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ABSTRACT 

 

As the state-of-the-art for ad-hoc retrieval, the interaction-based approach represents the 

interaction between the query and the document through the semantic similarities of their 

words. The constructed interaction structure is then passed into a deep learning model for 

feature extraction which in turn are passed into another deep learning model for textual 

documents ranking.   

As far as we know, no study has yet identified how relevance matches may appear in the 

interaction structure and what features reflect that matches. Instead, the majority of the 

proposed models are based on the hypothesis that relevance matches are following some 

fixed visual patterns in the interaction matrix. Therefore, most of them are utilizing deep 

learning techniques for visual pattern recognition for features extraction. This features 

extraction approach affects the proposed models’ performance and simplicity. 

This work starts with an analytical study to identify a set of features called the interaction 

features which reflect how relevance matches may appear in the interaction matrix. 

Accordingly, a new approach for features extraction and documents ranking is proposed.  

Interestingly, the study found that the interaction features do not follow any specific visual 

pattern and therefore it suggests that deep learning techniques are not the most effective 

approach for the feature extraction task. Instead, a set of manually designed functions are 

proposed and a shallow neural ranking model was developed.  

The experiments results confirm the previous finding and show that, though less complex 

and more efficient, our model was able to outperform two baselines and give a close 

performance to the state-of-the-art model even without using some important IR factors 

like term importance.  
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ABSTRAK 

 

Status semasa berkaitan Capaian adhoc masa kini, di mana kaedah berasaskan interaksi 

telah mewakilkan interaksi di antara pertanyaan dan dokumen melalui persamaan 

semantik perkataan mereka. Struktur interaksi yang telah dibina ini akan disalurkan ke 

dalam model pembelajaran mendalam (MPM) untuk  pengekstrakan ciri, yang seterusnya 

akan disalurkan pula ke dalam MPM yang lain untuk menentukan tahap kedudukan 

dokumen teks tersebut.  

Sehingga kini, tiada lagi kajian yang telah mengenalpasti apakah ciri-ciri interaksi dan 

bagaimana mereka boleh berada dalam struktur interaksi tersebut.  Sebaliknya, 

kebanyakan model yang dicadangkan, hanya menganggap yang ciri-ciri interaksi 

berkaitan adalah mengikuti beberapa corak visual yang tetap. Oleh itu, mereka akan 

menggunakan teknik-teknik MPM untuk pengecaman pola visual bagi pengekstrakan ciri. 

Andaian ini  mengakibatkan prestasi model menjadi terjejas dan rumit. 

Kajian ini adalah berbeza kerana ianya bermula dengan kajian analisa bagi mengenalpasti 

ciri-ciri interaksi yang paling penting dan bagaimana ianya boleh berada di dalam matriks 

interaksi yang berkaitan. Berdasarkan analisis tersebut, barulah cadangan kaedah baru 

untuk pengekstrakan ciri dan tahap kedudukannya diusulkan. 

Menariknya, kajian ini mendapati bahawa ciri-ciri interaksi sebenarnya tidak mengikuti 

apa-apa pola visual yang tertentu. Oleh itu, ia mencadangkan bahawa teknik-teknik MPM 

tidak semestinya menjadi kaedah paling berkesan untuk tugasan pengekstrakan ciri-ciri. 

Sebaliknya, satu set fungsi buatan-tangan yang mudah adalah dicadangkan bagi tugasan 

pengekstrakan ciri dan model neural tahap kedudukan yang mudah telahpun 

dibangunkan. 

Keputusan eksperimen yang dibandingkan dengan hasil keputusan terdahulu, 

mengesahkan bahawa model neural yang mudah dengan satu set fungsi buatan-tangan 

bagi pengekstrakan ciri-cirinya, telah pun dapat mengatasi prestasi keputusan dua model-

asas yang amat kukuh.  Ianya juga telah menghampiri prestasi kesemua model-model 

masa kini walaupun tanpa menggunakan faktor pengambilan maklumat yang penting 

seperti kepentingan terma.  
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Chapter 1: Introduction 

With the dramatical increase of information size on the web, information retrieval 

applications become a gate for any person or service seeking this information. Typically, 

for retrieving certain information, the user should articulate his need as a sequence of 

query terms, thereby the information retrieval application understands the user’s needs 

and returns the relevant documents. 

Expressing information needs as a sequence of query terms is not always an easy task 

especially when the user is not familiar with domain terminology. Most of the traditional 

ad-hoc retrieval approaches like TF-IDF and BM25 (Robertson & Zaragoza, 2010) 

depend on the exact matching between the query terms and documents words which fails 

to retrieve relevant documents where few or no terms from the query are found. Even 

though models like Latent Space Analysis (LSA) (Deerwester, Dumais, Furnas, Landauer, 

& Harshman, 1990) and Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003) 

were proposed to alleviate the previous problem by focusing more on the semantic 

similarity between the query and the document, those models are still not able to 

outperform the traditional models because they fail to preserve and utilize positional 

information.  

Based on the previous argument, it is essential for any newly proposed information 

retrieval model to find an effective way to reflect and capture both the exact and the 

semantic match. Furthermore, it is necessary for any modern IR model to preserve 

positional information and use them to measure other important IR factors such as query 

coverage and term proximity. 

In the last years, deep learning has led to a dramatic improvement in computer vision, 

speech recognition, and machine translation. Likewise, it is expected that deep learning 

will gradually be able to outperform traditional approaches in information retrieval and 
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that it may lead to a new breakthrough by providing a new deep learning model for 

information retrieval which is able to meet all the required factors (Mitra & Craswell, 

2017a). 

Driven by those expectations, multiple works have been proposed to use deep learning 

approaches for building a new information retrieval model. Some of these works focus 

on the semantic match while others focus on the combination between the exact and the 

semantic match. However, at the early stages, most of these models were not able to 

outperform the traditional IR models. In fact, most of these models were obtained from 

different domains (like computer vision, speech recognition, and NLP) and thus they were 

designed to solve different problems. 

Recently, a number of more mature neural IR models were proposed and for the first time 

they were able to outperform the traditional IR approaches and to gain the state-of-the-art 

performance in the ad-hoc retrieval task (Guo, Fan, Ai, & Croft, 2016; Hui, Yates, 

Berberich, & de Melo, 2018; McDonald, Brokos, & Androutsopoulos, 2018; Pang et al., 

2017a). The majority of these models were based on a new approach, called the 

interaction based approach, which introduces the interaction between the query and the 

document as a matrix of the semantic similarities of all corresponding query terms and 

document words  (Pang, Lan, Guo, Xu, & Cheng, 2016). The interaction matrix is a rich 

representation structure which is able to reflect the exact and semantic matches and 

preserve all positional information. Hence, it is expected that by implementing a suitable 

deep learning model that takes the interaction structure as input, it is possible to capture 

and integrate many of the required factors to build an effective IR model.  

The majority of the proposed deep learning models for the interaction approach are 

depending on visual patterns recognition techniques for implicitly extracting the required 

features from the interaction structure (Hui et al., 2018; McDonald et al., 2018; Pang et 

al., 2017a; Pang, Lan, Guo, Xu, & Cheng, 2016). However, there is a lack of studies that 
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identified the required features or provide tangible evidence that the visual pattern 

recognition techniques are suitable for capturing relevance matches. More important, 

since most of the proposed models are originally designed for computer vision tasks, they 

are either recognition or classification models whereas ad-hoc retrieval task is a 

combination of recognition and ranking. This lack of harmony between the IR 

requirements and the proposed models affects proposed models’ performance and 

simplicity. More detailed information on this is covered in Chapter 2. 

1.1 Problem Statement 

Even though the interaction approach outperforms traditional IR models and gains the 

state-of-the-art performance for the neural ad-hoc retrieval, there is no clear 

understanding of, how relevance matches may appear in the interaction matrix, what 

features that we are looking for in order to measure relevance matches, and what is the 

most effective way to extract these features. Consequently, there is still a gap between IR 

factors, as a base for assessing relevance matches, and the proposed interaction-based 

models which significantly affects both models’ performance and simplicity. This gap can 

be observed in the most recent interaction-based models in two places: the interaction 

structure and the feature extraction approaches. 

In fact, in order to get better performance, some works suggested embedding other 

structure into the interaction matrix while others chose to use more sophisticated deep 

learning models for feature extraction. However, both approaches led to heavy and 

complex models that require lots of computational resources and that are not amenable 

for analysis or interpretation. More important, the fact that the proposed approaches for 

performance optimization are not based on robust analysis of the relationship between the 

required IR factors and the interaction structure indicates the possibility of getting equal 

or even better performance with less complex and more efficient approaches.  
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1.2 Research Objectives 

The main purpose of this study is to identify the minimum set of features, called 

interaction features (see Section 4.2.6), required to asses relevance matches by reflecting 

how a set of IR factors appears in the interaction matrix and to build a new deep learning 

model for ad-hoc retrieval task based on these features.  

To this end, some objectives can be formulated: 

1. To identify the minimum set of the features that represent a set of selected IR 

factors in the interaction matrix.  

2. To propose an effective way to extract the identified features from the interaction 

matrix. 

3. To build an effective neural ranking model based on the extracted features.  

4. To evaluate the proposed model in term of performance, efficiency, and simplicity 

on the ad-hoc retrieval task and to analyze the impact of the model’s components. 

1.3 Study Scope 

This study only concerns with the ad-hoc retrieval task which retrieves the relevant 

documents from a predefined documents collection for a previously unseen query without 

using any query log or any form of user interaction.  

Two criteria were used for selecting the set of IR factors that will be considered in this 

study (See Section 2.6): 

1. Consider factors that are commonly used by different models. 

2. Consider factors that do not need any structure or resources other than the 

interaction matrix.  
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Accordingly, the following four information retrieval factors are taken into account in the 

study in order to identify the required features and to design the ranking model (For more 

details on each factor see Section 2.1): 

1. Exact match 

2. Semantic Match 

3. Query Coverage 

4. Term proximity 

The study follows the interaction approach where the semantic similarities between all 

query terms and document words are computed and stored in a structure called the 

interaction matrix and introduced as model input. 

1.4 The significance of the Study 

Since deep learning was able to dominate classical models in computer vision, NLP and 

speech recognition, most of the available studies in the field of neural IR were motivated 

by the expectation that deep learning will dominate IR domain as well. In fact, most of 

the available studies were competing for achieving better performance in ad-hoc retrieval 

depending on the available deep learning models and techniques at the expense of 

efficiency and simplicity. Consequently, this race led to, in most cases, heavy models 

which need lots of computational resources. In the same time, most of these models have 

complex structures which limit their contribution for growing our understanding of the 

relationship between deep learning and information retrieval. 

The finding of this study would establish for a more simple and interpretable approach 

that is based on the analysis of the relation between the interaction matrix and the selected 

set of IR factors.  
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Furthermore, the findings of the study will allow for building an efficient yet effective 

neural IR model which is essential for incorporating neural IR models in real life IR 

applications. 

1.5 Thesis Structure 

In addition to the introduction, the thesis has five additional chapters. The next chapter 

reviews the utilization of deep learning techniques for the ad-hoc retrieval task. Chapter 

3 and 4 detail the research method and explain the proposed methods, models, and 

techniques for achieving the study objectives. Chapter 5 lists the results of the 

experiments, contrast them with other baseline models and discuss the finding. Finally, 

Chapter 6 concludes the study and suggests future works. 
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Chapter 2: Literature Review 

Deep learning has gained state-of-the-art performance in different domains like computer 

vision, voice recognition, and NLP. It is expected that over the next couples of years deep 

learning will be able to outperform traditional approaches in the field of information 

retrieval and gain the state-of-the-art performance as well (Zhang et al., 2016). However, 

despite large research efforts, some information retrieval experts start to show some 

doubts that deep learning models may not be even suitable for some IR tasks like ad-hoc 

retrieval (Zhang et al., 2016). 

This review aims at exploring the most efficient deep learning models that have been 

designed for ad-hoc retrieval task and analyzing these models in order to find possible 

drawbacks and limitations. Furthermore, the review points out the underlining gaps that 

cause these problems which help in understanding the current state of the Neural IR and 

by taking these gaps as guidelines for the study, they may lead to significant performance 

optimization.   

Since the use of deep learning in IR is still recent, most of the reviewed papers were 

collected between 2010 and 2018 and in order to include all the proposed models, the 

papers were chosen from the following domains: Neural information retrieval, deep 

learning for semantic matching, deep learning for NLP and information retrieval. Neural 

IR is a newborn domain which has been specifically established to connect and support 

all new researches using deep learning models to solve information retrieval problems. 

However, a good portion of important works is being published under other domains. 

Thus, the review included some important works form other related domains like 

Semantic Matching, NLP and IR. 

In the beginning, more than one hundred papers were collected by searching in ISI 

journals and in the most known IR conferences like the Special Interest Group on 
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Information Retrieval (SIGIR). Afterward, the papers were filtered based on two criteria. 

While the first criterion excludes all papers that do not focus on long text matching which 

is the typical case for ad-hoc retrieval, the second one excludes all papers that do not use 

a neural model. 

After applying the filtering criteria, only 25 papers remain and most of these papers where 

a conference paper published in the last two years which reflects the fact that deep 

learning in general and neural IR are still new domains. 

The review is organized as follow: Section 1 provides a brief definition for some 

important IR terms that appear frequently in the study. Afterward, the most known 

traditional information retrieval approaches are briefly described in Section 2. The basic 

deep learning techniques that have been used in IR tasks are reviewed in Section 3. 

Section 4 review the main deep learning approaches for ad-hoc retrieval. Section 5 

reviews the loss functions that have been used to train neural IR models. IR factors that 

have been considered in the different neural IR models are explored in Section 6. The 

review discussions and research gaps are provided in Section 7. Finally, Section 8 

concludes the review.  

2.1 IR Concepts 

This section provides a brief definition of the basic IR terms and concepts that are used 
in the study. 

a. Ad-hoc Retrieval 

Ad-hoc retrieval is the task of retrieving the relevant documents for a previously 

unseen query from a static collection of documents. The returned document list is 

ranked and decreasingly ordered where the probability of relevance of a document 

in the list is considered independent from other documents that come before. The 

retrieval in this task does not depend on any query logs or user preferences and it 
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does not include any further interaction with the user (Collins-Thompson, 

Macdonald, Bennett, Diaz, & Voorhees, 2014).  

For instance, given a collection of documents ܥ	 ൌ 	 ሼ݀ଵ, ݀ଶ, … . , ݀௡ሽ  from a 

certain domain, like political news, and a previously unseen query like ݍଵ= “US 

election meddling”. In the ad-hoc retrieval task, our goal is to sort all the 

documents in ܥ according to their relevance to ݍଵ. 

Typically, ad-hoc retrieval is performed on relatively long textual data which 

make it different from other IR tasks like question answering or from other 

retrieval tasks that depend on short texts such as titles and anchors.  

b. Term Frequency 

Term frequency represents the number of times a certain query term appeared in 

the given document (Manning, Raghavan, Schütze, & others, 2008, p. 96).  

For example, given the document ݀ଵ  = “The American president claimed his 

Russian counterpart was “extremely strong and powerful in his denial” of any 

election meddling” and the query ݍଵ= “US election meddling”, term frequency of 

word “election” and “meddling” equals 1. 

Regardless of its simplicity, term frequency is one of the widely used IR features 

that represents the cornerstone of a wide range of IR models. 

c. Term Importance 

In the term frequency, as described above, all terms are considered equally 

important. This equality consideration is a critical problem for any IR model that 

depends only on term frequency. For example, in a query like “second world war” 

the word “second” does not hold the same discrimination power as the word “war”. 

In fact, it turns out that terms which occur too often in a corpus are not as 

informative as rare terms. In this connection, term importance refers to any 

measure that is used by IR models to express query terms discriminative power 
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(Manning et al., 2008). For instance, the inverse of the number of documents in a 

collection that contain a certain term referred to as inverse document frequency 

IDF was used by multiple models as term importance measure.  

d. Exact match 

Exact match refers to the lexical match between a query term and a document 

word characters and it is used for counting term frequency. Typically, the query 

and the document texts are fed into a stemmer before searching for exact matches. 

The stemmer in this context is used to remove any suffix or prefix that may affect 

the lexical match (Manning et al., 2008, p. 29). For instance, in a document ݀ଵ = 

“Trump said that he actually accepts the intelligence findings that Russia meddled 

in the U.S. election” we can observe and exact match of word stem “elect” and 

word stem “meddl”. 

e. Semantic match 

Unlike the exact match, the semantic match intends to search for query meaning 

inside the document. In other words, semantic match measures to which extent 

the document is about the query topic. For example, even though there is no exact 

match, a document about “Kuala Lumpur” should be relevant to the query 

“Malaysia” (Mitra & Craswell, 2017b). Further, a phrase like “political race” 

gives the same meaning as “election”, although different words were used. 

f. Query Coverage 

Although the name is new, query coverage as a notion, to some extent, is reflected 

in most of the traditional IR models such as BM25 and LM. Query coverage 

means how many query terms have been covered in the document. For a multiple 

terms query, the intuition behind query coverage is to favor documents with high, 

or even low, terms frequencies and high query coverage over documents with high 

terms frequencies and low query coverage because in the latter case the document 
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is biased toward a subset of query’s terms. For instance, a document with a high 

frequency of terms “Information” alone or term “retrieval” alone should not be 

more relevant to the query “information retrieval” than a document that has both 

terms (Hui, Yates, Berberich, & de Melo, 2017a). 

g. Term Proximity 

Term proximity reflects to which extent query terms co-occur close to each other 

in the document. For instance, the co-occurrence of query terms in the boundary 

of one sentence gives a higher indication of relevance than the co-occurrence in 

scattered places. Moreover, large portion of everyday queries are about certain 

concept (e.g. “Information Retrieval”), place name (e.g. “Time Square”), proper 

names or titles (e.g. “Taylor Swift” or “Game of Thrones”) where the underlying 

meaning will change dramatically if distance increases between query terms 

(Rasolofo & Savoy, 2003). 

2.2 Traditional IR Models 

Traditional models in this context refer to any IR model that does not use a neural network. 

Even though this definition includes a large number of diverged models, all of these non-

neural models can be classified into three main categories: Term Frequency, Latent or 

semantic Space and Language Models. 

Since the review focuses on neural models, a brief description is provided for the most 

known version of each category. 

2.2.1 Term Frequency (TF) 

Term frequency refers to an old family of IR models which use a handcrafted equation to 

compute the relevance score between a query term and a document depending on the 

count of term occurrence in the document (known as term frequency or TF) and on how 

many documents in the collection contain that term (known as documents frequency or 
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DF). The following section reviews BM25 as one of the most effective term frequency-

based IR models. 

2.2.1.1 Okapi BM25   

BM25 is one of the most effective and well-known traditional IR models which have been 

the state-of-the-art performance and the baseline for other IR models for a long time. It 

defines for each query term two components: the first one measure the local relevance 

and the second one measures the global term weight. Local relevance express document 

eliteness where elite documents are those that are about the concept represented by the 

term. Document eliteness is computed as a 2-Poisson distribution of the term frequency 

where it increases as the term frequency increase in the document. In order to consider 

document length, the local component is normalized using document length and the 

average document length in the corpus (Robertson & Zaragoza, 2010).  In the other side, 

the global weight, referred to as term importance, indicates how much the occurrence of 

a certain term adds to the query relevance. This term importance can be measured using 

different equations depending on the available evidence (Robertson, 2004). Though 

effective, BM25 is considered as an exact match model. That is, it is only effective when 

the exact query words appear in the document. This limitation makes BM25 inadequate 

to meet the semantic match requirement and thus it is usually combined with other IR 

tasks like query expansion in order to alleviate this limitation. Moreover, the BM25 

formula does not consider other important IR features like term proximity. As a result, 

documents with few terms that co-occur in a close distance may be outranked by 

documents with scattered terms but with higher frequency.  

2.2.2 Latent Semantic 

Latent semantic indexing refers to a family of indexing methods that tries to find a latent 

space of compact dimensions and project documents and queries as vectors or points in 
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that space.  Consequently, the relevance between a document and a query is measured by 

the distance between their projections. The following section looks into LSA as one of 

the most known latent semantic methods.   

2.2.2.1 Latent Semantic Analysis (LSA) 

In 1990, Deerwster proposed the LSA model as a solution for the semantic match 

limitation in the term frequency approach. The main idea of this approach is that the 

relevance between a document and a query should not be based on the occurrence of 

query’s terms because the same meaning can be expressed by different terms and one 

term may have different meanings in different contexts. Instead, the relevance 

relationship between documents and queries’ terms is transferred into an implicit higher-

order space known as the semantic latent space. The model takes as input the bag of words 

representation of all documents and queries’ terms and returns the representation of each 

document and each term in the latent space. In order to find the best approximation for 

the latent space, Deerwster used the Single Value Decomposition (SVD) to divide the bag 

of words matrix into three new matrices: terms matrix, singular values matrix, and the 

documents matrix. Afterward, the singular values matrix is reduced into the top K values 

and therefore the other matrices are reduced as well. After construction, the latent space 

representations, new queries or new documents can be represented by computing the 

centroid of their constituent terms (Deerwester et al., 1990). Even though LSA is a 

powerful model which is able to preserve both exact match and semantic match signals, 

it suffers from several drawbacks and limitation as well. Beside its computation 

complexity, it is not clear when LSA needs to reconstruct its latent space representations 

after updating it with new terms and documents (Manning et al., 2008). More important, 

like BM25, LSA discards positional information which means that it is not able to detect 

other important features like query coverage and proximity. Furthermore, LSA latent 

space can be regarded as a local space which over fit the selected corpus at the 

Univ
ers

ity
 of

 M
ala

ya



14 

 

construction time, thereby it is obvious that new documents that may belong to external 

domains will not be represented accurately. 

2.2.3 Language Models (LM) 

Language models are a family of information retrieval models that represent each 

document as a language model and a query as a random sample that could be generated 

from the document model. From the probabilistic view, a language model can be 

considered a function that assigns a probability for each string that can be selected form 

some vocabulary. The simplest language model used for IR is the unigram model where 

each term (string) is estimated independently. To rank a document, the model calculates 

the probability that the given query is generated from the document which is done by 

multiplying the probability of each query term. Term probability is computed as a 

percentage of term frequency to the document length. The classical problem of such 

ranking model is that if only one query term does not appear in the document the rank 

will be zero. In order to alleviate that problem, the model adds another term weighting 

factor known as model smoothing. That is, instead of depending only on term frequency 

over the document to estimate term probability, the model considers also term frequency 

over the whole documents collection which is very similar to the inverse term frequency 

in the term frequency models (Manning et al., 2008).  Even though in some experiments 

LM models were able to outperform other traditional models like term frequency models 

(Ponte & Croft, 1998), it is still considered as a variation of the bag of words models and 

thus it fails to capture a number of important IR features like semantic matching and 

proximity.  

2.3 Deep Learning Concepts 

Conventional machine learning approaches struggled for decades with the problem of 

processing raw data where they needed a very careful preprocessing stage in that 
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engineers and domain experts transform the data and extract the required features for the 

learning procedures. In the other hand, representation learning emerged as a new class of 

ML methods that can take raw data as input and learn to extract the required features for 

different ML tasks. Deep leaning can be considered as a representation method which 

consists of multiple representation level or layers. The first layer extracts some basic 

features from raw data and passes it to the next layers. Each layer is a basic neural 

networks layer that typically consists of a linear transformation function and a nonlinear 

activation function. Consequently, each layer can be regarded as a nonlinear module 

which learns a more abstract level of representation (LeCun, Bengio, & Hinton, 2015). 

The popularity of deep learning nowadays can be returned to three factors: the increase 

in the GPU units processing capabilities, the low cost of computing hardware and the 

dramatic advancement in the learning algorithms and techniques which allows for 

reasonably efficient training of neural networks with many hidden layers (Deng, 2014). 

2.3.1 Basic Neural Network 

A simple neural network consists of multiple processors (classifiers) called neurons. Each 

neuron can have multiple inputs and one output. Typically, a shallow neural network 

consists of three layers. The first one is called the input layer where neurons receive their  

Figure 2.1: Basic Neural Network 

Input Layer Hidden Layer 
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inputs from the external environment as raw data. The second layer is called the hidden 

layer and neurons in this layer receive their inputs through weighted connections from 

the previous layer’s neurons (Schmidhuber, 2014). The final layer is called the output 

layer and it plays as a global classifier which chooses the most important features from 

the previous layer to give the final output Figure 2.1. 

Traditionally, training a neural network consists of two stages: the first one is called the 

forward pass and the second one is called the back-propagation pass. In the forward pass, 

the input is fed into the first hidden layer and as such the output of that layer will be the 

input for the next layer and so on. The output of each neuron could be calculated from the 

input array x as follows: 

݄ ൌ .ݓሺߪ ݔ ൅ ܾሻ 

Where w is the weights of the connections for that neuron.  

.ݓ   .is the dot product of the input array and the weights array ݔ

 .is the non-linearity activation function and b is the bias value	ߪ

After computing the final output, the result is compared with the intended output and the 

difference is considered as the network error. Then the back-propagation pass starts by 

updating each weight according to the partial derivative of the error with respect to that 

weight. 
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In the domain of information retrieval, this basic neural networks models (also known as 

fully connected layer) were used in multiple models as a ranking layer where the input is 

the features which have been extracted using different techniques and the output is one 

scalar representing document rank (Mitra, Diaz, & Craswell, 2017; Pang, Lan, Guo, Xu, 

& Cheng, 2016; J. Wang et al., 2017). By stacking more hidden layer the network 

becomes deeper and then the model is called Deep Neural Network (DNN) Figure 2.21. 

Like the basic network, DNN has been used by different neural IR models for different 

purposes. For instance, a deep network of two hidden layers was used by  (Guo et al., 

2016) as a matching network whereas (Huang et al., 2013a) used a deep network of three 

hidden layers for transforming high dimension text features into low dimension semantic 

space. 

2.3.2 Word Representation 

The first problem that encounters all deep learning applications for NLP, in general, is 

that neural network input should be numerical, not textual. In response, several models 

have been suggested such as the very basic one-hot vector,  the trigram word hashing 

                                                 
1 Image taken from www.mathworks.com/discovery/deep-learning.html 

Figure 2.2: Deep Neural Network of two hidden layers 
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(Huang et al., 2013a) and the word embedding vector model (Tomas Mikolov∗ , Wen-tau 

Yih, 2013). 

The one-hot vector represents each word as a binary vector where all values are zeros 

accept the index of the corresponding word is one. The problem in this representation is 

the high dimensionality where the number of dimensions is the number of target language 

words. 

In 2013, Huang et al. proposed word hashing as a solution to the high dimensionality 

problem where words are broken down into letters n-grams. Then each word is 

represented as a vector of letters n-grams. As such, the queries or documents words can 

be represented with lower dimensionality compared to the one-hot vector because unlike 

the number of the words in a language, the number of the possible n-grams is limited and 

much smaller.      

Even though one-hot vector and word hashing transform a word from the literal space to 

numerical space, they fail to preserve and express most of the desired features like 

syntactic and semantic relations which left the door open for more advanced 

representation approach.  

It is widely agreed that the invention of word embedding played an important role in the 

success of deep learning applications in NLP for two reasons: first its ability to preserve 

and reflect words semantic and syntactic relations. Second is the ability to build and 

update it in an unsupervised way from any corpus.  

Simply put, word embedding is a method that transforms words from literal space to the 

latent (semantic) space where words with similar features can have close representations. 

In order to learn such words representations, there are two popular approaches: the bag 

of word matrix decomposition (Deerwester et al., 1990) and the neural approach 

(Goldberg & Levy, 2014). However, the neural approach which is built using general 
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corpus like Wikipedia performs better than the matrix decomposition approach on 

different NLP tasks (Mitra & Craswell, 2017a).   

In order to learn word embedding based on word’s syntactic context, (Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013) introduces two similar unsupervised neural architects of 

one hidden layer. The first one is called the skip gram model and its objective is to find 

the representations of the surrounding words given the central word of the input sentence; 

whereas, the second one is called the continuous bag of words model (CBOW) and its 

objective is to predict the central word from its context. 

Interestingly, the learned word vectors are able to preserve very useful features like 

semantic and syntactic relations. For example, the distance between a word vector (e.g. 

“shirt”) and its hypernym (e.g. “clothing”) will be always close to a fixed constant. 

Similarly, the distance between a word vector (e.g. “Apple”) and it's plural form (e.g. 

“Apples”) will be rather fixed. 

In the domain of neural information retrieval, a wide range of words representation 

techniques were exploited. Works like (Huang et al., 2013b; Liu et al., 2015; Nalisnick, 

Mitra, Craswell, & Caruana, 2016; Palangi et al., 2016; Shen, He, Gao, Deng, & Mesnil, 

2014) used different forms of word hashing for word representation. However, since word 

hashing is not able to express words syntactic or semantic relations those models rather 

failed to solve the semantic matching problems. 

Similarly, different forms of word embedding were used in more recent works such as 

(Ai, Yang, Guo, & Croft, 2016; Guo et al., 2016; Hui, Yates, Berberich, & de Melo, 2017b; 

Jaech, Kamisetty, Ringger, & Clarke, 2017; Pang et al., 2017a; Pang, Lan, Guo, Xu, Wan, 

et al., 2016). In 2016 Mitra et al. argued that the use of the current form of word 

embedding is not suitable for the ad-hoc retrieval because the current neural architect for 

learning word embedding tends to give a closer representation for words that have the 

same type or function than words that are about the same topic or domain. In order to 
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overcome this drawback, Mitra et. al. suggested to use two embedding one for the query 

and one for the documents where query’s terms and document’s words that are from the 

same topic will have a close representation (Mitra, Nalisnick, Craswell, & Caruana, 2016). 

Furthermore, (Xiong, Dai, Callan, Liu, & Power, 2017) trained the whole model end-to-

end and hence the word embedding was tuned gradually to become more task-specific 

representations.  

2.3.3 Convolution Neural Network (CNN) 

Convolution neural network is a widely used model in computer vision. It originates 

from neuroscience where Hubel and Wiesel in 1962 showed that some neurons in visual 

cortex activated only for edges or some orientations (LeCun, Kavukcuoglu, & Farabet, 

2010). The idea is to have specific components which learn to detect a very basic 

feature in the input image. These detected features are then fed for other layers which 

can detect more advanced features by summing up the former basic features. 

The basic unit in CNN is called filter or feature detector. This filter is a small block which 

scans the whole image and results in a map. The map represents that feature distribution 

in the input image. Figure 2.3 shows that after applying the filter for the image, it detects 

a horizontal curve in two positions.  

Filter 

Features Map 

Figure 2.3 Convolution Filter Univ
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Convolution means that the filter convolves around the entire images searching for its 

feature. More generally, it implies that each feature in the top-level layer was extracted 

by scanning the whole input. 

The main difference between CNN and other classical computer vision approaches is that 

in CNN the filters weights are learned gradually during the training phase. Typically, 

multiple filters are used for detecting different features, and thus, the CNN output a 

different features map for each filter. These maps are then reduced using max function 

and this reduction is called max pooling or pooling layer. Consequently, the features 

vector preserves and represents the positional distribution of the detected features over 

the whole input matrix. CNN for detecting complex objects like digits or faces may 

contain several convolution layers. Although the final layer depends on the application, 

in general, it is a classification network which consists of a stack of fully connected layers. 

Typically, the output of the final layer is an N-dimensions output vector where N is the 

number of required classes. In this way, the classification layer is called positional 

classification network because the final features vector represents the positional 

distribution of all features over the whole input matrix. 

Even though CNN is widely used in the field of computer vision, recently there is an 

increasing number of research papers which incorporate CNN in NLP applications. 

Nevertheless, one of the most challenging problem in using CNN for NLP tasks is the 

input size. That is, CNN originally designed to take a matrix of pixels as input whereas 

the input for NLP tasks is a sequence of words. In this concern, multiple approaches were 

suggested for constructing an equivalent representation matrix for the input sentence or 
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document using some numerical word representation like word hashing or word 

embedding  (Kim, 2014) Figure 2.4.  

With the growth of the neural IR domain, the use of CNN increased gradually, and it is 

obvious that in the last couple of years CNN dominates other deep learning models in 

neural IR. In 2014 Shen et. al. used a one-dimension CNN to learn query and document 

representation. The model was able to outperform most of the traditional models in the 

short text retrieval task (Shen et al., 2014). Afterward, and starting from 2016, when Pang 

et al. introduced the first interaction model, CNN has been used in several models like 

(Hui, Yates, Berberich, & de Melo, 2017c; Jaech et al., 2017; Mitra et al., 2017; Pang et 

al., 2017a). Finally, driven by the expectation that IR features follow rather simple 

patterns, a simple CNN network of one layer was used by almost all works. 

2.3.4 Long Short-Term Memory Neural Networks (RNN, LSTM) 

LSTM is a special variation of a more general model of neural networks known as 

recurrent neural networks RNN. Unlike other types of NN, recurrent networks predict the 

next input term in the input sequence. This type of networks is more suitable for temporal 

processing and learning sequences. 

Figure 2.4 CNN for sentence classification (Kim, 2014) 
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As illustrated in Figure 2.5, in time ݐ, the input for the hidden units is the input value ݔሺݐሻ 

in addition to the activation value of the hidden unit in the previous step ݄ሺݐ െ 1ሻ. To 

memorize activation values for a long time, LSTM extends RNN by an analog memory 

circuit which has three types of gates: write for storing information, read for reading its 

value and forget for resetting.   

Although RNN gives a great performance in NLP applications in general, it has not shown 

the same performance in ad-hoc retrieval tasks. Specifically, RNN and LSTM have been 

used by (Palangi et al., 2016) to build document representation based on what they called 

the sentence embedding. Sentence embedding is constructed by feeding each word 

representation to RNN or LSTM network. The output of the network at the last word is 

considered as the semantic representation of the input sentence. 

In more recent work, (Pang et al., 2017a) used an RNN for aggregating each query term 

representation from different contextual positions. 

Lastly, (Hui et al., 2017a) used LSTM as a final layer which takes as input a sequence of 

features vectors where each vector represents the output of the CNN layer for one query 

term combined with the IDF of the corresponding term. 

2.4 Neural Information Retrieval 

Neural IR is a new domain that has emerged in the last couple of years to contain and 

organize all the researches and activities which employ deep learning techniques for 

Figure 2.5 : Recurrent Neural Network 
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solving IR problems. Even though the domain is concerned with a wide range of known 

IR tasks such as question answering and recommendation systems, the ad-hoc retrieval 

task is still the main issue of this domain and most of the published works are concerned 

with it. The neural IR works for ad-hoc retrieval can be classified into three main 

approaches; namely, learn to rank approach, representation approach, and the interaction 

approach. The review focused more on the interaction approach for it is the most recent 

approach and, as will be shown, it was able to outperform other neural IR approaches and 

gain state-of-the-art performance.  

2.4.1 Learn to Rank (LTR) 

Learn to rank is rather an old approach which, besides the neural networks, have 

employed many other machine learning models, such as support vector machine and 

decision tree for the ranking task. However, the rise of deep learning opens the door for a 

new level of machine learning models. In response, a number of new works have been 

done to explore these new capabilities for learn to rank task.  

The main idea in the LTR approach is to represent a query/document pair as a vector of 

hand-crafted features. The features can be divided into query features like query length, 

document features like document popularity and dynamic features which depends on both 

query and document like term frequency (Mitra & Craswell, 2017b). After constructing 

the features vector, a neural model is trained to rank the corresponding query/document 

using the features vector. As such, most of the available neural IR models can be 

considered as LTR models which differ from each other in the feature extraction approach.  

Some of these models are using supervised approach for feature extraction like (J. Wang 

et al., 2017; Xiong et al., 2017) while others are using an unsupervised approach like 

(Mitra et al., 2017; Pang, Lan, Guo, Xu, & Cheng, 2016). 
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Interesting work has been done by (J. Wang et al., 2017) in which they use the generative 

adversarial network (Goodfellow et al., 2014) to learn to rank query/documents pairs after 

representing each query/document as a list of handcrafted features. Two neural models 

were used: the first one is called the discriminative model and it is responsible for ranking 

query/document pairs. The second one is called the generative and it is responsible for 

generating (finding previously unseen) documents that can fool the discriminative model 

and get high rank for the input query. Their experiment showed that after several training 

iterations, the generative model learns to find new relevant documents that have not seen 

before. Even though the model was only compared with other LTR models, it is not 

expected to be able to outperform the state-of-the-art performance. Nonetheless, the 

models could be very promising in training other models from semi-supervised or 

unlabeled data. 

2.4.2 Representation Based 

In this approach, the model is trained to transform the document and the query from the 

literal space to latent space separately. Then, a similarity function (e.g. Cosine) is used to 

measure the relevance between the document and the query representations Figure 2.6. 

The main problem of the representation based is that they postpone the interaction 

between the document and the query until the last step which, in most cases, makes the 

model discard relevant information.  
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In 2013 Huang (Huang et al., 2013b) proposed the first representation based model for 

ad-hoc retrieval task (coined as DSSM). In their model, they used word hashing to 

represent each word as a low dimension vector. Using words representation, a DNN of 

several hidden layers was trained to project a document into a low-dimension dens 

features vector in latent space. The experiment proved that DSSM was able to outperform 

most of the traditional IR models (e.g. TF-IDF, BM25, and LSA). Later on (Shen et al., 

2014) suggested a more advanced representation architect (known as CLSM or CDSSM) 

which uses CNN as a transformation layer instead of DNN. Specifically, the document or 

the query is divided into sentences. A sliding window of length n is used to scan each 

sentence and for each window, a matrix is constructed by concatenating all included 

words hashing vectors. Next, the matrix is fed into a convolution layer to project the 

corresponding matrix into a low-dimension features vector. Max pooling over all 

windows is used to select the best representation of the input sentence, and finally, a fully 

connected layer is used to extract the global representation of the whole document or 

query. CDSSM outperformed DSSM in addition to the most traditional IR models.  

Another variation of  DSSM proposed by (Liu et al., 2015) (referred to as MT-DNN) 

where the DNN layer shared between different tasks (i.e. ad-hoc retrieval and query 
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Figure 2.6: Representation based paradigm 

Univ
ers

ity
 of

 M
ala

ya



27 

 

classification) in order to get more general representation.  The model was able to 

outperform both DSSM and CDSSM. 

Further, LSTM and word hashing were used by (Palangi et al., 2016) to extract what they 

call sentence embedding. Simply, the LSTM takes as input a sequence of words hashing 

vectors and return a vector of the same dimension as sentence embedding. Afterward, the 

sentence embedding was used to construct query and document representation. The model 

(referred to as LSTM-RNN) was able to outperform DSSM, CLSM, and traditional 

models. In the same time, other embedding architects were utilized to build the query and 

the document representations like paragraph embedding or PV-DBOW (Ai et al., 2016) 

and IN/OUT embedding (DESM)  (Mitra et al., 2016).  

(Mitra et al., 2017) proposed a hybrid model (coined as DUET) which incorporate both 

the representation based and the interaction-based approaches. While the interaction-

based model was used for the exact matching, the representation based was used for 

detecting the inexact (i.e. semantic) matching. Similar to CDSSM, DUET uses word 

hashing, CNN and max-pooling for projecting query and document into latent space. 

However, they use two different models with different configurations for the query and 

for the document. Furthermore, the representation part of DUET used a different approach 

for matching query and representations. First, they get the elementwise product of the two 

representation and then they use a fully connected layer to get the final score. Even though 

DUET was able to outperform most of the proposed neural models (e.g. DSSM, CDSSM, 

DRMM) and most of the traditional models, it was outperformed later by other 

interaction-based models (Hui et al., 2017a, 2017c). 
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2.4.3 Interaction Based  

Originally, the interaction approach was proposed in the NLP domain as a method for 

measuring semantic matching between two sentences. First, an interaction structure of 

the two input sentences is constructed using some word representation like word 

embedding. Next, a set of features that reflect the relevance matches are extracted from 

the interaction structure using a matching model. Finally, the extracted features are passed 

into a scoring model in order to get the semantic similarity score  (Hu, Lu, Li, & Chen, 

2014).   

Using a query and a document instead of two sentences, the interaction approach for ad-

hoc retrieval utilizes the same paradigm which consists of three main components Figure 

2.7: 

 The Interaction Structure 

  Feature Extraction Model 

  Ranking (Scoring) Model 

The following sections describe and review each of the interaction components. 

Document Query 

Features Extraction 
(Matching) Model 

Interaction Structure 

Ranking Model 

Figure 2.7 Interaction Approach Basic Components 
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2.4.3.1 Interaction Structure  

The purpose of the interaction structure is to reflect the matches between the input query 

and the document; therefore, the richness of the matching features that the proposed 

interaction structure is able to reflect significantly affects the whole model performance.  

In 2016, Pang et al. proposed the first interaction based model for information retrieval 

in which they utilized the same interaction structure that was originally proposed by (Hu 

et al., 2014) for the semantic matching task. The interaction structure is called the 

Interaction Matrix and it is still considered as the most plausible structure in the 

interaction-based retrieval domain.  

In the interaction matrix, each cell represents the semantic similarity between a document 

word and a query term Figure 2.8. In order to compute the semantic similarity, they used 

the word embedding as word representation and some similarity function like dot product 

of the two embedding vectors or the cosine function of the angle between them. As a 

result, we get a matrix of length equals to the document size and height equals to the 

query size in which two types of cells can be distinguished: the exact match and the 

background cells. The exact match cell is any cell of the maximum similarity value while 

the background cells represent the rest of the cells in the matrix (Pang, Lan, Guo, Xu, & 

Cheng, 2016). 
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 What makes the interaction matrix a very promising interaction structure for IR 

applications is that in addition to the semantic similarity between the query and the 

document, it completely represents the exact match signal. Moreover, the interaction 

matrix preserves all positional matching information which makes it suitable for detecting 

more advanced IR factor like term proximity. 

In the same year, (Guo et al., 2016) argued that the positional information in the 

interaction matrix is noise in the context of the information retrieval, and therefore, they 

proposed a more simple structure called match histogram. Match histogram represents 

the distribution of the similarity values in each row of the previous interaction matrix 

structure. As a result, instead of the interaction matrix, there will be a matching histogram 

for each query term representing the distribution of similarities values between that term 

and all document words. 

Figure 2.8: Interaction Matrix 
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Later on, in 2017 Mitra et al. used the binary form of the interaction matrix in order to 

represent the exact match signal in a hybrid model which combine the representation-

based and the interaction-based approaches (Mitra et al., 2017).  

Conversely, in 2017 two works suggested that the interaction matrix is not enough and 

they proposed to extend that structure. (Jaech et al., 2017) hypothesized that interaction 

matrix is not able to capture both local and global relevance, hence; they suggested to 

extends the interaction matrix by other similarity channels. Using representation neural 

model, the word embeddings of both query and document are reduced into low 

dimensional representation and the element-wise products of each query term and 

document word new representations vectors were embedded into the interaction matrix. 

Similarly, (Pang et al., 2017b) suggested embedding the corresponding word embedding 

vectors of both the query term and the document word into each interaction matrix cell. 

2.4.3.2 Feature Extraction Model 

After constructing the interaction structure, it is passed into the feature extraction (or the 

matching) model in order to capture any evidence of relevance matches between the 

corresponding query and document. If the features extraction fails to capture all the 

required features in the interaction structure, the model performance will be poor no 

matter how expressive the interaction structure is. Among the reviewed works two 

approaches for feature extraction can be distinguished: unsupervised and supervised. 

1. Unsupervised Feature Extraction: 

In the unsupervised approach, the features are extracted implicitly without any 

human intervention using deep learning techniques. That is, the feature extraction 

is a neural network which scans the interaction structure and learns to extract some 

hidden features in order to increase the overall accuracy of the retrieval model.  

The first deep learning technique for features extraction proposed by Pang et al. 

in 2016. In their model (called MatchPyramid) they looked at the interaction 
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matrix as a 2D image and hypothesized that using some deep learning techniques 

for visual pattern recognition, most of the important features will be extracted. 

Their model consists of one CNN layer followed by max pooling layer for feature 

reduction. However, the model was not able to outperform some traditional IR 

model like BM25 and the model was not able to capture some important IR factors 

like term proximity (Pang, Lan, Guo, Xu, & Cheng, 2016). 

Since then, deep learning techniques for visual pattern recognition have been the 

dominant features extraction approach for interaction-based IR. Some works 

proposed to stack more CNN layers in order to detect more advanced features 

(Jaech et al., 2017). While others argued that it is more important to used multiple 

CNN networks with different filter sizes. For example, a filter of size 2x2 should 

capture the match of two successive query terms whereas 3x3 should capture three 

terms and so on (Hui et al., 2017a, 2017b; Pang et al., 2017a). Furthermore, Hui 

et al. in the latest version of their model (coined as PACRR) proposed to use an 

extra CNN layer with filter size equal to the query size in order to capture term 

proximity (Hui et al., 2017b). 

Other deep learning techniques for visual pattern recognition were tested like 

spatial RNN which is an extended version of RNN designed to work over a 2D 

matrix. However, experiments show that CNN is more effective for interaction 

feature extraction (Pang et al., 2017a). 

2. Supervised Feature Extraction 

Even though unsupervised techniques like deep learning dominate the feature 

extraction task in the interaction-based IR, some studies cast some doubts that 

these techniques may not be the most effective way for features extraction. In 

particular, Guo et al. in 2016 argue that models (e.g. MatchPyramid) that use deep 

learning techniques for visual patterns are designed to only capture positional 
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regularity which is not the most important factor in the context of information 

retrieval. Instead, they proposed to extract the features by applying histogram 

function over each row in the interaction matrix. The purpose of the histogram 

function is to represent the strength of the matching signal (exact and semantic) 

of each query term regardless of its position (Guo et al., 2016).    

In more recent work, Xiong et al. utilized handcrafted kernel functions to calculate 

the distribution of similarities values over each query term. Afterward, the 

similarities distributions are used as model features that are then passed to a 

ranking model (Xiong et al., 2017). 

2.4.3.3 Ranking Model 

After features extraction form the interaction structure, they are passed into a neural 

model to get the final score. Out of the reviewed works, many different deep learning 

architects were designed for the ranking task. However, these models can be classified 

into two categories: positional classification-based ranking, term-based ranking.  

1. Positional classification Based 

Positional classification is a technique that has been used by most of the deep 

learning models for visual pattern recognition tasks. In this technique, the final 

features vector is reflecting the positional distribution of the features across the 

whole input matrix (image). Consequently, each neuron in the classification model 

eventually learns to look for some specific feature in specific positions. 

Even though IR ranking is not a positional classification problem, this technique 

was used by most of the proposed works and interestingly it was able to give 

effective performance in almost all experiments (Jaech et al., 2017; Mitra et al., 

2017; Pang, Lan, Guo, Xu, & Cheng, 2016). 
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2. Term-Based  

This technique proposed by Guo et al. in 2016 where a features vector is separately 

extracted for each query term. The features vector of each term is then fed into a 

DNN of several layers to get a score for each term. Finally, a term gating network 

takes these scores and get the final score by incorporating terms importance 

weights.   

Likewise, (Xiong et al., 2017) extract a separated features vector for each term. 

However, instead of computing a separated score for each term, the features 

vectors are concatenated and fed into learn-to-rank similar architect in order to get 

one final score. Instead of concatenating features vectors and feeding them into a 

learn-to-rank network, (Hui et al., 2017a) proposed to sequentially feed them into 

an LSTM in order to get the final score. Nevertheless, in their updated versions 

(Hui et al., 2017b, 2018) found that both LSTM and learn to rank structure give a 

close performance; and therefore, they abandoned the LSTM because it is much 

more computationally expensive. 

A more advanced version of term based ranking was introduced by (Pang et al., 

2017a). In this ranking model, the features are extracted for each query term from 

several contexts. Afterward, all feature vectors for each term are ordered 

according to their context position in the original document and fed into an LSTM 

to get a score for each term. At the end, similar to (Guo et al., 2016), a term gating 

network was used to aggregate the scores of all terms based on their importance 

weights. 

Most of the interaction-based models were able to outperform both traditional IR models 

and other neural IR models like the representation-based models. More specifically, the 

first interaction based IR model proposed by (Pang, Lan, Guo, Xu, & Cheng, 2016)  which 

called MatchPyramid was able to outperform representation-based models like DSSM 
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and CDSSM. However, the same study showed that MatchPyramid falls behind 

traditional IR models like BM25 and QL.  In the same year (Guo et al., 2016) proposed 

their model which called DRMM which was able to outperform traditional IR models 

( i.e.  BM25, QL) representation-based models (i.e. DSSM and CDSSM) and more 

importantly it was able to outperform MatchPyramid as well.  

In 2017, several interaction-based models were proposed and most of them proved that 

the interaction-based models were gaining the state-of-the-art performance for ad-hoc 

retrieval. For example, DUET (Mitra et al., 2017), K-NRM (Xiong et al., 2017) and Deep 

Rank (Pang et al., 2017b) were able to outperform traditional IR, representation-based IR 

and other interaction-based models like MatchPyramid and DRMM. 

Even though there is no study that compared all interaction based models, (Hui et al., 

2017a) show that their model which called PACRR was able to outperform most of the 

other interaction-based models (e.g. MatchPyramid, DRMM, DUET, K-NRM). This 

makes PACRR and its updated versions (i.e. Co-PACRR  (Hui et al., 2018) and PACRR-

DRMM (McDonald et al., 2018)) the state of the art model for neural IR. 

2.4.4 Interaction Models Simplicity & Efficiency 

Model simplicity, in this context, reflects which degree a model is amenable for 

interpretation and analysis that are necessary for the future researcher to gain some 

insights into the relationship between IR and deep learning (Mitra & Craswell, 2017a, p. 

91). In order to measure the simplicity of an interaction model we chose to consider the 

following four factors: 

1. Interaction structure size: represents the size of the main input of the interaction 

model and it is expressed as a function of document and query sizes. 

2. Networks Types: shows what types of neural networks used in the model. 

3. Depth: represents the number of the overall layers in all networks. 

Univ
ers

ity
 of

 M
ala

ya



36 

 

4.  Parameters size: the overall trainable parameters that should be optimized in the 

training process. 

In the other side, even though efficiency evaluation requires the measurement of the 

training and execution times of each model on the same dataset, the above four factors 

are enough to give an estimation of models’ efficiency since model training and execution 

time is proportional to the number of trainable parameters, networks types, and the model 

depth.  

From Table 2.1, we can notice the increase in the models’ complexity with time.  This 

tendency toward increasing model complexity basically roots from the need for 

optimizing feature extraction process in order to optimize model performance. The 

majority of the recent interaction-based models responds to this need by one of the 

following two approaches: expanding the interaction structure or adopting more advanced 

deep learning models for feature extraction. However, both approaches led to more 

complex and less efficient models. 

Specifically, (Pang et al., 2017b) in their model (DeepRank) proposed to embed query 

term and document word embedding vectors along with each similarity value in the 

interaction structure which resulted in an interaction structure of size  ሺ݊ ൈ ௦௜௭௘ݍ ൈ ܿ ൈ

ሺ1 ൅ 2݉ሻሻ  where c is the width of n short textual snippets from the document called 

contextual windows and m is the size of the embedding vector. Similarly, (Jaech et al., 

2017) in Match-Tensor, suggested using two networks that consist of an LSTM and two 

DNN’s to reduce both query and document words embedding into vectors of 50 

dimensions. Afterward, the element-wise products of query term vectors and document 

words vectors are used to construct an interaction structure of size ሺݍ௦௜௭௘ 	ൈ 	݀௦௜௭௘ ൈ

ሺ݇ ൅ 1ሻሻ where k is the new embedding vectors size.  
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In both cases, the interaction structure is turned into a 3 dimensions tensor that needs for 

a kernel of the same rank to apply deep learning techniques like CNN for features 

extraction. For example, in the case of Match-Tensor, the size of a CNN filter of a kernel 

ሺ3 ൈ 3ሻ  will be ሺ3 ൈ 3 ൈ ሺ݇ ൅ 1ሻሻ . If we set k to 50 and used 18 of such filters (as 

proposed in their work) we need to train 8262 parameters for one layer in the feature 

extraction model.  

As a result, in one hand we got heavy feature extraction techniques that need to train 

thousands of parameters and in the other hand, it is not clear what these features may 

reflect or represent which hinder our ability to analyze or interpret such models. 

Differently, (Mitra et al., 2016) propose the DUET model that combine the representation 

and interaction approaches. In the interaction approach part, they used a CNN of kernel 

size ሺ1 ൈ 1000ሻ to extract the set of features for each query term. By using 300 different 

filters followed by 3 DNN layers, they needed to train a model of  1.38 ൈ 10଺ parameters 

for the interaction part alone. Later on, in 2018 (Hui et al., 2018) proposed to use k 

different CNN networks of different kernel sizes in their new model (CoPACRR) in order 

to extract richer features. Further, in order to extract the term proximity feature, they 

added another CNN network of kernel size ሺ16	 ൈ 16ሻ and 32 filters which alone requires 

the training of 8192 parameters.  
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Table 2.1: Interaction models simplicity comparison. TGN stands for term gating network. K CNN 

means k CNN networks with different kernel size. * indicates that the number of the parameters 

was provided in the study.  ~ indicates that parameters number is an estimation. 

 Year 
Interaction 
Structure 

Size 

Networks 
Types 

Model 
Depth 

Parameters 
Number 

MatchPyramid 2016 ݍ௦௜௭௘ ൈ ݀௦௜௭௘ CNN, DNN 5 4980 

DRMM 2016 ݍ௦௜௭௘ ൈ ݀௦௜௭௘ DNN, TGN 4 155 

DUET 2016 ݍ௦௜௭௘ ൈ ݀௦௜௭௘ CNN, DNN 6 1.38 ൈ 10଺ 

PACRR 2017 ݍ௦௜௭௘ ൈ ݀௦௜௭௘ K CNN, LSTM 6 1000 

DeepRank 2017 
݊ ൈ ௦௜௭௘ݍ ൈ ܿ
ൈ ሺ1 ൅ 2݉ሻ 

CNN, LSTM, 
TGN 

7 
More than 
2000~ 

K-NRM 2017 ݍ௦௜௭௘ ൈ ݀௦௜௭௘
Embedding 
Net, Kernel 

Pooling, LTR 
4 ሺ49 ൈ 10଺ሻ∗ 

Match-Tensor 2017 
௦௜௭௘ݍ ൈ ݀௦௜௭௘
ൈ ሺ݇ ൅ 1ሻ 

DNN, LSTM, 3 
CNN 

10 104000∗ 

CoPACRR 2018 
݀௦௜௭௘ሺݍ௦௜௭௘
൅ 1ሻ 

K CNN, DNN 6 18368 

PACRR-
DRMM 

௦௜௭௘ݍ 2018 ൈ ݀௦௜௭௘ K CNN, DNN 6 943~ 

2.5 Loss Function 

As mentioned in Section 2.3.1, in order to train any neural network, we should be able to 

measure the error (loss) in the network output. This error plays as a guide for the back 

propagation phase in which networks weights are updated to minimize that error. The 

main idea that has been used in nearly all works is as follow: depending on the available 

relevance judgments, for a query ݍ, one positive (relevant) document ݀ା and one or more 

negative (irrelevant) documents ܦ ൌ ሼ݀ଵ
ି, ݀ଶ

ି, … , ௝݀
ିሽ   are used to create a training 

sample ሺݍ, ݀ା, ,ݍሺ݈݁ݎ ሻ. Using the proposed neural IR model, the relevance scoresܦ ݀ሻ of 

all documents in the training sample are computed given the input query ݍ. Afterward, 

the relevance judgments and the computed scores are compared and using some 

predefined functions the model loss is computed for the corresponding training sample. 
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Specifically, two loss functions have been used in the reviewed works: the cross-entropy 

and the max margin. 

2.5.1 Cross-Entropy Loss 

The cross-entropy is the well-known loss function in the deep learning domain in general 

and it has been used for many different tasks.  The first step in utilizing the cross-entropy 

for IR loss is to turn the training sample scores into a probability distribution using the 

softmax function Equation (1): 

 ܲሺݍ, ݀ା, ሻܦ ൌ
݁ି௥௘௟ሺ௤,ௗ

శሻ

∑ ݁ି௥௘௟ሺ௤,ௗሻௗ∈ሼௗశ	∪	஽ሽ
 (1) 

Then the loss value for the training sample ሺݍ, ݀ା,   ሻ is computed using the equationܦ

,ݍሺݏݏ݋ܮ  ݀ା, ሻܦ ൌ െ log ܲሺݍ, ݀ା,  ሻ (2)ܦ

When the proposed model is giving a higher score for the positive document than the 

negative documents, ݈݁ݎሺݍ, ݀ାሻ value will be higher than all  ݈݁ݎሺݍ, ݀ିሻ ∶ ݀ି ∈  In this .ܦ

case, the probability value ܲሺݍ, ݀ା,  ሻ will be close to one which makes the loss valueܦ

close to zero. 

On the other hand, when some or all the negative documents get higher scores than the 

positive document, the probability ܲሺݍ, ݀ା,  ,value will be close to zero. In this case	ሻܦ

the loss will be some large positive value. 

Consequently, the objective of the neural IR model is to minimize the loss value given by 

Equation (2). 

2.5.2 Max-Margin Loss 

The max margin loss is designed for pairwise loss wherein the training sample there are 

only one positive document and one negative document ሺݍ, ݀ା, ݀ିሻ. The objective of this 
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loss function is to make the difference between the two scores larger than some given 

threshold (typically 1). 

,ݍሺݏݏ݋ܮ  ݀ା, ݀ିሻ ൌ max ቀ0, 1 െ ൫݈݁ݎሺݍ, ݀ାሻ െ ,ݍሺ݈݁ݎ ݀ିሻ൯ቁ (3) 

That is when the positive document score is higher than the negative document score by 

at least one the loss is zero, otherwise, the loss will be some positive value that is 

proportional to the difference of the two scores. 

One thing that can be noted form the previous two loss functions is that both are only 

designed for binary relevance judgment. In other words, both functions divide the 

documents into two classes: relevant and irrelevant which makes them not suitable for 

rated relevance judgment where documents are classified into more than two categories. 

2.6 IR Factors 

IR factors refer to different aspects of relevance match that information retrieval models 

measure in order to estimate the relevance between a given query and a document. In fact, 

these factors are independent of the retrieval approach and, in the literature, there is no 

agreement on one unified set of factors. 

Here, we only focus on the IR factors that have been considered by the available 

representation-based or interaction-based neural IR models.    

Table 2.2: Common IR factors in the representation-based models 
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Semantic Match ✓ ✓ ✓ ✓ ✓ ✓ 

Query Coverage ✓ ✓ ✓ ✓ ✓ ✓ 

Term Proximity ✕ ✓ ✕ ✕ ✕ ✕ 

Term Importance ✕ ✕ ✓ ✕ ✕ ✕ 
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Table 2.2 shows that all representation models focus on the semantic match which 

corresponds to the fact that representation-based models are originally driven from the 

Latent Semantic paradigm. Query coverage is covered by all models since query 

representation always considers all query terms. Some models like CLSM paid special 

attention to terms co-occurrence by using terms n-grams embedding instead of the word 

embedding (Shen et al., 2014). This term co-occurrence awareness suggests that such a 

model could cover term proximity to some degree. 

Term importance was considered by the PV-DBOW model where document frequency 

are included in the negative sampling strategy instead of the corpus frequency (Ai et al., 

2016). 

Table 2.3: Common IR factors in the Interaction-based models 
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Exact Match ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Semantic Match ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Query Coverage ✕ ✓ ✕ ✓ ✓ ✓ ✕ ✕ 

Term Proximity ✓ ✕ ✓ ✕ ✓ ✓ ✕ ✓ 

Term Importance ✕ ✓ ✕ ✓ ✓ ✓ ✕ ✓ 

Term Disambiguation ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ 

Cascade Reading/ Diversity ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✕ 

 

As Table 2.3 illustrates, both exact match and semantic matches were considered in all 

reviewed models while query coverage, term proximity, and term importance were 

considered in fewer models. Term disambiguation,  which refers to the ability to exclude 

any other term meaning that does not fit to the current context, was suggested and covered 

in CoPACRR (Hui et al., 2018). Cascade reading or term diversity, on the other hand, 

refers to the importance of the positional information of local relevance matches 
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(Craswell, Zoeter, Taylor, & Ramsey, 2008). It was taken into account in two models 

CoPACRR and DeepRank (Hui et al., 2018; Pang et al., 2017b).  

In this connection, it is important to note that not all of the above IR factors can be covered 

by the sole usage of the interaction matrix. For instance, term importance requires 

including other resources for estimating term importance. Besides, some of the above 

factors are only used by one or two works such as term disambiguation and cascade 

reading. 

2.7 Discussion & Research Gaps 

For several years, deep learning approaches struggled to outperform other information 

retrieval approaches. First, learn to rank approach proposed as a way to optimize other IR 

ranking models. Then, with the risen of deep learning techniques, the representation-

based approach has emerged as the first deep learning approach for information retrieval. 

In this approach, a deep neural network is trained to project both query and document into 

latent space and the similarity of these projections is then used for ranking. From the 

reviewed works, it is clear that the representation-based approach capabilities sit 

somewhere in between of the latent semantic models (i.e. LSI) and the term frequency 

models (i.e. BM25). Considering its paradigm, the representation-based approach can be 

regarded as one of the latent semantic models. However, since most of the models are 

using the word hashing technique (which does not reflect or preserve words semantic 

relations), they moved more toward the lexical features of the text.  The majority of the 

proposed models give close or better performance than most of the traditional models like 

BM25, LSA, and LM. Apparently, they failed to outperform the interaction-based 

approaches. This failure can be attributed to the fact that most representation-based 

models are not able to preserve or use positional information and therefore they are not 

able to meet important IR requirements such as term proximity. Indeed, representation-

based models postpone the interaction between the query and the document until the final 
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stages which in most cases leads to discarding important information that may 

dramatically affect the final rank. 

Later on, the interaction-based approach has been proposed as a solution for the delayed 

interaction problem in the representation-based approach. Inevitably, as shown in the 

review, interaction-based models were able to outperform both traditional IR and 

representation-based models and gain state-of-the-art performance. Still, in its turn, the 

interaction-based approach suffers from serious drawbacks that affect the possibility of 

incorporating it in real-world production applications.  

First and most important, the interaction structure is a dynamic structure that must be 

constructed for each newly coming query with all documents. In order to build it, the 

whole document content is used each time. This limitation alone is enough to prevent 

building any interaction-based search engine. That is, it is vital for any search engine to 

be able to independently (of queries) reduce each document into a very simple structure 

at the offline phase and use that simple structure at the searching time. To alleviate this 

limitation, several works proposed to use interaction-based models in the telescoping 

mode in which a more efficient traditional IR model is used to get the first look at the 

whole documents. Then, the interaction model is used to re-rank the result of the 

traditional IR model (Hui et al., 2017a, 2018). However, this setting limits the interaction 

model performance by the used traditional model.  

Not less important, as shown in Section 2.4.3, almost all proposed interaction-based 

models are based on the hypothesis that relevance matches are following some visual 

pattern in the interaction structure. Therefore, the majority of these models are using 

different deep learning techniques for visual pattern recognition. To our knowledge, no 

study has yet identified what features represent relevance matches and how they may be 

reflected in any of the proposed interaction structures. Guo et. al. cast some doubts that 

deep learning techniques are not the most effective way to extract the interaction feature. 
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Instead, they proposed to extract them using simple histogram function which considers 

positional information noise and discard them. Though simple, their model outperforms 

more complicated interaction based models and its performance is still close to the state 

of art (Guo et al., 2016). However, the fact that they are discarding positional information 

prevents the model from capturing some important IR factors like term proximity. 

The dynamic construction of the interaction structure added to the heavy and complicated 

deep learning features extraction models, made most of the interaction-based models: 

sophisticated models that are very hard to comprehend or analyze, and heavy models that 

need lots of computational resources for training and operating.  

Additionally, unlike other neural IR approaches, the interaction-based approach has a 

problem dealing with varied query/document sizes. Specifically, the majority of the 

proposed features extraction and ranking neural models require a fixed input size. This 

restriction becomes a serious problem when the document or the query has varied sizes 

because, unlike other structures (e.g. images or sounds), text cannot be shortened or 

lengthened without affecting the meaning or losing some important information. To this 

end, most of the interaction-based models are either cutting the extra text when the 

query/document are longer than the intended size or padding some dummy characters 

when they are shorter.   

Finally, nearly all the existing neural IR models are utilizing loss functions that are 

designed for binary relevance judgment. While this works well with the 

relevant/irrelevant case, it discards important information in the case of rated relevance 

judgment.  
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2.8 Conclusion 

This chapter provided a broad overview of neural information retrieval domain by 

introducing concepts and techniques from information retrieval and neural networks that 

constitute the basic elements in this new domain. Afterward, the representation-based and 

interaction-based neural IR approaches have been reviewed in details and special 

attention was paid for the interaction-based models' simplicity and efficiency. 

Additionally, the review shed the lights on the used loss functions in both approaches and 

explored the set of IR factors that have been considered by different models. Finally, a 

discussion and possible research gaps where provided.   
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Chapter 3: Research Methodology 

Recently, the interaction based deep learning approach has gained the state-of-the-art 

performance for the ad-hoc retrieval task. The approach can be divided into three main 

components: the interaction structure, the features extraction model and the ranking 

model. For feature extraction, the majority of the proposed interaction-based models are 

utilizing deep learning techniques that were originally designed for visual pattern 

recognition tasks. However, until now no study has provided proof that this extraction 

approach is able to extract all the required features. Besides, these extraction techniques 

have led in most cases into heavy and complicated models which makes them unsuitable 

neither for production applications nor for academic research. 

The purpose of this works is to identify the features set that reflect the selected set of IR 

factors and provide a simpler and more effective approach for extracting those features. 

Based on the proposed features extraction approach, a simple neural IR ranking model 

will be developed and used in several experiments to evaluate the effectiveness and the 

efficiency of the proposed approach.  

This chapter provides a detailed description of the research design, research methods, 

tools and data that have been used to achieve the research objectives. 

3.1 Research Design 

As mentioned in the introduction Chapter, the study concerns with the ad-hoc retrieval 

task which means that the main inputs for the proposed model are a previously unseen 

query and a collection of documents. In this respect, the main objective for our model is 

to rank all the documents in the collection according to the new query. To achieve that, 

the study is following the interaction deep learning approach which represents each 

query/document pair by an interaction matrix reflecting the relevance between the 
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corresponding query and document. In order to identify and measure the relevance signals 

in the interaction matrix, four IR factors were considered in the study: 

1. Exact match 

2. Semantic Match 

3. Query Coverage 

4. Term proximity 

The above factors were selected based on the following two criteria: factors that are 

commonly used in the neural IR domain and factors that do not require any resources 

other than the interaction matrix (For more details on each factor see Section 2.1. For 

details on the relationship between neural IR models and the above factors see Section 

2.6).  

Given the interaction matrix as input and the above IR factors, the following research 

questions are answered in this work: 

1. How the specified IR factors appear in the interaction matrix. 

2. What features that best reflect the specified IR factors in the interaction matrix? 

3. What is the most effective approach for extracting the identified features form the 

interaction matrix? 

4. How to build an IR ranking model using the extracted features? 

5. How to evaluate and prove the effectiveness and efficiency of the proposed model? 
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In order to answer the above research questions, research design of two components was 

followed. The first component is using a theoretical method to answer the first four 

questions while the second component is utilizing an experimental method to prove the 

effectiveness of the proposed mode Figure 3.1.  

3.2 Theoretical Method 

Following a theoretical method, this research component is responsible for analyzing the 

interaction matrix given the considered IR factors. The result of this analysis is the 

identification of a set of features called the interaction features (see Section 4.2.6) which 

reflect how the considered IR factors manifest in the interaction matrix. Afterward, a new 

features extraction technique is proposed to extract the interaction features form the 

interaction matrix. In the end, a new deep learning ranking technique is proposed which 

takes the extracted features and return the rank of the corresponding query/document. 

Additionally, new solutions for two known problems in the literature are provided. 

Namely, the dynamic query/document size problem and the rated relevance judgment loss 

function.   

A detailed description of each method and techniques that have been used in this research 

component is provided in the next chapter. 

Figure 3.1 Research Design. The research starts with a theoretical study 

leading to the development of a new neural IR model. Afterward, the 

proposed model is evaluated in the experiment phase. 

Theoretical Method Phase 

Features Extraction
Experimental Method Phase 

Ranking Model

Proposed Model 
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3.3 Experimental Method 

In this research component, several experiments are conducted in order to prove the 

proposed model effectiveness, efficiency, and simplicity and to analyze the effect of each 

component on the model performance.  

This section details all the conducted experiments and explain all required data, tools, and 

measures that are necessary for replicating those experiments. 

3.3.1 Dataset 

The dataset that has been used in this study is a subset of ClueWeb-09 and ClueWeb-12. 

It includes all documents from both datasets that have been used in the Text REtrieval 

Conference2 (TREC) web tracks from 2009 to 2014. 

Table 3.1: Dataset Statistics 

TREC Web 
Track Year 

Queries 
IDs 

Documents 
Number 

Junk Non Rel HRel Key Nav 

2009 1-50 23601 0 16743 4832 1625 0 0 

2010 51-100 25329 1431 18363 3731 1077 138 0 

2011 101-150 19381 1019 15205 2038 711 408 0 

2012 151-200 16055 858 11674 2208 405 52 858 

2013 201-250 14474 234 10090 2281 700 179 7 

2014 251-300 14432 556 8211 3788 1614 230 33 

Total 300 113272 4098 80286 18878 6132 1007 898 

 

For each year, TREC track used a different set of 50 queries (see Appendix A). The whole 

data from ClueWeb-09 and ClueWeb-12 were ranked for each query by different IR 

models and the top K results from all models were merged in one pool and manually 

                                                 
2 TREC is an ongoing series of large-scale evaluation workshops for text retrieval methodologies 
(https://trec.nist.gov/)  
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judged.  Thus, our dataset consists of all documents that have been manually judged for 

each year Table 3.1. 

The manual judgment of each query/document pair is one of the following 

grades/categories: 

1. Nav: the document represents a home page for the query 

2. key: the document is a dedicated page to the query topic. 

3. Hrel: the content of the document represents substantial information on the topic. 

4. Rel: the content of the document provides some information about the topic 

5. Non: the content of the page does not provide useful information on the query 

topic 

6. Junk: the document is not useful for any topic. 

The total queries number in our dataset is 300. The smallest query size is 1 and the 

maximum size is 5. The total documents number is 113272 documents. 75% of the 

documents are judged as not related (i.e. Non or Junk) to the corresponding query.  

3.3.2 IR Evaluation Measures 

In order to measure the effectiveness of the proposed model, four IR evaluation measures 

were used in the different experiments two for the binary judgment and two for the graded 

judgment: 

1. Binary judgment measures: 

Binary judgment means that the relevance judgment that is provided for each 

query/document pair in the data set is either relevant or not relevant. For this type 

of judgment two known IR measures were used: 

a. Precision at K (P@K): for a list of ranked results, it represents the 

proportion of relevant documents at rank k. 
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b. Mean Average Precision (MAP): for a set of queries Q, it takes the average 

of all possible precisions at k for all possible k for each query and finally, 

it takes the average overall queries as follows: 

ሺܳሻܲܣܯ ൌ
1
|ܳ|

෍
1
݉௤௤∈ொ

	෍ܲ@݇ሺܴ௞ሺݍሻሻ

௠೜

௞ୀଵ

 

Where ܴ௞ሺݍሻ is the top k ranked results list for a query q and ݉௤ is the 

number of all relevant documents for q (Manning et al., 2008, p. 129). 

2. Graded judgment measures:  

Graded judgment means that the relevance is classified into more than two 

categories (e.g. the six relevance judgments categories in TREC web track). For 

this type of relevance judgment there are two known measures: 

a. Normalized discount cumulative gain (NDCG): in this measure, the gain 

of each retrieved document decreases logarithmically with its rank which 

reflects the fact that the likelihood that a user will view a retrieved 

document decrease with respect to its rank (Y. Wang et al., 2013).  

DCG for a ranked results list at position k can be computed using the 

following formula: 

݇@ܩܥܦ ൌ	෍
௜݈݁ݎ

logሺ1 ൅ ݅ሻ

௞

௜ୀଵ

 

Where ݈݁ݎ௜ is the graded relevance judgment for the result at position i.  

In order to normalize the DCG, it is divided by the ideal DCG which is 

computed for the sorted list of relevance judgments at the same position. 

b. Expected Reciprocal Rank (ERR): which measures the expected time that 

the user may spend to get a relevant document from the retrieved list 

(Chapelle, Metlzer, Zhang, & Grinspan, 2009). 

ERR can be computed for a ranked results list at position k as follows: 
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݇@ܴܴܧ ൌ	෍
1
݅
	ܲሺ݈݁ݎ௜ሻෑሺ1 െ ܲሺ݁ݎ ௝݈ሻሻ

௜ିଵ

௝ୀଵ

௞

௜ୀଵ

 

Where ܲሺ݈݁ݎ௜ሻ is the graded relevance judgment for the result at position 

i transformed into a probability value.  

3.3.3 Baseline Models 

Three known baseline models were used in this work in order to evaluate the proposed 

model effectiveness and efficiency. 

1. BM25: as the most known traditional IR model which uses a hand-crafted formula 

incorporating term frequency and term importance. 

2. MatchPyramid: as the original interaction-based IR model using a one-layer CNN 

for features extraction and a DNN for ranking. 

3. CoPACRR: as the state-of-the-art model for interaction-based IR incorporating 

multiple CNN's with different kernel sizes for features extractions, contextual 

information and term importance as additional input, and DNN as a ranking 

network. 

Even though there are many other interaction-based models, it is not necessary to include 

all of them in experiments to prove the proposed model effectiveness for two reasons: 

First, as mentioned, CoPACRR is the state-of-the-art model which its performance has 

been compared with most of the proposed models. Second, in our evaluation, we are 

following a similar experimental design to what has been used by CoPACRR using the 

same dataset. 
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3.4 Effectiveness Experimental Design 

The purpose of this experiment is to prove the effectiveness of the proposed model by 

comparing its performance to the above baseline models.  Since the dataset is collected 

from TREC web tracks, for each year there is a different set of 50 topics and a judgment 

file which contains all the relevance judgments for each topic. For simplicity, we group 

each topic with all the documents that appeared in the relevance judgments for that topic 

along with the relevance judgments in one component and call it a topic evaluation set. 

Each evaluation set consists of a query, more than 300 documents and the corresponding 

manual relevance judgments for each query/document pairs in that set Figure 3.2. 

Accordingly, the main idea of this experiment is to use a model (i.e. our proposed model 

or one of the baseline models) to rank the documents list in each topic set and evaluate 

the effectiveness based on the corresponding relevance judgments. It is worth mentioning 

that topics sets are kept intact in all our experiments. 

That said, at first, the data set is divided into five years (250 topic set) 

training/development dataset and one-year (50 topic set) evaluation data. The training 

data set is then randomly divided into 85% training dataset and 15% development dataset. 

Afterward, the training data is used to train the input model for N iterations where each 

iteration represents a complete pass over the whole training dataset. After each training 

iteration, the development dataset is used to evaluate the model and the evaluation results 

are stored for reference. The number of iterations for each model is different and it is 

based on the recommended settings for each model. For example, for CoPACRR 100 

Queryi 

Doc1 

Doc2 

Doci 

Docn 

Rel1 

Rel2 

Reli 

Reln 

Figure 3.2: Topic Evaluation Set 
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iterations have been used and for MatchPyramid 30 iterations while for our model, only 

20 iterations have been used. After the training/development phase is finished, the 

development results are used to pick up the best model overall training iterations and that 

model is then used to rank the evaluation dataset Figure 3.3. 

The evaluation procedure for the development and the evaluation sets is the same. The 

input model is used to rank the documents list for each topic in the set. After that, the 

ranked list and the corresponding relevance judgments are used as input for one of the 

considered IR evaluation measures. Consequently, for each query in the input set, there 

will be four scores (i.e.  NDCG, ERR, MAP, P@K) and the average over the whole 

queries in the set is used as the final evaluation results. 

The previous training/evaluation process is repeated for each year which means that there 

will be six different results sets for each model. 

It must be noted that unlike (Hui et al., 2017a, 2018), the topic query is used rather than 

the topic description for all models during training and evaluation.    

85% training 

15% development 

Train and 
eval for N 
iterations 

5 Training Years 

1 Eval Year 

Choose Best 
Iteration 

Rank the 
Eval Year 

Dataset 

Repeat for Each Model for Each 
Year 

Figure 3.3: Effectiveness Experimental Design 
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Finally, since BM25 is based on a handcrafter formula, there is no training/development 

phase for this model. That is, the model is directly used to evaluate the evaluation set for 

each year.  

3.5 Features Effectiveness Experimental Design 

This experiment aims to analyze and understand the effectiveness of each extracted 

feature in the proposed model (for more information on model features see Section 4.3). 

To this end, a process similar to the above training, development and evaluation process 

is used to evaluate the proposed model with two differences: 

1. One feature will be off each time. 

2. The experiment is executed using: data of four years for training, one-year 

(TREC web 2013) for development and one-year for evaluation (TREC web 

2014). 

Unlike the above experiment, the experiment will not be repeated for all years and it 

will be done only on our proposed model. 

We used the last two years of TREC web tracks in this experiment because the topics 

collection is more diverse (i.e. contains a mixture of broad and specific topics) in 

comparison to the previous years. 

3.6 Efficiency and Simplicity 

The purpose of this experiment is to prove the proposed model efficiency and simplicity 

in comparison to the baseline models. 

To this end, model efficiency is measured by two factors: 

1. The average time for one iteration training 

2. The average execution time for the entire evaluation set.  

For both factors, a server of 4 Cores and 16 GB RAM is used for all models.  
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In the other hand, model simplicity is measured by the used networks types, network 

depth and the number of the overall parameters in each model. 

3.7 Conclusion 

This chapter shows that two components research design is followed in this work. The 

first one is using a theoretical method for features identifying, extracting and ranking 

while the second one is using an experimental method to prove the effectiveness and the 

efficiency of the proposed model. 

While the details of the theoretical component are left into the next chapter, this chapter 

focused more on the experimental method design and provide enough description of all 

the methods, measures and data that are necessary for replicating those experiments.  
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Chapter 4: The Proposed Neural IR Model Design 

This chapter provides a detailed description of the theoretical methods that have been 

used to answer our first four research questions Section 3.1. First, it starts by giving an 

example of the interaction matrix. Afterward, it explains the tools and the techniques that 

have been proposed and used to analyze the interaction matrix in order to identify a set 

of features. After features identification, the chapter goes on to present our proposed 

approach for features extraction and give a detailed description of the proposed ranking 

model. Finally, a detailed description is provided for our extension of the max-margin 

loss function. 

4.1 Interaction Matrix 

As mentioned in Section 2.4.3, the interaction matrix is a structure that reflects the 

interactions or the matches between the given query and document. In order to introduce 

the interaction matrix and clarify its structure and features, the following query and 

documents will be used as an example in this chapter. 

 Query: 

“U.S. election meddling” 

 Document: 

“The American president claimed his Russian counterpart was “extremely strong 

and powerful in his denial” of any election meddling … Trump said that he 

actually accepts the intelligence findings that Russia meddled in the U.S. 

political race” 

The first step in constructing the interaction matrix is to clean the text by removing stop 

words, special characters, and numbers. Thus, the previous query/document becomes as 

follows: 
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 Query: 

“US election meddling” 

  Document: 

“American president claimed Russian counterpart extremely strong powerful 

denial any election meddling Trump said actually accepts intelligence findings 

Russia meddled US political race” 

 Unlike traditional IR indexing methods, most of the neural IR approaches that use the 

word embedding for word representation do not use any analyzer or stemmer to remove 

words postfixes or suffixes because different word forms are represented in the word 

embedding space as a separated vector. 

Word2Vec was used in this work as word embedding resource which represents each word 

by 300 dimensions vector and the Cosine function between the words vectors is used as 

a similarity measure (Goldberg & Levy, 2014; Tomas Mikolov, n.d.). 

As explained in Section 2.4.3.1, for constructing the interaction matrix, all query terms 

and document words are replaced by their word embedding vectors. Then the query terms 

vectors are taken one by one and the similarity between this term and all document words 

are computed and stored in a new row Table 4.1. 

As Table 4.1, depicts each cell in this matrix represents the semantic similarity of one 

query term and one document word. As such, the length of the matrix equals to the 

document length after the cleaning stage and the matrix width (i.e. rows number) is the 

number of query terms after the cleaning stage as well. 
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Table 4.1: Interaction Matrix 

 

Specifically, three types of cells can be recognized in the interaction matrix:  

1. Exact match Cell: Each cell of value equals or is very close to the maximum 

similarity value (e.g. yellow cells). Since the Cosine function was used as a 

similarity measure, the maximum similarity value in our case is 1. 

Values that are very close to the maximum similarity value represent the 

similarity of two different forms of the same word like <meddled, meddling>. 

2. Semantically Close Cell: Each cell of relatively high similarity value such as 

<US, American> and <election, race>. 

3. Non-Related Cell: Includes the rest of the cells that do not belong to one of the 

previous types.  

Besides, the above matrix shows that the document words and the query terms appear in 

the matrix in their original order. In other words, the interaction matrix preserves the 

positional information which is a very important feature for advanced retrieval models. 

4.2 Features Identification 

As stated in Section 3.1, four IR factors are taken into consideration in this work; namely: 

the exact match, the semantic match, the query coverage, and the term proximity. This 

section explores all the methods and tools that have been used in the study to identify the 

set of features that reflect the aforementioned factors in the interaction matrix. 
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US 0.82 0.63 0.43 0.56 0.35 0.22 0.31 0.25 0.31 0.48 0.27 0.58 … 0.56 0.42 1 0.51 0.32

election 0.52 0.61 0.32 0.51 0.34 0.13 0.21 0.17 0.16 1 0.57 0.54 … 0.51 0.57 0.53 0.54 0.63

meddling 0.35 0.31 0.21 0.54 0.16 0.21 0.11 0.13 0.22 0.51 1 0.51 … 0.46 0.95 0.36 0.27 0.21
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4.2.1 Interaction Image 

Since most of the available works for interaction based neural IR are looking at the 

interaction matrix as 2D image and utilizing visual patterns recognition for feature 

extraction, we found it more suitable to follow the same direction in analyzing the 

relationship between the interaction matrix and the specified IR factors. Consequently, 

the interaction matrix is transformed into a 2D image where each cell is represented as a 

pixel of color degree that reflects its similarity value  

Figure 4.1. 

 

 
 

Figure 4.1: Interaction Image, Y-axis matches with query length, X-axis matches with document 

length. 

The similarity values range [-1, 1] is mapped into the color range [Dark Blue, Yellow] 

using the Parula color map where yellow represents exact match or high similarity value 

and dark blue represents low similarity value.  

Further, to make the analysis process more efficient an analyzing tool (Figure 4.2) of the 

following functionalities was developed: 

1. Transform and display a set of interaction matrices into 2D images grid. 

2. Select interaction matrices using several criteria like the relevance judgment score, 

and size. 

-1 1 
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3. Extract several statistical information from the selected interaction matrices set 

such as the maximum/minimum similarity values, their frequencies, and the 

interaction matrix size. 

Using the analysis tool for selecting and comparing the interaction images, the following 

sections provide a description of the obtained results of the analysis for each IR factors. 

4.2.2 Exact (Lexical) Match 

 The exact match signal reflects how many times the exact lexical match of query terms 

appeared in the interaction image. 

  

Figure 4.3: Left low exact match, Right high exact match 

Figure 4.2: Analysis Tool Output 
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As Figure 4.3 depicts, the low density of yellow cells is associated with low exact 

matches whereas the high density is associated with high exact matches signal. 

Figure 4.4: Exact Match Patterns 

More importantly, we observe that the exact match does not follow any specific visual 

pattern. In other words, the exact match cells may be distributed in the interaction image 

in any form and the only thing that matter is the density of that cells Figure 4.4. 

4.2.3 Semantic Match 

Semantic match reflects how much the document is about the query topic.  In the 

interaction image, cells can be divided into two types: the exact match and the background 

cells. The background cells correspond to the rest of the document words which do not 

match any of the query terms.  

By looking at the background words, it is possible to judge if the document is semantically 

close to the query topic or not. Furthermore, if the background cells around an exact match 

cell are light (Figure 4.5 left), this means that the context of the exact match word is 

Figure 4.5: High semantic match left, low semantic match right 

Univ
ers

ity
 of

 M
ala

ya



63 

 

related to the query and if they are rather dark, the context is not related which indicates 

that the exact match may have a different meaning (Figure 4.5 right).  

Like the exact match signal, there is no specific visual pattern for the semantic match 

signal and the only way to measure it is by looking at the whole interaction image color. 

If the image looks light (i.e. high percentage of the cells are yellow and green) then the 

semantic similarity is high. Otherwise, the semantic similarity is low. 

4.2.4 Query Coverage 

Query coverage measures how many query terms have been covered in the document. In 

the interaction matrix, if a query term is covered (i.e. exactly matched) it will appear as a 

yellow cell in the corresponding term row.  

In Figure 4.6, there are two interaction images of two terms queries. In the left image, 

both terms were covered multiple times while in the right image only the second term 

was covered. 

In order to measure query coverage, it is enough to look at the distribution of the exact 

matches cell over the vertical dimension. 

Like the exact match and the semantic match, we have not recognized any specific visual 

pattern for the query coverage. 

Figure 4.6: Fully Covered Left, Partially Covered Right 
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4.2.5 Term Proximity 

Proximity expresses to which degree query terms co-occur in a close distance. In other 

words, if the document has high frequency of all query terms the exact match and query 

coverage may be high but this is not enough to give the document a high rank. It is 

necessary for the advanced retrieval models to make sure that these terms appear close 

together and that they are not scattered in different places.  

As illustrated by Figure 4.7, in the left figure, all query terms appear in the document but 

the first term always appears away from the second term whereas in the right figure both 

terms appear next to each other. 

If we restrict our look at a small window, and if the term following the same query order 

in that window, term proximity appears as a stair of successive yellow cells (Figure 4.8, 

left). However, this pattern is not fixed since query terms can appear in the document in 

any order (Figure 4.8, right). 

Figure 4.8: Term Proximity Patterns 

Figure 4.7: Low proximity high coverage left, high proximity high coverage right 
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4.2.6 Interaction Features and the Extraction Approach 

Interaction features is a new term that has been coined in this work to refer to any feature 

in the interaction matrix that may reflect one or more of the selected IR factors in this 

work.  

The most important result of the previous analysis is that none of the specified IR factors 

follows any specific visual pattern inside the interaction matrix. Furthermore, through our 

analysis of many different interaction matrices from different ranking categories, we 

could not specify any fixed visual pattern that may reflect more than one IR factors.  

Based on the above analysis, the following interaction features have been specified for 

the specified IR factors: 

1. The density of cells with high similarity values corresponds to the exact match 

2. The density of cells with medium or high similarity values corresponds to the 

semantic match 

3. Distribution of the exact match cells over the vertical dimension corresponds to 

the query coverage 

4. The density of exact matches within close distance corresponds to the term 

proximity. 

The previous findings are very important because differently from the majority of the 

previous works they suggest that the deep learning techniques for visual patterns are not 

the most effective methods for interaction features extraction. That is, all deep learning 

techniques are designed to extract fixed patterns (e.g. circles, lines, cross lines) using a 

fixed set of filters; whereas, the findings suggest that all the interaction features are based 

on the density and the distribution of some values which cannot be measured or extracted 

using fixed filters no matter how complicated they are.   
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Additionally, in particular, the term proximity feature can only be captured within a small 

window size and since the other features depend on cumulative features like density and 

distribution, we argue that it is more effective to extract all the interaction features within 

a small window size. We even argue that this features extraction approach is more 

informative and it goes in accord with the local and global relevance point of view. 

Based on the previous argument, our interaction features extraction approach can be 

summarized by the following points: 

1. Deep learning techniques for visual patterns are not suitable for interaction 

features extraction task. 

2. Instead, a set of manually designed functions will be proposed to extract all the 

required features. 

3. The interaction matrix will be divided into a set of successive small size windows 

and all the features will be extracted for each window independently as a measure 

for the local relevance in the corresponding position. 

4. The ranking model will take the list of the local relevance and estimate global 

relevance. 

4.3 Features Extraction 

As stated above, instead of using deep learning techniques for interaction features 

extraction a set of manually designed functions is proposed to extract the features from a 

small size window. This section provides a detailed description of the extraction 

procedure and each feature extraction function. 

4.3.1 Extraction Procedure 

Based on the proposed extraction approach, the interaction matrix is partitioned into small 

successive windows called the contextual windows. Since the purpose of the contextual 

window is to look for the local relevance it is more meaningful to set the window size to 
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match the average sentence size in the target language. However, we chose to leave the 

window size and the partitioning steps as a model parameter and several options were 

tested. 

Figure 4.9 shows an interaction matrix and two contextual windows of size 10 and of step 

size 5.  

The number of the contextual window for the given interaction matrix depends on the 

size of the corresponding document. After constructing the contextual windows list, each 

window will be passed independently into the following extraction functions to extract 

the interaction features. 

4.3.2 Proximity & Exact Match Function 

As stated in the identified interaction features, for measuring the exact match signal we 

should look at the density of the exact matches cells. Similarly, for measuring term 

proximity we should look at the density of the exact matches within a predefined distance. 

Given that the interaction matrix is divided into contextual windows and the features are 

being extracted for each window, counting the number of the exact cells within the 

window is enough to measure both the exact match and the term proximity. 

 ܲሺ ௜ܹሻ ൌ
ݎܾ݁݉ݑܰ ݂݋ ݐܿܽݔ݁ ݏ݄݁ܿݐܽ݉

ݎܾ݁݉ݑܰ ݂݋ ݏ݈݈݁ܿ
 (4) 

Equation (4) is used to compute the proximity and exact match feature from the input 

window where the numerator is the number of exact matches and the denominator is for 

normalization. 

Contextual 
Window 2 

Contextual 
Window 1 

Figure 4.9: Contextual windows of size 10 and step 5 
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For counting the exact matches, we use the following criterion: 

݁ݑ݈ܽݒ	݈݈݁ܿ ൒  ߙ	

By choosing a proper value for ߙ , the function not only considers exact matches but also 

it considers synonyms and other semantically close words. This extends the meaning of 

this function beyond the exact matches and term proximity to hold some semantic 

matching value. 

By looking at the results of this function for all the contextual windows, it is possible to 

get an accurate estimation of the exact match signal and its distribution over the document. 

Besides, it gives a good estimation of term proximity over the whole document.  

However, depending only on the exact matches is not enough for detecting terms co-

occurrence because the exact match does not distinguish between term repetition and 

terms co-occurrence.  That is, whether the same term repeated N times or N terms co-

occurred next to each other the value will be N. Consequently, this function alone does 

not reflect the proximity feature completely.  

4.3.3 Query Coverage Function 

According to the identified features, query coverage can be estimated by looking at the 

distribution of the exact match cells over the vertical dimension in the contextual window. 

This is equivalent to the number of the rows in the window which contains at least one 

exact match cell.  

ሺݒ݋ܥ  ௜ܹሻ ൌ
ݏݓ݋ܴ ݎܾ݁݉ݑ݊ ݃݊݅݊݅ܽݐ݊݋ܿ ܽ ݈݈ܿ݁ ݁ݑ݈ܽݒ ൐ ߙ	

ݏݓ݋ݎ ݎܾ݁݉ݑ݊
 (5) 

For normalizing the result, the rows count is divided by the total rows number which 

equals to the query size Equation (5).  

Similar to the proximity function, the exact match criterion extended to includes other 

semantically close words.   
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Even though this function is intended to measure the query coverage feature, along with 

the previous function it gives an accurate estimation of term proximity. For example, if 

the previous function gives a high value while query coverage is low, this indicates that 

the term proximity is low in the input window. This case happens when most of the exact 

matches cells are for one term. 

4.3.4 Semantic Match Function 

The semantic match is proportional to the density of cells with medium or high similarity 

values. We argue that it is enough to estimate this feature by taking the average of all cells 

in the window. That is, each cell in the interaction matrix is representing the semantic 

similarity of one query term and one document word and therefore it is expected that the 

average of all semantic similarities should give a good estimation of the semantic match 

between the query and the document Equation (6). 

 ܵ݅݉ሺ ௜ܹሻ ൌ
݉ݑܵ ݂݋ ݈݈ܽ ݏ݈݈݁ܿ ݏ݁ݑ݈ܽݒ

ݏ݈݈݁ܿ ݎܾ݁݉ݑ݊
 (6) 

Although it is possible to come up with more advanced extraction methods to make the 

extraction more accurate or to extract other features, we think that these three simple 

extraction functions are enough to build an advanced ranking model that is able to extract 

and integrate the selected set of IR factors. As mentioned before, the mapping between 

the proposed functions and the four IR factors (i.e. exact match, semantic match, query 

Proximity 
& Exact Match 

Query Coverage 

Semantic Match 

ܹ݅݊଴ ‐ ܹ݅݊ଵ ‐ ‐ ‐ ‐ ‐ ܹ݅݊௡ ‐ ‐ 

Figure 4.10: Features Extraction Results 
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coverage, and term proximity) is not one. Instead, it expected that the three proposed 

function together are able to reflect the intended IR factors. 

At the end of the extraction phase, for each interaction matrix, there will be three features 

vectors one for each function. The length of each features vector equals the number of the 

contextual windows in the corresponding interaction matrix (Figure 4.10). 

4.4 Ranking Model 

After extracting the interaction features, these features are passed into the ranking model 

to get the final score for the corresponding query and document. The proposed ranking 

model consists of four components. 

 

The pooling layer is responsible for unifying the size of the feature. After that, the unified 

features are passed into two ranking layers: a fully connected and the histogram layer 

where each layer gives a different score for the same features. Finally, the two scores are 

combined using a simple weighted sum layer to get the final score. The following sections, 

describe each of the above component Figure 4.11.      

Dynamic Pooling Layer 

Fully Connected 
Layer  

Histogram Layer  

Weighted Sum 

Figure 4.11: Ranking Model 
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4.4.1 Dynamic Spatial Max Pooling 

Before passing the extracted interaction vectors into the neural ranking model, the size of 

these vectors must match the input size of the neural model. As mentioned in the literature 

review this restriction is still an open problem and most of the studies are using the zero 

padding and cutting techniques which may result in either loosing relevant or padding 

irrelevant information. 

Specifically, two cases can be distinguished: the first one when the feature vector is larger 

than the neural model input size and the second one when it is smaller.  

Our solution used a different technique for each case. In one hand, when the features 

vector is larger than k where k is the intended input size, the vector is divided into k 

spatial partitions and each portion is then reduced to the max feature value Figure 4.12. 

This technique is called spatial pooling and it was originally used for computer vision 

deep learning models to reduce the variable size features matrix into fixed size 

representation. 

 

In the other hand, when the feature vector is shorter, an empty vector of the intended 

size is created and divided into l spatial partitions where l is the original vector size and 

Figure 4.12: Spatial Max Pooling 

Figure 4.13: Features Up Sampling 
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each partition is filled with the same value from the corresponding position in the 

original vector Figure 4.13.  

4.4.2 Fully Connected Layer 

The model consists of two fully connected layers (see Section 2.3.1 ). The first layer takes 

the concatenation of the three features vectors as input and returns a new vector of 

predefined size M. An activation function is applied to the first layer output and the result 

is then fed into the second layer which returns a single value as the final score. 

 

ܺ ൌ ሺݐܽܿ݊݋ܿ ଵܸ, ଶܸ, ଷܸሻ 

,ଵሺܺܮ ሻߠ ൌ 	 ଵܹܺ ൅ ܾଵ 

݄ ൌ  (ଵܮሺ	ߪ	

ଵܵ ൌ ,ଶሺ݄ܮ ሻߠ ൌ ଶܹ݄ ൅ ܾଶ 

(7) 

 

Where ܮଵ	 is the first layer, ଵܹ is first layer weights matrix and ܾଵ	is the bias. 

 .is the activation function ߪ

 . are the second layer weights and bias	is the second layer, ଶܹ and ܾଶ	ଶܮ

As an activation function, several functions were tested like Segmiod, Tanh and Relu. And 

after several tests, Relu was able to give the best results. 

Additionally, we run several experiments with different numbers of fully connected layers 

and with different numbers of layers sizes. It turns out that increasing the network depth 

by stacking additional layers only improves the performance on the training data set 

whereas it leads to poor performance on both the development and the evaluation data 

sets. This can be attributed to the fact that increasing the network depth will allow the 

model to overfit the training data and thus give a bad performance when used on a 

different data set. 
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4.4.3 Histogram Model 

The main problem of the above fully connected layer ranking model is that each unit in 

the hidden layer will eventually learn to look only at specific positions in the features 

vector to calculate its output. While this paradigm is suitable for positional classification 

tasks like image classification, we argue that it is not effective for ranking tasks where 

features position is not important. That is, while positional information is important for 

local relevance (i.e. at the level of one contextual window), it does not hold any additional 

information for the global relevance.  

In response, we proposed the histogram model which represents the distribution of all 

windows scores as a histogram and trains a simple neural network to rank that histogram. 

The intuition behind the histogram model is that by looking at how many contextual 

windows got high relevance score and how many got low scores, it is possible to estimate 

the score of the whole input interaction matrix. To this end, the proposed histogram model 

consists of three components: window scorer, histogram constructor, and histogram 

ranking network. 

1. Window Scorer: 

It is a simple neural network (Section 2.3.1) which for each window take the 

corresponding three features (i.e. proximity, query coverage, and semantic match) 

and return a normalized score using the following equation: 

ሺ݁ݎ݋ܿܵ  ௜ܹሻ ൌ ൫ܻ݀݅݋݉݃݅ܵ ௜ܹ൯ ൅ ܾ (8) 

Where Y is a vector of three weights, ௜ܹ is the three features of the window i 

and b is the bias value. The sigmoid function is used for returning all scores into 

value form [0 1]. 

2. Histogram Constructor: 
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After computing all windows scores the score range (i.e. [0 1]) is divided into k 

equal interval and each window score is accumulated into the corresponding 

interval. 

3. Histogram Ranking Network: 

The constructed histogram is then fed into a fully connected network of two 

layers (Section 2.3.1) to estimate the overall score. 

Even though our analysis suggests that the fully connected layer is not suitable for the 

ranking task, the experiments do not support that analysis. In particular, we found that the 

fully connected layer ranking model gives better performance than the histogram ranking 

model in almost all experiments. However, we found that combing both ranking models 

give even better performance. 

4.5 Loss Function 

In order to train the proposed neural model, it is necessary to use an effective loss function 

which uses the difference between the model output and the intended output to fix the 

network by updating its weights. As shown in Section 2.6, two loss functions have been 

used in the literature; namely: the cross-entropy and the max margin. Besides, it was 

shown that these two functions are used for binary relevance judgment and that they are 

not suitable for the graded relevance judgment. 

The following section explains our extension for the max-margin loss function to be more 

suitable for the graded relevance judgment.   

4.5.1 Graded Max-Margin 

The max margin equation (shown in Section 2.5.2) states that the distance between 

positive document score and negative document score for the same query should be at 

least 1. While this is enough for binary relevance judgment, lots of useful information 

will be discarded if the same method used for graded relevance judgment. In other words, 
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when there are ܰ  different relevance grades, there will be 
ே௫ሺேିଵሻ

ଶ
  possible cases of 

unmatched judgments and it will be more accurate to have different distance threshold 

for each case.  To this end, we suggested a new version of the binary max margin 

(Equation (3)), called the graded max margin, which simply states that the minimum 

distance between the scores of two documents for a given query should increase or 

decrease in accordance with the distance of their relevance judgments. 

Using the same terminology that has been used in Section 2.5, for a given training sample 

ሺݍ, ݀ା, ݀ିሻ first, we define the normalized distance between the corresponding relevance 

judgment of ݀ାand ݀ି using Equation (9). 

,ݍሺܦܩ  ݀ା, ݀ିሻ ൌ
,ݍሺ݁݃݀ݑ݆ ݀ାሻ െ ,ݍሺ݁݃݀ݑ݆ ݀ିሻ

௝ݔܽܯ െ ݅ܯ ௝݊
 (9) 

Where ݆݁݃݀ݑሺݍ, ݀ାሻ, ,ݍሺ݁݃݀ݑ݆ ݀ିሻ  are the positive and the negative relevance 

judgments grades mapped into numerical values (in our case it will be between 0 and 5).  

݅ܯ,	௝ݔܽܯ ௝݊ are the maximum and the minimum possible grades values. 

Then, the above distance is used to extend the max-margin loss as shown in Equation (10). 

 
,ݍሺ݊݅݃ݎܽܯݔܽܯ ݀ା, ݀ିሻ

ൌ max൫0, ,ݍሺܯܩ ݀ା, ݀ିሻ െ ,ݍሺܦܵ ݀ା, ݀ିሻ൯ 
(10) 

,ݍሺܯܩ  ݀ା, ݀ିሻ ൌ ߚ ൅ ,ݍሺܦܩ ݀ା, ݀ିሻ (11) 

,ݍሺܦܵ  ݀ା, ݀ିሻ ൌ ,ݍሺ݁ݎ݋ܿܵ ݀ାሻ െ ,ݍሺ݁ݎ݋ܿܵ ݀ିሻ (12) 

Where ߚ is predefined offset. 

,ݍሺ݁ݎ݋ܿܵ ݀ାሻ and ܵܿ݁ݎ݋ሺݍ, ݀ିሻ are the output of our model for both query/document 
pairs. 

The previous loss formula means that the distance between the given positive and 

negative scores should be greater than a given offset plus the normalized distance of the 
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two documents relevance judgments. In this way, the neural model learns to distinguish 

between all possible judgment grades and thus gives more accurate scores. 

4.6 Conclusion 

The relation between the considered IR factors in this study and the interaction matrix 

have been identified in this chapter as a set of features called the interaction features. 

Additionally, the current chapter provides a detailed description of the proposed features 

extraction approach and of the proposed ranking model.  
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Chapter 5: Results and Findings 

This chapter presents and discusses the results of the experiments described in Chapter 3: 

using the proposed model that has been explained in Chapter 4: As stated in Sections 3.4, 

3.5 and 3.6 there are three different experiments that aim at evaluating model 

effectiveness, analyzing model components and evaluating model efficiency and 

simplicity. Following the same structure that has been presented in Chapter 3:, each 

experiment results are presented and discussed respectively.     

5.1 Effectiveness Experiment  

This experiment intends to prove the proposed model effectiveness by comparing its 

performance to several baseline models. Following the experimental design that have 

been shown in Section 3.4, this section presents the results of our proposed model along 

with the results of the considered baseline models. For simplicity, we chose to present the 

results of each evaluation measure separately.  

Results structure is explained only for the first measure as the same structure is followed 

for the rest of the measures. 

5.1.1 ERR3 results 

As shown in Table 5.1, there are six results for each model one row for each TREC web 

track year which matches with the evaluation dataset that has been used for each 

experiment. Besides, the overall average is provided in the last row. The last column 

represents the results of our proposed model (i.e. IF_NIR). The result in each cell 

represents the ERR score for the corresponding model on the corresponding TREC track 

                                                 
3 For ERR, NDCG and P@K measures, which work for specific ranking threshold we 
chose to use ranking level 20 as ranking threshold for the three measures. 
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dataset. The significant results are distinguished by * which indicates that the p-value of 

the paired t-test over means difference is less than 0.05.  

Table 5.1: ERR@20 results. * indicate a significant difference. 

 The last column shows our proposed model results. 

 BM25 MatchPyramid CoPACRR IF-NIR 

TREC web 2009 0.035* 0.125* 0.107* 0.151 

TREC Web 2010 0.071* 0.118* 0.152 0.142 

TREC Web 2011 0.12 0.151 0.157 0.14 

TREC Web 2012 0.11* 0.276 0.285 0.303 

TREC Web 2013 0.121* 0.165 0.18 0.178 

TREC Web 2014 0.165* 0.177* 0.222 0.231 

Average 0.104* 0.169* 0.184 0.191 

 

Figure 5.1 represents the same results as a histogram where for each TREC web track 

dataset there are four columns each of which represents the result of one model. 

The results show that our model was able to outperform almost all baseline models in 

almost all years. Specifically, the proposed model significantly outperformed BM25 and 

MatchPyramid in all years according to ERR evaluation measure. However, although 
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IF_NIR was able to significantly outperform CoPACRR in some years, the difference was 

not significant in almost all years.  

5.1.2 NDCG Results 

Similar to the above results, Table 5.2 and Figure 5.2 shows that our proposed model 

was able to outperform almost all baseline models in almost all years and in the overall 

average for NDCG evaluation measure. However, like the ERR results, the difference 

between our results and the CoPACRR was not significant in most of the years. 

Table 5.2: NDCG@20 Results. * indicate a significant difference. 

The last column shows our proposed model results. 

 BM25 MatchPyramid CoPACRR IF-NIR 

TREC web 2009 0.067* 0.24* 0.202* 0.279 

TREC web 2010 0.137* 0.2* 0.259 0.245 

TREC web 2011 0.285 0.27 0.32 0.291 

TREC web 2012 0.098* 0.196 0.212 0.223 

TREC web 2013 0.207* 0.281 0.328 0.305 

TREC web 2014 0.273* 0.284* 0.324 0.335 

Average 0.178* 0.246* 0.274 0.279 
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5.1.3 P@k Results 

Table 5.3: P@20 Results. * indicate a significant difference. 

 The last column shows our proposed model results. 

 BM25 MatchPyramid CoPACRR IF-NIR 

TREC web 2009 0.138* 0.399* 0.353* 0.475 

TREC web 2010 0.29* 0.4* 0.484* 0.448 

TREC web 2011 0.381 0.344 0.372 0.371 

TREC web 2012 0.255* 0.345* 0.356 0.405 

TREC web 2013 0.332* 0.472 0.48 0.489 

TREC web 2014 0.5250 0.49* 0.566 0.556 

Average 0.32* 0.408* 0.435* 0.458 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 Trec web
2009

Trec Web
2010

Trec Web
2011

Trec Web
2012

 Trec Web
2013

Trec Web
2014

Average

N
D
C
G
@
2
0
 s
co
re

Datasets

BM25 MatchPyramid CoPACRR IF‐NIR

Figure 5.2: NDCG@20 Results Histogram 
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 Table 5.3 and Figure 5.3 show that, like ERR and NDCG, P@K results indicate that our 

model outperformed all models in almost all years and in the overall average. Also, the 

above results are compatible with the previous results in that the difference between our 

model and CoPACRR is not significant in most of the results. 

5.1.4 MAP Results  

Differently, from the results of the previous measures, MAP results illustrated in Table 

5.4 and Figure 5.4, indicate that our model outperforms other models only in two years. 

However, the results also showed that the difference between our model and all baseline 

model is not significant in almost all years. 

Table 5.4: MAP Results. * indicate a significant difference.  

The last column shows our proposed model results. 

 BM25 MatchPyramid CoPACRR IF-NIR 

TREC web 2009 0.327* 0.389 0.365* 0.408 

TREC Web 2010 0.35 0.367 0.419 0.388 

TREC Web 2011 0.366 0.307 0.384* 0.323 

TREC Web 2012 0.315* 0.337* 0.344 0.373 

TREC Web 2013 0.374* 0.416 0.437 0.434 

TREC Web 2014 0.5334 0.507 0.5328 0.514 

Average 0.378 0.387 0.414 0.407 
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5.1.5 Performance Experiment Discussion 

It is clear from the above results that the proposed model significantly outperformed 

BM25 in all years and in almost all evaluation measures which alone is a great indication 

of the effectiveness of our approach. This indication was reinforced by comparing our 

model performance to MatchPyramid which also showed that our model was able to 

outperform MatchPyramid in almost all years and all measures. Apparently, even though 

our model outperformed the state-of-the-art model CoPACRR in several years, the 

difference was not significant in most of the cases. To a certain degree, this close 

performance challenges our findings in the interaction features analysis which states that 

deep learning techniques for visual pattern recognition are not suitable for interaction 

features extraction. There are three possible reasons explaining the above issue: 

1. The extraction approach is not effective for all or some of the identified interaction 

features. 

2. The study focused only on a subset of all IR factors that have been considered in 

CoPACRR. Therefore, the current interaction features are not enough to 

outperform the state of the art.  
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3. The proposed features extraction approach in CoPACRR is able to extract some 

hidden features that are out of reach of our feature extraction approach.  

While the first possibility will be investigated in the next experiment results, the second 

and the third are out of the scope of this study. However, supporting our model by more 

IR factors such as term importance and semantic disambiguation is an expected extension 

for our model and it will not contradict with our approach for features extraction and 

ranking. 

Back to the results, it can be noted from Table 5.4 and Figure 5.4 that according to MAP 

measure all models give a relatively close performance. This can be attributed to the fact 

that unlike the other three measures, MAP evaluates the whole ranking list. That is, while 

the other measure only focuses on the first k retrieved documents (i.e. 20 in our case), 

MAP considers all available documents for a given query. Therefore, the above results 

can be understood as all models are giving a close performance to the BM25 when looking 

at the whole retrieved documents list for each query whereas our model and CoPACRR 

are giving a significantly better performance by looking at the first 20 results. However, 

looking at the first k retrieved documents is more compatible with web search engine 

requirements where users usually do not go further than the first page of the results. 

5.2 Features Effectiveness Experiment Results 

This experiment was designed to analyze the effect of each proposed interaction feature 

on the effectiveness of the entire model. According to Section 3.5, the experiment was 

conducted on the TREC web 2014 using the rest of the data for training and development. 

As Table 5.5 depicts, the first row is the performance of our model using all features; after 

that, each row represents the performance after excluding one of the interaction features. 

The performance was evaluated using the four IR measures that have been used in the 

previous experiment using the same t-test significance level (0.05). 
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Table 5.5: Features Effectiveness Results. * indicates a significant difference 

 ndcg@20 err@20 MAP P@20 

All Features 0.31184 0.19835 0.496 0.55

Without Proximity 0.31897 0.21785 0.5005 0.535

Without Query Coverage 0.26757* 0.18031 0.4719* 0.496*

Without Semantic Match 0.28471 0.19681 0.4927 0.518

 

5.2.1 Features Effectiveness Experiment Discussion 

The first thing that can be noticed from the above results is that the query coverage feature 

significantly affected the model performance in comparison to the other features. More 

specifically, this significant effect appeared only in three measures; namely: NDCG, MAP, 

and P@K.  This result confirms the importance of the query coverage feature and proves 

that the proposed approach for that feature extracting is successful. 

For the semantic matching feature, even though the effect was not significant, by looking 

at the corresponding p-values of the significance test shown in Table 5.6, it is possible to 

observe that for NDCG and P@K the value is relatively small which indicates that the 

effect of the feature is marginally significant. This result along with the argument that has 

been provided in Section 5.1.5 indicates that the proposed method for the semantic 

matching feature extraction may need to consider other factors like semantic 

disambiguation. In a broader context, this marginal significance can be attributed to the 

defects of the used word embedding or the used word similarity function. 
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Table 5.6: Significance Test P-Values 

 ndcg@20 err@20 MAP P@20 

Without Proximity 0.672407 0.405249 0.531912 0.413751

Without Query 
Coverage 

0.006721 0.369957 0.023586 0.013164

Without Semantic 
Match 

0.09501 0.935345 0.631253 0.101155

 

On the other hand, unlike query coverage and semantic matching, this experiment showed 

that the term proximity feature has no effect on model performance. This result gives a 

great impression that the proposed method for term proximity extraction is not successful.  

This implication may explain why our proposed model was not able to significantly 

outperform the state of the art as shown in the previous experiment. However, further 

experiments are needed to confirm this conclusion. 

5.3 Efficiency Experiment Results 

This experiment aims at proving our model efficiency and simplicity in comparison to the 

other interaction-based neural model. As specified in Section 3.6, the comparison is done 

on two factors the first one estimates the time complexity while the other is measuring 

the model size and structural complexity. 

For the first factor, Table 5.7 shows the average training and the execution time for our 

model, MatchPyramid and CoPACRR. BM25 is not included in this experiment since it 

is not a neural model.  
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Table 5.7: Training/Execution Time Results 

 
One Training Iteration 

Time 
Execution Time 

IF-NIR 15 min 4 min 

CoPACRR 56 min 40 min 

MatchPyramid 21 min 7 min 

 

For the second factor, networks types, layers number, and the number of all model 
parameters are provided in Table 5.8. 

Table 5.8: Model Simplicity Results 

 Networks 
Types 

Layers Number Total Model 
Parameters 

IF-NIR DNN 4 2288 

CoPACRR 4 CNN, DNN 6 18368 

MatchPyramid CNN, DNN 5 4980 

 

5.3.1 Efficiency Results Discussion 

The above results demonstrate that our model is more efficient and much simpler than 

both CoPACRR and MatchPyramid. This result is very interesting because MatchPyramid 

is one of the simplest interaction-based models and CoPACRR is the state-of-the-art 

performance. Adding this result to the performance experiment results, show that our 

model with a very simple and shallow neural model was able to give a close performance 

to the state-of-the-art model.  

It is clear that our approach for interaction features extraction was the main reason behind 

our model simplicity and efficiency. That is, both CoPACRR and MatchPyramid are 

exploiting a wide range of convolution filters to extract all possible forms of the 

interaction features. These filters are the heaviest and most complicated components in 

both models. Instead, our model explicitly utilizes manually designed functions to extract 

a set of predefined features. 
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In particular, CoPACRR, as shown in the above results, is far more complex and heavier 

than our model. The reason behind this is that, for feature extraction, they are using four 

different CNN networks each of which consists of 32 filters of different kernel size. This 

need for a high number of convolutional filters correlates with our main findings in 

Chapter 4 which states that interaction features do not follow any specific visual pattern. 

Therefore, increasing the number and diversity of the filters is necessary to match more 

forms of the same feature. 

5.4 Conclusion 

The results of three experiments where shown and discussed in this chapter. The results 

of the effectiveness experiments prove that the proposed model was able to significantly 

outperform some baseline models and to give a close performance to the state-of-the-art 

model. Next, the results of the effectiveness of the features showed that while some 

features like query coverage significantly affect our model performance other features 

like term proximity surprisingly has no effect. Finally, the last experiment proves the 

efficiency and simplicity of the proposed model.     
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Chapter 6: Conclusion 

This dissertation investigated the relationship between a set of common IR factors and 

the interaction matrix structure in the context of interaction based neural models for ad-

hoc retrieval. The main outcome of this work is the identification of a set of interaction 

features and a new approach for extracting these features. The features and the extraction 

approach have been validated by developing a new neural ranking model based on the 

extracted features. In order to prove the effectiveness and efficiency of the proposed 

model, several experiments have been conducted.    

This concluding chapter summarizes the contributions of the work and assesses the 

possible implications on the available knowledge. Possible limitations and important 

future recommendations are provided at the end of this chapter. 

6.1 Problem 

Interaction based neural models is a new approach for ad-hoc retrieval which introduces 

the interaction between the query and the document as a matrix of words semantic 

similarities. The interaction structure is fed into a deep learning model that gradually 

learns to extract some hidden features and use them to rank the corresponding 

query/document. The majority of the available works are using deep learning techniques 

for visual pattern recognition to extract interaction features.  However, until now there is 

no proof that the interactive features are following a specific visual pattern in the 

interaction matrix and therefore it is not clear if that features extraction approach is the 

most effective approach. Furthermore, the utilization of deep learning techniques for 

visual pattern recognition enforce some limitations and affect the proposed models’ 

effectiveness and efficiency.  
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6.2 Solution 

In order to identify what is the interaction features and what is the most effective approach 

for extracting them, a set of IR factors were specified at the beginning of this work. Using 

the specified factors, an analysis study is conducted to discover how these factors are 

reflected in the interaction matrix. The outcome of the analysis study was the 

identification of a set of interaction features and a new approach for extracting them from 

the interaction matrix. To prove the effectiveness of the proposed approach a new neural 

ranking model is developed based on the extracted features and its performance was 

compared to three baseline models.  

6.3 Contributions 

The key contribution of this study is that it is the first work to shed light and excessively 

investigate the relationship between the interaction structure and a set of important IR 

factors. This investigation led to the following implications and achievements: 

a. Our analysis study for the interaction images showed that the selected set of IR 

factors do not follow any specific pattern in the interaction matrix. This led to the 

identification of an explicit set of interaction features that reflect the considered 

IR factors. What makes this approach different from the previous works is that the 

features are explicitly identified and analyzed before training any model. That is, 

nearly all works in the literature depend on some deep learning techniques to 

identify and extract some hidden features. This unsupervised approach hinders our 

understanding of the relation between IR and deep learning in general and 

therefore it was an obstacle in the way of inventing a more IR compatible deep 

learning model.    

b. The study found that the identified interaction features are density based rather 

than following some specific visual patterns. Consequently, the deep learning 
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techniques for visual patterns recognition, which have been used by the majority 

of the available interaction-based models, are not effective for extracting these 

features. 

c. A simpler procedure for feature extraction was proposed which divides the 

interaction matrix into smaller elements called contextual windows and instead of 

using heavy deep learning techniques, three functions with simple formula are 

used to calculate three values for each window. The first function is used to 

measure exact match and proximity. The second is used to measure query 

coverage while the third is used to measure the semantic matches. 

d. Based on the above findings, a new deep ranking model that combines the 

histogram ranking network and DNN based ranking network.  

e. To evaluate the proposed model in term of effectiveness, its performance was 

compared to three baseline models. The experiments show that the proposed 

models give comparable performance to the state of the art. 

f. In the other hand, to evaluate the model in term of efficiency and simplicity, we 

compared the training and execution time, and the network size of our model to 

two deep learning baselines models. 

g. The impact of each component in the proposed models was analyzed in a 

separated experiment. 

h.  The experiments showed that in addition to its effectiveness, the proposed model 

is relatively efficient in compression to other models that depend on deep learning 

techniques for features extraction which makes it more efficient for production 

use. Further, since the model does not depend on hidden features, it is relatively 

simple and interpretable which is necessary for any further academic research.   
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i. Finally, an extended version of the max-margin loss function was introduced in 

this study which allows for training neural ranking models on graded relevance 

judgments. 

6.4 Limitations 

Here we list several limitations that may have affected the study finding and 
implications: 

a. Like almost all interaction-based modes, the study used word2vec as a word 

embedding to compute word to word semantic similarity. However, word2vec 

like other word embedding resources suffer from several problems such as out of 

vocabulary words and homonyms. Therefore, it is not clear how these problems 

may affect our features analysis and model performance. 

b. The study depended on the whole collection of TREC web tracks data and 

relevance judgments from 2009 to 2014 for both features identification and 

evaluation. Even though TREC web track is one of the most robust IR evaluation 

resources, we noticed that the available queries are relatively short; besides, the 

number of the queries for each year is only 50 which is relatively small in 

comparison to other datasets.  

c. Only three baseline models were used for the evaluation experiment. We argue 

that this experiment is enough to prove the effectiveness of the proposed approach 

because we are comparing our model performance to the state-of-the-art model 

introduced by (Hui et al., 2018) on the same dataset using almost identical 

evaluation procedure. Nevertheless, not all interaction-based models have been 

compared with Hui et. al. model and it is possible that small changes for the 

evaluation procedure significantly affect the results of some model that have been 

used in their experiments. 
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6.5 Future Works 

As stated above, this study is the first work to explicitly identify the relationship between 

the interaction structure and a selected set of IR factors. Consequently, the findings of this 

work open the door for many further research and recommendations. In the following 

section, we summarise the most important and relevant recommendations.  

6.5.1 Interaction structure reduction 

Even though interaction-based models were able to significantly outperform other 

traditional or neural IR models, there are many doubts that they are suitable to be used in 

any real-world applications. In fact, all interaction-based models require the construction 

of the interaction structure for each new query. This means that for real-life applications 

we need to construct all the interaction matrices for each newly coming query with all 

available documents in the documents repository. No matter how effective the 

construction process is it needs a too long time and lots of computation resources.  To 

alleviate this problem some works suggested using the interaction models in the 

telescoping mode. In that mode, the interaction-based models work behind some more 

efficient model (e.g. BM25) in that they are only used to re-rank its results. The problem 

with that approach is that if the first model fails to retrieve some relevant document the 

whole model fails.  

Before this work, it was impossible to think of any way to reduce the interaction structure 

or transform it into a more efficient structure because we did not know what are the most 

important features that we must preserve in any reduction or transformation.  

In view of our findings, we found that in particular, only two interaction features had the 

credit for our model performance (i.e. query coverage and semantic similarity). Therefore, 

it may be possible to reduce or transform the interaction matrix into a more efficient 

structure (e.g. indexes or vector representation) that only preserve these features. 
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6.5.2 Ranking Model 

As clarified in (2.4.3.3 and 4.4.3) several interaction-based models depend on positional 

classification layers as a ranking model. Additionally, in our analysis, we suggested that 

global relevance does not follow any specific structure; thus, positional classification-

based models are not suitable to rank global relevance. As a result, we proposed a new 

ranking model (i.e. the histogram ranking model) which focuses on relevance quality and 

quantity rather than positions. Surprisingly, the experiments show that positional 

classification-based models outperformed the histogram ranking model. We think that this 

issue deserves more investigations and that discovering the reason behind this 

inconsistent result may allow for developing a more effective ranking model.   

6.5.3 Features extension 

Based on the results and the discussions that have been provided in the effectiveness 

experiment in Section 5.1, we found that extending our model with other IR factors like 

semantic disambiguation and term importance can lead to better performance. However, 

integrating such factors need further analysis and experiments to find the most effective 

approach for each one. 

6.5.4 A new method for term proximity extraction  

Term proximity is one of the most challenging factors in ad-hoc retrieval because it is a 

combination of several features like the number of terms co-occurrence and the distance 

between these terms. In the proposed features extraction approach, the interaction matrix 

is divided into contextual windows and all exact matches in each window are counted as 

an estimation of term proximity. Even though this estimation alone does not completely 

reflect term proximity, we expected that by integrating this feature with query coverage 

feature the ranking model should learn to accurately measure term proximity. However, 

our experiments show that our approach was not effective. More experiments are needed 

to confirm these results and our approach for proximity extraction should be reviewed. 
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6.5.5 Word Embedding 

As stated in the limitation section, word embedding suffer from several drawbacks like 

out of vocabulary words and homonyms. Recently, more advanced versions of word 

embedding have been published to alleviate these drawbacks (Peters et al., 2018). 

Consequently, it is useful to test how these new words embedding may affect our 

performance and perhaps our implications.  

6.5.6 Further experiments 

In our experiments, only three baseline models were used and all experiments have been 

conducted on TREC web tracks using documents form ClueWeb09 and ClueWeb12. As 

noted in the limitations section, each TREC web track contains only 50 queries and in 

general, the queries are relatively short. Hence, further experiments are necessary to 

confirm our finding by comparing our model to other baselines and by using different 

datasets. 
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Appendix A – Sample of Topic Set 

251: identifying spider bites 
252: history of orcas island 
253: tooth abscess 
254: barrett's esophagus 
255: teddy bears 
256: patron saint of mental illness 
257: holes by louis sachar 
258: hip roof 
259: carpenter bee 
260: the american revolutionary 
261: folk remedies sore throat 
262: balding cure 
263: evidence for evolution 
264: tribe formerly living in alabama 
265: F5 tornado 
266: symptoms of heart attack 
267: feliz navidad lyrics 
268: benefits of running 
269: marshall county schools 
270: sun tzu 
271: halloween activities for middle school 
272: dreams interpretation 
273: wilson's disease 
274: golf instruction 
275: uss cole 
276: how has african american music influence history 
277: bewitched cast 
278: mister rogers 
279: game theory 
280: view my internet history 
281: ketogenic diet 
282: nasa interplanetary missions 
283: hayrides in pa 
284: where to find morel mushrooms 
285: magnesium rich foods 
286: common schizophrenia drugs 
287: carotid cavernous fistula treatment 
288: fidel castro 
289: benefits of yoga 
290: norway spruce 
291: sangre de cristo mountains 
292: history of the electronic medical record 
293: educational advantages of social networking sites 
294: flowering plants 
295: how to tie a windsor knot 
296: recycling lead acid batteries 
297: altitude sickness 
298: medical care and jehovah's witnesses 
299: pink slime in ground beef 
300: how to find the mean 
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