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FEATURE ENGINEERING TECHNIQUES TO CLASSIFY CAUSE OF DEATH 

FROM FORENSIC AUTOPSY REPORTS 

ABSTRACT 

Forensic autopsy focuses on revealing the cause of death (CoD) by examining a dead 

body. This process is performed by medical pathologists during the investigation of 

criminal and civil law cases. In forensic autopsy, pathologists examine corpses externally 

and anatomically to collect autopsy findings. Moreover, these experts collect the history 

of the deceased and death scene-related information from the deceased’s relatives and 

eyewitnesses. Afterward, the pathologists determine the CoD through their expert 

knowledge while correlating the current autopsy findings with previous autopsy reports. 

Therefore, determining the CoD from autopsy findings is laborious, time consuming, and 

subject to inconsistencies associated with any labor-intensive process. Hence, automated 

text classification (ATC) techniques must be employed to overcome the aforementioned 

issues in determining the CoD. This study aimed to employ ATC techniques to classify 

the CoD from forensic autopsy reports. In the ATC technique, feature engineering is a 

highly important step because the success or failure of any ATC model is heavily 

dependent on the quality of the features used in the classification task. In ATC, the 

traditional feature engineering techniques include bag of words (BoW) and n-gram. This 

study argues that BoW and its variant techniques are inadequate in determining the CoD 

from forensic autopsy reports because these techniques ignore word-order, word-context, 

and word-level synonymy and polysemy. To overcome the aforementioned issues of 

BoW and its variant techniques, this study aimed to achieve the following four main 

objectives. First, this work intended to investigate the existing feature engineering 

techniques to classify free-text clinical reports, including forensic autopsy reports. 

Second, this study aimed to develop semi-automated expert-driven feature engineering to 
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overcome the issue of word-level synonymy and polysemy. Third, this research sought to 

propose a fully automated conceptual graph-based feature engineering technique to 

address issues in word-order and word-context. Finally, this work intended to evaluate 

the proposed techniques by comparing their performances with existing baseline 

techniques. For the experimental evaluation, forensic autopsy reports of 16 different 

CoDs were obtained from a very large hospital in Kuala Lumpur, Malaysia. These reports 

were preprocessed by applying various text preprocessing techniques. The discriminative 

features were then extracted from the preprocessed reports through the proposed feature 

engineering techniques and formed numeric master feature vectors. These master feature 

vectors were fed as input to six machine learning algorithms to construct and evaluate the 

classification models. Furthermore, to show the effectiveness of the proposed techniques, 

this study compared their performances with five state-of-the-art baseline feature 

engineering techniques. Experimental results showed that the proposed techniques 

outperformed the traditional BoW and its variant techniques. Moreover, support vector 

machines and random forest algorithms outperformed the four other algorithms. The 

proposed techniques are feasible and practical in determining the CoD from forensic 

autopsy reports and can assist pathologists to accurately and rapidly determine the CoD 

from autopsy findings. Finally, the proposed techniques are generally applicable to other 

kinds of free-text clinical reports. 

Keywords: Automated Text Classification Techniques, Forensic Autopsy Reports, 

Supervised Machine Learning Algorithms, Feature Engineering Techniques, Free-Text 

Clinical Reports 
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TEKNIK-TEKNIK KEJURUTERAAN CIRI UNTUK MENGKLASIFIKASIKAN 

PENYEBAB KEMATIAN DARI LAPORAN AUTOPSI FORENSIK 

ABSTRAK 

Autopsi forensik memfokuskan dalam mendedahkan penyebab kematian (CoD) dengan 

pemeriksaan mayat. Ia dilakukan oleh ahli patologi perubatan semasa penyiasatan kes 

jenayah dan undang-undang sivil. Dalam autopsi forensik, pakar patologi memeriksa 

mayat secara luaran dan anatomik untuk mengumpul hasil autopsi. Mereka juga 

mengumpul maklumat sejarah si mati, dan maklumat berkaitan  keadaan kematian 

daripada saudara-mara dan saksi saksi si mati. Seterusnya, pakar patologi menentukan 

CoD dengan menggunakan kepakaran mereka dan mengaitkan penemuan autopsi semasa 

dengan laporan autopsi terdahulu. Oleh itu, menentukan CoD daripada penemuan autopsi 

adalah sukar, memakan masa dan tertakluk kepada ketidaktetapan yang berkaitan dengan 

proses kerja intensif. Oleh itu, teknik klasifikasi teks automatik (ATC) perlu digunakan 

untuk mengatasi isu-isu tersebut dalam menentukan CoD. Kajian ini bertujuan untuk 

menggunakan teknik ATC dalam mugklasifikasikan laporan autopsi forensik CoD. 

Dalam teknik ATC, kejuruteraan ciri adalah langkah yang sangat penting kerana kejayaan 

atau kegagalan model ATC sangat bergantung kepada kualiti ciri yang digunakan dalam 

proses klasifikasi. Dalam teknik ATC, teknik kejuruteraan ciri tradisional adalah Bag of 

Words (BoW) dan n-gram. Kajian ini mendapati bahawa BoW dan teknik variannya tidak 

mencukupi untuk menentukan CoD dari laporan autopsi forensik kerana teknik teknik 

tersebut mengabaikan susunan, konteks, dan tahap “synonymy” dan “polysemy” 

perkataan didalam laporan. Oleh itu, bagi mengatasi isu-isu BoW dan teknik variannya, 

kajian ini bertujuan untuk mencapai empat objektif utama. Pertama, untuk mengkaji 

teknik kejuruteraan ciri yang sedia ada bagi mengklasifikasikan laporan klinikal bebas 

teks termasuklah laporan autopsi forensik. Kedua, untuk mencadangkan teknik 
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kejuruteraan ciri separuh automatik yang didorong oleh pakar bagi mengatasi masalah 

perkataan “synonymy” dan “polysemy”. Ketiga, untuk mencadangkan teknik kejuruteraan 

ciri berasaskan graf konseptual sepenuhnya bagi mengatasi masalah susunan dan konteks 

perkataan. Akhir sekali, kajian diteruskan dengan penilaian teknik yang dicadangkan 

dengan membandingkan pencapaian teknik tersebut dengan teknik kejuruteraan ciri yang 

sedia ada. Merujuk kepada eksperimen, laporan autopsi forensik terdiri dari enam belas 

perbezaan CoD yang diperolehi dari salah sebuah hospital terbesar di Kuala Lumpur, 

Malaysia. Laporan ini telah diproses terlebih dahulu dengan menggunakan pelbagai 

teknik pra-pemprosesan teks. Seterusnya, ciri-ciri diskriminatif telah diekstrak dari 

laporan pra-proses dengan menggunakan teknik kejuruteraan ciri yang telah dicadangkan 

dan telah membentuk vektor ciri induk numerik.  Ciri utama vektor tersebut kemudiannya 

digunakan sebagai input kepada enam algoritma pembelajaran mesin untuk membina dan 

menilai model klasifikasi. Tambahan pula, untuk memastikan keberkesanan teknik-teknik 

yang telah dicadangkan, hasil keputusan teknik-teknik tersebut telah dibandingkan 

dengan lima teknik kejuruteraan ciri asas terkini. Keputusan eksperimen menunjukkan 

bahawa teknik-teknik yang telah dicadangkan telah mengatasi BoW tradisional dan 

teknik variannya. Selain itu, “Support vector machine”, dan “Random Forest” telah 

mengatasi empat lagi algoritma. Teknik-teknik yang telah dicadangkan adalah boleh 

dicapai dan praktikal untuk menentukan CoD dari laporan autopsi forensik dan boleh 

membantu ahli patologi untuk menentukan CoD dengan tepat dan cepat  dari penemuan 

autopsi. Kesimpulannya, teknik-teknik yang telah dicadangkan pada umumnya boleh 

digunakan untuk laporan klinikal bebas teks yang lain. 

Kata Kunci: Teknik Klasifikasi Teks Automatik, Laporan Autopsy Forensik, Algoritma 

Pembelajaran Mesin yang Diselia, Teknik Kejuruteraan Ciri, Laporan Klinikal Bebas 

Teks 
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CHAPTER 1: INTRODUCTION 

This chapter discusses the study background and underlying motivation. It also 

presents the problem statement, followed by the research aim, objectives, and research 

questions. This chapter briefly describes the general research design, scope, contribution, 

and significance of the study. Finally, it states the thesis organization. 

1.1 Background 

The widespread implementation of electronic databases has improved the accessibility 

of plaintext clinical information for supplementary use. Numerous automated text 

classification (ATC) techniques have been employed to obtain useful information from 

free-text clinical data (Lin et al., 2013; Chomutare, 2014; de la Iglesia et al., 2014; 

Marafino, Davies, Bardach, Dean, & Dudley, 2014; Abacha et al., 2015; Iqbal et al., 2015; 

Koopman, S. Karimi, et al., 2015; Koopman, G. Zuccon, A. Nguyen, A. Bergheim, & N. 

Grayson, 2015; Sarker & Gonzalez, 2015). ATC refers to the task of automatically 

classifying text documents into one or more predefined categories (Meadow, 1992; 

Aggarwal & Zhai, 2012a). For instance, Koopman, G. Zuccon, et al. (2015) used ATC 

techniques to determine cancer-related causes of death (CoDs) from death certificates. 

Moreover, Jouhet et al. (2012) developed an intelligent tool by using ATC techniques to 

automatically categorize pathology reports. Schuemie et al. (2012) adopted ATC 

techniques to classify epidemiological studies. These aforementioned works provide 

concrete proof that ATC techniques are suitable for classifying free-text clinical reports, 

such as epidemiological reports, cancer-related reports, and pathology reports. However, 

these ATC techniques have been rarely adopted to classify the CoDs from forensic 

autopsy reports.  

Forensic autopsy (also known as postmortem) is a surgical procedure that involves the 

external and internal examinations of a deceased body to determine the manner of death 
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(MoD) and CoD. Forensic autopsies are usually performed by a team of experts (known 

as pathologists) during criminal and civil law case investigations. During external 

examinations, experts collect external body information from head to toe. The experts 

also gather information on signs of postmortem changes, recent medical therapy, and 

injuries. During internal examinations, experts record information on the body’s internal 

organs, such as the brain, heart, kidneys, and abdomen. Death scene information, 

eyewitness information, and deceased history-related data are also gathered to determine 

the MoD and CoD.  

In general, a forensic autopsy examination usually lasts for 2–4 h depending on case 

complexity (James, Nordby, & Bell, 2002; Vij, 2014). After forensic autopsy 

examination, the team of experts correlate the autopsy findings with the medical history, 

premortem and postmortem laboratory studies, microscopic tissue findings, toxicology, 

other related medical procedures and documents, and similar relevant past cases to 

determine the MoD and CoD in accordance with the International Classification of 

Disease Tenth Edition (ICD-10) coding system (Organization, 1979). Hence, the main 

purpose of forensic autopsy examination is to determine the MoD and CoD. Finally, 

forensic autopsy examination culminates in generating forensic autopsy reports. 

The initial version of the forensic autopsy report is prepared within 2–3 days. 

However, final reports become available between 30 and 45 days, and some complex 

cases may take up to 90 days (James et al., 2002; Vij, 2014). Therefore, determining the 

MoD and CoD is laborious and time consuming after forensic autopsy examination. 

Moreover, assigning CoDs by labor-intensive processes is subject to inconsistencies 

(Hoelz, Ralha, & Geeverghese, 2009; Vij, 2014). Hence, ATC techniques are needed to 

predict the MoD and CoD from complex autopsy reports to minimize time, labor, and 

irregularities.  
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In general, ATC can be commonly performed using five different techniques namely, 

ontology-based technique, rule-based technique, semi-supervised machine learning-

based technique, unsupervised machine learning-based technique, and supervised 

machine learning-based (SML) technique (Manning, Raghavan, & Schütze, 2008; 

Aggarwal & Zhai, 2012a). However, of these techniques, the SML-based technique is the 

most widely used for classifying text documents (Aggarwal & Zhai, 2012a; Witten, 

Frank, Hall, & Pal, 2016).  

The SML-based ATC technique comprises five main steps. First, a set of labeled text 

documents is prepared by labeling all the documents with their respective classes or 

categories. Second, several text preprocessing steps (such as replacing special characters 

and punctuation marks with spaces, normalizing case, removing duplicate characters, 

removing user-defined or built-in stop-words, and word stemming) are applied on 

collected text documents to clean the collected text documents. Third, the content of the 

text document is converted into useful word features by using state-of-the-art feature 

engineering techniques. The outcome of this step is the numeric master feature vector 

(MFV). In numeric MFV, rows and columns represent documents and features, 

respectively. Fourth, this MFV is fed to various state-of-the-art machine learning 

algorithms (such as support vector machine [SVM], random forest, naïve Bayes [NB], 

and decision trees) to construct the classification model. Finally, the performance of the 

constructed model is evaluated on unlabeled text documents (also known as test set).  

Of these five steps, feature engineering is the key in the SML-based ATC technique 

(Wolpert & Macready, 1995; Aggarwal & Zhai, 2012a; Domingos, 2012; Witten et al., 

2016). The success or failure of any text classification model heavily depends on the 

quality of features used in a classification task. If the extracted features correlate well 

with the class, classification becomes easy and accurate. By contrast, if the extracted 

Univ
ers

ity
 of

 M
ala

ya



4 

features do not correlate well with the class, then the classification task becomes difficult 

and less accurate.  

The traditional feature engineering technique is bag of words (BoW) (Meadow, 1992; 

Aggarwal & Zhai, 2012a). In this technique, the free-text clinical report is represented as 

the bag of its words, in which grammar and word order are disregarded but word 

frequency is maintained (Figueiredo et al., 2011; Papadakis, Giannakopoulos, & 

Paliouras, 2016; Passalis & Tefas, 2016). The BoW technique ignores the word context 

in a text when applied to free-text clinical reports (such as forensic autopsy reports). 

Therefore, effective (highly accurate and consuming minimal computational time and 

resources) feature engineering techniques are required to overcome the limitations of the 

traditional BoW technique for classifying free-text clinical reports (such as forensic 

autopsy reports). 

1.2 Research Motivation 

Many hospitals use electronic database systems, where autopsy findings and reports 

are stored in free-text format. Occasionally, experts utilize and correlate these previously 

stored autopsy reports to solve future cases. However, the greatest challenges in 

performing autopsy are lack of human resources and insufficient investigation time to 

determine the MoD and CoD (Hoelz et al., 2009). Therefore, ascertaining the MoD and 

CoD on the basis of the ICD-10 coding system is laborious and time consuming after 

autopsy examination. Assigning CoDs by labor-intensive processes is subject to 

inconsistencies. The automatic prediction of the MoD and CoD from complex autopsy 

reports by ATC techniques can minimize time, labor, and irregularities. These reports 

must be converted into actionable information that can be exploited by pathologists to 

accurately and rapidly determine the MoD and CoD.  
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Danso, Atwell, and Johnson (2013) adopted SML-based ATC techniques to classify 

the CoD using verbal autopsy reports. In the present study, the authors used the traditional 

BoW feature engineering technique to extract useful features from verbal autopsy reports. 

The authors used the SVM algorithm to classify CoDs and achieved 58.7% prediction 

accuracy. Yeow, Mahmud, and Raj (2014) adopted case-based reasoning (CBR) coupled 

with the NB algorithm and BoW feature engineering technique to support decision 

making in forensic autopsy reports to classify the CoD. Experimental results showed 80% 

prediction accuracy. Mujtaba, Shuib, Raj, Rajandram, and Shaikh (2016) applied the 

traditional BoW feature engineering technique to determine the MoD and CoD from 

forensic autopsy reports and achieved 78% classification accuracy.  

In all three aforementioned studies (Danso et al., 2013; Yeow et al., 2014; Mujtaba et 

al., 2016), authors employed the traditional BoW feature engineering technique to extract 

useful features from autopsy reports. However, the obtained low prediction accuracy 

demonstrated that the traditional BoW feature engineering technique is inappropriate for 

excavating discriminative features from autopsy reports. The traditional BoW technique 

exhibits poor performance because it ignores the word context and order in free-text 

autopsy reports. 

Several variants and extensions of the BoW technique have been proposed in the 

literature. Examples include the n-gram technique (Cavnar & Trenkle, 1994; Sebastiani, 

2002), skip-gram technique (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), 

continuous BoW (CBoW) technique (Wang, 2014), and entropy-optimized BoW (EO-

BoW) technique (Passalis & Tefas, 2016) to capture some word dependencies and word 

order. However, the aforementioned techniques involve word sequences and fail to 

capture word inversion and subset matching (e.g., “information about deceased” versus 
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“deceased information”) (Joachims, 1998b; Sebastiani, 2002; Papadakis et al., 2016) in 

classifying autopsy reports.  

These aforementioned feature engineering techniques cannot handle complex 

semantic information, such as word-level synonymy and polysemy (Yadav, Sharan, & 

Joshi, 2014; Malliaros & Skianis, 2015; Dasondi, Pathak, & Singh, 2016; Jiang, Li, & 

Huang, 2016; Papadakis et al., 2016), when applied to autopsy reports to classify forensic 

autopsy reports. For instance, in many reports, pathologists use the word “heart attack” 

and “myocardial infarction” interchangeably. Hence, in this case, traditional BoW or 

variants of the BoW techniques fail to capture this word-level synonymy. Effective 

(highly accurate and consuming minimal computational time and resources) feature 

engineering techniques remain to be developed to capture the word order, word context, 

and word-level synonymy and polysemy for classifying free-text clinical reports (such as 

forensic autopsy reports). This strategy would enhance the accuracy of classifying CoDs 

from forensic autopsy reports. 

1.3 Problem Statement 

Danso et al. (2013), Yeow et al. (2014), and Mujtaba et al. (2016) applied the 

conventional BoW and n-gram (Cavnar & Trenkle, 1994) feature engineering techniques 

to discover result-oriented features from autopsy reports to determine CoD. However, the 

obtained low prediction accuracy demonstrated that these conventional feature 

engineering techniques are not suitable for discovering the discriminative features from 

autopsy reports because these techniques ignore the word context and order in free-text 

autopsy reports. To overcome the limitations of BoW and n-gram techniques, many 

researchers have proposed state-of-the-art feature engineering techniques as variants of 

the BoW and n-gram feature engineering techniques. Examples of such techniques 

include skip-gram (Mikolov et al., 2013), CBoW (Wang, 2014), and EO-BoW (Passalis 
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& Tefas, 2016), which can capture word dependency and word order. However, the 

aforementioned techniques involve word sequences and fail to capture word inversion 

and subset matching (e.g., “information about deceased” vs. “deceased information”) 

(Chakravarthy, Venkatachalam, & Telang, 2010; Danso et al., 2013; Yeow et al., 2014; 

Mujtaba et al., 2016; Papadakis et al., 2016) in classifying CoDs from forensic autopsy 

reports. Moreover, these aforementioned feature engineering techniques cannot consider 

word-level synonymy and polysemy (e.g., “heart attack” vs. “myocardial infarction”) in 

classifying CoDs from forensic autopsy reports (Koopman, G. Zuccon, et al., 2015; 

Mujtaba et al., 2016; Nam, Kim, Kim, Ngo, & Zong, 2016; Papadakis et al., 2016; 

Passalis & Tefas, 2016). Therefore, effective feature engineering techniques remain to be 

developed to overcome the limitations of existing feature engineering techniques and 

improve the performance in classifying free-text clinical reports (such as forensic autopsy 

reports for categorizing CoDs). 

1.4 Aim and Objectives 

This research primarily aimed to determine the feasibility of predicting MoDs and 

CoDs from free-text forensic autopsy reports by using SML-based ATC techniques. This 

research also proposes effective feature engineering techniques to overcome the 

limitations of the traditional BoW feature engineering technique and its variants to 

accurately and efficiently classify MoDs and CoDs from forensic autopsy reports and 

assist pathologists. In this thesis, the phrase “effective feature engineering techniques” 

refers to the techniques that achieve higher accuracy than existing feature engineering 

techniques and consume minimal computational time and resources. Thus, to accomplish 

the above objectives, this research has the following objectives:  

1. To investigate the existing feature engineering techniques for classifying free-text 

clinical reports, including forensic autopsy reports. 
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2. To develop an effective semi-automated expert-driven feature engineering 

technique for addressing the issue of word-level synonymy and polysemy to 

classify CoDs from forensic autopsy reports. 

3. To develop an effective fully automated conceptual graph-based feature 

engineering technique to address the issues of word order, word context, and 

word-level synonymy and polysemy in the text to classify CoDs from forensic 

autopsy reports. 

4. To evaluate the performance of the proposed feature engineering techniques by 

using real-world forensic autopsy report datasets and by comparing the 

performance of the proposed techniques with those of baseline feature engineering 

techniques. 

1.5 Research Questions (RQs) 

The RQs of each objective are given below. 

Objective 1: To investigate the existing feature engineering techniques for 

classifying free-text clinical reports, including forensic autopsy reports.  

RQ1: What are the existing feature engineering techniques for classifying free-text 

clinical reports? 

RQ2: How feasible are the existing feature engineering techniques in terms of their 

performance in classifying forensic autopsy reports and determining the MoDs and CoDs 

from free-text forensic autopsy reports? 

RQ3: What are the limitations of the existing feature engineering techniques in 

determining the MoDs and CoDs from free-text forensic autopsy reports? 

Objective 2: To develop an effective semi-automated expert-driven feature 

engineering technique for addressing the issue of word-level synonymy and 

polysemy to classify CoDs from forensic autopsy reports.  
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RQ4: How much of the classification performance of forensic autopsy reports can be 

enhanced through the proposed semi-automated expert-driven feature engineering 

technique? 

RQ5: How important is the proposed semi-automated feature engineering technique in 

classifying forensic autopsy reports? 

RQ6: What are the limitations of the proposed semi-automated expert-driven feature 

engineering technique? 

 

Objective 3: To develop an effective fully automated conceptual graph-based feature 

engineering technique to address the issues of word order, word context, and word-

level synonymy and polysemy in the text to classify CoDs from forensic autopsy 

reports. 

RQ7: How much of the classification performance of the forensic autopsy reports can be 

enhanced through the fully automated feature engineering technique without human 

expert intervention? 

RQ8: How can graph theory concepts be exploited in obtaining word order and word 

context from free-text forensic autopsy reports? 

RQ9: How can existing medical or clinical ontologies be utilized to extract word-level 

synonymy and polysemy from free-text forensic autopsy reports? 

 

Objective 4: To evaluate the performance of the proposed feature engineering 

techniques by using real-world forensic autopsy reports and by comparing the 

proposed techniques’ performance with those of baseline feature engineering 

techniques. 

RQ10: How can the performance of the proposed feature engineering techniques be 

evaluated? 
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RQ11: How much of the performance of the proposed feature engineering techniques is 

improved relative to those of the conventional and state-of-the-art feature engineering 

techniques? 

RQ12: Which of the proposed semi-automated expert-driven and fully automated 

conceptual graph-based feature engineering techniques is effective? 

 
1.6 Research Methodology and Design 

The general research design of this study is shown in Figure 1.1. As presented, this 

research consists of five main phases. These phases are discussed briefly in the 

subsequent sections. The specific research design is found in Chapter 3.  

 

Figure 1.1: Research methodology and design 

 

Problem Identification

Forensic Autopsy Dataset 
Collection

Text Preprocessing

Feature Engineering 
Techniques Development

Classification Model 
Construction

Classification Model 
Evaluation
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1.6.1 Problem Identification 

This step identifies the research problem by reviewing the existing literature on the 

classification of clinical text and forensic autopsy reports. This step also involves a 

comparative study of various existing SML-based ATC techniques to classify CoDs from 

the collected autopsy reports. The results of this comparative study are precisely discussed 

in Chapter 2.  

1.6.2 Forensic Autopsy Dataset Collection 

This step discusses the real-world forensic autopsy dataset used in the present 

experiments. This dataset was collected from a well-known emergency hospital situated 

at Kuala Lumpur, Malaysia. The collected dataset included the forensic autopsy reports 

involving four MoDs and 16 CoDs. The details of this step are presented in Chapter 3.  

1.6.3 Text Preprocessing 

This step considers the various text preprocessing tasks applied on the collected 

forensic autopsy dataset to remove the irrelevant features. These tasks include removing 

stop-words, eliminating punctuation marks, converting to lower case, tokenization, 

stemming, and lemmatization. This step is elaborated in Chapter 3. 

1.6.4 Feature Engineering Technique Development 

In this step, two effective feature engineering techniques are developed to extract 

discriminative features from the collected dataset. As discussed in Section 1.1, in the 

SML-based ATC technique, the key step is feature engineering. Therefore, the accuracy 

of any machine learning algorithm heavily depends on the quality of features extracted 

through the feature engineering technique. The traditional feature engineering technique 

BoW and its variants suffer from three major weaknesses, namely, ignoring word order, 

word context, and word-level synonymy and polysemy. To overcome these limitations, 

this thesis proposed and developed two effective feature engineering techniques, namely, 
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semi-automated expert-driven feature engineering technique and fully automated 

conceptual graph-based feature engineering technique, for this step. The details of these 

techniques are given in Chapters 4 and 5. The proposal of the two techniques is justified 

in Chapter 2 (Sections 2.8.1 and 2.11.1). In addition, the difference between both the 

proposed techniques is also shown in Table 5.8, Chapter 5, Section 5.5. 

1.6.5 Classification Model Construction 

This step constructs an effective classification model through various machine learning 

algorithms (such as SVM and NB) coupled with proposed feature engineering techniques 

to classify CoDs from forensic autopsy reports. The specifics of this step are discussed in 

Chapters 4 and 5. 

1.6.6 Classification Model Evaluation 

This step evaluates the performance of the constructed classification models by using 

k-fold cross validation. Four evaluation metrics are used to measure the performances of 

the constructed classification models. These metrics are macro precision, macro recall, 

macro F-measure, and overall accuracy. This step also evaluates the performance of the 

proposed feature engineering techniques with the state-of-the-art baseline feature 

engineering techniques. Finally, this step identifies the best classification model via 

proposed feature engineering techniques and machine learning algorithms. The detailed 

results are discussed in Chapters 4 and 5. 

1.7 Research Scope 

This study was conducted on the basis of certain delimitations for increased focus. The 

boundaries were as follows: 

❖ The forensic autopsy corpus collected for this research belonged to four MoDs 

and 16 CoDs. Despite the thousands of CoDs, the generalizability of the proposed 
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techniques in theory should be applied to all other CoDs. In addition, it is believed 

that the proposed techniques have potential to show the similar classification 

performance on more CoDs.  

❖ The proposed feature engineering techniques have been evaluated on the forensic 

autopsy dataset. However, the generalizability of the proposed techniques in 

theory and practice should classify other kinds of free-text clinical reports, such 

as verbal autopsy reports, pathology reports, radiology reports, and other related 

clinical report types. 

❖ The prediction model requires complete forensic autopsy findings and previously 

stored forensic autopsy reports as input to determine the MoDs and CoDs. 

1.8 Research Contribution 

The contributions of this research to the current literature are as follows: 

❖ Literature Analysis: The conducted literature review exposed the weaknesses of 

existing feature engineering techniques. ATC techniques that classify free-text 

clinical reports, including forensic autopsy reports, were comprehensively 

reviewed by exploiting the procedural decision analysis in six aspects, namely, 

the types and characteristics of clinical reports and datasets, preprocessing 

techniques, feature engineering techniques, machine learning algorithms, and 

performance metrics. 

❖ Free-text Forensic Autopsy Corpus: This research built the corpus of complete 

forensic autopsy reports to be used as resource for clinical text classification 

research.  

❖ Comparative Study of SML-based ATC Techniques: This research conducted 

a comparative study of SML-based ATC techniques to classify CoDs from 

forensic autopsy reports. Moreover, the study identified the suitable techniques at 
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various phases of the SML-based ATC process to classify CoDs from forensic 

autopsy reports.  

❖ Effective Semi-Automated Expert-driven Feature Engineering Technique: 

This research proposed and developed an effective semi-automated expert-driven 

feature engineering technique to classify CoDs from forensic autopsy reports. 

This technique aims to overcome the limitation of world-level synonymy and 

polysemy in existing baseline feature engineering techniques. This technique also 

provides the benchmark classification performance for other fully automated 

feature engineering techniques that will be developed to classify forensic autopsy 

reports in the near future.  

❖ Effective Fully Automated Conceptual Graph-based Feature Engineering 

Technique: This research developed an effective fully automated conceptual 

graph-based feature engineering technique for classifying CoDs from forensic 

autopsy reports. This work also aimed to overcome the limitations (such as word 

order, word context, and world-level synonymy and polysemy) of existing 

baseline feature engineering techniques. This technique was built to compete with 

the semi-automated expert-driven method and overcome the limitations of the 

semi-automated expert-driven technique.  

All the proposed techniques in this thesis have been published in reputable ISI-indexed 

journals and A-rank conferences organized in the United States of America (Refer to page 

202-203 for the list of publications). 

1.9 Research Significance 

The significance of this research was observed in two domains, namely, forensic 

autopsy research community and SML-based ATC research community. 
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1.9.1 Research Significance in Forensic Autopsy Research Community 

As mentioned in Section 1.1, determining the MoD and CoD from forensic autopsy 

findings is laborious and time consuming. The massive effort and duration involved are 

due to the need for experts to correlate the autopsy findings with the death scene 

information, histopathology and toxicology reports, and similar past cases. Experts may 

also assign incorrect and inconsistent CoDs. Currently, no computer-aided expert system 

can process free-text forensic autopsy findings to ascertain the MoD and CoD. Hence, 

this domain requires a computer-aided expert system that assists pathologists in 

determining the MoD and CoD from forensic autopsy reports accurately and efficiently. 

To address this need, this study developed an effective classification model that can assist 

experts in determining the MoD and CoD. The developed classification models can also 

reduce the time and effort spent in ascertaining the MoD and CoD from forensic autopsy 

reports. Finally, this research introduced a new focus in this area that can be expanded 

further. 

1.9.2 Research Significance in ATC and SML Research Community 

This research applies SML-based ATC techniques to classify MoDs and CoDs from 

forensic autopsy reports. The ATC techniques were applied because forensic autopsy 

reports are usually prepared in an unstructured free-text format. As presented in Section 

1.1, five popular means can be used to classify free-text clinical reports. These methods 

are ontology-based, rule-based, semi-supervised, unsupervised, and SML-based ATC 

techniques. This research classifies forensic autopsy reports via SML-based ATC 

techniques because of the methods’ popularity and beneficial results (Manning et al., 

2008; Aggarwal & Zhai, 2012a).  

In SML-based ATC techniques, the most important step is feature engineering 

(Wolpert & Macready, 1995; Aggarwal & Zhai, 2012a; Domingos, 2012; Witten et al., 
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2016) because the success or failure of any text classification model is heavily dependent 

on the quality of features used in the classification task (Domingos, 2012). The traditional 

feature engineering technique for ATC is BoW. In this technique, the textual document 

is represented as the bag of its words, in which grammar and word order are disregarded 

but word frequency is maintained. Hence, the BoW technique ignores the word context 

in the text (Figueiredo et al., 2011; Papadakis et al., 2016; Passalis & Tefas, 2016). 

Mujtaba et al. (2016) applied the traditional BoW feature engineering technique to 

classify CoD from forensic autopsy reports and achieved 78% classification accuracy. To 

improve the classification accuracy of forensic autopsy reports, this research proposed 

two effective feature engineering techniques (namely, semi-automated expert-driven 

technique and fully automated conceptual graph-based technique) to overcome the 

limitations of traditional BoW and state-of-the-art variants of traditional BoW techniques. 

The feasibility of these techniques was established with promising results and formed the 

basis for further ATC and SML research within the context of forensic autopsy reports. 

1.10 Thesis Overview 

The remaining structure of this thesis is organized as following: 

Chapter 2: This chapter discusses the survey of autopsy reports. A brief overview of 

field is given, which describes the process involves in gathering the autopsy findings; 

purpose of autopsy; types of autopsy reports; issue in determining the MoD and CoD 

manually; and the need of automation for determining MoD and CoD from autopsy 

reports. Moreover, this chapter presents the literature review of various SML-based ATC 

techniques, and feature engineering techniques used for classifying free-text clinical 

reports. In addition, this chapter also presents a literature analysis on the various SML-

based ATC techniques, and feature engineering techniques that currently exist in carrying 
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out analysis and predicting the CoD from autopsy reports, which informs the formulation 

of this research. 

Chapter 3: This chapter presents the methodology used in this thesis to develop the 

proposed feature engineering techniques for classifying MoD and CoD from forensic 

autopsy reports. Moreover, this chapter discusses in detail the dataset used for the 

experiments. Moreover, it also discusses the various text preprocessing steps which were 

applied on collected dataset to remove noisy features. Furthermore, it discusses briefly 

the proposed feature engineering techniques, machine learning algorithms that were used 

for constructing the classification models, and performance metrics that were used to 

measure the performance of classification models. Finally, it also discusses the baseline 

feature engineering techniques that were used as a benchmark to evaluate the performance 

of proposed feature engineering techniques.  

Chapter 4: This chapter explains in detail the proposed semi-automated expert-driven 

feature engineering technique for classifying forensic autopsy reports. Moreover, it also 

discusses the experimental setup, results obtained through semi-automated expert-driven 

technique, and discusses the findings. 

Chapter 5: This chapter explains in detail the proposed fully-automated conceptual 

graph-based feature engineering technique for classifying forensic autopsy reports. 

Moreover, it also discusses the experimental setup, results obtained through fully-

automated conceptual graph-based technique, and discusses the findings. 

Chapter 6: This chapter concludes the thesis by reappraising the research objective. 

The main contributions are summarized. It discusses the limitations of the research and 

proposes future directions. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

This chapter presents a review of existing related literature on clinical text 

classification, including the classification of forensic autopsy reports. The discussion 

begins with the description, purpose, and types of autopsy reports in Section 2.2. In 

Section 2.3, some fundamental automated text classification techniques are presented. In 

Section 2.3.1, the detailed process of the supervised machine learning-based automated 

text classification approach is discussed. Sections 2.4–2.10 present a comprehensive 

review of automated text classification techniques for free-text clinical reports, including 

forensic autopsy reports. Section 2.11 enumerates the potential limitations and challenges 

in classifying free-text clinical reports, including forensic autopsy reports. Section 2.12 

identifies the research gap for this thesis. Finally, Section 2.13 concludes this chapter. 

The overall organization of this chapter is depicted in Figure 2.1.  

 

Figure 2.1: Organization of Chapter 2 

2.2 Autopsy Reports 

An autopsy (also known as postmortem) is a surgical procedure that involves the 

external and internal examinations of deceased body to determine the Manner of Death 

(MoD), and Cause of Death (CoD). During external examinations, experts collect external 

body information from head to toe. Moreover, experts collect information on signs of 

postmortem changes, signs of recent medical therapy, and injuries. During internal 
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examinations, experts collect information about the body's internal organs, such as the 

brain, heart, kidneys, and abdomen. In addition, death scene information, eye witness 

information, and deceased history related information is also gathered to determine the 

MoD and CoD. Autopsies are performed by pathologists during criminal and civil law 

case investigations. By and large, the autopsy examination usually takes 2 to 4 hours 

depending on case complexity (James et al., 2002; Vij, 2014). After the autopsy 

examination, the team of experts correlate the autopsy findings with medical history, 

premortem and postmortem laboratory studies, microscopic findings of tissues, 

toxicology, other related medical procedures and documents, and similar relevant past 

cases to determine the MoD, and CoD in accordance with the International Classification 

of Disease Tenth Edition (ICD-10) coding system (Organization, 1979). Finally, Autopsy 

examination culminates in the generation of autopsy reports. 

There are three kinds of autopsy reports (as shown in Figure 2.2) namely, clinical 

autopsy reports, forensic autopsy reports, and verbal autopsy reports (Costache et al., 

2014; Vij, 2014; Miasnikof et al., 2015a). Clinical autopsy is performed to discover the 

medical CoD. Clinical autopsy is usually conducted in situations of uncertain deaths. 

Thus, preventive actions should be carried out to avoid such incidents in future. Forensic 

autopsy is performed to discover the CoD in criminal matter. In verbal autopsy, an 

interview is conducted from the relatives or witnesses of the deceased person to discover 

the CoD. This method is common in low economical countries, where health facilities are 

insufficient. The initial version of autopsy report is prepared within 2 to 3 days. However, 

final reports become available between 30 to 45 days, and some complex cases may take 

up to 90 days (James et al., 2002; Vij, 2014). Therefore, it is laborious and time 

consuming to determine the MoD and CoD after autopsy examination. Moreover, it is 

subject to inconsistencies to assign CoDs with labor intensive processes (Hoelz et al., 

2009). Hence, the automatic prediction of MoD and CoD through Automated Text 

Univ
ers

ity
 of

 M
ala

ya



20 

Classification (ATC) techniques is needed to minimize time, labor, and irregularities. The 

ATC process is discussed in subsequent section (Section 2.3). 

 

Figure 2.2: Types of autopsy reports (Costache et al., 2014) 

2.3 Automated Text Classification: The Biomedical Domain 

The extensive number of electronic health records contain useful information in free-

text format. Thus, to be able to assist in medical decision-making process, this free-text 

is need to efficiently processed and transformed into useful and structured format. It has 

long been recognized that free-text clinical reports are beneficial for secondary use. A 

number of researchers across the globe employed clinical text mining to mine useful 

information (such as medical concepts or medical entity) from free-text clinical reports 

(Wang, E. Coiera, W. Runciman, & F. Magrabi, 2017; Wu & Wang, 2017; Yoon, Roberts, 

& Tourassi, 2017; Parlak & Uysal, 2018). There are various applications of clinical text 

mining including, clinical information extraction (Xu, Stenner, et al., 2010), clinical 

relation extraction (Porumb, Barbantan, Lemnaru, & Potolea, 2015; Barbantan, Porumb, 

Lemnaru, & Potolea, 2016), clinical document clustering (Ko & Seo, 2000; Renganathan, 

2017), biomarkers identification (Vangay, Steingrimsson, Wiedmann, & Stasiewicz, 

2014; Gutierrez-Sacristan et al., 2017), disease surveillance detection (Al-garadi, Khan, 

Varathan, Mujtaba, & Al-Kabsi, 2016), and automated text classification (ATC) of 

clinical documents (Meadow, 1992; Aggarwal & Zhai, 2012a). 

ATC of clinical documents is one of the eminent research area inside clinical text 

mining domain (Kaurova, Alexandrov, & Blanco, 2011; Holzinger, Schantl, Schroettner, 

Seifert, & Verspoor, 2014; Spasić, Livsey, Keane, & Nenadić, 2014). It refers to the task 
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of automatically classifying free-text clinical documents or reports into one or more than 

one predefined categories (Meadow, 1992; Aggarwal & Zhai, 2012a). In general, there 

are five different techniques to classify free-text clinical reports namely, supervised 

machine learning-based (SML-based) ATC (Hastie, Tibshirani, & Friedman, 2009), 

unsupervised machine learning-based ATC (Ko & Seo, 2000), semi-supervised machine 

learning-based ATC (Zhu & Goldberg, 2009; Settles, 2010), ontology-based ATC 

(Hotho, Maedche, & Staab, 2002), and rule-based ATC (Deng, Groll, & Denecke, 2015; 

MacRae et al., 2015). Of these, the most widely used approach for clinical text 

classification is the SML-based ATC (Sebastiani, 2002; Hastie et al., 2009; Witten et al., 

2016). Moreover, these techniques obtained better classification results compared to other 

related techniques (Spasić et al., 2014; Al-garadi et al., 2016; Burger, Abu-Hanna, de 

Keizer, & Cornet, 2016; Kim & Delen, 2016). Section 2.3.1 discusses in detail the process 

of SML-based ATC technique.  

2.3.1 Supervised Machine Learning-based ATC Techniques 

In SML-based ATC technique, each clinical report ( )ndddd ,...,, 321  belonging to 

certain free text clinical dataset ( )D  is labelled with pre-define class or category 

( )nCCCC ,...,, 321 . Several text preprocessing steps are applied on collected clinical dataset 

to remove non-discriminative or noisy content. Afterwards, various features are extracted 

from clinical reports and these extracted features are represented in numeric form to 

construct a numeric MFV 

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 using feature representation techniques. 

Finally, this MFV is then fed as an input to a text classifier to develop a classification 

model. Often, all features in MFV do not contribute to better classification accuracy and 

also slowdown the classification process. Thus, to overcome these issues, the most 

powerful subset of features is selected from MFV by employing feature selection 
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schemes. The steps of feature selection and classification model development are 

performed iteratively until the optimal learning curve is achieved with the help of suitable 

feature subset. Finally, the constructed model is evaluated on a separate unlabeled set of 

document ( )DU . To summarize, the process of SML-based ATC technique mainly 

comprised of five steps namely, clinical reports dataset collection, clinical reports 

preprocessing, feature engineering, classification model development, and classification 

model evaluation. Figure 2.3 also depicts the process of SML-based ATC technique. 

Moreover, the detail of each step is presented in subsequent sections. 

 

Figure 2.3: The Process of SML-based ATC technique 

 
2.3.1.1 Clinical Reports Dataset Collection 

As shown in Figure 2.3, in the first step the set of free text clinical reports is collected. 

Moreover, these reports are labelled with their respective classes or categories by domain 

experts.  For instance, in the case of classifying autopsy reports according to MoD and 

CoD, these reports are first labelled by pathologists. The pathologists assign each autopsy 

report a unique MoD and CoD. The labelled set of clinical reports (more specifically 

autopsy reports) is known as training set. Thus, this training set is a pre-requisite for 

developing a classification model.  

2.3.1.2 Clinical Reports Preprocessing 

In SML-based ATC technique, preprocessing is one of the step that is responsible for 

removing the meaningless data from the collected dataset to improve the quality of 

clinical text classification models (Spasić et al., 2014; Witten et al., 2016). This step is 

followed after dataset collection. In general, the preprocessing techniques including, 
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removal of stop-words, removal of punctuations or special symbols, removal of empty 

spaces, case conversion, spell correction, tokenization, stemming, lemmatization, and 

normalization are usually applied to remove the meaningless terms from the free-text 

clinical reports (Spasić et al., 2014; Witten et al., 2016). These techniques are briefly 

defined as follows; 

❖ Removal of stop-words: This task removes the stop-words (such as a, an, the, etc.) 

from the clinical reports. 

❖ Removal of punctuation or special symbol: This task removes the punctuation or any 

special symbol (such as hyphen, double quotes, single quotes, @, #, etc.) from the 

clinical reports. 

❖ Removal of empty spaces: This task removed the white spaces (if any) from the 

clinical documents. 

❖ Case conversion: This task converts all the words in q unique case (for instance, lower 

case). 

❖ Spell correction: This task automatically corrects the spelling of texts available in the 

clinical reports.  

❖ Tokenization: In tokenization the clinical text is tokenized into smaller units of text 

such as, sentences or words. In sentence tokenization, the input text is divided into 

unique sentences. Moreover, in word tokenization, input text is tokenized into unique 

word tokens.  

Text Normalization techniques: Clinical reports may comprise of different forms of 

a word due to grammatical reason (such as, organize, organized, organizes). Thus, 

various text normalization techniques are applied to convert different forms of word 

into a common form. In clinical text classification, two most widely used text 

normalization techniques are stemming and lemmatization. The stemming technique 

converts different forms of a word into their stem or root form. Stemming is a word 
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normalization technique that chops the ends of the words. For instance, the words 

organizes, and organized will be normalized into their root or stem word organize. 

For English language, variety of stemming algorithms are available such as, Porter 

stemmer, Snowball stemmer, Lovins stemmer, Dawson stemmer, and Husk stemmer 

(Paice, 1994; Jivani, 2011). In selected primary studies, most of the authors have 

employed Porters stemmer (Porter, 1980; Willett, 2006). Moreover, in literature 

Porters algorithm has constantly been revealed to effective empirically (Paice, 1994; 

Jivani, 2011). The lemmatization is also a word normalization technique that uses a 

vocabulary and morphological analysis of a given word and remove the inflectional 

endings of that word to convert it into a dictionary form. This process normalizes the 

words into basic forms. Lemmatization is similar to stemming, however, it does not 

require to produce the stem of the word but to replace the suffix of the input word 

with a (typically) different word suffix to produce its normalized form. For example, 

the word stemmer and word lemmatization will transform the words worked, working, 

works into word work, however, the words computed, computing, and computes will 

be normalized to comput by stemmer, and compute by lemmatization (Plisson, 

Lavrac, & Mladenić, 2004; Toman, Tesar, & Jezek, 2006). Besides, the stemming and 

lemmatization techniques, researchers also apply other types of text normalization 

techniques to clean clinical documents. For instance, if input text contains any number 

or dates then those numbers and dates will be converted to words number and date 

respectively. 

2.3.1.3 Feature Engineering 

In feature engineering, the content of clinical reports ( )ndddd ,...,, 321  is converted into 

useful word features 1 2 3( , , ,... )f f f fnw w w w  by using various feature engineering 

techniques. In SML-based ATC technique, the most important step is the feature 

engineering (Wolpert & Macready, 1995; Aggarwal & Zhai, 2012a; Domingos, 2012; 
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Witten et al., 2016). This is because, the success or failure of any clinical text 

classification model is heavily depending upon the quality of features used in the 

classification task. If the extracted features correlate well with the class, the classification 

will be easy and more accurate. In contrast, if the extracted features do not correlate well 

with the class, the classification task will be difficult and less accurate. Often, collected 

free-text clinical reports are not available in a form that is amenable to learning 

classification rules. Thus, to make these reports useful for clinical text classification task, 

various features are extracted from these reports and these extracted features are amenable 

to learning classification rules. In general, most of the clinical text classification effort is 

required by feature engineering step. Moreover, it is also one of the interesting step in 

clinical text classification process, where perception, innovation, intuition, creativity, and 

“black art” are equally important as the technical and subject knowledge. Often, the 

construction of classification model is the fastest step in clinical text classification, this is 

because feature engineering is responsible for extracting the discriminative features from 

free-text clinical reports and transforming those features into numeric master feature 

vector. This master feature vector is then used by classifier to learn the classification rules 

and develop a classification model quickly. Feature engineering is more difficult than 

classification because it is domain-specific and the classification task is general-purpose. 

Nonetheless, there is no sharp frontier between the two, and this is another reason the 

most useful learners are those that facilitate incorporating knowledge. Feature 

engineering steps is further sub-divided into three sub-steps namely, feature extraction, 

feature value representation, and feature selection. These are described in subsequent sub-

sections. 

 Feature Extraction 

Feature extraction is the process of extracting useful features from free-text clinical 

reports. In clinical text classification, a feature in an individual measureable characteristic 
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of a phenomena being observed. Moreover, choosing an informative and discriminative 

features from free-text clinical reports is a crucial step for constructing of a classification 

model. Thus, most often researchers working in the field of clinical text classification 

paying more attention and efforts to discover the discriminative features that prove useful 

for classification model. In clinical text classification, the most commonly used features 

are Bag of Words (BoW), Bag of Phrases (BoP), n-gram, and Bag of Concepts (BoC). 

o Bag of Words (BoW): In BoW model, the unique words are extracted from all clinical 

reports available in the dataset irrespective of their categories. All the extracted words 

are then sorted in ascending order and stored in a list called ‘bag of words (BoW)’. In 

BoW each available word represents an independent, and discriminative feature 

(Tong & Koller, 2001).  

o n-gram: An n-gram is the contiguous sequence of n items (such as words, or 

characters) from a given sequence of clinical text (Cavnar & Trenkle, 1994). They are 

typically a set of co-occurrence words within a given window. In n-gram, n maybe 

‘1’, ‘2’, ‘3’, or any number. When the n = 1, it is called unigram, when n = 2, it is 

called bigram, and when n = 3, it is called as trigram.  

o Bag of Phrases (BoP): In BoP, medical phrases are extracted from the clinical reports 

through the help of some tool such as, MetaMap (Aronson, 2001). For instance, 

suppose a sentence ‘multiple grazed abrasions over the back of right hand’ is 

available in a clinical report. The MetaMap tool will extract following phrases from 

the sentence (‘multiple’, ‘grazed’, ‘abrasion’, and ‘Back of right hand’). 

o Bag of Concepts (BoC): Medical experts (such as physician or surgeon) may use 

different terms to describe same condition in free-text clinical reports. For instance, 

experts may use the term ‘heart attack’ or ‘Myocardial infarction’ interchangeably. 

Though, both the terms belong to same medical concept however, the feature 

extraction techniques cannot identify the relationship between these two terms. 
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Therefore, to overcome this issue, specialized medical ontologies are developed such 

as, SNOMED CT (Systematized Nomenclature of Medicine-Clinical Terms) (Stearns, 

Price, Spackman, & Wang, 2001; Donnelly, 2006). It is a standardized medical 

ontology where medical related terms are categorized into medical hierarchical 

concepts. The root concept is SNOMED CT concept and this concept has many child 

concepts such as medical conditions, body structures, procedures, etc. In 

SNOMECTD CT, each medical term has a unique concept id and similar medical 

terms share the same concept id. Moreover, each medical terms can belong to one or 

more concepts. For instance, the words ‘heart attack’ and ‘Myocardial infarction’ 

have the same concept id (22298006) and both belong to same parent concept 

‘Ischemic heart disease’ (concept id- 414545008). Thus, BoC includes the 

SNOMEDT CT concepts as a features. 

 Feature Representation 

Feature representation, or term-weighing is vital in automatic text classification 

(Salton & Buckley, 1988). An important step after extracting features from clinical 

reports is transforming extracted features into numeric vectors for linear algebraic 

methods. Transforming clinical reports into numeric vectors is known as feature value 

representation or term-weighing (Debole & Sebastiani, 2004). In general, to classify free-

text clinical reports, four types of feature representation techniques are used namely, 

binary representation (BR), term frequency (TF), term frequency with inverse document 

frequency (TFiDF),and normalized TFiDF (N-TFiDF) (Debole & Sebastiani, 2004). All 

these four techniques are briefly discussed in subsequent paragraphs. 

❖ Binary Representation: In BR, the value of a feature can be ‘0’ or ‘1’, where ‘1’ 

represents the occurrence of a feature in the document and ‘0’ represents its non-

occurrence (Salton & Buckley, 1988).  
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❖ Term Frequency: In TF, the frequency of a term is referred to as the occurrence of 

term in a document (Ramos, 2003). However, if all documents contain the same term 

with more or less the same frequency, then that term is not a discriminative feature 

(Aizawa, 2003). Therefore, a new TFiDF feature representation scheme was 

introduced to address this issue.  

❖ Term Frequency with Inverse Document Frequency: The crux of TFiDF is that the 

term t is a discriminative feature if the term t frequently occurs in a particular 

document. Moreover, if the same term t appears frequently in many other documents, 

then term t is not a powerful feature for a given set of documents (Ramos, 2003). 

❖ Normalized Term Frequency with Inverse Document Frequency: In N-TFiDF term 

frequency and document frequency are combined with a normalized factor such as, 

the length of the clinical reports to ensure features found in long and short clinical 

reports are equally important (Debole & Sebastiani, 2004).  

 Feature Selection 

High dimensional data often contain irrelevant or redundant features, which causes 

some of the limitations in clinical text classification tasks. These limitations reduce the 

accuracy of the text classification algorithms, slow down the classification process, 

produce problems in storing and retrieving the information and make it harder to interpret 

the classification results.  To overcome these limitations, feature selection techniques are 

often used. These techniques are responsible for selecting the most relevant subset of 

features for classification task according to some selection criteria. For reasons of both 

efficiency and efficacy, feature selection is widely used when applying SML-based ATC 

technique for clinical text classification. The most commonly used feature selection 

techniques are Information Gain (IG), the Chi-Square ( )2  and Pearson correlation (PC). 

The brief introduction of these techniques is given below. 
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❖ Information Gain (IG): It identifies the importance of a given attribute in a feature 

vector, is the expected reduction in entropy caused by partitioning the examples 

according to a given attribute (Yang & Pedersen, 1997). If we have a set with k 

different values in it, we can calculate the entropy using Equation 2.1.  

( ) ( ) 2( ).log ( ( ))
k

Set Set i i
i i

Entropy I P Value P Value
=

= = −  (2.1) 

Where P(Valuei) is the probability of getting the ith value when randomly selecting one 

from the set. 

So, for the set S = {s1, s1, s1, s2, s2, s2} 

( ) ( )
3 3 5 5log 2 log 2
8 8 8 8

R REntropy I         = = − +        
        

  

Let AT be the set of all attributes, TS the set of all training examples, V (X, A) is value 

of specific example X of attribute A in AT and H specifies the entropy. The information 

gain of an attribute A in AT set is defined as shown in Equation 2.2. 

 

( )

( , )
( , ) ( ) . ({ | ( , ) }|)

values A

X TS Value X A
IG TS A H TS H X TS Value X A

TS






  =
 = −  =
 
 

  (2.2) 

 

❖ Chi-Square Test ( )2 : It is the statistical test that measures the relevance of term t 

with class c (Yang & Pedersen, 1997) by applying equation 2.3. Here, tc is the total 

number of times t and c appear together. The tNc is the number of times the t occurs 

without c. The cNt is the number of times c occurs without t. The NtNc is the number 

of times neither t nor c occurs together and N is the total number of documents. The 

2 test has a natural value of zero if t and c are independent (Yang & Pedersen, 1997). 

The mathematical definition of  2 is shown in Equation 2.3. 

(( ) ( )) ^ 2( , )
( ) ( ) ( ) ( )

N tc NtNc cNt tNcChi Square W C
tc cNt tNc NtNc tc tNc cNw NtNc

  − 
− =

+  +  +  +
 (2.3) 
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❖ Pearson correlation (PC): Correlation-based feature selection is a commonly used 

method for reducing feature dimensionality and evaluating the discrimination power 

of a feature in classification methods. It is also a straightforward method for choosing 

significant features. Pearson correlation measures the relevance of a feature by 

computing the Pearson correlation between it and a class. Pearson correlation 

coefficient measures the linear correlation between two attributes (Benesty, Chen, 

Huang, & Cohen, 2009). The subsequent value lies between -1 and +1, with -1 

implying absolute negative correlation (as one attribute increases, the other 

decreases), +1 denoting absolute positive correlation (as one attribute increases, the 

other also increases), and 0 meaning no linear correlation between the two attributes. 

For two attributes or features X and Y, Pearson correlation coefficient measures the 

correlation (Hall, 1999) as shown in Equation 2.4. 

( )( )
( )1

i i
xy

x y

x x y y
r

n S S

− −
=

−
  (2.4) 

where �̅� and �̅� are the sample means for 𝑋 and 𝑌, respectively, 𝑆𝑥  and 𝑆𝑦 are the sample 

standard deviations for 𝑋 and 𝑌, respectively, and n is the size of the sample used to 

compute the correlation coefficient (Hall, 1999). 

2.3.1.4 Classification Model Development 

The fourth step in SML-based ATC process is the construction of a free-text clinical 

reports classification model using machine learning algorithms. Numerous machine 

learning algorithms (such as, supervised, semi-supervised, unsupervised, and rule-based) 

have been applied to classify free-text clinical reports. Of these, most widely used 

machine learning algorithms are either rule-based, or SML-based algorithms (as shown 

in Figure 2.4) and are briefly discussed in subsequent paragraphs.  
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Figure 2.4: Machine learning algorithms used in related literature 

 

❖ Rule-based Algorithms: In rule-based (RB) algorithms, rules are either written 

manually, or generated automatically and then verified manually to save time 

(Sebastiani, 2002; Witten et al., 2016). The rule-based approach is simple and flexible 

where rules can be understood and can be improved over time unlike the supervised 

machine learning algorithms that work like a black-box system.   

❖ SML-based Algorithms: These algorithms learn the classification rules from the 

features that were extracted from labeled datasets or training set. After learning the 

classification rules, these algorithms are capable of predicting the category of 

unlabeled clinical reports using test set (Sebastiani, 2002; Hastie et al., 2009; Witten 

et al., 2016). There are further two kinds of SML-based algorithms namely, generative 

and discriminative (Aggarwal & Zhai, 2012b; Alabbas, Al-Khateeb, & Mansour, 

2016; Witten et al., 2016).  

❖ Generative SML-based Algorithms: These algorithms learn the joint probability 

distribution ( )yxp , . These models model the distribution of individual class. The 

algorithms do not focus on differences between the classes, however, such algorithms 

try to build a model that is representative of particular class. Naïve Bayes (NB) is a 
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good example of generative SML-based algorithm (Sebastiani, 2002; Aggarwal & 

Zhai, 2012b; Witten et al., 2016).  

❖ Discriminative SML-based Algorithms: The discriminative algorithms learn the 

conditional probability distribution ( )xyp . These algorithms learn the hard and soft 

boundary between class. The discriminative algorithms highlight the differences 

between two classes. The examples of discriminative algorithms include, support 

vector machine, linear regression, decision trees, and neural networks (Sebastiani, 

2002; Aggarwal & Zhai, 2012b; Witten et al., 2016). 

This section briefly explains some common SML-based algorithms, namely, Naive 

Bayes (NB), Decision Tree (DT), Artificial Neural Network (ANN), Support Vector 

Machine (SVM), Random Forest (RF) and Genetic Algorithm (GA), k-Nearest Neighbour 

(kNN), and Ensemble voted Classifier. Good overviews of the text classification work 

and different text classification techniques can be found in Hayes and Weinstein (1990) 

and Yang (1999). 

 Naive Bayes  

It is a simple probabilistic classifier. The NB method is responsible for making a 

probabilistic model of data within each class. It is a statistical analysis algorithm that 

works on numeric data (Sahami, Dumais, Heckerman, & Horvitz, 1998). It requires a 

small amount of training data to predict the parameters essential for classification. It is a 

simple and fast classification algorithm. It works well with text representations, such as 

BoW. The detail discussion on Naïve Bayes classifier is found in (Lewis, 1998a). 

 Decision Tree 

It is the most commonly used algorithm for the task of classification and prediction. 

The DT represents rules that can be easily understandable by humans, and constructs the 

classifier in hierarchical form. The tree has a decision node, leaf node, edge and path 
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(Quinlan, 1986). There are variety of DT classifiers such as ID3, C4.5, C5.0, etc. One of 

the key drawback of DT classifier is that they are prone to overfitting. This is because, 

the trees if grown deeper, are able to fit all kinds of variations in the data, including the 

noise. Moreover, small changes in the data can drastically affect the structure of a DT. 

Therefore, to improve the performance of individual trees, ensemble methods such as 

random forest were proposed, in which many trees are constructed and trained by splitting 

the training set and final predictions are aggregated across the trees. The details of DT 

classifiers is discussed in (Safavian & Landgrebe, 1990). 

 Random Forest 

It was originally developed by UC Berkeley visionary Leo Breiman in a paper he 

published in 1999 (Breiman, 2001). The RF algorithm works as a large collection of 

decorrelated decision trees. This is based on the bagging technique. In a RF, from a 

training set, different sub-training sets are created. From each sub-training set a DT 

classifier is constructed. For the test dataset, each input vector will be classified by all the 

decision trees in a forest and the forest chooses the classifier having the most votes (Liaw 

& Wiener, 2002).  RF shows significant performance over a single DT. This classifier 

also overcomes the issue of overfitting. Fernández-Delgado, Cernadas, Barro, and 

Amorim (2014) compared 179 classifiers on 121 different datasets and they found that 

the RF is the best classifiers compared to other classifiers used in the study. 

 Support Vector Machines 

The SVM classifier is highly influenced by advances in statistical learning theory. SVMs 

play a vital role in the application of image classification, handwriting recognition and 

bioinformatics. SVMs learn by example. Each example consists of a m number of data 

points (x1,……xm) followed by a class label +1 or -1. -1 represents one class label and 

+1 represents another class label. An optimum hyperplane separates the two classes by 

minimizing the distance between +1 and -1 class labels. Such hyperplanes are termed as 
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support vectors. The right side of the hyperplane contains the +1 class and the left one 

contains the -1 class. This separation of classes is performed with the help of training 

examples (Cristianini & Shawe-Taylor, 1999). 

 Artificial Neural Network 

ANN comprised of three main layers. These layers are input layer, hidden layer and 

output layer. The input layer and hidden layer comprise many nodes, while the output 

layer has one node. The nodes in a neural network contain an activation function. With 

the help of the input layer, patterns are provided to the neural network, which interacts 

with hidden layers. The actual processing is done in hidden layers by allocating random 

weights to edges. The hidden layers are further connected to an output layer where the 

final answer is computed. Mostly, ANNs use learning rules for modifying the weights of 

the connections according to the input patterns. One of the popular learning rules is 'Delta 

rule', which is often utilized by 'backpropagation neural networks' (BPNNs). Delta rule is 

a supervised learning rule that occurs with each cycle (i.e. each time the network is 

presented with a new input pattern). The initial pattern is determined by a random 'guess'  

(Zurada, 1992). 

 Genetic Algorithm 

The GA was first proposed by John Holland in the early 1970s (Mitchell, 1998). The 

idea behind the implementation of GA is to use the process like natural evolution to 

resolve the issue of optimization. In GA, a gene is comprised of a string of bits. Generally, 

the preliminary genes population is generated randomly. The bit string length depends on 

the nature of problem to be resolved. From the initial population a subset of genes is 

extracted based upon some quality fitness measurement. After the selection, the next step 

is mating and crossover of which there are different types. Random mating with crossover 

is one of the easy type, where, the genes in selected population are randomly selected and 

mated in pairs. Usually, a point for crossover is chosen for each selected pair. After 
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crossover, the information is swapped between two pairs. In final mutation step, each 

gene bit has a definite Probability P to get inverted. The more detail on GA can be found 

in (Mitchell, 1998). 

 k-Nearest Neighbour 

kNN employs instance-based learning. kNN is also termed as lazy learning classifier 

because it is the simplest classification algorithm that stores all the instances and classifies 

new instance using a similarity measure, such as the Euclidean distance shown in 

Equation 2.5 (Bao, Ishii, & Du, 2004; Fukunaga, 2013). 

( )2

1

k

i i
i

x y
=

−  (2.5) 

 
 Ensemble Voted Classifier 

In ensemble voted classifier  is a meta-classifier that constructs a set of classifiers and 

then classify new instances by taking majority vote of their prediction (Joachims, 1998a; 

Lewis, 1998a; Xu, Guo, Ye, & Cheng, 2012; Danso, Atwell, & Johnson, 2014; Yeow et 

al., 2014). 

2.3.1.5 Classification Model Evaluation and Performance Metrics 

The last step in the SML-based ATC technique is the evaluation of a constructed 

classifier. In this step, constructed classifier predicts the class of unlabelled clinical report 

(for instance, cancer or no cancer) using test dataset.  

During the classification construction and evaluation phase, text classifier accuracy 

can be determined from confusion matrix (as shown in Figure 2.5 for binary classification 

problems). This matrix contains four different kind of cases namely true positive (TP), 

false positive (FP), false negative (FN), and true negative (TN). For instance, in case of 

classifying cancer related pathology reports, the TP is the number of correctly classified 
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reports that actually belong to class “Cancer” and also predicted as “Cancer”. TN is the 

number of correctly classified reports that actually belong to “No Cancer” class and also 

predicted as “No Cancer”. FP is the number of misclassified reports that actually belong 

to “No Cancer” class and were predicted as “Cancer” class. FN is the number of 

misclassified reports that actually belong to “Cancer” class and were predicted as “No 

Cancer”.  

In clinical text classification, several studies employed different types of performance 

metrics to evaluate the classification performance. The commonly used performance 

metrics for binary class problem are precision, recall, F-measure, accuracy, area under 

curve, sensitivity, and specificity. However, in multi-class problems the commonly used 

performance metrics are micro or macro-averaging of precision, recall, and F-measure 

are used. These performance metrics are briefly described in subsequent paragraphs. 

However, the detailed discussion on these performance metrics can be found in (Sokolova 

& Lapalme, 2009). 

 

Figure 2.5: Confusion matrix for binary class problem 

 Precision 

It is the ratio of correctly predicted positive clinical reports to the total positively 

predicted clinical reports. It is also known as positive predictive value (PPV). It is 

formally defined as following: 
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FPTP
TPprecision
+

=  (2.6) 

 
 Recall 

It is the ratio of correctly predicted positive clinical reports to the all clinical reports in 

actual positive class. It is also known as true positive rate (TPR) or sensitivity. It is 

formally defined as following: 

FNTP
TPrecall
+

=  (2.7) 

 F-measure 

It is the weighted average of precision and recall. It is formally defined as following: 

( )
( )recallprecision

recallprecisionmeasureF
+


=−
2  (2.8) 

 
 

 Accuracy 

It is the most widely used performance metric. It is the ratio of correctly predicted 

clinical reports to the total clinical reports. It is formally defined as following: 

( )
( )TNFNFPTP

TNTPaccuracy
+++

+
=  (2.9) 

 
 

 Area Under the Curve   

AUC stands for area under the curve. It is used to compute the goodness of clinical 

report classifier by plotting a particular curve and computing area under that curve. The 

value of 1 for AUC shows the classifier performance is good. Conversely, when AUC 

value is 0.5 or lower than that shows the poor performance of clinical report classifier 

(Provost, Fawcett, & Kohavi, 1998; Hand & Till, 2001; Fawcett, 2006). It is formally 

defined as following: 
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( )0 0 0

0 1

1 / 2S n n
AUC

n n
− +

=  (2.10) 

Here, 0n  and 1n denote the count of positive and negative clinical reports respectively, 

and 0 iS r= where ir  is the rank of thi  positive sample in ranked list. 

 

 Specificity 

It measures the proportion of negative clinical reports that are correctly predicted a 

negative. It is formally defined as following: 

FPTN
TNyspecificit
+

=  (2.11) 

 
 Micro- and Macro-average of Precision, Recall and F-measure  

In micro averaging of precision, recall, and F-measure, individual TP, FP, and FN of 

the system for different sets are summed up and then apply them to get the statistics. 

Conversely, in macro averaging of precision, recall, and F-measure, simply the average 

of precision, recall or F-measure of the system on different sets is taken. The formal 

definitions of micro and macro averaging of precision, recall, and F-measure can be found 

in (Sokolova & Lapalme, 2009). 

2.4 Review of ATC Techniques for Classification of Free-Text Clinical Reports 

The pervasive use of electronic health databases has increased the accessibility of free-

text clinical reports for supplementary use. Several ATC techniques such as SML-based 

ATC techniques or rule-based techniques have been utilized to discover useful 

information from free-text clinical reports. In recent years, many researchers have worked 

on clinical text classification and contributed relevant results to the academic literature. 

Thus, this section recapitulates the existing related works on ATC approaches for 

classifying free-text clinical reports, including autopsy reports, by exploiting the 
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procedural decision analysis in six aspects, namely, types of clinical reports, datasets and 

their characteristics, preprocessing techniques, feature engineering techniques, SML-

based algorithms, and performance metrics (shown in Figure 2.6). Moreover, the 

subsequent sections (Sections 2.5–2.10) present a detailed review of the six 

aforementioned aspects. 

 

Figure 2.6: Literature review aspects 

2.5 Types of Clinical Reports used in the Related Literature 

ATC techniques have been employed in several types of free-text clinical reports, such 

as pathology reports, radiology reports, autopsy reports, death certificates, and biomedical 

documents. Overall, nine different types of clinical reports were identified from the 

literature as shown in Table 2.1. Moreover, the table shows the detailed kinds of clinical 

reports in each category with related references. 

As shown in Table 2.1, majority of the studies employed pathology reports, followed 

by biomedical documents, radiology reports, and autopsy reports. Most of the pathology 

reports were used to detect breast cancer or other related cancers via text classification 

techniques. For instance, Rani, Gladis, and Mammen (2015), Napolitano, Marshall, 

Hamilton, and Gavin (2016), and Yoon et al. (2017) used pathology reports to detect 
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cancer stages via text classification techniques. Moreover, Kasthurirathne et al. (2016) 

and Kasthurirathne et al. (2017) investigated the use of non-dictionary-based and 

dictionary-based text classification approaches to detect cancer from pathology reports. 

Saqlain, Hussain, Saqib, and Khan (2016) used pathology reports to predict the survival 

of patients diagnosed with heart failure. Sedghi, Weber, Thomo, Bibok, and Penn (2016) 

developed a migraine detection model using pathology reports to classify patients with 

migraine or no migraine. 

Table 2.1: Types of clinical reports used in related literature 

Report Types Description Studies 
Influenza 
Related 
Reports 

This includes emergency 
Department reports 
related to Influenza 

(Pineda, Tsui, Visweswaran, & Cooper, 
2013; Ye, Tsui, Wagner, Espino, & Li, 2014; 
MacRae et al., 2015; Pineda et al., 2015) 

   

Radiology 
Reports 

This includes the 
radiology reports related 
to CT Abdomen, CT 
Neuro, limb fractures, 
Cancer, Retrospective 
Study, Invasive Fungal 
(IFD) Disease, HIV, 
Audiologic Data, 
imaging, and Head CT 
Reports 

(Mabotuwana, Lee, & Cohen-Solal, 2013; 
Wagholikar et al., 2013; Zuccon et al., 2013; 
Nguyen & Patrick, 2014; Y. Zhou et al., 
2014; Bates, Fodeh, Brandt, & Womack, 
2015; Martinez et al., 2015; Hassanpour & 
Langlotz, 2016; Masino, Grundmeier, 
Pennington, Germiller, & Crenshaw, 2016; 
K. Yadav et al., 2016; Shin, Chokshi, Lee, & 
Choi, 2017) 

   

Bio-Medical 
Documents 

This includes Medline 
abstracts and medical 
news articles 

(Farshchi & Yaghoobi, 2013; Jo, 2013; 
Adeva, Atxa, Carrillo, & Zengotitabengoa, 
2014; Alghoson, 2014; Jindal & Taneja, 
2015; Parlak & Uysal, 2015; Rios & 
Kavuluru, 2015; H. Y. Zhou, Q. R. Zhang, 
H. X. Wang, & D. Zhang, 2015; Fragos & 
Skourlas, 2016; Mouriño-García, Pérez-
Rodríguez, Anido-Rifón, & Gómez-
Carballa, 2016; Parlak & Uysal, 2016b, 
2018) 

   

Tweets related 
to Healthcare 

This includes tweets 
related to Influence like 
illness (ILI) disease and 
user comments about 
hospital services 

(Greaves, Ramirez-Cano, Millett, Darzi, & 
Donaldson, 2013; X. Dai & M. Bikdash, 
2015; Zuccon et al., 2015) 

   
Death 
Certificates 

This includes the death 
certificate written in 

(Butt, Zuccon, Nguyen, Bergheim, & 
Grayson, 2013; B. Koopman, S. Karimi, et 
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Report Types Description Studies 
English and French and 
are related to cancer and 
other diseases  

al., 2015; B. Koopman, G. Zuccon, A. 
Nguyen, A. Bergheim, & N. Grayson, 2015; 
Imane & Mohamed, 2017; Wu & Wang, 
2017) 

   

Autopsy 
Reports 

This includes the verbal 
autopsy reports and 
forensic autopsy reports 

(Danso et al., 2013, 2014; Yeow et al., 2014; 
Miasnikof et al., 2015b; Kalter, Perin, & 
Black, 2016; Mujtaba et al., 2016) 

   

Pathology 
Reports 

This includes pathology 
reports related to 
lymphoma, cancer, heart 
failure patients, stroke 
and migraine case reports, 
arthroplasty reports 
related to hip surgery and 
reports related to Cervical 
Spine 

(Garla, Taylor, & Brandt, 2013; Luo, Sohani, 
Hochberg, & Szolovits, 2014; Deng et al., 
2015; Kasthurirathne, Dixon, & Grannis, 
2015; Rani et al., 2015; Kasthurirathne et al., 
2016; Napolitano et al., 2016; Saqlain et al., 
2016; Sedghi et al., 2016; Kasthurirathne et 
al., 2017; Lauren, Qu, Zhang, & Lendasse, 
2017; Oleynik, Patrão, & Finger, 2017; 
Yoon et al., 2017) 

   

Other Clinical 
Reports 

This includes discharge 
summaries of patients, 
nursing care records, 
patient history reports 
suffering from diabetes, 
child abuse consultation 
reports, and radiotherapy 
reports 

(Afzal et al., 2013; Wei, Ju, Chun, Hua, & 
Jin, 2013; Gatta, Vallati, De Bari, & 
Ozsahin, 2014; L. Zhou et al., 2015; 
Lopprich et al., 2016; Amrit, Paauw, Aly, & 
Lavric, 2017; Barak-Corren et al., 2017; 
Buchan, Filannino, & Uzuner, 2017; Clark, 
Wellner, Davis, Aberdeen, & Hirschman, 
2017; Hassanpour, Langlotz, Amrhein, 
Befera, & Lungren, 2017; Lucini et al., 2017; 
Y. Wang, E. Coiera, W. Runciman, & F. 
Magrabi, 2017) 

   

Combination 
of various 
Reports 

This includes the multi-
modality reports where 
different set of reports 
belong to same disease 
were combined for 
classification task. 

(Kavuluru, Rios, & Lu, 2015; Sarker & 
Gonzalez, 2015; Kocbek et al., 2016) 

 

Radiology reports were also used extensively in the field of medical text classification. 

Zuccon et al. (2013) and Wagholikar et al. (2013) used radiology reports to identify limb 

fractures via text classification techniques. Shin et al. (2017) and Yadav et al. (2016) 

employed radiology reports relating to brain computed tomography (brain or head CT 

reports) to identify pediatric traumatic brain injury (TBI). Bates et al. (2015) used 

radiology reports to detect the human immunodeficiency virus (HIV) by automated text 

Table 2.1: continued 
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classification techniques. In addition, researchers have also classified influenza-related 

clinical reports to detect influenza-like illnesses using SML-based ATC techniques 

(Pineda et al., 2013; Ye et al., 2014; MacRae et al., 2015; Pineda et al., 2015). Researchers 

have also used Twitter tweets to predict influenza-related tweets (X. F. Dai & M. Bikdash, 

2015; Zuccon et al., 2015).  

Verbal autopsy reports (Danso et al., 2013, 2014; Miasnikof et al., 2015b; Kalter et al., 

2016) and forensic autopsy reports (Yeow et al., 2014; Mujtaba et al., 2016) have also 

been utilized to predict cause of death (CoD) from autopsy findings using SML-based 

ATC techniques. Death certificates have also been used to automatically assign ICD-10 

codes to such forms (Butt et al., 2013; Koopman, S. Karimi, et al., 2015; Koopman, G. 

Zuccon, et al., 2015; Imane & Mohamed, 2017; Wu & Wang, 2017). Finally, recent 

studies collected various clinical reports from different sources, combined those reports, 

and used those combined reports for developing the classification model (Kavuluru et al., 

2015; Sarker & Gonzalez, 2015; Kocbek et al., 2016). For instance, Kavuluru et al. (2015) 

combined pathology and radiology reports to develop a text classification model to 

automatically assign ICD-9 codes to electronic medical reports. Kocbek et al. (2016) 

combined the pathology reports, radiology reports, and patients’ admission-related meta-

data to predict the rate of admissions against disease. In all these three aforementioned 

studies, authors reported that combining data from various sources or combining features 

of different reports can produce highly reliable and accurate predictions. 

2.6 Review of Dataset and their Characteristics 

The free-text clinical report dataset is the essential ingredient of ATC techniques. 

Nonetheless, such a dataset is useless on its own until some useful knowledge or patterns 

are extracted from it. The literature related to ATC of free-text clinical reports shows that 

authors mostly collected customized datasets of free-text clinical reports from their 
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country. Moreover, the datasets were divided into training and test sets. For instance, Ye 

et al. (2014) collected the corpus of influenza-related clinical reports to detect influenza. 

The collected corpus comprised 592 influenza-related reports and 29,092 non-influenza-

related reports. For the training set, authors used 468 influenza-related reports and 29,004 

non-influenza-related reports to construct the classification model. To test the 

performance of the constructed classification model, authors used the test set that 

comprised 124 influenza-related reports and 87 non-influenza-related reports. The 

datasets (related to free-text clinical reports) used in the literature can be categorized into 

two major categories: homogenous datasets and heterogeneous datasets (as shown in 

Figure 2.7). The data sources (from where the dataset is collected) can also be categorized 

into homogenous or heterogeneous sources. This relationship is shown in Figure 2.8 and 

described in subsequent paragraphs.  

 

Figure 2.7: Types of datasets used in related literature 

 

Figure 2.8: The dataset and data source matrix 
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Homogenous–Homogenous: Here, the dataset consists of one type of clinical report 

(such as pathology report), and the dataset is usually collected from one data source or 

hospital. In previous studies (Pineda et al., 2013; Ye et al., 2014; MacRae et al., 2015; 

Pineda et al., 2015), authors collected influenza-related emergency department reports 

from one hospital to develop a classification model for detecting influenza-like illnesses. 

In these studies, authors mentioned that their results may not be generalized because the 

constructed classification model was trained on emergency department reports of one 

hospital.  

Homogenous–Heterogeneous: Here, the dataset consists of one type of clinical report 

(such as pathology report), and the dataset is usually collected from different data sources 

or hospitals. For instance, in studies (Kasthurirathne et al., 2016, 2017), authors collected 

7,000 cancer-related pathology reports from seven different healthcare systems and thirty 

different hospitals. The experimental findings showed that combining cancer-related 

pathology reports from various data sources improves generalization, reliability, and 

classification performance. Wang et al. (2017) developed a classification model to 

automate the identification of patients’ safety incidents using incident reports. Here, the 

authors collected 6,000 incident reports from one hospital for training purposes and 5,950 

incident reports from another hospital for testing purposes. The experimental findings 

showed the robustness of using incident reports from different data sources. Hassanpour 

et al. (2017) developed a classification model to automatically classify knee magnetic 

resonance imaging (MRI) reports into positive or negative class. For experiments, 706 

reports were collected from Duke and 1748 reports were collected from Stanford 

healthcare organizations. Authors reported that combining knee MRI reports from two 

different organizations demonstrates improved classification performance. Barak-Corren 

et al. (2017) developed a prediction model to predict the risk of suicidal behavior of 

patients. For the experiments, authors collected the narrative clinical notes from a variety 
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of hospitals situated in Boston, USA, to predict the risk of suicidal behavior of the 

patients. The homogenous datasets and heterogeneous data sources were collected and 

used to construct the generalized, accurate, and reliable classification models. 

Heterogeneous–Homogenous: Here, the dataset consists of different types of clinical 

reports (such as pathology and radiology reports), and the dataset is usually collected 

from one data source or one hospital. Different reports are used for classification because 

a variety of reports can be prepared by a hospital for reporting the same disease; for 

instance, cancer cases can be reported into pathology and radiology reports. Thus, 

combining both of these reports in the auto-prediction model can enhance the prediction 

accuracy and credibility. For instance, Kavuluru et al. (2015) combined pathology and 

radiology reports to develop a text classification model to automatically assign ICD-9 

codes to electronic medical reports. The authors collected the pathology and radiology 

reports from one hospital situated at the United Kingdom. Kocbek et al. (2016) combined 

three different clinical reports, namely, pathology, radiology, and patients’ admission-

related meta-data reports, to predict the rate of admissions against disease. The authors 

collected these reports from one hospital situated in Australia. The abovementioned 

studies reported that combining features of different clinical reports produce highly 

reliable and accurate predictions. 

Heterogeneous–Heterogeneous: Here, the dataset consists of different types of 

clinical reports (such as pathology and radiology reports), and the dataset is usually 

collected from different data sources or different hospitals. This type of dataset is the most 

robust dataset for the development of the classification model. Moreover, the results 

generated from such datasets can be generalized on a wide scale. For instance, Sarker and 

Gonzalez (2015) collected Twitter tweets and daily strength instances related to adverse 

drug reaction events. Authors also collected adverse drug events reports from one 
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hospital. Authors combined all these three datasets in the training set and developed a 

classification model for identifying adverse drug reactions. The experimental results 

showed that the classification performance significantly benefits from multi corpus 

training collected from different data sources (such as Twitter, daily strength, and 

hospital). 

Both homogenous and heterogeneous datasets can be further divided into three 

subtypes, namely, binary class datasets, multi-class single labeled datasets, and multi-

class multi-labeled datasets (as shown in Figure 2.7).  

Binary Class Datasets: In binary class datasets, reports can be labeled in either of two 

classes (such as cancer positive or cancer negative). For instance, in studies 

(Kasthurirathne et al., 2016, 2017), authors collected 7,000 cancer-related pathology 

reports. Each report was labeled as cancer positive or cancer negative by three clinicians. 

Of these 7,000 reports, 1950 reports were cancer positive, and 5,050 reports were cancer 

negative. Of these 7,000 reports, 6,300 reports were used for training purpose and the 

remaining 700 reports were used for testing. Wagholikar et al. (2013) and Zuccon et al. 

(2013) collected radiology reports corpus related to limb fracture. This corpus comprised 

99 radiology reports. Each report was labeled with “normal” or “abnormal” class. Of these 

reports, 90% were used as the training set, and the remaining 10% was used as the test 

set.  

Multi-Class Single-Labeled Datasets: In multi-class single labeled datasets, clinical 

reports were composed of more than two categories; however, each report was 

categorized into one label. For instance, Mujtaba et al. (2016) developed a classification 

model to predict CoDs from forensic autopsy reports. Authors collected the dataset from 

one of the biggest hospitals situated in Kuala Lumpur, Malaysia. The dataset comprised 

400 forensic autopsy reports. These 400 reports were labeled into eight different CODs. 
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Authors used tenfold cross validation (Kohavi, 1995; Refaeilzadeh, Tang, & Liu, 2009) 

to evaluate the classification model’s performance. Danso et al. (2013) developed a 

prediction model to predict CoDs from verbal autopsy reports. The collected dataset 

comprised 6,407 verbal autopsy reports. The collected reports belonged to 16 different 

CoDs. Authors used tenfold cross validation to evaluate the classification model’s 

performance. In studies (Jo, 2013; Adeva et al., 2014; Alghoson, 2014; Jindal & Taneja, 

2015; Parlak & Uysal, 2015; Rios & Kavuluru, 2015; Zhou, Q. R. Zhang, H. X. Wang, 

& D. Zhang, 2015; Fragos & Skourlas, 2016; Mouriño-García et al., 2016; Parlak & 

Uysal, 2016a, 2018), authors used the subset of the OHSUMED dataset to classify 

medical abstracts into 23 cardiovascular diseases. This subset of the OHSUMED dataset 

contains 13,929 Medline abstracts. Nonetheless, each abstract may fall into more than 

one category, but the authors only considered those Medline abstracts, which fell under 

one category only. Of these 13,929 Medline abstracts, 6,286 abstracts were used in the 

training set and the remaining abstracts were used in the test set.  

Multi-Class Multi-Labeled Datasets: In multi-class multi-labeled datasets, clinical 

reports comprised more than two categories, and each report was categorized into more 

than one class label. For instance, Imane and Mohamed (2017) collected the French 

Center for Epidemiology and Medical Causes of Death (CépiDC) dataset, which includes 

death certificates. The dataset contained 65,843 death certificates labeled by 3232 ICD-

10 (the international classification of diseases code-version 10) codes. Each certificate 

maybe assigned one or more ICD-10 codes. Of these 65,843 certificates, 52,675 death 

certificates were used for training purposes, and 13,168 death certificates were used for 

testing purposes. 

Table 2.2 shows the distribution of related literature based on datasets and data source 

matrix (shown in Figure 2.8). The majority of studies (57 out of 69) used one type of 
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clinical report collected from one hospital (homogenous–homogenous). Of these 57 

studies, 36 studies used multi-class single-labeled datasets, 20 used binary class datasets, 

and only one study used multi-class multi-label datasets.  Moreover, five studies used one 

type of clinical reports that were collected from more than one data sources (please see 

homogenous–heterogeneous row in Table 2.2). Of these five studies, two used multi-class 

single-labeled datasets, and three employed binary class datasets. Furthermore, five 

studies used different types of clinical reports, which were collected from one data source 

(heterogeneous–homogenous). Of these five studies, four studies used multi-class single-

labeled datasets, and one utilized a binary class dataset. Finally, only one study used 

different types of clinical reports that were collected from more than one different data 

source (heterogeneous– heterogeneous).  

Table 2.2: Related literature based on dataset and data source matrix 

Type of Dataset References Count 

Homogenous - 
Homogenous 

Binary 
class 

(Afzal et al., 2013; Butt et al., 2013; 
Mabotuwana et al., 2013; Pineda et al., 2013; 
Wagholikar et al., 2013; Wei et al., 2013; 
Zuccon et al., 2013; Nguyen & Patrick, 2014; 
Ye et al., 2014; Bates et al., 2015; X. Dai & 
M. Bikdash, 2015; Deng et al., 2015; 
MacRae et al., 2015; Pineda et al., 2015; 
Zuccon et al., 2015; Lopprich et al., 2016; 
Saqlain et al., 2016; K. Yadav et al., 2016; 
Amrit et al., 2017; Lucini et al., 2017) 

20 

   

Multi-class 
single-label 

(Danso et al., 2013; Farshchi & Yaghoobi, 
2013; Garla et al., 2013; Greaves et al., 2013; 
Jo, 2013; Adeva et al., 2014; Alghoson, 
2014; Danso et al., 2014; Gatta et al., 2014; 
Luo et al., 2014; Yeow et al., 2014; Y. Zhou 
et al., 2014; Jindal & Taneja, 2015; 
Kasthurirathne et al., 2015; B. Koopman, S. 
Karimi, et al., 2015; B. Koopman, G. Zuccon, 
et al., 2015; Miasnikof et al., 2015b; Parlak 
& Uysal, 2015; Rani et al., 2015; Rios & 
Kavuluru, 2015; H. Y. Zhou et al., 2015; L. 
Zhou et al., 2015; Fragos & Skourlas, 2016; 
Hassanpour & Langlotz, 2016; Kalter et al., 
2016; Masino et al., 2016; Mouriño-García et 
al., 2016; Napolitano et al., 2016; Parlak & 
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Type of Dataset References Count 
Uysal, 2016b; Buchan et al., 2017; Clark et 
al., 2017; Lauren et al., 2017; Oleynik et al., 
2017; Shin et al., 2017; Wu & Wang, 2017; 
Yoon et al., 2017; Parlak & Uysal, 2018) 

   
Multi-class 
multi-label (Imane & Mohamed, 2017) 1 

    

Homogenous - 
Heterogeneous 

Binary 
class 

(Martinez et al., 2015; Kasthurirathne et al., 
2016, 2017) 3 

   
Multi-class 
single-label 

(Sedghi et al., 2016; Barak-Corren et al., 
2017) 2 

   
Multi-class 
multi-label - 0 

    

Heterogeneous 
- Homogenous 

Binary 
class (Hassanpour et al., 2017) 1 

   
Multi-class 
single-label 

(Kavuluru et al., 2015; Kocbek et al., 2016; 
Mujtaba et al., 2016; Y. Wang et al., 2017) 4 

   
Multi-class 
multi-label - 0 

    

Heterogeneous 
- 
Heterogeneous 

Binary 
class (Sarker & Gonzalez, 2015) 1 

   
Multi-class 
single-label - 0 

   
Multi-class 
multi-label - 0 

 

As can be seen from Table 2.2, very few studies have used heterogeneous-

homogeneous and hetrogenous-hetrogenous clinical reports corpus and mostly have used 

either homogenous-homogenous and homogenous-heterogeneous dataset. However, it 

should be noted that several hospitals may have different medical documentation systems 

and patterns or styles, thereby possibly producing hurdles in generalizing constructed 

classifier to multiple hospitals. Moreover, one disease can be reported in a variety of 

reports. For example, cancer patients’ findings can be reported in pathology and radiology 

Table 2.2: continued 
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reports. Hence, the practitioners in clinical text classification are suggested to use the 

heterogeneous–heterogeneous reports to develop a classification model. 

2.7 Review of Preprocessing Techniques 

In clinical text classification, preprocessing involves removing meaningless data from 

the collected dataset to improve the quality of clinical text classification models. In the 

related literature, preprocessing techniques such as removal of stop words, removal of 

punctuations or special symbols, removal of empty spaces, case conversion, spell 

correction, tokenization, stemming, lemmatization, and normalization were applied (as 

shown in Table 2.3). Table 2.3 shows the related literature based on applied preprocessing 

tasks. Majority of the studies employed basic pre-processing tasks (including stop word 

removal, removal of punctuation and white spaces, and case conversion) and word 

tokenization. In addition, these studies reported the effectiveness of these preprocessing 

techniques on clinical text classification. Nonetheless, few studies (Danso et al., 2013, 

2014; Sarker & Gonzalez, 2015; Lauren et al., 2017) empirically investigated the presence 

and absence of stop words and reported that the presence of stop words produces better 

classification accuracy than their absence. In some studies, researchers demonstrated that 

applying stemming task with basic preprocessing tasks and word tokenization enhances 

classification performance (Jo, 2013; Adeva et al., 2014; Koopman, S. Karimi, et al., 

2015; Koopman, G. Zuccon, et al., 2015; Sarker & Gonzalez, 2015). Buchan et al. (2017) 

and Wang et al. (2017) applied stemming and lemmatization for clinical text 

normalization with basic preprocessing tasks and word tokenization. They also reported 

the effectiveness of using stemming and lemmatization techniques. 

Nonetheless, Lauren et al. (2017) applied text classification techniques to classify 

arthroplasty reports and empirically investigated the effectiveness of stemming and 

lemmatization to preprocess the arthroplasty reports. Experimental results showed the 
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unsuitability of stemming and lemmatization when applied on psychiatric evaluation 

reports. Clark et al. (2017) applied text classification techniques for classifying 

psychiatric evaluation reports to detect the severity of mental disorders and reported the 

unsuitability of stemming and lemmatization when applied on psychiatric evaluation 

reports. Martinez et al. (2015) and Masino et al. (2016) applied basic preprocessing 

techniques with word tokenization to classify radiology reports. In addition to basic 

preprocessing techniques, researchers also applied few text normalization techniques 

using regular expressions to convert numbers or dates to common units such as number 

and date. The experimental findings showed that such text normalization techniques 

improve the classification accuracy and overcome the issue of dimensionality. 

Table 2.3: Preprocessing tasks used in related literature 

Studies Preprocessing Techniques Study 
Count 

   
(Afzal et al., 2013; Danso et al., 2013; 
Garla et al., 2013; Greaves et al., 
2013; Wagholikar et al., 2013; Danso 
et al., 2014; Nguyen & Patrick, 2014; 
Y. Zhou et al., 2014; Bates et al., 
2015; X. Dai & M. Bikdash, 2015; 
Jindal & Taneja, 2015; Kasthurirathne 
et al., 2015; Kavuluru et al., 2015; 
Parlak & Uysal, 2015; Rani et al., 
2015; H. Y. Zhou et al., 2015; Fragos 
& Skourlas, 2016; Hassanpour & 
Langlotz, 2016; Kalter et al., 2016; 
Lopprich et al., 2016; Napolitano et 
al., 2016; Saqlain et al., 2016; Sedghi 
et al., 2016; K. Yadav et al., 2016; 
Shin et al., 2017; Yoon et al., 2017) 

These studies reported that the removal 
of stop-words, punctuation marks, 
white spaces, and converting text into 
lower case improves the classification 
performance. 

26 

   
(Jo, 2013; Adeva et al., 2014; B. 
Koopman, S. Karimi, et al., 2015; B. 
Koopman, G. Zuccon, et al., 2015; 
Sarker & Gonzalez, 2015; 
Kasthurirathne et al., 2016; Kocbek et 
al., 2016; Mujtaba et al., 2016; Parlak 
& Uysal, 2016b; Amrit et al., 2017; 
Kasthurirathne et al., 2017; Lucini et 

These studies reported that the 
converting the text into lower case, 
converting the text into word tokens, 
applying stemming technique, and 
removing the stop-words, punctuation 
marks, and white spaces improve the 
classification performance. 

15 
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Studies Preprocessing Techniques Study 
Count 

al., 2017; Oleynik et al., 2017; Parlak 
& Uysal, 2018) 
   

(Buchan et al., 2017; Y. Wang et al., 
2017) 

These studies reported that the 
converting the text into lower case, 
converting the text into word tokens, 
applying stemming and lemmatization 
techniques, spell correction, and 
removing the stop-words, punctuation 
marks, and white spaces improve the 
classification performance. 

4 

   

(Luo et al., 2014; Imane & Mohamed, 
2017; Lauren et al., 2017) 

These studies reported that the 
converting the text into lower case, 
removing the stop-words, punctuation 
marks, and white spaces, and 
converting the text into sentence tokens 
improve the classification performance. 

3 

   

(Martinez et al., 2015; Masino et al., 
2016) 

These studies reported that the 
converting the text into lower case, 
converting the text into word tokens, 
and converting numeric measures and 
some units into common terms improve 
the classification performance. 

2 

   

(Clark et al., 2017) 

These studies reported that the 
converting the text into lower case, 
converting the text into word tokens, 
applying spell checker, and removing 
the stop-words, punctuation marks, and 
white spaces improve the classification 
performance. 

1 

   
(Butt et al., 2013; Farshchi & 
Yaghoobi, 2013; Pineda et al., 2013; 
Wei et al., 2013; Zuccon et al., 2013; 
Alghoson, 2014; Danso et al., 2014; 
Gatta et al., 2014; Ye et al., 2014; 
Yeow et al., 2014; Comelli, Agnello, 
Vitabile, & Ieee, 2015; Deng et al., 
2015; Miasnikof et al., 2015b; Pineda 
et al., 2015; L. Zhou et al., 2015; 
Zuccon et al., 2015; Mouriño-García 
et al., 2016; Barak-Corren et al., 2017; 
Hassanpour et al., 2017; Wu & Wang, 
2017) 

These studies have not reported any 
preprocessing techniques 21 

   
 

Table 2.3: continued 
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2.8 Review of Feature Engineering Techniques 

As discussed earlier in Section 2.3.1.3, the most important step in the SML-based ATC 

technique is feature engineering (Wolpert & Macready, 1995; Aggarwal & Zhai, 2012a; 

Domingos, 2012; Witten et al., 2016). The success or failure of any text classification 

model is heavily dependent upon the quality of features used in the classification task. 

Feature engineering is further subdivided into three substeps, namely, feature extraction, 

feature representation, and feature selection. The review of these three steps is presented 

in subsequent sections (from Section 2.8.1 to Section 2.8.3). 

2.8.1 Review of Feature Extraction Techniques 

Feature extraction is the process of extracting useful features from free-text clinical 

reports. Several features have been used to classify the clinical reports. The complete 

taxonomy of all these features has been defined in this thesis and is shown in Figure 2.9.  

In the field of clinical text classification, computer-aided expert systems are required 

only if a certain condition, such as specific level of accuracy or quality, is met. In the 

related literature, researchers usually employed and empirically investigated two general 

approaches of feature extraction, namely, expert-driven (X. F. Dai & M. Bikdash, 2015; 

Sarker & Gonzalez, 2015; Sedghi et al., 2016; Barak-Corren et al., 2017; Clark et al., 

2017) and fully automated feature extraction (Wei et al., 2013; Nguyen & Patrick, 2014; 

Bates et al., 2015; Comelli et al., 2015). Thus, this section aims to present details of both 

of these approaches with their subtypes (as shown in Figure 2.9). Moreover, it presents 

the related literature that compared both of these features to evaluate the classification 

performance. 

2.8.1.1 Fully-automated feature extraction approaches 

Here, the features are automatically extracted from given clinical reports by computer 

programs through various statistically approaches. In these approaches, no human or 
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expert intervention is required. The literature shows that researchers used the automated 

feature extraction techniques to extract content-based features, concept-based features, 

structural features, and linguistic features. These features are discussed in subsequent 

paragraphs with the help of related studies. 

 Content-based features 

Features are usually extracted from the content of free-text clinical reports. These 

features include BoW, n-gram, and Word2Vec. The BoW and n-gram features are already 

defined in Section 2.3.1.3(a). Word2Vec exists in two models: skip-gram and continuous 

bag of words (CBoW) (Goldberg & Levy, 2014). The skip-gram model learns iteratively 

from existing words available in a sentence to predict the next word. By contrast, the 

CBoW model uses the neighboring words to predict the current word. In both skip-gram 

and CBoW, the parameter window size determines the limit on number of words used in 

the context. 

 

Figure 2.9: Features used in related literature 

 Concept-based features 

Medical experts (such as physician or surgeon) may use different terms to describe the 

same condition in free-text clinical reports. For instance, experts may use the term “heart 
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attack” or “myocardial infarction” interchangeably. Although, both terms belong to the 

same medical concept, the content-based feature extraction techniques cannot identify the 

relationship between these two terms. To overcome this issue, specialized medical 

ontologies are developed such as SNOMED CT (Stearns et al., 2001; Donnelly, 2006) to 

extract medical concepts instead of terms from clinical reports. In the literature, two 

widely used concept-based features were identified, namely, BoP and BoC (discussed in 

Section 2.3.1.3(a)).  

 Structural features 

These features exploit the structure or form of clinical documents for obtaining the 

discriminative features. These features include length of the clinical reports, number of 

sentences available in the clinical reports, number of sections available in the clinical 

reports, and position of the word in a given sentence. 

 Linguistic features 

The linguistic features are used to determine the correct sense of given words used in 

the text. These features include parts of speech (POS) features. In POS, each word is 

represented with its POS tag.  

 Graph-based features or graph of words (GoW) 

In the GoW model, content- or concept-based features are represented in graphs to 

capture word order. In GoW, a graph is the combination of V, E, and W, where V 

represents graph vertices with each vertex containing a distinct feature in the input text, 

E represents graph edges that connect co-occurring features, and W is the function that 

computes the edge weight by considering the co-occurrence frequency of adjacent 

vertices in the graph. The motivation in using the graph model is to consider word order 

in the input text. 
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Table 2.4 shows the type of automated features used in the related literature. In most 

of the studies, researchers used BoW features for classifying free-text clinical reports. For 

instance, in studies (Jo, 2013; Jindal & Taneja, 2015; Parlak & Uysal, 2015; Zhou, Q. R. 

Zhang, et al., 2015; Parlak & Uysal, 2016a, 2018), authors employed BoW features to 

classify Medline abstracts. Moreover, Garla et al. (2013) and Kasthurirathne et al. (2015) 

extracted and used BoW features for classifying cancer reports. Wu and Wang (2017) and 

Wang et al. (2017) obtained BoW features from death certificates to determine ICD-10 

codes of reported CoDs. Oleynik et al. (2017) and Kasthurirathne et al. (2017) classified 

pathology reports using BoW features. Moreover, Yeow et al. (2014) used BoW features 

to predict CoDs from forensic autopsy reports and reported that BoW is useful for 

predicting CoDs. Although the BoW model is simpler and effective however, it ignores 

the word order. Therefore, to overcome the limitations of the BoW model, n-gram feature 

extraction was proposed (Cavnar & Trenkle, 1994). 

Several studies have employed n-gram feature extraction to extract powerful features 

from clinical reports. For instance, Mujtaba et al. (2016) empirically investigated the 

performance of unigram, bigram, and trigram features to classify forensic autopsy reports. 

Their experimental results showed that unigram outperforms bigram and trigram features, 

but the performance of bigram was slightly lower than that of unigram. Moreover, Lucini 

et al. (2017) investigated the effectiveness of unigram, bigram, and trigram to predict 

hospital admission using free-text emergency department reports. The experimental 

results showed that trigram outperforms unigram and bigram. Zhou et al. (2014) 

employed n-gram features to classify radiology reports; they experimentally investigated 

n-gram from 1 to 8 and reported that n-gram (where n = 4) obtained the best classification 

accuracy. Masino et al. (2016) investigated the character n-gram and word n-gram 

features (where n = 1 to 3) to classify radiology reports. Their experimental results 

showed that word bi-gram and word-trigram demonstrate enhanced results. Moreover, 

Univ
ers

ity
 of

 M
ala

ya



57 

Masino et al. (2016) compared the effectiveness of word-level unigram, bigram, and 

trigram and character-level unigram, bigram, and trigram to classify radiology reports. 

Their experimental results showed that word-level bigram and trigram outperform the 

other features.  

Pineda et al. (2013) and Pineda et al. (2015) extracted n-gram features to classify 

influenza-like diseases using free-text clinical reports related to influenza. The authors 

reported that a combination of unigram and bigram features yields improved results. In 

studies (Zhou, A. W. Baughman, et al., 2015; Hassanpour & Langlotz, 2016; Hassanpour 

et al., 2017), authors extracted unigram, bigram, and trigram features from clinical 

reports, aggregated the extracted features, and used them in classification. The 

experimental findings showed that combining unigram, bigram, and trigram exhibited 

enhanced results. Danso et al. (2013) extracted n-gram features (unigrams and bigram) 

and linguistic features (PoS) from verbal autopsy reports to determine the time of death 

and CoD. Their experimental results showed that a combination of n-gram and PoS 

features is useful for classification tasks. Many studies have demonstrated the 

effectiveness of the n-gram approach, but this technique has three major limitations. First, 

the n-gram approach does not capture word inversion and subset matching. Second, this 

approach does not consider word-level synonymy and polysemy when applied on clinical 

text reports. Finally, the number of features increases enormously with increasing n, 

thereby resulting in dimensionality. To overcome these issues, researchers employed 

other kinds of features such as BoP and BoC.  

Pineda et al. (2015) employed BoP features to extract useful medical phrases using 

MetaMap tool from influenza-related free-text clinical reports. Kocbek et al. (2016) used 

BoP and BoC features to predict the admission against disease via a combination of 

pathology, radiology, and admission-related patients’ data. In studies (Wei et al., 2013; 
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Nguyen & Patrick, 2014; Bates et al., 2015; Comelli et al., 2015), authors employed BoW 

and BoC features to classify free-text clinical reports, and they reported that the 

combination of both BoW and BoC features enhances the classification accuracy. In 

recent studies (Martinez et al., 2015; Amrit et al., 2017; Buchan et al., 2017), researchers 

used the combination of BoW, n-gram, BoC, structural, and linguistic features to classify 

clinical reports. The experimental findings showed that structural and linguistic features 

obtain robust classification accuracy when combined with content-based features such as 

BoW, n-gram, and BoC. Recently, Yoon et al. (2017) used GoW to classify breast cancer 

and lung cancer cases. The authors transformed each cancer report into a graph, where 

graph vertices show the words available in the report and edge shows the two co-

occurring words. To show the effectiveness of the GoW model, authors compared the 

proposed GoW with n-gram. The experimental results demonstrated that the proposed 

GoW model outperforms the n-gram model because graph representation provides 

flexibility and robustness on representing the natural language text compared with 

traditional n-gram. Moreover, the GoW approach can overcome the limitations of word 

co-occurrence and word order. Nonetheless, GoW is more effective than traditional BoW 

and n-gram but computationally expensive relative to BoW or n-gram. 

2.8.1.2 Expert-driven feature extraction 

The groups of experts are responsible for discovering the useful and discriminative 

features from the clinical reports. Moreover, the experts rank the extracted features on the 

basis of their discriminative power and store those features in lexicons for classification. 

This approach requires readily available expert knowledge in the form of decision rules, 

expert domain knowledge, and human expertise. Table 2.4 shows various studies that 

employed expert-driven features for classifying clinical reports. 
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X. F. Dai and M. Bikdash (2015) employed expert-driven approaches to manually 

extract features (related to medicine and alcohol) from tweets related to influenza. After 

extracting the features, the authors developed two lexicons: one for storing the features 

related to medicine and another for storing the features related to alcohol. Finally, the 

authors used the developed lexicons to classify influenza-related tweets. Sarker and 

Gonzalez (2015) extracted n-gram and BoC features from Twitter tweets, daily strength 

instances, and free-text clinical reports related to adverse drug reaction. Moreover, the 

authors developed expert-driven lexicons that contain some useful features to classify 

adverse drug reaction-related tweets or clinical reports. The experimental findings 

showed that a combination of n-gram features, BoC features, and manually created 

expert-driven lexicons leads to enhanced classification accuracy. Deng et al. (2015) 

employed expert-driven feature extraction to classify pathology reports and obtained 

good classification accuracy. Sedghi et al. (2016) developed expert-driven lexicons with 

the help of experts for migraine and stroke-related cases. Saqlain et al. (2016) prepared 

and used expert-driven lexicons for predicting the heart failure risk of heart patients. In 

the aforementioned studies, the authors reported that lexicon-based features result in high 

classification accuracy.  

2.8.1.3 Expert-driven versus fully-automated features 

To obtain a specific level of classification performance in the clinical text classification 

domain, several studies empirically investigated the effectiveness of expert-driven and 

fully automated approaches. Pineda et al. (2013) compared the classification performance 

of expert-driven features and fully automated features to classify influenza-related 

reports. Their experimental results showed no significant difference between the 

classification performance obtained through expert-driven and fully automated feature 

extraction approaches. Zuccon et al. (2013) employed the ATC technique to identify limb 

fracture radiology reports. The authors developed two different text classification models 
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using expert-driven and fully automated features. Their experimental results showed that 

the text classification model developed using fully automated features obtained 3% more 

classification accuracy than that of the expert-driven model.  

Ye et al. (2014) employed SML-based ATC techniques to classify influenza-related 

clinical reports. Features were extracted by domain experts from collected datasets. These 

extracted features were fed to a classifier to categorize the collected report. To compare 

the effectiveness of expert-driven features, authors also extracted the BoP features using 

automated tools, namely, TOPZ and MEDLEE. These tools extracted the medical phrases 

used in clinical reports. These extracted features were then fed to a classifier to organize 

the influenza-related reports. The experimental results showed that expert-driven features 

outperformed TOPZ and MEDLEE features. Koopman, S. Karimi, et al. (2015) 

developed an ATC model to classify death certificates through expert-driven and fully 

automated features. In expert-driven features, experts extracted the useful terms, features, 

or keywords from death certificates. Conversely, in the automated approach, the BoW 

and BoC features were extracted from death certificates. The experimental results showed 

a minute difference in performance between these two approaches; the performance 

obtained by the expert-driven approach was 1% higher than that of the fully automated 

approach. 

Kalter et al. (2016) developed an ATC model to classify verbal autopsy reports using 

expert-driven and fully automated features. The experimental results showed that expert-

drive features outperform fully automated features. Masino et al. (2016) developed a text 

classification model with and without the help of domain expert intervention to classify 

temporal bone-related radiology reports. Text classifiers with expert intervention 

obtained the highest classification accuracy than those without expert intervention. 

Kasthurirathne et al. (2016) employed expert-driven features and fully automated features 
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to classify cancer-related pathology reports. No significant difference in classification 

performance was found between the expert-driven and fully automated approaches. 

Table 2.4: Feature sets used in related literature 

Study Features Feature 
Representation 

Feature 
Selection 

Afzal et al. (2013) BoW BR Chi-Square 
Garla et al. (2013) Bow BR -- 
Jo (2013) BoW TF -- 
Pineda et al. (2013) n-gram BR -- 
Wei et al. (2013) BoW and BoC TF IG 
Butt et al. (2013) n-gram and BoC BR and TF -- 
Zuccon et al. (2013) n-gram and BoC TF -- 
Danso et al. (2013) n-gram and LGF N-TFiDF -- 
Farshchi and Yaghoobi (2013) BoW, STF, LGF TF and TFiDF -- 
Greaves et al. (2013) EDF TF IG 
Wagholikar et al. (2013) EDF BR -- 

Danso et al. (2014) n-gram BR, TF, TFiDF 
and N-TFiDF LSFS 

Gatta et al. (2014) BoW TFiDF -- 
Yeow et al. (2014) BoW TF -- 

Y. Zhou et al. (2014) n-gram BR -- 
Luo et al. (2014) GoW TF -- 
Nguyen and Patrick (2014) BoW and BoC BR -- 
Alghoson (2014) EDF BR -- 
Ye et al. (2014) n-gram and EDF BR -- 
Adeva et al. (2014) n-gram TFiDF Chi-Square 
Jindal and Taneja (2015) BoW TF -- 
Kasthurirathne et al. (2015) BoW TF -- 
Parlak and Uysal (2015) BoW TF -- 

H. Y. Zhou et al. (2015) BoW TF -- 
Rani et al. (2015) n-gram BR -- 

Pineda et al. (2015) n-gram BR -- 
Bates et al. (2015) BoW and BoC BR MI 
Comelli et al. (2015) BoW and BoC BR -- 
Kavuluru et al. (2015) n-gram and BoC BR BNSS 

B. Koopman, S. Karimi, et 
al. (2015) n-gram and BoC BR -- 

B. Koopman, G. Zuccon, et al. 
(2015) n-gram and BoC BR IG 

Martinez et al. (2015) BoW, BoS, BoP, 
BoC, and STF BR PC 

Rios and Kavuluru (2015) W2V TF -- 
Zuccon et al. (2015) n-gram and STF BR -- 
X. Dai and M. Bikdash 

(2015) EDF BR ED 

Deng et al. (2015) EDF BR -- 
MacRae et al. (2015) EDF BR -- 
Sarker and Gonzalez (2015) EDF TFiDF -- 
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Study Features Feature 
Representation 

Feature 
Selection 

Miasnikof et al. (2015b) BoW and EDF BR -- 
L. Zhou et al. (2015) n-gram TF -- 
Kasthurirathne et al. (2016) BoW TF IG 
Lopprich et al. (2016) BoW TF -- 
Parlak and Uysal (2016b) BoW TF GI and DFS 
Hassanpour and Langlotz 
(2016) n-gram TFiDF -- 

Masino et al. (2016) n-gram BR and TF -- 
Napolitano et al. (2016) BoS and BoP BR and TF -- 
Mouriño-García et al. (2016) BoC TF -- 
K. Yadav et al. (2016) n-gram and BoC TF -- 
Kocbek et al. (2016) BoP and BoC TF IG 
Fragos and Skourlas (2016) BoW and BoP TFiDF -- 
Kalter et al. (2016) EDF BR -- 
Saqlain et al. (2016) EDF TF -- 
Sedghi et al. (2016) EDF BR -- 
Imane and Mohamed (2017) BoW TFiDF -- 

Kasthurirathne et al. (2017) BoW TF IG 
Oleynik et al. (2017) BoW TFiDF -- 

Y. Wang et al. (2017) BoW BR, TF and 
TFiDF -- 

Wu and Wang (2017) BoW TFiDF -- 
Hassanpour et al. (2017) n-gram TFiDF -- 
Yoon et al. (2017) GoW TF -- 
Lauren et al. (2017) W2V TF -- 

Shin et al. (2017) W2V BR, TF, TFiDF 
and N-TFiDF -- 

Amrit et al. (2017) BoW and STF BR, TF and 
TFiDF -- 

Buchan et al. (2017) n-gram, BoC and 
LGF N-TFiDF -- 

Barak-Corren et al. (2017) EDF BR -- 
Clark et al. (2017) EDF BR and TF MI 

Lucini et al. (2017) n-gram BR, TF and 
TFiDF Chi-Square 

Mujtaba et al. (2016) n-gram BR, TF, TFiDF 
and N-TFiDF 

IG, Chi-
Square and 

PC 
Parlak and Uysal (2018) BoW TF and TFiDF DFS 

**BoW (Bag of Words), NGF (n-gram Features), BoS (Bag of Sentences), BoP (Bag of Phrases), BoC (Bag of Concepts), GoW 
(Graph of words), W2V (Word2Vector), STF (Structural Features), LGF (Linguistics Features), EDF (Expert-driven Features) 
** BR (Binary Representation), TF (Term Frequency), TFiDF (Term Frequency with inverse Document Frequency), N-TFiDF 
(Normalized TFiDF) 
**IG (Information Gain), Chi (Chi-Square), PC (Pearson Correlation), GI (Gini-Index), LSFS (Local Semi-Supervised Feature 
Selection), ED (Expert-driven), MI (Mutual Information), MDA (Multiple Discriminant Analysis), BNSS (Bi-Normal Separation 
Score), PCA (Principal Component Analysis), DFS (Distinguishing Feature Selector) 
 

In the field of clinical text classification, researchers have comprehensively 

investigated the performance of classification models using expert-driven features and 

fully automated features. Moreover, varying results were obtained. Few studies showed 

Table 2.4: continued 
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that expert-driven features outperform fully automated features, and several studies 

reported that automated features outperform expert-driven features. Some studies 

reported no significant difference between the classification performance obtained 

through expert-driven and fully automated features. Therefore, one should empirically 

investigate the performance of both approaches on free-text clinical reports to evaluate 

the superior one.  

Both approaches have their advantages and disadvantages. The expert-driven approach 

is flexible and can easily understand the importance of manually extracted features. 

Moreover, the misclassification error can be easily fixed when working with expert-

driven features. Nonetheless, the major limitation of this approach is that it depends 

heavily on the deep skills and knowledge of domain experts for robustness and scalability. 

The expert-driven approach is not purely a scientific activity but more of a balancing act 

in black art, architecture, design, and development. This approach is time consuming and 

resource extensive. Finally, this approach is not easily extendable; for any new class or 

category, experts will be engaged to extend the functionality of the existing model. 

Nevertheless, this technique is effective in creating baseline results so that further 

automated methods can be designed and engineered to obtain accuracy similar or better 

than expert-driven approaches. 

Fully automated feature extraction approaches are less time consuming and do not 

require any expert intervention to extract useful features from clinical reports. 

Nonetheless, the major limitation of these approaches is their requirement for a large 

number of labeled clinical reports for extracting useful features that correlate well with 

the class. Moreover, in medical domains, one cannot rely only on fully automated 

techniques, so a robust comparison of fully automated and expert-driven approaches is 

needed to evaluate their performance differences.  
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2.8.2 Review of Feature Representation Techniques 

As discussed in Section 2.3.1.3(b), an important step after extracting features from 

clinical reports is transforming extracted features into numeric vectors for linear algebraic 

methods by employing feature value representation or feature weighing schemes (Debole 

& Sebastiani, 2004). In the related literature on clinical text classification, four types of 

feature value representation techniques were used: BR, TF, TFiDF, and N-TFiDF 

(discussed in Section 2.3.1.3(b)). Table 2.4 shows the study-wise frequency distribution 

of each feature representation technique.   

As shown in Table 2.4, in most of the studies, researchers used either the BR or TF 

technique. Moreover, in studies (Butt et al., 2013; Masino et al., 2016; Napolitano et al., 

2016), authors compared the performance of BR and TF to classify clinical reports and 

reported that BR outperforms TF. Clark et al. (2017) compared the performance of BR 

and TF to classify psychiatric evaluation reports. They concluded that TF outperforms 

BR. Kavuluru et al. (2015) compared the performance of BR and TFiDF to classify 

pathology and radiology reports. They found no significant difference between the 

findings of BR and TFiDF. Farshchi and Yaghoobi (2013) extracted the BoW features 

from a dataset of medical news articles and represented the extracted features using TF 

and TFiDF feature representation techniques. No significant difference was observed 

between the results obtained through TF and TFiDF. Moreover, Parlak and Uysal (2016a) 

and Parlak and Uysal (2018) compared the performance of TF and TFiDF to classify 

Medline abstracts; they revealed that TF outperforms TFiDF. Amrit et al. (2017) 

compared BR, TF, and TFiDF to classify child abuse consultation reports and reported 

that TF outperforms the two other techniques. Lucini et al. (2017) compared BR, TF, and 

TFiDF to classify emergency department reports and reported that TFiDF demonstrates 

the best performance. Wang et al. (2017) compared BR, TF, and TFiDF to classify 

incident reports and reported that BR outperforms the two other methods. Danso et al. 
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(2014) compared BR, TF, TFiDF, and N-TFiDF to classify verbal autopsy reports and 

found that N-TFiDF exhibits optimal performance. Moreover, Mujtaba et al. (2016) 

compared BR, TF, TFiDF, and N-TFiDF to classify forensic autopsy reports. They found 

that TF and TFiDF outperform BR and N-TFiDF. 

The above discussion indicates that the choice of feature representation scheme affects 

the classification results, because all four feature representation schemes have a different 

design philosophy. Thus, one should always empirically investigate the use of all four 

types of feature representation schemes on clinical datasets to determine which one 

presents superior classification accuracy. The BR approach is easy to compute and 

constructs a basic binary numeric vector to differentiate between two documents. 

However, it is only suitable for datasets with controlled terminologies and slight 

conceptual differences. By contrast, the TF, TFiDF, and N-TFiDF approaches maybe 

suitable for datasets with uncontrolled vocabulary and can easily compute the similarity 

between two documents. However, these approaches cannot capture the position in a text 

and fail to extract the semantics and co-occurrences in different clinical reports.  

2.8.3 Review of Feature Selection Techniques 

As discussed in Section 2.3.1.3(c), feature selection techniques select the most relevant 

subset of features following certain selection criteria (Guyon & Elisseeff, 2003). Thus, 

feature selection is widely used for efficient clinical text classification. Nonetheless, in 

the related literature on clinic text classification, very few studies have employed feature 

selection to examine the effect of various subsets of features on classification accuracy. 

Most features for construction of text classification models have been used. In the related 

literature, the following feature selection techniques were employed. 
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o Information Gain (IG): It identifies the significance of a given feature  f in a feature 

vector, and the expected reduction in entropy caused by segregating the data sample 

according to f (Yang & Pedersen, 1997). 

o Chi-square (chi): The Chi-square test )( 2 is the statistical test that measures the 

relevance of feature f with class c (Yang & Pedersen, 1997). 

o Pearson Correlation (PC): It is a commonly used method for reducing feature 

dimensionality and evaluating the discrimination power of a feature in classification 

methods. It is also a straightforward method for choosing significant features. Pearson 

correlation measures the relevance of a feature by computing the Pearson correlation 

between it and a class. Pearson correlation coefficient measures the linear correlation 

between two attributes (Benesty et al., 2009). 

o Local Semi-Supervised Feature Selection (LSFS): It utilizes class labels to define a 

margin for each data sample and selects the most discriminative features by 

maximizing the margins with regard to a feature weight vector(Xu, King, Lyu, & 

Jin, 2010). 

o Expert-driven (ED): In ED, experts manually rank the discriminative features from 

the set of given features. 

o Mutual Information (MI): MI is a measure of the amount of information that one 

random variable has about another variable (Cover & Thomas, 2012). It computes the 

amount of information of a feature f contributes in accurate classification decision. It 

gives a way to quantify the relevance of a feature subset with respect to the output 

vector C. 

 
o Gini-Index (GI): It is a non-purity split method. It is widely used in decision trees. It 

calculates the heterogeneity from the sum of squared probabilities of each class from 

one (Loh, 2011).    
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o Distinguishing Feature Selector (DFS): It aims is to select distinctive features while 

eliminating uninformative ones considering some pre-determined criteria (Uysal & 

Gunal, 2012). 

o Principal Component Analysis (PCA): It is a statistical method that utilizes 

orthogonal transformation to transform a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal 

components. The number of principal components is less than or equal to the smaller 

of the number of original variables or the number of observations (Wold, Esbensen, 

& Geladi, 1987). 

o Multiple Discriminant Analysis (MDA): It is a statistical technique that is used to 

minimize the differences between variables in order to classify them into a set number 

of broad groups (Hair, Black, Babin, Anderson, & Tatham, 1998). 

o Bi-Normal Separation Score (BNSS): It is defined as ( ) ( )fpFtpF 11 −− −  where 1−F  

is the inverse cumulative probability of standard normal distribution (Forman, 2003). 

Table 2.4 shows the distribution of related studies based on feature selection 

techniques used. Few studies have employed feature selection techniques to discover 

discriminative feature subsets. Among those studies, IG, chi square, and Pearson 

correlation (PC) were mainly used. For instance, Mujtaba et al. (2016) compared three 

feature selection techniques, namely, information gain (IG), chi square, and PC for 

discovering discriminative feature subsets to classify forensic autopsy reports. Their 

experimental results showed that IG and chi-square outperform PC. Kasthurirathne et al. 

(2016) compared the performance of manually ranked features by experts with that of IG 

(fully automated feature selection scheme) to classify cancer reports. N significant 

difference was found between the expert-driven feature ranking and IG techniques. Amrit 

et al. (2017) used GI and chi-square feature selection schemes to classify child abuse 

consultation reports; their findings demonstrated that chi square outperforms GI. Parlak 
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and Uysal (2016a) and Parlak and Uysal (2018) compared GI and DFS feature selection 

schemes to classify Medline abstracts. They revealed that DFS outperforms the GI 

technique. Buchan et al. (2017) applied PCA and MI feature selection schemes to classify 

diabetic patient history reports; PCA was found to outperform MI. Table 2.4 shows that 

IG and chi square are the most widely employed feature selection schemes for clinical 

text classification. Both techniques obtain robust classification results because they favor 

the most frequently used clinical terms in an available dataset. Moreover, both techniques 

use categorized information to discover useful feature subsets. These techniques also 

consider the information of clinical term absences to determine the category probability 

(Yang & Pedersen, 1997). The poor performance of MI or GI maybe due to their bias 

toward low frequent term features (Yang & Pedersen, 1997). In some studies, PC 

performed worse than chi square possibly because the former is more suitable for 

dichotomous data than the latter (Sebastiani, 2002; Nicolosi, 2008). Moreover, PC 

showed the lowest results with minimal numbers of feature subsets. PC selects the 

features that are most indicative of membership only, whereas chi square and IG consider 

the features most indicative of membership and non-membership, which maybe useful 

for classification performance (Yang & Pedersen, 1997; Forman, 2003). 

2.9 Review of Machine Learning Algorithms 

Table 2.5 shows the machine learning algorithms that were employed in related 

studies. In addition, it also shows the preeminent algorithm that obtained the highest 

classification results. Notably, in several studies, authors did not compare various 

machine learning algorithms but only employed one algorithm. In such studies, the third 

column value is empty.  

Butt et al. (2013) employed SVM, NB, DT, and AdaBoost text classifiers to classify 

cancer-related death certificates. Their findings showed that SVM outperforms NB, DT, 
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and AdaBoost by obtaining 98% F-measure. Farshchi and Yaghoobi (2013) classified 

medical news articles utilizing ANN via back propagation, kNN, NB, and SVM. ANN 

using back propagation obtained the highest overall accuracy of 86%. Pineda et al. (2013) 

employed efficient Bayesian multivariate classification (EBMC) to classify influenza-

related clinical reports. Moreover, to demonstrate the effectiveness of EMBC, authors 

compared its performance with those of NB, BN, RF, SVM, LR, and ANN. EMBC was 

revealed to outperform all other classifiers by obtaining 99% AUC. Afzal et al. (2013) 

modified the C4.5 decision tree algorithm to develop a new classifier called My C to 

classify hepatobiliary disease and renal failure reports. This classifier builds a decision 

tree by recursively splitting samples using the chi-square test results. To show the 

effectiveness of My C, its performance was compared with those of C4.5 decision tree, 

SVM, and Ripper. My C obtained the highest sensitivity of 94%. Moreover, authors 

experimentally proved that the proposed My C classifier is computationally faster than 

existing decision tree algorithms. Kasthurirathne et al. (2015) investigated the 

performances of LR, NB, kNN, RF, and DT text classifiers to classify cancer reports. The 

LR, kNN, RF, and DT classifiers obtained the highest accuracy with no significant 

differences among them.  

Pineda et al. (2015) compared the performance of seven different text classifiers, 

namely, NB, BN, EBMC, RF, SVM, LR, and ANN, to classify influenza-related clinical 

reports. They reported that the NB, LR, SVM, and ANN classifiers almost obtained 

similar results. In studies (Danso et al., 2013, 2014), authors compared three different text 

classifiers (SVM, NB, and RF) for the classification of verbal autopsy reports; SVM 

obtained the highest accuracy of 83%. Mujtaba et al. (2016) compared the performance 

of three different classifiers, namely, NB, SVM, and RF classifiers to classify forensic 

autopsy reports; SVM obtained the highest accuracy of 78% followed by RF and NB. 

Kasthurirathne et al. (2016) and Kasthurirathne et al. (2017) investigated the performance 
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of NB, LR, DT, RF, and kNN text classifiers to classify cancer-related pathology reports. 

They reported that DT and RF outperform the other techniques by obtaining 90% F-

measure. Kasthurirathne et al. (2017) developed and compared the classification models 

with and without domain-related ontologies to classify cancer-related pathology reports. 

No significant difference in classification performance was observed when models were 

developed with or without domain-related ontologies. As shown in Table 2.5, the majority 

of the studies used SML-based algorithms to classify free-text clinical reports. However, 

such algorithms may obtain good or poor classification results. Building an effective and 

efficient text classification model using SML-based algorithms depends on various 

factors. The most important factor is the extracted features (as discussed in Section 2.8.1) 

from free-text clinical reports. 

In general, if the supervised machine learning algorithm is provided with several 

independent features that are positively correlated with the targeted class, then the 

classification performance will be good. Conversely, if the extracted features do not 

positively correlate with the targeted class, then the classification performance will be 

poor. Thus, in SML-based ATC models, researchers generally focus on feature 

engineering (Wolpert & Macready, 1995; Aggarwal & Zhai, 2012a; Domingos, 2012; 

Witten et al., 2016). SML-based ATC techniques are characterized by two major 

limitations. First is the knowledge bottleneck, in which a decent SML-based algorithm 

requires a large number of labeled clinical reports for constructing an accurate 

classification model (Hastie et al., 2009). Hence, many believe that the quality of SML-

based algorithms heavily depends on data rather than algorithms. Another major 

limitation of SML-based ATC models is difficulty to fix reported quality bugs (Hastie et 

al., 2009). The developed model is usually a black box, and no direct expert intervention 

is available to fix the problem unless the constructed model is retrained with new features. 

However, in such models, there is no guarantee that the reported issue will be fixed well 
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with retraining because the learning process needs to balance all the features in the newly 

constructed model. 

Table 2.5: Machine learning algorithms used in related studies 

Study Preeminent Classifier Compared with 
(Afzal et al., 2013) My C DT, SVM, and Ripper  

(Pineda et al., 2013) EBMC NB, BN, RF, SVM, LR, 
and ANN 

(Butt et al., 2013) SVM NB, DT, and AdaBoost 
(Danso et al., 2013) SVM ZeroR 
(Farshchi & Yaghoobi, 2013) ANN kNN, NB, and SVM 
(Zuccon et al., 2013) RB NB, and SVM 
(Garla et al., 2013) SVM RB 
(Greaves et al., 2013) NB DT, Bagging, and SVM 
(Jo, 2013) Proposed Table-based kNN, NB, ANN, and SVM 
(Wagholikar et al., 2013) NB RB 
(Wei et al., 2013) SVM PLS-DA 
(Adeva et al., 2014) SVM KNN, NB, and Rocchio 
(Alghoson, 2014) RB -- 
(Danso et al., 2014) SVM NB, and RF 
(Gatta et al., 2014) ESA Rocchio, and NB 
(Luo et al., 2014) SVM -- 
(Nguyen & Patrick, 2014) SVM -- 
(Zhou et al., 2014) DLM and NB DLM and NB 

(Ye et al., 2014) BN tuned with expert BN tuned with TOPZ, and 
with MEDLEE 

(Yeow et al., 2014) CBR -- 

(Pineda et al., 2015) NB, LR, SVM, and 
ANN 

NB, BN, EBMC, RF, SVM, 
LR, and ANN 

(Bates et al., 2015) SVM -- 
(Comelli et al., 2015) kNN -- 
(Deng et al., 2015) RB -- 
(Zuccon et al., 2015) SVM NB, LR, J48, RF, and LMT 
(Zhou, Q. R. Zhang, et al., 
2015) kNN -- 

(Jindal & Taneja, 2015) L-kNN kNN 
(Kasthurirathne et al., 2015) LR, kNN, RF, and DT LR, NB, kNN, RF, and DT 
(Kavuluru et al., 2015)  LR NB, SVM, and LR 
(Koopman, S. Karimi, et al., 
2015) RB SVM 

(Koopman, G. Zuccon, et al., 
2015) SVM -- 

(Zhou, A. W. Baughman, et al., 
2015) DT SVM, kNN, and RIPPER 

(MacRae et al., 2015) RB Human Expert 
Classification 

(Martinez et al., 2015) SVM BN, NB, and RF 
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Study Preeminent Classifier Compared with 
(Miasnikof et al., 2015b) NB OTM, and Inter-VA4 
(Parlak & Uysal, 2015) BN DT, and RF 
(Rani et al., 2015) RF J48, NB, and LAD Tree 

(Rios & Kavuluru, 2015) CNN NB, SVM, LR, AdaBoost, 
and Voted Classifier 

(Sarker & Gonzalez, 2015) SVM NB, and MEM 
(X. F. Dai & M. Bikdash, 
2015) NB -- 

(Fragos & Skourlas, 2016) Extended lf-igf-kNN kNN, and lf-igf kNN 
(Hassanpour & Langlotz, 
2016) SVM -- 

(Yadav et al., 2016) DT -- 

(Kalter et al., 2016) RB Compare with fully 
automated 

(Kocbek et al., 2016) SVM SVM, and NB 
(Lopprich et al., 2016) SVM MEM 
(Masino et al., 2016) SVM and LR DT, RF, and NB 
(Mouriño-García et al., 2016) BN -- 
(Napolitano et al., 2016) kNN PAUM, and NB 
(Parlak & Uysal, 2016a) BN DT 
(Kasthurirathne et al., 2016) RF, and DT LR, NB, and KNN 

(Saqlain et al., 2016) NB LR, SVM, ANN, RF, and 
DT 

(Sedghi et al., 2016) PART NB, and SVM 
(Amrit et al., 2017) NB RF, and SVM 
(Barak-Corren et al., 2017) NB -- 
(Buchan et al., 2017) NB MaxEnt, and SVM 
(Clark et al., 2017) ANN -- 
(Hassanpour et al., 2017) SVM -- 
(Imane & Mohamed, 2017) DT SVM, and AdaBoost 
(Lauren et al., 2017) ELM -- 

(Lucini et al., 2017) SVM DT, RF, Random Trees, 
AdaBoost, LR, and NB 

Mujtaba et al. (2016)  SVM RF, and NB 
(Oleynik et al., 2017) SVM -- 
(Parlak & Uysal, 2018) BN DT 
(Shin et al., 2017) CNN LR, RF, and SVM 
(Kasthurirathne et al., 2017) RF, and DT LR, NB, and kNN 
(Wang et al., 2017) SVM LR 
(Wu & Wang, 2017) CNN LR, NB, and SVM 
(Yoon et al., 2017) RF NB, and LR 

**NB (Naive Bayes), BN (Bayesian Network), SVM (Support Vector Machine), RF (Random Forest), DT (Decision Tree), kNN (k-
Nearest Neighbor), ANN (Artificial Neural Network), CNN (Convolutional Neural Network), LR (Linear Regression), EBMC 
(Efficient Bayesian Multivariate Classification), ESA (Entropy Scoring Algorithm), CBR (Case-based Reasoning), RB (Rule-based), 
and AUC (Area Under the Curve) 
**Note: Table showing the preeminent classifier, compared classifiers and the performance of preeminent classifier in related studies. 
This should be noted that in most of the related studies customized dataset was used. Thus, it is not viable to compare the performance 
values across different related studies. 
 

Table 2.5: continued  
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To overcome the aforementioned limitations of the SML-based ATC model, 

researchers developed ATC models using rule-based algorithms. Alghoson (2014) 

developed a rule-based classifier to classify Medline abstracts and obtained 60% 

precision. Moreover, Deng et al. (2015) developed a rule-based classifier to classify 

pathology reports and obtained 91% F-measure. Koopman, S. Karimi, et al. (2015) 

developed a rule-based classifier to classify death certificates and compared its 

performance with that of the SML-based classifier using SVM. Their experimental results 

showed a minor difference in performance between these two approaches. The rule-based 

obtained 95% F-measure, and SVM obtained the 94% F-measure. Kalter et al. (2016) 

developed a rule-based classifier to classify verbal autopsy reports. In the developed rule-

based classifier, the authors used the rules defined by domain experts to determine the 

CoD. Moreover, the results of the developed rule-based classifier were compared with 

two fully automated systems, namely, Tariff and Inter-VA4. The developed rule-based 

classifier was revealed to outperform the automated systems by obtaining 80% overall 

accuracy.  

The abovementioned studies showed good classification accuracy using rule-based 

classifiers, but this approach has its disadvantages and advantages. The rule-based 

approach is flexible, with rules that are easy to understand. Misclassification results are 

easier to fix in the rule-based approach than with other approaches. However, the major 

limitation of the rule-based approach is that it depends more on the deep skills and 

knowledge of domain experts and rule designers for robustness and scalability. The rule-

based approach is not purely a scientific activity but more of a balancing act in 

architecture, design, and development. 

The frequency count of preeminent machine learning algorithms in the related 

literature is shown in Figure 2.10. In most of the related studies, a customized dataset was 
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used. Thus, comparing the performance values across different related studies is 

inadvisable. Nevertheless, when performance was analyzed, most of the studies found 

that the SVM algorithm outperforms many other algorithms, followed by NB, RF, DT, 

RB, BN, and kNN. The least used classifiers were LR and ANN. SVM with appropriate 

kernel function (such as poly kernel and RBF kernel) can learn good classification rules 

on linear and non-linear data. Moreover, SVM exhibits enhanced performance with high-

dimensional data. The limitations of SVM include memory requirement, complexity, and 

interpretability (Cristianini & Shawe-Taylor, 2000). In many comparative studies, kNN 

showed the lowest classification performance. The kNN algorithm computes the 

similarity between a new clinical report and a training set of clinical reports. The k-most 

similar cases are retrieved in descending order. The new clinical report is assigned with 

a class label that belongs to majority of the retrieved k reports (Fukunaga, 2013). The 

modest classification performance of kNN maybe due to the linear scaling of features, 

which possibly inaccurately computed the kNN distance measures. Moreover, this 

assumption of linear scaling becomes misleading when the master feature vector contains 

non-discriminative features (Hastie et al., 2009; Fukunaga, 2013). 

 

Figure 2.10: Frequency count of machine learning algorithms used in literature 
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2.10 Review of Performance Metrics 

The related studies employed different types of performance metrics to evaluate the 

classification performance. The commonly used performance metrics for binary class 

problem were precision, recall, F-measure, accuracy, area under curve, sensitivity, 

specificity, true positive rate, and false positive rate. In multi-class problems, the 

commonly used performance metrics were micro or macro average precision, recall, and 

F-measure. A detailed discussion on these performance metrics can be found in (Sokolova 

& Lapalme, 2009).  Table 2.6 shows the frequency count of performance measures used 

in each study. Majority of the studies either employed precision, recall, and F-measure or 

used F-measure and accuracy for binary class problems. For multi-class problems, the 

studies either used micro-averaging or macro-averaging. In general, macro-averaging is 

used to determine overall performance of a system across sets of data. Conversely, micro-

averaging is effective when the datasets vary in size (Sokolova & Lapalme, 2009). 

The analysis showed that the most commonly employed performance metrics ere 

precision, recall, and F-measure, but these metrics alone may not be sufficient to evaluate 

classifier performance correctly. For instance, the dataset was imbalanced in various 

studies. In such cases, the AUC should be the correct performance metric for evaluating 

classification performance correctly because AUC is suitable in computing the 

classification performance pertaining to individual class (Provost & Fawcett, 1997; 

Provost et al., 1998). For instance, Sarker and Gonzalez (2015) collected three different 

datasets (i.e., Twitter tweets, daily strength instances, and clinical reports) to develop a 

classification model for predicting adverse drug events. Moreover, the authors used 

accuracy and F-measure metrics to evaluate classification performance. The Twitter 

dataset comprised 11.4% tweets that mention ADR and 88.6% tweets that do not mention 

ADR. Moreover, daily strength dataset contained 23.7% instances that mention ADR and 

76.3% instances that do not mention ADR. Finally, the clinical reports were composed of 

Univ
ers

ity
 of

 M
ala

ya



76 

29.0% ADR mentions and 71.0% that do not mention ADR. In the above example, all 

three datasets were imbalanced in nature. In such cases, accuracy or F-measure metrics 

maybe biased toward the majority class. Thus, AUC is a correct choice in such cases to 

determine the performance of classifiers accurately. Ye et al. (2014) collected the corpus 

of influenza-related clinical reports to develop a classifier for classifying influenza-

related clinical reports. The collected corpus was imbalanced in nature and comprised 

592 influenza-related reports and 29,092 non-influenza-related reports. Thus, the authors 

employed AUC to address the class imbalance problem and evaluate the performance of 

classifiers accurately.  

Several studies employed simple precision, recall, and F-measure for multi-class 

classification (Farshchi & Yaghoobi, 2013; Jo, 2013; Gatta et al., 2014). However, the 

suitable performance metrics for multi-class classification problems are micro- and 

macro-averaging precision, recall, and F-measure (Sokolova & Lapalme, 2009). Mujtaba 

et al. (2016) developed a clinical text classification model to determine the CoD from a 

forensic autopsy dataset that comprised eight different CoDs. To evaluate the 

classification performance, authors employed macro-averaging precision, recall, and F-

measure. Danso et al. (2014) developed a clinical text classification model for 

determining the CoD from a verbal autopsy dataset that comprised 16 different CoDs. To 

evaluate the classification performance, authors employed macro-averaging precision, 

recall, and F-measure. Yoon et al. (2017) developed a clinical text classification model to 

determine the cancer stage from pathology reports. The dataset comprised pathology 

reports related to cancer. These reports were related to four different stages of cancer: 

Grades I, II, III, and IV. Thus, to evaluate the performance of classifiers, authors used 

micro-averaging precision, recall, and F-measure. 
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Table 2.6: Frequency count of performance metrics used in related studies 

Study Metrics Count 
(Butt et al., 2013; Alghoson, 2014; Luo et al., 2014; Jindal 
& Taneja, 2015; B. Koopman, S. Karimi, et al., 2015; 
Martinez et al., 2015; L. Zhou et al., 2015; Kocbek et al., 
2016; Mouriño-García et al., 2016; Napolitano et al., 2016; 
Barak-Corren et al., 2017; Imane & Mohamed, 2017; 
Lauren et al., 2017; Lucini et al., 2017; Y. Wang et al., 2017) 

Recall, Precision, and 
F-Measure 14 

   
(Farshchi & Yaghoobi, 2013; Greaves et al., 2013; Jo, 2013; 
Wagholikar et al., 2013; Wei et al., 2013; Zuccon et al., 
2013; Bates et al., 2015; Sarker & Gonzalez, 2015; Zuccon 
et al., 2015; Fragos & Skourlas, 2016; Lopprich et al., 2016; 
Parlak & Uysal, 2016b, 2018) 

Accuracy and F-
Measure 13 

   
(Gatta et al., 2014; Yeow et al., 2014; Y. Zhou et al., 2014; 
Comelli et al., 2015; X. Dai & M. Bikdash, 2015; Rani et al., 
2015; Kalter et al., 2016; Shin et al., 2017; Wu & Wang, 
2017) 

Accuracy 9 

   

(Danso et al., 2013, 2014; B. Koopman, G. Zuccon, et al., 
2015; Mujtaba et al., 2016) 

Macro Averaging of 
Accuracy, Recall, 
Precision, and F-

Measure 

4 

   
(Ye et al., 2014; Kasthurirathne et al., 2015; Parlak & Uysal, 
2015; Saqlain et al., 2016; Amrit et al., 2017; Hassanpour et 
al., 2017) 

Accuracy, Recall, 
Precision, and F-

Measure 
6 

   
(Garla et al., 2013; Hassanpour & Langlotz, 2016; 
Kasthurirathne et al., 2016; Masino et al., 2016; K. Yadav et 
al., 2016; Kasthurirathne et al., 2017) 

F-Measure, Sensitivity, 
and Specificity 6 

   
(Nguyen & Patrick, 2014; Deng et al., 2015; Rios & 
Kavuluru, 2015; H. Y. Zhou et al., 2015; Oleynik et al., 
2017) 

F-Measure 5 

   
(Afzal et al., 2013; MacRae et al., 2015; Miasnikof et al., 
2015b; Sedghi et al., 2016; Clark et al., 2017) 

Sensitivity and 
Specificity 5 

   

(Adeva et al., 2014; Kavuluru et al., 2015; Buchan et al., 
2017; Yoon et al., 2017) 

Micro Averaging of 
Accuracy, Recall, 
Precision, and F-

Measure 

4 

   

(Pineda et al., 2013; Lucini et al., 2017) Accuracy, F-Measure, 
and AUC 2 

   
(Pineda et al., 2015) AUC 1 
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2.11 Limitations Related to Existing Literature 

This section presents the limitations identified from the reviewed literature. The major 

limitations were related to feature engineering. Other limitations were identified in dataset 

collection and performance metric selection, which are discussed in subsequent sections. 

2.11.1 Limitations Related to Feature Engineering 

Features are vital components in improving the effectiveness of machine learning 

algorithms (Domingos, 2012). Most of the discussed studies attempted to provide an 

effective SML-based ATC solution to classify free-text clinical reports by proposing 

significant features (see Table 2.4). Of these studies, some used fully automated features. 

However, for clinical report classification, one should not only depend on fully automated 

features, such as BoW and n-gram. These features may produce inaccurate classification 

results because of two major limitations. First, various experts may use different 

vocabulary terms to report any event or information in the clinical reports. Thus, these 

features do not consider word-level synonymy and polysemy when applied on clinical 

text reports (Yadav et al., 2014). Second, in these features, grammar and word order are 

disregarded but word frequency is maintained (Cavnar & Trenkle, 1994; Sebastiani, 

2002; Yadav et al., 2014; Papadakis et al., 2016). In addition, these features do not capture 

word inversion and subset matching (Cavnar & Trenkle, 1994; Malliaros & Skianis, 2015; 

Papadakis et al., 2016; Witten et al., 2016).  

To address the first limitation, researchers proposed two solutions. First, the 

researchers employed expert-driven features in which experts are responsible for 

extracting discriminative term features from the free-text clinical reports and storing them 

in lexicons. Experts also add synonyms or related term features in the lexicons to 

overcome the issue of word-level synonymy and polysemy. Several studies reported that 

the expert-driven features outperform BoW and n-gram features (Zuccon et al., 2013; Ye 
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et al., 2014; Kalter et al., 2016). The second solution is the use of concept-based features 

(such as BoC and BoP) with content-based features. The studies reported the effectiveness 

of a hybrid of content-based and concept-based features in improving the classification 

accuracy of free-text clinical reports (Wei et al., 2013; Nguyen & Patrick, 2014; Bates et 

al., 2015; Comelli et al., 2015).  

To address the second limitation, Yoon et al. (2017) employed GoW features and 

reported that these features outperform traditional n-gram and BoW features. Graph 

representation provides flexibility and robustness in representing the natural language text 

compared with traditional n-gram. Moreover, the GoW approach can overcome the 

limitation of word co-occurrence, word order, and word inversion. Nonetheless, GoW is 

more effective than traditional BoW and n-gram but computationally expensive compared 

with BoW or n-gram. Therefore, effective computation approaches for GoW-based 

features are required. The classification performance of the combination of GoW, BoW, 

BoP, and BoC features should be empirically investigated to overcome the issue of word 

order, word inversion, and word-level synonymy and polysemy to classify free-text 

clinical reports. 

To classify free-text clinical reports, researchers should empirically investigate the use 

of both expert-driven and fully automated features to evaluate the performance of both 

features (Ye et al., 2014; Koopman, S. Karimi, et al., 2015; MacRae et al., 2015; Kalter 

et al., 2016). These studies argued that the ATC model constructed through expert-driven 

features can also serve as a benchmark for the ATC model constructed through fully 

automated features. Moreover, the ATC model constructed through fully automated 

features can be accepted for application in a real environment during one of two 

conditions. First, fully automated models should achieve a specific level of accuracy that 

is higher than that of expert-driven models. Second, no significant difference in 
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classification performance should exist between both of these models (Ye et al., 2014; 

Koopman, S. Karimi, et al., 2015; MacRae et al., 2015; Kalter et al., 2016).  

From the above discussion, one may question the need to develop an ATC model using 

fully automated features if the ATC model was already developed using expert-driven 

features. This argument can be answered in two possible ways. First, the creation of a 

benchmark is important so that the effectiveness of fully automated features can be 

compared and evaluated. Second, in various clinical text classification domains, the 

number of targeted classes increases daily. Therefore, engaging human experts to extract 

useful features is impractical, expensive, and time consuming. In such a scenario, fully 

automated features work effectively if the effectiveness of these features has already been 

evaluated with benchmark features (such as expert-driven features). For instance, in the 

autopsy domain, experts are responsible to collect autopsy findings from a dead body. On 

the basis of the autopsy findings, experts are responsible for determining the primary CoD 

and its ICD-10 code. In the past, experts used the International Classification of Disease 

Ninth Edition (ICD-9), which contains approximately 18,000 unique codes, to assign 

primary CoDs. However, ICD-9 was recently enhanced to ICD-10, which contains nine 

times more codes than ICD-9 (Organization, 1992; Sundararajan et al., 2004; Hazelwood 

& Venable, 2010; Control & Prevention, 2015). Therefore, the extraction of features from 

all of these categories is very tedious. For such domains, experts can be utilized to extract 

features from few categories, and the ATC model can be developed using those expert-

driven features to establish a benchmark performance. Fully automated features can then 

be designed to obtain accuracy equal to or more than that of the benchmark. Once fully 

automated features obtain the specific level of classification performance, such features 

can be exploited for the remaining categories without generating expert-driven features. 
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2.11.2 Limitations Related to Datasets 

Dataset size and dataset quality are positively correlated with text classification 

performance. As shown in Table 2.2, in most of the existing studies, researchers used 

homogenous–homogenous datasets to develop text classification models for classifying 

free-text clinical reports. However, several hospitals may have different medical 

documentation systems and patterns or styles, thereby producing hurdles in generalizing 

a constructed classifier to multiple hospitals. Hence, collecting clinical reports from more 

than one organization is recommended to develop more generic classification models 

(Martinez et al., 2015; Kasthurirathne et al., 2016; Sedghi et al., 2016; Barak-Corren et 

al., 2017; Kasthurirathne et al., 2017). Moreover, one disease can be reported into a 

variety of reports. For instance, cancer patients’ findings can be reported in both 

pathology and radiology reports. Hence, multi-modal reports should be used in 

constructing an accurate text classification model (Kavuluru et al., 2015; Sarker & 

Gonzalez, 2015; Kocbek et al., 2016; Mujtaba et al., 2016; Hassanpour et al., 2017; Wang 

et al., 2017). In summary, for an effective classification model, multi-modal clinical 

reports collected from more than one organization are recommended. 

2.11.3 Limitations Related to Performance Metrics 

The major limitation in clinical text classification research is the collection of a 

balanced dataset with sufficient sample size for the training set to enable the text 

classifiers to learn effectively from the training set and determine the category on the test 

set. Several studies used imbalanced datasets where the samples of the predicting classes 

varied in size (Afzal et al., 2013; Kocbek et al., 2016; Amrit et al., 2017). In such cases, 

many studies did not place appropriate emphasis on employing a suitable validation 

approach to evaluate the classification performance (Sarker & Gonzalez, 2015). 

Therefore, in case of imbalanced class distribution datasets, appropriate sampling 

techniques, such as over-sampling, under-sampling, or SMOTING (Japkowicz, 2000; 
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Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Tang & Liu, 2005), should be utilized to 

balance the class distribution in the datasets. For imbalanced datasets, appropriate 

performance metrics (such as AUC) should be used to evaluate the classification 

performance accurately (Provost & Fawcett, 1997; Provost et al., 1998). Table 2.2 

illustrated that many studies belonged multi-class single-label problems, and Table 2.6 

shows very few studies that employed micro- or macro-averaging of precision, recall, and 

F-measure performance metrics for multi-class single-label problems. Thus, appropriate 

measures should be used for multi-class classification problems to accurately measure the 

classification performance (Sokolova & Lapalme, 2009). 

2.12 Research Gap Analysis 

The review of existing literature revealed only two studies on classifying forensic 

autopsy reports (Yeow et al., 2014; Mujtaba et al., 2016). Yeow et al. (2014) employed a 

homogenous–homogenous dataset to classify forensic autopsy reports using case-based 

reasoning coupled with NB classifier; 80% accuracy was obtained. However, in their 

experiments, the authors did not consider and use the features of all sections of forensic 

autopsy reports. Conversely, the authors only used one section (i.e., summary) in the 

classification learning process. Thus, one can argue that the developed classification 

model may not be reliable and accurate enough to apply in real-time environments. 

Moreover, the dataset used in their study was homogenous–homogenous in nature and 

may not be deployed and used on a wide scale.   

Mujtaba et al. (2016) compared various SML-based ATC techniques to classify 

forensic autopsy reports. The authors used a heterogeneous–homogenous dataset 

comprising four MoDs and eight CoDs. The dataset included four different types of 

reports: autopsy reports, notes and remarks of pathologists, death scene information, and 

eyewitness information. Authors aggregated all these reports to form one report per case. 

Univ
ers

ity
 of

 M
ala

ya



83 

Subsequently, authors used existing SML-based ATC techniques to classify forensic 

autopsy reports. Their findings showed that unigram features outperform bigram and 

trigram features. Moreover, the TF and TFiDF feature representation techniques were 

found to outperform the BR and N-TFiDF techniques. Chi-square feature selection 

scheme outperforms IG and Pearson correlation schemes. In supervised machine learning 

algorithms, SVM outperforms RF, NB, k-NN, DT, and ensemble voting classifier by 

obtaining an overall accuracy of 78%. Thus, the findings of this study are of practical 

value and serve as references for future works. Moreover, the current findings will act as 

state-of-art techniques to compare future proposals with existing ATC techniques. To 

enhance the classification accuracy, other types of features such as expert-driven or fully 

automated features can be proposed to compare findings with current results.  

2.13 Conclusion 

This chapter presented a critical analysis of the clinical text classification domain by 

summarizing major research efforts to acquire a better awareness of the existing solutions 

in this domain. The related literature was reviewed from six rationale aspects: types of 

clinical reports used, dataset characteristics, pre-processing techniques, feature 

engineering techniques, machine learning algorithms, and performance metrics. In the 

clinical text classification domain, various types of free-text clinical reports were used. 

The most widely used clinical reports were pathology reports, radiology reports, and 

Medline biomedical documents. Moreover, in most of the selected primary studies, the 

authors used their own dataset, which mostly comprised only one type of report collected 

from only one organization. Nonetheless, in some studies, publicly available datasets such 

as the OHSUMED and i2b2 datasets were also used. Various pre-processing techniques 

were applied to remove noisy or irrelevant terms from the datasets. Some commonly used 

pre-processing techniques were stop word removal; removal of stop words, punctuation, 

and empty spaces; case conversion; tokenization; and normalization (such as stemming 
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and lemmatization). Some studies reported that the removal of stop words reduces 

classification accuracy.  

In fully-automated feature engineering techniques, a combination of BoW, BoP, and 

BoC yields robust results. Moreover, the representation of these features in graph 

structure further increases performance but increases computational time. In addition to 

these features, expert-driven features also perform well. Mixed results were found 

regarding the comparison of expert-driven and automated feature engineering 

approaches. In some studies, expert-driven features outperformed automated features, but 

several authors reported that automated features lead to better classification results. 

Therefore, one should always empirically investigate the performance of both automated 

and expert-driven approaches to evaluate which one will produce optimal results. In 

majority of the studies, the BR, TF, and TFiDF feature representation techniques were 

found useful. To remove redundant or non-discriminative features, various studies 

employed different kinds of feature selection schemes. Chi square and IG showed good 

results. For ATC, most of the studies either employed SML-based ATC techniques or 

rule-based ATC technique.  

In SML-based ATC techniques, generative and discriminative models were used to 

classify free-text clinical reports. In most of the studies that employed generative models, 

NB showed good results. In discriminative models, SVM obtained superior results 

followed by RF, DT, and kNN. Rule-based classifiers also showed promising results. 

Some studies employed both rule-based and supervised machine learning-based 

classifiers. Few studies reported that supervised machine learning-based classifiers 

outperform rule-based classifiers, some reported that rule-based classifiers outperform 

supervised machine learning-based classifiers, and several studies reported no significant 

difference between the results obtained by both approaches. For performance metrics, 
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most of the studies used precision, recall, F-measure, and accuracy to measure the 

classification performance in binary-class classification problems. In multi-class 

classification problems, authors used micro- and macro-averaging of precision, recall, 

and F-measure. Notably, several studies used simple precision, recall, F-measure, and 

accuracy to measure the classification performance of multi-class problems; however, 

these metrics are unsuitable for multi-class problems. Thus, for multi-class problems, 

accurate metrics such as micro- and macro-averaging of precision, recall, and F-measure 

are necessary. Several researchers used the accuracy metric with an imbalanced dataset, 

but the AUC metric would have been more appropriate in the given situation. 

Finally, in the domain of free-text clinical text classification, work on classifying CoDs 

using complete forensic autopsy reports is limited. Only one study Mujtaba et al. (2016) 

employed complete forensic autopsy reports to classify CoDs. However, in that study, the 

authors only used existing feature engineering techniques and machine learning 

algorithms to classify CoD; a limited accuracy of approximately 78% was obtained. 

Moreover, the authors mentioned that the possible reason for the low performance 

classification is the use of irrelevant and non-discriminative features. Thus, robust feature 

engineering techniques are needed to enhance the classification performance. 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.1 Introduction 

This chapter presents the research methodology for the proposed feature engineering 

techniques, namely, the semi-automated expert-driven feature engineering technique and 

fully automated conceptual graph-based feature engineering technique, for classifying the 

cause of death (CoD) from free-text forensic autopsy reports. 

In the field of medical science, computer-aided expert systems are occasionally 

required only under certain conditions, such as a specific level of accuracy or quality. 

Thus, existing related literature (Sections 2.8.1 and 2.11.1) generally applied two 

techniques for developing such systems. These methods were semi-automated expert-

driven technique and fully automated machine-learning-based technique. Previous 

studies comprehensively investigated and empirically evaluated the performances of both 

techniques (Ye et al., 2014; Koopman, S. Karimi, et al., 2015; MacRae et al., 2015; Kalter 

et al., 2016). The semi-automated expert-driven technique requires readily available 

expert knowledge in the form of decision rules, expert domain knowledge, or human 

expertise. Conversely, the fully automated machine learning-based technique learns the 

classification or prediction rules from a labeled dataset. Here, the machine learning 

algorithms explore the training dataset, uncover useful classification or prediction 

patterns within, and use these patterns to classify new or unlabeled cases. Hence, this 

study also proposes two effective feature engineering techniques, namely, semi-

automated expert-driven and fully automated conceptual graph-based techniques, to 

comprehensively investigate their performances and suitability for classifying CoDs from 

forensic autopsy reports. In this thesis, the phrase “effective feature engineering 
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techniques” means that the techniques are more accurate than the existing feature 

engineering techniques and consume minimal computational time and resources. 

The methodology for this research comprised six different phases (Figure 3.1). In the 

succeeding sections, all these phases are presented precisely. Meanwhile, the specific 

research methodology and functionality of each proposed technique (semi-automated 

expert-driven feature engineering technique and fully automated conceptual graph-based 

feature engineering technique) are comprehensively explained in Chapters 4 and 5, 

respectively. 

 

 

Figure 3.1: Detailed research methodology and design 
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3.2 Problem Identification 

As discussed in Sections 1.2 and 1.3, Danso et al. (2013), Yeow et al. (2014), and 

Mujtaba et al. (2016) applied existing feature engineering techniques, such as bag-of-

words (BoW), and n-gram, to classify the CoDs from autopsy reports. Experimental 

results showed that these three aforementioned studies achieved low accuracy (between 

57% and 80%). This finding proved that the traditional feature engineering techniques 

(such as BoW and n-gram) are inappropriate for extracting useful features from autopsy 

reports. This shortcoming was observed probably because such techniques ignore word 

context and order in free-text autopsy reports. Recently, several variants of BoW and n-

gram feature engineering techniques have been proposed to overcome the limitations of 

traditional BoW and n-gram techniques. Examples of these variants include the skip-gram 

technique (Mikolov et al., 2013), continuous BoW (CBoW) technique (Wang, 2014), and 

entropy-optimized BoW (EO-BoW) technique (Passalis & Tefas, 2016). However, the 

aforementioned techniques involve word sequences and fail to capture word inversions 

and subset matching (Joachims, 1998b; Sebastiani, 2002; Papadakis et al., 2016) when 

applied to classify free-text documents (such as autopsy reports). Moreover, these 

aforementioned feature engineering techniques failed to handle the complex semantic 

information of texts, such as word-level synonymy and polysemy (Yadav et al., 2014; 

Malliaros & Skianis, 2015; Dasondi et al., 2016; Jiang et al., 2016; Papadakis et al., 2016). 

Therefore, effective (highly accurate and consuming minimal computational time and 

resources) feature engineering techniques remain to be developed to include word order, 

word context, and word-level synonymy and polysemy to classify free-text clinical 

reports (such as forensic autopsy reports). These methods are projected to enhance the 

accuracy of classifying CoDs from forensic autopsy reports. 
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3.3 Forensic Autopsy Dataset Collection  

In this research, the forensic autopsy dataset was collected from Pusat Perubatan 

Universiti Malaya (PPUM), Kuala Lumpur, Malaysia. The ethics letter provided by 

PPUM is also shown in Appendix-A. The dataset included forensic autopsy reports 

involving all four kinds of manners of death (MoDs), namely, accident, suicide, homicide, 

and natural death. For each MoD, the forensic autopsy reports of the four most common 

CoDs were collected. A total of 1500 forensic autopsy reports involving 16 CoDs (S06, 

S38, T07, T75, X80, X74, T71, T14, X93, X99, Y00, Y09, I23, I24, I25, and Z11) and 

four MoDs were collected. The distribution of forensic autopsy reports based on MoD is 

shown in Figure 3.2. The detailed distribution of CoDs with several demographic details 

is provided in  

Table 3.1. Notably, in this study, all ICD-10 codes were truncated at the three-

character level. For instance, the code S06.9 (unspecified intracranial injury) was 

converted to simply S06 (intracranial injury). This three-character level truncation was 

applied because of two reasons. First, the present study aimed to classify the CoD from 

forensic autopsy reports by using automated text classification (ATC) techniques up to 

three-character levels. For instance, S06.1 (Traumatic cerebral edema), S06.2 (Diffuse 

traumatic brain injury), S06.3 (Focal traumatic brain injury), S06.4 (Epidural 

hemorrhage), and S06.9 (Unspecified intracranial injury) were all truncated to their upper 

levels, that is, S06 (Intracranial injury). A classifier was then constructed to classify the 

three-character level CoD from forensic autopsy findings. Second, for any specific CoD, 

autopsy reports are scarce in our dataset and insufficient to train and construct a robust 

and effective ATC model. Therefore, to achieve a reasonable training set, all the forensic 

autopsy reports were converted into three-character level codes. 
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Figure 3.2: MoD-wise distribution of forensic autopsy reports 

The MoD, CoD, and corresponding ICD-10 code for these reports were manually 

labeled unanimously by a team of pathologists. Each report consisted of the detailed 

examination of the dead body and included the deceased’s personal information, external 

examination, injury-related information, and internal examination. This research also 

considered other kinds of related reports (when available), such as histopathology reports 

and toxicology reports. Furthermore, the previous medical history of the deceased was 

considered. Death scene-related eyewitness information was used in the classification 

model. Thus, the collected dataset was heterogeneous– homogeneous in nature, because 

the dataset included various reports, such as forensic autopsy findings, previous medical-

related history of the deceased, death scene-related eyewitness information, 

histopathology report results, and toxicology report results. However, the data were 

collected from one hospital only (with many branches). In the subsequent paragraph, the 

details of the forensic autopsy report attributes are discussed. An autopsy report sample 

is also presented in Appendix-B.  

Personal information: This section included the name of the deceased, unique identity 

number, gender, date of birth, date of death, age upon death, and nationality.  

Injury-related information: This portion included the injury-related information, such 

as the size, location, and pattern of abrasion, laceration, and wound on the body.  
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Table 3.1: Details of forensic autopsy dataset collection 

MoD CoD ICD-10 
Code 

No. of 
Reports Gender Age (Years) 

Accident 

Craniocerebral injury S06 120 M: 84% 
F: 16% 

Min: 6 
Max: 86 
Avg: 41 

Abdominal injury S38 100 M: 92% 
F: 8% 

Min: 20 
Max: 50 
Avg: 30 

Multiple injuries T07 120 M: 87% 
F: 13% 

Min: 14 
Max: 87 
Avg: 39 

Electrocution T75 100 M: 88% 
F: 12% 

Min: 5  
Max: 44 
Avg: 24 

Suicide 

Intentional self-harm 
by jumping from 
height 

X80 120 M: 66% 
F: 34% 

Min: 16 
Max: 45 
Avg: 28 

Intentional self-harm 
by stabbing X74 75 M: 54% 

F: 46% 

Min: 12 
Max: 47 
Avg: 19 

Intentional self-harm 
by hanging T71 120 M: 78% 

F: 22% 

Min: 17 
Max: 48 
Avg: 23 

Intentional self-harm 
by poisoning T14 75 M: 68% 

F: 32% 

Min: 18 
Max: 43 
Avg: 24 

Homicide 

Assault by handgun 
discharge X93 75 M: 89% 

F: 11% 

Min: 19 
Max: 53 
Avg: 32 

Assault by sharp object X99 110 M: 71% 
F: 29% 

Min: 17 
Max: 59 
Avg: 33 

Assault by blunt object Y00 110 M: 79% 
F: 21% 

Min: 18 
Max: 57 
Avg: 26 

Assault by unspecified 
means Y09 75 M: 73% 

F: 27% 

Min: 13 
Max: 58 
Avg: 23 

Natural 

Acute myocardial infar
ction I23 75 M: 63% 

F: 37% 

Min: 23 
Max: 64 
Avg: 36 

Ischemic heart diseases I24 75 M: 82% 
F: 18% 

Min: 25 
Max: 57 
Avg: 39 

Chronic heart diseases I25 75 M: 76% 
F: 24% 

Min: 27 
Max: 65 
Avg: 37 

Pulmonary 
tuberculosis Z11 75 M: 83% 

F: 17% 

Min: 26 
Max: 69 
Avg: 34 
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External examination: This part includes the information about the deceased’s external 

body parts, such as height, weight, eyes, ear, hands, feet, legs, nose, mouth, lips, teeth, 

and reproductive organs. Information about rigor mortis, hypostasis, and decomposition 

signs is also recorded here. In addition, any specific symbols or patterns on the body are 

noted. 

Internal examination: This segment includes the anatomical examination of the brain, 

neck, thorax, cardiovascular system, respiratory system, gastrointestinal tract, liver, 

spleen, pancreas, endocrine system, kidneys, and urinary bladder. 

Previous medical-related history of the deceased: This section records the previous 

medical history of the deceased in free-text format.  

Death scene-related eyewitness information: This section includes the information 

given by eyewitnesses regarding the death scene. 

MoD: This section is the output variable of the forensic autopsy report. Here, the experts 

determine the MoD, namely, accident, suicide, homicide, or natural death. 

CoD: This section is also the output variable of the forensic autopsy report. Here, the 

experts process the autopsy findings, correlate the findings with previous cases, use their 

experience, and determine the primary CoD. Moreover, experts also assign the ICD-10 

code to the determined CoD.  

Each forensic autopsy report comprises three to seven pages, depending on the CoD. 

For example, a report on an accident-related CoD maybe longer than a report on natural 

death. An accident-related forensic autopsy report is longer because it contains additional 

information regarding external and internal injuries, whereas such information maybe 

unavailable when the CoD is natural. In the experiments, personal information was not 
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used in the prediction of MoD and CoD because these features do not contribute to the 

prediction of the MoD and CoD. Furthermore, all other features, such as external 

examination, internal examination, history, and injury-related features, were concatenated 

in one string for the sake of simplicity.  

The biggest obstacle during the forensic autopsy data collection was that the reports 

were available in hardcopy format, and these reports were typed and converted into 

softcopy format. Therefore, six postgraduate students were hired from the University of 

Malaya for data entry for 4 months from November 2015 to February 2016. Two were 

from the Faculty of Medicine, one was from the Faculty of Dentistry, and three were from 

the Faculty of Computer Science and Information Technology. The data entry job was 

supervised by two senior lecturers of the University of Malaya: one from the Faculty of 

Medicine and one from the Faculty of Computer Science and Information Technology. 

3.4 Text Preprocessing 

In this phase, the collected forensic autopsy reports were cleaned and prepared for the 

classification task. Here, several steps were taken to remove noisy text from the forensic 

autopsy reports by using Python and a natural language processing tool kit (Bird, Klein, 

& Loper, 2009). First, the sections of the forensic autopsy reports that do not contribute 

to the improvement in classification accuracy were removed. These sections included the 

personal information of the deceased, medicolegal case, and deceased identifying 

features. Furthermore, the remaining sections, such as external examination, internal 

examination, history, and injury-related features, were concatenated in one string for the 

sake of simplicity. The whole text was converted into lowercase after removing the 

special symbols, punctuations, stop words, and unnecessary empty lines and trimming the 

leading and trailing spaces. 
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An empirical investigation was performed to investigate the performance of the 

classification model in the presence or absence of stop words because some related studies 

showed that the removal of stop words decreases the classification performance (Danso 

et al., 2013, 2014; Sarker & Gonzalez, 2015; Lauren et al., 2017). However, many studies 

showed that the presence of stop words decreases the classification performance (Jo, 

2013; Adeva et al., 2014; Koopman, S. Karimi, et al., 2015; Koopman, G. Zuccon, et al., 

2015; Sarker & Gonzalez, 2015). Mujtaba et al. (2016) empirically investigated the 

presence and absence of stop-word removal for determining the CoD from forensic 

autopsy reports. Authors experimental results showed that the presence of stop words 

decreased the classification performance because of the noise factor. Thus, in this study, 

stop-words were removed from forensic autopsy reports to increase classification 

accuracy. The resulting text was then fed to PyEnchant spell checker library (Bird et al., 

2009) to correct the misspelled words.  

Finally, the Porter stemming algorithm (Porter, 1980; Willett, 2006) was applied on 

the resultant text to convert the variant forms of a word into its stem or root form. Several 

related studies reported that the stemming process improves the classification accuracy 

(Buchan et al., 2017; Wang et al., 2017). Nonetheless, several studies reported that the 

stemming process does not improve the classification accuracy (Clark et al., 2017; Lauren 

et al., 2017). Thus, an empirical investigation was performed by Mujtaba et al. (2016) to 

evaluate classification performance in the presence or absence of the stemming process 

for determining the CoD from forensic autopsy reports. Authors experimental results 

showed the effectiveness of the stemming process on the collected forensic autopsy 

dataset. After applying the stemming process, the resulting text was then fed as input to 

a feature engineering phase to create numeric MFV. The feature engineering phase is 

discussed in a subsequent section. 
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3.5 Feature Engineering 

As discussed in Section 2.3.1.3, feature engineering is the key step in classifying the 

free-text clinical reports by using a supervised machine learning (SML)-based technique 

(Wolpert & Macready, 1995; Aggarwal & Zhai, 2012a; Domingos, 2012; Witten et al., 

2016) because the success or failure of any text classification model heavily depends upon 

the quality of features used in the classification task. If the extracted features correlate 

well with the class, then the classification will be easy and accurate. By contrast, if the 

extracted features do not correlate well with the class, then the classification task will be 

difficult and inaccurate. The raw data are often not in a form that is amenable to learning, 

but features from it can be constructed for learning. Much of the effort in text 

classification goes to this task. It is often also one of the most interesting parts, where 

intuition and creativity are as important as the technical aspects. The construction of the 

classification model is often the quickest part compared to feature engineering. Feature 

engineering is difficult because it is domain specific, whereas learners are for a general 

purpose. Therefore, in this study, two effective feature engineering techniques, namely, 

the semi-automated expert-driven and fully automated conceptual graph-based feature 

engineering techniques, were proposed and developed for classifying forensic autopsy 

reports. The difference between both the proposed techniques is also shown in Table 5.8, 

Chapter 5, Section 5.5. Both techniques are precisely discussed in subsequent sections. 

However, the detailed discussion of these techniques with algorithm, experimental setup, 

experimental results, and discussion is available in Chapters 4 and 5. Moreover, the need 

to propose these two feature engineering techniques for classifying forensic autopsy 

reports is already justified in Sections 2.8.1.3 and 2.11.1. 

3.5.1 Proposed Semi-Automated Expert-Driven Technique 

In this feature engineering technique, expert pathologists prepared the discriminative 

features for all 16 types of forensic autopsy reports to determine the CoD. For these 16 
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kinds of forensic autopsy reports, 16 lexicons were prepared. Each lexicon stored the 

discriminative features (extracted by the experts) of each kind of forensic autopsy report. 

After the creation of lexicons, the next important step was to create a numeric MFV for 

use as input to construct a classification model. To create the MFV, each forensic autopsy 

report was compared with all 16 lexicons through the proposed expert-matching 

algorithm. This algorithm matched the occurrence of input report words with each lexicon 

to form a numeric MFV. Hence, each input report had 16 distinct values and one class 

value that was the CoD or type of forensic autopsy report. This numeric vector was then 

fed to the machine learning algorithm to develop the classification model. The detailed 

functionality of the semi-automated expert-driven feature engineering technique is 

discussed in Chapter 4. 

3.5.2 Proposed Fully Automated Conceptual Graph-Based Technique 

In this feature engineering technique, a graph theory was exploited to classify the 

forensic autopsy reports. Moreover, content-based and concept-based features were 

mined and represented through graphs. The proposed technique first converted all the 

autopsy reports (belonging to a particular CoD) into individual report graphs. Each vertex 

V represented a unique term, each edge E connected co-occurring terms in the input text, 

and the weight of an edge W was the frequency of the co-occurrence of terms. These 

report graphs (belonging to a particular CoD) were combined to form an aggregated CoD-

level graph. The Systematized Nomenclature of Medicine – Clinical Terms (SNOMED 

CT) ontology was used to extract the semantic concepts of the input nodes of the CoD-

level aggregated graph. The multi-information obtained from the SNOMED CT ontology 

can be fully utilized by organizing the unique co-occurring terms, along with their 

SNOMED CT concepts and descriptors, in the CoD-level aggregated graph. Thus, the 

aggregated CoD-level graph was converted into a conceptual CoD-level aggregated 

graph. Finally, to create a numeric MFV, each report was compared with each conceptual 
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CoD-level aggregated graph to compute six metrics, namely, vertex similarity metric, 

vertex uniqueness metric, edge similarity metric, edge uniqueness metric, similar edge 

weight metric, and unique edge weight metric. Each input report in the numeric MFV 

contained ( )6 1n +    values. Here, 6 indicates the number of six aforementioned 

metrics, n is the number of conceptual CoD-level aggregated graphs, and 1 indicates the 

class variable. The details of this technique are discussed in Chapter 5. 

3.6 Construction of the Forensic Autopsy Report Classification Model 

The outcome of the feature engineering phase is a numeric MFV. This MFV is then 

fed to machine learning algorithms to construct a classification model. However, deciding 

which classifier will outperform on a given dataset is quite challenging. In the “no free 

lunch” theorem (Wolpert & Macready, 1995), no single machine learning algorithm 

performs excellently in all application areas. Hence, a variety of machine learning 

algorithms should be tested because the philosophy of learning process varies from one 

machine learning algorithm to another. In this study, six different machine learning 

algorithms (namely, NB, SVM, kNN, J48, RF, and ensemble voting classifier) were 

applied to evaluate the classification performance of the forensic autopsy reports. Two 

points were used as guides to narrow down the selection of the machine learning 

algorithm to be used. First, a specific literature on free-text clinical reports was important 

to select a certain machine learning algorithm. The preeminence of a machine learning 

algorithm maybe circumscribed to a given domain (Macià, Bernadó-Mansilla, Orriols-

Puig, & Ho, 2013). Therefore, the literature review in Chapter 2 was used as a guide to 

select the machine learning algorithm. Finally, the performance comparison of several 

machine learning algorithms on a comprehensive dataset (Fernández-Delgado et al., 

2014) was used as basis to select the algorithm. Fernández-Delgado et al. (2014) 

empirically evaluated the performance of 179 machine learning algorithms on 121 

different datasets and concluded that RF and SVM outperform the other algorithms, 
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followed by decision trees, NB, and ensemble voting classifiers. Therefore, the six 

aforementioned machine learning algorithms were chosen to comprehensively investigate 

the classification performance of the forensic autopsy reports. 

3.7 Evaluation of the Forensic Autopsy Report Classification Model 

The performance of the forensic autopsy report classification model was evaluated 

using four performance measures, namely, macro precision, macro recall, macro F-

measure, and overall accuracy. These performance measures were used because of the 

imbalanced class distribution, and these metrics permitted equal weights for each CoD 

category (Sokolova & Lapalme, 2009). These evaluation metrics are discussed briefly in 

subsequent sections. The performance metrics are discussed in detail in Section 2.3.1.5. 

The proposed feature engineering techniques were also compared with five state-of-the-

art baseline feature engineering techniques, namely, the traditional BoW (Harris, 1954), 

EO-BoW (Passalis & Tefas, 2016), paragraph vector technique (Le & Mikolov, 2014), 

hybrid of BoW and Word2Vec technique (Enríquez, Troyano, & López-Solaz, 2016), and 

term graph technique (Papadakis et al., 2016), to show its significance.  

3.8 Conclusion  

This chapter presented the research methodology used in the design and 

implementation of the proposed feature engineering techniques for the classification of 

forensic autopsy reports. Here, the dataset was discussed in detail. Moreover, the 

preprocessing techniques were discussed to clean the collected dataset. This chapter also 

discussed briefly the proposed feature engineering techniques and the construction and 

evaluation of the classification models using the proposed feature engineering techniques. 

The specific details of the proposed feature engineering techniques and their contribution 

are provided in Chapters 4 and 5, respectively. 
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CHAPTER 4: PROPOSED SEMI-AUTOMATED EXPERT-DRIVEN FEATURE 

ENGINEERING TECHNIQUE 

 

4.1 Introduction 

As mentioned in Chapter 2, Mujtaba et al. (2016) comprehensively investigated the 

performance of traditional supervised machine learning-based (SML-based) automated 

text classification (ATC) techniques and feature engineering techniques to determine 

cause of death (CoD) from forensic autopsy reports. The experimental results showed the 

78% classification accuracy for the classification of forensic autopsy reports. Hence, to 

enhance the classification accuracy and to overcome the issues of traditional SML-based 

ATC techniques and existing feature engineering techniques, this chapter presents an 

effective semi-automated expert-driven feature engineering technique for determining 

CoD from forensic autopsy reports. Section 4.2 discusses the technical details of proposed 

technique. In addition, Section 4.3 presents the underlying methodology for designing 

semi-automated expert-driven feature engineering technique. The experimental setup and 

implementation details behind the philosophy of proposed technique are discussed in 

Section 4.4. Section 4.5 reports the experimental results. The discussion on findings is 

presented in Section 4.6. Finally, this chapter is concluded in Section 4.7. The significant 

contribution is the extraction and representation of features from all 16 kinds of forensic 

autopsy reports with the help of expert intervention. Finally, the extracted expert-driven 

features are coupled with SML algorithms to construct a classification model for 

determining CoD from forensic autopsy reports. 

4.2 Semi-Automated Expert-Driven Feature Engineering Technique 

This section discusses in detail the functionality of proposed semi-automated expert-

driven feature engineering technique. In this proposed technique, experts were given the 
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set of forensic autopsy reports along with some summary statistics information to design 

the feature sets for all kinds of forensic autopsy reports. Once, the feature sets are prepared 

by the experts, the MFV was developed that was then fed to machine learning algorithms 

to construct the forensic autopsy reports classification model to determine CoD. Figure 

4.1 depicts the detailed functionality of expert-driven approach. In addition, the detailed 

algorithm of expert-driven feature engineering approach is also shown in Figure 4.2. The 

subsequent paragraphs comprehensively present the functionality of proposed expert-

driven technique. 

In semi-automated expert-driven feature engineering technique, three experts were 

involved from Faculty of Medicine, University of Malaya for feature engineering process. 

These experts were responsible for discovering the discriminative features from all 

sixteen kinds of forensic autopsy reports. Initially, the experts were given all 1500 autopsy 

reports classified by CoD. Moreover, the experts were also given the summary statistics 

for each token to consider this information with their own domain expertise to select and 

prioritize features for classifying forensic autopsy reports. This summary statistics 

information was retrieved from pre-processed forensic autopsy reports. A Java program 

was written for extracting this summary information from preprocessed forensic autopsy 

reports. The summary statistics supplied to domain experts to aid in discovering the 

discriminative features includes the following information:  

(a) Number of forensic autopsy reports across each Manner of MoD (MoD): This 

information includes number of forensic autopsy reports belonging to each MoD. 

(b) Number of forensic autopsy reports across each CoD: This information includes 

number of forensic autopsy reports across each CoD. 

(c) All distinct tokens with their frequencies in specific MoD: This information 

includes the list of all distinct tokens with their frequencies across each MoD.  
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(d) All distinct tokens with their frequencies in specific CoD: This information 

includes the list of all distinct tokens with their frequencies across each CoD.   

 

 

Figure 4.1: Functionality of expert-driven feature engineering technique 

(e) Number of forensic autopsy reports that contain token ‘T’: This information 

includes the number of forensic autopsy reports that contains token ‘T’. 
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(f) Number of forensic autopsy reports belonging to specific MoD that contain token 

‘T’: This information includes the number of forensic autopsy reports that belong to same 

MoD and contains token ‘T’. 

(g) Number of forensic autopsy reports belonging to specific CoD that contain token 

‘T’: This information includes the number of forensic autopsy reports that belong to same 

CoD and contains token ‘T’. 

(h) All unigram, bigram, and trigram features with their frequencies related to 

specific CoD: This information includes the list of all unique unigrams, bigrams, and 

trigrams with their frequencies across all CoD. 

The experts were given all 1500 forensic autopsy reports with aforementioned 

supplementary information of summary statistics to discover useful features across all 

different kinds of forensic autopsy reports. Moreover, they were also required to rank the 

discovered features based on their relevancy. Thus, experts were responsible for 

designing sixteen different kinds of lexicons (one for each kind of forensic autopsy 

reports), whereby, each lexicon contains the unique and distinct feature set of each kind 

of CoD or forensic autopsy reports. A sample of four accident related CoD lexicons are 

shown in Table 4.1. Here, top 30 expert-driven features are shown for four accident 

related CoDs. This whole process of creation of feature sets took approximately four 

months to complete. All three experts individually prepared and ranked the 16 feature sets 

(one for each CoD). For any disagreements, voting approach was used either to include 

or exclude the features, or to rank the features in the feature sets. Moreover, in case of 

ties in voting approach, a fourth expert served as a tiebreaker. The detailed expert-driven 

algorithm is also shown in Figure 4.2 and explained below.  

Suppose, n  different number of CoDs having unique   ICD-10 CoD code are needed 

to classify. Each cause of death comprises of m  number of autopsy reports which are 

available in the rf  raw files. For each cause of death, one expert feature set, E , exists. 
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E  contains the most discriminative features with ranked order list across all n . This E  

was prepared independently by three experienced domain experts. Moreover, in E , the 

possible synonyms and alternative words for the selected features were also added. 

Furthermore, all three domain experts created the prioritized list of features that would 

predict the accurate CoD from medical autopsy reports. Afterward, the domain experts 

matched their feature ranking and resolved their conflicts. A fourth pathologist was 

consulted to resolve the conflicts in case of disagreements. In this manner, n  number of 

E  was created. The sample list of expert –driven features is also shown in Table 4.1. 

 
Figure 4.2: Expert-driven feature engineering algorithm 
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Table 4.1: A sample of four lexicons showing top 30 expert-driven features 

S06 S38 T07 T75 
Scalp Subconjuctival Acute Face 
Temporal Symphysis Subscalpal Congestion 
Frontal Pubic Bruise Collapsed 
Subarachnoid Renal Cervical Blister 
Arachnoids Vessel Thoracic Parietal 
Hemorrhage Adernal Vertebrae Lpeural 
Leptomeninges Kidney Sacroiliac Thickening 
Extradual Parenchyma Joint Aspirated 
Intracerebral Pale Shock Gastric 
Tentorial Wound Grazed Contents 
Herniation Paraumbilical Ramous Petechial 
Aneurysm Area Calcification Electricity 
Ventricles Nail Thrombosis Haemorrhage 
Venous sinuses Beds Embolism Oedamatous 
Cranial Bluish Stenosis Hand 
Odema Discolouration Subendocardial Charring 
Nerves Abdominal Sternum Burn 
Cerebro Wall Perennial Marks 
Spinal Blunt Bladder Shock 
Fluid Penetrating Hemothoran Red 
Cerebrospinal Trauma Infarction Voltage 
Cerebral Obstruction Fibrosis Breath 
Vessels Instestine Pulmonary Electric 
Thrombosis Rupture Embolism Skin 
Preorbital Distention Thrombo Heels 
Mandible Gastrointestinal Oedema High 
Sphenoid Contusions Mural Bones 
Circle Thoracic Thrombi Heart 
Willis Pain Limbs Numbness 
Ruptured Bike Ulna Tingling 

 

Once the n  number of rf are obtained, m number of autopsy reports in each rf , and 

n  number of E , then the n  number of M  master feature vectors are created. To create 

the M , first one rf  was loaded into memory and performed five different pre-processing 

tasks on each m  in the rf  to extract useful features from it. First, s  function was applied 

on m  in rf  to correct the misspelled words. Second, l  function was applied on m  in 

rf  to convert all words into lower case. Third, t  function was applied on each m  in the 
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rf  to tokenize the autopsy reports into unique tokens. Fourth, w  function was applied 

on m  in the rf  to remove the most common words which do not contribute in the 

classification task. Finally, p  function was applied on each m  in the rf  to assign a 

lexical category or parts of speech tagging to each token. Finally, the processed m  in the 

rf  was stored in M . As such, all n  number of rf  were converted into n  number of M  

that contained processed m  autopsy reports. 

After the creation of M  and the preparation of E , M  and E  were loaded into 

memory. Equation 4.1 was applied on M  and E  to further process the M  and form an 

ARFF file for classification. As shown, Equation 4.1 matches the tokens of m  of M  with 

each E  and maintains the frequency count of the features of each E  matched with the 

feature of m  of M . Afterward, a unique ICD-10 cause of death ( ) was assigned to m  

of M , and this m  of M  was added to the ARFF file to create the training set. 

( )
1

, ,
endtoken string

l token
ExpertDrivenFeatureWeight M i j l te

=

 = == 
 

  (4.1) 

To summarize, once all feature sets were prepared, numeric MFV was then 

constructed. For creation of MFV, each forensic autopsy report R  was taken as an input 

from forensic autopsy dataset D and it was then preprocessed (as discussed in Section 

3.4). Afterwards, unigram features were extracted from pre-processed R . The reason 

behind the extraction of unigram features is that Mujtaba et al. (2016) comprehensively 

investigated the performance of unigram, bigram, and trigram features for classifying 

forensic autopsy reports and reported that unigram features outperformed bigram, and 

trigram features for classifying forensic autopsy reports. Afterwards, the extracted 

unigram features were compared will all 16 feature sets (each belonging to one CoD) to 

count the occurrences of features of R  matched with features of feature set1 to feature 

set 16. Finally, after the conversion of forensic autopsy report into numeric vector, at the 

end of numeric vector of R , CoD is appended to show the class of that R . Likewise, all 
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remaining reports ( )1,... nR R  of forensic autopsy dataset D  were converted into numeric 

vectors to form numeric MFV. Figure 4.3 shows the sample of MFV. This MFV was then 

fed to classifiers to construct and evaluate classification model (discuss in Section 4.3). 

 

Figure 4.3: Sample of MFV created after running expert-driven technique 

 

4.3 Experimental Design  

This section presents the experimental design of construction of classification model 

for forensic autopsy reports though proposed semi-automated expert-driven feature 

engineering technique. An extensive set of experiments were run to measure the 

performance of proposed expert-driven feature engineering technique with state-of-the-
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arts baseline feature engineering techniques. The complete flow of experimental design 

is shown in Figure 4.4.  

 

Figure 4.4: Experimental design for evaluation of expert-driven technique 

As shown here, the performance of proposed expert-driven technique was evaluated 

comprehensively. For experiments forensic autopsy dataset (discussed in Section 3.3) was 

used. Moreover, all reports were preprocessed to remove irrelevant and uninformative 

features (discussed in Section 3.4). Afterwards, discriminative features were extracted 

from preprocessed forensic autopsy reports using proposed expert-driven feature 

engineering technique to create a numeric MFV. This MFV was then fed to six different 

classifiers (namely, SVM, NB, kNN, C5, RF, and ensemble-voted) to evaluate the most 

suitable classifier for classifying autopsy reports. The justification for the selection of 

these classifiers is also given in Chapter 3, and Section 3.6. The effect of feature selection 

on the overall performance of the classification model was also investigated empirically. 

Thus, to evaluate the effect of feature selection on the overall performance of 

classification model, three different feature selection schemes were employed and 

compared namely, information gain (Guyon & Elisseeff, 2003), Chi-square(Guyon & 

Univ
ers

ity
 of

 M
ala

ya



108 

Elisseeff, 2003), and Pearson correlation (Guyon & Elisseeff, 2003). Finally, the 

proposed expert-driven feature engineering technique is also compared with four baseline 

feature engineering techniques to show its significance.  

To evaluate the performance of proposed semi-automated expert-driven feature 

engineering technique, all aforementioned experiments were performed systematically in 

four different settings. These are: 

I. Proposed expert-driven technique and basic classifiers: Here, the 

discriminative features were extracted from forensic autopsy reports through 

expert-driven feature engineering technique. The extracted features are then 

fed to machine learning algorithms for construction of classification models 

(see Figure 4.5). In this setting, in total six analyses (1 feature engineering 

technique × six text classifiers) were run to evaluate the performance of 

classification models.  

 

Figure 4.5: Experiments using setting I 

II. Proposed expert-driven technique, feature selection schemes, and basic 

classifiers: It was hypothesized that various subsets of features would produce 
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different performance results in terms of PrecisionM, RecallM, F-measureM, 

and overall accuracy. Thus, to evaluate this proposition, three different feature 

selection schemes namely, information gain (Guyon & Elisseeff, 2003), chi-

square (Guyon & Elisseeff, 2003), and Pearson correlation were employed on 

expert-driven feature sets (Guyon & Elisseeff, 2003). The feature subset sizes 

of 10, 20, 30, 40, 50, 100, and “all” were selected after performing the 

sensitivity analysis (discussed in Section 4.4). In addition, these subsets were 

extracted because of their implementation feasibility, thereby allowing the 

evaluation of classifier performance within a suitable operating range. Finally, 

these extracted feature subsets were fed as an input to six different text 

classifiers to construct effective classification model (Figure 4.6). In this 

setting, in total 126 analyses (1 feature engineering technique × 3 feature 

selection schemes × 7 feature subsets × 6 text classifiers) were run to evaluate 

the performance of classification models. 

 

Figure 4.6: Experiments using setting II 

III. Comparison of proposed expert-driven technique with state-of-the-art 

baseline feature engineering techniques: Given the restrictions brought about 

by privacy or ethical considerations, no public dataset was available for testing 
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the significance of the proposed approach. To examine such significance, four 

baselines were created from the collected dataset for this research, namely, the 

traditional BoW technique (Harris, 1954), the entropy-optimized feature-

based BoW (EO-BoW) technique (Passalis & Tefas, 2016), the paragraph 

vector (PV) technique (Le & Mikolov, 2014), the hybrid of BoW and 

Word2Vec (BoW + Word2Vec) technique (Enríquez et al., 2016). In these 

experiments, the features from preprocessed forensic autopsy reports were 

extracted and represented using abovementioned four baseline techniques and 

one proposed expert-driven technique. Thus, five numeric MFVs were 

prepared. Afterwards, these five MFVs were then fed as input to six machine 

learning algorithms to construct classification models (see Figure 4.7). The 

experiments were conducted to measure the overall accuracy of all six 

classifiers using these four baseline feature engineering techniques. The 

baseline accuracy was compared with the accuracy of the proposed expert-

driven feature engineering technique using the “all” feature subset size. 

Hence, in this setting, in total 30 analyses (5 feature engineering techniques × 

6 machine learning algorithms) were run to evaluate the performance of 

proposed expert-driven feature engineering technique with existing baseline 

feature engineering techniques. 

 

Figure 4.7: Experiments using setting III 

Univ
ers

ity
 of

 M
ala

ya



111 

IV. In medical autopsy, suitably annotated and statistically independent samples 

of autopsy reports for the construction and evaluation of classifier are 

inadequate and expensive. In addition, ethical considerations often restrict the 

number of autopsy reports collection. Thus, sample size planning is an 

important aspect in the design of experiments. Hence, to find the optimum 

sample size for each class, various experiments were performed to examine a 

range of sample size from 10 to a number of instances where no further 

improvement in accuracy was observed. Here, all the experiments were 

performed using expert-driven feature engineering technique and best 

performed machine learning algorithm (as per experiments in setting I).  

All classification experiments were performed in Java using Weka API (Hall et al., 

2009; Witten et al., 2016) except the C5. This is because Weka does not provide the 

implementation of C5. Thus, for this purpose C5 was applied using R programming 

language. In addition, the selected six machine learning algorithms were run using the 

parameters shown in Table 4.2. These parameters were used because Mujtaba et al. (2016) 

rigorously performed the comparative study on classification of forensic autopsy reports 

using various machine learning algorithms and reported that the machine learning 

algorithms with these reported parameters outperformed.  

Furthermore, in experiments, the 10-fold cross validation was used because that is a 

standard approach in the field. In this approach, the data were first randomized (shuffled) 

and then stratified into 10 folds. This randomization and stratification has been performed 

in advance and remained fixed for all algorithms to make sure all the tests run under the 

same conditions (the same ordering). The use of cross validation allowed us to obtain 

average evaluation of the experiments. The more detailed discussion on cross validation 

can be found in (Kohavi, 1995; Refaeilzadeh et al., 2009). For performance evaluation, 
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four evaluation metrics were used namely, PrecisionM, RecallM, F-measureM, and overall 

accuracy. These performance measures were used because of imbalanced class 

distribution, and these metrics permit equal weights for each cause of death category 

(Sokolova & Lapalme, 2009). These evaluation metrics are discussed in detail in Chapter 

2, Section 2.3.1.5. Finally, statistical significant tests were applied to see the significant 

different between the analyses results of aforementioned four experimental settings. A 

pair-wise McNemar statistical test (McCrum-Gardner, 2008; Adedokun & Burgess, 2011; 

Ott & Longnecker, 2015) was performed (using significance level of alpha = 0.05) to 

compare the classification performance obtained by six classifiers using proposed expert-

driven technique and baseline techniques.  

Table 4.2: Parameters selected for machine learning algorithms in experiments 

Classifier Parameters 
NB batchSize = 

100;debug=false;displayModelInOldFormat=false;doNotChec
kCapabilities=false; 
numDecimalPlaces=2;useKernelEstimator=false;useSupervise
dDiscretization=false  

SVM batchSize=100;buildCalibrationModels=False;c=1.0;calibrator=Logi
stic;checksTurnedOff=False; 
debug=False;doNotCheckCapabilities=False;epsilon=1.0E-
12;filterType=Normalize;kernel=PolyKernel; 
numDecimalPlaces=2;numFolds=-
1;randomSeed=1;toleranceParameter=0.001 

kNN KNN=1;batchSize=100;crossValidate=False;debug=False;dist
anceWeighing=No distance 
weighing;doNotCheckCapabilities=False;meanSquared=false;
nearestNeighbourSearchAlgorithm=LinearNNSearch;numDeci
malPlaces=2;windowSize=0 

C5 Standard parameters provided in R programming language  
RF bagSizePercent=100;batchSize=100;breakTiesRandomly=Fals

e;calcOutOfBag=False;debug=False;doNotCheckCapabilities=
False;maxDepth=0;numDecimalPlaces=2;numExecutionSlots
=1;numFeatures=0;numIterations=100;outputOutOfBagCompl
exityStatistics=False; 
printClassifiers=False;seed=1;storeOutOfBagPrediction=False 

Voted Combination of all aforementioned five classifiers with 
aforementioned parameters 
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4.4 Experimental Results 

This section presents the results of all the experiments discussed in Section 4.3. The 

results are presented as per four experimental settings. First, the results of proposed 

expert-driven feature engineering technique coupled with machine learning algorithms 

were obtained. Second, the results of these classification models with five different 

feature selections were obtained. Third, the results of expert-driven technique and 

baseline techniques were obtained. Fourth, the results for effectiveness of proposed 

expert-driven techniques and machine learning algorithms on different data samples were 

obtained. All these results are reported in subsequent subsections. 

4.4.1 Experimental Setting I Results 

This section presents the results of experimental Setting-I, whereby, the features 

extracted by expert-driven approach were fed to six different machine learning algorithms 

namely, NB, SVM, kNN, C5, RF, and ensemble voted classifier. The PrecisionM, RecallM, 

F-measureM and Overall Accuracy of six analyses (1 feature engineering technique × 6 

machine learning algorithms) are shown in Table 4.3. Here, it can be seen that the values 

of overall accuracy, PrecisionM, RecallM, and F-measureM ranges from 81% to 90%. In 

addition, it shows that SVM, and RF machine learning algorithms outperformed NB, 

kNN, C5, and voted classifiers by obtaining the overall accuracy between 89% to 90%. 

Moreover, the lowest performance was observed in kNN, and NB machine learning 

algorithms which produced overall accuracy between 81% to 83%, followed by C5, and 

voted machine learning algorithms (overall accuracy between 86% to 88%). It can be 

noticed that there is very minor difference in performance measures obtained by SVM, 

and RF. Moreover, it can be concluded that NB, and kNN classifiers are not suitable for 

classifying forensic autopsy reports. A pair-wise McNemar statistical test (McCrum-

Gardner, 2008; Adedokun & Burgess, 2011; Ott & Longnecker, 2015) was performed 

(using significance level of alpha = 0.05) to compare the overall accuracy of SVM 
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classifier with all other five classifiers. The statistical difference was observed between 

SVM and all other classifiers (p < 0.01) except RF (p > 0.05). 

Table 4.3: Results of experimental setting-I 

MLA Overall Accuracy PrecisionM RecallM F-measureM 
NB 82.63% 0.828 0.839 0.831 

SVM 89.81% 0.904 0.902 0.903 
kNN 81.18% 0.812 0.812 0.812 
C5 86.13% 0.865 0.869 0.867 
RF 89.13% 0.896 0.896 0.896 

Voted 87.85% 0.882 0.867 0.874 
** MLA = Machine Learning Algorithms 
 
 
4.4.2 Experimental Setting II Results 

This setting presents the results of 126 analyses (1 feature engineering technique × 3 

feature selection schemes × 7 feature subsets × 6 machine learning algorithms) that were 

run to evaluate the performance of classification models. The PrecisionM, RecallM, F-

measureM and overall accuracy of 126 analyses are shown in Figure 4.8 to Figure 4.11 

respectively. In all 126 analyses, the highest PrecisionM (0.928), RecallM (0.926), F-

measureM (0.927), and overall accuracy (92.72%) was produced by Chi-square, followed 

by information gain and Pearson correlation using SVM machine learning algorithm. The 

performance of information gain is slightly lower than the performance of chi-square. An 

increasing trend in PrecisionM, RecallM, F-measureM and overall accuracy was observed 

for the feature subset size 10 to 40 in all three feature selection schemes and six machine 

learning algorithms. This trend decreased with feature subset size of 50, 100 and “all”. 

However, in some experiments “all” feature subset size showed better performance in the 

SVM machine learning algorithm.  In machine learning algorithms, SVM produced the 

highest performance with feature subset sizes of 30 and 40 with the three types of feature 

selection schemes. Furthermore, the performances of all six machine learning algorithms 

decreased dramatically when they used 10 features for the classification task, specifically 

in NB and kNN using Pearson correlation. To conclude, the highest performance of 
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classification of CoD was obtained by SVM with the feature subset sizes of 30 and 40, 

and with chi-square as a feature selection scheme. 

Figure 4.8 shows the overall accuracy of all 126 analyses. In the figure, the chi-square 

significantly outperformed, followed by information gain and Pearson correlation feature 

selection scheme. In addition, a slight difference in the results of information gain and 

Chi-square was observed. The lowest results were shown by Pearson correlation scheme. 

A fluctuating trend was found in the feature subset size. However, the lowest accuracy 

was observed in the “all” and 10 feature subset sizes. The reasonable accuracy was found 

in the feature sub set sizes of 30, and 40, respectively. SVM and RF classifiers 

outperformed in all three feature selection schemes by producing the highest accuracy of 

92.23%-92.65% (with a feature subset size of 30 and 40). Moreover, the lowest 

performance was observed in kNN, and NB machine learning algorithms across all three 

feature selection schemes.  

 

Figure 4.8: Overall accuracy of 126 analyses in setting-II 

Figure 4.9 shows the PrecisionM of all 126 analyses. As shown here, in all three feature 

selection schemes, Chi-Square produced the highest PrecisionM, followed by Information 

gain and Pearson correlation. The PrecisionM of Chi-square yielded a hair greater than 

that of information gain. Furthermore, in chi-square, SVM, and RF produced the highest 

PrecisionM of 92.82%, and 92.47%, respectively with the feature subset size of “30”. In 
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addition, kNN, and NB produced the lowest PrecisionM of 75.28% and 76.34%, 

respectively, with the feature subset of “10” using Pearson Correlation.  

 

Figure 4.9: PrecisionM of 126 analyses in setting-II 

Figure 4.10 shows the RecallM of all 126 analyses. The figure shows that the chi-square 

outperformed the information gain, and Pearson correlation. Moreover, the lowest 

RecallM was observed in Pearson correlation using kNN and NB classifiers. Majority of 

the developed models yielded the lowest RecallM with feature subset sizes of “all” and 10 

and the highest RecallM with feature subset sizes of 30 and 40. The RecallM of chi-square 

yielded a hair greater than that of information gain. Furthermore, in chi-square, SVM, and 

RF produced the highest RecallM of 92.68%, and 92.39%, respectively with the feature 

subset size of “30”. In addition, kNN, and NB produced the lowest RecallM of 75.31% 

and 76.14%, respectively, with the feature subset of “10” using Pearson correlation.  

 

Figure 4.10: RecallM of 126 analyses in setting-II 

Figure 4.11 shows the F-measureM of all 126 analyses. Here, the highest F-measureM 

was produced by the chi-square, followed by information gain and Pearson correlation. 
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The lowest F-MeasureM was observed in Pearson correlation. In many classification 

models, both information gain and Chi-square feature selection schemes produced similar 

results with extremely minute fluctuations. Majority of the classification models yielded 

the lowest F-measureM with feature subset sizes of “all” and “10” and highest F-measureM 

with feature subset sizes of “30”, and “40”. In chi-square, SVM, and RF produced the 

highest F-measureM of 92.73% and 92.43% respectively, with a feature subset size of 

“30” and “40”. Moreover, the lowest F-measureM of 75.30% and 76.24 was observed in 

kNN and NB machine learning algorithms with the feature subset size of “10” using 

Pearson correlation.  

 

Figure 4.11: F-MeasureM of 126 analyses in setting-II 

4.4.3 Experimental Setting III Results 

This section reports the findings of 30 analyses that were performed to evaluate 

the performance of the proposed expert-driven technique compared with four baseline 

feature engineering techniques. Figure 4.12 presents the accuracy of all 30 analyses. As 

shown here, in all four baselines, SVM and RF consistently showed a promising accuracy 

and the lowest accuracy was observed in kNN, and NB. In addition, compared to all these 

baselines, the proposed expert-driven feature engineering technique showed the 

promising results, followed by PV, and EO-BoW feature engineering techniques. A pair-

wise McNemar statistical test (McCrum-Gardner, 2008; Adedokun & Burgess, 2011; Ott 

& Longnecker, 2015) was performed (using significance level of alpha = 0.05) to compare 
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the overall accuracy of proposed expert-driven technique with all other five baseline 

techniques using SVM classifier. The statistical difference was observed between expert-

driven technique and all other baseline techniques (p < 0.01). 

 

Figure 4.12: Overall accuracy comparison of expert-driven technique with 
baselines 

4.4.4 Experimental Setting IV Results 

In forensic autopsy, properly annotated reports for constructing and evaluating 

classifiers are insufficient and expensive. Moreover, ethical concerns often restrict the 

amount of report collections. In addition, planning of sample size is main aspect in 

designing experiments. Therefore, progressive sampling method was used to determine 

the optimum learning curve. This learning curve describes the performance of 

classification model with respect to different training set size. In general, there are three 

phases to determine the optimum learning curve (Figueroa, Zeng-Treitler, Kandula, & 

Ngo, 2012; Beleites, Neugebauer, Bocklitz, Krafft, & Popp, 2013). In the first phase, 

classification performance increased swiftly as the size of training set increases. In the 

second phase, this increment in classification performance is not so rapid even though the 

training set size increases. In the third phase, there is no or very marginal improvement 

in classification is observed with increasing training set size. In general, on third phase, 

the classification model has reached its performance threshold (Figueroa et al., 2012; 

Beleites et al., 2013). Hence, to determine the ideal sample size for every CoD, several 
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experiments were conducted to determine a range of sample sizes from 10 to a number of 

instances until accuracy no longer increased. Here, all the experiments were performed 

using expert-driven feature engineering technique and SVM machine learning algorithm 

because SVM showed the highest performance. 

Figure 4.13 shows these experimental results. As shown in here, the lowest accuracy 

of 43.63%–67.15% was observed when reports were 10 to 30 in number. Accuracy of 

78.67%–89.23% was observed with 40 to 60 autopsy reports. A slight variation of 0.39% 

in accuracy was examined when dataset size increased from 60 to 70. A very marginal 

improvement of 0.19% in accuracy was observed when forensic autopsy reports were 

increased in size from 70 to 100. The consistent accuracy of 89.81% was observed when 

autopsy reports were 80, 90, and 100 Therefore, it can be concluded that a minimum of 

70 to 100 autopsy reports are good enough to construct a forensic autopsy classification 

model. 

 

Figure 4.13: Classification accuracy versus number of forensic autopsy reports 

 
4.5 Discussion 

The experimental results of this research study show that SML-based ATC techniques 

coupled with proposed semi-automated expert-driven feature engineering technique can 

determine the CoD from free text forensic autopsy reports with performance measures 

between 70%–90%. Furthermore, a considerable difference was observed in most of the 
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analyses. From the experimental findings, different combinations were determined to 

optimize the performance of each measurement.  

To optimize the overall accuracy, PrecisionM, RecallM, and F-measureM, SVM 

machine learning algorithm built with expert-driven feature engineering technique, and 

chi-square feature selection schemes using a subset of 40 features is recommended. In 

most of the experiments, information gain produced results that are slightly lower with 

those returned by Chi-square. Pearson Correlation showed the lowest performance results 

in all of the experiments.  

This section provides the theoretical analysis of the SML-based ATC techniques used 

in this study, namely, proposed and baseline feature engineering techniques, feature 

selection schemes, and machine learning algorithms. 

 

4.5.1 Theoretical Analysis of Proposed and Baseline Techniques 

The performance of a classification task primarily depends on the quality of 

features. Irrelevant and inadequate features typically produce unsatisfactory performance 

results. Therefore, the key task in clinical text classification is to identify the most 

relevant, discriminative, and powerful features using state-of-the-art feature engineering 

techniques (Domingos, 2012). Accordingly, the proposed expert-driven feature 

engineering technique was compared with four existing state-of-the-art baseline feature 

engineering techniques. The experimental results demonstrated the effectiveness of 

proposed expert-driven technique compared with existing baselines namely, BoW, EO-

BoW, PV, and BoW+Word2Vec.  

The proposed expert-driven technique performed better than existing baselines 

because it overcomes the limitation of existing feature engineering techniques, such as 

word-level synonymy and polysemy. The pathologists might have used different 

synonyms and vocabulary while preparing the autopsy reports. For instance, many 
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pathologists used the tokens “abrasion,” “graze,” and “trauma” interchangeably. Hence, 

in the proposed expert-driven approach, the intervention of experts (for feature 

engineering) overcomes the limitation of word-level synonymy and polysemy by 

considering word synonyms and concepts. In expert-driven technique, it was suggested 

to experts during the creation of expert-driven features to select the features that were the 

most discriminative to a particular CoD. In addition, experts were also suggested to come 

up with a possible set of synonyms of selected features. Hence, the resultant expert-based 

feature space comprised of rich set of discriminative features for each CoD under 

consideration. Therefore, potential researchers should not only rely on results produced 

by automated feature engineering techniques but should also explore more features with 

the help of domain experts.  

The possible reason behind the unsatisfactory performance of the BoW technique 

is that it disregards word semantics (Lewis, 1992; Nigam, McCallum, Thrun, & Mitchell, 

2000; Sebastiani, 2002). The hybrid of BoW + Word2Vec technique produced the lowest 

results possibly because this technique uses the voting approach between the BoW and 

Word2vec techniques. Therefore, BoW results may affect the classification result of the 

Word2Vec technique. The EO-BoW technique performed better than the BoW and the 

hybrid Bow + Word2Vec techniques because it calculates the uncertainty of any given 

features with clinical reports categories. The EO-BoW technique associates features with 

the clinical report category that obtains the lowest entropy value for that feature. The PV 

technique performed better than the BoW, hybrid BoW + Word2Vec, and EO-BoW 

techniques because it learns vector representation for variable length paragraphs of text. 

Vector representation is learnt to predict the surrounding words in context samples from 

a paragraph. Hence, this technique captures more semantics from a paragraph than 

Word2Vec, Bow, or EO-BoW.  
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The proposed expert-driven feature engineering technique was much faster than 

all existing baseline approaches. Such result was caused by techniques, such as EOBOW, 

PV, Word2Vec, in automated feature engineering which consider the whole dataset in 

determining the most discriminative features by applying various computational methods. 

However, in expert-driven feature engineering technique, the features were already 

engineered by experts, hence, this approach only calculated the expert-driven feature 

weighted from forensic autopsy reports and prepared the classification data using 

frequency count. Furthermore, the classification file or numeric MFV prepared by expert-

driven feature engineering technique was much smaller in size compared with that of 

baseline techniques. The classification file prepared by expert-driven technique only 

contained the number of attributes equivalent to the number of classes. Conversely, the 

other four baseline techniques counted each token as one feature after tokenization, and 

the number of attributes was equal to the number of unique tokens. Therefore, the baseline 

techniques required longer classification time. Finally, the proposed expert-driven feature 

engineering technique can be used in classifying any kind of clinical reports. The only 

thing required by this technique is the features from an expert. 

 

4.5.2 Theoretical Analysis of Feature Selection Schemes 

The accuracy of classification task usually depends upon the quality of features set. 

The inadequate, extraneous, and irrelevant features may generate less accurate and 

incomprehensible results. Therefore, it is an important task to remove irrelevant and non-

discriminative feature subset from master feature set by using feature subset selectors 

algorithms prior to classification (Hall & Smith, 1998). The purpose of feature subset 

selection is to decide which number of features to include in classification and which to 

remove. For this research, it was hypothesized that various subsets of features would 

produce different performance results in terms of PrecisionM, RecallM, F-measureM, and 
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overall accuracy. To evaluate this proposition, it was aimed to determine the best feature 

subset size for the classification of forensic autopsy reports from all 16 expert-driven 

lexicons to improve the classification performance using aforementioned three feature 

selection schemes. To discover the best feature subset size, initially, the subset of 10 

features were selected using all aforementioned three feature selection schemes to 

evaluate the performance of all six classifiers. The number of features were increased up 

to the point where no further improvement in performance was found to determine the 

optimal learning curve. In addition, the performance of six machine learning algorithms 

using ‘all’ features were also evaluated. In most of the experiments, it was noticed that 

increasing the size of feature subset from 10 to 40 led to considerable improvements in 

experimental results. Conversely, increasing the size of feature subset from 40 to 100 and 

“all” did not cause considerable improvements in the results. As a result, it can be inferred 

that a feature subset of larger size may not positively affect the results and may cause 

over-fitting during the classification. Therefore, selecting appropriate and relevant 

features can reduce over-fitting by the machine learning algorithms in the training dataset 

(Sebastiani, 2002).Thus, to determine an optimum size of features in feature vector, 

researchers are suggested to perform sensitivity analysis to examine a range of feature 

sizes from point 10 to a point where no improvement in accuracy is observed to obtain 

the optimal learning curve. 

In feature selection schemes, chi-square performed better than information gain 

and Pearson correlation, most likely because it measures divergence from the expected 

distribution, assuming that feature occurrence is independent of class value (Forman, 

2003). Moreover, in this study, the classification task was a multi-class classification task, 

and chi-square generalizes the multi-class classification task well (Nicolosi, 2008). In 

addition, chi-square is easier to compute than information gain and Pearson correlation 

and works better with categorical values (Forman, 2003; Dasgupta, Drineas, Harb, 
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Josifovski, & Mahoney, 2007). The Pearson correlation performed worse than chi-square 

because it is suitable for dichotomous or contend data (Sebastiani, 2002; Nicolosi, 2008). 

Moreover, Pearson correlation showed the lowest results with minimal numbers of feature 

subsets, such as 5, 10, and 20. This poor performance maybe because Pearson correlation 

selects the features that are most indicative of membership only, whereas chi-square and 

information gain feature selection consider the features most indicative of membership 

and non-membership that maybe valuable for classification outcomes (Yang & Pedersen, 

1997; Forman, 2003). Nonetheless, chi-square and information gain performed well 

because of independent feature scoring. However, independent feature scoring renders 

chi-square and information gain susceptible to distraction by strongly discriminating 

features for easier classes; therefore, the two techniques cannot select valuable features 

for difficult classes (Dasgupta et al., 2007; Nicolosi, 2008). 

 

4.5.3 Theoretical Analysis of Machine Learning Algorithms 

According to the “no free lunch” theorem (Wolpert & Macready, 1995), there is no 

single machine learning algorithm that performs best in all application areas. Hence, a 

variety of machine learning algorithms should be tested. Therefore, the performance of 

six different machine learning algorithms (NB, SVM, kNN, C5, RF, and voted) was 

evaluated to classify free-text forensic autopsy reports.  

Among these six machine learning algorithms, the SVM classifier showed the best 

performance because the task of predicting CoD is not linearly divisible and SVM utilizes 

threshold functions to split classes with margins. Furthermore, SVM is not vulnerable to 

over-fitting because of its independence among features; hence, SVM classifier does not 

suffer from the higher number of features (Joachims, 1998a). The results obtained by RF 

were hair less than the results of SVM. This is because; RF performance can be 

compromised when the dataset contains enormous features and very few numbers of 
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informative features. Hence, the resultant trees in a forest populated by less powerful 

features that eventually produce the incorrect predictions (Xu et al., 2012). The results 

obtained with ensemble-voted algorithm are slightly lower than those of SVM and RF, 

but are slightly higher than those of NB, C5, and kNN, because ensemble-voted classifier 

combines several machine learning algorithms and selects the classification results based 

on majority voting (Kodovsky, Fridrich, & Holub, 2012). Therefore, in our experiments, 

this classifier includes the strengths and weakness of the other five classifiers i.e., NB, 

SVM, kNN, C5, and RF.  

The lowest performance was observed among the NB, kNN, and C5 algorithms. This 

maybe because, NB classifier supposes conditional independence among features 

probably invalid for the current dataset (Lewis, 1998b). This conditional dependence in 

features becomes more complicated as the number of features increases, thus negatively 

affecting the NB performance. kNN had the worst performance because it is a lazy learner 

algorithm that does not learn from a training set and instead utilizes the training set itself 

for classification. Therefore, the kNN does not generalize the classification problem 

effectively and is not robust for noisy data (Liu, Moore, Yang, & Gray, 2004). Moreover, 

to predict CoD for new forensic autopsy cases, kNN will locate the k-nearest neighbors 

to the new instance from the training set, and the predicted class label will be assigned as 

the most common label in the k-nearest neighbors (Liu et al., 2004). C5 decision tree 

exhibited the lowest performance in predicting CoD from forensic autopsy reports 

because all attributes in the MFV represented continuous data that hinders finding the 

optimal thresholds needed to construct the C5 decision tree (Dreiseitl et al., 2001). Hence, 

C5 maybe unsuitable for classifying forensic autopsy reports. 

An error analysis was performed for misclassified cases. About 39% of the 

misclassified cases were due to the general problem with report ambiguity. About 36% 
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of the misclassified cases were due to the Spelling variations. For instance, in many 

forensic autopsy reports the word ‘Leptomeninges’ was also written as ‘Leptomeniges’, 

and ‘Laptomeneges’. About 7% of the misclassified cases were due to the the present of 

negation besides the available features. In addition, certain features of injury findings 

(such as degree of displacement of a skull fracture) were not explicitly reported in few of 

the reports related to Craniocerebral injury and multiple injury classes, and therefore 

difficult to detect by developed classification model. This issue caused around 11% of 

misclassification error. About 7% of the misclassified cases were due to the report 

conversion error. As discussed in Section 3.3, the forensic autopsy reports were available 

in hardcopy format. Thus, these reports were typed by students to convert hardcopy 

reports into softcopy format. During the conversion, few issues (such as missing of 

sentences and discriminative words that were originally available in the report) were 

observed in some sections of the autopsy reports.  

4.6 Strengths and Limitations of Expert-driven Technique 

There are several strengths and weaknesses of proposed expert-driven feature 

engineering technique. This section briefly describes its strengths and weaknesses. 

The main strength of proposed expert-driven technique is that it obtained the highest 

accuracy when compared to existing baseline techniques. This is because, human experts 

(pathologists) were responsible for extracting and ranking useful features that belonging 

to specific CoD forensic autopsy reports.  Moreover, in SML-based ATC techniques, one 

of the crucial performance measures is the computational time taken by machine learning 

algorithm in building the classification model.  

Figure 4.14 shows the average computational time for all six machine learning 

algorithms in all seven feature subset sizes (i.e. 10, 20, 30, 40, 50, 100, and ‘all’ selected 

using Chi-Square) by using proposed expert-driven technique and four baseline 
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techniques. All 126 analyses were run on Corei7 system having 2.80 GHZ clock speed 

and a 16-gigabyte memory. As shown here, the classification time of proposed expert-

driven technique is much faster than the baseline techniques. Moreover, in baseline 

techniques, BoW and EO-BoW proved to be faster than PV and BoW+Word2Vec 

technique. In classifiers, kNN and NB required the least time to construct the decision 

model. Nevertheless, in the majority of the experiments, SVM and RF showed the highest 

accuracy, PrecisionM, RecallM, and F-measureM, however, they both took the longest 

computational time to build a classification model. 

 
 

Figure 4.14: Comparison of classification time 

 
Though the semi-automated expert-driven feature engineering technique 

outperformed the existing baseline techniques, however, some of the limitations were also 

identified in the proposed expert-driven technique. First, results of the proposed expert-

driven technique depend heavily on the domain knowledge of the experts and their 

familiarity with forensic autopsy findings. It is believed that in the current study, the 

engagement of pathologists yielded experimental results that can be reflected across other 

medical systems. Second, the presented findings are exclusive to the free-text forensic 

autopsy reports obtained from PPUM, one of the largest hospital in Kuala Lumpur, 
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Malaysia. It is also believed that the quality of the extracted reports is sufficiently 

heterogeneous, diverse, and comprehensive compared with the data gathered by other 

medical systems and therefore should produce acceptable results across other healthcare 

systems. Third, in the expert-driven technique, human experts (pathologists) are 

responsible for extracting and ranking useful features that belong to specific CoD autopsy 

reports. Hence, such feature engineering requires ample amount of time for extracting 

discriminative features for each CoD and rank them. Finally, the developed model can 

only detect sixteen CoDs. There are thousands of CoDs in each MoD (DiMaio & DiMaio, 

2001). Hence, it is very difficult for pathologists to dig out useful features from each type 

of CoD. Moreover, these CoDs are increasing in number from time to time. For instance, 

in ICD-9, there were 14025 codes were available, however, in ICD-10, total codes 

available are approximately 68823 (CDC, 2015). Hence, it is infeasible for experts to 

manually dig out the features for each and every CoD and rank accordingly. Therefore, 

effective fully-automated feature engineering techniques can be useful and yet to be 

developed to achieve the strengths of proposed expert-driven technique and overcome its 

aforementioned limitations. Thus, in next chapter (Chapter 5), a fully-automated 

conceptual graph-based feature engineering technique is proposed, developed and 

evaluated. This proposed technique has the strengths of semi-automated expert-driven 

technique and also overcomes the limitations of expert-driven technique. The detail of 

conceptual graph-based feature engineering technique is presented in chapter 5. 

 

4.7 Conclusion 

In this chapter, semi-automated expert-driven feature engineering technique was 

presented to predict the CoD from free text forensic autopsy reports. Moreover, the state-

of-the-art SML-based ATC techniques with feature selection schemes were used to 

classify the CoD from free-text forensic autopsy reports. It was discovered that the 
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proposed semi-automated expert-driven feature engineering technique outperformed in 

terms of performance measures exceeding 90% when compared with baseline feature 

engineering techniques. Moreover, SVM and RF machine learning algorithms were found 

to be suitable for the classification of forensic autopsy reports with a feature subset size 

of 30 and 40. Based on the results, the proposed system proved to be more robust and 

more accurate when it was compared with four baselines. Furthermore, the promising 

results indicate that the pathologists can use the proposed system as a source of second 

opinion, assisting them in more accurately and rapidly determining the CoD. Nonetheless, 

the proposed semi-automated expert-driven technique showed better performance, 

several weaknesses of proposed technique are also identified (discussed in Section 4.6). 

Hence, to overcome such weaknesses, a fully-automated conceptual graph-based feature 

engineering technique is proposed and presented in Chapter 5. 
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CHAPTER 5: PROPOSED FULLY-AUTOMATED CONCEPTUAL GRAPH-

BASED FEATURE ENGINEERING TECHNIQUE 

 

5.1 Introduction 

To overcome the limitations of semi-automated expert-driven feature engineering 

technique (discussed in Chapter 4, Section 4.6), this chapter presents an effective fully-

automated conceptual graph-based feature engineering technique (CGFE) for 

determining MoD and CoD from forensic autopsy reports. This technique exploits the 

graphs to overcome the issues (such as word-order, word-context, and word-level 

synonymy and polysemy) of existing feature engineering technique such as BoW, n-

gram, etc. (discussed in Section 2.8.1). Moreover, this proposed technique does not 

require any type of expert intervention to extract and rank the features of forensic autopsy 

reports. Conversely, it employs the use of medical ontologies to overcome the issue of 

word-level synonymy and polysemy. 

The graph-based technique has been recently adopted in several machine learning sub-

domains, including information retrieval (Giannakopoulos, Karkaletsis, Vouros, & 

Stamatopoulos, 2008), text summarization (Bronselaer & Pasi, 2013), and text 

classification (Bleik, Mishra, Huan, & Song, 2013; Papadakis et al., 2016). The 

motivation in using the graph-based technique is to consider word order in the input text 

for classifying autopsy reports. In graph-based text classification technique, graph is the 

combination of V, E, and W, where V represents graph vertices with each vertex 

containing a distinct term in the input text, E represents graph edges that connect co-

occurring terms, and W is the function that computes the edge weight by considering the 

co-occurrence frequency of adjacent vertices in the graph.  
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Bleik et al. (2013) employed the graph-based text classification technique to classify 

biomedical text documents using controlled vocabulary. Though, the authors 

experimental results showed the promising results. However, their proposed technique 

has two major weaknesses. First, it suffers from high computational cost to classify the 

new biomedical document. This is because, their proposed approach compares the input 

graph with all documents graphs to discover the most similar graph for classification. 

Finally, it computes only the graph similarity based on relationship between the nodes. 

However, other important parameters for comparison maybe useful for classification such 

as, exact and fuzzy match, etc. The weighted frequent subgraphs were also employed in 

(Jiang, Coenen, Sanderson, & Zito, 2010) to extract useful features for classification and 

to reduce computational cost. Aery and Chakravarthy (2005)employed exact and 

approximate graph matching to improve classification results. Gee and Cook (2005) used 

the linguistic features of phrases in the text to encode text as graph and discover 

substructure and patterns for classification. Authors experimental results showed better 

results. However, their work was applicable for very small texts containing 8 to 13 terms. 

Papadakis et al. (2016) proposed the graph-based text classification technique to classify 

the web documents. Though, the technique used by Papadakis et al. (2016) was 

computationally effective however, their proposed technique has two major weaknesses. 

First, their proposed technique only used edge matching metric for document matching 

and classification. However, this single metric may prove insufficient for accurately 

classifying the forensic autopsy reports. Second, it fails to capture word-level synonymy 

and polysemy. For example, pathologists use the terms heart attack and myocardial 

infarction interchangeably in the collected forensic autopsy reports. Thus, in such cases, 

their proposed technique may not identify these two phrases as similar. Therefore, 

influenced by the work done by (Papadakis et al., 2016) and to overcome the limitations 
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of the aforementioned graph-based techniques, this study develops a CGFE technique for 

classifying forensic autopsy reports.  

There are three main strengths of proposed CGFE technique compare to other graph-

based techniques for classifying text documents. First, the proposed CGFE technique can 

address the issues of order and context of words in the text, as well as of word-level 

synonymy and polysemy, when classifying forensic autopsy reports. Second, it considers 

the similarity and uniqueness metrics to compute the similarity between nodes, edges, 

and edge weights. This is because, in forensic autopsy reports, there is a very little 

difference among various CoDs. For instance, S06, S38, T07, and X80 are very close to 

each other and these CoDs usually share many relevant terms and concepts. Therefore, in 

such cases, uniqueness features may prove useful to differentiate between related CoDs. 

For instance, ‘laceration wound’, ‘abrasion wound’, ‘Grazed abrasion’ are common in 

S06, S38, T07, and X80. However, ‘abrasion forehead’, ‘wound scalp’, ‘right scalp’ are 

less frequent in S38, X80 and more frequent in S06, and T07. Therefore, the proposed 

similarity and uniqueness features may provide useful results.  Finally, the proposed 

CGFE technique is computationally effective compared to other graph-based text 

classification techniques in the literature. This is because, for classification of new 

forensic autopsy reports, the proposed CGFE technique does not compare it with all n 

report level graphs where n represents the number of forensic autopsy reports in the 

dataset. Conversely, it only compares with m conceptual aggregated CoD level graphs 

where m represents the number of classes in the dataset (the detailed functionality of 

proposed CGFE technique is discussed in Section 5.2). 

The major contributions of this portion of study are listed below. 

1. An effective fully-automated conceptual graph-based feature engineering (CGFE) 

technique is developed to classify forensic autopsy reports from four manners of death 
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(MoD) and sixteen causes of death (CoD). Content-based and Systematized 

Nomenclature of Medicine–Clinical Terms (SNOMED-CT) based conceptual 

features were mined and represented through graphs. These features were then used 

to train a two-level text classification model. The first level was responsible for 

predicting MoD and the second level was responsible for predicting CoD using the 

proposed CGFE technique. The proposed CGFE technique converts all forensic 

autopsy reports (belonging to a particular CoD) into individual report graphs, where 

each vertex V represents a unique term, each edge E connects co-occurring terms in 

the input text, and the weight of an edge W is the frequency of the co-occurrence of 

terms. Afterwards, these report graphs (belonging to a particular CoD) are combined 

to form an aggregated CoD-level graph. Afterwards, SNOMED-CT ontology is used 

to extract the semantic concepts of input nodes of CoD-level aggregated graph. The 

multi-information obtained from SNOMED-CT ontology can be fully utilized by 

organizing unique co-occurring terms, along with their SNOMED-CT concepts and 

descriptors, in the CoD-level aggregated graph. Thus, an aggregated CoD-level graph 

is converted into conceptual CoD-level aggregated graph. 

2. To create a numeric master feature vector (MFV), and to construct a classification 

model, each report is compared with each conceptual CoD-level aggregated graph to 

compute six metrics namely, vertex similarity metric (VSM), vertex uniqueness 

metric (VUM), edge similarity metric (ESM), edge uniqueness metric (EUM), similar 

edge weight metric (SEWM), and unique edge weight metric (UEWM). 

3. Extensive experiments of the proposed CGFE technique along with supervised 

machine learning algorithms are performed to achieve high-performance 

classification of 16 CoDs from free-text forensic autopsy reports. Six supervised 

machine learning algorithms, namely, naïve Bayes (NB), support vector machine 

(SVM), k-nearest neighbor (kNN), decision tree (C5.0), random forest (RF), and 
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ensemble voted classifier (ensemble of NB, SVM, kNN, C5.0, and RF), are compared 

using the proposed CGFE technique to evaluate their performances using four 

performance measures. These performance measures are macro recall (RecallM), 

macro precision (PrecisionM), macro F-measure (F-measureM), and overall accuracy. 

4. To demonstrate the significance of  proposed CGFE technique, its performance is 

compared with six existing state-of-the-art baseline feature engineering techniques, 

namely, the traditional BoW technique (Harris, 1954), the entropy-optimized feature-

based BoW (EO-BoW) technique (Passalis & Tefas, 2016), the paragraph vector (PV) 

technique (Le & Mikolov, 2014), the hybrid BoW and Word2Vec (BoW + 

Word2Vec) technique (Enríquez et al., 2016), the term-based graph (TG) technique 

(Papadakis et al., 2016), and the semi-automated expert-driven (ED) technique 

(discussed in Chapter 4). The experimental results show that the proposed CGFE 

technique outperforms other fully automated baseline feature engineering techniques. 

The rest of this chapter is structured as follows. Section 5.2 discusses the technical 

details of proposed CGFE technique. In addition, Section 5.3 presents the underlying 

methodology for designing fully-automated CGFE technique including, experimental 

setup and implementation details behind the philosophy of proposed CGFE technique. 

Section 5.4 reports the experimental results. The discussion on findings is presented in 

Section 5.5. Finally, this chapter is concluded in Section 5.6. 

5.2 Fully-Automated Conceptual Graph-based Feature Engineering 

Technique 

This section discusses the proposed CGFE technique in detail. In this technique, 

graph-based approach is exploited to represent the natural text of autopsy reports. Graph 

representation is exploited because it provides flexibility and robustness on representing 

the natural language text compared to traditional n-gram, and BoW. Moreover, it can also 
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prove suitable to overcome the limitations (such as, word co-occurrence, word ordering, 

and word inversion) of traditional feature engineering techniques such as, BoW, n-gram. 

Furthermore, SNOMED-CT is also used with graph representation to extract concept-

based features from extracted graph of word (GoW) features to address the issue of word-

level synonymy and polysemy.  

 

Figure 5.1: Flowchart of the functionality of the proposed CGFE technique 

The proposed technique can be constructed by applying five steps: creation of report 

graphs, creation of aggregated CoD graphs, addition of SNOMED-CT concepts and 

descriptors to the aggregated CoD graphs, computation of graph similarity and graph 

uniqueness metrics, and creation of an MFV for classification. These steps are discussed 
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in detail in subsequent sections. In addition, Figure 5.1 shows the functionality flowchart 

of the proposed CGFE technique and Table 5.1 shows the detailed CGFE technique 

algorithm. As can be seen here, initially, the preprocessing steps such as lc , sw , and 

sc will be applied to forensic autopsy reports belong to a particular CoD. Afterwards, 

each pre-processed report will be converted into ug , bg , and tg . After that, all the report 

level ug , bg , and tg will aggregated together to form  cG _ . After producing cG _ , the 

_SNOMED CT  will be applied to form SG  . Once, all SG   for all CoDs are produced then master 

feature vector is prepared. For that, each report n  will be taken and that n  will be converted 

to rG _ . Afterwards, _SNOMED CT  will be applied to convert rG _  into conceptual report 

level graph. Finally, for this conceptual report level graph six metrics from each SG   will 

be computed using VEW  to generate the master feature vector and this vector is fed to 

machine learning algorithm to generate classification model. This algorithm is further 

explained in detail in subsequent sub sections. 

Table 5.1: Proposed CGFE algorithm 

 m  : Number of distinct causes of death (CoD) 

Sy
m

bo
ls

 D
ef

in
iti

on
 

 n  : Number of forensic reports in each CoD 
 tc  : Temporary variable holding cause of death record 
 tr  : Temporary variable holding forensic autopsy report data 
 ug  : Unigram graph 
 bg        :          Bigram graph 
 tg  : Trigram graph 
 rG _  : Report level graph 
 cG _  : Aggregated class level graph 
 SG        :          SNOMED-CT Aggregated class level graph 
 

lc        : Lower Case Function 
 

sc        : Spell Checker Function 
 

sw       : Stop Words Function 
 

ug       : Unigram Graph Function 
 

bg       : Bigram Graph Function 
 

tg        : Trigram Graph Function 
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VEW     :           Vertex (V), Edge (E) and Weight of an edge (W) Generator 

Function 
 

_SNOMED CT :     SNOMED-CT Function 
  
1: FOR 1=i  to m  

 

2:  LOAD  ][     iCODtc   
3:  FOR 1=j  to n  
3:   ][      jtctr   
4:  )  (     _ trlctr lc  
5:  ) _ (    _ lctrsctr sc  
6:  ) _ (     _ sctrswtr sw  
7:  ) _ (     swtrT ugug   
8:  ) _ (     swtrT bgbg   
  ) _ (     swtrT tgtg   
9:  )  (    )( _ ugVEWjug TV, E, WrG   
10
: 

 )  (    )( _ bgVEWjbg TV, E, WrG   

11
: 

 )  (    )( _ tgVEWjtg TV, E, WrG   

12
: 

  )( _)( _   )( _ V, E, WrGV, E, WcGV, E, WcG jugiugiug   

13
: 

  )( _)( _   )( _ V, E, WrGV, E, WcGV, E, WcG jbgibgibg   

14
: 

  )( _)( _   )( _ V, E, WrGV, E, WcGV, E, WcG jtgitgitg   

15
: 

 END FOR 

16
: 

END FOR 

17
: 

FOR 1=i  to m  

18
: 

 
__  ( )   ( _  ( )) S

ug i SNOMED CT ug iG c V, E, W G c V, E, W   

19
: 

 
__  ( )   ( _  ( )) S

bg i SNOMED CT bg iG c V, E, W G c V, E, W   

20
: 

 
__  ( )   ( _  ( )) S

tg i SNOMED CT tg iG c V, E, W G c V, E, W   

21
: 

END FOR 

22
: 

LOAD MFV  

23
: 

FOR 1=i  to n  

24
: 

  )( __ V, E, WrGrV iug
Separate

ug ⎯⎯⎯ ⎯  

25
: 

  )( __ V, E, WrGrE iug
Separate

ug ⎯⎯⎯ ⎯  

Table 5.1: continued 
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26
: 

  

27
: 

 FOR 1=j  to m  

28
: 

   )( __ V, E, WcGcV j
S
ug

Separate
ug ⎯⎯⎯ ⎯  

29
: 

   )( __ V, E, WcGcE j
S
ug

Separate
ug ⎯⎯⎯ ⎯  

30
: 

   )( __ V, E, WcGcW j
S
ug

Separate
ug ⎯⎯⎯ ⎯  

31
: 

  
( _ , _ )

_ _

_ug ug

ug ug
G r G c

ug

V r V c
VSM

V r
=  

32
: 

  ( )
( _ , _ )

_ _ _

_ug ug

ug ug ug

G r G c
ug

V r V r V c
VUM

V r

 −
 =  

33
: 

  
( _ , _ )

_ _

_ug ug

ug ug
G r G c

ug

E r E c
ESM

E r
=  

34
: 

  ( )
( _ , _ )

_ _ _

_ug ug

ug ug ug

G r G c
ug

E r E r E c
EUM

E r

 −
 =  

35
: 

  ( ) ( )( )
( ) ( )( )_

( _ , _ )

min _ , _

max _ , _

_

ug

ug ug

ug ug

e E r
ug ug

G r G c
ug

W E r W E c

W E r W E c
SEWM

E r



 
 
 
 =


 

36
: 

  ( ) ( )( )
( ) ( )( )_

( _ , _ )

min _ , _

max _ , _
1

_

ug

ug ug

ug ug

e E r
ug ug

G r G c
ug

W E r W E c

W E r W E c
UEWM

E r



  
  
  

  = −
 
 
 
 



 

37
: 

  ) (    MSEWM, UEWFESM, EUM, VSM, VUM, strcattf append
Data ⎯⎯ ⎯  

38
: 

  END FOR 

39
: 

 )\n"" ), ][  (  ,CoD" ," (    iatoistrcattf append
Data ⎯⎯ ⎯  

40
: 

 WRITE Data
append tfMFV     ⎯⎯ ⎯  

41
: 

 DELETE Datatf  

42
: 

END FOR 

43
: 

CLOSE MFV  

 
 

Table 5.1: continued 
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5.2.1 Creation of Simple Graphs 

To explain this section, assume that we have a dataset for forensic autopsy reports 

( )R  that belong to m  distinct CoDs, namely, (CoD1, CoD2, …, CoDm). Each CoD 

contains n  number of forensic autopsy reports (r1, r2, r3, r4, …, rn). In the proposed CGFE 

technique, several pre-processing steps (discussed in Chapter 3, Section 3.4) were first 

applied to each individual report. After the report pre-processing step, each autopsy report 

ir  that belonged to a particular CoD, e.g., iCoD , was converted into unigram, bigram, 

and trigram unidirectional report graphs. In the unigram, bigram, and trigram report 

graphs, each vertex comprised one, two, and three terms, respectively. These graphs were 

purposely designed to evaluate their performances and determine which one could 

provide the best results. For instance, Figure 5.2 (a) and Figure 5.2 (b) show two report 

level graphs of two forensic autopsy reports belonging to same CoD.  In these report 

graphs, each vertex V  represents a unique term features (such as, 1 2 3, , ,... nw w w w ), each 

edge  E  connects the co-occurring terms in the report, and the weight of an edge W  

shows the co-occurrence frequency of terms in the report (such as, 1 2 2, , ,...r r r rnf f f f ). 

Figure 5.3 (a) and Figure 5.3 (b) show the samples of constructed unigram, and bigram 

report graphs from real dataset. As shown in here, the two vertices are connected by 

hyphen (‘- ‘) sign and underscore sign (‘_’) separates the second vertex and weight of two 

vertices. For instance, as shown in Figure 5.3 (a) the vertex ‘grazed’ is connected with 

the vertex ‘abrasion’ approximately 19 times. 

 

Figure 5.2: Report level graphs 
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Figure 5.3: Sample of partial unigram and bigram report graphs from real 
dataset 

 
5.2.2 Creation of Class-Level Aggregated Graphs 

After all the reports  of a particular  were converted into unigram, bigram, 

and trigram report graphs, all the unigram graphs were combined to form an aggregated 

 unigram graph. Similarly, all the bigram and trigram report graphs were combined 

to form aggregated  bigram and trigram graphs, respectively. The graph aggregation 

process is described as follows. Given a set of autopsy reports  that belong to , the 

 report  is transformed into a report graph . Therefore, for 

all  reports, we have  report graphs

. An initially empty 

aggregated CoD-level graph  was built, and then all previously constructed report 

graphs  were merged into a single aggregated  graph, i.e.,

, where , , and 

( ) ( ) ( ( ) ( )) 1/
i i i iCoD CoD r CoDW e W e W e W e i= + −  . However, if the co-occurring nodes of 

report level graph do not match with CoD level aggregated graph, then new vertices are 

added in CoD level aggregated graph and their edge weight will be computed using 

nr iCoD

iCoD

iCoD

nr iCoD

thi i ir CoD ( ), ,
i i ii r r rGr V E W=

nr n

( ) ( ) ( )1 1 1 2 2 21 2, , , , , ,.... , ,
n n nr r r r r r n r r rGr V E W Gr V E W Gr V E W= = =

iCoDG

nr
G

iCoDG

( ), ,
i i i iCoD CoD CoD CoDG V E W=

i i iCoD CoD rV V V=
i i iCoD CoD rE E E=
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aforementioned formula. In addition, the weight of edges of CoD level aggregated graph 

incrementally converge to their overall average due to the division with i in the formula. 

In this fashion, CoD level graphs encapsulate features common in the content of specific 

CoD. The Figure 5.4 shows the example of aggregated CoD level graph that is constructed 

by combining report graph 1, and report graph 2 (as shown in Figure 5.2 (a), and Figure 

5.2 (b)). Hence, the aggregated CoD graph contains features that will be common in an 

entire category of autopsy reports that belong to that particular CoD. Moreover, three 

aggregated CoD graphs were prepared for each CoD, namely, unigram, bigram, and 

trigram aggregated CoD graphs. Hence, if there are  CoDs, then the aggregated CoD 

graphs will be . 

 

Figure 5.4: Aggregated CoD level graph 

 
5.2.3 Addition of SNOMED-CT Concepts 

Once the aggregated CoD graphs were constructed, SNOMED-CT (Donnelly, 2006) 

concepts and descriptors of each vertex were mapped from SNOMED-CT ontology. 

SNOMED-CT is a standardized and multilingual vocabulary of clinical Ontology used 

by physicians and other healthcare providers for the electronic exchange of clinical health 

information (Donnelly, 2006). The high-level structure of SNOMED-CT ontology is 

illustrated in Figure 5.5. Each medical term has various similar concepts, and each 

concept has a unique concept id and concept description. In addition, each concept has 

three types of descriptors, namely, fully specified name (FSN), preferred name (PN), and 

n

3n
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synonyms. Each concept also has parent concepts, child concepts, and relationship to 

other related concepts. For example, the term heart attack has six related medical 

concepts in SNOMED CT ontology. Among these concepts, the top related concept is 

myocardial infarction, which has a unique concept id of 22298006. The FSN of this 

concept is myocardial infarction (disorder); the PN is myocardial infarction; the 

synonyms are cardiac infarction, infarction of the heart, and MI-myocardial infarction; 

and the parent concept is stroke risk (135877001). 

There were several reasons for employing SNOMED CT ontology in the proposed 

work. First, the SNOMED CT covers the long range of clinical terms (Cornet & de 

Keizer, 2008; Lee, Cornet, Lau, & De Keizer, 2013). Second, it is an international 

standard, and for this reason it is good for semantic interoperability (Saripalle, 2010). 

Third, SNOMED CT has the ability to rationally associate terms from several concepts 

to describe the clinical findings (Stearns et al., 2001). Fourth, it is organized into series 

of hierarchies of medical terms including clinical findings, events, and procedures to 

obtain related atomic-level terms (Lee et al., 2013). Finally, in several studies, authors 

have shown the effectiveness of using SNOMED CT ontology to dig out related medical 

terms and concepts (Chin & Kim, 2003; Halland & Britz, 2011; Zuccon et al., 2013; 

Kasthurirathne et al., 2017). 

 

Figure 5.5: SNOMED CT ontology 
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The complete MySQL scripts of SNOMED-CT ontology was downloaded from 

(NLM, 2017) and configured on a local computer. Afterward, a Java program was written 

to extract the SNOMED-CT concepts from SNOMED CT ontology by matching the 

nodes of aggregated CoD-level graph. All the extracted concept ids of the input vertices 

were added to the aggregated conceptual CoD-level graph as new vertices, where their 

edges, weight, and co-occurring vertices will be the same as those of the original vertex. 

Hence, the updated aggregated graph contains semantically rich information after adding 

related concepts. Accordingly, the aggregated graph can now resolve the issue of word-

level synonymy and polysemy. However, if no concept id is matched then the node of 

aggregated conceptual level CoD graph contains the same term which was in the 

aggregated CoD level graph. Figure 5.6 shows the aggregated conceptual CoD level graph 

that is constructed from aggregated CoD level graph (as shown in Figure 5.4). Here,
11w

s

represents the conceptual node of 1w  containing the concept identifier of 1w . Figure 5.7 

shows the sample of aggregated conceptual CoD-level graph. Here, it can be seen that the 

concept ids of vertices are added in the aggregated CoD-level graph to transform it into 

aggregated conceptual CoD-level graph. For instance, ‘81654009’ concept id was added 

for the vertex ‘frontal’. 

 

Figure 5.6: Aggregated conceptual CoD level graph 
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Figure 5.7: Sample of conceptual aggregated graph 

5.2.4 Graph Similarity and Uniqueness Metrics 

The following similarity metrics were used to determine the similarity between the 

report-level graph and the class-level aggregated graph. 

Vertex similarity metric (VSM): This metric indicates the proportion of nodes shared 

between the report graph  and the CoD graph . The mathematical definition 

of VSM is given in Equation 1: 

.      (1) 

Vertex uniqueness metric (VUM): This metric indicates the proportion of the vertices 

of the report graph  that do not match the vertices of the CoD graph . The 

mathematical definition of VUM is given in Equation 2: 

.      (2) 

( )ir
G ( )iCoDG

( , ) i i

i i

i

r C
r C

r

V V
VSM G G

V
=

( )ir
G ( )iCoDG

( )
( , ) i i i

i i

i

r r C

r C
r

V V V
VUM G G

V

 −
 =
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Edge similarity metric (ESM): This metric shows the proportion of edges shared 

between the report graph  and the CoD graph . The mathematical definition 

of ESM is given in Equation 3: 

.       (3) 

Edge uniqueness metric (EUM): This metric indicates the proportion of edges of the 

report graph  that do not match the edges of the CoD graph . The 

mathematical definition of EUM is given in Equation 4: 

.      (4) 

 

Similar edge weight metric (SEWM): This metric computes the proportion of the 

overall weight of the report graph  edges that match the edges of the CoD graph

. The mathematical definition of SEWM is given in Equation 5: 

( ) ( )( )
( ) ( )( )

min , , ,

max , , ,
( , )

i j

ri

i j

i j

i

r CoD

e E
r CoD

r CoD
r

W e G W e G

W e G W e G
SEWM G G

E



 
 
 
 
 =



   (5)  

Unique edge weight metric (UEWM): This metric computes the proportion of the 

overall weight of the report graph edges that do not match the edges of the CoD 

graph . The mathematical definition of UEWM is given in Equation 6: 

( ) ( )( )
( ) ( )( )

min , , ,

max , , ,
( , ) 1

i j

ri

i j

i j

i

r CoD

e E
r CoD

r CoD
r

W e G W e G

W e G W e G
UEWM G G

E



  
  
  

   = −  
 
 
 
 



   (6) 

( )ir
G ( )iCoDG

( , ) i i

i i

i

r C
r C

r

E E
ESM G G

E
=

( )ir
G ( )iCoDG

( )
( , ) i i i

i i

i

r r C

r C
r

E E E
EUM G G

E

 −
 =

( )ir
G

( )iCoDG

( )ir
G
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The similarity and uniqueness metrics are used because in the forensic dataset there is 

a very little difference among various CoDs. For instance, S06, S38, T07, and X80 are 

very close to each other and these CoDs usually share many relevant features in collected 

dataset. Thus, in such cases, uniqueness features may prove useful to differentiate 

between related CoDs. For instance, ‘laceration wound’, ‘abrasion wound’, ‘Grazed 

abrasion’ are common in S06, S38, T07, and X80. However, ‘abrasion forehead’, 

‘wound scalp’, ‘right scalp’ are less frequent in S38, X80 and more frequent in S06, and 

T07. Therefore, the proposed similarity and uniqueness features may provide useful 

results. In another example, I23, I24, and I25 CoDs are very close to each other and these 

CoDs usually share many relevant features in collected dataset. Thus, in such cases, 

uniqueness features may prove useful to differentiate between related CoDs. For instance, 

‘pericardium’, ‘epicardium’, ‘myocardium’, ‘endocardium’, are very are common in I23, 

I24, and I25 CoDs. However, co-occurrence of ‘myocardium’ and ‘fibrosis’, is more 

common in I24, and I25 and less common in I23. Similarly, the co-occurrence of 

‘myocardium’ and ‘infarction’ and ‘myocardium’ and ‘hemorrhage’ is more frequent in 

I23, less frequent in I24, and very less frequent in I25. Finally, the co-occurrence of 

‘epicardium’ and ‘dimpling’ can be found in I25 but maybe less frequently found in I23, 

and I25. Therefore, in such cases, the proposed similarity and uniqueness features may 

provide useful results. 

To summarize these metrics, the values of the VSM and VUM metrics represent the 

number of common features that match and do not match, respectively, between the input 

report-level graph and the aggregated class-level graph. Similarly, the values of the ESM 

and EUM metrics denote the co-occurrence of matched and unmatched features in the 

input report-level graph and the aggregated class-level graph. Lastly, the values of SEWM 

and UEWM metrics indicate the sum of frequency of co-occurring n-grams matched and 

unmatched between the input report-level graph and the aggregated CoD-level graph. In 
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addition, all the aforementioned metrics consider the co-occurring n-grams instead of 

individual n-grams. Finally, section 5.4.5 also shows the significance of similarity and 

uniqueness metrics with the help of experiments. 

5.2.5 Creation of Master Feature Vector  

For any classification task, the primary input for the supervised machine learning 

algorithm is the master feature vector (MFV). The MFV is a numeric vector where each 

row represents one instance or one record (in the case of current study, one forensic 

autopsy report) and each column represents a feature. In this study, the following 

procedure was followed to create an MFV from a dataset of labelled forensic autopsy 

reports ( ).  

1- Aggregated class-level graphs ( ) were constructed from  (as 

discussed in Section 5.2.2).  represents the number of distinct classes in . 

2- The corresponding report-level graphs ( ) were built for each 

autopsy report (as discussed in Section 5.2.1).  indicates the number of autopsy 

reports in . 

3- For each report-level graph ( ), SNOMED-CT concept descriptions, 

concepts ids, and synonyms were extracted from each vertex of the graph using 

SNOMED CT ontology. The obtained concept descriptions, concepts ids, and 

synonyms were added to the corresponding graphs (as discussed in Section 5.2.3). 

4- Each report-level graph was compared with the N aggregated class-level graphs to 

compute the values of the aforementioned six graph similarity and uniqueness metrics 

(i.e., VSM, VUM, ESM, EUM, SEWM, and UEWM). Hence, for each report-level 

graph,  values were computed to form a feature vector. Each value was 

separated by a comma (,).      

lD

1 2 3, , ,....
NC C C CG G G G lD

N lD

1 2 3, , ,....
Nr r r rG G G G

N

lD

1 2 3, , ,....
Nr r r rG G G G

6 N
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5- The class of each report was appended after  values. 

The sketch of the resultant MFV is shown in Figure 5.8. In addition, Figure 5.9 shows 

the sample of numeric MFV of accident related CoDs from real dataset. This numeric 

MFV is then fed to the classifier as input to construct the classification model.  

 

Figure 5.8: Sketch of the resultant MFV 

 

Figure 5.9: Sample of numeric MFV of accident related CoDs from real dataset 

5.3 Experimental Design 

This section presents the experimental design of construction of classification model 

for forensic autopsy reports though proposed fully-automated CGFE technique. An 

extensive set of experiments were run to measure the performance of proposed CGFE 

technique with state-of-the-arts baseline feature engineering techniques. The complete 

6 N
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flow of experimental design is shown in Figure 5.10. As shown here, the performance of 

proposed CGFE technique was evaluated comprehensively. For experiments forensic 

autopsy dataset (discussed in Section 3.3) was used. Moreover, all reports were 

preprocessed to remove irrelevant and uninformative features (discussed in Section 3.4). 

Afterwards, discriminative features were extracted and represented from preprocessed 

forensic autopsy reports through proposed CGFE technique to form a numeric MFV. This 

numeric MFV was then fed to six different supervised machine learning algorithms 

(namely, SVM, NB, kNN, C5, RF, and ensemble-voted) to evaluate the most suitable 

algorithm for classifying forensic autopsy reports using CGFE technique. The 

justification for the selection of these classifiers are also given in Chapter 3, Section 3.6. 

In addition, the proposed CGFE technique was also compared with six baseline 

feature engineering techniques namely, the traditional BoW technique (Harris, 1954), the 

entropy-optimized feature-based BoW (EO-BoW) technique (Passalis & Tefas, 2016), 

the paragraph vector (PV) technique (Le & Mikolov, 2014), the hybrid of BoW and 

Word2Vec (BoW + Word2Vec) technique (Enríquez et al., 2016), Term graph (TG) 

technique (Papadakis et al., 2016), and semi-automated expert-driven technique 

(discussed in Chapter 4) to show its significance.  

Finally, statistical significant tests were applied to see the significant different 

between the analyses results of aforementioned experiments. A Friedman statistical test 

(Demšar, 2006; McCrum-Gardner, 2008; Ott & Longnecker, 2015) along with Nemenyi 

post hoc statistical tests (Demšar, 2006; Ott & Longnecker, 2015) was performed (using 

significance level of alpha = 0.05) to compare the overall accuracies for six classifiers 

across all four datasets. 
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Figure 5.10: Experimental design for evaluation of CGFE technique 

Moreover, for determining MoD, and CoD, hierarchical classification method was 

employed (as shown in Figure 5.11). In the hierarchical classification, the first-level 

classifier was trained to determine MoD, whereas the second-level classifier was trained 

to determine CoD. Therefore, five classification models were constructed, namely, one 

MoD-level classifier, and four CoD-level classifiers (i.e., accident-related CoD, 

homicide-related CoD, natural death-related CoD, and suicide-related CoD). The 

aforementioned classification models were deployed in a two-level cascade architecture 

where the autopsy report was first processed by the MoD-level classification model to 

determine MoD and then by the CoD-level classification model to determine the CoD. 

For example, if the MoD-level classification model determines the “accident” MoD for 

any given report, then the “accident”-related CoD classification model will be activated 

and further process the report to determine accident-related CoD (such as S06, S38, T07, 

and T75). The flowchart of the functionality of the hierarchical classification method is 

shown in Figure 5.11. 

For MoD-level classification, all 1500 autopsy reports are grouped into four classes, 

namely, accident, suicide, homicide, and natural death, to create a training set. Afterward, 

various preprocessing steps (discussed in Section 3.4) were applied to the training set to 

remove irrelevant and noise features from this set. Unigram features were then extracted 

Univ
ers

ity
 of

 M
ala

ya



151 

from the training set, and these features were represented using the TFiDF feature 

representation scheme. The unigram features represented by the TFiDF scheme were used 

because Mujtaba et al. (2016)  compared term-based unigram, bigram, and trigram 

features to determine CoD from autopsy reports. In their study, these authors reported 

that unigram features produced better results than bigram and trigram features. In 

addition, they compared four feature representation techniques, namely, binary 

representation (BR), term frequency (TF), TFiDF, and NTFiDF, and found that TF and 

TFiDF outperformed BR and NTFiDF. Therefore, only term-based unigram features were 

extracted in MoD-level classification, and these features were represented by the TFiDF 

feature representation scheme to create an MFV. This MFV was used as the input for the 

supervised machine learning algorithms. Six supervised machine learning algorithms 

(namely, NB, SVM, kNN, C5.0, RF, and ensemble voted algorithms) were used to predict 

MoD at the first classification level. Hence, six analyses (1 MFV × 6 supervised machine 

learning algorithms) were performed to determine the results of MoD-level classification. 

For the second-level classification task, all 1500 reports were grouped into their 

respective CoDs. Accordingly, 4 datasets were prepared, with each dataset belonging to 

one MoD (i.e., accident, suicide, homicide, and natural death). Each dataset contains 

forensic autopsy reports that belong to four distinct CoDs. Each dataset was converted 

into MFV by applying the proposed CGFE technique. Moreover, three different MFVs 

were produced from each dataset by applying unigram, bigram, and trigram CGFE 

models. Hence, 12 MFVs were produced. Afterward, 6 supervised machine learning 

algorithms were applied to the 12 constructed MFVs to determine CoD. Hence, a total of 

72 analyses (12 MFVs × 6 supervised machine learning algorithms) were performed to 

determine the results of CoD-level classification.  
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Figure 5.11: Flowchart of the functionality of the hierarchical classification 
method 

The performance of the constructed classification model through proposed CGFE 

technique was then compared with six state-of-the-art feature engineering techniques to 

increase understanding of its behavior. These state-of-the-art feature engineering 
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techniques are the BoW technique (Harris, 1954), the EO-BoW technique (Passalis & 

Tefas, 2016), the PV technique (Le & Mikolov, 2014), the hybrid BoW + Word2Vec 

technique (Enríquez et al., 2016), the TG technique (Papadakis et al., 2016), and the 

expert-driven feature engineering technique (discussed in Chapter 4). All the techniques 

were applied to four MoD-related datasets to construct 24 MFVs. Then, the best 

performing supervised machine learning algorithm was applied to the 24 constructed 

MFVs to determine CoD. Therefore, 24 analyses (4 datasets × 6 MFVs × 1 supervised 

machine learning algorithm) were performed to compare the results of the proposed 

CGFE model with those of six aforementioned baselines. 

Basic preprocessing steps, such as converting reports into lowercase, removing stop 

words, and spell checking, were written in Python using NLTK (Bird, 2006). The 

proposed CGFE technique was then applied to the preprocessed files. The proposed 

CGFE technique was implemented using Java programming language and MySQL 

database (for SNOMED-CT ontology). All the classification experiments (discussed in 

Section 5.3) were performed using the Weka workbench (Hall et al., 2009) except the C5. 

This is because Weka does not provide the implementation of C5. Thus, for this purpose 

C5 was applied using R programming language. In addition, the selected six machine 

learning algorithms were run using the parameters shown in Chapter 4, Table 4.2. These 

parameters were used because Mujtaba et al. (2016) rigorously performed the 

comparative study on classification of forensic autopsy reports using various machine 

learning algorithms and reported that the machine learning algorithms with these reported 

parameters outperformed. All the experiments were conducted using 10-fold cross-

validation (Kohavi, 1995). To evaluate the performances of all the analyses, PrecisionM, 

RecallM, F-measureM, and overall accuracy metrics were used (Sokolova & Lapalme, 

2009). These metrics were selected due to an imbalanced class distribution in the dataset 

(Sokolova & Lapalme, 2009). 
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5.4 Experimental Results 

This section presents the first-level classification, second-level classification, and 

baseline comparison results. 

5.4.1 First-level Classification Results 

The first-level classification results are presented in Table 5.2. This table shows the 

PrecisionM, RecallM, F-measureM, and overall accuracy of the six supervised machine 

learning algorithms. It indicates that the SVM outperformed the other five algorithms by 

achieving the highest accuracy of 95.41%. However, a marginal difference in 

performance results was observed among the SVM, voted, and RF classifiers. The lowest 

accuracy of 79.35% was demonstrated by the kNN algorithm, followed by the C5.0 

(88.99%) and NB (89.44%). A pair-wise McNemar statistical test (McCrum-Gardner, 

2008; Adedokun & Burgess, 2011; Ott & Longnecker, 2015) was performed (using 

significance level of alpha = 0.05) to compare the overall accuracy of SVM classifier with 

all other five classifiers. The statistical difference was observed between SVM and all 

other classifiers (p < 0.01). 

Table 5.2: First-level (MoD-level) classification results 

Classifier F-measureM Overall Accuracy 
NB 0.888 89.44% 

SVM 0.95 95.41% 
C5.0 0.87 88.99% 
kNN 0.775 79.35% 
RF 0.933 93.57% 

Voted 0.932 94.03% 
 

5.4.2 Second-level Classification Results 

This section presents the second-level classification results using the proposed CGFE 

technique. As discussed in Section 5.3, 72 analyses were performed to evaluate the 

performance of the second-level classification. This section presents the results of all 72 

analyses in Table 5.3 to Table 5.6. Each table shows a particular MoD (i.e., accident, 
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homicide, natural death, and suicide). Moreover, each table indicates overall accuracy 

and F-measureM across three types of CGFE models (unigram, bigram, and trigram) and 

six supervised machine learning algorithms. As shown in these tables, the unigram CGFE 

model outperformed the bigram and trigram CGFE models in all 4 datasets. The lowest 

performance results were observed in the trigram CGFE model. In accident-related CoDs, 

the highest accuracy of 89.97% was achieved through the SVM, followed by the RF 

(89.84%) and voted (89.03%) algorithms using the unigram CGFE model. Moreover, in 

accident-related CoDs, the lowest accuracy of 72.23% was obtained by the kNN classifier 

using the trigram CGFE model. Table 5.3 presents all the results acquired using the 

accident-related CoD dataset. 

In homicide-related CoDs, the highest accuracies of 89.45%, 89.04%, and 88.69% 

were obtained through the SVM, RF, and voted classifiers, respectively, using the 

unigram CGFE model. Moreover, in homicide-related CoDs, the lowest accuracy of 

72.23% was obtained by the kNN classifier using the trigram CGFE model. Table 5.4 

presents all the results acquired using the homicide-related CoD dataset. 

Table 5.3: Results obtained from the accident-related CoD dataset 

Classifier Unigram CGFE Bigram CGFE Trigram CGFE 
ACC FMM ACC FMM ACC FMM 

NB 85.04% 0.849 82.52% 0.826 74.92% 0.747 
SVM 89.97% 0.900 84.39% 0.845 78.74% 0.787 
C5.0 85.13% 0.849 82.41% 0.824 75.07% 0.751 
kNN 82.81% 0.827 80.49% 0.803 72.23% 0.725 
RF 89.84% 0.899 83.93% 0.839 78.39% 0.785 

Voted 89.03% 0.891 83.47% 0.834 77.63% 0.775 
** ACC (Overall Accuracy), FMM (F-MeasureM) 

In natural death-related CoDs, the highest accuracy of 88.59% was achieved by the 

SVM algorithm using the unigram CGFE model. However, the accuracies of the voted 

and RF algorithms very closely follow that of SVM. Furthermore, in natural death-related 

CoDs, the lowest accuracy of 71.41% was obtained by the kNN using the trigram CGFE 
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model. Table 5.5 presents all the results acquired using the natural death-related CoD 

dataset. 

Table 5.4: Results obtained from the homicide-related CoD dataset 

Classifier Unigram CGFE Bigram CGFE Trigram CGFE 
ACC FMM ACC FMM ACC FMM 

NB 84.15% 0.840 79.39% 0.791 75.79% 0.759 
SVM 89.45% 0.894 82.54% 0.825 77.63% 0.776 
C5.0 84.29% 0.842 79.38% 0.794 76.45% 0.763 
kNN 79.88% 0.800 78.13% 0.781 74.90% 0.749 
RF 89.04% 0.889 82.33% 0.823 77.01% 0.769 

Voted 88.69% 0.885 82.25% 0.821 76.87% 0.767 
** ACC (Overall Accuracy), FMM (F-MeasureM) 

In suicide-related CoDs, the highest accuracy of 95.33% was achieved by SVM using 

the unigram CGFE model. Moreover, the accuracies produced by the RF and voted 

classifiers very closely follow that of SVM. In addition, the lowest accuracy of 76.65% 

was demonstrated by the kNN classifier using the trigram CGFE model. Table 5.6 

presents all the results acquired using the suicide-related CoD dataset. 

Table 5.5: Results obtained from the natural death-related CoD dataset 

Classifier Unigram CGFE Bigram CGFE Trigram CGFE 
ACC FMM ACC FMM ACC FMM 

NB 83.25% 0.833 81.05% 0.804 74.29% 0.740 
SVM 88.55% 0.885 85.33% 0.847 77.85% 0.775 
C5.0 83.54% 0.835 81.16% 0.807 74.89% 0.745 
kNN 79.06% 0.792 76.59% 0.761 71.44% 0.711 
RF 88.05% 0.880 84.89% 0.844 77.21% 0.769 

Voted 88.09% 0.881 84.76% 0.842 77.09% 0.765 
** ACC (Overall Accuracy), FMM (F-MeasureM) 

Table 5.6: Results obtained from the suicide-related CoD dataset 

Classifier Unigram CGFE Bigram CGFE Trigram CGFE 
ACC FMM ACC FMM ACC FMM 

NB 89.01% 0.889 84.79% 0.846 78.33% 0.784 
SVM 95.33% 0.951 89.48% 0.894 81.00% 0.810 
C5.0 89.97% 0.900 86.73% 0.867 78.31% 0.783 
kNN 86.20% 0.861 80.04% 0.805 76.65% 0.765 
RF 94.99% 0.950 89.15% 0.890 80.80% 0.808 

Voted 94.69% 0.946 88.98% 0.890 80.49% 0.804 
** ACC (Overall Accuracy), FMM (F-MeasureM) 

Univ
ers

ity
 of

 M
ala

ya



157 

In summary, the highest performance results were observed using the unigram CGFE 

model, followed by the bigram and trigram CGFE models in the second-level 

classification. Furthermore, among the supervised machine learning algorithms, SVM 

outperformed the other five algorithms. However, an insignificant difference was 

observed among the SVM, RF, and voted classifiers. The lowest performance was 

demonstrated by the kNN classifier. In addition, the highest performance results were 

observed in the suicide-related CoD dataset compared with the other three MoD datasets. 

A Friedman statistical test (Demšar, 2006; McCrum-Gardner, 2008; Ott & 

Longnecker, 2015) was performed (using significance level of alpha = 0.05) to compare 

the overall accuracies for six classifiers across all four datasets. The statistical difference 

was found between the classifiers and datasets. Furthermore, Nemenyi post hoc statistical 

tests (Demšar, 2006; Ott & Longnecker, 2015) were performed and statistical difference 

was observed between SVM and all the classifiers across all the datasets (p < 0.01) except 

SVM and RF in accident-related CoDs dataset (p > 0.05). 

5.4.3 Comparison of Proposed CGFE Technique with Baselines 

This section reports the findings of 24 analyses that were performed to evaluate the 

performance of the proposed CGFE technique compared with six baseline techniques for 

feature engineering (as discussed in Section 5.3). Table 5.7 presents the accuracies of all 

24 analyses using the SVM algorithm. As shown in the Table 5.7, the proposed CGFE 

technique performed better than the BoW, EO-BoW, BoW+Word2Vec, PV, and TG 

feature engineering techniques. However, the accuracy of the proposed CGFE technique 

is slightly lower than that of the semi-automated expert-driven technique. This result is 

attributed to the expert-driven technique being a semi-automated model, in which features 

are manually engineered and ranked by expert pathologists for each CoD. However, the 

expert-driven technique has two major limitations: the dependency on human experts and 
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the time required for feature engineering and ranking. Moreover, manually engineering 

and ranking the features of all available ICD-10-related CoDs are nearly impossible for 

experts. Although the accuracy of the proposed CGFE technique is marginally lower than 

that of the semi-automated expert-driven technique, the proposed CGFE technique is 

fully-automated, and thus, it does not require any expert intervention for feature 

engineering or ranking. Furthermore, features can be engineered more rapidly in the 

proposed CGFE model than in the semi-automated expert-driven model. 

Table 5.7: Overall accuracy comparison of CGFE technique with baselines  

Feature Engineering 
Techniques 

Accident 
Dataset 

Homicide 
Dataset 

Natural 
Death 
Dataset 

Suicide 
Dataset 

Fully automated BoW 
technique (Harris, 1954) 68.77% 69.68% 69.45% 73.27% 

 

Fully automated EO-BoW 
technique (Passalis & Tefas, 
2016) 

73.27% 70.72% 70.45% 75.89% 

 

Fully automated PV technique 
(Le & Mikolov, 2014) 

75.55% 72.81% 72.18% 76.15% 

 

Fully automated 
BoW+Word2Vec technique 
(Enríquez et al., 2016) 

71.08% 69.71% 70.45% 73.49% 

 

Fully automated TG technique 
(Papadakis et al., 2016) 

77.63% 76.65% 76.23% 81.67% 

 

Semi-automated expert-
driven technique (proposed in 
Chapter 4) 

92.09% 91.45% 93.12% 95.06% 

 

Fully-automated unigram 
CGFE model 

89.97% 89.45% 88.59% 95.33% 
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A Friedman statistical test was performed using significance level of alpha = 0.05) to 

compare the overall accuracies for seven methods (six baseline methods and one proposed 

CGFE technique) across all four datasets. The statistical difference was found across all 

seven techniques and four datasets. Furthermore, Nemenyi post hoc statistical tests were 

performed and statistical difference was observed between the proposed CGFE technique 

and BoW, EO-BoW, PV, BoW+Word2Vec, and TG techniques (p < 0.01) across all four 

datasets. Moreover, the statistical difference between the ED technique and proposed 

CGFE technique was observed across three datasets (p < 0.01) except suicide related 

dataset (p > 0.05). 

Figure 5.12 shows the average computational time for classification model 

construction constructed through the SVM machine learning algorithm across the 

proposed and baseline techniques. The experiments were run on Corei7 system having 

2.80 GHZ clock speed and a 16-gigabyte memory. As shown here, the classification time 

of proposed expert-driven and proposed CGFE technique is much faster than the baseline 

techniques. Moreover, in baseline techniques, BoW and EO-BoW proved to be faster than 

PV and BoW+Word2Vec technique.  

 
Figure 5.12. Classification time comparison between proposed CGFE and 

baselines 

5.4.4 The Significance of using Graph-based Representation  

To evaluate the significance of proposed CGFE technique, its performance was 

compared to with and without using graphs. In this set of experiments, concept-based 
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features were mapped from collected reports using SNOMED CT ontology. Moreover, 

the extracted conceptual-based features were used to evaluate the classification results. 

Furthermore, in this set of experiments, the extracted concept-based features were not 

represented into graph structure. In experiments, SVM classifier was used to evaluate the 

classification performance. Furthermore, overall accuracy performance metric was used 

for performance evaluation. The experimental results are shown in Figure 5.13. As can 

be seen here, proposed CGFE technique outperformed when its results were compared 

with this new set of experiments. The possible reason for low performance of concept-

based features when used without graph-based representation is that the SNOMED CT-

based conceptual features overcomes the issue of polysemy and synonymy. However, it 

has no standardize functionality to construct statements with complex interrelationship 

between the terms or concepts. Thus, to achieve this, the graph-based approach was used 

and proven useful in classifying forensic autopsy reports.  

 

Figure 5.13. Significance of graph-based structure 

For instance, consider the autopsy finding taken from forensic autopsy reports 

belonging to I23 CoD "The myocardium showed presence of infarction and absence of 

fibrosis". Moreover, consider the autopsy finding taken from forensic autopsy reports 

belonging to I25 CoD "The myocardium showed presence of fibrosis and absence of 

infarction.". It can be observed from aforementioned autopsy findings that in I23 CoD, in 
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most of the cases, fibrosis and infarction is found on myocardium layer of the heart. 

Moreover, in some reports belonging to I23 CoD, the infarction was found however, 

fibrosis may or may not be found on myocardium layer of the heart. Conversely, in I25 

CoD, in most of the cases, fibrosis was found in myocardium layer of the heart, however, 

infarction may or may not be found on myocardium layer of the heart. Thus, in such cases, 

the traditional approaches (such as BoW) will come up with list of features containing 

(absence, fibrosis, infarction, myocardium, presence, showed) features and transform the 

above-mentioned findings into these numeric vectors [(statement1 = 1,1,1,1,1, I23), 

(statement2 = 1,1,1,1,1, I25)] and may fail to accurately classify autopsy reports. 

Moreover, in such cases, SNOMED CT ontology can capture all the functional and 

topographic terms and concept ids from the aforementioned findings. However, it cannot 

capture the complex interrelationship between the medical terms or medical concepts. 

Hence, to achieve this and to achieve word context and word ordering, graph-based 

approach was exploited along with SNOMED-CT ontology by connecting co-occurring 

concepts with each other. 

5.4.5 The Significance of Similarity and Uniqueness Metrics 

It is important to ensure that the proposed features are effective features and not the 

redundant features. This is because the redundant features may increase the 

computationally complexity as well as cause the classification model overfitting. 

Conversely, providing sufficient features to train the machine learning algorithms is also 

one of the most significant step towards constructing effective classification model 

(Domingos, 2012). Therefore, to show the effectiveness of similarity, and uniqueness 

metrics, four experiments were run on four different datasets (namely accident, suicide, 

homicide, and natural death) without adding the uniqueness metrics. Hence, only 12 

features were used (3 similarity features   4 CoDs). For experiments, SVM classifier was 
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used because it produced better accuracy in first-level and second-level classification 

models. The experimental results are shown in Figure 5.14. 

 
 

Figure 5.14. Significance of similarity and uniqueness metrics 
 

As can be seen from Figure 5.14, the combination of uniqueness and similarity metrics 

produced the better results. This maybe because the combination of both metrics provide 

more context that may help classifiers in learning better classification rules. Moreover, in 

the forensic dataset, there is a very little difference among various CoDs. For instance, 

S06, S38, T07, and X80 are very close to each other and these CoDs usually share many 

relevant features in collected dataset. Thus, in such cases, the combination of uniqueness 

and similarity metrics may prove useful to differentiate between related CoDs. For 

instance, ‘laceration wound’, ‘abrasion wound’, ‘Grazed abrasion’ are common in S06, 

S38, T07, and X80. However, ‘abrasion forehead’, ‘wound scalp’, ‘right scalp’ are less 

frequent in S38, X80 and more frequent in S06, and T07. Therefore, the proposed 

similarity and uniqueness features may provide useful results. Consider another example 

where the terms ‘pericardium’, ‘epicardium’, ‘myocardium’, ‘endocardium’, are very 

common in I23, I24, and I25 CoDs. However, co-occurrence of ‘myocardium’ and 

‘fibrosis’, is more common in I24, and I25 and less common in I23. Similarly, the co-

occurrence of ‘myocardium’ and ‘infarction’ and ‘myocardium’ and ‘hemorrhage’ is 
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more frequent in I23, less frequent in I24, and very less frequent in I25. Finally, the co-

occurrence of ‘epicardium’ and ‘dimpling’ can be found in I25 but maybe less frequently 

found in I23, and I25. Therefore, in such cases, the proposed similarity and uniqueness 

features may provide better learning rules to the classifier. 

Consider the Figure 5.15 where graphs (a), (b), and (c) represents the partial 

aggregated CoD level graphs related to I23, I25, and I24 CoDs respectively. These graphs 

encode the information related to myocardium layer of the heart. For instance, graph (a) 

encodes that most of the time, I23 is caused by the presence of infarction on myocardium. 

However, in the case of I23, the fibrosis or haemorrhage may or may not be found on 

myocardial layer. Conversely, graph (b) encodes that most of the time, I25 is caused by 

the presence of fibrosis on myocardium. However, in the case of I25, the infarction or 

contusion may not be found on myocardial layer. Finally, graph (c) encodes that most of 

the time, I24 is caused by the presence of contusion on myocardium. However, in the case 

of I24, the infarction or fibrosis may or may not be found on myocardial layer. In addition 

to graph (a), (b), and (c), the graph (d) in Figure 5.15 shows the new report level graph 

that needs to be classified. It can be seen from graph (d) that many vertices and edges are 

common in all three aggregated graphs. However, these can be discriminated on the basis 

of edge weights. For instance, the co-occurrence of (P → I) and (A → F) is more common 

in I23, and less common in I24.  Moreover, the edge (P → C) is only available in I24 and 

the (A → H) is only available in I23 CoD. In addition, in such cases, the combination of 

similarity and uniqueness metrics may provide better learning rules to the machine 

learning classifiers and may produce better classification performance. 

Univ
ers

ity
 of

 M
ala

ya



164 

 
 

Figure 5.15. Sample aggregated graphs belonging to I23, I24, and I25 CoDs 

 

5.5 Discussion 

The findings of this study indicated that supervised machine learning techniques can 

effectively classify forensic autopsy reports using the proposed CGFE technique with 

performance measures reaching 88% to94%. In the experiments, a few combinations were 

found to optimize classification performance. Among these combinations, the SVM 

classifier built with the proposed unigram CGFE model is the most effective for 

classifying forensic autopsy reports. 

In the experimental results, the highest performance was observed in the suicide-

related CoD dataset compared with the homicide-, accident-, and natural death-related 

CoD datasets. This result is attributed to the CoDs in the suicide-related dataset being 

different from one another, and thus, can be easily classified using supervised machine 
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learning algorithms by determining the discriminative features of each class. For 

example, CoD X80 (intentional self-harm by jumping from height) and CoD T71 

(intentional self-harm by hanging) are quite different from each other and can easily be 

discriminated using a supervised machine learning classifiers. CoD X80 may comprise 

injury-related information, such as injury on the head, abdomen, chest, arms, and legs. 

However, such information maybe unavailable in CoD T71. Thus, these CoDs can be 

easily differentiated using a machine learning algorithms. In the other three datasets 

(accident, homicide, and natural death), CoDs are similar in nature and share various 

features. Therefore, the classification task is more challenging for machine learning 

classifiers in these three datasets. For example, CoD S06 (Craniocerebral injury) and CoD 

T07 (multiple injuries) in the accident-related dataset are similar to each other. 

Furthermore, these CoDs contain numerous common features. Hence, discriminating 

between them is more challenging for machine learning classifiers. 

The performance of a classification task primarily depends on the quality of features. 

Irrelevant and inadequate features typically produce unsatisfactory performance results. 

Therefore, the key task in free-text clinical reports classification is to identify the most 

relevant, discriminative, and powerful features using state-of-the-art feature engineering 

techniques (Domingos, 2012). Accordingly, the proposed CGFE technique was compared 

with six existing state-of-the-art feature engineering techniques in the experiments. The 

experimental results demonstrated the effectiveness of our proposed CGFE technique 

compared with existing baselines. The proposed CGFE technique performed better than 

existing baselines because it overcomes the limitations of existing feature engineering 

techniques, such as BoW, n-gram, EO-BOW, and Word2Vec. These techniques have 

three major limitations: word ordering, word inversion, and word synonymy and 

polysemy. In the proposed CGFE technique, the use of graph solves the issues of word 

ordering and word inversion. Moreover, the proposed CGFE technique overcomes the 
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limitation of word synonymy and polysemy by considering word synonyms and concepts 

using SNOMED-CT ontology. 

Two possible reasons are behind the unsatisfactory performance of the BoW 

technique. First, this technique does not consider the ordering of words. Second, it 

disregards word semantics (Lewis, 1992; Nigam et al., 2000; Sebastiani, 2002). The 

hybrid of BoW + Word2Vec technique produced the lowest results possibly because this 

model uses the voting approach between the BoW and Word2vec techniques. Therefore, 

BoW results may affect the classification result of the Word2Vec model. The EO-BoW 

technique performed better than the BoW and the hybrid Bow + Word2Vec techniques 

because it calculates the uncertainty of any given feature with document categories. The 

EO-BoW technique associates features with the document category that obtains the 

lowest entropy value for that feature.  

The PV technique performed better than the BoW, hybrid BoW + Word2Vec, and EO-

BoW techniques because it learns vector representation for variable length paragraphs of 

text. Vector representation is learnt to predict the surrounding words in context samples 

from a paragraph. Hence, this technique captures more semantics from a paragraph than 

Word2Vec, Bow, or EO-BoW. The TG technique performed better than the BoW, hybrid 

BoW + Word2Vec, EO-BoW, and PV models because it overcomes the issue of word 

ordering and word inversion by representing a textual document in a graph. However, 

two major limitations of the TG technique are evident. First, it does not consider the issue 

of word-level synonymy and polysemy and only considers the input content of a textual 

document. Second, the TG technique considers only edge matching and edge value to 

compute graph similarity. However, edge matching and edge value maybe insufficient to 

classify a text document. By contrast, our proposed CGFE technique overcomes the issue 

of word-level synonymy and polysemy by using the SNOMED CT database. Moreover, 
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the proposed CGFE technique considers six metrics (i.e., VSM, VUM, ESM, EUM, 

SEWM, and UEWM) to compute graph similarity and represent input forensic autopsy 

report discriminatively.  

The proposed CGFE technique could not beat the accuracy of the semi-automated 

expert driven technique because the expert-driven technique is semi-automated and 

expert-dependent, whereas the proposed CGFE technique is fully-automated. In the 

expert-driven technique, human experts (pathologists) are responsible for extracting and 

ranking useful features that belong to specific CoD autopsy reports. Therefore, beating 

the performance of the expert driven technique is challenging. However, as shown in 

Table 5.7, our proposed CGFE technique outperformed the other five fully automated 

baseline techniques. Moreover, the accuracy obtained using the proposed CGFE 

technique is approximately only 4% less than that of the semi-automated expert driven 

technique. In the suicide-related CoD dataset, the difference between the accuracies of 

the expert driven technique and the proposed CGFE technique is very marginal. The 

major reason for this is that the SNOMED-CT program did not identify some important 

concepts form the content-based features. This is because, the SNOMED-CT ontology 

covers the whole medical terms not specifically the autopsy terms. By contrast, n-

gram features cover the entire text, but often do not map to medical concepts using 

SNOMEDT-CT ontology. The difference between both the proposed expert-driven and 

CGFE techniques is shown in Table 5.8.  

Among the supervised machine learning algorithms, SVM outperformed the other five 

algorithms used in this study. The possible reason for the superior performance of SVM 

is its capability to produce improved results with all the available features in the MFV 

because SVM is not prone to overfitting (Joachims, 1998a). The accuracy of RF was 

slightly lower than that of SVM possibly because the prediction results of RF can be 
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affected by a huge number of non-discriminative features but few discriminative features. 

Such combination of features may generate trees with less powerful and redundant 

features in a forest. These trees may produce incorrect classification results (Xu et al., 

2012). 

Table 5.8: Expert-driven versus CGFE 

Proposed Expert-driven Technique Proposed CGFE Technique 
  

It is a semi-automated technique It is a fully-automated technique 
  
It is expert-dependent It does not involve any expert intervention 
  

The features are ranked and prioritize by 
domain experts (pathologists) 

The features are automatically extracted 
through the use of graph-based approach 
and medical ontologies (SNOMED-CT) 

  
The issue of word-level synonymy and 
polysemy is overcome by adding the 
similar words in the lexicons by the domain 
experts 

The issue of word-level synonymy and 
polysemy is overcome through the help of 
medical ontology (SNOMED-CT) 

  
Domain Experts did not consider the word-
order 

The word-order was obtained through the 
use of graph-based approach 

  

The master feature vector comprised of 
number of features equal to number of 
CoDs 

The master feature vector comprised of 6   
number of CoDs features, where 6 shows 
the number of similarity and uniqueness 
metrics (please refer to section 5.2.4) 

  

It is time consuming and labour intensive It is not time-consuming and labour 
intensive 

  

It takes enormous time for classification of 
more CoDs because the experts will dig out 
and rank the features for all CoDs. Thus, 
the generalizability is difficult using this 
technique. 

It will not take time for classification of 
more CoDs because the experts are not 
responsible for digging out and ranking the 
features for all CoDs. Thus, the 
generalizability is easy for any number of 
CoDs using this technique. 

  
 

The accuracy of the ensemble voted classifier was slightly lower than that of SVM 

probably because the former considers the classification decision of all five classifiers 
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and chooses the final decision based on majority voting. In most cases, the C5.0 classifier 

performed worse than the SVM, RF, and voted classifiers. The possible reason for the 

poorer performance of C5.0 is because all attributes in the MFV represent continuous 

data, which makes finding the required optimal thresholds for constructing the C5.0 

decision tree difficult (Dreiseitl et al., 2001). The lowest performance results were 

obtained by the kNN and NB classifiers. The NB classifier assumes conditional 

independence among various features and is probably unsuitable for the collected dataset 

(Lewis, 1998b). In addition, this dependency becomes more complex with an increasing 

number of features and can negatively affect the performance of NB. The kNN classifier 

obtained the lowest classification results because of its default assumption of linearly 

scaling features, which may lead to imprecise distance computation measures. Moreover, 

this assumption proves deceptive with low discriminative features (Gutierrez-Osuna, 

2002; Bhatia, 2010).  

5.5.1 Role of MoD Classifier 

The hierarchical classification method was designed to improve the accuracy of CoD 

prediction. To ascertain the efficacy of the hierarchical classification method, 

experiments were performed to compare the results of one-level classification with two-

level classification. In one-level classification, all 1500 reports were labeled with their 

respective CoDs. Moreover, the proposed CGFE technique was used for feature 

engineering and MFV creation. The SVM classifier was also applied to compute the 

classification results. Table 5.9 shows the classification results obtained from the one–

level and two–level classification models.  

As shown in Table 5.9, in three accident-related CoDs (S06, S38, and T07), two-level 

classification exhibited approximately 5% to 6% improvement in accuracy compared 

with one-level classification. Moreover, in homicide-related CoDs, two-level 
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classification demonstrated 6% to 8% improvement in accuracy compared with one-level 

classification. In two suicide-related CoDs (X80 and X74), two-level classification 

presented 8% to 12% improvement in accuracy compared with one-level classification. 

The evident reason for this improvement in accuracy is the sharing of several features 

among accident-, homicide-, and suicide-related CoDs. For example, CoDs T07 and X80 

may share several features, and thus, one-level classification may produce a false positive 

rate. Furthermore, in several CoDs (e.g., T75, I23, I24, I25, Z11, T71, and T14) a slight 

improvement in performance results between one-level and two-level classification was 

observed. The reason for such improvement is that the aforementioned CoDs differ from 

one another, and thus, can be easily differentiated using machine learning classifiers. For 

example, CoDs T71 and T14 are different from all the other CoDs in the dataset. 

Table 5.9: Accuracy of one-level vs. two-level classification 

CoD One Level Classification Two Level Classification 
S06 82.61% 87.86% 
S38 83.89% 88.66% 
T07 82.56% 87.40% 
T75 93.48% 95.95% 
X93 86.85% 90.76% 
X99 84.00% 90.32% 
Y00 80.25% 88.66% 
Y09 79.60% 88.07% 
I23 87.11% 88.41% 
I24 87.13% 88.29% 
I25 87.19% 88.59% 
Z11 88.22% 89.05% 
X80 81.39% 94.91% 
X74 88.61% 94.70% 
T71 92.76% 94.82% 
T14 93.56% 96.88% 

 
5.6 Conclusion 

This chapter presented an effective fully-automated conceptual graph-based feature 

engineering (CGFE) technique to classify 16 types of forensic autopsy reports using the 

hierarchical text classification method. The experimental results showed that the 
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proposed CGFE technique outperformed five (5) existing state-of-the-art fully-automated 

feature engineering techniques. The promising results of the proposed CGFE technique 

suggest that pathologists can adopt the proposed system as their basis for second opinion, 

thereby supporting them in effectively determining CoD. Furthermore, the proposed 

CGFE technique can be applied to classify other types of free-text clinical reports. The 

proposed technique can reduce the time and effort required for preparing public 

healthcare reports (more specifically forensic autopsy reports).  

The limitation of the proposed CGFE technique is that its accuracy is slightly lower 

than that of the semi-automated expert-driven feature engineering technique (proposed in 

Chapter 4) because the features in the latter are manually extracted and ranked by human 

experts. Although the expert-driven feature engineering technique exhibits better 

accuracy, this technique is not the optimum solution for classifying all types of autopsy 

report because human experts are necessary to extract and rank useful features for all 

types of available forensic autopsy reports. To overcome the issues of the expert-driven 

feature engineering technique, a fully automated CGFE technique was developed in this 

Chapter. 
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CHAPTER 6: CONCLUSION 

 

6.1 Introduction 

In this thesis, existing feature engineering techniques were explored and investigated 

to classify free-text clinical reports. Moreover, conventional and state-of-the-art feature 

engineering techniques coupled with various supervised machine learning (SML) 

algorithms were employed and empirically investigated to classify free-text forensic 

autopsy reports. The need for classifying forensic autopsy reports is justified in Chapter 

1 (Section 1.2). For the experiments, the forensic autopsy dataset was obtained from one 

of the largest emergency hospitals in Kuala Lumpur, Malaysia, and comprised four 

manners of death (MoDs) and 16 causes of death (CoDs). After an extensive set of 

experiments on the collected dataset, the existing feature engineering techniques coupled 

with various SML algorithms obtained a classification accuracy of 70%–80%. Thus, to 

improve the classification performance, this thesis proposed and developed two effective 

feature engineering techniques, namely, the semi-automated expert-driven feature 

engineering technique and fully automated conceptual graph-based feature engineering 

(CGFE) technique.  

To obtain a specific level of classification performance in the clinical text classification 

domain, several studies (from the reviewed literature) have empirically investigated the 

effectiveness of the semi-automated expert-driven and fully automated techniques. Some 

reported that the expert-driven technique outperforms the fully automated technique; 

some reported the opposite result. Some studies reported no significant difference in the 

classification performance of the two techniques. Therefore, one should empirically 

investigate the performance of both techniques on free-text clinical report corpus to 
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evaluate which one is better. The detailed justification for proposing the two techniques 

is also presented in Chapter 2 (Sections 2.8.1.3 and 2.11.1). 

The experimental results showed that the proposed feature engineering techniques 

outperformed the existing feature engineering techniques in terms of classification 

performance. Moreover, the classification performance obtained through the fully 

automated CGFE technique was slightly lower than that of the semi-automated expert-

driven technique.  

Although the classification performance obtained through the fully automated CGFE 

technique was marginally lower than that of the semi-automated expert-driven technique, 

the fully automated CGFE technique was recommended for real-time deployment. In the 

autopsy domain, the number of targeted classes is increasing with the advancement of the 

forensic and legal medicine field. For instance, in recent years, experts were using the 

International Classification of Disease Ninth Edition (ICD-9), which contains 18,000 

unique codes, in assigning primary CoD. However, ICD-9 has been enhanced to ICD-10, 

and it contains nine times more codes than ICD-9 (Organization, 1992; Sundararajan et 

al., 2004; Hazelwood & Venable, 2010; Control & Prevention, 2015). Therefore, 

extracting features from all of these categories is tedious for experts. In the autopsy or 

related and similar clinical domain, experts can be utilized to extract features from few 

categories, and a classification model can be developed using these expert-driven features 

to create a benchmark performance. Fully automated features can then be designed to 

obtain an accuracy equal to or more than that of the benchmark. Once the fully automated 

features obtain the specific level of classification performance, such features can be 

exploited for the remaining categories without generating the expert-driven features. A 

more detailed discussion on this issue is presented in Chapter 2 (Section 2.11.1). 
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Within the context of this study, each individual research question (RQ) is answered 

and discussed in Chapters 2, 3, 4, and 5. This thesis concludes by revisiting the research 

objectives and RQs presented in Chapter 1 and describing how they are achieved. The 

core contributions of this thesis and the limitations and future research directions are also 

discussed. 

6.2 Reappraisal of the Research Objectives and Research Questions 

This section revisits the research objectives and RQs for this study. Moreover, it 

discusses the findings of each RQ of each objective briefly.  

Objective 1: To investigate the existing feature engineering techniques for the 

classifying free-text clinical reports, including forensic autopsy reports. 

To achieve this objective, the academic literature in the field of “automated text 

classification (ATC) in free-text clinical reports” was reviewed by exploiting the 

procedural decision analysis in six aspects, namely, types of clinical reports, datasets and 

their characteristics, preprocessing techniques, feature engineering techniques, machine 

learning algorithm, and performance metrics. To achieve the first objective, a total of 69 

primary studies from eight different bibliographic databases (namely, Web of Science, 

Scopus, IEEE Xplore, PubMed, Medline, ScienceDirect, ACM Digital Library, and 

SpringerLink) were systematically selected and rigorously reviewed from the perspective 

of the six aforementioned aspects. The findings of each RQ of objective 1 are given 

below. 

RQ1: What are the existing feature engineering techniques for classifying free-text 

clinical reports? 
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In the literature review, several existing feature engineering techniques were 

identified, including BoW, n-gram, and Word2Vec. The detailed answer is given in 

Chapter 2 (Section 2.8). 

RQ2: How feasible are the existing feature engineering techniques in terms of their 

performance in classifying forensic autopsy reports and determining the MoDs and CoDs 

from free-text forensic autopsy reports? 

The literature review revealed that the existing feature engineering techniques coupled 

with SML approaches can classify forensic autopsy reports and determine the MoD and 

CoD from the forensic autopsy reports. However, the maximum accuracy of 70%–80% 

can be obtained through the existing feature engineering techniques (see Chapter 2).  

RQ3: What are the limitations of the existing feature engineering techniques in 

determining the MoDs and CoDs from free-text forensic autopsy reports? 

Three major limitations of the existing feature engineering techniques were identified, 

namely, losing word order, losing word context, and ignoring word-level synonymy and 

polysemy. Given these limitations, these approaches obtained a low classification 

performance for classifying forensic autopsy reports. More detailed limitations of the 

existing feature engineering techniques are discussed in Chapter 2 (Section 2.8). 

Objective 2: To develop an effective semi-automated expert-driven feature 

engineering technique for addressing the issue of word-level synonymy and 

polysemy to classify CoDs from forensic autopsy reports. 

To achieve this objective, three experts extracted and ranked the discriminative 

features from each kind of forensic autopsy report (16 kinds of reports in this study). 

These experts were provided with a summary of the statistical information related to the 
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forensic autopsy dataset to assist them in extracting and ranking the features. Finally, 

these expert-driven features were used as input for different machine learning algorithms 

to construct the classification models. The details of this technique are discussed in 

Chapter 4. The findings of each RQ of objective 2 are given below. 

RQ4: How much of the classification performance of forensic autopsy reports can be 

enhanced through the proposed semi-automated expert-driven feature engineering 

technique? 

An overall classification accuracy of approximately 92% was obtained through the 

semi-automated expert-driven features, which was 12%–22% more than that of the 

existing feature engineering techniques. More detailed experiments and results are 

presented in Chapter 4 (Sections 4.3 and 4.4, respectively). The justification of achieving 

a high accuracy through the proposed semi-automated expert-driven technique is also 

presented in Chapter 4 (Section 4.5).  

RQ5: How important is the proposed semi-automated feature engineering technique 

in classifying forensic autopsy reports? 

In the literature review (Chapter 2), several studies argued that researchers should 

empirically investigate the use of both expert-driven and fully automated features to 

evaluate the performance of both of these features in classifying free-text clinical reports 

(Ye et al., 2014; Koopman, S. Karimi, et al., 2015; MacRae et al., 2015; Kalter et al., 

2016). These studies argued that the classification model constructed through expert-

driven features can also serve as a benchmark for the classification models constructed 

through fully automated features. Moreover, classification models constructed through 

fully automated features can be deployed in a real environment in either of two 

conditions: first, when the fully automated models achieve a specific level of accuracy 
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that is higher than that of the expert-driven models; and second, when no significant 

difference is observed in the classification performance of both models (Ye et al., 2014; 

Koopman, S. Karimi, et al., 2015; MacRae et al., 2015; Kalter et al., 2016). Thus, in this 

thesis, the semi-automated expert-driven model served as a benchmark for the fully 

automated feature engineering techniques. The details are discussed in Sections 2.8.1.3, 

2.11.1, and 4.6.  

RQ6: What are the limitations of the proposed semi-automated expert-driven feature 

engineering technique? 

Several limitations of the proposed semi-automated expert-driven feature engineering 

technique were identified and listed below. The detailed limitations are discussed in 

Chapter 4 (Section 4.6).  

1. The results of the proposed expert-driven technique depended heavily on the 

domain knowledge of the experts and their familiarity with forensic autopsy 

findings. 

2. This technique heavily depended upon the experts; thus, an ample amount of 

time was required to extract the discriminative features for each CoD and rank 

them. 

3. The developed model can only detect 16 CoDs, but each MoD contained 

thousands of CoDs (DiMaio & DiMaio, 2001). Hence, identifying useful 

features from each type of CoD was extremely difficult for the pathologists. 

Objective 3: To develop an effective fully automated CGFE technique to address 

word order, word context, and word-level synonymy and polysemy in the text for 

classifying CoDs from forensic autopsy reports. 
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This objective aimed to overcome the limitations of the proposed semi-automated 

expert-driven techniques (Chapter 4, Section 4.6). To achieve this objective, a fully 

automated CGFE technique was proposed. In CGFE, graph theory and Systematized 

Nomenclature of Medicine – Clinical Terms (SNOMED CT) ontology were employed to 

extract the discriminative features from the forensic autopsy reports. Graph theory was 

employed because graph representation provides flexibility and robustness on 

representing the natural language text compared with the traditional n-gram. Moreover, 

it overcomes the limitation of word co-occurrence, word ordering, and word inversion. 

Furthermore, SNOMED CT was used to extract the concept-based features from the 

extracted graph of word features to address word-level synonymy and polysemy. In 

addition, six different metrics were used to form a master numeric vector. Finally, this 

master numeric vector was fed as input to different machine learning algorithms to 

construct classification models through the CGFE feature engineering technique. The 

details of this technique with its functionality, experimental setup, results, and discussion 

are discussed in Chapter 5. The findings of each RQ of objective 2 are given below. The 

findings of each RQ of objective 3 are given below. 

RQ7: How much of the classification performance of the forensic autopsy reports can 

be enhanced through the fully automated feature engineering technique without human 

expert intervention? 

The experimental results in Chapter 5 (Section 5.4) showed that the proposed CGFE 

technique outperformed the existing fully automated techniques by obtaining 

approximately 89% overall accuracy. The justification of achieving a high accuracy 

through the fully automated CGFE technique is also presented in Chapter 5 (Sections 

5.4.4, 5.4.5, and 5.5).  
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RQ8: How can graph theory concepts be exploited in obtaining word order and word 

context from free-text forensic autopsy reports? 

Graph representation provides flexibility and robustness on representing the natural 

language text compared with the traditional n-gram. Moreover, it overcomes the 

limitation of word co-occurrence, word ordering, and word inversion. Here, the words 

were represented in vertices, and the co-occurring words were represented in adjacent 

vertices. An edge can be used to connect to co-occurring words. Moreover, edge value 

can be used as weight to determine the frequency of the co-occurrence of words. The 

significance of using graph-based structure and similarity and uniqueness metrics to 

classify forensic autopsy reports is given in Chapter 5 (Section 5.4.4 and 5.4.5). 

RQ9: How can existing medical or clinical ontologies be utilized to extract word-level 

synonymy and polysemy from free-text forensic autopsy reports? 

SNOMED CT is a standardized and multilingual vocabulary of clinical ontology used 

by physicians and other healthcare providers for the electronic exchange of clinical health 

information (Donnelly, 2006). In the medical field, the doctors may use a variety of words 

interchangeably while reporting the patient records in clinical reports. Thus, SNOMED 

CT ontology can be utilized to avoid word-level synonymy and polysemy and capture all 

terms that belong to the same medical concept. The detailed structure and discussion on 

SNOMED CT ontology are presented in Chapter 5 (Section 5.2.3). 

Objective 4: To evaluate the performance of the proposed feature engineering 

techniques by using real-world forensic autopsy reports and by comparing the 

proposed techniques’ performance with those of baseline feature engineering 

techniques. 
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To achieve this objective, the performance of the proposed feature engineering 

techniques was compared with five existing state-of-the-art feature engineering 

techniques. The experimental results showed that the proposed feature engineering 

techniques outperformed the baseline techniques. The details are discussed in Chapters 4 

and 5 (Sections 4.4.3 and 5.4.3, respectively).  

RQ10: How can the performance of the proposed feature engineering techniques be 

evaluated? 

The performance of the proposed feature engineering techniques was evaluated using 

four performance metrics, namely, overall accuracy, macro precision, macro recall, and 

macro F-measure. The justification of using these metrics is discussed in Chapter 2 and 3 

(Sections 2.10 and 3.7, respectively). 

RQ11: How much of the performance of the proposed feature engineering techniques 

is improved relative to those of the conventional and state-of-the-art feature engineering 

techniques? 

The performance of the proposed feature engineering techniques was compared with 

five existing state-of-the-art feature engineering techniques. The experimental results 

showed that the proposed feature engineering techniques obtained 9%–13% more overall 

accuracy compared with the baseline techniques. The details are discussed in Chapters 4 

and 5 (Sections 4.4.3 and 5.4.3, respectively). 

RQ12: Which of the proposed semi-automated expert-driven and fully automated 

CGFE techniques is effective? 

The experimental results showed that the classification performance obtained through 

the fully automated CGFE technique was approximately 3% lower than that of the semi-
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automated expert-driven technique. Although the classification performance obtained 

through the fully automated CGFE technique was marginally lower than that of the semi-

automated expert-driven technique, the fully automated CGFE technique was 

recommended for real-time deployment. The justification of this recommendation is also 

presented in Chapters 2 and 5 (Sections 2.11.1 and 5.5, respectively). 

6.3 Limitations 

Certain limitations were identified in the current work: 

1. The current classification models can only classify 16 kinds of forensic autopsy 

domains (Section 3.3 and Table 3.1). Thus, they can determine either of the 16 

CODs from the forensic autopsy reports. For more CoDs, more forensic autopsy 

reports can be gathered, and the classification models can be retrained using the 

proposed feature engineering techniques coupled with SML algorithms. In 

addition, it is believed that the proposed techniques have potential to show the 

similar classification performance on more CoDs. 

2. In this study, all ICD-10 codes were truncated at the three-character level. For 

instance, the code S06.9 (unspecified intracranial injury) was converted to simply 

S06 (intracranial injury). This three-character level truncation was employed for 

two reasons. First, the aim of this study was to classify the forensic autopsy reports 

by using SML-based ATC techniques up to three character levels. For instance, 

S06.1 (traumatic cerebral edema), S06.2 (diffuse traumatic brain injury), S06.3 

(focal traumatic brain injury), S06.4 (epidural hemorrhage), and S06.9 

(unspecified intracranial injury) were all truncated to their upper level, that is, S06 

(intracranial injury). A classification model was then constructed using the 

proposed feature engineering techniques to determine the three-character level 

CoD from the autopsy findings. Second, very few forensic autopsy reports were 
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available in the collected dataset for any specific CoD, so these reports were not 

sufficient to train and construct a robust and effective classification model. For a 

reasonable train set, all the forensic autopsy reports were converted into three-

character level codes. In future work, the scope of determining the CoD can be 

enhanced to a deeper level. 

3. The weaknesses of the proposed expert-driven feature engineering technique are 

already discussed in Chapter 4 (Section 4.6). To overcome the limitations, a fully 

automated CGFE technique was proposed in Chapter 5. The classification 

performance of CGFE was very close to those of the expert-driven techniques. 

However, in the future, more fully automated feature engineering techniques can 

be proposed and developed to improve classification performance compared with 

the semi-automated expert-driven techniques. 

4. The developed classification models can only classify forensic autopsy reports 

written in English. Nonetheless, the proposed techniques can also be adapted to 

classify CoD from forensic autopsy reports written in languages other than 

English, provided these techniques will be trained on the features of the respective 

languages.  

6.4 Future Research Directions 

This section identifies the future research direction for the classification of forensic 

autopsy reports. 

6.4.1 Quality of Dataset and the Use of Big Data 

Hospitals may have different medical documentation systems and patterns or styles of 

preparing forensic autopsy reports. This difference may produce hurdles in generalizing 

a constructed classification model to multiple hospitals across the country or world. Thus, 

in the future, a heterogeneous–heterogeneous type of dataset (Chapter 2, Section 2.6) will 
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be considered to construct a classification model that is generic and applicable at a wide 

scale. Such multimodal data require big data tools and techniques to overcome the 

heterogeneity issue. However, grouping different forensic autopsy datasets collected from 

multiple institutions is a major challenge, primarily because of patient privacy and 

security concerns (Coates, Souhami, & El Naqa, 2016). Thus, appropriate data-sharing 

protocols are required to apply big data analysis techniques (Coates et al., 2016). The 

resultant classification models developed using multimodal forensic autopsy datasets will 

be highly accurate and generic and can be trained and tested on a large volume of data. 

6.4.2 Classifying Forensic Autopsy Reports using Unsupervised Learning 

Human learning is essentially unsupervised. The structure of the world is discovered 

by observing it and not by being told the name of every object. Nevertheless, 

unsupervised machine learning has been overshadowed by the successes of supervised 

learning (LeCun, Bengio, & Hinton, 2015). This gap in the literature maybe because 

nearly all current studies rely on manually labeled data as input to the supervised 

algorithm for classifying the classes; thus, finding patterns between two or more classes 

using unsupervised grouping remains difficult. Intensive research is required to develop 

fully automated unsupervised algorithms that can classify forensic autopsy reports and 

obtain better classification performance than the techniques proposed in this thesis.  

6.4.3 Deep Learning for Classifying Forensic Autopsy Reports  

Deep learning has recently attracted the attention of many researchers in different 

fields. Natural language understanding is a new area in which deep learning is poised to 

make a large effect over the next few years (LeCun et al., 2015). Deep learning allows 

computational methods with a number of processing layers to learn data representation 

with different levels of abstraction (LeCun et al., 2015; Zhang, Pueyo, Wendt, Najork, & 

Broder, 2017). The main benefit of deep learning is that the features are not engineered 
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by human experts. Conversely, these features are learned automatically from training data 

through general-purpose learning processes. The deep learning algorithms may prove 

beneficial in classifying free-text forensic autopsy reports with high-dimensional data 

where human-engineered features may not essentially imitate learning vectors from 

training data. 

6.4.4 Ontology-based Forensic Autopsy Report Classification 

In the future, researchers can develop ontologies specifically related to the autopsy 

domain and classify free-text forensic autopsy reports by using these ontologies. 

Moreover, an adaptive ontology can be planned and created from the classification result 

that can be developed and customized on the basis of the end user’s report. 

6.4.5 Multilinguistic Classification Model 

In the future, researchers can consider the forensic autopsy reports written in a variety 

of languages, such as English, Malay, French, and Chinese. Moreover, the features that 

assist in classifying forensic autopsy reports in more than one language must be identified 

and proposed. 

6.4.6 Dynamic Updating of the Feature Set 

In the future, researchers may contribute in designing feature engineering techniques 

that enable the incremental addition or removal of features without rebuilding the entire 

model to keep up with new trends in forensic autopsy report classification. 

6.5 Conclusion 

This chapter concluded the entire thesis by revisiting the research objectives and RQs. 

This chapter also discussed the various limitations of existing studies and presented the 

future research directions in the field of automated classification of forensic autopsy 

reports.
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