Development of Object-oriented Components
for ATM Network Simulation with emphasis
on Congestion Control

A Thesis

Submitted to the

Faculty of Computer Science and Information Technology
University of Malaya

by

SIN WAI KIT

under the supervision of
Mr. LING TECK CHAW

Dissertation submitted in partial fulfillment of the requirement for
the Degree of
Bachelor of Computer Science
Session 2000/2001

Submission Date (26 January 2001)

ABSTRACT

ABSTRACT

Asynchronous Transfer Mode (ATM) is a very high-speed transmission technology. The
barrage of technological advancements has continuously enhanced the network
performance. There is an increasing dependence on the network. Thus, there is a need to
accurately predict the impact of network and applications changes in the dynamic network

environment.

The network simulator is a tool to analyze the behavior of ATM networks without the
expense of building a real network. The simulation of this simulator will give the results

that imitate the real network environment,

The aim of this project is to develop object-oriented components for an ATM Network
Simulator that emphasis on congestion control mechanism. In this project, the ATM
congestion control system makes use of leaky bucket and token bucket techniques. In
addition, the object-oriented approach is used as the construction method for this
simulator. The simulator consists of features like reusability, extensibility, portability as

well as maintainability.

Furthermore, the simulator is capable of multithreaded operations and platform
independent. Thus, the developed simulator can run on different platforms like Windows

or Unix.

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT
I would like to take this opportunity to thank those people who had helped me throughout

this project.

First of all, I would like to express my gratitude to my respected supervisor, Mr. Ling
Teck Chaw for his support, valuable guidance, encouragement and constructive comments

during this project.

Special thanks to Mr. Tbrahim for being a considerate and kind moderator who has
contributed suggestions and ideas in this project. Besides, I would also like to express my

sincere appreciation to my lecturer, Mr. Phang Keat Keong for his brilliant opinions.

Last but not least, my deepest appreciation to my friends, Lim Shiow Hong, Ching Kim
Joo, Jimmy Tan Kai Hong, Phung Jacen, Tay Boon Pin, Wong Che Sum, Wong Wing

Hong and Yu Soon Lye for their continuous support to complete this project.

il

TABLE OF CONTENT

TABLE OF CONTENT
ABSTRACT i
ACKNOWLEDGEMENT. ii
TABLE OF CONTENT ceeodil
LIST OF FIGURES vii
LIST OF TABLES viii
Chapter 1: INTRODUCTION 1
1.1 Introduction to Asynchronous Transfer Mode (ATM).................cc.ccoveevveene. 1
1.2 Introduction to ATM Service Classescocoeviviiiiiiiceccc s 3
1.2.1 Constant Bit Rate (CBR) ServiCe...............ccccoiiiiiiiiieiiienie s esinesnssines 4
1.2.2 Real-Time Variable Bit Rate (rt-VBR) Service.................cccooovevvviivieeerrenn, 4
1.2.3 Non-Real-Time (nrt-VBR) Service...........ccoooiviiiiiiiiiiiiricissiiicies et e 4
1.2.4 Unspecified Bit Rate (UBR) Service...............ccccocoeveniiiiiieeiiiisieciccccecvi v 5
1.2.5 AvailableBit Rate (ABR) Serviceccocciivnninoniee s odlisiess Basnsisussssia 5
13 Introduction to Connection Parameters..........................c.cooiininin. 6
1.3.1 Quality of Setvion (Q08) ... e Moieistsssssiinnsissssnie 6
1.3.2 Tnat POIRITBIENDc0iciiiaiiioisisauemiinissak XINgs dgglfl sinss it ssbbipslmstsssasstest 7
1.4 Introduction to Traffic Management in ATM Network............................... 8
1.5 Introduction to Congestion Control in ATMnetwork 11
1.6 Simulation of ATM Network......................c...coiiiii i, 12
1.7 Project ODJBRIVES .1 ...l N D sosvsnnesssiisistbonatisnicsssssbasatssatss 13
1.8 PREEORE MOMPR .o 0.0 50 cninsinimongueios Numllssssssivo bk ssissisbaviss sssnsbbo U IR ERAS 13
1.9 PRI BOMINIE .20 oo cohvcoumnignogagnnWosansbivs uns bravet kine SRS 43 ERima b end VNS LIS 08 14
LI10 ReportOrganiation.......... 0. I .. M.....ooiviinmmmimibosiiisssitinivismini 15
Chapter2: LITERATURE REVIEW. 17
2.1 Network SImulation ... e 17
22 Introduction to Various Simulators............................ccooeeiiin 18
2.2.1 NIST ATM/HFC Network Simulator...................c..cccooviiieiiinceeecece e 18
2211 AGVANIAGEScc..ccoooovviiiviiiiiiiiiiveiiiiiis e s sa ettt 19
B 2ELT LIRS .. c.vci00 s vmmansnsmsmissmsis ik e BT e e e o 19
2.2.2 YATS - Yet Another Tiny Simulator (ATM Simulation)ccceeennn 19
22,27 HMOVARES\ smicercocisnsosssssrasimsasesssssvaserissarivyescintrast yavessbomassrbsumesahsen 19
2.2.2.2 DisaAdVAmIAEes.....................cccccoiviiiiiiiiiiiiiiiiiiiie e e 20
223 REAL Notwork SHEEILONcovivmimminscipsmioseninrs tosinesistinsis sramosisaambrisstsbonmives 20
L 23T BARWIREIREcxcrnisnasscsinysnrvenspirsaormmsesnpssoanssmnbingasbessamimsns psiosmmi Rt pReI o VRR 21
2.2.3.2 DisadvantQges..........................ccccoiiiiiiiiiiiiiiaeiii e 21
2.2.4 INSANE ATM SImulator.............cccooiiiiiiiiiiiiiiiecic e ses e asnaens 21
2L ET BOVOMMBPEY .covs convsnvisiminvisinisnsansns o ims sasassssimnsnssn iinssnswussrsassrnsreasmim it En 22
2.2.4.2 Disadvami@ges...........................c.cccoeeieiiiiiii i ei i p A
2.3 Simulator’s PIatform ... 23
24 TVOEramaming LEUGORPE. . . .- ccniounssiiishosiiniamsinn iraasarasssisi vt sresasorsersissenssvmsan 23
2.4.1 Java Programming Language..................cc.oceiiiiiiiiiniieic i 23
2.4.1.1 Object-oriented..........................c..cccccoiriiiiiiiniiiiiiiii s 24
2412 Bxceplions HONEIRG ;...cooiuvsivviscvisinsssuimassr ssstssissonsiss vaess pivsoon ogninisngss 24
2.4.1.3 Multithreadingc..coovveeiiiiiiiiiiiiiiiee e eeia s 24

i

TABLE OF CONTENT

4.2 Prograining LERGRIBGE. TOO0L.. . ..ciccirvssnsssassmersnssissasvsisss sepesssivssssossmserassnss 25

28 Congestion Control Schemes in ATM networks......................coooviiiiiniin 25
2.5.1 Fast ResGUICe WIBBAGBIMIONEcccooremvsvsasmnssenrsssssnsssssrsavasnsresssssssassanssnts 26
2.5.2 Backward Explicit Congestion Notification (BECN)..................cccovvivverininns 26
2.5.3 Delay-based Rate Control..............c.cccoviviiiiiiiiiiiiiiecs e 27
ZA N DT RRERE LI ... o i ommsmamsicins sanss i tnomrans s e et e 27
255 PRI FRCREE IIBIID...o ... oo oconsiinsirmiom coasianganimbus stsebiri b saasn s Sy Ae s 27
2.5.6 Link Window with End-to-End Binary Ratecccoooooeieciiiriceeinnnn 28
2.5.7 Fair queuing with Rate and Buffer feedbackc.ccccrivciniiinin, 28
2.5.8 Traffic Policing (Usage Parameter Control).................ccoovviiniinnnicnrnsicersans 28
2.5.8.1 Non-conforming Cells: Tagging vs. Droppingcc.c.ccoovuevanran. 29
2.5.8.2 UPC Traffic Contract Parameters..............................cccuvcvevreecvviieniinen, 29

2.6 TR DRIIIIEEY .i...ccoiinvinrhonsidiisiosiitsmssr s A i et B 31
Chapter3: JavaSim Package, Leaky Bucket and Token Bucket Overview.....cceueere 32
21 Javasim Packafe Overviewc..oovvviviivivinniinsienn @B ss Do nseaissanss 32
3.1.1 Overview of the javasim package hierarchyc.cccocovivieieiceninn, 32

3. LY UAVIINETOME I ..o insisi i libinsesivinssnaenmnsvsivasameongll NG T2 st vl s 33

3 TSNS RaWE L N O L BN i XMt T 34

3.1 L BIRCIOCREIAN cienseirissinnseniones s N W sssomsurssiasnaionsonduilundlite 35

3. FUETMEVIIRIAVE ... cociiininisnnossunsssnisnffssion Mges Divissssassnsvassn shrisanauasy s bvs 35

3.1 FRRBETRINDIETINGosonnnniniissvisiBigosssnssomsonsisiimintsinispsssioss Bain s e 36

1. 16 S arOmeIer OV, . oo s flr i Reconriis s i snansiasasnnssssasiiiusbansasts 38

3.2 Leaky Bucket OVervieW.......................oiiiiiiiiiiiic e 38
3.2.1 Single Leaky Bucket................co....Buiiciirinenncnmnniosmssssesmsesssessssrmssssnsassises 42
3.2.2 DouBIEERAKY BUCKEE... " 1o I 1M o sieinnisninnesssossasosss sesnssssssissssmimmssnssion 42

3.3 Token Bucket OVerview ...t 43
3.4 ChAapter SUIMIIAKY ..ottt sesseisressessssesssesessessersssesses 45
Chapterd: SYSTEM ANALYSIS 46
4.1 Requirement Specifications................................n, 46
4.1.1 Functional REQUIreMENtScooeiiiiiiiiiiiciiic it 46
4.1.1.1 Network minimum COMPONERLScocvevirerieririiiriiinrreeesessssnes 46

ol L D NIEINOR L5 5D csisnsvmirsinsssmnsmsusnsimmbonisnos ssussipanintsiestsors s ARVREANEREREHRERM 48
4.1.1.3 Simulation ANGLYSIS........................cc.ccouiieeriieeriieeerevecaesissseieeaneesieans 48

4.1.2 Non-Functional Requirementsccoooviveiiiiiieiiee e eciaecneeineeinens 48
1.1 PRVSiea] ERVIEOREII ..o oovsvsiisisissimcinsissmnimmissiasiviaminmiborsiooa sl 49
4.1.2.2 Users and BUm@n JACIOYcccoovvereeireseiieeresiarisiaessiisesissesans 49

L LT BONBAUIIY ... eyt ssioesinciimeinssissosspvsssemmnesrsitpomssmmimmsiis P leies 49
4.1.2.4 Meeting the user réquirementccccceveriereeeiversisessiinnenes 49

4.2 SEIRMIREOR ATCIMBEEMYR. svaxisswsivens cvsamnsss oo sesnbissinisossoss sisnss s EIAERIgRs IS0 50
4.2.1 Simulation Clock COMPONEIEcccoouervisnerersosivsnnesssncsrissasianisssassnnnasan 50
4.2.2 Link COMPONENL..........ooviiiiiiiiiiiiiitiee e ie e s ceeeisete e eseese s e s esesaesseeeresens 50
4.2.3 Inter-objects COMMUNMICALION.ocvviieiiiiiiiiriieeirs e cenn e eee s 51

43 RINBUIME IR ..o rioiiesinnsnsnibant s baesmasai b vt ses Easts e A T 52
44 Implementing Leaky Bucket and Token Bucket.........................coociviininn, 52
45 CIRAPIE SUEMMMMEEY ..o onsissssiarmmnss issusmonmisnsios sisesmissrimsanssaTssussoberuiemnesnshions 53

iv

TABLE OF CONTENT

Chapter5: SYSTEM DESIGN 54
. % | LI TN DO ... c. s v wsi e e NPT E YR et i e 54
R R R g RN S BN P b A) B 4 54

Bid oo - RO . o152 0 s it iR e e R 54

I B vy T L e T S T e e et pea e 55

SL B3 DTN .. iccivcirensivinbrsinmmisviismacinis i i PR dantn SO AR o IS s daeant 55

LN A R L ORI o W Lyl e SR 38

512 COBIEEE DI .o iovcocivssnsimonmesessmnsimnemencbbssivons stiichmarsiisionieon o aisiamsr oo ey 56

52 RS IO ..o o comsvinasssinsininesbn s U s el s T PR S e e I 57
B2 b BTDR IR CRORE.... oo imissmminsosiapsmisintinphesni AR o msr oo el S Rl =¥)
S22 SRR CMIIEonr o ronrvmmersescmnssiissesatinkisebisionivibnis v R s S e T 58
5.2 3 WTE DREEE...vccsvcinvirunsiovimiiciimmmbin i oS i o R b 59
528 Ll BRI ..o cimvvanssprmicniiimmmse i L e e e 60
5.2.5 AppUHORHOD CIABEocicriinsinrrsirismssssntsrsssenssnsossassssssasssassassssgrlogl Ppinasss 60
5281 CBR QI ... oo diiiaiansbrivinivisioimmmmssss dotipniirimanssaiamrireiians N sirssatar 60
5.2.5.2 VR BRMIR, <. 000 5 ssnynvssmmimenrsmimiminerosiimsssrmsms oM o T St e 61

s3 Loaky Buchet Deslghnccimiinvinicnivossornsroonnsc Mg Rl P e Flsinnsassaress 62
54 Token Bucket Designooooiiiiiiiiiiii it 62
5.5 Features of the ATM Network Simulator..........................cccoiiiiiiinnn 64
5.5.1 Graphioal User IMEIIBCE.........cc..cooiiiiiniiviniioguger =N Ny siosssbssssseessenstzeniesesaass 64
$.5.2 L0 DN .o eimssmsbineiiig vy Mgt s s sminssomi it 64
5.5.3 Making Modificationsc..coviuiiiiiiiiiiiii e 66
5.5.4 Saving a Network configurationcc.ccccoivviviiiiciiiciecc e 66

5.6 ORI BEMIRYY ...coissormmimivsconisiumiinissRgavigbivssunssasistimsisissosssisssiissisoimtuivinsits 67
Chapter6: SYSTEM IMPLEMENTATION " 68
6.1 System Implementation ... 68
6.2 Leaky Bucket Implementation..........................c..ccooiii 68
6.2.1 Single Leaky Bucket Implementationc.cooveveviniinininiininensessscorssnens 68
6.2.2 Double Leaky Bucket Implementation.....................ccccccorieeiivviceiieecrneiiennns 70

6.3 Token Bucket Implementation...............................c.cocoiiiciiie e 72
6.4 CREPOET BRBRIIRY 55 amsamvsinsmamensinsiasss sunesinssishsssins s fed inianains iSos SRA I RS 74
Chapter7: SYSTEM TESTING ; 75
7.1 TIRIL TR« oo sis 35t s pury o prsy v resh maswy svvssnan ConmnRT Rt R AL 75
7.1.1 Leaky Bucket Unit TeStNGcooooiiiiiiiiiiiiiiccceer s 75
7.1.2 Token Bucket Unit TeStINZ................oooviiiiiniiiiiiiiie e vseeesneesaanes s 77

7.2 SYMEOIE TOUIRE ... covvoiinsininivnvaisissmsmiissnsnrasnassmsssstarabsspis ity bns i SUER G BISERANEH 78
7.2.1 Single Leaky Bucket System Testing....................ocoveririnnininncinniccnn, 78
7.2.2 Double Leaky Bucket System Testingcccoviviiiriiiinniinieiicienn 80
7.2.3 Token Bucket System TestiNgcoooovviiiiiiiiieii i e ceneenns 81

7.3 CRRPEEE BREMMIRRY .50 susinesinms isansiiaamivisannbtiveashes i Flgr 63 s 345 RAIEFARRRIESR LS 83
Chapter8: CONCLUSION 84
8.1 Project FIndinmg ... 84
8.2 ODbiectives ACBIOVEL........c..ccoviiminamisnimmstismminsiinsinssissassnssbsasis rassuessmnersarss 84
83 Simulator Strength ... s res s sresenns 85

TABLE OF CONTENT

84 S A LAIa At 0M ...ttt e e et e ess e nneraenes 86
8.5 Future EnRancement ..o e e et e e e e e s e e e e s 86
8.6 RPN w0 it 3 T bt a i SR PR ST skt Mebatstins s maele sibadtants A R 86
REFERENCES.... : 87

vi

LIST OF FIGURES

LIST OF LIGURES
Figure 1.1: An ATM cell, UNI cell, and ATM NNI cell header each contain 48 bytes of
PEYIONEE.. L08R LIS TRE NS, AN IC8 RORTIIIAN, coosiwsisiss st sisassenibsmmsesnoaniitintssinivs e 1
Figure 1.2: Cell transfer delay probability density function (for real-time service
CINgINRY e AL A A L BS ARWTIRUN s sussobicsimneesbonsisbrestbbnss i seoiidie Bt o8 7
Figure 1.3: Congestion techniques for various congestion durationsc........ 12
Figere 145 Prosevb BolSelule ! 2. 200, L LSRN inmisstiiisesirssssistassissiensn s 14
Figure 3.1: Hierarchy of all the significant objects in the simulator.............................. 33
Figure 3.2: Continuous-state leaky bucket algorithm.....................c 40
Figure 3.3: Single Leaky Bucket Implementationcc.ccoovmiiiininiiiiinninn, 42
Figure 3.4: Double Leaky Bucket Implementation.....................ccocciiiiiiniininn 43
Figure 3.5: Token Bucket Implementation......................ccoiviiinniinn e, 4
Figure 4.1: ATM Network Simulator architecture...................coccveniicicnincne, 50
Figure 4.2: Interaction between link object and switch object ..., 51
Figure 4.3: FIFO queuing model in input POTt.............o..coooiiiiiiiiiiiieics 52
Figure 4.4: Implementing leaky bucket and token bucket at input port.......................... 53
Figure 5,1: Single Leaky Bucket and Double Leaky Bucket design............c......cccoevee. 63
Figure 5.2: Token Bucket and components designc..cooevveviirieiinisieee 63
Figure 5.3: Example of log file format....................ccoooiiiiii, 65
Figure 6.1: Implementation of Single Leaky Bucket policing.................ccccoccnniinn. 69
Figure 6.2: Implementation of first leaky bucket in Double Leaky Bucket policing....... 71
Figure 6.3: Implementation of second leaky bucket in Double Leaky Bucket policing .. 72
Figure 7.1: Complete Topology to test Leaky Bucket and Token Bucket 78

vii

LIST OF TABLES

LIST OF TABLES
Table 2.1: Comparison among Various SImulatorsc...c.coceveeniniiviccncceeenn 22
Table 5.1: ATM cell class elements and its description.................ccocceevvviiiieciniisinne, 57
Table 5.2: Switch class elements and its description.................cc.ccooeiiriic i 58
Table 5.3: B-TE class elements and its description.....................c..cocoeviieece e 59
Table 5.4: Link class elements and its desCription................ccoccoeeveiiiivcvicvnecinvirnecnseennns 60
Table 5.5: CBR class elements and its description..................cccceveviiieecicciie e 61
Table 5.6: VBR class elements and its descriptioncc.covvvviivieiiicinicecnens 61
Table 7.1: Parameters entered for network components for Single Leaky Bucket

T ST NSRR IR EYROR RS os St o o e, WL < o T 79
Table 7.2: Parameters entered for network components for Double Bucket testing........ 80
Table 7.3: Parameters entered for network components for Token Bucket testing 82
Table 7.4: Relation between Generate Token time and switch swl and sw3 status........ 82

viii

Chapterl INTRODUCTION

Chapter 1: INTRODUCTION

1.1 Introduction to Asynchronous Transfer Mode (ATM)

Asynchronous Transfer mode (ATM) is the primary networking technology for next-
generation, multi-media communication. ATM is a high-performance, cell-oriented
switching and multiplexing technology that utilizes fixed-length packets to carry different
types of traffic (voice, video and data). One most important point in ATM is that it

supports quality of service (QoS) requirements.

An ATM cell header can be one of two formats: UNI (user-network interface) or the NNI
(network-network interface). The UNI header is used for communication between ATM
endpoints and ATM switches in private ATM networks. The NNI header is used for
communication between ATM switches. Figurel.1 depicts the basic ATM cell format, the

ATM UNI cell-header format, and the ATM NNI cell-header format.

{ H
1 2 VPl Pt
i i ¥ " REARAT A EDOAN AT RN
pese] L wA |
{ { RS BT { t-u,m«ra-.\.'u'ﬂ:wu‘-i
Pl {5 sl i i | ver
‘ ? ’ ’ ;,»\‘_.‘_,u__.,...;,,mw.,.b.? il
{ ; P [C.Eij_.__ oMY O
s H HEC | HED
= H
Byoe | | H
o Payivad [Payicad l Payivad
i {48 byrag) if {48 tyrast i (48 Dytea)
- i § i
- i |
: - ‘ 1
Eoo |
ke i
P
v o i |
Npe—— alg ——> 3
ATM Coll ATM UNI Ceti ATM NN Cotl £

Figure 1.1: An ATM cell, UNI cell, and ATM NNI cell header each contain 48 bytes of
payload

ATM transfers information in fixed-size units called cells. Each cell consists of 53 octets,

or bytes. The first 5 bytes contain cell-header information, and the remaining 48 contain

Chapterl INTRODUCTION

the "payload" (user information). Small fixed-length cells are well suited to transfer voice
and video traffic because such traffic is intolerant of delays that result from having to wait

for a large data packet to download.

Unlike the UNI, the NNI header does not include the Generic Flow Control (GFC) field.
Additionally, the NNI header has a Virtual Path Identifier (VPI) field that occupies the
first 12 bits, allowing for larger trunks between public ATM switches. In addition to GFC
and VPI header fields, several others are used in ATM cell-header fields. The following

descriptions summarize the ATM cell-header fields illustrated in Figure 1.1.

e Generic Flow Control (GFC)---Provides local functions, such as identifying multiple
stations that share a single ATM interface. This field is typically not used and is set to

its default value.

o Virtual Path Identifier (VPI)---In conjunction with the VCI, identifies the next
destination of a cell as it passes through a series of ATM switches on the way to its

destination.

o Virtual Channel Identifier (VCI)---In conjunction with the VPI, identifies the next
destination of a cell as it passes through a series of ATM switches on the way to its

destination.

e Payload Type (PT)---Indicates in the first bit whether the cell contains user data or
control data. If the cell contains user data, the second bit indicates congestion, and the
third bit indicates whether the cell is the last in a series of cells that represent a single

AALS frame.

Chapter! INTRODUCTION

e Congestion Loss Priority (CLP)---Indicates whether the cell should be discarded if it
encounters extreme congestion as it moves through the network. If the CLP bit equals 1,

the cell should be discarded in preference to cells with the CLP bit equal to zero.
o Header Error Control (HEC)---Calculates checksum only on the header itself.

1.2 Introduction to ATM Service Classes
It is very complex to provide desired Qos for different applications. For example, voice is
delay-sensitive but not loss-sensitive, data is loss-sensitive but not delay-sensitive, while

some other applications may be both delay-sensitive and loss-sensitive.

To make it easier to manage, the traffic in ATM is divided into the following five service
classes [1]:

¢ CBR Constant Bit Rate

¢ rt-VBR Real-Time Variable Bit Rate

¢ art-VBR Non-Real-Time Variable Bit Rate

¢ UBR Unspecified Bit Rate

¢ ABR Available Bit Rate

These service categories relate traffic characteristics and QoS requirements to network
behavior. Functions such as routing, CAC, and resource allocation are, in general,
structured differently for each service category. Service categories are distinguished as
being either real-time or non-real-time. For real-time traffic, there are two categories.
CBR and rt-VBR, while for non-real-time traffic, there are three categories: nrt-VBR,

UBR and ABR.

Chapterl INTRODUCTION

1.2.1 Constant Bit Rate (CBR) Service
The Constant Bit Rate service category is used by connections that request a static amount
of bandwidth that is continuously available during the connection lifetime. This amount of

bandwidth is characterized by a Peak Cell Rate (PCR) value.

The basic commitment made by the network to a user who reserves resources via the CBR
capability is that once the connection is established, the negotiated ATM layer QoS is
assured to all cells when all cells are conforming to the relevant conformance tests.
Examples of applications that can use CBR are telephone, video conferencing, and

television.

1.2.2 Real-Time Variable Bit Rate (rt-VBR) Service

The real-time VBR service category is intended for real-time applications, i.e., those
requiring tightly constrained delay and delay variation, as would be appropriate for voice
and video applications. rt-VBR connections are characterized in terms of a Peak Cell Rate
(PCR), Sustainable Cell Rate (SCR), and Maximum Burst Size (MBS). Sources are
expected to transmit at a rate that varies with time. Equivalently the source can be
described as “bursty”. Cells that are delayed beyond the value specified by maxCTD are
assumed to be of significantly reduced value to the application. Example of real-time

VBR is interactive compressed video.

1.2.3 Non-Real-Time (nrt-VBR) Service

The non-real-time VBR service category is intended for non-real-time applications which
have bursty traffic characteristics and which are characterized in terms of a PCR, SCR,
and MBS. For those cells which are transferred within the traffic contract, the application

expects a low cell loss ratio. Non-real-time VBR service may support statistical

Chapterl INTRODUCTION

multiplexing of connections. No delay bounds are associated with this service category.

Example for non-real-time VBR is multimedia e-mail.

1.2.4 Unspecified Bit Rate (UBR) Service

The Unspecified Bit Rate (UBR) service category is intended for non-real-time
applications, i.e., those not requiring tightly constrained delay and delay variation. UBR
service does not specify traffic related service guarantees. No numerical commitments are
made with respect to the Cell Loss Ratio (CLR) experienced by a UBR connection, or as
to the Cell Transfer Delay (CTD) experienced by cells on the connection. The UBR
service is indicated by use of the Best Effort Indicator in the ATM User Cell Rate
Information Element. Examples of such applications are traditional computer

communications applications, such as file transfer and email.

1.2.5 Available Bit Rate (ABR) Service

ABR is an ATM layer service category for which the limiting ATM layer transfer
characteristics provided by the network may change subsequent to connection
establishment. A flow control mechanism is specified that supports several types of
feedback to control the source rate in response to changing ATM layer transfer
characteristics. It is expected that an end-system that adapts its traffic in accordance with
the feedback will experience a low cell loss ratio and obtain a fair share of the available

bandwidth according to a network specific allocation policy.

On the establishment of an ABR connection, the end-system shall specify to the network
both a maximum required bandwidth and a minimum usable bandwidth, These shall be
designated as peak cell rate (PCR), and the minimum cell rate (MCR), respectively. The
MCR may be specified as zero. The bandwidth available from the network may vary, but

shall not become less than MCR.

Chapterl INTRODUCTION

1.3 Introduction to Connection Parameters

1.3.1 Quality of Service (QoS)

The ability for an application to demand QoS from the network is now becoming
commercially important. In order to provide a uniform framework for different
applications to specify required performance guarantee and for systems to provide the

required guarantee, a concept of QoS has been introduced.

A set of parameters is negotiated when a connection is set up on ATM networks. These
parameters are used to measure the Quality of Service (QoS) of a connection and quantify
end-to-end network performance at ATM layer. The network should garuantee the QoS

by meet certain values of these parameters. Those negotiated parameters are as follows

(i)

e Cell Transfer Delay (CTD)
The delay experienced by a cell between the first bit of the cell is transmitted by the
source and the last bit of the cell is received by the destination. Maximum Cell Transfer

Delay (Max CTD) and Mean Cell Transfer Delay (Mean CTD) are used.

e Peak-to-peak Cell Delay Variation (CDV)
The difference of the maximum and minimum CTD experienced during the

connection, Peak-to-peak CDV and Instantaneous CDV are used.

¢ Cell Loss Ratio (CLR)
The percentage of cells that are lost in the network due to error or congestion and are
not received by the destination.

The Cell Loss Ratio is defined for a connection as;

Chapterl INTRODUCTION

Lost Cells

CLR =
Total Transmitted Cells

Figure 1.2 below illustrates the probability density function of the CTD in CBR and real-

time VBR services, and relates it to the peak-to-peak CDV and maxCTD parameters.

Probability
4 Density
1-o

Cell transfer
delay

o

> pid-—
FixedDelsy oo o Pook Cell delivered
late or lost
max CTD

Figure 1.2: Cell transfer delay probability density function (for real-time service
categories)

From Figure 1.2, maxCTD is the maximum requested delay for the connection. A fraction
o of cells will exceed this threshold and must either be discarded or delivered late. The
remaining (1-¢t) portions are within the requested QoS. The range between the fixed delay

and maxCTD is referred to the peak-to-peak CDV .

1.3.2 Usage Parameters
Another set of parameters is also negotiated when a connection is set up. These
parameters discipline the behavior of the user. The network only provides the QoS for the

cells that do not violate these specifications [2].

Chapterl INTRODUCTION

¢ Peak Cell Rate (PCR)

The maximum instantaneous rate at which the user will transmit.

¢ Sustained Cell Rate (SCR)

This is the average rate as measured over a long interval.

¢ Burst Tolerance (BT)

The maximum burst size that can be sent at the peak rate.

¢ Maximum Burst Size (MBS)
The maximum number of back-to-back cells that can be sent at the peak cell rate but
without violating the sustained cell rate is called maximum burst size (MBS). It is
related to the PCR, SCR, and BT as follows:
Burst Tolerance = (MBS — 1) (1/SCR — 1/PCR)
Since MBS is more intuitive than BT, signaling messages use MBS. This means that
during connection setup, a source is required to specify MBS. BT can be easily

calculated from MBR, SCR, and PCR.

e Minimum Cell Rate (MCR)

The minimum cell rate desired by a user.

1.4 Introduction to Traffic Management in ATM Network

ATM technology is intended to support a wide variety of services and applications. The
control of ATM network traffic is fundamentally related to the ability of the network to
provide appropriately differentiated Quality of Service (QoS8) for network applications. A

primary role of traffic management is to protect the network and the end-system from

Chapter] INTRODUCTION

congestion in order to achieve network performance objectives. An additional role is to

promote the efficient use of network resources.

To meet these objectives, the following generic functions form a framework for managing
and controlling traffic and congestion in ATM networks and may be used in appropriate

combinations depending on the service category [3].

e Connection Admission Control (CAC)
Connection Admission Control is defined as the set of actions taken by the network
during the call set-up phase in order to determine whether a connection request can be
accepted or should be rejected (or whether a request for re-allocation can be

accommodated).

e Feedback Control
Feedback Control are defined as the set of actions taken by the network and by end-
systems to regulate the traffic submitted on ATM connections according to the state of

network elements.

¢ Usage Parameter Control (UPC)
Usage Parameter Control (UPC) is defined as the set of actions taken by the network to
monitor and control traffic at the end-system access. Its main purpose is to protect
network resources from user misbehavior, which can affect the QoS of other
connections, by detecting violations of negotiated parameters and taking appropriate

actions.

Chapterl INTRODUCTION

o Cell Loss Priority control
For some service categories the end system may generate traffic flows of cells with Cell
Loss Priority (CLP) marking. The network may follow models which treat this marking
as transparent or as significant. If treated as significant, the network may selectively
discard cells marked with a low priority to protect, as far as possible, the QoS objectives

of cells with high priority.

o Traffic Shaping
Traffic shaping mechanisms may be used to achieve a desired modification to the traffic
characteristics of a connection. The objectives of this function are to achieve a better
network efficiency whilst meeting the QoS objectives and/or to ensure connection

traffic conformance at a subsequent interface.

o Network Resource Management
Network Resource Management (NRM) is responsible for the allocation of network
resources in order to separate traffic flows according to different service characteristics,
to maintain network performance and to optimize resource utilization. This function is
mainly concerned with the management of virtual paths in order to meet QoS

requirements.

o Frame Discard
If a congested network needs to discard cells, it may be better to drop all cells of one
frame than to randomly drop cells belonging to different frames, because one cell loss
may cause the retransmission of the whole frame, which may cause more traffic when

congestion already happened. Thus, frame discard may help avoid congestion collapse

10

Chapterl INTRODUCTION

and can increase throughput. If done selectively, frame discard may also improve

fairness.

1.5 Introduction to Congestion Control in ATM network

Traffic management is concerned with ensuring that users get their desired quality of
service. The problem is especially difficult during periods of heavy load particularly if the
traffic demands cannot be predicted in advance. This is why congestion control, although
only a part of the traffic management issues, is the most essential aspect of traffic

management.

Congestion control is critical in both ATM and non-ATM networks. When two bursts
arrive simultaneously at a node, the queue lengths may become large very fast resulting in
buffer overflow. Congestion happens whenever the input rate is more than the available

link capacity:
Sum(Input Rate) > Available link capacity

Most congestion control schemes consist of adjusting the input rates to match the
available link capacity (or rate). One way to classify congestion control schemes is by the
layer of ISO/OSI reference model at which the scheme operates. For example, there are
data link, routing, and transport layer congestion control schemes. Typically, a
combination of such schemes is used. The selection depends upon the severity and

duration of congestion.

Figure 1.3 [4] shows how the duration of congestion affects the choice of the method. The
best method for networks that are almost always congested is to install higher speed links

and redesign the topology to match the demand pattern.

11

Chapterl INTRODUCTION

Congestion Duration Congestion Mechanism
Long Capacity planning and network design

Connection admission control

Dynamic routing

¢ End-to-end feedback
Link-by-link feedback
Short Buffering

Figure 1.3: Congestion techniques for various congestion durations

1.6 Simulation of ATM Network

With the rapid development of high-speed networks, such as ATM, there is a need to
study some of the issues confronting the design of the networks. The performance of these

networks needs to be analyzed.

Research has been done for traffic management and congestion control but the traffic
patterns that may prevail in the future networks has been rather difficult to predict, and
various kinds of assumptions that needed for a theoretical analysis has been difficult to
justify. The throughput of different network topologies has to be tested and analyzed in

order to maximize the utilization of resources.

Simulation is the basis for making decisions. Decisions are formulated based on the
information resulting from the simulation. A Network simulator can be used as a tool for
ATM network planning or as a tool for ATM protocol performance analysis. It is useful
for modeling network behavior under different conditions and with settings for the various
network components. With the use of this network simulator, researchers and network

planners are able to analyze networks without the expense of setting up a real network.

12

Chapterl INTRODUCTION

1.7 Project Objectives
Traffic control is an essential part in ATM network, which affects the overall performance
of the network. Proper traffic management helps in ensuring efficient and fairness

operation in the network.

The first objective in this project is to study on the ATM network field especially in
congestion control mechanism. The second objective is to develop an ATM network
simulator. The needs to simulate and analyze the ATM network are getting more
important as the evolution is towards high-speed networks. Since very little is known
about the performance of the available ATM switches, they need to be tested to provide

maximum usage.

1.8 Project Scope

The project started with a study on ATM which emphasis on congestion control
mechanism, The study includes ATM classes of service, connection parameters such as
Quality of Service (QoS) and usage parameters. Besides, it also covers the ATM traffic
management and congestion control schemes so that the congestion control method can be

implemented in the simulator.

Furthermore, the scope covers studies on existing ATM simulators. It includes the
analysis on advantages and disadvantages of these simulators. This is to determine the

basic requirements of developing a practical simulator.

The review includes the simulator components needed for an ATM network, such as
ATM switch, Broadband Terminal Equipment (B-TE), ATM application and physical link

in order to get the idea of how to build the ATM simulator.

13

Chapteri INTRODUCTION

This project will develop an ATM network simulator that will have the following

features:

* A user friendly graphical user interface (GUI)

o Platform independent

¢ Discrete event schedule

¢ Integrated data analysis tool or mechanisms recording the simulation results and
network configuration

o Default parameters for simulator components

1.9 Project Schedule

The project schedule is shown in Figure 1.4,

Task Jun | July | Aug | Sep | Oct | Nov | Dec | Jan
Literature 13-6-00
Review To
4-9-00
System 8-8-00
Analysis To
10-9-00
System Design | 11-9-00
To
20-10-00
System 21-10-00
implementation To
20-12-00
Testing 18-11-00
To
7-1-01
Documentation | 19-6-00
To
20-1-01

Figure 1.4: Project Schedule

14

Chapterl INTRODUCTION

1.10 Report Organization

This report is organized as follows:

Chapterl provides an introduction to ATM network, ATM service classes, QoS, traffic
management and congestion control. Besides, it includes project objectives and project

scope.

Chapter2 provides a study on various available simulators. The advantages and
disadvantages of each simulator is pointed out, in which each are analyzed carefully. It
then discusses the simulator’s platform available and Programming Language that will be
used in developing the simulator. Besides, survey on various congestion control schemes

is done. Each congestion control scheme is explained in detailed.

Chapter3 gives some overview on the Javasim package, leaky bucket and token bucket.
It discusses the major classes used in Javasim package. Besides, it also includes

discussion on the features and components in the leaky bucket and token bucket.

Chapterd includes the system analysis part. The requirement specifications of the
simulator are pointed out. Simulator’s architecture that includes the major components is
discussed. In addition, it focuses deep into the model that will be used in traffic

management system, with emphasizing on congestion control for the network.

ChapterSs includes the system design part. The design consideration, which includes the
user interface design and classes design, is focused. The leaky bucket and token bucket
design is included. The features of the ATM Network Simulator that will be developed

are included at the end of the chapter.

15

Chapterl INTRODUCTION

Chapter6 covers the system implementation part. The implementation of the ATM
Network Simulator, which includes the Leaky Bucket and Token Bucket, is explained in

detail.

Chapter7 includes the unit testing and system testing part. The iniplemented Leaky
Bucket and Token Bucket are tested in the testing phase. The strategies used in testing the

functionality of the Leaky Bucket and Token Bucket are discussed deeply.

Chapter8 concludes the work on the development of the ATM Network Simulator that
emphasizing on congestion control in the switch. It summarizes the project findings,
objectives achieved, simulator strength, limitation and future enhancement on the

simulator.

16

Chapter2 LITERATURE REVIEW

Chapter2: LITERATURE REVIEW

This chapter begins with brief introduction to network simulation. A detail description for
the simulators that includes their advantages and disadvantages is provided. The following
section covers the platform and programming language chosen to develop the simulator.
The final section discusses the ATM traffic management that emphasis on congestion

control techniques.

2.1 Network Simulation

A network simulator provides a means for researchers and network planners to analyze

the behavior of the network without the expense of building a real network. The simulator

is a tool that gives the user an interactive modeling environment with a graphical user
interface. With this tool the user may create different network topologies, control
component parameters, measure network activity, and log data from simulation runs.

There are two major uses for the simulator: as a tool for ATM network planning and as a

tool for ATM protocol performance analysis [5].

- As a planning tool, a network planner can run the simulator with various network
configurations and traffic loads to obtain statistics such as utilization of network links
and throughput rates of virtual circuits. It could be used to answer questions such as:
where will be the bottlenecks in the planned network, what is the effect of changing
the speed of a link, and will adding a new application cause congestion. Statistics are
reported directly to the screen or logged in a data file for further processing,

- As a protocol analysis tool, a researcher or protocol designer could study the total
system effect of a particular protocol. For example, one could investigate the

effectiveness of various flow control mechanisms for ATM networks and address such

17

Chapter2 LITERATURE REVIEW

issues as: mechanisms for fair bandwidth allocation, protocol overhead, and

bandwidth utilization.

2.2 Introduction to Various Simulators

There are a few existing network simulators available. These simulators run on either the
Windows platform or UNIX platform. Study and survey is done on these simulators and
the performance and their features are compared. The studies on the simulators include:
NIST ATM/HFC Network Simulator, YATS - Yet Another Tiny Simulator (ATM

Simulation), REAL Network Simulator, and INSANE ATM Simulator.

2.2.1 NIST ATM/HFC Network Simulator

ATM/HFC Network Simulator was developed at the National Institute of Standards and
Technology (NIST) to provide a flexible testbed for studying and evaluating the
performance of ATM and HFC networks [5]. The simulator is a tool that gives the user an
interactive modeling environment with a graphical user interface. NIST has developed
this tool using both C language and the X Window System running on a UNIX platform.
This tool is based on a network simulator developed at MIT1 that provides support for
discrete event simulation techniques and has graphic user interface (GUI) representation

capabilities.

The ATM/HFC Network Simulator allows the user to create different network topologies,
set the parameters of component operation, and save/load the different simulated
configurations. While the simulation is running, various instantaneous performance
measures can be displayed in graphical/text form on the screen or saved to files for

subsequent analysis.

18

Chapter2 LITERATURE REVIEW

2.2.1.1 Advantages

This simulator gives user an interactive modeling environment with graphical user
interface (GUI) representation capabilities. User could create different network topologies
and simulate these topologies to get different results for comparison purposes.
Furthermore, user can save/load different network topologies and log data during

execution of stmulation.

2.2.1.2 Disadvantages

This simulator consists of too many parameters to be considered during setting up the
network topology. User must know well about these parameters before can use it. Besides,
user needs to have a strong programming language, especially in C Language in order to
customize the simulator’s components. This simulator only can run on UNIX or LINUX

platform that give a platform limitation problem.

2.2.2 YATS - Yet Another Tiny Simulator (ATM Simulation)

YATS is a small cell-level simulation tool for ATM networks. Its kernel comprises the
event scheduler, a symbol manager and a scanner/ parser front end. An input file describes
the arbitrary - model network configuration, the simulation actions and the way to analyze
the results. The system is written in C++ All network nodes are objects which

communicate over standardized messages [6].

2.2.2.1 Advantages

The input language is a simple script language which allows for a flexible problem
description (loops, macros and basic mathematical capabilities are provided). The
discrete-time event scheduler applies a static calendar queue and unusual event memory

management which results in good simulation speed. Graphical object classes are able to

19

Chapter2 LITERATURE REVIEW

display the time dependent behavior of variables and distributions inside of other model

objects (without adding complexity to these network objects).

2.2.2.2 Disadvantages

The following limitations mainly stem from design rules aiming at high simulation speed:

- The pure slotted operation causes some restriction when simulating different line
speeds in the same model. It's only possible to choose speeds for which the cell
transfer time is an integer multiple of a basic time used for the whole model.

- Currently, batch arrivals are not possible. On each connection between two network
objects, only one cell (or other data item, for example: a frame) can be transmitted per
basic time slot. In order to compose background traffic, therefore always have to
multiplex multiple traffic streams in a multiplexer.

- While the language based model description yields a high flexibility, the input may
become a bit irritating in case of larger networks. This especially holds, if there is no

regularity in the model structure which would allow user to use like loops and macros.

2.2.3 REAL Network Simulator

REAL is a simulator for studying the dynamic behavior of flow and congestion control
schemes in packet switch data networks. It provides users with a way of specifying such

networks and to observe their behavior.

The simulator takes as input a scenario, which is a description of network topology,
protocols, workload and control parameters. It produces as output statistics such as the
number of packets sent by each source of data, the queuing delay at each queuing point,

the number of dropped and retransmitted packets and other similar information.

20

Chapter2 LITERATURE REVIEW

REAL simulator runs on Sun3s, Sparcs, MIPS boxes, Vaxen and 3B2, under 4.3BSD-like

operating systems: SunOS, IRIX, UMIPS, and Ultrix [7].

2.2.3.1 Advantages

REAL Network Simulator provides a flexible testbed for studying the dynamic behavior
of flow and congestion control schemes in packet switch data networks. Source code is

provided so that interested users can modify the simulator to their own purposes.

2.2.3.2 Disadvantages

This simulator does not give a user an interactive modeling environment with graphical
user interface (GUI) representation capabilities. The GUI features only available in REAL
version 5.0. New version has Java interface for Web-based simulation. Besides, user must
have strong foundation in C Programming Language in order to change the source code

provided to modify the simulator to for their own purposes.

2.2.4 INSANE ATM Simulator

INSANE is a network simulator designed to test various IP-over-ATM algorithms with
realistic traffic loads derived from empirical traffic measurements [8]. INSANE's ATM
protocol stack provides real-time guarantees to ATM virtual circuits by using Rate
Controlled Static Priority (RCSP) queuing. ATM signaling is performed using a protocol
similar to the Real-Time Channel Administration Protocol (RCAP). Internet protocols
supported include large subsets of IP, TCP, and UDP, In particular, the simulated TCP
implementation performs connection management, slowstart, flow and congestion control,

retransmission, and fast retransmit.

21

Chapter2 LITERATURE REVIEW

2.2.4.1 Advantages

INSANE is designed to run large simulations whose results are processed off-line. It
works quite well on distributed computing clusters (although simulations are all
sequential processes, a large number of them can easily be run in parallel). Although there
is no graphical user interface, a (optional) Tk-based graphical simulation monitor provides

an easy way to check the progress of multiple running simulation processes.

2.2.4.2 Disadvantages

INSANE is restricted to run in a limited hardware and platforms. Besides, it can not run it

on its own. It currently requires the following other software packages:

- g+t (version 2.6.3 or greater)

- libg++ (any version consistent with the installed g++)

- GNU make (pretty much any recent version)

- Tcl (version 7.3 or greater). Tk (version 4.0 or greater) is required for the simulation
monitor, but is not necessary to run simulations. INSANE has been tested with T¢l 7.5

and 7.6, and Tk 4.1 and 4.2.

Table 2.1 gives a comparison among the studied simulators. Features being compared are
discrete event simulation, object-oriented, graphical user interface (GUI), multithread,
web-enable and platform independent.

Table 2.1: Comparison among Various Simulators

Simulator | Discrete | Object- | GUI | Multithread | Web- | Platform
event oriented enable | independent
simulation

NIST N X v X X X

ATM/HFC

YATS \ v v X X X

REAL V X X X X X

INSANE N X V X X X

22

Chapter2 LITERATURE REVIEW

2.3 Simulator’s Platform

Most of the currently available simulators are running on UNIX platforms, with only a

few that run on Windows platform.

With the rapid development on Windows system, the processing speed of a PC is
comparable with a UNIX system and the price of a PC that runs on Windows platform is
lower compare to a UNIX workstation. So the Window platform becomes dominant at
the recent days. Although the Windows platform becomes more common, the UNIX

platform can’t be neglected.

A network simulator that is cross-platform is more important as it is supported by most of

the platform, for example UNIX or Windows.

2.4 Programming Language

The programming language chosen to be used in developing the simulation model for
ATM network simulator depends solely on the features provided by the programming
language. Furthermore, the programming language must provide sufficient features to
meet the needs of the simulator requirements. Since the simulator to be developed must be
platform independent, the programming language used must be satisfied this main

requirement.

2.4.1 Java Programming Language

Java Programming Language will be used in developing the simulator as it provides the
feature that enables the simulator portable to the World-Wide-Web. On the other hand,
the simulator developed with Java Programming Language will be platform independent.

Other Java features that make it to be used in this project are as follows:

23

Chapter2 LITERATURE REVIEW

2.4.1.1 Object-oriented

Java is object-oriented [9]. Object-oriented Programming encapsulates data and methods
into objects; the data and methods of an object are intimately tied together. Objects have
the property of information hiding. Objects normally are not allowed to know how other
objects are implemented. Other key benefits of the Java Object-oriented are:

o Extensibility — Existing objects can be modified to add new features to the system

where changes on new objects can be done.
¢ Reusability — Objects that are used in one system can be used in another newly system

without any changes to the objects.

2.4.1.2 Exception Handling

Java exception handling enables a program to catch all types of exceptions, or to catch all
exceptions of a certain type or related types. This makes programs more robust by
reducing the likelihood that errors will not be caught by a program. Exception handling is
provided to enable programs to catch and handle errors rather than letting them occur and

suffering the consequences [9].

2.4.1.3 Multithreading

Java is unique among popular general-purpose programming languages in that it makes
concurrency primitives available to the applications programmer. Concurrency is very
important in a simulation model as there might be many objects doing their own processes
at the same time. It is impossible to allow them execute processes in a sequential manner,

as this could not be appropriate as compared to real time simulation result.

24

Chapter2 LITERATURE REVIEW

2.4.2 Programming Language Tool

Since the Java Programming Language has been chose, the programming language tool
that supports this language should be used. This tool should include the general features
such as a language compiler and debugger, as well as language libraries and graphical

user interface in building environment.

Borland JBuilder Enterprise version 3.5 is the choice to develop the ATM network

simulator to enable cross-platform development and enabling web-based deployment.

JBuilder 3.5 uniquely delivers the key features required for productive Java development

[10], including;

-~ Unrivaled support for the Java 2 platform to deliver the most reliable, scalable, and
preferment Java solutions.

- Visual tools and reusable components for rapidly creating platform independent Java
applications, servlets, and applets.

- Components Wizards and designers for creating reusable JavaBeans and Enterprise

JavaBeans

Besides, JBuilder 3.5 can be used in Windows platform as well as UNIX platform.

Therefore, the simulator built with this tool can be used in both platforms too.

2.5 Congestion Control Schemes in ATM networks

Congestion control lies at the heart of the general problem of traffic management for
ATM networks [11]. Congestion happens when the demand of resource exceeds the
availability. There is two type of mechanism to handle congestion: Congestion control,

which is done when the network is overloaded, and Congestion avoidance, which is done

25

Chapter2 LITERATURE REVIEW

before the network is overloaded or when congestion is predictable. There are several

congestion control schemes that have been proposed.

2.5.1 Fast Resource Management

This method [12] requires sources to send a resource management (RM) cell requesting
the desired bandwidth before actually sending the cells. If a switch cannot grant the
request it simply drops the RM cell; the source times out and resends the request. If a
switch can satisfy the request, it passes the RM cell on to the next switch. Finally, the
destination returns the cell back to the source which can then transmit the burst. The burst
has to wait for at least one round trip delay at the source even if the network is idle (as is
often the case). To avoid this delay, an immediate transmission (IT)" mode was also
proposed in which the burst is transmitted immediately following the RM cell. If a switch
cannot satisfy the request, it drops the cell and the burst and sends an indication to the

source.

2.5.2 Backward Explicit Congestion Notification (BECN)

This proposed method consists of switches monitoring their queue length and sending an
RM cell back to source if congested [13]. The sources reduce their rates by half on the
receipt of the RM cell. If no BECN cells are received within a recovery period, the rate
for that VC is doubled once each period until it reaches the peak rate. To achieve fairness,
the source recovery period was made proportional to the VC's rate so that lowers the
transmission rate the shorter the source recovery period. This scheme was dropped
because it was found to be unfair. The sources receiving BECNs were not always the ones

causing the congestion.

26

Chapter2 LITERATURE REVIEW

2.5.3 Delay-based Rate Control

This method requires that the sources monitor the round trip delay by periodically sending
resource management (RM) cells that contain timestamp. The cells are returned by the
destination. The source uses the timestamp to measure the roundtrip delay and to deduce
the level of congestion. This approach has the advantage that no explicit feedback is
expected from the network and, therefore, it will work even if the path contained non-

ATM networks [14].

2.5.4 Early Packet Discard

This method based on the observation that a packet consists of several cells. It is better to
drop all cells of one packet then to randomly drop cells belonging to different packets. In
AALS, when the first bit of the payload type bit in the cell header is 0, the third bit
indicates end of message (EOM). When a switch's queues start getting full, it looks for the
EOM marker and it drops all future cells of the VC until the end of message marker is

seen again.

It may not be fair in the sense that the cell to arrive at a full buffer may not belong to the
VC causing the congestion. Note that this method does not require any inter-switch or

source-switch communication and, therefore, it can be used without any standardization.

2.5.5 Partial Packet Discard

Partial Packet Discard (also called Tail Packet discard) is employed when the UPC in a
switch determines that a cell must be dropped [15]. Whenever it has to discard a cell due
to buffer overflow, all subsequent cells (except the last cell) belonging to the same packet

will be discarded. This method improves the network utilization since it drops half the

27

Chapter2 LITERATURE REVIEW

packets. Although this method provides better performance than TCP over plain ATM,

but it is not as effective because it only discards the “tail end” of the datagram.

2,5.6 Link Window with End-to-End Binary Rate

This method consists of combining good features of the credit-based and rate-based
proposals. It consists of using window flow control on every link and to use binary
(EFCl-based) end-to-end rate control. The window control is per-link (and not per-VC as
in credit-based scheme). It is, therefore, scalable in terms of number of VCs and
guarantees zero cell loss. It was no accepted since it contained elements from both credit-

based and rate-based camp.

2.5.7 Fair queuing with Rate and Buffer feedback

This method [17] consists of sources periodically sending RM cells to determine the
bandwidth and buffer usage at their bottlenecks. The switches compute fair share of VCs.
The minimum of the share at this switch and that from previous switches is placed in the
RM cells. The switches also monitor each VC's queue length. The maximum of queue

length at this switch and those from the previous switches is placed in the same RM cell.

2.5.8 Traffic Policing (Usage Parameter Control)

Traffic, policing, also known as Usage Parameter Control (UPC), is a method of ensuring
fair allocation of network resources and of assessing the cells entering the switch for
conformance with pre-established traffic bandwidth contracts. Those cells that exceed the
specified contract are “tagged” or “dropped”, depending on what is defined in the
contract. This ensures that the connections with reserved bandwidth are not exceeding

their reservations,

28

Chapter2 LITERATURE REVIEW

2.5.8.1 Non-conforming Cells: Tagging vs. Dropping

It is important to understand the concept of tagging and dropping. Each ATM cell has a
Cell Loss Priority (CLP) bit which indicates if the network can drop it under congested
conditions. When the CLP bit is set to 0 (or CLP=0), the cell is assessed for compliance
with traffic parameters associated with the CLP=0 stream. If the parameters dictate that
non-compliant cells should be “tagged”, the CLP bit is set to 1 (or CLP=1) by the UPC
contract, which means that upon experiencing congestion further in the network, these

CLP=1 cells are dropped in preference to CLP=0 cells.

2.5.8.2 UPC Traffic Contract Parameters

The ATM Forum has defined different types of traffic contracts to be used in conjunction
with leaky buckets. The parameters that make up these types of contracts are defined as
follows:

- per0 — PCR for cells with CLP=0

- per01 — PCR for the aggregate of the CLP=0 cells and the CLP=1 cells (all cells)

- scr0 — SCR for cells with CLP=0

- scr01 — SCR for the aggregate of the CLP=0 cells and the CLP=1 cells (all cells)

- mbs0 — MBS for cells with CLP=0

- mbsO1 — MBS for the aggregate of the CLP=0 cells and the CLP=1 cells (all cells)

- tag — sets CLP bit=1 for CLP=0 cells that fail the PCRO test for CBRO contracts or the

SCRO/ MBSO test for VBR contracts

The specific combinations of these parameters that make up the ATM Forum contracts are
defined as follows:
- cbr <pcr01>

- ¢br0 <pcr0> <pcr01> [tag]

29

Chapter2 LITERATURE REVIEW

- vbr <prc01> <scr01> <mbs01>
- vbrO1 <pcr01> <scr0> <mbs0> [tag]

-~ abr <pcr01> <mer>

The cbr <per01> contract is for CBR traffic. It only uses the leaky bucket to assess the
conformance to PCR of the aggregate of the CLP=0 cells and the CLP=1 cells. Cells

which fail the PCR CLP=0+1 test are discarded.

The cbr0 <pcr0> <pcr01> [tag] contract is for CBR traffic. It uses the first leaky bucket to
assess the conformance to PCR of the CLP=0 cells. It uses the second leaky bucket to
assess the conformance to PCR CLP=0 and the CLP=1 cells. If the tag option is set, the
cells which fail the PCR CLP=0 test are tagged as CLP=1 and passed on to the second
leaky bucket to be tested for PCR CLP=0+1 conformance. Cells which fail the PCR

CLP=0 test are discarded and cells which fail the PCR test on CLP=0+1 are discarded.

The vbr <pre01> <scr01> <mbs01> contract is for VBR traffic. The first leaky bucket
assesses the conformance to PCR of the aggregate of CLP=0 cells and the CLP=1 cells
and the second leaky bucket assesses the conformance to SCR and BT of this same
combination. Cells which fail the PCR test are dropped. Cells which pass the PCR test,

but which fail SCR an BT test are dropped.

The vbrO1 <pcr01> <scr0> <mbs0> [tag] contract is for VBR traffic. It uses the first leaky
bucket to assess the conformance to PCR of the aggregate of the CLP=0 and the CLP=1
cells. Cells that fail this test are discarded. It uses the second leaky bucket to assess the
conformance to SCR and BT of the CLP=0 cells. If the tag option is set, the cells which
fail the SCR and BT CLP=0 test are tagged as non-conforming cells. If the tag option is

not set, cells which fail the SCR and BT CLP=0 test are discarded.

30

Chapter2 LITERATURE REVIEW

The abr <pcr01> <mer> contract is for ABR traffic. It only uses the first leaky bucket to
assess the conformance to PCR of the aggregate of the CLP=0 cells and the CLP=1 cells.
Cells which fail the PCR CLP=0+1 test are discarded. The MCR is the guaranteed
minimum rate and the PCR is the maximum required rate. The MCR may be set to 0,
which indicates “best effort” service. If MCR is set greater than O, then the rate is
guaranteed, up to MCR. However, between MCR and PCR, celis may be dropped when

congestion is experienced.

2.6 Chapter Summary

This chapter has covered the review of various network simulators available. The review
includes the strengths and weakness of these simulators. It also discusses on programming
language approaches. Besides, it has covered the ATM network traffic management

techniques especially in congestion control.

The network simulator will be developed with Java Programming Language by using
Jouilder 3.5 Programming Tool. This simulator will be platform independent, which

means it can be used in either Windows platform or UNIX platform.

The next chapter will discuss the overview of javasim package, Leaky Bucket and Token

Bucket.

31

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

Chapter3: JavaSim Package, Leaky Bucket and Token Bucket Overview
3.1 Javasim Package Overview

The existing ATM Network Simulator is developed in a package called javasim. This
package consists of all information and classes for the execution of a simulator which
includes classes like CBRApp, Cell, GenericATMSwitch, GenericBTE, GenericLink,
JavaSim, NodeID, NSAP, PGID, SimClock, SimComponent, SimEvent, SimLog,
SimMeter, SimPanel, SimParamBool, SimParamDouble, SimParameter, SimParamint,

SimParamNSAP, SimParamRTable, SimProvider and finally VBRApp.

3.1.1 Overview of the javasim package hierarchy

There are a few classes that are the main part of the simulation engine while the others are
just inherit from these classes. Among these classes, JavaSim, SimClock, SimComponent,
SimEvent, SimLog, SimMeter, SimPanel, SimParameter and SimProvider are the main

classes in the simulator.

The JavaSim class is the main object of the simulator. It keeps a list of all the network
components and a list of events. The GenericATMSwitch, GenericLink, GenericBTE,
CBRApp and VBRApp classes are inherited from the SimComponent class while
SimParamlInt, SimParamDouble, SimParamBool, SimParamNSAP and SimParamRTable
classes are inherited from SimParameter class. The hierarchy of all the significant objects

in the simulator is shown in Figure 3.1.

All classes within the dotted rectangle in Figure 3.1 belong to the simulation engine.
These classes provide the main function to the simulator and other classes can just inherit

from these main classes in order to use their service.

32

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

SimPanel
Javasim [V SimProvider
‘I SimClock |
SimLog
SimEvent SimComponent
SimParameter [*P] SimMeter
inherits ANANMN
[inhenits
N) SimParamiInt
GenericATMSwitch GenericLink
GenericBTE CBRApp T M mble
VEBR SimParamBool
SimParamNSAP
SimParamRTable

Figure 3.1: Hierarchy of all the significant objects in the simulator

3.1.1.1 JavaSim.java

The JavaSim class is the main class that provides the important function to the simulation

engine. This functions includes:

o It is the main object that contains everything in the simulator

e It provides all Graphical User Interface (GUI) functions

e It provides the main JFrame for the application so that user can use it as the workspace
to create the network topology. Closing the JFrame will exit the simulator program.

e It provides the event manager to handle event-passing among all components

33

Chapfter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

There will be only one instance of the JavaSim object throughout the simulation. Anyone

with a reference to this instance can make use of the following services:

long now() ;
//this function returns current simulation time in

//tick

java.util.List getSimComponents();
//it returns a list of all existing SimComponent

boolean isCompNameDuplicate(String name);
//this function returns true if the supplied parameter name
//is already used by another //SimComponent it prevents two
//components with the same name happens

void notifyPropertiesChange (SimComponent comp) ;
//SimComponent must call this whenever there are
//structural changes to the parameters, for example: add or
//remove parameters

void enqueue (SimEvent e);
//Every communication (message exchange) between any
//components must involve creation of a SimEvent and a call
//to the engueue() method

void dequeue (SimEvent e);
//it removes a SimEvent from the queue.

//The SimEvent parameter must be one that has been
//enqueued into the queue before.

Objects that have a reference to the main JavaSim object can only call these functions.

3.1.1.2 Celljava
The Cell class is a data resource class used by components like CBRApp, VBRApp,
GenericBTE and GenericATMSwitch throughout the simulator. As a result, it contains

attributes needed by the operation of all executor classes.

The main parameters in Cell class are:

int vpi=0; // virtual path identifier
int vei=0; // virtual channel identifier
int pti=0; // payload type identifier
int CLP=0; // cell loss priority

At the initial stage, vpi, vci, pti and CLP values are set to zero. The payload type identifier

is used by the ATM end system to determine how to handle incoming cells. The pti value

can be 0,1,2 or 3.

34

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

// 0 - last data cell

// 1 - not last data cell
// 2 - forward RM cell
backward RM cell

Ny

~

w
I

3.1.1.3 SimClock.java

The SimClock class provides a set of time translation functions for normal translation
between tick and actual time (in microseconds, milliseconds and seconds). It is an
important class to synchronize the time throughout the simulation process, The functions

provided by SimClock class is as follows:

static double Tick2Sec(long tick):
//converts ticks to seconds

static double Tick2MSec(long tick):;
//converts ticks to milliseconds

static double Tick2USec(long tick);
//converts ticks to microseconds

static long Sec2Tick(double sec);
//converts seconds to ticks

static long MSec2Tick (double msec);
//converts milliseconds to ticks

static long USec2Tick(double usec)}
//converts microseconds to ticks

static double getSec(long tick);
//returns current time in seconds

static double getMSec(long tick)
//returns current time in milliseconds

static double getUSec{long tick)
//returns current time in microseconds

3.1.1.4 SimEvent.java

Every SimComponent communicates with each other by enqueuing SimEvent for the
target component. For example, when component A wants to send a packet to component
B, component A creates a SimEvent that specifies B as its destination, and enqueue the
event. The SimEvent object also contains a time so that this event is fired at exactly the

specified time. Component B will then be able to react to the event accordingly.

35

Chaprer3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

The constructor for SimEvent class is shown below:

SimFvent (int aType,SimComponent src, SimComponent dest,
long aTick,Object [] params);

//the constructor needs an event type (as defined in
//8imProvider or a private event type),
//the source and destination SimComponent,
//a time (in ticks), and an array of java.lang.Object (which
//can be anything) holding various parameters for the
//event. The event type determines what the array will
//contain

Upon receiving the SimEvent object, its content can be retrieved the following functions:

int getType():
//gets the event type

SimComponent getSource():
//gets the source SimComponent

SimComponent getDest ();
//gets the destination SimComponent

long getTick(): i
//gets the time (in ticks) to fire the events

Object [] getParams():;
//gets the event’s parameters

3.1.1.5 SimComponent.java
SimComponent class is the most important class in the simulator in order to develop new
components. Network components like GenericATMSwitch, GenericLink, GenericBTE,

CBRApp and VBRApp inherit from SimComponent.

This class provides the skeleton for an actual component. A new component should
extend SimComponent and override its various methods in order to provide meaningful

operations for the component. The constructor for SimComponent class is shown below:

SimComponent (String aName,int aClass,int aType,
JavaSim aSim, Point loc);
//every new component must provide a constructor with
//exactly the above parameters,
//super (aName,aClass,aType,aSim,loc)function is immediately
//called as the first statement of the method in order to
//override its parameters

36

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

The SimComponent also provides a set of functions according to its types of operations.
Among the operations are neighboring operation, copy operation, initial/ reset operation

and event handler operation.

The functions in neighboring operation are addNeighbor, removeNeighbor,
removeNeighbors and isConnectable. Any component that needs to handle neighbor

connect/disconnect operations should override these methods.

void addNeighbor (SimComponent comp) ;
//the simulation engine calls this function when a new
//neighbor is connected to this component.

void removeNeighbor (SimComponent comp) ;
//the simulation engine calls this function when a neighbor
//is disconnected from this component.

void removeNeighbors(java.util.List comps);
//the simulation engine calls this function when a group of

//neighbors is disconnected from this component.

boolean isConnectable (SimComponent comp) ;
//the simulation engine calls this function when a new
//component is about to be connected to this component.
//this function checks whether two components can be
//connected together.
//The connection rules are:
//1) Application (CBRApp or VBRApp) only allowed to connect
// to B-TE.
//2) B-TE only allowed to connect to Application (CBRApp or
// VBRApp) and GenericLink
//3) Genericlink only allowed to connect to GenericBTE and
// GenericATMSwitch
//4) GenericATMSwitch only allowed to connect to GenericLink

The only function in copy operation is copy.

void copy(SimComponent comp) ;
//This method is used to copy parameter values of another

//5imComponent of the same type. This method must be
//override in order to ensure that all necessary parameter
//values are copied.

The functions in initial/ reset operation are reset, start and resume.

vold reset();
//This function brings the status of the component back to

//the same status as if it is just newly created.

37

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

void start();
//This function starts the simulation when the user click
//the “start” button.

vold resume();
//One possible use of this function is to capture any
//special changes that have been done by the user during the
//pause period. It takes action when user clicks the
//“Resume” button after a pause.

The function in event handler operation is action.

void action(SimEvent e);
//This is the event handler of this component, and will be
//called by the simulator engine whenever a SimEvent with
//this component as the destination fires.

3.1.1.6 SimParameter.java

Classes like SimParamlnt, SimParamDouble, SimParamBool, SimParamNSAP and
SimParamRTable inherit from SimParameter. These classes provide support for integer,
double and boolean parameters. Other types of parameters can be created by extending
SimParameter accordingly. By extending SimParameter, these classes can obtain
parameter logging and meter display features automatically. The constructor for
SimParameter class is shown below:

SimParameter (String aName, String compNane,
long creationTick,boolean isLoggable);

//The parameters for SimParameter constructor are:
//aName - name of the parameter
//compName - name of the component the owns that parameter
//creationTick - time when the parameter is created created
//isloggable — whether the parameter can be logged in the
£ log file

3.2 Leaky Bucket Overview

The most famous algorithm for traffic shaping is leaky bucket algorithm . This is a
congestion avoidance method in which it monitors the traffic to prevent congestion
happens. Leaky buckets are a mechanism by which cells entering the switch fabric are
monitored for compliance with UPC traffic contracts that have been negotiated at

connection set-up time. Before discussing the leaky buckets, it is important to understand

38

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

the parameters that are being measured by the buckets. These parameters are informally

defined as follows:

Peak Cell Rate (PCR)

- Cell Delay Variation Tolerance (CDVT)
- Sustainable Cell Rate (SCR)

- Burst Tolerance (BT)

« Minimum Cell Rate (MCR)

This method provides a pseudo-buffer. Whenever a user sends a cell, the queue in the
pseudo-buffer is increased by one. The pseudo-server serves the queue and the service-
time distribution is constant. Thus there are two control parameters in the algorithm: the

service rate of the pseudo-server and the pseudo-buffer size.

As long as the queue is not empty, the cells are transmitted with the constant rate of the
service rate. So the algorithm can receive a bursty traffic and control the output rate. If
excess traffic makes the pseudo-buffer overflow, the algorithm can choose discarding the
cells or tagging them with CLP=1 and transmitting them. PCR or SCR can be controlled
by choosing appropriate values of service rate and buffer size. In addition, PCR and SCR

can both be controlled by combining two buckets with one for each of the parameters.

The leaky bucket algorithm is basically a timer which assesses if cells entering the switch
fabric conform to the parameters listed above. As a cell arrives, the timer assesses if the
cell is on time, late or early. If the cell is determined to be on time or late (based on the
traffic parameters), the cell is allowed to pass unchanged. If the cell is early (which, in
turn, causes the cell stream to exceed the specified parameters), the cell is considered non-

conforming and is either dropped or tagged (the CLP bit is set to 1), depending on the

39

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

specified contract. This is known as continuous-state leaky bucket algorithm. This

algorithm is shown is Figure3 2.

(Arﬂvalofceﬂkatﬁmeta(k))

h 4
X' =X - (ta(k) - LCT)

SR

No X =0

Yes
Nonconforming
cell

No

X=X +1
LCT = ta(k)
Conforming cell

Figure 3.2: Continuous-state leaky bucket algorithm

Definition of the variables used in the Figure 3.1 is:
I = Increment
L =Limit
ta(k) = Time of arrival of a cell
X = Value of the leaky bucket counter
X' = Auxiliary variable

LCT = Last compliance time

There are a number of variables needed to define the algorithm. The Last Compliance

Time (LCT) is defined to be the last time that a conforming cell passed through the

40

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

algorithm. How full the bucket is given by X, the leaky bucket counter, and there is an
auxiliary variable X' for predicting the value of the leaky bucket counter. The leaky
bucket counter can pass cells conforming up to a limit given by L, and for each cell that is
passed conforming the bucket is incremented by 1. The examination of the leaky bucket
occurs when cell k arrives at time ta(k) . The variables L and I specify the operation of the

algorithm,

When a cell k arrives at time ta(k) the variable X' is set to the value that the counter will
have at this time. This is given by the previous counter value less the amount that the
bucket will have leaked away since the last compliant cell, or X' = X- (ta(k) - LCT). If
this is less than zero then the cell is compliant and the counter X' is set to zero and passes
the cell. When a conforming cell is passed the counter X has to be updated by the
increment I by X = X' + I and the last compliance time is the time of this cell, or
LCT = ta(k). If the bucket has not completely leaked away then the bucket has to be
checked to see if the limit is going to be exceeded or X' > L. If the limit is not exceeded
then the cell is conforming and the cell can be passed as before. Otherwise the cell is non-

compliant and no updates are done on the variables.

The operation of the leaky bucket is that a splash is added to the bucket (counter
increment) for each incoming cell when the bucket is not full. When the bucket is full
cells cannot pass through to the network un-marked but the bucket leaks away at a
constant rate. It is assumed here that if the cells cannot pass the leaky bucket without
being marked then they are lost because they are non-conforming. These lost cells do not
count in the cell loss rate as the cell loss rate is only specified for comforming cells. This

is because the network will only give guarantees to the conforming or un-marked cells.

41

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

There are two types of leaky bucket: Single Leaky Bucket and Double Leaky Bucket.

These leaky buckets will be explained in the following section.

3.2.1 Single Leaky Bucket

In single leaky bucket, one leaky bucket is used to police traffic parameters like Peak Cell
Rate (PCR) and Cell Delay Variation Tolerance (CDVT). Cells that are conforming with
this leaky bucket are admitted to network. Figure 3.3 shows the implementation of Single
Leaky Bucket.

Cell coming from source

T | R
ll e

Admit to network

CDVT

Leaky Bucket 1

PCR

Figure 3.3: Single Leaky Bucket Implementation

3.2.2 Double Leaky Bucket

Two leaky buckets are used in double leaky bucket. Each leaky bucket controls different
parameters in the simulator. The first leaky bucket controls the parameters like Peak Cell
Rate (PCR) and Cell Delay Variation Tolerance (CDVT) while the second leaky bucket
controls the Sustained Cell Rate (SCR) and Burst Tolerance (BT). Only cells that are
conforming with both leaky buckets are admitted to the network. Figure 3.4 shows the

implementation of Double Leaky Bucket.

42

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

Cells coming from source

el e
Iy 1 2

CDVT BT

Leaky Bucket 1 Leaky Bucket 2
PCR SCR

Figure 3.4: Double Leaky Bucket Implementation

3.3 Token Bucket Overview
A token bucket is a formal definition of a rate of transfer. There are some differences
between Leaky Bucket and Token Bucket traffic policing technique. The differences are

listed below:

- Simple leaky bucket forces bursty traffic to smooth out while token bucket permits
burstiness, but bounds it.

- Simple leaky bucket guarantees that the flow will never send faster than total worth of
packets per second; token bucket guarantees that the burstiness is bounded so that the
flow never sends more than tokens worth of data in an interval time and the long-term
transmission rate will not exceed.

- Another difference between leaky bucket and token bucket is that token bucket has no

discard or priority policy.

Token bucket is easy to implement. Each flow needs just a counter to count tokens and a
timer to determine when to add new tokens to the counter. Figure 3.5 shows the

implementation of Token Bucket.

43

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET QVERVIEW
P

Data Buffer l

Token Bucket

Admit cells to network
Incoming Cells —p, O O | R— >

P — rate at which tokens are placed in the bucket

B — capacity of the bucket
Figure 3.5: Token Bucket Implementation

A token bucket is used to manage a device that regulates the flow's data. The regulator
might be a traffic policer. A token bucket itself has no discard or priority policy. Rather, a
token bucket discards tokens and leaves to the flow the problem of managing its

transmission queue if the flow overdrives the regulator,

In the token bucket metaphor, tokens are put into the bucket at a certain rate. The bucket
itself has a specified capacity. If the bucket fills to capacity, newly arriving tokens are
discarded. Each token is permission for the source to send a certain number of bits into
the network. To transmit a packet, the regulator must remove from the bucket a number of

tokens equal in representation to the packet size.

If not enough tokens are in the bucket to send a packet, the packet either waits until the
bucket has enough tokens or the packet is discarded. If the bucket is already full of tokens,
incoming tokens overflow and are not available to future packets. Thus, at any time, the

largest burst a source can send into the network is roughly proportional to the size of the

bucket.

44

Chapter3 JAVASIM PACKAGE, LEAKY BUCKET AND TOKEN BUCKET OVERVIEW

Token bucket mechanism used for traffic shaping has both a token bucket and a data
buffer, or queue; if it did not have a data buffer, it would be a policer. For traffic shaping,
arrival packets that cannot be sent immediately are delayed in the data buffer. A token
bucket permits burstiness but bounds it. It guarantees that the burstiness is bounded so
that the flow will never send faster than the token bucket's capacity plus the time interval
divided by the established rate at which tokens are placed in the bucket. It also guarantees
that the long-term transmission rate will not exceed the established rate at which tokens

are placed in the bucket.

3.4 Chapter Summary
This chapter has covered the overview of JavaSim Package, Leaky Bucket and Token
Bucket. The explanation of Leaky Bucket is separated into two parts, Single Leaky

Bucket and Double Leaky Bucket. Next chapter will discuss the system analysis part.

45

Chapterd SYSTEM ANALYSIS

Chapter4: SYSTEM ANALYSIS

4.1 Requirement Specifications
The requirement specifications in the ATM network simulator model cover the area of
functional requirements, non-functional requirements, and hardware and software

requirements analysis.

4.1.1 Functional Requirements
With this analysis of functional requirements, the developed simulator will satisfy user’s

needs and requirements.

The network to be simulated consists of several components sending messages to each
other. The network simulator should include the basic components like ATM switch,
Broadband Terminal Equipment (B-TE), ATM Applications and Physical Link. The

further descriptions of these components are as follows:

4.1.1.1 Network minimum components
The simulator should at least have the minimum components like Switch, Broadband

Terminal Equipment (B-TE), ATM Application and Physical Link for user to build the

ATM network topology.

e Switch
This is the component used to switch or route cells over several virtual channel links. W
hen a switch accepts an incoming cell from a Physical Link it looks in its routing table
to determine which outgoing link should send it. If the outgoing link is busy, the switch
will queue the cells destined for that link and not send them until free cell slots are

available for transmission. The user may specify the processing delay time, maximum

Chapter4 SYSTEM ANALYSIS

output queue size, and queue size thresholds. The parameters that can be monitored for
a switch include the number of cells received, number of cells in an output queue,

number of cells dropped, and the status of congestion flags.

¢ Broadband Terminal Equipment (B-TE)

This is a component to simulate a broadband ISDN node, e.g., host computer,
workstation, etc. A B-TE component has one or more ATM Applications on one side
and a physical link on the other side. Cells received from the Application side are
forwarded to the physical link; if the link is busy the cells go into a queue. The user can
specify the maximum output queue size. The parameters that can be monitored are the

number of cells in an output queue and the number of cells dropped.

* ATM Application

This is a component to emulate the behavior of an ATM application at the end-point of a
link. It can be considered as a traffic generator, either with a constant or variable bit rate.
The user specifies the bit rate for constant bit rate (CBR) applications. For variable bit
rate (VBR) applications the user sets the burst length, interval between bursts, and the
mean rate. For lower priority traffic, the user may create an available bit rate (ABR)
application. For all of the application types, the user sets the start time and the number of
megabytes to be sent. Other application types that can be simulated include TCP/IP,

VBR MPEG, and VBR self-similar traffic applications.

¢ Physical Link

This component simulates the physical medium (copper wire or optical fiber) on which

cells are transmitted. The user may choose the link speed from a list of several different

47

Chapterd SYSTEM ANALYSIS

standard rates. The user also specifies the length of the link. The output parameter

reported by the simulator is link utilization in terms of bit rate (Mbits/s).

4.1.1.2 Interface
An interface is to display the network configurations. This workspace is used while
creating the network topology and to show the network activity while the simulation is in

progress.

4.1.1.3 Simulation Analysis
The simulator should provide analysis for the simulation result. Qutput of the simulation

should be captured and show to user in either text format or graphical format.

The logging file technique will be used in the text format. This technique enables user to
analyze the simulation result after simulation. OQutput parameter values may be tagged for
logging to a file. User can determine the data logging frequency by specifying the value in
logging every n tick parameter. For example, if user specifies logging every 100 ticks,
then the simulator will log data to a file every 100 ticks if there is some changes. The

logging frequency should not be too small because it will affect the simulation speed.

The meter will be used in the graphical format. This technique enables user to analyze the
simulation result during simulation. User can view the real-time simulation result as the
simulation running. Thus, user can modify the simulation parameters to get the best

simulation result for the designed topology.

4.1.2 Non-Functional Requirements

The following are the basic non-functional requirements.

48

Chapterd SYSTEM ANALYSIS

4.1.2.1 Physical Environment

This simulator will be developed using SUN Solaris SPARC processor 440Mhz with
memory size 128MB. Since this simulator will be platform independent, it can be used in
Window environment too. For the use ATM Network Simulator in Windows
environment, at least 80486-compatible PC and 16 Mb of RAM is recommended in order

to run the simulator.

4.1.2.2 Users and human factor

- For novice user, the knowledge about the relation and concept of network components
and network topology is needed.

- The user should understand that the basic requirements in creating a simulation
topology must have a set of network components and route.

- User also should understand some parameters that are used in the simulator. For

example link speed and link distance in the Physical Link component.

4.1.2.3 Reusability
The components and objects of the simulator should be easily changed in future for
redesign purposes. The components and objects should be independent so that

modification of the simulator will just require minimum steps.

4.1.2.4 Meeting the user requirement
The final developed simulator must meet the objective, specification and requirement of

the users. The simulator must simulate the network topology that imitates the real network

environment,

49

Chapter4 SYSTEM ANALYSIS

4.2 Simulator Architecture

4.2.1 Simulation Clock Component

The simulator is event driven. Components send each other events in order to
communicate and send cells through network. The simulator contains an event manager
which provides a general facility to schedule and send or “fire” an event. With the use of
multithreading operation, the simulation model is acting much more like the real world
simulator. Each object can deal concurrent execution with other objects while at the same
time handle their own events. Since this ATM network simulator is using multithreading
method, a global clock component is important in synchronizing the processes of objects
that run simultaneously. Therefore, there is a need to have a simulation clock in this

simulator to handle the simulation timing and synchronization.

The basic architecture of the ATM Network Simulator is shown in Figure 4.1.

| R —

Synchronization between Link and
ATM Switch with Simulation Clock

Link e A LM Switch Link
Oul
e O U -3 il - (0101055

o= | 000

< Send ATM cells < Fetch ATM cells

Figure 4.1: ATM Network Simulator architecture

4.2.2 Link Component
This component simulates the physical medium (copper wire or optical fiber) on which

cells are transmitted. The length of the link is specified in unit of Kilometer (KM) while

50

Chapterd SYSTEM ANALYSIS

the link speed is specified in unit of bit rate (Mbps). This component holds the process of

connecting the end systems and switch.

4.2.3 Inter-objects Communication

Inter-objects Communication enables the objects in the simulator to communicate and
interact with each other, Message can be passed among objects. For example, when a cell
enters a link, it will queue in the link queue. Then this cell will enter the input port of the

ATM switch and being passed to the output port.

Therefore, interaction has happened between the link and the switch. The queue of the
link will decrement one cell while the switch will increment one cell when a cell is being

passed from link queue to switch.
Figure 4.2 shows the interaction between the link and the switch.

Link Switch

-

~
{1
{4

PO

i
Onecellhas | ™ i

been moved
O from link to O
switch

-1 +4
cell cell

Figure 4.2: Interaction between link object and switch object

Based on the inter-object communication feature, each object in the simulator can

communicate or pass message with other objects.

51

Chapter4 SYSTEM ANALYSIS

4.3 Queuing Model

In this project, ATM cells in the input port are queued-up using First In First Out (FIFO)
queuing discipline. FIFO is a simple queuing discipline. The new incoming cells into the
input port of the switch will be placed at the end of the queue. As long as the queue in
input port is not full, the ATM cells are possible to be fetched in. Figure 4.3 shows the

FIFO queuing model in input port.

Input port

Incoming cells from Swiich to
link to input port output port

0000 — OO0

Cells are queued-up using FIFO queuing discipline

Figure 4.3: FIFO queuing model in input port.
From this input port, the cells are removed from the queue and switched to the correct

output port and finally reach the destination.

4.4 Implementing Leaky Bucket and Token Bucket
Switch’s input ports are the entry points of cells from each link into the switch. Thus,
traffic at the input ports will always heavy. There is a need of having some traffic policing

techniques to control the traffic in order to prevent congestion occurs in the switch.

The traffic policing techniques used includes Leaky Bucket and Token Bucket. With the
implementation of leaky bucket and token bucket algorithm in the input port, the traffic

can be monitored and congestion can be control. Therefore, it guarantees the QoS while

fully utilized the network resource.

52

Chapter4 SYSTEM ANALYSIS

Figure 4.4 shows the implementation of leaky bucket and token bucket algorithm at input

port.
ATM Switch
Incoming cells OOO Output Outgoing cells
e Port S
Cutgmng sols Incoming cells
o W sopmois

Implementing leaky bucket and token bucket
Algorithm to control the traffic at input port

Figure4.4: Implementing leaky bucket and token bucket at input port

4.5 Chapter Summary

This chapter has covered the system analysis part in the ATM Network Simulator. The
context and architecture of the entire simulation model was explained in this chapter.
Analysis has been done on the queuing model in the input port. Besides, the Leaky Bucket
and Token Bucket traffic policing techniques that will be implemented is analyzed and

described in detail.

53

Chapters SYSTEM DESIGN

ChapterS: SYSTEM DESIGN

5.1 User Interface Design

The graphical user interface of the Network Simulator must be user friendly, helpful, and
ease the use of users so that they are confident in using it, Besides, it must be easy for the
user to understand aﬁd create the network topology on the workspace. The basic user
interface design takes consideration on the design of Menu, Menultem and the Control

Bar,

5.1.1 Menu and Menultem
The main menus in this ATM Network Simulator include File, Edit, Window and Help.
Under these menus, there are some menu items that will provide the essential functions

and helps in the simulation process.

5.1.1.1 File Menu
The Menultem that are grouped into this File Menu includes New, Open, Save, Save As,

Reset Log File and Exit. Further description for these Menultem are covered in the section

below.

e New - New function closes all topology on the workspace and lets user to
create a new topology on the workspace.

e Open - Open function opens the saved topology to the workspace for further
simulation.

o Save - Save function saves the changes for the current topology on the
workspace to file.

e Save As - Save As function saves the new topology created on workspace to a

new file.

54

Chapter5 - SYSTEM DESIGN

® Reset Log File -~ Reset Log File function clear the data that has been logged to a log
file.
o Exit - Exit function closes the topology on workspace and exits the Java

Network Simulator program.

5.1.1.2 Edit

The Menultem that are grouped into this Edit menu includes Select All and GUI High

Priority. Further description for these Menultem are shown below.

o Select All - Select All function selects all components (like switch, link, B-TE
and application) on the workspace.

e GUI High Priority - GUI High Priority function gives the Graphical User Interface
(GUI) higher priority than other events. This function enables any
movement on the components or properties dialog box during
simulation and don’t give any jitter effect to the Network

Simulator screen.

5.1.1.3 Window

The Menultem that is grouped into this Window menu includes Close All. Further
description for this Menultem is covered in the section below.
e Close All - Close All function is used to close all properties windows opened on the

workspace.

5.1.1.4 Help
The Menultem that is grouped into this Help menu includes About. Detail description for
this Menultem is shown below.

eAbout - About function gives the version of the ATM Network Simulator.

55

Chapter5 SYSTEM DESIGN

5.1.2 Control Bar

A control bar consists of several buttons that is essential in the simulation process. The
buttons include Start, Pause, Resume, Reset, Connect Mode, Fit All, and Test. The Digital
Global Clock also included in the control bar area. The following section describes the

function of each control element in the control bar.

Buttons function:

» Start — Start button starts the new simulation on the topology.

o Pause — Pause button pause the simulation.

* Resume ~ Resume button resumes the simulation after the simulation being
paused.

o Reset — Reset button reset all parameters to its original state after simulation.

» Connect Mode - Connect Mode button enables user to connect the components like
switch, link, B-TE and application becomes a topology for
simulation purpose.

o Fit All ~ Fit All button fits the topology to the workspace so the user can use

the scrollbar to view the full topology.

o Test — Test button enables user to simulate the test topology that has been
created.
Digital Global Clock function:

Digital Global Clock is located at the bottom of the right side. It shows the current
simulation time to user. Besides, it also synchronizes all processes that happens during the

showing simulation time.

56

Chapters SYSTEM DESIGN

5.2 Class Design

The simulator consists of various types of objects or classes. Proper designing of these
classes ensures that the simulator can really simulates the ATM network that imitates the
real network. The simulator basically builds from major classes like ATM Cell class,

-

switch class, B-TE class, link class and application class.

5.2.1 ATM Cell Class

Since the simulator is designed to simulate ATM networks, a cell data type has been
defined. A cell constitutes a very important data type in the simulator because it contains
the route number needed for routing by ATM switches. The structure may contain
different elements to tailor the cell for different applications, but must always contain the
route number. For switching or routing purposes, an ATM switch read off the route
number found in the cell, then looks up its routing table to forward the cell via the next

link to the next switch (or to the next B-TE if at the end of a connection).

The basic elements or parameters that include in the ATM Cell class are shown in Table

5.1.

Table 5.1: ATM cell class elements and its description
Major Elements | Description Units
Virtual Path Identifies virtual path of the cell. Integer
Identifier (VPI)
Virtual Channel | Identifies virtual channel of the cell. Integer
Identifier (VCI)
Payload Type | Indicates the types of data in the cell. Integer
(PT)
Cell Loss Indicates whether the cell should be discarded if | Integer
Priority (CLP) | congestion encountered.

These parameters ensure that the ATM cell carries the data types important to the

simulator. With the parameters specified, the cell can be sent from the source and reach at

the desired destination.

57

Chapter5 SYSTEM DESIGN

5.2.2 Switch class

This class contains the general information for an ATM switch to ensure the extensibility
of ATM switch to different models in future. General elements or parameters in the
switch class are name, delay to process a cell, switching slot time, output queue size, high
threshold, low threshold, logging every n ticks, cell received, percent cell drop, cells in
xBR queue to link n, cells dropped in xBR queue to link n and congestion for link n,
Additional parameters for the use of leaky bucket policing are Peak Cell Rate (PCR), Cell
Delay Variation Tolerance (CDVT), Sustained Cell Rate (SCR), Maximum Burst Size
(MBS), PCR drop cells in xBR queue and SCR drop cells in xBR queue. Parameter for
the use of Token Bucket like Generate Token every n uSec is also included. Further
description of these elements is shown in Table 5.2.

Table 5.2: Switch class elements and its description

Major Elements | Description Units

Name ID of the component String

Delay to An increment of time after the arrival of a cell at the | Usec

process a cell switch before the switch places the cell on the
outgoing link.

Switching Slot | The rate at which cells are switched from an input port | Mbit/s
time to an output port.

Output q_size | Available buffer space for the queue; the same value is | Cells
used for every queue in the switch, When a cell is
ready for transmission but a slot on that link is not
available, it waits in a queue at that port.

High threshold | If the number of cells in any queue exceeds this value | Cells
the congestion flag is set.

Low threshold | The congestion flag is cleared when the numbers of | Cells
cells in all queues fall below this value.

Peak Cell Rate | The maximum rate at which a connection can transmit. | Mbit/s

(PCR)

Cell Delay The difference of the maximum and minimum cell | Usec
Variation transfer delay experience during the connection.

Tolerance

(CDVT)

Sustained Cell | This is the average rate as measured over a long | Mbit/s

Rate (SCR) interval.
Maximum Burst | The maximum number of cells that may burst at the | Cells
Size (MBS) PCR but still be compliant.
Generate Token | Time to generate a new token in Token Bucket every n | Usec

58

Chapter5 SYSTEM DESIGN
every n uSec uSec
Logging every n | Time to log data every n ticks. Ticks
ticks
Cells received | Total number of cells received by the switch. Integer
Percent cell Number of cells drop by the switch as a percentage of | %
drop the total cells received.
Cells in xBR Q | Cells awaiting transmission in a given priority queue. | Cells
to link n There are two types of queues for each port — a
CBR/VBR queue and ABR queue. Cells in the
CBR/VBR queue have top priority; a cell from the
ABR queue will be sent only if the CBR/VBR queue is
empty.
Cells dropped in | Cells dropped at a port when a queue exceeds its | Cells
xBR Q to link n | maximum size.
PCR drop cells | The number of cells dropped that are not compliant | Cells
in xBR Q with Peak Cell Rate (PCR).
SCR drop cells | The number of cells dropped that are not compliant | Celis
in xBR Q with Sustained Cell Rate (SCR).
Congestion for | There is one congestion flag for each port. The flag is | Boolean
Link n set when a queue exceeds its High Threshold value,
cleared when both queues fall below the Low
Threshold.

The switch is the component that switches or routes cells over several virtual channel

links. This class contains the general information for an ATM switch to ensure the

extensibility of ATM switch to different models in future.

5.2.3 B-TE class

Cell received from the application sides are queued in one of the two priority queues if no

link slot is available for the transmission. If either queue exceeds its size limit cells will be

dropped. The major elements of the B-TE class are name, maximum output queue size,

logging every n ticks, cells received, NSAP for interface to link n, cells in xBR Q to link n

and cells dropped in xBR Q to link n. The detailed description of these elements is shown

in Table 5.3.

Table 5.3: B-TE class elements and its description
Major Elements | Description Units
Name ID of the component String
Maximum Available buffer space for each type of queue. Cells

59

Chapters SYSTEM DESIGN

output queue
size
Logging every n | Time to log data every n ticks. Ticks
ticks
Cells Received | Total number of cells received by the B-TE. Cells
NSAP for The ATM address for this B-TE. Integer
interface to link
n
Cells in xBR Q | Cells awaiting transmission in a given priority queue. | Cells
to link n There are two types of queues — a CBR/VBR queue

and ABR queue. Cells in the CBR/VBR queue have

top priority; a cell from the ABR queue will be sent

only if the CBR/VBR queue is empty.
Cells dropped in | Cells dropped at the network port when a queue | Cells
xBR Q to link n | exceeds its maximum size.

5.2.4 Link class
The major elements of the link class are name of the link, link speed and distance. Further
description of these elements is shown in Table 5.4.

Table 5.4: Link class elements and its description

Major Elements | Description Units

Name ID of the component String

Link speed Specified the speed of the link between end system and | Mbits/sec
switch.

Distance Distance between switch and B-TE. Km

5.2.5 Application class

The ATM application consists of Constant Bit Rate (CBR) application class and Variable
Bit Rate (VBR) application class in this ATM simulator.

5.2.5.1 CBRclass

In CBR application, cells are generated at a constant rate for the duration of the
simulation. The major elements of CBR class are name, bit rate, start time, number of
Mbits to be sent, repeat count, port number, destination NSAP, destination port number,
calls attempted, calls accepted, incoming calls and total incoming calls.

Further description of these elements is shown in Table 5.5.

60

Chapters SYSTEM DESIGN
Table 5.5: CBR class elements and its description

Major Elements | Description Units

Name ID of the component String

Bit rate The rate at which this application will send cells. Mbit/s

Start time The time of this application to start sending cells. Usec

Number of The number of Mbits this application will send during | Mbits

Mbits to be sent | current connection.

Repeat Count The number of times this application will send the | Integer
same amount of data (in Mbits) to destination.

Port Number This application’s own port number. Integer

Destination NSAP ATM address for destination. Integer

NSAP

Destination port | Port number for destination. Integer

number

Calls attempted | Number of calls attempted to send data to destination | Integer
during current connection.

Calls accepted | Number of calls accepted by the destination during | Integer
current connection.

Incoming Calls | Number of incoming calls from source during current | Integer
connection.

Total Incoming | Total incoming calls accepted at the end of current | Integer

Calls connection.

5.2.5.2 VBR class

In VBR application, traffic is generated as an ON-OFF source. Cells are generated at the
specified bit rate during a burst. Mean burst length and mean interval between bursts are
user specified. The major elements of VBR class are name, bit rate, mean burst length,
mean interval between burst, start time, number of Mbits to be sent, repeat count, port
number, destination NSAP, destination port number, calls attempted, calls accepted,
incoming calls and total incoming calls

Further description of these elements is shown in Table 5.6.

Table 5.6: VBR class elements and its description

Major Elements | Description Units
Name ID of the component String
Bit rate The rate at which this application will send cells. Mbit/s
Mean Burst The average duration of burst. Usec
Length

61

Chapters SYSTEM DESIGN
Mean Interval | The average time between 2 burst. Usec
Between Burst
Start time The time of this application to start sending cells. Usec
Number of The number of Mbits this application will send during | Mbits
Mbits to be sent | current connection.
Port Number This application’s own port number. Integer
Destination NSAP ATM address for destination. Integer
NSAP
Destination port | Port number for destination. Integer
number
Calls attempted | Number of calls attempted to send data to destination | Integer
| during current connection.
- Calls accepted | Number of calls accepted by the destination during | Integer
current connection.
Incoming Calls | Number of incoming calls from source during current | Integer
connection.
Total Incoming | Total incoming calls accepted at the end of current | Integer
Calls connection.

5.3 Leaky Bucket Design

The Leaky Bucket is designed in a flexible way. In every input port, there will be two

types of Leaky Bucket: Single Leaky Bucket and Double Leaky Bucket. The incoming

cells from CBR traffic will be directed into Single Leaky Bucket for policing. This leaky

bucket polices the PCR and CDVT traffic parameters. Incoming cells from VBR traffic

will be directed into Double Leaky Bucket. The cells will go to first Double Leaky Bucket

for PCR and CDVT traffic parameters policing. Then the cells will enter the second

Double Leaky for SCR and BT policing. Cells that are conforming to these buckets will

be admitted to network.

The designed Single Leaky Bucket and Double Leaky Bucket is shown in Figure 5.1.

5.4 Token Bucket Design

A Token Generator, Token Bucket and data buffer is required in order to implement

Token Bucket technique in the switch. Token generator is designed to generate new token

in the time interval that has been specified. Token Bucket is used to keep the generated

62

Chapter$ SYSTEM DESIGN

Token. New generated token will be discarded if the token bucket is full. The data
buffer’s function is to queue the incoming cells in a buffer before getting a token and
admit to network. These components will be placed at the input port. The designed Token

Bucket and its components is shown in Figure 5.2,

Single Leal Input port

Bucket \
‘ - l.f."' PSP T ’ Q‘tgoing
Incoming 0 O L— 0 O cell
...,..‘....,’

o
o,
'~

cell -
First Double Second Double

Leaky Bucket Leaky Bucket

Figure 5.1: Single Leaky Bucket and Double Leaky Bucket design

Token Generator

Admit cells that have get
the token to network

Get token

Data buffer Token Bucket
Figure 5.2: Token Bucket and components design
Each time a new connection is connected to the switch, a new token generator is

automatically created for that connection. The token generate time is designed in a

63

Chapters SYSTEM DESIGN

flexible way. It enables user to specify the token generate time value. A buffer is designed
for each connection. Incoming cells from each connection to the switch will be kept in the

individual data buffer before entering the network.

5.5 Features of the ATM Network Simulator
The ATM Network Simulator that will be developed must have the basic features that
ease the use of the user. These basic features include graphical user interface (GUI),

logging data, modifying and saving network topology.

5.5.1 Graphical User Interface
The window with graphical user interface is used both while creating the configurations
and to show network activity while the simulation is running. The network components

should be able to be created in the workspace window.

A few considerations have been put forward as an idea of how user interface will be

designed:

¢ The user interface is easy for user to understand and use when using the simulator to
create the network topology.

e The user interface simplifies the structure of complexity by using the nature of the
solution. The design should be user friendly. On the other hand, the simulator’s
graphical user interface should be helpful, tolerant and adaptable in order to let user

using the simulator confidently.

These considerations will be focused when the user interface is implemented.

5.5.2 Logging Data
The simulator should provide analysis for the simulation result. Output parameter values

may also be tagged for logging to a file. Logging data while running the simulator

64

Chapters SYSTEM DESIGN

provides a means of simulation analysis. With this logged file, user can carry out further

analysis on the behavior of the designed network topology.

When logging for a particular parameter is checked, every new value of that parameter
with a corresponding time stamp is saved in a file. The file created by this process will
contain an entry for every value change of every parameter that was tagged for data
logging. Every entry will consist parameter number, time tick and parameter value at that

tick. The parameter number will be identified by name in the file header.

The example of log file format is shown in Figure 5.3

ID 2 "sw1" "Cells Received”
ID 3 "sw1" "Cells in VBR Q to link2"
ID 1 "btel" "Cells in VBR Q to link1"
32321

912622

96051 1

992823

101013 1

11018 1 1

1134124

114663 1

1243111

1275425

1283132

1384411

141672 6

141963 3

1434132

1525711

1558027

158343 3

166701 1

169932 8

171993 4

1808311

184062 9

— -

Figure 5.3: Example of log file format

The lines at the head of the file starting with ‘ID’ sign are a listing of all parameters that

were marked for data logging when the simulator was running. The number immediately

65

Chapter5 SYSTEM DESIGN

following the “ID” sign is the ID number that will be used in the remainder of the file to
identify the parameter. The rest of the line gives the component name and parameter name

respectively.

All lines following after the ones marked with “ID” sign are the actual data recorded
during the simulation. The first column is the time (in ticks), the second column is the

parameter ID and the third column is the value of the parameter at that time.

5.5.3 Making Modifications
A component should be able to be selected and modify it. The component can be delete,
edit or move in a network topology. The component that has been modified should be

updated into the list and the interface should show the latest topology in updated view.

5.5.4 Saving a Network configuration

The network configuration that has been created with the ATM Network Simulator is
saved in files for future usage. The records of the network components and the topology
will be saved into a file with .sim extension as an input file. File saving in this network

simulator considers the factors like maintainability and platform independent.

- Maintainability — The saved file should be made suitable for maintaining and
constructing a simple local database for the simulation records. It allows easy

manipulating and storing of variable length of each component.

- Support for many Platforms — The saving file system should support for many
platforms, including Windows and UNIX. Thus, the saved topology file should be
able to be used in either one platform. This is an important consideration as the

network topology and simulation result can be platform independent.

66

Chapters SYSTEM DESIGN

5.6 Chapter Summary

This chapter has covered the system design for the ATM network simulator. Detailed
description about the user interface design and classes design are done. The user interface
design includes the features that can be seen by user while the classes design includes the
classes attributes and function. The Leaky Bucket and Token Bucket design were
explained in detail. Besides, the features of the simulator and the design considerations for

the development process were described.

67

Chapter6 SYSTEM IMPLEMENTATION

Chapter6: SYSTEM IMPLEMENTATION

6.1 System Implementation

In this phase, the plans in design stage are transformed into reality. The designed
simulator is converted into coding. The implementation approach used in the ATM
Network Simulator is the object modeling. Object oriented methodology is used at the

implementation phase of the development process through the Java programming

language.

6.2 Leaky Bucket Implementation

Leaky bucket policing function will be implemented in the GenericATMSwitch class. It
will be built on top of javasim package. There are two types of leaky bucket that will
police the traffic at the switch: Single Leaky Bucket and Double Leaky Bucket. Single
Leaky Bucket will police traffic from source CBR application while Double Leaky

Bucket will police traffic from source VBR application.

6.2.1 Single Leaky Bucket Implementation
When a new cell is passed from the link to switch, the switch will check the cell’s

connection type with the statement:

connection_type=rec.contype;
if (connection_type==Cell.CON_CBR)

If the connection type is CBR application, the switch will pass the cell to Single Leaky

Bucket for policing purpose. The Single Leaky Bucket function is shown below.

private void SingleBucket (Port voport,Cell cell from SingleLB,CallRecord
rec_from SingleLB)
//this function receive CBR cells from input port and check
//the cells compliance.
//parameters being passed into this function is cells record

//and output port value.

68

Chapter6 SYSTEM IMPLEMENTATION

This leaky bucket will check the cell’s conformance. If the cell is compliant to the Peak
Cell Rate (PCR) and Cell Delay Variation Tolerance (CDVT) value, the switch will pass
the cell to the output port and send it to the destination. Otherwise, the switch will drop
the cell or admit the cell to network depending on the current traffic situation in the

switch,

If the current queue size in the output port is less than 70% of High Threshold value, the
switch will pass the non-conforming cell to network. Otherwise the switch will drop the
non-conforming cell that has violated the traffic parameters. The implementation of

Single Leaky Bucket policing is shown in Figure 6.1.

Arrival Cell

Not conforming cell Go through

Single Leaky Bucket
policer to check for
PCR and CDVT

compliance

Check HighThreshold

* Conforming cell

; No
Q size Admi
more than 70% P . out::toxfl;l:ort
HighThreshold .

Drop cell

Figure 6.1: Implementation of Single Leaky Bucket policing

69

Chapter6 SYSTEM IMPLEMENTATION

6.2.2 Double Leaky Bucket Implementation
Double Leaky Bucket will police traffic from source VBR application. In order to check

the cell’s connection type, the following statement is used:
if(connection_ type==Cell.CON_VBR)

This statement will ensure that the cells from VBR application will be passed to Double

Leaky Bucket for traffic policing purpose.

There are two leaky buckets in the Double Leaky Bucket policing. First leaky bucket will
police the traffic parameters like Peak Cell Rate (PCR) and Cell Delay Variation
Tolerance (CDVT) while the second one will police the Sustained Cell Rate (SCR) and
Burst Tolerance (BT). Since Maximum Burst Size (MBS) is more intuitive than BT,
signaling messages use MBS. This means that during connection setup, a source is
required to specify MBS. BT can be easily calculated from MBS, SCR and PCR. Burst

Tolerance can be calculated from the formula:
BT = (MBS -1) (1/SCR - 1/PCR)

When a cell from VBR application reaches the switch, firstly the switch will pass the cell

to first leaky bucket. The first leaky bucket function is shown below.

private void DoubleBucketl (Port voport,Cell
cell from DoubleLBl,CallRecord rec_from DoubleLBl)

//this function receive VBR cells from input port and check

//the cells compliance.
//parameters being passed into the function are cells record

//and output port value.
//This function will pass cells conforming to the traffic

//parameters like PCR and CDVT to second leaky bucket.
//Not conforming cells will be dropped.

The implementation of first leaky bucket in Double Leaky Bucket policing is shown in

Figure 6.2.

70

Chapter6 : SYSTEM IMPLEMENTATION

Arrival Cell

Go through Not conforming cell
First Leaky Bucket to
check for PCR and

CDVT compliance

Conforming cell

Pass conforming Drop cell
cell to second
leaky bucket

Figure 6.2: Implementation of first leaky bucket in Double Leaky Bucket policing

The second leaky bucket function is shown below.

private void DoubleBucket2 (Port voport,Cell
cell from DoubleLB2,CallRecord rec from DoubleLB2)
//this function receives cells from first leaky bucket.
//parameters being passed into the function are cells record

//and output port value.
//it will admit cells conforming to traffic parameters

//like SCR and BT to network.
The successful cell that passed from first leaky bucket will be policed for SCR and BT
traffic parameters in second leaky bucket. If the cell is compliant to these parameters, the
switch will admit the cell to output port and then to network. Otherwise, the switch will

drop the cell or tag the cell and then admit it to network depending the current traffic

situation in the switch.

If the current queue size in the output port is less than 50% of High Threshold value, the

switch will tag the cell and pass the non-conforming cell in second leaky bucket to

71

Chapter6 SYSTEM IMPLEMENTATION

network. Otherwise the switch will drop the non-conforming cell that has violated the

traffic parameters.

The implementation of second leaky bucket in Double Leaky Bucket policing is

summarizing in Figure 6.3.

Receive Cell from
First Leaky Bucket

Not conforming cell
Bucket to check for
SCR and BT
compliance
Check HighThreshold
Conforming cell
S Admit cell
to output port.

Yes

Tag cell
(CLP=1)

Drop cell

Figure 6.3: Implementation of second leaky bucket in Double Leaky Bucket policing

6.3 Token Bucket Implementation
Token Bucket is implemented in the GenericATMSwitch class, which is on top of the
javasim package. There are three important functions in the Token Bucket generator.

These functions are CallGenToken(), GenToken() and getToken().

72

Chapter6 SYSTEM IMPLEMENTATION

The switch will invoke CallGenToken() every time interval specified by user. Its function
is to call GenToken() function to generate new token in the token bucket. The

CallGenToken() function is shown below.

private void CallGenToken()
//this function calls GenToken function to generate Token
//every time interval specified by user (in Usce).
//it passes the port value to GenToken() function so that
//the GenToken() can generate token at specific port.

Function GenToken() generates new token every time interval. This function is shown

below.

private void GenToken (Port voport)
//this function receive call from CallGenToken() function
//and generate new token in the token bucket.
//it received port value from CallGenToken() function so
//that this function will generate new token to a correct

//port.

Function getToken() is used in order to get the total token in a token bucket. This function

is shown below.

private long getToken(Port voport)
//this function return total token in the token bucket.
//the switch must pass the port value to this function in
//oxrder to get the correct number of token in a specific

//port.

A TokenWait() that acts as the data buffer is created. The cells will be kept in this buffer

once they have entered the switch. The implementation of this TokenWaitQ is shown

below.

voport.TokenWaitQ.add (cell) ;

When a new cell is received by switch, the switch will passed the cell to the

TokenBucket() function. The TokenBucket() function is shown below.

private void TokenBucket (Port voport)
//this function will keep the cells in the buffer. If there

//is available token, the token bucket will admit the cells
//to network.

73

Chapter6 SYSTEM IMPLEMENTATION

The Token Bucket will check whether there is available token. If the token is available,
the data cell will grab the token and admit to network. Then the total token in Token
Bucket will decrease by one. Otherwise, the cell will wait at the TokenWaitQ queue until

a new token is available.

6.4 Chapter Summary

This chapter has discussed the system implementation phase in the simulator. The
conceptual and abstract designs were transformed into programming language codes.
Implementation of two traffic policing techniques — Leaky Bucket and Token Bucket are
described in detail. The description on the Leaky Bucket is separated to two parts: Single

Leaky Bucket and Double Leaky Bucket. Each policing technique is explained deeply.

74

Chapter7 SYSTEM TESTING

Chapter7: SYSTEM TESTING

7.1 Unit Testing

Unit testing section is separated into two parts. The first part will carry out the Leaky

Bucket unit testing while the second part will carry out the Token Bucket unit testing.

7.1.1 Leaky Bucket Unit Testing

For Single Leaky Bucket and First Leaky Bucket in Double Leaky Bucket, unit testing is
done on the parameters used in the bucket to police the traffic. These parameters are cell
arrival time (tka), Last compliance time (LCT), value of the leaky bucket counter (X),
Auxiliary variable (X'), Increment (I) and Limit (L). I value takes consideration of Peak
Cell Rate (PCR) value while the L value takes consideration of Cell Delay Variation
Tolerance (CDVT) value. The I and L value is represented with the following equations:

1= (double) (424.0 / sw_pcr.getValue());

L= (double) sw_cdvt.getValue();

In order to test the I and L value, PCR and CDVT value is entered into the switch. Then
these values are printed out to ensure that the calculated I and L value is correct. The
entered PCR and CDVT value is;

PCR =30
CDVT = 15

The output is displayed with the following statements:

System.out.println(“I value : “ + rec.I);
System.out.println(“L value : “+ rec.L):;
Output:

I value : 8.48

L value: 15.0

To test other parameters, a quantity of cells is admitted to the switch. The tka values is

updated each time a new cell coming in to the leaky bucket. First, the X' value is

75

Chapter? ' SYSTEM TESTING

calculated and compare with the L value. When X' value is less than L value, the LCT
value is updated with the tka value and the X value is updated with the addition value
between X' and I. When X' value is more the L value, no update is performed. From this

test, it proved that the Single Leaky Bucket and the First Leaky Bucket are working

properly.

For Second Leaky Bucket in Double Leaky Bucket, unit testing is done on the new
parameters like I2 and L2. 12 value takes consideration of Sustained Cell Rate (SCR)
value while L2 value takes consideration of Burst Tolerance (BT) value. The 12 and 1.2
value is represented with the following equations:

12= (double) (424.0/ sw_scr.getValue());

L2= (double) (424.0 * (sw_mbs.getValue()-1) * (1/sw_scr.getValue()-
I/sw_per.getValue()) + sw_cdvt.getValue());

The entered PCR, CDVT, SCR and MBS value in the switch is;

PCR =350
CDVT = 15
SCR =30
MBS =10

The 12 and L2 value is printed out to ensure that the calculated value is correct. The

output is displayed with the following statements:

System.out.println(“I2 value : “ + rec.I2);
System.out.println(“L2 value : “+ rec.lL2);
Output:

12 value : 14.13333333
L2 value : 65.88

A quantity of cells are admitted to the switch to test other parameters in the bucket. Each
time a cell is passed in from the First Double Leaky Bucket, the tka value in the bucket is

updated to the latest value. When the calculated X' value is less than L2 value, update

76

Chapter? SYSTEM TESTING

process is done to X and LCT value. No update is performed when X' value is more than

L2 value. Therefore, this proved that the Second Leaky Bucket is successfully running.

7.1.2 Token Bucket Unit Testing

In the Token Bucket unit testing, 3 important components in the Token Bucket are tested.

These components are Token Generator, Token Bucket and Data Buffer.

To test the Token Generator component, the time to generate token in the switch is
specified to 10 Usec. As expected, the token is generated in the specified time interval.

This has proved that the Token Generator is working.

To test the Token Bucket component, the Token Bucket maximum size is specified to 50.
When the generated token is put into the bucket, the bucket counter is increased. No
further increment is done when the bucket counter reached the 50 value. This proved that
the Token Bucket could keep the generated token until a maximum value. When a
quantity of cells are admitted to the switch, the bucket counter is decreased. It means that

the cells successfully get the token from the Token Bucket. Therefore, the Token Bucket

is working correctly.

To test the Data Buffer component, the token generate time is adjusted to a large value.
The purpose is to make sure that the cells will keep in the buffer as there is no token
available. Then a quantity of cells is admitted to the switch. As expected, the counter in
the Data Buffer is increased. This testing proved that the Data Buffer successfully keep
the incoming cells. When there is token available, the Data Buffer counter is decreased by

one. The result of the testing showed that the Data Buffer is successfully implemented.

77

Chapter7 SYSTEM TESTING

7.2 System Testing

System Testing is separated into two parts, Leaky Bucket Testing and Token Bucket
Testing. The Leaky Bucket testing is further divided into Single Leaky Bucket and
Double Leaky Bucket testing.

A complete topology is created for the system testing. The topology consists of 3 switches
(swl - sw3), 9 links (link1 — link9), 6 B-TE (btel — bte6), 6 CBR Application (cbrl ~

cbr6) and 6 VBR Application (vbrl - vbr6). The created topology is shown in Figure 7.1.

i
iR

i
i

il

pRatER kel
"':’.'::::t:::::g:‘:}g:;;g 8
Fi

LR TEER

:,&
i

‘,,....‘..x.,
5

3

FMaa MM b
NERE R b
AR u)uxa

i
Hdﬂﬁg
Ll pirkid
2
R a?:,

i

i o
Mﬁ;ﬁgi‘—i"‘liﬁﬁﬁﬂ fi

Figure 7.1: Complete Topology to test Leaky Bucket and Token Bucket

7.2.1 Single Leaky Bucket System Testing

In order to test the functionality of the Single Leaky Bucket, swl and sw2 switch in

Figure 7.1 are used. Application cbrl from btel is used to send cells to application cbr2 in

78

Chapter? SYSTEM TESTING

bte2. The parameters that entered in the cofresponding switches, B-TEs, and CBR

Application is shown in Table 7.1.

Table 7.1: Parameters entered for network components for Single Leaky Bucket testing

Components Parameters Value
swl Peak Cell Rate (PCR) 60 Mbit/s
Cell Delay Variation Tolerance (CDVT) 15 Usec
Sustained Cell Rate (SCR) 40 Mbit/s
Maximum Burst Size (MBS) 10 Cells
Output queue size 100 Cells
High Threshold 80 Cells
Low Threshold 20 Cells
sw2 Peak Cell Rate (PCR) 50 Mbit/s
Cell Delay Variation Tolerance (CDVT) 15 Usee
Sustained Cell Rate (SCR) 40 Mbit/s
Maximum Burst Size (MBS) 10 Cells
Output queue size 100 Cells
High Threshold 80 Cells
Low Threshold 20 Cells
btel NSAP 1101
bte3 NSAP 1201
chrl Bit Rate 70 Mbit/s
Start time 0 Usec
Number of Mbits to be sent 1 MBits
Destination NSAP 1201
Destination port number 1

At the beginning stage the Single Leaky Bucket allowed the CBR Application (cbrl) to
send and admit the cells to network although it has violated the traffic parameters. This
way ensured that the network resource is fully utilized while not affecting the switch
performance. When the queue size in VBR queue to link7 reached 56 cells (70% of High

Threshold value), the Single Leaky Bucket in switch sw1 started dropping cells that are
not compliant.
The same case is done to switch sw2. It started dropping cells when the queue size in

VBR queue to link3 reached 56 cells. By this precaution, the Single Leaky Bucket has

performed its role to prevent the violating CBR traffic to cause congestion in the switch.

79

Chapter7 SYSTEM TESTING

This testing has proved that the Single Leaky Bucket is functioning properly in policing

the traffic from CBR Application.

7.2.2 Double Leaky Bucket System Testing
The testing has to consider the functionality of each leaky bucket. The leaky buckets

should discard cells that violated the negotiated parameters during the connection setup.

In order to test the functionality of both leaky buckets, the same topology that shown in
Figure 7.1 is used. The components involved are switch sw2 and sw3, link4, linké and
link9, bte4 and bte6, application vbr4 and vbr6. In this testing, application vbr4 from bte4

is used to send cells to application vbr6 in bte6. The parameters entered to the involving

network components are shown in Table 7.2.

Table 7.2: Parameters entered for network components for Double Bucket testing

Components Parameters Value
sw2 Peak Cell Rate (PCR) 50 Mbit/s
Cell Delay Variation Tolerance (CDVT) 15 Usec
Sustained Cell Rate (SCR) 40 Mbit/s
Maximum Burst Size (MBS) 10 Cells
Output queue size 100 Cells
High Threshold 80 Cells
Low Threshold 20 Cells
sw3 Peak Cell Rate (PCR) 50 Mbit/s
Cell Delay Variation Tolerance (CDVT) 10 Usec
Sustained Cell Rate (SCR) 35 Mbit/s
Maximum Burst Size (MBS) 10 Cells
Output queue size 100 Cells
High Threshold 80 Cells
Low Threshold 20 Cells
bted NSAP 1202
bte6 NSAP 1302
vbr4 Bit Rate 45 Mbit/s
Mean Burst Length 15 Usec
Mean Interval Between Bursts 20 Usec

80

SYSTEM TESTING

Chapter7
Start time 0 Usec
Number of Mbits to be sent 1 MBits
Destination NSAP 1302
Destination port number 2

The VBR source may transmit at maximum average cell rate of SCR. When the source is
exceeding the SCR it is allowed to burst at maximum MBS cells at a rate of PCR. The
variation in the PCR may not exceed CDVT. The Double Leaky Bucket in switch sw2 and
sw3 is predicted to drop cells as the sending VBR application (vbr4) has violated the SCR

parameters. It sent data at rate 45Mbit/s, which is more than the SCR value in both

switches.

When simulation started, the Double Leaky Bucket in both switches let cells to enter the
switch. Once the number of cells in VBR queue to link9 in switch sw2 reached 40 cells
(50% of High Threshold value), the Double Leaky Bucket started dropping cells that

violated the SCR traffic parameter. This is shown by the value in SCR dropped cells in

VBR (to link9 in sw2 properties popup menu.

The successful cells that passed from switch sw2 into the switch sw3 are policed again.
When the VBR queue to link6 in switch sw3 reached 40 cells, the Double Leaky Bucket
started dropped the non-conforming VBR cells. This test has proved that the Double

Leaky Bucket is successfully implemented to police the VBR traffic.

7.2.3 Token Bucket System Testing
In order to test the functionality of Token Bucket, the same topology in Figure 7.1 is used.
The network components involved are switch swl and sw3, link2, link5 and link8, bte2

and bteS, cbr2 and cbrS, vbr2 and vbr5. The parameters entered to these network

components are summarized in Table 7.3.

81

Chapter7

SYSTEM TESTING

Table 7.3: Paramelers entered for network components for Token Bucket testing.

Components Parameters Value

sw2 Qutput queue size 100 Cells
High Threshold 80 Cells
Low Threshold 20 Cells
Generate Token every (Usec) 1 -8 Usec

sw3 Output queue size 100 Cells
High Threshold 80 Cells
Low Threshold 20 Cells
Generate Token every (Usec) 1 -8 Usec

bte2 NSAP 1102

btes NSAP 1301

cbrl Bit Rate 100 Mbit/s
Start time 0 Usec
Number of Mbits to be sent 10 MBits
Destination NSAP 1301
Destination port number 1

vbr2 Bit Rate 50 Mbit/s
Mean Burst Length 15 Usec
Mean Interval Between Bursts 20 Usec
Start time 0 Usec
Number of Mbits to be sent 10 MBits
Destination NSAP 1301
Destination port number i

The Generate Token time is adjusted to get different simulation results. This is to get the

best value in controlling the cells entering the network. From the tests, the relation

between Generate Token time and switch swl and sw3 status is shown in Table 7.4.

Table 7.4: Relation between Generate Token time and switch swl and sw3 status

Generate swl status sw3 status

Token time

1 Usec Congestion in link8 Congestion in link5
2 Usec Congestion in link8 Congestion in link5
3 Usec Congestion in link8 Congestion in link5
4 Usec Congestion in link8 Congestion in link5
5 Usec Congestion in link8 Congestion in link5

82

SYSTEM TESTING

Chapter7
6 Usec Congestion in link8 Congestion in link5
7 Usec Queue size in link8 is kept{Congestion in link5
below High Threshold
8 Usec Queue size in link8 is kept|Queue size in link5 is kept
below High Threshold below High Threshold

From the testing, it found that generate token every 8Usec is an ideal value. The token
bucket allowed burst traffic entering the network but bounded it. Although cbr2 sent cells
at rate 100Mbit/s and vbr2 sent at rate SOMbit/s, the token bucket has prevented the
congestion occurred in the switch swl and sw3 causing by the burst traffic. The queue
size is always kept below the high threshold value. This testing has showed that the Token
Bucket policing is implemented successfully. The successfulness of the testing proved

that this simulation model could simulate in a proper manner.

7.3 Chapter Summary

This chapter has discussed the testing process in detail. The components are tested for
their functionality and behavior during their operation. Testing are done for Single Leaky
Bucket, Double Leaky Bucket and finally the Token Bucket. The test has proved that the

simulator is successfully executed with the designed model.

83

Chapter8 CONCLUSION

Chapter8: CONCLUSION

8.1 Project Finding

During the implementation of this project, different kinds of experiences are gained. The
most important thing is the understanding of leaky bucket and token bucket traffic
policing method for ATM network. Further more, the experience gained in problems

solving during the design, implementation and testing of the simulator is really invaluable,

Choosing a suitable language in developing the ATM network simulator is important.
Java Programming Language, which is object-oriented programming language really
fulfils and satisfies all the conditions needed to construct the simulator. It has features
such as reusability, maintainability, extensibility and modifiability. It also enables the

developed simulator support multithreading and the ability of the threads to run

simultaneously.

8.2 Objectives Achieved

The objectives for this project have been achieved and they are discussed in detail.

A thorough survey has made on most of the current network simulators in order to gain a
better insight into the working of a network simulator. Special attention is given to the
methods currently being used to overcome congestion in an ATM network environment.
Therefore, through and extensive study the project could integrate the best congestion
control mechanism into the network simulator. The leaky bucket and token bucket traffic

policing techniques are considered to be ideal techniques in controlling the traffic in ATM

network.

Based on the objectives as laid out in this project, the developed ATM Network Simulator

must be object-oriented and able to simulate the ATM network. With creativity and

84

Chapter8 CONCLUSION

innovations, the various components in Leaky Bucket and Token Bucket are successfully

written and tested to produce the expected results.

8.3 Simulator Strength

The developed ATM Network Simulator has its strengths. These major strengths are listed

below:

e Platform independent. The developed simulator using Java Programming
Language enables it to be cross-platform. Thus, the simulator works well in
Windows, Unix or Linux environment.

Simple and User Friendly Imterface. The designed graphical user interface
facilitates user in creating a network topology on the workspace. The menu items
and components in the Control Bar provide the essential functions for user to create,
save, open or modify the network topology easily. Creation of a network component
is just a click on the workspace interface. User can enter or modify parameters in
each component in the pop up properties box.

Object Oriented. The simulator is fully developed in object-oriented environment.
All functions and modules are built in class. Thus, creation or modification of
components can be done easily.

Analysis of Simulation result. The system provides the log file and meter function.
The log file function enable user to analyse the performance of the developed
network topology after the simulation while the meter function plots the simulation
result to graph during simulation running. These functions enable user to performed
further analysis.

. Flexible traffic policing selection. The developed simulator enable user to choose

cither using traffic policing (Leaky Bucket or Token Bucket) or without traffic

85

Chapter8 CONCLUSION

policing in the switch to simulate the network topology. Thus, user can compare the

performance between the each policing technique.

8.4 Simulator Limitation

The simulator is implemented with a limited set of network component type. These
component types are not a complete set of existing component according to NIST
Network Simulator standard. The simulation run time is slow. It also uses a lot of resource

memory. Besides, Java Virtual Machine is needed in order to run the simulator.

8.5 Future Enhancement

The traffic policing techniques implemented in this simulator are Leaky Bucket, which
include Single Leaky Bucket and Double Leaky Bucket and Token Bucket. Leaky Bucket
and Token Bucket is implemented separately to police the traffic. In future, combination

of Token Bucket and Leaky Bucket policing technique can be implemented easily.

8.6 Summary

This project managed to achieve the overall project objectives and requirements as a
network simulator system as determined during the system analysis. The simulator testing
phase has proved that the project is implemented successfully. This project has take quite

a long time to bring it a success. The experiences gained are memorable and meaningful.

86

REFERENCES

REFERENCES

(1]

(2]

[3]

[4]

(3]

(6}

(7]

(8]

[9]

(10]

[11]

[12]

J. Kenny, 1999. The ATM Forum Traffic Management Specification
Version 4.1, AF-TM0121.000.

W. Stallings. 1998. High-Speed Networks TCP/IP and ATM Design
Principles. Prentice-Hall Int., Inc. New Jersey.

ATM Congestion Control. Hitp://www cis.ohio-state.edu/~jain/cis788-
95/atm_cong/index.html Last Modified: Augest 21st, 1995. Fang Lu.

Raj Jain. 1996. Congestion Control and Traffic Management in ATM
Networks: Recent Advances and Survey. Computer Network and ISDN
System. Vol. 28. 1996. pp. 1723-1738.

Nada Golmie, F. Mouveaux, L. Hester, Y. Saintillan, A Koenig, D.Su.
Dec 1998. The NIST ATM/HFC Network Simulator Operation and
Programming Guide. Version 4.0. National Institute of Standards and

Technology.
YATS- Yet Another Tiny Simulator (ATM Simulation)

http:/www ifn.et. tu-dresden.de/ TK/vats/vats. html,

The REAL Network Simulator.
httn:/ minnie.cs.adfa.edu.auwREAL index.htm! Last updated: June, 1995,

Warren Toomey.
INSANE: An Internet Simulated ATM Networking Environment.

http://www.ca.sandia.gov/-bmaly/Software/Insane/ . Last modified:
Nov25, 1998. Bruce A. Mah.

Deitel & Deitel. 1999. JAVA How to Program, Third edition. Prentice
Hall Inc. New Jersey.

Jbuilder Overview. http://www jbuilder-training.com/overview. htm, Last
modified;: March 22, 2000. The DSW Group.Ltd.

Kai Yeung Siu, Raj Jain. 1997. 4 Brief Overview of AIM: Protocol
Layers, LAN Emulation, and Traffic Management.

P.E. Boyer, D.P. Trachier. 1992. A Reservation Principle with
Applications to the AIM Traffic Control. Computer Network and ISDN

Systems. Vol. 24. Pp. 321-334.

87

REFERENCES

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Newman and G. Marshall. 1993, Update on BECN Congestion Control.
AF-TM 94-855R 1. September 1993.

D. Kataria. 1994. Comments on Rate-based Proposal. AF-TM 94-0384.
May 1994,

Per Skovgaard. 1996. ATM Traffic Management. A Technology White
Paper.

H. Tzeng and K. Siu. 1994. Adaptive Proportional Rate Control for ABR
Service in ATM Networks. University of California, Irvine, Technical
Report 94-07-01.

B. Lyles and A. Lin. Definition and Preliminary Simulation of Rate-based
Congestion Control Mechanism with Explicit Feedback of Bottleneck
Rates. AF-TM 94-0708, July 1994,

V. F. Hartanto, HR. Sirisena. 1993. User-Network Policer: A New
Approach for ATM Congestion Control.

ATM Connections.

http://'www.ieng. com/univercd/cc/td/doc/product/wanbu/9_1/bpx/bpxref/i
ndex htm. Last Updated: 1998,

V.G. Kulkarni, Natarajan Gautam, December1995. Leaky Bucket: Sizing
and Admission Control.

Michael G. Hluchyj, Nanying Yin. 1996. 4 Second-Order Leaky Bucket
Algorithm to Guarantee QOS in ATM Networks.

S Mascolo, D.Cavendish, M.Gerla. 1996. A7M Rate Based Congestion
Control Using a Smith Predictor: an EPRCA Implementation.

Fabio M.Chuissi and Y.T. Wang. 1997. An ABR Rate-Based Congestion
Control Algorithm for ATM Switches with Per-VC Queuing.

Todd Lizambri, Fernado Duran and Shukri Wakid. Priority Scheduling
and Buffer Management for ATM Traffic Shaping.

A. Agrawal, M. Bayoumi, and A. Elechouemi. 1995. 4 New ATM
Congestion Control Scheme For Shared Buffered Switch Architectures.
Toshihisa OZAWA. 19 December 1999. Performance Characteristics of a

Packet-Based Leaky-Bucket Algorithm for ATM Networks.

88

