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ABSTRACT 

Since wind power is directly influenced by wind speed, long-term wind speed 

forecasting (WSF) plays an important role for wind farm installation. WSF is essential 

for controlling, energy management and scheduled wind power generation in wind farm. 

With this aim, a number of forecasting methods have been proposed in different studies 

till now, among many soft computing-based approaches are the most successful ones as 

they offer high accuracy as well as application simplicity. Among them, artificial neural 

networks (ANN) have drawn a major attention and ANNs can make any complex 

nonlinear input-output relationship by just learning from datasets given to it regardless 

any discontinuity and without any extra mathematical model. 

It is found that past studies used Nonlinear Autoregressive (NAR) and Nonlinear 

Autoregressive Exogenous (NARX) Neural Network (NN) for wind speed forecasting. 

There have two most uses activation function namely tansig and logsig. The essence of 

this study is that it compares the effect of activation functions (tansig and logsig) in the 

performance of time series forecasting since activation function is the core element of any 

artificial neural network model. 

On the other hand, blade design of the horizontal axis wind turbine (HAWT) is very 

significant parameter that determines the reliability and efficiency of a wind turbine. It is 

important to optimize the capture of the energy in the wind that can be correlated to the 

power coefficient (𝐶𝑝) of HAWT system. Several researchers have reported different

optimization methods for blade parameters such as Blade Element Momentum theory 

(BEM), Computational Fluid Dynamics (CFD) and Supervisory Control and Data 

Acquisition (SCADA) system. There is no particular study which focuses on the 

optimization and prediction of blades parameters using natural inspired algorithms 

namely Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) and Particle 

Swarm Optimization (PSO) and Adaptive Neuro-fuzzy Interface System (ANFIS) 
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respectively for optimal power coefficient (𝐶𝑝  ). In this study, the performance of these 

three algorithms in obtaining the optimal blade design based on the 𝐶𝑝 are investiga ted 

and compared. In addition, ANFIS approach is implemented to predict the 𝐶𝑝  of wind 

turbine blades for investigation of algorithms performance based on Coeffic ient 

Determination (R2) and Root Mean Square Error (RMSE). 

Instead, in order to produce maximum wind energy, controlling of various parts are 

needed for medium to large scale wind turbines (WT). This study presents robust pitch 

angle control for the output wind power model in wide range wind speed by proportional-

integral-derivative (PID) controller. In addition, ACO algorithm has been used for 

optimization of PID controller parameters to obtain within rated smooth output power of 

WT from fluctuating wind speed. The proposed system is simulated under fast wind speed 

variation and its results are compared with conventional PID controller and Fuzzy-PID to 

verify its effeteness. The proposed approach contains several benefits including simple 

implementation, tolerance of turbine parameter or several nonparametric uncertaint ies. 

Robust control of the generator output power with wind-speed variations can also be 

considered as a big advantage of this strategy.  
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ABSTRAK 

Oleh kerana kuasa angin secara langsung dipengaruhi oleh kelajuan angin, ramalan 

kelajuan angin jangka panjang (WSF) memainkan peranan penting untuk pemasangan 

ladang angin. WSF adalah penting untuk mengawal, pengurusan tenaga dan penjanaan 

kuasa angin yang dijadualkan di ladang angin. Dengan matlamat ini, beberapa kaedah 

ramalan telah dicadangkan dalam kajian yang berbeza sehingga sekarang, di antara 

pendekatan berasaskan pengkomputeran yang lembut adalah yang paling berjaya kerana 

mereka menawarkan ketepatan yang tinggi serta kesederhanaan aplikasi. Antaranya, 

rangkaian saraf buatan (ANN) telah menarik perhatian utama dan ANN boleh membuat 

sebarang hubungan input-output bukan linear kompleks dengan hanya belajar dari dataset 

yang diberikan kepadanya tanpa mengira apa-apa kekurangan dan tanpa sebarang model 

matematik tambahan. 

Difahamkan bahawa kajian lepas menggunakan Rujukan Neural Network (NN) 

Nonlinear Autoregressive (NAR) dan Nonlinear Autoregress ive Exogenous (NARX) 

untuk ramalan kelajuan angin. Terdapat dua fungsi pengaktifan yang paling banyak 

digunakan iaitu tansig dan logsig. Inti dari kajian ini adalah membandingkan kesan fungs i 

pengaktifan (tansig dan logsig) dalam prestasi ramalan siri masa kerana fungs i 

pengaktifan adalah elemen teras bagi mana-mana model rangkaian neural tiruan. 

Sebaliknya, reka bentuk bilah kipas turbin angin paksi mendatar (HAWT) adalah 

parameter yang sangat penting yang menentukan kebolehpercayaan dan kecekapan turbin 

angin. Adalah penting untuk mengoptimumkan penangkapan tenaga dalam angin yang 

boleh dikaitkan dengan pekali kuasa (𝐶𝑝) sistem HAWT. Beberapa penyelidik telah 

melaporkan kaedah pengoptimuman yang berbeza untuk parameter bilah kipas seperti 

teori Blade Element Momentum (BEM), Dinamik Fluida Dinamik (CFD) dan Sistem 

Kawalan Pengawasan dan Pemerolehan Data (SCADA). Tidak ada kajian khusus yang 
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menumpukan kepada pengoptimuman dan ramalan parameter bilah yang menggunakan 

algoritma semulajadi yang diilhamkan iaitu Pengoptimuman Ant Colony (ACO), Buatan 

Bee Colony (ABC) dan Pengoptimuman Swarm Partikel (PSO) dan Interface Neuro-

Fuzzy Interface (ANFIS) untuk pekali kuasa optimum (𝐶𝑝). 

Dalam kajian ini, prestasi ketiga-tiga algoritma dalam mendapatkan reka bentuk  bilah 

kipas optimum berdasarkan 𝐶𝑝  diselidiki dan dibandingkan. Di samping itu, pendekatan 

ANFIS dilaksanakan untuk meramalkan 𝐶𝑝  bilah turbin angin untuk penyiasatan prestasi 

algoritma berdasarkan Penentuan Kestabilan (𝑅2) dan Ralat Kesalahan Maksimum Root 

(RMSE). 

Sebaliknya, untuk menghasilkan tenaga angin maksimum, mengawal pelbagai 

bahagian diperlukan untuk turbin angin skala sederhana dan besar (WT). Kajian ini 

membentangkan kawalan sudut pitch yang kuat untuk model kuasa angin keluaran dalam 

pelbagai kelajuan angin dengan alat pengawal-terikat-derivatif (PID). Di samping itu, 

algoritma ACO telah digunakan untuk mengoptimumkan parameter pengawal PID untuk 

memperolehi dalam keluaran nilai lancar WT dari kelajuan angin yang turun naik. Sistem 

yang dicadangkan disimulasikan dalam variasi laju angin pantas dan keputusannya 

dibandingkan dengan pengawal PID konvensional dan Fuzzy-PID untuk mengesahkan 

keberkesanannya. Pendekatan yang dicadangkan ini mengandungi beberapa manfaat 

termasuk pelaksanaan mudah, toleransi parameter turbin atau beberapa ketidakpastian 

nonparametrik. Kawalan kuat kuasa output penjana dengan variasi laju angin juga boleh 

dianggap sebagai kelebihan besar strategi ini. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Over the last few decades, the demands of energy have been gradually increasing, 

especially for electrical power and environmental issues and this has become a 

challenging issue for the world. Furthermore, pollution is growing parallel with the 

energy demand while sources of conventional energy such as fossil fuels are rapidly 

depleting. In the past decade, researchers have been conducting studies to improve the 

energy efficiency (Boroumand Jazi et al., 2012). This has led to the discovery of various 

alternatives for renewable energy that is a combination of natural sources and that used 

for electrical power generation. These natural sources are in the form of wind, sunlight, 

geothermal heat, tide, water, and various forms of biomass. These sources are free of cost 

and reduces the greenhouse effect. Power generation from renewable energy, especially 

from wind energy is rapidly growing. Wind energy is one of the most widespread sources 

of an environmental-friendly energy source and has become an important part of the 

distribution of power in the world. It is produced from wind turbines where kinetic energy 

is converted into the electrical energy using natural wind. Wind has been used for various 

purposes such as wind mills for mechanical power and water pump by wind power. It is 

a substitution of fossil fuels because of no effect upon the environment. 

The World’s total consumption of electricity is not only rapidly increasing but also the 

greenhouse gas (GHG) emission increasing by the power generation from fossil fuels. 

Moreover, the World electricity generation rate (2.7% average annual) is increasing from 

2003 to 2015 and it will continue until 2030 (Shafiullah et al., 2013) . However, 

approximately 40% GHG emissions of World’s total emissions are from electric ity 

generation where most of the industries uses fossil fuels namely coal and oil. (Shafiul lah, 

2016). GHG emission is considered to be hazardous for the human race, and fortunate ly 
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fossil fuels can be omitted by renewable energy sources namely wind, solar, biomass, and 

rain to name a few. Demand of wind energy is increasing to overcome the greenhouse 

effect and make efficient usage of surrounding energy resources. Because of the free cost 

nature and availability, the wind energy is considered to be the most efficient and 

technologically advanced renewable energy sources accessible (Shafiullah et al., 2013) 

Gradually, the windmill has been developed. At this present moment, the windmill has 

reached the modern era. Wind turbines are manufactured by new technology in a wide 

range. Rapid development of wind turbine is with both, horizontal and vertical axis types. 

There are different sizes of wind turbines available nowadays. A small sized wind turbine 

can be used for battery charging, caravans, board and power traffic warning, while 

medium-sized wind turbines are used for domestic power supply. These days, the wind 

farm has become an important source of renewable energy as well as electric power. 

Recently, many countries have come to depend on wind power. There are also several 

countries that are concerned about the changing of the global climate as well as wind 

energy. Installation of wind farms is increasing and the contribution of wind turbines is 

remarkable. Presently, wind energy is the faster growing source among the other 

alternatives sources of renewable energy (Ponta et al., 2007).  

A survey in 2010 has stated that wind power has produced 197 GW which is about 

2.5% of the world’s electricity. In the same year, China has surpassed the wind capacity 

of the United States of America (USA) and China has become one of the world’s big 

players in the field. The Denmark Government has produced a remarkable 28.1% of total 

power from wind farms (Jureczko et al., 2005). In the world, approximately 80% of wind 

energy is produced from among five countries which are Germany, USA, Denmark, India 

and Spain (Ackermann & Söder, 2000). The United Nations (UN) hosted Sustainab le 

Energy Report in 2014 stated that these five countries have produced more than about       
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8 % of the total world power from 2013. The wind capacity has reached a higher level of 

more than 318 GW at the end of 2013. This is the indication that this type of energy is 

increasing every year. About 103 countries are producing wind power that helps to 

improve the current commercial growth rating. The evaluation from The World Energy 

Association stated that the wind power will be increased up to 700GW by the year 2020 

(Huang & McElroy, 2015). Wind energy is a rapidly growing renewable source and the 

capacity of wind energy is dramatically increasing at present. Figure 1-1 shows the 

capacity of the installed wind power from 2013 to 2018 (GWEC, 2013). 

 

Figure 1-1: Wind power installed capacity in world market (GWEC, 2013). 

In the past few years, the Malaysian Government has endeavoured developing 

renewable energy. The Government concern is to utilize the onshore wind energy at 

potential area in Malaysia. In Malaysia, wind energy was introduced in the early 1990s at 

Mersing, Kuala Terengganu, Petaling Jaya, Melaka and Cameron Highland (Sopian et al., 

1995). From the investigation, it was observed that Mersing and Kuala Terengganu are 

possible areas in Malaysia for wind power production. In November 1995, the hybrid of 

150kW system was established at Terumbu Layang-Layang (Swallow Reef) by the 
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Tenaga Nasional Berhad (TNB) (Tenaga Nasional Berhad, 2014). Numerous studies on 

the wind power and pump water power generation have been done successfully by The 

Universiti of Kebangsaan Malaysia (UKM) in 2005 (W. T. Chong et al., 2013; Oh et al., 

2010; Shafie et al., 2011). 

In the world, most of the wind turbines have been inspired by Europe and Unite State 

of America (USA). High wind speed ( Vw > 6𝑚/𝑠) is required for most of the wind 

turbine modelling, simulation and manufacturing for prevail regions. In Malaysia, the 

wind speed is very low, i.e., in the range of 2.0 m/s to 12 m/s and it is not enough to 

produce more power. Due to this reason, a rotor must be designed for to produce wind 

with the wind speed of less than 4 m/s and lower rotational speed of blades (W.T Chong, 

2006) 

Wind turbine is a complex system consists of various components such as blades, 

generator, rotor transmission line, tower and electro-mechanical subsystems. The blade 

of rotor is the most important component in the wind turbine system that will conve rt 

wind energy to mechanical power. It has classified into various types of systems such as 

constant and variable speed system, power controlling system, and off grid or on grid 

system (Marques et al., 2003). Based on the rotation of axis, there are two types of wind 

turbines, namely Vertical Axis Wind Turbine (VAWT) and Horizontal Axis Wind 

Turbine (HAWT). HAWT is the most popular choice for large amounts of power 

production (Eriksson et al., 2008). The blades for HAWT rotate in a horizontal axis. It 

was the first innovation of wind industry. HAWT produces more electricity with respect 

to the applied amount of wind. It is capable of self-stating and does not need the external 

mechanism. The comparison between  HAWT and VAWT has described by Thomas and 

Urquhart (1996). Younsi et al. (2001) developed the behavior of the dynamic wind blades 

of a HAWT with various model analysis. The performances of wind turbines are 

depending on two factors i.e., aerodynamic design and wind speed. Wind speed is 
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dependent on the location of the wind turbine installation areas and the surrounding 

weather. The blades of VAWT is rotate with perpendicular to the ground. At first, VAWT 

is used in residential areas as a small wind energy production. Nowadays, the application 

of VAWT is growing due to its low cost and easy mechanism. The electricity produced 

from the VAWT comes from the wind when it is directed to turbine blades in 360 degrees, 

whereas for some wind turbines power is produced when the blowing of the wind is from 

top to the bottom. In this system, the external sources are needed for rotation of turbine 

blades. The efficiency of VAWT is not satisfactory in comparison to HAWT (Schubel & 

Crossley, 2012). Both HAWT and VAWT have shown in Figure 1-2. 

 

Figure 1-2: Horizontal and vertical axis wind turbine (Chopade & Malashe, 2014). 

The power coefficient of the wind blades, which can be defined as the capture 

capability of efficiency and it is the most basic index of wind energy (Lanzafame & 

Messina, 2010). Design parameters selections are critical for optimization of wind turbine 

performance. There are various parameters that influence the energy production of wind 

turbine, such as, rotor rotational velocity, wind speed and blade pitch angle (Petković et 

al., 2014; Rajakumar & Ravindran, 2012). For power coefficient optimization of wind 

turbine blades, the influence of lift to drag ratio, blade radius, tip-speed ratio, solidity ratio 
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and chord length of blade have been widely investigated. The nature-inspired algorithms 

such as ant colony optimization (ACO), particle swarm optimization (PSO), and artific ia l 

bee colony (ABC) have been used in various wind turbine applications. In other aspect, 

the prediction of power coefficient of the wind turbine is obtained by ANFIS. 

The site selection for wind turbine installation is very crucial to obtain maximum wind 

energy production, and the maximum wind power generation can be achieved when the 

available wind speed is higher than the wind turbine’s cut-in wind speed. In addition, the 

relation between wind speed and wind power is cubic proportional; therefore, slight 

change of wind speed will give much higher wind power (cubic). Consequently, progress 

in wind speed prediction for wind energy conversion system will help lessen the risks to 

install wind turbines in low-effective places. 

Although, the wind speed is the most challenging factor for wind power generation, 

the variation of wind speed found in nature is chaotic. Sometimes, wind turbine can be 

affected by high cut-out wind speed, i.e., the production of wind power generation is 

stopped when wind speed is very high. The WSF plays a very important role for optimum 

planning and wind energy applications. Time series forecasting of the wind speed is 

defined by wind data over time. One-month-ahead wind speed forecasting data can be 

developed by historical weather or wind data (Tasnim et al., 2014). Basically, forecasting 

of wind speed can be divided into four-time categories: very short-term (VST), short-term 

(ST), medium-term (MT), and long-term (LT) forecasting. Where, VST refers to less than 

30-minutes-ahead of WSF. In real time, wind turbine can be controlled by ST wind speed 

forecasting; moreover, less than 72 hours to 1 hour resides in ST forecasting (Chang et 

al., 2017), and planning of load dispatch can be employed by ST forecasting. On the other 

hand, 6 hours to 1-day-ahead resides in MT wind speed forecasting, which helps to 

manage power system and secure operation of wind turbines. Lastly, LT forecasting is 

useful to optimize the operation cost and schedule maintenance. It can also be applied to 
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save cost when operators need to schedule wind project maintenance and construction. 

Wind projects often require the turbines to be taken down during the commissioning of 

new turbines, and this can take from hours to weeks depending on the weather. LT 

forecasting of wind speed can minimize the scheduling errors and in turn increase the 

reliability of the electric power grid and reduce the power market ancillary service costs 

(Azad et al., 2014; Z. Guo et al., 2012; Zhao et al., 2016). The forecasting process of wind 

speed is very difficult as wind speeds are chaotic depending on the earth’s rotation and 

properties of topographical condition such as temperature and pressure. 

Methodologically, wind speed prediction can be classified into four groups, i.e., physical, 

statistical, artificial intelligence (AI) and hybrid methods (Azad et al., 2014; Zheng et al., 

2011). In this study, AI namely NAR and NARX neural network has been chosen for 

wind speed forecasting due to higher forecasting accuracy and no mathematical model 

required. 

A variable speed wind turbine (VSWT) can be reached at peak value of efficiency over 

any kind of wind speed. Whereas, a fixed wind speed turbine (FSWT) is not able to reach 

maximum energy efficiency. To compare between VSWT and FSWT, the VSWT is most 

suitable for maximum efficiency pick-up. The maximum efficiency of VSWT can be 

reached by wind speed control between cut-in speed to rated wind speed (Assareh & 

Biglari, 2015; Chen & Shiah, 2016). By controlling wind speed, the generator output is 

kept to rated power. If wind speed reaches above the rated wind speed, the pitch angle of 

WT blade should be controlled to keep output power within the rated power (Leithead & 

Connor, 2000). The change of blade angle position with longitudinal axis is kept by pitch 

angle controlling. For wind power limit, pitch angle controlling methods is recommended 

to kept the interior rated speed. The PID controller is very common method to control 

pitch angle.  
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Pitch angle control systems have normally been employed in medium to large wind 

turbines for keeping the captured wind power close to the rated value above the rated 

wind speed. It can also bring the advantages of power quality as well as improved control 

flexibility. The structural wind loads can be alleviated by such systems that can defend 

the wind turbine from fatigue damage. This damage can happen for the strong wind gusts. 

An immediate influence around the regulation of wind power can be observed by these 

systems which also have the great importance for the variable pitch wind turbine. 

However, Modern turbine can perform consistently and it can assist to meet the over 

increasing requirements for performance of reliability oriented advanced pitch control 

systems (Dueñas-Osorio & Basu, 2008; Yin et al., 2015).  

 

1.2 Problem Statement  

Artificial intelligence and nature-inspired algorithms had become more popular 

throughout the years. There exists a need to look into different ways to improve the 

performance of the HAWT using soft computing techniques and making it easier to be 

implemented in more areas especially with optimization, prediction, forecasting and 

controlling of WT.  

Wind speed plays an important role for wind farm installation since wind power is 

directly influenced by wind speed. Before wind farm installation, it should be concerned 

of wind speed in that area because some place is low wind speed and some place are high 

wind speed. By the wind speed forecasting, it can be identified wind condition. NARNN 

and NARXNN both AI which can be effective forecasting of wind turbine in Malaysia 

areas.  

Wind turbine blades parameters are very crucial that determines the reliability and 

efficiency of a wind turbine. According to Betz's law, wind turbine is not able to capture 
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kinetic energy more than 0.59 (power coefficient) from wind speed. Researchers are 

trying to reach near Betz’s coefficient. In addition, the power coefficient of modern 

HAWT is reached at 0.51. Therefore, there is a good possibility to reach maximum power 

coefficient through to optimize blade parameters of wind turbine using algorithms and 

prediction employed through ANFIS with best input parameters combination and AI. 

The fluctuating wind speed is the reason to damage of large wind turbine as well as 

lower output power. Pitch angle is increased by fluctuating wind speed which is above of 

rated wind speed of WT. By the pitch angle controlling, it is good possibility to overcome 

the wind turbine damage as well as control the output power within rated power of wind 

turbine. PID controller is far common and flexible method to control pitch angle. The 

optimization of PID control parameters using ACO are considered more effective 

controller over conventional PID controller for pitch angle of wind turbine. 

This research has outline to overcome the following objectives to improve the existing 

design and to find optimal performance of by AI and nature-inspired algorithms which 

yields higher performance. 
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1.3 Research Gap 

Research Gap Proposed Study 

The wind speed forecasting has been 

investigated using different neural 

networks namely NAR, NARX, support 

vector machine, conventional neural 

network. There is no any particular study 

which focuses on to find out more 

efficient activation function neural 

network for forecasting  

The essence of this study is that it 

compares the effect of activation functions 

(namely tansig and logsig) in the 

performance of time series forecasting 

since activation function is the core 

element of any artificial neural network 

model.  

Blades parameters optimization have 

been investigated with different theories 

and algorithms used such as Blade 

element theory, Computational fluid 

dynamics (CFD), Genetic algorithms 

(GA) and support vector machines (SVM) 

for optimal efficient of horizontal axis 

wind turbine. 

The effectiveness of the proposed 

algorithm in wind turbine blades 

optimization design identification is 

investigated as compared to, such as 

Artificial Bee Colony (ABC), Ant Colony 

Optimization (ACO) and Particle Swarm 

Optimization (PSO) using ANFIS for 

optimal efficiency of wind turbine  

The PID controller gains are generally 

tuned with trial and error methods. Also, 

for tuning process, step input excitation is 

used for tracking the error between the 

reference and actual input. Therefore, 

tuning process using ACO for pitch angle 

control has not been investigated 

The optimum controller gains are 

achieved using PID-ACO process which is 

an automatic process to find desired 

control pitch angle. Sine input is used to 

find the controller gains to ensure optimal 

control pitch angle to ensure maximum 

fluctuating reduction under chaotic. The 

proposed controller (PID-ACO) provides 

optimal control parameters can overcome 

the fluctuating wind turbine power 
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1.4 Objectives 

By focusing on the limitations found in previous researches, the objectives of this study 

have been made as follow: 

1. To propose an effective activation functions of NAR and NARX Neural Network 

for wind speed forecasting in Malaysia  

2. To optimize wind turbine blade (Airfoil S822) parameters using ACO, PSO and 

ABC algorithms and to find out effectiveness of proposed algorithms using 

ANFIS. 

3. To optimize of PID controller parameters using ACO for pitch angle controlling 

of wind turbine for stable wind power. 
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1.5 Research Flow 

 

 

 

Figure 1-3: Research flow of the present study. 
 

1.6 Thesis Outline 

This thesis consists of five chapters. Brief descriptions of each chapter are presented 

as follows: 

CHAPTER 1: This is the introductory chapter that represents an overall view of the 

importance of optimal efficiency of wind turbine using AI and nature-inspired algorithms 

Review study of natural inspired algorithms and 
neural networks for optimal efficiency of wind turbine 

Implementation of NAR and NARX neural network for 
wind speed forecasting 

 

Performance evaluation of activation function of NAR 
and NARX neural network 

Mathematical modeling of wind turbine blade design 

Optimization of wind turbine blade parameters using 
ACO, PSO and ABC algorithms for optimal efficiency 

Effectiveness of nature-inspired algorithms using 
ANFIS for blade design optimization 

Design and optimization of PID controller with ACO 
to control pitch angle  

Performance evaluation of PID-ACO algorithm for 
rated output power of wind turbine  
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in respect of the present and future energy crisis. Finally, objectives and scope of this 

work of the study are illustrated. 

CHAPTER 2: This is the chapter where required information related to the study has 

been extensively reviewed. Information regarding availability of the effectiveness of 

NAR and NARX neural networks for wind speed forecasting, blade parameters 

optimization and prediction, and pitch angle controlling of wind turbine blades influence 

of PID controller which parameters are optimized ACO algorithm yield, forecasting, 

optimization, prediction and controlling using neural networks and algorithms from 

related literature results of others researchers has been expiated. Lastly, the research gap 

has been found out according to previous study. 

CHAPTER 3: Overall procedure to conduct the forecasting, optimization, prediction, 

controlling and forecasting have been explained in this chapter parameters selection and 

simulation procedure and method have been discussed briefly. A brief discussion about 

the MATLAB software that is used for the simulation has been given. 

CHAPTER 4: This is the chapter for presenting for the simulation result and 

discussion. Firstly, the power coefficient optimization and prediction are showed by the 

natural inspired algorithms and ANFIS respectively. Secondly, wind speed forecasting by 

NAR and NARX neural network, the results found from the simulation are discussed.  

Thirdly, pitch angle control is showed by the optimization of PID controller parameters  

using ACO algorithm. 

CHAPTER 5: In this chapter, the essences of the results are presented and also some 

recommendations for possible future studies have been described briefly. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Wind Turbine Modeling 

Renewable energies such as wind, bioenergy and solar energy conversion systems 

have determined during the last decade with the intention of the environmental concerns. 

The most promising sources of renewable energy is wind energy due to low cost in 

comparison to other energies such as solar energy, biomass energy etc. (Eltamaly & Farh, 

2013; Oghafy & Nikkhajoei, 2008). Wind energy utilization is an improvisation on 

technology of wind turbine. It is estimated that, within the next two to three decades, wind 

energy technology will be durable for power generation. In the last few years, wind 

energy has been amplified around 30–40 times. It is recognized all over the world as an 

inexpensive with environmentally friendly system which may cover the shortage of 

energy. The number of wind power plants is increasing every year. The United States of 

America (USA) takes a target at least 20% power produce within 2030 from total power. 

Wind energy is the most accessible sources in renewable energy sources. 

Wind power conversion system consists of the wind turbine rotor mounted to a nacelle, 

generator, tower and control system. The system of a wind turbine is complex. The wind 

energy conversation system converts kinetic energy to electric or mechanical energy. The 

behavior and performance of wind turbine operation and control need to be understood 

before the development of mathematical modelling. Firstly, under constant acceleration 

𝑎, the kinetic energy 𝐸 of the wind having a mass 𝑚, the velocity 𝑣 is equal to the work 

done 𝑊 in displacing that wind from rest to a distance, 𝑠 under a force F (Ochieng et al., 

2010), So 

𝐸 = 𝑊 = 𝐹𝑠 (2.1) 

Law of motion according to the Newton’s 
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𝐹 = 𝑚𝑎 (2.2) 
 

The kinetic energy 𝐸 

𝐸 = 𝑚𝑎𝑠 (2.3) 
 

𝑎 =
𝑣2 − 𝑢2

2𝑠
 

(2.4) 

where, the initial objective velocity is 𝑢 = 0 so  

𝑎 =
𝑣2

2𝑠
 

(2.5) 

From the Eq. (2.2) 

𝐸 =
1

2
𝑚𝑣2 

(2.6) 

The wind power is obtained by the rate of change of kinetic energy of the wind.  

𝑃𝑤 =
𝑑𝐸

𝑑𝑡
=
1

2
 
𝑑𝑚

𝑑𝑡
𝑣𝑤
2  

(2.7) 

where 
𝑑𝑚

𝑑𝑡
=

1

2
𝜌𝐴𝑣𝑤

3 is obtained from the mass flow rate where 𝜌 is the wind density of 

air, 𝐴 is the area of blades through wind passing. Eq. (2.6) becomes  

𝑃𝑤 =  
1

2
𝜌𝐴𝑣𝑤

3  
(2.8) 

  The mechanical power equation of HAWT can be written as  

𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 0.5 𝜌 𝐶𝑃 𝐴𝑠𝑉𝑤
3 (2.9) 

       

where air density is expressed by 𝜌 in (𝑘𝑔/𝑚3), wind velocity in 𝑉𝑤(𝑚𝑠
−1) and 𝐶𝑃 is 

known as the rotor efficiency or power coefficient (𝐶𝑃 ). Wind energy conversion is 

directly depending on the 𝐶𝑃 of the aerodynamic system which is converted from wind 

energy to electrical power. The progress of present commercial wind power generator has 

been continuously moving forward to the latest megawatt (MW) turbine. For HAWT, 

parameters selection is challenging. The production of wind turbine power is influenced 

by various fixed parameters, such as, wind velocity, chord length of blades, rotor diameter 

and lift to drag ratio etc. (Lanzafame & Messina, 2010). There are two goals of the design 
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of a HAWT, i.e., optimizing and estimating the power coefficient (Arifujjaman, 2010). 

Recently, attentions have been placed on rotor of wind turbine design for maximum 

aerodynamic performance (Jureczko et al., 2005; Khalfallah & Koliub, 2007; Selig & 

Coverstone-Carroll, 1996). The mechanical power equation of HAWT can be written as  

𝐶𝑜𝑝𝑡.(𝜆,
𝐶𝐿
𝐶𝐷
, 𝜎, 𝑟, 𝑐) = (

16

27
)  𝜆 

[
 
 
 
 

𝜆 +
1.32 + (

𝜆 − 8
20

)
2

(
𝜎𝐴𝑠
𝑐
)

2
3

]
 
 
 
 
−1

− 
(0.57)𝜆2

𝐶𝐿
𝐶𝐷
(𝜆 +

1
2𝜎(2𝜋𝑅)

𝑐

)

    

 
 

(2.10) 

where the swept area of turbine rotor is 𝐴𝑠  in (𝑚2) and  𝜆 is the tip-speed ratio.  𝑅, 𝐶𝐷 

and 𝐶𝐿 are the blades radius, drag, and lift coefficient blade airfoil, respectively. Wind 

turbine coefficient strongly depends on the rotor blade performance and airfoil section. 

The blade is very important part of the HAWT. For HAWT designing, blade design is 

very important part of HAWT. Basically, there are two types design of blades such as, 

aerodynamic and structural design. Both designs are important for HAWT performance 

(Zhu et al., 2016). The aerodynamic efficiency, annual energy production (AEP), and 

power performance are those aspects accounted in aerodynamic design. On the other 

hand, the structural design is concerned by material, mass, fatigue load, stability etc. (Kim 

et al., 2013). The theoretical maximum power coefficient is 𝐶𝑚𝑎𝑥 = 0.59. The power 

coefficient of  modern wind turbine reaches up to 0.51 which is close to Betz limit 

(Manwell et al., 2010).  The power coefficient directly depends on lift to drag ratio of 

HAWT blades. The power coefficient is varying with tip speed ratio as well lift to drag 

ratio (Burton et al., 2001). For each aerodynamic airfoil, 𝐶𝐿 and 𝐶𝐷 depends on attack 

angle and Reynolds number. Solidity ratio of blades can be defined as (C.-J. Bai et al., 

2016; Rajakumar & Ravindran, 2012) 

𝜎 = 𝑠𝑜𝑙𝑖𝑑𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑎𝑑𝑒𝑠(𝐵) × 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑏𝑙𝑎𝑑𝑒𝑠(𝐴)

𝐴𝑠
 

(2.11) 
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Lift and drag coefficients are dimensionless numbers that are used for measurement of 

aerodynamic lift and drag forces. It can be defined as, 

𝐶𝐿 =
𝐿

. 5𝜌𝑉𝑤
2𝐴𝑠

 
(2.12) 

𝐶𝐷 =
𝐷

. 5𝜌𝑉𝑤
2𝐴𝑠

 
(2.13) 

Therefore, the lift to drag ration can be defined as. The lift to drag ratio is also called  

sliding ratio. 

𝜀 =
𝐶𝐿
𝐶𝐷

 
(2.14) 

where 𝜔𝑚 is the rotational speed of rotor in (𝑟𝑎𝑑/𝑠)and 𝑉𝑤 (𝑚/𝑠)  is the wind velocity. 

The radius of blade is 𝑅. For the optimization and prediction, range the tip-speed ratio is 

3 to 10. The power coefficient of WT can be written as following Eq. (2.15) 

𝐶𝑝(𝜆, 𝛽) = 𝑐1 (
𝑐2
𝜆𝑖
− 𝑐3𝛽 − 𝑐4) 𝑒

−𝑐5
𝜆𝑖
⁄
+ 𝑐6𝜆 

(2.15) 

where, c1 = 0.5176, 𝑐2 = 116, 𝑐3 = 0.4, 𝑐4 = 5, 𝑐5 = 21 and 𝑐6 = 0.006 

1

𝜆𝑖
=

1

𝜆 + 0.08𝛽
−
0.035

𝛽3
 

 
Wind energy conversion is directly depending on the 𝐶𝑃 of aerodynamic system which 

is converted from mechanical energy into electrical energy. The nonlinear parameters are 

𝜆, 𝛽 defined by tip-speed ratio and pitch angle respectively. In addition, the tip-speed 

ration has expressed by (M. Singh & Chandra, 2011) 

𝜆 =
𝜔𝑟𝑟

𝑉𝑤
 (2.16) 

where r is the rotor radius, 𝜔𝑟 is the angular velocity of wind turbine rotor. A nonlinear 

function power coefficient and tip-speed ration have been changed by angular speed of 

rotor of turbine and wind speed. From the Eq. (2.15), the power coefficient is changed by 

the pitch angle of WT blade as shown in Figure 2-1. 
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Figure 2-1: Power coefficient versus tip-speed ratio for different pitch angle (Duong 
et al., 2014).  

 

 

Figure 2-2: Wind power curve versus rotor speed for diffident wind speed. 

In general, the wind turbine generator power has been changed by wind speed and 

rotor speed that shown in Figure 2-2. The WT operating region has been divided into four 

areas which are shown in Figure 2-3. In the first region, the wind speed reaches 0 to cut-

in where output power is zero because the WT does not execute the operation. The second 

region is indicated that the wind speed is cut-in to rated speed. The third region shows the 

wind speed is between rated to cut-out speed. For the WT protection, the fourth region is 
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beyond the cut-in speed, when output wind power reaches its rated power. At this 

moment, if wind speed increases, output wind power will cross the rated WT power. For 

the steady WT output power within rated power, pitch angle controlling is needed for 

output power maintained within rated power.   

 

Figure 2-3: Wind power curve versus wind speed (Bianchi et al., 2006). 

 

2.1.1 Profile of Wind Speed 

The WT power is influenced by chaotic and fluctuating wind speed. It is changing 

continuously. The magnitude of wind speed is randomly over any interval. For this study, 

the simulated wind speed is defined by the following equation (Tran et al., 2010). 

𝑉𝑤 = 𝑥 + 𝑠𝑖𝑛(0.1047𝑡) + 5𝑠𝑖𝑛(0.02665𝑡) + 𝑠𝑖𝑛(1.293𝑡) + 1𝑠𝑖𝑛(3.664𝑡) (2.17) 

where, 𝑥 is the user define number based on WT mean wind speed. Based on Eq. (2.17) 

the simulated wind gusts, the magnitude and frequency of the sinusoidal fluctuat ions 

which are increased, are shown in Figure 2-4. 
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Figure 2-4: Wind speed profile (Tran et al., 2010). 

 

 

2.2 Wind Turbine Controlling 

2.2.1 Proportional Integral Derivative Controller 

PID controller has selected in this study for some of its characteristics, such as 

flexibility, reliability and easy operating system. It consists of three control parameters 

namely proportional (𝐾𝑝), integral (𝐾𝑖) and derivative (𝐾𝑑). Each controller parameter 

has an individual contribution for controlling any kind of system. A typical block diagram 

of the PID controller with a feedback loop is shown in Figure 2-5. 

 

Figure 2-5: A typical block diagram of PID controller with feedback loop. 
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From the Figure 2-5 the sum of the control parameters is 𝑢(𝑡) . The function of tracking 

error’s 𝑒(𝑡) can be referred by each and every control parameter and these parameters are 

working independently. The mathematical equation of PID control can be written as,  

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡 +
𝑡

0

𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 

(2.18) 

The PID control parameters can be tuned by several methods namely trial and error, 

Ziegler- Nichols (Z-N), Tyreus-Luyben, Cohen-Coon and auto tuned. In this study, trial 

and error method has been adopted for controlling parameters tuning. In the trial and error 

method, a critical gain value is measured by increasing 𝐾𝑝 at which the system provides 

sustained oscillations and the corresponding period is computed to calculate three control 

parameters of PID controller. Nevertheless, the tuning of the PID controller reaches a new 

era.  

Several methods are being used for PID tuning such as auto tuning (Z-N), fuzzy logic, 

AI, and some nature-inspired algorithms. Those techniques are getting preference. In the 

study, ACO has been used for PID parameter tuning in the optimization process. 

The technique of optimization for PID controller parameter tuning is common for pitch 

angle control of a large wind turbine. ACO algorithm is simple and effective for PID 

parameters tuning. By the discrete search space method, it was implemented by Dorigo 

and Gambardella (1997a). The concept of algorithm is inspired by natural ant behavior 

of food searching by a shortest path which is shown in Figure 2-6. 

Researchers have used a number of control techniques to control the pitch angle of 

WT. The generalized predictive control (GPC) has been applied for pitch angle 

controlling with wide range of wind speed. GPC can also minimize the error of the control 

signal in each interval and the minimization of performance index assists to eliminate its 

divergence. Nevertheless, the GPC control system can't be able to stay stable output 
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power of WT if the output power’s error is large. If the large interval is between cut-in to 

cut-out wind speed, the output power fluctuates heavily. The linear quadratic Gaussian 

(LQG) has been applied for pitch angle control to design wind turbine. But the robustness 

of the LQG has imperfectness for extremely nonlinear wind turbine (Ekelund, 1994; 

Shaked & Soroka, 1985). In recent few years, researchers have focused to control the 

pitch angle for effective and smooth wind power outcome though AI, fuzzy logic method 

and natural inspired algorithms for PID controller parameter optimization. In this study, 

conventional PID controller has used for pitch angle control. Kong et al. (2006) have 

provided the combination of set theory of fuzzy to control a nonlinear sliding mode for 

steady wind power of MW range wind turbines. Amendola and Gonzaga (2007) employed 

the two FLC methods, i.e., first one controlled the pitch angle control and the second one 

controlled the generator speed of WT to achieve stable output power. Gao and Gao (2016) 

have proposed novel Proportional Integral (PI) and a PID control system of pitch angle 

of three WTs. Direct search optimization was used for PI and PID control the parameters 

optimization. The hybrid algorithm, PSO-RBFNN, was proposed by Perng et al. (2014) 

that was also used for optimal PID parameters tuning in WT control design. Another 

investigation was conducted based on fuzzy–proportional–derivative for large WTs 

operating above-rated power to investigate a blade pitch control (Zhang et al., 2008). Self-

tuning of PID parameters has been carried out by FLC for adjustable control of the pitch 

of large WT power by Dou et al. (2010). In addition, they found optimum torque with 

pitch angle control by some blade parameters. Civelek et al. (2016) proposed a new 

intelligence genetic algorithm (IGA) for PID controller parameters tuning for pitch angle 

control of medium scale WT. They found a decent result which was compared to the 

conventional genetic algorithm.  

Conventional blade pitch angle controller along with the outstanding part of these wind 

turbines are only equipped. This functional system can maintain the output power of wind 
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generator at its rated level. It is possible when the wind speed is higher than rated speed 

but below the cut-out speed. Therefore, it is very important to design a suitable controller 

which can provide an optimal desired power. The natural inspired algorithms such as Ant 

colony optimization (ACO), particle swarm optimization (PSO) and genetic algorit hm 

(GA) have been developed with promising results in optimization applications. For the 

pitch angle of wind turbine, PSO and GA are implemented by Gaing (2004) and Civelek 

et al. (2016). To deal with control problem, PID controller is designed to provide required 

pitch angle control that can control the actuator. Previous studies have showed that PID 

controller is well known in pitch angle control but it has been tuned with trial and error 

method or classical method in the most studies. These methods are extremely time 

consuming and difficult to get optimal values in most cases. PID controller is investigated 

with promising ACO algorithm and it is not investigated previously to optimize PID 

controller for pitch angle control. ACO algorithm has been developed after inspired by 

real ants’ behavior and it has proved its effectiveness in application of optimiza t ion 

because ants can construct shortest path when searching for food in short time. ACO 

method automatically optimizes PID parameters by minimizing error between desired 

and actual output.  

Pitch angle control of WT has been considered a very well accepted method to improve 

the power quality of the wind turbine generator (WTG). A proposed pitch angle control 

strategy based on PID controller parameter’s optimization thought ACO algorithm is 

almost completed smoothing the WT output power in the full load region. PID controller 

is designed in this study for pitch angle control because of its simplicity and effectiveness. 

PID controller parameters are optimized using nature-inspired optimization method, i.e. 

ACO and its effectiveness are compared with trial and error method of PID and Fuzzy-

PID. 
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2.2.1.1 Actuator Model 

An actuator is machine component which can be accountable for controlling and 

moving mechanism. It can be electrical and hydraulic operated. The accuracy of electrical 

actuator for speed control and position precision is satisfied. The blade of WT can be set 

by DC servo motor. DC servo motor can be used as an actuator for wind turbine pitch 

angle control (Qi & Meng, 2012). The transfer function of DC servo motor can be 

expressed by Eq. (2.19). 

𝐺𝑠(𝑠) =
𝛼

𝜏𝑠 + 𝛽
 (2.19) 

where, 𝜏 is the time constant.  Both 𝛼 and 𝛽 are motor constants.  

𝐺𝑝(𝑠) =
𝛼

𝑠(𝜏𝑠 + 𝛽)
 (2.20) 

The position control of transfer function of DC servo motor can be expressed by Eq. 

(2.20). The value of motor parameter is 1. Therefore, the Eq. (2.20) can be expressed by 

Eq. (2.21). 

𝐺𝑝(𝑠) =
𝛼

𝑠(𝑠 + 1)
 (2.21) 

 

2.3 Nature-Inspired Algorithms 

Nature-inspired algorithms are the algorithms inspired by nature. ACO, PSO, and ABC 

are used for aerodynamic optimization. The aerodynamic optimization of HAWT is a 

complex technique characterized by many trade-off decisions intended at finding the ideal 

overall performance. The researcher designs the WT in enormous ways and more often it 

is difficult to make ideal decision. Commercial turbines have been derived from both 

theoretical and empirical methods, but there is no clean evidence on which of these is 

optimal. 

The optimization method of ACO, PSO, and ABC are finding best solution for specific 

problem by the soft computing solution of maximization of power coefficient. In wind 
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turbine system, power maximization is very important for effective efficiency. For the 

optimization, the power coefficient optimization parameters are determined by airfoil 

S822 of National Renewable Energy Laboratory (NREL).  

 

2.3.1 Ant Colony Optimization 

From last few years, the researchers have been using ACO to optimization problem of 

wind turbine system. Eroğlu and Seçkiner (2012) determined the wind farm layout using 

ACO. They found maximum energy output that considered wake loss, wind turbine 

location and wind direction. Fuchs and Gjengedal (2011) applied ACO for the necessary 

time step resolution in a transmission expansion and wind power integration in Nordic 

area. They determined the average and peak values for power production from wind 

technology. Jovanovic et al. (2016) focused on maximum segregating of computed graphs 

of supply and demand. For the optimization, they used ACO and found that the error was 

less than 5% in comparison with the optimal solutions. Abd-Allah et al. (2015) 

investigated the lightning point in wind turbine farm as lighting is harmful for wind 

turbine farm. They used ACO to search for the sensitive points in wind farm. Mustafar et 

al. (2007) studied the loss of reduction of transformer tap setting to control reactive power 

using ACO technique. 

ACO approach performs “intelligent” randomization using suitable procedure for the 

problem of attention (Dorigo & Gambardella, 1997b). ACO is based on the foraging 

behavior of actual ant colonies that are looking for food. ACO is first expressed by Dorigo 

and Gambardella (1997a), and later has been modified and presenting as a optimiza t ion 

techniques by Shen et al. (2005) and Dorigo et al. (2006). If the ants have found a food 

source, they will carry out some evaluation about size of the source and carrying a 

percentage of the food to the nest of ant, while send off some pheromone on the way back 
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that is known as the pheromone trail. This pheromone trail gives the opportunity to the 

other ants of the same nest to hint the found source and same way follow the other ants 

of the same nest to reach the food source. The total amount of the pheromone collected 

on the ground is directly proportional to  the quantity and quality of the base source they 

were discovered (Socha & Dorigo, 2008). Since the pheromone is like vaporizable 

substance, the quantity of pheromone will be decreased over the time (Kıran et al., 2012). 

Therefore, the indication path of the ants for food collection and pheromone trails staying 

on the path. Based on the methodology, the shorter path is the priority to the pheromone 

trail. Indeed, ants are collecting their food by the shortest path. The optimization method 

is based on updating pheromone path of better solution. The researchers have been done 

ACO technique for difference purpose such as energy optimization and estimation. In this 

study, continuous ACO used (He & Han, 2007; Wang & Xie, 2002) for optimiza t ion 

problem. The problem of optimization can be solved by the support of artificial ant colony 

by using information through pheromone deposited on graph edges. 

Assume the vector 𝑋 = [𝑥1,𝑥2, … …𝑥𝑛] are the parameters of optimization, where total 

number of parameters is 𝑛, the lower and upper bounds is to be  𝑥𝑖 ∈ 𝐷(𝑥𝑖) =

[𝑥𝑖𝑙𝑜𝑤 , 𝑥𝑖𝑢𝑝 ]  𝑤𝑖𝑡ℎ 𝑖 = 1,2, …… 𝑛. The field definition 𝐷(𝑥𝑖) is divided by the subspace 

𝑀 and node is defined the middle of each subspace. A single artificial ant 𝑘 =

1,2, … . . 𝑁𝑎𝑛𝑡, where the maximum ant numbers is defining  𝑁𝑎𝑛𝑡  , the ants move from 

one node to another node where 𝑃 is the total node in each field definition 𝐷(𝑥𝑖). Each 

subspace  

ℎ𝑖 =
𝑥𝑖_𝑢𝑝 −𝑥𝑖_𝑙𝑜𝑤

𝑀
 (2.22) 

For each level, which has 𝑃 nodes on it, there are 𝑀 × 𝑛 nodes in total. 𝑘 is the state 

vector of ant that entire tour shown in Figure 2-6 with travel index [ 𝑖8, 𝑖7, 𝑖6, …… . , 𝑖4]. 

The travel index directly depends on the cumulative probability (𝐶𝑃) from the probability 
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𝑃𝑖𝑗 of the ant k to move the 𝑖𝑡ℎ node on the 𝑗𝑡ℎ level. For example, if 𝑀 = 10, 𝐶𝑃 =

[0.1, 0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9, 1.0] and the generated random number lies 

between 0.8 and 0.9, the first travel index, 𝑖8, is chosen as 8 (eighth column of the 𝐶𝑃). 

Those processes have continued until found the all travel index. The values of the 

parameters 𝑋, held by ant, are as  

[𝑥1,𝑥2,……𝑥𝑛] = [𝑥1
𝑙𝑜𝑤

+ 𝑖8 ×ℎ𝑖 , 𝑥2
𝑙𝑜𝑤

+ 𝑖7 ×ℎ2, 𝑥3
𝑙𝑜w

+ℎ6× 𝑖6,… ,𝑥𝑛𝑙𝑜𝑤

+ℎ𝑛× 𝑖𝑛] 

 
(2.23) 

 

 

Figure 2-6: State space graph of ACO (Julai et al., 2009). 

 

The rule of state transition of the ant k is defined as  

𝑃𝑖𝑗 =
𝜏𝑖𝑗

∑ 𝜏𝑖𝑗
𝑛
𝑖=1

 
(2.24) 

Where, the ant probability 𝑃𝑖𝑗 move to the  𝑖 𝑡ℎ node on the 𝑗𝑡ℎ level. The pheromone at 

the node is 𝜏𝑖𝑗 . The pheromone is updated by using the following equation, when all ants 

finished their tours. 

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 +
𝑄

𝑓𝑏𝑒𝑠𝑡
 

(2.25) 

Where, the pheromone decay parameter range is 0 < 𝜌 < 1, 𝑄 is the quantity of 

pheromone laid by an ant per cycle, 𝜏0  is a constant for the initial value of 𝜏𝑖𝑗  (for 
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initialization 𝜏𝑖𝑗  on the right-hand-side is set to be 𝜏0 ), and 𝑓𝑏𝑒𝑠𝑡  is function of objective. 

From the objective function, the best value is given by ant in each searching period. 

As shown in Figure 2-6, the algorithm starts with the initialization of the pheromone 

track. The desired optimization power coefficient (𝐶𝑝) is calculated for each ant and the 

maximum value is stored as 𝑓𝑜 (Galdi et al., 2008). Each and every iteration, an ant makes 

a complete solution of objective function according to the Eq. (2.24) of probabilistic state 

transition rule. The quantity of pheromone at the third step is a global pheromone updating 

role applied in two phases. First, an evaporation phase where a fraction of the pheromone 

evaporates, and a reinforcement phase where each ant deposits and amount of pheromone 

which is proportional to the power coefficient (𝐶𝑝) of its solution. The process is 

continuing until the stopping criterion is satisfied. The optimization process is shows in 

Figure 2-7. 
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Figure 2-7: Flow chat of ACO algorithm. 

 

2.3.2 Particle Swarm Optimization  

The explicit mathematical model can be represented as the optimization processes. In 

complex optimization problems, it is difficult to use the mathematical model with 

nonlinear of optimization. While the simulation system can be processing any problem 

by the tool for evaluating the performance. the simulation and optimization can find 

optimum solution (Sharafi & ELMekkawy, 2014).  

PSO is the meta-heuristics approach. Basically, meta-heuristics are used in which 

problem where the optimization problem not able to solve those problems. As PSO is the 

meta-heuristics type therefore it can solve more complex problem (Q. Bai, 2010; Dufo-
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López et al., 2007). PSO algorithm was established by Kennedy and Eberhard in the year 

of 1995 (R. Eberhart & Kennedy, 1995; Kennedy et al., 2001). PSO is the multi-para lle l 

searching techniques to obtain the optimum results. PSO is inspired by the natural “bird 

flocking” or fish schooling. In this algorithm, the set of swarms or particle that are 

described by their position and velocity vector fly through the search space.  

The particles motion of PSO is defined by the velocity vector its direction. The best 

solution achieved by all particles is called the best global particle. All swarm position and 

velocity are updated by best global particle their obtained experience. The experience 

sharing between particle and swarm is the vital reason behind PSO success (R. C. 

Eberhart & Shi, 2000). 

At starting period, the random population of swarms is generated with random position 

vectors and velocity of vectors 𝑋𝑖 = (𝑥𝑖1,𝑥𝑖2, … . . 𝑥𝑖𝑑) and 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2,… . . 𝑣𝑖𝑑) 

respectively. Each particle best position is 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2,… . . 𝑝𝑖𝑑) according to the best 

fitness value obtained by the particle time 𝑡. After each iteration, the new positions and 

velocities to the particle for the next fitness evolution are calculated by the following Eq. 

(2.26) (Y. Shi & R. Eberhart, 1998) (Y. Shi & R. Eberhart, 1998). 

𝑣𝑖𝑑(𝑡 + 1) = 𝜔 × 𝑣𝑖𝑑(𝑡) + 𝑐1 × 𝜑1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑(𝑡)) + 𝑐1 × 𝜑2 × (𝑝𝑔𝑑
− 𝑥𝑖𝑑(𝑡)) 

(2.26) 

 

𝑥𝑖𝑑(𝑡+ 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1) (2.27) 

 
Figure 2-8: Particle swarm optimization algorithm. 
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Where ω ≥ 1 play a vital role to ensure the convergent behavior  𝜑1  and 𝜑2  are uniform 

random number with interval (0,1), 𝑐1 and 𝑐2 are constants of acceleration, 𝑝𝑖(𝑝𝑏𝑒𝑠𝑡) is 

the personal best particle, 𝑝𝑔(𝑔𝑏𝑒𝑠𝑡) and 𝑖 is the best position of particle i.e. the best 

position of the particle in the population so far (Y. Shi & R. C. Eberhart, 1998). The first 

part of Eq. (2.26) represents the previous velocity, which provides the necessary 

momentum for particles to roam across the search space. The second part, known as the 

“cognitive” component, represents the personal thinking of each particle. The cognitive 

component encourages the particles to move towards their own best positions found so 

far. The third part is known as the “social” component, which represents the collaborative 

effect of the particles, in finding the global optimal solution. This part always pulls the 

particles towards the global best particle found so far. The flow chart of PSO is shown in 

Figure 2-9. 

Many researchers have also been using PSO algorithm for location optimizat ion. 

Safaei et al. (2016) proposed the new two-step PSO algorithm for placement of WTG for 

maximum allowable capacity and minimizing the power losses of wind turbine. The wind 

turbine placement at wind farm was optimized by Wan et al. (2010). Pookpunt and 

Ongsakul (2013) used the binary PSO for wind turbine optimum placement at wind farm. 

The size optimization of hybrid system was determined by PSO (Maleki et al., 2015).  
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Figure 2-9: Flow chat of PSO. 

 

2.3.3 Artificial Bee Colony  

ABC is based on the swarm intelligence optimization algorithm which is proposed and 

developed by Karaboga (2005), and Karaboga and Basturk (2007) respectively. ABC 

algorithm is a bionic simulation algorithm that is executed from bees foraging behavior. 

In this algorithm, there are three types of bees devoted such as employed, onlooker and 

scouts. The half of colony bees are onlooker and other half of bees are employed. The 

number of employed bees is equal to the number of food source (S. Singh & Kaushik, 

2016). The optimization problem solution is represented by the position of food sources. 

The employed bees pass information to onlooker bees about food sources. According to 
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the obtain information from employed bees, the onlooker bees select the food sources and 

find out new food sources near to the selected one food sources (Akay & Karaboga, 2012). 

When the selected food sources mined out, the employed bees are become a scout bee. 

Those scout bees randomly find out new food sources to replace the one which is mine d 

out (Karaboga & Akay, 2011; S. Singh & Kaushik, 2016; X. Song et al., 2015)  

𝑋𝑖𝑗 = 𝑋𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)(𝑋𝑗

𝑚𝑎𝑥 − 𝑋𝑗
𝑚𝑖𝑛) (2.28) 

where 𝑖 = 1,2, … . , 𝑆𝑁, 𝑗 = 1, 2, , … . . 𝐷. 𝑆𝑁 = 𝐶𝑆/2 is the number of food sources is 

equal to the number of employed bees (X. Song et al., 2015). In addition, employed bees 

are equal to the onlooker bees. 𝑋𝑗
𝑚𝑖𝑛  and 𝑋𝑗

𝑚𝑎𝑥  are the lower and upper boundary of 

parameters of optimization problem. 𝐷 is the number of problem parameter 𝑟𝑎𝑛𝑑(0,1) is 

the random number distribution within [0,1]. After initialization, employed bees try to 

detect new food sources with the nearest areas. They saved in memory until creating new 

food sources to following the equation  

𝑣𝑖𝑗 = 𝑋𝑖𝑗 + 𝜑𝑖𝑗(𝑋𝑖𝑗 − 𝑋𝑘𝑗) (2.29) 

where, 𝑗 = 1, 2, … . , 𝐷 and 𝑘 = 1,2, …… 𝑆𝑁 are the random selected indices. 𝑋𝑖𝑗 give 

randomly different solution form to 𝑋𝑘𝑗. In addition, a random integer number 

represented by  𝜑𝑖𝑗 within [-1,1]. The parameter’s value can be acceptable when if a 

parameter value produced by operation exceeds its predetermined boundaries. So, the set 

boundaries if 𝑋𝑖 > 𝑋𝑖
𝑚𝑎𝑥  then 𝑋𝑖 = 𝑋𝑖

𝑚𝑎𝑥 ; 𝑖𝑓  𝑋𝑖 > 𝑋𝑖
𝑚𝑖𝑛  then 𝑋𝑖 = 𝑋𝑖

𝑚𝑖𝑛    

After producing, 𝑣𝑖 within the boundaries, a fitness value for a maximization problem 

can be assigned to the solution to following equation  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓𝑖
 𝑖𝑓 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠( 𝑓𝑖)𝑖𝑓 𝑓𝑖 < 0
 

} 

 
(2.30) 
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where, 𝑓𝑖 is the cost value of the solution 𝑣𝑖. For maximization problems, the cost function 

can be directly used as fitness function. A greedy selection is applied between 𝑋𝑖 and 𝑣𝑖 

, then the better one is selected depending on fitness values presenting the nectar amount 

of the food sources at 𝑋𝑖 and 𝑣𝑖. If the sources at 𝑋𝑖 and 𝑣𝑖 is greater than 𝑋𝑖 in terms of 

profitability. The onlooker bees memorize the latest position and forget the old one. 

While, onlooker bees kept in memory previous one. If 𝑋𝑖 cannot be improved, its counter 

holding the number of trails in incremented by 1, otherwise the counter is resets to 0. 

After all the employed bees complete their searches, they share their information 

related to the nectar amounts and the positions of their sources with the onlooker bees on 

the dance area. This is the multiple interaction features of the artificial bees of ABC. An 

onlooker bee evaluates the nectar information taken from all employed bees and chooses 

a food source site with a probability value related to its nectar amount (fitness) 𝑃𝑖, by Eq. 

(2.29). 

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑖=1

 
(2.31) 

The probabilistic selection depends on the fitness values of the solutions in the 

population. A fitness-based selection scheme might be a roulette wheel, ranking based, 

stochastic universal sampling, tournament selection or another selection scheme. In basic 

ABC, roulette wheel selection scheme in which each slice is proportional in size to the 

fitness value is employed. In this probabilistic selection scheme, as the nectar amount of 

food sources (the fitness of solutions) increases, the number of onlookers visiting them 

increases, too. This is the positive feedback feature of ABC. 

In the ABC algorithm, a random real number 𝑟𝑖 within the range [0,1] is generated for 

each source. If the probability value 𝑝𝑖 Eq. (2.29) associated with that source is greater 

than this random number,  𝑟𝑖   𝑝𝑖 > 𝑟𝑖 then the onlooker bee produces a modification on 

position of this food source site by Eq. (2.28) as in the case of the employed bee. After 
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the source is evolution, greedy section scheme is applied and the onlooker bee either 

memorizes the new position by forgetting the old one or keeps on the old one. If the 

solution 𝑋𝑖 cannot be improved, then the counter holding trials are incremented by 1. 

Otherwise, the counter is reset to 0. This process is repeated until all onlookers are 

distributed onto food source sites 

In a cycle, after all employed bees and onlooker bees complete their searches, the 

algorithm checks to see if there is any exhausted source to be abandoned. In order to 

decide if a source is to be abandoned, the counters which have been updated during search 

are used. If the value of the counter is greater than the control parameter of the ABC 

algorithm, known as the limit”, then the source associated with this counter is assumed to 

be exhausted and is abandoned.  

The food source abandoned by its bee is replaced with a new food source discovered 

by the scout, which represents the negative feedback mechanism and fluctuation property 

in the self-organization of ABC. This is simulated by producing a site position randomly 

and replacing it with the abandoned one. Assume that the abandoned source is 𝑋𝑖, then 

the scout randomly discovers a new food source to be replaced with 𝑋𝑖. This operation 

can be defined as in Eq. (2.28). In basic ABC, it is assumed that the only one source can 

be exhausted in each cycle, and only one employed bee can be a scout. If more than one 

counter exceeds the ‘‘limit” value, one of the maximum ones might be chosen 

programmatically. The flow chart of ABC is shown in Figure 2-10. Univ
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Figure 2-10: Flow chart of ABC algorithms. 

In last few years, ABC has massively been studied for complex problem, modelling, 

and optimization. ABC algorithm is not only used in optimization but also for prediction 

and control. Delgarm et al. (2016) determined the performance of energy building using 

multi-objective and optimization approach. In addition, J. Song et al. (2016) used the 
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improved ABC algorithm to optimize the combustion of boiler to consider 𝑁𝑂𝑥 emission. 

Ebrahim (2014) has used ABC algorithm for proportional integral derivative (PID) 

controller parameters optimization for speed control of AC driver. Derakhshan et al. 

(2015) optimized the wind turbine blade shape to determine the performance of 

aerodynamic of blades. Habbi et al. (2015) proposed a fuzzy logic system that was self-

generated by ABC algorithm. Based on the above reviews, ABC algorithm is vastly used 

for complex problem solving due to its excellent search capability. 

 

2.4 Artificial Intelligence 

ANN is the most promising artificial intelligence. Neural network not only emulated 

the human brain but also knowledge gain through a learning process (Afroz et al., 2018).  

Last few years, ANN has been proven to be a promising technique for time series 

prediction, assessment of energy, and pattern reorganization. For the application of time 

series forecasting, several ANN types are used, for instance, NARXNN, Nonlinear 

NARNN, Recurrent Neural Network (RNN). In this paper, NARNN and NARXNN has 

been used to execute wind speed forecasting for the chosen areas in Malaysia. Since the 

real-world happenings are dynamic and depends on their current state, only non-linear 

system can properly depict them. In such dynamic and non-linear cases, neural network 

structure such as: the dynamic recurrent neural network (RNN), the NAR, and the NARX 

with exogenous inputs are very advantageous. One of the major benefits of such that they 

can accept dynamic inputs represented by time series sets. In order to achieve the 

knowledge of the process that generates time series in not indispensable, non-parametric 

methods are used. Time series forecasting using NN is such non-parametric method. 

Although the NAR and NARX model uses the past values of the time series to predict 
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future values, but the RNN model does not need past time series values as inputs nor 

delays (Cao et al., 2012; Ruiz et al., 2016). 

Several researchers have reported different ANN model for WSF ranging from few 

seconds to more than one-year ahead. Z.-h. Guo et al. (2011) proposed the hybrid back 

propagation neural network for WSF one-year-ahead in order to remove seasonal effects 

of wind speed from 2001 to 2016 in Minqin, China, and their proposed BPNN shows 

lower mean absolute percentage error (MAPE) of 28.16% in comparison to single BPNN. 

H. Liu et al. (2012) have employed a hybrid Empirical Mode Decomposition and 

Artificial Neural Networks (MED-ANN) to forecast and eliminate randomness of wind 

speed. For WSF, a highly-satisfied result was obtained with ANN than that of the 

Autoregressive Integrated Moving Average (ARIMA) method. Masseran et al. (2012) 

have considered 10 wind stations to find out the most potential areas in Malaysia for wind 

speed forecasting. Although the existing wind speed in Malaysia is quite low compared 

to other countries, Mersing has found considerably higher wind speed than other wind 

station places in Malaysia, which is around 18.2% power produces from Mersing wind 

station. One-day-ahead WSF have been done by Li and Shi (2010) using three ANN in 

North Dakota, United State of America (USA). Azad et al. (2014) considered two 

meteorological stations in Malaysia for long-term WSF using ANN. They found lower 

mean absolute error (MAE) of 0.8 ms-1 using their proposed algorithm. Short-term WSF 

at La Venta, Oaxaca in Mexico was practiced by Cadenas and Rivera (2009) using ANN. 

The accuracy of proposed ANN is satisfactory based on their error level, i.e. MAE 

(0.0399) and MSE (0.0016). In addition, Cadenas and Rivera (2010) have proposed a 

hybrid ARMIA-ANN model for average WSF in Mexico in 2010 for three places in 

Mexico. The accuracy of hybrid model was higher than that of single ARMIA and ANN. 

Jiang et al. (2017) applied v-SVM model for WSF to overcome the similar fluctua t ion 

information between the adjacent wind turbine generators. The proposed Variant Support 
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Vector machine (v-SVM) has showed better accuracy in comparison to Epsilon Support 

Vector machine (ε-SVM) model. Men et al. (2016) applied mixture density neural 

network (MDNN) for ST wind speed and wind power forecasting in Taiwan using wind 

farm data. The MDNN had three-layer architecture where different number of hidden 

layers and nodes were used for each layer, and this method was effective for multi-step 

ahead wind power and wind speed forecasting. 

In several aspects of the proposed study expands upon Karlik and Olgac (2011) 

proposed the five activation functions namely Uni-Polar Sigmoid, Hyperbolic Tangent 

(tansig), Radial Basis and Conic Section those applied in Multi-Layer Perceptron (MLP) 

NN. In addition, tansig achieved more accuracy to other four activation functions at 100 

and 500 iterations. Regression problem can be solved by Random Vector Functional Link 

Neural Network (RVFLNN) where statistically tansig function prefer superior result than 

other two function (logsig, tribas) (Vuković et al., 2018). Activation function of ANN 

applied to forecast flows at the outlet of a watershed that is located in Khosrow Shirin 

watershed in Iran. They found superior result with tansig- ANN to compare logsig-ANN 

and conventional hydrological model (Rezaeianzadeh et al., 2013). Moreover, tansig-

ANN provided 94% accuracy than logsig-ANN 84% for  psychological variables in 

ascertaining potential archers (Musa et al., 2019). Vafaeipour et al. (2010) investigated 

wind velocity prediction using neural network with two activation functions in Tehran, 

Iran and found tansig activation function works better than logsig activation function. 

Their suggestions were based on mean square error (MSE) root mean square error RMSE, 

and correlation coefficient (R) performance indicators.  

2.4.1 Adaptive Neuro-Fuzzy Interface System 

ANFIS is one kind of neural network that shows better learning and estimation 

capabilities (Jang, 1993). ANFIS can be categorized to discrete control system by online 
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identification, approximation of highly nonlinear function and predict a chaotic time 

series. Basically, for the fuzzy ’IF THEN’ rules, predetermined inputs and outputs are 

used to construct the ANFIS. The membership function (MFs) of ANFIS is created by 

input and output parameters. ANFIS obtains the fuzzy interface system (FIS) through the 

input and output and algorithm of backpropagation. FIS is executed by the combination 

of rule base, database, and reasoning mechanism. Firstly, fuzzy logic finds the rule base. 

The database allocates the MFs that work in the rules of fuzzy logic. Finally, reasoning 

mechanism is reduced from the rules and input data those come to a feasible outcome. It 

can be adjusted to better perform for changing environment. An ANFIS system is 

conducted like intelligence of human within certain field (Petković & Shamshirband, 

2015). 

The ANFIS (training and evaluation) systems have been employed in the MATLAB. 

In ANFIS system, there are five input parameters to influence the power coefficient of 

HAWT in as shown in Table 3-1. The ‘IF THEN’ rules of Takgi and Sugeno’s class of 

fuzzy logic with two inputs for the first order Sugeno is employed for the purpose of this 

study (Mamdani & Assilian, 1975) (Al-Hmouz et al., 2012).  

If x is P and y is R, then 

𝑓1 = 𝑝1𝑥 + 𝑞1𝑦+ 𝑟1  (2.32) 

The input parameters of MFs are made up by first layer and providing the input values 

to the following layer. Each node considers as adaptive node having a node function 0 =

𝜇𝑃𝑄(𝑥) and 0 = 𝜇𝑅𝑆(𝑥) where 𝜇𝑃𝑄(𝑥) and 𝜇𝑅𝑆(𝑥) are MFs. The maximum value of 

Triangle MFS is (1.0) and (0.0) is the minimum value. Like as,  
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(𝑥) = 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑥; 𝑝𝑖 ,𝑞𝑖 , 𝑟𝑖) =

{
 
 

 
 

0,                   𝑥 ≤ 𝑝𝑖
𝑥 − 𝑝𝑖
𝑞𝑖 −𝑝𝑖

         𝑝𝑖 ≤ 𝑥 ≤ 𝑝𝑖

𝑟𝑖− 𝑥

𝑟𝑖− 𝑞𝑖
,        𝑞𝑖 ≤ 𝑥 ≤ 𝑟𝑖

0,                 𝑟𝑖 ≤≤ 𝑥 }
 
 

 
 

 

 

 

(2.33) 

where set of parameters set are {𝑝𝑖,𝑞𝑖 , 𝑟𝑖 , }  and x and y are the inputs to nodes and it 

signifies to tip-speed ratio, blade radius, lift and drag ratio, solidity, and chord length and 

power coefficient. 

In ANFIS system, the second layer of ANFIS is called MFs. It looks for the weights 

of each function of membership. The first layer send signal to MFs. The performance of 

MFs is represented by the input variable fuzzy set shown in Figure 2.6. The nodes of MFs 

are referred as a non-adaptive. The MFs layer refers as multiplier to receive to signal and 

send out the outcome in 𝑤𝑖 = 𝜇𝑃𝑄(𝑥) ∗ 𝜇𝑃𝑄(𝑦)  form. Output nodes are represented the 

firing strength of a rule.  

The third layer is known as rule layer. In this layer, all neurons perform as the 

precondition to match the fuzzy rules. Each rule’s activation level is calculated by the 

number of fuzzy rules, that is equal to the quantity of layers. This layer’s node calculates 

the weights of normalized and it is considering as non-adaptive. Each node calculates the 

value of the rule’s firing strength over the sum of the rules firing strengths in the form of 

𝑤𝑖
∗ =

𝑤𝑖

𝑤1−𝑤2
, 𝑖 = 1,2. The results are mentioned to as the normalized firing strengths. Univ
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Figure 2-11: The structure of ANFIS. 

 

The fourth layer is called as the defuzzification layer. It is countable for providing the 

outcomes values as the result of the inference of rules. Every node of the layer is an 

adaptive node having following the node function 0𝑖
4 = 𝑤𝑖

∗𝑥𝑓 = 𝑤𝑖
∗(𝑝𝑖𝑥 + 𝑞𝑖𝑦+ 𝑟𝑖). 

Here, {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} are the set of variables. This set variable is nominated as the consequent 

parameters as 

0𝑖
5 =∑ 𝑤𝑖

∗𝑥𝑓 =
∑ 𝑤𝑖𝑓𝑖

∑ 𝑤𝑖𝑖𝑖

 
(2.34) 

The final layer is called output layer of ANFIS. The final layer obtains the inputs form 

the previous layer. After that, this layer is converted the fuzzy classification outputs into 

a binary (crisp) but this is not non-adaptive layer. The structure of ANFIS is showed in 

Figure 2.7. The total output is calculated by summing all signal received from the nodes. 

ANFIS is one kind of neural network that shows better learning and estimation 

capabilities (Jang, 1993). In the power coefficient prediction or estimation, there are 

various artificial intelligences. Artificial neural networks (ANN) are user-friendly tools 

which are able to learn the mathematical mapping between input and also output variable 

of nonlinear system. Petković et al. (2013) applied adaptive neuro-fuzzy for power 

coefficient estimation. Tip-speed ratio and pitch angle were considered for power 

coefficient estimation. They found that the optimal power coefficient was around 0.36. 
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Rajakumar and Ravindran (2012) determined the power coefficient and lift and drag 

coefficient for various airfoil (NASA) using computational fluid dynamics. They showed 

that the power coefficient level was higher when the drag coefficient was set to zero and 

correction of tip loss factor was set to be a constant. Shamshirband et al. (2014) used 

support vector regression (SVR) based on kernel function for estimating power 

coefficient and minimizing the generalization error bound. They found similarities in the 

results of ANFIS and ANN. Sedaghat and Mirhosseini (2012) implemented Blade 

Element Momentum theory (BEM) for power coefficient of 300kW HAWT technology 

in the province of Semman in Iran. They obtained the maximum power coefficient of 0.51 

when tip-speed ratio was up to its optimum value of 10.  

 

2.4.2 Nonlinear Autoregressive Neural Network 

The application of time series has been characterized by chaotic wind speed. The linear 

mathematical model is very complex to determine the wind prediction as wind varies 

randomly in real environment. So, the fleeting transient and the higher variation wind 

speed needs to be predicted by nonlinear model as Eq. (2.35). For this, Nonlinear 

Autoregressive Neural Network (NARNN) can be used for effective nonlinear time series 

forecasting. The NARNN can be defined as given in Refs. (López et al., 2012; Nyanteh 

et al., 2013). 

𝑦(𝑡) = 𝑓 [𝑦(𝑡− 1),𝑦(𝑡 − 2),𝑦(𝑡 − 3),… . . . 𝑦(𝑡 − 𝑛)] + 𝜖(𝑡) (2.35) 

Where y is the data series of wind speed at time, the input delay of wind speed series 

𝑛 and 𝑓 denotes a transfer function. The training of the neural network aims to estimate 

the function by means of the optimization of the network weights and neuron bias. The y 

series of wind speed has been determined by approximation of the term 𝜖(𝑡) which stands 
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for error tolerance. With endogenous input of NARNN can be expressed as Eq. (2.36) 

given in Refs. (Al-allaf & AbdAlKader, 2011; Ruiz et al., 2016) 

�̂�(𝑡) = 𝑓 [𝑦(𝑡− 1), 𝑦(𝑡 − 2),𝑦(𝑡 − 3),… . . . 𝑦(𝑡 − 72)] + 𝜖(𝑡) (2.36) 

where delay of input 𝑛 = 72. NARNN consists of one input layer, one or more hidden 

layer(s) and one output layer. NARNN is dynamic and recurrent with connection of 

feedback as shown in Figure 2-12. Both hyperbolic tangent (tansig), Eq. (2.37) and 

sigmoid (logsig), Eq. (2.38) function have been implemented using MATLAB to compare 

the network accuracy for wind speed forecasting. To obtain better performance from the 

network, topology of NARNN was optimized by trial and error. It should be noted that, 

the system will be complex by an increased number of neurons. Levenberg-Marquardt 

Backpropagation (LMBP) has been chosen as the only training algorithm of NARNN as 

it is fast and more accurate than other training algorithms (MathWorks®, 2016). In this 

study, ‘trainlm’ function of MATLAB has been used with defaults setting for the LMBP 

(Beale et al., 2010). 

𝑂𝑡𝑎𝑛𝑠𝑖𝑔 =
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
 

(2.37) 

  

𝑂𝑙𝑜𝑔𝑠𝑖𝑔 =
1

1+ 𝑒−𝑢
 

(2.38) 

 

 

Figure 2-12:  Nonlinear autoregressive neural network. 
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The wind speed is the most challenging for wind power generation by the wind turbine. 

The variation of wind speed is chaotic. Sometimes, wind turbine can be affected by high 

wind speed due to the production of wind power generation is stopped when wind speed 

is very high. The WSF is very important role for optimum planning and wind energy 

application. Basically, forecasting of wind speed can be divided into four time series 

categories: very short-term (VST), short-term (ST), medium-term (MT), and long- term 

(LT) forecasting. VST refers to less than 30-minutes-ahead of WSF. In real-time, wind 

turbine can be controlled by ST wind speed forecasting. Less than one-week to 1-day-

ahead resides in ST forecasting. Planning of load dispatch can be employed by ST 

forecasting. 6 hours to 1-day -ahead resides in MT wind speed forecasting, which helps 

to manage power system and secure operation of wind turbine. Lastly, LT forecasting is 

useful to optimize the operation cost and schedule maintenance (Azad et al., 2014; Z. Guo 

et al., 2012; Zhao et al., 2016). The wind speed forecasting is very difficult as the wind 

speeds are chaotic depending on the earth rotation and properties of topographica l 

condition (temperature and pressure). Methodologically, wind speed prediction can be 

classified into four groups defined as: physical, statistical, AI, and hybrid methods (Azad 

et al., 2014; Zheng et al., 2011). Among them, AI has been chosen for wind speed 

prediction in this study. This is due to no extra mathematical model needed for prediction, 

but instead it provides higher accuracy. 

Over the last number of years, ANN has been proved to be a promising technique for 

pattern reorganization, assessment of energy and time series prediction. There are several 

ANN types for the application of time series forecasting such as NARXNN, NARNN, 

and Recurrent Neural Network (RNN). In this study, NARNN has been used to execute 

wind speed forecasting for three different areas: Kuala Terengganu, Melaka, and Kuantan 

in Malaysia. 
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The most effective way of long-term WSF has been found to be AI methods, because 

they do not require extra mathematical models other than their own universal algorithm 

for future time series prediction. To authors' best collection of information, usage of 

NARNN with two different transfer functions is unreported till date in the field of wind 

speed forecasting. Thus, this study analyses the potentiality of NARNN with different 

statistical analysis. Although implementation of NARXNN was found in several studies, 

NARNN has been adopted here, because it predicts the time series without any exogenous 

variable. Therefore, NARNN and NARXNN with two different transfer functions namely 

“tansig” and “logsig” have been used in this study to find the most suitable settings of the 

NARNN, since both transfer functions are greatly used for backpropagation neural 

network types. 

 

2.4.3 Nonlinear Autoregressive Exogenous Neural Network 

The nonlinear autoregressive with eXogenous input is predict time series which is 

proposed by Lin et al. (1996). For this, NARXNN can be used for effective nonlinear 

time series forecasting. The time series of NARXNN can be defined as in Eq. (2.39) (Ruiz 

et al., 2016). 

𝑦(𝑡) = ℎ(𝑥(𝑡 − 1),𝑥(𝑡 − 2), . . , 𝑥(𝑡 − 𝑘), 𝑦(𝑡 − 1),𝑦(𝑡− 2 +), … . , 𝑦(𝑡 − 𝑝))

+ 𝜖(𝑡) 

(2.39) 

 

where past value p is predicted time series y(t) and it has another external time series 

which is defined as x(t). The dimension of the external time series x(t) is single or 

multidimensional. The NARXNN prediction is based on the last output values with 

exogenous input for future values estimation. In this study, wind speed is used as input 

time series at time t-1, y(t-1) and temperature (Di Piazza et al., 2016; Lydia et al., 2016) 

which is used as exogenous input at time t-1, x(t-1). The single output is y(t). The 
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NARXNN and NARNN are almost similar. Temperature is used as an external input in 

NARX. Figure 2-13 shows the architecture of NARXNN. 

 

 

Figure 2-13: The NARX neural network. 

 

2.4.4 Performance Analysis Criteria 

For the proposed AI and nature nature-inspired algorithms model evaluation, different 

statistical indicators are used as shortly reviewed in the following section (W. Chong et 

al., 2016). 

 

2.4.4.1 Root Mean Square Error  

The root means square error (RMSE) is crucial for every model. Based on the RMSE, 

it can be observed for any model or design. Basically, the RMSE recognizes the model 

accuracy by positive value difference between predicted and measured. It is defined as 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖𝑝 −𝑃𝑖𝑀)

2

𝑛

𝑛=𝑖

 

  

(2.40) 

where 𝑃𝑖𝑝 is the predicted value by the techniques of ANFIS,  𝑃𝑖 is the measurement value 

of the system and the total number of testing data is represented 𝑛 . Small value of RMSE 

represents the accuracy of the model. It can be approximated close to zero. For ideal case, 

it should be zero. 
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2.4.4.2 Coefficient of Determination  

The linear relationship between measured and predicted values is provided by 

coefficient of determination 𝑅2.The 𝑅2 is defined as 

𝑅2 = 1 −
∑  (𝑃𝑖𝑝 −𝑃𝑖𝑀)

2𝑛
𝑛=𝑖

∑  (𝑃𝑖𝑝 −𝑃𝑖𝑀.𝐴𝑣𝑔)
2𝑛

𝑛=𝑖

 
 
(2.41) 

where, 𝑃𝑖𝑝 and 𝑃𝑖𝑀 are the predicted/estimated and measured value respectively.  

2.4.4.3 Mean Absolute Error 

To obtain a satisfactory accuracy using NARNN and thus to select potential areas for 

further wind turbine installation. The accuracy of wind speed forecasting can be 

determined by Eq. (2.41) and Eq. (2.42). Here, two indicators have been used namely, 

MAE and MAPE for the long-term WSP of this study (Madsen et al., 2005; Santamaría-

Bonfil et al., 2016). 

MAE expressed as (Foley et al., 2012)  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑅𝑤𝑠 −𝑃𝑤𝑠 |

𝑛

𝑖=1

 
 
(2.42) 

 

2.4.4.4 Mean Absolute Percentage Error 

MAPE expressed as (D. Liu et al., 2014)  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑅𝑤𝑠 − 𝑃𝑤𝑠|

𝑅𝑤𝑠
× 100

𝑛

𝑖=1

 
 
(2.43) 

where 𝑅𝑤𝑠 and 𝑃𝑤𝑠 is the real and predicted of wind speed respectively and n is defined 

by the number of data. 

However, no study has not yet explored the effect of different activation functions in 

time series networks to find the most effective one. It is known that activation function is 

a core component in any neural network model, because they add nonlinearity and enable 

the network to converge during backpropagation. So, if one activation function is better 
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than the other, it would significantly enhance the time series prediction performance of 

the network by enhancing the derivative and thus the converging performance.  This is 

why the contribution of this study is that it examined the performance of two activation 

functions – hyperbolic tangent sigmoid (tansig) and logistic sigmoid (logsig) when used 

in different time series networks such as NAR and NARX with different time series 

datasets but with same network parameters and architectures. Such analysis will reveal if 

any of the activation functions consistently perform better than the other in different 

conditions, so that future researchers choose the proper activation functions while 

conducting neural network-based time series forecasting tasks. 

. To find out the best combination of blade parameters provides maximum power 

coefficient using ACO, ABC and PSO. An ANFIS is used to investigate the effectiveness 

of these nature-inspired algorithms by comparing the results predicted from ANFIS with 

the results obtained from nature-inspired algorithm. An endeavour is prepared for 

retrieving correlation between 𝐶𝑝 and best combination of optimized blade parameters 

such as lift and drag ratio, blade radius, tip speed ratio, solidity ratio and chord length of 

blade of HAWT. 

Pitch angle control of WT has been considered as a very well accepted method to 

improve the power quality of wind turbine generator (WTG). A proposed pitch angle 

control strategy based on PID controller parameter’s optimization using ACO algorithm 

is stable output power of WT in full load region of wind speed. PID controller is designed 

in this study for pitch angle control because of its simplicity and effectiveness. PID 

controller parameters are optimised using nature inspired optimization method, i.e. ACO 

and its the effectiveness are compared with trial and error method of PID and Fuzzy-PID. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Methodology Overview  

In this chapter, the research methods that were performed to obtain the desired 

objectives are listed here. The main objective of this research, is to find blade optimal 

parameters of HAWT for maximum power coefficient using ACO, PSO and ABC and 

ANFIS has used for power coefficient prediction. To catch on effectiveness of activation 

function (tansig and logsig) of NARNN and NARXNN have used long-term wind speed 

forecasting in Malaysia. An optimization of PID controller parameters using ACO 

algorithm is carried out for pitch angle controlling in WTG power obtains within rated 

power of WTG. 

In order to achieve the above objectives, this research has mainly focused on applying 

computational method instead of experimental method because computational method 

able to verify with previous research and also able to provide decent optimizat ion, 

prediction and controlling of wind turbine model.  With the use of robust computationa l 

method, the research cost can be greatly reduced while maintaining the decency of the 

predicted results as compared to experimental work. It effectively reduces the engineer ing 

cost if different parameters were to be tested out in preliminary benchmark phase before 

moving into real-time prototype testing with any experimental lab work. 

Throughout this research, different types of method were carried out in different phase 

to achieve different goals to obtain the results desired. The methods that were being 

applied in this research were MATLAB/Simulink modelling, numerical computationa l 

simulation analysis and data extraction and analysis. 

The project is started with developing dynamic modeling of the rotor and blade section 

of the wind turbine, wind speed forecasting and pitch angle controlling. A simula t ion 
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algorithm characterizing the behavior of these sections is developed using finite 

difference methods and implemented within the MATLAB environment. Nature-inspired 

algorithms is used to search for a value of a certain response function of the wind turbine 

to develop the accurate model and controlling. These algorithms are ABC, PSO, and 

ACO. AI namely ANFIS, NARNN and NARXNN were apply for prediction and 

forecasting of power coefficient and wind speed respectively.  

 

3.2 Modeling and Simulation Parameters Setting 

3.2.1 Optimization and Prediction Process  

Modeling, optimization and prediction of wind turbine blade parameters are 

momentous to determine the reliability and optimal efficiency of wind turbine power. The 

optimization process can be used to find the maximum value of the objective function, in 

this case is the power coefficient of the blade. The overview of the system is presented in 

Figure 3-1. At initial stage, the mathematical modeling of power coefficient of wind 

turbine has been embedded from Eq. (2.1) to Eq. (2.14). The Eq. (2.10) is the objective 

function which has five input variable parameters namely, blade radius, tip-speed ratio, 

lift to drag ratio, solidity ratio, and chord length. The parameter setting is selected from 

experimental database from airfoil S822 NREL for 10kW rated wind turbine model. In 

all simulations for power coefficient 𝐶𝑝, the parameter setting is as listed in Table 3-1. 

For the optimization, the input variables are selected from lower boundary to upper 
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Figure 3-1: Block diagram of blades parameters optimization and prediction 
methodology. 

 

Table 3-1: Variable input parameters for optimization process. 

Parameters Input values range of 

Input 1 Tip-Speed Ratio 3 to 10 (Sedaghat & Mirhosseini, 2012) 

Input 2 Rotor Radius 1 to 5 (Tangler & Somers, 1995) 

Input 3 Lift to Drag Ratio 1 to 110 (Tangler & Somers, 1995) 

Input 4 Solidity ratio 0.01 to 0.45 (C.-J. Bai et al., 2016) 

Input 5 Chord Length 0.01 to 0.45 (Philippe Giguere & Selig, 1997) 

 

The optimal efficiency of HAWT is formulated with respect to ABC, ACO and PSO 

algorithms to optimized blade parameters of wind turbine. Important point of 

optimization processing is proper input variable data selection. In this investigation, the 

input variable data selection has been obtained from airfoil of S822 of NREL (Tangler & 

Somers, 1995) (P Giguere & Selig, 1999) (Somers & Maughmer). The flow parameters 

for S822 airfoil are trained using natural inspired algorithms (ABC, PSO and ACO). The 

natural inspires algorithms code is created in MATLAB environment. The input 

parameters such as blades radius, tip-speed ratio, lift to drag ratio, solidity ratio and chord 

length is feed into the NIA code are to be optimized. Table 3-1 shows the parameters 
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considered as input parameters to optimize the input parameters and also used to calculate 

the power coefficient of HAWT blade. 

In this study, ANFIS has been designed for power coefficient prediction of wind 

turbine. The optimization result 𝐶𝑝  of HAWT blades has been investigated for prediction. 

The computational performance of ANFIS is applied in 𝐶𝑝 optimization data and find out 

the effectiveness of three algorithms.  

 

3.3 Wind Speed Forecasting 

Malaysia is a country which is located in the south-east part of Asia. It is surrounded 

by Thailand, Indonesia and Brunei borders. In Malaysia, total coastline area is about 4675 

km which is the 29th longest in the world (Ahmad & Tahar, 2014). For this reason, 

Malaysia concede the importance of Renewable Energy (RE) as a source of generating 

electricity instead of fuel. A program known as Small Renewable Energy Power program 

(SREP) had embraced for boosting up the evolution of RE but unfortunately the results 

were not acquired the way those should be. SREP scheme breakdown to grow the claim 

of RE in the national power generation mix by 2010. After that, Malaysian parliament 

passed Renewable Energy Act 2011(Act 725) (a national energy policy) in 2011 for 

implementation (Albani & Ibrahim, 2017) (Hashim & Ho, 2011; Khor & Lalchand, 2014; 

Sovacool & Drupady, 2011). In the year 2015, the wind power production target was 985 

MW as reported. However, it produced around 400 MW in early year of 2015. In addition, 

the success percentage (50 %) was fulfilled to the original target (Mohammad, 2014) as 

reported that the target was impossible to achieve. Other than that, the target for year 2015 

was 985 MW, while 2020 and 2030 are projected to contribute 2080 MW and 4000 MW, 

respectively. In Malaysia, wind energy project employed only for education research 

purpose.  
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The climate of Malaysia is categorized by four seasons: first inter monsoon (April), 

southwest monsoon (Mid-May to September), the second inter-monsoon (October), and 

northeast monsoon (November to March) (Azad et al., 2014; Masseran et al., 2012). In 

Malaysia, the wind flow is uniform and the maximum wind flow occurs in the afternoon 

and the minimum wind flow occurs before sunrise. Figure 1 shows average wind speed 

each month in Kuala Lumpur, Melaka, and Kuantan. The average wind speed is between 

6-12 km/h of all places. The wind data with one-hour interval have been collected from 

the Malaysian Meteorological Department (Table 3-2) over a period of 4 months from 

January to April in 2017. 

 
Figure 3-2: Average wind speed in three regions. 

 

Table 3-2: Geographical coordinate and altitude of three wind station 

Wind station Latitude Longitude Altitude (m) 

Kuala Terengganu 5°23′N 103°06′E 5.2 

Kuantan 3°47′N 103°13′E 15.3 

Malacca 2°16′N 102°15′E 8.5 

 

One objective of this study is to perform 1-month-ahead WSF for three different 

regions in Malaysia. The first three months of wind speed data have been used for training 

and last one-month data have been used for testing the accuracy of NARNN. The process 

of WSF by NARNN is shown in Figure 3-3. 
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Figure 3-3: LT wind speed forecasting using NARNN and NARXNN. 

 

3.4 Pitch Angel Control of Wind Turbine 

Design and development of pitch angle control of WT system are important and these 

can determine the reliability and efficiency of WT power. It is to minimize overload effect 

of structure and power overflow of WT. Mathematical modeling of WT is important part 

to develop vital control system with PID controller. The overview of the system in 

MATLAB/ Simulink is presented in Figure 3-4. 

 

Figure 3-4: Wind turbine MATLAB/Simulink model. 
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At initial stage, the mathematical modeling of wind turbine and generator blades have 

been embedded from Eq. (2.1) to Eq. (2.9) and Eq. (2.14) to Eq. (2.17) The wind speed 

which is the vital input parameter in the system, is simulated by the Eq. (2.18) shown in 

Figure 2-4. 

The parameters of wind turbine are shown in Table 3-3. The DC servo motor has been 

used to maintain angular position of WT blade by the Eq. (2.21). Two 

MATLAB/Simulink functions are used and the functions are operated for almost similar 

task. The MATLAB function 1 is used as conditional function so that wind speed remains 

between cut-in speed and nominal wind speed. On the other hand, the MATLAB function 

2 control the wind speed between nominal wind speed to cut-out wind speed. The 

reference mechanical power 𝑃𝑟 is the desired WT power. The error signal can be obtained 

from reference power to output power of WTG. PID control block obtains error signal 

when the wind speed is more than the nominal speed. The PID controller parameters will 

be optimized using ACO algorithm. The PID controller send the signal to the servo motor 

as a pitch angle. Pitch angle is the input for wind turbine generation system.  

Table 3-3: Parameters of wind turbine system (Civelek et al., 2016). 

 

 

 

 

 

 

 

Wind turbine parameters 

Parameters Value Unit 

Nominal output power 500 kW 
Cut-in wind speed 3 m/s 

Nominal wind speed 12 m/s m/s 
Cut-out wind speed 25 m/s m/s 

Rotor diameter 48m m 

Sweep area 1840𝑚2 𝑚2  

Blade number 3  
Nominal rotor speed 30 rpm rpm 

Rotor speed range 10-30rpm rpm 
Gear box rate 01:50  

Generator number 2  

Generator type PMSG  
Generator nominal 

output 
250 kW 

Generator nominal 
cycle 

1500 rpm 

Generator voltage 690 V V 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Optimization of Blade Parameters Using ACO, PSO, and ABC 

4.1.1 Convergence Graph 

Convergence rate is one of the key factors that determine the reliability of an algorithm. 

In maximization problem, it is usually regarded as the higher the rate of convergence, the 

better the algorithm, if only the outcomes converge and fall within the acceptable range. 

As discussed before, the natural inspired algorithm produces the highest maximized 

objective function (𝐶𝑝) values for every case, and thus, directly ascertaining its accuracy. 

In this section, the manner of how fast the algorithm converges and attains its highest 

maximized value in sequence of number of iterations is investigated and discussed.  

Figure 4-1 shows the convergence progress for all algorithms with 20 populations. The 

maximum iteration has been varied from 100, 200, 300, 400, 500, and 600 iterations. It 

observed that PSO has achieved a speedy convergence at the initial stage (achieved in 

less than 20 iterations) for all number of iterations. However, the searching for this 

algorithm tend to become stagnant after less than 10 iterations, as can be seen in Figure 

4-1 (b – f).  Once the search is stagnant, all particles tend to gather together around the 

global minimum, and thus, the global best is not improved. For ACO, it can be observed 

the search started at the lower value of power coefficient in comparison to ABC and PSO. 

However, the ants kept on searching the optimum value in less than 150 iterations, which 

performed much better than PSO, but became stagnant or no significant changes towards 

the end of maximum iteration. For ABC, the searching pattern shows acceleration in the 

convergence speed. For all cases, the accelerated in the convergence speed can be seen in 

less than 250 iterations but became stagnant towards the end of maximum iteration. In 

terms of 𝐶𝑝  value, ABC has performed well in obtaining the highest value for all cases 
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From Figure 4-2, the convergence graphs are obtained with 50 populations for all 

algorithms with the iteration 100, 200,300 400, 500 and 600. The pattern for all the 

convergence graphs for PSO is it is quickly stable between 10 to 20 iterations, as shown 

in Figure 4-2 (a-f). For the ACO, it can be noticed that the convergence graph is slightly 

accelerated after 50 iterations. Both PSO and ACO are not showing any significant 

increment from 50 iterations to really the maximum iteration.  As shown in Figure 4.2, it 

can be observed that the PSO and ACO are performed in almost similar pattern. On the 

other hand, the ABC algorithm has achieved the maximum power coefficient in compare 

with PSO and ACO. The population in ABC is kept on searching the optimum value in 

less than 250 iterations. With 50 populations, the 𝐶𝑝  obtained is almost similar to the 

result with 20 populations. 

Figure 4-3 shows the convergence progress for all algorithms with 100 populations. 

The maximum iteration has been varied from 100, 200, 300, 400, 500, and 600 iterations. 

It can be observed that PSO has achieved a speedy convergence at the initial stage 

(achieved in less than 20 iterations) for all graphs. For ACO algorithm, it kept on 

searching for the optimum value within 100 iterations except for Figure 4-3(f). In Figure 

4-3(f), the searching became constant after 250 iterations onwards. It can be noted that 

the value of objective function for both algorithms is almost similar, value as shown in 

Figure 4-3(a-f). For ABC, the searching pattern shows acceleration in the convergence 

graph. This acceleration pattern can be seen in less than 250 iterations for all graphs but 

became stagnant towards the end of maximum iteration. For ABC, it can be observed the 

search started at the lower value of 𝐶𝑝 in comparison to ACO and PSO.  In terms of 𝐶𝑝 

value, the consistency of the ABC algorithm in comparison to the others is presented in 

Table 4-1 to Table 4-2. It signifies that the proposed method is a better algorithm in terms 

of accuracy as well as consistency, reported with the highest maximized value (0.5295) 

among all the compared algorithms (ACO and PSO). 
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Figure 4-1: Convergence curve of different algorithms (ABC, ACO and PSO) with 

20 populations. 
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Figure 4-2: Convergence curve of different algorithms (ABC, ACO and PSO) with 

50 populations. 
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 Figure 4-3: Convergence curve of different algorithms (ABC, ACO and PSO) with 

100 populations. 
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4.1.2 Optimized Parameters of the Wind Turbine Blade 

From Table 4-1 to Table 4-3, it can be observed the highest maximized objective 

function is obtained by the ABC algorithm. From Table 4-1 the highest value of 𝐶𝑝 = 

0.5295 has been obtained by ABC algorithm with the population size, maximum iteration, 

and the computational time is 100, 500, and 1.1 seconds, respectively. The parameters 

obtained for this 𝐶𝑝 value is listed in Table 4-4. 

Table 4-2 shows the maximum power coefficient is obtained by ACO algorithm, i.e. 

𝐶𝑝 = 0.52 with the best input parameters as shown in Table 4-4 where the population size, 

maximum iteration, and the computational time is 100, 500, and 2 seconds, respectively. 

Table 4-3 shows the maximum power coefficient is obtained by PSO algorithm, i.e. 𝐶𝑝  =

 0.52 with the best input parameters as shown in  Table 4-4 where the population size, 

maximum iteration, and the computational time is 100, 500, and 2 seconds, respectively.  

 

Table 4-1: The best inputs combination for optimal power coefficient using ABC. 

 
 
 

Tip-

speed 
ratio 

Blade 

radius 

Lift to 

drag ratio 

Solidity 

ratio 

Chord 

length 

Power 

coefficient 

20/100 7.4172 3.1133 109.5157 0.1988 0.0263 0.5194 
20/200 6.0857 3.0950 90.7939 0.3787 0.1407 0.521 
20/300 5.8487 4.9986 109.6556 0.0923 0.0844 0.522 
20/400 5.8397 4.3964 107.3829 0.1792 0.1554 0.5201 
20/500 5.9943 4.3161 109.5036 0.3746 0.1108 0.5204 
20/600 5.8928 4.5605 108.8671 0.4287 0.7379 0.5205 
50/100 5.7377 2.8687 109.7278 0.4364 0.3472 0.5222 
50/200 5.3950 4.8932 109.2265 0.1239 0.4086 0.5230 
50/300 5.6318 4.2792 103.7974 0.3454 0.5742 0.5200 
50/400 5.5327 4.3969 109.9993 0.2534 0.3456 0.5229 
50/500 5.7349 4.2155 109.1837 0.1174 0.0579 0.5224 
50/600 5.4482 4.3330 109.9715 0.4114 0.0882 0.5264 
100/100 5.7022 4.4488 108.8699 0.3427 0.6134 0.5225 
100/200 5.2578 4.2799 109.8694 0.3986 0.4413 0.5252 
100/300 5.4233 3.8321 109.1304 0.3364 0.5265 0.5273 
100/400 5.8911 4.7326 108.2643 0.3669 0.2716 0.5244 
100/500 5.4479 4.0164 109.4848 0.3885 0.1939 0.5295 

100/600 4.8203 4.9185 109.7685 0.1102 0.3148 0.5280 

 

 

Parameters 

Population  

Size/ Max. 

Iteration 
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Table 4-2: The best inputs combination for optimal power coefficient using ACO. 

 

 
 

Tip-

speed 

ratio 

Blade 

radius 

Lift to 

drag ratio 

Solidity 

ratio 

Chord 

length 

Power 

coefficient 

20/100 6.0035 4.6831 109.7894 0.2461 0.0585 0.5199 

20/200 6.0066 4.5006 109.2554 0.3341 0.0348 0.5199 
20/300 6.0046 4.0498 109.7711 0.4302 0.2544 0.5199 
20/400 6.0001 4.6219 109.5373 0.1623 0.0486 0.5199 

20/500 6.0022 4.8635 109.9023 0.3353 0.2100 0.5200 
20/600 6.0048 4.0759 109.9909 0.4479 0.5094 0.5199 

50/100 6.0232 2.1870 109.795 0.3245 0.0355 0.5198 
50/200 6.0180 4.3231 109.8697 0.3050 0.1210 0.5199 
50/300 6.0076 3.5430 109.9974 0.1563 0.1184 0.5199 

50/400 6.0053 4.4361 109.961 0.3522 0.1559 0.5200 
50/500 6.0046 3.8912 109.854 0.1849 0.0109 0.5199 

50/600 6.0010 4.8231 109.862 0.2622 0.2556 0.5200 
100/100 6.0033 4.7002 109.9547 0.3233 0.1534 0.5200 
100/200 6.0022 4.7039 109.7430 0.3955 0.4027 0.5199 

100/300 6.0005 3.3761 109.7601 0.2001 0.0141 0.5199 
100/400 6.0053 2.9701 109.9361 0.2822 0.0583 0.5200 

100/500 6.0032 4.3089 109.9935 0.0539 0.0232 0.5200 

100/600 6.0067 4.8288 109.9829 0.2424 0.1600 0.5200 

 

 

Table 4-3: The best inputs combination for optimal power coefficient using PSO. 

 

 
 

Tip-

speed 

ratio 

Blade 

radius 

Lift to 

drag ratio 

Solidity 

ratio 

Chord 

length 

Power 

coefficient 

20/100 6.0001 4.9980 109.9996 0.3787 0.0545 0.5200 

20/200 6.0003 5.0000 109.9900 0.4500 0.6918 0.5176 
20/300 6.0000 5.0000 110.0000 0.3877 0.0010 0.5200 
20/400 6.0000 4.9989 109.9998 0.4500 0.0010 0.5200 

20/500 6.0000 5.0000 110.0000 0.4500 0.0010 0.5200 
20/600 6.0000 5.0000 110.0000 0.4500 0.0010 0.5200 

50/100 6.0000 4.5.0000 110.00 0.4500 0.0010 0.5200 

50/200 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 
50/300 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 

50/400 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 
50/500 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 

50/600 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 
100/100 6.0000 4.9999 110.00 0.4500 0.0010 0.5200 
100/200 6.0000 4.7290 109.997 0.4113 0.0010 0.5200 

100/300 6.0000 5.0000 110 0.4500 0.0010 0.5200 
100/400 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 

100/500 6.0000 4.9845 110.0000 0.4500 0.0010 0.5200 
100/600 6.0000 5.0000 110.00 0.4500 0.0010 0.5200 

 

 

Parameters  

Population  

Size/ Max. 

Iteration 

Parameters 

Population  

Size/ Max. 

Iteration 
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Table 4-4: Optimal value of input parameters of ACO, PSO and ABC algorithms. 

Optimal parameters ACO PSO ABC 

Tip-speed ratio 6.0032 6.00 5.4479 

Blade radius 4.3089 4.50 4.016 

Lift to drag ratio 109.9935 110.00 109.4848 

Solidity ratio 0.0539 0.45 0.3885 

Chord length 0.0232 0.0010 0.193 

 

4.1.3 Computational Time 

Computational time refers to the time taken for the algorithm to finish from the first 

until the maximum number of iterations. The computational time for all algorithms is in 

second (s). The time taken for all algorithms to complete the maximum iteration for 

different number of populations is shown in Figure 4-4 to Figure 4-6 and these values can 

be summarized in  Table 4-5. It can be observed that the computational time of ABC 

algorithm has taken slightly higher than to ACO and PSO. 
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Figure 4-4: The computational time in seconds for natural inspired algorithms where 

number of populations 20 with different iterations. 
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Figure 4-5: The computational time in seconds for natural inspired algorithms where 

number of populations 50 with different iteration. 
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Figure 4-6: The computational time in seconds for natural inspired algorithms where 

number of populations 100 with different iteration. 
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Table 4-5: Computation time of different algorithms (ACO, PSO, and ABC) with 

different population size (20, 50, and 100). 

Algorithms 
No. of 

iteration 

Computational time(s) for population 

20 50 100 

ACO 

100 0.22 0.32 0.59 

200 0.63 0.82 1.25 

300 1.11 1.55 2.25 

400 1.681 2.40 3.25 

500 2.52 3.51 4.50 

600 4.00 4.52 6.00 

PSO 

100 0.25 0.2 0.39 

200 0.27 0.62 0.75 

300 0.40 0.58 1.25 

400 0.50 0.58 1.5 

500 0.95 1.00 2.1 

600 0.95 1.25 2.1 

ABC 

100 0.35 0.70 1.19 

200 0.65 1.15 2.25 

300 1.02 2.00 3.40 

400 1.23 2.27 4.50 

500 1.95 3.34 5.50 

600 2 4.00 6.5 

 

 

4.1.4 Prediction of Power Coefficient Using ANFIS 

The best input combination of ABC, ACO and PSO algorithms from Table 4-1 to 

Table 4-3 (highlighted rows) are used in ANFIS for power coefficient prediction. To 

achieve the goal, 60% data are used for training and 40% data used for testing. The 

predicted power coefficient training and testing values using ANFIS model for a wind 

turbine values are presented in Figure 4-7(a) and Figure 4-7(b), respectively. In Figure 

4-8(a) and Figure 4-8(b) the training and testing values using ANFIS model for a power 

coefficient of wind turbine are shown here. Figure 4-9 shows the prediction power 

coefficient values obtained from ANFIS model and ABC optimization of Eq. (2.13). 

Figure 4-9(a) provides the results for training data set. It can be noticed that most of the 

point drop along the diagonal line. Figure 4-9(b) shows the testing data set where most of 
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the points are very close to diagonal line. It can be concluded that the predicted values 

ANFIS are very close with the calculated by ABC algorithm. 

As seen in the  Figure 4-7 to Figure 4-9 the coefficient determination (𝑅2) are very 

high. Therefore, the ANFIS model used for the study has a promising 𝑅2 with the wind 

turbine model. Note that the 𝑅2 is higher for the ABC-ANFIS power coefficient’ shown 

in Table 4-6, that translates to a better correlation. 

Figure 4-10 illustrate the predicted and measured values of ACO algorithm using 

ANFIS model for a power coefficient of wind turbine. It can be observed that, the 

predicted and measured value are almost similar with the value of is 0.5175 and 0.52, 

respectively. Figure 4-11 shows the predicted by ANFIS and measured values by PSO of 

0.5135 and 0.52 respectively. An ANFIS method is very supportive for faster prediction 

of power coefficient with blades parameters. Figure 4-12 shows the wind power 

coefficient comparison between predicted and measured values ABC algorithm using 

ANFIS technique. From Figure 4-12, the measured (optimized) values (𝐶𝑝 = 0.529) are 

very close to the predicted valued 𝐶𝑝 = 0.5215, i.e. the variation is small.  

 Figure 4-13 shows the predicted power coefficient comparison between ACO, PSO, 

and ABC values. The prediction of power coefficient of ABC algorithm value is higher 

as compared to ACO and PSO algorithms. Thus, the proposed ANFIS model has obtained 

high accuracy in predicting wind turbine power coefficient.  
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(a) Training data set (b) Testing data set 

 

Figure 4-7: Power coefficient prediction by ANFIS and optimized (ACO) 

: (a) Training data set and (b) Testing data set. 

  
(a) Training data set (b) Testing data set 

Figure 4-8: Power coefficient prediction by ANFIS and optimized (PSO) 

: (a) Training data set and (b) Testing data set. 
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(a) Training data set (b) Testing data set 

 

Figure 4-9: Power coefficient prediction by ANFIS and optimized (ABC) 

: (a) Training data set and (b) Testing data set. 

 
 

 

Figure 4-10:Predicted (ANFIS) versus optimized (ACO) of power coefficient. 
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Figure 4-11: Predicted (ANFIS) versus optimized (PSO) of power coefficient. 

 

 

 

Figure 4-12: Predicted (ANFIS) versus optimized (ABC) of power coefficient. 
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Figure 4-13: Prediction of ACO, PSO, and ABC. 

Table 4-6: Performance of the established training and testing of ANFIS models for 

power coefficient based on statistical indicators. 

Model Training Testing 

RMSE(W/𝐦𝟐) 𝑹𝟐  RMSE(W/𝐦𝟐) 𝑹𝟐  

ABC-ANFIS 0.00654 0.999 0.363 0.9985 

ACO-ANFIS 0.00544 0.9989 0.814        0.997 

PSO-ANFIS 0.235 0.9711 1.911 0.9777 

 

Table 4-6 shows the results of the statistical analysis for proposed ANFIS model for 

both training and testing values. There are two statistical indicators that have been used 

to evaluate the proposed model performance, i.e. RMSE and 𝑅2. Noted that the units of 

RMSE and 𝑅2 are dimensionless respectively. Based on the results, the difference in 

RMSE and 𝑅2 values for training and testing are relatively small. Therefore, it delivers 

additional evaluation and verification on the suitability of proposed ANFIS model to 

estimate power coefficient. The investigation results recommended that the proposed 

ANFIS model can effectively be implanted for prediction for all cases of ABC, ACO and 

PSO algorithms optimization. Based on the ANFIS results, ABC algorithm shows better 
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accuracy both for optimization and prediction in comparison with ACO and PSO 

algorithms results. The ANFIS model has very small RMSE (0.363) during testing and 

the value is slightly higher (0.00654) in training of ABC-ANFIS model for power 

coefficient. It has been observed that the ANFIS model showed constantly good 

correlation throughout the testing and training. Therefore, the study results suggested that 

the proposed ANFIS model can effectively be embedded for prediction of for all cases of 

ABC, ACO and PSO algorithms optimization. Also, the ABC algorithms shows better 

accuracy in both optimization and prediction as compared to ACO and PSO algorithms. 

 

4.1.5 Validation of Power Coefficient Optimization and Prediction  

Table 4-7 shows that the validation of this present investigation with related literatures. 

Sedaghat and Mirhosseini (2012) carried out the investigation of 300-kW HAWT for 

aerodynamic design of province of Semnan. They used the BEMT for the blade "Airfo i l 

is RISØ-A1-18". The power coefficient was found to be 0.51 which was almost similar 

to my present investigation. Rajakumar and Ravindran (2012) optimized the power 

coefficient of wind turbine rotor using the blade "Airfoil NACA 4410" and "NACA 2415" 

by CFD analysis. The 𝐶𝑝 of the blade "Airfoil NACA 4410" and "NACA 2415 were found 

to be 0.48 and 0.45, respectively. The obtained power coefficients of both airfoils were 

slightly lower than the present investigation. Based on the supervisory control and data 

acquisition (SCADA) data, Dai et al. (2016) investigated the 𝐶𝑝 of wind turbines. The 

have discovered that the 𝐶𝑝 was 0.508 which was almost similar to my present 

investigation. Table 4-7 shows that the power coefficients of the present investigation are 

consistent and reliable with the findings of the other researchers. Therefore, it can be 

concluded that the power coefficient obtained from the literatures supports the results 

obtained in this research. 
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Table 4-7: Validation of this present investigation with related literatures. 

Subject Theory Blade Model Maximum 𝑪𝒑 

Present 

Investigation 

ABC algorithms 

Airfoil S822 

0.529 

ACO algorithms 0.52 

PSO algorithms 0.52 

ABC-ANFIS 0.5215 

ACO-ANFIS 0.5175 

PSO0-ANFIS 0.5135 

Validation 

BEMT (Sedaghat & 

Mirhosseini, 2012) 

Airfoil is 

RISØ-A1-18 
0.51 

CFD analysis (Rajakumar & 

Ravindran, 2012) 

NACA 4410 0.48 

NACA 2415 0.45 

SCADA system (Dai et al., 

2016) 
---------- 0.508 

  

 

4.2 Long-Term Wind Speed Forecasting 

Figure 4-14 and Figure 4-15 shows WSF of these places when using tansig and logsig 

transfer function of NAR and NARX respectively. From Figure 4-14 (a) and 4-15 (a) it 

can be seen that the tansig function results in greater accuracy in WSF (MAE 0.014, 

MAPE 14.79%, and RMSE 1.102) than logsig function (MAE 0.041, MAPE 16.78%, and 

RMSE 1.281) for Kuala Lumpur based on Table 4-9. The accuracy of tansig function 

(MAE 0.025, MAPE 19.27%, and RMSE 1.15) is more than the logsig function (MAE 

0.134, MAPE 28.84%, and RMSE 1.788) which can be shown in Figure 4-14(c) and          

4-14(d) for Kuantan. As shown in Figure 4-14(e) and 4-14(f), a better precision of tansig 

function (MAE 0.029, MAPE 10.79%, and RMSE 0.583) is obtained in comparison to 

logsig function (MAE 0.339, MAPE 11.03%, and RMSE 0.858) for Melaka. 
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Figure 4-14: Comparison of wind speed forecasting from proposed activation functions 

of NARNN methods at Kuala Lumpur, Kuantan and Melaka. 

Figure 4-15 shows a 1-month-ahead WSF at these places using tansig and logsig 

functions of NARXNN. For Kuala Lumpur, the performance of tansig function (MAE 

0.046, MAPE 14.22%, and RMSE 1.231) is slightly higher than the logsig function (MAE 

0.058, MAPE 12.04%, and RMSE 1.028), as shown in Figure 4-15(a) and 4-15(b). For 

Kuantan, as shown in Figure 4-15(c) and Figure 4-15(d), the accuracy of logsig function 

(MAE 0.880, MAPE 22.55%, and RMSE 1.485) is lower than tansig function (MAE 

0.550, MAPE 20.46%, and RMSE 1.212). For Melaka, the performance accuracy 

between two activation functions namely tansig and logsig are (MAE 0.434, MAPE 

11.23%, and RMSE 0.853) and (MAE 0.180, MAPE 15.15%, and RMSE 1.28), 
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respectively, with tansig function outperformed logsig function in terms of accuracy, as 

shown in Figure 4-15 (e) and 4-15(f). 

 

 

 
 

Figure 4-15: Comparison of wind speed forecasting from proposed activation functions 

of NARXNN methods at Kuala Lumpur, Kuantan and Melaka. 
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Figure 4-16: Correlation of coefficient of wind speed forecasting at Kuala Lumpur, 

Kuantan, and Melaka using both activation functions (tansig and logsig) of NARNN. 

The ratio of contraposition of predicted and measured values’ outcome can be defined 

as correlation of coefficient (𝑅) which is between -1 and 1. The R is presented as how 

well a regression model fits the data. The scattered values of predicted and measured wind 

speed have been shown in Figure 4-16. Two different activation functions of NARNN 

provides WSF results for these places. As expected, most of the predicted and measured 

values are around to the diagonal line in all cases. By using tansig function, the correlation 

coefficient in case of Kuala Lumpur, Kuantan, and Melaka were obtained as 0.9671, 

0.9463, and 0.9703, respectively. By using logsig function, the correlation coefficient of 

Kuala Lumpur, Kuantan, and Melaka were obtained to be 0.9503, 0.8606, and 0.9645, 

respectively. From Figure 4-17, the correlation coefficients from tansig-NARX function 

were found to be near value 1 (Kuala Lumpur: 0.9665, Kuantan: 0.9288, and Melaka: 

0.9780) whereby for logsig function, the correlation coefficients were more deviated from 

Univ
ers

ity
 of

 M
ala

ya



79 

value 1 (Kuala Lumpur: 0.9514, Kuantan: 0. 9115, and Melaka: 0. 9561). Based on above 

evaluation, the coefficient of correlation values for all cases were found in between 0.85 

to 0.97 which are almost near to 1. The tansig- NAR and tansig-NARX both functions 

display slightly better than the logsig-NAR and logsig-NARX for wind speed forecasting 

in all those places. 

 

 
 

Figure 4-17: Correlation of coefficient of wind speed forecasting at Kuala Lumpur, 

Kuantan, and Melaka using both activation functions (tansig and logsig) of NARXNN.  
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Figure 4-18: Success rate of test wind speed data for Kuala Lumpur, Kuantan, and 

Melaka using both activation functions (tansig and logsig) of NARNN. 

Figure 4-18 and Figure 4-19 show the success rates of the forecasted results where the 

y axis represents the number of instances i.e. number of test datasets and x axis represents 

the error in percentage. So, Figure 4-18 and Figure 4-19 mostly show how much test 

datasets (in percent) resides in low and high error region. It is noticeable that tansig 

function provides better success rates than logsig function for these places. At Kuala 

Lumpur, tansig-NAR provides the 85% success rate where the error percentage is 22%. 

While the logsig-NAR achieves 78% success rate at 20 percentages error. In Kuantan 

area, the tansig-NAR provide provides around 57% instances at 15% error while the 

logsig-NAR come around 55 % instances within 22% error. For instance, using tansig, 

success rates in case of Melaka comes around 95% at 29 percentage error. On the other 

hand, at 18% error, the instances of forecasting deliver 83%.  
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Figure 4-19 shows in terms of “percentage of instances” vs. “error bin in percentage”, 

for two activation functions of NARX. For instance, using tansig, success rates in case of 

Kuala Lumpur, Kuantan, and Melaka come around 85%, 64%, and 96% respectively. For 

instance, using logsig, success rates in case of Kuala Lumpur, Kuantan, and Melaka come 

around 76%, 53%, and 64% respectively. However, losig-NARX provide the percentage 

of instance is slightly higher than the tansig-NARX in Kuantan while the error percentage 

of tansig-NARX shows the better than logsig-NARX. It can be seen that tansig deliver ies 

better success rates than logsig for all three palaces. 

 

 
 

 

Figure 4-19: Success rate of test wind speed data for three different areas in 

Malaysia using both activation functions (tansig and logsig) of NARXNN. 
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Table 4-8: Model parameters of NARNN and NARXNN with tansig and logsig 
functions. 

 Areas 

NAR and NARX Neural Network 

Tansig Logsig 

Epoch 
Time 

(s) 
Performance Neuron Epoch 

Time 

(s) 
Performance Neuron 

 

NARNN 

Kuala 

Lumpur 
160 58 1.02 20 160 65 1.55 20 

Kuantan 160 55 1.21 20 160     65 1.39 20 

Melaka 161 62 1.34 20 160 71 2.11 20 

NARXNN 

Kuala 

Lumpur 
160 66 1.24 20 160 70 1.36 .20 

Kuantan 160 99 1.09 20 160 112 1.38 20 

Melaka 160 78 1.12 20 160 80 1.29 20 

 

Table 4-8 shows the key four parameters of NARNN and NARXNN namely epoch, 

time, performance and number of hidden neurons. In this study, epoch and number of 

neurons were fixed, where other two parameters were varied with input characterist ics, 

i.e. fluctuation of wind speed. For NARNN, the neural network performance of tansig 

function are 1.02, 1.21, and 1.34 for Kuala Lumpur, Kuantan, and Melaka, respectively. 

On the other hand, the logsig-ANN shows the higher performance 1.39 at Kuantan while 

the lower performance 2.11 delivers at Melaka. The tansig training function completed at 

the shortest time, i.e., 55s. The performance of tansig function has showed the lowest 

value of 55s for Kuantan in comparison with Kuala Lumpur and Melaka. In terms of the 

operation time, 65s is needed for logsig function for Kuantan and KL, which is lower than 

Melaka. For NARXNN, the performance of neural network of tansig function has showed 

the lowest value at 1.09 for Kuantan as compared with the other two areas. For Kuantan, 

Kuala Lumpur and Melaka, the neural network performance of logsig function are 1.38, 

1.36, and 1.29, respectively. By using tansig function, the operation time taken for Kuala 

Lumpur, Kuantan, and Melaka are 66s, 99 s, and 78s, respectively. For logsig function, 

the operation time of the same places are 70s, 112s, and 80s in that order. It can be 

concluded that based on the above discussion, not only the performance of the tansig 
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activation function is always made significant contribution assessment to the logsig 

function, but also at the operation time neural network. 

Table 4-9: Performance indicators of WSF. 

 Areas 

NAR and NARX Neural Network 

Tansig Logsig 

MAE 

(m/s) 
MAPE RMSE MAE (m/s) MAPE RMSE 

NARNN 

Kuala 

Lumpur 
0.014 14.79 1.102 0.041 16.78 1.281 

Kuantan 0.025 19.27 1.15 0.134 28.84 1.788 

Melaka 0.029 10.79 0.583 0.339 11.03 0.858 

NARXNN 

Kuala 

Lumpur 
0.046 14.22 1.231 0.058 12.04 1.028 

Kuantan 0.550 20.46 1.212 0.880 22.55 1.485 

Melaka 0.0317 9.53 0.833 0.434 11.23 0.853 

Three performance indicators are used to measure the accuracy of WSF for three 

different regions with two transfer functions of NARNN and NARXNN, as shown in 

Table 4-9. Firstly, by considering MAE, tansig function shows a better result in terms of 

MAE, i.e. 0.014 for KL   as compared with the other two wind stations. The logsig training 

function provides the best result with MAE of 0.041 for KL wind station in comparison 

to Kuantan and Melaka. MAE results of both tansig-NARNN and logsig-NARNN are 

found to be lower than MAE of 0.8 m/s, which was provided (Azad et al., 2014) for long-

term wind speed forecasting at Malaysia. Secondly, considering the MAPE, the lowest 

MAPE value was found for Melaka when using tansig function (MAPE of 10.79). In 

addition, the MAPE values of Kuala Lumpur and Kuantan are 14.79 and 19.27, 

respectively. The lowest MAPE value among these places when using logsig function is 

11.03 for Melaka station. Thirdly, by considering the RMSE, the tansig function provides 

a smaller value (RMSE of 0.583) for Melaka, whereby the other two areas show almost 

similar values of RMSE of around 1.15. Moreover, the logsig function shows the lowest 

RMSE value, i.e. 0.858 for Melaka. The RMSE value of Kuala Lumpur is almost similar 

to Kuantan (RMSE of around 1.788). For NARXNN, three performance indicators 

namely MAE (0.0317), MAPE (9.53), and RMSE (0.833) have showed lower values for 
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tansig in comparison to the logsig transfer function as shown in Table 4-9. From the Table 

4-9. It can be decided that the tansig function display lower error based on the RMSE, 

MAE and MAPE indicators for wind speed forecasting. 

In support of the above outcome, Table 4-10 shows the outcome of different studies 

that used both tansig and logsig activation functions for various forecasting tasks. It can 

be seen that the results of these studies also found tansig to be a better activation function. 

Therefore, it can be concluded that tansig activation function should be used in NAR and 

NARX neural networks to obtain a better accuracy on time series forecasting jobs. The 

primary reason is that logsig function is more prone to neuron-saturation. If an input value 

is large, logsig function makes the gradient close to zero, whereas tansig function provides 

much greater gradient. Therefore, for the same number of epochs, logsig function makes 

NARNN learn lesser than tansig function. This is why for the exact same epochs, 

topology, initial weights and other similar settings, tansig always provides a better 

accuracy than logsig function, as presented above. Therefore, it can be said that the 

outcome of some previous similar studies on time series forecasting which used only 

logsig such as could have been better if tansig had been used. 
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Table 4-10: Supportive outcome other studies. 

Studies ANN 

Model 

Objective Accuracy with 

tansig 

Accuracy with logsig 

(Zadeh et al., 
2010) 

Multi-
Layer 

Perceptron 
(MLP) 

To predict daily 
outflow 

(𝑅2 = 0.89 and 
RMSE = 1.69) 

(𝑅2 = 0.80 and RMSE 
= 2.30) 

(Vafaeipour et 
al., 2010)  

MLP 
 

To predict 
Wind velocity 

 

(MAE = 1.48,           
RMSE = 1.22 

and    R2 = 
0.843) 

(MAE = 1.48, RMSE = 

1.218 and R2 = 0.844) 
 

(Rezaeianzadeh 
et al., 2013) 

MLP 
 

To forecasting 
daily outflow 

(𝑅2 = 0.87 and 
RMSE = 1.87) 

(𝑅2 = 0.84 and RMSE 
= 2.1) 

(Musa et al., 
2019) 

MLP To identify 
potential 

archers of 
psychological 
coping skill 
variables 

94% efficiency 84% efficiency 

(Aladag, 2017) ANN To forecast the 
number of 

outpatient visits 

(RMSE = 
203.06) 

(RMSE = 243.28) 

(Gomes et al., 
2011) 

ANN To forecast 
financial time 

series 

(MAPE=20%) (MAPE =25.7 %) 
 

 

4.3 Pitch Angle Controlling  

PID controller parameters have been optimized by ACO algorithm though 

MATLAB/Simulink for pitch angle controlling of wind turbine to WTG power within 

rated power. At first, there are some ACO parameters selected for conducting 

optimization processes namely the number of ants, number of paths and population of 

PID parameters etc. After starting the process of model, the system evaluates the 

objective/cost function. The cost function of the system is error between desired power 

to actual power. After each iteration, optimum values of PID parameters are updated and 

stopped when maximum iteration number have reached or when the objective function 

criterion is satisfied. In this study, number of ants and number of iterations were 50 and 

10, respectively. The search range for PID parameters 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 was selected 
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randomly between [−100, 1 × 10−13, 6 × 10−07 ] ~ [100, 1 × 10−03 , 6 × 10−01]. The 

optimum PID parameters of three controllers are shown in Table 4-11. 

The calculation of pitch angle that has been sent to servo motor block for adjusting 

blade pitch by the controller which is shown in Figure 4-21. The output of servo motor is 

used as pitch angle of wind power conversion system. For controlling pitch angle, the 

output power will be maintained within nominal power. The Mean Squared Error (MSE) 

that has been collected from MATLAB workspace, has been sent by error signal using 

ACO algorithm. The MSE error is shown in Figure 4-20.  From the Figure 4-20, after 

around 5 iteration, the convergence curve reached at lower value 0. The 

MATLAB/Simulink model of WT has been conducted by PID controller parameters 

optimization using ACO algorithm.  

PID-ACO is carried out the ACO algorithm. But the trial and error process are used 

for the PID controller parameter tuning. Normal fuzzy technique is used for the Fuzzy-

PID. The PID-ACO controller result presents the better result of smoothing output power 

of WT in comparison with conventional PID controller parameter and Fuzzy-PID 

controller Figure 4-22(a). 

Figure 4-22(b) shows the zoomed figure area. In an analysis of output power of WT 

with pitch angle controlling, PID-ACO is obtained below 5.01 × 105kW that is very near 

to desired output power (5 × 105) of WT. In addition, Fuzzy-PID is also gained 

5.05 × 105kW at time 34s. It can be noticed that the output power of WT with Fuzzy-

PID controller is fluctuating at different point that (13s, 17s, 34s and 90s) which are higher 

than PID controller output power shown in Figure 4-22. On the other hand, the output 

power with PID controller is obtained 5.25 × 105kW that is higher than the desired 

output power of WT. Based on above discussion, it can be concluded that the tuned PID 
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controller with ACO method can be stabled output power of WT smoothing to compare 

PID and Fuzzy-PID controllers 

 

Figure 4-20: Convergence curve of ACO. 

 

 

Figure 4-21: Pitch angle of wind turbine blade. 
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(a) 

 

(b) 

Figure 4-22: (a) Optimized wind turbine output power of PID-ACO in comparison 

with conventional PID and Fuzzy-PID; (b) zoomed figure region. 
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Table 4-11: 𝑲𝒑 , 𝑲𝒊 and 𝑲𝒅 parameters of conventional PID with Fuzzy logic and 

ACO. 

Controller gain PID method Fuzzy logic method ACO method 

Kp -1.4e-05 -18.4e-01 -11.4e-01 

Ki -2.4e-05 -1.354e-16 -1.354e-11 
Kd 6.254e-05 6.254e-05 6.254e-03 

 

Table 4-12: Root mean square error (RMS) error of proposed PID-ACO to compare 
with PID and Fuzzy-PID. 

Methods Root mean square (RMS) 

PID method 0.0044 

Fuzzy-PID 0.0013 
PID-ACO 0.00036 

The comparison is done for the desired and controlled system by comparing the 

smoothing output wind power. The RMS error calculated between the desired to output 

power of WT with controllers. The RMS error calculations between three controlling 

methods are shown in Table 4-12. Based on the error calculation, it can be concluded that 

the PID-ACO controller is presented the lowest RMS error (0.00035) compared with 

Fuzzy-PID and conventional PID controller which are 0.0013 and 0.0044, respectively. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The objectives listed in this research have been achieved with promising results. 

Results depict the following findings of this research:  

I. The forecasting of wind speed plays an important role to produce wind energy 

and its one of the rapid growing renewable energy sources in the world. To 

improve and optimize wind power generation; an accurate forecasting of wind 

speed is important key. Specifically, long-term speed forecast can help us to 

enable a model predictive manage of wind turbines as well as real time 

expansion of wind farm operation. Overall, the WSF is important for 

engineering, number of operations, and financial reasons. In this investigat ion, 

accuracy of proposed NARNN and NARXNN with two different activation 

functions namely tansig and logsig for WSF is increased by using four 

statistical indicators such as MAE, MAPE, RMSE, and R2. It is observed that 

the most suitable model can be identified with the value of the indicators : 

MAE, MAPE, and RMSE. The average value of tansig-NARNN has given a 

promising result (MAE 0.0082, MAPE 11.39%, and RMSE 0.86) than that of 

the logsig-NARNN (MAE 0.0163, MAPE 15.36%, and RMSE 1.13). In 

addition, the average value of logsig-NARXNN (MAE 0.10, MAPE 15.40%, 

and RMSE 1.16) has provided a lower result than tansig NARXNN (MAE 

0.06, MAPE 9.06%, and RMSE 0.53). The comparison between tansig and 

logsig functions were carried out in a standard benchmark by keeping the 

network settings (e.g. topology, number of epochs, number of hidden neurons 

and initial weights) fixed. Since tansig function provides better results in both 

neural network (NAR and NARX) at network settings with same input data, it 
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is therefore the suitable activation function compared to logsig function. The 

effectiveness of tansig-NARNN and tansig-NARXNN can be used for long-

term wind speed forecasting based on error evolution.  

The tansig and logsig methods are compared and investigated for improving 

the performance of the proposed neural networks. It is to be mentioned that the 

performance of the ANNs are heavily dependent on the selection of activation 

functions. Moreover, compared to other activation functions tansig can learn 

more effectively in the training process and was selected as the best non-linear 

activation function for both the hidden and output layers of the NAR and 

NARX neural network to predict nonlinear wind speed environments. This is 

considered to be one of the most significant findings from this study. Although, 

this study will help the practitioners to gain valuable knowledge about the ANN 

over the more widely used conceptual wind speed forecasting. 

Apart from the control and optimization of wind farm operation, forecasting 

the behavior of the wind resources can provide valuable information for energy 

managers, energy policy makers, and electricity traders. Moreover, forecasting 

information can also help in times of operation, repair, and replacement of wind 

generators and conversion lines. 

II. The blade design parameters have been obtained through optimization by 

nature-inspired algorithms (ABC, ACO and PSO) with the objective function 

to maximize the 𝐶𝑝. The prediction of 𝐶𝑝 has also been carried out by using 

ANFIS approach to satisfy the optimized results. The optimization process is 

employed on non-linear maximization problem. ACO, PSO and ABC have 

successfully been implemented to find the 𝐶𝑝. for wind turbine. The results 

have shown that ACO, PSO and ABC have the ability to find the best 

combination of five inputs HAWT balde  parameters in order to get the 
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optimum value of 𝐶𝑝  0.520, 0.520 and 0.5295 respectively. It can be concluded 

that ABC alogrithm has performed well to find the maximum value of power 

coefficient as compared to ACO and PSO as shown in Table 5-1. Separately, 

the maximum evaluation number and population size, a standard ACO has 

three more control parameters (the information heuristic factor α, the 

expectation heuristic factor β and pheromone evaporation factor ρ), and a basic 

PSO has three control parameters (cognitive and social factors, inertia weight). 

Also, limit values for the velocities tmax have a significant effect on the 

performance of PSO. The ABC algorithm has only one control parameter 

(limit) apart from Colony Size and Maximum Cycle Number. In the present 

work, we described an expression for determining the value of ‘‘limit” 

depending on population (colony size) and dimension of problem. Therefore, 

now ABC has only two common control parameters: maximum cycle number 

and colony size. Consequently, ABC is as simple and flexible as DE and PSO; 

and also employs less control parameters. 

It can be observed that the predicted values of 𝐶𝑝 for ABC = 0.5215, ACO =

0.5175 and  PSO = 0.5135 are very close to the objective value (𝐶𝑝), i.e. 

ABC− ANFIS = 0.5295, ACO −ANFIS = 0.52,and  PSO− ANFIS = 0.52. 

Therefore, it can be concluded that the presented prediction (ABC-ANFIS, 

ACO-ANFIS and PSO-ANFIS) are acceptable based on the RMSE and 𝑅2. 

The values of R2 are near to the 1 which are suitable for the better prediction 

results. Based on ANFIS results, the effectiveness of ABC algorithm shows 

better accuracy for both optimization and prediction in comparison to ACO and 

PSO algorithms. By using ANFIS, it can be used for more complex problem 

solution, such as accuracy, identification and prediction of power coeffic ient 

of HAWT blades. The results have been obtained by optimization and 
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prediction results and can be used for further design and prototype horizonta l 

axis wind turbine modelling. The comparison with the similar literatures for 

the 𝐶𝑝 also shows the consistent results which supports our present 

investigation. 

Table 5-1: Optimization of power coefficient using ACO, PSO, and ABC. 

Optimal Parameters ACO PSO ABC 

Power coefficient (𝐶𝑝) 0.52 0.52 0.5295 

Tip-speed ratio 6.0032 6.00 5.4479 

Blade radius 4.3089 4.50 4.016 
Lift to drag ratio 109.9935 110.00 109.4848 

Solidity ratio 0.0539 0.45 0.3885 

Chord length 0.0232 0.0010 0.193 

 

III. The WT model is successfully modelled with conventional PID controller. 

controller is used to control output power of wind turbine generator by 

optimizing pitch angle. The PID controller is tuned by using ACO method and 

the response of the system is able to achieve the result near to the desired 

output. Comparisons between conventional trial and error tuning method of 

PID, Fuzzy logic turning method and ACO method show, ACO method is 

slightly better than Fuzzy-PID. The results of system with ACO tuned PID 

controller compared to system with PID controller, Fuzzy-PID showed 

significant reduction of output wind power fluctuating of wind turbine. The 

root mean square (RMS) error calculated between the desired power and the 

output power of WT with the PID-ACO is found to be 0.00036 which is smaller 

among the other two controllers namely Fuzzy-PID and conventional PID 

controller. The simulation results have shown that when the proposed PID-

ACO control system is used, the quality as well as amplitude of output power  

from the WTG system is improved. 
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5.2 Recommendations  

Based on the methodology and finding of the study, future recommendation can be 

made as follow: 

a. The NARNN and NARXNN have used in this study with two activation 

function (tansig and logis) for effective long-term WSF. So, it is recommended 

to apply other network types such as GRNN, RBFN and ANFIS which similar 

in NARNN and NARXNN approximation mechanism, should be investigate 

for long-term, short-term and very short-term WSF investigations in Malaysia.  

b. As more parameters input are likely to increase to provide more information 

related to output, it is recommended to develop hybrid algorithms (ACO-PSO, 

PSO-ABC or ABC-ACO) or combine AI and nature-inspired algorithms 

(ACO-ANFIS, ABC-ANFIS or PSO-ANFIS) to determine the optimal 

efficiency. 

c. This study used ACO algorithm to optimize PID controller parameters for pitch 

angle control of wind turbine. Therefore, future work will include hybrid 

algorithm for PID controller parameter optimization for pitch angle control and 

rotor speed control of wind turbine. 
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