
DEVELOPMENT OF OBJECT-ORIENTED COMPONENTS

FOR A TM NETWORK SlMULAT.ION WlTH. EMPHASIS

ON SWITCH ARCfllTECTURE

A Final Year Project Report
Submitted to the

Faculty of Computer Science and Information Technology

U nivcrsity of Malaya

by

Tay Hoon Pin
under the supervision of

Mr. Ling Teck Chaw

Dissertation submitted in partial fulfillment of the requirement for

the Degree of

Bachelor of Computer Science

Session 2000/200 I

Submission Date (12 February 200 I)

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

Asynchronous Transfer Mode (ATM) is considered to be the ground on which B-lSDN is

to be built. It is the new generation of communication networks that are being deployed

throughout the telecommunication industry. The basic functions of A TM switch are to

direct cells from input port to output port and to buffer cell destined to the same output

port from different input port.

This project focuses on the development of an object-oriented simulator for simulation.

The simulator is designed and implemented to ensure the correctness of routing within

the switch fabric, fairness of switching and to guarantee quality of service for ATM

applications. As such, the implemented switching architecture is based on the Banyan

NxN technique.

Finally, object-oriented approach will be used for the development of network simulator.

The language I'll be using is Java and the tool is Borland JBuilder.

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENT

This project has truly been a good experience for me. Along the process it has helped me

to have a better understanding of networking, ATM and various switching architectures

and Java programming. Besides, I had also gone through a lot of problems and hard
work.

Firstly and foremost, I would like to extend my most gratitude to Mr. Ling Teck Chaw,

my project supervisor who has provided me with unlimited support and guidance

throughout the development of this project and also not forgetting Mr. Ibrahim Abubakar,
my project moderator.

Utmost gratitude to Wong Wing Hong, Sin Wai Kit, Yu Soon Lye, Phung Jacen, Jimmy

Tan, Wong Chee Sum, Ching Kim Joo, Lim Shiau Hong, and Ang Tan Fong for sharing

their knowledge and help throughout this project.

Finally, special thanks to my family members and Looi Se Min for their support.

ii

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

ABSTRACT .i
TABLE OF CONTENTS .iii
LIST OF FIGURES v
LIST OF TABLES vi
ABBREVIATIONS vii
CHAPTER 1: INTRODUCTION I

1.1 Introduction to Asynchronous Transfer Mode l
l. 1.1 Quality of Service 2

1.2 Introduction to ATM Switching 6
1.2. l ATM Switch Functions 7
1.2.2 ATM Switching Structure 8

1.3 Introduction to Network Simulation 9
l.3. I Advantages and Disadvantages of Simulation 10
1.3.2 Types of Simulation 11

1.4 Project Objectives 1 1
l.5 Goals 12
1.6 Project Scheduling 12
1. 7 Report Organization I 3

CHAPTER 2: LITERATURE REVIEW 14
2.1 Introduction to Various Simulators 14

2.1. l NIST ATM/HFC Network Simulator 15
2. l .2 INSANE Simulator 16
2.1.3 REAL Network Simulator.. 17
2.1.4 Java Network Simulator 19
2.1.5 Comparison 22

2.2 Programming Approaches 23
2.2.1 Procedural Programming 23
2.2.2 Object-Oriented Programming 24

2.3 Programming Language 25
2.4 Programming Tool 27
2.5 Switching Approaches 28

2.5. l Shared Memory Approach 28
2.5.2 Shared Medium Approach 29
2.5.3 Fully Interconnected Approach 30

2.6 Buffering Methods 30
2.6.l Input buffering 31
2.6.2 Output Buffering 32
2.6.3 Crossbar Buffering 32
2.6.4 Central Buffering 33

2.7 Queuing Models 33
2. 7 .1 Single-Server Queue 34
2.7.2 Multiserver Queue 35
2.7.3 Multiple Single-Server Queue ,, 36

2.8 Switching Models 37

111

Univ
ers

ity
 of

 M
ala

ya

2.8.1 Banyan Switch 37
2.8.2 Tandem Banyan Switch 40
2.8.3 Knockout Switch 42
2.8.4 Shared Memory Switch 43

2.9 Switching Performance Issues 45
2.10 Summary 47

CHAPTER 3: SYSTEM ANALYSIS AND DESIGN 48
3.1 Switch Functions 48

3.1.1 User Plane 48
3.1.2 Control Plane 48
3.1.3 Management Plane 49

3.2 ATM Switch Architecture 49
3.2.1 Input Module 49
3.2.2 Output Module 50
3.2.3 Cell Switch Fabric 51
3.2.4 Connection Admission Control (CAC) 53
3.2.5 Switch Management.. 54

3.3 ATM Traffic Parameters 54
3.3.1 Peak Cell Rate (PCR) 54
3.3.2 Sustainable Cell Rate (SCR) 55
3.3.3 Maximum Burst Size (MBS) 55
3.3.4 Minimum Cell Rate (MCR) 55

3.4 Switch Architecture: Impact on Traffic Handling 55
3.5 Switching Model 57

3.5.1 ATM Network Topology 58
3.5.2 Banyan NxN Switching 58
3.5.3 Buffering 59
3.5.4 Switching 59
3.5.5 Multithreading 60

3.6 JavaSim Architecture 60
3.7 System Architecture Design 68
8 Ob . · o · d ·D · , 69 3. jeer- nente esign .

3.9 Class Design 70
3 .10 Summary 71

CHAPTER 4: IMPLEMENTATION AND TESTING 72
4.1 lmplementation 72
4.2 Component Testing 76
4.3 System Testing 77
4.4 Summary 87

CHAPTER 5: CONCLUSION 89
REFERENCES 91

I \I

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Figure 1.1: ATM Bit Rate Services.. 3

Figure 1.2: Cell Transfer Delay Probability Density Function...................... 6

Figure 1.3: A Generic ATM Switching Structure.................................... 9

Figure 2.1: Shared Memory Approach.. 29

Figure 2.2: Shared Medium Approach... 30

Figure 2 .3: Buffering Methods: (a) Input (b) Output (c) Crossbar (d) Central... 31

Figure 2.4: Single-Server Queue.. 35

Figure 2.5: Multiserver Queue.. 36

Figure 2.6: Multiple Single-Server Queue... 36

Figure 2.7: 2 X 2 Banyan Network... 37

Figure 2.8: 4 X 4 Banyan Network... 37

Figure 2 .9: 8 X 8 Banyan Network... 38

Figure 2 .10: Input Queuing Banyan Network. 3 9

Figure 2 .11: Head-of-line Blocking in Input Queuing Banyan Network... 40

Figure 2.12: Output Queuing Banyan Network....................................... 40

Figure 2.13: Tandem Banyan Switch...... 41

Figure 2.14: N X N Switches.. 42

Figure 2.15: Knockout Switch Queuing Model....................................... 43

Figure 2.16: Shared Memory Switch Architectllfe.......... 44

Figure 3.1: ATM Switching Model....................... 50

Figure 3.2: Cell Switch Fabric.. 51

Figure 3.3: Latency per Port.. 57

Figure 3.4: First Corne Fist Serve Bufter....... 59

Figure 3.5: Hierarchy of AH the Significant Objects in the Simulator............. 61

Figure 3.6: Banyan 4x4 Switch Architecture 68

Figure 3.7: Java Switching Simulator Objects.. 69

Figure 4.1: Testing Topology for Banyan 8x8... 78

Figure 4.2: Testing Topology for Banyan 16x 16.................................. 81

Figure 4.3: The Actual Cell Switching for Banyan 8x8.......................... . 86

Figure 4.4: The Actual Cell Switching for Banyan I 6x I G ,,...... 87

v

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

Table 1.1: ATM Service Classification.. 5

Table 1.2: Project Progress... .. l 2

Table 2. l: Comparisons among Various Simulators... 23

VI

Univ
ers

ity
 of

 M
ala

ya

ABBREVIATIONS

AAL
ABR

ATM

B-ISDN

BTE

CAC

CBR

CDV

CLR

CTD

EFCI

FIFO

GFR

GUI

HEC

IC

lDE

lM

LAN

MBS

MCR

MIN

NIST

NPC

OAM

oc
OM

OOP

PCR

QoS

ATM Adaptation Layer

Available Bit Rate

Asynchronous Transfer Mode

Broadband Integrated Services Digital Network

Broadband Terminal Equipment

Connection Admission Control

Constant Bit Rate

Cell Delay Variation

Cell Loss Ratio

Cell Transfer Delay

Explicit Forward Congestion Indication

First-In-First-Out

Guaranteed Frame Rate

Graphical User Interface

Header Error Control

f nput Controller

Integrated Development Environment

lnput Module

Local Area Network

Maximum Burst Size

Minimum Cell Rate

Multistage Interconnection Network

National Institute of Standards and Technology

Network Parameter Control

Operations and Maintenance

Output Controller

Out-put Module

Object-Oriented Programming

Peak 'ell Rate

Quality of Service

VII

Univ
ers

ity
 of

 M
ala

ya

RAM

RCSP

SCR

SF

STM

TCP/IP

TCT

UBR
UDP

UNI

UPC

VBR

VCI

VPI

Random Access Memory

Rate Controlled Static Priority

Sustainable Cell Rate

Switch Fabric

Synchronous Transfer Mode

Transmission Control Protocol over Internet Protocol

Total Cells Transferred

Unspecified Bit Rate

User Datagram Protocol

User Network Interface

Usage Parameter Control

Variable Bit Rate

Virtual Channel Identifier

Virtual Path Identifier

VIII

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

CHAPTER 1: INTRODUCTION

Asynchronous Transfer Mode (ATM) is the new generation of computer and

communication networks that are being deployed throughout the telecommunication

industry as well as in campus backbones today. It is designed to handle different kinds of

traffic (voice, video and data) in an integrated way. Therefore, it was selected by the

telecommunication industry as the technology to deliver Broadband Integrated Services

Digital Network (B-I.SDN) carrier service. The ATM network transmits data in small
packets in fixed size of 53 bytes.

This thesis attempts to present a survey, and describe the design and development of a

high-speed Asynchronous Transfer Mode (ATM) switching simulator using an object­

oriented approach. The key area of research emphasizes on the switching architecture

design used in transferring A TM cells from one ATM switch to another.

1.1 Introduction to Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) also known as cell relay is a technology that was

developed as part of the work on Broadband lSDN in the 1970s and 1980s. It is a high­

performance, cell-oriented switching and multiplexing technology that utilizes fixed­

length packets to carry different types of traffic. Technically, it can be viewed as an

evolution of packet switching. Like packet switching for data (e.g., TCP/IP), ATM

integrates the multiplexing and switching functions. It is well suited for bursty traffic in

contrast to circuit switching and allows communications between devices that operate at

different speeds. Unlike packet switching, ATM is designed for high-performance
multimedia networking.

A TM technology has been implemented in a very broad range of networking devices like

PC, workstation, and server network interface cards, switched-Ethernet and token-ring

workgroup hubs, workgroup and campus ATM switches, ATM enterprise network

switches, ATM multiplexes, ATM-edge switches, and ATM backbone switches.

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

ATM is capable to be offered as an end-user service-by-service providers (as a basis for

tariff services) or as a networking infrastructure for these and other services. The most

basic service building block is the ATM virtual circuit, which is an end-to-end connection

that has defined end points and routes but does not have bandwidth dedicated to it.

Bandwidth is allocated on demand by the network as users have traffic to transmit. ATM

also defines various classes of service to meet a broad range of application needs [l].

1.1.1 Quality of Service

One of the great advantages of ATM is its support for guaranteed QoS in connections.

Hence, a node requesting a connection set up can request a certain QoS from the network

and can be assured that the network would deliver that QoS for the life of the connection

being established. Such connections are categorized into various types of ATM service

categories [2]:

• Constant Bit Rate (CBI?.): real time traffic

• Real Time Variable Bit Rate (rt-VBR: real time traffic
• Non-Real Time Variable Bit Rate (nrt-VBR): non real time traffic

• Available Bit Rate (ABR), Unspecified Bit Rate (UR[?): non real time traffic

• Guaranteed Frame Rate (GFR): non real time traffic

The service categories are depending on the nature of the QoS guarantee desired on the

traffic types. The CBR service is aimed at supporting voice and other synchronous

applications, a fixed data rate is required and made available by the ATM provider. The

network must ensure the capacity is available for the C.BR connection and the subscriber

does not exceed its allocation. The VBR (real time and non-real time) services are

designed to support video and audio applications, which do not need asynchronous

transfer. Real time VBR in intended for applicati.on that requires tightly constrained delay
and delay variation but could not exhibit the fixed data rate for CBR. Non-real time VBR

does not bound this delay variation, and a certain cell loss ratio is allowed.

2

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

UBR and ABR services are typically non-real time traffic, which are designed to

primarily support data application. UBR is a best-effort service where no amount of

capacity is guaranteed, and any cell may be discarded. ABR provides user with a

guaranteed minimum capacity. Therefore, a peak cell rate (PCR) that it will use and a

minimum cell rate (MCR) that it requires are specified. The network allocates resource so

that ABR could receive at least their MCR capacity. When additional capacity ts

available, the user may burst above the minimum rate with minimized risk of cell loss.

GFR is to support non-real time service application. It is designed for an application,

which require minimum rate guarantee and can benefit from accessing additional

bandwidth dynamically available in the network.

AHR and UBR

100%

Percentage of line
capacity

VBR

CBR

0%

Time

Figure 1.1: ATM Bit Rate Services

The ATM services are defined into four main classes: Class A, Class B, Class C and

Class D.

Class A is mainly for Constant Bit Rate (C13R) traffic. As discuss earlier, it is mainly

used by applications that require a fixed data rate and continuously available during 1hc

3

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

connection lifetime and a relatively tight upper bound on transfer delay. Examples of

CBR applications include video conferencing, interactive audio, distance learning, and
video-on-demand.

Class B traffic is for real-time Variable Bit Rate (rt-VBR). It is in.tended for applications,

which are time-sensitive and their end-to-end delay is critical. Typically, the difference

between applications of class B and class A is that class B applications transmit at a rate

that varies with time. In other words, class B traffic is considered bursty.

Class C is for non-real time (nrt-VBR) traffic. For this service class, delay is not very

critical as compared with rt-VBR of class B. Examples for this service are applications

like video playback, training tapes and video mail messages. The application end system

will specify QoS parameters, such as peak cell rate, a sustainable or average ce11 rate, and

a measure of how bursty the cells may be. With this information, network can allocate

resources to provide relatively low delay and minimal cell loss.

Finally, class D traffic has two main types of ATM services: Available Bit Rate (ABR)

and Unspecified Bit Rate (UBR). These services are for bursty LAN traffic and data

transferring that is more tolerant of delays and cell loss. Originally devised as a way to

make use of excess bandwidth, UBR is subject to increased cell loss and the discard of
whole packets. Besides, ABR is also a best effort service, but differs in that it is a

managed service, based on minimum cell rate (MCR) and with a low cell loss. No delay

variation guarantee is currently envisioned for either UBR or ABR service classes [2].

In [3], there are QoS parameters that correspond to the network performance at the ATM

layer that defines the A TM service categories. Those negotiated parameters arc as

follows:

• Peak-to-peak Cell Delay Variation (peak-to-peak CDV): The difference of the

maximum and minimum CDV and Instantaneous CDV are used.

4

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

• Maximum Cell Transfer Delay (maxCTD): The delay experience by a cell between
the first bit of cell transmitted by the source and the last bit of cell is received by the

destination.

• Cell Loss Ratio (CLl?): The percentage of cel1s that are lost in the network due to
error or congestion and are not received by the destination.

Table 1.1: ATM Service Classification

Class ~--~ass B Class C I Class D

Timing relation between Required Not required

source and destination

Bit rate Constant I Variable

Connection mode Connection oriented I Connectionless
AAL protocol AAL I I AAL2 E AAL3/4

----------~------
--~-~---------- ~AAL·5--i---~-~=

The explanation starts from defining the cell transfer delay (CTD), which is the elapsed
time between two cell events. It refers to the time between transmission of the last bit of a

cell at the source UNf and the receipt of the first bit of cell at the destination UNT.

Typically, it has a probability density function that looks like in Figure 1.2.

There is a minimum delay, called the fixed delay that includes propagation delay through

the physical media, delays induced by the transmission system, and a fixed component of

switch processing delay. The variation of the cell delay (CDV) is due to the buffering and
cell scheduling. CDV usually is negotiated during the establishment of connection. It is

the difference between the best and worst case expected end-to-end cell transfer delay.

From Figure 1.2, maxCID is the maximum requested delay for the connection. A fraction

a of cells will exceed this threshold and must either be discarded or delivered late. The

remaining portions are within the requested QoS. The range between the fixed delay and

5

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

maxC1D is referred to the peak-to-peak CDV. Finally, the cell loss ratio is simply the
ratio of lost cells to the total transmitted cells on the connection.

Probability

Cell transfer
delay

Fixed Delay Cell lost or
delivered too
late

Peak-to-peak
cell delay
variation
(COY)

Maximum
cell transfer
delay (CTD)

Figure 1.2: Cell Transfer Delay Probability Density Function (For Real-Time

Service Categories)

1.2 Introduction to A TM Switching

Various switching architectures were developed in the past for different application such

as voice and data, based on modes like STM (Synchronous Transfer Mode) and packet
switching. The switching architectures that were previously developed for STM and for

conventional packet switching like X.25 are not directly applicable for broadband ATM.

Three major factors have a large impact on the implementation of the ATM switching
architecture:

6

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

The high speed at which the switch has to operate (from 150Mbit/sec up to
600Mbit/sec).

The statistical behavior of the ATM stream passmg though the A TM switching
system.

• The switching elements have pre-defined routing tables to minimize the complexity

•

•

of single switch routing because ATM is connection oriented.

The ATM cell has a fixed length (of 48 bytes) payload and a fixed length header (5 bytes)

with limited header functionality allow to implementation of different optimal switching

architectures, queuing functions for example. Some of the switching techniques have

been realized, or are in stage of implementation. A growing number of ATM switches are

commercially available and installed by public operations to offer a public, wide are a

broadband service, sometimes called ATM Central Office. Other switches are deployed

by private users and are used in an internal high-speed telecommunication needs, often

caned ATM LAN.

1.2. l A TM Switch Functions

ATM is connection oriented. All cells belong to a virtual connection pre-established by

the transport network. All traffic is segmented into cells for transmission across the

network. The sequence integrity of all the cells in the virtual connection is preserved

across each ATM switch to simplify reconstruction of the original traffic at the

destination (allows smaller total delay on the net). The ATM cell is 53 bytes long, built of

48 payload bytes and a 5 bytes header. Each cell's header contains a VCI (virtual channel

identifier) that identifies the virtual connection to which the cell belongs. The ATM

switch has several. main tasks:

• VCI translation

);> The established connection on the ATM network defines the virtual path through

different switches across the network. The VCJ is local to each switch port. As

each cell travels across an ATM switch, the V l i translated into a new value.

7

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

The switch has to build the new cell header containing the new VCI (and possibly

new VPI - virtual path identifier) and calculate the new HEC value.

• Switching - Cell transport from its input to its output

~ The transportation of the information (cell) from an incoming logical ATM

channel (inlet) to an outgoing logical ATM channel (outlet), is also the

responsibility of the A TM switch. The logical ATM channel is characterized by
two identifiers:

1. The physical inlet/outlet, which is characterized by a physical port number.

2. The logical channel on the physical port, which is identified by the VCI and/or
the VPI.

~ In order to provide the switching function, both physical and logical identifiers of

the incoming cell have to be related to physical and logical identifiers of the

outgoing cell. Two functions have to be implemented in the ATM switching
system.

>- The first function is the space switching function. The space switching function is

the one, which allows the connection between every input and every output. An

important aspect of space switching is the internal routing. This means how the

information is routed internaJly in the switch. The internal structure of the switch

must allow connections between every input to every output.

>- The second function is time switching. Since ATM is working in an asynchronous

mode, cells which had arrived in various time slots from the different inputs can

be delivered from different outputs in different time slots (there is no time

identifier in ATM as it is in STM). Since there is no pre-assigned time slot

connection, a contention problem arises if more than two logical channels are

connected to the same output at the same time slot. This problem in the ATM

switch is solved by implementing a queuing function in the ATM switch system.

1.2.2 ATM Switching Structure

ATM switching consists of the following main modules. Input Module (IM), Switch

Fabric (SF), and Output Module (OM). The Input Module is responsible for recovering

8

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

the STM cells from the incoming bit-stream. Input Module also translates VPI/VCI

values and determines the output port. The Output Module performs the inverse of the

Input Module functions, mainly translation of ATM cells to the outgoing hit-stream. The

switch fabric handles cell buffering, concentration and multiplexing, multicasting,

broadcasting, cell discarding, and the actual cell transfer [4].

ATM/SDH .__ _ __.

...
ATM/SDH

...

Figure 1.3: A Generic ATM Switching Structure

1.3 Introduction to Network Simulation

Computer Network Simulation is a valuable tool when attempting to form ideas on the
correct solution for data communications needs. Complex network architectures and

topologies are commonplace. With the advent of ATM high-speed networking solutions,

network simulations allow designers make decisions without the need to invest in this

new technology. Designers can test their new designs and carry out performance related

studies using a simulation and therefore freed from the burden of the "trial and error"
implementations. Huge saving can be made both in terms of investment and the cost in
terms of unnecessary restructuring for experimentation.

Simulation is the basis for making decision. Decisions are formulated based on the

information resulting from the simulation. The objective of imulation is to form a correct

9

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

decision. A number of factors influence the probability of making a correct decision.
These are summarized here as:

The level of understanding of the Problem

The problem should be well defined and manageable. A clear understanding of the

problem is essential before a simulation model can be developed.

Correct Model

A software model may often be syntactically correct (i.e. compiles in software

environment) but might not accurately simulate the problem area being addressed (i.e. the

semantics). Any result generated from an inaccurate model will simply lead to incorrect

decisions being formulated given the problem area. Tt is also essential that the model is

correctly designed to reflect the original objectives of the simulation.

Interpretation of Results

The simulation model simply produces output data. This data must be manipulated and

interpreted by the developer. The correct interpretation of this data is dependent on the

usefulness of the output data and also the user's understanding of statistical methods (e.g.

variance, distribution functions) [5].

1.3.1 Advantages and Disadvantages of Simulation

The advantages of simulation are described as below:

• Economical and quick to assemble.

• Given sufficient computing resources, can do large-scale tests.

• Tests are controlled, reproducible.

However, certain problems exist with simulation too:

• Need to redo code for simulation environment.

• Simulation implementation may differ considerably from real one.

• Synthetic environment may also poorly represent real one l 6 J.

10

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

1.3.2 Types of Simulation

There are two forms of network simulation: Analytical Modeling and Discrete Event

Simulation.

Analytical Modeling is a mathematical technique that characterizes a network as a set of

equations. The over simplistic view of the network and the inability to simulate the

dynamic nature of a computer network are the main disadvantages of this technique.

Discrete Event Simulation is a computer model of some physical system, where the state

of the system is assumed to change only at discrete points in simulated time. It is the

study of a complex system by computing the times that would be associated with real

events in a real-life situation. This could be the average end-to-end delay of packets.

Discrete Event Simulation has many advantages; it requires far greater processing time.

Also, quite a considerable investment of time is needed to accurately simulate most

models [7].

1..4 Project Objectives
The first objective of this project is to study and understand the ATM switching

simulation techniques. Through the study of these techniques, we can better model and

attempt to improve on the existing switching architectures. Numerous switching

techniques have been proposed since the implementation of the A TM switch. The thesis

begins with a study on the current switching techniques and their effectiveness.

The second objective, which is of primary importance, is the development of the ATM

switching simulator itself The simulator is developed using an object-oriented approach

to take advantage of the features such as modularity, extensibility, re usability and others.

Moreover, applying multithreading into a simulator design can be used to closely model

the real ATM switch.

1 l

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

The final objective is the creation of a portable, cross-platform and a user-friendly

graphical user interface (GUI) simulator.

1.5 Goals
The primary goal of this project is to create a component-based ATM switching

simulator. These switching-components should be able to be integrated to form a

complete ATM network topology. A typical example is: begin from a source application,

flow to the simulated A TM switch, finally connecting to the other end system and

reaching the destination application.

This ATM. switching simulator shall have the following capabilities:

• Allow the multiplexing of different ATM applications over a single ATM port.

• Allow ATM cells to be routed properly to the output port.

• Control the transfer rate of ATM application within an A TM switch.

1.6 Project Scheduling

Table 1.2: Project Progress

Jun 00 JulOO Aug 00 SepOO OctOO NovOO J)ec 00 .Jan 01

Research Work '1 '1 '1 '1

System '1 '1 '1
Analysis and

Design

·-
System '1 '1 '1 1mplementation

and Testing --·· -
Documentation -J --·-·

12

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

1. 7 Report Organization

An introduction to ATM has been covered in Chapter 1. The two major roles of the

ATM switch (i.e. Virtual Channel Identifier translation and switching) are also presented.

The ATM switching structure (Figure 1.3) shows the flow of (he ATM signal from the

input module, passing through the switching fabric and finally reaching the output

module. The advantages and disadvantages of the simulation and the two types of

simulation: analytical modeling and discrete event simulation were also covered m

Chapter 1. At the end, a discussion on the project objectives, goals, project scheduling
and report organization are covered.

In Chapter 2, a survey on vanous simulators is covered. This chapter also contains

programming techniques, languages and tools that will be used in assisting the

development of the system. In addition, a survey of different switching techniques used

in ATM networks, different buffering and queuing schemes also had been conducted.

Lastly, various switching models and switching performance issues have been discussed.

Chapter 3 is about the analysis and design of the system. This chapter discussed about the

details of switching functions, A TM switch architecture, and ATM traffic parameters

used in the simulation model. At the end of this chapter, the considerations taken into

account in designing the high performance ATM switch, JavaSirn architecture, system

architecture design, object-oriented design and class design are also presented.

Chapter 4 consists of two parts, which is implementation and testing. Implementation

focuses on declaration of objects and testing describes component testing and system

testing.

Finally, a conclusion for this project is provided in Chapter 5. Discussions about (he

strengths of the simulator, its limitations and the possibilities for future enhancements are

highlighted here.

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

CHAPTER 2: LITERATURE REVIEW

This chapter begins with an introduction to various simulators. A detailed description is

provided for three simulators that have been studied, including the advantages and

disadvantages for each simulator. This chapter also provides an explanation for the

reasons why object-oriented approach and not procedural approach was chosen when

developing the switching model. It also explains which object-oriented programming

language was selected and finally provides a survey of the available Java development
tools. A study is conducted on the ATM switching approach, buffering methods, queuing

models, switching models and switching performance issues.

2.1 Introduction to Various Simulators

As the emerging of speeds and dynamic of the computer networks today, management of

the network traffic is highly important

Therefore, there are a few simulation packages to describe a number of simulation

experiments performed on the number of different configurations without the expanse of

building a real network. The simulator actually offers a practical means of obtaining

accurate information on which to plan and design a new system. Simulation is a useful

technique for computer systems to perform analysis for high-speed network, especially

for ATM.

The general requirements of an ATM simulator are to support network performance

analysis under varying traffic types and loads, network capacity planning) traffic

aggregation studies and ATM network protocol research. This spans a wide range of

applications from production use by A TM network planners to A TM switch; network a

protocol design by researchers.

The following sub-sections describe various simulators that have been implemented,

including NIST ATM/HFC, INSANE, REAL Network Simulator, and Java Network

Simulator. At the encl of this section, a comparison among these simulators is presented.

14

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

2.1.1 NIST ATM/HFC Network Simulator

The ATMIHFC network simulator is a tool to analyze the behavior of ATM and H.FC

networks without the expense of building a real network. This simulator was developed at

the National Institute of Standards and Technology (NIST). This simulator is written in C

Language whereby it is written in structural programming approach. Typically, the

simulator program includes a graphical interface which provides the user with a means to

display the topology of the network, define the parameters and connectivity of the

network, log data, and to save and load the network configuration. Jn addition to the user

interface, the simulator has an event manager, I/O routines, and various tools that can be

used to build components [8].

Advantages
The user can create different network topologies; adjust the parameters of each

component's operation, measure network activity, save/load different simulation

configuration and log data during simulation execution. The simulator is equipped with

graphical user interface.

Disadvantages
Users of the simulator might face problems setting up the network topology because of

the requirement to consider a large number of parameters.

User or programmers needs to have strong foundation in C programming language to

customize the simulator's components. Besides, it is using procedural approach whereby

the components have overlapped functions between the components. This is not supposed

to happen in object-oriented programtning approach.

The simulator only can run is UNIX or LINUX platform. This makes the simulator can

only run in Iimited platforms and it is not widely used.

15

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

2.1.2 INSANE Simulator

INSANE is a network simulator designed to test various IP-over-ATM algorithms with

realistic traffic loads derived from empirical traffic measurements [9]. INSANE's ATM

protocol stack provides real-time guarantees to A TM virtual circuits by using Rate

Controlled Static Priority (RCSP) queuing. A TM signaling is performed using a protocol
similar to the Real-Time Channel Administration Protocol (RCAP).

Internet protocols supported include large subsets of IP, TCP, and UDP. In particular, the

simulated TCP implementation performs: connection management, slow-start, flow and
congestion control, retransmission, and fast retransmit.

The bulk of INSANE is written in C++. Customization and simulation configuration is

performed with Tel script. Some version of INSANE has been tested and determined to
work in the following hardware and platforms:

• DEC Alpha AXP series, Digital UNIX 3.2

• DEC DECstation 5000 series, Ultrix 4.2A

• HP PA-RISC 90001700 series, HP-UX 9.03

• IBM RS6000 series, AJX 3.2.5

• Intel x86, BSDl BSD/OS 2.0

• Intel x86, FreeBSD 2.1.0 and 2.1.5 release

• Intel x86, NetBSD l .OA

• SGI Indigo, Trix 5.3

• Sun Sparcstation, Solaris 2.3, 2.4, and 2.5

Advantages
Although there is no graphical user interface, an optional Tk-based graphical simulation

monitor provides an easy way to check the progress of multiple running simulation

processes. It is designed to nm large simulations whose results are processed off-line.

Besides, it works quite well on distributed computing clusters (although simulations are

all sequential processes, a large number of them can easily be n111 in parallel).

16

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Disadvantages

The simulator is restricted to work in only certain hardware and platforms as listed above.

Also, INSANE currently requires the following other software packages to run the
system:

• g++ (version 2.6.3 or greater)

• libg++ (any version consistent with the installed g++)

• GNU make (pretty much any recent version)

• Tel (version 7.3 or greater). Tk (version 4.0 or greater) is required for the simulation

monitor, but is not necessary to nm simulations. lNSANE has been tested with Tel
7.5 and 7.6, and Tk 4.1 and 4.2

2.1.3 REAL Network Simulator

The REAL network simulator is a network simulator designed for testing on congestion

and flow control mechanisms. The simulator takes as input a scenario, which is

description of network topology, protocols, workload and control parameters. lt produce

as output statistics such as the number of packets sent by each source of data, the queuing

point, the number of dropped and retransmitted packets and other similar information.
This simulator has many different versions.

For REAL version 5.0, it provides users with a way of specifying such networks and to

simulate their behavior. It provides around 30 modules (written in C) that exactly emulate

the action of several well-known tlow control protocols (such as TCP), and 5 research

scheduling discipline (such as Fair Queuing and Hierarchical Round Robin). Besides, it

includes a graphical user interface (GUI) written in Java. This allows users to quickly

build simulation scenarios with a point-and-click interface [I OJ.

This REAL 5.0 simulator runs on Sun3s, Spares, MIPS boxes, Vaxen and 382, under

4.3BSD-like operating systems: SunOS, HUX, UMIPS, Ultrix etc. Besides, the REAL

version 4.0 has been successfully ported to i386/Frec8SD 2.0.5 platform mid the Linux
(Red Hat Release) platform l 11 J.

17

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

The files in REAL 5.0 can be divided into the following logical cJasses:

• Node functions: These are the functions that execute protocols in nodes.
• Queue management and routing: These manage buffers in nodes and gateways, and

perform packet switching.

Node functions implement computation at each of the nodes in the network. There are

three types of node function: source, router and sink.

The queue management functions are written in an object oriented and layered style. The

queue objects are manipulated by a small set of functions. Each layer provides services

that the layer above uses to provide its own services. Packets are buffered in a per­

conversation linked list and are accessed by two pointers: one points to the packet at the

head of the queue, and another points to the tail. Each packet has a field, which points to
the next packet in the queue.

Comparing REAL 5.0 to REAL 4.0 in October 1993, and in the last four years, many

changes have been made. These include:

• many new simulation modules

• a Java-based GUI

• faster, smaller, cleaner simulation engine

• ports to FreeBSD, Solaris, and Digital Unix (OSF/3)

• simulation exercises based on my book

• minor bug fixes

Advantages

This simulator provides a flexible test bed for studying the dynamic behavior of flow and

congestion control schemes in packet switch data networks. Besides, the user can modify

the simulator software to accommodate network components.

18

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

Disadvantages

Some of the REAL version's network simulator does not give user an interactive

modeling environment with a graphical user interface (GUI) representation capabilities
but it is available in REAL version 5.0. This version includes a graphical user interface

(GUI) written in Java and it allows users to quickly build simulation scenarios with a

point-and-click interface. Besides, knowledge of C programming language and different
platforms is a must for programmers to make changes from the source code provided

because this simulator only will nm in several platforms.

2.1.4 Java Network Simulator

This Java network simulator is a flexible test bed for studying and evaluating the
performance of ATM network without the expense of building a real network. This

simulator is written in Java language, thus it is written in object-oriented programming

approach. Originally, this simulator is a Java version of NIST ATM/HFC network

simulator enhanced with object-oriented features. Typically, the simulator is a tool that

give user an interactive modeling environment with a graphical user interface which

provides the user with a means to display the topology of the network, define the

parameters and connectivity of the network, log data from simulation run, and to save and
load the network configuration.

Class JavaSim

The .JavaSim object is the main object of the simulator. rt keeps a list of all the network
components (all are descendents of SimComponent), and a list (a queue) of all events (in

the form of Simlivenn. Every component contains a set of parameters (all inherit from
SimParameter).

Class Cell

The Cell class is a data resource class used by components like CBJV1pp, Genertcb'il!

and Generics 'JM Switch throughout the simulator. As a result, it contains attributes

needed by the operation of all executor classes. The main contribution of Cell is lo

19

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

provides necessary information for ATM switching. Major attributes are virtual path

identifier and virtual channel identifier which provide switching information.

Class SimClock

The simulator is event driven. Components send each other events in order to

communicate and send cells through the network. The software contains an event

manager, which provides a general facility to schedule and send, or "fire" an event. An

event queue is maintained in which events are kept sorted by time. To fire an event, the

first event in the queue is removed, the global time is set to the time of that event and any
action scheduled to take place is undertaken.

Events can be scheduled at the current time or at any time in the future. Scheduling

events for the past is considered illogical. Events scheduled at the same time are not

guaranteed to fire in any particular order. Simulator time is maintained by the event

manager in units of ticks. The time is maintained as an unsigned 32-bit value. The

simulator time represented by one tick can be changed by software modification, but not

by the simulator user. It provides a set of time translation functions (all static) for normal

translation between tick and actual time (in microseconds, milliseconds and seconds).

Class SimEvent

Every StmComponem communicates with each other by enqueuing Simliveni for the

target component. For example, when component A wants to send a packet to component

B, component A creates a Simlivent that specifies B as its destination, and enqueue the

event. The Simlivent object also contains a time so that this event is fired at exactly the

specified time. Component B will then be able to react to the event accordingly.

Class SimComponent

This is the most important class to understand in the simulator in order to development

new components. Every network component in the simulation must inherit
SimComponent. The SimComponent class itself should not be instantiated (although this

is possible) because it only provides the skeleton for a11 actual component. I\ new

20

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

component should extends SimComponent and override its various methods in order to
provide meaningful operations for the component.

Class SimParameter

Every SimComponent can have internal parameters (not shown/accessible by users) or

external parameters (shown/accessible by users). All external parameters must inherit

SimParameter. By extending SimParameter, one obtains parameter logging and meter

display features automatically. SimParamlnt, Siml'aramhouble, and SimParamBool,
provide support for integer, double, and boolean parameters. Other types of parameters
can be created by extending SirnParameter accordingly.

A TM Generic Switch

The switch is the component that switches or routes cells over several virtual channel

links. A local routing table is provided for each switch. This table contains a route

number (that is read from the incoming cell structure and is the equivalent of the cell's

virtual channel identifier), a next link entry, and a next switch/next BTE (host) entry.

Let's consider a cell arriving at the switch from a physical link. At the next switching slot

time, after some delay (set by user), the switch looks in its local routing table to

determine which outgoing link it should redirect the cell to.

Broadband Terminal Equipment (BTE)

The BTE component simulates a Broadband ISDN node, e.g., a host computer,

workstation, etc. A BTE has one or more A TM applications at the user side and a

physical link on the network side. Cells received from the application side are forwarded

to the physical link.

Link Components

This component simulates the physical medium (copper wire or optical fiber) on which

ceJls are transmitted. The user may choose the link speed from a list of several different

21

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

standard rates. The user also specifies the length of the link. The output parameter

reported by the simulator is link utilization in terms of bit rate (Mbits/s).

ATM Applications

The ATM application at the end-point of a link is a traffic generator. The traffic source

emulated by this component may be a constant bit rate (CBR) source or a variable bit rate

(VBR) source. Either source type may be generated at one of three priority levels: a

CBR/VBR level (highest priority), the Available Bit Rate (ABR) level where cells are

sent on the transmission bandwidth that is available after the higher level traffic has been
sent, and the Unspecified Bit Rate (UBR), the lowest priority traffic.

Advantages
The simulator is equipped with better graphical user interface. The user can create

different network topologies; adjust the parameters of each component's operation,

measure network activity, save/load different simulation configuration and log data

during simulation execution. Output performance can be viewed in text based and

graphical representation on the screen while the simulation is running. This simulator
also works on various platforms.

Disadvantages
This simulator is written in Java language, so it is not a web-enable approach. It requires
a lot of memory processing during the simulation.

2.1.5 Comparison

The following table gives a comparison among the studied simulators. Features being

compared are discrete event simulation, object-oriented, graphical user interface (GUI),
multithread, and web-enable.

22

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Table 2.1 Comparisons among Various Simulators

-- Simulator Discrete Object- GUI multithread Web- Platform
event oriented enable independent
simulation

NIST -,) x -,) x x x ATM/HFC
INSANE -,) -,) Poor x x x
REAL -,) x Poor x x x
JAVASIM -,) -,) -,) -,) x -,)

2.2 Programming Approaches

The selection of programming language is very important in building a simulator or any

application programs. Therefore, it is a need to consider many advantages and

disadvantages of several programming approaches. Here, procedural programming and

object-oriented programming are both discussed.

2.2.1 Procedural Programming

In the early days of computing, programming was an extremely procedural process. The

procedural languages placed code into blocks called procedures or function. Procedural

program is written as a list of instructions, telling the computer, step-by-step, what to do:

Open a file, read a number, multiply by 4, display something. Most traditional computer

languages like Pascal, C and FORTRAN are procedural.

Procedural programming is fine for smalJ projects. It is the most natural way to tell a

computer what to do, and the computer processor's own language, machine code, is

procedural, so the translation of the procedural high-level language into machine code is

straightforward and efficient. What is more, procedural programming has a built-in way

of splitting big lists of instructions into smaller lists: the functions [MONET].

The goal of each of these blocks was to act like a black box, which completed one task or

another. The purist of this type of programming believed that one could always write

23

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

these functions without modifying external data. One of the difficult problems with this

language method is to write all functions in such a way that they actually do not modify

data outside their boundary. So, when functions began changing data outside their

boundary (in C this is done by passing a pointer), a problem ca11ed coupling began to

surface. Therefore, object-oriented programming language occurs. In a procedural-based

programming language, a programmer writes out instructions that are followed by a
computer from start to finish.

2.2.2 Object-Oriented Programming

Object-oriented programming (OOP) has its key component technologies - inheritance

and polymorphism. lnheritance is a form of software reusability in which new classes are

created from existing classes by absorbing their attributes and behaviors and embellishing

these with capabilities the new classes require. Polymorphism is a character of assigning

different meanings to a particular symbol or object, depending upon the context in which

it is used. This allows objects to act differently within different situations, it enable the
flexibility of a program design.

Objects are the central idea behind OOP. The idea is quite simple. A method is similar to

a procedure. The basic idea behind an object is that of simulation. Most programs are

written with very little reference to the real world objects the program is designed to

work with; in object-oriented methodology, a program should be written to simulate the

states and activities of real world objects. This means that apart from looking at data

structures when modeling an object, we must also look at methods associated with that

object, in other words, functions that modify the objects attributes.

The concept in which objects contain both data and methods is referred to as

encapsulation. This could hide unimportant implementation details from other objects,

which provides modularity as the source code for an object can be written and maintained

independently of the source code for that objects. Similarly, one does not need to know

how a class is implemented, but just to know which methods to invoke.

24

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

OOP approach has several key benefits. These are as follows:

• Extensibility - By modification of existing objects, new features can be added to the
system where changes on new objects can be done.

• Maintainability- Maintenance and modification of objects can be done individually.
• Reusability - Objects, which are used in a system, can also be used in another newly

built system with little or no changes.

Simplicity - It is simple and less complex using the OOP approach while building
programs, which attempts to mode] the objects interactions of the real world. Any
changes are easy to modified with no much affect within the entire system.

• Modularity - Objects within the program are individual separate entities, the internal

•

workings of which are isolated and de-coupled from other objects in the system. This
solves the problem of coupling in procedural programming approach.

2.3 Programming Language

Java is just a small, simple, safe, object-oriented, interpreted or dynamically optimized,
byte-coded, architecture-neutral, garbage-collected, multithreaded programming language

with a strongly typed exception-handling mechanism for writing distributed, dynamically
extensible programs. Java is developed by Sun Microsystems. It is a powerful
programming language built to be secure, cross-platform and international [12].

As in a modern software development, Java is object-oriented from the ground up. The
point of designing an object-oriented language is not simply to jump on the latest

programming fad. The object-oriented paradigm meshes well with the needs of client­
server and distributed software. Benefits of object technology are rapidly becoming

realized as more organizations move their applications to the distributed client-server
model.

An important characteristic that distinguishes objects from ordinary procedures or

functions is that an object can have a lifetime greater than that of tho object that created

25

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

it. This aspect of objects is subtle and mostly overlooked. In the distributed client-server
world, it is possible to have potential for objects to be created in one place, passed around

networks, and stored elsewhere, possibly in databases, to be retrieved for future work.

As an object-oriented language, Java draws on the best concepts and features of previous

object-oriented languages, primarily Eiffel, SmallTalk, Objective C, and C++. Java goes

beyond C++ in both extending the object model and removing the major complexities of

C++. With the exception of its primitive data types, everything in Java is an object, and

even the primitive types can be encapsulated within objects if the need arises.

In Java, only single inheritance is supported but multiple implementations of interface

class is allowed [12]. Security and safety are main features of Java programming

language. Its execution semantics guarantees that every nm-time error is detected and

reflected in a throw exception. Java eliminated the use of pointers of C++ and replaced it

with references, which prevents program from accessing illegal areas of the system's
memory. Besides, Java also supports dynamically run time method identification.

Libraries of Java is supported through the use of packages and allow complicate

programs to be build but the overhead of keeping track of all libraries is reduced.

Concurrency is very important in a simulation model as there might be many objects

doing their own process at die same time. lt is impossible to let them execute in a

sequential methods, as this could not be appropriate as compared to real time simulation

result. Most of the programming languages do not enable programmers to specify

concurrent activities; rather they provide only simple set of control structures where one

action is performed after one another [13]. In Java, programmer specifies that application

contains threads of execution and the program may execute concurrently with other

threads. These powerful capabilities are not available in C and C++. Instead, in C and

C++ they have single-threaded languages.

26

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

2.4 Programming Tool

There are many types of Java programming tools available in market. One can develop

Java programming using pure Java SDK [14] without the supporting of integrated

development environment (IDE), or just selects a tool like Microsoft J++, Borland

JBuilder, or Symantec Visual Cafe. This section describes about Borland .JBuilder as the

selected tool for development.

JBuilder is a group of highly productive tools for creating high-performance, platform­

independent applications for Java. It is designed for all levels of development of projects,

ranging from applets and applications that require networked database connectivity to

client/server and enterprise-wide, distributed, mutli-tier computing solution.

The]Builder IDE supports a variety of technologies including:

• 100% Pure Java

• JavaBeans

• Java 2

• Java SDK 1.2.2

• JFC/Swing

The additional technologies supported by JBuilder Professional edition are:

• Servlets

• Remote Method Invocation (RMI)

• Java Database Connectivity (.JDBC)

• Open Database Connectivity (ODBC)

• All major corporate database servers

The additional technologies supported by Jlsuilder Enterprise are:

• Enterprise JavaBeans (EJB)

• JavaServer Pages (.TSP)

• Common Object Request Broker Architecture (COR13A)

27

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

JBuilder also provides developers with a flexible, open architecture that makes it easy to

incorporate new SDKs, third-party tools, add-ins, and JavaBean components [15].

2.5 Switching Approaches

ATM switching approaches can be categorized into three categories: shared memory

approach, shared medium approach, and fully interconnected approach.

2.5.1 Shared Memory Approach

In the shared memory approach, the switching element convert the incoming cells from

serial to parallel at the input port and convert them back to serial port when the cells

leave the switching element at the output port. The sequence of the cell to be read into the

memory is determined by the controller.

Shared memory approach has several advantages. It can achieve 100% throughput under

heavy load (this is an output queuing approach). The size of buffers is minimized to

achieve a specified ce11 loss rate since the shared memory can absorb a large burst of

traffic directed to one output port. The approach, however, suffers from a few drawbacks.

The memory must operate N times faster than the port speed since the read or write

operation must be performed at one time. The controller needs to process the cell header

and routing tag at the same speed as memory. This causes scalability problem of the

switch and thus difficult for multiple priority classes, complicated cell scheduling,

multicasting and broadcasting (16].

28

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Headers

WNRA

RI A: read address
WA: write address
SIP: serial lo parallel
!'IS: parallel lo serial

Controller r--
1
I
I
I
I
I

----1
' f
I

' ' I

Memory

]~ ~I

N-. ~ N

Figure 2.1: Shared Memory Approach

2.5.2 Shared Medium Approach

For shared medium approach, the incoming celJs are converted from serial to parallel and

then sequentially broadcast on the TDM bus in a round-robin manner. At each output,

address filters pass the cells to the appropriate output buffers based on their routing tag.

Like shared medium approach, the outgoing cells will be converted back to serial before

passing to the external transmission path.

This approach has many advantages. Since the outputs are modular, the address filters

and output buffers are easy to implement. The multicasting and broadcasting are quite

straightforward due to the broadcast-and-select nature. On Hie other hand, the address

filters and output buffers must operate at N times faster than the port speed and this

limitation has placed a scalability problem for the approach. Another disadvantage of this

approach is more buffers are needed since the memory is not shared [16].

29

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

AF: address filter
SIP: serial to parallel
PIS parallel to serial

TD
SIP AF

M buffer PIS

b
u

N SIP s AF buffer PIS N

Figure 2.2: Shared Medium Approach

2.5.3 Fully Interconnected Approach

Fully interconnected approach is the easiest switching approach. Each input and output

has an independent path and a total of N2 paths exist for N input/output. All the arriving

cells are broadcast on a separate bus to all outputs and address filters pass the appropriate

cells to the output queues.

Fully interconnected approach has many advantages. As shared medium approach, all

queuing occurs at the outputs. Address filters and output buffers are simple to implement

and only need to operate at the same speed as the port. Hence it is scalable to any size and
speed. In addition, multicasting and broadcasting are natural. Unfortunately, the quadratic

growth of buffers limits the number of output port. Furthermore, fully interconnected

approach needs a large amount of buffers [16].

2.6 Buffering Methods

Buffering is necessary to prevent certain queuing problems in ATM switch. For instance.

two cells from different input ports may be addressed to same output port at the same

30

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

time. In this situation, buffering is necessary to prevent cell lost. There are four buffering

methods in ATM switching, i.e., input buffering, output buffering, central buffering, and

crossbar buffering [17]. Figure 2.3 illustrates the four buffering methods. Each of the

methods has its advantages and disadvantages and neither one can be said to be the best.

(a)

(c) (d)

(h)

Figure 2.3: Buffering Methods: (a) Input (b) Output (c) Crossbar (d) Central (171

2.6.1 Input buffering
Input buffering [18) is implemented with placing Input buffers at the input controller

(IC). This method with simple first-in-first-out (FIFO) logic has many advantages. H is

easy to implement in the sense that the internal links of the switching element have to

operate at the same speed as the external input/output line. Hence, there is no requirement

for internal speed up. Hardware complexity can be lower than other buffering schemes .

. However, a collision may occur if more than one cell compete simultaneously for the

same output. This will cause head-of-line blocking and all the cells behind the blocking

head of the queue cell are blocked even though they are addressed to an idle output. An

arbitration logic is needed to determine which of the first cells hold in different input

buffers need to be transmitted to the output port. The arbitration logic may be the simple

31

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

logic (round robin) or complex method (aiming to keep the same queue length in all the

buffers). To solve this problem, random access memory (RAM) may be used instead of

FIFO. If the first cell is blocked and the second cell was addressed to an idle output, then

the second cell will be selected for transmission. Random access memory approach

requires a complex queuing control to ensure the sequence of cell.

2.6.2 Output Buffering

The buffers are placed at the output controller of the switching element. Each output link

is provided with separate buffers. Output buffering [19] does not suffer from the head-of­

line blocking effect and have a higher throughput than input buffering. A simple FIFO

logic is enough for output buffering and no arbitration logic has is required.

Out buffering has a main drawback that requires a very fast internal pass to process all

the cells transmitted in the interconnection network. The interconnection network and the

output buffer have to handle N cells at one time when there is N number of input

controller. This higher speed increases the implementation complexity and cost of the

switching element.

2.6.3 Crossbar Buffering

The buffers can also be located at the cross-points inside the switching element. Cells

arriving at the inputs are enqueued in the appropriate buffer according to the destination

tag. Buffers corresponding to a particular output of a switching element are served in

round robin or some other predetermined logic.

This buffering scheme removes the blocking of packets by a packet addressed to a

different output of the switching element. All packets arriving at the inputs of a switching

element can be transferred to their target buffer within one clock cycle. Herc,

multicasting is simple to implement but significantly rmpacts the switch performance

J2

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Crossbar also has the advantage of requiring only one read and one write operation on a

buffer during a cycle.

The disadvantage from the performance point of view is that there are many small

buffers, each of which is dedicated to a particular input/output par, and no buffer sharing

is possible. Therefore, buffers cannot be used efficiently. The total required buffers are

also much greater compare to other methods.

2.6.4 Central Buffering

In the central buffering approach, the buffers are shared between all the input and output

controller. All the incoming cells will be directed to the central buffer and every output

controller will identify the cell, which is addressed to it in a FIFO approach.

Central buffering method is the most efficient method since it only requires the smallest

buffer size to minimize the cell loss in a heavy load condition. No head-of-line blocking

in this method and optimal throughput/delay performance is achieved.

The disadvantages of this approach are fast memory element is required to allow all the

incoming cells and outgoing cells access to the memory port at the same time. Besides,

big complexity queuing management is also needed [16][20].

2. 7 Queuing Models

The idea of queuing system is depicted as below: An item from some population of items

arrives at the system to be served. If the server is idle, an item is served immediately.

Otherwise the item joins a waiting line. When the server has completed serving an item,

the item departs. If there are items waiting in the queue, one is immediately dispatched to

the server.

Certain parameters associated with this queuing system are described as below:

33

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

• A, - number of arrivals per second.
11 w - number of items waiting.

11 Tw- waiting time in queue, including those that do not wait at all.

11 Ts - server service time for each item.

• p - utilization, fraction of time that the server is busy, measured over some interval of

time.
11 q - number of items in the system, includes both item being served and waiting items.

11 T q - time that an item spends in the system, waiting and being served.

Certain key characteristics of the model must be chosen before deriving any analytic

equations for the queuing model. The following are the typical choices in data

communication context:
• Infinite item population. This means that the arrival rate is not altered by the loss of

population.
• Infinite queue size. The queue size can grow without bound.

• FIFO dispatching discipline. The first cell of the queue will be selected to dispatch to

the server.

2.7.1 Single-Server Queue

Figure 2.4 illustrates the single-server queue. No item will lose in the system if capacity
of the queue is infinite; they are just delayed until they can be served. At p == I, the server

becomes saturated with 100% working of the time. The theoretical maximum input rate

(arrival rate) that can be handled by the system is

Amax"-"' in,

However, the queues become very large near system saturation, growing without bound

when p =] . Practical considerations, such a response time requirements or buffer sizes,

usually limit the input rate for a single server to 70%-90% of the theoretical maximum.

34

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Waiting line
(queue)

Departures

A. = arrival rate

Arrivals
Server

W = item waiting
Tw= waiting time

T, = service time
p = utilisation

Q =items in queuing system
T, =queuing time

Figure 2.4: Single-Server Queue

2.7.2 Multiserver Queue

Figure 2.5 illustrates a multiserver queue where all servers sharing a common queue. If

an item arrives and at least one of the servers is available, the item is immediately

dispatched to that server. If none of the servers is available, the item will be kept in
waiting line. As soon as one server becomes available, the item is dispatched from the

queue to that server. It is assumed that all the servers are identical.

For multiserver queue, with N identical servers, p is the utilization of each server and

therefore Np is the utilization of the entire system. The theoretical maximum utilization is

N X l 00% and theoretical maximum input rate is

Amax=NIT

35

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Waiting line
(queue)

). = arrival rate

Arrivals

W = item waiting
T w = waiting time

Figure 2.5: Multiserver Queue

2.7.3 Multiple Single-Server Queue

Departures

Multiple single-server queues can be considered as the "combination" of single-server

queue and multiserver queue. This apparently minor change in structure has a significant

impact on performance [2].

A. = arrival rate

A/N

Arrivals

N'N

Figure 2.6: Multiple Single-Server Queue

36

Departures
Univ

ers
ity

 of
 M

ala
ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

2.8 Switching Models

This section consists of three different switching models: Banyan switch, Tandem

Banyan switch, Knockout switch and Shared Memory switch.

2.8.1 Banyan Switch
Banyan switch [21] is one of the most common types of Multistage Interconnection

Network (MIN) [22]. The path for the cell to switch is determinate by the output port

address, i.e. Banyan switch is self-routing.

Figure 2.7: 2 X 2 Banyan Network

10
ll

00
01.

Figure 2.8: 4 X 4 Banyan Network

Figure 2.7, 2.8, and 2.9 show the switching element for a 2 X 2 Banyan network, 4 X 4

Banyan network, and 8 X 8 Banyan network. A basic 2 X 2 Banyan network can route an

incoming cell according to a control bit (output address). The cell will be routed to the

upper port address for the control bit 0 and to the lower port address if the control bit is l.

37

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Consider the 4 X 4 switching element, the interconnection of 2 stages of 2 X 2 switching

elements can be done by using the first bit of the output address to denote which

switching element to route, and then using the last 2 bits to route the cell through the 4 X

4 network to the appropriate output port.

ll l

000
001

010
Oll
101

LOO
110

Figure 2.9: 8 X 8 Banyan Network

In general, to construct an N X N Banyan network, the nth stage uses the nth bit of the

output address to route the cell. For N = 2 to the power of n, the Banyan will consist of n

= log-N stages, each consisting ofN/2 switching elements.

The switching in Banyan network is performed by simple switching elements, cells are

routed in parallel, and all elements operate at the same speed. Another advantages of it

are large switches can be easily constructed modularly and recursively and implemented

in hardware. Bellcore's Sunshine switch and Alcatel Data Networks' 1100 are the

examples that employ Banyan network technique [23].

Unfortunately, Banyan networks suffer from internal blocking. Two cells from different

input, addressed to different output may contend before the last stage. So the overall

38

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

throughput is reduced. This problem can be solved by sorting the inputs according to

their output destination and this approach lead to the classical Batcher-Banyan network.

Figure 2.10 shows the input queuing model for a 4 X 4 Banyan network. In the input

queuing model, each server is connected to two queues. If the first cell in both queues is

addressed to same server, the server chooses one cell randomly. However, this model

causes the head-of-line blocking, as illustrated in Figure 2.11, Server X is busy with a

cell. Server Y is idle although there are cells addressed for server Y waiting in the

queues. These cells are blocked from access to server B because there are cells in front of

them. This situation can be remedied by First-In-Random-Out buffers rather than a First­

In-First-Out buffers, but is quite complex to implement.

I
I I

I_ - - - - - - - - - - - - _I

I
I I ·- - - - - - - - - - - - - _,

r-------------~ r-------------,
I I I I
I I I I
I ~·~~~-;...'-..i I

Figure 2.10: Input Queuing Banyan Network

The output queuing model, on the other hand, routes the celJs directly to the appropriate

queue, thus avoiding head-of-line blocking. However the output queuing model requires

higher performance hardware and is more expensive to implement [4].

39

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Y X Server
I

I I - - - - - - - - - - - - - - - - -·

Figure 2.11: Head-of-line Blocking in Input Queuing Banyan Network

r-------------.,
I I
I
I

r-------------.,
I I
I

I '--------------· I
I - - - - - - - - - - - - - _I

Figure 2.12: Output Queuing Banyan Network

2.8.2 Tandem Banyan Switch

Tandem Banyan switching fabric composes of multiple Banyan switches. These Banyan
switches are arranged in series such that each output of every Banyan switch is connected

to the input of next Banyan switch. Conflict occurs when two cells are addressed to the

same outlet at the same switching element. One of these cells is scheduled correctly while
the other is routed the "wrong" way. Furthermore, whenever a cell is misrouted in a

40

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Banyan network, it will be marked; and whenever there is conflict between a properly

routed cell and a misrouted cell, the former is always assigned successfully. In this way, a

cell misrouted at some stage of a Banyan network will have no effect on the routing of

properly routed cells at later stages of this switch. At the output of the first Banyan

switch, those successfully routed cells are placed in output buffers, while those misrouted

cells will have their mark removed and are fed into the second Banyan switch for further

processing. This process is repeated through the K Banyan switches. Unsuccessful cells

at the output of last Banyan switch are lost. With. a sufficiently large K, it is possible to

decrease the cell loss to the desired levels [24].

1 _.-I:-:-:-:::::·:::·:-:-:-:

2 n++--+-{t~t::<)r+--+-
INPUTS a a I

PACKET
FILTERS

CONCENTRATOR/
SHIFTER

PACKET
BUFFERS

OUTPUT
1

OUTPUT
N

Figure 2.13: Tandem Banyan Switch

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

2.8.3 Knockout Switch

For ATM switch with a fully interconnected approach, the number of output queues will

be N2 for N X N switches. Knockout switch removes this requirement by adding a

concentrator stage to the switch.

Refer to Figure 2.12. In the output queuing model, each fixed-length cell arriving at one

of the input ports is placed on a broadcast bus from which each of the output modules

taps the cells intended for itself. It is obvious that multicast and broadcast cells are really

supported. The output module acts as a statistical multiplexer, deferring cells that cannot

be immediately placed onto the output link because of contention.

r IC I
t

I IC I
I

I IC I
I

I IC I
I

I oc I r oc I I oc I I oc I

Figure 2.14: N X N Switches

For Knockout switch [25] queuing model, each input to an output module receives the

cells broadcasted on the corresponding input bus The job of each cell filter is simply to

pass the cell to the concentrator if the cell is addressed for that output, and to mark the

cell as inactive otherwise. The concentrator is to identity among its inputs those cells that

are active and route them to its leftmost outputs, one cell per output line.

42

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Assume that the concentrator has only L outputs and the number of inputs is N. If Lor

less than L cells arriving at the concentrator simultaneously, these cells can moved o the

queues directly. If more than L cells arrive simultaneously, a "knockout tournament" is

performed to select L of them will be process and the rest will lost in the switch [4].

Inputs

L

Concentrator

Output

Figure 2.15: Knockout Switch Queuing Model

2.8.4 Shared Memory Switch

The distinctive feature of an NxN shared memory switch is its use of a high-speed

internal bus, with a bit rate N times as large as the rate on each individual input/output

line. For a time slot of length F, the internal bus is capable of transferring a cell in a

minislot of length FIN. All cells received during a time slot are therefore transferred to

the shared memory, albeit with a very short delay (probably during the very next time
slot, if double-buffering technique is used within the serial-to-parallel converter).

Conversion from serial to paraUel is required to maintain acceptable clock rates; the bus

43

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

clock rate only needs to be NIW times higher than the incoming bit rate, with W the bus

(and memory) width.

In the shared memory, the cells intended for each output are kept in separate partitions.

During an output cycle, the cells are discharged to their outputs, again with only a

minislot of length 1'/N being required on the output bus to discharge a single cell. Thus in

a full time slot one cell is read from the shared memory for each output. If the memory

partition for an output is empty, the corresponding minislot remains unfilled,

It is a matter of implementation whether the partitions in the shared memory are of rigid

or flexible sizes. Obviously, flexible-size partitions require more sophisticated hardware

to manage, but the cell loss rate performance is improved, because a memory partition

does not suffer from overflow until no free memory remains at all; outputs idle at a given

time can "lend" some memory to other outputs that happen to be heavily used at the

moment.

The design simplicity appeal of the shared memory architecture makes it popular for

small-sized fast switches, particularly for interconnecting a small number of LANs.

However, for even moderately sized switches, the clock rate required of the internal bus

becomes intolerable. As an example, at a cell arrival rate of 155 Mbit/sec, N = 32 and W

= 16, the internal bus has to operate under a clock rate of 310 MHz.

INPUTS OUTPUTS

SJP
CONVERTER

PIS
CONVERTEH

PARALLEL
BUS

2

PARALLEL
BUS

2

N N

Figure 2.16: Shared Memory Switch Architecture

44

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

2.9 Switching Performance Issues

A cell may lose in transmission if less co-ordination among arriving cells as far as their

destination requests are concerned and resource limitation within the switch. Certain

performance issues might be considered for ATM switching.

Connection Blocking
Connection blocking occurs when a new connection cannot be accepted due to lack of

resources. It is defined as the probability that not enough resources can be found to allow

all the required physical connections between input ports and output ports at any time.

Since ATM is connection-oriented, a logical connection must be found between the input

ports and output ports after a connection was set-up.

Internal Blocking

In ATM switching, it is possible for two cells, addressed for different output ports

compete for the same internal resource. This situation is called internal blocking. In this

case, one cell will be blocked.

Output Blocking
It is also possible for more than one cell request for same output port simultaneously and

this referred to as output blocking.

Head-of-line Blocking

The other blocking is called head-of-line blocking. Head-of-line blocking happens when

the head of an input queue is for some reason blocked, and causing the cell behind the

queue which request for a free resource cannot leave the queue.

45

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Throughput

Throughput is defined as the average number of cells that are successfully delivered by

the switch per cell-duration per output line.

Speed-up

The speed-up of a packet switch can be implemented in the space-switching domain or in

the time switching domain. For space-switching domain. S disjoint paths are provided

simultaneously to any output port. For time switching domain, the switch has a speed up

factor S for the switch fabric to operate S times faster than the external lines.

Cell Loss Error

If too many cells in the switch have to be transmitted through the same link and the

buffer to hold the cell is full, certain cells may be lost in the switching. The probability of

a cell lost is defined as fraction of cells lost within the switch. Typical value is in the

range of 10-10 tol0-8.

Cell Insertion Error

There is another possibility for a cell to be sent to the wrong logical connection. This

error will cause one destination to miss a cell and the second destination to accept an

additional. Switching element should always make the cell insertion error to be 1000

times better than a cell loss.

Switching Delay

Switching delay is the average time a cell spends in the switch from the time it arrives

until the time it delivered to its requested line. A maximum delay in ATM switching has

to be guaranteed for a low value of jitter. Typical delay values are between I 0 and I 000

ultra-seconds.

46

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Traffic Model

This refers to the traffic in the input ports. Many traffic models can be described in two

random processes. The first process governs the arrival cells while the second process

describes the distribution by which arriving cells choose their destination ports.

Multicast Connections
A point-to-multi-point connection is the situation where an incoming cell requests P
output ports. A point-to-point connection has a value P = 1 and P = N refers to
broadcasting.

Other Issues
Other issues include the cell sequencing integrity for each input-output pair, scalability to

large size and implementation complexity [16][4].

2.10 Summary
Object-oriented approach is the ideal approach due to its simplicity, modularity,

modifiability, extensibility, maintainability, and reusability. The Java programming

language was selected. This is because it is object-oriented and it contains the built-in

support for multitbreaded programming. Moreover, Java is robust compared to C++ as it

has no pointer references to other data. ln addition, Java was selected due to its

portability, which makes it platform independent and supports web applications.

The preferred switching model is the Banyan model with input and output buffering. The

implemented queue model is the single-server queue where each input buffer is

connected to one of the corresponding inlet of the Banyan.

47

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

CHAPTER 3: SYSTEM ANALYSIS AND DESIGN

This chapter begins with a detailed illustration about ATM switch functions and

switching architectures. The Switch Function is broken down into user plane, control

plane and the management plane. The ATM switch architecture gives an overview of the

whole ATM structure and also provides detailed explanation on the cell switch fabric

where switching is actually performed. At the end, a description of the A TM traffic

parameters, the simulation model, the JavaSim architecture, the system architecture,

object-oriented and class design are discussed.

3.1 Switch Functions

In ATM switch, switching functions can be examined in the context of the three planes of

the ATM model, i.e. user plane, control plane, and management plane.

3.1.1 User Plane

In user plane, the main function for ATM switch is to relay user data cells from input

ports to the appropriate output ports. Only 5 bytes cell header will be processed by the

switch and the 48 bytes payload is carried transparently. Virtual Path Identifier/Virtual

Channel Identifier (VPI/VCl) is used to route the cells to the appropriate output ports.

User plane function can be divided into three functional blocks: Input module, output

module and the cell switch fabric

3.1.2 Control Plane

The main function in control plane is to establish and control the Virtual Path and Virtual

Channel connections. Information in control cells payload is not transparent to the

network. The switch identifies signaling cell, and even generates some itself The

Connection Admission Control (CAC) performs major signaling functions. Signaling

information may/may not pass through the cell switch fabric, or may be exchanged

through a signaling network such as SS7.

48

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

3.1.3 Management Plane

Major operations of management plane are fault management functions, configuration

management functions, performance management functions, security management

functions accounting management, and traffic management. These functions can be

represented as being performed by the functional block Switch Management. The Switch

Management is responsible for supporting the A TM layer Operations and Maintenance

(OAM) procedures. OAM cells may be recognized and processed by the ATM switch

[23].

3.2 A TM Switch Architecture

ATM switching architecture includes a few elements. There are input modules, output

modules cell switch fabric, connection admission control, and switch management. This

switching model is shown in Figure 3. 1 .

3.2.1 Input Module

ATM input module determines the incoming signal and extracts the A'I M cell stream.

This involves signal conversion and recovery, processing cell overhead, and cell

delineation and rate decoupling. The following functions should be performed for input

module:

• Header error checking using Header Error Control (HEC) field.

• Validation and translation of VPI/VCI.

• Determination of the destination output port.

• Passing signalling cell to Congestion Admission Control (CAC).

• Passing Operations and maintenance (OAM) cell to switch Management.

• Usage parameter control/network parameter conrol (UPC/NPC) for each VPC/VCC.

• Adding internal tag containing internal routing and performance monitoring

information for use within the switch only.

49

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Connection Switch
Admission Management
Control

- Input--. ~
Output Module Module ""'"

AT.
al Cell Switch Fabric sign

.. Input r-. f-tii
Output Module Module ..

ATM
sign

Figure 3.1: ATM Switching Model

3.2.2 Output Module

The function of output module is preparing AM cell streams for physical transmission. It

is basically doing the reverse processes of the input module like:

• Removing and processing internal tag.

• Possible translation of VPI/VCL

• Possible mixing of cells from Switch Management and CAC with outgoing cell

streams.

• Cell rate decoupling.

• Mapping cells to appropriate payloads and generate the overhead.

• Conversion of digital bit stream to optical signal.

• Generating Header Error Control (HEC) field.

50

M
al

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

3.2.3 Cell Switch Fabric

The cell switch fabric consists of input controller (IC), switching element, and the output

controller (OC). The input and output controller handle the communication between

switching element, also input and output modules. The switching element routes the cells

from an input port to an appropriate output according to the routing information in ceII

header. A routing table provides an association between the incoming and outgoing Jinks

for each connection is maintained in the switching node [4][23].

The functions of cell switch fabric can be categorized as:

• Cell buffering.

11 Cell routing.

• Traffic concentration and multiplexing.

• Multicasting and Broadcasting.

• Redundancy for fault tolerance.

• Cell scheduling base on delay priorities

• Congestion monitoring and activation of Explicit Forward congestion Indication

(EFCI).

Input
Controller

Input
Controller

Switching
Element

Figure 3.2: Cell Switch Fabric

51

Output
Controller

Output
Controller

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Cell Buffering
In ATM switch, arriving cell may be aligned in time by means of singe-cell buffers. Cell

buffering may be necessary since the cells may be addressed to the same output

simultaneously. The switch may buffer cells in input controller, cell switch fabric, output

controller, or use a combination of all. Output buffering is desirable from a performance

point of view; the hardware requirements on this method are much larger than input

buffering [4] [23].

Cell Routing
Cell routing mechanism transfers the cells from the input port to the output port. The

input module attaches a routing tag to each cell, and the switch fabric routes the arriving

cells from its input port to the appropriate output port. It may be necessary to discards.

Cell transfer can be achieved with one large switching element or with several smaller

interconnected switches [4] [23].

Concentration and Multiplexing
Traffic needs to be concentrated at the inputs of the switching fabric to better utilize the

incoming link connected to the switch. The concentrator aggregates the lower variable bit

rate traffic into higher bit rate for the switching matrix to perform the switch at standard

interface speed. The concentration is highly correlated with the traffic characteristics, so

it needs to be dynamically configured. The concentrator can also aid in dynamic traffic

distribution to multiple routing and buffering planes, and duplication of traffic for fault

tolerance. At the outputs of the routing and buffering fabric, traffic can be expanded and

redundant traffic can be combined [23].

Multicasting and Broadcasting
Multicasting is the term used when a cell is transmitted to several outputs, while

broadcasting refer to the transmission of a cell to all outputs. Both can either be

performed directly in the switching elements or by inserting a copy network in front of

52

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

the switch fabric. A copy network makes several copies to the multicasted/broadcasted

cell and assures that the copies are routed to the appropriate outputs [4].

3.2.4 Connection Admission Control (CAC)

Connection Admission Control responsible for major signaling functions including

establishes, modifies, and terminates virtual path/ virtual channel connections. The

functions can be illustrated as below.

• High level signalling.

• Signalling ATM Adaptation layer (AAL) functions to interpret or generate signalling

ceUs.

• Interface with a signalling network.

• Renegotiations with users to change established VPCs/VCCs.

• Allocation of switch resources for VPCs/VCCs, including route selection.

• Admission/rejection decisions for requested VPCs/VCCs.

• Generation of UPC/NPC parameters.

CAC can be either placed centralized or distributed to the blocks of input modules. Jn the
former case, a single processing unit would receive signaling cells from the input

modules, interpret them, and perform admission decisions and resource allocation

decisions for all connections in the switch. In the later case, all the CAC located at each
input modules has a smaller number of input ports. This approach divides the job among

the various CACs and performs them in parallel, thus solves the connection processing

bottleneck problem. However, it is more difficult to implement compare to centralized

CA Cs.

53

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

3.2.5 Switch Management

Functions of Switch management are:
111 Handle the physical layer OAM, ATM layer OAM.

a Configuration management of switching elements.

11 Security control for the switch database.

11 Usage measurements of the switch resources, traffic management.

11 Administration of a management information base.

11 Customer-network management, interface with operations systems.

11 Support of network management.

Like CAC, switch management might be centralized or distributed among mput modules.

Again, a distributed switch management solves the performance bottleneck problem but a

lot of co-ordination will be required. Each distributed input module switch management

unit can monitor the incoming user data cell streams to performance accounting and

performance measurement. Output module switch management units can also monitor

outgoing cell streams [23].

3.3 ATM Traffic Parameters
When an. ATM source sends ATM celJ traffic to its corresponding ATM destination over

the network, the traffic characteristics are described or specified by source traffic

parameters. These traffic parameters are the values that can indicate the nature of the

source-traffic characteristics and they includes Peak Cell Rate (PCR), Sustainable Cell

Rate (c';CR), Maximum Burst Size (M.BS), Minimum Cell rate (MCR), and others.

3.3.l Peak Cell Rate (PCR)

PCR defines an upper bound on the traffic that can be submitted by a source on an ATM

connection. PCR is equal to the inverse of the minimum cell inter-arrival time T:

54

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

PCR = l/T

3.3.2 Sustainable Cell Rate (SCR)

SCR is the average maximum rate which measurement based on a longer time scale than

used for PCR. SCR is needed to specify a VBR source. It enables network to allocate

resources efficiently among a number of VBR sources without dedicating the amount of

resources required to support a constant PCR rate. The SCR is only useful if SCR < PCR.

3.3.3 Maximum Burst Size (MBS)

MBS is the maximum number of cells that can be sent continuously at the peak cell rate.

If cells are presented to the network in clumps equal to the MBS, then the idle gap

between clumps must be sufficient so that the overall rate does not exceed the SCR.

3.3.4 Minimum Cell Rate (MCR)

MCR defines the minimum commitment requested of the network. It is used with the

ABR service. The quantity (PCR - MCR) represents an elastic component of data flow

for which the network provides only the assurance that this capacity will be shared fairly

among the ABR flows.

3.4 Switch Architecture: Impact on Traffic Handling
The performance an appJication requires from ATM network can be defined in terms of

the following parameters:
• Throughput - bits per second delivered to the application.

• Latency - total of the transmission delay, propagation delay, and queuing delay

through each network element or switch.

• Jitter - variation of delay, or the variation in the intercell arrival of consecutive cell.

Some applications are very sensitive to jitter such as voice.

55

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

111 Cell loss - cell loss already described in section 1.1.1. TCP data services can recover

from packet loss and use it for gaining information on the congestive state of the

network. Nevertheless, packet retransmission caused by cell loss can seriously affect

application throughput [25].

The design of the ATM switch used to create ATM network will have a major impact on

the network's ability to support simultaneously the different ATM service class.

Throughput/Cell Lost
For a switch to ensure that it maximizes throughput and minimizes the cell loss, a non­

blocking design should be used. A switch must not loose any cells in the traffic switched

to each output. If the traffic is less than or equal to physical capacity of the port, a non­

blocking switch should exhibit no loss when handling full rate input load if the traffic

pattern is congested.

It is also important that the traffic on a congested port does not interfere with traffic on a

non-congested port. Input buffered switches can suffer what is known as head-of-line

blocking.

Latency/Jitter
Many applications require that latency added by the switch be minimized. Low latency

also delivers low jitter for those applications sensitive to jitter. Figure 3 .3 illustrates the

latency through a switch is significantly influenced by the switches internal design.

56

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Microsecond

70

61.9

60

50

40

30

20

10

Cisco Bay FORE 3COM DEC Newbridgc Lighstream

Figure 3.3: Latency per Port [261

3.5 Switching Model
This subsection gives an idea regarding the whole simulation environment for this

project. ATM Network Topology describes how ATM switch is connected in the ATM

network environment. Besides, it also gives a description on the basic simulator mode]:

Banyan Switching.

On top of that, this model describes the Buffering in ATM switch and the decision for

selecting the cell to transmit when there are two cells addressed to same output outlet

57

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

The ways of implementing multithreading in ATM network environment will also be

discussed.

3.5.1 ATM Network Topology

This simulator focuses on the development of N ports ATM switching which simulate the

Banyan switching architecture. Each port may be connected to a link where the link will

be further connected to either another ATM switch or an end system. An end system

might have several applications. Each application is uniquely identify by the value of

VPI/VCI. Hence, a link might have only one ATM application or several ATM

applications might be multiplexed together through that link.

3.5.2 Banyan NxN Switching

For Banyan NxN switch architecture, the number of stages can be determined by

s = log2N
and the number of switching elements (c) within a stage is

c =N/2

Finally, the total number of switching elements (t) for a Banyan NxN switch is

t:::: SC

This simulation model simulates Banyan NxN switch. For example, in Banyan 4x4

switch, it consists of 2 stages, and each stage consists of 4 input buffers. The incoming

ATM cells will be first placed into the input buffers for switching element in stage 1,

these cells will be switched to the intermediate buffers between switching elements in

stage l and stage 2. At the output of the last stage, there are 4 output buffers where all

the switched cells will be placed in here before transmitted through the link component.

For Banyan 8x8 switch, it consists of 3 stages and each stage consists of 8 input buffers.

Again, all the incoming cells will be placed in those buffers before internal switching is

performed within an individual switching element. Finally, all the switched ATM cells

will be placed in the output buffers before transmitted io the link components.

58

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

3.5.J Buffering

As mentioned in the sub-section above that a switching element consists of two input

buffers and two output buffers. Input buffer and output buffer for switching element at

stage n+ 1 is the output buffer of switching element at stage n and input buffer for

switching element at stage n+2. Cells inserted into buffer will be placed in First Come

First Serve (or first in first out, FIFO) basis and the ce11 selected from each buffer is the

head-of-line cell of that buffer.

The buffer described is a fix size buffer. All the buffers within an A TM switch have same

size. Discarding of cell only happen at input buffers and output buffers to the Switch (not

switching elements), which is connected to the outside links. This situation occurs when

input buffer to switch is full while the incoming link still sending in the cell or the

outgoing link is too slow when the output buffer is full.

Fix size buffer Incoming cell
will be placed at
encl of 011e11e

First cell in
queue will be
removed

Figure 3.4: First Come Fist Serve Buffer

3.5.4 Switching
•

A routing table will be created once the network topology is set. All the information for

ATM applications, which will be switched through that J\ TM switch, will be stored i11

this table. When performing switching for an ATM cell, the output port for that cell will

59

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

be determined by that routing table. For switching within a switching element, the output

buffer will be checked first. If the buffer is full, the operation will be stopped.

3.5.5 Multithreading

One of the interested part for this model is multithreading. Every component in the

network is a single thread and all of them can run simultaneously. The speed of operation

for each component is controlled under the general clock. For example, there might be

two switches existing in the network environment and both of them might have different

speeds.

3.6 JavaSim Architecture

This section will discuss on the object-oriented design and mam classes that are

important to the Java network simulator. Among the classes are Javasim.java, Cell.java,

Simc'lock.java, SimEvent.java, SimComponentjava, Siml'arameter.java . ' and

Siml'rovider.java.

The JavaSim object is the main object of the simulator It keeps a list of all the network

componenets (all are descendants of SimComponent), and a list (a queue) of all events (in
the form of SimEvent). Every component contains a set of parameters (all inherit

SimParameter). All other classes are mostly helpers that provide certain services such as

time service, logging, meter display and others. All classes within the dotted rectangle in

Figure 3.5 belong to the simulation engine. These classes provide the main function to the

simulator and other classes can just inherit from these main classes in order to use their

service.

60

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

r··· .. ···'"··········· .. ··1

SimPanel
SimProvider

SimClock

Sim Log

SimMeter

inh rits

SimParamlnt

SimParamDouble

GenericATMSwitch GenericLink

CBRApp GenericBTE

SirnParamBool.

Figure 3.5: Hierarchy of All the Significant Objects in the Simulator

JavaSimJava
The Javasim class is the main class that provides the important function to the simulation

engine. This functions include:

• It is the main object that contains everything in the simulator.

• It provides all Graphical User Interface (GUI) functions.

11 It provides the main Jframe for the application so that user can use it as a workspace

to create the network topology. Closing the JFrame will exit the simulator program.

• It provides the event manager to handle event-passing among all components.

There will be only one instance of the JavaSim object throughout the simulation. Anyone

with a reference to this instance can make use of the following services:

long nowt);

61

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

I/This function returns current simulation time in tick

java. util.List getSimComponentsO;

I/It returns a list of all existing SimComponent

boolean isCompNameDuplicate(.)tring name);

I/This function returns true if the supplied parameter name ts already used

//by another SimComponent

/lltprevents two components with the same name

void not?fyPropertiesChange(SimComponent comp);

//SimComponent must call this whenever there are structural changes to

//the parameters, for example, add or remove parameters

void enqueue(SimEvent e);

//Every communication (message exchange) between any components

//must involve creation of a Simlivent and a call to the enqueuet) method

The above methods can only be called by objects that have a reference to the main

Javasim object.

Cell.java

The Cell class is a data resource class used by components like CBRApp, Genericb'Ili

and GenericAlMSwitch throughout the simulator. As a result, it contains attributes

needed by the operation of all executor classes.

The main parameters in Cell class are:

int vpi=u: //Virtual path identifier
int vci=Il, //Virtual channel identifier

62

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

At the initial stage, vpi, and vci values are set to zero.

SimClock.java
The SimClock class provides a set of time translation functions for normal translation

between tick and actual time (in microseconds, milliseconds and seconds). It is an

important class to synchronize the time throughout the simulation process. The functions

provided by SimClock class are as follow:

static double Tick2Sec(long tick); I/Converts ticks to seconds

static double Tick2MSec(long tick); I/Converts ticks to milliseconds

static double Tick2USec(long tick); //Converts ticks to microseconds

static long Sec2Tick(double sec); I/Converts seconds to ticks

static long MSec2Tick(double msec); I/Converts milliseconds to ticks

static long USec2Tick(double usec); //Converts microseconds to ticks

static double getSec(long tick); I/Returns current time in seconds

static double getMSec(long tick); I/Returns current time in milliseconds

static double getUSec(long tick); I/Returns current time in microseconds

SimEvent.java
Every SimComponent communicates with each other by enqueuing Simlivent for the

target component. For example, when component A wants to send a packet to component

B, component A creates a Simlivent that specifies B as its destination, and enqueue the

event. The SimEvent object also contains a time so that this event is fired at exactly the

specified time. Component B will then be able to react to the event accordingly.

The constructor for SimEvent class is shown below:

SimEvent(int aType,SimComponent src.Simclomponent dest.long alick.Object / J

params);
//The constructor needs an event type (as defined in Siml'rovider or a

private event type), the source and destination SimComponent, a time (in

ticks), and an array ofjava.lang.Objcct (which can be anything} holding

various parametersfor the event

63

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

I/The event type determines what the array will contain

Upon receiving the Simlivent object, its content can be retrieved by the following

functions:

int get'Iypet); //Get the event type

SimComponent getSourceO; I/Get the source SimComponent

SimComponent getlresti); //Get the destination SimComponent

long get'Iickt); I/Get the time (in ticks) to.fire the events

Object[] getl'aramst); I/Get the event's parameters

SimComponent.java
SimComponent class is the most important class in the simulator in order to develop new

components. Network components like GenericATMSwitch, Genericl.ink, GenericBTE,

and VBRApp inherit from SimComponent.

This class provides the skeleton for an actual component. A new component should

extend SimComponent and override its various methods in order to provide meaningful

operations for the component. The constructor for Simtlomponcnt class is shown below:

SimComponent(String aName,int aClass,int a'Iype.Javallim aSim,Poinl foe);

/!Every new component must provide a constructor with exactly the above

parameters and the super(aName,aClass,aType,aSim,loc)function is

immediately called as the first statement of the method in order to override

its parameters

The SimComponent also provides a set of functions according to its types of operations.

Among the operations is neighboring operation, copy operation, initial/reset operation

and event handler operation.
The functions m neighboring operation are addNeighbor, removclveighbor,

removebleighbors and isConnectable. Any component that needs to handle neighbor

connect/disconnect operations should override these methods.

void addN eighbor(SimComponent comp);

64

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

I/The simulation engine calls this function when a new neighbor is

connected to this component

void removebleighbor/Simclomponeru comp);

I/The simulation engine calls this function when a neighbor is

disconnected from this component

void removebleighborstjava.util.List comps);

I/The simulation engine calls this function when a group of neighbors is

disconnectedfrom this component

boolean isConnectable(SimComponent comp);

//The simulation engine calls this function when a new component is about

to be connected to this component

//This function checks whether two components can be connected together

//The connection rules are:

Ill) Application (CBRApp) only allowed to connect to BTE

112) BTE only allowed to connect to Application (CBl?App) and

Genericl.ink

/13) Genericl.ink only allowed to connect to Gcnericb'l'li and

GenericATMSwitch

/14) GenericATMSwitch only allowed to connect to Genericl.ink

The only function in copy operation is copy.
void copy{SimComponent comp);

//This method is used to copy parameter values of another Stmclomoonent
of the same type. This method must be override in order to ensure that all

necessary parameter values are copied

The functions in initial/reset operation are reset and start.

void resett);

65

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

I/This function brings the status of the component back to the same status

as if it is just newly created

void startt);

I/This function starts the simulation when the user clicks the "Start"

button

The function in event handler operation is action.

void action(SimEvent e);

I/This is the event handler of this component, and will be called by the

simulator engine whenever a Simlivent with this component as the

destination fires.

SimParameter Java
Classes like Siml'aramlnt, Simraramliouble and SimParamBool inherit from

Siml'arameter. These classes provide support for integer, double and boolean parameters.

Other types of parameters can be created by extending Simi'arameter accordingly. By

extending Simrarameter, these cJasses can obtain parameter logging and meter display

features automatically. The constructor for Siml'arameter class is shown below:

SimParameter(String ablame.String compName, long creation'! ick, boolean

isLoggable);

//The parameters for Simrarameter constructor are:

//aName - name of the parameter

/lcompName - name of the component that owns the parameter

//creation Tick- time when the parameter is created

//isLoggable -cwhether the parameter can be logged in the logfile

66

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation wi111 Emphasis on Switch Architecture

SimProvider.java
The Siml'rovider object defines all the public events (this is the only part of the

simulation engine that requires recompilation in order to allow development of new

SimComponent and event types). All private events should be defined within the

particular SimComponent source itself. All private events must be greater than a constant

(SimProvider.Ev__PRIVATE) defined in Siml'rovider. So, the first private event should
have a value of SimProvider.EV PRIVATE+ 1, the next SimProvider.EV_PRlVATH + 2,
and so on.

Every SimComponent must have a component class (not to be confused with the Java

class) and a component type. Siml'rovider class creates two methods that can be used to

obtain the component class and type of any Simtlomponent as shown below.

private static final String[] classes=]

''ATM Switch",
"BTE",
"Link",
''Application",

};

staticfinal int EV_SELFTEST=O;
static final int EV_RECE1VE=l;
static final int EV_ READY=2;
staticfinal intEV_PRIVATE=lOO;

//Event type constants

final int getCompClassO;
//Get the component class (e.g. swuch, BTE. link etc.)

final int getComp7}peO;
//Get the component type (further division under a component class)

67

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

3. 7 System Architecture Design

The ATM simulator is created base on the Banyan NxN technique. Banyan 4x4 will be

used as an example to illustrate the design architecture.

Banyan Switch

Link

Buffers Switching
elements

Link

Buffers

Switching path from one inlet to one outlet for a switching element need to pay more

attention. With referring to Figure 3.6, the following describes Banyan 4x4 switching

path:

Stage l switching:

Figure 3.6: Banyan 4x4 Switch Architecture

• Inlet I and inlet 2 at first switching element (i.e., the upper left switching element) are

connected to inlet 1 and inlet 3 at stage 2 switching elements.

• Inlet 3 and inlet 4 at second switching element (i.e., the lower left switching element)

are connected to inlet 2 and inlet 4 at stage 2 switching elements.

Stage 2 switching:

• Inlet I and inlet 2 at first switching element (i.e., the upper right switching element)

are connected to outlet J and outlet 2.

(>8

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

• Inlet 3 and inlet 4 at second switching element (i.e., the lower right switching

element) are connected to outlet 3 and outlet 4.

3.8 Object-Oriented Design

Class BanyanSwitch is a derived class from GenericATMSwitch, and thus it will inherit

all the features from SimComponent. Class BanyanSwitch contains two other classes,

which is SwitchingElementPort and Switchinglilement. Normal ATM components like

ATM generic switch, BTE, generic link and ATM application (CBR) are developed and

override various method in the SimComponent in order to provide a meaningful

operations for the components .

... ~ ~ l ;
SimPanel

SirnProvider

SimCiock

SimLog

'

! ~ .. ;

SimMeter

1.. ==
inh rits

SimParamint GenericATMSwitch Generic Link

SimParamDouble GenericBTE CBRApp

inherits SimParamBool
BanyanSwitch

SwitchingEJementPort

SwitchingElement

Figure 3.7: Java Switching Simulator Objects

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

3.9 Class Design

This section gives a description on classes design in this project. Among the classes

highlighted are Banyanswttch, Switchinglilementl'ort and Switchinglilemeni.

Class BanyanSwitch
Class BanyanSwitch is a derived class from Generic/i'I'Miiwitch. This class is responsible

for switching within an ATM switch. In here, Banyan NxN architecture is implemented.

This class consists of SwitchingElementPort and Swuchinglilement. Several important

attributes are
11 nCol - total columns or stages within Banyan, for Banyan NxN, the number of

columns or stages is log2N.
• n - total number of switching elements for a Banyan switch, for Banyan NxN, the

number of switching elements is nCol x N/2, where N/2 is the number of switching

elements within a column or stage. For instances, Banyan 8x8 consists of 12
switching elements and there are 4 switching elements in each column or stage.

Banyan 16xl6 consists of 32 switching elements and there are 8 switching elements

in each column or stage.

Class SwitchingElementPort
This class is used for both input ports/buffers and output ports/buffers. Every inlet of

switching elements consists of an input port/buffer and one output port/buffer for the
outlet of the last column's/stage's switching elements. Class Switchingtilementl'ort

primarily contains ATM cell.

Class SwitchingElement
Class SwitchingElement stores the switching information in a switch. It performs

switching for a switching element. The cell will be sent to the correct switching element

destination.

70

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

3.10 Summary

The A TM switch fonctions can be viewed from three separate ATM planes. Each of the

planes has different roles. On the other hand, the ATM switch architecture consists of

several parts, which includes congestion admission control, switch management, input

module, cell switch fabric and the output module. ATM cells flow from the incoming link

to the input module, passing through the cell switch fabric and the output module, and

then finally into the outgoing link. For the proposed simulation model, the project has

focused primarily on the switching within the ATM switch itself. As a result, congestion

admission control and switch management are not within the scope of this project.

However, ATM traffic parameters are of concern, because they play an important role in

ensuring QoS. An overview of simulator model is also presented in this chapter. Lastly,

the chapter concludes by presenting the JavaSim architecture, system architecture design,

object-oriented design and class design to be developed.

71

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

CHAPTER 4: IMPLEMENTATION AND TESTING

Chapter 4 discusses the implementation and testing phases that need to be done for the

simulator. During the implementation phase, all the classes with important attributes will

be shown together with the explanation of these attributes as well as methods contained

within the classes.

Simulator testing is done in two parts. Component testing will test the resource classes

and system testing focuses on cell switching testing.

4.1 Implementation

This ATM simulator consists of one main package: javasim. This package consists of all

information and classes for the execution of a simulator which includes classes like

CBRApp.java, Cell.java, GenericA1MSwitch.java, Genericb'Ili.java, Genericl.ink.java,

JavaSim.java, SimClock.java, SimComponentjava, Simlivent.java, Siml.og.java,

SimMeter .java, Siml'aneljava, Siml'aramliool.java, Simi'aramhouble.java,

SimParameter.java, SimParamlntjava, and finally Siml'roviderjava.

Followings will describe attributes within classes of switching simulator components for

this package. Among the classes are BanyanSwitch, Swuchinglilementl'ort and

Switching.Element.

BanyanSwitch
class GenericA7MSwitch extends SimComponent implements Serializable {

class BanyanSwitch implements Serializable

{
int nlnput,nCol; I/The number of input ports and columns/stages

SwitchingElement bs[]; /l'J'he switching element

}

}

72

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

BanyanSwitch is an inheritance of GenericATMSwitch class. BanyanSwitch makes use of

nCol to store a number of columns or stages. n is used to store the total number of

switching elements for a Banyan switch.

When this object is instantiated, the number of input ports, nlnput is instantiated through

the BanyanSwitch constructor.

Two important internal methods are used in BanyanSwitch, i.e. createswitch and in.

These methods are declared internally because they need not accessed by other objects.

createswuch creates the link for the switching elements and determines the entire routing

path within a Banyan NxN. in is responsible in creating the destination path for the ATM

cell.

Banyan NxN Implementation
The inputs to the switch are the inputs to the elements in the first column/stage, and the

outputs of the last column/stage are the outputs from the switch. In each switching

element, one output is connected to the input of the element just horizontally on its right,

and the other goes to an element whose line number, represented in binary, differs in

precisely the j's bit, where j is the column number of the element (counting from 0). This

simple rule also tells how to construct a path from any input to any output: in each

column/stage j, an appropriate switching element should be set in the "bar" state if the j's

bits of the input and the output numbers equal, and in the "cross" state if those bits differ.

The implementation of Banyan NxN is shown below.

void createswuchi)

{

int n,i,iTmp,iCol,j;

nCof~0(int)(Math.log(nlnput)!Math.log(2)); //The number of columns/stages

n =(int) (nCol *(nlnput/2)); II The number of switching elements

bs"=new SwitchingElernent[n};

73

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

for(i=O; i<n; i+ +)

bs[i]=new Switcninglilemenu=vi);

forti=O; i< (n-(int)(nlnput/2)); i++)

{

bs[i].port[O].link=i+(int)(nlnput/2);

I/The creation of link

iCol=(i/(int)Math.pow(2,(int)((i*2)/nlnput)))%2;

~f(iCol 00= =0)

i'Imp=l *(int)Math.pow(2,(i*2)/nlnput);

else

i'Imp=I *(int)Math.pow(2, (i*2)/nlnput);

bs[i}.port[J].link0=iTmp+(int)(nlnput/2) +i;

}

for(i=i;i<n;i++)

for(j=O;j<2,j++)

bs[ij.port[J}. link=(int)i%(nlnput/2) +i:
}

SwitchingElementPort
class GenericATMSwitch extends Simtlomponent implements Serializable {

class BanyanSwitch implements Serializable

{
class SwitchingElementPort implements Serializable

{
int destination[l,link,nCeLl; I/The destination and link ofthe ATM cell

74

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Cell buffer[]; I/The buffer in the switching element

)

}

)

SwitchingElementPort contains attributes for the destination and link of the ATM cell,

and the buffer in the switching element.

When this object is instantiated, the cell (nCell), the link (link), the destination

(destination) and the buffer (buffer) are instantiated through the Switchmgiilementi'ort

constructor.

Interface methods, in and out are used for both input ports/buffers and output

ports/buffers. Every inlet of switching elements consists of an input port/buffer and one

output port/buffer for the outlet of the last column's/stage's switching elements.

SwitchingElement
class GenericA TMSwitch extends' Sunilomponent implements Serializable {

class BanyanSwitch implements Serializable

{
class SwitchingE!ement implements Serializable

{
SwitchingElementPort port[]; I/The switching element port

String name; //The name of switching element

}

}

}

Swuchinglilement contains attributes for the switching element port and the name of the

switching element.

75

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

When this object is instantiated, the name of the switching element (name) and the

switching element port (port) are instantiated through the Switchinglilement constructor.

Interface methods, in and out are used to perform switching for a switching element.

4.2 Component Testing

Component testing is done in several classes like Banyanswitch, Switchinglilementi'ort
and SwitchingElement to ensure the interaction during the switching process will perform

according to the actual theory.

BanyanSwitch
Testing on BanyanSwitch is easy. Banyanswitch can be tested by instantiating a

BanyanSwitch object and assigning the MAXPORT value. At the end, the value is printed

out.

l. Instantiate object and insert MAXPORT value.

BanyanSwilch bs=new RanyanSwitch(MAXPOlff);

2. Display the output.
System. out.println(" Value for MAXPORT= "+MAXPORT);

Output:
Value for MAXPORT=l6

SwitchingElementPort
Switchinglilementl'ort is tested by instantiating Switchinglilementl'ort object twice and

the value that is printed out is exactly the same as the number of times

SwitchingElementPort has been instantiated.

l. Instantiate object.
SwitchingElementPort port/};

76

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

port=new SwitchingElementPort[2];

2. Display the output.

for(i=O; i<2; i+ +)
port[i}=new SwitchingElementPortO;

System. out.println(i);

Output:

2

SwitchingElement
SwitchingElement is tested by instantiating SwitchingElement object 32 times and the

value that is printed out is exactly the same as the number of times Switchinglilement has

been instantiated.

1. Instantiate object.
SwitchingElement bsf.J;

bs=new SwitchingElement[32];

2. Display the output.
for(i:c~O; i<32; i+ +)
bs[i] =new SwilchingElement('"'+ i);

System. out.println(i);

Output:

32

4.3 System Testing
The major purpose of the simulator system testing is switching testing. Switching testing

is carried out with the purpose to make sure that internal switching for ATM cells is

correctly and successfolly reaching desired output port

77

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Figure 4.1 and Figure 4.2 show the topologies that have been used for this testing session.

Figure 4.1: Testing Topology for Banyan 8x8

For Banyan 8x8, the followings static route has been made:

• app 1 to app8 (Switching will be performed from input port 0 to output port 7 and
input port 7 to output port 0)

• app2 to app7 (Switching will be performed from input port 1 to output port 6 and
input port 6 to output port 1)

• app3 to app6 (Switching will be performed from input port 2 to output port 5 and
input port 5 to output port 2)

• app4 to app5 (Switching will be performed from input port 3 to output port 4 and
input port 4 to output port 3)

Output for the Banyan 8x8 topology:
STARTED
This is a Banyan 8x8 Switch Architecture
Number of Columns/Stages: 3
Number of Input and Output Ports: 8

Number of Switching Elements within a Column/Stage: ./.

78

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Total Number of Switching Elementsfor this Banyan Switch is: 12

Switching Information:
Source: Port O; Destination: Port 7
Cell has been received by switching element: O;
Cell has been received by switching element: 5;
Cell has been received by switching element: J 1;

Switching Information:
Source: Port 7; Destination: Port 0
Cell has been received by switching element: 3;
Cell has been received by switching element: 6;
Cell has been received by switching element: 8;

Switching Information:
Source: Port 1; Destination: Port 6
Cell has been received by switching element: 0;
Cell has been received by switching element: 5;
Cell has been received by switching element: JI;

Switching Information:
Source: Port 6; Destination: Port 1
Cell has been received by switching element: 3;
Cell has been received by switching element: 6;
Cell has been received by switching element: 8;

Switching information:
Source: Port 2; Destination: Port 5
Cell has been received by switching element: l;
Cell has been received by switching element: 4;
Cell has been received by switching element: 10;

79

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Switching Information:

Source: Port 5; Destination: Port 2

Cell has been received by switching element: 2;

Cell has been received by switching element: 7;

Cell has been received by switching element: 9;

Switching Information:
Source: Port 3; Destination: Port 4

Cell has been received by switching element: 1;

Cell has been received by switching element: 4;

Cell has been received by switching element: 10;

Switching Information:
Source: Port 4; Destination: Port 3
Cell has been received by switching element: 2;

Cell has been received by switching element: 7;

Cell has been received by switching element: 9;

80

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Figure 4.2: Testing Topology for Banyan 16d6

For Banyan Ioxl 6, the followings static route has been made:

• appl to appl6 (Switching will be performed from input port 0 to output port 15 and

input port 15 to output port 0)

• app2 to app 15 (Switching will be performed from input port 1 to output port 14 and

input port 14 to output port 1)
• app3 to app 14 (Switching will be performed from input port 2 to output port 13 and

input port 13 to output port 2)
• app4 to appl3 (Switching will be performed from input port 3 to output port 12 and

input port 12 to output port 3)
• app5 to appl2 (Switching will be performed from input port 4 to output port. 11 and

input port 11 to output port 4)
• app6 to app 11 (Switching will be perfo1med from input port 5 to output port l 0 and

input port IO to output port 5)

81

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

• app7 to applO (Switching will be performed from input port 6 to output port 9 and
input port 9 to output port 6)

app8 to app9 (Switching will be performed from input port 7 to output port 8 and
input port 8 to output port 7)

•

Output for the Banyan 16xl6 topology:
STARTED

This is a Banyan 16xl6 Switch Architecture
Number of Columns/Stages: 4

Number of Input and Output Ports: 16

Number ofSwitching Elements within a Column/Stage: 8
Total Number of Switching Elements for this Banyan Switch is: 32

Switching Information:
Source: Port O; Destination: Port 15

Cell has been received by switching element: U;
Cell has been received by switching element: 9;
Cell has been received by switching element: l 9;

Cell has been received by switching element: 31;

Switching lnformation:

Source: Port I 5; Destination: Port 0
Cell has been received by switching element: 7;

Cell has been received by switching element: 14;

Cell has been received by switching element: 20;
Celi has been received by switching element: 2-1;

Switching information:
Source: Port l; Destination: Port I 4
Cell has been received by switching element: O;

Cell has been received by switching element: 9,·

82

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Cell has been received by switching element: 19;
Cell has been received by switching element: 31;

Switching Information:

Source: Port 14; Destination: Port 1

Cell has been received by switching element: 7;
Cell has been received by switching element: 14;
Cell has been received by switching element: 20;
Cell has been received by switching element: 24;

Switching Information:

Source: Port 2; Destination: Port 13
Cell has been received by switching element: l;
Cell has been received by switching element: 8;
Cell has been received by switching element: 18;

Cell has been received by switching element: 30;

Switching Information:

Source: Port J 3; Destination: Port 2
Cell has been received by switching element: 6;
Cell has been received by switching element: 15;

Cell has been received by switching element: 21;

Cell has been received by switching element: 25;

Switching Information:
Source: Port 3; Destination: Port 12
Cell has been received by switching element: I;
Cell has been received by switching element: 8;

Cell has been received by switching element: 18;

Cell has been received by switching element: 30;

83

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

Switching Information:
Source: Port 12; Destination: Port 3
Cell has been received by switching element: 6;
Cell has been received by switching element: 15;
Cell has been received by switching element: 21;

Cell has been received by switching element: 25;

Switching Information:

Source: Port 4; Destination: Port 11
Cell has been received by switching element: 2,·

Cell has been received by switching element: 11;
Cell has been received by switching element: 17;

Celi has been received by switching element: 29;

Switching Information:
Source: Port 11,· Destination: Port 4
Cell has been received by switching element: 5;
Cell has been received by switching element: 12:

Cell has been received by switching element: 22;

Cell has been received by switching element: 26;

Switching Information:
Source: Port 5; Destination: Port I 0
Cell has been received by switching element: 2;

Cell has been received by switching element: 11;

Cell has been received by switching element: 17;

Cell has been received by switching element: 29;

Switching Information:
Source: Port JO; Destination: Port 5
Cell has been received by switching element: 5;

84

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

Cell has been received by switching element: 12;
Cell has been received by switching element: 22;
Cell has been received by switching element: 26;

Switching Information:
Source: Port 6; Destination: Port 9
Cell has been received by switching element: 3;
Cell has been received by switching element: IO,·
Cell has been received by switching element: 16,·

Cell has been received by switching element: 28;

Switching Information:
Source: Port 9; Destination: Port 6
Cell has been received by switching element: 4;

Cell has been received by switching element: 13;
Cell has been received by switching element: 23;

Cell has been received by switching element: 27;

Switching Information:
Source: Port 7; Destination: Port 8
Cell has been received by switching element: 3;
Cell has been received by switching element: 1 O;

Cell has been received by switching element: I 6;
Cell has been received hy switching element: 28;

Switching Information:
Source: Port 8; Destination: Port 7
Cell has been received by switching element: 4;

Celt has been received by switching element: 13;

Celi has been received by switching element. 23;

Cell has been received by switching element: 27:

85

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Input Port 0 Output Port 0

Input Port 1 Output Port 1

Input Port 2 Output Port 2

Input Port 3 Output Port 3

Input Port 4 Output Port 4

Input Port 5 Output Port 5

Input Port 6 Output Port 6

Input Port 7 Output Port 7

Switching elements

Figure 4.3: The Actual Cell Switching for Banyan 8x8

Based on Figure 4.3 and Figure 4.4, the ceJls are correctly switched from the source to

their destination. This shows that an components are working properly and successful.

86

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

Input Port 0 Output Port 0

Input Port I Output Port 1

Input Port 2 Output Port 2

Input Port 3 Output Port J

Input Port 4 Output Port 4

Input Port 5 Output Port 5

Input Port 6 Output Port 6

Input Port 7 Output Port 7

Input Port 8 Output Port 8

Input Port 9 Output Port 9

Input Port I 0 Output Port 10

Input Port 11 Output Port 11

Input Port 12 Output Port I 2

Input Port 13 Output Port 13

Input Port 14 Output Port 14

Input Port 15 Output Port 15

Switching elements

Figure 4.4: The Actual Cell Switching for Banyan 16xl6

4.4 Summary
This chapter gives an idea on how the implementation and testing processes on the

switching simulator were carried out. Class implementation explains the attributes of

each class, which are declared together with their data types. The class implementation

also explains the methods in each class. This section is followed by the implementation

of Banyan NxN switch.

87

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for A TM Network Simulation with Emphasis on Switch Architecture

Testing of switching stimulator begins with component testing, followed by system

testing. Component testing focuses on the individual testing of each class. Meanwhile,

system testing focuses on switching testing.

88

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

CHAPTER 5: CONCLUSION

There are numerous architectures for ATM switches and each has its own merits and

drawbacks. This report presents a general Banyan switch for simulating switching

architectures in ATM networks using object-oriented programming.

Object-oriented programming is a type of programming in which programmer defines not

only the attributes, but also the types of operations that can be applied to the attributes.

Both attributes and operations are encapsulated into an object. One of the principal
advantages of object-oriented programming techniques over procedural programming

techniques is that they enable programmers to create modules that do not need to be
changed when a new type of object is added. A programmer can simply create a new
object that inherits features from existing objects. Moreover, object-oriented

programming is simple because it models the real world objects. It has attributes such as

modifiability, extensibility, maintainability, and reusability.

Java is an object-oriented language, which is similar to C++ but it is more robust than
C++ with no pointer references to external data. The other great features of Java are built­

in support for multithreading and the ability of the threads to run simultaneously. Finally,

the ability of Java to work under different platforms and different browsers fulfill the

objectives of this project.

This project is a simulation of Banyan NxN switching architecture. Designing of this

simulator is based on the object-oriented approach where the classes with corresponding

attributes and functions are defined first.

The implementation phase covers the part of coding for this simulator. Every class and

algorithm, which has been designed, should be included in Java code. Testing is done on

all of the Java classes. This testing process is also concerned with finding errors, which

result from unanticipated interaction.

89

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

This project managed to achieve the overall project objectives and goals, i.e.
development of a portable, cross-platform and a user-friendly graphical user interface
(GUI) simulator. Lastly, the following highlights strengths, limitations as well as the
proposed future enhancements.

System Strengths
• The simulator is fully object-oriented whereby all the functions and modules are built

in class. In addition, problem of coupling is highly reduced.

The simulator is built using Java Thread technology. When more than one switch is

created, switching environment becomes more realistic where all switches nm
concurrently instead of sequentially.

The separation of super class and subclass makes the switch design extensible .

•

•

System Limitation

• The simulator works based on Java application, therefore it is not web-enabled.

• The simulator works based on Banyan NxN architecture. Other switching model
such as Knockout switch are not presented.

Future Enhancements
• It should include other switching models, which allows a user to select the

architecture.

• It should also allow the execution of performance comparison for different types of

switching architecture.

90

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

REFERENCES

[1] Asynchronous Transfer Mode (ATM) Fundamentals Tutorial.
http://www. webproforum. com/ atm Jund/topicO 1. html. Last updated:

October 6, 1999. Web ProForums.
[2] Stallings, William. 1998. High Speed Networks: TCP/JP and A1M design

Principles. New Jersey, Prentice-Hall, Inc. pp. 85-88.
[3] J. Kenny. 1999. The ATM Forum Traffic Management Specification

Version 4.1, AF-1MOJ 2 I.OOO.

[4] ATM Switching Structures -A Performance Comparison.
http://www. its. lth.se/Personal/daniels/papers/nts J 2. abstract. html. Daniel

Sobirk, Johan M Karlsson.
[5] Appendix A. Computer Network Simulation.

http://oak.ece.ul.ie!~dalyjlthesis/aa.htm. Last updated: October 28, 1997.
Fergal.

[6] Application and Protocol Testing through Network Emulation.
http://is2.antd.nist.gov/itglnistnetlslides/index.htm. Last updated: September
1997. Interuetworking Technologies Group NIST.

[7] Discrete-Event Simulation. http://may.es.ucla.eduhlides/meyer­

pw98/tsld002.htm. Last updated: November 16, 1999. UCLA Parallel
Computing Laboratory.

[8] Nada G., el. 1998. The NISTAJMIHFC Network Simulator Operation and

Programming Guide Version 4. 0. National .Institute of Standards and

Technology.
[9] INSANE An Internet Simulated ATM Networking Environment.

http: //www. ca.sandia.govl-bmah/Sofiwarellnsane/ Last modified:

November 25, 1998. Bruce A Mah.

[10] REAL 5.0 Overview. http://www.cs.cornel/.edulskeshav!realloverview.html.

Last updated: August 13, 1997. S. Keshav, Cornell University.

[11] The REAL Network Simulator.
http://minnie.cs.adfa.edu.au!HHAl index.ntml. Last updated: June, 1995.

Warren Toomey.

91

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

[12] Guo, M., Hoang, D.B. 1998 An Object-based Network Simulator. Global
Telecommunication Conference 1998, GLOBECOM 1998. Vol.3, pp. 1562-

1567. November, 1998.
[13] Deitel & Deitel. 1999. JAVA How to Program, Third edition. Prentice Hall

Inc. New Jersey.
TM · The Source For Java Technology. http://www.;ava.sun.com. Last

updated: May 12, 2000. Sun Microsystems, Inc.
Borland JBuilder. http://www. borland. com/iechpubs/] builde r(J builder 3-

5/qslintro.html. Last updated: April 7, 2000. Borland Inprise.

Introduction to A TM switching.
http://www.rad.comlnetworks/1994/gbiranlatm ...:--~wi.htm. Last Updated:

1994. Giora Biran.
[17] B. Zhou and M. Atiquzzaman. 1995. A Performance Comparison of

[14]

[15]

[16]

Buffering Schemes for Multistage Switches. ICASPP '95, First International

Conference on Algorithms And Architectures for Parallel Processing.
Brisbane, Australia, April 19-21, 1995

[18] Hakyong Kim, Alunad, A, Changhwan Oh, Kiseon Eim. 1997. Performance
Comparison of High-Speed Input-buffered ATM Switches. Proceedings 1?f'

the IEEE ATM Workshop 1997. pp. 505 -513.
[19] Kwon. B., Kim. B., Park. J., Yoon. H., Cho. J. 1995. Performance Analysis

of Output Buffers in Multistage Interconnection Networks with Multiple

Paths. P,araJk:J and Dismbuted, in, Proceeding ofthe Seventh /h'/.:,'/J

Symposium. pp. 260 -265.
[20] Peifang Zhou, Yang, O.W.W. 1997. A New Design of Central Queuing

ATM Switches. Global Telecommunic:alions C'of?ference, !997, IEEH

GLOBECOM '97. Vol 1. pp. 541 -545.

[21] Alimuddin, M., Alnuweiri, H.M., Donaldson, R.W. 1995. The Fat Banyan
ATM Switch. 'Bringing Information to People', in, Proceedings ofthe

Fourteenth Annual Joint Conference of the !BEE Computer and
Communications Soch:ties, /f:,'fl'h' JNFOCOM '95. Vnl.2. pp. 659~666.

[22] Aude, J.S., Young, M.T., Bronstein, G. 1998. 1998. A High-performance

92

Univ
ers

ity
 of

 M
ala

ya

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Switching Element for A Multistage Interconnection Network. Integrated
Circuit Design, 1998. Proceedings. XI Brazilian Symposium. pp. 154 -157.

[23] A Survey of ATM Switching Techniques.
ftp:! I.ftp. net lab. ohio-state. edu/pub/jain/courses/cis 7 8 8-
95/ atm _switching/index. html. Last Updated: August 21, 1995. Sonia Fahmy,

[24] Aude, J.S., Young, M.T., Bronstein, G. 1998. 1998. A High-performance
Switching Element for A Multistage Interconnection Network. Integrated
Circuit Design, 1998. Proceedings. XI Brazilian Symposium. pp. 154 - J 57.

[25] Y. Yeh, M. G. Hluchyj, AS. Acampora, 1987. The Knockout Switch: A
Simple, Modular Architecture for High-Performance Packet Switching.
IEEE Journal on Selected Areas in Communications, VSAC-5. No 8. pp.

1274-1283.

[26] David M. Drury. 1996. ATM Traffic Management and the Impact of ATM
Switch Design, Computer Network and ISDN Systems. Vol 28, pp. 471-479.

1996.
[MONET] Procedural Programming Language.

http://monet.uwaterloo.ca/janelilpp.htm. Jane Li.

93

Univ
ers

ity
 of

 M
ala

ya

