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ABSTRACT

Cloud computing, a user-centric computational model, is flexible paradigm of de-
ploying and sharing distributed services and resources with the pay-per-use model. With
virtual machine (VM) technology and data centers (DCs), computational resources, such
as memory, central processing unit (CPU), and storage, are dynamically reassembled and
partitioned to meet the specific requirements of end users. The demand’s growth for cloud
services is presenting considerable challenges for cloud providers to meet the require-
ments and satisfaction of end users. Virtualization technology reduces cloud operational
cost by increasing cloud resource utilization level. In addition, the ever growing com-
putational demands of users call for efficient cloud resource management to avoid SLA
violation. Virtualization co-locates multiple virtual machines (VM) on a single physical
server to share the underlying resources for efficient resource management. However, the
decision about "what” and ”where” to place workloads significantly impacts performance
of hosted workloads. Load balancing between physical servers is important to avoid dan-
gerous hot spots in the Cloud; in fact, overload situations are dangerous since they can
easily lead to resource shortage and, at the same time, they can affect hardware life-
time, thus undermining data center reliability. Existing cloud schedulers consider a single
resource (RAM) to co-locate workloads that as a result lead to SLA violation due to non-
optimal VM placement. In addition, allocation of VMs based on traditional scheduler
inefficiently balance the workload distribution that leads to extended the application ex-
ecution time. Furthermore, exiting studies incorporates the migration technique in order
to balance the load after the initial placement of workload, which leads to the maximum
numbers of migrations. Therefore, to overcome these issues, this study propose the ef-
ficient load balancing solutions to uniformly distribute the workload among the physical
servers. The initial VM placement method called Static Multi Resource based Sched-

iii



uler (SMRS), is designed to enhance the application execution time while balancing the
CPU utilization without VM migrations. In addition, the Dynamic Multi Resource based
Scheduler (DMRS) method is proposed to minimize the number of migrations after the
initial placement of workload. We performed the real time experiments using the Open-
Stack cloud to highlight the efficiency of SMRS and DMRS solutions. Moreover, this
study proposed the mathematical model for SMRS and DMRS method. To validate the
correctness of the mathematical model, the empirical results and mathematical results are
compared based on the CPU utilization, application execution time, and numbers of VM
migrations as a performance metrics. The effectiveness of the proposed solution is eval-
uated by comparing their empirical results with well-known standard OpenStack nova
scheduler. Experimentally, we have shown that our proposed method has lessened appli-
cation execution time by 50% when compared with standard OpenStack cloud in static
environment. In dynamic environment, the performance gain is reported up to 85% and
94.4% based on application execution time and CPU utilization. The improvement in

application execution time increases the usability of cloud data centers.
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ABSTRAK

Cloud computing, model pengiraan user-centric, adalah paradigma fleksibel melak-
sana dan perkongsian perkhidmatan diedarkan dan sumber dengan model bayar-per-use.
Dengan teknologi mesin maya (VM) dan pusat-pusat data (DC), sumber pengiraan, se-
perti memori, unit pemprosesan pusat (CPU) dan penyimpanan, secara dinamik dipasang
semula dan dibahagikan untuk memenuhi keperluan khusus pengguna akhir. Pertumbuh-
an permintaan bagi perkhidmatan awan membentangkan cabaran yang besar untuk pem-
bekal awan untuk memenuhi keperluan dan kepuasan pengguna. teknologi virtualisasi
mengurangkan awan kos operasi dengan meningkatkan tahap penggunaan sumber awan.
Di samping itu, permintaan pengiraan semakin meningkat dari pengguna menggesa pe-
ngurusan sumber awan berkesan untuk mengelakkan SLA pelanggaran. Virtualization
bersama menempatkan pelbagai mesin maya (VM) pada pelayan fizikal tunggal untuk
berkongsi sumber asas untuk pengurusan sumber yang cekap. Walau bagaimanapun, ke-
putusan mengenai apa dan di mana untuk meletakkan beban kerja dengan ketara pres-
tasi kesan beban kerja menjadi tuan rumah. Beban mengimbangi antara pelayan fizikal
adalah penting untuk mengelakkan tempat-tempat berbahaya panas dalam Awan; sebe-
narnya, keadaan beban adalah berbahaya kerana mereka dengan mudah boleh membawa
kepada kekurangan sumber dan, pada masa yang sama, mereka boleh mempengaruhi hi-
dup perkakasan, dengan itu melemahkan kebolehpercayaan pusat data. penjadual awan
sedia mempertimbangkan sumber tunggal (RAM) untuk bekerjasama mengesan beban
kerja yang akibat membawa kepada SLA pelanggaran kerana tidak optimum penempat-
an VM. Walau bagaimanapun, peruntukan VMS berdasarkan penjadual tradisional tidak
cekap mengimbangi pengagihan beban kerja yang membawa kepada memanjangkan ma-
sa pelaksanaan permohonan. Walau bagaimanapun, keluar kajian menggabungkan teknik

penghijrahan bagi mengimbangi beban selepas penempatan awal beban kerja, yang mem-



bawa kepada nombor maksimum migrasi. Oleh itu, untuk mengatasi isu-isu ini, kajian
ini mencadangkan penyelesaian pengimbangan beban berkesan untuk seragam menga-
gihkan beban kerja di kalangan pelayan fizikal di penempatan awal VMS. Kaedah yang
dicadangkan awal VM penempatan, yang dipanggil Content Multi Sumber Scheduler ber-
dasarkan (SMRS), direka untuk meningkatkan masa pelaksanaan permohonan manakala
mengimbangi penggunaan CPU tanpa migrasi VM. Di samping itu, kajian ini menca-
dangkan Scheduler Dynamic Multi Berasaskan sumber (DMRS), untuk mengurangkan
jumlah migrasi selepas penempatan beban kerja. Kami melakukan eksperimen masa nya-
ta menggunakan awan OpenStack untuk menyerlahkan kecekapan penyelesaian SMRS
dan DMRS. Selain itu, kajian ini mencadangkan model matematik untuk SMRS dan
kaedah DMRS. Untuk mengesahkan ketepatan model matematik, keputusan empirikal
dan keputusan matematik dibandingkan berdasarkan penggunaan CPU, masa pelaksana-
an aplikasi, dan bilangan migrasi VM sebagai metrik prestasi. Keberkesanan penyele-
saian yang dicadangkan itu dinilai dengan membandingkan keputusan empirikal mereka
dengan terkenal ditanda aras OpenStack nova penjadual. Uji kaji, kita telah menunjukkan
bahawa kaedah yang dicadangkan kami telah berkurangan masa pelaksanaan permohonan
sebanyak 50 % berbanding dengan penanda aras dalam persekitaran statik. Dalam perse-
kitaran yang dinamik, keuntungan prestasi dilaporkan up-to 85 % dan 94.4 % berdasarkan
masa pelaksanaan aplikasi dan penggunaan CPU. Peningkatan dalam masa pelaksanaan

permohonan meningkatkan kebolehgunaan pusat data awan.

vi



ACKNOWLEDGEMENTS

First of all, I am thankful to Almighty Allah for endowing me the strength, wisdom,
and endless blessing to study. It has been a great privilege to spend three years in the
department of Computer Science and IT at University of Malaya, and its members will
always remain dear to me. However, It would have not been possible to write this doctoral
thesis without the help and support of the kind people around me, to only some of whom
I can give particular thanks here. My hearty thanks must go to my advisors, Prof. Dr.
Abdullah Gani, and Assoc. Prof. Dr. Siti Hafizah ab Hamid, who have patiently provided
the vision, encouragement and advice necessary for me to proceed through this doctoral
program and complete my thesis. Their continuous support and guidance helped me
producing a valuable piece of research reported in this thesis. Thereafter, i am deeply
indebted and grateful to Dr. Anjum Naveed, Dr. Rana Liaqgat Ali, Dr. Raja Wasim
Ahmed, and Muhammad Taqi Jawad for their extensive technical guidance and personal
involvement in this research.

I would like to sincerely thank my dearest and loveliest parents for their faith in me
and allowing me to be as ambitious as I wanted. My father always is a tremendous mentor
for me. I would also like to gratefully express my special appreciation and thanks to my
beloved husband, Rana Muhammad Haseeb-ur-Rehman, and my daughter Ansa for their
great support, encouragement and unwavering and unconditional love. Words cannot
express how grateful I am to my loveliest parents and dearest siblings (Sidra, Areeba,
Rimsha, and Sami) and my daughter for all of the sacrifices that they have made on my
behalf. I owe them everything and I hope that this work makes them proud. I dedicate
this thesis to my beloved daughter Ansa and loveliest parents who scarifies a lot in this
journey. Last but not the least, I am thankful to the BrightSpark Program for financially

supporting me.

vii



TABLE OF CONTENTS

PN 111 i 1 2SR iii
ADSEEAK.......ooiiiiiii e v
AcKkNOWIEdZEMENLS .............cocoiiiiiiiiiiiii et vii
Table Of CONLENLS ............oooouiiiiiiiiiiiee et s viii
LSt Of FAGUIES........oooiiiiiieeeee et et et sae e e ebeeeaaeeeens xiii
LSt Of TaDIES.......c..oeiiiiiiiie e s XV
CHAPTER 1: INTRODUCTION .......oooiiiiiiiieeiieieetete ettt enveens 1
L1 BacK@rOUNA .....coiiiiiiiiiiieeieeeeee ettt e 3
1.2 MOUIVATION ...ttt ettt et ettt et ettt e st e et e e st e ebbeesabeesenneesnneeas 6
1.3 Statement Of Problem..........ccooouiiiiiiiiiiiiiieicceeee e 8
1.4 Statement Of ODJECTIVES ..o.veeeiuiiiiiieeiieeriee ettt ettt et e s e s e e es 10
1.5 Proposed MethOdOIOZY .......ccoouiiriiieiiiieiieeieeeiee ettt 10
| TN 170 ) oSO 13
1.7 TRESIS STIUCTUIE ..eeuvviieiieeeiiie et eeiee ettt e ete e tee et e st ee e aaeesbeeesaeesnneeesaseesnseees 13

CHAPTER 2: LOAD BALANCING SCHEMES FOR CLOUD DATA

CENTERS ...ttt 17

2.1 BaCKEroUNd ........oooiiiiiiiiiiiie e 18
2.1.1  Cloud COMPULING ...eeeviriieeeiiiieeeieeeeeiieeeeeiteeeesieee e et eeesireeesareeessanes 18

2.1.2 VIrUAlIZAtION ..coueeiiiiiieeiieceeeeese et 21

2.2 Cloud Load BalanCing .........ccccceeeereiriiieiiienienieeieeseesrecteiee e 25
2.2.1 Taxonomy of State-of-the-art Cloud Load Balancing Schemes.............. 26

2.2.2 Review of load balancing schemes for cloud environments ................... 33

2.3 Cloud Resource Management ...........c.eeevueeriieenieenniieenieeeiieesieeesieeesieesnieeesaveeas 47



2.3.1  RESOUICE SEIECHION c.vvvveeeeieeeeeeiiiieeeeeee ettt e e e e e e eeetaaareeeeeseeeeeens 48

2.3.2  Resource AIlOCAtION ........eeiiiiiiiiiiiiieniie ettt 53
2.4 Performance Analysis Tool for Cloud Deployment............ccccevieevieinicniennennen. 60
2.4.1  OpenStack ATChItECIUIE .....c.eeevviieiiieriie ettt 60
2.4.2 Request Flow for Provisioning VM in Openstack .........ccccceceeriennennnen. 61
2.5 Issues and Challenges .........cccocuuiiiiiiiiiieiiiiiiee ettt e e 63
2.5.1 Resource SEIECHION ..........coriuiiiiiiiiiiieiee ettt 64
2.5.2 Resource AlOCAION .....c..ceoviriiieriieniinieeiteite et 66
2.5.3 Resource MONIIOTINE ....c.veeviriieeiienierieeieesire et et sie e 66
2.5.4  ReSOUICE DISCOVETY ...occiuiiiiiiiieiiieeiieesieeesiieesieeesereeeaee et e saeeesereesaeeenns 68
2.5.5 ReSOUICe PriZing........ccoouiiiiiiiiiiiiiiiieriie sttt s 69
2.5.6  Disaster Management ............cooueeeiiieniieiiieeniieeeiteeeite et siree e 70
2.6 Discussion on Cloud Load Balancing..........ccccecceeevieeniiieenieeniee e 72
2.7 CONCIUSION .t eciiee et e e e e e e aa e e e e araeeeeeaaseeeeaseeeeeneneas 74

CHAPTER 3: PROBLEM ANALYSIS OF DYNAMIC LOAD
BALANCING IN CLOUD THROUGH VIRTUAL

MACHINE PLACEMENT ... 76

3.1 Experimental MethodolOgY .........cccooviiiiiiiiiiiiiieeiieete et 76
3.1.1 Evaluation Method ..........cccooviiiiiiiiiiiiicececeeeeeeee e 78

3.1.2  Test Program Desi@n ........ccceevieriiiiiiiiiiiiieneeneeeeeeseeeeeeee e 80

3.2 Performance Analysis of Existing Load Balancing Schemes.............c.ccccueennee. 80
3.2.1 Illustration of VM deployment in Open Stack .........ccccecvvevveencieeenneeennne. 81

3.2.2  Load Distribution ANALYSIS ......ceevveeriiiiniieniieenieeeiieeeiee et siee s 83

3.2.3 Load distribution Behavior Study ........c.cccooviiiniiiiiiiiniiiieececee 84

3.2.4  Execution Time ANalYSis ....ccccvveeriiierriiiiniieeiieeniee et 93

3.3 CONCIUSION ..ttt ettt et e et s e bt e e sab e ebbeesabee s 96

ix



CHAPTER 4: PROPOSED STATIC AND DYNAMIC LOAD

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

BALANCING METHODS ...t 98
Multi Resource Based Scheduler Cloud Architecture ..........coceeveeveeniennieenneenne. 99
Static Load Balancing Method for initial VM placement...........cccccocueeveenicnnnne 100
4.2.1  Compute Load ......coooiieeiiieiiieeieeeiee et 101
4.2.2  L0ad ANALYZET .c..uuiiiiiiiiiiieeeete e s 102
4.2.3  L0oad FIr oot 103
Dynamic Load Balancing Method (DMRS) .......cocciiiiiiiniiiiiiieeieecieeeeee 104
431 TIME SO .t st 104
4.3.2  Allocation of VM t0 PM .....c.coiiiiiiiiiiiiiiiieete et 104
4.3.3 Balanced Load..........cccoooiiiiiiiiiiiiiiie e 105
4.3.4 Load Balanced..........ccccceoiiiiiiiiiniiiiicetee e 106
System Flow Diagram with Dynamic Load Balancing ..........c.ccceccoeeveiienennnn. 107
Optimization MOdEL .........coouiiiiiiiiiiiiiiiceeee e 110
4.5.1  ASSUMPLIONS c..eeeniiiiiiiiiienieeeieeie ettt st eseeesreereeeee 110
4.5.2 Linear Programming Formulation............cccocciiiviiiiiiniiiniicc e 111
4.5.3 Optimized Static Load Balancing Method ............ccooveiviiiiiiinniieniens 112
4.5.4 Optimized Dynamic Load Balancing Method............c.ccccooiiiinninnnnn 114
Data DESIZN...cuuvieiiiieiiie ettt ettt ettt et esnbeeeaae e 116
4.6.1  CPU UHHZAON ..ottt 116
4.6.2  EXecUtion TIME ....ccceeviiriiriiiiiiiniieeieeeest ettt 117
4.6.3 Numbers Of MILatiON ......ccccueeriiiiriiiriiieniie ettt 118
Distinguishing Features of Proposed Method...........c.cccooveiiiiiiiiniieiiiieniiecies 118
4.7.1 Efficient Resource UtiliZation ............ccccviieeiiieeieciiee e 118
4.7.2  Ground for Energy EffiCiency ........cccccooveerviiriiiiiiiniiniiiececieeeeeee 119
4.7.3  Hot Spot EIMINAtION........coiiiiiiiiiiiiiiieeieceicecceteeee e 119
4.7.4  SLA Violation AVOIdanCe...........cocueeueeriieriieiieiiienieeieeieenee et 119
CONCIUSION ..ttt ettt ettt e st s bt e st e e sabeesbeeeas 120



CHAPTER 5: EVALUATION .......ccocciiiiiiiiiiiicicceccee e 121

5.1

5.2

5.3

54

5.5

INErOUCTION ...ttt ettt s 121
Evaluation of Proposed Multi-resource based Scheduler .............ccocveeniiinnienns 122
5.2.1  Evaluation SEUP.......ccceeoiiriiiiiieiieeieeeeeesee et 122
5.2.2  Experimental DEVICES.......ccccuieriiieiiieiiieeiiieeieeeiee et e sieeesereesaee e 123
5.2.3  TeSt PrOZIram...ccccuviiiiiiiiiiiiiieeiee ettt ettt s 125
5.2.4  Performance MELIICS........eiiuiiiriiiaiieeniiee ettt ettt 125
5.2.5 Data gathering and data proCesSiNg...........cceervueeerreeriureeniieerieeesiveesnneenns 126
Data Collection for Initial VM Deployment (SMRS).......cccccociviiiiiiiiniiineenn 127

5.3.1 Impact of Static and Random Load based VM Distribution on

CPU UHHZAION ...ttt 127
5.3.2 Application Execution Time...........ccceecuiiiiiiiniiiiniieniie e 131
Data Collection For Model Validation...........c.ccccovieiriiiiniiiiiieinicciieerice e 132
Data Collection for Dynamic Multi Resource based Scheduler (DMRS) ........... 134

5.5.1 Impact of Dynamic Load based VM Distribution on CPU Ultilization... 134

5.5.2  Application Execution Time...........ccoovuieeiniiiiieniiiieiieeeeeeeeeee e 138
5.6 Data Collection For Performance Comparison of DMRS and Validation Model 140
5.6.1 Impact Of CPU Utilization on Application Execution Time .................. 140
5.6.2 Analysis of Application Execution Time for Individual VMs ................ 142
5.7 CONCIUSION ..ottt sttt eeees 144
CHAPTER 6: RESULTS AND DISCUSSION ........ooiiiiiiiiiiiieieicneeeeeeniee 146
6.1 Performance Evaluation of Proposed SMRS Method .........ccccoceeiiiiiiniinennnen. 146
6.1.1  Analysis of CPU UtIZatioN........cccueeviiiiiiiiniieeieeeieeeeeeeee e 147
6.1.2  Analysis of Application Execution Time .......cccccceeeeviiieenrciieeenniieeeenee, 151
6.2 Performance Evaluation of Proposed DMRS Method..........cccccccoviiiniiiiniennnen. 154
6.2.1 Analysis of CPU Utilization over Execution Time .........c...ccccccvveenennen. 154
6.3  Model Validation...........eoeiuiiiiiiiiiiieriieeeeee ettt 155
6.3.1 Analysis of VM Placement..........ccccceevuiiiniiiiniiiiiiiieiiieeiceeee e 155

X1



6.3.2  CPU UtIIZAtION ......ooiuiiiiiiiiiiiiiiiiiciccee e 156

6.3.3  Number of MIZIratiOns ........c.ceevueiriiieniiiiiieeniee ettt siree s 157
6.3.4 Execution Time of Individual VMS.......ccccccooiiniiiiiiniiniiiiieceeeeeen 159
6.4 Comparison of DMRS, Optimized DMRS, and Nova Scheduler........................ 160
6.4.1  CPU UHHZAON ..ottt ettt ettt e s 160
6.4.2 Execution Time of Individual VMS.......ccocoiiiiiiiiiiiiiiiciiccicceeeee 161
6.5 CONCIUSION ..ottt 166
CHAPTER 7: CONCLUSION ......oooiiiiiiiiiiteieeteeeee ettt 168
7.1 Reappraisal of Research ObjectiVes..........cceevveiiiiiiiiiiiiieiiiicecceeee e 168
7.2 CONIIDULIONS. ....utieiiiieiiie ettt ettt et e st e et e st e e sabeesneeeeaee 171
7.3 Scope and LIMItations .........cccceeevuieriienienieiiieeieesee sttt 172
7.4  Future Research DITECtIONS........eevuiiiiiiiiiiiiiiieiieeeiee et 173
ReEFEIENCES ........oeiiiiiiiiiiici et 174

xii



Figure 1.1:
Figure 1.2:
Figure 1.3:

Figure 1.4:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:

Figure 2.6:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.11:

Figure 4.1:

Figure 4.2:

Figure 6.1:
Figure 6.2:
Figure 6.3:

Figure 6.4:

LIST OF FIGURES

Top Cloud Infrastructures as a Service Projects........cccceeveeeeveercieeeneeennne. 6
Worldwide Support to OpenStack Cloud .......c..cocveevienieniirieeneenienienns 8
Research Methodology ........cccvviiiiiiiiiiiiieecie e 11
ThesisS OrganiZation ..........cccueeerieerieeeniieeniie et e siee e e siee s e sbeesaeeesans 14
Cloud computing service model............cocceevviieniieiniieenie e 20
Architecture of a virtual data CeNter ...........cevveeviiiriieeriieiieeeiee e 23
Workload Consolidation and Migration ............cccceeecveeeeniieeennieeeeenneeenn. 24
Taxonomy of Cloud Load Balancing Schemes ...........ccccccevvvieniiiennnieennee. 27
Request Flow for Provisioning of VM in Openstack ............cccccevueeneenee. 61
Taxonomy of Cloud Resource Management ISSUES ...........ccceeerveernnrenne. 65
Selection of Hosts based on OpenStack Cloud Standard Scheduler ........ 82
VM Deployment Using OpenStack Cloud Scheduler............c.ccceeueeen..e. 84
Core Utilization vs VM Deployment Sequence based on Static Load..... 86
Analysis of VM deployment vs CPU Load based on Static Load ........... 87

Core Utilization vs VM Deployment Sequence based on Random Load 89

Analysis of VM deployment vs CPU Load based on Random Load....... 90
VM Distribution Behavior with Homogeneous RAM ...........ccccccevueeenee. 92
VM Distribution Behavior with Random Load and 4vCPUs................... 93
Application Execution Time vs CPU Usage with Different VMs............ 94
Execution Time Based On Static Load Based Distribution...................... 95
Execution Time Based On Dynamic Load Based Distribution................ 96
Proposed SMRS based VM Deployment Cloud Architecture ................. 100
System Flow Diagram for VM Placement and Migration........................ 109
Core utilization vs VM deployment (Static Load Analysis) .................... 148
Core Utilization vs VM Deployment Sequence of SMRS ...................... 149
VM Distribution Behavior of SMRS (Random Load Analysis) ............. 150
Core Utilization of SMRS (Random Load Analysis).......cccccceerevverrureennne. 151



Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure 6.10:
Figure 6.11:
Figure 6.12:
Figure 6.13:
Figure 6.14:
Figure 6.15:
Figure 6.16:
Figure 6.17:
Figure 6.18:

Execution Time vs CPU Utilization of SMRS based on Static Load....... 152

Execution Time vs CPU Utilization of SMRS based on Random Load .. 153

Comparison of Proposed DMRS and Default Nova Scheduler................ 154
VM Distribution based on Mathematical Model............c.ccocceeeviienniennne. 156
CPU Utilization of Physical SEIVers ..........cccecueeriiieiniieniiieeieeeiee e 157
Number of VIM Migrations .........coccueeerieeniiiiiieeniie e 158
Impact of Migrations on the CPU Utilization ...........ccccceeveevveeiienieennnenne. 159

Performance Comparison of Validation Model, and DMRS Method ...... 160

CPU Usage Comparison DMRS Experiment Vs Validation Model ........ 161

Comparison of Execution Time for Edgel ........ccocoiiiiiiiiiiniiiiiiiiees 162
Comparison of Execution Time for EAge2..........ccccoviivviiiiiiiiniiiiieee, 163
CPU Utilization Analysis using Mathematical Model, and DMRS ......... 164
Percentile Difference of Execution Time ........c..ccocceeviiniiiniinicnnienenne 165

CPU Utilization Analysis (Validation Model, DMRS, and Default

SCHEAUIET) .. 166

Xiv



Table 2.1:

Table 2.2:

Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 2.8:

Table 3.1:
Table 3.2:

Table 4.1:
Table 4.2:

Table 5.1:
Table 5.2:
Table 5.3:

Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:

Table 5.10:

Table 5.11:

LIST OF TABLES

Summary of Static VM placement schemes in a cloud environment. ....... 34

Comparison of state-of-the-art static load balancing schemes in a

CloUd ENVITONIMENL . ....coiuiiiiiiiiiiie ettt 39
Summary of dynamic load balancing schemes in a cloud environment .... 40
Comparison of state-of-the-art dynamic load balancing schemes ............. 44
Summary of resource selection schemes in a cloud environment.............. 49
Performance Metrics for resource selection in federated cloud................. 53
Summary of resource allocation schemes in a cloud environment. ........... 54
Performance Metrics for resource allocation in the federated cloud. ........ 59
Physical Server Specification Profile ...........cc.cccoevviiiniiiiniiniiiieeiie e 78
VM Configuration Profile ...........coceeiiiiiiiiiiiiiiiieeee e 79
Algorithm’s Symbols and their Description............ceceeevieeriieeniieeineeenne. 101
Notations and DeSCrIPtION......ccc.ueeriuiieriiiaiiieiee et 110
System SPECIICALIONS .....cccueerueiriiiiiiiienreeteieeeee ettt 123

CPU utilization Analysis with the static load based distribution of VMs.. 129

CPU utilization Analysis with the random load based distribution of

VIMIS ottt ettt 130
EXecution TIMe ........coeeviiniiiiiiniiiiiiciiciccce e 132
TIME SIOLS et 133
Impact of VM execution interval on time CPU utilization for Edge ......... 135
Impact of VM execution interval on CPU utilization for Edge2 ............... 136
Impact of VM execution interval on time CPU utilization for Edge3 ....... 138

Performance comparison of proposed DMRS model and Validation

MOdEL ... 139
Performance comparison of proposed DMRS model and Validation

MOAEL ... e 141
VM deployment vs Application /Execution Time ........ccccccceevverveeneenen. 143

XV






CHAPTER 1: INTRODUCTION

Cloud computing is evolving and increasing as an embryonic computing paradigm. By
design, it is assembled with diverse computing technologies such as grid and utility com-
puting, high performance computing, networking, virtualization, storage, distributed sys-
tems, and security (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009), (Stawski, 2015).
In addition, virtualization offers the potential for on-the-fly and on demand configuration
of physical machines to run various tasks and virtual machines (Espadas et al., 2013).
Clouds adopt the virtualization concept for many reasons, such as (a) server consolida-
tion, (b) applications’ adaptive and dynamic configuration, (c) high availability, (d) and
responsiveness. All virtualization features provide clouds a basis to meet service level
(SLA) requirements. Moreover, virtualization is the crucial solution to reduce the en-
ergy consumption, cost of ownership and to attain better resource utilization in data cen-
ters (Barham et al., 2003). By providing physical resource sharing, live migration and
fault isolation multiple virtual machines (VMs) can share resources on a single physical
machine.

To ensure the network performance along with dynamic resource provisioning, virtu-
alization tries to balance the load of the whole system dynamically (Espadas et al., 2013)
there is always a chance of over utilization or under utilization of resources. Overloaded
servers lead to performance degradation whereas under loaded servers cause poor utiliza-
tion of resources. Due to inefficient distribution of load more heat will be generated by the
overloaded servers which in turn increase the cost of cooling system and substantial emis-
sion of CO2 contributing to greenhouse effect (Shaw & Singh, 2014). Therefore, there
is a need to provide right amount of resource dynamically to the applications running in
VMs and develop an energy-efficient schemes.

Load balancing is commonly deployed function, which plays a vital role in cloud



and virtualized data centers realization (Singh, Korupolu, & Mohapatra, 2008), (Chaczko,
Mahadevan, Aslanzadeh, & Mcdermid, 2011). Load balancing is the evenly distribution
of the resources among users or requests in a uniform manner so that no node become
overloaded or idle in the cloud. In the absence of load balancing establishment, effi-
ciency of overloaded nodes abruptly reduced with time and leads to SLA violation (Singh,
Juneja, & Malhotra, 2015). In addition, load balancing is an essential aspect in In-
ternet based all others distributed computing tasks (Foster, Zhao, Raicu, & Lu, 2008).
Besides, Cloud Service Provider (CSPs) also provide the efficient load balancing solu-
tions to the users in their own cloud computing platforms (Mondal, Dasgupta, & Dutta,
2012). Toward this goal numerous load balancing schemes such as Minimum Execution
Time (MET) (Armstrong, Hensgen, & Kidd, 1998), Min-Min scheduling (Etminani &
Naghibzadeh, 2007), Cloud Analyst (Sefraoui, Aissaoui, & Eleuldj, 2012) exists in liter-
ature and a comprehensive study is also done with and First Come First Serve (FCFS) and
Round-robin. The main goal of job scheduling is to achieve a high performance comput-
ing and the best system throughput. Traditional job scheduling algorithms are not able to

provide scheduling in the cloud environments.

The rest of the chapter is organized as follows. Section 1.1 presents the preliminary
background related to the research field. Section 1.2 explain the research motivations to
carry out proposed research presented in this thesis. The research aim and objectives are
described in section 1.3. Further, in section 1.5 research methodology is proposed in order
to address the research problem. The scope of the research is explained in section 1.6.

Finally, the thesis layout is stated in section 1.7.



1.1 Background

Cloud computing is a computing model that vigorously extends virtual resources includ-
ing computing power, network resources, and storage, which helps users to approach re-
sources on demand using pay-as-you-go service models through web services. Cloud
computing comprises of a compilation of service models, functioning as Platform as
a Service (PaaS) (Dash, Sahoo, Mohapatra, & Pati, 2012), Infrastructure as a Service
(TaaS) (Erdogmus, 2009), and Software as a Service (SaaS) (Grossman, 2009), which are
reachable over cloud layers (e.g client layer, application layer, infrastructure layer, server
layer and platform layer). Though, Cloud service model results in reduction of delivery
time and costs as well as enhances flexibility and efficiency. Cloud computing adopts
the virtualization concept as an indispensable feature. Virtualization enables physical re-
sources to utilize IT infrastructure on cloud computing platforms as a virtual resource.
Furthermore, virtualization is dynamic in nature, whereby cloud computing services are
automatically provisioned as and when needed by users (Jararweh et al., 2014).

During the last one decade, due to extensively increasing demand for high-end com-
putational servers, efficient cloud resource management has become a must to meet re-
quirements for cloud providers (Buyya et al., 2009) (Jararweh et al., 2014). Virtualization
configures and runs numerous workloads on a single physical server to attain high re-
source utilization for effective cloud resource management (Barham et al., 2003) (Espadas
et al., 2013). However, aggressive workload co-location leads to resource over utilization
that significantly impacts application performance in terms of SLA violation. Therefore,
the decision about what and where to place workloads is very important as efficient work-
load distribution surges in application performance due to diminishing hotspots with data
centers (DC). Alternatively, cloud resource under utilization significantly impacts Return

On Investment (ROI) for cloud operators. Load balancing within cloud data centers fairly



distributes a workload onto a set of physical servers to, (i) increase ROI, (ii) minimize the
number of hotspots, (iii) reduce SLA violation, and (iv) minimize cloud operational cost.

Load balancing guarantees that all physical resources within cloud DC have a uni-
form workload. The VM placement schemes are divided into static and dynamic load
balancing based on the migration criteria. In static load balancing VMs are not migrated
to other servers whereas in dynamic load balancing VMs are migrated other hosts in order
to balance the system load. Numerous existing load balancing schemes such as, Round
Robin (Sidhu & Kinger, 2013), Min-Min scheduling (H. Chen, Wang, Helian, & Akanmu,
2013) (S.-C. Wang, Yan, Liao, & Wang, 2010) (Etminani & Naghibzadeh, 2007), Max-
Min Algorithm (Elzeki, Reshad, & Elsoud, 2012), OpenStack Scheduler (Litvinski &
Gherbi, 2013), Min-min Algorithm (Patel, Mehta, & Bhoi, 2015), and Improved Max-
min (Elzeki et al., 2012), have considered static load balancing (single-resource) to co-
locate VMs. All aforementioned schemes opted VM placement scheduler that overlooks
queuing user requests, and a fair-share algorithm enabled resources provisioning within
data centers.

In VM migration process, number of VMs are migrated from one host to another in
order to balance the load of over-provisioned or under-provisioned hosts. Migration tech-
nique keep the same performance of the VM as it is expected. Therefore, based on mi-
gration impact, numerous studies have been presented dynamic load balancing strategies
based on VM migration for the sake of efficient load balancing because cloud load balanc-
ing is an extremely important topic due to economic issues (Corradi, Fanelli, & Foschini,
2014)and (Liaqat, Ninoriya, Shuja, Ahmad, & Gani, 2016), (Calcavecchia, Biran, Hadad,
& Moatti, 2012), (Wuhib, Stadler, & Lindgren, 2012) , (Wuhib et al., 2012), (Beloglazov
& Buyya, 2012), (Beloglazov, Abawajy, & Buyya, 2012), and (Bobroft, Kochut, & Beaty,
2007).

A dynamic resource allocation architecture is presented for the sake of load balanc-
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ing and minimizing the energy consumption among the different services of cloud (Wuhib
etal., 2012). Based on management objectives, the architecture focus on the three compo-
nents in terms of (i) admission control policy of VMs, (i1) Placement controller for VMs,
and finally (iii) the implemented is done as an extension of OpsnStack cloud (Corradi et
al., 2014). The shortfall of this architecture is that it only balance the load based on mi-
gration concept and after the allocation of VMs. For the migration of VM, black box and
gray box algorithms are proposed in (Wood, Shenoy, Venkataramani, & Yousif, 2007).
The black box algorithm decides when to migrate, while the decision based on what and
where to migrate is determined from gray box algorithm. To move the VM from over-
loaded to least overloaded host (Wood et al., 2007) uses a greedy heuristic. The VectorDot
scheme is proposed in (Singh et al., 2008), which considers the load on the communica-
tion paths that connect servers to shared network storage. Moreover, Entropy approach
reduce migration time as well as the number of nodes acquiring low performance over-

head.

Based on cloud load balancing schemes it is observed that serval studies have been
conducted based on the static load balancing. Static load balancing do not efficiently
balance the workload. The shortcoming of static load balancing is that it only consider
the number of CPUs and memory while the placement of VM without considering the
effect of load on physical host. Therefore, dynamic load balancing is used to address the
issues of static load balancing. The shortfall of this method is that it only balance the
load based on migration concept and after the allocation of VMs. However, in order to
balance the load based on migration techniques number of migration should be minimized
and controlled because it effects the performance of other VMs running on source and
destination hosts. In aforementioned studies, load is balanced after the deployment of

VMs using the migration concept. Therefore, there is a need to balance the load at the
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deployment time of the VM.

1.2 Motivation

According to the forester research the business of cloud computing will grow upto $241
billion in 2020 whereas it is represented as $40.7 billion in 2010 (Truong, 2010). Besides,
several open-source laaS-cloud management platform have been developed in order to fa-
cilitate the creation of private clouds such as OpenNebula, Nimbus, OpenStack (Sefraoui
et al., 2012), and Eucalyptus (Nurmi et al., 2009). These IaaS platforms have huge im-
pact the adoption of cloud computing technology. OpenStack cloud is one of the most
widely used open-source cloud among all and revenue will grow to $3.3 billion in 2018
(Fig. 1.1) whereas it will be $5.3 billion in 2020 as presented in Fig. 1.2. So, in order
to undertake our research, we are using OpenStack cloud. According to crisp research

190,000 individuals and 114 showing the worldwide support to the OpenStack.

Votes

Figure 1.1: Top Cloud Infrastructures as a Service Projects

Latest research shows that cloud data centers consumes 70 billion kilowatt-hours of

energy, examined in recent year, which is the 2% of the total energy consumption of the
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country (NRDC, 2014). Furthermore, the cloud infrastructures will consume more energy
up-to 1,963.74 TWh in 2020 (Greenpeace, 2010). In last five years, the growth rate of
DCs is doubled. According to the (gignet, 2011) 52% of the cloud resources remains
underutilized. DC resources in underutilized or idle state consume 70% to 80% of the
energy, which is consumed during the peak utilization (Heller et al., 2010). Therefore;
to handle the issues related to underutilization and overutilization of the resources an
efficient workload distribution is required to fairly distributes resources in cloud.

Cloud load balancing efficiently distributes the cloud resources. Several studies
presents that cloud load balancing address the resource utilization issues with the al-
location of the VMs to the physical hosts based on static and dynamic load balanc-
ing. Majority of the study discuss the static load balancing including (Samal & Mishra,
2013), (Gautam & Bansal, 2014), (Kaur & Kaur, 2015), and (Domanal & Reddy, 2013).
In contrast, number of dynamic load balancing schemes have been presented to address
the inefficient workload distribution issues (Ghribi, Hadji, & Zeghlache, 2013), and (Guo
et al., 2010). The static load balancing schemes highlights that while the initial deploy-
ment of workload CPU utilization behavior is not studied. The dynamic load balancing
mitigates the shortfall of static load balancing and balanced the load after the migration of
VMs. The limitation of the dynamic load balancing is that it only consider the workload
using the migration technique and maximum number of migrations minimize the cloud
performance in terms of energy consumption. Therefore; an efficient load balancing so-
lution is required address the limitations of static load balancing as well as the shortfalls

of dynamic load balancing in order to enhance the cloud resource utilization.
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Figure 1.2: Worldwide Support to OpenStack Cloud

1.3 Statement of Problem
Load balancing is considered as a vital feature in Internet based distributing tasks as well
as in cloud computing. Regarding the static load balancing, researchers (Mills, Filliben,
& Dabrowski, 2011), (Mills et al., 2011), (Kousiouris, Cucinotta, & Varvarigou, 2011),
considered VM placement at the time of creation and investigate different factors such as,
deployment scenarios, real-time scheduler’s decisions, and types of workload, to identify
the parameters influencing VMs co-location. On the other hand, researchers (Q. Wang &
Varela, 2011) considered the relationship among three categories of workload based on
several virtual network configuration strategies in terms of the number of VMs, vCPUs
usage per VM, and memory size for each VM. However, these techniques overlooked the
impact of CPU utilization while the initial placement and only distribute the workload
based on the number of CPU used and the available amount of RAM.

Numerous studies have been conducted based on the dynamic VM placement to

provide the efficient solutions in order to assign the clients requests to available cloud



nodes. Various aspects of cloud load balancing schedulers are extensively presented in (Kllapi,
Sitaridi, Tsangaris, & loannidis, 2011), (Phan, Zhang, Zheng, Loo, & Lee, 2011), and (Sotiriadis,
Bessis, Xhafa, & Antonopoulos, 2012). For the apprehension of resource reservation
based on VMs, VM migration is the fundamental scheme. Authors in (Zhao & Figueiredo,

2007) projected migration cost in order to find the accurate estimation of migration time

for preparing resource reservation.

Based on literature review it is perceived that in static load balancing cloud sched-
ulers do not consider the CPU utilization at the deployment of VMs. Besides, most of
the current state-of-the-art load balancing schemes considered dynamic load balancing to
handle the static load balancing issues. In aforementioned dynamic load balancing stud-
ies, load is balanced after the deployment of VMs using the migration concept. Maximin
number of migrations degrade the cloud performance. Therefore, there is a need to bal-
ance the load at the deployment time of the VM. Based on the aforementioned research
gap the problem statement of this thesis is stated as.

Majority of the cloud load balancing algorithms incorporate the static parameters
while the initial placement of resources. The static load balancing does not consider
the CPU utilization on physical hosts. Moreover, in order to address the limitations of
static load balancing the dynamic load balancing handle the over-utilization and under-
utilization of the hosts by adapting the migration solution when the resources are initially
deployed. However, in static load balancing the absence of dynamic state of CPU load,
during the scheduler’s decision making leads to inappropriate workload distribution on
physical hosts and when the workload is balanced through the migration it leads to the
high migration overhead. As a result, the inappropriate workload distribution surges
application execution time. Therefore, there is a need of a solution that should efficiently
manage the CPU utilization (CPU load) for initial placement to minimize number of VM

migrations.



1.4 Statement of Objectives

In this section the problem of inefficient distribution of workload while the allocation and
reallocation of VM is addressed. The aim of the research is to minimize the inefficient
distribution of load during the placement of VM and to enhance the execution time of

VMs. The objective of the research are as follows.

e To critically review the current state-of-the-art cloud load balancing schemes while

the placement of VMs to gain insight to the performance limitations.

e To investigate the workload distribution of cloud load balancing schedulers to re-
veal inefficiencies in existing schemes without considering the CPU utilization and

current load while the placement of VMs.

e To design and propose a multi resource-based scheduler to minimize the deficien-
cies of current cloud schedulers based on CPU utilization, and application execution

time while the placement and migration of VMs.

e To evaluate the performance of proposed multi resource based algorithms and com-
pare it with the state-of-the-art current VM placement cloud scheduler, and to vali-

date the developed mathematical model.

1.5 Proposed Methodology

The proposed methodology is highlighted in Fig. 1.3, which is followed to conduct this
research. The research is divided into four objectives such as literature review, problem
analysis, design of static and dynamic cloud load balancing scheduler, evaluation of the
proposed scheduler, and validation of the proposed solution.

In the first phase, existing literature work is extensively reviewed in order to highlight
the strength and weaknesses of state-of-the-art cloud load balancing schemes. The load

balancing schemes are categorized based on the proposed thematic taxonomies. Based on
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the proposed taxonomies the existing schemes are compared with respect to the objective
functions to highlight the commonalities and differences among them. Moreover, the

issues that affects the performance of existing schemes are also discussed.
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Figure 1.3: Research Methodology

The second phase is described as the problem establishment phase. In this phase,
research problem is investigated by analyzing the performance of current cloud scheduler
while the placement of VMs. The benchmark OpenStack filter scheduler along with the
set of filters including Ram filter, Availability zone filter, Core filter, All-Hosts Filter filter
is used to investigate the CPU utilization and application execution time when the VM
are deployed using the 100% CPU resources. The performance parameters are examined
based on the static and random load distribution factors while the placement of VMs to
PMs. Moreover, in order to fully utilize the CPU resources a CPU intensive algorithm
is designed. Besides, the analysis is exercised to reveal the performance of current cloud

scheduler based on CPU utilization and application execution time.
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In the third phase of the research multi resource-based scheduler is proposed to min-
imize the deficiencies of the current cloud scheduler. The basic objective of the proposed
scheduler is to minimize the application execution time and efficiently utilize the CPU
resources. The proposed multi resource-based scheduler is comprised with two modules
named as global decision engine and local decision engines. The local decision engine
is consists of two algorithms including load analyzer and compute load. These algo-
rithms are implemented at compute nodes where another algorithm is designed for global
engine and represented as load filter. To reduce the application execution time, the pro-
posed scheduler is designed for the static (initial VM placement) and dynamic (and VM
migration) scenarios. Based on the static algorithm the proposed scheduler balance the
CPU utilization and minimize the application execution time. In contrast, for dynamic
algorithm the CPU utilization is balanced at the deployment time of VM and the CPU
capacity is increased and affects the application execution time at time interval t the VM

is migrated to the least loaded host to efficiently utilize the CPU resources.

In the fourth phase, the significance of the proposed scheduler is evaluated while
conducting the real experiments using the benchmark application. The behavior of the
proposed multi resource-based scheduler is verified based on the benchmark application.
The performance of the proposed static scheduler is analyzed based on its CPU utilization,
application execution time, and the sequence if the VM deployments when the resources
are homogeneous and heterogeneous based on the RAM availability and number of vC-
PUs associated to each VM. Further, the behavior of dynamic resource based scheduler is
evaluated based on the number of migrations, CPU utilization, and application execution
time. In addition, the empirical date is conducted while varying the number of vCPUs and
workload associated to each VM. In this last phase the findings of the proposed sched-

uler algorithms are compared with existing solution to validate the efficiency of proposed
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scheduler. Moreover, the scheduler is validated using the statistical based analysis by
conducting the average, mean, and standard deviations results. In contrast, a mathemati-
cal model based on the linear programming of static and dynamic algorithms is proposed
in order to efficiently balance the CPU utilization among physical servers. Furthermore,

the effectiveness of mathematical model is validated by experimentations.

1.6 Scope

Virtualization technology assists to achieve computing-as-a-service vision of cloud-based
solutions. VM process helps to achieve various management goals, such as, load balanc-
ing, fault tolerance, and green cloud computing. It transfers system state from one server
to another to offer uninterrupted services. However, VM migration is not free and con-
sumes a significant amount of sender and receiver resources in terms of power to carry
out migration process successfully. This study does not consider the power consumption
constraints when the VMs are allocated on the physical hosts. In addition, this research
consider the effect of optimal combination of multi resources such as number of vCPUs,
RAM and CPU load through VM provisioning for the maximum resource utilization.
This study does not reflecting the effects of I/O resources and network communication
pattern. Therefore, the scope of this research is limited to the VM eflicient distributions

of VMs while satisfying the load balancing constraints.

1.7 Thesis Structure

The thesis entitled as “Distribution of Virtual Machines using Static and Dynamic Load
Balancing in Cloud Computing” comprises a detailed study of this research. Therefore,
for the better understanding to readers this research is structured based on seven chapters.

The thesis outline is presented in Fig. 1.4.
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Figure 1.4: Thesis Organization

Chapter 2 presents the state-of-the-art cloud load balancing schemes. This chap-
ter presents the detailed discussion and review on the current load balancing techniques
and classify these techniques into static and dynamic load balancing categories based
on the characteristics presents in the thematic taxonomy. The strength and weaknesses
of each scheme is highlighted based on the objective functions stated in the taxonomy.
Furthermore, a critically qualitative analysis is presented for the static and dynamic load
balancing schemes. This chapter compose the details taxonomy based on the issues and
challenges regarding to the cloud resource management. This chapter highlights the sev-
eral open research issues as well as the discuss issues that are addressed in this research
work.

Chapter 3 analyze the issues of legacy load balancing method. The OpenStack cloud is

used as a benchmark for the distribution of the resources in the cloud. The performance
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overhead in terms of CPU utilization and application execution time is analyzed to gather
insight the computational limitations while varying the number of resources including
RAM, vCPUs, and disk space associated to VMs. The analysis presents that the exist-
ing study report the inefficient distribution of resources while the deployment of VMs.
Further, the performance analysis study reveal the need for an efficient distribution of the
resources within cloud.

Chapter 4 presents the proposed multi resource-based VM deployment solution to ad-
dress the issues of the legacy VM deployment methods. In this chapter the proposed
solutions static load balancing solution is described in detailed based on three algorithms
including load filter, compute load, and load analyzer. Based on the dynamic load balanc-
ing the dynamic multi resource based scheduler is proposed. The working of the dynamic
load balancing method is presented with the system flow diagrams. Further, the assump-
tions and constraints in terms of resource constraints, operational constraints, and load
balancing constraints are described in this study as a equation for the static and dynamic
load balancing solutions.

Chapter S shows the data collection methodology for the proposed solutions. The study
describes the detailed experimental setup accompanying with the benchmark and devices.
Further, the data collection method is also explained for empirical results for static and
dynamic solution. The validation model and its equation are implemented using A Math-
ematical Programming Language (AMPL) tool by using the gurobi solver. Besides, the
tools, and hardware level specifications are described to in order to perform the experi-
ments.

Chapter 6 validates the proposed solutions by comparing the results of empirical eval-
uations with the results of mathematical model. This study presents the effectiveness of
proposed solution based on (i) CPU utilization, (ii) number of migrations, and (iii) appli-

cation execution time. In this study, the performance of proposed multi resource based
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schedulers is also compared with the legacy benchmark application.
Chapter 7 concludes this thesis by revising the research objectives. This, study summa-
rizes the contributions of this thesis and highlights significance and limitations. Moreover,

the future research directions are also provided in this chapter.
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CHAPTER 2: LOAD BALANCING SCHEMES FOR CLOUD DATA CENTERS

This chapter briefly reviews the importance of cloud load balancing, and cloud resource
management. In this chapter, critical aspects and significant features of existing frame-
works are investigated through qualitative analysis. Moreover, this chapter critically re-
view the state-of-the-art of cloud load balancing schemes and present the a detailed the-
matic taxonomy, which covers the load balancing characteristics and classifies the exist-
ing literature. In order to compare the performance of existing load balancing schemas
critical parameters are considered from the literature. The comparison parameters are: (a)
reliability, (b) availability, (c) energy efficiency, (d) delay time optimization, (e) scalabil-
ity, and (f) latency. In addition, this survey provides a detailed taxonomy and discussion
of various open research issues and challenges based on selected functions in terms of (a)
resource selection, (b) resource allocation, (c) resource monitoring, (d) resource discov-
ery, (e) resource prizing, and (f) disaster management to pave the way for future research

directions.

This chapter is comprised of eight main sections. The essential background and ba-
sic terminologies are presented in section 2.1 in order to describe fundamental concepts
of cloud computing and virtualization. Section 2.2 discusses the importance of cloud load
balancing and presents a thematic taxonomy for load balancing characteristics. This sec-
tion compares and reviews existing state-of-the-art load balancing schemes based on static
and dynamic load balancing schemes to address the commonalities and differences among
them. Section 2.3 presents the necessary background of cloud resource management and
a review of substantial resource management techniques covering resource management
functions in terms of resource selection and allocation. Furthermore, the main features of

cloud deployment tools are explained in section 2.4. Section 2.5 presents a detailed the-
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matic taxonomy of open research issues and challenges that hinder designing optimized
resource management technologies for cloud environment. Section 2.6 discusses a brief
summary on load balancing schemes based on initial VM provisioning and migration to
analyze the most significant issues in cloud load balancing research domain. Finally, an

overview on findings and the complete chapter conclusion is presented in section 2.7.

2.1 Background

This section discuss the concept of the cloud computing and virtualization.

2.1.1 Cloud Computing

Information Technology (IT) industry has evolved from its birth in the last century into
one of the most prominent industry in today’s world. Along with its rapid growth, IT is
changing daily lifestyles and is becoming a technology enabler for many veteran indus-
tries and businesses (Liaqat et al., 2016). Cloud computing technologies have emerged
as a backbone of all IT services. Cloud computing is assembled with diverse computing
technologies such as grid and utility computing, high performance computing, network-
ing, virtualization, storage, distributed systems, automation and security, etc (Buyya et
al., 2009). With the assistance of cloud computing definition, elasticity is defined as the
creation of numbers of virtual machines instances depending on user’s demand. There-
fore, in order to fulfill the user demands cloud must provide the high performance gain

and at the same time must be beneficial for the CSP (Shaw & Singh, 2014).

Cloud computing provides a holistic storage solution for data storage in a remote
location using a third-party server. For instance, Google File System (GFS), BigTable,
Amazon’s Simple Storage Service (S3), Simple DB, Hadoop Distributed File System
(HDFS), and OpenStack, are available cloud storage applications that are accessed by

numerous types of clients (Xu, Zheng, Wu, Huang, & Xu, 2010). With the assistance of
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cloud computing definition, elasticity is defined as the creation of numbers of virtual sen-
sor instances depending on user’s demand. Therefore, in order to fulfill the user demands
cloud must provide the high performance gain and at the same time must be beneficial for
the Cloud Service Provider (CSP) (Shaw & Singh, 2014). Major characteristics of cloud

computing which are important in data analysis and processing, can be defined as follows:

e On-demand self-service: each cloud user can deploy and configure the cloud servers

and services himself, no interactions with service providers are necessary

e Multitenancy: the resources and costs are shared across a large community of cloud

users

e Scalability: an efficient and low-cost configuration and assignment of the system

resources according to consumer demand

e Easy system access: cloud resources and services are accessed through standard
(Internet) protocols, using standard web browsers regardless of their location and

platform, e.g., smart phones.

2.1.1.1 Cloud services

Cloud computing consists of a collection of service models (Mell & Grance, 2009), such
as PaaS (Dash et al., 2012), TaaS (Erdogmus, 2009), and SaaS (Grossman, 2009), which
are available over cloud layers (e.g client layer, infrastructure layer, application layer,
platform layer, and server layer) as presented in Fig. 2.1. At the infrastructure level, CC
provides a service to an end user by provisioning the servers, networks, storage and fun-
damental computing resources, and the user can deploy and run the software that includes
the applications and operating systems. Cloud computing offers a number of advantages
by allowing users to utilize platforms (e.g., middleware services and operating systems)
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for the deployment of user-created applications using the cloud providers’ supported lan-
guages, libraries and tools (e.g., Amazon, Google, and Salesforce) at low cost. At the
platform level, users have control of the deployed applications and configuration settings
of the environment hosted by the applications. In addition, cloud computing facilitates the
elastic utilization of resources in on-demand manner. However, the cloud service model

reduces delivery time and costs as well as improves flexibility and efficiency.

Cloud Operator

Cloud Management

[
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|

Figure 2.1: Cloud computing service model

2.1.1.2  Cloud Types
Cloud computing have four types of deployment models such as community, public, pri-
vate, and hybrid cloud (Dash et al., 2012), (Erdogmus, 2009). In a public cloud, resources

are dynamically provided to the general public on fine-grained and general third party pay
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the bill based on computing. Moreover, the popular services are public clouds, including
EC2, Amazon, Google App-Engine, S3 and Force.com. The publicly availability of these
services often called public cloud. In contrast, the infrastructure used for the particular
organization is known as a private cloud (Tolba & Ghoneim, 2015). It is hosted internally
or externally by the third party where the cost is divided on the several users not on the
general users. For example, EUCALYPTUS is a software environment which is used for
the deployment of the private cloud and has compatibility related concern with Amazon’s
EC2. Furthermore, it represents the extensible and modularized policy for the allocation
of resources. Currently, EUCALYPTUS supports the two simple types of polices such as,
round robin and greedy (Sotomayor, Montero, Llorente, & Foster, 2009). Hybrid cloud
is made up from two or more clouds like public, community or private cloud, which
provides the advantages of numerous deployment models. Private cloud is made for the

single organization. It is hosted internally and externally or managed by the third party.

2.1.2 Virtualization

Virtualization was devised as a resource management and optimization technique for
mainframes having scaleless computing capabilities. Virtualization in mainframes results
in efficient management of coarse-grained resources with limited overhead (Liaqat et al.,
2016). However, virtualization techniques have been able to make their way to multi-
core (Petrides, Nicolaides, & Trancoso, 2012) and commodity server designs (Egi et al.,
2010). The multi-core processor, blade server, and System on Chip (SoC) designs also
provide virtualization techniques opportunity for resource consolidation and optimiza-
tion where fine-grained resources are assembled to provide a virtual scalable platform for

cloud applications. Virtualization techniques benefits data centers in many ways, such as:
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Scalability: cloud users and applications view heterogeneous hardware and soft-
ware resources as a single scalable platform. Virtual devices are scalable in terms
of hardware resources. Server, memory, and I/O power can be added to a virtual

machine when its resource utilization nears 100%.

Consolidation and utilization: virtual resources can be easily consolidated over
few physical resources that results in higher resource utilization levels and energy

efficiency (Younge et al., 2011).

Isolation: performance and faults are isolated between applications of the same

resource (Uhlig et al., 2005).

Manageability: virtualization offers variety of resource management options such

as VM creation, deletion, and migration.

Robustness: virtualization leads to system robustness as clients spread across mul-

tiple VM.

Due to the aforementioned benefits, virtualization is globally adopted in cloud data

center environments (Goiri et al., 2012), (Ahmed, Gani, Khan, Buyya, & Khan, 2015). In

a virtualized data center architecture, each cloud client (application or user) is assigned

a chunk of data center resources. The data center resources close to the hardware plat-

form can be categorized into physical resource set and virtual resource set (Lenk, Klems,

Nimis, Tai, & Sandholm, 2009). The virtual resource set works as a management platform

over the physical resource set to provide the illusion of a single scalable platform to all

cloud clients. A hypervisor or Virtual Machine Monitor (VMM) is hardware independent

technology that manages virtual machines over heterogeneous hardware platforms. The

hypervisor is a set of computer hardware, firmware, and software that lies between the

hardware and the Operating System (OS). The hypervisor has the ability to initiate one or
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more than one OSes over a single hardware resource set (Younge et al., 2011). Inside a

virtualized data center, clients reside over a pool of virtual resource sets.
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Figure 2.2: Architecture of a virtual data center

When a new client request arrives at the cloud data center, it is forwarded by the
dispatcher to corresponding VMM. The dispatcher requests physical resources according
to the client SLA, pricing model, and application QoS requirements (Buyya, Garg, &
Calheiros, 2011), (Shiraz, Gani, Shamim, Khan, & Ahmad, 2015). Fig. 2.2 illustrates the
architecture of a virtualized data center consisting of multi-core servers. In a virtualized

data center architecture, multiple clients often share same hardware resources with the
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help of virtualization techniques. Moreover, hardware resources provisioned for a data
center client can be scaled dynamically according to varying workload. The resource
scaling can be done with a variety of virtualization methods such as VM creation, dele-
tion, and migration. A workload can be consolidated or migrated onto a lesser number
of resources using VM migration. The resultant resource set provides energy efficiency
and higher resource utilization. The CPU power along with other computing resources
such as memory and I/O can be scaled gracefully with the help of virtualization tech-
nologies (Younge et al., 2011). When a hardware resource is underutilized due to lesser
client requests, it represents and opportunity for resource consolidation. The workload of
underutilized hardware is transferred to another suitable hardware with the help of hyper-

visor. The workload consolidation and migration technique is depicted in Fig. 2.4.

Figure 2.3: Workload Consolidation and Migration
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Clouds adopt the virtualization concept for many reasons, such as a) server consol-
idation, b) applications’ adaptive and dynamic configuration, c) high availability, d) and
responsiveness (Foster et al., 2008). All virtualization features provide clouds a basis
to meet SLA requirements (Ahmad et al., 2015). To ensure the network performance
along with dynamic resource provisioning, virtualization tries to balance the load of the
whole system dynamically (Espadas et al., 2013) there is always a chance of over utiliza-
tion or underutilization of resources. Overloaded servers lead to performance degrada-
tion whereas under loaded servers cause poor utilization of resources. Due to inefficient
distribution of load more heat will be generated by the overloaded servers which in turn
increase the cost of cooling system and substantial emission of CO2 contributing to green-
house effect (Shaw & Singh, 2014). Therefore, there is a need to provide right amount
of resource dynamically to the applications running in virtual machines and develop a
efficient load balancing technologies not only for reducing operational cost but also for

decreasing its influence on system’s reliability in order to meet the QoS requirement.

2.2 Cloud Load Balancing

Load balancing, a deployed function, plays its vital role in cloud and cloud data center do-
mains for efficient resource management (Chaczko et al., 2011). Load balancing ensures
even distribution of resources among a set of users in a uniform way such that underly-
ing servers do not become overloaded and idle at any time within cloud operation time
line. Overlooking load balancing establishment abruptly decreases system throughput
due to overloaded servers and ultimately leads to SLA violation. It has become an inte-
gral part of all distributed internet based systems as distributed computing comes with the
challenges of high resource demands that overload servers. Load balancer increases the

capacity and reliability of applications by decreasing the burden on a server. In addition,
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load balancing is an essential aspect in Internet based all others distributed computing
tasks (Foster et al., 2008). Cloud service providers (CSP) also provide the efficient load
balancing solutions to the users in their own cloud computing platforms. Furthermore, an
inter CSP load balancing algorithm is required to build the low cost and infinite resource
pool for the customers (Mondal et al., 2012). Toward this goal numerous load balancing
schemes such as Minimum Execution Time (MET) (Armstrong et al., 1998), Min-Min
scheduling (Etminani & Naghibzadeh, 2007), Cloud Analyst (Sefraoui et al., 2012) ex-
ists in literature and a comprehensive study is also done with and First Come First Serve
(FCFS) and Round-robin. The main goal of job scheduling is to achieve a high perfor-
mance computing and the best system throughput. Traditional job scheduling algorithms

are not able to provide scheduling in the cloud environments.

2.2.1 Taxonomy of State-of-the-art Cloud Load Balancing Schemes

This section define the thematic taxonomy of the classification and characterization of
cloud load balancing algorithms used to attain the various objectives such as, fair allo-
cation, efficient utilization of resources, cost effectiveness, scalability and flexibility, and
resource prioritization. Load balancing algorithms are characterized based on ten char-
acteristics, namely (a) environment, (b) system topology, (c) VM placement function,
(d) task scheduling, (e) resource allocation, (f) provisioning decision, (g) cloud type, (h)

cloud resource type, (i) load balancing policies, (j) objective function.

2.2.1.1 Environment
The environment of the load balancing algorithms states that weather the nature of algo-
rithms is static or dynamic. In load balancing algorithms, environment is either mobile

or immobile based on run time state information to make efficient decision in order to
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share the system load. In static load balancing, algorithms assumes that all the prior
knowledge of the nodes related to network resources, computing resources, memory, pro-
cessing power, and storage capacity are known and provided. Static algorithms assign the
tasks to the nodes based on their new request’s acceptance capabilities. The attractive-
ness of the static algorithms is that it offers minimum execution time. However, it has
two major limitations. Firstly, in static approach load balancing decisions are taken into
account at compile time probabilistically or deterministically and cannot respond at run-
time. Secondly, it assumes all the prior information of nodes will remain same. Therefore,

such an assumption may not suitable for distributed environments. In contrast, dynamic
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approaches consider the network bandwidth, and nodes properties at runtime. Most of
the dynamic load balancing algorithms rely on the combination of information based on
prior gathered knowledge in the cloud and runtime properties of the nodes. These algo-
rithms can allocate and dynamically reallocate the tasks based on gathered and collected
attributes of the system. The limitation of this approach is that continuous monitoring of
the nodes and task progress is required which is hard to implement. However, dynamic
schemes are more accurate in order to provide the efficient load balancing. Therefore,
dynamic scheme is used in modern load balancing techniques because of its flexibility

and robustness.

2.2.1.2 Allocation method

Allocation method is defined as the mapping of the tasks to the cloud resources based on
demands. In cloud, resources must be allocated in such a manner that no node/ host be-
come under loaded and over loaded and all the available resources do not endure any kind
of wastage in terms of core, bandwidth, and memory etc. Therefore, mapping is further
classified into two categories such as (a) VM mapping on host, and (b) task’s mapping
on VMs. VMs are deployed on physical hosts. Based on the physical host capabilities
and availabilities several VMs can mapped on a single host. Host is accountable in order
to allocate the number of core to VMs. Algorithms with the VM mapping on hosts are
provider oriented and as well as customer oriented. In allocation policy to ensure that
characteristics of host and VM are not mismatched is challenging task. Moreover, better
allocation policy provide the efficient utilization of resources and minimize the makespan
time of the resources. Cloud users can execute their VM efficiently with limited number
of physical machines. Hence, this approach will lead to an efficient utilization of re-

sources available to facilitate maximum computing with minimum physical data centers
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infrastructures. Besides, based on task’s mapping on VMs applications are executed on
VMs. For the completion of task each application requires a certain amount of energy.
So, VM must offer the required amount of energy in order to accomplish the mapped
tasks. Moreover, based on VM availability and configuration tasks should be mapped on
appropriate VMs. The objective of that policy is to achieve the minimum execution time

with high performance.

2.2.1.3 Task Scheduling

Task scheduling is done when the resources are allocated to the cloud. Task scheduling is
described as a method in which allocated resources are offered to end users (weather the
resources are available based on sharing or fully available until task is complete). In cloud
environment, it provides the multiprogramming capabilities. Moreover, task scheduling
is further classifies in two modes such as, a) space sharing, and b) time sharing. Both
hosts and VM provisioned to users based on time shared mode or either in space shared
mode. In space shared scheduling one task is scheduled to the VM at a given instance of
time and after its accomplishment another task is assigned to VM. Moreover same strat-
egy is used to schedule the VM onto hosts. This policy behave same as the first come first
serve algorithm (FCFS). This allocation policy enables the task units to be scheduled at an
earlier time, but significantly affecting the completion time of task units that are ahead the
queue. In Time-Shared scheduling policy it schedule all tasks on virtual machine at the
same time. It shared the time among all tasks and schedule simultaneously on the virtual
machine. This policy is also used to schedule the virtual machine on the host. The concept
of round-robin (RR) scheduling algorithm is used in this policy. Space shared scheduling
policy shows better results as compared to Time-shared scheduling policy when number

of tasks are increased.
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2.2.1.4 Provisioning decision

An algorithm is centralized if the parameters necessary for making the load balancing
decision are collected at, and used by, a single resource i.e. only one resource acts as
the central controller and all the remaining resources act as slaves. The centralized ap-
proach is more beneficial when the communication cost is less significant e.g. in the
shared-memory multi-processor environment. Its limitation is single point of failure and
non-scalable. However, in decentralized approach all the resources are involved in mak-
ing the load balancing decision. In Distributed approach, nodes individually forms their
particular load vector by gathering the load data of other nodes. Based on the local load
vectors the conclusions are accomplished locally. In addition, for the widely used dis-
tributed systems such as cloud computing this method is more appropriate. Decentralized
algorithms are more scalable and have better fault tolerance. Hierarchical load balancing
is presented with the multiple number of tiers of cloud while the load balancing decision.
Besides, these schemes works based on the modes of master and slave where master node
is responsible for all the slaves nodes in order to collect their data by using the light weight

agent processes.

2.2.1.5 Load balancing policies

An algorithm for the load balancing problem can be broadly categorized in terms of four
policies in terms of (i) location policy, (ii) transfer policy, (iii) threshold policy, and (iv)
information policy. Moreover, the location policy it is the policy that affects the finding
of a suitable node for migration. The common technique followed here is polling, on a
broadcast, random, nearest-neighbor or roster basis. Transfer policy it is that which de-

termine whether a node is suitable for participating in a process migration. One common
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technique followed is the threshold policy, where a node participates in a negotiation only
when its load is less than (in destination-initiated algorithm) or greater than (in sender-
initiated algorithm) a threshold value. Selection policy it is the policy that deals with the
selection of the process to be migrated. The common factors which must be considered
are the cost of migration (communication time, memory, computational requirement of
the process, etc.) and the expected gain of migration (overall speedup of the system,
etc.). Information policy it is that component of the algorithm that decides what, how and
when the information regarding the state of the other nodes in the system in gathered and
managed. They can be grouped under demand-driven, periodic, or state-change-driven

policies.

2.2.1.6  System topology

In order to understand the functionality of load balancing the schemes are classified into
the topology depended and independent categories. Topology depended algorithm is de-
scribed as the mechanism which is designed for the specific topology where its function-
alities and logics are predefined. The topology depended algorithms are further classified
into two groups names as synchronous and asynchronous algorithms. Synchronous al-
gorithms are appropriate for exceedingly parallel schemes whereas the asynchronous are
suitable for parallel systems because of their local behavior. In contrast, the independent
algorithm are not designed for the specific topologies and their functionalities are also not
defined in advance. Moreover, the independent algorithm does not face the compatibility
issues based on topology designed parameters. Furthermore, the drawback of topology
depended algorithm is that it leads to high communication overhead as compare to inde-

pendent algorithms.
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2.2.1.7 Objective function
The objective function defines the aim of state-of-the-art SC frameworks. The metrics on

which the existing load balancing techniques have been measured are discussed below:

e Reliability: It can be defined as the efficiency of the system. This has to be im-
proved at a reasonable cost, e.g., reducing the response time though keeping the

acceptable delays.

e Resource Utilization: It is used to ensure the proper utilization of all those re-
sources, which comprised the whole system. This factor must be optimized to have
an efficient load balancing algorithm. It should be maximum for an efficient load

balancing system.

e Scalability: The quality of service should be same if the number of users increases.
The more number of nodes can be added without affecting the service. It is the
ability of an algorithm to perform uniform load balancing in a system with the
increase in the number of nodes, according to the requirements. Algorithm with

higher scalability is preferred.

e Execution Time: This metric is used to estimate the total time required to execute
the specific application. Minimum execution time is necessary for overall system

performance.

e Overhead: Overhead associated with any load balancing algorithm indicates the ex-
tra cost involved in implementing the algorithm. Overhead Associated determines
the amount of overhead involved while implementing a load-balancing algorithm.
It includes overhead due to movement of tasks, inter-processor and inter-process

communication. It should be as low as possible.
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e Fault Tolerance: It measures the capability of an algorithm to perform uniform load
balancing in case of any failure. A good load balancing algorithm must be highly

fault tolerable.

e Migration Time: It is defined as, the total time required in migrating the jobs or

resources from one node to another. It should be minimized.

e Response Time: It can be measured as, the time interval between sending a request

and receiving its response. It should be minimized to boost the overall performance.

2.2.2 Review of load balancing schemes for cloud environments
This section briefly describes the state-of-the-art load balancing schemes. Load balancing

algorithms are further categorized as static and dynamic load balancing techniques.

2.2.2.1 Static load balancing schemes

This section addresses state-of-the-art load balancing algorithms based on static load bal-
ancing. Moreover, Table 2.1 represents the load balancing schemes along with their ob-
jectives, strengths, and weaknesses as a future directions. Besides, based on the taxonomy

the comparison of static load balancing algorithms is explained in Table 2.2.

Author in (Samal & Mishra, 2013) presented the static load balancing algorithm.
This study uses the round robin algorithm for the allocation of VMs on PMs. The main
objective of this scheme is to equally distribute the load to each PM. The process of
round robin scheduling in cloud is very similar to the round robin scheduling in a process
scheduling. While the deployment of VMs, the scheduler randomly selects the first node
and then allocate the VMs to PMs in a circular motion until one VM is allocated to each

node and then the scheduler return to the first node again. The advantage of this scheme
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Table 2.1: Summary of Static VM placement schemes in a cloud environment.

Reddy, 2014)

sources in terms of RAM and VM is not selected for
the allocation of previous request

pletely and properly

Schemes Description/ Objective Strength Weakness
(Kaur & Kaur, | The states of VMs are recorded in record table in | TLB attempts to equally | Do not consider the cur-
2015) terms of idle or busy states. The -1 is returned when | distributes the load | rentload of VMs
the record is not matched in table and request is | among VMs
queued until value is not 1
(Domanal & | Requests are assigned to the VM which available re- | VMs are utilized com- | Overlooks the experi-

mental setup along with
its parameters

Singh, 2014)

ted to each VM. Task are allocated to more powerful
and least loaded VMs

sumption and load of
available VMs

(Ashwin, Do- | Any available VM is selected for the assignment | Job processing time | Not a fault tolerant solu-
manal, & Gud- | of request. This algorithm handles the overloading | and response time is | tion when single node is
deti, 2014) while the placement requested to the VMs enhanced failed

(Shaw & | Based on existing processing power weight is allot- | Consider the energy con- | Weight consignment

maximize the complex-
ity of algorithm

(Gautam &
Bansal, 2014)

Weight is allotted to each VM based on its power
capacity. Maximum number of requests are assign
to the VM which is associated with high power

Efficient resource uti-
lization

Overlooks the applica-
tion processing time

(Samal &
Mishra, 2013)

Only first request is assigned to the randomly se-
lected VM. The rest of the requests are allocated in
circular order

Equally distribute work-
load in circular order

Execution time is not
considered

(Adhikari &
Patil, 2013)

This algorithm is based on two rules : i) Retiring
State of VM and ii) Retirement Threshold and mi-
gration of VMs

Reduces the power con-
sumption cost

Does not scale up for
large data centers

(Domanal &
Reddy, 2013)

For the request allocation the record table is
searched from the next to already allocated VM

Enhance the response
time

While the placement of
the request state of index
table may change

(H. Chen et al.,
2013)

Similar to the min-min algorithm the smallest job’s
completion time is calculated through the maximum
loaded resources on each PM

Minimize the application
completion time and bal-
anced the load

While scheduling does
not consider the priority

(James &
Verma, 2012)

VM allocation is like Throttled but based on prior-
ity which calculated using CPU speed and memory
capacity of VM

Appropriate for hetero-
geneous cloud environ-
ment

Priorities are predefined

(Elzeki et al.,
2012)

Similar to min-min algorithm where are jobs with
the maximum execution time are completed first

Decreases the makespan

Smallest tasks have to
wait for long time

(Kokilavani
& Amalarethi-
nam, 2011)

The smallest job is allocated to the fastest resources.
Once the allocation process is complete the job is
detached from the list and again the same process is
repeated

Efficient algorithm

Does not consider the
existing load

(Bramson, Lu,

Jobs are randomly assigned to available VMs

Efficient algorithm

Not considered the cur-

& Zhao, 2010)

where at first stage the tasks are received at request
manager and sent it to service manager in second
stage. The service manager allocate them to the ser-
vice nodes for their execution as sub tasks

RAM is considered, en-
hance the task execution
time

&  Prabhakar, rent load of VMs
2010)

(S.-C. Wang et | The selects jobs are assigned to the available VMs | Each VM is reserved | Overlooks the execution
al., 2010) based on random selection criteria into busy state time of tasks

(Hu, Gu, Sun, | The proposed model is divided into three sub models | Availability of VM and | Overlooks the node se-

lection for the compli-
cated tasks

(Rahmeh,
Johnson, &
Taleb-Bendiab,
2008)

TAt a specific node the sampling walk is started and
move forward by selecting the random neighbors.
Moreover for the distribution of load the last node
elected

Proposed a suitable
decentralized  scheme
which is suitable for

large scale networks

Not appropriate for dy-
namic environments

is that it allocates the equal number of VMs to each PM, which ensures the fairness. In
contrast, this algorithm overlooks the resource exhaustion of a specific node based on
the circular deployment and before moving to the next node. In addition, this algorithm
performs well when the workload nature is uniform on each VM. This algorithm is not
suitable when the workload nature is non-uniform in this situation some nodes get lightly
loaded and some get heavily loaded.

Authors in (S.-C. Wang et al., 2010) proposed the static load balancing algorithm. For
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the resource deployment, OLB algorithms tries to keep every singles node busy and deals
in random order with the non-executed tasks to the current available nodes. Without
providing the satisfactory results this algorithm deals with the balanced load scheduling
technique. Moreover, the positive aspect of OLB algorithm is that it provides the work-
load to the nodes in free order. In contrast, the drawback of that technique is that does not
compute the current execution time for every single node.

The proposed algorithm computes the completion and execution time of unassigned tasks
thats waits in queue (Kokilavani & Amalarethinam, 2011). Authors focused on the static
load balancing algorithm, therefore, resources related to the tasks are known in advance.
Min-Min algorithm algorithm first deals with the tasks which have the minimum execu-
tion time by allocating them to the processor according to the capability of task comple-
tion time. In this algorithm the task with minimum time value is scheduled to the corre-
sponding machine. After task assignment the execution time of the remaining resources
is updated for further allocation. In addition, completed tasks are removed from the list
after their completion when assigned to machine. The advantage of that algorithm is that
it performs well when each task has the minimum execution. The negative point of that
algorithm is that the tasks with the maximum execution time have to wait for unspecified
period of time until the small tasks are not completely executed. The major drawback of
this approach it leads to starvation when deals with tasks having the maximum execution
time.

Max-min algorithm is vise-versa to the min-min algorithm. Min-min algorithm first deals
with the task which has minimum execution time. In contrast, Max-min algorithm first
handles the job which has maximum execution time (Elzeki et al., 2012). Moreover, in
that algorithm the task execution time is known in advance. The methodology of the task
selection and assignment is same as presented in (Kokilavani & Amalarethinam, 2011).

In Max-min after the execution of jobs with higher time are completed first and removed
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from the task list. Moreover, this algorithm presents the enhanced version of min-min
algorithm. In order to reduce the execution time of meta-tasks contains homogeneous
tasks are allocated on same hosts. This approach improves the efficiency of the scheme
by adapting the opportunity of concurrent execution of tasks on resources.The drawback
of algorithms is that the small tasks have to wait for long time.

Weighted round robin is the extended version of round robin algorithm (Gautam & Bansal,
2014). I weighted round robin weight is allocated to each VM based on their capacity.
Based on the associated weightage higher capacity VMs are allocated with multiple num-
ber of tasks. The weighted round robin algorithm performs well based on the processing
capability of higher capacity VMs. Though, this algorithm leads to imbalance load among
servers if the loads on VMs vary highly. Therefore, there is a possibility that the largest
request with maximum execution time may be allocated to same VM. The shortcoming
of that technique is that it does not consider the length of the task in order to select the
appropriate VM.

The proposed algorithm scans the VMs and jobs which are listed in queue for execu-
tion. The objective of the algorithm is to assigned the queued up job to the available
VMs (Domanal & Reddy, 2013). Proposed load balancer frequently examine the over-
loaded situation of the VM and based on the load conditions distributes the some of its
jobs to another VM which is least loaded in order to make the equal distribution of load.
This load balancer manage the list of allocated VMs which helps to identify that VMs are
free and available to host the new jobs. The performance analysis of the proposed algo-
rithm is done based on the cloud analyst simulations. The advantage of this algorithm is
that it tries to improve the processing time and response time of task by picking it when
there is a match available.

Authors in (Kaur & Kaur, 2015) proposed the throttled Load Balancer algorithm. This

algorithm manage record of idle and busy states in an index table of VMs. In order to
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allocate the request to suitable VM, server and clients make request to the data center
to perform recommended task. The data center send requests to load balancer regarding
the distribution of VMs. The load balancer identifies the VM id in the index table from
top until the requested VM is matched and after the identification process load balancer
update to the data center for the requested VM deployment. Moreover, the load balancer
sent -1 If the suitable VM is not matched. In addition, the acknowledgement is sent to
data center after the completion of the allocated task to VM. The data center apprised to
load balancer in order to de-allocate the same VM which has completed its assigned tasks
and reallocate it for the next jobs.

Proposed algorithm estimates the total execution tine in three phases based on (i) VM
deployment, (ii) task allocation to VM’s, and (iii)) VM reallocation process once the as-
signed task is completed (Shah, Kariyani, & Agrawal, 2013). This algorithms estimate
the throughput based on the total number of assigned tasks to VMs within the required
time-span without considering the third phase of VM reallocation. The positive point of
this algorithm is that it enhance the performance by providing the on-demand resources.
Moreover, it minimize the rejections rate of the submitted requests. The disadvantage of
this algorithm is that is overloaded the initial deployed VMs and under utilizes the VMs
which are deployed at the end.

This study presents the load balancing approach with the consideration of uniform load
balancing among VMs and the availability of VMs based on requests (Domanal & Reddy,
2013). Proposed study focus on the two main objective. First one is depicted as a response
time which is required for the task allocation and second one is described as the load
distribution among the existing VMS. Based on throttled algorithm, modified throttled
algorithm also manage the index table with the records of VM with their states. The first
VM selection procedure is same as described in (Shah et al., 2013). Afterward, when next

request is arrived, VM to the index next to the already allocated VM is selected based on
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the idle or busy states of VM. This algorithm maximize the response time as compared to
throttled. The shortcoming of this algorithm is that in index table while the deallocation
of VMs the states of VM may change. Therefore, it is not beneficial to allocate the new
request using the next to assigned VM technique. There is a need to focus on the focus
on the data structures while managing the index tables for the allocation of new tasks.
The enhanced version of throttled algorithm is represented in (Bhadani & Chaudhary,
2010). Based on the priority of VMs the state table is also maintained in this algorithm
similar to throttled algorithm. The priority is computed based on the RAM capacity and
speed of CPU. The VMs with high priorities will selected first by using the high priority
based selection criteria. Moreover, if the selected VM is busy then it neighboring VM
is selected and the process will continue until the VM is availability is not checked in
whole table. Proposed algorithm only balanced the load in heterogeneous environments
and leads to inefficient deployment when number of requests and increased because all
request are entertained at central load balancer. In addition, in this scheme the priorities
are predefined and calculated using a static method and the priorities are not modified
after the allocation of jobs.

This scheme handles the allocation of requests at VM level (James & Verma, 2012).
Information about each VM requests that are allocated to each VM is handled by this
algorithm. While the allocation of requests the proposed algorithm selects the VM with
the least load and if there are number of VMs are chosen with the same load the Ist
VM is identified for the placement of request. Proposed algorithm address the problem
of (Bhadani & Chaudhary, 2010) algorithm and update the load value after the allocation
of requests to the VM. In contrast, proposed algorithm does not assign the priorities to
the VMs. Moreover, in order to handle the load the id of specific VM where the request
is allocated is send to the active load balancer. The proposed algorithm focuses on the

current load value and overlooks the load current load at host level. Moreover, the energy
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consumption parameter is not considered while the allocation of requests at VM level.

Table 2.2: Comparison of state-of-the-art static load balancing schemes in a cloud envi-
ronment

Algorithm Parameters Resources Task schedul- | Objective Allocation System topol-
used considered ing functions method ogy
(Kaur & | Bin Packing memory, net- | time-share resource  uti- | VM-level dependent
Kaur, 2015) work, lization
(Gautam Constraint memory and | space-share resource host-level depended
& Bansal, Program- I-O utilization,
2014) ming scalability
(Ashwin et | Stochastic memory as a | time-share response time VM-level independent
al., 2014) integer pro- constraint
gramming
(Domanal & | Bin Packing memory time-share response time VM-level -
Reddy, 2014)
(Shaw & | Bin Packing CPU space-share energy con- | host-level dependent
Singh, 2014) sumption
(Samal & | Constraint memory space-share resource  uti- | host-level dependent
Mishra, Program- lization
2013) ming
(Adhikari & | Constraint CPU, mem- | time-share energy con- | host-level dependent
Patil, 2013) Program- ory sumption
ming
(H. Chen et | Bin Packing CPU, mem- | time-share application ex- | host-level dependedt
al., 2013) ory ecution time
(Domanal & | Bin Packing memory time-share resource  uti- | VM-level -
Reddy, 2013) lization
(James & | Bin Packing memory space-share resource  uti- | VM-level dependent
Verma, 2012) lization
(Elzeki et al., | Genetic memory, space-share overhead host-level -
2012) Algorithm storage
(Kokilavani Genetic memory space-share response time host-level independent
& Algorithm
Amalarethi-
nam, 2011)
(S.-C. Wang | Bin Packing memory time-share reliability VM-level independent
etal., 2010)
(Hu et al, | Constraint memory, - scalability host-level dependent
2010) Program- storage
ming
(Bramson et | Stochastic memory space-share scalability VM-level independent
al., 2010) bin packing
(Rahmeh et | Genetic memory space-share fault tolerant host-level dependent
al., 2008) Algorithm

The extended version of (James & Verma, 2012) is presented in (Domanal & Reddy,
2014). Upon the request placement to VM all the VMs availability is checked from the
search table. If the VM is not available and others VM which are not selected in the
previous assignment will be selected for that request and the least loaded VM is selected
from table. Moreover, the proposed scheme not used the VM which is assigned to the
request in preceding assignment. As compare to (James & Verma, 2012) the proposed
algorithm efficiently utilize the VMs. In order to check the subsequent minimum loaded

VM a task is evenly distributed to equally loaded VMs and the least loaded VM with the
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high processing power is selected regardless of the 1st VM. Moreover this algorithm not
consider the statistic that whether it is used in the latest iteration or not. In contrast, using
this algorithm most of the VMs are taking maximum time for the request allocation along
with the greater response time. Moreover the proposed work not clearly defined how the

least loaded VM selection policy works.

2.2.2.2 Dynamic load balancing schemes
This section discusses the state-of-the-art load balancing algorithms based on dynamic
load balancing. Moreover, Table 2.3, and Table 2.4 compares the load balancing schemes

based on their their objectives, strengths, and weaknesses.

Table 2.3: Summary of dynamic load balancing schemes in a cloud environment

Algorithm Objectives Strength Weakness
(Ghribi et al., 2013) To reduced the energy consumption while the | Reduced energy con- | Need for extension to
scheduling of VMs in cloud data centers sumption multiple resources

(Nicolae & Cappello,
2012)

To efficiently manage the energy usage in cloud
data centers

Reduced the number
of APMs, Improved
CPU utilization

Overhead of
searching spaces

large

(M. Chen et al., 2011)

To control the size of VM placement in cloud

Reduced the number
of APMs & O (1) ap-
proximation

Need for extension to
multiple resources

(Mishra
2011)

&  Sahoo,

To efficiently place the VMs and to mitigate the
overhead using the vector based approach

Considered the migra-
tion overhead

Overlooks the details
of experimentations

(Guo et al., 2010)

To guarantee the efficient bandwidth rate for the
virtualized data centers

Reduced energy con-
sumption and network
traffic

More VM migration
cost

(Beloglazov & Buyya,
2010)

To efficiently utilize the energy while the allo-
cation of resources

Reduced cost of relo-
cation

Uses slightly more
number of bins

(Wood, Shenoy,
Venkataramani, &
Yousif, 2009)

To detect and identify the hotspots, and recon-
figuring/ remapping VMs when required

Hot-spot detection &
mitigation, Load bal-
ancing

VM resizing & Migra-
tion overhead

(Stage & Setzer, 2009)

To efficiently manage the network utilization by
adapting the migration concept

Meets SLA targets

Need for extension to
multiple resources

(Bobroff et al., 2007)

To dynamically balance the workload to man-
age the SLA violation

Reduced the number
of APMs, Reduced
migration cost

Slightly slow execu-
tion

(Kang & Park, 2003)

To address the problem of variable size bin
packing

Hot-spot  mitigation,
Load balancing

SLA violation

Authors in (Nicolae & Cappello, 2012) have used a testbed of a head node and 5 VM
hosts to study the effects of VM live migrations in a data center hosting Web 2.0 applica-
tions. The VM hosts run olio that defines a simple Web 2.0 application while Faban load
generator is used for workload generation. A downtime of 3 seconds was observed near

the end of a 44 second migration. Although no request was dropped during the downtime,
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the delay does affect the service level agreement (SLA). While each VM had a 2GB of
memory allocation in the experimental setup, in real data center environments the size of
a VM can scale up to hundreds of GB. Therefore the effects of migrating large VM’s can
be more severe. Furthermore the results showed that 2 VMs migrations occurring in close
time proximity lead to sever SLA violations. Hence the modeling of live migration as a
queuing system comes under consideration.

(Stage & Setzer, 2009) discusses the impact of VM live migration on the network re-
sources. The proposed architecture consists of VM workload classifier, an allocation
planner, a nonconformance detector, and a live migration scheduler. The VM workload
classifier assigns the workload to a relevant cluster class based on the attributes of the
workload. The allocation planner determines the resource bottlenecks that can occur af-
ter an allocation. The non-conformance detector classifies the bottlenecks detected on
the basis of pre-defined performance thresholds. The migration requests are made by al-
location planner and non-conformance detector to the migration scheduler. A migration
scheduler determines the optimal schedule for the migrations, based on the knowledge of
their duration, starting time and deadline. The optimal scheduler schedules the live mi-
grations in such a way that the network is not congested by the VM live migration load.
The live migrations are also fulfilled in time. The following diagram shows the differ-
ence between an uncontrolled and controlled migration scheduling algorithm. The lower
timeline depicts a controlled migration in which three migration requests are executed as
compared to two requests in an uncontrolled environment.

Authors in (Beloglazov & Buyya, 2010) have proposed that live migration of VMs can
be used to concentrate the jobs on a few physical nodes so that the rest of the nodes can
be put in a power saving mode. The allocation of VMs is divided into two sub-problems:
(a) the admission of new requests and (b) optimization of current VM allocations. The

allocation, of new requests for VMs, is done by sorting all the VMs in a Modified Best

41



First Decreasing (MBFD) order with respect to the current utilization. The VM is then
allocated to a host based on the least deterioration in the power consumption among the
hosts. The current allocation of VMs is optimized by selecting the VMs to be migrated
on the basis of heuristics related to utilization thresholds. If the current utilization of a
host is below a threshold, then all the VMs from that host should be migrated and the host
is put in the power saving mode. Again the allocation of VMs to hosts is done by MBFD
algorithm.

A similar approach achieves energy efficiency with the help of Limited Look Ahead Con-
trol (LLC) (Kusic, Kephart, Hanson, Kandasamy, & Jiang, 2009). The LLC predicts the
next state of the system by a behavioral model that depends on the current state, environ-
ment input and control input. A profit maximization problem, based on the non-violation
of SLA and the energy conservation, is formulated to calculate the maximum number
of physical hosts that can be powered off. The optimization problem suffers the curse
of dimensionality as more control options and longer look ahead horizon are considered
during formulation. To avoid the curse of dimensionality, the problem is decomposed
into two sub-problems with respective sub-controllers. Although this approach caters for
most of the virtualized environment dynamics, such as SLA and energy efficiency, it does
not consider the effects of live migration on network dynamics.

In SecondNet (Guo et al., 2010), a central Virtual Data Center (VDC) manager controls
all the resources and VM requests. When the VDC manager creates a VM for the VDC,
it assigns the VM, a VDC ID and a VDC IP address, reserves the VM-to-VM and VM-to-
core bandwidths, as mentioned in the Service Level Agreement (SLA) for the application
using the VM. The inputs to the VM allocation algorithm are the m VMs and the m =
m bandwidth matrix R°. The output is m physical server and the 4 paths corresponding
to the bandwidth matrix R®. Cluster of servers are formed based on the number of hops

from one cluster to another. A cluster is chosen, Ck, such that: (a) it has more ingress and

42



egress bandwidth then that specified in R9 and (b) the number of servers in the cluster is
larger than the number of VMs i.e. m. A bipartite graph is formed from the VMs (m) and
physical servers in the cluster Ck. Mapping from VMs (m) are made to physical hosts in
Ck based on individual VMs memory, CPU and bandwidth requirements. A bandwidth
defragmentation algorithm is also devised to reduce inter-cluster bandwidth and improve
network utilization. A VM migration is scheduled if meets the following criteria (a) it in-
creases the residual bandwidth of the data center and (b) the bandwidth requirements can
be met by the cluster where VMs are reallocated. Simulations demonstrate that the sys-
tem provides a guaranteed bandwidth and high network utilization. This approach does
consider the residual bandwidth for VM allocation optimization, but it does not consider
the bandwidth required during the process of reallocation.

A study to measure the impact of virtualization on network parameters, such as through-
put, packet delay, and packet loss has been conducted by (G. Wang & Ng, 2010). The
study is carried out on the Amazon EC2 data center where each instance of the data center
is a Xen VM. Processor utilization and TCP/UDP throughput are measured by CPUTest
and TCP/UDPTest programs, respectively. The packet loss is measured by the Badabing
tool (Sommers, Barford, Duffield, & Ron, 2005). The results show an unstable TCP/UDP
throughput and a very high packet delay among EC?2 instances. It is concluded that these
results are obtained due to virtualization and sharing of drivers among several VMs.

The VectorDot scheme as discussed in (Mishra & Sahoo, 2011) has considered the current
load on the communication paths connecting physical servers and network attached stor-
age. Furthermore, VectorDot has addressed the overloaded servers, switches, and storage
entities while meeting the desired objective function. Moreover, using constraint pro-
gramming paradigm, tasks are migrated within nodes located in a cluster and has proved
that consolidation overhead is indomitable while choosing a new configuration and also

it 1s affected from the total migration time with that configuration (Hermenier, Lorca,
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Menaud, Muller, & Lawall, 2009). Furthermore, employed Entropy has significantly re-

duced total VM migration duration in addition to the total number of nodes acquiring

low performance overhead. Consequently, the authors of (Zhao & Figueiredo, 2007) has

accurately projected the total migration cost in order to have an accurate estimation guess

of migration time, so that sufficient resource can be prepared and reserved on the basis

of VMs count and the performance degradation period instigated by VM migration, that

is higher than actual total migration duration. Moreover, the proposed scheme has also

presented the migration cost based on the migrating VM configuration and size.

Table 2.4: Comparison of state-of-the-art dynamic load balancing schemes

Algorithm Parameters Resources Task schedul- | Objective Allocation Performance
used considered ing functions method Better Than
(Ghribi et al., Stochastic CPU, band- space-share energy con- | VM-level First-fit, FFD &
2013) bin packing width sumption, fault Harmonic algo-
tolerant rithm
(Nicolae & | Genetic CPU, request | time-share energy con- | - TSSP Ap-
Cappello, Algorithm forecasting sumption proach
2012) and Recon-
figuration
searching
module
(M. Chen et | Stochastic CPU, mem- | - energy con- | VM-level FFD algorithm
al., 2011) integer pro- | ory, server sumption
gramming overflow
probability
P
(Mishra & | Bin Packing CPU, mem- | space-share migration over- | VM-level Best-fit,  First
Sahoo, 2011) ory, network, head fit, Worst-fit
i/o band-
width,
storage
(Beloglazov Bin Packing CPU, upper | time-share reource utiliza- | VM-level Best-fit, First-
& Buyya, bound on tion fit
2010) cost of VM
relocation
(Guo et al., | Constraint CPU, net- | time-share energy con- | VM-level Random algo-
2010) Program- work band- sumption and rithms
ming width network traffic
(Stage & Set- | Stochastic CPU, time | time-share - reliability Static algo-
zer, 2009) integer pro- | interval  of rithm
gramming length ‘1J°
(Wood et al., | Bin Packing CPU, mem- | time-share resource  uti- | VM-level -
2009) ory, network, lization
VSR (Vol-
ume to Size
ratio)
(Bobroff et | Constraint CPU space-share execution time host-level Best-fit heuris-
al., 2007) Program- tic
ming
(Kang & | Bin Packing memory space-share hot-spot  miti- | host-level -
Park, 2003) gation

An efficient energy scheduling algorithm is presented in (Ghribi et al., 2013) for

the exact provisioning and consolidation of VMs in cloud DC based on two algorithms.
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Proposed algorithm decrease the consumption of energy and leads us to the optimal con-
solidation solution by adapting the migration concept at the service departure of VM.
The first algorithm is designed as a bin packing problem with the aims of minimal power
depletion. Moreover the performance of the proposed allocation based algorithm is com-
pared with the best fit algorithm based on the energy parameter. Furthermore, the second
algorithm based on the exact migration concept results based on the interwar formulation
and linear programming in order to adjust the placement of VMs when resources are un-
constrained. Proposed algorithm handles the number of migrations as well as the energy
consumption based on the number of constrained and the set of inequalities. Moreover,
this algorithm reports the minimum coverage time with the comparison of best fit heuris-
tic. Besides, it does consider the CPU utilization while the allocation and consolidation
of VMs.

The authors in (Bobroff et al., 2007) proposed the dynamic algorithm for the allocation
of resources in the cloud. The objective of this algorithm is to minimize the running
cost of DC. The cost is stated as the capacity of servers which is represented with the
performance parameters named as overutilization and underutilization. The cost directly
effects the performance of the application and leads to SLA violations. SLA is denoted
with the response time factor of the applications and as well as the CPUs associated to
that application. Moreover, with the perspective of business process spanning number
of VMs are assigned with the assurance of CPUs associates to that VMs. Besides, the
algorithm is characterized as measure forest remap (MFR). The MFR algorithm is the
divided into three modules based on (1) historical data measurements, (ii) future demands
anticipation, and (iii) VMs re-mapping to Physical machines (PMs). These three modules
works in repetitive manners with the time interval t with the same sequence as represented
with MFR. In addition, the proposed algorithm used the bin packing and time sequence

predicting procedures in order to handle the workload to PMs. The performance gain of
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proposed algorithm is upto 50% when compared with the static algorithms by adapting
the minimum SLA violations. In contrast, the limitation of the algorithm is that it works
based on the probabilistic SLA assurances.

In this paper, the authors handle issue of server combination in virtualized DCs with
respect to estimation schemes (M. Chen et al., 2011). The proposed framework is pre-
sented as a stochastic bin packing, where the servers limit and a permitted probability p
is assigned based on the overflow criteria of servers. The objective of the proposed pro-
tocols is to allocate VMs to a number of PMs based on the associated load capacity to
the servers. The proposed framework consider the effective VM sizing approach based
on the stochastic optimization by correlating the dynamic load of VM based on the stable
demands. Based on the principles of multiplexing the resource demand of VMs is de-
cided using the proposed effective sizing algorithm. The proposed algorithm impacts on
the aggregation of resource demands considering the multiple factors of hosts where the
VM might be allocated. While considering the effective sizing, an algorithm is designed
with the time parameter T for the VM allocation for the migration cost-aware and VM mi-
gration cost-obvious situations. The proposed algorithm showing the 24% better results
when compared with the optimal solutions and enhance the energy saving upto 23%.
The authors in (Wood et al., 2009) presented the Sandpiper framework for detecting and
identifying the hotspots, and reconfiguring/ remapping VMs when required. Sandpiper is
explained as a framework that systematizes the undertaking of checking and distinguish-
ing hotspots, deciding alternative representation of physical to virtual resources, resizing
VMs to their new assignments to PMs, and starting any essential migrations. Sandpiper
executes a black method that is completely OS-and application-rationalist and a gray box
method that adventures OS-and application-level insights. Authors in proposed frame-
work executes the schemes in Xen and lead a point by point assessment utilizing a net-

work, memory and CPU intensive requests. The outcomes of Sandpiper demonstrate
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that it can determine single machine hotspots inside 20 s and scales well to large size
DCs. The proposed work additionally demonstrate that the gray box method can assis-
tance Sandpiper settle on more educated choices, especially with respect to the memory
weight. While selecting that which VMs to relocate, Sandpiper migrate them utilizing a
volume-to-size-ration (VSR) based on memory, CPU, and network load. Sandpiper relo-

cate the most loaded VM from an over-burdened PM to one with suitable capacity.

2.3 Cloud Resource Management

A cloud computing infrastructure, whether single or federated cloud, is a complex dis-
tributed system composed of a multitude of computational resources. These resources
handle the unpredictable client requests and the effects of external events beyond user
and system administrator control. Cloud resource management significantly affects the
performance, functionality, and cost factors of system evaluation. Cloud resource man-
agement also involves complex decisions and policies for multi-objective optimization.
This task is challenging because of the complexity, geographical span, and unceasing and
unpredictable interactions with the system, thereby making a precise global information
state impossible.

Cloud resource management strategies related to the three delivery models of cloud,
namely, PaaS, [aaS and SaaS, differ from one another. In all cases, the CSPs are faced
with fluctuating, large workloads that challenge the claim of cloud elasticity. In some
cases, when they can predict a workload spike, they can provide resources through ad-
vance reservation, e.g., seasonal web application may be subject to spikes.

For an unplanned spike, the situation is complicated. Auto scaling can be used for un-
planned spike loads, provided that a monitoring system that justifies the decision to allo-

cate, reallocate, or release resources on demand in real time exists. Auto scaling services
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are given by PaaS providers, such as Google App Engine . Auto scaling for IaaS is com-
plex because of the lack of and the deficiencies in the available standards.

In cloud computing, whether single or federated, variation is unpredictable and frequent,
and centralized management and control may be unable to provide uninterrupted services
and functional guarantees. Thus, centralized management cannot support adequate solu-
tions to cloud resource management policies.

Several problems should be considered while managing the resources in a federated cloud
computing environment. In this section, we present a review of significant resource man-
agement techniques covering federated resource management functions, selection, and

allocation.

2.3.1 Resource Selection

The resource selection process finds a configuration that fulfills all user requirements and
optimization of the infrastructure. The cornerstone of the resource or service selection is
an optimization algorithm that considers all variables influencing the allocation. A gen-
eral survey on selection solutions for federated infrastructures is presented in next section.
Moreover, the summary of the reviewed resource selection schemes in a federated cloud

environment is given in Table 2.5.
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Table 2.5: Summary of resource selection schemes in a cloud environment.

Schemes

Objective

Strength

Weakness

(Jaikar & Noh,
2015)

To support the dynamic load while se-
lecting the best position for allocating the
request to attain the better performance.

Minimize the cost with ac-
ceptable performance

The failure index and energy
consumption index of data
centers are not included in
decision making.

(Fan, Yang, Per-
ros, & Pei, 2015)

To select trustworthy cloud services for
cloud users.

Feedback driven trust basis.

The granularity of the histor-
ical data for decision making
is not considered so that out-
dated history does not impact
in decision making.

(Farokhi, Jrad,
Brandic, & Streit,
2014)

To automatically select infrastructure
services for SaaS provider such that the
SLA claims of the SaaS provider for their
customers are captured.

Cover functional and non-
functional parameters of
Inter-Cloud SLAs.

No SLA violation detection
and penalty in case of viola-
tions.

(Gutierrez-Garcia
& Sim, 2013)

Automating the service selection in
the presence of incomplete information
about cloud providers and their services.

Constantly changing con-

sumer’s needs are captured.

In the case of service migra-
tions maintaining the agents
and can be a difficult prob-
lem.

(Son, 2013)

To select the best provider in term of cost
and requirements of the user.

The system components are
pluggable with other pro-
grams and not depended on
each other

The systems need human
interaction to populate the
database of the candidate
CSPs and their characteris-
tics.

(Vilutis,
Butkiene,
Lagzdinyte Bud-
nike, Sandonavi-
cius, & Paulikas,
2013)

Selection of suitable cloud in inter-cloud
of computing services when there are no
relevant resources available in the public
and private cloud.

Minimizing the number of
test tasks for quantifying the
CSPs.

Networking factors are not
used in the selection of a CSP.

(Sundareswaran,
Squicciarini, &
Lin, 2012)

To simplify and increase the speed of
searching the CSP database for the best
vendor selection.

100 times faster than brute-
force search algorithm.

No opportunity for users to
negotiate some terms of the
SLAs.

(Jrad, Tao, &
Streit, 2012)

To find the most worthy CSPs in order
to fulfill the user’s service requirements
non-functional and functional SLA pa-
rameters.

Handling the interoperability
and heterogeneity.

No Experimental evaluation
to show its efficacy compared
to existing schemes.

(Sim, 2012)

How software agents are employed for
cloud resource selection in a multi-cloud
marketplace where consumer selects the
best cloud provider based on their utility
function.

Concurrent negotiating
agents for the best SP
selection.

Changing user requirements
are not captured.

2.3.1.1 Review of resource selection based strategies for cloud environments

An index structure was designed by Sundareswaran et al. in (Sundareswaran et al., 2012)
based on B+-tree (Bayer & Unterauer, 1977) to simplify a process of information in-
sertion and retrieval for CSPs. In the proposed structure, different properties, such as
security, service type, pricing units and measurement, and QoS had precise position to

be considered and stored. Service vendors with the same characteristics should be stored
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together in adjacent rows to increase the speed at which the information management op-
erators are executed and appropriate vendor queries could be found. The researchers also
proposed a query algorithm based on a designed structure to search the provider database
for the best vendors. The proposed architecture was compared with a brute-force search
algorithm and showed almost 100 times better execution speed for solving the cloud com-
puting service composition problem with 10,000 service providers.

A high-level generic brokerage architecture to find the most worthy CSP fulfilling the ser-
vice requirements of the user in terms of non-functional and functional SLA parameters
was proposed in (Jrad et al., 2012). The proposed architecture integrated a brokerage-
based technology for assisting the user in SLA negotiation and finding the best provider
for his service needs with respect to specified SLA.

The way software agents are employed for cloud resource/service selection in a multi-
cloud marketplace, where the consumer selects the best cloud provider based on their util-
ity function, was explored in (Sim, 2012), (Sim, 2008), (Sim, 2006). In their work, they
proposed a negotiation protocol based on Rubinstein’s alternating offer protocol (Rubinstein,
1982) and a negotiation strategy based on the functions of time, opportunity, and com-
petitiveness for multiple consumer—broker agents negotiating simultaneously. Further-
more, they proposed service capability tables (SCTs) to store their services and the cloud
agent’s list. The coordination of self-organizing participants in a multi-cloud environment
for automating a service selection in the presence of incomplete information about CSPs
and their resources was investigated in (Gutierrez-Garcia & Sim, 2013). To handle this
problem, a collection of two agent-based distributed problem-solving techniques, namely,
SCTs and a semi-recursive contract net protocol, was integrated and devised into agent
behavior to cope with (i) service selection based on dynamic services fees and (i1) incom-
plete knowledge about the existence and location of service providers and the cloud re-

sources they offer. An agent-based cloud service composition testbed was implemented to
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support persistent, one-time, vertical, and horizontal cloud service compositions. Mecha-
nisms to update and create service compositions based on constantly changing consumer
needs were designed using self-organizing agents as building blocks.

In (Son, 2013), a resource selection decision maker (RSDM) was presented. The pro-
posed decision maker listed the suggested resource providers and their resources by an-
alyzing user demands. Users initially provided their requirements for the cloud service.
According to these requirements, the RSDM retrieved all resources that match the re-
quirements from a cloud information database. Once all candidate resource providers
and their service types were retrieved, the estimated price was calculated. After the cal-
culation of prices for each provider and service, the provider list was recorded by price
and given to the user. Each item of the recommended list comprised information, includ-
ing the resources to be allocated, name of the cloud provider, contract period, service
type, and expected price. The selection of a suitable CSP in the inter-cloud of computing
services for fulfilling the user task when no relevant resources are available in the public
and private clouds was analyzed in (Vilutis et al., 2013). The Quality of Grid Services
QoGS (Wickremasinghe, Calheiros, & Buyya, 2010) method was selected to determine
the appropriate CSP. However, the QoGS method works appropriately only if the correct
set of weighted coefficients (SOWC) is elected. Therefore, an algorithm was designed for
selecting the best SOWC. Experimental results showed that the proposed methodology
minimized the workload of inter-cloud by test tasks significantly.

The selection of cloud resource in a federated cloud environment was divided into two
subproblems by (Jaikar & Noh, 2015), namely, DC selection and physical machine selec-
tion. The DC collection played a vital role in improving the performance and reducing the
cost. An algorithm for selecting a DC in a federated cloud computing environment was
presented. The approach was validated using a Cloud Analyst toolkit (Wickremasinghe

et al., 2010). Results described that the DC selection algorithm offered considerable per-
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formance gains with respect to throughput, cost, and response time.

A SLA-based hierarchical service selection was presented for multi-cloud environments
in (Farokhi et al., 2014). In their efforts, the authors adopted the idea of the algorithm
presented in (Yau & Yin, 2011) and developed it to support service selection for a cloud
composite service and to cover all the functional and non-functional parameters of inter-
cloud SLAs. The architecture and phases involved in the selection process were based
on prospect theory to evaluate the infrastructure services on the basis of the given SLAs
and the degree of user satisfaction. The evaluation and a comparison of the utility-based
matching algorithm showed that the approach effectively selected a set of services for the
composition that satisfied SLA parameters.

Based on multi-attribute trust value evaluation cloud service selection was studied by
Wenjuan et al. in (Fan et al., 2015). Their trust value estimation was based on two trust’s
characteristics, namely, reputation-based trust and perception-based trust, in which the
trust facts were recorded on the trust reputation base and value base. Users could obtain
the trust facts from the two bases and then apply the evidential reasoning approach to
achieve the final trust results. After the service users used the service, they would give
their feedback evaluation to the cloud system, which would be stored in the trust value
base and reputation value base for other users to generate the indirect trust evidence. In
the proposed framework, the trust value was produced from both the personalized indirect
trust evidence and direct trust evidence, which was reliable with the service’s requirement
of users.

Table. 2.6 lists the extracted performance metrics from the federated resource selection

schemes.
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Table 2.6: Performance Metrics for resource selection in federated cloud

Scheme Cost QoS | Load- Energy- | Feedback- | Selection Experimental Platform
aware aware Driven Method

(Jaikar & Noh, | Yes Yes Yes No No Matrix Based | Cloud Ana-

2015) lyst (Wickremasinghe
et al., 2010)

(Fan et al., 2015) No Yes No No Yes Evidential Formal Analysis

Reasoning

(Farokhi et al., | No Yes No No Yes Prospect Custom Java Based

2014) Based

(Sundareswaran No Yes No No No Search based Custom C Based

etal., 2012)

(Gutierrez-Garcia Yes No Yes No No Negotiation JADE (Bellifemine,

& Sim, 2013) Bergenti, Caire, & Poggi,
2005)

(Son, 2013) Yes No No No No Search based CloudSim (Calheiros, Ran-

jan, Beloglazov, De Rose,
& Buyya, 2011)

(Vilutis et al., | No Yes Yes No No Weighted Not mentioned
2013) Rank
(Jrad et al., 2012) No Yes No No Yes Simple CloudSim (Calheiros
Match Mak- | et al., 2011) +
ing OCCl4Java (Liagat et
al., 2017)
(Sim, 2012) Yes No No No No Negotiation JADE (Bellifemine et al.,
2005)

2.3.2 Resource Allocation

Resource allocation is integral for obliging unpredictable resource requirements and cap-
ital return in cloud federation. In the context of federated clouds, application developers
can lease resources in a pay-per-use manner from multiple geographically distributed
CSPs to minimize the cost and SLA violation, and to enhance the application availabil-
ity and fault tolerance. In addition, a summary of several resource allocation schemes
is presented in Table 2.7 and Table 2.8 lists the performance metrics extracted from the
federated resource allocation schemes. Besides, a general review of several resource al-
location and scheduling strategies for federated cloud environments is presented in next

section.
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Table 2.7: Summary of resource allocation schemes in a cloud environment.

Scheme

Objective

Strength

Weakness

(Hassan, Hossain,

To meet end-user QoS and economies of

Maximizing the total utility

The problem with this ap-

Mirkovic, 2014)

ponents of a distributed application on
multiple public clouds.

to meets the set of SLA

constraints and  achieve
the performance and cost

constraints.

Sarkar, & Huh, | scale without increasing and enhancinga | of the federation. proach is that they model the
2014)  (Hassan, | number of physical resources. resources as a single type.
Song, & Huh,

2011)

(Woo & | To study the benefits of allocating com- | Search based technique | The search time in case of a

very large federation of cloud
and large workflows.

(HoseinyFarahabady
Lee, & Zomaya,
2014)

>

To handle the scaling out of cloud re-
sources while executing CPU-intensive
applications with the non-proportional
cost to performance ratios multi-cloud
environment.

Fully polynomial-time ran-
domized approximation al-
gorithms for the task with
known and unknown running
time.

The scheduling decision does
not take into consideration
the fault tolerance.

(Zuo, Zhang, &
Tan, 2014)

To provision the user’s tasks in order
to enhance the revenue of IaaS provider
while satisfying QoS.

A high-quality scheduling so-
lution by adaptively updating
strategies.

The computational complex-
ity of the proposed technique.

(Papagianni et al.,

Networking and computing resources are

Handling both resource map-

Overlooks the dynamic het-

ticinque, Aversa,

provide r and client in the cloud.

zation which have maximum

2013) (Papagianni | jointly optimized and treated for dynami- | ping and link mapping. erogeneous  infrastructures
et al., 2013) cally allocating virtual resources to phys- and environments.

ical resources within cloud network.
(Palmieri, Buo- | To take into account the possible contra- | This scheme had great ben- | Unpredicted situations and
nanno, Ven- | diction between the interests of service | efits in a huge cloud organi- | deviations in the environ-

ment.

lari, Colajanni, &
Panicucci, 2012)

fluctuation while guaranteeing SLA con-
straints by the coordination of multiple
geographically distributed clouds.

redirection distributed algo-
rithms acting upon two an-
gles, time scale, and work-
load prediction.

& Di Martino, number of nodes with a wide
2013) varaity of tasks to be served.

(Di, Wang, & | To manage the social competition rela- | Polynomial time complexity | The fault tolerance and se-
Chen, 2013) tions among resource contributors and | to find the best solution and | curity mechanism is not dis-
consumers where everyone satisfied with | ex-post incentive compatibil- | cussed.

its payoff. ity.
(Ardagna, Caso- | To handle the unpredictable workload | Capacity allocation and load | They did not study the capac-

ity of the running instances
while decision making and
also overlooked the network
latency.

(Ai, Tang, &
Fidge, 2011)

To handle
scheduling

the deadline-constrained

and resource allocation

problem for multiple web services.

The algorithm depends on
the credit assignment and the
collaborator selection strat-
egy method making it highly
adaptable.

Only one process can be as-
signed to a machine at a time.

2.3.2.1 Review of resource allocation and scheduling strategies for cloud environments
In (Malet and Pietzuch, 2010), middleware for cloud management was presented to mi-
grate part of user’s services (represented by number of VMs) among DC in order to man-
age the workload at the DC and to minimize total response times. Based on the monitor-
ing of workload in DC, the middleware initiated VM migration to shift the components

of application closer to the customer. The proposed approach was mainly designed for
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multiple DCs under a single cloud provider, but the formulation was still worthwhile for
multiple cloud providers.

Authors in (Ai et al., 2011) considered the deadline-constrained scheduling and resource
allocation in a hybrid cloud environment for various composite web services. The authors
also took into account the running cost because in a hybrid cloud, the in-house private
cloud resources were cheaper than their counterparts from public clouds. They proposed
a cooperative coevolutionary genetic algorithm (CCGA). In the proposed CCGA, the co-
operation among populations occurred while evaluating the individual’s fitness (resource
component) in a subpopulation. In population, the fitness value of specific entity was an
estimate of how well it cooperated with different classes to generate good results. The
populations worked cooperatively in order to explain the crises which are guided by the
fitness value. This communication among the populations involved a selection of greedy
collaborator and the credit assignment based on the fitness value. The performance of
their algorithm depended on the credit assignment and the collaborator selection strategy
method. However, only one process could be assigned to a machine at a time, thereby
preventing the system from using many configurations.

The game-theoretic resource allocation scenario was studied in a federated cloud environ-
ment in (Hassan et al., 2014) (Hassan et al., 2011). The authors considered a horizontal
dynamic cloud federation (HDCF), in which various CSPs cooperated dynamically for
expanding their infrastructure capacity to meet end user QoS to gain economies of scale
and to handle heterogeneous cloud resource demands without increasing and enhancing
a number of physical resources. In this prospect, the authors proposed game-theoretic
cooperative/non-cooperative price-based centralized and distributed resource allocation
strategies to ensure that this horizontal cooperation was beneficial for each CSP. The au-
thors formulated two resource provisioning games (i.e., cooperative and non-cooperative)

in HDCEF platforms to enhance the utility of the federation, specified as the total of the
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CSP utilities of the buyers. The authors applied a direct search method with multiple
startup guesses to determine the best price (Kolda, Lewis, & Torczon, 2003). In both
games, a buyer CSP publicized and defined the total amount of virtual resources pro-
vided. On the basis of this information, each seller CSP then updated its own strategy
to maximize its utility. They concluded the existence of non-unique equilibrium states
that yield an undesirable outcome under a non-cooperative game through experimental
and theoretical analysis. Under the cooperative setting for resource allocation, the game
was scalable and cost effective. The problem with this approach was that it modeled the
resources as a single type.

The unpredictable workload fluctuation in a cloud computing environment to reduce the
allocation costs in terms of VMs to meet the SLA constraints was studied in (Ardagna
et al., 2012). They applied the open queuing model for modeling the coordination of
multiple cloud providers operating in geographically distributed sites and presented a so-
lution based on capacity allocation and load redirection distributed algorithms acting upon
two angles, namely, time scale and workload prediction employing a closed-loop queu-
ing technique with nonlinear optimization models. Furthermore, they investigated and
demonstrated their solutions to be close to the solutions found by an oracle with perfect
information about future workload. The workload prediction improved content locality.
Aside from the comprehensiveness and rigorous evaluation of the work, the proposed
method considered only the response time of server and did not take network latency into
account. They also did not study the capacity of the running instances while making the
decision.

(Dietal., 2013) considered the allocation of resources in a fully distributed self-organizing
cloud (SoC), such that both resource consumers and contributors were satisfied with their
prior results based on the declaration of their resource. In SoC, each host was deployed

with an autonomous VM monitor and a resource state collector to act both as resource
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contributor and task scheduler. They constructed a VM with resource distribution con-
cept from the execution nodes to optimize the efficiency of task execution and proposed a
novel next-price bidding double-sided strategy based on the traditional second-price bid-
ding to achieve ex-post incentive compatibility. For the resource query protocol, a random
index diffusion strategy was adopted to reduce network traffic on query-message propaga-
tion. In this study the resource provisioning problem is devised as a convex optimization
problem considering task characteristic, user budget demand, and resource availability. A
polynomial time algorithm, local optimal VM resource allocation, was also designed to
locate the optimal solution. Moreover, the basic idea was to temporarily remove the re-
source availability constraint and then recursively tune the solution with the constraint of
resource availability until a distribution that satisfies this constraint was found. However,
the system might be compromised because of the fully distributed and self-organizing
nature, given that the fault tolerance and security mechanism were not discussed but were
suggested as prominent future directions.

Networking and computing resources were jointly optimized and treated for dynamic al-
location of virtual resources to the physical resources inside networked clouds in (Papagianni
et al., 2013) and (Papagianni et al., 2013). To manifest the joint resource allocation solu-
tion for a federation of cloud network, the federated cloud resource mapping problem was
formulated as a mixed integer programming (IP), taking into account the cost efficiency
objective, such that QoS for user requests was met. Link mapping was formulated as the
corresponding multi-commodity flow problem. Subsequently, a heuristic methodology
for efficient mapping of networked cloud resources on shared substrate was proposed.
The proposed framework did not consider dynamic heterogeneous infrastructures and
environment beyond the conventional Internet (e.g., wireless), which presented further is-
sues owing to wireless environment (e.g., uniqueness of nodes, isolation, and coherence),

the stochastic environment of the corresponding resources, and the challenges related
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with the existence of mobile nodes.

A fully distributed scheduling scheme was proposed in (Palmieri et al., 2013) for un-
coordinated federated environment of cloud. The scheduling framework was based on
self-organized and independent agents, which did not depend on any centralized control
that covered NE solution, with the potential contradiction between the interests of service
provider and client in the cloud environment taken into account. A high performance was
gained based on the completion time. This study had reliable results in the huge organi-
zations where the wide variety of complex tasks can be observed by using the efficient
partitioning strategy.

The effect of multi-cloud over a single provider for allocating components of distributed
application for a variety of realistic scenarios was studied in (Woo & Mirkovic, 2014).
The distributed cloud application workflow was modeled as a sequence of transactions
composed of micro-tasks. The resource allocation for a given application workflow was
formulated as the problem of determining a set of resources from the multiple clouds that
met the SLA, cost, and performance constraints. Subsequently, an algorithm for resource
allocation was proposed to find the best allocation for components of the distributed ap-
plication over the multi-cloud environment. The algorithm worked by considering all
possible allocations for each transaction and selected the one that met the respective SLA,
cost, and performance constraints. The algorithm exhaustively searched from the cheap-
est to the expensive solution until a viable allocation was found. This exhaustive search
could lead to a scalability problem in case of a very large environment.

The issue of scaling out cloud resources while executing CPU-intensive applications with
non-proportional cost to performance ratios was resolved for the cost-effective deploy-
ment of an application into multiple cloud environments by (HoseinyFarahabady et al.,
2014). The authors indicated that the degree of performance gain had no strong correla-

tion with the usage cost of cloud resources. They presented fully polynomial-time ran-
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domized approximation algorithms to enable the execution of bag-of-tasks with known
and unknown running time spanning beyond the private system/cloud (i.e., hybrid cloud)
by explicitly taking into account the cost efficiency, that is, the cost-to-performance ratio.
Meeting the peak demand while preserving QoS proactive machine purchasing, cloud
federation resolves the problem of achieving economies of scale for [aaS. However, the
former is not economic, and the latter is difficult in practice. In (Zuo et al., 2014), an
allocation framework of resource was proposed where the providers of IaaS could out-
source their tasks to ECs when their own resources were not adequate to fulfill the user’s
demand. This framework did not require any inter-cloud formal agreement for federa-
tion of cloud. The key challenge was how to assign user tasks to enhance the revenue
of IaaS provider while satisfying the QoS. In this study the problem was devised as an
IP model and solved by a self-adaptive learning particle swarm optimization (SLPSO)-
based scheduling mechanism for scheduling the inter-cloud resources. In SLPSO, each
aspect of a particle represented a particle, and task as a whole represented the priorities
of all tasks. This scheme could acquire a high-quality scheduling by adaptively selecting
velocity updating strategies to update each particle. The scheduling approach could find
the suboptimal or optimal allocation scheme of external and internal resources to greatly

improve the profit of laaS providers and maximize the quality of scheduling solution.

Table 2.8: Performance Metrics for resource allocation in the federated cloud.

Scheme Cost | Scalability | Load Bal- | Energy- Makespan | Availability | Fault Tol-
ancing aware erance

(Hassan et al.,, | Yes Yes No No No No No

2014) (Hassan et

al., 2011)

(HoseinyFarahabady et | Yes Yes No No Yes No No

al., 2014)

(Woo & Mirkovic, 2014) | Yes No Yes No Yes No Yes

(Zuo et al., 2014) Yes No No No No No No

(Papagianni et al, | Yes No No No No No No

2013) (Papagianni et al.,

2013)

(Palmieri et al., 2013) Yes Yes Yes No No Yes No

(Di et al., 2013) Yes No No No Yes Yes No

(Ardagna et al., 2012) Yes No Yes No Yes No No

(Aietal., 2011) Yes No No No Yes No No
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2.4 Performance Analysis Tool for Cloud Deployment

This section explain the OpenStack cloud architecture, and VM provisioning in cloud.

2.4.1 OpenStack Architecture

OpenStack is feature rich, simple to implement and has all types of characteristics like the
private and public cloud. Based on interconnected services OpenStack is deployed as an
IaaS solution. By using the API and web-based dashboard, and command line tools users
can manage the network resources, storage, and control pool of resources throughout the
datacenters (Corradi et al., 2014). OpenStack maintains the number of components in-
stalled independently with distinct APIs that controls the both computations and storage
resources in order to facilitate the dynamic allocation of VMs. In addition, according to
the need of cloud, installed components communicate and work with each other through
the RabbitMQ protocol and RPC. OpenStack includes the number of services such as,
Networking, Compute, Identity Service, Object Storage, Image Service, Orchestration,
Block Storage, Telemetry, and Database. Further, Network is used to create the topolo-
gies of virtual network whereas Image Service known as Glance is designed for the im-
age management. In addition, Dashboard represented s web-based GU! service is used
to manage the starting/stopping of the VMs and for the configuration of tenants while
Identity Service is installed for authentication. Moreover, Compute service provides the
IaaS characteristics comparable to Amazon EC2. Compute service is represented as Nova
and considered as a primary module of OpenStack. In addition, while assessing the most
suitable hypervisor Compute service deals with the resource provisioning and life-cycle

management of VMs as shown in Fig 3.1.
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2.4.2 Request Flow for Provisioning VM in Openstack

Figure 2.5: Request Flow for Provisioning of VM in Openstack

A provisioning of VM in any cloud is considered as one of the most essential use-case.
This section discuss about the provisioning of VM in an OpenStack based cloud (Rosado
& Bernardino, 2014). Moreover, this section describes the interaction of components and
the request flow in order to boot a new VM under OpenStack. Based on section 2.4.1
the basic interaction of the services is defined whereas the current section elaborates the
request flow for the deployment of VM as shown in Fig 3.1. A REST call is forwarded
to the Keystone for the authentication process when the user credential is received at
CLI. Upon the credential’s authentication the Keystone sent back the auth-token which is
further used for the communication with other components and for sending the requests
using the REST-call. A new instance request is converted in the nova-boot or launch-
instance form to REST API and forwarded to nova-api whereas it forward the request
to keystone for access permission and validation of auth-token. Moreover, the updated
headers with the permissions and roles are transferred by the keystone. Besides, nova-
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database and nova-api communicates with each other for the creation of initial record for
new instance. Moreover, an rpc.call request is sent by the nova-api to nova-scheduler
excepting to acquire updated instance record with specification of host ID (Wuhib et al.,
2012).

A request from the queue is picked from the nova-scheduler whereas is communi-
cates with the nova-database in order to choose the appropriate host by using the filtering
and weighing methods. After going through the filtering and weighing process nova-
scheduler return the updated information regarding the host Id and direct the rpc.cast
application to nova-compute in order to launch the new instance on the appropriate host.
In order to get the information regarding the flavor and host ID (CPU, RAM, Disk space)
nova conductor receive rpc.call request from nova-compute and picks that request from
queue. Furthermore, after picking up the request from queue nova-conductor coordinates
with nova-database and sent back the instance record to it. In addition, nova-compute
picks the information of instance from queue and send the REST call in order to attain
the image URI with the ID of image from glance by passing the auth-token to glance-api
and upload the image from image storage. Further, auth-token is validated by the glance-
api with the keystone. Nova-compute get the metadata of an image and send REST-call
to Network API by passing the auth-token in order to configure and allocate the instance
with the private/ public IP address whereas with the keystone the auth-token is validated
by the quantum-server. Nova-compute get the information of the network and send the
REST call to Vloume API for the attachment of volume to the instance. In addition,
auth-token with keystone is validated by cinder-api and the block storage information
is provided to the nova-compute where it creates the data for hypervisors and execute
request on hypervisors via api or libvirt.

In cloud, VMs are arranges and launched within physical machines. The libvirt

library is used by the OpenStack in order to establish the contact with virtual operating
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systems those are deployed and running on physical nodes. In addition, a set of hypervisor
independent APIs is represented by the libvert which is used to manage, enumerate, and
monitor the VMs that are executing on physical machines. Moreover, physical server uti-
lization is achieved by using the interface of an operating system (/proc) whereas through
the libvirt library the VM utilization is obtained. OpenStack Nova assists administrators
to deploy one or multiple hypervisors in virtual environment so that VM initiation and
termination is facilitated based on different quires and performance metrics to VM load
indicators. OpenStack support the XenServer, KVM, QEMU, ARM, and different types
of hardware architectures (Ammal, Kumar, Alka, & Renjith, 2015). The XenServer and
KVM are the most suitable choices for most of the use cases although KVM provides
the solutions of full virtualization on x86 architectures. In addition, LXC technology is
also used in order to offer the efficient solution with minimum overhead of virtualiza-
tion. In addition, Openstack offers the characteristics of live migration with the condition
when NFS is used for network storage and KVM is used as a hypervisor. Besides, in
case of QEMU hypervisor CPU resources are multiplexed, which is currently used in our
implementation. Further, through QEMU the differentiation among VM is achieved by
assigning the different priorities which are assigned to the process that launches the VMs.
Moreover, based on OpenStack scheduler, the controller node decides which compute

node is suitable for the deployment of specific VM based on its associated resources.

2.5 Issues and Challenges

Several problems should be considered while managing the resources in a cloud comput-
ing environment. In this section, we present a taxonomy of significant resource manage-
ment issues covering resource management functions, such as pricing, discovery, selec-

tion, monitoring, and allocation as presented in Fig 2.6.
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2.5.1 Resource Selection

Selecting worthy resources from a federated resource set is difficult because of the differ-
ent requirements relevant to the provider, the high algorithm complexity, and dynamicity.
The selection process should also consider behavioral aspects to maintain a user satisfac-
tion level.

The dynamic changes in the resource utilization of the resources in a federated envi-
ronment and the changes in the workload characteristics turn the resource selection into
an iterative repetitive task considering user-specified functional and non-functional con-
straints. However, the task is difficult and has the following open issues, which should be

addressed to make the resource selection in a multi-cloud environment feasible:

1. Monitoring data should be integrated as historical feedback to judge the credibility

and effectiveness of the resources to be considered for selection.

2. Workflow modeling, breakdown, and mapping should be enhanced to utilize the
full potential of the federated environment by selecting resources from the feder-
ated resource pool for individual components of the workflow according to some

constraints.

3. Resource selection mechanism should consider the combination of networking fac-

tors and failure and energy indexes.

4. The effect of the selected resources on the utility of the CSP in the federation should
be evaluated to verify whether this selection really improves the utility in the long

run.
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2.5.2 Resource Allocation

Resource allocation is integral for obliging unpredictable resource requirements and cap-
ital return in cloud federation. Considerable work on resource allocation mechanisms
for federated clouds is being conducted, but these mechanisms still need improvements.
From analysis, we find that controlling the effect of reconfiguration cost over the feder-
ation and cloud utility is not studied. Another shortcoming is the lack of generality to
make the allocation scheme visible for all type of service provisioning. Several open is-

sues required to be addressed to achieve efficient resource allocation mechanisms.

1. Interoperability among virtualization engines, such as VMware ESX (Zhang, Den-
niston, Baskakov, & Garthwaite, 2013), KVM, and Xen should be investigated to

realize seamless flow of data between their local applications and across clouds.

2. VM migration across subnets and realization of maintaining network flows by de-

coupling should be analyzed (Kalim, Gardner, Brown, & Feng, 2013).

3. VM behavior modeling and workload of a federated cloud environment should be

evaluated to realize the peculiarities of the workload and VM.

4. Precise forecasting in a distributed and heterogeneous federated environment, where
the common information among the entities is lacking because of the different ad-

ministrative policies, is needed.

5. Security: Inter-VM attacks when a malicious VM is being migrated from a mali-

cious provider.

2.5.3 Resource Monitoring
The function of cloud resource monitoring is to provide wide monitoring information

data about service management and infrastructure, such as access control, service elas-
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ticity, service billing, and SLA management (Bernsmed, Jaatun, Meland, & Undheim,
2011) (Carlini, Coppola, Dazzi, Ricci, & Righetti, 2011). Monitoring data about their
running services deployed in federated clouds are provided to customers. In the federated
environment, resource monitoring is important for CSPs to maintain the federation and
fairness in the distribution of revenue generated by the cloud clients.

From our analysis of the literature on monitoring solutions for federated cloud environ-
ments, the capability of monitoring cross-domain services has been regarded as a privacy
and security risk and monitoring as an attack tool (Ristenpart, Tromer, Shacham, & Sav-
age, 2009). This fact leads to a no-production-level monitoring solution with a federation
of cloud members having different business objectives and enterprise policies. The ex-
pensiveness of the monitoring solutions and their effects on the application QoS are not
explored for most of the solutions. Open issues pertaining to the efficacy of resource

monitoring in federated environments are listed below.

1. Standardization is lacking when logical or physical domain boundaries are crossed,
and monitoring activities is a challenge because of vendor lock-ins and heteroge-

neous infrastructures and architecture.

2. Architectural standardization efforts should be made to standardize APIs for gath-

ering monitoring data from CSPs.

3. Energy monitoring of federated CSPs should be conducted to encourage efficient,
green cloud computing by scheduling and rescheduling an application according to

the energy consumption index monitored to reduce the energy consumption.

4. Cross-domain data leakage of applications and the internal configurations of a cloud

member need to be addressed to enable third-party monitoring and unified moni-
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toring of federated environments.

5. An autonomous monitoring tool for validation and performance measuring of het-

erogeneous application sets deployed in a federated cloud environment is required.

6. No monitoring data of single or federated cloud environment are publicly available,
and no workload traces of the monitoring solutions themselves exist to analyze the

data by statistical tools to acquire more insight into the monitoring process.

2.5.4 Resource Discovery

The resource discovery function describes how a CSP exposes its resources and service
to enable other CSPs in the federation to find these resources and services for automat-
ing the resource selection process and ensuring easy use of services, thereby complying
with requests. The responsibility of resource discovery in the federated environment is
extended to handle physical and geographical proximities and the costly inter-domain
traffic of resources.

The literature has indicated that the resource discovery solutions for federated cloud are
mostly inspired by P2P systems given the autonomic nature of the federation members.
Moreover, several of the discovery solutions employ a central brokerage for the discov-
ery process. In addition to the issues of P2P resource discovery mechanisms discussed

efficiency of federated cloud resource discovery are listed below.

1. Controllable resource advertising protocols taking the peculiarities of the federated

clouds should be designed.

2. The semantic description of resources should be standardized to enhance cross-
domain discovery and interoperability.
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3. Runtime SLA negotiation in ad hoc federation should be empowered by first dis-
covering and then negotiating, but this could be turned into an attack tool. Thus, a
trusted third party can be involved, thereby leading to the use of resource discovery

as a service.

4. QoS-differentiated resource discovery is an interesting aspect in a large federation

with numerous users.

2.5.5 Resource Prizing

In federated cloud computing, consumers leverage various types of computational and
storage resources and services from one or more than one resources or service providers
using a fixed or variable (pay-per-use) pricing schemes. In federated clouds, consumers
and suppliers of cloud resources are rational players and inclined toward maximizing
their own benefits when contributing and utilizing shared resources and services (Nielson,
Crosby, & Wallach, 2005). In a federated cloud environment, resource supply and demand
fluctuate as consumers and providers join and leave the federation. Pricing function is
subsequently used to manage the individual rationality of the consumers and providers.
The oscillation in the workload and resource availability in the federation is confined to
the need of dynamic pricing strategies in federated cloud based on the principles of de-
mand and supply.

From analysis of the different federated resource pricing schemes, the association be-
tween SLA and pricing model is not clear, and incomplete information exists about the
resources of the federated environment. We present the most recent available pricing
models to qualitatively measure their applicability and relevance. However, most of them
have a bias and do not work in improving the overall utility of the federation. In addition,
an individual model does not fit all potential scenarios because of the varying nature of
the business objectives and enterprise policies of the federation members. Our analysis
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also indicates that the functions and features of auditing and accounting are insufficiently
included in these models because of the distributed administration of the federation to

follow up legal requirements. Several open issues listed below still need to be resolved.

1. The effect and overhead of pricing model on the multi-tier hierarchy of the federa-

tion of CSPs should be evaluated.

2. QoS-differentiated pricing schemes are not yet considered for federated setup.

3. In case of ad hoc federation with no prior agreement among the federation mem-
bers, a malicious member that reveals untruthful resource prices to the marketplace

can comprise the efficiency of the pricing model.

4. Pricing model should consider the workflow characteristics of composite web ser-

vices.

5. The effect of utilizing business intelligence and integration services should be in-
vestigated to analyze the federated cloud marketplace and price predictions for han-
dling misreporting resource bidding functions (Chang, 2014) (Chang, Walters, &

Wills, 2012).

2.5.6 Disaster Management

Disaster management and fault tolerance play an important role in restoring organiza-
tional data in case of natural hazards or man-made disasters. Disaster management func-
tions enable a system or component to continue normal operation despite hardware/software
failures or compromises. In scenarios of federated cloud environment disaster, manage-
ment functions should be distributed and coordinated among each node of the federated
setup to enable a micro-level disaster-aware federated cloud infrastructure, which ensures

the QoS level required by members of the federations.
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Considerable literature is available on handling the DR issue in federated cloud environ-
ments. The primary site becomes unavailable when a disaster happens, and the secondary
site has to be activated. In this case, in a backup site no sync or async replication abil-
ity exists, but system and data states can only be locally stored. This phenomenon is a
serious threat to the system, yet it is temporary and will be removed after recovery of
the primary site. However, all risky situations should be considered to attain the best DR
solutions, especially in high-availability services (such as business data storage). Several

open research issues are briefly stated below.

1. In order to provide true business continuity for a DR service, it must assist seamless
reconfiguration of the network for an application once it is brought online in the

backup site.

2. Synchronizing the in-memory intermediate states is part of the DR process to save

computation rather than data.

3. The cost of DR mechanism should be analyzed to identify which DR mechanism is

more suitable and does not reduce the net system utility.

4. The time required to detect a failure strongly affects the service downtime and initi-
ation of a DR process. However, while replicating across multiple mirror sites, the

problem is how to differentiate between network failure and component failure.

5. As mentioned before, DR can be be human made or it can formed by nature. A
cyberterrorism attack is a human-made disaster that is accomplished for many rea-
sons. In this case, recovery and protection of essential data will be the major objec-

tive in DR plans aside from system restoration.
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2.6 Discussion on Cloud Load Balancing

Virtualization is the most adopted power management and resource allocation technique
used in cloud computing infrastructure and data centers. Virtualization in network do-
main does not provide for energy efficiency. In effect, network resources are burdened by
the virtualization techniques. Live migration of VMs in the data center is an active area
of research as data has to be transferred from one physical host to another, generating a
significant amount of traffic (Voorsluys, Broberg, Venugopal, & Buyya, 2009). The live
migration of a VM essentially requires the copying of VM memory pages from the cur-
rent location to a new location across the network while the VM does not stop its services
at the current location. The pages that are modified during the process of live migration
are marked as dirty and have to be re-transferred after the first iteration of the copy.
Nowadays, power consumption within cloud data centers is a big challenge due to high
power consumption by DC equipment because of hosting and deploying high resource de-
manding applications within data centers. Server consolidation is a mechanism that packs
maximum possible VMs on a single server so that rest of the servers can be switched off
to minimize power consumption budget. Moreover, applying dynamic voltage frequency
scaling (DVFS) also helps to minimize power consumption budget. However, decisions
about where to place services while keeping in mind customer’s location and needs is a
big challenge that needs significant attention to surge data center performance.
Lightweight VM migration design will help to minimize the resource usage of VM migra-
tion process as lightweight design uses low system resources. Incorporating lightweight
design feature in current VM migration schemes will help to accelerate DC performance.
Moreover, proposing three dimensional queuing modeling based approach can be pro-
posed to effectively highlight the objective and constraints of VM migration technology.

In virtual data center infrastructures, the goals of energy efficiency and resource utiliza-
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tion arise along with the problem of non-optimized placement of VMs on different phys-
ical hosts (Chernicoff, 2009). The non-optimal placement of VMs results in two VMs
with large mutual (VM-to-VM) traffic being placed in different network domains with
multiple-hop distances. The VM-to-VM traffic consumes a significant part of available
network bandwidth. Energy-efficiency, higher resource utilization and optimal VM place-
ment can be achieved by VM live migrations. The main disadvantage of live migration
is that it can consume significant network bandwidth during the process of VM memory
image transfer from one physical host to another.

Transferring large sized data over the shared network link is a big challenge, especially
when several goals in terms of SLA violation avoidance, minimum end to end delay, high
throughput, and high service quality has to meet. To improve energy efficiency, network
management policies employ visualization technology to fully utilize the peak capacity of
existing resources. Server consolidation methods collocate the most potential VMs based
on (a) memory similarity ratio, (b) network communication pattern, (c) degree of work-
load on the server, and (d) flexibility to security concerns, to switch off the idle servers
such that the total power budget is minimized. State-of-the-art VM migration schemes
suppress VM contents using de-duplication, compression, write throttling, and various
innovative ways (workload enabled compression) to efficiently utilize bandwidth capac-
ity. However, applying all these optimizations consumes significant amount of system
resources which ultimately affects co-hosted application performance in terms of SLA
violation. For effective resource utilization, VMs are packed on a few servers. However,
the decision about co-location is affected by the type of workload hosted within VMs,
CPU capacity, memory availability, and communication pattern of VMs. Degree of SLA
violation is increased if infeasible VMs are co-located. Therefore, it is must to decide
which VMs should be co-located. Parameters, such as, application profiling and statisti-

cal analysis helps in identifying the most suitable VMs.
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Overlooking load balancing establishment abruptly decreases system throughput due to
overloaded servers and ultimately leads to SLA violation. Within the cloud, effective re-
source management is very important, as cloud resources are not infinite in reality. To
manage resources within the cloud, underlying resources are shared fairly among a set of
users. VM migration is one of the processes that effectively manage cloud resources by
ensuring load balancing, fault tolerance, server consolidation, and in-time service main-
tenance provisioning. However, VM migration itself is a time and resource consuming
activity and it impacts the performance of co-hosted applications. Co-hosted applica-
tions share the underlying resources to optimally utilize existing resources. However, in
co-hosting multiple VMs, the challenge with isolating performance is very big. Also, co-
hosting affects SLA if resources are not fairly distributed among legitimate users based
on their requirements. Moreover, privacy and security concerns are also present due to

VM co-location.

2.7 Conclusion

Virtualization is a technique that allows the sharing of one physical host among multiple
VMs, where each VM can serve different applications. The CPU and memory resources
can be dynamically provisioned for a VM according to the current performance require-
ments. This makes virtualization perfectly fit for the requirements of resource allocation
and management in data centers. This chapter extensively review the resource allocation
schemes based on load balancing techniques. Load balancing schemes are further classi-
fied into static and dynamic load balancing. A detailed taxonomy based on load balancing
characteristics is derived in this chapter in order to attain the various objectives such as,
efficient utilization of resources, cost effectiveness, fair allocation, resource prioritization,

scalability and flexibility. Moreover, this chapter discusses the issues related to the cloud

74



resource management based on, resource selection, resource allocation, resource moni-
toring, disaster management, resource discovery parameters. In addition, based on the
literature review of existing cloud load balancing schemes the number of open research
issues are discussed in detailed and thematic taxonomy is proposed with remarks in order
to handle the issues.

Load balancing has become an integral part of all distributed internet based systems as
distributed computing comes with the challenges of high resource demands that overload
servers. Load balancer increases the capacity and reliability of applications by decreasing
the burden on a server. Load balancer starts with identification of hot spot, an overloaded
server, and start migrating its load on a server which has sufficient resources such that the
resources are evenly distributed.

Based on the static load balancing schemas it is observed that majority of the algorithms
do not incorporate the application execution time parameter and overlooks the CPU uti-
lization at the time of VM deployment. In contrast, the CPU utilization is considered in
dynamic algorithms based on migration techniques after the deployment of the workload
on underutilized physical hosts. In order to stable the load the VMs are migrated after
their placement which leads to the migration overhead. Based on analysis of existing
static and dynamic schemes it is concluded that inefficient load balancing schemes max-
imize the application execution time when the CPU is overutilized and ultimately leads
to performance degradation. However, the criterion of where, which, and how to migrate
workloads from the physical servers pose challenges that cloud operator has to consider
during all these decision makings. Therefore, based on analysis a solution is required that
efficiently balance the load at the time of initial deployment of VMs and migrate the load
from highly utilized server to under underutilized server to controls the total number of

migrations.
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CHAPTER 3: PROBLEM ANALYSIS OF DYNAMIC LOAD BALANCING IN
CLOUD THROUGH VIRTUAL MACHINE PLACEMENT

This chapter analysis the performance of existing static load balancing schemes. It dis-
cusses the methods, experimentation tools, and the test programs designed for the prob-
lem analysis for traditional load balancing methods. The objective of this chapter is to
establish the problem, which is highlighted in Chapter 1. In order to show the severity of
the problem we performed the in depth investigation of the problem. Therefore, in this
chapter we conducted the set of experiments under the existing VM deployment condi-
tions.

This chapter is divided into four main sections. Section 3.1 shows the experimental
methodology, evaluation method, and test program design in order to conduct the exper-
iments. Section 3.2 shows the performance analysis of existing load balancing scheme
based on static and random based load distribution and illustrates the VM deployment in
OpenStack cloud, load distribution analysis, and load distribution behavior study based
on performance parameters in terms of core utilization, CPU utilization, and application

execution time. Section 3.3 conclude the findings of this chapter.

3.1 Experimental Methodology

This section briefly discusses tools, test program designs, and highlights experimentation
equipments for performing the experiments on the traditional load balancing methods. In
this study, the experimentation is conducted on real hardware equipments to analyze the
performance of VM deployment in cloud in terms of average CPU utilization and execu-
tion time.

The proposed study has considered a small in house data center to conduct the experi-
mentation for problem analysis in traditional load balancing methods. We have selected

the OpenStack cloud for experiments. During the experiments, a control environment is
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modeled to deploy VM using OpenStack scheduler. Moreover, it has used the traditional
computers rather than expensive and powerful machines (small industrial cloud replica).
For the analysis, we deployed our small OpenStack cloud infrastructure comprising of
four physical machines connected through a flat-DHCP networking module. The config-
ured servers are heterogeneous in terms of their resource capacity such as RAM, System
cache, bus speed, and CPU. One of the servers is set responsible to act as a controller node
with distinguished resource specifications in terms of, Xeon(R), Intel(R), CPU E5620
with 2.40GHz, and QEMU hypervisor as presented in Table 3.1. In first set of experiment
the controller node installed using 32 GB RAM. Besides, for the rest of three servers
called compute nodes carries 16 GB RAM capacity. Moreover, experiments are also con-
ducted using the homogeneous RAM with the configuration of 16GB for each compute.
However, the forth compute node is configured on the controller node.

During experiments, to analyze the behavior of traditional load balancing methods, the
workload is generated for analyzing the CPU resource consumption rate. In the current
study, to analyze the traditional static load balancing methods, CPU bound applications
are designed to fully (100%) utilize the peak capacity of CPU within deployed VM. In
order to analyze the CPU utilization behavior, all the unnecessary applications including
users and background system were turned off prior to experiments. To analyze accurate
CPU utilization all experiments are conducted with the 100% utilization of each deployed
VM.

This study has performed each experiment 15 times to report the average of data for sup-
pressing the noise due to uncontrollable system background activities such as garbage
collection, dynamic voltage frequency scaling, and frequent context switching. The aver-

age of 15 times run is discussed in this chapter.
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Table 3.1: Physical Server Specification Profile

Capacity Physical Server(s)
CPU type Xeon(R)
Thread(s) per socket 2 with flavor id 1
Thread(s) per socket 4 with flavor id 2
Hypervisor QEMU

CPU(s) 8

CPU Freq, (GHz) 2.40

Architecture x86 — 64

Kernel 3.11.0-26-generic
L1 Cache (KB) 128

L2 Cache (MB) 1

L3 Cache (MB) 12

3.1.1 Evaluation Method

This study has conducted experimentation on a small in house cloud data center using the
open source cloud platform (OpenStack) to analyze the impact of load distribution. To
analyze load distribution among physical machines, the load is characterized as static or
dynamic. To generate static and random load, it has considered a CPU bound application
that executes the multi-core Python application to increase CPU load. In order to conduct
the behavior of VM distribution in cloud, VMs are deployed using the 2 different flavors
as presented in Table 3.2. For static load generation case, VMs are created using flavor
ID 1 with the specification of 512MB RAM, 1GB Disk Space, and 2 vCPUs, 32 GB
controller node (Edgel) and 16GB compute nodes names as, Edge2, Edge3, and Edge4,
respectively.

For static analysis equal numbers of VMs are deployed on each physical server. More-
over, it has considered same CPU bound application (synthetic test program) for each
vCPU to generate the workload. In contrast, for random load based VM distribution sce-
nario, the VM deployment is considered using the flavor ID 1 and 2. While, using the

flavor ID 1 all experiments are conducted using the same specifications as used in static
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scenario, but for the second time the experiments are conducted using the homogeneous
RAM (16GB) for each compute and controller node using 2vCPUs. Moreover, random
load based VM deployment behavior is also conducted using the 4vCPUs per VM with
the 16RAM for each compute node. For the random load distribution, test program has
developed an application that randomly generates workload of different capacity based
on flavor ID. For simplicity and randomness, load generator’s generated load is mapped
between 0 and 2 random values when the VM is deployed with flavor ID 1. The number 0
specify that no CPU intensive application is executing on VM; whereas, values, including
1 and 2 states that only 1 and 2 cores are fully utilized. In addition, when the VMs are
deployed with 4 Vcpus using the flavor ID 2 the random load generator function generates
the value between 0 and 4. The value 0 shows that no application is executed on this VM;
whereas, values 1,2,3, and 4, specify that 1, 2, 3, and 4 number of vCPUs are fully loaded
for that VM.

In order to examine the CPU resource consumption rate, the design of proposed synthetic
benchmark program is presented in the next section of this chapter. Moreover, to capture
the system CPU consumption rate during synthetic benchmark execution within a VM,
the proposed study has used top Linux utility. Top shows the CPU load that is average
based on average of, current CPU load, last five minutes load, and last fifteen minutes
load. In addition, load average is measured based on the number of processes that are
waiting for their CPU turn for execution. The proposed study has used awk command to

acquire the average load as captured by the top Linux utility.

Table 3.2: VM Configuration Profile

Flavor Type Flavor ID Disk Space(GB) RAM(MB) vCPUs
2Core_based_flavor 1 1.0 512 2
4Core_based_flavor 2 1.0 512 4
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3.1.2 Test Program Design

In order to investigate the performance of CPU utilization, a CPU bound test program is
designed comprising the different size of loops performs the basic arithmetic operations.
For instance, CPU bound test program is comprised of multiple nested loops along with
the set of statements performing the arithmetic operation on the unsigned integers values.
The name of the test program is chosen while considering the size of test program in terms
of its loops count. Test program generates the workload to fully utilize the capacity of
CPUs allotted to a particular VM. The test program is designed such that the VM utilizes
100% capacity of the CPU resources until the test program complete its execution. In
order to generate the 100% load test program is executed based on the number of core of
specific VM. For example, if the VM is deployed with the 2 cores the two test programs
are executed for the fully utilization of CPU resources. Moreover, the size of the CPU-
bound-test is associated based on the loop size within the program. For instance, in the
2000000K test program the body of the loop is executed for 2.0 x 108 number of times.
We have designed the test program because there is no benchmark program available in

order to check out the performance of OpenStack cloud.

3.2 Performance Analysis of Existing L.oad Balancing Schemes

The core motivation of this study is to analyze the behavior of scheduler at the time of VM
deployment or when it is shielded from any external influence. By using the initial set of
experiments, the performance of each compute node is evaluated based on the launched

VMs to analyze the CPU utilization rate based on the load factors.
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3.2.1 Illustration of VM deployment in Open Stack

In OpenStack Nova scheduler (standard scheduler) is used for scheduling VMs to map the
nova-API calls to suitable components. Schedulers took the decisions based on multiple
factors such as memory, number of vCPUs, distance to the availability zone, and CPU
architecture, etc. Moreover, OpenStack Nova is composed of three types of schedulers
including, Filter, Chance, and Simple. Chance scheduler randomly chooses an available
node regardless of its characteristics whereas Simple scheduler identifies the available
node with the least load to deploy first VM. In contrast, filter scheduler is used for VM
scheduling purpose, which maps the nova-api calls to appropriate component. Number
of different filters are supported by the nova scheduler including the core filter, RAM fil-
ter, availability zone filter, disk filter, image-based filter, host-based filter, and net-based
filter. In the resource based filter the decisions are taken based on the available resources
in terms of memory, disk space, and number of CPU cores. The image-based filter de-
cisions depends on the properties of image while the properties are describes based on
hypervisor, architecture of CPU, and mode of VM including suspend, unsuspended, run-
ning, terminated, and created. In contract, in host-based filter hosts are selected using
the grouping criteria while considering the availabilityzone, location, and host aggregate

properties.

W = weight1_multipl xnorm(weight1)+weight2_multipl xnorm(weight2)+... (3.1)

In addition, the default scheduler used for the deployment in OpenStack cloud is known
as the filter scheduler. At the deployment of VM filter scheduler creates a disk image for
the VM and calls the hypervisor to boot the VM. The parameters to this call may include
the type of the (virtual) vCPUs, the number of cores, the amount of memory, the hard

disk image to boot from, and the local CPU allocation policy.
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Figure 3.1: Selection of Hosts based on OpenStack Cloud Standard Scheduler

Filter scheduler contains two generic functions filtering and weighting as discussed
in Fig. 3.1. In the filtering phase the capacity of the hosts is determined based on the
requested resource. Filter function selects the set of compute servers capable of running
a given VM (Litvinski & Gherbi, 2013). In Fig. 3.1 host2 and host6 are not considered
for the deployment of next VMs based on their available resources. In the second phase,
the weights are associated to each hosts that are selected using the filtering phase in order
to choose the best one host. Alternatively, a cost function ranks the filtered set of servers
according to their suitability as shown in Equ. 3.1. By default the weight is assigned to

the hosts based on the available RAM capacity using the RamWeigher.
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Algorithm 1 Legacy Compute Scheduler Based on RAM Filter Algorithm
Require: self, Stateo f Hosts, properties, InstanceType;, Rar,

1: procedure HostPasses(self, Stateo f Hosts, properties)

2: Type; < p.get(InstanceType;)

3: ReqRAM < Type;[memory]

4: FreeRAM < getFreeRAM (InstanceT ype;)

5: Rar « sel f.getRAMIlocationRatio(Stateof Hosts,properties)

6: TotalUsableRAM « StateofHosts.TotalUsableRAM

7: UsedRAM « TotalUsableRAM — FreeRAM

8: return TotalUsableRAM x FLAGS.Rar — UsedRAM >= ReqRAM

9: end procedure

When the VMs are launched using the RamWeigher it balanced the usage of the
RAM among all hosts by deploying the other VMs as represented in Fig. 3.1. Moreover,

the selection procedure of RamWeigher is presented in Algorithm 1.

3.2.2 Load Distribution Analysis

This section demonstrates the scheduling flow in open stack. To analyze the scheduling
flow behavior, it appropriately places the VMs on the physical server based on CPU usage
level.

Fig. 3.2 has presented the scheduling flow of VMs based on CPU utilization for each
physical machine. In VM deployment model for the existing OpenStack compute sched-
uler, VMs are differentiated using distinct color schemes. The light-gray color shows that
first eight VMs are deployed on Edge 1. The VMs with dark gray-color represents that
VM is fully loaded when CPU bound application is executed. Alternatively, white-color
based VMs represents that VMs are deployed without load. Based on CPU utilization fac-

83



tor, Edge 2 represents the current CPU usage capacity, which is 97.9% while four VMs
are hosted on it at time "t". Alternatively, Edge 3 and 4 represent 75.8% and 52.3% CPU
usage statistics at time "t".

Considering Fig. 3.2, for legacy non-optimized OpenStack scheduler, when 21st VM is
deployed (edge 2) it is placed on the highly loaded physical host based on spread tech-

nique criteria to balance the RAM.

Edgel Edge? Edge3 Edged
VM8 CPUusage=97.9%| | CPUusage=75.8% | | CPU usage=>52.3%
VM7 5

VM I I

VM5 VM 21 X :

VM 4 VM 19 VM 20

VM3 VW17

Edge: Physical Server [_]First deployed VM [J VM without load ~ [I] Fully loaded VM

Figure 3.2: VM Deployment Using OpenStack Cloud Scheduler

3.2.3 Load distribution Behavior Study
This section discusses the load distribution behavior for the legacy cloud scheduler based

on the static and random load distributions.

3.2.3.1 Static Load Based VM distribution
In this section a discussion on analyzing the relation between number of core’s utiliza-
tion and VM deployment sequence for four physical hosts (Edgel, Edge2, Edge3, and

Edge4) is presented. Fig. 3.3 has presented the aforementioned study. In the said figure,
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x-axis shows the utilization of number of cores whereas the VM deployment is repre-
sented on the Y-axis. As can be seen from the Fig. 3.3, the function of total number of
cores utilization is highly dependent on the number of VMs deployed. Also, it is shown
that different cores are utilized on different physical machines. In order to highlight the
deployment of VM on a specific physical machine for the clarity, the compute nodes are
denoted with different types of shapes. For instance, Edge 1, Edge 2, Edge 3, and Edge 4,
are represented with triangle, circle, diamond, and rectangle, respectively. Also, count of
shapes for each particular instance of a shape is same because of the fact that every single
physical carries equal 8 VMs.

Physical machines are configured to host 8 VMs as the number of cores allocated to
each physical machine are 8. Therefore, in total there are 32 VMs deployed on compute
nodes. In the here mentioned figure, the first plot has shown eight consecutive triangles.
The consecutive 8 triangles plotted in Fig. 3.3 has shown that first 8 VMs are deployed on
Edge 1 compute node. Every single VM is deployed to use 2 vCPUs as mentioned in the
experimental details. In addition, it was noticed that once VMs has utilized 8 cores, the
deployment sequence repeat its behavior for Edge 2, Edge 3, and Edge 4 nodes, respec-
tively. Based on the behavior of Fig. 3.3 it was observed that compute node Edge 1 being
having the highest RAM capacity is selected first for the deployment of VMs. Further,
the repetitive sequence shows that the Edge 2, Edge 3, and Edge 4 have the same RAM
16 GB; as a result, the compute scheduler balanced the RAM utilization for each compute

node.
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Core Utilization Vs VM Deployment Sequence

VM deployment sequence
=
<
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Figure 3.3: Core Utilization vs VM Deployment Sequence based on Static Load

The load or utilization of a physical server measures the extend to which a VM
has used its resources. In terms of resource utilization, the most essential resource is
represented as CPU. Performance degradation is highlighted in Fig. 3.3 when multiple
co-located VMs compiles extensive computational tasks. In addition, Fig. 3.4 presents
the number of VMs deployed on x-axis and CPU utilization across that deployment on
y-axis. The performance of each single VM is measures by running a CPU intensive
application to impose load upon a particular vCPUs. In order to deploy the same load,
same program is executed for each VM. When the first VM is deployed and load is gen-
erated, the CPU utilization ratio is increased up-to 25% which is represented as 0.2% in
the aforementioned figure. When the second VM is deployed and the same CPU inten-
sive application is executes on same physical machines, the load value is surges to 28%.
Moreover, the graph shows that the Edge 1 is selected again and again until it reaches to
the 99% CPU utilization even though the other physical machines have minimum CPU
utilization as compared to Edge 1. Furthermore, if the CPU utilization is too high, it
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seems that the VMs that are deployed on the given physical server are not receiving the
required capacity of CPU resources and waits in order to accomplish their tasks. It is
observed that during launching VMs, first eight VMs are created on Edgel due to avail-
ability of sufficient RAM capacity. From ninth to onward, all VMs are launched on Edge
2, 3, and 4 (physical hosts/ compute nodes) in a sequence because of spread technique
(nova-scheduler) that evenly distributes the VMs in order to manage the RAM. It was also
observed that vCPUs load surges to 25%, 50%, 75%, and 99% when the number of VMs
are increased on each single physical server. Moreover, the value from 9 to 32 at x-axis
shows that there is a specific deployment sequence which is followed for other compute

nodes with the increased CPU load value.
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Figure 3.4: Analysis of VM deployment vs CPU Load based on Static Load

3.2.3.2 Random Load Based VM distribution
This section analyzes the deployment behavior of VMs using OpenStack while consider-

ing its legacy scheduling method. In order to differentiate the deployment from the static
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load based scenario, this study deploys VMs based on random load generator function.
In this scenario, a random program is generated to predict the load. For the better under-
standing, the name of the program is designated as the random load generator function.
At the deployment time, the specification of the VM shows that each VM is deployed us-
ing the 2 vCPUs as shown in Fig. 3.1. Therefore, based on number of vCPUs, the random
load generator function generates the discrete numbers between range 0-2 for each VM
for generating the load on each VM as described in section 3.1.1. Fig. 3.5 presents the
sequence of VMs deployed on the physical servers. The physical servers are highlighted
with different shapes to differentiate them. In order to present the distribution of VMs
on the physical servers based on dynamic load balancing, the graph is plotted between
core utilization and virtual machine deployment. In the said figure, the VM deployment
sequence presents the true deployment of VMs on the physical servers. During VM de-
ployment, firstly, VMs are deployed on Edge 1 node as it carries the maximum RAM
capacity compared to the remaining three physical servers. Moreover, in the said figure,
the scheduler followed the same deployment sequence as presented in Fig. 3.3 except the
decision for node selection for VM deployment. For instance, in Fig. 3.3, the scheduler
choose the sequence of Edge2, Edge3, and Edge4 for VM deployment. In contrast, in the
current scenario, the order of physical server selection changes due to random function
based scheduling that has chosen Edge4 and Edge2 for the initial set of VMs deploy-
ment. The physical machines repetition is again followed for the random load based on

the RAM available RAM balancing criteria.
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Figure 3.5: Core Utilization vs VM Deployment Sequence based on Random Load

Based on VM deployment sequence as presented in Fig. 3.5, Fig. 3.9 has shown the
CPU utilization behavior. The CPU utilization rate is estimated by generating the load on
VMs using the load generator function. It was noticed that when Edge 1 is selected for the
first VM deployment, the CPU utilization was observed 0.2% for 2 test programs execut-
ing for each core. For static balancing case, for the second VM deployment, again Edge 1
is selected based on RAM filter. For the second VM, it only runs one program and it was
noticed that the CPU consumption surge to 0.25% of total CPU capacity. Moreover, after
deployment of 2nd, 3rd, and 4th VMs, the CPU utilization approaches to 0.6%. Besides,
the 6th and 7th VMs are deployed and the generation of load on single core and two cores,
respectively. As a result, the CPU utilization is reached to the 0.8%. In addition, for the
deployment of 8th VM, the Edge 1 is decided by the compute scheduler even though it is
showing the maximum utilization of CPU as compared to other PMs in cloud.

For better understanding, based on OpenStack scheduler, first eight VMs are deployed on

Edge 1, which has increased the aggregate CPU usage capacity to 95.90%. At the time of
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deployment of the ninth VM, the load on the Edge2 is noticed reaching to 25.2%. More-
over, for the Edge 3 and Edge 4, the load rises to 20.1% and 25.6%, respectively when
the tenth and eleventh VMs are deployed based on scheduler selection criteria. Moreover,
12th, 13th, and 14th VMs are deployed on Edge 2, 3, and 4, respectively. The Edge2, and
Edge4 reaches to their highest CPU utilization as compared to Edge3. Based on random
load generator function, the Edge3 has shown the minimum load compared to the other
nodes because at the time of deployment of 14th VM, no core was utilized. At the de-
ployment of fifteen VM based on placement criteria, VM is deployed on the maximum
loaded host without considering the CPU utilization as shown in Fig. 3.5 and Fig. 3.9.
The behavior of the deployment is showing the scheduler is not considering the CPU uti-

lization except RAM and the repetitive selection criteria of PMs.
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Figure 3.6: Analysis of VM deployment vs CPU Load based on Random Load

First two scenarios as presented in Fig. 3.3 and Fig. 3.5 shows the deployment se-

quence based on the deployment of VMs using the 2 vCPUs per VM. In order to highlight
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the deployment with the dynamic load, the VMs are deployed with the homogeneous
RAM and with flavor ID 2. The behavior of VM distribution is presented in Fig. 3.7. For
the first four deployed VMs, the random load generated function has generated the 2, 0,
2, and 1 values. Based on the above mentioned values, deployed VMs have executed the
CPU intensive programs. For instance, first VM placed on Edge 1 fully loads the CPU by
executing the CPU intensive program on 2 vCPUs. The second VM on Edge4 is showing
0.4% usage of CPU when there is no program is executed. Edge3 and Edge2 are showing
the 25.4% and 15.2% of CPU usage with the execution of 2 and 1 programs, respectively.
For 5th, 6th, 7th, and 8th VMs, the load generator function has generated values based on
1, 2, 2, and 1 random umber as shown in Fig. 3.7. Moreover, the Edge3 has shown the
same load on the deployment of VM 6, 7, and 8. The figure shows that the CPU usage
is fluctuating between 55.6% and 55.8%. The fluctuation shows that the load generator
function has randomly generated the O value for the Edge3 using its sequence though no
CPU intensive program was executing for these VMS. The overall deployment behavior
with the random load based characteristics illustrates that the CPU load is not considered

while the deployment.
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VM Deployment sequence vs random CPU Load
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Figure 3.7: VM Distribution Behavior with Homogeneous RAM

Fig. 3.3 and Fig. 3.5 shows that the first 8 VMs are continuously deployed on Edgel
node based on the maximum and RAM availability criteria. In contrast, Fig. 3.7 has
shown that each compute node is selected cyclically with the same repetition. For the
allocation of first VM, the Edge2 is selected where the VM is fully utilizing the 4 vCPUs
and surges the CPU consumption up-to 50.5%. The second VM is deployed on Edge 1
and increases the CPU consumption rate to 50.5% of its total capacity. During the third
VM placement on the Edge3, the random load generator function generates the 0 valu;
therefore, no CPU intensive application is executed on it and the CPU utilization is 0.3%
only. In addition, the forth VM is deployed on Edge4 and executes the CPU bound test
programs based on random load generator function. Based on the distribution of first four
VMs, the Edge3 node is showing the minimum CPU utilization. Among others, Edge3
has the least value. However, for the allocation of fifth VM, the CPU scheduler has se-
lected Edge2 based on spread technique and overlooks the CPU utilization behavior. The

figure has shown that rest of the VMs are deployed in a circular order.
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VM Deployment sequence vs random CPU Load
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Figure 3.8: VM Distribution Behavior with Random Load and 4vCPUs

3.2.4 Execution Time Analysis

This study analysis the application execution time for different CPU usage levels for one
physical machine by varying the number of VMs as shown in Fig. 3.9. On compute
node, firstly the program was executed without the deployment of VMs to acquire the
actual time taken by the test program program. During second experiment, 1 VM was
deployed using the 2 vCPUs on the single VM. In order to check its behavior, the VM
was fully loaded while CPU intensive programs were executing for each core associated
with VM. In order to check the behavior for 3 VMs based configuration, only three VMs
were deployed with the CPU intensive programs. Moreover, as explained in experimental
setup, physical machines have the 8 physical CPUs; therefore, we have checked the CPU
behavior with the utilization of physical CPUs. It is observed from the said figure that
when no VM is deployed, the program has finished its execution in 1400 rounds and it

has utilized the CPU resources up-to 15%. Moreover, CPU usage reached up-to 25.5%,
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51.0%, 75%, and 99.8%35, when the 1, 2, 3, and 4 VMs were deployed on physical ma-
chine. For 2 VMs, the same CPU bound test program was executed for 1675 rounds. In
addition, when 3 VMs executed simultaneously, the execution time has increased with
little bit change as compared to the time taken by 2 VMs. For 3VMs, the total completion
time was completed in 1700 rounds. In addition, the execution time for 3 and 4 VMs

was noticed approximately similar; For instance, the time was noticed 1715 and 1720,

respectively.
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Figure 3.9: Application Execution Time vs CPU Usage with Different VMs

In second study, the experiment was conducted to relate execution time of an appli-
cation to its CPU utilization for each compute nodes. The Fig. 3.10 shows the results
based on application execution time on each VM for single server while Fig. 3.3 has
shown the behavior for each compute node in the cloud. The analysis is conducted based
on static load distribution, as shown in Fig. 3.3 in order to check the performance of com-

pute scheduler. The figure based on Edgel has shown the maximum execution time due
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to the availability of RAM as nodes deployed on Edgel shares the CPU resources until
it reaches to the 100% utilization. Rest of the compute nodes with the 16GB RAM has
shown the same execution time. In order to compute the total execution time of each
compute nodes, the programs for each VM were started, instantaneously. The graph is
showing the 1910 sec execution time for Edgel when it fully loaded with the distribution
of 8 VMs whereas for the Edge2, Edge3, and Edge4 it has shows the same time when it

was fully loaded with the execution time of 1675 rounds.
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Figure 3.10: Execution Time Based On Static Load Based Distribution

The experiment in Fig. 3.10 shows the execution time when physical machines are
deployed when configured with the heterogeneous amount of RAM. Fig. 3.11 shows the
execution time for each compute node based on the deployment sequence on the PMs as
plotted in Fig. 3.7 which is measured in seconds. Based on the random load based distri-
bution of VMs, Fig. 3.10 has depicted that each compute node has completed its processes

on the same finishing time which were running inside the VMs. The behavior of the said
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figure has shown that each physical machine has same execution time in case of static and
random load based scenarios when the RAM criteria is same for each compute node. For

all the compute nodes the total execution time is calculated and was noticed up-to 1650

rounds.
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Figure 3.11: Execution Time Based On Dynamic Load Based Distribution

3.3 Conclusion

In this chapter, our focus is to critically analyze the OpenStack’s scheduler for VM place-
ment in controlled environment in perspective of small-scale private cloud using four
compute and one controller node. In addition, the agency compute scheduler is an overall
solution to allocate resources, and the multiple available filters give a comprehensive set
of choices. However, filter only provides the reservation of requests based on vCPUs and
memory parameters and generated the list of servers that are ready to use. Besides, they
overlooks the performance maximization strategies. Based on the balanced load factor

it is the weigher’s responsibility of allocate the request to efficiently utilize the available
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resources.

The current strategy of only weighing against memory usage, by way of the Ram Weigher,
is limited in effectiveness. This is because each VM has its own separate memory space,
and random-access memory performance is not largely impacted simply by memory con-
sumption. Further, the OpenStack OS base, namely Linux, always harnesses unused
memory for caching and performance improvement. In contrast, if a VM is launched
on a host with heavy CPU utilization, the VM performs poorly. On a compute heavy
host, contention for CPU time slices results in the VMs on the host enduring a perfor-
mance penalty. The key problem is that the current weighting strategy is weak and leads
to inefficient usage of resources. Weighers should measure more than RAM usage. VM
performance is largely affected by the host’s computation ability and its usage. Those
factors can be CPU utilization rate, vCPU usage, and processor characteristics including
frequency and model. It is better to dispatch a VM to an idle host with powerful CPUs
and less memory. In particular, if a VM requires more cores and is compute intensive,
more attention should be paid to a host CPU utilization than its available memory to en-

sure better performance.
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CHAPTER 4: PROPOSED STATIC AND DYNAMIC LOAD BALANCING
METHODS

The empirical study based on the load distribution behavior presented in the previous
chapter established the problem of the impact of CPU utilization on the application exe-
cution time while the initial deployment of VMs. The purpose of this chapter is to pro-
pose the solution to solve the problem as highlighted in chapter 3. We proposed the Static
Multi Resource based Scheduler (SMRS) and Dynamic multi resource based schedulers
(DMRS) as a solution of the problem. In this chapter initial VM placement algorithm
(static algorithm) and VM migration based algorithm (dynamic algorithm) is proposed
while considering the CPU utilization of physical hosts. In static algorithm the load is
balanced when the VM is newly launched. In contrast, in dynamic algorithm, load is also
balanced after the deployment of VMs by adapting the migration solution. The proposed
solutions are modeled mathematically in order to balance the load of the physical servers
based on the CPU utilization and in dynamic method along with the balanced load distri-
bution the number of migrations are minimized.

The organization of this chapter is as follows. Section 4.1 present cloud architecture based
on the proposed algorithm Section 4.2 discuss the proposed SMRS method based on com-
pute load, load analyzer, and load filter. Section 4.3 presents the proposed dynamic multi
resource based scheduling algorithm. Section 4.4 presents the system flow diagram of
proposed DMRS method while adapting the minimum migration objective. Section 4.5
mathematically model the proposed algorithms based on resource constraints, operational
constraints, and migration constraint while considering the load balancing objective. It
also discusses assumptions that are considered while balancing the load within a data
center. Section 4.6 discusses the data design that is considered to evaluate the proposed
methods based on the CPU utilization, application execution time, and number of VM

migration parameters. In addition, section 4.7 highlights the distinguishing features of
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the proposed work. Finally, section 4.8 conclude the proposed methods.

4.1 Multi Resource Based Scheduler Cloud Architecture

Load balancing fairly distributes the workload on the physical machines for efficient re-
source utilization. In this section, an overview of cloud deployment architecture is pre-
sented that this study has considered for load balancing.

Fig. 4.1 presents an overview of the proposed VM deployment architecture in OpenStack
cloud. In the said figure, OpenStack cloud controller represents the physical host that
runs the API components, schedulers, and compute servers. Each compute server is de-
ployed with the OpenStack compute component. The functionality of a request handler is
apprehended in OpenStack scheduler and API components. The request handler accepts
the VM placement requests, as long as CPU demand remains below the cloud capacity
(i.e. Utilization of CPU does not exceed the defined threshold). Otherwise, it rejects
the VM placement request due to low resource availability. The placement architecture
is split in two engines including Global Decision Engine (GDE) and Local Monitoring
Engine (LME). The Load Filter module of open stack runs inside the controller which is
hosted within GDE. The GDE performs the initial placement of VM based on set of deci-
sion making parameters collected through the LME. LME shows the Compute Load and
Load Analyzer components to perform computations and load analysis, respectively. In
the non-optimized model of open stack, compute load component performs computations
based on CPU states. In contrast, Load Analyzer collects the aggregated results of CPU

utilization from each compute server and transfers it to the LME module.
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Figure 4.1: Proposed SMRS based VM Deployment Cloud Architecture

4.2 Static Load Balancing Method for initial VM placement

In this section, discussion on the design of proposed static load balancing algorithms is
provided. Table 4.1 represents a set of symbols that are used in the design of proposed
algorithms. The responsibilities and flow of execution for compute load, load analyzer,

and load filter is discussed below.
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Table 4.1: Algorithm’s Symbols and their Description

Symbol(s) Description

ul User Load

sl System Load

nl Nice state

ncl Idle state

SP System’s previous load

SR System’s resent load

Avgl.oad Average Load

N Total number of physical hosts
n specific physical hist

S Host state

p Filter properties

TU; requested instance type from users
i 11s instance type

car CPU allocation ratio

d Database

TvCPUs Total number of vCPUs

4.2.1 Compute Load

Compute Load (CL) calculates the average load and updates it in a local database. It ex-
ploits current and previous CPU utilization states to compute average load on CPU. Initial
phase in CL as highlighted at line 3-6 calculates the CPU utilization based on user state,
system state, nice state, and idle state. Moreover, subsequent stages as highlighted at line
7-11 in algorithim 1 refers to average load estimation process. Average load is computed

based on the ratio of CPU used to total CPU capacity as presented in Algorithm 2.
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Algorithm 2 Compute Load

1: tsecond « 30

2: while (1) do

3: ul « getUserProcessLoad()

sl « getSystemProcessLoad()

nl « getnice()

ncl « getNotUsedCPUpercentage()
SR « {ul, sl, nl }

SR, « {ul, sl, nl, ncl}

SP; « {ul, sl, nl }

10: SP; « {ul, sl, nl, ncl}

Y 2 >0k

11:

Z length(SRy) Cost (l) _ Z

IeSR1

AvgLoad «
eSR;

12: Wait(tsecond)

13: Load-DB-update(Avgl.oad)
14: Goto step 2

15: end while

leength(SRz) Cost (l) _ Z[

4.2.2 Load Analyzer

Load Analyzer (LA) computes system load based on the Algorithm 2 for all physical

servers and share it with GDE as shown in Fig. 4.1. Later on, LA (Algorithm 3), transfers

the CPU load by establishing a one-to-one communication link between GDE and Load

Analyzer for every compute node (line 2-3).

Algorithm 3 Load Analyzer

1: for eachnoden e N do
2: Loadinfo< n, val > <« ComputeLoad(n)
3: send-LoadInfo-GDE(ComputeLoad(n))

4: end for
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4.2.3 Load Filter

Load Filter (LF) decides whether a particular compute server is feasible to host a VM or

not based on its resource capacity. Load Filter follows four steps to decide feasibility of

a physical server for VM placement. It starts with a verification process to see that the

user requested instance fulfills the deployment criteria or not (see line 2-5). In the second

step, it investigates available resources based on vCPUs’s current utilization level (see

line 6-11). During step 3, LF collects the load information across each physical server

from GDE as gathered by Algorithm 2 (line 12). Moreover, it sets flag as TRUE if it finds

a compute node with a minimum load or vCPUs used are maximum but the target server

has minimum CPU utilization as discussed at line 14-18 in Algorithm 4.

Algorithm 4 Load Filter

Require: self, s, p, TU,, i, car, d, N, threshold

1: procedure HostPasses(self, s, p)

10:
11:
12:
13:
14:
15:
16:
17:
18:

2
3
4
5:
6
7
8
9

Type; « p.get(i)
if Type; = TU; then
return True
end if
VvCPU « getVCPU()
car « sel f.getCPUAllocationRatio(s,p)
TvCPU « s.TvCPU x* car
if Tvcpu > O then
vCPU « TvCPU
end if
I « V,en LoadInfo-GDE-DB(n)
MinLoad = [(s.vepus —used)] =1
if 1 > threshold then
return Tvcpu - s.vepus — used >= TU;.reqvcpu

else

> 11s instance type

return Tvcpu - (s.vcpus—used * MinLoad) >= TU,.reqvcpu)

end if

19: end procedure
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4.3 Dynamic Load Balancing Method (DMRS)

Dynamic load balancing algorithm balanced the load based on the migration technique in
cloud. Dynamic method initially place the VM while satisfying the minimum workload
criteria and migrate the VMs after their deployment. This method controls the number of
migrations to enhance the cloud performance. Proposed method presented as a Dynamic
Multi Resource Based Scheduler (DMRS) is consists on number of algorithms including,
(a) time slot, (b) allocation of VM to PM algorithm, (c) balanced load, and (d) load

balanced algorithms. In the following the working of algorithms is explained in detail.

4.3.1 Time Slot
Time Slot algorithm as presented in Algorithm 5 placed the newly launched VMs on the
physical servers based on the allocation criteria described in Algorithm 6. It also balanced

the load after the placement of VMs using the Algorithm 7.

Algorithm 5 Time Slot
1: for each timeslot t; do

2: for each newVM v; do
3: AllocatePhy(v;)

4: end for

5: BalancedLoad( );

6: end for

4.3.2 Allocation of VM to PM
Algorithm 6 allocated the physical VMs to the PMs. It calculates the load of all physical
machines as mentioned at line 2. It assign the VM to the physical host which has the

minimum load in term of CPU utilization (line 4-5).
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Algorithm 6 AllocatePhy(v;)
1: for each Phy Py do
2: Load; < getLoad(Py)

3: end for
4: Ppin & min(Proaq, ) > for all k

5: P(v;) < Ppin

4.3.3 Balanced Load

Balanced load algorithm 7 balanced the loads when the VMs are initially deployed using
the Algorithm 6. This algorithm controls the status of the unbalanced state of servers and
total numbers of migration. As presented at line 4, the load of each host is computed.
Moreover, the under loaded and over loaded PMs are categorized by this algorithm (from
line 6-9). Afterward, the load of each VM on the PMs is computed by this algorithm.
Later, the one VM with the minimum load is migrated to the PMs which are showing
the minimum load (see line 11-12). Based on this algorithm one number of migrations
are taken place among the servers to balance the CPU utilization. The proposed algo-
rithm minimized the numbers of migrations as initially the VMs are deployed using the
balanced load criteria. This algorithms migrates the VMs based on minimum load factor
because if the highly load VMs are migrated the host became overloaded; therefore; the
migration criteria is set less then five time and greater than one in order to fairly distribute

the workload.
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Algorithm 7 BalancedLoad( );
1: migrations « 0
2: while (!LoadBalanced( ) && migrations<5) do
3: for each Phy P; do

4: Loady « getLLoad(Py)
5: end for
6: P, < max(Loady) > for all k
7: P,nin < min(Loady) > for all k
8: for each v; on P, do
9: Load; « Load,,
10: end for
11: Vinin < min(ngadj) > for all j
12: Pin < Vinin
13: migrations++;

14: end while

4.3.4 Load Balanced

Algorithm 8 check out the balanced load based on the difference of load calculated be-
tween the physical hosts. This algorithms shows that if the difference among the servers is
greater than one physical core that load is not balanced and the algorithm will return false.
In contrast, if the difference is less than to core the load is balanced and the algorithm will

written true.
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Algorithm 8 LoadBalanced( );
: for each Phy P; do

Loady < getLoad(Py)

—_—

: end for

: foriin P, do

2

3

4

5: forjini < P; do
6 DiffLoad;; < abs(Loadp, - Loadp )

7 end for

8: end for

9: for each DiffLoad;; do

10: if DiffLoad;; > (minPhy .5 - 1)/(minPhy,,.s) then

11: return False
12: end if
13: end for

14: return True

4.4 System Flow Diagram with Dynamic Load Balancing

A VM provisioning in cloud is an vital use-case as presented for existing placement so-
lution in section 2.4.2. This section explains the VM placement and interaction flow of
components of the proposed model. The flowchart describes that the load of every com-
pute node is analyzed using the load analyzer algorithm and load aggregator collect the
load of each PM and send the load information to the admission controller. As it is per-
ceived when the VMs are deployed on PMs the load of each PM is varied based on the
VMs and the programs associated to that VMs; therefore, admission controller checks the
threshold based criteria in order to update the load value for each PM took the decision
based on the threshold. The decision maker checks that if the value of threshold is less
than the load update time the load value is not updated and at that time the request time
is expired and again send to the admission controller otherwise the load value is aggre-
gated again and transfer to the admission controller in a recursive order. In addition, at
the same time admission controller receives the requests from the request handle for the
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provisioning of the VMs in cloud.

The compute node related information regarding the load parameter is stored in admis-
sion controller then based on this information the request is forwarded for further decision
related to the PM availability. The decision maker checks if the PM is not available the
request is put in the wait state and checks for the available PM through the PM avail-
ability decision maker in iterative mode. Otherwise, if the PMs are available the further
decision is taken place on it. At this stage the decision maker with check the capacity of
each PM and the requested resources in terms of CPU, RAM, etc. If the decision maker
fulfills the criteria of requested VM it pass the request and chose the feasible PM for the
placement of that VM. Moreover, if the request is not accomplished the migration will be
taken place for that request. Based on migration criteria the request is again forwarded to
PM availability decision maker and that process is followed is repetitive order until the

feasible PM is not associated with requested VM.
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Figure 4.2: System Flow Diagram for VM Placement and Migration
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4.5 Optimization Model

This study has proposed a linear programming based optimization model that balances
the workload on each physical server. The proposed optimization model computes bound
on the load balancing of physical machine with the given computational load on VM as
input for the optimal VM placement. For the better understating of the model, it proposes

a set of symbols representing constants and variables as listed in Table 1.

Table 4.2: Notations and Description

Notation Description

N the request’s size as a number of requested
VMs

M total number of physical machines (PM) in
data center

Vepu; shows the requested core (s) of VM;

Xij bivalent variable which is representing the
VM, assignment to the PM j

Vepu; indicates the maximum number of virtual
cores of server j

Phy denotes the physical servers

Load,,,x denotes the maximum value of load

Vimin denotes the VM with the minimum load

Puin describes the physical server with minimum
load value

Priax describes the physical server with maximum
load value

Py, represents the VM on the physical machine j

4.5.1 Assumptions
For the VM placement, following assumptions and limitations are considered by the pro-

posed optimization model for load balancing on physical server within a Data center.

1. Virtual machine load does not vary over time. Therefore, it is assumed that through-

out the execution time window it will remain same.

2. When VM is running, the workload running inside it will surge CPU utilization to
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its 100% before its execution time.

4.5.2 Linear Programming Formulation
This section discuses the decision variables, constraints, and objective function of the

model.

4.5.2.1 Decision variables
The optimization model computes the deployment of V M; on the physical server j in time
slot t. This is explained by decision variableX;;; as shown below. The value of X;;=1

when V M; is deployed; otherwise, X;;;= 0.

I, if theVM,;is placed on server; in time interval t
Xiji =
0, otherwise.
whereVi = 1. MVj=1.,N,Vt=1..,T.

I, if the VM;is not migrated on server; in time interval t
0, otherwise.
where¥i = 1..,M, ¥t =1..,T.
Cost Cj; 1s an integer variable. Based on each VM in every single time slot the value of
C is represented as O or 1. It represents that the VM (i) is running on specific PM (j) in
time slot (t), if it is running on same PM in next time slot (t+1) the cost value will be 0;

otherwise; it will be denoted with 1 when the VM is migrated to other PM.

4.5.2.2 Load balancing constraint
The proposed static and dynamic load balancing algorithm ensures that the same work-
load is hosted on all physical machines. In the following model, the fair share load on the

PM is presented.
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M M
> Xije— Y Xuu <1 Vj=1.,N,Yk = 1.,N,wherej # k
i=1 i=1

The load balancing constraint presents that the load is equally balanced when the differ-
ence between the serves is reported < to 1 based on the numbers of VMs allocated to the

SErvers.

4.5.3 Optimized Static Load Balancing Method
This section presents the resource constraints, operational constraints, and objective func-
tion of optimization static load balancing method. This model considers load factor while

scheduling initial placement of VMs within a data center.

4.5.3.1 Resource constraints

The number of linear constraints based on the optimization concept reflects the capacity
limit of PMs, which subjects the obvious facts that a PM can only host the number of
VMs based on its remaining resources. Each server carries limited number of cores (vC-
PUs). Also, Vcpu; that cannot be exceeded when hosting or serving the VMs based on

the remaining resources as presented in the following equation.

M
> Vepui s Xyy < Vepuy  Mj=1.,N¥r=1.,T
i=1

Similarly, during VM deployment, the capacity of RAM available should be higher than
the one required by the hosting VM for each physical host. This behavior is modeled in

below equation.
M
ZR,-XU, <R, Mj=1.,NNi=1.T
i=1
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Each VM is scheduled for execution when its time slot comes. The following constraint
represents that V M; should not be scheduled before its start time.
Tsi—1

D Xy <0 Mi=1.,M¥j=1,N
=1

4.5.3.2 Operational constraints
The cloud providers have to fulfill the request within the prescribed quota. A single VM

can only be deployed to one PM at time "t" as modeled below.

N
D Xije < lwhere ¥t = 1T, Vi=1.,M
j=1

The following constraint present that execution time of every VM at all intervals should

be less then or equal to its total execution time.

T N
> Xip=Er Mi=1..M

t=1 j=1

4.5.3.3 Objective function
The objective function along with the complete set of constraints are listed in Equa-

tions 4.1, 4.2,4.3,4.4,4.5, and 4.9.

T
Z Xijt
i=1 j=1 t=1 i=1 j=11t=T/2
Subject to:
M
D Vepui« Xyy < Vepuy  Mj=1.,N¥r=1.,T A.1)
i=1
M
D RiXijy <R; ¥j=1,NV=1.,T (4.2)
i=1
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Tsi—1

D Xy <0 Mi=1.,M¥j=1.,N *3)
t=1
N
ZXijl‘ < lwhere Nt =1...T Ni=1..M (44)
j=1
T
> Xi=Er NMi=1.M (4.5)
=1 j=1
M M
ZXijt _ ZXikz <1 ,Vj=1.,NVk=1..,N,wherej + k (4.6)
i=1 i=1

4.5.4 Optimized Dynamic Load Balancing Method
This section presents the resource constraints, operational constraints, and objective func-

tion of optimization dynamic load balancing method.

4.5.4.1 Resource constraints

A VM must be scheduled during its scheduled slots between start and end slots. More-
over, in single time slot the VM should be scheduled on exactly 1 PM. It shows that when
the value is one for one specific server for others its value will be 0 and VM will not
scheduled to that servers. The following constrain ensures the continuous allocation of

V M; on the PM; in each slot.

4.5.4.2 Operational constraints
The constraint represents that the VM is not scheduled to any PM until its start slot is
not allocated to any PM before that interval the value of this VM will be 0. Moreover, in

single time slot only 1 VM is assigned to 1 PM.
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N
ZXW <0 Vi=1.,MVt=1.Tandl <t <Tj
j=1

The VM no more scheduled when its value of end slot comes. The two constraints are
presenting the VM is not scheduled before its start slot and after its end slots. That inter-

val is showing VM has completed its task between start and end slots.

T N
> Xy <0 Vi=1.,M

t=1t>Tg j=1

4.5.4.3 Migration based constraint

Migration constraint is represented as the VM; in t time interval should be scheduled on
PM;. For instance, if the VM is deployed on PM 1 and in next time slot the same VM is
still placed on it the cost values is 0 to 0 which means VM is not migrated. The migration
constraint shows the difference of two transmission. Therefore, if the value of C changes
from O to 1 or 1 to O it means the migration is taken place and VM is transferred from one
server to another in same time interval t. In contrast, if the values of Cis 1 to 1 VM is
not migrated to other server. The 2 following constraints shows the absolute value of mi-

gration constrains. In order to cancel out the absolute values the constraints are derived as,

Xijr — Xijee1

IA

i Yt =1..,Ts.pandt # Tg,NM NN

Xijr — Xijir1

\%

o Yt =1..,Tscpandt # Tg,NM NN
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4.5.4.4 Objective function

The objective function along with the complete set of constraints are listed in Equa-

tions 4.7, 4.8,4.9,4.10, 4.11, 4.12.

T

MaxizzT:Xm—ZN:ZCn

i=1 j=1 t=1 j=1 1=1

Subject to:

N
ZXU’ <0 Vi=1..MVr=1.Tandl <t <T;
=1

Z ixijr <0 Vi=1.,M

t=1>Tg j=1

M M
D Xije = > Xig < 1,¥j = 1,N.Yk = 1.,N,wherej # k
i1 i=1

IA

N

D Xy < 1Ve=1,TsVi=1.,M

j=1

Xijr — Xijtr1 £ =Gy ¥t = 1..,Ts.pandt #+ Tg,NM NN

Xijt - Xijt+1 >—-Cy Nt=1..,Ts.pandt # Tg,NM NN

4.6 Data Design

This section explains the metrics in order to evaluate the proposed method.

4.6.1 CPU utilization

4.7)

(4.8)

4.9)

(4.10)

4.11)

4.12)

CPU utilization states the amount of the CPU capacity that a program required during

its execution. CPU is a shared resource and its utilization varies based on the amount of

resources handled by it. The utilization of the CPU is modeled based on the following

Equ. 4.13
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CPU utilization = user + nice + system + idle (4.13)

CPU utilization is represented as the sum of user state, system state, nice state, and idle
state. User time states the amount of time taken by CPU in order to execute the program
in user space. In addition, program executed in user state with high (nice) priority is pre-
sented in nice state. Moreover, system time is explained as the time in which the CPU is
busy in order to execute the program in kernel space. Idle time is also measured based
on the unused CPU capacity and it represents the CPU state when the CPU not executing

any processes.

4.6.2 Execution Time
Application execution time states the system time that application takes to finish its exe-
cution. Total execution time is derived from the product of three parameters as discussed

in terms of I, CPI, and C whereas it is measured in seconds.

n
ExecutionTime = Z CPI x C; (4.14)
i=1

Where the parameter I is explained as a program is consists of a multiple instructions
that are executed, which are measured as number of instructions/ program. Moreover,
each instruction acquire a number of cycles in order to accomplish the execution which
is presented as, verage cycle / I and denoted with cycle per instruction (CPI) whereas CPI
is also presented as Instructions per cycle IPC= 1/ CPI. In contrast, CPU takes the stable
clock cycle time and explained as seconds/ cycle which is represented in the form of C =

1/£.
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4.6.3 Numbers of migration

Number of migrations shows the total migrations within the cloud in order to balance the
load when the VMs are deployed and running. In the static algorithm VMs are initially
placed to balance the CPU utilization among all physical servers. When the VMs start
their execution the physical servers become overloaded again in order to balance the load
after the deployment of VMs the number of migrations are considered. Overlooking load
balancing establishment abruptly decreases system throughput due to overloaded servers
and ultimately leads to SLA violation. It has become an integral part of all distributed in-
ternet based systems as distributed computing comes with the challenges of high resource

demands that overload servers.

4.7 Distinguishing Features of Proposed Method
This section explains the distinguishing features in comparison of traditional VM place-

ment algorithm.

4.7.1 Efficient Resource Utilization

Resources within a cloud data centers are usually over-provisioned to avoid SLA viola-
tions. Inside the cloud, the controller is responsible for managing the resources such as
physical servers, virtual machines, and network connectivity equipment. The traditional
static load balancing methods inefficiently utilize the resources of a data center owing
to improper VM placements. The proposed algorithms efficiently utilize the underlying
resources of a data center for better resource management. Therefore, the proposed study

helps in resource scheduling policies.
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4.7.2 Ground for Energy Efficiency

Cloud data centers consume a significant amount of energy due to the provisioning of
equipment to cool the data centers. Servers are switched on to provision the services on
24/7 basis. However, due to non-optimized VM placement, the majority of the server re-
mained on while doing the limited activity. Existing non-optimal load balancing methods
do not consider all the resources of a server such as RAM, CPU, network bandwidth, and
degree of interaction among hosted VMs during placement. As a result, the energy con-
sumption of cloud data center increases. The proposed research as it considers multiple
resources at the time of VM placement creates a ground to switch off servers which are

under loaded by efficiently placing the load on remaining servers.

4.7.3 Hot Spot Elimination

Over resource utilization usually, leads to hot spot within cloud data centers. Existing
static load balancing methods lead to resource provisioning as it adds VMs on highly
loaded physical servers (chapter 3). As a result, the performance of the whole network
gets down. The proposed research isolates overloaded servers. It does not place a VM
on a server that is already loaded. Rather, it wisely places it on most appropriate server
devices. As a result, the host spots in the data centers are minimized. The cloud manage-
ment policies migrate the VMs from the hot spot server to another server that increases

the cost of the data center as VM migration is resource expensive process.

4.7.4 SLA Violation Avoidance
The performance of a VM is affected when it shares the resources with the tenant appli-
cations. Hosting so many applications on a single device lead to SLA violation. The SLA

is a measure of reliability, availability, user service time, latency, and an end to end delay.
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Existing conventional load balancing schemes are ineflicient in terms of handling the op-
timal resource placement for initial VM placement. The proposed research is effective as

it optimally places VMs for minimizing the SLA violation.

4.8 Conclusion

In this chapter the static and dynamic load balancing algorithms are proposed in order to
efficiently utilize the cloud resources. In order to enable this experiment, we presented
the lightweight extension of OpenStack compute service as a multi resource scheduler,
which is based on three modules: (a) Request Handler, (b) Global Decision Engine, and
(c) Local Monitoring Engine. Static load balancing algorithm minimize the application
execution time based on the fair distribution of the resources. Moreover, for dynamic
load balancing a dynamic multi resource based scheduler method is proposed that incor-
porates the migration technique in order to balance the load after the placement of VMs.
Dynamic method minimize the number of migrations and enhance the cloud performance
while minimizing the running time of an application. This extension allowed us to com-
pare our experimentation results with the standard OpenStack Nova scheduler according
to load distribution principles. In addition, the mathematical models are proposed for
the static and dynamic load balancing methods. The subsequent chapter presents the
implementation details of the proposed methods, details of data design, evaluation, and

validation of the mathematical model.
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CHAPTER 5: EVALUATION

The aim of this chapter is to discuss the data collection process adapted to evaluate the
performance of proposed multi resource schedulers for static and dynamic cloud envi-
ronment. The objective of the chapter is to discuss the experimental setup, tools, bench-
mark applications, data collection technique, which are used to test the performance of
proposed algorithms. In addition, this chapter also explain the mathematical model pa-
rameters and statistical method in order to examine the correctness of collected data. The
performance of proposed algorithms is explained based on different components includ-
ing (a) application execution time, (b) CPU utilization as a load, and (c) numbers of VM
migration.

This chapter is comprised based on seven sections. Section 5.2 discusses the eval-
uation setup, experimental devices, benchmark method, performance metrics, and data
gathering and data processing. Section 5.3 present the data collected to evaluate the per-
formance of SMRS algorithm based on initial VM deployment by comparing it with the
benchmark method. Section 5.4 report the data collected for to validate the accuracy of
developed mathematical model by comparing its obtained results with the results of ex-
periments. Section 5.5 presents the collected data of proposed DMRS algorithm based on
performance parameters in terms of CPU utilization, number of migration, and applica-
tion execution time. Section 5.6 presents the data collected to analyze the impact of VM
deployment with the execution time for the mathematical model, and proposed solution.

Finally the section 5.7 highlight the conclusive remarks.

5.1 Introduction
Static multi resource scheduler is proposed to initially place the VM on the physical server

based on CPU utilization factor with the minimum application execution time. The signif-
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icance of the SMRS analyzed by comparing it with the benchmark method as explained
in chapter 3. The performance of SMRS is evaluated by varying the VM deployment
parameters based on (a) number of vCPUs, (b) RAM, and (c) disk space criteria using the
different flavors for different data traces. In order to statistically analyze the performance
of SMRS the mean, standard deviation, and confidence intervals are also calculated which
shows the significance of the proposed static solution.

Dynamic Multi resource scheduler is proposed to initially place the VMs using the SMRS
deployment criteria and after the placement balance the load based on VM migration. The
objective of this algorithm is to minimize the number of VM migration while considering
the CPU load. The significance of the DMRS is evaluated with the mathematical model
and statistical analysis. Moreover, the performance of DMRS is compared with the legacy
benchmark method. The performance of the proposed algorithm is evaluated with respect
to CPU utilization, application execution time, and the numbers of migration. The sample
mean of the sample space is determined based on 30 values that shows the significance of

results by finding the error estimate for 95% confidence interval.

5.2 Evaluation of Proposed Multi-resource based Scheduler
This section briefly discusses the evaluation methodology used to perform the evaluation

of proposed algorithms.

5.2.1 Evaluation Setup

It states the tools, discusses test program designs, and highlights experimentation equip-
ments for performing the experiments. In this study, the experimentation is conducted
on real hardware equipments to analyze the performance of VM deployment in cloud in
terms of average CPU utilization and execution time.

The proposed study has considered a small in house data center to conduct the ex-
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perimentation for problem analysis in traditional load balancing methods. It has selected
the OpenStack cloud for experiments. During the experiments, a control environment is
modeled to deploy VM using OpenStack scheduler. Moreover, it has used the traditional

computers rather than expensive and powerful machines (small industrial cloud replica).

5.2.2 Experimental Devices

We implemented the static and dynamic multi resource algorithms on small-scale cloud
data center using Linux operation system. In order to conduct the experiment, a private
cloud setup is installed using the OpenStack Havana which is represented as OpenStack
cloud. The cloud setup is comprised of 4 compute node. Each compute node is deployed
with the homogeneous characteristics in terms of their resource capacity based on their
vCPUs, CPUs, RAM, and system cache. In this setup each physical machine exactly have
16GB RAM capacity, CPU with 2.40GHZ, QEMU hypervisor as presented in chapter 3.
Among the 4 servers one server is deployed with the specification of controller node as
well as the compute node and it can manage the all compute nodes in the system. The
compute nodes communicate with each other using the flat-DHCP networking module.
Table 5.1 presents the system specifications of deployed OpenStack cloud based on their

resource capacities.

Table 5.1: System specifications

Specification Capacity
Processor 2.40GHz

RAM 16GB

Compute Nodes 3

Controller Nodes 1

Operating System Ubuntu 12.04 LTS
Over-provisioning frequency 2

Storage capacity 242GB
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In order to check the performance of OpenStack cloud number of VMs are deployed.
At the time of VM deployment the CPU utilization is captured while running the client
server application that provides the continuous CPU utilization to the controller node
using the load analyzer algorithm. During the evaluation, the behavior of proposed algo-
rithms is analyzed based on the load and application execution time parameter. In order
to consider load while running the VMs a CPU intensive application is executed inside
each VM. For the SMRS known as static load balancing algorithm the behavior of CPU
usage is observed with the static and random load distribution factors. For the static load
analysis each VM is fully utilizing its number of vCPUs by executing the CPU bound test
application. CPU bound test program is performing the simple arithmetic operation and
it is designed including the nested loops of different sizes. CPU bound test program is
executed to generate the workload inside the VM. Furthermore, the random distribution
of loads inside the VMs the test program is executed with the VM based on random load
generator function. The random load generator function produce the values between 0
and 2. The value 0 presents that no application is running for specific VM. In contrast the
values 1 shows that only one CPU intensive program is running inside the VM whereas
the two applications are running for value 2 as generated by the function.

In dynamic load balancing as represented with DMRS, VMs are executed at time
interval t at the time of their creation. The VMs are migrated when the CPU load is varied
at certain point and it fulfill the CPU overprovisioning criteria. In DMRS and SMRS
workload is generated based on the number of VMs by executing the CPU intensive
application. The CPU utilization value is captured using the top and gripped with the awk
command. Moreover, the application execution time is calculated using the script which

is designed using the shell script command.
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5.2.3 Test Program

To evaluate the performance of proposed algorithm the synthetic test program is designed
that keep the VM busy and 100% utilize the capacity of CPU resources assign to VM.
In order to generate the 100% load each VM executed the number of programs equal
to its number of cores. The program is designed considering the factors that proposed
algorithms targets the CPU load; therefore, it should measure the performance of CPU
utilization and does not entail the human interaction while its execution. CPU intensive
program is composed of the set of basic arithmetic operation within the nested loops. The
program within the loops perform the operations on an array. The CPU intensive program

is designed to fully utilize the CPU resources when executed inside the VM.

5.2.4 Performance metrics
To evaluate the performance of proposed load balancing algorithms cloud environment

following performance measuring metrics are studied.

1. Application execution time

2. CPU utilization

3. Numbers of VM migration

Application execution time is computed based on how long applications are running
inside the VMs and the time taken to complete the computations inside the cloud. The
application execution time is capture for individual VMs running on each physical server.
Moreover, it is also observed the overall system time when the numbers of VMs are
running in order to show the effect of CPU load on the application execution time.

CPU utilization is presented as the capacity of CPU which is required to perform
the computations. CPU utilization is measured based on the processes running inside the
user state, system state, nice state, and idle state. The CPU utilization varies based on
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the number of resources handle by it. In this study CPU utilization is measured using the
compute load filter. In the static environment we assumed that all VMs are running with
the 100% utilization of load. Based on the number of cores allocated to each VM the test
program is executed inside the VM and captured to analyze the CPU utilization.
Numbers of migration states the total migration required to balance the load when
the physical servers are overloaded. Load balancing ensures even distribution of resources
among a set of users in a uniform way such that underlying servers do not become over-
loaded and idle at any time within cloud operation time line. in our proposed DMRS al-
gorithm load balancer increases the capacity and reliability of applications by decreasing
the burden on a server. Load balancer starts with identification of hot spot, an overloaded
server, and start migrating its load (VMs) on a server which has sufficient resources such
that the resources are evenly distributed. However, the criterion of migration is set based

on minimum CPU utilization.

5.2.5 Data gathering and data processing

The performance measuring parameters are investigated in diverse environments by vary-
ing the system variables such as number of vCPUs associated to each VM. The effects of
system variables are analyzed on the performance measuring metrics. First of all we com-
pared the performance of our static SMRS algorithm with the standard OpenStack based
filter scheduler. In second phase, we compared the results of mathematical model with
the results of our proposed DMRS algorithm to validate the correctness of mathematical
model. Thereafter, we used the mathematical model to collect the results considering
the measurement metrics. Finally, the performance of the propose algorithms is critically
evaluated by comparing the proposed algorithms results with the standard algorithms and
with the mathematical model.

The primary data is collected by testing the SMRS and DMRS algorithms in cloud
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environment in different scenarios based on statics, random, and dynamic load. The im-
pact of numbers of VMs deployment on the CPU utilization is analyzed based on thirty
values. The collected data for the application execution time and CPU utilization based
on thirty data traces. The impact of CPU utilization on application execution time is an-
alyzed by varying the CPU load. Moreover, the impact of application execution time for
individual VM is evaluated based on the number of core utilization inside the VMs. The
impact of numbers of VM migration are also analyzed when the load on physical server
is not balanced. Furthermore, the data is collected for the comparison of the proposed
solutions (SMRD and DMRS) with the state-of-the-art standard OpenStack scheduler for

application execution time, CPU utilization, and numbers of VM migration.

5.3 Data Collection for Initial VM Deployment (SMRS)

In order to extensively analyze the behavior of number of VM deployment on the CPU
utilization the VMs are launched considering the 2 vCPU per VM while considering the
static environment. In this section CPU utilization behavior and application execution

time is studied based on the static load factor and random load distribution factor.

5.3.1 Impact of Static and Random Load based VM Distribution on CPU utiliza-
tion

In order to analyze the effect of VMs distribution on the CPU utilization two sceneries are
analyzed while considering the static and random load on VMs. The deployment decision
is taken by the SRMS based scheduler based on the distribution behavior of VMs and the
load that is computed while the execution of VMs. The collected data presents the number
of VMs placement on the physical host based on the static and random load. Each VM is

placed using the 2 vCPU criteria.
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5.3.1.1 Static Load based VM Distribution

Table 5.2 represents the distribution behavior of VMs on the physical hosts along with
the CPU utilization of that server. The data values are evaluated based on the average of
thirty values. The table presents the VMs deployment in the cloud on Edgel, 2,3, and 4
compute nodes. Moreover, it shows that in order to balance the load number of VMs are
deployed based on CPU utilization factor. Each VM is placed using the 2vCPUs criteria.
The deployment sequence shows that considering the load factors first, second, third, and
fourth VMs are deployed on Edgel, 2,4,and 3 with the CPU utilization of 5.3%, 25.4%,
25.6%, and 25.3%. The sixth and seventh VMs are deployed on same physical server
in order to balance the load and showing the CPU usage up-to 12.8%, and 25.4%. At
that point each physical server is showing the CPU usage up-to 25%. The CPU load is
increased until the actual physical cores criteria is fulfilled. For VMs seventh, eighth,

ninth, and tenth the load is reached at 50% of the CPU utilization.

The physical servers exactly have the 8 physical cores when two VMs are deployed
on each physical server it shows that 4 physical cores are used by the VMs. Each VM
has executed the CPU intensive program in order to fully utilize the CPU resources of
that VM. Moreover, the fifteen, sixteen, seventeen, and eighteenth VMs are showing the
CPU capacity upto 96.94%, 98.99%, 94.64%, and 97.59%, respectively. Theses values
shows that physical servers have fully utilized its physical cores. As the overprovisioning

criteria is set for each physical server the more VMs are divided on the Physical hosts.

5.3.1.2 Random Load based VM Distribution
Table 5.3 presents the collected data for the CPU utilization when each VMs is deployed
using the random load values. The table is comprised with four columns. The first column

shows the number of VMs on single physical host. The second column presets the CPU
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Table 5.2: CPU utilization Analysis with the static load based distribution of VMs

Deployment Sequence Edgel Edge2 Edge3 Edge4
CPU% CPU% CPU% CPU%
Virtual Machine 1 5.3 0 0
Virtual Machine 2 0 25.4 0 0
Virtual Machine 3 0 0 0 25.6
Virtual Machine 4 0 0 253 0
Virtual Machine 5 12.5 0 0 0
Virtual Machine 6 254 0 0 0
Virtual Machine 7 0 0 0 50.8
Virtual Machine 8 0 51.2 0 0
Virtual Machine 9 0 0 49.6 0
Virtual Machine 10 50.4 0 0 0
Virtual Machine 11 0 0 0 75.89
Virtual Machine 12 0 75.1 0 0
Virtual Machine 13 0 0 74.63 0
Virtual Machine 14 72.24 0 0 0
Virtual Machine 15 0 0 0 96.94
Virtual Machine 16 0 98.99 0 0
Virtual Machine 17 0 0 94.64 0
Virtual Machine 18 97.59 0 0 0
Virtual Machine 19 0 0 0 98.18
Virtual Machine 20 0 97.59 0 0
Virtual Machine 21 0 0 99.68 0
Virtual Machine 22 96.12 0 0 0
Virtual Machine 23 0 0 0 99.68
Virtual Machine 24 0 99.96 0 0
Virtual Machine 24 0 0 0 0
Virtual Machine 25 0 0 99.51 0
Virtual Machine 26 0 0 0 98.37
Virtual Machine 27 0 98.96 0 0
Virtual Machine 28 0 0 99.64 0
Virtual Machine 29 99.64 0 0 0
Virtual Machine 30 0 0 0 98.96
Virtual Machine 31 0 99.50 0 0
Virtual Machine 32 0 0 99.52 0

utilization effected by the number of VMs. CPU utilization is presents the average value.

Moreover, third and the fourth columns shows the statistical analysis based on the confi-

dence interval and the standard deviation in order to proof that the results are significant

or not.
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Table 5.3: CPU utilization Analysis with the random load based distribution of VMs

Number Of VMs CPU utilization(%) Standard Deviation Confidence Interval
Virtual Machine 1 15.06 0.0230 +0.0127
Virtual Machine 2 254 0.2078 +0.1151
Virtual Machine 3 0.3 0.0404 +0.0223
Virtual Machine 4 254 0.1385 +0.0767
Virtual Machine 5 15.2 0.3002 +0.1662
Virtual Machine 6 394 0.0230 +0.0127
Virtual Machine 7 25.6 0.2540 +0.1406
Virtual Machine 8 55.6 0.3117 +0.1726
Virtual Machine 9 45.2 0.2424 +0.1342
Virtual Machine 10 50.05 0.0577 +0.0319
Virtual Machine 11 38.9 0.0519 +0.0287
Virtual Machine 12 55.8 0.1270 +0.0703
Virtual Machine 13 96.1 0.2944 +0.1630
Virtual Machine 14 75.07 0.3637 +0.2014
Virtual Machine 15 50.5 0.2598 +0.1438
Virtual Machine 16 55.7 0.3637 +0.2014
Virtual Machine 17 98.8 0.4156 +0.2302
Virtual Machine 18 95.5 0.2598 +0.1438
Virtual Machine 19 65.5 0.2598 +0.1438
Virtual Machine 20 75.99 0.0057 +0.0031
Virtual Machine 21 98.9 0.0577 +0.0319
Virtual Machine 22 98.8 0.4156 +0.2302
Virtual Machine 23 98.4 0.2078 +0.1151
Virtual Machine 24 98.7 0.3637 +0.2014
Virtual Machine 25 98.8 0.1847 +0.1023
Virtual Machine 26 98.8 0.1270 +0.0703
Virtual Machine 27 98.7 0.0173 +0.0095
Virtual Machine 28 98.7 0.3059 +0.1694
Virtual Machine 29 98.8 0.4156 +0.2302
Virtual Machine 30 98.6 0.2540 +0.1406
Virtual Machine 31 98.5 0.2598 +0.1438
Virtual Machine 32 97.2 0.1039 +0.0575

The table 5.3 shows that when the first VM is deployed it used 15.06% of the CPU
capacity. The load is generated in each VMs based on the random number generated
by the load generator function. The load generator function generated the values such as
1,2,0,2,1,0,0,1,2,2,0,2,2,1,2,0, respectively for the first 16 VMs deployed on four compute
nodes. Using that values the CPU bound test program generated the load inside the VMs
which shows the CPU utilization such as, 15.06%, 25.4%, 0.3%, 25.4%, 15.2%, 39.4%,
25.6%, 55.6%, 45.2%, 50.05%, 38.9%, 55.8%, 96.1%, 75.07%, 50.5%, and 55.7%, re-
spectively. The first VM is deployed on Edgel and based on the random load generator
function it utilized the 15.06% of the CPU resources. The second VM is deployed on
Edge4 and fully utilized the vCPUs with the workload value 25.4%. Based on the data
collection the VMs are deployed using the random load based criteria and deployed on

physical servers while satisfying the minimum load criteria. The deployment sequence of
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sixteen VM is reported as the third, fourth, fifth, and sixth VM is deployed on Edge2, 3,
1, and 4. Moreover, the next five VMs are deployed on servers Edge 2, 2, 3, 2, and 1. The
deployment sequence is showing that four VMs are deployed on the Edge2 among the 11
VMs. This is because the load of that server is minimum as compare to other physical
server and the random load generator function produced the O values for 2 VMs, which
shows that these VMs are not execution any program.

Furthermore, the values generated for the next VMs from sixteen VMs from sev-
enteen to thirty two are reported as 1, 2, 2, 2,2, 1,0, 2,2,2,2,2,1, 1,0, 2, and 1,
respectively. Based on load generator function generated values, the VMs are deployed
on a physical servers such as Edge 2, 3,4,4,1,2,2,3,1,3,1, 2,4, 3,2, and, 1 while sat-
isfying the balanced load criteria. According to the deployment, number of programs are
executed inside the VMs and the CPU utilization is presented as 55.5%, 98.8%, 95.5%,
65.5%, 75.99%, 98.8%, 98.4%, 98.7%, 98.2%, 98.8%, 98.7%, 98.8%, 98.6%, 98.5%, and

97.2% along with the confidence interval presented in the collected data.

5.3.2 Application Execution Time

Descriptive analysis of benchmarking results and proposed SMRS algorithm with the
static and random load factors are summarized in table 5.4. Comparison tables shows the
execution time values captured when the workload is deployed on physical nodes. Based
on the static workload the proposed methods is showing the same results as computed
with the default scheduler. When the VMs are deployed based on the CPU utilization and
RAM based criteria using the SMRD and Nova scheduler each VM is running the 100%
of the CPU capacity; therefore; the difference between the proposed and legacy methods
is very small amount in seconds. In contrast, when the workload is deployed using the
random load based distribution criteria it shows the successful results when analyzed

based on SMRS method. The SMRS shows the 940, 800, 1160, and 1166 seconds in order
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to complete the computation of the tasks running inside the VM whereas the default nova
scheduler is showing more computation such as 1667, 1664, 1668, and 1667 for Edgel,
Edge2, Edge3, and Edge4, respectively. From the analysis it is observed that the behavior
of SMRS is different based on the CPU utilization factor whereas the legacy scheduler is
taking the same time in order to complete the task without considering the impact of CPU

usage. As evaluation unveil that execution time increases as the workloads intensify on

the physical hosts.
Table 5.4: Execution Time
Execution Time Static Random
Nova Scheduler SMRS Nova Scheduler SMRS

Edgel 1669 1665 1667 940
Edge2 1667 1663 1664 800
Edge3 1668 1661 1668 1160
Edge4 1664 1662 1669 1179

5.4 Data Collection For Model Validation

The validation results via mathematical modeling are presented in table 5.5. Using the A
Mathematical Programming Language (AMPL) the unbalanced load distribution problem
is solved in order to achieve the balanced load objectives. Using the DMRS mathematical
model as discussed in Chapter 3 the validation model presents the distribution o VMs and
the three physical hosts. The terms mathematical model and validation model are used
interchangeably.

Table 5.5 is comprised of VMs placement vs time slots. Based on time slot 1 the time
in seconds is computed as t X 60 X 5 in seconds. Each time slot represents the 5 minuets
time. At time slot 1 two VMs are deployed on Edge2, and Edgel. While studding the
number of VMs deployment parameter first VM is continuously deployed on Edge2 while
satisfying the operational constraint of validation model. The second Vm is deployed on

Edgel and complete its execution is first 5 slots. The VMs including third, fourth, fifth,
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sixth, and seventh are deployed on Edge3, Edge2, Edge3, Edgel, Edgel, and Edge2 as
discussed in table with the representation of E1, E2, and E3. Based on the VM creation
specification three VM launched using the 3vCPUs. Based on the deployment sequence
the fourteenth, twenty third, twenty seventh VMs are deployed with 3vCPUs whereas

other VMs are deployed by exactly using the of 1vCPU.

Table 5.5: Time Slots

Number of Time Slots

# of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
VMs

VM 1 E2 E2 2 2 E20 0 0 0 0O O O O O O O O O O O O O O O0 o0
VM 2 El E1l E1 E1 E1 0 0 0 0 O O O O O O O O O O O O O O O0 O
VM 3 0 E3 E3E3 E3E3 0 0 0 O O O O O O O O O O O O O O O0 o0
VM 4 0 E2 E2 E2 2 2 E2 0 0 0 0 O O O 0O O O O O O O O O O0 o0
VM 5 0 E3 E3E3 E3E3 0 0 0O O O O O O O O O O O O O O O O0 O
VM 6 0 O EI El El El1 E1 E1 E1 0 0 0 O O O O 0O 0O O O O O O 0 o0
VM 7 0 0 0 E2 E2 2 E20 0 0O O O O O O O O O O O O O O O0 O
VM 8 0 O O EI El El ElI EI El E1l E1 E1 0 0 0 O O O O O O O O 0 O
VM 9 0 0 0 0 E2 E2 2 E2 E2 0 0 0O O O O O O O O O O O O O0 O
VM 10 0 0 0 0O O El E1 E1 E1 0 0 0 O 0O O O 0O O O O O O O 0 o0
VM 11 o 0 0O O O E2 E2 E2 E2 E2 E2 E2 0 0 O O O O O O 0O O O o0 o
VM 12 0O O O O O EI El E1 E1 E1 E1 E1 E1 E1 0 0 O O O O O O O 0 O
VM 13 0O 0 0 0 0O 0 E2 E2E2E20 O O O O O O O O O O O O O0 O
VM 14 0 0 0 0 0O O E3 E3 E3 E3 E3 E3 0 0 0 O O O O O O O O O0 o0
VM 15 0 0 0 0 0 0O O E2E2E2E2EE2E20 0 0 0 O O O O O 0 O
VM 16 0 0 0 0 0 0O O O E3 E3 E3 E3 E3 E3 E3 E3 0 0 0O O O O O O O
VM 17 0 0 0 0 0O O O O EI EI E1 E1 E1 E1 E1 E1 0 0 0 O O O O O ©
VM 18 0 0 0 0 0O 0O 0O O E3 E3 E3 E3 E3 E3 E3 0 0 0 O O O O O O O
VM 19 0O 0 0 0 O O O O O E3 E3 E3 E3 E3 E3 E3 0 0 O O O O O O O
VM 20 o 0 0 O O O O O O E3 E3 E3 E3 E3 E3 E3 E3 0 0 O O O O 0 O
VM 21 o 0 0 O O O O O O El E1 E1 E1 E1 E1 E1 E1 E1 0 0 0O O O O O
VM 22 o 0 o0 o0 o0 o O O O O E2 E2 E2 E2 E2 E2 E2 E2 0 0 O O O O O
VM 23 o 0 0 0 O O O O O O E2 E2 E2E2E2E2E20 0 0 O O O 0 0
VM 24 0 0 0 0 0O 0O 0O O O E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 0 0 O O O O
VM 25 0 0 0 0 0 O O O E2 E2 E2 E2 E3 E3 E3 E3 E3 0 0 0 O O O O O
VM 26 0 0 0 0 0O 0O 0O O E3 E3 E3 E3 E3 E3 E3 E3 0 0 O O O O O O O
VM 27 0O 0 0 0 0O 0O 0O 0O O E2 E2 E2 E2 E2 E2 E2 0 0 0 O O O O O 0
VM 28 0O 0 0 0 0O 0O 0O O O EI El E1 E1 E1 E1 E1 0 0 0 O O O O O ©
VM 29 0O 0 0 0 0O 0O 0O O O EI El E1 E1 E1 E1l E1 E1 0 0 0 O O O O ©
VM 30 0O 0 0 O O O O O O O E3E3 E3 E3 E3 E3 E30 O O O O O O O
VM 31 o 0 0 0 0O 0O O O O O El El E1 E1 E1 E1 0 0 0 0 O O O 0 O
VM 32 0o 0 0 0 O O O O O O EI El El E1 E1l E1 E1 0 0 0 O O O 0 ©0
VM 33 0O 0 0 0O O O O O O EI El E1 E1 E1 E1 E1 0 0 0 0 O O O 0 0
VM 34 o 0 0 0 O O O O O O E2 E2 E2 E2 E2 E2 E2 E2 0 0 O O O O 0
VM 35 0O 0 0 0O 0O 0O 0O 0O O O E3 E3 E3 E3 E3E3E30 0 O O O O O O
VM 36 0O 0 0 0 0O 0O 0O O O O EI El E1 E1 E1 E1 E1 0 0 0 O O O O ©

The VMs with the 3 vCPUs are deployed on Edge3, Edge2, and Edge2. Total number
of twelve VMs are deployed on Edge2 and Edge3 whereas Edgel is showing the thirteen
VMs in total. Based on the time slots, at time slot 1 VM is running at Edgel while 2 VMs
are allocated on Edge2, and Edge3. In addition, the equal number of VMs are deployed
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at time slot 4. At slot 5 and 6 there are four VMs are running on Edge2, three VMs
are running on Egde3 whereas the Edgel is showing three and four VMs, respectively.
At slot 7 one more VM (thirteenth VM) is launched on Edge2 while for Edge3 one VM
(fifth VM) has completed its execution. Edge3 is showing that nine VMs are deployed
on Edge3. Moreover, time slots 11 and 12 are that servers resources based on number of
vCPUs are fully utilized by the VMs.

Considering the number of VMs parameter in first column, each VM from eight
to twenty four completed their execution on the single server showing that the load is
balanced even if the new VMs are launched or the exiting VMs are terminated once their
computations are completed. The VM twenty fifth shows that for the starting four slots
(from time slot 9 to 12) when the VM is deployed it starts its executions on Edge2 and
then it is migrated to Edge3 in order to balance the load on Egde2. After the migration,

at time slot 13 and 14 the load of Edge2, Edge3, and Edgel is balanced.

5.5 Data Collection for Dynamic Multi Resource based Scheduler (DMRS)

In this study data is collected for the proposed Dynamic Multi Resource based Scheduler
to evaluate its performance based on the CPU utilization, Application execution, and
number of migrations. The VM deployment is same as presented in the previous section
using the DMRS algorithm. This behavior and CPU utilization of this study validates the

correctness of the mathematical model.

5.5.1 Impact of Dynamic Load based VM Distribution on CPU Utilization

This section presents the CPU utilization behavior of three compute nodes Edgel, Edg2,
and Edge3. The evaluated data is collected based on the VM execution intervals when
the VMs are deployed on the specific physical servers while satisfying the balanced load
criteria. In DMRS VMs are deployed using the different numbers of vCPUs and each VM

is running with the 100% utilization for its required vCPUs. The data collection for the
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three different compute nodes is discussed for the thirty data traces and average, standard
deviation, and confidence interval is computed to show the significance of the conducted

studies.

Table 5.6: Impact of VM execution interval on time CPU utilization for Edge

VM Execution 120 240 360 480 600 720 840 960 1080 1200 1320 840
Interval

(seconds)

Data Trace-1 18.7 40.7 55 67.7 956 948 958 94 952 964 94 94.1
Data Trace-2 20.7 428 55 66.6 966 956 958 948 949 964 939 946
Data Trace-3 172 46.1 557 622 968 96.1 962 953 944 96.1 929 96.2
Data Trace-4 16.6 409 547 66.6 944 957 953 927 924 956 956 964
Data Trace-5 207 398 545 606 954 955 953 948 962 955 956 889
Data Trace-6 18 436 557 627 957 962 959 946 953 957 96 87.9
Data Trace-7 194 494 585 592 958 96 958 951 952 953 946 88.1
Data Trace-8 177 406 58.1 649 966 969 957 954 935 958 944 894
Data Trace-9 28.5 433 53 649 96.1 964 954 94 912 956 941 87.1
Data Trace-10 16,5 409 579 61.8 963 958 955 944 903 963 948 832
Data Trace-11 20.7 465 558 576 965 963 95 949 892 963 941 874
Data Trace-12 19.5 469 555 568 963 965 956 956 89.7 96.6 942 873
Data Trace-13 16.3 44 50.5 56.8 966 963 967 956 892 959 953 842
Data Trace-14 199 468 571 668 961 964 945 959 89.1 954 947 87.6
Data Trace-15 177 45 505 646 956 96.1 962 954 899 95 93.1 86.8
Data Trace-16 214 433 538 641 963 961 958 96.1 909 954 932 89.8
Data Trace-17 214 424 543 629 96 964 957 956 898 955 939 86.5
Data Trace-18 183 40 544 607 963 96.1 956 973 893 959 94 86.9
Data Trace-19 173 423 551 629 958 948 96.6 969 863 965 914 824
Data Trace-20 22.1 426 579 66,6 965 948 958 963 85 959 936 86.7
Data Trace-21 183 40 544 607 963 96.1 956 973 893 959 94 86.9
Data Trace-22 173 423 551 629 958 948 96.6 969 863 965 914 824
Data Trace-23 225 438 555 626 959 949 954 955 877 94 93 85.7
Data Trace-24 229 444 549 63.6 964 939 961 959 95 95.7 94 85.1
Data Trace-25 172 404 555 646 967 943 946 955 941 96 946 83.6
Data Trace-26 16,7 438 557 621 962 954 948 96 93.6 954 947 845
Data Trace-27 199 452 504 669 958 956 96 948 948 955 95 86.7
Data Trace-28 20.8 398 558 664 947 95 952 946 951 941 955 849
Data Trace-29 183 396 558 629 963 944 959 951 952 938 947 843
Data Trace-30 20.8 398 558 664 947 95 952 946 951 941 955 849

Mean 19.39 43 55.03 63.09 96.04 95.62 95.66 9538 91.65 95.65 94.14 87.60
Standard 261 256 203 302 055 077 054 101 325 071 1.09 3.67
Deviation

Confidence +0.97 +0.95 +0.75 =+1.12 +0.20 +0.28 +0.20 =+0.38 =+1.21 =+0.26 +0.41 =+1.37
Interval

Table 5.6is comprised of thirteen columns. Based on the VM execution intervals the
CPU utilization values are captured. The load values changes at time interval t whenever
the new instance is launched and load is generated on that VM for each compute node.
At time interval 120 the average value of the CPU utilization is shown as 19.39%. It
presents that at that interval one VM is deployed on the Edge one and the CI is represented

for the VM is + 0.97 based on the standard deviation 2.61. The estimated CI values
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for the specific deployed VMs are presented as 0.95, +0.75, + 1.12, = 0.20, +0.28, +
0.20, + 0.38, +1.21, +0.26, +0.41,and +1.37. The Edgel is showing maximum CPU
utilization at time interval 720, 840, 960, 1080, 1200, and 1320. At that time VMSs are
utilizing the 100% of the CPU resources. And Edgel is fully loaded while utilizing the

overprovisioning criteria.

Table 5.7: Impact of VM execution interval on CPU utilization for Edge2

VM Execution 120 240 360 480 600 720 840 960 1080 1200
Interval

(seconds)

Data Trace-1 20.7 47.2 51.9 95.5 92.3 94.3 95.8 92.2 64.3 374
Data Trace-2 18.9 459 50.8 94 93.6 94.1 97 89.4 63.7 34.2
Data Trace-3 20.6 40.7 48 95.7 93.1 94.3 97.1 89.1 63.3 36.6
Data Trace-4 17 43.3 52 96 94.8 94.8 95.2 88.8 68.9 36.3
Data Trace-5 23.9 40.5 52.1 95.8 93.6 94.5 96.2 89.7 64.1 32.5
Data Trace-6 21.3 44.1 48 95.8 91.7 93.7 96.2 90 66.5 19.5
Data Trace-7 20.7 44 .4 51.3 96.1 90.3 92.7 95.9 90 65.3 18.1
Data Trace-8 16.4 443 52 96.2 92.8 93.7 97.1 86 65.6 16.1
Data Trace-9 17.2 453 51.6 96.3 94.1 94 96.2 86.8 63.1 16.6
Data Trace-10 21.7 42.7 47.3 95.2 96.5 94.4 95.5 91 63.4 17.3
Data Trace-11 23.1 45.8 53.3 93.9 96.8 94.3 95.4 88 71.2 20.8

Data Trace-12 19.4 41.2 50.8 94.6 96.6 94.9 94.4 88.6 69.2 19.8
Data Trace-13 19.7 41.1 50.6 94.1 97.2 94.4 95.7 88.4 62.8 23.2
Data Trace-14  21.1 40.8 49.3 94.7 96.1 95.4 95.1 87.8 63.4 16.5
Data Trace-15  21.8 43.4 48.1 93.9 96.3 95.2 94.8 88.8 63.3 17.2
Data Trace-16 19.1 45.6 48.4 94.4 96.3 95.8 95.1 92.1 64.5 17.6
Data Trace-17 209 43.8 52.5 95.6 96.8 96.2 94.6 92.7 57.3 17.2

Data Trace-18  20.3 42.5 52.2 93.8 96 96.3 95.8 91.9 61.2 21.7
Data Trace-19  20.8 45 52.4 96 96.1 94.9 95.5 93.7 61.5 24.2
Data Trace-20 16.7 48.9 523 95.3 94.1 95.1 93 93.7 63.4 22.7
Data Trace-21 19 44.9 52.4 93.7 95.5 94.7 90.9 94.9 59.2 27.5
Data Trace-22 19.8 46.4 49.2 94.4 95.8 95.3 93.3 94.3 55.8 20.6
Data Trace-23 19.5 40.5 47.5 922 95.3 95.8 95 92.3 529 21.3
Data Trace-24  24.8 40.5 52.6 94.9 95.8 94.3 96.1 83.3 59 25.3
Data Trace-25 19.5 39.9 47.5 95.9 96.1 95.4 95.7 86.3 54 17.1

Data Trace-26  22.1 42.5 48.1 96.8 96.4 95.9 95.5 87.9 53.8 16.9
Data Trace-27 19.8 44.8 49.2 95.8 94.9 96.1 95.3 86.7 53.9 16.8

Data Trace-28 20.8 46.8 52 95.3 97.4 96.4 95.6 85 60.5 17.2
Data Trace-29 21.6 40.4 52.1 95.8 96.2 95.9 95.6 90.8 57 19.3
Data Trace-30 21.7 48.9 52.3 95.3 94.1 95.1 93 93.7 63.4 22.7
Mean 20.28 43.55 50.53 95.09 95.12 94.92 95.33 89.66 61.79 22.32
Standard 1.98 2.44 1.95 1.03 1.78 0.90 1.25 2.90 478 6.75
Deviation

Confidence +0.73 +0.91 +0.72 +0.38 +0.66 +0.33 +0.46 +1.08 +1.78 +2.52
Interval

Table 5.7 presents the distribution of VMs in the Edge2 while considering the impact
of VM execution interval on CPU utilization. When the first VM is place on Edge?2 the
computed average is presented as 20.28% od the CPU usage. This table is only presents

the VMs deployed on Edge2. However, the VMs deployed on that servers based on the

136



CPU utilization of the others servers to balance the load in cloud. The average load
values is computed as 20.28%, 43.55%, 50.53%, 95.09%, 95.12%, 94.92%, 95.33%,
89.66%, 61.79%, 22.32% based on the time interval varying from 120 to 1200 with the
different number of VMs. In addition, teh confidence interval plotted for the computed
load average such as +0.73, +0.91, £0.72, +£0.38, £0.66, +£0.33, +£0.46, +1.08, +1.78, and
+2.52. The CI is showing less the 1 for the first seven time intervals. For the time inter
eight, nine, and tenth the confidence CI value is reported > 1. Theses values shows that
all VMs are started before the time interval 600; therefore, the CPU utilization is upto
99%. As the average and CI is computed for the 30 iterations the VMs have completed
their executed little bit faster in these interval which shows that the CPU utilization values
is varying from 85% to 93.7%, 54% to 71.2%, and 17.1% to 34.2% at time interval 900,

1080, and 1200.

Table 5.8 presents the values of VM execution at time t. The load is varies based on
the CPU resources because number of other VMs are deployed on one server to perform
their computations. The load values are changing when number of VMs are allocating to
the cloud. At time inter 120 the load value varies from 16.8% to 30.2%, which shows that
the data traces are recoded based on thirty value. When the first data trace is recorded
the CPU usage low as compare to other data traces thats shows that at this time only one
VM is deployed on Edge3. Moreover, for values from data traces 2 to 30 the 2 VMs
are executed on that machine in first time slot. The difference is reported because top
command save the values after every 3 seconds; therefore, the exact value is computed
based on the average of 30 runs. Based on the average values of CPU utilization recorded
as 29.05%, 29.88%, 28.16%, 17.85%, 70.78%, 95.7%, 95.09%, 96.36%, 96.59%, and

88.91%, the CI is presented with the significant results for that values +1.13, +0.83,
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Table 5.8: Impact of VM execution interval on time CPU utilization for Edge3

VM  Execution 120 240 360 480 600 720 840 960 1080 1200
Interval

(seconds)

Data Trace-1 16.8 29.6 29.1 15.3 71.5 96.3 95.6 95.9 96.1 96.3
Data Trace-2 27.6 28.2 29.3 19.6 74.4 94.3 96.3 96.5 96.2 96.2
Data Trace-3 27.4 28.2 26.8 16.2 71.4 95.2 96.1 94.2 95.6 95.6
Data Trace-4 30.3 28.9 26.9 15.8 70.4 94.6 97.9 96.2 94.8 96.5
Data Trace-5 27.6 29 314 16.3 69 94.8 97.5 96.9 95.7 95.3
Data Trace-6 29.4 27.7 27.6 15.7 69.8 97 94.9 97.3 94.8 93.9
Data Trace-7 29.2 34.3 33.3 18.1 70 97.8 94.7 98.4 97.4 93.8
Data Trace-8 33.2 31.6 28.6 20.4 73.6 96.1 94.6 97.3 96.3 93.7
Data Trace-9 29.7 33.9 33.2 15 71.8 95.4 94.5 97.9 96.4 94.2
Data Trace-10 30 28.8 30.3 25.6 72.7 95.5 94.2 97.3 94.8 95.5
Data Trace-11 26.6 30.2 28.3 19.7 71.6 95.8 94.5 97 98.2 95.5
Data Trace-12 29.6 27.9 29.2 15.3 71 95 95.4 97.5 97.5 95.9
Data Trace-13 31.8 33.6 30.3 17.8 67.8 93.9 94.6 97.3 96.7 94.3
Data Trace-14 29.4 314 28.3 19.3 65.4 95.4 96.4 96.8 98 96.8
Data Trace-15 27.2 29.7 30.7 17.8 67.6 96.9 95.7 97.3 96.6 84.3
Data Trace-16 27.8 26.7 29.5 19.4 73.5 94.6 96 96 96.7 86.4
Data Trace-17 30.1 30.3 31 19.3 71.4 95.7 95.9 95.3 96.9 81.2
Data Trace-18 26.1 27.5 28.1 15.7 66.7 96 93.8 96 97.3 83.2
Data Trace-19 27.1 27.4 26.9 15.7 70.3 96.8 95.4 95.3 95.5 82.4
Data Trace-20 29.9 29.6 24.7 18.3 72.6 96.5 96.9 95 96.4 87.9
Data Trace-21 28 30.7 29.2 16.1 70.4 95.2 89.3 95.4 96.8 82.4
Data Trace-22 31.6 27.8 28.2 15.6 67.8 94.5 91.5 96.2 96.6 88
Data Trace-23 31.5 31.8 25.6 19 70.9 95 88.7 95.6 96.7 82.1
Data Trace-24 29.3 35.1 24.5 17.8 71.9 97.5 95.7 96.4 97.5 81.8
Data Trace-25 32.6 27.6 21.9 18.4 77 97.4 95.6 95.6 97.3 81.1
Data Trace-26 34 29.8 28.5 19.6 72.9 96.9 97.6 95.9 96.6 85
Data Trace-27 27.4 30.7 28.2 19.6 68.8 96.2 95.6 96 97.8 81.8
Data Trace-28 30.6 29 28 18.5 72.8 94.3 95.1 95.8 97.2 81.8
Data Trace-29 29.6 31.6 19.7 17.1 70.7 95 97.3 96.3 96.6 82.3
Data Trace-30 30.2 27.9 17.6 67.9 95.4 95.6 96.4 96.8 52.1
Mean 29.05 29.88 28.16 17.85 70.78 95.7 95.09 96.36 96.59 88.91
Standard 3.04 2.22 2.88 2.20 2.47 1.04 2.09 0.93 0.89 6.292
Deviation

Confidence +1.13 +0.83 +1.07 +0.82 +0.92 +0.39 +0.78 +0.34 +0.33 +2.34
Interval

section.

5.5.2 Application Execution Time

+1.07, £0.82, £0.92, £0.39, +0.78, +£0.34, +0.33, and +2.34. Moreover, the CPU is fully
utilized at time interval 720, 840, 960, 1080, and 1200. It shows that the VMs running
inside the Edge3 using the CPU resource in order to complete their computations. The
CPU utilization effects the application execution time because its resources are shared

among the VMs. The impact of CPU utilization on execution time is studied in next

Table 5.9 presents the application execution time conducted for the legacy OpenStack
nova scheduler and proposed DMRS method. The experiments environment is same in

order to evaluate the CPU utilization behavior when VMs are running inside the physical
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servers to complete their execution. The table first column and first row of the table shows
the number of times slots and CPU load of existing and proposed solution. The second,
third, and forth column presents the data collected using the existing nova scheduler.
Beside the last three columns shows the CPU usage for proposed DMRS methods. The
time is captured based on the usage of CPU percentage which reflects the information
regarding how many tasks are executing at time instance t. While considering the data
of default nova scheduler the overall workload distribution of cloud is analyzed based on

three physical server.

Table 5.9: Performance comparison of proposed DMRS model and Validation Model

Time Slots NovaSch NovaSch NovaSch DMRS DMRS DMRS
Edgel Edge2 Edge3 Edgel Edge2 Edge3

1 19.51 16.69 18.5 19.96 20 12.15

2 31.05 29.23 30.11 20.13 31 29.52

3 31.34 29.33 29.55 31.59 42 29.052

4 40.277 41.83 39.95 43.591 43 29

5 31.3 42.89 27.488 42.561 53 29

6 37.966 41.88 28.833 55.289 52 17

7 43.46 54.82 30.93 56 54 17

8 43.599 60.23 28.082 55 64 18

9 65.75 93.88 28.224 66 89 53

10 85.852 95.54 40.83 94 95 72

11 95.367 95.54 83.91 95 95 92.84

12 94.84 95.6 83.424 95 95 95.45

13 94.22 95.54 83.374 95 95 95.18

14 93.82 95.42 81.811 94 94 95.29

15 94.30 95.47 80.64 94 95 95.36

16 94.11 94.64 83.49 94 94 95.57

17 93.93 93.60 83.90 94 92 95.97

18 91.45 91.75 83.64 91 74 77.08

19 91.61 94.80 80.55 57 36 40.26

20 91.08 93.92 82.67 22 0 29

21 93.72 94.27 83.2 - - -

22 59.61 59.92 45.55 - - -

23 31.88 47.21 31.67 - - -

24 23.24 23.71 23.2 - - -

25 23.71 - 2491 - - -

26 18.5 - 12.2 - - -

27 - - 16.69 - - -

Total Exe- 7800 8100 7200 6000 6000 5700

cution Time

(seconds)

For time slots 1 to 8, the load is continuously varying for each server. For time
slots, 10 to 19 only two servers (Edgel and Edge2) are showing the maximum CPU load

with the load average of 95% whereas for remaining server (Edge3) the CPU usage is
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presented less then 83.90%. The deployment behavior of VMs shows that VMs are not
fairly distributed. In contrast, proposed DMRS solution presents the stable CPU usage for
each physical server from time slots 11 to 17. Moreover, it shows the minimum execution
time such as 600, 600, and 5700 for Edgel, Edge2, and Edge3, respectively. Besides, the
default scheduler shows the maximum execution time including 7800, 8100, and 7200
seconds for Edgel, Edge2, and Edge3, respectively. The analysis shows that proposed
solution presents the minimum execution time and evenly distributes the workload when
compared with the default solution. Moreover, from the analysis it is evaluated that inef-

ficient CPU utilization affect the application execution time.

5.6 Data Collection For Performance Comparison of DMRS and Validation Model
The accuracy of validation model is evaluated by collecting the results obtained by math-
ematical model with the empirical results. The CPU utilization, numbers of migrations,

application execution times metrics are used to validate the mathematical model.

5.6.1 Impact Of CPU Utilization on Application Execution Time

Table 5.10 represents the comparison of application execution time based on CPU utiliza-
tion through experiments and validation model.The first column and first row of the table
shows the time slots for which the CPU utilization is studied and the type of experiments,
respectively. The application execution time is presented for different time slots for three
physical servers. The VM deployment behavior of evaluation model is presented in ta-
ble 5.5. Moreover, exactly the same deployment behavior is selected by our proposed

DMRS algorithm.

The distribution behavior chosen by DMRS for every single server is presented in
previous section. The sum of total time slots values is showing the overall execution time

taken by the physical server for all VMs running inside that machine. The validation
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Table 5.10: Performance comparison of proposed DMRS model and Validation Model

Time 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18
Slots
Exp  19.96 20.13 31.59 43.59 42.56 5528 56 55 66 94 95 95 95 94 94 94 94 91
Edgel
Math 125 125 25 375 375 50 50 50 625 875 100 100 100 100 100 100 50 125
Edgel
Exp 20 31 42 43 53 52 54 64 8 95 95 95 95 94 95 94 92 74
Edge3
Math 125 25 25 375 50 50 624 50 625 875 100 100 100 100 100 100 75 125
Edge3
Exp 215 29.0529 29 17 17 18 53 72  92.84 95.45 95.18 95.29 95.36 95.57 9597 77  40.2
Edge2
Math 0 25 25 375 375 375 50 375 75 100 100 100 100 100 100 100 62.5 125
Edge2

1. Exp: Experiments, Math : Mathematical M odel

model is showing vary small difference when compared with the experiments. The exper-
iments are running for two more slots in order to complete the execution of running task.
It is because in validation model there is no overhead is considered while running the
number of processes while in real time experiments a top command is executed to contin-
uously monitor the CPU behavior which shows the CPU usage from 0.9% to 4.5%. While
considering the VMs distribution no VM is deployed and executed on Edge3 in time slot
1; therefore’ the validation model Edge3 is showing O value whereas the experiments are
showing 2.15%.

Moreover, based on the load balancing constraint in validation model the load is
balanced if the difference among all the physical servers is reported less than or equal
to 1 VM. The difference of 1 vCPU is reported in time slots 1 to 3 for Edgel which
shows the load is balanced as analyzed through experiments and validation model. In
addition, when the all VMs are deployed and used the CPU resources the mathematical
model presents the 100% CPU utilization while for experiments when the value is > 90
it shows that CPU is fully utilized. For time slots 4 to 16 the CPU load is same with the
equal numbers of VMs for Edgel. With respect to the time slots the CPU utilization for
validation model it is reported as 37.5%, 37.5%, 50%, 50%, 50%, 62.5%, 87.5%, 100%,
100%, 100%, 100%, 100%, and 100 while the experiments shows the CPU usage such as

43.59%, 42.56%, 55.2%, 89%, 56%, 55%, 66%, 94%, 95%, 95%, 95%, 94%, 94%, and
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94%.

At time slot 11 to 16, Edgel, Edge2, and Edge3 are fully loaded for both validation
model and the experimental models. Moreover, the time slots with the balanced load
factor and with the difference of 1 vCPU are highlighted. These results shows that the
results conducted using the mathematical model are significant when compared with the
experiments. The load behavior using the mathematical model is same as observed with

the experiments which proves the validity of mathematical model.

5.6.2 Analysis of Application Execution Time for Individual VMs

Table 5.11 presents the comparison of empirical and validation model results based on ex-
ecution time parameter for individual VM deployed inside the cloud on multiple servers.
The first row and first column of the table depicts the numbers of VM in the cloud and ap-
plication execution time. The application execution time is studied using the experiments
and validation models results. Moreover, to validate the model results the percentile dif-
ference is also calculated. The VMs execution is reported based on their deployments as
reported in table 5.5. In experiments the VMs runs the CPU bound intensive program
to generate the load inside the VMs. In contrast, in order to execute the program inside
the VMs script is written which produced the same load as generated by the experiments.
While considering the Table 5.5, for first VM deployed on Edge2 it is running for the
continues 5 slots. Each slots represents the 5 minutes time. When fist VM deployed there
is no other resources are running; theretofore; the time computed by the experiments is
presented as 1551 whereas the validation model shows the 1500 values for the same VM.
The percentile difference of theses 2 values shows the minimum difference such as 3.28%.
The percentile difference < 15% is accepted while satisfying the load balancing criteria
because the load is computed while observing the load balancing constraint in DMRS

validation model.
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Table 5.11: VM deployment vs Application /Execution Time

Number of VMs Execution Time Percentile Difference
Experiment Validation
Model

Virtual Machine 1 1551 1500 3.28
Virtual Machine 2 1529 1500 1.89
Virtual Machine 3 1954 1800 7.88
Virtual Machine 4 1324 1200 9.36
Virtual Machine 5 2419 2100 13.18
Virtual Machine 6 1339 1200 10.38
Virtual Machine 7 3168 3000 5.30
Virtual Machine 8 1805 1800 0.27
Virtual Machine 9 1531 1500 2.02
Virtual Machine 10 2415 2400 0.62
Virtual Machine 11 3475 3000 13.66
Virtual Machine 12 1647 1500 8.92
Virtual Machine 13 1359 1200 11.69
Virtual Machine 14 2631 2400 8.77
Virtual Machine 15 3533 3300 6.50
Virtual Machine 16 3145 2700 14.14
Virtual Machine 17 3239 3000 7.37
Virtual Machine 18 2789 2700 3.19
Virtual Machine 19 2829 2700 4.55
Virtual Machine 20 3549 3000 15.46
Virtual Machine 21 3040 2700 11.18
Virtual Machine 22 2540 2400 5.51
Virtual Machine 23 3203 3000 6.33
Virtual Machine 24 3416 3000 12.17
Virtual Machine 25 3330 3300 0.90
Virtual Machine 26 3364 3000 10.82
Virtual Machine 27 2776 2400 13.54
Virtual Machine 28 3111 2700 13.21
Virtual Machine 29 3261 3000 8.00
Virtual Machine 30 2331 2100 9.90
Virtual Machine 31 2714 2700 0.51
Virtual Machine 32 2783 2400 13.76
Virtual Machine 33 2711 2400 11.47
Virtual Machine 34 2724 2700 0.88
Virtual Machine 35 2775 2700 2.70
Virtual Machine 36 1908 1800 5.66

The execution time reported by the experiments for second VM to the tenth VM such
as 1529, 1954, 1324, 2419, 1339, 3168, 1805, 1531, and 2415. In addition, for the
same numbers of VMs the validation model presents the execution time based on 1500,
1800, 1200, 2100, 1200, 3000, 1800, 1500, and 2400 seconds. The percentile difference
reported for theses values is discussed such as 1.89%, 7.88%, 9.36%, 13.18%, 10.38%,
5.3%, 0.2%, 2.02%, and 0.62%. Although, VMs are deployed using 1 vCPU excepting
the three VMs the execution time is not same for each VM. The reason is that VMs not
running at same time, it depends on the numbers of VMs running at that time interval

and sharing the CPU resources to complete their tasks. When the number of VMs are
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greater the execution time will exceed it also depend on the VM for how long time it
was running and launched inside the server. The differences in evaluation and validation
results are shown insignificant which advocates reliability and validity of our model. The
model shows minimum amount as compare to the experiment results because there is no
computation overhead is considered whereas the experiments presents the results with the
amount of computations overhead. The differences in experiments and validation results
are shown < 15%, which advocates reliability and validity of our model. The evaluation
shows 85% accuracy of the mathematical results when compared with the experiments

and percentile difference is computed for theses values.

5.7 Conclusion

In this chapter, proposed solutions SMRS, DMRS are evaluated by comparing it with
benchmarks results. The benchmarking is done by collecting the results using the Open-
Stack filter scheduler (default scheduler). The data is collected by sampling the parame-
ters for thirty data traces. The best estimation point is measured by calculating the mean
of 30 values for each experiment which shows the significant results by computing the
95% confidence interval. Based on the exterminates the validate of mathematical model
is also proved by observing the CPU utilization and application execution time.

It is concluded that SMRS, successfully reduce the application execution time when
the load nature is random in side the cloud. Besides, with static load distribution behavior
it shows the similar results as gathered by the legacy scheduler. The SMRS algorithms
balanced the load when the VMs are initially placed in the cloud without considering the
migrations. In addition, the DMRS presents dynamic load balancing and initially placed
the VMs while considering the CPU utilization and also it fairly distributes the workload
based on migration technique. DMRS presents the minimum execution time when its

results are compared with the standard scheduler. The DMRS shows the performance

144



gain while satisfying the minimum numbers of migration objectives in order to balance
the workload. The accuracy of the optimized DMRS validation model is validated upto

85% when compared with the DMRS experiments results.
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CHAPTER 6: RESULTS AND DISCUSSION

This chapter validates the system model of proposed methods SMRS and DMRS against
their empirical evaluation results. The performance of proposed solutions is compared
with the benchmark solution. Moreover, the Mathematical model results of DMRS method
are also compared with the empirical results of DRMS to validate the correctness of the
proposed model. The evaluation parameters such as CPU utilization, execution time, and
numbers of migrations are considered to analyze the performance of proposed solution.
This chapter is organized into six main section. Section 6.1 analyze the perfor-
mance of proposed initial VM placement algorithm (SMRS) by comparing it results with
default OpenStack scheduler. This section is further classified into two subsection. Sec-
tion 6.1.1.1 analyze the VM distribution behavior based on the static load whereas sec-
tion 6.1.1.2 studied the VM distribution while considering the random load as a factor.
Moreover, Section 6.2 compares the DMRS method results with the benchmark sched-
uler based on the dynamic load. Section 6.3 validated the mathematical model results
by comparing it with the experimental results of DMRS. Section 6.4 presents the perfor-
mance analysis based on the results of purposed DMRS, optimized DMRS, and default

scheduler. Finally, section 6.5 conclusively presents the main findings of the chapter.

6.1 Performance Evaluation of Proposed SMRS Method

This section evaluates the static multi resource based scheduler performance by compar-
ing it with nova scheduler. In order to analyze the SMRS performance, CPU utilization
and application execution time parameters are considered based on the number of VM

provisioning on physical hosts.
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6.1.1 Analysis of CPU Utilization

In this section, CPU utilization behavior is studied based on two scenarios, including
static and random load factor while the initial placement of VMs. In order to generate the
load, a CPU intensive application is executed inside the VM. In static analysis, each VM
executes the number of applications equal to its number of cores (vCPUs) allocated to that
VM. Besides, considering the random load based distribution, load generator function
will decide for how many cores the application needs to execute based on the values

produced by the it.

6.1.1.1 Static Load Based Distribution Considering Load as a Factor

Fig. 6.1 shows the relationship between CPU utilization and VM deployment sequence on
four physical servers, including Edgel, Edge2, Edge3, and Edge4. In said Fig, number
of core utilization across the VM deployment sequence is represented to highlight that
how the VMs are deployed on the physical servers at time interval t considering CPU
utilization factor. In order to show their deployment on the physical hosts different shapes
such as triangle, circle, diamond, and square are selected to show the Edgel, Edge2,
Edge3 , Edge4, respectively. The figure shows that second, third, and forth VMs are
placed on the Edge2, 4, and 3. While, conducting the static analysis as mentioned in
chapter 3 the cloud environment is heterogeneous based on the system memory. The VM
placement shows that like the default scheduler deployment as presented in Fig. 3.3, VMs
are not place in a unique and recursive order. The VM fifth and sixth are deployed on
Edgel while considering the CPU usage based distribution. The VMs are distribution is
selected by the proposed static load balancing algorithm using the load filter, compute

filter, and load analyzer.
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Figure 6.1: Core utilization vs VM deployment (Static Load Analysis)

Fig. 6.2 depicts the CPU utilization when the number of VMs are deployed in cloud.
The figure presents that at x-axis VM deployment is plotted using the deployment se-
quence presented in Fig. 6.1. At y-axis CPU utilization behavior is reported. When first
VM is placed the load values is reported 9%, and 23% to 25%, for Edgel, Edge2, 4, and
3, respectively. At the deployment of sixth VM the CPU load is computed by the SMRS
method and this VM is place on the least loaded host (Edgel). Seventh VM is also placed
on the Edgel because other three physical hosts are showing maximum CPU utilization
when compared with the Edgel. Moreover, when the seventh, eight, ninth, and tenth VMs
are placed the CPU usage is reported as 54% 53.5%, 52.5%, 50.9%, respectively. Each
VM is deployed using 2 vCPUs and the physical CPUs, which are reported 8 for each
physical host are completely allocated when the total 4 VMs are deployed on each server.
Therefore, for VMs from fourteenth to onward the physical servers are showing the CPU

utilization > 90%.
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Figure 6.2: Core Utilization vs VM Deployment Sequence of SMRS

6.1.1.2 Random Load Based Distribution Considering Load as a Factor

This experiment used the same random load generator function as discussed in Fig. 3.5
to distribute a dynamic load. Using proposed SMRS method, first four VMs among a
sequence of VMs are deployed on Edge 1, 4, 2, and 3 as shown in Fig. 6.3. This happened
due to random load generation, which causes each VM to have dissimilar CPU utilization.
This figure presents the VMs distribution behavior when the number of cores (vCPUs)
requested by the VM at x-axis and y-axis. In order to balance the load, the seventh,
eighth, and tenth VMs are placed on Edge2 whereas the twelfth and thirteenth VMs are
placed on Edgel. The sequence shows that VMs are not deployed while considering the
same placement behavior as studied in Fig. 3.5 in chapter 3. Moreover, in order to better

understand the VMs deployment sequence, CPU utilization is plotted in Fig. 6.4
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Figure 6.3: VM Distribution Behavior of SMRS (Random Load Analysis)

In Fig. 6.3, VM deployment sequence is plotted across CPU usage at x-axis and y-
axis. Fig. 6.3 represents that when initial VM is deployed on Edgel, the CPU utilization
is 5%. After first VM placement, the other compute hosts are loaded with minimum load
compared to Edge 1. However, the second, third, and forth VMs are placed on Edge 4,
2, and 3, respectively. After the deployment of first four VMs, GDE (Fig. 4.1) perceived
that Edgel has a minimum load. Therefore, it chooses Edgel to place next incoming
VM. Moreover, at the time of ninth and tenth VM, the CPU utilization is 23% and 45%,
respectively. In the said figure, second VM on Edge2 presents minimum CPU utilization
as no execution profile is running on it because of the lowest load generated by the random
function generator.

Based on deployment sequence in Fig. 6.4, the CPU utilization is minimum for
Edge?2 as compared to rest of the nodes. Therefore, seventh and eighth VMs are deployed
on Edge?2 in order to balance the load factor. Furthermore, ninth VM that is second VM
for Edge3 shows the maximum CPU utilization as it executes four different execution

150



profiles. Therefor, after third, seventh, and eighth VM’s deployment, Edge2 again lever-
ages minimum load due to random load generator. As a result, tenth VM is also deployed
on Edge2. Based on comparison VM deployment sequence of proposed algorithms is not

same as in existing algorithm presented Fig. 3.5.
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Figure 6.4: Core Utilization of SMRS (Random Load Analysis)

6.1.2 Analysis of Application Execution Time

This study analysis the application execution time while varying the CPU load as shown
in Fig. 6.2 and Fig. 3.3 for static load based distribution and Fig. 6.4 and Fig. 3.5 for
the random load based distribution. Based on static load distribution, as in Fig. 6.2 and
Fig. 3.3 application execution time within VM is plotted in order to check the perfor-
mance of proposed SMRS method and existing nova scheduler. In order to understand
the results we have plotted the graph of each compute node where SMRS Edge 1, 2, 3,
and 4 represents the results proposed algorithm while NovaScheduler Edge 1, 2, 3 and
4 presets the results of existing OpenStack default scheduler. Fig. 6.5 shows that exist-
ing, and proposed SMRS scheduler behavior is same when the load distribution nature is
based on uniform or static load. The difference between proposed and existing algorithm
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is captured as a small amount of time in seconds. Each physical server is taking the 1660

to 1669 seconds in order to complete the tasks running inside the VMs.
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Figure 6.5: Execution Time vs CPU Utilization of SMRS based on Static Load

Moreover, Fig. 6.6 is reflecting the minimum execution time for each compute node
when the VMs are deployed based on random distribution. In comparison of existing
scheduler, our proposed scheduler method enhanced the performance of Edgel, Edge2,

Edge3, and Edge4 up-to 33%, 50%, 33%, 44%, respectively.
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Figure 6.6: Execution Time vs CPU Utilization of SMRS based on Random Load

Based on execution time analysis (Fig. 6.5 and Fig. 6.6), it is concluded that SMRS
efficiently utilize the CPU resources when the load distribution is random. It is observed
that when the load nature is static the proposed and existing schedulers uniformly utilize
the CPU resource and the execution time taken by each server to complete the task is
same. The application execution time is similar when the CPU load is kept similar for
each VM. In general increase in CPU usage is directly increase the application execution
time because the CPU resources are shared among the deployed VMs. In addition, when
the load is distributed randomly the CPU utilization of each machine is not same as re-
ported in Fig. 6.4. Therefore, based on distribution behavior each physical server is taking
different time to execute the application running on that physical host. However, the data
observed in case of random load based distribution scenario proves that the execution time
is not only depended on the CPU usage but also the placement and deployment sequence

criteria for the allocation of VMs to physical host based on load factor.
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6.2 Performance Evaluation of Proposed DMRS Method
This section analyze the performance of DMRS method based on the dynamic load factor.

This analysis presents the impact of CPU utilization on the application execution time.

6.2.1 Analysis of CPU Utilization over Execution Time

Fig. 6.7 presents the execution time as time slots at x-axis and y-axis show sows the CPU
utilization. This figure shows that how the application execution time affect the CPU
utilization in dynamic environments when the new VMs can be launched any time and
migrated to another host when load is maximum. The time slot parameter is measured
in seconds. The graph show that until slot 5 the CPU utilization is minimum because the
new VMs are launched at time interval t on the physical servers. The execution time is
plotted for every single physical host. The servers are represents with the DMRS Edge n
when the VMs are deployed using the proposed method. In contrast the Nova Scheduler

Edge n the physical hosts when VMs are placed using the default OpenStack scheduler.
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Figure 6.7: Comparison of Proposed DMRS and Default Nova Scheduler

Based on the time slots the DMRS Edge 1, 2, and 3 are showing the similar values
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when all VMs have completed their executions on the physical hosts. Moreover, DMRS
shows that balanced load for each server when the physical CPUs allocation criteria is
fulfilled with the deployment of VMs. From slot 10 to 19 the DMRS Edgel, 2, and 3
shows the equal utilization of CPU and as a results every physical hosts completed their
execution at same time. In contrast, using the existing nova scheduler Edge 3 is showing
the 82% of CPU utilization whereas the Edge2, and 1 are showing the maximum usage
with the average load values presented as 94%. The physical server with the default
scheduler impacts the CPU utilization and not evenly distributes the workload which as a
result exceeds the application execution time as presented up-to 7200 seconds for Edge3,

7800 for Edge2, and 8100 reported for Edgel.

6.3 Model Validation

The accuracy of the mathematical model is validated by comparing its results with the
experiments. The VM deployment behavior, execution time of individual VMs running
on the physical hosts, overall execution time taken by individual physical server when
multiple VMs are deployed, CPU utilization, and number of migrations are the parameters
studied to evaluate the results of validation model and the results obtained from empirical

studies.

6.3.1 Analysis of VM Placement

Figure. 6.8 presents the number of VMs placement on the physical hosts at x-axis and
at y-axis the execution time of individual VM is plotted. The placement sequence is
decided by based on the balanced load criteria in order to fairly deploy the workload
on the physical machines. In order to presents the distribution of VMs on the specific
PMs different colors are selected such as green presents Edgel, blue shows Edge2, and
yellow presents Edge3. The first three VMs are placed on Edge2, Edgel, and Edge3,and

it completed their execution in 1500, 1500, and 1200 seconds. In start VM 1, and 2
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have assigned the 5 slots to complete their tasks, which shows that the VMs completed
their executions without any interruption when their is exactly one VM is deployed on
each server. The forth, fifth, and sixth VMs are taking 1800, 1200, and 2100 in order to
complete their execution. While considering the VM placement the VM 25 shows that
initially it is executed on Edge2 for 1200 seconds and later on it is migrated to Edge3 and
completed the remaining compactions in 1500 seconds. Form results it is observed that
when numbers of VMs are maximum the CPU resources are shared among the VMs and

execution time is depended on CPU utilization as studied in next section.
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Figure 6.8: VM Distribution based on Mathematical Model

6.3.2 CPU utilization

Figure. 6.9 presents the CPU utilization for physical servers Edge 1, 2, and 3 at time slot t
plotted on x-axis and y-axis, respectively. The CPU utilization is presented for how long
the load is running inside the VMs for each physical server. Based on migration constraint
the load is balanced if the difference is reported equal to 1 vCPU. Based on experiments
it is observed that when only 1 vCPUs is utilized by the VMs the load is generated by the
VM reported as 12.5% to 15% of CPU usage. Until the time slot 10 the load is reported
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<80% of the whole CPU utilization for three servers.
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Figure 6.9: CPU Ultilization of Physical Servers

The graph shows the load is increases evenly for three physical host. At slot 7 the
Edge 2 is showing higher load as compare to the others. The Edgel and Edge3 presented
the CPU utilization up-to 52% whereas the Edgel shows the 61.2%, as discussed before
the difference between theses values of the servers is reported < 12% (1 vCPU), which
proved that load is fairly distributed among the servers. From slot 10 to 17 the servers
shows the 100% usage of CPU resources. Moreover, the time slots shows that every single

host completed its execution between 18 to 19 slots.

6.3.3 Number of Migrations

Figure. 6.10 the number of migrations. The graph shows that only Vm 25 is migrated
in order to balance the load when the CPU is maximum and affecting the application
execution time. As presented Figure. 6.8 the VM 25 performs migration at the 13th
time slot from Edge 2 to Edge 3. The migration action is justified according to the load

variations of the physical hosts recorded in Figure. 6.11.
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Figure 6.10: Number of VM migrations

Figure 6.11 presents the number of time slots in which VMs are allocated to the
physical servers and completed their execution. The graph is plotted to shows the CPU
utilization when VMs are placed requesting the different number of vCPUs. The said
figure depicts that load values reaches to its maximum when 8 cores (actual physical
cores) are utilized. At 11th and 12th time slots for all the three physical hosts more
than 8 cores are allocated by VMs. At the 13th time slot, mathematical model decides
to migrate the VM number 25 from Edge 2 to Edge 3. By the 13th time slot, the load
becomes balanced between the three hosts and the system maintains its stability (remains
stable) for two slots. For slots 15th the load is also balanced and only the one extra VM is
running on Edge3 which has completed its execution in 16th time slot. The graph results
shows that balanced load criteria is fulfilled while considering the minimum number of

migrations criteria when the load is not stable after the distribution of VMs.
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Figure 6.11: Impact of Migrations on the CPU Utilization

6.3.4 Execution Time of Individual VMs

Figure 6.12 shows the total number of VMs on each PM. The graph is plotted across the
number of VMs and the execution time required for that VMs to complete the executions.
The first VMs deployed on each host are taking the execution time from 1200 to 1551
seconds the execution time depends on the arrival of VMs while it is affected if there
are number of VMs deployed equal to the physical capacity of the PMs. The graph
compares the execution time taken from the experiments and also from the validation
model. Moreover, it represents that in order to validate the correctness of model the
distribution of VMs is same, which is selected by the validation model represented as
optimized DMRS and proposed dynamic multi resource based scheduler based on the
CPU utilization criteria. The graph results shows that VMs execution time is similar
when executed based on validation model and the experiments. Based on the results the
accuracy of the model is validated up-to 85% while considering the application execution

time.
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d DMRS, and Nova Scheduler
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6.4 Comparison of DMRS, Opt

In this section the performance of proposed DMRS, optimized DMRS (validation model),

the default scheduler is compared based on the VM distribution and execution time pa-

rameters.

6.4.1 CPU utilization

Figure. 6.13 presents the time slots in minutes and the CPU utilization in in percentage

values at x-axis and y-axis, respectively. The proposed DMRS method is compared with

the optimized DMRS. The CPU utilization of optimized DMRS is obtained through the

The distribution behavior of physical servers is presents using

validation model results.

server shows the results conducted

the different marker styles. In addition, the physical

using the experiments and the validation model. In the said figure the values taken by

the mathematical model shows the 100% CPU usage whereas the values plotted using the

experimentations shows the values >90%. In actual the load in the real environment do
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not reaches to the 100%; therefore’ when the load is greater then 90% the server is fully

utilized.

Execution Time vs Load

120

100 ==
3 ek \\
vy A\
A
0
5
00 5 10 15 20 25

Time Slots

—0—ValidationModel Edge3 —#-DMRS Edge3
X ValidationModel Edge2 —o—-DMRS Edge2
——ValidationModel Edgel —DMRS Edgel

Figure 6.13: CPU Usage Comparison DMRS Experiment Vs Validation Model

The graph values from time slots 11 to 16 shows the equal utilization of the CPU.
Moreover, every physical server completed their task in a same time as using the valida-
tion model results the total execution time is calculated for 12 time slots. Besides, the
experiments results shows that Edge 3 is showing the balanced load values starting from
11 slot to 16. When the difference of the slots is compared based on validation results
the servers Edge2 and Edge3 with the experiments completed their execution in 20 slots
while the Edge has completed all executions within this time slot and running for slots 21

with the normal load up-to 19.5%.

6.4.2 Execution Time of Individual VMs
Figure. 6.14 the number of VMs deployed only at Edgel. The graph depicts the number
of VMs and the execution time of each VM at x-axis and y-axis, respectively. The said

figure compare the execution time of VMs obtained from the mathematical results and the
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experiments. This graph shows that the execution time taken by each VM in validation
model of experiments is matched up-to 85%. The mathematical results shown the small
difference because of no overhead is considered while conducting theses results. While
the execution is affected in real time experimentation because numbers of processes are
running to execute the instruction including new VMs booting statements and execution
of CPU intensive applications. The term mathematical model and validation model is

used interchangeably while presenting the results collected from the validation model.
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Figure 6.14: Comparison of Execution Time for Edgel

Figure. 6.15 shows the allocation of VMs on Edge2 and shows the total execution
of VMs. On Edge? the time calculated based on validation model and experiments is the
small amount of difference. The time calculated using the empirical results is presented
as 1551, 1954, 1339, 1805, 2415, 1647, 2631, 3040, 2540, 3416, 3364, and 2711 second
for VM 1 to 12, respectively. Besides the time taken by the validation model for theses
VMs is reported as 1500, 1800, 1200, 1800, 2400, 1500, 2400, 2700, 2400, 3000, 3000,
and 2400. The results shows the execution time reported with the model results is similar
to the experimental results, which validated the correctness of mathematical model.

162



4000
3500
3000
2500
2000
1500
1000

500

Execution Time

16 3364

SR

SR

1954
1800 1

oo

00 1647

1500

SR

1551

S

1339
1200

SN

S

e
S o)
S
S

o
SRS

NS

OO HHSE

\\\\\\\\\\\\Wg
S

S

S

S

12 3 4 5 6 7 8 9 10 11 12
Number of VMs

# Experiments Edge2 %Math Model Edge2

Figure 6.15: Comparison of Execution Time for Edge2

Figure. 6.16 presents the VMs execution time when deployed on the Edge machines.

It shows that total 11 VMs are deployed on the Edge3 while satisfying the balanced load

criteria. The validation model and proposed DMRS deployed VMs in a similar way

to fulfill the even CPU utilization objective. The graph shows that the execution time

taken by individual VM is approximately same with the small amount of difference. The

mathematical model shows that third Vm is executed eleven time slots and each slots

represents the 300 seconds with the execution time 3300 whereas the experiment shows

the time value up-to 3533 for that machine with the percentile difference 6.5%. Moreover,

the percentile difference calculated for each VM on that server is reported as 9.3%, 11.6%,

6.5%,1.3%, 3.1%, 4.5%, 6.3%, 0.9%, 8.0%, 2.7%, and 5.6%, respectively.
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Figure 6.16: CPU Utilization Analysis using Mathematical Model, and DMRS

Figure. 6.17 shows the execution time for all the VMs that are hosted on Edgel,
Edge2, and Edge3 during the whole observation period The said figure presents the per-
centile difference between the validation model and experiments. The bar presented as
experiments shows the values computed via real time experimentation of execution time.
Besides, the right bar displays the estimated values by computed through the validation
model. Moreover, the percentile differences is presented to measure the correctness of
the mathematical model. Based on the results the percentile difference calculated for
theses results shows the difference <15% in total, which advocates the effectiveness and

reliability of our mathematical model in offering an acceptable accuracy.
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Figure 6.17: Percentile Difference of Execution Time

Figure. 6.18 presents the overall execution time when the CPU utilization is maxi-
mum and VMs are running inside the physical hosts. The said figure presents the CPU us-
age computed using the results obtained from validation model, proposed DMRS method,
and default OpenStack scheduler. The graph shows that when the load is deployed using
the default scheduler it is not showing the even CPU utilization for Edgel,2, and 3. The
Edge3 server showing the minimum CPU usage with the load value up-to 81% whereas
the load observed through the Edgel, and Edge?2 is reported as maximum value of CPU
(90%). Moreover, the difference between the servers is reported more then one VM. As
the default scheduler do not balanced the load; therefore; the execution time taken by

each VMs is maximum when compared with the validation model and DMRS results.
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Figure 6.18: CPU Utilization Analysis (Validation Model, DMRS, and Default Sched-
uler)

Figure. 6.18 shows that the validation model showing the better execution time which
is presented as 44% while. Furthermore, percentage difference computed for the valida-
tion model results and DMRS experiments results is reported as average value of 5.6%
with the 94.4% similar results based on the CPU utilization parameter. However, the
DMRS, and optimized DMRS based VM distribution maximize the performance of cloud
with the minimum execution time, minimum number of migrations while satisfying the

objective for fair distribution of load among the physical hosts.

6.5 Conclusion

In this chapter we have validated the performance of proposed SMRS method in the static
environment while the initial placement of VMs. We have compared the SMRS with ex-
isting scheduler, which is used for the distribution of the VMs in OpenStack cloud. The
CPU utilization, and execution time is considered as a performance metrics for static

algorithm. The comparison results shows that fairly VM distribution based on CPU uti-
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lization enhance the application execution time. We have compared that when the load
nature is uniform the SMRS evenly distribute the load among the servers and produce the
similar results to the default scheduler. In contrast, SMRS shows the better results when
load nature is different for each VM. IT is observed that existing scheduler overlooks the
CPU utilization, which leads to the maximum execution time. The comparison shows
that in best case the performance of proposed SMRS is increased up-to 50% when com-
pared with the default nova scheduler. Similarly, for different load behavior it shows the
performance gain up-to 44%,a nd 33% in case of static algorithm.

For dynamic load balancing the DMRS method is proposed and compared with the
existing solution. The proposed DMRS shows the 44% performance improvement when
compared with default method using the execution time parameter. Moreover, the pro-
posed DMRS algorithm is validated using the set of equations designed in chapter 4 using
the real experiments. The execution time results obtained through the validation model
are within the 0.2% of empirical results as a best case. In addition, as a worst case differ-
ence the value is reported as 14.14%. Based on the execution time of individual VMs the
validation model shows the 85% similar results equal to the empirical results. Moreover,
the DMRS fulfills its balanced load objective while satisfying minimum number of mi-
grations. The proposed DMRS results are compared with validation model results based
on the CPU utilization parameter. However, the CPU utilization parameters shows the
94.4% similar results when compared with the validation results. Considering the results
obtained through the performance comparison and analysis with the existing method, it
is concluded that CPU utilization based initial VM placement enhance the application
execution time in static load balancing. Further, for dynamic load balancing when the
VM are initially distributed using the CPU utilization factor the number of migrations are

reduced and execution time is increased.
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CHAPTER 7: CONCLUSION

This chapter presents the conclusion of overall study conducted in this thesis. The con-
clusive analysis is performed by reflecting the set of research objectives presented in the
first chapter.This chapter highlights the research contributions and summarize the future
research directions of this study.

This chapter is categorized into four sections. Section 7.1 presentees the reassess-
ment of the proposed objectives of this thesis. Section 7.2 discusses the contribution of
this study. The scope and limitation of this study are examined in section 7.3. Section 7.4

highlights the future direction of this study.

7.1 Reappraisal of Research Objectives

The problem of uneven distribution of workload while the initial placement of VMs in
cloud and its adverse impact on the application execution time has been addressed in
this thesis. This section presents the road-map that is followed to achieve the research
objectives highlighted in section 1.4.

Objective 1: To critically review the current state-of-the-art cloud load balanc-
ing schemes while the placement of VMs to gain insight to the performance limita-
tions.

The first objective of this study was to qualitatively analyze the existing state-of-the-
art cloud load balancing schemes to highlight their limitations. In order to achieve the
first research objective, this study critically review the cloud load balancing schemes and
derived the thematic taxonomies to categorize the exiting literature based on the selected
parameters which were common in most of the studies. The state-of-the-art literature
has been studied from the online digital libraries including ACM, IEEE, Web of Science,
Elsevier, and Springer. In the broader domain of cloud resource management and cloud

load balancing, we have collected ad studied the 130 papers and reviewed the current
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literature on VM placement methods by selecting the 30 methods, which are published
during last five years. Moreover, the selected methods are compared based on the pro-
posed taxonomies to highlight the variances and commonalities among them. The aim of
this exercise was to investigate the issues and challenges to propose the future research
directions in this domain. We found that existing studied do not fairly distribute the cloud
workload. Several studies initial allocate the VMs in the cloud while overlooking the
CPU utilization. Besides, majority of the studied incorporates the dynamic load balanc-
ing based on the VM migration method which leads to the maximum migration overhead.
Therefore; an efficient load balancing method is required that fairly distribute the CPU
load at the time of initial deployment of workload and also minimize the number of mi-
grations.

Objective 2: To investigate the workload distribution of cloud load balancing
schedulers to reveal inefficiencies in existing schemes without considering the CPU
utilization and current load while the placement of VMs.

The second objective of this study was to investigate and analyze the impact of work-
load distribution on the application execution time and CPU utilization. To accomplish
this research objective, we have examined the VM allocation behavior in difference cases
using the default OpenStack scheduler. We classified the workload nature as a static and
random load based distribution while the placement of VM in cloud. The empirical anal-
ysis highlighted that workload nature affect CPU utilization and application execution
time. This study showed that the existing schedulers consider the RAM availability fac-
tors only to select servers for VM deployment. The analysis shown that existing cloud
load balancing schedulers were not distributed the workload based on CPU utilization
criteria. Moreover, existing schemes were not able to adequately mitigate the impact of
CPU utilization on the application execution time while the initial deployment.

Objective 3: To design and propose a multi resource-based scheduler to min-
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imize the deficiencies of current cloud schedulers based on CPU utilization, and
application execution time while the placement and migration of VMs.

The third objective of this research was to design and propose the solution that effi-
ciently distribute the workload and save the application execution time. We have proposed
the multi-resource based objective schemes for static and dynamic workload distribution.
A static multi resource based scheduler is proposed for the static load balancing to ad-
dress the issue of CPU load at the time of initial placement. In addition, a dynamic multi
resource based scheduler is proposed to address the dynamic load balancing while min-
imize the number of migrations after the initial placement of workload. The proposed
solutions collect the CPU utilization based information using the proposed load analyzer,
load filter, and compute load algorithms. The proposed solutions minimize the applica-
tion execution time and allocated the workload based on balanced utilization of CPU. In
dynamic algorithm application execution time is minimized while satisfying the objective
of uniform workload distribution and minimum number of migrations.

Objective 4: To evaluate the performance of proposed multi resource based
algorithms and compare it with the state-of-the-art current VM placement cloud
scheduler, and to validate the developed mathematical model.

The final objective was to develop the mathematical model of the proposed solutions
and their validation. The mathematical model is validated by comparing its results with
the results obtained from the empirical study. The empirical results are conducted based
on real time experiments using the OpenStack cloud. We have evaluated the performance
based on CPU utilization, number of migrations, Overall execution time taken by the
physical server, and the application execution time of individual VMs parameters. More-
over, the performance of static and dynamic algorithms are compared with the default
nova scheduler.

The proposed static algorithm fairly distribute the workload with the performance
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gain up-to 91% using the CPU utilization parameter and minimize the appellation execu-
tion time 50% when compared with the existing solution. Moreover, the dynamic load
balancing algorithm enhance the performance 88% based on CPU utilization metric and
save the execution time up-to 44% when compared with the existing solution. The vali-
dation model and empirical results shows difference of 0.2% in the best case while in the
worst case it shows the difference less than 15%. In addition, the validity of the math-
ematical model is proved 94.4% and 85% for CPU utilization and application execution

time when compared with the empirical results of proposed solution.

7.2 Contributions
This section highlights the main contribution of this research. The scholarly articles as
contribution are listed in Appendix A. This study summarizes to the body of knowledge

as follows.

e Thematic Taxonomy: This research proposed the thematic taxonomies to clas-
sify the existing state-of-the-art cloud load balancing schemes. The main research
categories are highlighted in the corresponding domain based on the proposed tax-
onomies. These taxonomies highlight the critical aspects related to workload dis-
tribution, resource selection, and allocation in cloud. Moreover, the comprehensive

literature analysis lead to the identification of open research issues.

e Performance Evaluation of VM deployment schemes: A detailed analysis based
on default scheduler of OpenStack cloud is performed to analyze the VM place-
ment selection criteria. The performance evaluation based on deployment behavior
and unfair CPU usage revealed insights to the issues in the existing load balancing

methods.

e Static Multi Resource Based Scheduler Method (SMRS): An efficient method is

171



proposed for the static load balancing. The proposed method selected the minimum
loaded host to allocate the new request (VMs). We empowered default scheduler to
consider the RAM capacity and number of vCPUs in addition with CPU utilization
(CPU load) for initial placement of VMs. The proposed algorithm fairly distributes
the workload and improve the performance by minimizing the application execution

time.

Dynamic Multi Resource Based Scheduler Method (DMRS): An efficient dy-
namic load balancing algorithms is proposed to efficiently utilize the cloud re-
sources in terms of RAM, CPU utilization, and number of vCPUs. Proposed DMRS
method uniformly distributed the workload at the time of initial deployment and
manage the CPU utilization among all the servers by adapting the migration tech-
nique. The proposed algorithm controls the number of migrations with the balanced

load distribution and successfully minimize the application execution time.

Validation and Evaluation of DMRS: We have modeled the proposed DMRS
mathematically using and set of equation that are derived to validate the model.
The model is validated by comparing its results with the empirical results. The
performance of the model is evaluated based on the CPU utilization, application

execution time, and number of migrations.

7.3 Scope and Limitations

The proposed multi resource based scheduler algorithms are effective for all interactive

cloud data centers. The proposed algorithms will works for legacy applications in addition

with the newly designed applications. Moreover, this algorithms are also for all types of

cloud specially form OpenStack cloud.

The proposed DMRS is suitable for efficient load balancing with the minimum num-
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ber of migrations based on the CPU utilization factor. VM migration is not free and
consumes a significant amount of sender and receiver resources in terms of power. This
study do not address the power consumption while the migration of the workload. More-
over, proposed algorithms do not address the network communication pattern when VMs

are deployed and migrated to another hosts.

7.4 Future Research Directions

This research was an effort to contribute towards the cloud load balancing domain. How-
ever, a single PhD thesis is not enough to covers the all aspects to a particular domain.
The following lines, we presents the insight to the some of possible research directions.
The focus of this research is to only efficiently balance the workload among physical
servers. The propose dynamic load balancing method balance the load while adapting the
migration technique. When the VMs are migrated proposed algorithm do not consider the
migration time (overhead) and downtime from the overall execution time recorded. i.e.,
we assumed that once a particular VM is stopped, it is directly resumed on the target one
at the same instant. Hence, the future work include to extending the scope of this study
by addressing the migration overhead while the VM migration. Moreover, in this study,
it is assumed that each VM is running with the uniform load before its execution time,
we aim to address that assumption as a future work. In addition, like CPU and memory,
network is considered as a shared and critical resource for cloud application. Network
traffic affects the performance of cloud. Therefore, as a future research direction we aim

to address the affect of workload on the network traffic based on the internal cloud traffic.
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