

 AUTOMATED SYSTEM ARCHITECTURE FOR CONTAINER- BASED

AND HYPERVISOR-BASED VIRTUALIZATION

 MUHAMMAD AMIN BIN ABDUL RAZAK

FACULTY OF COMPUTER SCIENCE & INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2019

Univ
ers

ity
 of

 M
ala

ya

AUTOMATED SYSTEM ARCHITECTURE FOR CONTAINER-

BASED AND HYPERVISOR-BASED VIRTUALIZATION

MUHAMMAD AMIN BIN ABDUL RAZAK

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2019

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)

Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study:

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

Virtualization allows multiple operating systems and applications to be executed on the

same physical server concurrently. Recently, two popular virtualization platforms, namely

container-based and hypervisor-based were adapted into most data centers to support

cloud services. With the increase in various types of scientific workflow applications in

the cloud, low-overhead virtualization techniques are becoming indispensable. However,

to deploy the workflow tasks to a suitable virtualization platform in the cloud is a

challenge. It requires intimate knowledge of ever-changing workflow tasks at any given

moment. This research proposed an automated system architecture that can choose the

best virtualization platform to execute workflow tasks. A benchmark performance

evaluation was conducted on various workflow tasks running on container-based and

hypervisor-based virtualization. Several tools were used to measure the metric, such as

central processing unit (CPU), memory, input and output (I/O). Based on the benchmark,

a system architecture was created to automate the virtualization platform selection. The

results showed that the proposed architecture minimized the workflows’ total execution

time.

Univ
ers

ity
 of

 M
ala

ya

iv

ABSTRAK

Virtualisasi membolehkan sistem operasi dan aplikasi berganda yang akan dilaksanakan

pada pelayan fizikal yang sama secara serentak. Baru-baru ini, dua platform virtualisasi

popular, iaitu berasaskan kontena dan berasaskan hypervisor telah disesuaikan kepada

kebanyakan pusat data untuk menyokong perkhidmatan awan. Dengan peningkatan

pelbagai jenis aplikasi alur kerja saintifik di awan, teknik maya kos rendah adalah sangat

diperlukan. Walau bagaimanapun, ia merupakan satu cabaran untuk menggunakan tugas

aliran kerja kepada platform virtualisasi yang sesuai di awan. Oleh kerana tugas aliran

kerja sering berubah, ia memerlukan pengetahuan mendalam. Penyelidikan ini

mencadangkan suatu senibina sistem automatik yang dapat memilih platform virtualisasi

terbaik untuk melaksanakan tugas aliran kerja. Penilaian prestasi penanda aras telah

dijalankan terhadap pelbagai tugas aliran kerja yang dijalankan pada virtualisasi

berasaskan kontena dan berasaskan hypervisor. Beberapa peralatan digunakan untuk

mengukur metrik seperti unit pemprosesan, memori, input dan output (I /O). Berdasarkan

penanda aras, senibina sistem telah diwujudkan untuk mengautomasikan pemilihan

platform virtualisasi. Keputusan menunjukkan bahawa senibina yang dicadangkan

meminimumkan jumlah masa pelaksanaan aliran kerja.

Univ
ers

ity
 of

 M
ala

ya

v

ACKNOWLEDGEMENTS

My sincere appreciation goes to my supervisor Dr Ang Tan Fong for his support,

guidance, encouragement and assistance. I appreciate and feel thankful to have him as my

supervisor. I would also like to thank Siti Roaiza and Audie Afham for their professional

assistance during this research work. My deepest gratitude and appreciation go to my

parents Abdul Razak Bin Abdul Hamid and also Ramlah Binti Hashim for the support

they have given me throughout. Their assistance has been much felt and their support and

courage has made all the difference, thank you.

Univ
ers

ity
 of

 M
ala

ya

vi

TABLE OF CONTENTS

Abstract… .. iii

Abstrak. ... iv

Acknowledgements… ... v

Table of Contents… ... vi

List of Figures……………………………………………………………...x

List of Tables……………………………………………………………..xiii

List of Symbols and Abbreviations……………………………………….xiv

Chapter 1 ... 1

1.1 Background ... 1

1.2 Problem Statement .. 7

1.3 Objectives .. 8

1.4 Scope ... 9

1.5 Dissertation Organisation .. 9

Chapter 2 ... 11

2.1 Virtualizations ... 11

2.1.1 Hypervisor .. 12

2.1.2 Containers ... 14

2.2 Performance Evaluation .. 15

2.2.1 Performance Evaluation Tools ... 24

2.2.1.1 Bonnie++ ... 24

Univ
ers

ity
 of

 M
ala

ya

vii

2.2.1.2 Sysbench .. 25

2.2.1.3 Y-Cruncher… .. 25

2.2.1.4 STREAM Benchmarking Tools… 26

Univ
ers

ity
 of

 M
ala

ya

viii

2.3 Resource Management .. 27

2.4 Docker-Sec Automation Architecture ... 33

2.4 Workflow .. 34

2.4.1 Workflow Orchestration...36

2.4.2 Workflow Scheduling .. 36

2.4.3 Workflow Deployment...36

2.5 Chapter Summary ... 38

Chapter 3 ... 41

3.1 DoKnowMe Methodology .. 41

3.1.1 Requirement Recognition..44

3.1.2 Performance Feature Identification .. 44

3.1.3 Metrics and Benchmarks Listing .. 45

3.1.4 Metrics and Benchmarks Selection .. 45

3.1.5 Experimental Factor Listings ... 45

3.1.6 Experimental Factors Selection..46

3.1.7 Experimental Design ... 46

3.1.8 Experimental Implementation ... 47

3.1.9 Experimental Analysis .. 47

3.1.10 Conclusion and Documentation .. 47

3.2 Chapter Summary...48

Univ
ers

ity
 of

 M
ala

ya

ix

Chapter 4 ... 49

4.1 Automated System Architecture ... 49

4.2 System Implementation ... 55

4.2.1 Performance Database .. 55

4.2.1.1 Compute Performance Testing

Using Sysbench .. 55

4.2.1.1.1 Compute Performance Testing

Using Bonnie++ .. 56

4.2.1.2 Memory Performance Testing58

4.2.1.3 I/O Performance Testing

Using Sysbench. ... 58

4.2.1.3.1 I/O Performance Testing

Using Bonnie++ ... 60

4.2.2 Web Form.. 61

4.2.3 Orchestration Component ... 62

4.2.4 Scheduling Component ... 63

4.2.5 Deployment Component .. 64

4.3 System Testing ... 64

4.4 Chapter Summary .. 65

Chapter 5 .. 66

5.1 Experimental Setup ...66

Univ
ers

ity
 of

 M
ala

ya

x

5.2 Experimental Results ... 68

5.3 Chapter Summary .. 71

Chapter 6 .. 72

6.1 Thesis Summary ... 72

6.2 Thesis Contribution .. 73

6.3 Future Work Suggestions ... 74

REFERENCES .. 75

Univ
ers

ity
 of

 M
ala

ya

x

LIST OF FIGURES

Figure 1.1: Virtualization adoption trend .. 1

Figure 1.2: Hypervisor-based virtualization .. 2

Figure 1.3: Container-based virtualization .. 3

Figure 1.4: Major component in docker engine ...5

Figure 2.1: Scheme of hypervisor-based virtualization

(Michael Eder, 2016) .. 13

Figure 2.2: Container-based architecture in terms of managing its

Operating system (C. Pahl, 2014) ... 15

Figure 2.3: Container image architecture based on namespace and

cgroup Extension (Claus Pahl, 2015) 16

Figure 2.4: Performance result of the Y-cruncher benchmarking

Tools (Zhanibek Kozhirbayev, 2017) 18

Figure 2.5: STREAM result (Zhanibek Kozhirbayev, 2017) 19

Figure 2.6 LINPACK on Ubuntu (Helen Karatza, 2017) 20

Figure 2.7 LINPACK on CentOS (Helen Karatza, 2017) 20

Figure 2.8 STREAM on Ubuntu (Helen Karatza, 2017) 21

Figure 2.9 STREAM on CentOS (Helen Karatza, 2017) 22

Figure 2.10 NETPERF, TCP_STREAM

on Ubuntu (Helen Karatza, 2017) .. 23

Figure 2.11. NETPERF, TCP_STREAM

Univ
ers

ity
 of

 M
ala

ya

xi

on Ubuntu (Helen Karatza, 2017) .. 23

Figure 2.12: A Cloud orchestration layer oversees the infrastructure

Supporting live migration of containers

(David S. Linthicum, 2016) ... 28

Figure 2.13: Computing performance by using Linpack for Matrices

(Miguel et al., 2013) ... 29

Figure 2.14: Memory throughput by using STREAM (Miguel et al., 2013).31

Figure 2.15: Disk throughput by using IOZone (Miguel et al., 2013)………32

Figure 2.16 Docker Components Protected with

AppArmor in Docker-Sec (Fotis Loukidis, 2018) 33

Figure 2.17: Common workflow in scientific

Experiments (Paul Martin et al., 2016) 35

Figure 3.1: The relationship between DoKnowMe and its

Instance Methodologies .. 42

Figure 3.2: The step-by-step procedure by using DoKnowMe 43

Figure 4.1: Automated system architecture .. 49

Figure 4.2: Workflow categorisations .. 51

Figure 4.3: Use case diagram ..52

Figure 4.4: System flow ... 54

Figure 4.5: Compute performance testing Using Sysbench. 56

Univ
ers

ity
 of

 M
ala

ya

xii

Figure 4.6: Compute performance testing Using Bonnie++57

Figure 4.7: Memory performance testing ... 58

Figure 4.8: I/O performance testing Using Sysbench. 59

Figure 4.9 I/O performance testing Bonnie++ ... 60

Figure 4.10: Web form ... 61

Figure 4.10: Workflow specifications .. 62

Figure 5.1: Compute intensive workflow execution time result 68

Figure 5.2: Memory intensive workflow execution time result 69

Figure 5.3: I/O intensive workflow execution time result 70

Figure 5.4: Uniform workflow execution time result 71

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF TABLES

Table 1.1 Differences between hypervisor-based and container-based

Virtualizations .. 5

Table 2.2 Main purpose of performance evaluation test 27

Table 2.3 Summary of literature review .. 36

Table 2.4 Literature summary ... 39

Table 4.1 Use case descriptions .. 52

Table 4.2. CPU Result of Bonnie ++ .. 57

Table 4.3. I/O Result of Bonnie ++ ... 60

Table 4.4 Example of Threshold for Choosing Workflow Intensiveness 63

Table 4.5. Time Execution Comparison Between Workflow 64

Table 5.1 Workflow specifications ... 67

Table 5.2 Host specifications .. 68

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

API : Application Programming Interface

CLI : Command Line Interface

CPU : Central Processing Unit

DC : Data Centre

GUI : Graphical User Interface

I/O : Input and Output

LXC : Linux Container

LXD : Linux Docker

OS : Operating System

QoS : Quality of Services

REST : Representational State Transfer

SLA : Service Level Agreement

VMs : Virtual Machines

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

This chapter begins with a background study on the container-based and hypervisor-

based virtualization. Then, the challenges of the virtualizations are presented, leading to

the problem statements. Subsequently, the research objectives and scopes are

subsequently stated. Finally, the dissertation organisation is presented at the end of the

chapter.

1.1 Background

Virtualization is a software that isolates physical infrastructures to create numerous

dedicated resources. Virtualization makes it doable to run several operating systems and

applications on similar server. The benefit of virtualizations is on the server-side, where

the virtualization itself reduces maintenance and energy costs as well as the number of

physical servers. By sharing resources in the physical servers, virtualization becomes the

fundamental technology that powers Cloud computing. Figure 1.1 shows the adoption of

virtualization in most data centres throughout the regions.

Figure 1.1. Virtualization adoption trend (Gartner, 2012)

Univ
ers

ity
 of

 M
ala

ya

2

Virtualization plays a vital role in supporting Cloud services from resource

provisioning to isolating the resources. There are two popular types of virtualization

platform, namely the hypervisor-based and the container-based. The hypervisor-based

virtualization can be divided into the bare-metal hypervisor that is usually installed

straight forwardly onto the server, and the hosted hypervisor that requires a host operating

system (OS).

Figure 1.2 depicts the hypervisor-based virtualization. The bottom layer is where the

physical server or the hardware is located. This layer consists of the CPU, memory and

network card that are attached into one physical server. The second layer is the virtual

machine monitor, namely the hypervisor. OS is isolated by the hypervisor from the

hardware by taking the responsibility of permitting every running OS time with the

underlying hardware. Each OS is controlled by the hypervisor called the guest OS, and

the hypervisors operating system is called the host OS. This layer can handle different

types of guest OS.

Figure 1.2. Hypervisor-based virtualization

Univ
ers

ity
 of

 M
ala

ya

3

The third layer is the virtual machine OS that is managed by the hypervisor itself. All

these virtual machines have their own services and libraries. The applications are installed

on each of the respective virtual machine. This virtualization allows users to virtualize

many operating systems in one piece of hardware.

To reduce the performance overhead of hypervisor-based virtualization, professionals

and specialists as of late began advancing an option and lightweight plans, namely the

container-based virtualization. Figure 1.3 shows the container-based virtualization.

Figure 1.3. Container-based Virtualization

Hypervisor has a different kind of hardware-level solutions than the container. The

container realizes within the OS level and protect their contained application by utilizing

them in the slices on the host (Bernstein, 2014). The containerization is an OS-level

virtualizations method of deploying and running distributed applications without

launching the entire VM for each application. Instead of multiple isolated systems, the

Univ
ers

ity
 of

 M
ala

ya

4

container is executed on a single control host and accessing a single kernel. There are a

few types of container-based virtualization such as Docker, LXD and lmctfy.

Container that is introduced by Docker is a free-source platform for user to develop

their software. The benefit of the docker is it can group the application to become a

package in “container” allowing them to be moveable among any system running the

Linux OS. Docker splits the applications from the infrastructure to speed up the time

taken for software deployment. Docker architecture consist of Docker engine which

responsible for client-server application. There are some major components in the engine,

namely daemon process which is a type of zero-downtime running program, the

Representational State Transfer (REST) application programming interface (API) which

specifies screens that enable programs to talk to the daemon and send command on what

to do. A command line interface is important to configure, build and maintain the Docker

environment. The command line interface (CLI) enables Docker REST API to manage or

communicate with the Docker daemon through scripting or one-to-one CLI commands.

Besides, there are some other Docker applications that use the underlying API and CLI

which are shown in Figure 1.4. The daemon manages Docker objects, such as image, data

volumes, network and container.

Univ
ers

ity
 of

 M
ala

ya

5

Figure 1.4. Major component in Docker engine

Table 1.1 Differences between hypervisor-based and container-based

virtualizations

Hypervisor-based Container-based

VM contain a full operating system with

their own management of memory installed

with the mixed overhead of device drivers

virtually.

Containers are executed with the

compute engine. Containers comes

with more portable and less in size

than VM and enables fast start-up

with optimum execution.

Every virtual machine has their own

services and have their own personal

libraries

Single kernel can be shared in a

container and at the same time share

the same application libraries.

Fully loaded with resources and heavy and

consume time to create and launch VM

Faster and less heavy resources and

very reliable on fast start-up and

launching

Univ
ers

ity
 of

 M
ala

ya

6

Table 1.1 shows the gap between running applications in hypervisor-based and

container-based virtualizations. Based on the comparison, the container is lighter and

faster as compared to hypervisor-based virtualization. From the performance perspective,

containers approach is better and reliable in term of start-up time and the time consumed

to deploy applications on environment.

By utilizing virtualization technology, sharing resources among numerous users

decrease the resource consumed. By renting the infrastructure from public Cloud, it will

be a cost effective for user and the decrease time to conserve the highly priced

infrastructure. Therefore, cluster and grid computing technology will have an option

which is used for massive production application or scientific workflow.

Scientific workflows consist of multiple tasks that are used to conduct an experiment.

Scientific workflows can vary from simple to complex tasks, and from just a few tasks to

millions of tasks. Parallel and serial are the type of task that can be use in scientific

workflows. These tasks have distinctive characteristics, namely compute intensive,

memory intensive, I/O intensive and data intensive.

Compute intensive task is the task that consume CPU of its host and performs

computationally intensive work that does not fit comfortably into the traditional

platform. This compute intensive task needs an asynchronous submission and most

likely can run in extended periods of time. There are a few types of compute intensive

workflow tasks. These includes executing a search for a prime number that involve many

big integer divisions, which calculate a large factorial like 2000! and involve many big

integer multiplications.

I/O intensive task is basically the task that reads or writes a large amount of data. The

performance of such task is depending on the speed of the devices or the platform that

being used. The example of I/O intensive task is when the task is about to move in or

Univ
ers

ity
 of

 M
ala

ya

7

out from the computer. The data size will affect the host I/O performance. The I/O

process needs high bandwidth in order to have a stable throughput. The second task

would be reading the data in bytes. This kind of task will consume I/O because it needs

to perform operation in the logical disk itself and the lower the number of disk operation,

the higher the input and output per second capacity.

The memory intensive task usually needs to perform analysis or searching in large

scale of data. Big data application is the new trend of memory intensive task. This task

usually needs to perform data mining and data analytic that involve a large dataset.

During the process of data analytics, it typically starts with some large raw datasets, and

then the applications will transform, clean and prepare the dataset for modelling with

some sort of SQL-Like transformations. This will eventually utilize all memory that is

assigned in the host.

In conclusion, different type of tasks can affect the performance of the virtualization.

There is a need to conduct a performance analysis in virtualization that focuses on

compute, memory and I/O, to improve the performance of these virtualized systems.

1.2 Problem Statement

Almost all of the scientific workflows have increased the number of Cloud computing

paradigm, the techniques for virtualization such as low-overhead are becoming

indispensable (Plauth, 2017). Although the container virtualization is a lightweight

approach to execute these applications, it is very challenging in this unique environment

to comprehend what will affect the workflow performance as it requires a lot of

information and knowledge of the ever-changing application structure at any given

moment. Based on (Cedia, 2017), the hardware resources of Cloud computing are always

Univ
ers

ity
 of

 M
ala

ya

8

limited, for this reason it is important that the available resources are adequately allocated

according to the application behaviour to obtain the best possible performance.

Furthermore, such Cloud platforms have for most part were deployed to web-based

platform and production applications, there is some portion that has dependencies and

need to be overseen to run scientific workflows, particularly all the data intensive

scientific workflows on the Cloud. Cloud computing provides an outlook changing and

computing standard in terms of the extraordinary size of datacentre-level resource pool

and provisions the on-demand resource mechanism, capable of addressing a large scale of

scientific problems to capacitate scientific workflow explications.

Virtualization environments are flexible and unique by design, rapid changes on

regular. Deploying a scientific workflow is risky, as minor differences in library versions

on different servers can break the functionality of the workflow.

According to (Felter, 2014), every virtual machine that runs on Linux operating system

have their own process and resource management abilities. One of the resource

management is scheduling that is exported to the virtual machines. This reduce the

administration and execution time but complicates resource management within the guest

operating system. Every scientific workflow has its own requirements for it to run

optimally. A new layer of complexity is added and can cause unfamiliar problems.

Furthermore, each scientific workflow will consume the compute, memory, I/O and

network of its host.

1.3 Objectives

This study aims to propose an automated system architecture that was able to choose

the best virtualization platform to execute the workflow tasks. The benchmark

Univ
ers

ity
 of

 M
ala

ya

9

performance evaluation was conducted on various workflow tasks, running on hypervisor-

based and container-based virtualization to improve the selection decision.

The objectives of this research are outlined as follows:

- To conduct performance evaluation of workflow tasks running on container-based

and hypervisor-based virtualization.

- To design an automated system architecture that choose the suitable virtualization

platform for different workflow tasks.

- To evaluate the performance of various type of scientific workflows running on

those virtualization platforms.

1.4 Scope

The research only focuses on hypervisor-based and container-based virtualization. The

workflow tasks used for the evaluation are mainly compute-intensive, memory-intensive

and I/O intensive. The tools used for the evaluation consist of open source and commercial

tools. These tools must be able to measure the metric required and return the output of the

performance test.

1.5 Dissertation Organisation

This section provides a general overview of the chapters that make up this dissertation.

Chapter 1 contains the introduction to the topic in which the research is concerned with,

and the problem statements are outlined. The objectives of the study, the scope as well as

the structure of the dissertation are outlined.

Univ
ers

ity
 of

 M
ala

ya

10

Chapter 2 describes the literature relevant to the research topic. First, the hypervisor-

based and container-based virtualizations are discussed. Then, the related works, focusing

on the performance evaluation are reviewed. After that, the performance tools that used

for the research are explained. Subsequently, the study of workflow orchestration,

scheduling and development are briefly discussed. The chapter ends with a summary that

concludes the findings.

Chapter 3 discusses the research techniques used in the dissertation. The chapter begins

with an introduction of the research flow that was used to conduct the research. The

research phases, such as information gathering and analysis, proposed method, system

design and implementation, system evaluation and documentation are discussed in detail

in the subsequent sections of the chapter.

Chapter 4 discusses the system design, implementation and testing of the proposed

technique. This chapter begins with the discussion of the proposed system architecture.

Then, the system implementation and testing are presented.

Chapter 5 explains the process of evaluating the proposed techniques and a detailed

discussion of the results. The performance tests were carried out in two different

environments, namely hypervisor-based and container-based virtualizations. The chapter

ends with a summary.

Chapter 6 concludes the research findings and achievements. The chapter begins with

a discussion on how the objectives were obtained. Then, the chapter presents the research

significance. Subsequently, the limitations and suggestions for future work are discussed.

Univ
ers

ity
 of

 M
ala

ya

11

CHAPTER 2: LITERATURE REVIEW

This chapter starts with a discussion about the virtualizations. There are two types of

virtualization technology, namely hypervisor-based and container-based. Then, the

chapter continues with a discussion on performance evaluation techniques and the

performance tools. After that, the resource management concept is discussed.

Subsequently the workflow is deeply briefed, and the types of workflow are discussed.

Lastly, the chapter ends with a summary.

2.1 Virtualizations

Kumar (2015), said that virtualization plays an important role in Cloud computing and

becomes the important key to the cloud infrastructure, as the technology can be enabled,

the underlying hardware and software that are complex can be created as an intelligent

abstraction layer hidden in the environment itself. There are two types of virtualization

technologies namely the hypervisor-based and container-based virtualization technology.

In general, there are several kinds of use cases for virtualization and basically both

container-based and hypervisor-based virtualizations technology have strengths and

weaknesses based on the respective use cases.

Anish Babu (2014) mentioned, there are three kind of virtualization technology which

is Para virtualization, Container virtualization and Full virtualization. Para virtualization

is a technique in which the guest operating system is aware that they are operating directly

on the hypervisor instead of the underlying hardware. In Para virtualization, the

virtualization supporting hypervisor is installed on the host operating system which runs

over the underlying hardware. The second one is the Container virtualization. The

Container virtualization is a technique in which each operating system kernel is modified

to load multiple guest operating systems. Here guest operating systems are packed in the

Univ
ers

ity
 of

 M
ala

ya

12

form of containers and each container will be allowed to load one by one. The kernel

provides proper management of the underlying resources to isolate one container activity

from the other. This type of virtualization technique has less overhead in loading the guest

operating system in the form of containers and each container has their own IP address,

memory and root access. The last one is Full virtualization. In Full virtualization,

hypervisor supporting the full virtualization technique is installed directly over the

underlying hardware. This hypervisor is responsible for loading the guest operating

systems. And each guest operating system will run as if they are operating directly on the

underlying hardware. That is each guest operating system will get all the features of the

underlying hardware. Here hypervisor will directly interact with the underlying memory

and disk space and hypervisor will isolate the activities of one guest operating system

from the other. Hypervisors supporting full virtualization have a virtual machine

management console from which each guest virtual machines can be easily managed.

2.1.1 Hypervisor

Desai (2013), said that Hypervisor allows user to run multiple OS on the same

hardware and it will abstract the software layer from the OS. The virtual machine needs

to be run on a hypervisor, and the computer that runs the hypervisor is called a host

machine, and each of the VM that runs inside the host machine is called a guest machine.

According to Merkel (2014), Hypervisor manages physical computing resources and

makes isolated slices of hardware available for creating VMs. The VM creation are

possible in the hypervisor environment as it split out the hardware resources into slices

and the hypervisor will manage all the physical computing resource. The hypervisor can

allocate resources to the respective virtual machine on demand. Hypervisor can be

installed in two ways, the first one is installed directly on the hard disk of the computer

Univ
ers

ity
 of

 M
ala

ya

13

and boot directly. Merkel (2014), also said that the other one is the hypervisor will be

installed on top of the host operating system. As an example, the hypervisor that installed

on bare-metal is VMware ESXi and the hosted hypervisor is called the VMware

Workstation.

According to Eder (2016), The reliable grouping of a complete OS will be provided

by the hypervisor-based virtualization, as the container itself, it is more focus on

separating the processes from other process parallelly reducing the resource costs.

Figure 2.1. Scheme of hypervisor-based virtualization (Michael Eder, 2016)

Figure 2.1 shows that the scheme of hypervisor-based virtualization. Hypervisor can

be installed directly to the hardware, and then on top of that the virtual machine can be

deployed. The guest represents the virtual machine that sits on the hypervisor platform.

Every VM has its own hardware settings and standalone OS running. The middle layer is

where the hypervisor is installed. The hypervisor controls and manages all the running

virtual machine. Hypervisor-based virtualization allows the imitation of another PC and

copy different sorts of gadgets (for instance a cell phone), other computer models as well

as other operating systems. This technology also takes advantage of modern compute

Univ
ers

ity
 of

 M
ala

ya

14

capabilities. Besides, it will allow the application to directly access the compute, and

virtual machine would receive the same benefit as in unprivileged mode. Therefore, it

will result in the increase of the performance without sacrificing the host system security.

After the provision of the virtual machine is completed, the application can be installed

into the provisioned virtual machine.

2.1.2 Containers

Docker container is an open source software development platform. The main

advantage of docker is the application can be grouped into a "container", enable it to be

movable to any of the virtualization or bare-metal platform that runs Linux OS. A

container is made from multiple small and non-heavy images, and each image is a

template and convertible file system that includes all the middleware, libraries and

binaries to execute the application. Pahl (2014), claimed that in the case of more than one

images, the file system that supports read-only are stacked on top of each other to equally

distribute the writable higher-level file system. The use of Docker containers will

optimize existing apps while accelerating the way of applications delivery. With the

hybrid portability, container will eventually eliminate the frictions of building migration

plans from one source or platform to another. Moving container is seamlessly to the new

cloud or new server as the container will separate column with their dependencies. In

terms of security, the container can be applied to traditional application to decrease the

attack from the surface layer, and at the same time mitigating risk and continuously

monitor for vulnerabilities.

Univ
ers

ity
 of

 M
ala

ya

15

Figure 2.2. Container-based architecture in terms of managing its operating system

(C. Pahl, 2014)

Figure 2.2 shows the container-based architecture. A container hold packages and

individually-contained, custom pre-deployed parts of applications, and the business logic,

such as binaries and libraries and the middleware. In a virtualized infrastructure, the

sharing of the hidden platform and environment must be provided in a safer way.

Containers can meet these necessities; hence, a more inside and out elicitation of specific

concerns is required.

2.2 Performance Evaluation

Antonio (2011), mentioned that the main factor in research for computer architecture

is performance evaluation. As the complexity grows, the complexity rate of the tasks that

being executed by the computer system also rapidly increases for each task and programs.

So, in order to measure the performance of the virtualization platform, speed is the best

metric for developing an effective performance evaluation technique. The evaluation

process will have a dependency based on its optimal trade-off.

Univ
ers

ity
 of

 M
ala

ya

16

According to Pahl (2015), the main figure that runs the infrastructure layer is the virtual

machines as it provides a virtualized OS. Container concept is similar as virtual machine

but as it is using a lightweight technology, container will consume less resources and

minimise the execution time. Low-level construct is provided by both virtual machine

and container. Bernstein (2016), mentioned that the developer can navigate the operating

system with an interface as interaction between the developer and the operating system.

However, if the developer wants to deploy application in the Cloud infrastructure, it is

recommended to deploy using container virtualization technology as it will package the

application into the lightweight container.

Figure 2.3. Container image architecture based on namespace and cgroup

extension (Pahl, 2015)

As shown in Figure 2.3, the new Linux dispersions give part components, such as

namespaces and control groups, to separate procedures on a combined operating system,

support through the Linux Container (LXC) project. By separating the namespace will

allow the groups of procedures to be isolated, keeping them from seeing assets in different

Univ
ers

ity
 of

 M
ala

ya

17

groups. Container innovations utilize distinctive namespaces for process detachment,

network interfaces, access to network, mount focuses, and for isolating kernel and identify

versions. Control groups oversee and constrain resource from getting through in process

groups through extreme authorisation, accounting and, for instance, by restricting the

memory accessible to a specific container as per said by Amit (2016).

Wang et al., (2017), mentioned that the main challenges of executing critical

application within Cloud environment is the execution must satisfy the deadlines and

response time in virtualization environment. This factor needs to be considered to secure

guaranteed performance of the infrastructure. Therefore, performance evaluation on the

applications is essential to obtain the most effective infrastructure platform for application

deployment.

Based on Wang et al., (2017), different performance levels from the deployment of

task will lead to different virtual machine services, as a result, it will obtain a different

impact on the application cost and quality of services. Different requirements from the

individual application will diverse the quality of services of the Cloud applications.

Although the accuracy of the application is guaranteed, the application failure will lead

to violation of the deadlines. Hence, execution timing for critical application should be

carefully planned and maximise in the Cloud infrastructure. There are many perspectives

that can be used to compare the performance of virtualization mentioned by Kozhirbayev

(2017).

According to Zhanibek (2016), to evaluate container-based technologies from the

perspectives of their overhead, it is crucial to measure the overheads incurred based on

non-virtualized environments. The analysis conducted was focused on a range of

performance criteria: the performance of compute, memory, network bandwidth, latency

and storage overheads. In order to obtain accuracy and consistency in the bunch of results,

Univ
ers

ity
 of

 M
ala

ya

18

a lot of experiments were repeated, in which the average timing and standard deviation

were recorded.

Figure 2.4. Performance result of the Y-cruncher benchmarking tools

(Kozhirbayev, 2017)

Figure 2.4 shows that Y-cruncher, one of the benchmarking tools that was used to test

the compute tasks and generally used, as a test for multi-threading tools running in multi-

core systems. Y-cruncher can also be used to calculate the Pi value and measure the gap

of other constants. The metric such as the total time executed, computational time and

multi-core efficiency can be variously performed by the Y-cruncher. From the figure,

bare-metal or native environment perform similarly as the Docker based on the

computational time, as for the Flockport, it took 1.3 seconds longer.

Univ
ers

ity
 of

 M
ala

ya

19

Figure 2.5. STREAM result (Kozhirbayev, 2017)

As for the memory performance evaluation, the STREAM software is being used to

test the micro-hosting environment. STREAM determines the throughput of the memory

that being utilized straightforward from vector kernel procedures. Figure 2.5 shows that

Docker produces marginally better result than Flockport and not much different with the

native platform.

The study from Helen Karatza (2017), measured the overhead caused by virtual

machines while containers are running on top of them. A series of benchmarks were tested

to measure the additional layer of the VM affects the CPU, memory and network

performance. In order to allow them to use all available resources, the measurement of

CPU overhead were contacted with LINPACK. Univ
ers

ity
 of

 M
ala

ya

20

Figure 2.6. LINPACK on Ubuntu (Helen Karatza, 2017)

Figure 2.7. LINPACK on CentOS (Helen Karatza, 2017)

Figure 2.6 and 2.7 shows that the LINPACK result tested on Ubuntu and CentOS. The

LINPACK was run in containers on bare metal and in containers on top of a VM for

matrix sizes 200x200, 2000x2000 and 8000x8000. As per observations, LINPACK

measured the best performance with the smallest table (200x200). In the case of the

smallest table, we noticed the biggest overhead which was caused by the additional

Univ
ers

ity
 of

 M
ala

ya

21

virtualization layer of the VM and is about 28.41% in average for the two operating

systems. This happens because VMs hide the nature of system information from the

execution environment. Regarding the bigger tables, we observed a lower performance,

as well as a much smaller gap (0.87 % in average for the two operating system) between

the container on bare metal and the container on top of the VM. This probably happens

because the necessary data cannot be cached in the available high speed memory which

as a result increases the overhead.

The benchmark tool that were used to evaluate the I/O performance is STREAM. It

executes four different operations namely Copy, Scale, Add and Triad. This benchmark

intends to measure the main memory bandwidth and not the cache bandwidth, however

STREAM recognizes a strong relation between the evaluated throughput and the size of

the CPU cache.

Figure 2.8 STREAM on Ubuntu (Helen Karatza, 2017)
Univ

ers
ity

 of
 M

ala
ya

22

Figure 2.9 STREAM on CentOS (Helen Karatza, 2017)

In Figure 2.8 and 2.9 shows the STREAM measurements on four different operations.

We generally observed that the overhead caused by the additional virtualization layer of

the VM is about 4.46% in average regarding the Copy operation, 1.76% in average

regarding the Scale operation, 2.39% in In Random Read and Random Write, data

accesses are carried through in random locations within the file and are affected by factors

such as the OSs cache and seek latencies. With Mixed Workload we measured the

performance of reading and writing operations combined and we found a throughput

reduction by 14.67% affected by the VM layer.

The Network I/O performance measured with NETPERF benchmark. NETPERF can

take unidirectional throughput and end-to-end latency measurements. In order to run the

experiments we used another physical node to host the NETPERF server, whereas the

client ran on our initial physical node. The TCP STREAM is used to measures the

throughput of transmitting TCP packets of 4, 16, 64, 256 and the default 16384 bytes

between the NETPERF client and the NETPERF server. We also took TCP RR and UDP

RR measurements. TCP RR is a process of multiple TCP requests and responses in the

Univ
ers

ity
 of

 M
ala

ya

23

same TCP connection that is common in database applications and UDP RR that uses

UDP request and response packets.

Figure 2.10. NETPERF, TCP_STREAM on Ubuntu (Helen Karatza, 2017)

Figure 2.11. NETPERF, TCP_STREAM on Ubuntu (Helen Karatza, 2017)

Univ
ers

ity
 of

 M
ala

ya

24

Figure 2.10 and 2.11 present the TCP STREAM measurements for the default and 5

different packet sizes for the. The two operating systems running on bare metal and on

top of a VM. In all cases we observe that, regarding the smaller packet sizes, the overhead

that the additional layer of VM virtualization causes to the network is significantly higher

compared to the larger packets’ overhead. This is quite reasonable because of the smaller

packets require more computation power. For the small 4 bytes packets there is a mean

throughput reduction by 33.3% in both operating systems, whereas, regarding the bigger

size of 16384 bytes (default packet size) there is a mean throughput reduction by only

0.69% in both operating system when containers run on top of VM.

2.2.1 Performance Evaluation Tools

There are some tools that are used to measure the performance effectiveness between

virtual machines and Docker containers. These tools were specifically designed to

perform different kinds of test, such as compute, memory and I/O.

2.2.1.1 Bonnie++

Bonnie++ is a performance tool that allows the benchmarking of how the filesystems

perform numerous tasks, that makes it a valuable tool once changes are made to the RAID,

how the filesystems are created, and how the network filesystems perform. Bonnie++

benchmarks three things, which are data searching and write speed, range of seeks that

may be performed per second, and range of file metadata operations that are able to be

performed per second. Metadata operations contain file creation and deletion as well as

obtaining metadata, like the file size or owner. As the test is performed, Bonnie++ prints

a line, informing that the test is executed. The Bonnie++ distribution also includes the

Univ
ers

ity
 of

 M
ala

ya

25

html page to display all results. It will generate a table for the output after performing the

test.

2.2.1.2 SysBench

SysBench is a standard, cross-platform and multi-threaded benchmark tool for

evaluating OS parameters that are vital for a system running an information beneath

intensive load. SysBench is a benchmark suite which gives a quick impression about the

system performance. The idea of this benchmark suite is to quickly get an impact

concerning about system performance while not setting up advance database benchmarks.

The design is extremely easy. SysBench runs a given range of threads, within which all

execute requests in parallel. The workload created by requests depends on the required

pilot mode. Either the whole range of requests or total time for the benchmark are often

restricted, or both. Obtainable test modes are implemented by compiled-in modules, and

SysBench was designed to simplify the addition of new test modes. Each test mode might

have additional (or workload-specific) choices.

Table 2.2 shows the types of performance evaluation test that can be performed and

the output that is obtained from the test. As stated, there are four types of performance

evaluation test and each of the test will collect different kinds of output and result.

2.2.1.3 Y-Cruncher

Y-cruncher is a program that can compute Pi and other constants to trillions of digits.

It is the first of its kind that is multi-threaded and scalable to multi-core systems. Ever

since its launch in 2009, it has become a common benchmarking and stress-testing

application for overclock and hardware enthusiasts.

The main computational features of y-cruncher are:

Univ
ers

ity
 of

 M
ala

ya

26

 Able to compute Pi and other constants to trillions of digits.

 Two algorithms are available for most constants. One for computation and one

for verification.

 Multi-Threaded - Multi-threading can be used to fully utilize modern multi-

core processors without significantly increasing memory usage.

 Vectorized - Able to fully utilize the SIMD capabilities for most processors.

 Swap Space - management for large computations that require more memory

than there is available.

 Multi-Hard Drive - Multiple hard drives can be used for faster disk swapping.

 Semi-Fault Tolerant - Able to detect and correct for minor errors that may be

caused by hardware instability or software bugs.

2.2.1.4 STREAM Benchmarking Tools

The STREAM benchmark is a simple synthetic benchmark program that measures

sustainable memory bandwidth (in MB/s) and the corresponding computation rate for

simple vector kernels. It is specifically designed to work with datasets much larger than

the available cache on any given system, so that the results are more indicative of the

performance of very large, vector style applications.

For this research, instead of using STREAM and Y-cruncher, Sysbench and Bonnie++

will be selected as the performance evaluation tools. This is because, for I/O testing,

custom file size is allowed by Sysbench. Hence, evaluation testing will be more

comprehensive and accurate. As for STREAM, during the evaluation test, the total

number of threads cannot be defined initially. Furthermore, the STREAM output did not

Univ
ers

ity
 of

 M
ala

ya

27

show the statistic of minimum, average and maximum output per-request. Sysbench on

the other hand, the result shows all the mentioned with clear and informative way.

Compared from Bonnie++, Y-cruncher is also multi-threaded program, but it is

deterministic. It was designed to avoid problem that common occurs in asynchronous

application and can be extremely difficult to track down and fix. Because of this

determinism, testing crashes and errors happen intermittently. Bonnie++ is very flexible

as the file size can be set from 1GB onwards. The output provided also were split into 2

portion which is the command output and the HTML table output. There is also

information regarding how many I/O blocks transferred per second. That is the reason

Bonniee++ and Sysbench is being used for this research.

Table 2.2. Main purpose of performance evaluation test

Type of Performance
Evaluation Test

Purpose

Compute To examine how many units of information a system

processes over a specific time.

Memory To evaluate the memory working storage space available

to a processor or workload.

I/O To observer the response time or latency based on the

amount of time that elapses between every read and write

job or task.

Network To check the bandwidth or the volume of data per second

that can move between workloads and usually across

networks.

2.3 Resource Management

Gangadhar (2018), claimed that resource management is an essential technique to

utilize the underlying hardware of the Cloud efficiently. Resource management is

Univ
ers

ity
 of

 M
ala

ya

28

important in virtualized infrastructure as it gives a clear picture on the amount of task and

job that must be done and helps to schedule and plan the task executions by allocating

suitable resources for every task and job. Resource management provides an efficient and

effective deployment of a job and task with a satisfying result. The purpose of resource

management is to manage the scheduling task for all the jobs before they are executed.

This portion involves allocating resources into the job.

According to Linthicum (2016), the goal of managing the application-tier and

deploying application designs most likely can be achieved by containers. On the operating

system level, container can manage the applications such as Web servers, database servers

and application servers. Furthermore, the hypervisor-based platform is focusing to

separate and hold the resources based on machine-by-machine. As for containers, the

CPU resources can be shared and distributed than VMs.

Figure 2.12. A Cloud orchestration layer oversees the infrastructure supporting

live migration of containers (Linthicum, 2016)

Figure 2.6 shows that containers can be migrated or moved from Cloud to Cloud

orchestration layer. All the containers can be run, leveraged and automatically migrated

Univ
ers

ity
 of

 M
ala

ya

29

from one Cloud to another, to support the infrastructure requirements. Computing

capabilities can be distributed since the applications can be separated into various kind of

domains.

Non-stop monitoring of resources is vital in managing the virtual environment

mentioned by Pooja & Pandey (2014). To guarantee the Service Level Agreement (SLA)

while optimally consuming the resources, performance evaluation needs to be considered

in order to maximise the utilization of the compute system. As a result, different users

can share the same single multicore node claimed by Miguel et al., (2013). The best

virtualization that can increase the percentage of resource sharing is the container-based

virtualization by allowing multiple separated instances of user-space. Meanwhile, the

disadvantage of container-based virtualization is it cannot firmly isolate the resource as

good as the hypervisor-based virtualization.

Figure 2.13. Computing performance by using LINPACK for matrices

(Miguel et al., 2013)

Figure 2.7 shows that LINPACK was used as a benchmark to evaluate the

computing performance on a single computer-node. Miguel et al., (2013), claimed that

Univ
ers

ity
 of

 M
ala

ya

30

LINPACK consists of a set of subroutines that analyses and solves linear equations by

the least square’s method. Result of the LINPACK can be used to estimate

performance and it is run over a single processor. LINPACK is used as a tools to

measure the matrices of order 300 in all container-based systems and compare them

with Xen. The first one is Linux-VServer, this system is one of the oldest

implementations of Linux container-based system. Instead of using namespaces,

Linux-VServer introduced its own capabilities in the Linux kernel, such as process

isolation, network isolation and CPU isolation. This system also does not virtualize

network subsystem as all the networking subsystem within all containers share the

same routing and tables IP. The second system is the OpenVZ. This system offers

similar functionality to Linux-VServer. However, it is built on top of kernel

namespaces, making sure that every container has its own isolated subset of a resource.

Moreover, the OpenVZ uses the network namespace. In this way, each container has

its own network stack, which includes network devices, routing tables, firewall and so

on. The third system is the LXC. In the same way as OpenVZ, LXC uses kernel

namespaces to provide resource isolation among all containers. Furthermore, unlike

the OpenVZ and Linux-VServer, the LXC only allowed resource management via

cgroups. Thus, LXC uses cgroups to define the configuration of network namespaces.

As for Xen system, it will be use as the representative of hypervisor-based

virtualization, because it is considered one of the most mature and efficient

implementations of this kind of virtualization. As the result, there was not much

difference obtained from the experiment as all the container-based systems obtained

similar result to the native, as shown in Figure 2.7. It is due to the fact that there was

no influence of the different compute schedulers when a single compute -intensive

process is run on a single processor.

Univ
ers

ity
 of

 M
ala

ya

31

Figure 2.14. Memory throughput by using STREAM (Miguel et al., 2013)

As shown in Figure 2.8, the memory performance evaluation is evaluated with

STREAM, a simple artificial benchmark program that measures the properties of memory

bandwidth. This performance evaluation tool will perform four types of vector operations,

which is copy, add, scale and triad, and uses a larger dataset than the cache memory

available in the infrastructure. As observed, the result was similar as native system for

container-based due to the unutilized memory of the host, enabling a better use of

memory. Unfortunately, the worst result was in Xen, which presented an average

overhead of approximately 31% as compared to the native throughput. The hypervisor-

based virtualization layer implements the translation of memory accesses that causing the

memory to be overheaded and resulting a decrease in terms of performance.

Univ
ers

ity
 of

 M
ala

ya

32

Figure 2.15. Disk throughput by using IOZone (Miguel et al., 2013)

Figure 2.9 shows the result of disk performance evaluation by using IOZone

benchmark tool. The IOZone can generate, access pattern and measure a variety of file

operations. A record size of 10GB and 4KB will be run as a test case. According to graph,

it revealed that both Linux-VServer and LXC had a similar result for read and re-read

operations. Furthermore, a gain of performance was achieved as compared to the OpenVZ

results which is lower than both Linux-VServer and LXC. The root cause probably was

due to the I/O scheduler was being used by the different systems. The worst result was

obtained in Xen for all I/O operations as caused by the para-virtualized drivers. These

drivers weren’t ready to attain a high performance nevertheless.

Furthermore, in an observation-based study by Jeroen (2014), the basic principle of a

container was that it allowed for processes and their resources to be isolated without

hardware separation or hardware dependencies. Containers provide a form of

virtualization platform that each container will run their own OS sharing the kernel.

From the above findings, it is very important to conduct a performance evaluation on

different approaches of virtualization. The performance results can help both researchers

Univ
ers

ity
 of

 M
ala

ya

33

and practitioners to design better virtualization architecture according to application

needs. The study can be viewed as a foundation for more sophisticated evaluation in the

future.

2.4 Docker-Sec Automation Architecture

Docker-sec is an open-source, automated and user-friendly mechanism for securing

Docker and generally OCI2 compatible containers. Docker-sec offers users the ability to

automatically generate initial container profiles based on configuration parameters

provided during container initialization. If a stricter security policy is required, Docker-

sec can dynamically enhance the initial profile with rules extracted through the monitoring

of real-time container execution. Docker-sec adds an additional security layer on top of

Docker’s security defaults by automatically creating each container AppArmor profiles

claimed by Fotis Loukidis (2018).

Figure 2.16 Docker Components Protected with AppArmor in Docker-Sec

(Fotis Loukidis, 2018)

Univ
ers

ity
 of

 M
ala

ya

34

Figure 2.10 Show how the architecture of Docker component with AppArmor.

Docker-sec creates secure AppArmor profiles for all Docker components for rendering

the environment. Container profiles are created automatically using rules extracted from

the configuration of each container and enhanced with rules based on the behaviour of the

contained application. To that end, Docker-sec employs two mechanisms which is static

analysis, which creates initial profiles from static Docker execution parameters and

dynamic monitoring which enhances them through monitoring the container workflow

during a user-defined testing period. The goal is to construct a separate profile per

container, placing each one in a separate security context in order to restrict the sharing of

resources among containers. The components of Docker that are automatically protected

via AppArmor profiles via Docker-sec are designated with red lock logos.

2.5 Workflow

Single or multiple computational task can be easily expressed by users using the

scientific workflow. This computational tasks include reformatting the data, running an

analysis from an instrument or a database. The dependencies of the task in most cases can

be described by scientific workflow as a directed acyclic graph (DAG), where the edges

denote the task dependencies and the nodes are tasks. Scientific workflow is very efficient

is managing the data flow. Everything from very large parallel task to short serial task

surrounded by small, serial tasks used for pre- and post-processing as mentioned by

Pegasus (2013).

Univ
ers

ity
 of

 M
ala

ya

35

According to Paul Martin et al., (2016), a common strategy to make the simulation

experiments more manageable is to model them as workflows and use a workflow

management system to organise the execution. The automation process of the business in

which task, documents or information are passed from one participant to another can be

defined as a workflow, based on the set of its procedural rules said by O’ Brien (2010).

Figure 2.17. Common workflow in scientific experiments (Martin et al., 2016)

As shown in Figure 2.10, a workflow was split into three components. The first one

would be a list of operations or tasks, the second is a group of dependencies between all

the internal connected tasks and finally the group resources that contains data is used to

execute or remove the flow. Basically, from the figure above, the vertices are the data and

tasks resources. The edges dependent on the connection of the vertices. The edges can

represent two kinds of dependency, which are the control flow and data flow. Control

flow graphs involve task and priority requirements. The data-flow depends on the

conditions of the undertakings flow of data. The data move along into a circular segment

and are changed by the pre-process operator. Every data item will be changed by the pre-

process operator and the result will be transmitted to succeeding operator. The graph of

the data-flow allow the operators to execute to cover in a prepared pipeline.

Univ
ers

ity
 of

 M
ala

ya

36

2.5.1 Workflow Orchestration

This workflow orchestration will separate the tasks based on their intensiveness. The

intensiveness falls into 3 categories, which is compute, memory and I/O intensive. This

orchestration will arrange the task in sequence and manage the task before it is scheduled.

2.5.2 Workflow Scheduling

Workflow scheduling schedules the task to be deployed on the respective platform.

This scheduling will be decided based on the workflow intensiveness and different

category will be deployed in a different platform in order to receive the fastest deployment

and response time.

2.5.3 Workflow Deployment

After all tasks were sorted in sequence and scheduled, the deployment is where the

task will be executed into the platform. The task will be executed in hypervisor-based or

container-based virtualization platform. Table 2.3 shows the literature summary.

Table 2.3. Summary of Literature review

Author Year Analysis Summary

Claus Pahl 2014 Understanding the concept

of virtual machines and

container in virtualization

technologies are important

to have a clear view of what

is needed to be evaluate.

Virtual machines (VMs) are the

backbone of the infrastructure

layer, providing virtualized

operating systems (OSs).

Containers are similar but have a

more lightweight virtualization

Univ
ers

ity
 of

 M
ala

ya

37

 concept with less resource and can

minimise time-consumed.

David

S. Linthicum

2016 Study the suitable

operating system to run on

both virtual machine and

container is crucial to have

a better performance

comparison result.

Both VMs and containers provide

a rather low-level construct.

Basically, both present an OS with

a GUI to the developer.

Junchao

Wang et al.

2017 Analyse the best metric to

be use as a benchmark to

compare both virtual

machine and container

performance.

Execute time crucial applications

at intervals of Cloud environments,

whereas it satisfies execution

deadlines and interval time

necessities could be a challenge as

it will be difficult in securing

guaranteed performance from the

underlying virtual infrastructure.

Miguel et al. 2013 To Study the core objective

of resource management in

order to build a proper

resource management

architecture.

Resource management core

objective is to maximise the overall

utilization whereby multiple

number of users can share a single

multicore-node

Fotis

Loukidis

2018 Study the disadvantages of

using containers to avoid

any irrelevant experiment

test.

Containers pose significant security

challenges due to their direct

communication with the host

kernel, allowing attackers to break

into the host system and locate

Univ
ers

ity
 of

 M
ala

ya

38

 containers more easily than virtual

machines.

Helen

Karatza

2017 Survey the feature

differentiation on both

hypervisor and container

virtualization technology to

understand which platform

would be the best for

running specific workflow

applications.

VMs and containers have different

features. The main advantage of

Container is low performance

overhead whereas VMs

present strong isolation. To

enhance security, containers may

need run on top of a virtual

machine.

Anish Babu 2014 Study the type of

virtualization technologies

to understand the different

and choose the right

platform to compare with

container technologies.

There are mainly three kind of

virtualization technologies being

used which is Para virtualization,

Container Virtualization and Full

Virtualization. Each virtualization

techniques have different

implementation

2.6 Chapter Summary

This chapter discussed the research background of virtualization and resource

management. Several applications and research done in this field were studied and

explained in detail. Both hypervisor-based and container-based have pros and cons. The

Univ
ers

ity
 of

 M
ala

ya

39

problem of the existing hypervisor and container virtualization technology were

identified.

Table 2.4 shows the problems that were encountered when the workflow tasks were

executed in the virtualization platform. Most of the impacts caused a decrease in

performance and inefficient load balancing in the deployment of scientific workflows.

Table 2.4. Literature Summary

No. Problem Identified

1 Workflow Performance Decreases

This performance impact happens mainly since there are multiple

memory and compute managers for a guest OS, causing an overhead and result

in a higher performance impact.

2 Poor Resource Allocation

This is because all workflow requires specific resource allocation for

execution. Therefore, a proper load balancer is needed to achieve the optimum

performance of the executed workflow.

3 Complexity of the Workflow

Scientific workflow is one of the complex workflows and the complexity of

this workflow will consume different compute, memory and I/O utilization of

its host if it does not deploy in a suitable platform.

Univ
ers

ity
 of

 M
ala

ya

40

To address the problems, an automate system architecture technique was proposed.

The methodology adopted for this research work will be discussed in the next chapter.

Univ
ers

ity
 of

 M
ala

ya

41

CHAPTER 3: METHODOLOGY

This chapter discusses the research techniques used in the dissertation. The chapter

starts with a discussion about the research methods then, the research phases, such as

information gathering and analysis, proposed method, system design and implementation,

system evaluation and documentation are discussed. A summary is provided at the end of

chapter.

3.1 DoKnowMe

DoKnowMe is a software engineering methodology that can be used to evaluate

performance and has become one of the main factors in software quality assurance.

According to (Li & O’Brien, 2016), DoKnowMe was employed to guide the study

evaluation implementations. DoKnowMe is a part of evaluation methodology on the

analogy of “class” in object-oriented programming. Driven by the concept of object-

oriented programming, the general performance evaluation logic was distinguished, and

an abstract evaluation methodology was developed into the term “Domain Knowledge-

driven Methodology (DoKnowMe)”. As the predefined domain-specific knowledge were

remained, DoKnowMe can be summarised into more specified methodologies to help

evaluate the computing system and different software performance. There are four factor

that is a generic validation which is repeatability, usefulness, feasibility and effectiveness.

All factors were used to validate the methodology in the evaluation domain. With good

and promising evaluation results, more evaluation strategies can be integrated to improve

DoKnowMe, and hence become more specific on the performance evaluation of

virtualization technologies.

Univ
ers

ity
 of

 M
ala

ya

42

Figure 3.1. The relationship between DoKnowMe and its instance methodologies

Figure 3.1 shows the DoKnowMe methodology that can be used in the experimental

measurement scenario. As a fundamental evaluation scheme, experimental performance

measurement was considered to determine the annotations of performance involved in the

model (Koziolek, 2010). The study of domain knowledge methodology is crucial. The

evaluation of knowledge can be learnt from major experts and various publications.

The performance evaluation procedure consists of a sequential-process as well as

recursive experimental activities. After the evaluation implementation is prepared, the

recursive experimental activities will executed in a group of experimental tests. Then, the

iteration of the experimental design is decided by the experimental results and analysis

from the prior iteration.

Figure 3.2 explains the step-by-step procedure by using DoKnowMe. Every evaluation

step is considered as the I/O component. DoKnowMe basically integrates and facilitates

activities to essentially comprise the evaluation activities. Therefore, only some

theoretical examples are executed to demonstrate particular evaluation steps that are

involved in DoKnowMe.

Univ
ers

ity
 of

 M
ala

ya

43

Figure 3.2. The step-by-step procedure by using DoKnowMe

Univ
ers

ity
 of

 M
ala

ya

44

Figure 3.2 shows the sequential procedure of DoKnowMe. All procedures involved in

the methodology are considered on “what”, “how”, “why”, “when” and “where” the

experiment tests should occur. Each procedure has its own dependencies and all

procedures must be in sequence so that the objective of the experiment can be achieved.

3.1.1 Requirement Recognition

The recognition of a requirement is not only to understand a problem related to the

system performance evaluation, but also to realize a transparent statement of the analysis

purpose, which must be clear with a non-trivial task. A clearly nominative evaluation

requirement will facilitate correct driving of the remaining steps within the evaluation

implementation. To solve performance evaluation, the evaluation requirement will be

identified based on the research problem statements. The problem statements will find an

idea on how to measure the performance effectiveness in both virtualization platforms

(Zheng, 2016).

3.1.2 Performance Feature Identification

Given the clarified evaluation requirement of a system, evaluators need to further

identify relevant performance features to be evaluated. Since different end users could be

running different kind of application in the virtualization platform, it would be difficult

for evaluators to directly locate proper performance features. Therefore, it will be helpful

and valuable to measure the performance based on applications that runs on hypervisor-

based or container-based virtualization platform.

Univ
ers

ity
 of

 M
ala

ya

45

3.1.3 Metrics and Benchmarks Listing

The choice of the right metrics depends on the identified performance features to be

evaluated, while given that the performance features are yet insufficient for choosing right

metrics. On the one hand, a performance feature can be measured by different metrics

with different benchmarks. Therefore the performance metric that can be used to evaluate

the performance is CPU, network, I/O and memory.

3.1.4 Metrics and Benchmarks Selection

A metric is a measurable quantity that precisely captures some characteristics of a

performance feature. The selection of metrics plays an essential role in evaluation

implementations. Hence, the metric that really effective to measure the performance of

the virtualization platform is CPU, memory and I/O. So this three metric will be the

benchmark of the performance evaluation.

3.1.5 Experimental Factor Listings

Although listing a whole scope of experimental factors may not be simply achieved,

the factor listings should be kept as comprehensive as possible continually. This is often

for more analysis and decision-making regarding the factor choices and information

collected. Therefore, the aim of experimental factors listing is to list all experimental

factors associated with performance features that are to be evaluated. In the present study,

the compute, memory and I/O are used as the experimental metric. Hence, there are set

of performance evaluation tools that we can chose to run the performance evaluation

experiment such as Sysbench, STREAM, Y-cruncher and Bonnie++.

Univ
ers

ity
 of

 M
ala

ya

46

3.1.6 Experimental Factors Selection

There is no conflict between selecting limited factors in this step and keeping a

comprehensive factor list in the previous step. On the one hand, an evaluation requirement

usually comprises a set of experiments, and different experiments might have to select

different factors from the same factor list. Hence, Bonnie++ and Sysbench is being chose

as the performance evaluation tools to measure the CPU, memory and I/O intensiveness

within the hypervisor-based and container-based virtualization technology.

3.1.7 Experimental Design

Once the experimental factors are selected, the evaluation experiments are ready and

designed. Normally, a low scale of pilot experiment would profit the relevant

experimental design, by serving evaluators to urge conversant in the experimental

environment and optimize the experimental sequence. The experiment design involves

the way the experiment should be conducted. The experiment will be performed in a

workflow design. So basically, there are 4 sets of workflows that will be use in the

experiment test. The first one is the CPU intensive workflow which the workflow will

consist a lot of task that requires CPU. The second set would be the memory intensive

workflow. The memory intensive workflow will also have a lot of task that requires

memory from its host. The third set is the I/O intensive workflow. This set of workflow

will have a lot of input and output task will requires its host to allocate more resources.

The last set is the uniform workflow. This workflow will consist of CPU, memory and

I/O task.

Univ
ers

ity
 of

 M
ala

ya

47

3.1.8 Experimental Implementation

Implementing an experiment involves carrying out a series of experimental actions,

starting from the experimental environment preparation to running benchmarks.

Generally, experimental results might answer their corresponding evaluation requirement

queries. However, in most cases, a lot of convincing conclusions are drawn through

further experimental analysis. So for the performance evaluation test, there a 4 sets of

workflow experiment is conducted. All results are recorded and analysed during the

implementation of the test cases to see if there is any difference in response time and

application responsiveness in both hypervisor and container-based virtualization

platforms.

3.1.9 Experimental Analysis

Experimental results can sometimes answer their corresponding evaluation

requirement questions already. However, in most cases, more convincing conclusions

would have to be drawn through further experimental analysis. So based from the test that

were conducted, a statistic diagram is formed to ease to draw the conclusion and potential

decision-making process.

3.1.10 Conclusion and Documentation

DoKnowMe uses a structured manner to implement conclusion and documentation.

Tables and visual representations of experimental analysis results are used to interact to

the pre-specified requirement queries. The answers to all requirement queries are

summarised into linguistic communication findings to mirror the conclusions higher.

Univ
ers

ity
 of

 M
ala

ya

48

Based on the results obtained from the experiment test, we can have a better conclusion

from the report.

3.2 Chapter Summary

The DoKnowMe research methodology plays some key roles in evaluating

performance of the virtualization technology. An automated system architecture is

proposed in this research to assess and measure both virtualization platform and deploy

application in the suitable platform. The next chapter elaborates the system design,

architecture, implementation and testing phases.

Univ
ers

ity
 of

 M
ala

ya

49

CHAPTER 4: SYSTEM DESIGN, IMPLEMENTATION AND TESTING

This chapter discusses the system design, implementation and testing of the proposed

technique. First, the proposed system architecture is discussed, followed by a discussion

about the system implementation and testing. A summary is presented at the end of the

chapter.

4.1 Automated System Architecture

This research work proposes an automated system architecture that could dynamically

allocate workflows jobs to different virtualization platforms according to specifications.

Figure 4.1 shows the proposed automated system architecture which consists of three

layers. At the top layer, the workflows can be submitted with specifications and needs.

Figure 4.1. Automated system architecture

The middle layer is the core layer of the system architecture. It consists of three main

components, namely orchestration, scheduling and deployment. The orchestration

component is used to orchestrate the workflow process and define the workflow

Univ
ers

ity
 of

 M
ala

ya

50

specifications. This component defines all jobs in the workflow together with their

relations. Besides, each job parameters are stated in addition to the specifications. This

information is essential for scheduling components. Scheduling is the second core

component in the middle layer. Scheduling plays a vital role in terms of allocating the

resources to the jobs in each workflow. The objective of scheduling function is to

minimise the total execution time for each workflow.

The last core component is deployment. Deployment handles all workflows before

they are deployed to the platform. In the hypervisor-based platform, deployment

provisions the virtual machine and configures the virtual machine specifications based on

workflow criteria. Meanwhile in container-based platform, deployment handles all the

container creations and install all dependencies for the workflow application to run in

those containers. Each container will extract library and bin files and provision an image

for it.

The bottom layer consists of two types of virtualization platforms, namely hypervisor

and container. The system will deploy the workflow application to the selected

virtualization platform and return the output once the execution is completed. The

virtualization platform is set up automatically based on workflow needs.

Figure 4.2 shows the interaction of the core components in the proposed system

architecture. The applications are categorised into 3 categories, namely compute

intensive, memory intensive, and I/O intensive. The workflow needs can be specified

based on the above categories.

Univ
ers

ity
 of

 M
ala

ya

51

Figure 4.2: Workflow categorisations

Figure 4.3 shows the use case diagram of the proposed system architecture. The use

case diagram provides a better understanding of the functionality of the system and the

system interactions with users. As shown in the Figure 4.3, the workflow specifications

can be specified during submission. Besides, results can be automatically collected from

the system. The system will automate the platform selection process based on workflow

specifications.

Univ
ers

ity
 of

 M
ala

ya

52

Figure 4.3. Use case diagram

Table 4.1 shows the detailed descriptions of the above Use Case Diagram. This table

describes each of the case in the diagram. All the cases have their dependencies and

requirements.

Table 4.1. Use case descriptions

Use Case Description

Send the workflow specifications This use case is initiated by the end user to submit
input of workflow specifications.

Receive the evaluation result This use case is initiated by the automation system
and the output will be forwarded to user so that the
user will obtain the result.

Univ
ers

ity
 of

 M
ala

ya

53

 Main flow of events:
1. The user sends the request and waits for the
automation system decision
2. The system will evaluate the result and map
it to the resource

Deploy workflow applications in
suitable platform

This use case is when the workflow is already
scheduled and orchestrated.

Main flow of events:
1. System will receive scheduling result in
sequence
2. System will deploy workflow based on the
scheduler decision.

Workflow Applications This use case is initiated by the automated system
after the input was received from the user.

Main flow of events:
1. The system will wait for the input from the
user.
2. Automation system will orchestrate the
workflow specifications based on user input
3. The system will schedule the workflow
based on their priority.
4. After scheduling task completed, system
will deploy workflow in the suitable platform.
5. System will provide output of the
evaluation result to the user.

Virtualization Platform This use case is initiated by the user based on the
output provided by the automation system.

Main flow of events:
1. User will wait until the evaluation result is
received by the automation system.
2. System will deploy the workflow based on
the output provided by the automation system.

Figure 4.4 shows the system flow of the proposed system architecture. Each user is

required to input the workflow name, workflow specifications in XML file and upload

the executable files for each job in the workflow. Once the workflow is submitted, the

system will orchestrate the workflow into different categories. Based on the information,

the automate system architecture will schedule and deploy each job in the workflow to

the suitable virtualization platforms.

Univ
ers

ity
 of

 M
ala

ya

54

Figure 4.4. System flow

Univ
ers

ity
 of

 M
ala

ya

55

4.2 System Implementation

At this phase, the system is implemented based on the defined automated system

architecture. Firstly, a performance database is developed. Then, a HTML form is

developed to ease user submission. Finally, the core components, namely orchestration,

scheduling and deployment are implemented.

4.2.1 Performance Database

Performance database is developed to gather and store the resource benchmark data.

A set of software tools is used to conduct the performance evaluation on the hypervisor-

based and container-based platform in terms of compute, memory, and I/O. SysBench

and Bonnie++ is selected as the evaluation tool for performance benchmark. Y-Cruncher

and STREAM will not be used as there are already a lot of other researchers using it for

performance evaluations. Furthermore, SysBench is an effective tool to measure the

performance of the applications. SysBench can handle looping test and the limit of each

test case can be configured. Bonnie++ is a small utility with the purpose of benchmarking

file system IO performance.

4.2.1.1 Compute Performance Testing Using Sysbench

Figure 4.5 shows the compute performance testing. The purpose of this test is to

measure how long would it takes for the system to fully execute this CPU intensive test.

This test verifies prime numbers with sequentially increasing and verifying that the

remainder or modulo calculation is zero. If it is, then the number is not prime and the

calculation goes on to the next number. Hence, if none have a remainder of 0, then the

Univ
ers

ity
 of

 M
ala

ya

56

number is prime. The maximum number that it divides by is calculated by taking the

integer part of the square root of the number.

Figure 4.5. Compute performance testing

4.2.1.1.1 Compute Performance Testing Using Bonnie++

Figure 4.6 shows the compute performance testing using Bonniee++. Basically, it will

create a test to stress out the CPU and I/O of the system. File size need to declare in the

command before executing the test. Normally the size of the file would be double the size

of the RAM of its host. After finish executing the test, the result would be saved in the

performance database.

Univ
ers

ity
 of

 M
ala

ya

57

Figure 4.6. Compute Performance Testing using Bonniee++

Table 4.2. CPU Result of Bonnie ++

Table 4.2 show the result of CPU performance test using Bonniee++. There are three

columns involved in the result which is the sequential output, sequential input and random

seeks. These results are gathered from the test that run on the Linux terminal. The %CPU

column reports the percentage of the CPU that was used to perform the IO for each test.

The file metadata tests are shown in the second row and files are created, read and finally

deleted. The create, read, delete metadata tests are performed using file names that are

sorted numerically.

Univ
ers

ity
 of

 M
ala

ya

58

4.2.1.2 Memory Performance Testing

Figure 4.6 shows the memory performance testing. A set of data size is used for the

evaluation. The write operation is conducted. A test summary is generated which consists

of the number of operations performed, the total time taken and the total number of events.

The minimum, average and maximum time are shown as well in the summary.

Figure 4.7. Memory performance testing

4.2.1.3. I/O Performance Testing Using Sysbench

Figure 4.7 shows the I/O performance testing. Files with different size are created,

followed by read and write operations. The read and write ratio is defined at 1:50 and a

synchronous I/O mode is carried out for the test. Besides, user can specify the block size.

A test summary is generated, which consists of the numbers of read and write operations,

Univ
ers

ity
 of

 M
ala

ya

59

speed, and total time. The minimum, average and maximum time are shown as well in

the summary.

Figure 4.8. I/O Performance testing using Sysbench

Once the performance evaluation is conducted, the benchmark information is stored in

the performance database. The database is used as the knowledge information base by the

scheduling components.

Univ
ers

ity
 of

 M
ala

ya

60

4.2.1.3.1 I/O Performance Testing Using Bonnie++

Figure 4.9 shows the I/O performance testing using Bonniee++. Basically, the test is the

same as the CPU stress test as Bonnie++ can evaluate the CPU and I/O eventually. Hence,

for this I/O test, the file size double-up from 2GB to 4GB in order to observe the input

and output execution time and size.

Figure 4.9 I/O Performance Testing Using Bonnie++

Table 4.3. I/O Result of Bonnie ++

Table 4.3 show the result of I/O performance test using Bonniee++. There are three

columns involved in the result which is the sequential output, sequential input and random

seeks. These results are gathered from the test that run on the Linux terminal. The

Univ
ers

ity
 of

 M
ala

ya

61

sequential output will show the kilobyte of block per second were involved in output

portion. The sequential input shows the kilobyte of block per second involve in input

portion.

4.2.2 Web Form

A Web form is developed to ease workflow submission. The proposed system is

developed by using the Java programming language. Figure 4.8 shows the Web form that

allows user to input the workflow names, as well as the specifications. User is required

to input in XML file as well as all the executable workflow jobs in the workflow.

Figure 4.10. Web form

Figure 4.9 shows the workflow specifications that can be uploaded into the automated

system architecture. Each workflow has multiple subtasks. The subtask is defined by the

subtask ID. Each subtask contains the task types that are divided into compute, memory

Univ
ers

ity
 of

 M
ala

ya

62

and I/O. The execution command needs to be clarified on every task in order for the job

to be successfully executed. After the execution is completed, the system output will be

automatically saved into the respective directory path folder.

Figure 4.11. Workflow specifications

4.2.3 Orchestration Component

Total of Workflow in each Category

--- X 100%

Total Number of Workflow

This orchestration component will be involved in the evaluation of the task itself. The

evaluation of the task will depend on its intensiveness. The intensiveness of every

workflow is determined by the total number of category workflow divided by the total

number of workflow times 100 percent. Table 4.3 show the example on how to declare

the threshold for workflow intensiveness based on their percentage.

Univ
ers

ity
 of

 M
ala

ya

63

Table 4.4 Example of Threshold for Choosing Workflow Intensiveness

Sequence

of task in a

workflow

Category
Number of
workflows

on each
category

Total
number of
workflows

for each
category

Total
Percentage

for each
category

1 CPU Intensive (A) 1/5
3/5

60% 2 CPU Intensive (B) 1/5

3 CPU Intensive (C) 1/5

4 I/O Intensive 1/5 1/5 20%

5 Memory Intensive 1/5 1/5 20%

Total 5/5 5/5 100%

Hence, the highest percent of the category will be declared as the most intensive

category for the workflow. If the task requires a lot of CPU resource allocation, then it

will be orchestrated together with another task which is in the same category. If the task

requires a lot of memory resources, then it will be separated into the same category. As if

the task is I/O intensive, it will be merged with the other task that requires massive I/O

resource allocations.

4.2.4 Scheduling Component

After the entire task was orchestrated into their category, the scheduling component

will schedule the task into different virtualization platforms, namely hypervisor-based

virtualization or container-based virtualization.
Univ

ers
ity

 of
 M

ala
ya

64

4.2.5 Deployment Component

Once all tasks are orchestrated and scheduled, the last component would be the

deployment. All tasks and jobs will be deployed to the respective virtualization platform

to be executed.

4.3 System Testing

As the purpose of testing the system, a workflow with four tasks is submitted to the

system. The first task was a compute intensive job. This job contains many tasks that

require compute resources in order for it to be executed. The second task is the memory

intensive job, the third task is I/O intensive job and the final task is also compute intensive

job.

Table 4.5. Time Execution Comparison Between Workflow

No

Task Name
Exec Time

for
Hypervisor

Exec Time
for

Container

Exec Time
for

Proposed
Architecture

1 Compute Intensive Task (A) 4.55 sec 3.37 sec 3.37 sec

2 Memory Intensive Task 3.06 sec 1.61 sec 1.61 sec

3 I/O Intensive Task 2.90 sec 6.67 sec 2.90 sec

4 Compute Intensive Task (B) 13.65 sec 10.11 sec 10.11 sec

Total Execution Time 24.16 sec 21.76 sec 17.99 sec

Table 4.2 shows the experimental test results. The table shows the total execution time

of running the workflow in hypervisor, container and the proposed architecture.

Univ
ers

ity
 of

 M
ala

ya

65

4.4 Chapter Summary

In this chapter, the system design of the proposed system architecture is described in

detail. Then, the system implementation is shown and explained. In the last phase, the

system testing procedures are discussed. In the next chapter the experiment testing is

discussed followed by result analyst and discussion.

Univ
ers

ity
 of

 M
ala

ya

66

CHAPTER 5: RESULTS AND DISCUSSION

This chapter details the performance evaluation process of the proposed technique and

discussions on the obtained results. The chapter also presents the experimental setup by

using the hypervisor-based and container-based virtualization. The tests are carried out to

capture the result, which is the total execution time for each virtualization platform. After

the test is completed, the obtained results will be analysed for each technique. A chapter

summary is presented at the end of chapter.

5.1 Experimental Setup

The setup of the performance evaluation test is to evaluate the time taken for each

hypervisor-based and container-based virtualization platform to execute respective jobs

and tasks. Four different types of workflow specification are used, namely compute

intensive, memory intensive, I/O intensive and uniform intensive. Compute intensive

workflow consists of a higher rate of compute intensive tasks as per shown on Table 4.4,

which there are more than 60% of compute intensive task occur in one workflow. Same

goes with the memory intensive workflow which it consist a higher rate of memory

intensive tasks while I/O workflow consists of a higher rate of I/O intensive tasks. The

uniform workflow is the mixture of compute, memory and I/O intensive tasks. The

uniform workflow consists of a nearly equal distribution of the compute, memory and I/O

intensive tasks.

Table 5.1 shows the example of some of the workflow that was executed from the test

case. As shown in the table, every workflow has their own task and this task was sorted

by sequence based on their priority. Each workflow consisted of multiple tasks. Each task

was categorised as compute, memory or I/O intensiveness task. After the task and its

Univ
ers

ity
 of

 M
ala

ya

67

value are defined, all task will be deployed, and the execution time will be captured

accordingly. The total execution time will be analysed and documented.

Table 5.1. Workflow specifications

Workflow

Number

Task Name Value Total time (sec)

1 Compute (A) 10000 4.55

Memory (A) 10240 3.06

I/O (A) 200 2.90

Compute (B) 10000 4.55

I/O (B) 200 2.90

Memory (B) 10240 3.06

2 Compute (A) 20000 10.05

Compute (B) 10000 4.55

Compute (C) 5000 2.28

Memory (A) 20480 6.12

Memory (B) 10240 3.06

3 Compute (A) 20000 10.05

Compute (B) 10000 4.55

Memory (A) 20480 6.12

Memory (B) 10240 3.06

Memory (C) 40960 12.24

Table 5.2 shows the hardware specifications that are used for the experimental testing.

Intel Pentium G2010 @ 2.80 GHz is used as the processor, with 10GB physical memory.

The PC was running on Linux Ubuntu Version 14.04 64-bit.

Univ
ers

ity
 of

 M
ala

ya

68

Table 5.2. Host specifications

Host Specifications

Processor Intel Pentium G2010 @ 2.80 GHz

RAM 10 GB

System Type 64-bit Operating System

Operating System Linux Ubuntu 14.04

5.2 Experimental Results

Figure 5.1 Compute intensive workflow execution time result

Figure 5.1 shows the results and output of the experiment task tested on the compute

intensive workflows. The X-axis represents the type of virtualization and the proposed

architecture while the Y-axis represents the total execution time. As shown in Figure 5.1,

the execution time for the proposed architecture is 474.11 second which is the fastest.

When the workflow is executed on container-based virtualization, it takes 502.39 second,

which is 5.96% more than the proposed architecture. The workflow takes the longest time

Hypervisor-based Virtualization Container-based Virtualization Proposed Architecture

300

200

100

0

474.11 400
502.39

500

643.14

700

600

Compute Intensive Workflow

E
x
e
cu

ti
o
n

 T
im

e
 (S

e
c)

Univ
ers

ity
 of

 M
ala

ya

69

to execute on hypervisor-based virtualization which is 35% longer than the proposed

architecture. The compute intensive workflow consists of higher percentage of

computation tasks. Since the proposed architecture can select the best virtualization to

execute the task, the total execution time is minimised as compared to hypervisor-based

and container-based virtualization.

Figure 5.2. Memory intensive workflow execution time result

Figure 5.2 shows the results and outputs of the experiment testing on the memory

intensive workflows. The X-axis represents the type of virtualization and the proposed

architecture while the Y-axis represents the total execution time. It takes 210.89 second

to execute the workflow by using the proposed architecture. The workflow takes 362.68

second and 239.16 second to complete when running on hypervisor-based and container-

based virtualization respectively. The result shows that the proposed architecture

minimises the total execution time as compared to hypervisor-based and container-based

virtualization.

Memory Intensive Workflow
400

350

300

250

200

150

100

50

0

Hypervisor-based Virtualization Container-based Virtualization Proposed Architecture

210.89

239.16

362.68

E
x
e
cu

ti
o
n

 T
im

e
 (S

e
c)

Univ
ers

ity
 of

 M
ala

ya

70

Figure 5.3 shows the results of I/O intensive workflow test for the hypervisor-based,

container-based and proposed architecture. The workflow takes 255.61 sec to complete

when running using the proposed architecture. As for the hypervisor-based virtualization,

it takes 287.72 sec to complete, which was 12.56% longer as compared to the proposed

architecture. The workflow takes the most time which 516.87 sec is to complete when

running on container-based virtualization.

Figure 5.3. I/O Intensive workflow execution time result

The I/O intensive workflow consists of higher percentage of I/O tasks. These tasks are

basically to read and write into the disk or data store. I/O-intensive environments can

have large, medium or small amounts of storage, yet have active workloads with either

many I/O (transactions) of various sizes. The result shows that the proposed architecture

minimises the total execution time as compared to hypervisor-based and container-based

virtualization.

I/O Intensive Workflow

600

500

400

300

200

100

0

Hypervisor-based Virtualization Container-based Virtualization Proposed Architecture

255.61
287.72

516.87

E
x
e
cu

ti
o
n

 T
im

e
 (S

e
c)

Univ
ers

ity
 of

 M
ala

ya

71

Figure 5.4 Uniform Intensive Workflow Execution Time Result

Figure 5.4 shows the result of a uniform workflow testing. A uniform workflow

consists of a combination of compute, memory and I/O intensive tasks. As shown in

Figure 5.4, the total execution time was 599.54, 716.13 and 1091.9 second when running

on proposed architecture, hypervisor-based and container-based virtualization

respectively. The total execution time is 19.44% and 82.12% longer when running on

hypervisor-based and container-based virtualization respectively, as compared to

proposed architecture. The result shows that the proposed architecture minimises the total

execution time as compared to hypervisor-based and container-based virtualization.

5.2 Chapter Summary

In this chapter the workflow testing of the hypervisor-based, container-based and

proposed architecture was presented. Based on the experimental results, the proposed

architecture minimises the execution time for all workflows as compared to hypervisor-

based and container-based virtualization.

Hypervisor-based Virtualization Container-based Virtualization Proposed Architecture

400

200

0

599.54

800

600 716.13

1091.9

1200

1000

Uniform Workflow

E
x
e
cu

ti
o
n

 T
im

e
 (S

e
c)

Univ
ers

ity
 of

 M
ala

ya

72

CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

This chapter summarises the conducted research. It discusses the research contribution

in brief. Then, the suggestions for possible improvements are provided for future research

plans.

6.1 Thesis Summary

This research starts with exploring the underlying concepts, characteristics, system

architecture of the most famous virtualization technology, namely hypervisor-based and

container-based. Then, the performance evaluation strategies and tools are discussed and

analysed. Subsequently, the scientific workflow is explained briefly, and problem of the

current virtualization platform is identified.

During the investigation and analysis process, the problems of the workflows

deployment in the virtualization platform are identified. It is very challenging to deploy

the workflow tasks to the suitable virtualization platforms since the workflow consists of

compute, memory and I/O intensive tasks.

To address the above issue, an automated system architecture is proposed. The

proposed architecture consists of the core components namely orchestration, scheduling

and deployment that are able to minimise the workflow total execution time.

To validate the accuracy and effectiveness of the proposed architecture, the benchmark

is conducted to measure the performance of the virtualization platform. The performance

evaluation is conducted by using the performance evaluation tools called SysBench. Once

the result is obtained, the information is used as the knowledge-based for the proposed

automated architecture.

Univ
ers

ity
 of

 M
ala

ya

73

Four different types of workflows are used for experimental testing. The experimental

result indicates that the proposed automated architecture outperformed the standard

deployment of the workflow in the hypervisor-based and container-based virtualization

platform by minimising the total execution time approximately 20%-30%. It is proven

that the proposed automated architecture reduces the total execution time as compared to

hypervisor-based and container-based virtualization.

6.2 Thesis Contribution

In this research, an automated system architecture is proposed and implemented. The

workflow orchestration, scheduling and deployment components are developed by using

Java programming language. Then, the proposed architecture is evaluated and tested by

using different workflow tasks, namely compute, memory and I/O intensive tasks. The

analysis is done based on the result that gained from the SysBench performance testing

tools. The experimental results indicated that the proposed architecture can minimise the

total execution time.

To summarise, this research has contributed in few areas.

First, it provides a deep understanding of workflow orchestration, scheduling and

deployment in the automation architecture. The automation system will orchestrate, group

and schedule the workflow before being deployed and executed into the respective

virtualization platform.

Secondly, in this study, the experimental results show that the proposed automation

architecture can reduce the total execution time of the workflow. The effectiveness of the

architecture is proven based on the measurements.

Univ
ers

ity
 of

 M
ala

ya

74

Lastly, based on the experimental results, the proposed architecture can be used to

manage and deploy workflow in the virtualization environment, either it was on

hypervisor-based or the container-based.

6.3 Future Work Suggestions

Many research was done in hypervisor-based and container-based technologies.

However, there are many issues and challenges which have directed the research to be

further studied and explored. One of the major issues is the application performance on

the virtualization environment as many have claimed that their applications performance

was decreased after it was migrated into the virtualization platform.

A suggestion to further improve the current research is to consider the network

bandwidth of both virtualization platform since a network plays a big role in managing

applications. In addition, it is suggested to include the size of the workflow that will be

deployed to see if there is any difference if a mass size of workflow is deployed into both

virtualization platforms.

In summary, virtualization is one of the most advanced and emerging technologies for

Cloud computing and data centre. The advances in this technology will lead to a broad

and deep research in which the outcomes will benefit both administrators and users.

Univ
ers

ity
 of

 M
ala

ya

75

REFERENCES

A. M. Joy, “Performance comparison between Linux containers and virtual machines,”

in Proc. 2015 Int. Conf. Adv. Comput. Eng. Appl. (ICACEA 2015). Ghaziabad,

India: IEEE Press, 14-15 Feb. 2015, 507–510.

Ankita Desai, Kumar, Rakesh, “An Importance of Using Virtualization Technology in

Cloud Computing,” February 2015.

C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Compute., vol. 2, no. 3, pp.

24–31, May/Jun. 2014.

D. Merkel, “Docker: Lightweight Linux containers for consistent development and

deployment,” Linux J., vol. 239, pp. 76–91, Mar. 2014.

D. Bernstein, “Containers and Cloud: From LXC to Docker to Ku-Bernetes,” IEEE Cloud

Comput., vol. 1, no. 3, pp. 81–84, Sept. 2014.

D. C. Montgomery. “Design and Analysis of Experiments” John Wiley & Sons, Inc.,

Hoboken, NJ, 7th edition edition, January 2009.

D. Merkel, “Docker: Lightweight Linux containers for consistent development and

deployment,” Linux J., vol. 239, pp. 76–91, Mar. 2014.

F. Wu, Q. Wu, Y. Tan, Workflow scheduling in Cloud: a survey, J. Supercomput. 2015

3373–3418.

H. Koziolek. “Performance evaluation of component-based software system” A survey.

Perform. Eval., August 2010.

K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Performance

comparison analysis of Linux container and virtual machine for building Cloud,”

Adv. Sci. Technol. Lett., vol. 66, pp.105–111, Dec. 2014.

Univ
ers

ity
 of

 M
ala

ya

76

M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange, C. De Rose, “Performance

evaluation of container-based virtualization for high performance computing

environments,” in: 21st Euromicro International Conference on Parallel,

Distributed and Network-Based Processing, (PDP), IEEE, 2013.

M.W. Convolbo, J. Chou, “Cost-aware DAG scheduling algorithms for minimizing

execution cost on Cloud resources,” J. Supercomput. 2016.

P.V.S.S. Gangadhar et al, “Distributed Memory and CPU Management in Cloud

Computing Environment,” Aug 2018.

R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support PaaS,”

in Proc. 2014 IEEE Int. Conf. Cloud Eng. (IC2E 2015). Boston, Massachusetts,

USA: IEEE Computer Society, 10-14 Mar. 2014, 610–614.

S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Efficient virtual machine

sizing for hosting containers as a service,” in Proc. 11th World Congr. Serv.

(SERVICES 2015). New York, USA: IEEE Computer Society, 27 Jun.-2 Jul.

2015, 31–38.

T. Banerjee, “Understanding the key differences between LXC and Docker,”

https://www.flockport.com/lxc-vs-docker/, Aug 2014. T. Adufu, J. Choi, and Y.

Kim, “Is container-based technology a winner for high performance scientific

applications?” in Proc. 17th Asia-Pacific Network Oper. Manage. Symp.

(APNOMS 2015). Busan, Korea: IEEE Press, 19-21 Aug. 2015, 507–510.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison

of virtual machines and Linux containers,” in Proc. 2015 IEEE Int. Symp.

Perform. Anal. Syst. Software (ISPASS 2015). Philadelphia, PA, USA: IEEE

Press, 29-31 Mar. 2015, 171–172.

Univ
ers

ity
 of

 M
ala

ya

http://www.flockport.com/lxc-vs-docker/
http://www.flockport.com/lxc-vs-docker/

77

X. Xu, H. Yu, and X. Pei, “A novel resource scheduling approach in container-based

Clouds,” in Proc. 17th IEEE Int. Conf. Computer. Sci. Eng. (CSE 2014).

Chengdu, China: IEEE Computer Society, 19-21 Dec. 2014, 257–264

Z. Li, L. O’Brien, and M. Kihl, “DoKnowMe: Towards a domain knowledge-driven

methodology for performance evaluation,” ACM SIGMETRICS Perform. Eval.

Rev., vol. 43, no. 4, 23–32, Mar. 2016.

Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On the conceptualization of performance

evaluation of IaaS services,” IEEE Trans. Serv. Compute., vol. 7, no. 4, pp. 628–

641, Oct.-Dec. 2014. C. Anderson, “Docker,” IEEE Software, vol. 32, no. 3, 102–

105, May/Jun. 2015.

Univ
ers

ity
 of

 M
ala

ya

