the valida-

tion model results the total execution time is calculated for 12 time slots. Besides, the

experiments results shows that Edge 3 is showing the balanced load values starting from

11 slot to 16. When the difference of the slots is compared based on validation results

the servers Edge2 and Edge3 with the experiments completed their execution in 20 slots

while the Edge has completed all executions within this time slot and running for slots 21

with the normal load up-to 19.5%.

6.4.2 Execution Time of Individual VMs

Figure. 6.14 the number of VMs deployed only at Edge1. The graph depicts the number

of VMs and the execution time of each VM at x-axis and y-axis, respectively. The said

figure compare the execution time of VMs obtained from the mathematical results and the
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experiments. This graph shows that the execution time taken by each VM in validation

model of experiments is matched up-to 85%. The mathematical results shown the small

difference because of no overhead is considered while conducting theses results. While

the execution is affected in real time experimentation because numbers of processes are

running to execute the instruction including new VMs booting statements and execution

of CPU intensive applications. The term mathematical model and validation model is

used interchangeably while presenting the results collected from the validation model.
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Figure 6.14: Comparison of Execution Time for Edge1

Figure. 6.15 shows the allocation of VMs on Edge2 and shows the total execution

of VMs. On Edge2 the time calculated based on validation model and experiments is the

small amount of difference. The time calculated using the empirical results is presented

as 1551, 1954, 1339, 1805, 2415, 1647, 2631, 3040, 2540, 3416, 3364, and 2711 second

for VM 1 to 12, respectively. Besides the time taken by the validation model for theses

VMs is reported as 1500, 1800, 1200, 1800, 2400, 1500, 2400, 2700, 2400, 3000, 3000,

and 2400. The results shows the execution time reported with the model results is similar

to the experimental results, which validated the correctness of mathematical model.
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Figure 6.15: Comparison of Execution Time for Edge2

Figure. 6.16 presents the VMs execution time when deployed on the Edge machines.

It shows that total 11 VMs are deployed on the Edge3 while satisfying the balanced load

criteria. The validation model and proposed DMRS deployed VMs in a similar way

to fulfill the even CPU utilization objective. The graph shows that the execution time

taken by individual VM is approximately same with the small amount of difference. The

mathematical model shows that third Vm is executed eleven time slots and each slots

represents the 300 seconds with the execution time 3300 whereas the experiment shows

the time value up-to 3533 for that machine with the percentile difference 6.5%. Moreover,

the percentile difference calculated for each VM on that server is reported as 9.3%, 11.6%,

6.5%, 7.3%, 3.1%, 4.5%, 6.3%, 0.9%, 8.0%, 2.7%, and 5.6%, respectively.
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Figure 6.16: CPU Utilization Analysis using Mathematical Model, and DMRS

Figure. 6.17 shows the execution time for all the VMs that are hosted on Edge1,

Edge2, and Edge3 during the whole observation period The said figure presents the per-

centile difference between the validation model and experiments. The bar presented as

experiments shows the values computed via real time experimentation of execution time.

Besides, the right bar displays the estimated values by computed through the validation

model. Moreover, the percentile differences is presented to measure the correctness of

the mathematical model. Based on the results the percentile difference calculated for

theses results shows the difference <15% in total, which advocates the effectiveness and

reliability of our mathematical model in offering an acceptable accuracy.
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Figure 6.17: Percentile Difference of Execution Time

Figure. 6.18 presents the overall execution time when the CPU utilization is maxi-

mum and VMs are running inside the physical hosts. The said figure presents the CPU us-

age computed using the results obtained from validation model, proposed DMRS method,

and default OpenStack scheduler. The graph shows that when the load is deployed using

the default scheduler it is not showing the even CPU utilization for Edge1,2, and 3. The

Edge3 server showing the minimum CPU usage with the load value up-to 81% whereas

the load observed through the Edge1, and Edge2 is reported as maximum value of CPU

(90%). Moreover, the difference between the servers is reported more then one VM. As

the default scheduler do not balanced the load; therefore; the execution time taken by

each VMs is maximum when compared with the validation model and DMRS results.
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Figure 6.18: CPU Utilization Analysis (Validation Model, DMRS, and Default Sched-
uler)

Figure. 6.18 shows that the validation model showing the better execution time which

is presented as 44% while. Furthermore, percentage difference computed for the valida-

tion model results and DMRS experiments results is reported as average value of 5.6%

with the 94.4% similar results based on the CPU utilization parameter. However, the

DMRS, and optimized DMRS based VM distribution maximize the performance of cloud

with the minimum execution time, minimum number of migrations while satisfying the

objective for fair distribution of load among the physical hosts.

6.5 Conclusion

In this chapter we have validated the performance of proposed SMRS method in the static

environment while the initial placement of VMs. We have compared the SMRS with ex-

isting scheduler, which is used for the distribution of the VMs in OpenStack cloud. The

CPU utilization, and execution time is considered as a performance metrics for static

algorithm. The comparison results shows that fairly VM distribution based on CPU uti-
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lization enhance the application execution time. We have compared that when the load

nature is uniform the SMRS evenly distribute the load among the servers and produce the

similar results to the default scheduler. In contrast, SMRS shows the better results when

load nature is different for each VM. IT is observed that existing scheduler overlooks the

CPU utilization, which leads to the maximum execution time. The comparison shows

that in best case the performance of proposed SMRS is increased up-to 50% when com-

pared with the default nova scheduler. Similarly, for different load behavior it shows the

performance gain up-to 44%,a nd 33% in case of static algorithm.

For dynamic load balancing the DMRS method is proposed and compared with the

existing solution. The proposed DMRS shows the 44% performance improvement when

compared with default method using the execution time parameter. Moreover, the pro-

posed DMRS algorithm is validated using the set of equations designed in chapter 4 using

the real experiments. The execution time results obtained through the validation model

are within the 0.2% of empirical results as a best case. In addition, as a worst case differ-

ence the value is reported as 14.14%. Based on the execution time of individual VMs the

validation model shows the 85% similar results equal to the empirical results. Moreover,

the DMRS fulfills its balanced load objective while satisfying minimum number of mi-

grations. The proposed DMRS results are compared with validation model results based

on the CPU utilization parameter. However, the CPU utilization parameters shows the

94.4% similar results when compared with the validation results. Considering the results

obtained through the performance comparison and analysis with the existing method, it

is concluded that CPU utilization based initial VM placement enhance the application

execution time in static load balancing. Further, for dynamic load balancing when the

VM are initially distributed using the CPU utilization factor the number of migrations are

reduced and execution time is increased.
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CHAPTER 7: CONCLUSION

This chapter presents the conclusion of overall study conducted in this thesis. The con-

clusive analysis is performed by reflecting the set of research objectives presented in the

first chapter.This chapter highlights the research contributions and summarize the future

research directions of this study.

This chapter is categorized into four sections. Section 7.1 presentees the reassess-

ment of the proposed objectives of this thesis. Section 7.2 discusses the contribution of

this study. The scope and limitation of this study are examined in section 7.3. Section 7.4

highlights the future direction of this study.

7.1 Reappraisal of Research Objectives

The problem of uneven distribution of workload while the initial placement of VMs in

cloud and its adverse impact on the application execution time has been addressed in

this thesis. This section presents the road-map that is followed to achieve the research

objectives highlighted in section 1.4.

Objective 1: To critically review the current state-of-the-art cloud load balanc-

ing schemes while the placement of VMs to gain insight to the performance limita-

tions.

The first objective of this study was to qualitatively analyze the existing state-of-the-

art cloud load balancing schemes to highlight their limitations. In order to achieve the

first research objective, this study critically review the cloud load balancing schemes and

derived the thematic taxonomies to categorize the exiting literature based on the selected

parameters which were common in most of the studies. The state-of-the-art literature

has been studied from the online digital libraries including ACM, IEEE, Web of Science,

Elsevier, and Springer. In the broader domain of cloud resource management and cloud

load balancing, we have collected ad studied the 130 papers and reviewed the current
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literature on VM placement methods by selecting the 30 methods, which are published

during last five years. Moreover, the selected methods are compared based on the pro-

posed taxonomies to highlight the variances and commonalities among them. The aim of

this exercise was to investigate the issues and challenges to propose the future research

directions in this domain. We found that existing studied do not fairly distribute the cloud

workload. Several studies initial allocate the VMs in the cloud while overlooking the

CPU utilization. Besides, majority of the studied incorporates the dynamic load balanc-

ing based on the VM migration method which leads to the maximum migration overhead.

Therefore; an efficient load balancing method is required that fairly distribute the CPU

load at the time of initial deployment of workload and also minimize the number of mi-

grations.

Objective 2: To investigate the workload distribution of cloud load balancing

schedulers to reveal inefficiencies in existing schemes without considering the CPU

utilization and current load while the placement of VMs.

The second objective of this study was to investigate and analyze the impact of work-

load distribution on the application execution time and CPU utilization. To accomplish

this research objective, we have examined the VM allocation behavior in difference cases

using the default OpenStack scheduler. We classified the workload nature as a static and

random load based distribution while the placement of VM in cloud. The empirical anal-

ysis highlighted that workload nature affect CPU utilization and application execution

time. This study showed that the existing schedulers consider the RAM availability fac-

tors only to select servers for VM deployment. The analysis shown that existing cloud

load balancing schedulers were not distributed the workload based on CPU utilization

criteria. Moreover, existing schemes were not able to adequately mitigate the impact of

CPU utilization on the application execution time while the initial deployment.

Objective 3: To design and propose a multi resource-based scheduler to min-
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imize the deficiencies of current cloud schedulers based on CPU utilization, and

application execution time while the placement and migration of VMs.

The third objective of this research was to design and propose the solution that effi-

ciently distribute the workload and save the application execution time. We have proposed

the multi-resource based objective schemes for static and dynamic workload distribution.

A static multi resource based scheduler is proposed for the static load balancing to ad-

dress the issue of CPU load at the time of initial placement. In addition, a dynamic multi

resource based scheduler is proposed to address the dynamic load balancing while min-

imize the number of migrations after the initial placement of workload. The proposed

solutions collect the CPU utilization based information using the proposed load analyzer,

load filter, and compute load algorithms. The proposed solutions minimize the applica-

tion execution time and allocated the workload based on balanced utilization of CPU. In

dynamic algorithm application execution time is minimized while satisfying the objective

of uniform workload distribution and minimum number of migrations.

Objective 4: To evaluate the performance of proposed multi resource based

algorithms and compare it with the state-of-the-art current VM placement cloud

scheduler, and to validate the developed mathematical model.

The final objective was to develop the mathematical model of the proposed solutions

and their validation. The mathematical model is validated by comparing its results with

the results obtained from the empirical study. The empirical results are conducted based

on real time experiments using the OpenStack cloud. We have evaluated the performance

based on CPU utilization, number of migrations, Overall execution time taken by the

physical server, and the application execution time of individual VMs parameters. More-

over, the performance of static and dynamic algorithms are compared with the default

nova scheduler.

The proposed static algorithm fairly distribute the workload with the performance
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gain up-to 91% using the CPU utilization parameter and minimize the appellation execu-

tion time 50% when compared with the existing solution. Moreover, the dynamic load

balancing algorithm enhance the performance 88% based on CPU utilization metric and

save the execution time up-to 44% when compared with the existing solution. The vali-

dation model and empirical results shows difference of 0.2% in the best case while in the

worst case it shows the difference less than 15%. In addition, the validity of the math-

ematical model is proved 94.4% and 85% for CPU utilization and application execution

time when compared with the empirical results of proposed solution.

7.2 Contributions

This section highlights the main contribution of this research. The scholarly articles as

contribution are listed in Appendix A. This study summarizes to the body of knowledge

as follows.

• Thematic Taxonomy: This research proposed the thematic taxonomies to clas-

sify the existing state-of-the-art cloud load balancing schemes. The main research

categories are highlighted in the corresponding domain based on the proposed tax-

onomies. These taxonomies highlight the critical aspects related to workload dis-

tribution, resource selection, and allocation in cloud. Moreover, the comprehensive

literature analysis lead to the identification of open research issues.

• Performance Evaluation of VM deployment schemes: A detailed analysis based

on default scheduler of OpenStack cloud is performed to analyze the VM place-

ment selection criteria. The performance evaluation based on deployment behavior

and unfair CPU usage revealed insights to the issues in the existing load balancing

methods.

• Static Multi Resource Based Scheduler Method (SMRS): An efficient method is
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proposed for the static load balancing. The proposed method selected the minimum

loaded host to allocate the new request (VMs). We empowered default scheduler to

consider the RAM capacity and number of vCPUs in addition with CPU utilization

(CPU load) for initial placement of VMs. The proposed algorithm fairly distributes

the workload and improve the performance by minimizing the application execution

time.

• Dynamic Multi Resource Based Scheduler Method (DMRS): An efficient dy-

namic load balancing algorithms is proposed to efficiently utilize the cloud re-

sources in terms of RAM, CPU utilization, and number of vCPUs. Proposed DMRS

method uniformly distributed the workload at the time of initial deployment and

manage the CPU utilization among all the servers by adapting the migration tech-

nique. The proposed algorithm controls the number of migrations with the balanced

load distribution and successfully minimize the application execution time.

• Validation and Evaluation of DMRS: We have modeled the proposed DMRS

mathematically using and set of equation that are derived to validate the model.

The model is validated by comparing its results with the empirical results. The

performance of the model is evaluated based on the CPU utilization, application

execution time, and number of migrations.

7.3 Scope and Limitations

The proposed multi resource based scheduler algorithms are effective for all interactive

cloud data centers. The proposed algorithms will works for legacy applications in addition

with the newly designed applications. Moreover, this algorithms are also for all types of

cloud specially form OpenStack cloud.

The proposed DMRS is suitable for efficient load balancing with the minimum num-
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ber of migrations based on the CPU utilization factor. VM migration is not free and

consumes a significant amount of sender and receiver resources in terms of power. This

study do not address the power consumption while the migration of the workload. More-

over, proposed algorithms do not address the network communication pattern when VMs

are deployed and migrated to another hosts.

7.4 Future Research Directions

This research was an effort to contribute towards the cloud load balancing domain. How-

ever, a single PhD thesis is not enough to covers the all aspects to a particular domain.

The following lines, we presents the insight to the some of possible research directions.

The focus of this research is to only efficiently balance the workload among physical

servers. The propose dynamic load balancing method balance the load while adapting the

migration technique. When the VMs are migrated proposed algorithm do not consider the

migration time (overhead) and downtime from the overall execution time recorded. i.e.,

we assumed that once a particular VM is stopped, it is directly resumed on the target one

at the same instant. Hence, the future work include to extending the scope of this study

by addressing the migration overhead while the VM migration. Moreover, in this study,

it is assumed that each VM is running with the uniform load before its execution time,

we aim to address that assumption as a future work. In addition, like CPU and memory,

network is considered as a shared and critical resource for cloud application. Network

traffic affects the performance of cloud. Therefore, as a future research direction we aim

to address the affect of workload on the network traffic based on the internal cloud traffic.
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