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CURVED TEXT DETECTION

IN NATURAL IMAGES

ABSTRACT

At present, text orientation is not diverse enough in the existing scene text datasets. For

instance, text with curve-orientation has close to zero existence in them and thus received

minimal attention from the community. Motivated by this phenomenon, a new scene text

dataset, Total-Text, which emphasized on text orientations diversity has been collected as

the major contribution of this work. It is the first properly scaled scene dataset that fea-

tures three different text orientations: horizontal, multi-oriented, and curve-oriented. In

addition, several studies regarding other important elements such as the practicality and

quality of groundtruth, evaluation protocol, insights of curved text, and the annotation

process are presented in this work as well. These elements are found to be as important as

the images and groundtruth to facilitate a new research direction. In addition, Polygon-

Faster-RCNN, a text detection baseline, has been proposed as the second major contri-

bution of this work. It has demonstrated its ability in detecting text in all kinds of ori-

entations. Images of Total-Text and its annotation are available at https://github.com/cs-

chan/Total-Text-Dataset.

Keywords: Curved text, Scene text detection
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PENGESANAN TEKS MELENGKUNG

DALAM IMEJ SEMULAJADI

ABSTRAK

Kini, kepelbagaian orientasi teks dalam dataset ‘scene text’ yang sedia-ada adalah dida-

pati kurang mantap, sebagai contohnya, ketiadaan teks orientasi lengkung dalam dataset

tersebut. Akibatnya, kajian berkaitan dengan teks orientasi lengkung mendapat perha-

tian minimum daripada komuniti ‘scene text’. Dimotivasikan oleh fenomena ini, dataset

‘scene text’ yang baru, Total-Text, telah dikumpulkan sebagai kontribusi pertama dalam

tesis ini. Kumpulan Total-Text menekankan pada kepelbagaian orientasi teks. Ia meru-

pakan dataset pertama yang mempunyai tiga orientasi teks yang berbeza: ‘horizontal’,

‘multi-oriented’, dan ‘curve-oriented’. Di samping itu, beberapa elemen penting lain

seperti: kepraktisan dan kualiti groundtruth, protokol penilaian, pemahaman teks me-

lengkung, dan proses anotasi juga telah dikajiankan. Elemen-elemen tersebut berberat

sama dengan dataset untuk memudahkan penyelidikan baru. Selain itu, satu teks penge-

sanan baseline, yang bernama Polygon-Faster-RCNN, telah dicadangkan sebagai penyum-

bang kedua untuk kajian ini. Polygon-Faster-RCNN telah mendemonstrasikan keupayaan-

nya dalam mengesan teks dalam semua jenis orientasi. Imej Total-Text dan anotasinya

tersedia di https://github.com/cs-chan/Total-Text-Dataset.

Kata kunci: Teks melengkung, pengesanan teks
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CHAPTER 1: INTRODUCTION

Human communicates, not only verbally but often visually through written text, station-

ary signs, fancy billboards, banners, posters, etc. The constant need of conveying infor-

mation in the human society produces an abundant existence of text in every corner of the

world. Human leverages the existence of text in natural scenes to drive, find out the cafe

he or she wants to go, understand the context of the piece of art on the wall, be aware

of the sales happening in certain stores on the street, the application list goes on and on.

The abundant of such information in our everyday scenes calls for the incorporation of

it in the design of intelligence systems. Figure 1.1 shows two natural images filled with

scene text. By giving machine the ability to understand text in the wild, we could have

a smarter navigation system, convenient shoot-and-translate mobile application, efficient

image retrieval system, etc. All of these applications depend on the progress of the scene

text understanding research.

Both scene text detection and scene text recognition are two active research topics

under the umbrella of scene text understanding. Given a natural scene image, the goal of

scene text detection is to determine the existence of text, and return the location if it is

present. W. Huang et al. (2014); Y. Liu & Jin (2017); X.-C. Yin et al. (2015, 2014a,b);

Zhang et al. (2016); Zhou et al. (2017) Meanwhile, the current attempts at scene text

recognition problem assumes pre-cropped text image patches as input, aims to recognise

the text in it (i.e. output in human language) (Jaderberg et al. (2014); B. Shi et al. (2016);

T. Wang et al. (2012)). Figure 1.2 visualizes the general pipeline of both challenges, and

this work aims to address the scene text detection problem.

Like many research fields, the scene text detection challenge has several common

datasets for researchers to benchmark their algorithms. Over the years, tougher scene

text datasets were launched to better represent text instance in real-word scenarios. For
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(a)

(b)

Figure 1.1: Image taken in (a): Time Square, New York, and (b): Jalan Tun Razak,
Kuala Lumpur. Texts are an integral part of everyday scenes in the human society.
It plays a big role in human communication.

instance, MSRA-TD500 (Yao et al. (2012)) were launched to introduce the problem of

detecting text in arbritary orientation, the images of ICDAR2015 were captured without

prior efforts in focusing, which is more likely the case in compared to well-captured pho-

tos in terms of application, the large scale COCO-Text (Andreas et al. (2016)) captured

the wide scene diversity of the real-world, etc.

Despite the emergence of multiple datasets, text in curve orientation, in spite of its

commonness in real-world scenes, went under the radar – it has close to zero existence

in the existing scene text datasets. Without the motivation of a proper dataset, scene

text detection algorithm with curved text in consideration is rarely seen. This would

2
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(a)

(b)

Figure 1.2: Overview of (a): scene text detection, and (b): scene text recognition. At
the point of this thesis writing, scene text detection is a prerequisite for the scene text
recognition task.

prevent scene text detection system in achieving robust performance against text of all

orientations in the real-world application. In the meanwhile, there is a concrete sign that

the community is summoning the curved text data – multiple state-of-the-art performing

multi-oriented scene text detectors have reported failure in detecting curved text (B. Shi

et al. (2017); Xing et al. (2017); X.-C. Yin et al. (2015); Zhang et al. (2016)). Encouraged

by this phenomenom, this work aims to explore the uncharted path of scene text detection

– curved text detection, by facilitating this new research direction and providing a strong

baseline solution.

1.1 Problem Statements

This work tries to address several problems revolving the core objective – curved text

detection. The first and most important problem to solve is the lack of curved text data.

3
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Figure 1.3 shows several famous signboards that feature curved text. As common as

they are, curved text occupies less than 0.3% of the total text instances in the renowned

scene text datasets like MSRA-TD500 and ICDAR2015. Being under-represented in the

scene text datasets has several consequences. Firstly, it was overlooked by the scene text

community, focus study on the curved text detection or recognition problem is rarely seen.

To the best of author’s knowledge, B. Shi et al. (2016) and Risnumawan et al. (2014)’s

works were the only related studies before the introduction of the proposed dataset (Chng

& Chan (2017)). Additionally, there are studies which shows bits and pieces of successful

and failure detection result on the rare occurence of curved text in the existing datasets

(B. Shi et al. (2017); Xing et al. (2017); X.-C. Yin et al. (2015); Zhang et al. (2016)); but

the lack of a full scale dataset prevents them from evaluating their algorithm thoroughly

on the ability to detect curved text. As mentioned earlier, studies or designs of detection

algorithms based on under-represented data (i.e. missing of curved text) would suffer

against the wild scenerios of real-life application.

Figure 1.3: Curved text is commonly seen in real world scenery.

The attempt to solve the first problem (i.e. collect a curved text dataset) is hindered

by several roadblocks as well. Firstly, the conventional ground truth format such as the

axis-aligned bounding box, rotated bounding box, quadrilateral does not fit the shape of

curved text. Figure 3.9 illustrates the apparent downside of using the mentioned ground

truth format in annotating curved text instances. Not only does such loosely fit ground

truth affect the accuracy of the evaluation of benchmarking algorithms; the inclusion of

large background area or overlapping of neighbour text instance makes it a bad training
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data for learning based algorithms (W. He et al. (2017); Liao et al. (2017); W. Liu et al.

(2016); Yao et al. (2016)). On a similar note, the design of Deteval evaluation protocol

(Wolf & Jolion (2006)), was carried out based on the convention axis-aligned bounding

box. The default setting of the protocol is found to be not optmised to cater the inclusion

of curved text. It is a crucial problem to be addressed as the legitimacy of evaluation

protocols plays an integral role in progressing the research field. Thirdly, curved text

has more variants than text of other orientations (horizontal and multi-oriented), yet it re-

mained unclear what kind of curved text sits in the wild. A better grasp of the curved text

variety would be benefitial for future research problem. Lastly, the process of annotating

is the largest bottleneck of collecting or scaling up a dataset. It is a slow and unrewarding

process, yet the emergence of deep learning methods (Liao et al. (2017); Y. Liu & Jin

(2017); Ma et al. (2017); B. Shi et al. (2017)) craves for more labeled data. All of these

problems need to be addressed in the quest of facilitating a new research direction.

There is a large number of scene text detection works addressing scene text of hori-

zontal (X. Chen & Yuille (2004); Epshtein et al. (2010); Kim et al. (2003); J.-J. Lee et al.

(2011); Neumann & Matas (2013); Pan et al. (2011); Yi & Tian (2012, 2013); X. Yin et

al. (2012); X.-C. Yin et al. (2013)) and arbritrary oriented (W. He et al. (2017); Y. Liu &

Jin (2017); Tian et al. (2015); Yao et al. (2014); X.-C. Yin et al. (2015, 2014a,b); Zhang

et al. (2016); Zhou et al. (2017)), but only little was contributed to the study of curved

text detection (Risnumawan et al. (2014); Yuliang et al. (2017)). As such, this study aims

to look into this glaring gap as the third and the final problem of this thesis.

1.2 Objectives

This work has three main objectives in response to the three main problems stated in

Section 1.1. The first objective is to collect a new scene text dataset which prioritize the

existence of curved text. The core idea of collecting this new dataset is to fill up the
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gap in scene text datasets in terms of text orientations. The new dataset aims to spur an

interest in the scene text community to look into the currently under-researched curved

text detection problem.

On top of collecting images of curved text, the second main objective of this work is

to look into all other supporting elements to pave the way for this new research direction.

This task can be broken down into four sub-objectives: i) a new ground truth format is

needed to properly bind text of all orientations, from horizontal to curved text, ii) the

existing evaluation protocol needs to be fine-tuned to cater the introduction of curved

text, iii) this work also aims to delve deeper into the variation of curved text, hoping to

provides significant insights for future research journey, and iv) this work seeks for an

effective method to increase the speed of annotation process, aspire to speed up future

dataset collection effort.

The third main objective of this work is to propose a strong baseline to kick start

the curved text detection research. The idea of the proposed method is to improve the

robustness of text detection algorithm against text of all orientations, bridging its gap

between the research and real-life application end.

1.3 Contributions

The first contribution of this work is the proposal of a new scene text dataset, namely

Total-Text. To the best of author’s knowledge, it is the first properly scaled scene text

dataset that feature three major orientations: horizontal, multi-oriented, and curved. Total-

Text consists of 1555 images in total, annotated with spatial location, transcription, and

pixel mask for detection, recognition, and segmentation task. All of the images and

ground truths were made publicly available for future research.

Alongside the dataset, the second contribution of this research is the studies of mul-

tiple supporting roles to faciliate this new research direction. As discussed, there are four
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sub-objectives under this contribution. Firstly, a new ground truth format, regulated poly-

gon was presented and used as the ground truth for Total-Text. The proposed regulated

polygon is capable of binding text of all orientations tightly. Next, multiple experiments

were conducted to prove that the existing evaluation protocol, Deteval, was not optimised

to cater the introduction of Total-Text. Fine tuning was done to refined the mentioned

evaluation scheme to improve its accuracy in terms of benchmarking. Together with the

Pascal VOC evaluation method, both were made the official evaluation protocols of Total-

Text. Then, this work presented an in-depth exploration on the variation of curved text,

hoping to provide useful insights for future curved text related research. Last but not least,

an assisted annotation framework was introduced, namely T3. Experiments have showns

that T3 is capable of reducing the polygon annotation time by 25%.

The last contribution of this thesis work is the proposal of a straightforward yet ef-

fective scene text detection model. The proposed method, namely Polygon-FRCNN, was

built based on a deep learning framework, and has demonstrated its ability in detecting

text of all orientations in the conducted experiments.

1.4 Outline

This chapter discusses the background, motivation, problems, objectives and the contri-

butions of this thesis. The outline of the rest of the chapters are as follows:

Chapter 2 reviews closely related literature works to this research work. Specifi-

cally, the works of existing scene text datasets and detection algorithms are detailed in

this section. In particular, the general motivation behind renowned scene text datasets

and how they have impacted the research scenes are discussed in a detail manner. Ad-

ditionally, all the statistics and features of these datasets are presented to give a general

perspective on the research scene.

Subsequently, the review of the evolution and differences between modern scene text
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detectors also take place in this chapter. Following that, the strengths and weaknesses of

each methods are explored to justify the rationale behind the choice of extending the

Faster-RCNN object detection framework in the design of the proposed method.

Chapter 3 details the proposed scene text dataset, Total-Text. The chapter starts by

introducing the differences between text of different orientations (i.e. horizontal, multi-

oriented, and curved), followed by all related statistics and attributes of Total-Text. Then,

this chapter reveals a new ground truth format to cater text of all orientations, and all

the annotation details and workflows come next. Then, this chapter is further with the

in-depth study on the variation of curved text, the fine-tuning process of the Deteval eval-

uation protocol, finishing with the introduction of T3, the assisted annotation method.

Chapter 4 proposes a scene text detection model that is capable of detecting text of

all orientations, namely Polygon-FRCNN. This chapter starts by detailing every part of

the proposed model. Following that, the implementation details: training process, model’s

hyperparameters, variant of Polygon-FRCNN are elaborated. The proposed method is

then benchmarked on various dataset to justify its claimed ability. Both quantitative and

qualitative results are presented at the end of this chapter.

Chapter 5 draws the conclusion from all the findings and analysis of this thesis

work. The current limitation of the proposed dataset and detection model are listed along

with the potential of future development.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The availability of datasets pushes a research field forward. Not only it defines the scope

of problem for researchers, it allows them to benchmark and solidify claims of their al-

gorithms. Furthermore, the recent trend of incorporating deep learning models into scene

text understanding algorithms (T. He et al. (2016a); W. He et al. (2017); Liao et al. (2017);

W. Liu et al. (2016); Y. Liu & Jin (2017); Ma et al. (2017); B. Shi et al. (2017); T. Wang

et al. (2012); Yao et al. (2016); Zhang et al. (2016)) demands a large amount of data

and ground-truths. The first part of this chapter details i) the motivation behind every

renowned datasets, ii) comparison of their statistics, iii) attributes possess by each of

them, and iv) the impact they have made on the research scene.

Previous attempts at the scene text detection problem can be broadly separated into

two categories: Before CNN and After CNN, both of which will be discussed thoroughly

in this chapter. On top of that, this section further emphasizes on how previous works

address multi-oriented text detection problem, which is in nature closer to this study.

Following that, this chapter ends by discussing and relating two of the limited works on

the curved text detection problem to the proposal of this research.

2.2 Scene Text Detection Datasets

2.2.1 ICDAR2003-2013

The Internation Conference on Document Analysis and Recognition (ICDAR) is an in-

ternational academic conference that advocates document analysis research. Apart from

calling for the submission of conference papers, the conference committee also organizes

the Robust Reading Competition. The competition includes challenges like text detection
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in natural images, text recognition, text detection in video, etc. The ICDAR2003 dataset

was collected for the first ever Robust Reading competition in 2003 (Lucas et al. (2003)).

It has 509 camera taken scene text images, which is split into a training and testing set,

with 258 and 251 images respectively. Several improvements were made to improve the

quality of the dataset. For one, the ICDAR2011 dataset is the trimmed down version of

ICDAR2003. Its total number of image was reduced to 484 to remove image duplication.

Further improvements were made in the year 2013 (Karatzas et al. (2013)): the total num-

ber of image was again reduced, to 462, and pixel level ground-truth was added for the

segmentation challenge. Ye & Doermann (2014)’s survey captured all of these changes

in a comprehensive manner. The ICDAR2003, ICDAR2011, and ICDAR2013 datasets

were the most popular datasets throughout the 2000s. They have a total of 1224 citations

to-date (2018). Their popularity has indirectly influenced the design of many text detec-

tion systems. The fact that all the texts in these datasets are horizontally oriented has

inspired researchers (X. Chen & Yuille (2004); Epshtein et al. (2010); Kim et al. (2003);

J.-J. Lee et al. (2011); Neumann & Matas (2013); Pan et al. (2011); Yi & Tian (2012,

2013); X. Yin et al. (2012); X.-C. Yin et al. (2013)) to integrate such rule in their design.

Several example images of ICDAR2013 can be seen in the first row of Figure 2.1.

2.2.2 MSRA-TD500

Several datasets (Nagy et al. (2011); Pan et al. (2010); Yi & Tian (2011); X.-C. Yin

et al. (2015) were then introduced to address the lack of arbitrary-oriented text in the

scene text datasets. MSRA-TD500 (Yao et al. (2012)) among all is the most popular

dataset in this regard. It was used as a benchmark in many highly influenced multi-

oriented1 text detection works (Yao et al. (2014); X.-C. Yin et al. (2015, 2014b); Zhang

1There are two common notations for describing text in arbitrary orientation within the scene text
understanding community: arbitrary-oriented (Jiang et al. (2017); Ma et al. (2017)) and multi-oriented
(W. He et al. (2017); Y. Liu & Jin (2017); Tian et al. (2015); X.-C. Yin et al. (2014a) text. This thesis will
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et al. (2016); Zhou et al. (2017)). MSRA-TD500 has 300 and 200 training and testing

images respectively. A closer inspection on all the images of MSRA-TD500 revealed

that most if not all the text instances are arranged in a slanted form as illustrated in the

second row of Figure 2.1. As shown, the characters in these text instances are arranged in

a straight line fashion, but with an offset to the horizontal line.

Figure 2.1: Images from various well known scene text datasets.

be proceeding with the notation of ‘multi-oriented’ in describing text in arbitrary orientation.
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2.2.3 ICDAR2015

Over a decade of research efforts has turned the challenge of ICDAR2013 into a toy

problem. In the ICDAR official website ICDAR (2018), the top-10 ranking algorithms

reported the F-measure score of at least 0.9 (out of 1). Seeing the saturated performance

reported on ICDAR2013, ICDAR launched a whole new dataset in 2015. The new chal-

lenge, namely ‘Incidental Scene Text’ (also commonly known as the ICDAR2015 dataset)

was introduced with the intention of challenging the field with low quality scene text im-

ages. All of the 1670 images in the dataset were collected without prior effort in focusing

on the text instances. As a result, most of the text instances are out-of-focused, blurry,

and/or has major perspective distortion as illustrated in the third row of Figure 2.1. Such

attributes are mainly motivated by the reason that a scene text detector can not always ex-

pect the text in natural image to be properly centered. It is a much needed new direction

to lead scene text detection research to application ready level.

Both ICDAR2015 and MSRA-TD500 did not mention about the existence of curved

text. Hence, an inspection was carried out on all the images of both datasets, which

revealed that curved text only occupies less than 0.3 % of the total text instances in both

datasets. Interestingly, one of the rare curved text instances in MSRA-TD500 (2nd row

last column in Figure 2.1) is oftenly seen in multi-oriented text detection works (B. Shi

et al. (2017); Xing et al. (2017); X.-C. Yin et al. (2015); Zhang et al. (2016)) as a failure

example.

2.2.4 COCO-Text

COCO-Text (Andreas et al. (2016)) was released in the early 2016, which is the largest

natural scene text dataset to-date with 63,686 images and 173,589 labeled text regions.

COCO-Text is a subset of the larger MSCOCO dataset (Lin et al. (2014)). Since all the
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images in COCO-Text were captured with no text in mind, almost half of the images have

no text instances as depicted in the forth row of Figure 2.1. Apart from the common

ground-truths such as spatial location and transcriptions, COCO-Text has even included:

a) fine-grained classification between machine printed text and handwritten text, b) clas-

sification into legible and illegible text and c) script of the text. Workers from the Amazon

Mechanical Turk platform2 were hired to annotate such a large scale dataset.

2.2.5 SynthText

SynthText (Gupta et al. (2016)) is a synthetically generated scene text dataset with 800,000

scene text images. It was also intruduced in 2016, motivated by the demands of the deep

learning methods (T. He et al. (2016a); W. He et al. (2017); Liao et al. (2017); W. Liu

et al. (2016); Y. Liu & Jin (2017); Ma et al. (2017); B. Shi et al. (2017); T. Wang et al.

(2012); Yao et al. (2016); Zhang et al. (2016)). Gupta et al. (2016) first obtained the text

and image examples from the Newsgroup20 dataset (Karsch et al. (2011)) and Google

Image Search respectively. The proposed generator pipeline starts by segmenting an im-

age to different regions with color and texture cues. Text candidates are then placed into

the proper image segment in order to retain image continueties (based on the observation

that text in real images usually is contained in well defined region). Example images

of SynthText can be found in the fifth row of Figure 2.1. The authors of this work also

provided the said algorithm for researchers to generate their own data3.

2.2.6 MLT

The MLT dataset (Nayef et al. (2017)) is the latest multi-script dataset that was collected

for scene text detection, recognition, and script identification task. Both training and

2https://www.mturk.com/
3https://github.com/ankush-me/SynthText
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testing set of it have 9000 images each, featuring nine languages (Chinese, Japanese,

Korean, English, French, Arabic, Italian, German and Indian) with six different scripts.

Sample images can be seen in the sixth row of Figure 2.1. The main motivation of this

dataset is to challenge the community to design a scene text detector that is robust to

different scripts that exist in today’s world.

Given the scale of the COCO-Text, SynthText, and MLT datasets, the chances of

them containing curved text is high. However, the factors that set Total-Text apart from

these dataset are: a) curved text is a priority in Total-Text, occupying more than half

the total text instances, rather than random occurence, and b) proper bounding region is

employed as the detection ground-truth format. These factors make Total-Text a proper

dataset to facilitate the currently under-researched curved text detection problem.

2.2.7 CUTE80

To the best of author’s knowledge, CUTE80 (Risnumawan et al. (2014)) is the first scene

text dataset that features curved text, which was introduced in 2014. In addition to the

ground-truths for detection and recognition task, CUTE80 includes pixel-level ground-

truth for segmentation task. The availability of it has inspired B. Shi et al. (2016) in

solving text recognition problem with curved text images. Further, the enchanced version

of polygon annotation format employed in Total-Text, which will be explained in Section

3.4.2 (d), is based on the one in CUTE80. Unfortunately, CUTE80 consists of only 80

images, which is too small for today’s standard. Furthermore, its scenery diversity is low,

most of them are football jersey, as illustrated in the seventh row of Figure 2.1.

2.2.8 CTW1500

CTW1500 (Yuliang et al. (2017)) is in principle the closest dataset to Total-Text. It was in-

troduced to the community right after the publication of Total-Text (Chng & Chan (2017))
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in late 2017. Both datasets are similar in terms of scale, the usage of polygon bounding

region annotation, and was collected with at least one curved text per image. Despite

having similar motivation, both datasets are different in a number of ways. First of all,

Total-Text considers only latin scripts as text instances, while CTW1500 includes both the

latin and chinese scripts in their annotation. Such difference leads to the second dissimi-

larity of both datasets, which is the granularity of annotation. Total-Text’s text instances

were annotated at word-level, while CTW1500’s were annotated at line-level. The third

difference is the format of polygon bounding region between two. CTW1500’s polygon is

fixed to have fourteen vertices each while Total-Text’s is fixed to have ten vertices (as line-

level text instances are usually bigger than word-level text instances). Lastly, CTW1500

is only annotated to facilitate the text detection task while Total-Text’s annotation con-

sists of spatial location, transcription, orientation, and pixel-level mask for text detection,

recognition, and segmentation tasks.

Table 2.1: Well known scene text detection datasets. Legends: D = Detection, S =
Segmentation, R = Recognition, H = Horizontal, M = Multi-oriented, C = Curved.

Dataset Image number (Train/Test) Text instances Language Task Granulality Orientation Year
ICDAR2013 462 (229 / 233) 1943 English D, S, R Word H 2013

MSRA-TD500 500 (300 / 200) 1719 English, Chinese D Line H, M i 2012

ICDAR2015 1670 (1000 / 670) 11886 English D, R Word H, M i 2015

COCO-Text 63686 (43686 / 20000) 173589 English D, R Word H, M ii 2016

SynthText 800000 8000000 English D, R Word H, M ii 2016

MLT 18000 (9000 / 9000) - 9 languages D, I Word H, M ii 2017

CUTE80 80 - English D, S, R Word H, M, C 2014

CTW1500 1500 (1000/500) 10751 English, Chinese D Line H, M, C 2017

i Curved text occupied less than 0.3 % of the total text instances.
ii The sheer number of these datasets make it difficult to obtain the exact number of curved text instances however,

a quick look into a random subset of these datasets reveals that the occurence of curved text instance is very rare.
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Figure 2.2: Datasets launching timeline.

2.3 Scene Text Detection Algorithms

2.3.1 Before CNN

Most of the earlier scene text detection works can be categorized into two main groups (Ye

& Doermann (2014)): connected component analysis (CCA) and sliding window (SW)

classification approach. CCA methods label subsets of connected components hueristi-

cally based on features such as color similarity and spatial location. Several works (Koo &

Kim (2013); S. Lee et al. (2010); Pan et al. (2011)) employed statistical model to address

the need of complex heuristic rules. Such approach enhances the adaptivity of CCA by

a great magnitude. In contrast, SW methods classify every window in an image to either

text or non-text patch in the feature space. Consequently, positive text patches are further

grouped into text regions with CRF (K. Wang et al. (2011)), morphological operations

(J.-J. Lee et al. (2011)), or graph methods (Coates et al. (2011); T. Wang et al. (2012)).

While SW methods usually have simpler architecture, it is much more computationally

expensive due to the need of classifying large numbers of windows.

Earlier feature extractors were mostly handcrafted. For instance, color (Garcia &

Apostolidis (2000); S. Lee et al. (2010); X. Liu et al. (2008)), edge (R. Huang et al.

(2013); Phan et al. (2012); Shivakumara et al. (2008)), texture (Li et al. (2000); Shiv-
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akumara et al. (2010); Y. Zhong et al. (2000)), point (X. Zhao et al. (2011)), etc., were

explored to represent text. All of these feature extractors were designed based on certain

observation of text in natural scene images. For instance, Yi & Tian (2011) assumes that

characters belong in the same text posses similar color, which is usually in contrast to the

background color. On the other hand, Li et al. (2000) observed that text regions typically

have different texture properties than the surrounding areas. However, no one assumption

is broad enough to cover the complexity of real world sceneries. Case in point, multi-

colored text or uneven lighting on the text region would have refuted the uniform color

assumption; text with sparse characters on the other hand would not posses the texture

pattern expected by Li et al. (2000).

Maximally Stable Extremal Regions (MSER) (Matas et al. (2004)) and Stroke Width

Transform (SWT) (Epshtein et al. (2010)) are two sophisticated feature extractors based

on pixel intensity and edge respectively. Both works have inspired many other algorithms

(Bai et al. (2012); H. Chen et al. (2011); Dinh et al. (2007); Koo & Kim (2013); Mosleh

et al. (2012); Neumann & Matas (2011); Nistér & Stewénius (2008); C. Shi et al. (2013);

Y. Zhao et al. (2011)) in designing better scene text detector. The MSER algorithm is ca-

pable of detecting stable color region (also known as blob detection) in an adaptive man-

ner. Regions with similar threshold resistance range will be grouped as one component.

On the other hand, the SWT feature extractor was designed based on the observation that

characters in a text have similar stroke width. The internal distance between the opposite

edges of a character is defined as stroke width. Scene text detectors based on these two

feature extractors had saturated the top part of the performance ranking table of datasets

such as ICDAR2013 and MSRA-TD500, bringing the handcrafted feature extractor era to

its peak moment. Figure 2.3 depicts the example of different feature spaces represented

by different feature extraction techniques.
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Figure 2.3: Example of different feature extractors used to represent text candidates.

2.3.2 After CNN

CNN is one of the ANN models that has shown promising potential in solving the com-

puter vision problems. Its main difference with ANN is that instead of connecting every

neuron between previous layer and current layer, it only connects a subset of it (usually

adjacently connected neurons, visual illustration can be seen in Figure 2.4). Such model

was first proposed in (Fukushima (1988)), which was inspired by the observation that neu-

rons in the visual cortex only respond to local features like edges and lines; while cells

in the area higher than visual cortex are found to repond to more complicated patterns

like circles, rectangular, and even a human face. Figure 2.5 depicts one of the earliest

models of modern CNN, LeNet-5 by LeCun et al. (1998), which is made up of several

fundamental operations: i) convolution, ii) subsampling4, and iii) fully connected layers.

The front part of the CNN is usually layers of convolution and pooling, which function

4Better known as pooling today
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Figure 2.4: Difference between ANN(left) and CNN(right) in terms of neurons con-
nection.

as a feature extractor. There are differences between the feature maps in different layers

of the network. The earlier5 feature maps constitute of local features such as edges, color

blob, texture since each neuron in these layers is only exposed to a small region of the

input image. As the layer goes deeper (or higher), the neurons in the feature maps are ex-

posed to a larger area of the input image, hence result in higher level features like shapes,

patterns, and sometimes abstract that is incomprehensible by human (Zeiler & Fergus

(2014)). Upon transforming the input image to a high dimension feature space (multiple

feature maps), the fully connected layers then classify which classes does it belongs to.

In the case of LeNet-5, it was designed to recognize digits, which has 10 classes (0-9),

the output is a 10-channel vector of scores ranging from 0-1. The class with the highest

score determines the digit identity, for instance, the output vector of [0.0, 0.1, 0.8, 0.1,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0] gives the digit output of ‘2’. The variables (filter kernels) of

5Or lower, shallower, these are all the accepted convention in the community.
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Figure 2.5: One of the earliest models that defines the general structure of CNN
today – LeNet-5.

the network is randomly initialized at first, hence the prediction started out with random

guess, and get better as the training proceeds.

The training of a CNN is an optimization problem. Stochastic gradient descent is

one of the proven methods that works well in training a CNN (Krizhevsky et al. (2012);

LeCun et al. (1998); Szegedy et al. (2015)). Generally, the training process can be de-

scribed as follows: i) the network receives an input image and makes its prediction, ii) the

prediction is being compared with the associated ground-truth, iii) the loss is calculated

and being backpropogated through the network. After each iteration, the weights of the

network are supposed to move closer to the global optima (Kiefer & Wolfowitz (1952)),

and hence results in better decision making. Such end-to-end (feature extraction to classi-

fier) training scheme allows CNN to learn the best set of filters and classifier from the real

data in an unbiased manner, which is a really tough challenge for human feature extractor

engineers.

Deep CNN models6 caught computer vision field’s attention when AlexNet (Krizhevsky

et al. (2012)) outperformed all other non deep learning based models by a large margin

6‘Deep’ as in many layers, a convention in the deep learning community.
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in the ImageNet-2012 classification competition (ILSVRC-2012). Since then, deep CNN

models’ footprint can be seen in many problems like video classification (Karpathy et al.

(2014)) and detection (Hou et al. (2017)), image captioning (Xu et al. (2015)), instance

segmentation (Long et al. (2015)), kangaroo detection (Saleh et al. (2016)), etc. T. Wang

et al. (2012) and Jaderberg et al. (2014) are two of the earliest works that incorporated

deep CNN model in the scene text understanding problem. T. Wang et al. (2012) trained a

2-layer7 CNN to classify every single patch of an input image into either text or non-text

class. Subsequently, image region with ‘high’ response (classified as text) will be pro-

cessed and fed into the recognition module (which has similar network arcthitecture as

the detection module) to further classify into one of the 62-class (26 for low-capital let-

ters, 26 for high-capital letters, and 10 for digits). Roughly 60k image patches (32×32 in

size) from ICDAR2003 and Char74k were used as the training data in the training process.

On top of the text/non-text and 62-class classification tasks, Jaderberg et al. (2014) added

two more training tasks, which are a) 37-class of case-insensitve characters, and b) 604-

class of bigrams (pairing of characters). The authors argued that these added supervisions

will increase the performance of both detection and recognition ability. Larger amount of

training data was used in the training process: a total of 186K of image patches (24×24

in size) cropped from all the ICDAR variants, KAIST, Chars74k, StanfordSynth, and

FlickrType constituted the training dataset. Both T. Wang et al. (2012) and Jaderberg et

al. (2014)’s model achieved state-of-the-arts result, with 83.9% and 86.8% respectively in

the character recognition task on the ICDAR2003 dataset, outperforming previous work

(Coates et al. (2011)) by at least 2.2%. Inspired by these works, T. He et al. (2016b);

W. Huang et al. (2014); Zhang et al. (2015) also leveraged on the discriminative power of

CNN as a classifier to differentiate text and non-text components.

Over the years, researchers have found out several methods to improve the perfor-

7Only convolutional layers are counted in the convention of CNN
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mance of CNN. For instance, increasing the number of layers (Simonyan & Zisserman

(2014)), inventing newer architecture like ResNet (K. He et al. (2016)) and GoogLeNet

(Szegedy et al. (2015)), etc. Several groundbreaking architectures like Fully Convolu-

tional Network (FCN) (Long et al. (2015)) and region-based CNN (R-CNN (Girshick et

al. (2014)), Fast-RCNN (Girshick (2015)), and Faster-RCNN (Ren et al. (2015))) had

caused an unprecedented improvement in the instance segmentation and object detection

challenge respectively. Since then, many state-of-the-art works in other domains such as

scene text detection (Liao et al. (2017)), biomedical image segmentation (Ronneberger et

al. (2015)), vehicle detection (Fan et al. (2016)), etc., have integrated such architectures in

their solutions. Consequently, most of the modern scene text detectors can be categorized

into three main groups: segmentation-based, proposal-based, and single-network-based

solutions, which will be discussed as follows.

Figure 2.6: The FCN architecture. It is trained to label every pixel of the input image
with their corresponding class.

2.3.2 (a) Segmentation-Based Solutions

Segmentation-based approaches are largely encouraged by the efficiency of FCN in mak-

ing dense level pixel prediction. Figure 2.6 is an illustration of the well-known FCN

artchitecture. Long et al. (2015) replaced the conventional fully connected layer with
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convolutional predictor, in turn allows the network to process arbitrary-sized input image

in one go. Additionally, it has demonstrated superior performance on the instance seg-

mentation problem. The fine detail of the output saliency map (as illustrated in Figure

2.6) has apparent benefit for the detection task. Back to the scene text community, Zhang

et al. (2016) argued that by utilizing CNN as a character detector, Jaderberg et al. (2014);

T. Wang et al. (2012)’s models have restricted CNN’s potential due to the local nature

of characters. Hence, Zhang et al. (2016) proposed to use FCN to detect text region as

a whole instead. In comparison to previous works (Jaderberg et al. (2014); T. Wang et

al. (2012)) which treated every patch in an image individualy, Zhang et al. (2016)’s FCN

was trained to utilise both global and local cues of a text region in the inference process.

Specifically, skip layers (Long et al. (2015)) were used to combine both high and low

level feature maps, which corresponds to global and local feature. Figure 2.7 depicts the

difference between the saliency map generated by T. Wang et al. (2012) and Zhang et al.

(2016)’s approach, which has demonstrated the effectiveness of the latter. Several other

works (T. He et al. (2016a); Polzounov et al. (2017); Yao et al. (2016); Zhou et al. (2017))

followed trail and found success in developing high-performing scene text detectors. For

example, T. He et al. (2016a) cascaded two FCNs to i) first approximate text region in

an image, ii) then cropped the approximate text region and further segment it with higher

precision. On the other hand, Yao et al. (2016) trained a FCN to infer three different

text properties: text region, character region, and linking orientation maps. Subsequently,

characters within the same text region will be arranged into a graph, which will then

be further processed by Delaunay triangulation. Characters remain connected after the

trimming will be treated as the final detection result.
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Figure 2.7: Saliency map generated by T. Wang et al. (2012)(mid) and Zhang et al.
(2016)(right).

2.3.2 (b) Proposal-Based Solutions

R-CNN (Girshick et al. (2014)), Fast-RCNN (Girshick (2015)), and Faster-RCNN (Ren

et al. (2015)) are a series of groundbreaking works for object detection. The core idea

is simple – run classification over a large number of probable regions that might contain

object of interest with CNN. In the first work (Girshick et al. (2014)), SelectiveSearch (Ui-

jlings et al. (2013)) was used to generate roughly 2K proposals (image patches), which

were then fed individually into a CNN to i) classify whether it contains object of interest,

and ii) regress the bounding box location of the object. This novelty framework out-

performed its counterparts by a large margin8 on the PASCAL VOC 2010 dataset at the

time of publication. However, it has slow execution time – 47s to run an image. Gir-

shick (2015) solved the issue by sharing the feature extraction part of the CNN. Instead

of running every proposal through the entire network, Fast-RCNN framework postpones

the proposal cropping process to post feature extraction. As a result, the large number of

proposals only have to go through the fully-connected layers (prediction layers), which is

the last several layers of the entire network. With this, the test time per image is reduced

to 2s, which is a significant improvement, but still no real-time speed. Motivated by this,

813.7% against the then-leading-performer, SegDPM (Fidler et al. (2013)) on the Pascal VOC 2010 test
set
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Figure 2.8: The block modules of the R-CNN, Fast-RCNN, and Faster-RCNN frame-
work.

Ren et al. (2015) aimed to optimize the entire pipeline by solving the last bottleneck - the

proposal module. Ren et al. (2015) introduced the Region Proposal Network (RPN) to re-

place the SelectiveSearch proposal module used by its predecessors. Figure 2.9 visualizes

the design of RPN and anchor boxes. Anchor boxes were designed to ease the learning

of the regression task. Instead of regressing the exact values of (x, y, w, h), the regression

layer is expected to regress the offset values to a series of predefined anchor boxes loca-

tions. Intuitively, the regression head is tasked to adjust the precision of the location of

the anchor boxes. Additionally, the multi-scale aspect of anchor boxes helps in detecting

objects with various scales and aspect ratios. By having the proposal module integrated

as part of the network, Faster-RCNN is now end-to-end trainable and achieved an even
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faster testing speed – 0.2 s per image, yet maintained the same level of performance with

Fast-RCNN.

Figure 2.9: Left: Architecture of Region Proposal Network (RPN). Middle: Visuali-
sation of anchor boxes in a real image. Right: The anchor box is too narrow for the
object, hence, the regression head is expected to predict an offset of [0, 0, 0.125, 0]
(x, y, w, h) to increase the width of the box for the final detection result.

The key aspects that contributed to the success of Faster-RCNN are RPN, anchor

boxes, and the end-to-end training scheme from feature extraction to region proposal and

finally the predictor. Encouraged by the success, Jiang et al. (2017); Ma et al. (2017);

Z. Zhong et al. (2017) built their scene text detectors on top of the Faster-RCNN frame-

work. Jiang et al. (2017)’s model, R2CNN, was designed with an extra regression head

to infer inclined box coordinates. The new inclined box coordinates (x1, y1, x2, y2, h)

were designed to overcome the shortcoming of an axis-aligned box (x, y, w, h) in de-

tecting multi-oriented text. Meanwhile, Ma et al. (2017) argued that axis-aligned anchor

boxes are not the best fit for scene text that appear in wild orientations. They trained

their Rotational-RPN (RPN) to propose rotational bounding box, which is essentially

axis-aligned box with an extra bit for the angle information – (x,y,w,h,θ). Figure 2.10

illustrates the difference between axis-aligned bounding box and rotational bounding box

(which also applies to the inclined box coordinates in R2CNN). Z. Zhong et al. (2017)
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also attempted to improve the RPN module by incorporating the inception Szegedy et al.

(2015) design element. Such design was motivated by the attribute of inception module

that is capable of involving both local and global context during the feature extraction

process.

Figure 2.10: In comparison to the encoding of axis-aligned bounding box on the left
(x, y, w, h), rotational bounding box has an extra bit of information, θ , which is the
angle offset between the text line and the horizontal axis.

2.3.2 (c) Single-Network-Based Solutions

SSD (W. Liu et al. (2016)) and YOLO (Redmon et al. (2016)) on the other hand have

no proposal module in their design. It is capable of running at 59 and 122 FPS respec-

tively, the fastest kind of object detection framework we have today. Essentially, such

model aims to regress the location of the object by just looking at the input image once.

Despite having only single backbone network, both models have their unique design :

i) SSD framework has multiple regression heads from feature maps at different levels,

while ii) YOLO only has one regression head at the final feature map layer. Based on the

observation that text in natural scene could posses various scales, Liao et al. (2017) chose

SSD (as illustrated in Figure 2.11) as the base framework to work with. Liao et al. (2017)
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argued that the original SSD framework failed to detect text in natural scene as the de-

fault boxes (similar to anchor boxes in the Faster-RCNN framework) were designed with

generic objects (cars, animal, human, etc.) in mind. Text in natural scene has wider as-

pect ratio (in other word, longer) than regular objects, hence Liao et al. (2017) integrated

a ‘text-box’ layer on top of the generic SSD, with both i) redesigned default boxes and ii)

inception-inspired convolution filters (1× 5 in dimensions) to better fit the longer shape

of text. Figure 2.12 illustrates the difference between the generic SSD’s default boxes

and TextBoxes’s. Upon proving the concept of ‘text-box’, Liao et al. (2018) extended

the original prediction layer with a 5-channel regression head for rotational bounding box

(similar to R2CNN). On a related note, B. Shi et al. (2017)’s model, namely Seglink,

is also built on top of the SSD framework. Seglink is different with all other top-down

approaches which predict the bounding box location in a direct fashion. Instead, it adopts

a bottom-up approach, by modeling the network to regress the location of every character

and their linking relationship. Both information are then processed by heuristic rules to

form the final word-level detection output. All of these works benefited from the prin-

ciple of SSD which utilize multi-level feature maps for their own respective regression

problems.

2.3.3 Multi-oriented Text Detection Problem

Text detection solutions with multi-oriented text in consideration was rare before the in-

troduction of MSRA-TD500 in 2012. In the past, the main challenge of multi-oriented

text has always been the design of complex hueristics in grouping character candidates

into a text-line candidates (or word). Most of the works (Epshtein et al. (2010); Kim et al.

(2003); Liao et al. (2017); Neumann & Matas (2013); Pan et al. (2011); Yi & Tian (2012,

2013); X. Yin et al. (2012); X.-C. Yin et al. (2013)) were designed with the assumption of

text are horizontal oriented. X.-C. Yin et al. (2015)’s algorithm was one of the advanced
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Figure 2.11: The architectural design of Single Shot Multibox Detector (SSD).

Figure 2.12: Left: Default boxes of SSD, which has the aspect ratios of [1, 2, 3, 1/2,
1/3]. Right: Default boxes of the Textboxes, which has the aspect ratios of [1, 2, 3, 5,
7, 10].

multi-oriented text detection works in prior to the CNN era. The work adopted a coarse-

to-fine approach in forming text-line candidates as illustrated in Figure 2.13. Firstly, it

groups character candidates into clusters based on their color, stroke width, and compact-

ness similarity. Then, the character pairs with similar orientations will be grouped into

finer clusters. Lastly, text-line candidates with different orientations will be separated and

produce the final detection outputs. Zhang et al. (2016)’s solution is another work that has
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Figure 2.13: Overall pipeline of X.-C. Yin et al. (2015)’s approach. The multi-stage
text-line generation process starts from (c) to (e).

Figure 2.14: Overall pipeline of Zhang et al. (2016)’s scene text detector.

similar rule-based approach in spotting multi-oriented text line candidates. Upon extract-

ing text regions and character candidates with FCN and MSER respectively, the algorithm

determines the best angle offset, θ , that will hit the most character blocks within the same

text region. As illustrated in Figure 2.14(c) (the connecting top two lines), the spotted text

region could potentially contains several text line candidates. The algorithm then use the

geometrical information of each character blocks to separate them into different clusters,

indicating the potential of multiple text-line candidates (Figure 2.14(d-f)). Another FCN
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was employed to remove false positives among these candidates for the final detection

stage. The entire pipeline can be seen in Figure 2.14. Such rule-based approaches suffer

from three major drawbacks: i) complicated heuristic designs, ii) aggregrated errors from

multiple stages, and iii) restricted circumstances coverage (most searching or filtering al-

gorithms assume characters within the same word have unified orientation, which is fine

for most text instances but curved text, more details in Section 3.2). These shortcomings

are the reasons why they are hard to be adapted for future work.

The top-down approaches are well-received by the community today. Vast majority

of the proposal-based and single-network-based solutions directly predict the location of

text regions as the detection output. This line of works formulate the detection task as a

regression problem, expecting their networks to learn how to regress the encoded bound-

ing box (x, y, w, h) from extracted feature maps. SmoothL1 loss function, as described in

Equation 2.1, is the most popular loss function for such model. Intuitively, it calculates

the difference between the predicted output (encoded axis-aligned bounding box in this

case) and ground-truth, in order to determine the amount of changes the network needs to

make for upcoming output predictions.

Lloc(tu,v) = ∑i∈x,y,w,h smoothL1(t
u
i − vi) (2.1)

in which,

smoothL1(x) =


0.5x2 if |x| < 1 (2.2)

|x|−0.5 otherwise, (2.3)

As discussed, the conventional axis-aligned bounding box format used in the vanilla
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Faster-RCNN and SSD does not fit the shape of multi-oriented text9. Hence, a straightfor-

ward solution to that would be training the network to regress either rotational bounding

box or quadrilateral bounding region that could fit multi-oriented text as visualized in

Figure 2.10(right). W. He et al. (2017); Jiang et al. (2017); Liao et al. (2018); Y. Liu &

Jin (2017); Ma et al. (2017); Xing et al. (2017); Zhou et al. (2017)’s works can all broadly

grouped into this category. Table 2.2 is a summary of different encodings that recent

works trained their model to learn. All of the aforementioned works have demonstrated

the potential of scaling up either Faster-RCNN or SSD kind of framework to regress more

parameters than just the conventional (x, y, w, h). Apart from that, the direct text region

spotting mechanism eliminated the needs of heuristic designs and multiple stage of pro-

cessess, which are usually error prone. Attracted by these attributes, the proposed method

of this work is based on the Faster-RCNN framework. Specifically, the effort is focused

on the limitation of the existing axis-aligned bounding box, rotational bounding box, and

quadrilateral bounding region in detecting curved text instances.

Table 2.2: Recent multi-oriented text detectors with their framework and regression
target detail.

Method Based Framework Regression Target

Direct Regression (W. He et al. (2017)) FCN w1, h1, w2, h2, w3, h3, w4, h4

EAST (Zhou et al. (2017)) FCN x, y, w, h, θ

x1, y1, x2, y2, x3, y3, x4, y4

RRPN (Ma et al. (2017)) Faster-RCNN x, y, w, h, θ

R2CNN (Jiang et al. (2017)) Faster-RCNN x1, y1, x2, y2, h

DMPNet (Y. Liu & Jin (2017)) SSD x, y, w1, h1, w2, h2, w3, h3, w4, h4

Textboxes++ (Liao et al. (2018)) SSD x1, y1, x2, y2, h

9Based on the groundtruth format annotated in MSRA-TD500 and ICDAR2015
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2.3.4 Curved Text Detection Problem

Text detection algorithm with curved text in consideration is rarely seen. Risnumawan et

al. (2014)’s system is one of the unconventional cases. Like many other scene text detec-

tors before the CNN era, Risnumawan et al. (2014) designed a symmetry-based feature

extraction technique to spot for character candidates in natural images. The novelty of

this system is the design of an eclipse growing technique that is capable of connecting

neighbouring character candidates with no orientation restictions. Figure 2.15 illustrates

two of the grouping examples. The eclipse growing process starts at a random pixel in

the feature space, and search through all adjacent pixels for spotted character candidates

(obtained in previous stages). The expansion will be terminated when there is no more

character candidate in the nearby pixel. The algorithm has demonstrated its effectiveness

on the CUTE80 dataset with several notable rooms for improvement: i) the entire system

consists of many complicated hueristics (to extract features, generate text-line candidates,

and false positives removal) which are prone to errors, ii) rotated bounding box output for-

mat which does not fit the curved text instances tightly, and iii) slow execution speed –

16.1s per image.

In contrast, Yuliang et al. (2017)’s CTD (Curved Text Detector) is one of the modern

scene text detectors that was designed with curved text in consideration. It was built on

top the Faster-RCNN architecture, trained to regress polygon bounding region in order

to detect and bind text of all orientations tightly. The author emprically found that poly-

gon with fourteen pairs of vertices is sufficient to cover most line-level text instances in

natural images, hence extended the regression head of CTD to have thirty-two parame-

ters (for xmin, ymin, xmax, ymax, w1, h1, .... w14, h14). In addition, the authors argued that

the relationship between each polygon vertices is sequentially related, hence, employed

a variant of Recurrent Neural Network (RNN) – Bidirectional Long Short Term Memory
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Figure 2.15: Examples of the eclipse growing scheme employed in Risnumawan et
al. (2014)’s work.

(BLSTM) to model the relationship between each of them. Meanwhile, the work followed

the convention of Faster-RCNN (Ren et al. (2015)) and DMPNet (Y. Liu & Jin (2017)),

agreed that relative information (i.e., the width and height difference between each ver-

tices to a reference point (xmin, ymin)) are easier targets to be optimized in compared to

the absolute information of each vertices (i.e., the exact x and y values for each vertices).

CTD inherited the strength of Faster-RCNN – the absence of complicated feature ex-

traction design and multi-stage hueristic processes, and was proven to be both effective

and efficient on the CTW1500 dataset. The proposed method is different with the said

model in several ways: i) Polygon-FRCNN is modelled to detect text in word-level (in-

line with the ICDAR2013, ICDAR2015, COCO-Text, MLT datasets), ii) consequently,

it has lesser parameters in the regression head to be optimized (i.e., six in compared to

fourteen vertices)10 iii) no need for the intermediate BLSTM module (again, due to the

10The best performing model, Poly-FRCNN-3.
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smaller amount of vertices).

2.4 Summary

All the details of the aforementioned datasets in this section is summarized in Table 2.1,

while the example images can be found in Figure 2.1. Further, there are several noticeable

transitions in the launching of these datasets. Firstly, scene text datasets no longer feature

only horizontal text, text orientation has been diversified with the inclusion of multi-

oriented text. Then, as the performance of text detection algorithms gets better, new

datasets like COCO-Text and ICDAR2015 include images with incidental text to increase

the level of challenge. Also, the dataset scale has been increasing as well, as more labeled

data is required to cater the emergence of data-driven deep learning text detection models.

Lastly, the launching of Total-Text, CTW1500, and MLT further challenge the robust level

of scene text detector with curved-oriented and multi-script text in natural images. All of

these transitions are illustrated in Figure 2.2 in chronological order. On a similar note,

scene text detection algorithms have seen a considerable amount of evolution in the past

few years too. It took the field more than a decade to transcend from low level features

like color, edges, texture, etc., to higher level features like MSER and SWT. The quest of

seeking for better feature design came to an end when CNN caught the attention of the

computer vision community. In the post CNN era, researchers found different ways of

incorporating deep learning methods into their scene text detection algorithms, which can

be broadly categorised into three clusters: the segmentation-based approach, the proposal-

based approach, and the single-network-based approach. Looking at the more related

works like the multi-oriented detection algorithms and curved text detection algorithms,

similar patterns were found in the higher level of their pipelines. Both problems were

addressed in a similar fashion in the early days: researchers designed hueristic algorithms

to stitch spotted characters candidates into word level output. In the later days, top-down
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proposal approach became popular mainly due to the absence of complicated grouping

mechanism and faster execution time, which have largely influenced the design of the

proposed method.
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CHAPTER 3: THE TOTAL-TEXT SCENE TEXT DATASET

3.1 Introduction

The attributes of datasets establish the nature of a real-world problem for the research

community. A well-defined and properly labeled dataset usually sets the trend for the

field as well. For instance, the fact that most if not all text instances in ICDAR2013 (and

all its variants) are horizontal-oriented has encouraged most scene text detectors through-

out the 2000s to early 2010s to incorporate such assumption while solving the scene

text detection problem. Then, the introduction of MSRA-TD500 has turned scene text

researchers’ heads to the multi-oriented text detection problem. The scene text commu-

nity embraced another transition when ICDAR2015 was introduced. Reseachers bench-

marked their scene text detectors on ICDAR2015 to evaluate its effectiveness against text

instances that are small, out-of-focused, and randomly placed. All of these have indi-

cated the impact of datasets have on the research field. The neglection on the scene text

detection problem was inevitable due to the lack of curved text instances in the existing

datasets. As a matter of fact, multiple research works have reported their successful and

failure cases on the limited curved text intances in the existing dataset, but failed to eval-

uate it thorougly due to the absence of sufficient data. Such phenomenom has shaped the

first motivation of this thesis work: the collection of a new scene text dataset which priori-

tise curved text instances, namely Total-Text, with the aim of facilitating a new research

direction for the scene text community.
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Figure 3.1: Text arranged in different orientations: (a): horizontal text that can be
connected by a horizontal line, (b): multi-oriented text that can be connected by a
straight line with an unified angle offset with respect to a horizontal line, (c): curved
text with no unified angle offset from one character to another.

Figure 3.2: Example images of text with different orientations. Top row: horizontal
text instances from ICDAR2013, Middle row: multi-oriented text instances from
MSRA-TD500 and ICDAR2015, Bottom row: curved text instances from Total-Text.
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3.2 Orientation of scene text

Text in natural scene comes in a variety of orientations. While horizontal text might be

the most common one, it does not represent the entirety of text in wild. Geometrically1

speaking, a straight line has no angle variation along the line, and thus can be described

with the linear function, y = mx+c. A curved line on the other hand is free of angle vari-

ation restriction throughout the line. Shifting to the scene text perspective, it is observed

that horizontal oriented text or word is a series of characters that can be connected by

a straight line (their bottom alignment in particular for most cases). Similarly, multi-

oriented text in the scene text convention2 can also be connected by a straight line, given

an offset with respect to a horizontal line. Meanwhile, characters in a curved text instance

do not have an unified angle offset, in which deemed to fit a polynomial line. Figure

3.1 is the psuedo example to visualize the aforementioned description, from horizontal

to curved text, while Figure 3.2 shows the real image examples with different text orien-

tations. Due to the wider definition of curved text, there are variations within it as well.

For instance, the example in Figure 3.2 (3rd row) depicts three curved text instances with

different curvature: slightly to extremely (from left to right) curved. Further exploration

on the difference of curved text will be discussed in Section 4.6.

3.3 Overview of Total-Text

3.3.1 Statistics of Total-Text

This section will discuss the numbers of Total-Text. The 1555 images of Total-Text is

split into two groups, 1255 and 300 for training and testing set respectively. Figure 3.3

shows a series of statistical information of Total-Text. It has a total of 11,459 anno-

1In the mathematical context.
2Based on the multi-oriented scene text images in existing datasets like MSRA-TD500 and IC-

DAR2015
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tated text instances and 7.37 instances per image on average. These numbers are superior

to ICDAR2013 and MSRA-TD500, yet at the same time on par with ICDAR2015 and

CTW1500, demonstrating its standard in terms of numbers. Figure 3.4 is a histogram that

visualizes the distribution of Total-Text’s text instances. It shows that most of the images

have roughly 3 to 6 text instances per image. The number goes as high as 117 in one

single image, which also can be seen in Figure 3.4. Furthermore, more than half of the

images in Total-Text have two different text orientations or more. Figure 3.3c illustrates

the percentages of different text orientations in Total-Text. Approximately slightly under

half of the text instances are curved (42.8% or 4907 in number), and the other half is split

almost equally between horizontal (31.3% or 3585 in number) and multi-oriented (25.9%

or 2967 in number). It is worthy of note that although all the images were collected with

curved text in mind, other orientations still occupy half of the total instances. A closer

look into Total-Text revealed that curved text usually appears alongside either horizontal

or multi-oriented text. With the mixture of text orientations in an image, Total-Text chal-

lenges text detection algorithms to achieve robustness and generalisation in terms of text

orientations.

3.3.2 Attributes of Total-Text

Apart from these solid numbers, the dataset was also collected with quality in mind.

Scenery complexity such as text-like and low contrast background, different font types

and sizes, etc., can be seen in Figure 3.5. In addition, the sceneries in Total-Text’s images

are well diversified too. Figure 3.6 shows some examples of curved text occurrences, they

can be found on business signboards (restaurants, hotel, merchants, etc.), sport clubs logo

or jersey, tourist spots, food packaging, fire alarms, bus stops, etc. Another interesting

observation is that curved text instances usually exist under the circumstances where it

matches the shape containing it (round and arch for instance), as illustrated in the first
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(a) (b)

(c) (d)

Figure 3.3: Statistics of the Total-Text dataset

Figure 3.4: Images with different number of text instances.
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Figure 3.5: Challenges in Total-Text. Apart from the commonly seen challenges in
the scene text domain such as camouflage background, variations of font size, per-
spective distortion, and illumination, Total-Text challenges text understanding algo-
rithm to handle a combination of multiple oriented text in a single image.

row of Figure 3.7. Such shapes are common in signs and entrances of our world today.

On the other hand, curved text instances can also be found on non-round surfaces (as

illustrated in the second row of Figure 3.7) albeit not as common. It appears to be more

attention-catching than horizontal text in those examples.

3.4 Annotation details of Total-Text

Total-Text is annotated for three scene text understanding tasks: detection, recognition,

and segmentation. Figure 3.8 shows an example of the ground truths for each of the tasks
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Figure 3.6: Diversified sceneries in the images of Total-Text.

(refer to Appendix A for more). The introduction of curved text has no direct impact

on the ground truth of recognition and segmentation but detection task. Hence, a new

detection ground truth format is introduced to cater the introduction of curved text. All the

provided ground truths and their respective annotation process are discussed as follows.

3.4.1 Ground-truth Format for the Detection Task

Axis-aligned bounding box is the most common ground truth format in detection task

regardless of its domain (Deng et al. (2009); Everingham et al. (2010); Lin et al. (2014)).

It takes the least effort to annotate and deemed to be a good fit for general objects. As
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Figure 3.7: Surfaces that contain curved text. Top row: round or arc surfaces which
usually define the shape of curved text. Bottom row: normal surfaces which is not
as common, the arrangement of curved text appears to be more attention-catching
than the other orientations.

shown in Figure 3.9, an axis-aligned bounding box only requires two dots (as represented

by ‘*’). Among the well known scene text datasets that was annotated for detection task,

ICDAR2013 and COCO-Text adopted such format. While it is an appropriate format for

ICDAR2013 mainly because most of its text instances are horizontal, it is not the best

format for COCO-Text owing to the fact that it features text of all orientations. As shown

in the first column of Figure 3.9, axis-aligned bounding box could not fit text other than

horizontal orientation tightly. On the other hand, MSRA-TD500 uses rotated bounding

box as the choice of ground truth format. Rotated bounding box is encoded in five values,

(x, y, w, h, θ ), which is considered as a good fit for multi-oriented text. However, such

ground truth format requires the characters within a text instance to have a unified offset

angle, which could not fit text instances with persective distortion or different font sizes

properly as illustrated in Figure 3.9 (last two images of second column). ICDAR2015

44

Univ
ers

ity
 of

 M
ala

ya



Figure 3.8: Annotation provided in Total-Text. Detection: polygon bounding region
(x and y vertices), recognition: transcription, segmentation: pixel level binary map.
The orientation information of every text instances are annotated as well.

was the first scene text dataset to employ quadrilateral in annotating text instances. It

consists of eight parameters (four vertices, (x1, y1, x2, y2, x3, y3, x4, y4)), which has more

degree of freedom than the rotated bounding box, hence it is capable of binding any multi-

oriented text instances (as depicted in the third row of Figure 3.9). However, none of these

bounding region formats fit the shape of curved text tightly, as shown in the last row of

Figure 3.9. The usage of such formats would result in i) overlapping of text instances and

ii) the inclusion of background regions. Inspired by CUTE80 (Risnumawan et al. (2014)),

Total-Text employs polygon as the detection ground truth format. As illustrated in the last
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column of Figure 3.9, polygon with no vertices restriction is capable of binding text of all

orientations tightly.

Figure 3.9: Images with text of different orientations, binded by different ground
truth format. ‘*’ represents the vertices of the ground truth format. Polygon with
no restriction on the number of vertices is able to bind text of all orientations tightly.

3.4.2 Annotation Workflow and Details

This section discusses the annotation workflow employed in annotating the ground truth

of Total-Text. Specifically, the annotation process of detection, recognition and segmenta-

tion will be explained in subsection 3.4.2 (a), 3.4.2 (d), and 3.4.2 (e), with further details

in subsection 3.4.2 (b) and 3.4.2 (c).

3.4.2 (a) Detection and Recognition Annotation Process

The process of annotating image with detection ground truth is basically identifying every

text instance in an image and provide its location information. As discussed, Total-Text

employs polygon as the format for the location ground truth. Hence, the ultimate goal
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is to locate and bind every text instance tightly with polygon vertices. Meanwhile, the

ground truth of the recognition task – the transcription of the text instance, can be carried

out at the same time too. The entire workflow is as follows:

i) Display an image in the dataset, and prompt annotator to count the number of text in-

stances available in it. (Figure 3.11a)

ii) Request annotator to bind any of the unannotated text instances with axis-aligned

bounding box. (Figure 3.11b to 3.11c)

iii) Crop the image based on the bounding box inputted by annotator, then enlarge the

area and display it. (Figure 3.11d)

iv) Prompt annotator to bind the text region with polygon vertices (i.e. clicking on the

edge of the text instance, as represented by the ‘blue dot’ in Figure 3.11e to 3.11f).

v) Prompt annotator to enter the transcription of the text instance. (Figure 3.11g)

vi) Prompt annotator to enter the orientation of the text instance. (Figure 3.11h)

vii) Repeat step (ii) to (vi) until all the text instances are annotated.

Additionally, orientation of every instance were annotated for modularity convenience.

For example, if one prefers to evaluate the effectiveness of an algorithm to detect curved

text only, one could leverage this annotation to filter out instances with other orientations.

The annotation script was written in Matlab programming language (version R2015b),

the result of the annotation was saved as the ‘.mat’ file, example in Figure 3.8.

3.4.2 (b) Granularity of Text Instances

In line with ICDAR2013, ICDAR2015, COCO-Text, Total-Text’s text instances were

annotated with word-level granularity3. Adopted from COCO-Text, word level text in-

stances are an uninterrupted sequence of characters separated by a space. Figure 3.10

3Hence all the usage of ‘text instances’ in this work means word-level text unless stated otherwise.
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illustrates the difference between word and line level text instances. Line-level granular-

ity is often used when the dataset involves languages other than English, like Chinese,

Indian, Korean, Japanese etc., since these languages do not have the ‘space’ element to

seperate one word from another.

Figure 3.10: Differences between word and line-level ground truth. Line-level is
usually employed in multi-lingual datasets which involve languages such as Chinese,
Indian, Korean, etc. which do not have the ‘space’ element.

3.4.2 (c) Do Not Care Regions

Total-Text’s annotation considers only English as text instances; other languages, digital

watermarks and illegible text are labelled as do not care in the ground truth4. Do not

care area picked up by detection algorithms should be filtered out before evaluating its

performance. Equation 3.1 is recommended for such filtering process.

Areao =
Areag∩Aread

Aread
(3.1)

where detection candidates with Areao higher than 0.5 should be removed (Areag is the

ground truth area and Aread is the detection area).

4With the ‘#’ sign under the orientation and transcription category.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11: The baseline detection and recognition annotation process, the polygon
was annotated with no restriction on the number of vertices. (a): Input image. (b)-
(c): Bind the text region with a bounding box. (d): Zoomed-in version of the text
region. (e)-(f): Annotate with polygon vertices. (g): Enter the transcription of the
text. (h): Enter the orientation of the text.
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3.4.2 (d) Regulated Polygon Annotation Process

The initial version of Total-Text’s polygon ground truth format as published in Chng &

Chan (2017) (Section 3.4.2 (a)) was then found to be impractical for the recent regression-

based methods due to its flexible length of vertices. Most of the regression-based meth-

ods (as discussed in Subsection 2.3.2 (b) and 2.3.2 (c)) today require a fixed length of

regression parameters. Hence, a new version of polygon ground truth is introduced to

address such problem. The new version of polygon ground truth (which will be termed as

‘regulated polygon’ from here on), has two attributes: i) the number of polygon vertices

is fixed to ten (which was found emprically to be able to bind all the text instances in

Total-Text tightly), and ii) the annotation of polygon vertices is regulated by a guiding

mechanism to increase its consistency. A new annotation workflow is devised for the new

regulated polygon annotation (inspired by the work of Yuliang et al. (2017)), which can

be described as follows:

i) Prompt annotator to pick four different vertices that serve as the beginning and ending

vertices covering of a text instance. As illustrated in Figure 3.12a, two vertices at the top

corner of the word "MARLEY" (red and green dot), and two vertices at the bottom corner

(blue and yellow dot).

ii) Calculate the distance between the top two vertices (red and green dot) and generate

three equidistant lines (yellow in color) with Algorithm 1. (Figure 3.12b)

iii) Prompt annotator to select the select the interception point (represented as ‘*’) along

each yellow guiding line which best binds the top boundary of the word. (Figure 3.12b)

iv) Calculate the distance between the bottom two vertices (yellow and cyan dot) and

generate three equidistant lines (green in color) with Algorithm 1. (Figure 3.12c)

v) Prompt annotator to select the select the interception point (represented as ‘*’) along

each green guiding line which best binds the bottom boundary of the word. (Figure 3.12c)
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(a)

(b)

(c)

Figure 3.12: The workflow of the regulated polygon annotation scheme. (a): Prompt
for four vertices. The system will then generate three equidistant guiding lines based
on them. (b): Annotate the interception point (represented by the symbol ‘*’) be-
tween yellow guiding lines and the top part of the text. (c): Lastly, annotate the
interception point between green guiding lines and bottom part of the text.

These five steps are the replacement for step (iv) (as illstrated in Figure 3.11e and 3.11f)

in the previous polygon annotation workflow (Section 3.4.2 (a)). The four initial points

add to the six vertices from the top and bottom part of the text instances5 form a polygon

with ten vertices. The guiding mechanism, as formulated in Algorithm 1 has the following

benefits: i) it relieves the cognitive strains to a certain extent during the annotation process

as the annotator has less decision to make, ii) the distance between each polygon vertices

are consistent6, iii) removal of human bias (as the possible outcomes of the polygon with

ten vertices is high, the pattern could vary from one human annotator to another). Figure

3.13 shows the comparison between the old and new ground truth.

5It could be left or right too, depending on the shape of the text. Regardless, the equidistant lines are
generated by the first four initial points, which should be conciously annotated as a pair to cover one side
of the text instance each.

6Except when the location of the guiding lines are not the best places for a vertex, it happens to some
of the curved text intances which are extremely large. When that happens, annotator is required to annotate
the vertices location as he/she deems appropriate.
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(a) (b)

Figure 3.13: (a): Original ground truth with flexible length of polygon vertices. (b):
New regulated ground truth with a fixed length of ten vertices.

Algorithm 1 Algorithm to generate the guiding lines in the regulated polygon annotation
process.

Let the pair of input vertices be (x1, y1) and (x2, y2)
xmin = min(x1, x2)
xmax = max(x1, x2)
ymin = min(y1, y2)
ymax = max(y1, y2)
width = xmax - xmin
height = ymax - ymin
if width > height then

equidistant interval = (xmax - xmin) /4
Line1x1 = xmin + equidistant interval
Line2x2 = Line1x1 + equidistant interval
Line3x3 = Line2x2 + equidistant interval

else if height > width then
equidistant interval = (ymax - ymin) /4
Line1y1 = ymin + equidistant interval
Line2y2 = Line1y1 + equidistant interval
Line3y3 = Line2y2 + equidistant interval

end if

52

Univ
ers

ity
 of

 M
ala

ya



3.4.2 (e) Pixel Level Annotation Process

The ground truth for text segmentation task is a binary map labeled with text and non-text

pixels. Its annotation process is the most time consuming process of all annotations. In

order to ease the effort in annotating such ground truth, multiple preprocessing schemes

are used in the workflow. The entire workflow can be described as follows:

i) From the original image, crop an image patch that contains text instance based on the

annotated detection ground truth. (Figure 3.14a).

ii) Prompt annotator to adjust the threshold for all three color channels7. This is based

on the observation that the color of the same text instances is usually in constrast to the

background region. Adjusting the thresholds would be able to ‘zero-out’ the pixel (which

is the background pixels in this context) below the adjusted threshold. (Figure 3.14b to

3.14c).

iii) Prompt annotator to bind the regions with the remaining background pixels in order

to ‘zero-out’ them. (Figure 3.14d to 3.14f)

iv) Repeat step (i) to (iii) until all the text instances are annotated.

However, there are cases where the aforementioned threshold adjustment technique would

not be able to help in preprocessing the text patches. Text regions with uneven illumina-

tion or color that is similar to the background region are two of such cases. Under such

circumstances, annotator has the option to bind the character region from scratch, as vi-

sualized in Figure 3.15. At the end of the process, a binary map with text pixel labeled as

‘1’ and background pixel labeled as ‘0’ is produced and saved as a ‘.png’ file.

7This is achieved by ‘colorThreshold’ function in Maltlab.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.14: Pixel level annotation process. (a): Input image patch. (b)-(c): Adjust
the color thresholds to seperate text from background region. (d)-(f): Remove ’non-
text’ region. (g): Final result.
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(a) (b)

(c)

Figure 3.15: Pixel level annotation from scratch. (a) and (b) shows the process of
binding the character region, while (c) depicts the final result.

3.5 In-depth Exploration of Curved Text

There are different kinds of curved text, which could be described in layman’s terms like:

‘the curvature of this text is more than that’, ‘the arc of this curved text is intruding, while

that one is protruding’, etc. However, such interpretation is subjective and of no help in

large number analysis. Hence, this work believes that there is a need of being able to

describe the variation of curved text objectively in concerete numbers. This section will

reveal an encoding method to represent the differences of curve text. In addition, several

insights regarding the curved text instances in Total-Text will be shown and discussed.

3.5.1 Curved Text Encoding

As explained in Section 3.2, a single straight line is not capable of connecting all the

characters of a curved text. It requires a polynomial line with changing gradients. Two

straight lines with different slopes, however, are able to do the trick coarsely. The encod-
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(a)

(b) (c)

(d)

Figure 3.16: The proposed encoding method to represent curved text with two inde-
pendent gradients. (a): Polygon ground truth format of Total-Text. (b): Encoding
visualisation of xmid(0), ymid(0), h(0), w(0)0, w(0)1. (c): Encoding visualisation of dxmid(i)
and dymid(i). (d): Representation of curved text with two straight lines.
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ing method can be described as follows. Firstly, a standardize ground truth format for

all the curved text instances is required: 6-vertex polygon format is chosen as it is the

minimum amount of vertex required to represent a curved text instance with two straight

lines. Apart from the fixed number of vertices, the vertices were annotated in the follow-

ing pairing manners: {x0,y0} pairs with {x5,y5}, {x1,y1} pairs with {x4,y4}, and {x2,y2}

pairs with {x3,y3}, while following a clockwise rotation, all of these descriptions can be

observed in Figure 3.16a. Upon converting all the ground truths to polygons with six

vertices, Equation 3.2 are used to determine three middle points from them, as visualized

in Figure 3.16b.

xmid(i) = min(x(i),x((N−1)−i))+abs(x(i)− x((N−1)−i))/2

ymid(i) = min(y(i),y((N−1)−i))+abs(y(i)− y((N−1)−i))/2

For i = [0,N/2)

(3.2)

The ‘opposite pair’ nature is embedded in the notion of i and ((N− 1)− i), where N is

the total number of vertices. Taking the {x0,y0} and {x5,y5} pair as example,

i) xmid(0) is the middle point between x0 and x5, and

ii) ymid(0) is the middle point between y0 and y5.

These middle points are then used to form two straight lines, which can be represented by

its gradients (dxmid(i) / dymid(i), for i ∈ [1,2]), as formulated and shown with Equation 3.3

and in Figure 3.16c and 3.16d. As mentioned, two straight lines with independent gra-

dient are what is needed to represent curved text in the proposed encoding method. This

encoding method can be extended to fully represent a polygon, which will be discussed in
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Section 4.2.3 (a), as the regression target for the proposed curved text detection method.

dxmid(i) = xmid(i)− xmid(i−1)

dymid(i) = ymid(i)− ymid(i−1)

For i = [1,N/2)

(3.3)

3.5.2 Signs of Gradient

The combination of the signs of the two gradients is the first helpful feature to describe

different curved text. For instance, the curved text (i.e. FISHERMAN’S) in Figure 3.16

has a negative dymid(1)/dxmid(1) (i.e. the ‘FISHER’ part of the word), followed by a pos-

itive dymid(2)/dxmid(2) (i.e. the ‘MAN’S’ part of the word), mainly because ymid(1) is

higher than ymid(0), and ymid(2) is lower than ymid(1)
8. Curved text in Total-Text can be

categorized into four different groups based on this representation: Neg_Pos, Pos_Neg,

Pos_Pos, and Neg_Neg, based on the sequence of their signs (Neg_Pos as in the curved

text has a negative gradient followed by a positive gradient, similar notation for Pos_Neg,

Pos_Pos, and Neg_Neg). Figure 3.17a shows the weightage of each group in Total-Text.

Intuitively, curved text in the Neg_Pos and Pos_Neg group has a change of direction, form-

ing what looks like an arc. Pos_Pos and Neg_Neg on the other hand have no change of

direction but the magnitude difference between their gradient pairs makes them a curved

instead of slanted text.

3.5.3 Magnitude of Gradient

Figure 3.17b is a 2D projection of every curved text instance with the magnitude of gra-

dients representing the x and y axes. The first apparent observation is that the afore-

8Note that the origin of the y-axis starts from the top of the image
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(a)

(b)

(c)

Figure 3.17: In-depth exploration of the curved text in Total-Text. (a): Percentage
of different curved text in Total-Text. (b): Distribution of Neg_Pos (red), Pos_Pos
(green), Pos_Neg (blue), and Neg_Neg (yellow), projected with their normalized gra-
dients as x and y axis. (c): A closer look into the curved text images distribution at
the Pos_Neg quadrant. The first and second line are color coded with green and red
line for better observation. (Image patches were sampled)
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mentioned curved variants (i.e. Pos_Neg, Neg_Pos, Pos_Pos, and Neg_Neg) split the plot

into four quadrants with different sign combinations. Secondly, there are obvious gaps

in the symmetrical zone of the Pos_Pos and Neg_Neg quadrants owing to the fact that

proportional gradients would make them a straight line instead of curved. Meanwhile,

Figure 3.17c is a close-up visualization of the Pos_Neg quadrant. Image patches with

Pos_Neg’s curved text instances were cropped and mapped based on their coordinates in

Figure 3.17c. The first interesting observation is that the curved text instances lie on the

white diagonally dotted line have symmetrical arc. This is mainly due to the proportional

gradients between the first and second line (i.e., dymid(1)/dxmid(1) is equal or close to

dymid(2)/dxmid(2)). Moving along the diagonal line, curved text intances in those images

are seen to transit from slightly to extremely curved as the magnitude of both gradients

increase. Moving away from the center line, the curved text images are observed to have

higher gradient in one of the lines than the other depending on the axis it is leaning to-

wards (i.e., steeper green lines close to the x-axis (dymid(1)/dxmid(1)), steeper red lines

close to the y-axis (dymid(2)/dxmid(2))). Figure 3.18 is the same kind of visualization but

with all four quadrants, the ‘zoomed-out’ version. The image patches were ommited for

better visualization. All the mentioned observations can be seen in all other quadrants.

At the same time, each quadrants are observed to possess unique patterns: i) Neg_Pos’s

curved text instances form a ‘n’-like arc, ii) while Pos_Neg’s curved text instances form a

‘v’-like arc, iii) Pos_Pos’s curved text instances are projecting downwards, and finally iv)

Neg_Neg’s curved text instances are pointing upwards.

As a summary, the sign of gradients provides a high level overview on the curved

text in Total-Text, while the magnitude of gradients allows us to navigate through differ-

ent curved text with finer details. With this, the example in Figure 3.16 can be described

as a curved text with a negative followed by a positive gradient. Its dymid(1)/dxmid(1) to

dymid(2)/dxmid(2) ratio is 7.4, a curved text with steeper start than its end. Such represen-
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Figure 3.18: Visualization of all the curved text instances represented by two straight
lines. Various patterns emerge for intepretation.

tation describes curved text instances in numerical terms, and hence made the in-depth

explorations above possible.

3.6 Evaluation Protocol

There are two commonly used evaluation protocols in the community of scene text de-

tection, namely Pascal VOC and DetEval. Both of them were modified and implemented

for the evaluation of Total-Text. Pascal VOC’s evaluation protocol was introduced in

the Pascal VOC object detection competition, which employs IoU between detection and
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Figure 3.19: Multiple cases handled by DetEval. (a): One-to-One match, (b): One-
to-Many match, (c): Many-to-One match. All of these are acceptable in the scene
text understanding context.

ground truth regions as the metric of evaluation (Everingham et al. (2010)). Detection

with more than 0.5 IoU will contribute to the accumulated summation of True Positive

(TP). Any detection with lower than the IoU threshold will be regarded as False Positive

(FP) and missed ground truth will be penalised with an increment in the False Nega-

tive (FN). DetEval on the other hand is specifically devised for the scene text detection

problem (Wolf & Jolion (2006)). Unlike object detection, one ground truth being de-

tected multiple times (One-to-Many), or one detection encapsulate multiple ground truth

regions (Many-to-One) is acceptable in the application of scene text detection (Wolf &

Jolion (2006)). Figure 3.19 illustrates three of the acceptable scenarios: One-to-One,

One-to-Many, and Many-to-One; while Many-to-Many is a rare combination of One-to-

Many and Many-to-One case. One of the main reasons behind this is the notion that
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multiple words being detected as one, or the vice versa, is still useful in the context of

text recognition, which usually is the next stage of text detection in a complete scene text

understanding system. Unlike Pascal VOC, DetEval utilises two metrices to measure the

quality of detection, which are τ and σ as fomulated in Equation 3.4 and 3.5 respectively.

Moreover, both of these metrices are regulated by threshold t p and tr respectively. Only

detection with higher τ and σ than the threshold values will be considered as a ‘match’.

After a thorough investigation, the convention t p (0.4) and tr (0.8) values, being used in

the DetEval evaluation protocol were found to be inappropriate for Total-Text.

3.6.1 Precision of Detection, τ

τ is a metric in DetEval which measures how precise is a detection, as described in Equa-

tion 3.4 (Areag is the ground truth area and Aread is the detection area). Taking Figure

3.20 for example, it can be observed that the detection result of Poly-FRCNN is much

tighter than Box-FRCNN’s (both the detail of Poly-FRCNN and Box-FRCNN will be

discussed in Section 4); such observation is also consistent with the actual precision cal-

culation as tabulated in Table 3.1. As observed, the output of Poly-FRCNN consistently

outperforms the loosely bounded output from Box-FRCNN. However, such performance

difference is not reflected in the final calculation. Since the t p value is set as low as 0.4, all

the detections of Poly-FRCNN and Box-FRCNN eventually contributed the same to the

final score as all of them surpass the threshold despite the significant difference. In other

words, the significant gained by the Poly-FRCNN is diminished by the low t p value. On

the global scale, Figure 3.21a illustrates the performance of both methods (benchmarked

on the test set of Total-Text) across all values of t p. It shows that Box-FRCNN’s perfor-

mance drops significantly as the threshold increases, while Poly-FRCNN’s performance

remained consistent. All of these suggest that an increment to the t p threshold is deemed

necessary. As illustrated in Figure 3.21a, 0.6 is the point where Box-FRCNN’s perfor-
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Figure 3.20: Detection outputs of Box-FRCNN(red) and Poly-FRCNN(yellow) on
one of the test images of Total-Text.

Table 3.1: τ and σ scores of both Box-FRCNN and Poly-FRCNN’s output on Figure
3.20

DetEval metric τ σ

Detection | Methods Box-FRCNN Poly-FRCNN Box-FRCNN Poly-FRCNN
KAPILI 0.6 0.98 0.99 0.91
KISMET 0.51 0.85 0.99 0.92
HAN 0.4 0.76 1.0 0.78
10 0.8 0.89 1.0 0.95

mance drops beneath Poly-FRCNN, hence, this work recommends 0.6 as the default t p

threshold for the evaluation on Total-Text.

τ =
Aread ∩Areag

Aread
(3.4)

3.6.2 Coverage of Detection, σ

On the other hand, σ measures how much of the ground truth area is covered, as formu-

lated in Equation 3.5. With the same example in Figure 3.20, Box-FRCNN’s prediction

boxes score almost or equal to full mark in all of the detection boxes while Poly-FRCNN’s

polygon detections are penalised as it try to match the ground truth precisely (see Table
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(a) Sweeping of t p with tr fixed at 0.8. (b) Sweeping of tr with t p fixed at 0.6.

Figure 3.21: Performance of Box-FRCNN and Poly-FRCNN across different tr and
t p with the DetEval evaluation protocol.

3.1). This is mainly due to the nature of Equation 3.5, which favours detection with

large detection area. Furthermore, polygon ground truth has much more vertices (hence

much more offset potential) than an axis-aligned bounding box, which is not an easy task

to meet at a high level of agreement. Further experiment in Section 3.7 validates this

by showing that even human annotation cannot perfectly match each other in multiple

attempts. Hence, with the recommended sigma threshold, tr, as high as 0.8, the third

detection Poly-FRCNN’s prediction (corresponds to the ‘HAN’ ground truth) is forfeited

in the final calculation. Figure 3.21b shows that by lowering tr by 0.1, to 0.7, the perfor-

mance gap between the two became significant and much fairer.

σ =
Aread ∩Areag

Areag
(3.5)

3.7 Assisted Annotation Tool for Scene Text Detection

Ground-truth annotation is the biggest bottleneck in scaling up a dataset. Karatzas et

al. (2017) introduced an on-line annotation platform that stresses on quality control and

database management. However, the mundane and painstaking annotation task alone has

much room for improvements. Quality annotation format such as the proposed regulated
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polygon comes with a higher cost than the conventional axis-aligned bounding box and

quadrilateral format. Inspired by Castrejón et al. (2017), this work proposes a new as-

sisted annotation tool to ease the time consuming annotation process. The assisted anno-

tation tool, namely Total-Text-Tool (T3), is capable of reducing annotation time by 25%

with an aggreement rate of 84% with human annotators. The main differences between

T3 and Polygon-Recurrent Neural Network (RNN) (Castrejón et al. (2017)) are: i) the

latter requires user to input image patches to the system, while T3 takes the whole image,

and ii) the suggestion (polygon vertices) in T3 is designed to be aligned with the regu-

lated polygon format as explained in Section 3.4.2 (d), which deemed to fit text instances

better.

3.7.1 Total-Text-Tool (T3)

Training a modern scene text detector requires a lot of annotated data and time. In the

scene text research domain, most of these invested resources reach the end-of-life when

the performance tables are tabulated. The main idea of T3 is to reuse the well trained

and good performing scene text detectors to predict the potential text regions ahead of the

annotation process. The predictions will serve as a suggestion for the human annotator.

The ideal flow of a good quality annotation tool should consist of i) cropping out text

region with bounding box, ii) select a series of vertices for either quadrilateral or polygon

that will bind the text instance tightly. This workflow is used in Karatzas et al. (2017)

and Yuliang et al. (2017), which will be compared to as a baseline9 in the following ex-

periment. T3 aids annotator with both of the processes in this workflow. The annotation

process of T3 is as follows:

i) Firstly, new scene image will be processed by a scene text detector to output both

bounding box and polygon shaped predictions.

9The same workflow introduced in Section 3.4.2 (d)
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(a) (b)

(c) (d)

Figure 3.22: The annotator interaction part of T3 – adjusting the suggested polygon
vertices by T3. These figures are arranged sequentially, (a) - (d), black dotted lines
represent the adjustment that took place.

ii) Secondly, T3 crops image patches with the provided bounding boxes.

iii) Thirdly, display the cropped image patch with interactive polygon vertices for anno-

tator to adjust and fit the text region tightly, as illustrated in Figure 3.22.

At the same time, annotator has the option to discard poorly suggested bounding box

or polygon and manually re-annotate it from scratch using the baseline method. Figure

3.23 illustrates the annotation process of T3, the proposed vertices can be seen in the

image patches with blue polygons, while the green ones are the examples post annotation.

3.7.2 Efficiency of T3

3.7.2 (a) Experiment Setup

An experiment was carried out in order to measure the efficiency using T3. The scene

text detector used in the experiment is Poly-FRCNN-5 (see Section 4.3.1 for details). 100

images from the testing set was selected according to the actual F-measure distribution

(depicted by the scale of x-axis of Figure 3.24) of Poly-FRCNN-5 to ensure the legitimacy

of the experiment. The human annotator was informed and trained on both baseline and

the T3 annotation tool before the experiment. The human annotator was given the freedom

to take a break whenever he feels like to, in order to ensure he did not suffer from fatigue
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Figure 3.23: Overview of the detection ground truth annotation process with the aid
of T3.

which would in turn introduce bias to the experiment. Both time and the annotation

quality were measured internally (within the script) and individually to each image.

3.7.2 (b) Performance Analysis

In overall, it took the human annotator a total of 8989.58 seconds (2.5 hrs) to annotate all

the 100 images with the baseline annotation tool. With T3, the total time taken is reduced

by 25% to 6832.34 seconds (1.9 hrs). The quality of both annotation results are in an

agreement of 84%, with the standard deviation of 4.6% in IoU. Figure 3.24 illustrates

the comparison of time taken (normalized to one) between both methods across all 100

images. As observed in the mentioned figure, the better the performance of the detector on

the image, the lesser time it takes for the human annotator to complete the annotation with

the aid of T3. Note that on those images where the detector scores as low as 0 to 0.4, those

suggestions were mostly bad, therefore, the human annotation was required to annotate
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it from scratch. Hence the time taken for those images are almost identical or sometime

worse with T3 due to the extra decision required to discard the suggestions. Even in such

cases, the agreement of annotation between the two methods could not match perfectly.

This is mainly due to i) as pointed out in Castrejón et al. (2017), IoU is a strict metric for

small object instances, which is the nature of scene text in general, and ii) polygon has

much more vertices (ten in this case) hence comes with smaller margin for offset. The

T3 framework is generic, thus any scene text detector can be part of the workflow. The

performance of Poly-FRCNN-5 (F-measure of 0.6 on Total-Text) has much more room

for improvement, a better performing detector would futher reduce the annotation time

with T3.

Figure 3.24: Comparison of time taken to annotate with T3 (in blue) and without
(in red). The better the performance of Poly-FRCNN on the image, the lesser time
it takes for human annotator to complete the annotation with the help of T3. The
agreement of annotation (black line) with the aid of T3 is remained as high as the
one without (left end of the chart), averaged at 84% IoU with a standard deviation
of 4.6% across the 100 images used in this experiment.

3.8 Summary

In summary, the proposed dataset of this work, Total-Text, is introduced to fill the void of

missing curved text. Curved text instances occupy more than 40% of its total 11459 text
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instances. Total-Text has similar scale as existing scene text datasets like ICDAR2015 and

CTW1500, which is considered as a properly scaled dataset. Apart from solid numbers, it

consists of numerous challenging aspects like camouflage background, variation of font

size, combination of multiple text orientations, etc. It was annotated for three different

tasks: detection, recognition, and segmentation. A new detection ground truth format,

regulated polygon, is introduced to cater the curved text region in Total-Text. Apart from

being able to bind curved text region tightly, it has the following properties: i) number

of vertices is fixed to ten, and ii) a guided algorithm is involved in generating equidistant

polygon vertices. Such properties are desirable because it is practical for the existing re-

gression model and the equidistant polygon has lesser human annotation bias. In addition,

the curved text instances in Total-Text are analysed with the proposed polygon encoding

method. All the curved text instances in the proposed dataset can be grouped into four

main categories according to the encoding method. Next, both Pascal VOC and DetE-

val are the official evaluation protocols of Total-Text. The default threshold values were

proven to be not optimised with the usage of polygon ground truth and detection format.

A new set of thresholds values are proposed for more accurate evaluation result on the

proposed dataset. Last but not least, a generic assisted annotation tool for the detection

ground truth is described in the last part of this chapter. It demonstrates promising results

with a reduction of 25% in the annotation time. With the availability of T3, it is hoped

that the future annotation process can be sped up.
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CHAPTER 4: CURVED TEXT DETECTOR – POLYGON-FASTER-RCNN

4.1 Introduction

Scene text detection with curved text in consideration is under-researched at the moment

due to the lack of available data and ground truth (Chng & Chan (2017)). Upon collect-

ing Total-Text, this work explored the possibility of extending the current state-of-the-art

object detection framework – Faster-RCNN (Ren et al. (2015)), to a baseline model that

is capable of detecting text of all orientations. This chapter discusses the design elements

of the proposed method, Polygon-FRCNN, and its performance on various datasets in-

cluding Total-Text to illustrates its effectiveness against text of all orientations.

4.2 Polygon-Faster-RCNN

Inspired by the success of (Jiang et al. (2017); Y. Liu & Jin (2017); Ma et al. (2017);

Yuliang et al. (2017)) in building scene text detectors on top of the Faster-RCNN archi-

tecture, the proposed method of this work, is too built based on Faster-RCNN. Polygon-

FRCNN, as teased in the name, is designed to detect text instances with the polygon

format. The main motive of modeling Polygon-FRCNN to produce polygon output is in

line with the reason of employing polygon as the ground truth format in Total-Text – to

bind text of all orientations tightly. Figure 4.1 depicts the overall architecture of Polygon-

FRCNN. Inherits from Faster-RCNN, Polygon-FRCNN has three major blocks: feature

extraction, region proposal network, and polygon classifer network (originally box clas-

sifier network), all of which will be discussed in the following subsections.
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Figure 4.1: The overview of Polygon-FRCNN. It is based on Faster-RCNN with the
modification in the second stage regression head. The regression head was extended
from four to nineteen to include fifteen encoded polygon parameters.

4.2.1 Feature Extraction

The feature extraction part of a network is important as good features usually translate to

good performance in computer vision problems. Polygon-FRCNN adopts the Inception-

ResNet-v2 (Szegedy et al. (2017)) model as the feature extractor of the network. The

rationale behind the option are i) Inception-ResNet-v2 has demonstrated its strength in

the studies of Szegedy et al. (2017) and J. Huang et al. (2016) ii) pre-trained weights (on

the MSCOCO (Lin et al. (2014)) dataset) were made available by J. Huang et al. (2016)1,

which eliminates the need of training the network from scratch that would take weeks and

many computing resources. The network architecture of Inception-ResNet-v2 can be seen

in Figure 4.2. It combines the strength from both ResNet (K. He et al. (2016)) and the

Inception modules (Szegedy et al. (2015)) which allows i) large number of layers within

the network, and ii) faster running speed with parameter factorization. Both of these

1Available in https://github.com/tensorflow/models/blob/master/research/object
_detection/g3doc/detection_model_zoo.md
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Table 4.1: Network details of the feature extractor (based on Inception-ResNet-v2).
Note that Mixed−5b, Reduction−A, and Inception− resnet −B are made up of the
combination of convolution and pooling operations (which can be referred to in
Figure 4.2) with multiple sets of parameters (i.e. kernel size, padding, and stride).
Hence, they are not tabulated for the sake of the consistency of the table.

Layer/block input size kernel size, k (h×w× c×num− f ilters) padding, p stride, s output size
Conv2d_1a 299×299×3 3×3×3×32 0 2 149×149×32
Conv2d_2a 149×149×32 3×3×32×32 0 1 147×147×32
Conv2d_2b 147×147×32 3×3×32×64 0 1 147×147×64
MaxPool_3a 147×147×64 3×3×64 0 2 73×73×64
Conv2d_3b 73×73×64 1×1×64×80 0 1 73×73×80
Conv2d_4a 73×73×80 3×3×80×192 0 1 71×71×192
MaxPool_5a 71×71×192 3×3×192 0 2 35×35×192
Mixed_5b 35×35×192 – – – 35×35×320
Inception-resnet-A 35×35×320 – – – 35×35×320
Reduction-A 35×35×320 – – – 35×35×1088
Inception-resnet-B 35×35×1088 – – – 17×17×1088

advantages made the construction and training of a very deep network possible, which

is essential in extracting high quality features for the later regression and classification

tasks.

The input image of the network is restricted to 600 - 1024 pixels, input image ex-

ceeding the range will be resized with the aspect ratio intact. At the end of the feature

extraction module, a feature map of dimension (h f eature×w f eature×1088) will be gener-

ated, where h f eature and w f eature are modelled with Equation 4.1, where dimin and dimout

represent input and output dimension of feature maps respectively. Table 4.1 contains all

the details of the Inception-ResNet-v2 based feature extractor. Meanwhile, it provides a

demo calculation based on Equation 4.1 assuming the input image has a spatial dimen-

sion of (299× 299). The extracted feature maps will then be shared between the region

proposal network and polygon classifier network.

dimout = [(dimin +2p− k)/s]+1 (4.1)
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(a)

(b)

(c) (d) (e)

(f) (g)

Figure 4.2: Overall architecture and its internal network details of Inception-
ResNet-v2. (a): Overall architecture, (b): ‘Stem’ block, (c): ‘Inception-resnet-
A’ block, (d): ‘Inception-resnet-B’ block, (e): ‘Inception-resnet-C’ block, (f):
‘Reduction-A’ block, (g): ‘Reduction-B’ block.
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Figure 4.3: Classification (cls) and regression (reg) head of the Region Proposal
Module.

4.2.2 Region Proposal Network

Upon transforming the input image to high dimensional feature maps (with the dimen-

sions of (h f eature×w f eature×1088)), a classification and regression head are attached to

the feature map with the objective of i) classifying whether text exists, and ii) regress its

location in axis-aligned bounding box format. Fundamentally, the classification ‘head’

is a convolutional operation with the filter size of 1×1×1088× (num−o f−anchors×2)

over every pixel in the extracted feature maps. In other words, the filter will learn to

predict an input-dependent size of two-layer probability maps, indicating the likelihood

of each pixel being ‘text’ or ‘background’ region. The parameter num−o f−anchors is

associated with the design of anchors, which will be explained soon. Similarly, the re-

gression ‘head’ is also a convolutional operation, but with the filter size of 1×1×1088×

(num−o f−anchors×4). The ‘4’ here represents the encoded axis-aligned bounding box,
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(x, y, w, h). Figure 4.3 illustrates both the classfication and regression heads with several

details that will be referred to in the following part.

4.2.2 (a) Anchors

Layment description of anchors can be found in Section 2.3.2 (b), this section attempts

to explain it in terms of technical implementation. Firstly, every spatial location in the

feature map are associated with a number of predefined anchors, which is one of the

hyperparameters in the Faster-RCNN framework. These anchors come in different scales

and aspect ratios. The work of Ren et al. (2015) claimed that anchors with the scales

of 1282, 2562, and 5122, and the aspect ratios of 1:1, 1:2, and 2:1 helped to achieve

good performance in general object detection task. The mentioned work ended with nine

anchors per location (three scales with three aspect ratios each) on the final layer of the

feature map.

Multiple studies (Liao et al. (2018, 2017); Ma et al. (2017)) have shown that anchors

with the default scales and aspect ratio did not work well with text in general. Inspired by

their findings, the anchors in Polygon-FRCNN is designed with the scales and aspect ratio

of 162, 322, 642, 1282, and 2562 and 2:1, 1:1, 1:2, and 1:3 respectively. Such smaller and

elongated shape of anchors fits better to the nature of text instances in general as discussed

in Section 2.3.2 (c).

4.2.2 (b) Training Strategy

The training objective of Polygon-FRCNN’s RPN module is consistent with the study of

J. Huang et al. (2016)2: optimizing the multi-task loss function as described in Equation

2Multiple optimization were introduced since the publication of the original Faster-RCNN study (Ren
et al. (2015)), hence the proposed model opts for the optimized version of the instead.
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4.2:

L(pi, ti) = α
1

Nmini−batch
∑

i
Lcls(pi, p∗i )+β

1
Nmini−batch

∑
i

p∗i Lreg(ti, t∗i ) (4.2)

where i is the index of anchor in a mini-batch, while pi and p∗i are the predicted probability

and ground truth label of anchor i being a text instance. On the other hand, ti represents

the predicted parameterized target (tx, ty, th, and tw) as described in Equation 4.7 and t∗i is

its ground truth counterpart. Nmini−batch is the mini-batch number, acts as a normalizer for

both of the loss functions. α and β are the regularization terms to control the weightage

of both loss terms. All of these notions will be detailed as the explanation proceed. Firsly,

at each iteration, the anchors go through a matching process with the ground truth (that

is associated with the input image at that particular iteration) to determine which anchors

are positive and which are negative based on the following conditions:

Matching(boxa,boxgt) =


Positive if IoU(boxa,boxgt) >= 0.7 (4.3)

Negative if IoU(boxa,boxgt) < 0.3 (4.4)

Neutral otherwise (4.5)

Both positive and negative labelled anchors contribute to the classification loss (Lcls) as

described in Equation 4.6. Meanwhile, the neutral anchors do not contribute to the loss

calculation at all.

Lcls(p, p∗) =−(p∗log(p)+(1− p∗) log(1− p)) (4.6)

where p∗ is the ground truth label (positive anchors are assigned with ‘1’ and negative

anchors are assigned with ‘0’), and p is the predicted probability ranged between 0 to

1. Such detail can be seen in Figure 4.3 as well. On the regression end, only positive

anchors contribute to the regression loss as described in Equation 2.1. It can be thought

of as an implicit switching mechanism, which is controlled by p∗i in the second part of
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Equation 4.2. All the positive labelled anchors and its matching ground truths are then

parameterized with Equation 4.7 to form the regression targets for the training process.

Intuitively, the network is supervised with the offset between the anchor and the actual

location of text instance.

tx = (x− xa)/wa,

ty = (y− ya)/ha,

th = log(h/ha),

tw = log(w/wa),

(4.7)

where variable x and xa represent the ground truth box and anchor box respectively (same

applies to y, h, and w). Both the Lcls and Lreg losses are normalized by Nmini−batch. Con-

sistent with the study of J. Huang et al. (2016), Nmini−batch is set to 256 for each image. In

a natural image, there are usually more background regions than text regions. A subsam-

pling mechanism is implemented in the framework to control the balance between both,

ensuring both text and background have at most 128 training samples each. Lastly, α and

β are set to 1 and 2 respectively as the Lreg has more variables, hence was allocated with

more weightages in the final loss calculation.

4.2.2 (c) Proposal

The objective of RPN is to propose regions of interest (ROIs) for the next stage of the

network. The number of proposal is another hyperparameter of the Polygon-FRCNN

model, as inherited from Faster-RCNN. Following the studies of Ren et al. (2015) and

J. Huang et al. (2016), the proposed method is configured to produced 300 proposals

for each input image. Both studies agreed that increasing the number of proposals does

not improve the performance but would slow down the execution speed instead. The
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Figure 4.4: Proposals ((a) - (c)) and detections ((d) - (f)) produced from RPN and
PCN respectively at the end of different training iterations. (a) and (d): 0 iteration,
(b) and (e): 100,000th iteration, (c) and (f): 200,000th iteration. The width of the
bounding lines indicates the confidence level of each proposal or prediction, wider
the line, higher the confidence.

raw proposals are first filtered by the Non-Maximal Suppression (NMS) algorithm then

clipped with their classification scores. The NMS algorithm is a straightforward way to

eliminate overlapping proposal boxes, which is explained in the Algorithm 2. In the case

where there are more than 300 proposal left after the NMS filtering process, the top-300

proposals based on their classification scores will be retained for the next stage. Figure

4.4(c) visualizes the proposals produced by RPN (after completing the training process)

upon feeding in an input image.

4.2.3 Polygon Classifier Network

The objective of Polygon Classifier Network (PCN) is to refine coarsely proposed boxes

to produce precise polygons. The design of PCN is based on Box Classifier Network
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Algorithm 2 Non-maximum-surpression algorithm for the proposal boxes filtering pro-
cess.

Let the input proposal boxes be proposaln
Let the input classification scores be scoresn
Let the processed proposal be processedProposals
Let iouThreshold = 0.6
Sort scoresi descendingly
Sort proposali based on the ID of sorted scoresi
Remove proposal0 from proposali
while length(proposali) > 1 do

for all all i such that 0 < i < n do
IoU = (proposal0∩ proposali)/(proposal0∪ proposali)
if IoU >= iouThreshold then

Remove proposali from proposaln
else

Continue
end if
Append the processedProposals with proposal0

end for
end while
Append the processedProposals with the last proposal in proposaln

(BCN) from the original Faster-RCNN architecture. On top of the traditional bounding

box regression head, PCN is modelled to regress polygon shaped bounding region as well.

The lower level details to adapt such change are detailed in this section. As illustrated in

Figure 4.1, the PCN takes both the feature maps and proposal boxes as input. Firstly, the

shared feature is cropped based on the proposed regions from the RPN. Since proposal

boxes come in arbritrary size, a resize operation is required before feeding them into the

fully-connected layers. Hence, all the cropped regions will be resized to 17x17 spatially,

while retaining the third dimension size. Next, the cropped and resized proposal regions

will be fed into the average pooling layer, through the fully-connected layer to the final

prediction layer. The final output is two vectors representing i) the confidence score of the

particular proposal being a text instance and ii) the combined parameters of a bounding

box and N-vertex polygon bounding region. All of these operations are detailed in Figure

4.5 for better visualization as well.
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Figure 4.5: Architecture of Polygon Classifier Network.

4.2.3 (a) Encoded Polygon Regression Target

The convention regression target (xm ym, w, h)3 used in Faster-RCNN, SSD, and YOLO

only applies to axis-aligned rectangular boxes, but not polygon. Y. Liu & Jin (2017) in-

troduced an encoding method for quadrilateral and claimed that relative information is

easier to train instead of absolute values of quadrilateral vertices (i.e., (x0, y0, x1, y1, x2,

y2, x3, y3)). In fact, most of the regression-based scene text detectors were modelled to

regress one kind of encoded quadrilateral or another. Table 2.2 tabulates all the existing

state-of-the-art scene text detectors and their regression target. Inspired by these studies,

this work introduces a polygon encoding method, which translates absolute polygon ver-

tices into relative information for Polygon-FRCNN’s regression training.

Encode

The proposed encoding is an extension to the encoding used to represent curved text with

3Subscripts ‘m’ stands for the middle point between xmin, ymin and xmax, ymax
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two straight lines in Section 3.5.1 earlier. The mentioned section introduced Equation 3.2

and 3.3, with the function of converting polygon vertices into (xmid0,ymid0,dx1,dy1,dx2,dy2).

However these parameters are not reversible (i.e., decode back to proper polygon vertices)

due to the loss of information. On top of Equation 3.2 and 3.3, Equation 4.8 is needed to

form a reversible encoding method. The said equation is also visualized in Figure 3.16b.

h(i) = abs(y(i)− y((N−1)−i))

w(i)1 = x(i)− xmid(i)

w(i)2 = x((N−1)−i)− xmid(i)

For i = [0,N/2)

(4.8)

Similar to the notation in Equation 3.2, ‘i’ and ((N− 1)− i) translates to the opposing

pairs of vertices, where N is the total number of vertices. Note that the encoding method

is compatible to any polygon with even number vertices. However, for the sake of simplic-

ity, all the explanation henceforth assume the 6-vertex polygon, as introduced in Section

3.5.1, unless stated otherwise. Hence, utilizing the same example as earlier (i.e., taking

the {x0, y0} and {x5, y5} pair as example):

1) h(i) is the height between y0 and y5,

2) w(0)1 is the width between xmid(0) and x0, and

3) w(0)2 is the width between xmid(0) and x5.

The reason for two width values (w(i)1 and w(i)2) is to ensure that the model is flexible

enough to cover the cases of xi > xN−i−1 and xi < xN−i−1, which are pretty common in

the shape of curved text. As a result, the polygon ground truth with the original form of

(x0, y0, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5) is encoded into fifteen relative information
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(ymid(0), xmid(0), h(0), w(0)1, w(0)2, dymid(1), dxmid(1), h(1), w(1)1, w(1)2, dymid(2), dxmid(2),

h(2), w(2)1, w(2)2). Intuitively, the network is tasked to learn and regress the text line lo-

cation as depicted in Figure 3.16d.

Decode

Decoding process is needed to convert the predictions to actual polygon vertices. During

decoding, all the middle points from second points onwards (i.e., i = [1,N/2)) will first

be determined with Equation 4.9.

xmid(i) = xmid(i−1)+dxmid(i)

ymid(i) = ymid(i−1)+dymid(i)

For i = [1,N/2)

(4.9)

Then hi, w(i)1, and w(i)2 will be used to transform these middle points to N vertices using

Equation 4.10-4.11.

x(i) = xmid(i)−w(i)1

y(i) = ymid(i)−h(i)/2

For i = [0,N/2)

(4.10)

x(i) = xmid(i)+w(i)2

y(i) = ymid(i)+h(i)/2

For i = [N/2,N)

(4.11)

Again with the example in Figure 3.16a, y(0), y(1), and y(2) will always be the opposite of

y(5), y(4), and y(3) respectively with the height values: h(0), h(1), and h(2) (likewise for x(i)
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with w(i)1 and w(i)2).

4.2.3 (b) Parameterization of Anchor Polygon

In contrast to RPN, PCN outputs polygon vertices. Implementation wise, the ground

truths in polygon format are first converted to the fifteen encoded values as explained in

Section 4.2.3 (a). Then, in line with the parameterization with Equation 4.7, the ground

truths will be matched and parameterized with the proposal boxes from RPN (instead of

the anchor boxes). However, there are two problems in this process: i) the matching be-

tween polygons requires much more complicated process than the rectangular box, and

ii) the axis-aligned proposal boxes is not compatible with the polygon ground truths for

the parameterization.

Matching between Axis-aligned Proposal Boxes and Ground-truth Polygons

The algorithms of identifying overlapping region that involves a polygon is complicated

(Sutherland & Hodgman (1974); Vatti (1992); Weiler & Atherton (1977)). They usually

consist of heuristic rules and multiple processes which would slow down the execution

time significantly. Such trait is not desirable in the design of a modern scene text detector

as minimal execution speed is often demanded. The design of Polygon-FRCNN sidesteps

this problem with an approximation solution: converting polygon to a circumscribed rect-

angle. Figure 4.6b shows the said circumscribed rectangle of a polygon. Consequently,

the problem is simplified to just finding the overlapping region between two rectangles.

Note that such conversion only applies to the matching process, the ground truths remain

in polygon format for the following process.

Parameterization between Proposal and Ground-truth Polygons

Upon identifying the matching proposal and ground truth pairs, the next step is to pa-

rameterized them. Unlike the original parameterization equation as stated in Equation
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(a)

(b)

Figure 4.6: Methods employed in the PCN matching and parameterization process:
(a): increasing the number of vertices of proposal box to match the 6-vertex polygon
ground truth. (b): converting polygon (yellow) to a circumscribed rectangle (orange)
for the matching process.

4.7, which was derived for encoded axis-aligned box only, this work extended it to fit

the proposed encoded polygon. Firstly, the axis-aligned bounding box outputs (four ver-

tices, (xmin,ymin,xmax,ymax)) from the RPN need to be converted to N-vertex polygon so

that both have equal variables to be parameterized. The conversion process is a simple

operation which adds interval points to the original axis-aligned proposal box. The said

process can be visualized in Figure 4.6a, the original 4-vertex bounding box (represented

by four red ‘*’) is added with two middle points (represented by two blue ‘*’), which in

turn became compatible with the 6-vertex polygon ground truth for the paramerization
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process as formulated in Equation 4.12.

txmid(0) = (xmid(0)− xamid(0))/wa

tymid(0) = (ymid(0)− yamid(0))/ha

th(i) = log(h(i)/ha(i))

tw(i)1 = (w(i)1−wa(i)1)/wa(i)1

tw(i)2 = (w(i)2−wa(i)2)/wa(i)2

For i = [0,N/2)

tdxmid( j)
= (dxmid( j)−dxamid( j))/wa

tdymid( j)
= (dymid( j)−dyamid( j))/ha

For j = [1,N/2)

(4.12)

where x and xa represent the encoded predicted polygon (also the encoded ground truth

polygon) and encoded anchor polygon respectively (same applies to y, h, w1, w2, dx, and

dy).

4.3 Implementation Details

Polygon-FRCNN was built on top of the Tensorflow object detection API (J. Huang et

al. (2016)). All of the training and experiments were ran on a machine with Intel 6-core

Xeon chip, 32GB of RAM, Nvidia Titan X Pascal Architecture GPU, and Ubuntu OS

v14.04.

4.3.1 Variants of Polygon-FRCNN

As discussed in Section 3.5.1, six vertices are the minimum amount of vertices required

to cover a curved text in Total-Text. Hence, Polygon-FRCNN-3 is designed to produce

six vertices polygon bounding region. The proposed encoding method splits six vertices
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into three opposing pairs, hence the notation ‘3’. The overview of Polygon-FRCNN-3

architecture can be seen in Figure 4.1. It is not perfect as some of the bigger curved text

instances require more than six vertices to fit. In such cases, the bounding region will

be looser in order to fit in the entire text region. The 6-vertex polygon as explained in

Section 3.5.1 is used as the training ground truth for Polygon-FRCNN-3. On the other

hand, Polygon-FRCNN-5 is the scaled-up version of 3, which has ten more parameters in

the regression head. Polygon-FRCNN-5 regresses five pairs of opposing vertices. It was

trained with the controlled polygon groundtruth mentioned in Section 3.4.2 (d). Polygon-

FRCNN-5 is the scene text detector in the T3 assisted annotation tool as described in

Section 3.7.

4.3.2 Training Process

4.3.2 (a) Pre-Training

The weights of Polygon-FRCNN was initialized with the ImageNet-pretrained weights.4

Such initialization is important as it gives the network a general idea on what to look

for since both ImageNet and scene text datasets are made up of images in natural scene.

Additionally, training such a deep network from scratch is very time consuming (weeks

of time), hence initializing a network with pre-trained model became a norm in the deep

learning community (Sharif R. et al. (2014); Yosinski et al. (2014)).

Upon initialization, Polygon-FRCNN was trained on COCO-Text for 100K itera-

tions. It is a good practice to pre-train a deep network on a larger dataset first, before the

actual training data which is smaller in scale (Total-Text in this case). Doing so would pre-

vent overfitting, and help the network to converge faster (Yosinski et al. (2014)) during

the actual training. Utilizing the extra annotation of COCO-Text, roughly 15K images

4Available in https://github.com/tensorflow/models/blob/master/research/object
_detection/g3doc/detection_model_zoo.md
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with at least one legible text instance were retrieved for the pre-training process. Con-

sistent with J. Huang et al. (2016)’s study, the learning rate was set to 0.003 during the

pre-training stage.

The first part of Figure 4.7a (shaded in orange) shows the training loss of the first

100K pre-training steps. The total loss, as modelled in Equation 4.2, decreases as the

training proceeds indicates that the network was getting better at the task. The per-

formance graph in Figure 4.7c validates this with the increasing score as well. Mean-

while, the importance of pre-training process is illustrated in Figure 4.7b, which shows

high training loss (stagnant at the range of 8-9 in compared to 2-3(in Figure 4.7a)) with

Polygon-FRCNN training on the combination of Total-Text and ICDAR2015 without go-

ing through the pre-training process. The pre-training process was terminated at 100K

iteration when the evaluation score stopped improving further at roughly 0.44 IoU in av-

erage across the validation set of COCO-Text. On top of that, Figure 4.4(a-b) and (d-e)

visualises the outputs from RPN and PCN before(a,d) and after(b,e) this pre-training pro-

cess. It can be observed that the network has learnt to propose better regions and produce

better predictions. However, the final prediction after this training process is not ready for

the curved text region yet. As we can see in Figure 4.4(d), it failed to detect the curved

text instance (‘LONDON’) in this example. More results can be found in Appendix B,

as observed, when it successfully predicts the location of the curved text, the outputs still

take the shape of normal rectangular. This is mainly because the ground truth format

employed in COCO-Text is axis-aligned bound box, the network has yet to see the actual

polygon shaped ground truth.

4.3.2 (b) Fine-Tuning

After the pre-training process, Polygon-FRCNN was fine-tuned on the combination Total-

Text and ICDAR2015 training set for another 100K iterations. The merging of dataset
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(a) Training loss of Polygon-FRCNN.

(b) Training loss of Polygon-FRCNN without pre-training it on COCO-Text.

(c) Performance of Polygon-FRCNN throughout the training

Figure 4.7: Losses and performance of Polygon-FRCNN throughout the training
process.

89

Univ
ers

ity
 of

 M
ala

ya



was done to increase the scale of training data, which was proven benefitial to the training

of deep neural network models (LeCun et al. (1998)). The combined dataset has 2000

training images in total, with 1000 images each from the training set of Total-Text and

ICDAR2015. 255 images from the Total-Text training set was withhold to serve as the

validation set, which was used to monitor the performance of the network during the

training process, as plotted in Figure 4.7c. Yosinski et al. (2014)’s work suggested to

reduce the learning rate when fine-tuning a network on a much smaller scale dataset,

hence it was decreased to 0.0003 for this stage of the training process. As shown in Figure

4.7a, the loss increases abruptly at the 100K mark, when the fine-tuning process starts.

That sudden increase was caused by the newly introduced training data, the network has

to adjust to the emergence of curved text training data. The loss started to decrease again

around the 130K mark and reached a plateau around 195K iteration. The performance of

the network on the validation set is seen to improved gradually until the 160K iteration

mark, and saturated around 0.5-0.6 for the rest of the training. Figure 4.4 demonstrates

the importance of the availability of the curved text data in Total-Text. As seen in Figure

4.4(e), after the fine-tuning process, the network has learnt to produce polygon bounding

region.

4.4 Experiments

Several experiments were carried out to evaluate the effectiveness of Polygon-FRCNN.

This section describes all the experiment configurations, results, and some of the insights

drawn upon them.

4.4.1 Datasets

Polygon-FRCNN was benchmarked on ICDAR2013, ICDAR2015, and Total-Text. IC-

DAR2013 and ICDAR2015 were chosen to demonstrate the performance of Polygon-
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FRCNN on horizontal and multi-oriented text respectively.

4.4.2 Evaluation Protocol

In order to ensure the legitimacy of the comparison carried out in this section, all the

benchmarkings were done following the standard evaluation protocol and configuration

of ICDAR2013 and ICDAR2015. Firstly, all the results on Table 4.2 were obtained using

the DetEval protocol with the default thresholds (i.e. tr=0.8 and t p=0.4) (Wolf & Jolion

(2006)). On the other hand, the Pascal VOC evaluation method is the official protocol for

ICDAR2015. The results on Table 4.3 were recorded with the standard 0.5 IoU threshold.

Both DetEval and Pascal VOC methods were made available for Total-Text. The threshold

values for DetEval, tr and t p were configured to 0.7 and 0.6 respectively based on the

findings as described in Section 3.6. Meanwhile, for the Pascal VOC evaluation method

wise, the standard 0.5 IoU threshold was chosen.

4.4.3 Quantitative Result

Table 4.2 and 4.3 show that the performance of Polygon-FRCNN-3 (our best performing

model) is on par with contemporary state-of-the-art works like Jiang et al. (2017); Liao

et al. (2017); Y. Liu & Jin (2017); Ma et al. (2017); B. Shi et al. (2017). On the other

hand, Table 4.4 tabulates the performance of Polygon-FRCNN on Total-Text. In order to

measure the effectiveness Polygon-FRCNN againsts of text with different orientations,

especially curved text, two subsets of Total-Text were created with the orientation annota-

tion. The ‘curved-set’ in Table 4.4 consists of only curved text; while the ‘non-curved-set’

is made up of horizontal and multi-oriented text. There are three methods being compared

on Total-Text: Box-FRCNN, Polygon-FRCNN-3, and Polygon-FRCNN5. Box-FRCNN

is the axis-aligned box output from the same network as Polygon-FRCNN-3, being com-

pared to show the effectiveness of the polygon predicting Polygon-FRCNN-3. Mean-
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Table 4.2: Evaluation Result on ICDAR2013

Methods Precision Recall F-measure
TextBoxes (Liao et al. (2017)) 0.89 0.83 0.86
R2CNN (Jiang et al. (2017)) 0.94 0.83 0.88
Seglink (B. Shi et al. (2017)) 0.88 0.83 0.85
RRPN (Ma et al. (2017)) 0.90 0.72 0.80
DIRECT (W. He et al. (2017)) 0.92 0.81 0.86
Polygon-FRCNN-3 0.89 0.81 0.85

while, Polygon-FRCNN-5 is the scaled up version as explained in Section 4.3.1.

As observed in Table 4.4, Polygon-FRCNN-3 outperforms its box predicting coun-

terpart (Box-FRCNN) by 0.16 (0.12) in terms of F-measure overally (wholeset). Their

performance differences became much more significant on the curved text only subset of

Total-Text, with a gap of 0.3 (0.2). This result demonstrates that the design of the pro-

posed method is effective in detecting curved text. The performance of Polygon-FRCNN-

5 drops slightly by 0.04 (0.03) in terms of F-measure in compared to Polygon-FRCNN-3.

The scaled up version is expected to bind curved text region smoothly with more vertices;

however, the increase in number of vertices also reduces the error margin of each vertices,

which causes the loss in performance.

Another worthy observation is that the performance of the proposed method is lower

on Total-Text than on both of the ICDAR2013 and ICDAR2015 datasets. Visualized

comparison can be seen in Figure 4.8. This observation shows that Total-Text is more

challenging than both of the well-received scene text datasets in the text community.

Lastly, the execution speed of Polygon-FRCNN is 1.47s in average across all 300 testing

images in the proposed dataset.
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Figure 4.8: Performance of Box-FRCNN on different datasets. It achieves the best
scores in terms of all three metrices on ICDAR2013, followed by ICDAR2015, lowest
on Total-Text.

Table 4.3: Evaluation Result on ICDAR2015

Methods Precision Recall F-measure
DMPNet (Y. Liu & Jin (2017)) 0.73 0.68 0.70
R2CNN (Jiang et al. (2017)) 0.86 0.80 0.83
Seglink (B. Shi et al. (2017)) 0.73 0.77 0.75
RRPN (Ma et al. (2017)) 0.73 0.82 0.77
DIRECT (W. He et al. (2017)) 0.82 0.80 0.81
Polygon-FRCNN-3 0.76 0.67 0.72

4.4.4 Qualitative Result

The detection examples of Polygon-FRCNN-3 can be seen in Figure 4.10, 4.11, 4.12,

4.13, and 4.14. The contrary examples of text instances in both Figure 4.10 and 4.11

illustrate that Polygon-FRCNN-3 is robust against text with different sizes, orientations

and perpestive distortion.
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Table 4.4: Evaluation of Polygon-FRCNN on Total-Text. All the models were evalu-
ated on both DetEval and Pascal VOC (in the bracket) evaluation protocol. Legends:
P = Precision, R = Recall, F = F-measure.

Methods wholeset
P R F

Box-FRCNN 0.50(0.57) 0.46(0.53) 0.48(0.55)
Polygon-FRCNN-3 0.67(0.69) 0.61(0.64) 0.64(0.67)
Polygon-FRCNN-5 0.64(0.69) 0.56(0.6) 0.6(0.64)

curved-set
Box-FRCNN 0.19(0.3) 0.17(0.29) 0.18(0.3)
Polygon-FRCNN-3 0.51(0.52) 0.45(0.48) 0.48(0.50)
Polygon-FRCNN-5 0.44(0.5) 0.38(0.44) 0.41(0.47)

non-curved-set
Box-FRCNN 0.50(0.51) 0.58(0.61) 0.54(0.55)
Polygon-FRCNN-3 0.63(0.64) 0.59(0.62) 0.61(0.63)
Polygon-FRCNN-5 0.63(0.65) 0.57(0.59) 0.59(0.62)

On top of that, Figure 4.12 shows that the polygon output of Polygon-FRCNN-3 is

capable of binding text of all orientations tightly. Meanwhile, Figure 4.9 emphasizes the

effectiveness of polygon output in compared to box output when it comes to curved text

instances. Both of these visual examples validate the performance advantage of Polygon-

FRCNN-3 against Box-FRCNN as tabulated in Table 4.4.

On the other hand, Figure 4.13 visualizes the difference between Polygon-FRCNN-

3 and the scaled up Polygon-FRCNN-5. The detection output of Polygon-FRCNN-5 is

observed to bind curved text with larger curvature more tightly as expected.

Lastly, Figure 4.14 shows that the proposed baseline for Total-Text, Polygon-FRCNN-

3 is not perfect. Polygon has more vertices than axis-aligned bounding box and quadri-

lateral (i.e., six for Polygon-FRCNN-3, in compared to two and four for axis-aligned

bounding box and quadrilateral respectively), which makes it more prone to error. As

94

Univ
ers

ity
 of

 M
ala

ya



Figure 4.9: Comparison between detection examples of Box-FRCNN and Polygon-
FRCNN.

observed in Figure 4.14, although the proposals were mostly right about the location of

the text, but several errors in the vertices regression caused the polygon to miss the proper

text region. Other failure cases include the shortcoming of Polygon-FRCNN-3 to bind

text with larger curvature tightly (1st row, 2nd column), and complete miss detections

(1st row, 3rd column).

4.5 Summary

As a summary, Polygon-FRCNN is a scene text detector that was designed with curved

text in consideration. It was built on top of the groundbreaking object detection frame-

work, Faster-RCNN. Changes of design were made to equip it with the ability to produce

polygon bounding region, which is capable of detecting curved text. One of the main

changes is the introduction of the polygon encoding method to prepare for the network re-

gression target. Multiple experiments were conducted to evaluate the performance of the
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Figure 4.10: Detection examples of Polygon-FRCNN-3 on ICDAR2013.

Figure 4.11: Detection examples of Polygon-FRCNN-3 on ICDAR2015.
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Figure 4.12: Successful detection examples of Polygon-FRCNN-3 on Total-Text. It
shows that polygon shaped output is effective against text of all orientations.
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Figure 4.13: Left: Polygon-FRCNN-3; Right: Polygon-FRCNN-5. Polygon-
FRCNN-5’s output has more vertices, is able to bind curved text with larger cur-
vature more tightly.
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Figure 4.14: Failure detection examples of Polygon-FRCNN-3 on Total-Text.

proposed method. The benchmark result on ICDAR2013 and ICDAR2015 have shown

that Polygon-FRCNN is on par with the state-of-the-art scene text detectors. Moreover, it

has proven to be a strong baseline for the proposed dataset, Total-Text. The effectiveness

of polygon bounding output against text of all orientations is shown with the result break-

down of the Total-Text dataset as well. Last but not least, the significance of the curved

text data in the proposed dataset was presented as well.
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CHAPTER 5: CONCLUSIONS

This chapter concludes this thesis work with a summary of what was done and presented,

current limitations, and potential future research works.

5.1 Summary

This research set out to fill up the gap of the existing scene text community: the lack

of curved text data in the scene text datasets. A new scene text dataset, Total-Text, was

collected to achieve this objective. All 1555 images were carefully annotated with three

kinds of ground truth for three different tasks: detection, recognition, and segmentation.

The entire dataset is currently available at https://github.com/cs-chan/Total-Text

-Dataset. The availability of Total-Text hopes to catch the field’s attention to this under-

research problem.

Apart from collecting images and ground truth, there are several more aspects that

are crucial in facilitating a new research direction. The second objective of this work is to

make sure every of these aspects are carefully chosen and tuned to lay a concrete founda-

tion to kick start this new research direction. Firstly, the proposed regulated polygon that

is used for the ground truth of detection task is capable of binding text of all orientations

tightly. On top of that, the proposed annotation process for the regulated polygon reduces

human subjectiveness with a guidance mechanism. Next, a polygon encoding method

was introduced to represent curved text numerically for analysis purposes. It is observed

that the curved text in Total-Text can be broadly categorised into four large clusters. Finer

details within each cluster can also be observed through the differences of each curved

text in terms of its curvature. Next, the default thresholds of Deteval evaluation protocol

were fine-tuned for a fairer evaluation on Total-Text. The fine-tuning process were em-

prically validated with experiment results. Lastly, an assisted annotation framework was
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introduced to reduce annotation time, hoping to aid in future dataset scaling up effort.

The third and last objective of this thesis is to propose a scene text detector that is

robust against text of all orientations that natural scenes exhibits. Polygon-FRCNN is a

straightforward extension of the Faster-RCNN object detection framework. Its perfor-

mance on the renowned datasets like ICDAR2013 and ICDAR2015 is on par with the

existing state-of-the-art scene text detectors. In addition, the evaluation of it on Total-Text

have demonstrated its ability in detecting and binding text of all orientations, including

curved text which is a challenge for the exisiting higher performing scene text detectors.

5.2 Limitations

Both the proposed dataset and scene text detector possess several limitations. Firstly,

although the scale of Total-Text is similar to ICDAR2015 and CTW1500, but it is sig-

nificantly smaller in compared to COCO-Text. Such limitation is caused by one main

bottleneck: the annotation effort in producing polygon ground truth is more time consum-

ing than the conventional axis-aligned bounding box. Since deep learning based methods

appeared to be the direction which the community has embarked on, the lack of such

training data would greatly hindled the generalization of these data-dependent model. On

top of that, the evaluation carried on small dataset can only be taken seriously to a limited

extent.

As presented in Section 4, Polygon-FRCNN has rooms for improvement. The Polygon-

FRCNN-3 variant’s six vertices output is not tight enough for larger curve text; while

Polygon-FRCNN-5 shows improvement qualitatively in that respect, the higher count of

parameters to be regressed make it more prone to error. Apart from that, the running time

of the proposed model is 1.5 second in average, which is not real-time speed. Real-time

speed is an important element real-life application.
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5.3 Future Works

There are several potential future works to address the limitation of this thesis work. As

mentioned in 5.2, Total-Text at best a moderate-sized dataset among all the renowned

scene text datasets today. As potrayed by large scale datasets in other domain like Ima-

geNet (Deng et al. (2009)) (with more than 1 million images), scaling up the dataset would

definitely attract more researchers in working towards the curved text detection problem.

T3 as presented in Section 3.7 is the first initiative towards scaling up the dataset. The

framework addresses this bottleneck by reducing annotation time. While there is a po-

tential in further reducing the annotation time with better performing detector; the image

collection part of the process can be helped with the integration of automation too. For

instance, a image crawling tool that is capable of recognizing the existence of curved text

could greatly increase the efficiency of the image collection process. Besides, Gupta et al.

(2016)’s synthetic data generation method could be another way to increase the training

data. The current method can only generate axis-aliged bounding box as ground truth, it

is definitely worth an exploration on the potential of generating polygon shaped ground

truth as it would increase the data with the least amount of effort.

There are two potential ways to improve the performance of the proposed scene

text detector. Firstly, the increment of training data would help as suggested in LeCun

et al. (1998)’s study. The higher the diversity of the training data, the better the model

generalize which would in turned translates to better performance. Besides, the stability

of Polygon-FRCNN deemed to reduce as the vertices increased. One potential solution is

to replace the polygon regression module. The latest advancement of the Faster-RCNN

framework, Mask R-CNN (K. He et al. (2017)) has reported an unprecendented result

in the instance segmentation field. The dense level pixel prediction module is a good

replacement to the regression head module of Polygon-FRCNN owing to the fact that the
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output mask is not constrained by text of any orientations. While segmentation-based

detection algorithm is not new, the Mask R-CNN framework offers an hybrid solution.

Instead of demanding the network to produce pixel-wise prediction directly from an input

image, Mask R-CNN feeds cropped proposal region to the mask predicting module. Such

strategy greatly reduce the complexity of the task which contributes to the success of this

framework. Besides, the training of mask prediction greatly reduces the potential bias

and subjectivess possessed by the ground truth.1

1The mentioned bias and subjectivess are referring to the sequence of the polygon vertices, which could
varied across different shape of text instances.
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