
 
 
  
  
 
  

 ACTIVE QUEUE MANAGEMENT FOR ASSURED FORWARDING 
TRAFFIC IN DIFFERENTIATED SERVICES NETWORK 

 
 
 

 
  
  
 
  
  
  
  
  

 NG ENG SEONG 

 
 
 
 
 

 
  
 
 
  
 

 
FACULTY OF COMPUTER SCIENCE & INFORMATION 

TECHNOLOGY 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 

 

2004 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

 
 

ACTIVE QUEUE MANAGEMENT FOR ASSURED FORWARDING 
TRAFFIC IN DIFFERENTIATED SERVICES NETWORK 

 

 

 

 

NG ENG SEONG 

 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE   

 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE & INFORMATION 
TECHNOLOGY  

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 

2004 

 

Univ
ers

ity
 of

 M
ala

ya



Abstract 
 
 

 i 

Abstract 

Congestion control such as RED is needed to maintain network performance level and to 
allow efficient usage of the network resources. Generally routers use RED to provide 
better services than using the traditional tail drop mechanism. In brief, RED work by 
dropping packets probabilistically when the queue start to pile up.  Although RED is 
capable in performing congestion control, enhancement can be done to RED. Current 
RED is static and the Internet environment has become more demanding and cannot be 
met with static RED alone.  This dilemma is caused by the fact that network has evolved 
into a very dynamic state and an idea of developing a more dynamic DiffServ with RED 
has lead towards the creation of the proposed Active Queue Management for DiffServ 
Traffic (FuzAQM). FuzAQM works by monitoring the condition of the network in real 
time and is able change its RED parameters based on the congestion level based on fuzzy 
logic. The main aim of FuzAQM is to improve network throughput and provide means 
whereby packets can be treated fairly. This is especially true for lower priority packets 
where these packets are always choke-out by packets of higher priority. In order to 
demonstrate the feasibility of the idea, FuzAQM is implemented as an extension to the 
Ns2 network simulator. Simulations results show that the proposed Active Queue 
Management for DiffServ Traffic improves the total throughput by 0.79% to 6.46% 
depending on the traffic load. The proposed mechanism is also able to ensure fair 
treatment of lower priority packets while maintaining relatively high percentage (87%) of 
throughput for higher priority packets in the network. 

Univ
ers

ity
 of

 M
ala

ya



Acknowledgments 
 

 ii 

Acknowledgements 

 

I would like to express my utmost gratitude to my supervisor Dr. Phang Keat Keong who 

has provided me with unlimited support, motivation, time and guidance throughout this 

research. 

 

Special thanks also goes to Mr Ling Teck Chaw, Mr Ang Tan Fong and Mr Liew Chee 

Sun for the advice and suggestions to improve this research. 

 

Not the least to Julio Orozco from Universitaire de Beaulieu, France; Timo Viipuri from 

Helsinki University of Technology, Finland; and Alexander Sayenko from University of 

Jyvaskyla, Finland who have been generous with their time, expertise and knowledge on 

ns2 DiffServ. 

 

Finally, special thanks to Soo Wooi King, Chan Siew Yin, Lim Gek Pei, Ngo Foong 

Kiew, Ng Wai Keat and Vathsala, as my colleagues and peers in the Network Research 

Lab for the support and help during the entire research. The supports and motivations 

given are deeply appreciated. 

 Univ
ers

ity
 of

 M
ala

ya



Contents 
 
 

 iii 

Contents 
 
Abstract  i 
Acknowledgements  ii 
Contents  iii 
List of Figures  vi 
List of Tables  vii 
Abbreviations  viii 
 
 
Chapter 1 Introduction   
1.1 Introduction  1 
1.2 Thesis Motivation  2 
1.3 Thesis Objectives  3 
1.4 Thesis Scopes  3 
1.5 Thesis Significances  4 
1.6 Thesis Organization  5 
 
Chapter 2 Literature Review   
2.1 Quality of Service  6 

2.1.1 Concepts of QoS  7 
2.1.2 Architecture of QoS  8 

2.1.2.1 QoS Identification and Marking  8 
2.1.2.2 QoS within Single Network Element  8 
2.1.2.3 QoS policy, management and accounting functions  9 

2.2 Differentiated Services  10 
2.2.1 Architecture for Differentiated Services  12 
2.2.2 DiffServ Codepoint (DSCP)  12 
2.2.3 Per Hop Behavior (PHB)  14 
2.3.1 Expedited Forwarding PHB  15 
2.3.2 Assured Forwarding PHB  16 
2.2.4 DiffServ Domain  20 
2.2.5 Classifiers  21 
2.2.6 Traffic Classification and Conditioning  22 
2.2.7 Traffic Conditioners  22 

2.2.7.1 Meter  24 
2.2.7.2 Marker  24 
2.2.7.3 Shaper  24 
2.2.7.4 Dropper  24 

2.2.8 Traffic Profiles  25 
2.3 Congestion management  26 

2.3.1 Random Early Detection  27 
2.3.2 Global Synchronization  28 
2.3.3 RED algorithm  29 

Univ
ers

ity
 of

 M
ala

ya



Contents 
 
 

 iv 

2.4 Fuzzy Logic  31 
2.4.1 Fuzzy Set  31 
2.4.2 Membership Functions  33 
2.4.2 Fuzzy Operators  34 
2.4.3 Fuzzy Reasoning  35 
2.4.3.1 Fuzzification  35 
2.4.3.2 Inference  36 
2.4.3.3 Composition  36 
2.4.3.4 Defuzzification  36 

 
 
Chapter 3 Network Simulator and Simulation   
3.1 Network Simulator  37 

3.1.1 Computer simulation  37 
3.1.2 Advantages and Disadvantages of Computer simulation  39 

3.2 Available Network Simulator  40 
3.2.1 OPNET  40 
3.2.2 Maisie  41 
3.2.3PARSEC  41 
3.2.3 INSANE  42 
3.2.4 REAL  43 
3.2.5 Ns2  44 

3.3 Network Simulator Tool  44 
 
 
Chapter 4 Proposed Active Queue Management Model   
4.1 The Proposed Active Queue Management Model  46 
4.2 Fuzzy Logic Implementations  48 

4.2.1 q_->length()  49 
4.2.2 Average Previous 20 Queue Length Calculation  50 

4.3 Fuzzy Sets and Membership Functions  53 
4.3.1 Current Queue Length Fuzzy Set  54 

4.3.1.1 Triangle graph  55 
4.3.1.2 Trapezium graph  57 

4.3.2 Current Queue Length Membership Function Graph  58 
4.3.2.1 Current Queue Length Rules  59 

4.3.3 Rate of Change of Queue Fuzzy Set  60 
4.3.4 Rate of Change of Queue Membership Function Graph  61 

4.3.4.1 Rate of Change of Queue Rules  62 
4.4 Fuzzy Inference  63 

4.4.1 Fuzzy Inference for Current Queue Length and Rate of Change of Queue  65 
4.4.2 Fuzzy Inference result assessment  73 
 
 
 

Univ
ers

ity
 of

 M
ala

ya



Contents 
 
 

 v 

Chapter 5 Coding and Implementation   
5.1 Simulation Script  77 

5.1.1 Seeding  81 
5.1.2 Simulation topology  81 
5.1.3 Link Bandwidth and Delay  85 
5.1.4 Traffic source  86 

5.1.4.1 HTTP Traffic  87 
5.1.4.2 FTP Traffic  87 
5.1.4.3 Page Pool  88 
5.1.4.4 VoIP Traffic  89 
5.1.4.5 HTTP and FTP Session Launcher  90 

5.1.5 Random Variable  92 
5.1.6 Transport Agent API  93 
5.1.7 Exponential Traffic  94 
5.1.8 Connection Pair Configuration  95 
5.1.9 Bottle Neck Router Configuration  98 
5.1.10 Weighted RED  101 

5.2 Coding and Implementation  103 
5.2.1 dsredq.h  103 

5.2.1.1 Data Structure  103 
5.2.2 dsredq.cc  105 

5.2.2.1 Constructor  105 
5.2.2.2 Link List  106 
5.2.2.3 Fuzzy Logic  112 

 
 
Chapter 6 Simulation Results and Analysis   
6.1 Simulation Organization  113 
6.2 Simulation results  114 

6.2.1 Light Traffic Simulations and Results  115 
6.2.2 Heavy Traffic Simulations and Results  115 

6.3 Light Traffic Simulations Results Analysis  116 
6.4 Heavy Traffic Simulations Results Analysis  121 
 
 
Chapter 7 Results Conclusion and Future Work   
7.1 Summary of Work Done  130 
7.2 Summary of Contributions  132 
7.3 Objectives Achieved  133 
7.4 Future Research Suggestions  133 
 
References  135 
 

Univ
ers

ity
 of

 M
ala

ya



List of Figures 
 

 vi 

List of Figures 
Title Page 
Figure 2.1   Traffic conditioner components 23 
Figure 2.2   RED algorithm 29 
Figure 2.3   RED parameters settings 30 
Figure 2.4   Crisp representation of the term of hungry 32 
Figure 2.5   Fuzzy representation of the term of hungry 33 
Figure 4.1   General representation of the network topology used 49 
Figure 4.2   Triangle graph 55 
Figure 4.3   Current queue length first array representation using triangle graph 56 
Figure 4.4   Trapezium graph 57 
Figure 4.5   Current queue length second array representation using trapezium graph 58 
Figure 4.6   Current queue length membership function graph 58 
Figure 4.7   Rate of Change of Queue Membership Function Graph 61 
Figure 4.8   Fuzzy inference processes 67 
Figure 4.9   Low congestion fuzzy inference processes 70 
Figure 4.10 Serious congestion fuzzy inference processes 71 
Figure 4.11 Fuzzy inference result casting 74 
Figure 5.1   Light traffic simulation topology 82 
Figure 5.2   Heavy traffic simulation topology 83 
Figure 5.3   Links bandwidth and delay 86 
Figure 5.4   Queue organizations in the bottleneck link 100 
Figure 5.5   RED parameters for codepoint 20 and 21 102 
Figure 5.6   Node data structure 104 
Figure 5.7   Head pointer creation and head pointer pointing to first node 107 
Figure 5.8   Creating new node with head pointer and assigning queue length value 108 
Figure 5.9   Assigning head->next to null and pointing r6_cur to head 109 
Figure 5.10 Creating temporary node and assigning queue length value 110 
Figure 5.11 Linking temporary node to existing list and shifting current node pointer 111 
Figure 6.1   Simulation organizations 113 
Figure 6.2   r6r7 throughput percentage for light traffic 116 
Figure 6.3   r7r6 throughput percentage for light traffic 117 
Figure 6.4   Improvement percentage in r6r7 traffic for light traffic 118 
Figure 6.5   Improvement percentage in r7r6 traffic for light traffic 119 
Figure 6.6   Average total of codepoint 20 packets successfully traveled through the 

bottleneck link for light traffic 
120 

Figure 6.7   Average total of codepoint 21 packets successfully traveled through the 
bottleneck link for light traffic 

120 

Figure 6.8   r6r7 throughput percentage for heavy traffic 122 
Figure 6.9   r7r6 throughput percentage for heavy traffic 123 
Figure 6.10 Improvement percentage in r6r7 traffic for heavy traffic 124 
Figure 6.11 Improvement percentage in r7r6 traffic for heavy traffic 125 
Figure 6.12 Average total of codepoint 20 packets successfully traveled through the    

bottleneck link for heavy traffic 
126 

Figure 6.13 Average total of codepoint 21 packets successfully traveled through the    
bottleneck link for heavy traffic 

127 

Univ
ers

ity
 of

 M
ala

ya



List of Tables 
 
 

 vii 

List of Tables 
Title Page 
Table 2.1   Recommended AF codepoint values 19 
Table 4.1   Sets of thresholds and drop probability according to each cast degree 

value 
75 

Table 5.1   Nodes amount for light and heavy simulation 83 
Table 5.2   Nodes label 84 
Table 5.3   Parameters listing for HTTP traffic 87 
Table 5.4   Parameters listing for FTP traffic 88 
Table 5.5   Parameters listing for VoIP traffic 89 
Table 5.6   Distribution Parameters 92 
Table 6.1   Packets statistic table 114 
Table 6.2   r6r7 throughput percentage values for light traffic 117 
Table 6.3   r7r6 throughput percentage values for light traffic 117 
Table 6.4   Improvement percentage values in r6r7 traffic for light traffic 118 
Table 6.5   Improvement percentage values in r7r6 traffic for light traffic 119 
Table 6.6   Average packets distributions of codepoint 20 and 21 successfully   

traveled through the bottleneck link for light traffic 
121 

Table 6.7   r6r7 throughput percentage values for heavy traffic 122 
Table 6.8   r7r6 throughput percentage values for heavy traffic 123 
Table 6.9   Improvement percentage values in r6r7 traffic for heavy traffic 124 
Table 6.10 Improvement percentage values in r7r6 traffic for heavy traffic 125 
Table 6.11 Average packets distributions of codepoint 20 and 21 successfully 

traveled through the bottleneck link for heavy traffic 
127 

 

Univ
ers

ity
 of

 M
ala

ya



Abbreviations 
 

 viii 

Abbreviations  

ADSL Asymmetric Digital Subscriber Line 
AF Assured Forwarding 
ATM Asynchronous Transfer Mode  
BA Classifier Behavior Aggregate Classifier  
BE Best Effort 
CBWFQ Class-Based Weighted Fair Queuing 
CP Codepoint 
DiffServ Differentiated Services 
Drop prob. Drop Probability 
DS domain DiffServ Domain 
DSCP DiffServ Codepoint 
ECN Explicit Congestion Notification 
edrops Packets drop by RED early dropping 
EF Expedited Forwarding 
FTP File Transfer Protocol 
GUI graphical user interface 
HTTP Hyper Text Transfer Protocol 
IP Internet Protocol 
IPv4 Internet Protocol version 4 
IPv6 Internet Protocol version 6 
ISA Integrated Services Architecture 
ldrops Packets that are dropped due to link overflow 
Max th. Maximum Threshold 
MF Classifier Multi-field Classifier 
Min th. Minimum Threshold 
MRED Multiple RED 
ns2 Network Simulator 2 
PHB Per Hop Behavior 
PQ Priority Queuing 
QoS Quality of Service 
RED Random Early Detection 
RFC Request for Comment 
RIO-C RED with In/Out and Coupled average queues 
RIO-D RED with In/Out and Decoupled average queues 
RR Round Robin 
RSVP Resource Reservation Protocol 
SLA Service Level Agreement 
TCP Transmission Control Protocol 
TOS Type of Service 
TotPkts Packets received 
TSW2CM Time Sliding Window with Two Color Marking 
TxPkts Packets sent 
VoIP Voice over IP 
WRED Weighted RED 
WWW World Wide Web 

Univ
ers

ity
 of

 M
ala

ya



Chapter 1 Introduction 

1 

Chapter 1: Introduction 

1.1 Introduction 

The Internet world today has evolved into a very high demanding state, which requires 

high bandwidth and quality of service. The increased demand for the use of time sensitive 

data in the Internet has set off the need for designing new Internet architecture and total 

utilization of the Internet resources. These include various architecture and protocol such 

as more advanced congestion control algorithm based on TCP and Quality of service 

(QoS) protocols. Such research and demand for new and more advance protocols and 

architectures has initiated the proposition of Internet services such as Integrated Services 

Architecture (ISA), Random Early Detection (RED) and Differentiated Services 

(DiffServ). 

 

The purpose of proposing the use of DiffServ is to deliver an aggregated quality of 

service in IP networks. Further advancement has been witnessed for DiffServ framework 

with the integration of Active Queue Management. The intention of the Active queue 

management, such as RED, in the DiffServ architecture is to preferentially drop packets 

before any serious congestion begin (Floyd93).  

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 1 Introduction 

2 

1.2 Thesis Motivation 

Although DiffServ combined with RED is an ideal way of service differentiation, but it is 

still not up to demand, as the recent Internet traffic has evolved into a very dynamic form. 

Traffic pumped into the network by end users varies a lot from one another. Some end 

users are still using the traditional dial up method while other users are using 

Asynchronous Transfer Mode, ADSL or T1 services, which can carry more traffic at 

higher speed. By using different services, the state in the network has become more 

volatile. The amount of data exists in the network link at a given moment, varies in a 

large degree. Thus the existing DiffServ with RED is not capable enough to cater for this 

ever changing network condition. 

 

Hence the aim of this thesis is to produce a dynamic queue management for DiffServ by 

incorporating the fuzzy logic. By using fuzzy logic, now the queue management process 

is more dynamic and responsive towards changes in the network traffic and could be 

known as FuzAQM Model. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 1 Introduction 

3 

1.3 Thesis Objectives 

This thesis undertakes a thorough study of IP QoS models, which stresses on creating a 

simulation environment for testing and evaluating dynamic queue management model in 

DiffServ Domain. The objectives of the thesis are summarized as follows: 

1. To create a dynamic queue management model for DiffServ network 

using fuzzy logic 

2. To study the differences between different RED parameters settings 

3. To explore and study IP QoS models and focus mainly on DiffServ  

4. To create a simulation environment for DiffServ 

5. To evaluate the effectiveness of the FuzAQM in the created DiffServ 

simulation environment 

6. To study the behaviors and response of the FuzAQM under different 

parameters and traffic load 

 

1.4 Thesis Scopes 

The implementation of this project would be limited to DiffServ AF PHB. This is so as 

EF PHB is considered as premium service that will get all the special treatment and the 

BE PHB is considered as best-effort traffic, which will be discarded first, once 

congestion avoidance takes place or congestion occurs. Furthermore, AF classes have 4 

different types of services, which are the AF1, AF2, AF3 and AF4. Between these 4 

classes there are different preferential and treatment among them. AF1 is considered 

more superior than AF2 and so on. Within the same AF class, there will be further 

Univ
ers

ity
 of

 M
ala

ya



Chapter 1 Introduction 

4 

differential among the packets. This difference will be governed by the usage of drop 

precedence. 

 

1.5 Thesis Significances 

Below are the significances of the project. 

1 To improve total throughput of traffic 

By implementing fuzzy logic into queue management, the total number of 

successful packets delivered will be boosted.  

 

2 To improve throughput of packets with higher drop precedence 

As for packets with the same AF PHB, attention will always be given to 

packets with lower drop precedence so that it will be delivered within an 

acceptable throughput percentage. Before the incorporation of fuzzy logic, 

the traffic conditioner will have a profile, which will maximize the 

throughput of lower drop precedence that will starve packets with higher 

drop precedence. With the implementation of fuzzy logic, packets with 

higher drop precedence will not be starved and at the same time still 

maintaining an acceptable throughput percentage of the packets with 

lower drop precedence. 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 1 Introduction 

5 

3 To turn the queue management model into a responsive queue 

management 

The queue management model in the DiffServ environment will work 

according to a set of RED thresholds. As these parameters take effects, it 

will be set into the queue management. This will make the queue 

management rigid and unresponsive to network condition changes. But 

with the help of fuzzy logic, the queue management will now be more 

responsive to network condition and actively changes the RED thresholds 

to suits the current condition of the network. 

 

1.6 Thesis Organization 

This thesis is organized into 7 chapters as follows: 

Chapter 1  Introduction 

Chapter 2  Literature Review 

Chapter 3  Network Simulator and Simulation 

Chapter 4  Proposed Active Queue Management Model  

Chapter 5  Coding and Implementation 

Chapter 6  Data and Result analysis 

Chapter 7  Conclusion and Future Work 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 6 

Chapter 2: Literature Review 

2.1 Quality of Service 

Quality of Service (QoS) refers to the network’s ability to improve its service for selected 

network traffic using various technologies. Different type of technologies has been 

developed for this purpose such as Asynchronous Transfer Mode (ATM), Ethernet and 

Frame Relay. When trying to provide QoS in the network, some parameters need to be 

attended. These parameters are keys in providing better or priority services to the traffic 

and these parameters are as follow: 

1. Jitter 

2. Delay 

3. Packet loss 

4. Bandwidth 

 

The major purpose here is to provide a service with a dedicated bandwidth, acceptable 

jitter and delay; and lesser packet drop. Besides than bandwidth, jitter, delay and loss, 

there is also an important feature which needs to be addressed in providing QoS which is 

while providing priority for important traffic, the less important traffic should not be 

sacrifice or starved. 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 7 

2.1.1 Concepts of QoS 

The primary focus of QoS is to provide a better or special service to those packets which 

need premium service. This can be done by assigning higher priority to the important 

packets or by limiting resources for less important traffic. Furthermore, less important 

traffic may be assigned a value of lower priority from the important ones. As for 

DiffServ, the concept that will be applied to carry out QoS ability is to have congestion 

management tools by raising the priority of an aggregated flow, which has same 

requirements, providing different queues for different priority and servicing those queues 

differently. 

 

Prioritizing could be done by raising the priority settings for important packets while 

lowering those unimportant packets, and dropping those lower priority packets prior to 

higher priority packets. In addition, by manipulating the shaping and queuing mechanism, 

throughput of those high priority packets could be tuned to surplus those lower priority 

packets. 

 

QoS tools could help to alleviate most congestion problems, but in reality it couldn’t 

perform efficiently because most of the time, the traffic pumped in is way too much than 

the bandwidth could support (Cisco00). In this case, QoS tools could only be merely a 

small relief to the huge problem and the QoS tools couldn’t help in providing better QoS 

for the network. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 8 

2.1.2 Architecture of QoS 

Three fundamental part have been introduced for QoS implementation (Cisco00), which 

are: 

1. QoS identification and marking 

2. QoS within single network element 

3. QoS policy, management and accounting functions 

 

2.1.2.1 QoS Identification and Marking 

In order to provide different treatment for different packets, firstly the packets must be 

identified or marked or identified plus marking accordingly. When a packet is identified 

but not mark, the packets are merely classified by their Per Hop Behavior (PHB) 

(Cisco00). If the packets are to be marked, the IP precedence field will be modify to 

reflect the priority of the packets.  

 

2.1.2.2 QoS within Single Network Element 

There are several ways to provide QoS in a network. To provide QoS within a single 

network, queue management, congestion management, link efficiency and shaping or 

policing is used (Cisco00). 

 

Congestion management is used to provide QoS for those higher priority packets to be 

sent across the network. This could be done by using different queuing discipline such as 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 9 

class-based weighted fair queuing (CBWFQ), weighted fair queuing, priority queuing 

(PQ) or round robin (RR). 

 

Queue management is used to react to initiation of congestion by dropping the packets in 

the queue. Traditionally, drop tail is implemented where incoming packets are dropped 

when the queue is full. This will lead to a phenomenon called global synchronization. In 

order to prevent this phenomenon, there are two things need to be done (Cisco00): 

1. Making sure that the queue does not fill up to the maximum limit, so that 

incoming higher priority packets could have the chance to get into the queue 

2. Applying a way to drop lower priority packets before higher priority packets 

dropped. 

 

Link efficiency refers to ability of the link to be utilized to the fullest whilst avoiding too 

much delay or segmentation of the packets in the queue. Shaping is used to avoid traffic 

overflow. The traffic entering the network should be paced so that the network could 

manage it accordingly to its ability. 

 

2.1.2.3 QoS policy, management and accounting functions 

This part of the QoS addresses the importance to evaluate and set the QoS policies and 

goals (Cisco00). This could be carried out using a probe to monitor the condition of the 

traffic and initiate proper QoS techniques accordingly. Finally a procedure is needed to 

evaluate the result of the action taken by getting the feedback from the targeted 

application to determine whether the QoS goals are met or not. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 10 

2.2 Differentiated Services 

The Integrated Services Architecture (ISA) and Resource Reservation Protocol (RSVP) 

(RFC2205) are meant to support QoS in the Internet or private networks. Although both 

have been useful tools to provided QoS assurance, in reality they are complex to deploy 

(Stallings02). Another issue, which has been raised by these, two tools, is scalability. 

Internet nowadays is handling huge amount of traffic, and with the use of ISA and RSVP, 

it is quite impossible to trace the entire controlling signal required to coordinate 

integrated QoS offerings and the state information required at routers. This is due to the 

characteristic of ISA, which treat every single connection distinctively and information 

need to be stored for each unique flow. 

 

As the network load worsens by the use of variety of applications, immediate attention is 

required to offer differing levels of QoS to different traffic flow besides ISA.  The 

differentiated services (DiffServ) architecture, based on the Request for Comments: 2475 

(RFC 2475) An Architecture for Differentiated Services, is intended to provide 

uncomplicated, yet easy to implement with low overhead tool to support a variety of 

network services that are differentiated on the basis performance. 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 11 

DiffServ efficiency and ease of deployment owe lots to several key characteristics 

(Stallings02) as listed below: 

 

1. Differing QoS treatment on each IP packets are labeled using the existing IPv4 

Type of Service (TOS) field or IPv6 Traffic Class Field. These are all existing 

field in their respective IP header, so no change is required. 

2. Before the customer could really use the DiffServ, a Service Level Agreement 

(SLA) has to be established between the service provider and the customer. With 

this feature, there would be no need incorporate DiffServ mechanism in 

applications. Thus, existing application need not to be modified. 

3. DiffServ provides a built-in mechanism where all traffic with the same DiffServ 

field are aggregated and treated with the same services. This is a vital 

characteristic, which contributes towards scalability of DiffServ in larger 

networks and traffic loads. 

4. Individual routers in DiffServ domain implement DiffServ by queuing and 

forwarding packets based on the DiffServ field. Hence routers process each 

packet individually and need not save state information on packet flows. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 12 

2.2.1 Architecture for Differentiated Services 

The differentiated services architecture is based on a simple model where traffic entering 

a network is classified and possibly conditioned at the boundaries of the network, and 

assigned to different behavior aggregates (RFC2475). Using a specific field in the IP 

header, Type of Service (TOS) field, behavior of the aggregated traffic could be 

identified as the DiffServ Codepoint (DSCP) field. Each aggregated behavior or known 

as per hop behavior (PHB) is being assigned with a unique DSCP value.  Within the core 

of the network, packets are forwarded according to the per-hop behavior associated with 

the DS codepoint (RFC2475).  

 

2.2.2 DiffServ Codepoint (DSCP) 

Each packet that needs to use the DiffServ service will need to be labeled accordingly to 

its service request by using the DiffServ field. The DiffServ field is located at the TOS 

field in the IP header. There are two headers in two different versions of IP packets. In 

IPv4 the TOS field is used and for IPv6 the Traffic class field is used. The format of the 

DiffServ field (according to the RFC 2474) uses the leftmost 6 bits to form a DiffServ 

Codepoint (DSCP), while the rightmost 2 bits are left unused at the moment. 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 13 

With a 6 bit codepoint, there are logically 64 different classes of traffic could be define. 

But these 64 codepoints are further reallocated into three pools of codepoint as follows 

(Stallings02): 

 

1. Codepoints of the form XXXXX0, where X is either 1 or 0, are reserved for 

assignment as standards 

2. Codepoints of the form XXXX11, where X is either 1 or 0, are reserved for 

experimental or local use 

3. Codepoints of the form XXXX01, where X is either 1 or 0, are reserved for 

experimental or local use but might be allocated for future standards action as 

needed 

 

From the 3 different pools, the first pool has several assignments made. Codepoint 

000000 is assigned as default packet class, which is also known as the traditional best 

effort forwarding behavior (RFC2474). Such packets are forwarded only if they have 

been received when the link is available. If there is a situation where other higher priority 

packet exists, this higher priority packet is given preference over those best effort 

packets. 

 

Codepoints from XXX000 are reserved for backward compatibility with the IPv4 

precedence service (RFC2474). The XXX000 DSCP form will be serviced at a minimum 

equivalent to that IPv4 precedence functionality (Stallings02). 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 14 

2.2.3 Per Hop Behavior (PHB) 

A per-hop behavior (PHB) is a description of the externally observable forwarding 

behavior of a DS node applied to a particular DS behavior aggregate (RFC2475).  This 

behavior could be seen or obvious if there are few aggregated behavior exist in the same 

link. For example, if there is only one behavior aggregate in the link, the forwarding 

activities will depend mainly on the load of the link. Useful behavioral distinctions are 

mainly observed when multiple behavior aggregates compete for buffer and bandwidth 

resources on a node (RFC2475).  PHB is used by a node to allocate resources depending 

on the aggregate behavior, and it is on top of this basic hop-by-hop resource allocation 

mechanism that useful differentiated services may be constructed. 

 

PHBs are implemented in nodes using buffer management and packet scheduling 

mechanisms.  PHBs are defined in terms of behavior characteristics related to service 

provisioning policies, and not in terms of specific implementation mechanisms.  

Commonly, a mixture of implementation mechanisms may be fit for implementing a 

particular PHB group.  Furthermore, it is likely that more than one PHB group may be 

implemented on a node and utilized within a domain (RFC2475). PHB is selected at a 

node by a mapping of the DS codepoint in a received packet (RFC2474).   

 

To assure that PHB could be implemented clearly and standardized, two RFC have been 

issued as follows: 

1. RFC 2597 Assured Forwarding PHB 

2. RFC2598  Expedited Forwarding PHB 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 15 

2.3.1 Expedited Forwarding PHB 

The EF PHB can be used to build a service through DS domains, which will have 5 

characteristics as follows: 

1. low loss 

2. low latency 

3. low jitter 

4. assured bandwidth 

5. end-to-end service 

 

 

The end users will have the concept of using point-to-point connection or a "virtual 

leased line". This service has also been described as Premium service (Nichols97). 

 

Loss, latency and jitter are experience when packets travel through network and being 

queued up for forwarding purpose in each router that they visited. To provide a service, 

which will not cause loss, jitter and latency will be almost impossible to construct. For 

this to be realized, packets must be transmitted through indefinite queue size, which will 

guarantee no packet loss due to drop tail effect, transmitted through an empty queue all 

the time to avoid latency and the link must be fast enough to transmit the packets t avoid 

jitter. 

 

However providing low loss, latency and jitter for some traffic aggregate might be more 

realistic by ensuring that the aggregate sees no or very small queues. It is when traffic 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 16 

arrives at a router with an arrival speed exceeding its departure speed, queue will be 

formed. Thus a service that ensures no queues for some aggregate is equivalent to 

bounding rates such that, at every transit node, the aggregate's maximum arrival rate is 

less than that aggregate's minimum departure rate (RFC2598). The EF PHB is not a 

mandatory part of the Differentiated Services architecture (RFC2598). 

 

The creation of the service consists of two parts, which are: 

1. Configuring nodes so that the aggregate has a well-defined minimum departure 

rate. 

2. Conditioning the aggregate so that its arrival rate at any node is always less than 

that node's configured minimum departure rate. 

 

 

2.3.2 Assured Forwarding PHB 

Assured Forwarding (AF) PHB group is a means for a provider DS domain to offer 

different levels of forwarding assurances for IP packets received from a customer DS 

domain (RFC2597).  AF allows many dropping implementations such as RED (Clark98). 

There are four AF classes being defined, where in each AF class certain amount of 

forwarding resources are allocated. The DS domain provider will set the AF class for 

each IP packet, which would like to use the differentiated services, or the customer 

himself could set it. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 17 

According to the RFC2597, AF PHB group provides forwarding of IP packets in N 

independent AF classes. Within each AF class, an IP packet is assigned one of M 

different levels of drop precedence. An IP packet that belongs to an AF class i and has 

drop precedence j is marked with the AF codepoint AFij, where  

 

and  

 

 

For example, there are 2(N=2) independent AF classes which is 1 and 2 (1 ≤ i ≤ 2) and 

within each AF class, each packet is assigned to 2 (M=2) drop precedence (1 ≤ j ≤ 2). 

This will create four different preferential treatments for the IP packets, which are 

 

 

 

 

Within each AF class, IP packets are marked with one of three potential drop precedence 

values.  In case of congestion, the drop precedence of a packet determines the relative 

significance of the packet within the AF class. A congested DS node tries to protect 

packets with a lower drop precedence value from being lost by preferably discarding 

packets with a higher drop precedence value (RFC2597). 

 

1 ≤ i ≤ N 1 ≤ j ≤ M 

AF1 1 AF1 2 AF2 1 AF2 2 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 18 

In the implementation level, the degree of forwarding assurance of an IP packet depends 

on (RFC2597) as follows: 

1. how much forwarding resources has been allocated to the AF class that the packet 

belongs to 

2. what is the current load of the AF class, and, in case of congestion within the class 

3. what is the drop precedence of the packet 

 

For example, if traffic conditioning actions at the entrance node of the provider, DS 

domain make sure that an AF class in the DS nodes is only reasonably loaded by packets 

with the lowest drop precedence value. AF class therefore can offer a high level of 

forwarding assurance for packets that are within the subscribed profile (in profile) while 

assuring a level of forwarding for the lower drop precedence IP. 

 

According to RFC2597, within each AF class, a DS node MUST accept all three drop 

precedence codepoints and they MUST yield at least two different levels of loss 

probability. For this project purpose, 2 different levels of drop probability for one class of 

AF traffic is been used. 

 

An AF implementation MUST attempt to minimize long-term congestion within each 

class, while allowing short-term congestion resulting from bursts (RFC2597). This 

requires an active queue management algorithm such as Random Early Drop (RED) 

(RFC2598). 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 19 

Recommended codepoints for the four general use AF classes are given below. However, 

these codepoints do not overlap with any other general use PHB groups. 

 

The table below summarizes the recommended AF codepoint values (RFC2597). 

 

Table 2.1 Recommended AF codepoint values 

 Class 1 Class 2 Class 3 Class 4 

Low Drop Precedence 001010 010010 011010 100010 

Medium Drop Precedence 001100 010100 011100 100100 

High Drop Precedence 001110 010110 011110 100110 

 

 

Drop precedence corresponds to value j and Class corresponds to value i for AF 

codepoint AFij. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 20 

2.2.4 DiffServ Domain 

A DS domain is a contiguous set of DS nodes which operate with a common service 

provisioning policy and set of PHB groups implemented on each node (RFC2475).  A DS 

domain has a well-defined boundary consisting of two characteristics, which are: 

1. DS boundary nodes 

2. Nodes within the DS domain 

 

These two different types of nodes have their own functions. The boundary node or 

border router is responsible to classify and possibly condition ingress traffic into the DS 

domain. This process is vital to ensure that all IP packets are appropriately marked with a 

Per Hop Behavior supported within the DS domain. 

 

The nodes within the DS Domain have lesser function compared to the border nodes. 

Their function is to select the forwarding behavior for packets according on their DS 

codepoint, mapping that value to one of the supported PHBs using either the 

recommended codepoint to PHB mapping or a locally customized mapping (RFC2474). 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 21 

2.2.5 Classifiers 

Classifiers select packets in a traffic stream based on the content of some portion of the 

packet header (RFC2475).  Two types of classifiers are being defined, which are: 

1. Behavior Aggregate Classifier (BA) 

2. Multi-field Classifier (MF) 

 

There are differences in the two types of classifiers. The difference could be noticed by 

the way the classifiers work in classifying the packets. BA Classifier classifies packets 

based on the DSCP only while MF classifier selects packets based on the value of a 

combination of one or more header fields. Some of the combinations are as follows: 

 

1. source address 

2. destination address 

3. DS field 

4. protocol ID 

5. source port  

6. destination port numbers 

7. other information such as incoming interface 

 

Classifiers are used to "steer" packets matching some specified rule to an element of a 

traffic conditioner for further processing (RFC2475). Classifiers must be configured by 

some management procedure in accordance with the appropriate TCA (RFC2475). 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 22 

2.2.6 Traffic Classification and Conditioning 

Differentiated services are extended across a DS domain boundary by establishing a 

Service Level Agreement (SLA) between an upstream network and a downstream DS 

domain (RFC2475).  The SLA might contain rules for specifying packet classification 

and re-marking. Furthermore, it might also specify traffic profiles and actions to traffic 

streams, which are in or out of profile. The Traffic Conditioning Agreement (TCA) 

between the domains is derived (explicitly or implicitly) from this SLA (RFC2475). 

 

Traffic conditioning performs functions such as metering, shaping, policing and/or re-

marking. These functions are vital to ensure that the traffic entering the DS domain 

conforms to the rules specified in the TCA.  The extent of traffic conditioning required is 

dependent on the specifics of the service offering, and may range from simple codepoint 

re-marking to complex policing and shaping operations (RFC2475). 

 

2.2.7 Traffic Conditioners 

A traffic conditioner may contain the following elements although it is not necessary to 

contain all components as follows: 

1. Meter 

2. Marker 

3. Shaper 

4. Dropper 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 23 

A traffic stream is selected by a classifier, which steers the packets to a logical instance 

of a traffic conditioner.  A meter is used to meter the traffic stream against a traffic 

profile.  The state of the meter with respect to a particular packet may be used to affect a 

marking, dropping, or shaping action (RFC2475). 

 

The diagram below shows an example of how the traffic conditioner components being 

organized. 

 

 

 

Figure 2.1 Traffic conditioner components 

Classifier Incoming 
Packets 

Meter 

Shaper/Dropper 

Marker 

Outgoing 
Packets 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 24 

2.2.7.1 Meter 

All the incoming packets will be measured by the marker to determine their conformance 

of a packet with the agreed profile. With the meter, each packet will be determined 

whether it has exceeded or within the service level guaranteed for the class (Stallings02). 

Further action will be triggered accordingly by other part of the traffic conditioner if the 

packets are non-conforming to the agreed profile. 

2.2.7.2 Marker 

Packet markers set the DS field of a packet to a particular codepoint, adding the marked 

packet to a particular DS behavior aggregate (RFC2475).  Usually the marker is 

configured to mark a packet to one of a set of codepoints used to select a PHB from PHB 

group, according to the state of a meter.  When the marker changes the codepoint in a 

packet it is said to have "re-marked" the packet (RFC2475). 

2.2.7.3 Shaper 

Shapers delay some or all of the packets in a traffic stream in order to bring the stream 

into compliance with a traffic profile (RFC2475).  A shaper usually has a finite-size 

buffer, and packets may be discarded if there is not sufficient buffer space to hold the 

delayed packets (RFC2475). 

2.2.7.4 Dropper 

Droppers discard some or all of the packets in a traffic stream in order to bring the stream 

into compliance with a traffic profile (RFC2475). This process is known as "policing" the 

stream. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 25 

2.2.8 Traffic Profiles 

A traffic profile specifies the temporal properties of a traffic stream selected by a 

classifier.  It provides rules for determining whether a particular packet is in-profile or 

out-of-profile (RFC2475). 

 

Based on these different profiles, different conditioning actions may be applied to IP 

packets. For each in profile and out of profile, different actions may be triggered to be 

applied to the packet. For example in profile packets may be allowed to enter the DS    

domain without further conditioning; or, alternatively, their DS codepoint may be 

changed (RFC2475). The latter happens when the DS codepoint is set to a non-Default 

value for the first time (RFC2474), or when the packets enter a DS domain that uses a 

different PHB group or codepoint to PHB mapping policy for this traffic stream. 

 

On the other hand, out of profile packets may be queued until they are in-profile 

(shaped), discarded (policed), marked with a new codepoint (re-marked), or forwarded 

unchanged while triggering some accounting procedure (RFC2475).  Out-of-profile 

packets may be mapped to one or more behavior aggregates that are "inferior" in some 

dimension of forwarding performance to the BA into which in-profile packets are 

mapped (RFC2475). 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 26 

2.3 Congestion management 

A special care must be taken by the end systems to regulate the flow of their data into the 

network. This is important to maintain network performance level and to allow efficient 

usage of the network resources. If care is not taken to maintain the network efficiency, 

congestion might occur or in worse cases, total collapse of the network will occur 

(Stallings02). This phenomenon is also known as "Internet meltdown" or technically 

known as congestion collapse was first observed during the early growth phase of the 

Internet of the mid 1980s (RFC896).  In the year of 1986, Jacobson developed congestion 

avoidance mechanisms, which is implemented in the TCP (Jacobson88, RFC1122).  This 

mechanism will react to congestion and slow down the source transmission rate to avoid 

further disaster due to network overload. This event can be triggered with the presence of 

a packet drop and the signal of packet dropped is received by the source. It is acclaim that 

these TCP congestion avoidance algorithms have contributed towards the prevention of 

congestion that leads towards collapse of today's Internet (RFC2309). 

  

However, the ever-growing situation of the Internet traffic, has initiated a quest to find 

better mechanisms than the one developed by Jacobson. In the traditional way, the queue 

will be filled up until its maximum limit and then the incoming packets will be dropped. 

This is called the tail drop. There are also two other queuing disciplines could be applied 

when queue become full (RFC 2309), which are: 

 

1. Random drop on full 

2. Drop front on full 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 27 

Random drop on full drop randomly selected packet from the router queue when the 

queue is full and a new packet is arriving. On the other hand, the second discipline drops 

packet at the front of the queue when the queue is full and there are new packet arriving. 

But both of this discipline does not solve queue full problem (RFC2309). 

 

Active queue management has been a solution to this full-queues problem. Active queue 

management works by dropping packets even before the queue is full. Such Mechanism 

is known as Random Early Detection (RED). 

 

2.3.1 Random Early Detection 

Random early detection or RED is an active queue management algorithm. Routers use 

RED to provide better services than using the traditional tail drop mechanism. In general, 

RED work by dropping packets probabilistically when the queue start to pile up. The 

probability value increases as the estimated average queue size grow (RFC2309).   

 

RED algorithm consists of two parts (RFC2309) as follows: 

1. Average queue size estimator 

2. Dropping packet decision maker 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 28 

2.3.2 Global Synchronization 

RED capability to anticipate congestion has saved us experiencing a phenomenon called 

global synchronization. This happens for TCP (RFC793) traffic where a drop packet will 

signal the source to enter slow start phase. The purpose of the TCP source to enter slow 

start phase is to reduce number of packets sent into the network and to ease congestion. 

The packet, which has been lost, will be retransmitted by the source and this will burden 

up the network and imposing delay in the forwarding of packets. This can become serious 

when several sources enter the slow start phase leaving the network under utilized. After 

some time, sources will start to deliver more packets as it leaves slow start phase. This 

will cause a surge in the network and again packets will be dropped and the slow start’s 

phase reignite. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 29 

2.3.3 RED algorithm 

RED general algorithm for each packet arrival is shown below (Stallings02) 

Average queue size is calculated as avg and the algorithm is as shown in figure 2.2: 

 

Figure 2.2 RED algorithm 

 

 

The algorithm starts to work every time when a new packet arrives at the queue. It will 

calculate the average queue length and to be compare with two RED threshold, the 

minimum and maximum thresholds. If the average is less than the minimum threshold, 

the packet will be placed in the queue. If the average is in between the two thresholds 

value, drop probability will be calculated depending on the average value. The 

probability will increase as the average value closing up to the maximum threshold value. 

 Arrival of packets 

avg < min. threshold Yes 

No 

min threshold ≤ avg ≤ max threshold 
No 

Yes probability of packet 
<= P  

Discard packet 

Yes 

Queue packet 
No 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 30 

Packets with the probability P will be discarded and packets with the probability 1-P will 

be queued. If the average value exceeded the maximum threshold value, the packet will 

be discarded at once. 

 

Figure 2.3 RED parameters settings 

 

Figure 2.3 above shows the drop probability P against the Average value.  The minimum 

threshold (Min th) is smaller than the maximum threshold (Max th) value. Packets, which 

exceed the maximum threshold, will be dropped, indicated by the value of drop 

probability of 1. Packets below the minimum threshold will be queue, indicated by drop 

probability of 0. In between the minimum and maximum thresholds, the packet will be 

dropped with a probability that varies linearly from 0 to P Max. 

 

There are several modifications of the existing RED algorithm and they are called the 

variants of RED. Some of the variant of RED are Weighted RED (WRED), RED with 

In/Out and Coupled average queues (RIO-C) and RED with In/Out and Decoupled 

average queues (RIO-D). 

 

Min th Max th 

1 

P  Max 

P  Drop 

Average 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 31 

2.4 Fuzzy Logic 

The fuzzy logic theory was proposed by Professor L.A. Zadeh in the year 1965. The idea 

of having fuzzy logic actually begins when there is a thought or demand for a computer 

to do reasoning using approximation not based on precise input. Computer is very precise 

and it can’t do approximation for a situation unless it is told so and equipped with fuzzy 

logic. In the real world there are many things, which need heuristic judgment according 

to situation not by using preplanned or preprogram values. In other words, fuzzy logic is 

a way to gather human intelligence, knowledge, experience, thinking process and 

judgment and put into the computer so that it will become intelligent (Asai95).  

 

2.4.1 Fuzzy Set 

Fuzzy set is a set, which is used to group objects in it but without a crisp border. The set 

may have group of things, which precisely belongs to it and group of things, which does 

not belong to it (Asai95).  The word fuzzy itself suggest that it is unclear or blur. 

 

For example, we can use the set hungry to describe a group of hungry people. Logically 

the group would be divided into two set of values, either they are hungry or not. The two 

values being mention here are hungry and not hungry. This is a very precise or crisp 

grouping method. If we used time duration after the last meal to determine whether a 

person is hungry or not, we can make assumption that 6 hours after the last meal will 

make a person hungry. So a person, who last consumed a meal 4 hours or 5 hours ago, is 

considered as not hungry. Perhaps we can also conclude that a person who had just taken 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 32 

his last meal 5 hours 59 minutes ago is not hungry. Just because of a minute difference, 

the conclusion is a bit too drastic. Figure 2.4 shows the situation of this example. 

 

 

 

Figure 2.4 Crisp representation of the term of hungry 

 

This drastic changes in decision could be rectified using a degree to represents how 

hungry is a person. The value between 0 and 1 will be used to measure this degree. By 

using this degree range, we can now make justification that a person who had his last 

meal 6 hours ago is consider as hungry with the degree 0.7, 5 hours ago with the degree 

0.5 and 8 hours ago is very hungry with the value of 1.0. By using this degree now we 

can express qualitatively the vague term of hungry quantitatively (Asai95). 

Time after 
last meal in 
hour 

Not 
hungry 

Hungry 

6 5 8 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 33 

2.4.2 Membership Functions 

Besides having a degree of 0 to show that the person is not hungry and 1 to show that 

person is really hungry, we can actually have more than one fuzzy set for how hungry is a 

person. To further explained this situation, 3 fuzzy sets will be defines for hungry, which 

are not hungry, relatively hungry and extremely hungry. The figure 2.5 will represent the 

3 situations. 

 

 

Figure 2.5 Fuzzy representation of the term of hungry 

 

Each curve in the graph is actually called the membership functions. In this example 

there are only 3 membership functions. It is possible to define more than 3 membership 

functions. For example, a hungry membership function could be added and the curve can 

be drawn between 5 hours and 7 hours line. 

Time after 
last meal in 
hour 

0 

1 

6 4 8 

Not hungry 

Relatively hungry 

Extremely hungry 

7 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 34 

2.4.2 Fuzzy Operators 

Fuzzy sets can be considered as an extension of Boolean logic, so the classical sets of 

operator could be perform on the fuzzy sets. The classical set operations are as follows: 

 

1. Union 

2. Intersection 

3. Complement 

 

Union is an operations which selects the maximum of the degrees of memberships from 

the given sets (Brigette03). For example, given set A and B, with both maximum of the 

degrees of memberships are 0.9 and 1.0 respectively, the union operator will choose the 

value 1.0. 

 

Intersection is an operation, which takes the minimum of the degrees of memberships 

from the given sets (Brigette03).  For example, given set G and H, with both minimum 

degrees of memberships are 0.8 and 0.2 from each set; the intersection operator will 

choose 0.2 as its output. 

 

Complement is an operator, which takes the degrees of memberships of any given 

members in a set and minus it with 1 (Brigette03). For example, for a given member in a 

set, with a degree of membership of 0.45, the complement operator will return the value 

of 1 – 0.45 which is 0.55. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 35 

2.4.3 Fuzzy Reasoning 

Reasoning is a process that could be described using normal jargon as interpretation. 

Fuzzy reasoning or approximately reasoning is a way to get output from several inputs or 

technically known as fuzzy inference. This method could be explained as the way human 

does interpretation according for a situation according to several circumstances, with a 

difference, a computer does it. 

 

2.4.3.1 Fuzzification 

Fuzzy inference is a type of logic, which can be, describe with mathematics. The most 

basic things here are rules, facts and conclusion (Asai95). The inference can be put into a 

mathematical formulation as shown below. 

 

 Rule: IF x is A THEN y is B 

 Fact:  x is A 

 Conclusion:  y is B 

Or 

 Rule: IF you are careless THEN you will fall 

 Fact:  you are not careless 

 Conclusion:  you will not fall 

 

In order to get inference results, a sets of rules need to be defined. Fuzzification is a 

method to establish the fact based of the fuzzy system (Brigette03). 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 2 Literature Review 

 36 

2.4.3.2 Inference 

The inference process begins when the input is being received by the fuzzy systems. A 

series of test will be carried of by testing input on every rule or some of the rules. The 

process will evaluate the if else rules and come out with a result for each if else rule. 

 

2.4.3.3 Composition 

Composition is an inference process, which takes into consideration every output from 

the if else rules, which have been evaluated to, produced a single conclusion. 

 

2.4.3.4 Defuzzification 

This is the final process where the single conclusion fuzzy inference value will be 

mapped into a crisp value. This crisp value is necessary for the main system or the user of 

the fuzzy system because the system or user can only understand crisp value or act using 

a crisp value.  

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 37 

Chapter 3: Network Simulator and Simulation 

3.1 Network Simulator 

The newly developed DiffServ active queue management with fuzzy logic must be tested. 

There are two main ways to test the model, one is by using real network or the Internet; 

or we can use a network simulator to simulate the real environment. For this thesis, the 

testing of the newly developed model will be carried out using simulation. The main 

reason of using this method is because it is more feasible. If real environment is to be 

used, it will use up a lot of resources, time and cost which in return is not that practical. 

 

Simulation is important when the case to be studied is very complex with a lot of 

variables and interacting components, variables relationships are non linear, models to be 

studied contains a lot of volatile variables or the output must be represented as an 

animation (Fishwick96). 

 

3.1.1 Computer simulation 

Computer simulation is basically about designing a model on a computer and executing it 

to produce results for analysis. A model can be described as a representation of the real 

world or situation. It also could mean a theoretical physical representation. 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 38 

In a computer simulation, there are 3 main parts (Fishwick96), which are: 

1. modeling 

2. execution 

3. analysis 

 

The modeling part concentrates in building a model or few models to be augmented to 

represent the real situation or problem to be studied. Then, the execution part will need a 

computer program to steps through time and carry out each event that must be carried out 

at each tick of the time. At each tick of the time, there might be several variables needed 

to be updated and initiated or destroyed, depending on the details in the model. The final 

part, which captures the most attention, is the analysis part. Results generated during or 

after the simulation has ended served the purpose of understanding the problem to be 

solved. From this results basically in the form of statistics figure, could be used to make 

suggestion or feedback some information to improve the model or simulator itself. 

 

A network simulator is actually a computer simulation tool, which could be used to study 

the network behavior specifically. There are several network simulator tools available 

such as OPNET, Maisie, PARSEC, INSANE, REAL and ns2. 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 39 

3.1.2 Advantages and Disadvantages of Computer simulation 

Key advantages of computer simulation could be seen when simulation can solve 

complex situation without incurring high cost, consuming a lot of time or threatening real 

life and situation. For an example, a simulation for tunneling through a mountain could 

be carried virtually using computer. The explosion part could be represented in a model 

so that the outcome of the explosion could be studied without any life harmed and 

threaten the mountain structure. If there is anything wrong with the simulation due to the 

use of wrong explosive materials, amount or timing for explosion, they could be reset and 

done again until a good setting could be compromised. Another few advantages of using 

simulation are that the environment for the simulation is controllable and it could be 

animated to help increase understanding of the situation. 

 

There are also disadvantages in a computer simulation. The most crucial part in a 

computer simulation part is to create a model, which represents the real situation as 

accurate as possible. Some situation is too complex but the model built to represent it 

needs to be simplified and maybe some assumptions need to be done. This will cause the 

simulation to be less accurate. There is also another disadvantage in computer simulation 

when it needs to simulate situation with unpredictable behavior. For example human 

behavior is so unpredictable and it is almost too random to be modeled.  

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 40 

3.2 Available Network Simulator 

3.2.1 OPNET 

OPNET or known as OPtimised Network Engineering Tool Modeler is a well known 

commercial network simulator which was developed and introduced in the year 1987. 

OPNET is an object-oriented simulator built on the C/C++ languages (OPNET97). It 

supports hierarchical network models, object-oriented modeling, finite state machine 

modeling and wireless, point-to-point and multipoint links.  

 

OPNET has graphical user interface (GUI) support and it is based on a series of 

hierarchical editors. The organization of these editors is parallel to the structure of the 

real networks, underlying protocol and equipment (OPNET97). The editors in OPNET 

are as follows: 

1. The Project Editor 

2. The Node Editor 

3. The Process Editor 

  

OPNET has several advantages such as animation, unlimited sub network nesting, 

integrated with a debugger, geographical and mobility modeling; and has more than 400 

library functions. 

 

Although OPNET is one of the leading network simulator tools available in the market, it 

is way too expensive to be used. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 41 

3.2.2 Maisie 

Maisie is a discrete event simulation language, which is developed using C language 

(Maisie96). The discrete event simulation owes much to its process approach. 

 

Maisie can simulate discrete event simulation model using several different asynchronous 

parallel simulation protocols (Maisie96). It also has a powerful message receiving 

constructs that contributes towards natural simulation program and shorter simulation. 

 

Maisie is not equipped with GUI and it is not portable. 

3.2.3 PARSEC 

PARSEC or known as Parallel Simulation Environment for Complex systems (PARSEC) 

is a C-based discrete-event simulation language (PARSEC98). Derived from Maisie, 

PARSEC is now more efficient with several improvements, both in the syntax and the 

simulation execution environment (PARSEC98).   

 

The key advantage of PARSEC has over other network simulators, is its ability to 

execute a discrete-event simulation model using several different asynchronous parallel 

simulation protocols on a variety of parallel architectures. PARSEC is equipped with 

great message receiving constructs, which result in shorter and more natural simulation 

programs. Besides than that, it also provides debugging facilities and a front-end for 

visual specification of the simulation model as well as the runtime output. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 42 

A major disadvantage of PARSEC is that in order for a simulation to carry out, it 

involves the use of the language itself without a GUI. Furthermore, PARSEC is less 

portable when several platforms are taken into consideration. 

 

3.2.3 INSANE 

INSANE or known as Internet Simulated ATM Networking Environment (INSANE) is a 

network simulator designed to test various IP-over-ATM algorithms with realistic traffic 

loads derived from empirical traffic measurements and is written using C++ 

(INSANE96). 

 

INSANE does support a large number of Internet protocol such as IP, TCP and UDP. It 

also has several applications, which can mimic and simulate real world traffic, which 

includes telnet, ftp, World Wide Web, real-time audio, and real time video traffic.  

 

INSANE works quite well on distributed computing clusters and it is carried sequentially. 

It is also capable of handling large simulations. 

 

Although INSANE has several keys advantages, it also has several disadvantages. One of 

the major disadvantages of INSANE is it does not provide GUI support that facilitate the 

creation of the environment needed for the simulation. And the second major 

disadvantage is INSANE is not platform independent. It only operates on UNIX based 

and the performance output can be only viewed in a text-based form. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 43 

 

3.2.4 REAL 

REAL is a network simulator, which has been created for the purpose of studying the 

dynamic behavior of flow, and congestion control schemes in packet switched data 

networks (REAL97). REAL has around 30 modules, which emulates the flow control 

protocols such as TCP and 5 scheduling disciplines such as fair queuing and hierarchical 

round robin. 

 

REAL provides its source code in C for their users to modify accordingly to their interest. 

It also has online documentation for distribution and its main strength is its modularity of 

the codes makes it easy to add new modules. 

 

REAL will run on Digital Unix, SunOS, Solaris, IRIX, BSD4.3, Ultrix, UMIPS systems 

on VAX, SUN, SPARC, MIPS, Alpha, SGI or DECstation  (REAL97). It does not work 

on Windows based systems. Originally REAL does not come with GUI support but with 

the newer version it does come with GUI support written in Java.      

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 44 

3.2.5 Ns2 

Ns2 or known as Network Simulator 2 is a discrete event network simulator. The idea of 

ns2 actually derived from the REAL network simulator (NS03). To date ns2 development 

is supported by DARPA with SAMAN and through NSF with CONSER including 

ACIRI has witness a series of mass development of the simulator (NS03). 

 

Ns2 is written in C++ language and the scenario interface with the C++ code is written in 

Tcl scripting or OTcl (for ns2). 

 

The advantage of ns is that it permits simulation with several levels of abstraction, where 

higher abstraction levels trade off precision for performance. The simulator 

measurements do not impact the network by adding extra traffic. 

 

The disadvantage of ns2 is that it does not have a GUI for general simulation 

manipulation and scenario setup. 

 

3.3 Network Simulator Tool 

The network simulator used for this thesis is the ns2. The purpose of choosing ns2 is 

governed by several critical points and the ns2 advantages itself. 

 

Firstly, ns2 is available free online for interested researcher to download and use. Due to 

financial constraints, ns2 is obviously the best choice for this thesis. Secondly, ns2 is a 

Univ
ers

ity
 of

 M
ala

ya



Chapter 3 Network Simulator and Simulation 
 

 45 

well-known simulator, which is widely used in a lot of researches and publications. 

Furthermore, ns2 has its online forum and mailing list where researchers around the 

world could communicate and help each other in case of any difficulties or share domain 

knowledge whenever there is a common area of research interest. 

 

Ns2 is still expanding from time to time where other researchers substantially contribute 

their code such as the wireless code by UCB Daedelus and CMU Monarch projects and 

Sun Microsystems.  Ns2 is also an open source simulator where the full sets of code 

could be downloaded and modified accordingly to each researcher needs and interest. 

 

From the ns2 site itself, there are some write up and information that could help a 

beginner to understand and explore ns2. The site provides link to download the current 

version of ns2 and also previous version of ns2. It also has documentation for download 

and several tutorials to help novice user to get started with ns2. 

 

Although ns2 was intentionally developed for platform based on UNIX and Linux, 

through it development in current years, there are now efforts to port the existing ns2 

code over to make it portable and executable in Windows platform. 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 46 

Chapter 4: Proposed Active Queue Management Model 

4.1 The Proposed Active Queue Management Model 

Referring to the aim of this thesis and the facts presented in previous chapters, it is 

obvious that the traditional method of solving traffic problems is no longer effective. 

Thus there is a need to initiate a more suitable way or a more dynamic method to cater 

the current trend in network traffic. The proposed active queue management (FuzAQM) 

is one of the steps taken in answering this challenge. 

 

The proposed model will be using fuzzy logic as a tool to turn the traditional queue 

management model into a dynamic model. There are two parameters, which will be 

exploited to realize this model. The two parameters are the RED thresholds and the drop 

probability. The idea of exploiting these two parameters is because the queue size and the 

rate of change of queue are related to each other. Furthermore, the rationale here is to 

create an active queue management so the main concern here is to look into what is 

happening in the queue rather than other metrics such as queue delay or available 

bandwidth. Such metrics are useful when the active queue management model expand its 

perspective into improving end-to-end delay or routing decision.   

 

This proposed FuzAQM model will used the current queue occupancy and the rate of the 

change in the queue at every moment when a packet arrive at the bottleneck routers as its 

rules in determining further action. Several researches in networking areas using fuzzy 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 47 

logic concept have been done and published in IEEE such as (Zhang01), 

(Chrysostomou03), (Yanfei03) and (Karthik04). 

 

(Zhang01) focuses on developing a new congestion control using fuzzy logic in DiffServ 

domain. He introduces a drop based congestion control mechanism, which control or 

drop packets upon its arrival and drop those packets with lower service precedence first 

before dropping packets with higher service precedence. 

 

(Chrysostomou03) presented an active queue management scheme called Fuzzy Explicit 

Marking in DiffServ framework. The model uses a fuzzy controller to examine the 

dynamic network changes and dropped packets or reset packets ECN bit accordingly. 

 

(Yanfei03) defines a congestion index to indicate the degree of network congestion. An 

intelligent packet dropping mechanism based on fuzzy logic is then being designed which 

can optimize router performance. 

 

(Karthik04) examines a fuzzy based Connection/Call Admission Control to provide 

effective congestion control in ATM network. It is proven from the research that fuzzy 

based Connection/Call Admission Control gives a better control than conventional 

systems and also maintained the network QoS. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 48 

4.2 Fuzzy Logic Implementations 

The fuzzy logic codes are inserted in the enqueue() function located in the dsredq.cc file. 

The code fuzzy_result=fuzzy(q_->length(), prev_20, qlim) will be used to call the fuzzy 

logic code. 

 

Before the fuzzy() function is called, series of calculation are needed to provide the input 

for the function. The main concern is to again explicitly specify which direction of traffic 

to be calculated. This is needed as the enqueue() function is a general function used to 

queue packets in the physical queue and it is differentiated with the direction of packet or 

which simplex queue. The action to be taken as whole depends a lot on which part of the 

simplex link to be used as calculation. Hence there is a necessity to separate the average 

calculation and separate action on the two different simplex queues. 

 

The differentiation could be witness by the ‘if and else’ clause that looks as follows: 

 

if (src_id == 14 || src_id == 15 || src_id == 16 || src_id == 17 || src_id == 22 || src_id == 
23 || src_id == 26 || src_id == 27 || src_id == 30 || src_id == 31 || src_id == 34 || src_id == 
35)  
{ 

………. 
………. 

} else { 
………. 
………. 

} 
 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 49 

The first part will refer to router 6 to router 7 (from left to right) while the else will refer 

to the traffic traveling from router 7 to router 6 (from right to left). Figure 4.1 below 

shows the general representation of the above mention directions. 

 

 

 

Figure 4.1 General representation of the network topology used 

 

4.2.1 q_->length() 

q_->length() is a function which will return the physical queue length for the queue q_. In 

the constructor, q_ = new PacketQueue() is used create a pointer to a packet queue or the 

underlying physical queue. 

 

Router 
7 

Router 
6 

Left hand side 
of the network 

Right hand 
side of the 
network 

From router 6 to router 7 

From router 7 to router 6 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 50 

4.2.2 Average Previous 20 Queue Length Calculation 

r6prev_20 is a variable of type float. It is used to store the previous 20 physical queue 

size whenever there is a packet been queued in the physical queue. The value 20 is 

chosen to makes the average calculation more relevant rather than only 5 or 10 value. 

 

Every time when a packet is been queued, the length of the physical queue length will 

differ. The time between the last successful packet been queued and the current packet 

been queued might witness the existing packets in the physical queue being de-queued or 

emptied. Furthermore, there are a lot of packets being queued and de-queued, therefore 

the average value of the queue length has to be calculated using previous 20 values 

maximum. The indicator r6 is referring to the queue, which is responsible to forward 

packets from router 6 to router 7. The function to calculate the average of the previous 20 

queue length is located in the enqueue() function itselt. The calculate average of the 

previous 20 queue length block of code is as shown below: 

float r6prev_20; 
int counter=1; 
r6_travel=new node; 
r6_travel=r6_cur; 
 
if (r6_travel!=NULL) { 
 
while((r6_travel->next!=NULL) && (counter!=20)) 
{ 
 

j=j+r6_travel->num; 
r6_travel=r6_travel->next; 
counter++; 

} 
r6prev_20=j/counter; 
} else { 

r6prev_20=0; 
} 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 51 

First a pointer to node is created and name as r6_travel. It is used to travel along the link 

list to gather up to 20 queue length from the most recent node added. It should be noted 

that it does not take into account the node that will be added to the link list at the end of 

the enqueue() function. This is because the previous 20 physical queue length 

calculations should not taken into the account the one, which will be queued. To further 

justify this point, it is not relevant to include the present one to calculate the past queue 

length average. 

 

Counter is used to keep track of the number of nodes been traveled by r6_travel pointer. 

It will at least have the value of 1. The purpose of having at least a value of 1 is to avoid a 

division by 0. 

 

The r6_travel counter will be pointing to the node where r6_cur pointer is pointing. The 

purpose of using if (r6_travel!=NULL) is to make sure that the link list exist. At the very 

beginning of the simulation, there will be no node in the link list. This is indicated by the 

head node pointer and current node pointer equal to null. As the enqueue() function being 

entered the first time, the r6_travel pointer will be pointing to the r6_cur pointer. This 

means that r6_travel will be pointing to a null node indirectly. For this case, the 

r6prev_20 variable will be carrying the value 0 instantly with the help of  r6prev_20=0 

assignment located in the else clause as shown above. 

 

If the above mention case is not true, the while((r6_travel->next!=NULL) && 

(counter!=20)) loop will be executed. The first argument r6_travel->next!=NULL is to 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 52 

make sure that the node which r6_travel is pointing is not the first node of the link list. 

The first node of the link list is named head (where the r6_head pointer is pointing). The 

second argument (counter!=20) is to make sure if there is more than 20 nodes existed in 

the link list, the average calculation will only take the most recent 20 nodes queue length 

value into consideration. If either one of these rules is fulfilled, the while loop will end.  

 

The purpose of having the two arguments “AND” is such as the link list started, it will 

grow in size. The first time ever, the average value will be 0 because there is no value in 

the link list to be used. As the link list grows, it will calculate the average using the queue 

length value of the existing node until most recent 20 nodes the most. For example the 

(r6_travel->next!=NULL) argument will govern the situation where if there are only 3 

nodes in the link list, only 3 nodes will be taken into consideration. If there are only 15 

nodes in the link list only 15 nodes will be used. This will be true until the number of 

node reach 20. The counter variable will be used to calculate the average value. When 

taken back into consideration the above mention case, if 3 nodes used, the summation of 

3 previous physical queue lengths will be divided by the counter value of 3. And for the 

situation where 15 nodes are used, the summation of 15 nodes physical queues value will 

be divided with 15. 

 

For traffic traveling from router 7 to router 6, the same type of code and procedure will 

be used, except this time the variable name will be different (will be identified by the r7 

id in front of the variable).  

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 53 

4.3 Fuzzy Sets and Membership Functions 

When the average previous 20 queue lengths have been calculated, then the fuzzy logic 

function could be called. float redQueue::fuzzy(int q_len, float avg, int q_lim) is the 

fuzzy logic function declaration. 

 

It will receive three arguments from the caller function. The first argument will be used to 

represent the queue length, the second argument will represent the average queue and the 

final one will represent the queue limit, each with appropriate variable type. 

 

float q_rate=q_len-avg will be used to calculate the rate of change of queue. The rate of 

change is actually the difference between the current queue length and the average of 

previous 20 queue length. The value of this difference will be positive value, zero or 

negative value. The maximum value of the difference will be 500 and the minimum is      

-500. This minimum value will occur if the current queue length is zero and the average 

is 500. The maximum value will occur when the current queue length is 500 and the 

average queue length is 0. 

 

There are two membership functions in the fuzzy logic code. The first membership 

function is the current queue length and the second one is the rate of change of queue. 

 
Univ

ers
ity

 of
 M

ala
ya



Chapter 4 Proposed Active Queue Management Model 
 

 54 

4.3.1 Current Queue Length Fuzzy Set 

Current queue length membership function will be represented by an array myLen[2][7] 

of type float. The dimension of this array is 2 and it has 2 rows and 7 columns as shown 

below:  

 

{1.0,  0.0, 0.0, q_lim/2, q_lim,0.0,0.0}, 

 {0.0, q_lim/2, q_lim, q_lim, 0.0,0.0,0.0} 

 

Both rows have common column type. The first column represents the shape of the first 

graph in the membership function. 1.0 will represent a graph with a trapezium shape and 

0.0 will represent a graph with a triangle shape. 

 

The following 6 columns will be used to represent 6 different points or areas in the graph. 

The value shown on each column will represent the x-coordinates in the graph. The 

corresponding y-coordinates have been set to the value of {X.X, 0, 1, 1, 0, 0, 0} where 

X.X represent the value which represent the shape of trapezium (which will be 1.0). For 

the shape of a triangle, the X.X value is 0.0 and the corresponding y-coordinates has been 

set to the value of {X.X, 0, 1, 0, 0, 0, 0} and the last column value is left unused for this 

shape. 

 
Univ

ers
ity

 of
 M

ala
ya



Chapter 4 Proposed Active Queue Management Model 
 

 55 

Column 6th and 7th of the array will always be representing the two extreme ends of the 

graph. Column 6th will represent negative infinity value or the minimum most x-

coordinate value and column 7th will represent positive infinity value or the maximum 

most x-coordinate value for trapezium graph. For triangle shape graph 5th and 6th column 

will be used to represent the leftmost and rightmost are of the graph, where the lines 

stretches towards infinity value of x-axis. 

4.3.1.1 Triangle graph 

The triangle graph will generally have the shape as shown in Figure 4.2 below. 

 

Figure 4.2 Triangle graph 

1 

0 

Y axis 

X axis 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 56 

Taking the above given parameters of the triangle graph, 

{0.0, q_lim/2, q_lim, q_lim, 0.0, 0.0, 0.0} 

where q_lim = 500, the representation of the graph is depicted by Figure 4.3 below. 

 

Figure 4.3 Current queue length first array representation using triangle graph 

1 

0 

Y axis 

X axis 
250 500 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 57 

4.3.1.2 Trapezium graph 

The trapezium graph will generally have the shape as shown in Figure 4.4 below. 

 

Figure 4.4 Trapezium graph 

Taking the above given parameters of the trapezium graph, 

{1.0,  0.0, 0.0, q_lim/2, q_lim,0.0,0.0}, 

where q_lim = 500, the representation of the graph is as shown in Figure 4.6 below: 

1 

0 

Y axis 

X axis 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 58 

 

Figure 4.5 Current queue length second array representation using trapezium graph 

4.3.2 Current Queue Length Membership Function Graph 

To get the idea of the whole current queue length membership function graph, the two 

existing graph will be merged. The merged graph is as shown in Figure 4.6 below. 

 

1 
  

 

 

0 

Y axis 

X axis 
 

 

500 250 

1 

250 500 
0 

Y axis 

X axis 
0 

Legend  
 

 

First membership 
function 

Second 
membership 
function 

Figure 4.6 Current queue length membership function graph 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 59 

4.3.2.1 Current Queue Length Rules 

The current queue length function will be governed by a set of rules. The queue length 

will be divided into two zones, ‘full’ and ‘not full’. The first membership function will 

refer to the function which represents the queue is not full, while the second one refers to 

the full function. 

 

For the ‘not full’ function, the output will be 0 if the input falls in zone before 0 or zone 

after 500 of x-axis. The output will be 1 or referring to true when the queue is empty or 

until it is 50% full. After 50% threshold, the function will become a liner equation 

dropping from 1 to 0 linearly. The linear function used to fuzzify this is as shown below: 

 

preout1[i]=(myLen[i][4]-q_len)/(myLen[i][4]-myLen[i][3]) 

 

The degree from 1 to 0 will represent how true or how empty the queue is where 0 

represents the queue is full. For the ‘full’ function, the output will be 0 if the input falls in 

zone before 250 or zone after 500 of x-axis. The output will be 1 or referring to true when 

the queue is 100%. Before the 50% queue capacity threshold, the function will be 0 to 

indicate that the queue is not full at all. After the 50% threshold, the function will 

increase linearly from 0 to 1. The degree from 0 to 1 will represent how full the queue is. 

The linear function used to fuzzify this is as shown: 

 

preout1[i]=(q_len-myLen[i][1])/(myLen[i][2]-myLen[i][1]) 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 60 

4.3.3 Rate of Change of Queue Fuzzy Set 

Rate of change of queue membership function will be represented by an array 

myRate[4][6] of type double. The dimension of this array is 2 and it has 4 rows and 6 

columns as shown: 

 

{-q_lim, -q_lim, 20-q_lim, 0.0, 0.0, 0.0}, 

  {-q_lim/2, -10.0, 0.0, 0.0, 0.0, 0.0}, 

  {0.0, 0.0, 10.0, q_lim/2, 0.0, 0.0}, 

  {0.0, q_lim-20, q_lim, q_lim, 0.0, 0.0} 

 

As the array in myRate is used to represent only trapezium graph, there is no need to have 

the first column to determine the shape of the graph as in Current queue length 

membership function. All the rows have common column type, which represent 6 

different points or areas in the graph. The value shown on each column will represent the 

x-coordinates in the graph. The corresponding y-coordinates have been set to the value of 

{0, 1, 1, 0, 0, 0}.  

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 61 

4.3.4 Rate of Change of Queue Membership Function Graph 

By plotting all the value of the myRate array into the same graph, the relationship among 

all the functions could be seen as below. 

 

 

Figure 4.7 Rate of Change of Queue Membership Function Graph 

 

 

Y axis 

 

Legend  

0 500 -500 -480 480 -250 -10 250 10 

1 

Function 1 

Function 2 

Function 3 

Function 4 

 

 

 

 

X 
axis 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 62 

4.3.4.1 Rate of Change of Queue Rules 

The rate of change of queue length function will be governed by a set of rules. The rate of 

change of queue will be divided into four zones, which are decreasing fast, decreasing, 

increasing and increasing fast. The first membership function will be referring to the 

function which represents the queue is decreasing fast, while the second one is referring 

to the rate of change is decreasing. On the other side, the membership function 3 will be 

used to refer to increasing rate, while function 4 will be used to refer to increasing fast. 

 

For function 1, the rate is said to be decreasing fast (equal to 1) if the difference between 

current queue length and average length is between -500 and -480 packets. The rate will 

be decreasing linearly between -480 and 0 packets area. The degree of decreasing fast 

will become untrue when it reaches 0 packet difference. 

 

For function 2, the rate is said to be decreasing (equal to 1) if the difference between 

current queue length and average length is between -10 and 0 packets. And the rate will 

be increasing linearly between -250 and -10 packets area. The degree of decreasing will 

become untrue when it reaches -250 packet differences. The reason why the degree on 

decreasing decreased is because the queue is decreasing fast. 

 

For function 3, the rate is said to be increasing (equal to 1) if the difference between 

current queue length and average length is between 0 and 10 packets. And the rate will be 

decreasing linearly between 10 and 250 packets area. The degree of increasing will 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 63 

become untrue when it reaches 250 packet differences. The reason why the degree on 

increasing decreased is because the queue is entering the increasing fast zone. 

 

For function 4, the rate is said to be increasing fast (equal to 1) if the difference between 

current queue length and average length is between 480 and 500 packets. And the rate 

will increase linearly between 0 and 480 packets area. The degree of increasing fast will 

become untrue if there is 0 packet of difference. 

 

4.4 Fuzzy Inference 

The inference process that will be used would differ from the Madami method. The 

whole process can be divided into two parts, fuzzifying inputs and application of fuzzy 

operator and output membership function. 

 

The fuzzy inference model has a typical rule, which takes the form as follows: 

 

If Input X and Input Y, then Output is Z 

 

where X and Y will be representing the first and second input. 

 

The output Zi of each rule will be weighted by the weight value of wi of each rule. The 

weight value is predefined according to the situation of the bottleneck link. There are two 

common fuzzy operator used, but for this thesis only one operator will be used which is 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 64 

the AND operator.  The AND operator is also known as the minimum operator. The 

operator AND will select the lowest value of two outputs. 

 
 for (i=0;i<8;i++) 
 { 
  totalY+=myWeight[i]*foutputHeight[i]; 
  totalH+=foutputHeight[i]; 
 } 
 
 if (totalH>0) 
  finalOutput=totalY/totalH;  
 else 
  finalOutput=0; 
 
 return finalOutput;  
 } 
 

 

The final output is calculated by the block of code shown above and the value is returned 

to the caller function. The variable finalOuput is used to store the calculation result. The 

result will be the summation of all rule output (wi zi) and averaged by the summation of 

all the output strength (zi). The final output calculation could be represented by the 

formula (4.1) as shown (Asai95): 

 

Final Output = 




=

=
N

i
i

N

i
ii

z

zw

1

1  …………………………………………………………. (4.1) 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 65 

4.4.1 Fuzzy Inference for Current Queue Length and Rate of Change of 

Queue 

The fuzzy inference part for this thesis will be based on a set of rules. The rules are as 

follows: 

 

If Input X and Input Y, then Output is Z. 

 

Input X will be referring to the current queue length function while input Y will be 

referring to the rate of change of queue. In order for the fuzzy inference to work, a set of 

weight has been declared in the fuzzy function. The weight is as shown below 

float myWeight[8] = {1,2,3,4,5,6,7,8}; 

 

There are a total of 8 weights used, because there are 8 possible outputs from the 

inference process. The weight is chosen to represent the degree of critical at the bottle 

neck queue. The most critical situation will be given weight 8 while the least critical one 

will be weighted 1. The command line below: 

float preout1[2]={0}; 

 float preout2[4]={0}; 

 

is used to declare an array to store inference result before it is used to calculate the final 

output. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 66 

float foutputHeight[8]={0} will be used to keep the result after applying the AND fuzzy 

operator. 

 

The whole process begins when two parameters presents. The first parameter is the 

current queue length. The current queue length will be used to find output from the 

current queue length function. Both graphs from the function will be used to get the 

output. And then the second input, the rate of change of queue will be used to find out the 

respective output. Each output will be weighted accordingly to the weight array. For 

example if the current queue length is 100 and the rate of change is -100 packets output 

will be as shown. The number besides the figure represents the rules number. Each rule 

will be weighted accordingly to their weight in the array respectively (example: Rule 1 

will be weighted by myWeight[1]=1 and Rule 8 will be weighted by myWeight[8]=8.    

 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 67 

 

1 

2 

3 

4 

5 

6 

7 

8 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

Z1 = 0.208 

Z2 = 0.625 

Z3 = 0 

Z4 = 0 

Z5 = 0 

Z6 = 0 

Z7 = 0 

Z8 = 0 

100 -100 

Queue Length 
membership 

function 

Rate of Change of 
Queue membership 

function 

Figure 4.8 Fuzzy inference processes 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 68 

Final Output = 
(1x 0.208) + (2 x 0.625) + (3 x 0) + (4 x 0) + (5 x 0) + (6 x 0) + (7 x 0) + (8 x 0) 

0.208 + 0.625 

To get the final required output, the inference results must be defuzzified. The 

defuzzification process for the above example will be calculated using formula (4.1) as 

follow: 

 

 

 

 

        

= 
833.0
458.1  

 

= 1.75 

 

The value of the final output tells that the congestion is not serious. As a result packet 

might be queued. Further action will be taken accordingly depending on the value of the 

final output value. 

 

The following examples will take into consideration two cases, first is the low congestion 

case and the other, high congestion case. 

 

For the low congestion case, the values which will be used for calculation are current 

queue length = 10 packets and the rate of change of queue = -480 packets. With these 

values, we can conclude that the queue is only 2% full and the rate of change is 

decreasing tremendously. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 69 

 

For the serious congestion case, the values which will be used for calculation are current 

queue length = 480 packets and the rate of change of queue = 480 packets. With these 

values, we can conclude that the queue is 96% full and the queue is growing in size very 

fast. 

 

 

The following two diagrams will show the fuzzy inference processes for both extreme 

situation and the corresponding results of both situations. 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 70 

Figure 4.9 Low congestion fuzzy inference processes 

1 

2 

3 

4 

5 

6 

7 

8 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

Z1 = 1.0 

Z2 =  0 

Z3 = 0 

Z4 = 0 

Z5 = 0 

Z6 = 0 

Z7 = 0 

Z8 = 0 

10 -480 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 71 

 

1 

2 

3 

4 

5 

6 

7 

8 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

AND 
Operation 

Z1 = 0 

Z2 =  0 

Z3 = 0 

Z4 = 0.08 

Z5 = 0 

Z6 = 0 

Z7 = 0 

Z8 = 0.92 

480 480 

Figure 4.10 Serious congestion fuzzy inference processes 
 Univ

ers
ity

 of
 M

ala
ya



Chapter 4 Proposed Active Queue Management Model 
 

 72 

Final Output = 

(1x 1.0) + (2 x 0) + (3 x 0) + (4 x 0) + (5 x 0) + (6 x 0)  + (7 x 0)  + (8 x 0) 

1.0 

Final Output = 0.08 + 0.92 

(1x 0) + (2 x 0) + (3 x 0) + (4 x 0.08) + (5 x 0) + (6 x 0) + (7 x 0) + (8 x 0.92) 

Defuzzification calculation for low congestion scenario is as shown using formula (4.1): 

 

 

 

 

= 
0.1
0.1  

 

= 1.00 

 

Defuzzification calculation for serious congestion scenario is as shown below using 

formula (4.1): 

 

 

 

 

= 
0.1
68.7  

 

= 7.68 

 
Univ

ers
ity

 of
 M

ala
ya



Chapter 4 Proposed Active Queue Management Model 
 

 73 

4.4.2 Fuzzy Inference result assessment 

After the defuzzified results have been calculated, the fuzzy logic function will return a 

value of type float to the function, which called it. The function which called the fuzzy 

logic function is fuzzy_result=fuzzy(q_->length(),prev_5,qlim). 

 

The defuzzified value will now be stored in fuzzy_result variable. This value will then be 

assessed to carry out appropriate action. The first step assessment step taken is to cast the 

value into 9 categories of seriousness of the bottleneck link. The value used is from 1 to 9 

where 9 will be used to represents the most serious bottleneck link condition. In order to 

classify the fuzzy result, a block code of if else if clause will be used as shown below: 

 

 
if (fuzzy_result>=7.5) 
 fuzzy_result=9.0; 
else if (fuzzy_result>=7) 
 fuzzy_result=8.0; 
else if (fuzzy_result>=6) 
 fuzzy_result=7.0; 
else if (fuzzy_result>=5) 
 fuzzy_result=6.0; 
else if (fuzzy_result>=4) 
 fuzzy_result=5.0; 
else if (fuzzy_result>=3) 
 fuzzy_result=4.0; 
else if (fuzzy_result>=2) 
 fuzzy_result=3.0; 
else if (fuzzy_result>=1) 
 fuzzy_result=2.0; 
else if (fuzzy_result>=0) 
 fuzzy_result=1.0; 

 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 74 

Any fuzzy result returned with the value of 7.5 and above will be classified as 9.0 (very 

serious condition). If it is less than 7.5 but above or equal to 7 it will be classified as 8.0. 

This process will be continued until the value of class 1.0. Classification process can be 

summarized using a Figure 4.11 as shown below: 

 

 

Figure 4.11 Fuzzy inference result casting 

 

Based on these 9 situations or degree of seriousness, the corresponding action will be 

taken. For each degree, a set of RED thresholds and drop probability will be assigned. 

This value will then overwrite the existing values, which have been given at the 

beginning of the simulation, or the value set by previous fuzzy assessment.  

 

 

9.0 

         0.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.5 

Degree 

Fuzzy 
result 
value 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 75 

The set of thresholds value and drop probability can be further categories into two 

different categories. One category is the sets of value for packets with precedence 0 and 

the other set is for packets with precedence 1. In general the two categories represent the 

code point 20 (or virtual queue 1) and 21 (or virtual queue 2) respectively. 

 

The sets of thresholds and drop probability according to each degree are shown in the 

Table 4.1 below: 

 

Table 4.1 Sets of thresholds and drop probability according to each cast degree value 

 

 

Degre

e 

In profile Out profile 

Min. th. Max. th. Drop prob. Min. th. Max. th. Drop prob. 

1 90 100 0.08 88.5 98.5 0.10 

2 85 100 0.10 83.5 98.5 0.12 

3 80 100 0.12 78.5 98.5 0.14 

4 85 90 0.14 83.5 88.5 0.16 

5 80 90 0.16 78.5 88.5 0.18 

6 75 90 0.18 73.5 88.5 0.20 

7 70 80 0.20 68.5 78.5 0.22 

8 65 80 0.25 63.5 78.5 0.27 

9 60 80 0.30 58.5 78.5 0.32 

Univ
ers

ity
 of

 M
ala

ya



Chapter 4 Proposed Active Queue Management Model 
 

 76 

When the precedence value matched and the degree is known, the minimum threshold 

will be set according to the value of Min. th. and maximum threshold as Max. th. with the 

drop probability of Drop prob. 

 

Each set of value will be then set into the simulator before the packet is to be queued. 

Hence the value of the thresholds and drop probability will be dynamic and the changes 

are according to the degree of seriousness at the bottleneck link. Therefore the outcome 

of this whole process will create a dynamic active queue management with the help of 

fuzzy logic. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 77 

Chapter 5: Coding and Implementation 

 

As known, ns2 is written in C++ language and the simulation script is written in Tcl 

scripting or Otcl. Hence, this chapter will be organized into two main parts. The first part 

will be explaining the tcl simulation scripts used and the second part will be explaining 

the C++ codes. Chapter organization is as follows: 

 

5.1 Simulation Script 

5.2 Coding and Implementation 

5.1 Simulation Script 

The simulation script is written in tcl language. The main file for the simulation is the 

diffnet.tcl file. When the simulation starts, it will call other files as follows: 

1. peer_setup.tcl 

2. 2q2p.tcl 

3. topology.tcl 

4. monitoring.tcl 

 

The peer_setup.tcl file consists of tcl script that creates HTTP, FTP and VoIP traffic. The 

2q2p.tcl file consists of tcl script that sets all the DiffServ specific procedures. The 

topology.tcl file consists of tcl script, which creates the topology. The monitoring.tcl file 

is used to load monitoring functions for the queues and traffic flows. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 78 

The set testTime command in the diffnet.tcl file sets the simulation time in seconds. The 

$defaultRNG seed command is to set the seed value to be used for each time the 

simulation starts. The default value set for the seed is 0, which means that a random seed 

will be used every time when the simulation starts.  Each time the simulation starts; it 

will randomly select a seed that will produce random simulation traffic. Therefore each 

simulation is different from each one except when the random seed is the same. 

 

The launch command will call the launchSession procedure in the peer_setup.tcl file to 

start creating and generating web traffic. The command launchHttp httpC1 http S4 is used 

to launch HTTP traffic starting by the http client C1 issuing an http request to http server 

S4. The command launchFtp ftpC1 ftp S4 is used to launch FTP traffic starting with the 

ftp client C1 issuing an ftp request to ftp server S4. launchVoip voip1 voip5 0 is used to 

start VoIP traffic between VoIP 1 and VoIP 5 node with an assigned id of 0. 

 

The policer type used for this simulation is the TSW2CM policer. In order for this policer 

to function, we need to set the committed information rate (CIR) value. CIR value is used 

to determine the committed transfer rate for each application.  The CIR value chosen for 

each traffic is different and it is as listed below: 

1. set cir_exp   50000 (to set the VoIP CIR rate) 

2. set cir_http 70000 (to set the HTTP CIR rate) 

3. set cir_ftp  150000 (to set the FTP CIR rate) 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 79 

The confDSCore command is used to configure the desired queue and policy parameters 

for the two bottle neck nodes. The details of how or what parameters to be set are located 

in the 2q2p.tcl file. The command confDSCore r6 r7 is used to set the parameters for 

traffic flow from router 6 to router 7. The flow of the traffic from router 7 to router 6 is 

done with another command because the links between the two bottleneck routers are 

simplex link. Simplex link can only transmit packets in one direction. That is why we 

need to explicitly set the parameters for the two simplex links. 

 

The confDSEdges command is used to set desired queue and policy parameters for the 

pair of connection. For example confDSEdges voip1 voip5 $cir_exp 29_app AF will 

configure the CIR rate of the connection or traffic between as the value set in the set 

cir_exp. The 29_app is a code to set an ID to determine that traffic with number 29 is 

VoIP traffic and the initial type of service it require is AF service. 27_app refers to FTP 

traffic while 31_app refers to HTTP traffic.  

 

The $ns at 50 "timeStats 50" will print the simulation packets statistic on the screen every 

50 simulation seconds interval. As the simulation ends, the $ns at $testTime "close-

connections” command will try to cleanly close all connection pair by sending finish 

acknowledgement to connection pair router. The $ns at [expr $testTime + 5] "kill-em-all" 

will force all remaining connections to close down. [expr $testTime + 5]means that after 

the simulation time ends, it will then force all remaining connections to close down after 

another 5 simulation seconds. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 80 

At  $testTime + 11, the $ns at [expr $testTime + 11] "finish" will call the finish 

procedure. The ‘finish procedure’ will finish up the whole simulation. The procedure is 

listed below: 

 

proc finish {} { 

    global ns alku trace_on pf q 

    $ns flush-trace 

 

    # Print final DiffServ queue statictics from the bottleneck link 

    $q(r6r7) printStats 

    $q(r7r6) printStats 

 

    #puts "\Simulation seconds: [expr [clock seconds] - $alku] s" 

 

    flush $pf 

    close $pf 

 

    exit 0 

} 

 

It will print all the final DiffServ queue statistics from the bottleneck link and print out 

the amount of simulation time in seconds and exit the whole simulation. 

 

5.1.1 Seeding 

The $defaultRNG refers to the random number generation (RNG) within the 

mathematical support found in ns2. The RNG class contains implementation of the 

combined multiple recursive generator MRG32k3a proposed by L’Ecuyer (NS03). Works 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 81 

done by L’Ecuyer could be found in (L’Ecuyer99), (L’Ecuyer01) and (L’Ecuyer02). 

MRG32k3a is capable to generate 1.8 X  1019 independent streams of random numbers. 

Each stream will further consist of 2.3 X 1015 substreams (NS03). According to the ns 

Manual, or formerly known as ns Notes and Documentation,  

 

 “each substream has a period of 7.6  X 1022. The period of the entire generator 

is 3.1 X 1057.” 

 

The default value for the seed is 12345. This simulation have set the $defaultRNG 0 

which will set the seed based on current time of day counter. There is no guarantee where 

two random seed will not overlap (NS03). By setting $defaultRNG 0 also means that the 

simulation will get a non-deterministic behavior.  

5.1.2 Simulation topology 

The simulation topology is created in the topology.tcl file. The simulation uses a dumb-

bell topology with 14 routers and various numbers of source nodes depending on how 

heavy the traffic that would like to be generated. There are several researches published 

which favor this topology such as (Clark98), (Chrysostomou03), (DiFata03), (RFC2415), 

(Liang03) and (Sahu00). For light traffic simulation the number of source node is limited 

to 24 nodes. For heavy traffic, the number of sources is increased one fold to 48 nodes. 

Below is the network topology for the simulation with light traffic. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 82 

 

 

Figure 5.1 Light traffic simulation topology 

 

 

Figure 5.2 Heavy traffic simulation topology 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 83 

Nodes numbered 4 until 9 represents the core routers while nodes numbered 0, 1, 2, 3, 10, 

11, 12, 13 are the edge routers. The rest of the nodes represent the traffic sources. 

Summary of the number of nodes for light and heavy traffic simulation is as shown in the 

table 5.1 

Table 5.1 Nodes amount for light and heavy simulation 

Num. Type Quantity 

Light Traffic Heavy Traffic 

1 Routers 14 14 
2 VoIP  8 16 
3 FTP Clients 4 8 
4 FTP Servers 4 8 
5 HTTP Clients 4 8 
6 HTTP Servers 4 8 

Total 38 62 
 

The codes used to generate the nodes are as shown below: 

 

for {set i 0} {$i < $num_r} {incr i} { 
    set n(r$i) [$ns node] 
    set r_list "[set r_list] [list r$i]" 
} 
for {set i 1} {$i <= $num_voip} {incr i} { 
    set n(voip$i) [$ns node] 
    set voip_list "[set voip_list] [list voip$i]" 
} 
for {set i 1} {$i <= $num_ftpC} {incr i} { 
    set n(ftpC$i) [$ns node] 
    set ftpC_list "[set ftpC_list] [list ftpC$i]" 
} 
for {set i 1} {$i <= $num_ftpS} {incr i} { 
    set n(ftpS$i) [$ns node] 
    set ftpS_list "[set ftpS_list] [list ftpS$i]" 
} 
for {set i 1} {$i <= $num_httpC} {incr i} { 
    set n(httpC$i) [$ns node] 
    set httpC_list "[set httpC_list] [list httpC$i]" 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 84 

} 
for {set i 1} {$i <= $num_httpS} {incr i} { 
    set n(httpS$i) [$ns node] 
    set httpS_list "[set httpS_list] [list httpS$i]" 
} 
 

It uses a for loop to generate the desired number of nodes. All nodes or routers generated 

using the [$ns node] code. To further classify the nodes, special names will be given. The 

table below will show the corresponding name used to label the nodes and its type. 

 

Table 5.2 Nodes label 

Num. Code Type 
1 (r$i) Router 
2 (voip$i) VoIP sources and destinations 
3 (ftpC$i) FTP Clients 
4 (ftpS$i) FTP Servers 
5 (httpC$i) HTTP Clients 
6 (httpS$i) HTTP Servers 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 85 

5.1.3 Link Bandwidth and Delay 

All the traffic sources will be connected to the edge routers using 10.0 Mb simplex links 

with 10ms of delay. Two simplex links are created for two different directions, one for 

sending packets from source or destination node to edge router and one from edge router 

to source or destination node.  Node label with the number 0 and 1 represent the 

bottleneck link of the whole simulation. Between these two nodes, two separate simplex 

links is created each with bandwidth of 1.5Mb and 15ms delay. This is sufficient enough 

to create a very small bottle link to force packets to be dropped. The reason of the 

existence of the bottle link is to test the ability of the active queue management model. 

From the edge routers to the next inner router (node 4, 5, 8 and 9), a 10.0Mb bandwidth 

with 10ms delay duplex link is created. From router 4, 5, 8 and 9 to the bottleneck 

routers, a 4.5Mb bandwidth with 15ms delay duplex link is used. These links are used to 

create a more focused traffic before entering the bottleneck link. The traffic before 

entering the bottleneck link will have packets with less distance between them, to create a 

sudden burst of packets for the bottleneck link. Figure 5.3 shows the existing links and its 

respective bandwidth and delay for light traffic simulation.  

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 86 

 

 

 

 

Figure 5.3 Links bandwidth and delay 

5.1.4 Traffic source 

Traffic sources are divided into three different categories, which are: 

1. Hyper Text Transfer Protocol (HTTP) 

2. File Transfer Protocol (FTP) 

3. Voice over IP (VoIP) 

Simplex 
1.5Mb/15ms delay 

Duplex 
4.5Mb /15ms delay 

Duplex 
10Mb/10ms delay 

Simplex 
10Mb/10ms delay 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 87 

 

Each type of traffic has per-define parameters and will generate in a random manner a 

number of packets according to those initial parameters. For further information of the 

characteristic of the world wide web (WWW) please refer to (Cunha95).  

 

5.1.4.1 HTTP Traffic 

The tcl script in the peer_setup.tl file will create an HTTP-page pool, with defined 

session parameters and call will call by launchSession command in the diffnet.tcl file. 

The traffic parameters assigned are mean values of an exponential distribution 

(Luoma00). The parameters listing are as follows: 

 

Table 5.3 Parameters listing for HTTP traffic 

Parameter 
name 

Value Description 

sessionSize 5 Number of pages in a session 
interSession 5 Time between session arrivals (in seconds) 
pageSize 3 Number of objects in a page 
interPage 12 Time between page requests (in seconds) 
objSize 3300 Object size (in bytes) 
interObj 0.1 Time between object requests (in seconds) 

 

 

5.1.4.2 FTP Traffic 

The tcl script in the peer_setup.tl file will create an FTP-pagepool, with defined session 

parameters and call will call by launchSession command in the diffnet.tcl file. The traffic 

parameters listing (Luoma00) are as follow  

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 88 

 

Table 5.4 Parameters listing for FTP traffic 

Parameter name Value Description 
sessionSize 5 Number of pages in a session 
interSession 30 Time between session arrivals (in seconds) 
pageSize 1 Always 1 
interPage 0 Used to determine the first send time 
objSize [expr 1e6] Object size (in bytes) 
interObj 0.1 Time between object requests (in seconds) 
 

In FTP traffic, the page size is always equal to 1 as a file is equivalent to a file. 

 

5.1.4.3 Page Pool 

The set pool [new PagePool/WebTraf] for both HTTP and FTP traffic refers to the web 

traffic model that utilizes PagePool framework (NS03). Page pools are used by server to 

generate page information by caches to describe which pages are in store. It is also used 

by the clients to generate a request stream. The data structure can be found in the 

webcache folder, webtraff.h file. The class WebTrafSession is a class that models web 

user session.  And the WebPage is used to models web page.  

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 89 

5.1.4.4 VoIP Traffic 

The tcl script in the peer_setup.tl file will create VoIP traffic; with defined session 

parameters and call will call by launchSession command in the diffnet.tcl file. The traffic 

parameters listing (Luoma00) are as follows: 

 

Table 5.5 Parameters listing for VoIP traffic 

Parameter 
name 

Value Description 

packetSize [expr 160+40] Data + Header (Size of 
packet generated) 

burst_time 180 Burst time (in seconds) 
which refers to average On 
time for the generator 

Pidle_time [format %.1f  
[expr[$expoo set burst_time_]*(1/$load - 1)]] 

The average Off time for the 
generator 

rate_ 100000 Sending rate during On time 
id_ $id Flow id for each define 

VoIP traffic 
interObj 0.1 Time between object 

requests (in seconds) 
load 0.6 Mean inter-arrival or mean 

holding time in seconds 
 

 

The type of traffic for VoIP is UDP. The VoIP traffic will be generated exponentially 

using the command line set expoo [new Application/Traffic/Exponential]. 

  Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 90 

5.1.4.5 HTTP and FTP Session Launcher 

The procedure launchSession is used to set the parameters define for HTTP and FTP 

above and to start the traffic generation. 

 

proc launchSession {pool clnt svr sessionSize_ interSession_ pageSize_ interPage_ 
objSize_ interObj_} { 
    global ns n testTime 
 
    # Maximum number of sessions to be created 
    set numSession_  expr round(1.4*$testTime/$interSession_)] 
    puts "Creating max $numSession_ sessions" 
 
    # Bind TCL-variable to C-variable 
    $pool set testTime_ $testTime 
 
    # Add this session to the session list 
    $ns set sessionList "[$ns set sessionList] $pool" 
 
    # Setup servers and clients: add nodes listed in src_ and dst_ 
    # to pagepools server- and client-pool 
    $pool set-num-client [llength $clnt] 
    $pool set-num-server [llength $svr] 
 
    set i 0 
    foreach s $clnt { 
     $pool set-client $i $n($s) 
     incr i 
    } 
    set i 0 
    foreach s $svr { 
     $pool set-server $i $n($s) 
     incr i 
    } 
 
    # Number of Sessions 
    set numSession $numSession_ 
 
    # Inter-session Interval 
    set interSession [new RandomVariable/Exponential] 
    $interSession set avg_ $interSession_ 
 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 91 

    # Number of pages in a session 
    set sessionSize [new RandomVariable/Exponential] 
    $sessionSize set avg_ $sessionSize_ 
 
    # Create sessions 
    $pool set-num-session $numSession 
    set launchTime [$interSession value] 
    for {set i 0} {$i < $numSession} {incr i} { 
  
 ## Number of objects per page 
 if {[$pool set application_] == 27 } { 
      
     set pageSize [new RandomVariable/Constant] 
     $pageSize set val_ $pageSize_ 
 } else { 
     set pageSize [new RandomVariable/Exponential] 
     $pageSize set avg_ $pageSize_ 
 } 
 
 set interPage [new RandomVariable/Exponential] 
 $interPage set avg_ $interPage_ 
  
 set interObj [new RandomVariable/Exponential] 
 $interObj set avg_ $interObj_ 
  
 set objSize [new RandomVariable/Exponential] 
 $objSize set avg_ $objSize_ 
  
 if { $launchTime < $testTime } { 
      $pool create-session $i [$sessionSize value] $launchTime \ 
      $interPage $pageSize $interObj $objSize 
 } 
 set launchTime [expr $launchTime + [$interSession value]] 
    } 
 
} 
 

It is used to create random variable and the start up time for each session (each request).  

The code block if {[$pool set application_] == 27} will set the page size variable for FTP 

while the else clause will set for application with number 31 (HTTP) the page size 

variable. This is needed because for FTP page size is 1 but for HTTP it is not equal to 1 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 92 

and it will generate an average number for the page size using the 

RandomVariable/Exponential command. By using RandomVariable/Exponential 

command, random traffic could be generated using exponential distribution, which reflect 

real Internet traffic behaves. 

 

5.1.5 Random Variable 

The code RandomVariable/Exponential actually refers to a class RandomVariable that 

provides a thin layer of functionality on top of the base random number generator and the 

default random number stream and it is define in ranvar.h file (NS03). The abstract 

classes derived from the class RandomVariable have specific distributions. Each 

distribution has its own parameter. The defined distributions and their respective 

parameters are listed below in Table 5.6 

Table 5.6 Distribution Parameters 
Num Abstract class name Parameters associated 
1 class UniformRandomVariable min_ , max_ 
2 class ExponentialRandomVariable avg_ 
3 class ParetoRandomVariable avg_ , shape_ 
4 class ParetoIIRandomVariable avg_ , shape_ 
5 class ConstantRandomVariable val_ 
6 class HyperExponentialRandomVariable avg_ , cov_ 
7 class NormalRandomVariable avg_ , std_ 
8 class LogNormalRandomVariable avg_ , std_ 

 

From the table, it is clear that RandomVariable/Exponential is the default is used as 

random number generator. In general, the RandomVariable/<type of random-variable> 

will create an instance of random object which will create random variables with specific 

distribution (NS03). 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 93 

5.1.6 Transport Agent API 

The application class is used to provide basic application behavior such as send, receive, 

resume, start and stop events (NS03). In the real situation, the application will access the 

network through application programming interface (API) such as sockets. In ns, it is 

realized using API functions, which are mapped to the appropriate internal agents 

functions (NS03). 

For example the code block for VoIP that is used to do this is as follow 

set udp [new Agent/UDP] 
set null [new Agent/UDPsink] 
$ns attach-agent $n($src) $udp 
$ns attach-agent $n($dst) $null 
$ns connect $udp $null 

 

set udp [new Agent/UDP] is used to create UDP agent and the set null [new 

Agent/UDPsink] is used to create a sink or the place to receive the generated UDP 

packets. $ns attach-agent $n($src) $udp will then attach the UDP agent to the source and 

$ns attach-agent $n($dst) $null will attach the sink to the destination. Whenever UDP 

packets are created by that particular source, it will then travel through the network 

through the bottle link and to the destination defined for the packet itself. 

 

The block code 

set expoo [new Application/Traffic/Exponential] 
$expoo attach-agent $udp 
$expoo set packetSize_  [expr 160+40]; # data + header 
$expoo set burst_time_  180 
$expoo set idle_time_   [format %.1f [expr [$expoo set burst_time_]*(1/$load - 1)]] 
$expoo set rate_        100000 
$expoo set id_          $id 
 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 94 

is used to attach the application to the transport agent. attach-agent will be bind to C++ 

code in the agent.cc file. agent_ pointer in the class Application will be pointed to the 

transport agent and it will then call the attachApp( ) functions to set the pointer to point 

back towards the application. By doing this, a consistency is being assured between the 

OTcl and C++ (NS03). 

 

5.1.7 Exponential Traffic 

The [new Application/Traffic/Exponential] in the 2q2p.tcl file is actually the application 

and transport agent API explained in chapter 35 of the ns manual (NS03). Application 

sits on top of a given transport agents. The exponential traffic is a type of traffic 

generator derived from four C++ class, 

1. EXPOO_Traffic (Exponential On/Off Distribution) 

2. POO_Traffic (Pareto On/Off Distribution) 

3. CBR_Traffic (Constant Bit Rate) 

4. TraficTrace (Generate traffic according to trace file) 

 

The EXPOO_Traffic class will generate traffic according to an Exponential On/Off 

distribution. One of the behavior for this type of traffic is packet of constant size will be 

sent at a fixed rate during On periods and no packets are sent during Off period. The 

periods for On and Off are taken from an exponential distribution. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 95 

Therefore, the Application/Traffic/Exponential will mean that during On period, packets 

are generated at a constant burst rate and during Off period, no traffic will be generated. 

Both time burst time and idle time is taken from exponential distribution. 

 

5.1.8 Connection Pair Configuration 

Between two communicating nodes, there are few DiffServ procedures need to be set. 

Those procedures are found in the 2q2p.tcl file in the confDSEdge procedure 

 

proc confDSEdges { svr clnt cir app service_type } { 
    global ns q n cir_exp cir_http cir_ftp BE EF AF 
 
    if { $service_type == "AF" } { 
 set cp_ $AF(cp) 
 set in_min_ $AF(in_min) 
 set in_max_ $AF(in_max) 
 set in_prob_ $AF(in_prob) 
 set out_min_ $AF(out_min) 
 set out_max_ $AF(out_max) 
 set out_prob_ $AF(out_prob) 
 set qlimit_ $AF(qlimit) 
    } 
    # Edge queues (both in server- and client-side) 
    set q($svr$clnt) [[$ns link $n($svr) [$n($svr) neighbors]] queue] 
    set q($clnt$svr) [[$ns link $n($clnt) [$n($clnt) neighbors]] queue] 
 
    foreach qe "$svr$clnt $clnt$svr" { 
 $q($qe) set numQueues_ 1 
 $q($qe) setNumPrec 2 
 $q($qe) meanPktSize 300 
 #$q($qe) set limit_ $qlimit_ 
 $q($qe) setPhysQueueSize 0 $qlimit_ 
 $q($qe) setMREDMode WRED 
  
 $q($qe) addPolicyEntry -1 -1 TSW2CM $cp_ $cir $app 
 # Multiple precedences only for AF 
 
     

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 96 

 $q($qe) addPolicerEntry TSW2CM $cp_ [expr $cp_ + 1] 
  
 $q($qe) addPHBEntry $cp_ 0 0 
 $q($qe) addPHBEntry [expr $cp_ + 1] 0 1 
 $q($qe) configQ 0 0 $in_min_ $in_max_ $in_prob_ 
 $q($qe) configQ 0 1 $out_min_ $out_max_ $out_prob_ 
    } 
} 
 

For each connection pair, the RED threshold is set using  

set in_min_ $AF(in_min) 
 set in_max_ $AF(in_max) 
 set in_prob_ $AF(in_prob) 
 set out_min_ $AF(out_min) 
 set out_max_ $AF(out_max) 
 set out_prob_ $AF(out_prob) 
 

block of command. It specifies the minimum and maximum threshold of in profile and 

out profile packets, stated as in_min, in_max, out_min and out_max. In is for in profile 

packets or packets with the codepoint 20 and out is for out of profile packet or packets 

with the codepoint 21. 

 

The in_prob and out_prob are the drop probability of codepoint 20 and 21 respectively.  

set q($svr$clnt) [[$ns link $n($svr) [$n($svr) neighbors]] queue] 
set q($clnt$svr) [[$ns link $n($clnt) [$n($clnt) neighbors]] queue]  
 

are used to specify the source, destination and the border routers they are connected to. 

 

All of the connection pair packets will be going through one physical queue with two 

virtual queues, each for codepoint 20 and 21.  

$q($qe) set numQueues_ 1  
 $q($qe) setNumPrec 2 
 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 97 

numQueues is referring to the physical queue and setNumPrec will create the virtual 

queue in the physical queue. 

 

$q($qe) meanPktSize 300 is used to set the packet  size value for average queue size 

calculation. This is important when the queue is empty when the average queue size 

needs to be calculated. 

 

$q($qe) setPhysQueueSize 0 $qlimit_ set the physical queue limit or queue size. The 

value of  $qlimit_ is being defined earlier in the RED parameter definition of set 

AF(qlimit) 500 

 

$q($qe) setMREDMode WRED will set the MRED mode. MRED mode is used to 

calculate the queue size and there are several variants. WRED is one of the variant which 

is used in this simulation. It will calculate the probability based on single physical queue 

length. 

 

$q($qe) addPolicyEntry -1 -1 TSW2CM $cp_ $cir $app will define the type of policer 

that will be used. In this simulation the Time Sliding Window with 2 Color Marking 

(TSM2CM) policer is used. $cp_ will define the initial codepoint for the type of traffic 

class stated in the $app. $cir is the committed information rate set in the diffnet.tcl file 

according to type of traffic (e.g. HTTP, FTP, VoIP). 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 98 

$q($qe) addPolicerEntry TSW2CM $cp_ [expr $cp_ + 1] is used to add the another entry 

for the policer. Here it specifies that the next lower precedence for those packets with the 

initial codepoint 20 plus 1, which is 21. 

 

$q($qe) addPHBEntry $cp_ 0 0 and $q($qe) addPHBEntry [expr $cp_ + 1] 0 1 is used to 

add  an entry into the PHB table and maps the codepoint. Here it defines that packet with 

the codepoint 20, will be queued in the physical queue’s first virtual queue. Where else, 

packet with the codepoint 21, will be queued in the physical queue’s second virtual 

queue.  

 

For each virtual queue, the corresponding RED parameters are set by using $q($qe) 

configQ 0 0 $in_min_ $in_max_ $in_prob_ and  $q($qe) configQ 0 1 $out_min_ 

$out_max_ $out_prob_ command. Virtual queue 1 will be accommodating those in 

profile packet and will be monitoring those packets with $in_min_ $in_max_ $in_prob_ 

RED parameters. While virtual queue 2 will be housing those out of profile packet and 

monitoring those packets with $out_min_ $out_max_ $out_prob_ RED parameters. 

 

 

5.1.9 Bottle Neck Router Configuration 

Procedure confDSCore is used to configure the bottleneck routers. It is call in the 

diffnet.tcl file confDSCore r6 r7 and confDSCore r7 r6 lines. The confDSCore procedure 

has two arguments, a and b which refers to the node id such as in this case r6 or r7. The 

whole procedure code block is shown below. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 99 

proc confDSCore { a b } { 
    global ns q n AF 
 
    set q($a$b) [[$ns link $n($a) $n($b)] queue] 
 
    # The number of physical queues and precedences 
    $q($a$b) set numQueues_ 1 
    $q($a$b) setNumPrec 2 
    $q($a$b) meanPktSize 300 
    $q($a$b) setMREDMode WRED 
 
    # Set scheduler (and queue weigths) 
    $q($a$b) setSchedularMode PRI      ;# Options: RR, WRR, WIRR, PRI 
 
    # Configure PHBs 
 
    # AF 
    $q($a$b) addPHBEntry $AF(cp) 0 0 ; 
    $q($a$b) addPHBEntry [expr $AF(cp)+1] 0 1 
    $q($a$b) configQ 0 0 $AF(in_min) $AF(in_max) $AF(in_prob) 
    $q($a$b) configQ 0 1 $AF(out_min) $AF(out_max) $AF(out_prob) 
    $q($a$b) setPhysQueueSize 0 $AF(qlimit) 
   } 
 

 The set q($a$b) [[$ns link $n($a) $n($b)] queue] command line will name the pair of 

routers as q($a$b). Two different simplex links have been declared earlier and each link 

will be handling two different traffics from two different directions. The first direction is 

q(r6r7) which is referring to the traffic from the left hand side of the network to the right 

hand side (refer to figure 5.1 and figure 5.2, the dumbbell topology). While the second 

direction is from right to left, known as q(r7r6). 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 100 

Each direction will have one physical queue with two virtual queues in it. $q($a$b) set 

numQueues_ 1 and $q($a$b) setNumPrec 2 refer to the physical queue and virtual queue 

respectively. 

 
 
 
 
 

 

 

 

 
 
 
 
 

Figure 5.4 Queue organizations in the bottleneck link 
 

$q($a$b) meanPktSize 300 is the value use to calculate average queue size especially 

when the queue is empty. The $q($a$b) setMREDMode WRED will implement a WRED 

variant of MRED mode. 

 

$q($a$b) setSchedularMode PRI  will declare the type of scheduler mode used at the 

bottle link routers. The type of scheduler used here is Priority Queuing scheduler. This 

type of scheduler will first empty higher priority packets (codepoint 20) first before 

emptying lower priority packets (codepoint 21) from the queue. So, most of the time, 

forwarding treatment will favor codepoint 20 packets and therefore, most of the time, 

codepoint 21 packets will remain in the queue longer. This is logic as generally we would 

want to treat codepoint 20 packets better than those with codepoint 21. Therefore, 

Router 6 Router 7 

Physical queue from router 6 to router 7 

Physical queue from router 7 to router 6 

Virtual queue 2 Virtual queue 1 

Virtual queue 2 Virtual queue 1 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 101 

codepoint 20 packets will experience less delay and jitter. Only the bottle link routers are 

equipped with scheduler. 

 
$q($a$b) addPHBEntry $AF(cp) 0 0 ; 
$q($a$b) addPHBEntry [expr $AF(cp)+1] 0 1 
$q($a$b) configQ 0 0 $AF(in_min) $AF(in_max) $AF(in_prob) 
$q($a$b) configQ 0 1 $AF(out_min) $AF(out_max) $AF(out_prob) 
$q($a$b) setPhysQueueSize 0 $AF(qlimit) 
 

will determine or tell the bottle link routers how the DiffServ parameters are to be set. 

The parameters here are as the same as those parameters with the one applied to each 

connection pairs at the edge. 

 

5.1.10 Weighted RED 

The WRED used for this simulation is for 2 drop precedence queue. Packet precedence 

will be represented by codepoint 20 and 21, where codepoint 20 is the initial codepoint. 

There will be a set of threshold applied to each drop precedence practically known as the 

in and out. Below is the tcl script used to set the value of the threshold and the drop 

probability. 

 
set AF(in_min) 33     ;# ~33% of the queue limit 
set AF(in_max) 60     ;# ~60% of the queue limit 
set AF(in_prob) 0.65 
set AF(out_min) 3    ;# ~3% of the queue limit 
set AF(out_max) 33    ;# ~33% of the queue limit 
set AF(out_prob) 0.87 
set AF(qlimit) 500 
 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 102 

These limits when plotted on the same graph will look like the graph depicted in Figure 

5.5 below. 

 

Figure 5.5 RED parameters for codepoint 20 and 21 

 

The type of RED parameters set is known as staggered RED. Practically, staggered RED 

will provide greater assurance towards packets with codepoint 20 than 21 (Makkar00). 

The threshold value for codepoint 21 is lower than those for codepoint 20 and the drop 

probability for codepoint 20 is lower than codepoint 21. By using these settings, a service 

differentiation could be witness where, codepoint 20 is actually more important than code 

point 21. This behavior could be manipulated to toggle the packet preference. 

 

 

33 60 3 100 

Drop 
Probability 

1 
0.87 

0.65 

Legend  
 

 

Codepoint 20 

Codepoint 21 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 103 

5.2 Coding and Implementation 

 

In this chapter, we will go into detail the C++ files that have been modified in order to 

implement the fuzzy logic engine. All the files needed or related to this thesis are located 

in the diffserv folder in the ns main folder. The files needed for this thesis are 

 

1. dsredq.h 

2. dsredq.cc 

 

Two major functions have been added into the dsredq files which are a data structure 

(link list) and the fuzzy logic code. 

 

5.2.1 dsredq.h 

In this header file, the function signature is added and is regarded as public function. The 

function signature that have been added is float fuzzy(int q_len, float avg, int q_lim). The 

data structure code is implemented in the existing int enque(Packet *pkt, int prec, int ecn) 

function. 

 

5.2.1.1 Data Structure 

A data structure has been added in order to keep track of all the queue length value 

including the physical queue length and each and every physical queue length. The type 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 104 

of data structure used is a type of link list. The link list starts with a declaration of the 

data structure in the dsredq.h file. Each node in the link list structure will have the 

properties as shown below: 

struct node 
{ 

int num; 
node *next; 

}; 
 

Each node will have one variable of type integer. The int num is used to store the 

physical queue size. The last item in the node structure is a pointer to a node. It is used to 

link the node to the other node. The node structure can be represented by the following 

Figure 5.6. 

 

Figure 5.6 Node data structure 

Before the link list could be used, the object must be declared every time the simulation 

starts. This is done by putting the code as shown below: 

 
 node *r6_head; 
 node *r6_cur; 
 node *r6_temp; 
 node *r6_travel; 
 
 node *r7_head; 
 node *r7_cur; 
 node *r7_temp; 
 node *r7_travel; 

node 

int num 

next 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 105 

in the class redQueue. The purpose of putting the this block of code is to associate it with 

the main class of the function (redQueue) such that it could be used in its class. With this 

block of code, every time when simulation starts, 8 node pointers will be created. 

5.2.2 dsredq.cc 

The dsredq.cc contains all the procedure or functions, which will be used for simulation. 

The actual action taken could be seen in the functions in the dsredq.cc. The codes for this 

thesis have been inserted into the enqueue () function in this file.  

 

5.2.2.1 Constructor 

In the dsredq.cc file, 8 nodes will be declared in the constructor shown below: 

 

redQueue::redQueue() { 
r6_head=NULL; 
r6_cur=NULL; 
r6_temp=NULL; 
r6_travel=NULL; 
 
r7_head=NULL; 
r7_cur=NULL; 
r7_temp=NULL; 
r7_travel=NULL; 
 
  numPrec = MAX_PREC; 
  mredMode = rio_c; 
  q_ = new PacketQueue(); 
  } 
 

mredMode = rio_c is used to set the default MREDMode if it is specified explicitly by 

the user. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 106 

5.2.2.2 Link List 

The link list structure is created starting from the first packet being queued into the 

physical queue. A new entry will be added to the link list whenever there is a subsequent 

packets being successfully queued. The link list structure code is divided into two parts 

using the if else clause, as shown below: 

 
if(src_id == 14 || src_id == 15 || src_id == 16 || src_id == 17 || src_id == 22 || src_id == 23 
|| src_id == 26 || src_id == 27 || src_id == 30 || src_id == 31 || src_id == 34 || src_id == 35)  
{ 
if(r6_head==NULL) 
  { 

 r6_head=new node; 
 r6_head->num=q_->length(); 
 r6_head->next=NULL; 
 r6_cur=r6_head; 

  } else { 
  r6_temp=new node; 
  r6_temp->num=q_->length(); 

r6_temp->next=r6_cur; 
  r6_cur=r6_temp; 
  } } else { 
if(r7_head==NULL) 
  { 

r7_head=new node; 
r7_head->num=q_->length(); 
r7_head->next=NULL; 
r7_cur=r7_head; 

  } else { 
r7_temp=new node; 
r7_temp->num=q_->length(); 
r7_temp->next=r7_cur; 
r7_cur=r7_temp; 

  } 
 

The above mention code block is to create and store a link list for those packets traveling 

from router 6 to router 7 at the bottleneck link. The list of sources id (14, 15, 16, 17, 22, 

23, 26, 27, 30, 31, 34 and 35) is referring to those sources located at the right hand side of 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 107 

the simulation topology. This is crucial to explicitly make sure that all packets traveling 

thru the bottleneck link from router 6 to router 7 are been traced into the link list. Each 

node in the link list will be representing the queue length of the simplex queue from 

router 6 to router 7 whenever a packet has been queued. 

 

Inside the if clause, there is another if else clause. This is to differentiate that the link list 

is empty (when the simulation starts) from the link list is not empty. The first ever packet 

that is successfully been queued with initiate the if(r6_head==NULL) part. This is 

because at the very beginning of the simulation when the head pointer is being declared, 

it is given a value NULL. 

 

 

 

 

 

Figure 5.7 Head pointer creation and head pointer pointing to first node 

 

r6_head=new node will then create a new node and the subsequent code  

 

r6_head 
 NULL 

At the beginning of the 
simulation 

Node 1 
NULL 

After the first node 
been created 

r6_head 
 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 108 

 

Figure 5.8 Creating new node with head pointer and assigning queue length value 

 

r6_head->num=q_->length() will get the current queue size and put it into the node. 

 

r6_head->next=NULL will declare that the next pointer in the node will be pointing to a 

NULL value. This will mark the very beginning of the link list. r6_cur=r6_head is used to 

assign a pointer head to the link list to mark the first node in the link list. 

 

 

r6_head 
 

r6_head=new node r6_head->num=q_->length() 

Node 1 r6_head 
 

Node 1 

num=q_->length() 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 109 

 

Figure 5.9 Assigning head->next to null and pointing r6_cur to head 

 

If the packet has been successfully queued, and it is not the first packet ever been queued, 

the else will be triggered.  

 

r6_temp=new node will declare a new node named as r6_temp. 

 

r6_temp->num=q_->length() will then get the queue length value and put it into the 

temporary node. 

 

r6_head->next=NULL 

r6_head 
 

Node 1 

num=q_->length() 

NULL 

r6_cur=r6_head 

r6_head 

Node 1 

num=q_->length() 

NULL 

r6_cur 

Next 

Next 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 110 

 

Figure 5.10 Creating temporary node and assigning queue length value 

 

r6_temp->next=r6_cur will then link the temporary node to the existing link list. The 

second node in the link list will be linked to the head node and if it is the third node 

onwards, it will be linked to the most current node in the link list. 

 

r6_cur=r6_temp will shift the current pointer to the latest node in such that it will mark 

the latest node added for next round. 

 

Temp 

r6_temp=new node r6_temp->num=q_->length() 

Node 2 Temp 

Node 2 

num=q_->length() 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 111 

 

Figure 5.11 Linking temporary node to existing list and shifting current node 
pointer 

 

The above block of code will be repeated with the condition of source node set to using 

the else clause. This block of code will do the same action for those traffic queued which 

comes from the left hand side of the network (node 18, 19, 20, 21, 24, 25, 28, 29, 32, 33, 

36 and 37). 

 

r6_temp->next=r6_cur 

r6_temp 
 

Node 2 

num=q_->length() 
r6_cur 

r6_cur=r6_temp 

r6_temp 

Node 2 

num=q_->length() 

NULL 

r6_cur 

Next 

Next 

Node 1 NULL 

Node 1 

r6_head 

r6_head 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Coding and Implementation 
 

 112 

5.2.2.3 Fuzzy Logic 

The fuzzy logic code is inserted into the enqueue() function. The code 

fuzzy_result=fuzzy(q_->length(), prev_20, qlim) 

will be used to call the fuzzy logic code located in the dsreqq.cc file itself. 

 

The fuzzy logic function call has a set of parameters being passed to it. Three parameters 

are to be passed to the function, the current physical queue length, the average queue 

length and the physical queue limit. The fuzzy logic function will pass back a variable of 

type float to be assigned to fuzzy_result variable for further action to be taken as 

explained earlier in chapter 4. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 113 

Chapter 6: Simulation Results and Analysis 

6.1 Simulation Organization 

The simulations are divided into two big categories, which are as follows: 

1. Light Traffic 

2. Heavy Traffic 

 

In each category, there will be two sets of data being collected. One set will be the 

simulation result without fuzzy logic implementation. The other set will be the 

simulations result with fuzzy logic. Figure 6.1 below describes the organization of the 

simulations results. 

 

Figure 6.1 Simulation organizations 

Results 

Light Traffic Heavy Traffic 

Without 
Fuzzy 

With 
Fuzzy 

Without 
Fuzzy 

With 
Fuzzy 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 114 

6.2 Simulation results 

Simulations results that will be printed on the screen will represented in a table form, 

which is also known as packets statistic. The command line printStats will actually print 

the table on the screen and for this thesis purpose, packets statistic table will be printed at 

an interval of 50 simulation seconds. Each time when the packets statistic table being 

printed; there will be two sets of tables. The first set will represents the packets statistic 

for traffic from router 6 to router 7. While the second set will represents the packets 

statistic for traffic from router 7 to router 6. For analysis purpose, packets statistic results 

for each interval seconds of 100 will be recorded starting from 100s. Example of the 

packets statistic table is as shown below in Table 6.1. 

 

Table 6.1 Packets statistic table 

Codepoint Packets 
received 

Packets 
sent 

Tail dropped 
packet 

RED early dropped 
packet 

All 412893 350867 45926 16100 
20 296320 260206 25534 10580 
21 116573 90661 20392 5520 

 

The purpose of recording packets statistics at the bottleneck link is because the bottleneck 

link is simplex link. Hence the data collected can clearly reflects the direction of the 

packets in the network. Furthermore, the fuzzy logic implementation is done in the two 

bottleneck routers. Therefore to actually see or determine the successfulness of the 

FuzAQM, the bottleneck routers packets statistic must be studied.  Throughput terms, 

which will be used onwards, is actually referring to the packets sent. This figure will 

reflect the amount of packets which has successfully traveled through the bottleneck link. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 115 

In this thesis it is assume that for each packet, which has successfully traveled through 

the bottleneck link, it will reach its destination for sure. The bottleneck link is actually the 

link with lowest bandwidth and highest delay and the links after or before the bottleneck 

link are faster and with lower delay. 

6.2.1 Light Traffic Simulations and Results 

Light traffic simulations are those simulations with 24 sources and destinations nodes. 

Simulation carried out for light traffic can be as long as 800 simulation seconds. There 

will be a total amount of 25 sets of simulations being carried out and the average value of 

each codepoint throughput and the overall throughput for each 100 seconds will be 

recorded. 

6.2.2 Heavy Traffic Simulations and Results 

Heavy traffic simulations are those simulations with 48 sources and destinations nodes. 

Simulation carried out for light traffic will be as long as 800 simulation seconds. There 

will be a total amount of 25 sets of simulations being carried out. The average value of 

each codepoint throughput and overall throughput for each 100 seconds will be recorded 

for all the 25 sets of simulation. 

 Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 116 

6.3 Light Traffic Simulations Results Analysis 

In the light traffic simulations, the fuzzy logic implementation does improve the total 

throughput. Throughput value is calculated using the formula as shown. 

 

Throughput  =   

 

The throughput calculation is based on one direction (from r6 to r7 or r7 to r6) at the 

bottleneck link exclusively. The average percentage of amount of packets successfully 

traveled through the bottleneck link is shown in figure 6.2 and 6.3 below. 

 

r6r7 Throughput Percentage for Light Traffic

91.00
92.00
93.00
94.00
95.00
96.00
97.00
98.00
99.00

100.00

100 200 300 400 500 600 700 800

Time

P
e

rc
e

n
t

r6r7 r6r7 Fuzzy
 

Figure 6.2 r6r7 throughput percentage for light traffic 

 

Total of packets successfully travel through the bottleneck link 

Total of packets received at the bottleneck link 

(simulation seconds) Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 117 

Table 6.2 r6r7 throughput percentage values for light traffic 

 
 Time (simulation seconds) 
 100 200 300 400 500 600 700 800 
r7r6 (in percent) 99.48 99.10 97.03 96.10 95.27 94.40 93.74 93.05 
r7r6 Fuzzy 
(in percent) 

98.69 97.30 96.14 95.16 94.31 93.51 92.23 91.52 

 

 

r7r6 Throughput Percentage for Light Traffic

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

100 200 300 400 500 600 700 800

Time

P
e

rc
e

n
t

r7r6 r7r6 Fuzzy
 

Figure 6.3 r7r6 throughput percentage for light traffic 

 

Table 6.3 r7r6 throughput percentage values for light traffic 

 Time (Simulation seconds) 
 100 200 300 400 500 600 700 800 
r7r6 (in percent) 99.53 98.38 97.37 96.46 95.63 94.85 94.06 93.38 
r7r6 Fuzzy 
(in percent) 

98.61 97.15 95.94 94.95 93.94 93.04 92.26 91.57 

 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 118 

The line above the lowest line in both line graphs (Figure 6.2 and Figure 6.3) shows that 

the fuzzy implementation does improve the average percentage of throughput of packets. 

Improvement can be seen in between 0.79% till 1.79% throughout 800 seconds of 

simulation. The graphs below show the average improvement percentage of light traffic 

simulations. 

 

Improvement Percentage In r6r7 Traffic For Light 

Traffic 

0.70

0.90

1.10

1.30

1.50

100 200 300 400 500 600 700 800

Time

P
e

rc
e

n
t

Improvement
 

Figure 6.4 Improvement percentage in r6r7 traffic for light traffic 

 

Table 6.4 Improvement percentage values in r6r7 traffic for light traffic 

 

Time (simulation seconds) 100 200 300 400 500 600 700 800 
Percent 0.79 0.88 0.89 0.94 0.96 0.97 1.51 1.53 

 

 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 119 

Improvement Percentage In r7r6 Traffic For Light Traffic

0.90

1.10

1.30

1.50

1.70

1.90

100 200 300 400 500 600 700 800

Time

P
e
rc

e
n

t

Improvement
 

Figure 6.5 Improvement percentage in r7r6 traffic for light traffic 

 

Table 6.5 Improvement percentage values in r7r6 traffic for light traffic 
 

Time (Simulation seconds) 100 200 300 400 500 600 700 800 
Percent 0.92 1.23 1.43 1.51 1.69 1.80 1.80 1.79 

 
 

The total throughputs of packets are the amount of data packets and acknowledgement 

packets successfully survived through the bottleneck link. The packets distributions 

between codepoint 20 and 21 for each direction of the bottleneck link are shown in the 

figure 6.6 and figure 6.7 below. Table 6.2 summarizes the average total packets results 

for both codepoints.  

 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 120 

Average Total of Codepoint 20 Packets Successfully  

Traveled Through the Bottleneck Link for Light Traffic

0

50000

100000

150000

200000

250000

300000

350000

r6r7 r6r7 Fuzzy r7r6 r7r6 Fuzzy

Direction

P
a

c
k

e
ts

 

Figure 6.6 Average total of codepoint 20 packets successfully traveled through the 
bottleneck link for light traffic 

Average Total of Codepoint 21 Packets Successfully  

Traveled Through the Bottleneck Link for Light Traffic

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

r6r7 r6r7 Fuzzy r7r6 r7r6 Fuzzy

Direction

P
a

c
k

e
ts

 

Figure 6.7 Average total of codepoint 21 packets successfully traveled through the 
bottleneck link for light traffic 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 121 

 

Table 6.6 Average packets distributions of codepoint 20 and 21 successfully traveled 
through the bottleneck link for light traffic 

 

From the graph above, it can be concluded that, with fuzzy logic implementation, total 

packets with codepoint 20 and 21, which had successfully traveled through the bottleneck 

link improved. 

 

6.4 Heavy Traffic Simulations Results Analysis 

In the heavy traffic simulations, the fuzzy logic implementation does improve the total 

throughput. The average percentage of amount of packets successfully traveled through 

the bottleneck link is shown in Figure 6.8 and Figure 6.9 below. 

 

Codepoint r6r7 r6r7 Fuzzy r7r6 r7r6 Fuzzy 

20 301911 315623 305062 316354 

21 122022 162745 1223861 159094 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 122 

r6r7 Throughput Percentage for Heavy Traffic

78.00

83.00

88.00

93.00

98.00

100 200 300 400 500 600 700 800
Time

P
e

rc
e

n
t

r6r7 r6r7 Fuzzy
 

Figure 6.8 r6r7 throughput percentage for heavy traffic 

 

Table 6.7 r6r7 throughput percentage values for heavy traffic 
 

 Time (Simulation seconds) 
 100 200 300 400 500 600 700 800 
r7r6 (in percent) 94.01 89.26 86.18 83.81 82.52 81.32 80.20 79.76 
r7r6 Fuzzy 
(in percent) 

97.13 93.99 91.52 89.54 87.72 86.40 85.36 84.33 

 
 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 123 

r7r6 Throughput Percentage for Heavy Traffic

78.00

83.00

88.00

93.00

98.00

100 200 300 400 500 600 700 800

Time

P
e
rc

e
n

t

r7r6 r7r6 Fuzzy
 

Figure 6.9 r7r6 throughput percentage for heavy traffic 

 
Table 6.8 r7r6 throughput percentage values for heavy traffic 

 
 Time (Simulation seconds) 
 100 200 300 400 500 600 700 800 
r7r6 (in percent) 93.76 88.96 85.52 83.37 81.90 80.82 79.94 78.96 
r7r6 Fuzzy 
(in percent) 

97.38 94.25 91.98 89.82 88.07 86.58 85.16 94.01 

 

 

 

 

The line above the lowest line in both line graphs shows that the fuzzy implementation 

does improve the average percentage of throughput of packets. Improvement can be seen 

in between 3.12% till 6.46% throughout 800 seconds of simulation. The graphs below 

show the average improvement percentage of light traffic simulations. 

 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 124 

Improvement Percentage In r6r7 Traffic For 

Heavy Traffic 

3.00
3.50
4.00
4.50
5.00
5.50
6.00

100 200 300 400 500 600 700 800

Time

P
e

rc
e

n
t

Improvement
 

Figure 6.10 Improvement percentage in r6r7 traffic for heavy traffic 

 

Table 6.9 Improvement percentage values in r6r7 traffic for heavy traffic 

 
Time (Simulation seconds) 100 200 300 400 500 600 700 800 
Percent 3.12 4.73 5.34 5.73 5.20 5.08 5.16 4.57 

 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 125 

Improvement Percentage In r7r6 Traffic For 

Heavy Traffic 

3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00

100 200 300 400 500 600 700 800

Time

P
e

rc
e

n
t

Improvement
 

Figure 6.11 Improvement percentage in r7r6 traffic for heavy traffic 

 
Table 6.10 Improvement percentage values in r7r6 traffic for heavy traffic 

 
Time (Simulation seconds) 100 200 300 400 500 600 700 800 
Percent 3.62 5.29 6.46 6.45 6.17 5.76 5.22 5.05 
 
 

The line graphs above (Figure 6.10 and Figure 6.11) shows that the improvement 

percentage decreases by time. This is caused by the amount of packets trying to travel 

through the bottleneck link increases and it is way too much from what the buffer in the 

bottleneck link could handle. 

 

The total packets throughputs of packets are the amount of data packets and 

acknowledgement packets successfully survived through the bottleneck link. The packets 

distributions between codepoint 20 and 21 for each direction of the bottleneck link are 

(simulation seconds) 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 126 

shown in the figure 6.12 and figure 6.13 below. Table 6.3 summarizes the average total 

packets results for both codepoints.  

 

Average Total of Codepoint 20 Packets Successfully 

Traveled Through the Bottleneck Link for Heavy Traffic

0

100000

200000

300000

400000

500000

r6r7 r6r7 Fuzzy r7r6 r7r6 Fuzzy

Direction

P
a
c
k
e
ts

 

Figure 6.12 Average total of codepoint 20 packets successfully traveled through the    
bottleneck link for heavy traffic 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 127 

Average Total of Codepoint 21 Packets Successfully 

Traveled Through the Bottleneck Link for Heavy Traffic

0
20000
40000
60000
80000

100000
120000
140000
160000

r6r7 r6r7 Fuzzy r7r6 r7r6 Fuzzy

Direction

P
a

c
k

e
ts

 

Figure 6.13 Average total of codepoint 21 packets successfully traveled through the    
bottleneck link for heavy traffic 

 

Table 6.11 Average packets distributions of codepoint 20 and 21 successfully 
traveled through the bottleneck link for heavy traffic 

 
By referring to figure 6.13, for heavy traffic network, the fuzzy logic implementation 

improves the packets with codepoint 21 throughput by 18% at least compared to the non-

fuzzy logic implementation. A huge increment in the throughput for packets with 

codepoint 21 could be seen by an increment of 45% throughout the 800 seconds of 

simulations. 

 

Codepoint r6r7 r6r7 Fuzzy r7r6 r7r6 Fuzzy 
20 491941 431260 492692 435888 
21 68835 147575 65339 148692 

Univ
ers

ity
 of

 M
ala

ya



Chapter 6 Simulation Results and Analysis 
 
 

 128 

In figure 6.12, slight decrement of packets with codepoint 20 throughput by 12.2 % the 

most throughout 800 seconds of simulations could be witness. Although there is a slight 

decrement, the fuzzy logic implementation managed to maintain an average total 

percentage of throughputs for packets with codepoint 20 at a minimum level of 87%. 

 

In a heavy traffic situation, the fuzzy logic implementation is fairer towards packets with 

codepoint 21 compare to the non-fuzzy implementation.  In the normal situation with out 

fuzzy logic implementation, the queue management model will actually ill treat packets 

with lower precedence. Packets will higher precedence will gain too much priority and 

suppress packets with lower precedence from getting through the bottleneck link. 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 Conclusion and Future Work 
 
 

 129 

Chapter 7: Conclusion and Future Work 

 

The high demanding state of the Internet requires high bandwidth and quality of service. 

Several protocols have been developed such as DiffServ to meet this demand. Although 

DiffServ provide better quality of service if compared to ISA, the increased use of time 

sensitive data application has set off the need for designing better queue management 

model to be incorporated into DiffServ domain. 

  

Commonly queue management uses RED to manage the queue occupancy and avoid 

buffer overflow problem. Although RED can help in queue management, but it is still not 

up to expectation as the Internet traffic has evolved into a very dynamic form. The 

amount of data pumped into the network varies from each source and the number of 

packets in the network at a given moment is unpredictable. Thus the existing DiffServ 

with RED is not proficient enough to meet this challenging network condition. Therefore 

the idea of producing a dynamic queue management (FuzAQM) for DiffServ by 

incorporating fuzzy logic into the architecture has been laid.  

 

This thesis achieved its objectives in creating a dynamic queue management model for 

DiffServ network using fuzzy logic and to study the behaviors and response of the 

FuzAQM under different parameters and traffic load. Besides than that, the differences 

between different RED parameters settings is also been studied and IP QoS models and 

focus mainly on DiffServ has been explored. This thesis also successfully created a 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 Conclusion and Future Work 
 
 

 130 

DiffServ simulation environment for testing the FuzAQM and indirectly effectiveness of 

the FuzAQM has been evaluated. 

 

The DiffServ environment created to test the FuzAQM has been limited to DiffServ AF 

PHB. The EF PHB is been excluded because there is no further service differentiation in 

EF class and it is considered as premium service which will get all resources and 

treatment it required. BE PHB is also been excluded because it is a best-effort service. 

Packets with BE codepoint will be discarded first once congestion avoidance take place 

or congestion happens. But in AF class itself, it has 4 different types of services, namely 

AF1, AF2, AF3 and AF4. Between these 4 classes there are different preferential and 

treatment among them. AF1 is considered more superior than AF2 and so on. In depth 

same AF class, will be further differentiated using drop precedence. 

 

This thesis is significant in its effort to improve the total throughput of traffic especially 

for packets with higher priority without choking packets with lower priority.  Last but not 

the least, this thesis also successfully turns the queue management model into a 

responsive queue management model.  

7.1 Summary of Work Done 

This thesis started off with literature review on QoS, DiffServ, congestion management 

and fuzzy logic concept. From these reviews, a dynamic queue management model has 

been proposed based on RED. This dynamic queue management model is known as 

Active Queue Management for AF Traffic in DiffServ Network (FuzAQM). FuzAQM 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 Conclusion and Future Work 
 
 

 131 

manipulate the RED parameters settings based on output from a fuzzy logic inference 

process. The inference process will output a value that measures the congestion level at 

the bottleneck link every time a packet arrives. Based on the value that represents the 

level of the congestion at bottleneck link, appropriate RED parameters would be reset to 

handle the current situation. By doing this, now the queue management model has now 

become more responsive to the congestion level. 

 

ns2 network simulator has been chosen for the development and testing FuzAQM. The 

codes for FuzAQM are written in C++ language located in dsredq.cc and dsredq.h files. 

The simulation script is written in Otcl which are divided into diffnet.tcl, peer_setup.tcl, 

2q2p.tcl, topology.tcl and monitoring.tcl. diffnet.tcl is the main simulation file which will 

call the rest of the tcl files. 

 

The topology used for the simulations is a dumbbell topology. There are two types of 

simulated scenarios which are, simulation with light traffic and heavy traffic. A series of 

simulations has been carried out for each type of scenarios. From each simulation done, 

packets statistics are recorded at 100 seconds interval. 

 

Based on the statistics results recorded, then the performance of the FuzAQM is verified. 

To verify the FuzAQM, the network performance for two types of scenarios, one with 

fuzzy logic implementation and one without, are compared. The main measurement item 

is the throughput of packets at the bottleneck link. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 Conclusion and Future Work 
 
 

 132 

From the simulation results, it is proven that FuzAQM improves the total throughput by 

0.79% to 6.46% depending on the traffic load and maintaining fair treatment for lower 

priority packets while maintaining at least 87% of throughput for higher priority packets 

in the network. 

 

7.2 Summary of Contributions 

This thesis centers its research in QoS and focus mainly in DiffServ. Works done 

includes literature review on the QoS and DiffServ motivates the creation a fuzzified 

active queue management for DiffServ traffic. In this ever-demanding networking world, 

there is a paradigm shift in its research interest. There is now an urge to search for more 

advanced and capable algorithm or model, which can cater this need. Thus with these 

factors as the motivation or a push, a dynamic and responsive model is now getting the 

spotlight in networking research. 

 

The proposing of FuzAQM model is one of the steps taken in answering the challenge of 

searching for a better model. Appropriate network simulator has been chosen to help 

evaluate the effectiveness of the proposed FuzAQM model. And the results from the 

simulations do prove that the proposed FuzAQM model could actually improved the 

network performances although the algorithm used is quite basic and simple. 

 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 Conclusion and Future Work 
 
 

 133 

7.3 Objectives Achieved 

The simulations analysis has proven that the proposed FuzAQM model achieved its 

objectives. The main objective achieved was the successfulness of creating active queue 

management using fuzzy logic. Besides than that, from the fine tuning process of the 

RED parameters, the impact on setting different RED parameters on the network 

throughput also been studied. 

 

The simulation environment created is also proven to be sufficient to test out the 

FuzAQM model. From the initial stage, the environment set was not harsh enough to put 

the proposed FuzAQM model into stress and test. But in later stage, the environment was 

successfully set to at least put the proposed FuzAQM model into stress and the 

effectiveness of the proposed FuzAQM model starts to reflect its effectiveness. 

 

Towards the end of this research, it is clear that an active queue management for DiffServ 

traffic works better than classic type of non-responsive queue management model. So it 

can be summarized here that active queue management for AF class traffic DiffServ will 

be one of the key answer to the research for a better model. 

7.4 Future Research Suggestions 

The works done and presented in this thesis are actually the ignition of a more serious 

and advance research works.  Due to time and budget constraints, several simplifications 

and assumptions need to be done. There are several future enhancements and works could 

be carried out. These enhancements and works include expanding the research to include 

Univ
ers

ity
 of

 M
ala

ya



Chapter 7 Conclusion and Future Work 
 
 

 134 

various types of packets metering scheme such as time sliding window with 3 color 

marking (RFC2859), token bucket (Brown03), leaky bucket (Brown03), single rate with 

3 color marking (srTCM) (RFC2697) or two rate with 3 color marking (trTCM) 

(Aboul03, RFC2698) scheme. 

 

 This thesis focuses on AF packets type with two drop precedence. Future works could be 

done to include more than 2 drop precedence and AF types. Future research could be 

done to include all DiffServ service types and evaluate the way the FuzAQM model 

could be enhance further to handle a more extended situation. 

 

The fuzzy logic part in this thesis eventually guides the settings of RED and drop 

parameters. Further work could be done where the output of the fuzzy logic engine is 

used to guide or change the settings of a wider spectrum of non-constant variables located 

in any part in the DiffServ network. For example, it could be used to reset the parameters 

in the token bucket (Sahu00) scheme to regulate the metering process or maybe used to 

change the type of MRED modes such as RIO (Clark98), Adaptive RIO (Cartas04) or 

Fair RED (Lin97) in conjunction with the network situation. 

Univ
ers

ity
 of

 M
ala

ya



References 
 

 135 

References 
(Aboul03) Aboul-Magd, O., and Rabie, S.,  Two Rate Three Color Marker 

for Differentiated Services, Internet-Draft, October, 2003. 

(Asai95) Asai, K. Ed., (1995) Fuzzy Systems for Information Processing, 

Tokyo, Ohmsha. 

(Brigette03) Krantz B. A "Crisp" Introduction to Fuzzy Logic [Internet] 

Boulder, Colorado University. Available from: < http://www-

ugrad.cs.colorado.edu/~cs3202/papers/Brigette_Krantz.html>  

[Accessed 15 May 2003] 

(Brown03) 

 

 

Brown, M.A. (2003) Traffic Control - Next Generation 

[Internet]. Available from: < http://linux-

ip.net/gl/tcng/node1.html>  [Accessed 4 July 2004] 

(Cartas04) 

 

 

 

Mexican International Conference in Computer Science 

(ENC'04), 5th. Colima, Mexico, (September 2004),  A Fairness 

Study of the Adaptive RIO Active Queue Management 

Algorithm. Cartas, R. et al. IEEE. 

(Chrysostomou03) 

 

Chrysostomou, C. et al. (2003) Fuzzy Explicit Marking for 

Congestion Control in Differentiated Services Networks. IN: 

Eighth IEEE International Symposium on Computers and 

Communications June 30 - July 03, Kemer-Antalya, Turkey, 

IEEE. pp. 312-319. 

(Cisco00) (December 2000) Internetworking Technologies Handbook: 

Quality of Service Networking, 3rd edition, I.N. USA, Cisco 

Press 

(Clark98) Clark, D., and W. Fang (1998) Explicit Allocation of Best Effort 

Packet Delivery Service. IEEE/ACM Trans. On Networking 

August 6(4). 

Univ
ers

ity
 of

 M
ala

ya

http://www-ugrad.cs.colorado.edu/~cs3202/papers/Brigette_Krantz.html
http://www-ugrad.cs.colorado.edu/~cs3202/papers/Brigette_Krantz.html
http://www-ugrad.cs.colorado.edu/~cs3202/papers/Brigette_Krantz.html
http://www-ugrad.cs.colorado.edu/~cs3202/papers/Brigette_Krantz.html


References 
 

 136 

 

(Cunha95) Cunha, C.R., Bestavros, A. and Crovella, M.E. (1995) 

Characteristics of WWW Client-based Traces [Internet] 

Cummington St, Boston University. Available from: < http://cs-

www.bu.edu/faculty/crovella/paper-archive/TR-95-

010/paper.html>  [Accessed 26 February 2003] 

(DiFata03) 

 

Di Fata, G. et al. (2003) A Genetic Algorithm for the Design of a 

Fuzzy Controller for Active Queue Management IEEE 

Transactions on Systems, Man, and Cybernetics. 33(3) August. 

pp. 313-324. 

(Fishwick96) Fishwick, P.A. (1996) Computer Simulation: The Art and 

Science of Digital World Construction. IEEE Pontentials. 

February/March, pp. 24-27. 

(Floyd93) Floyd, S., and Jacobson, (1993) V.,Random Early Detection 

gateways for congestion avoidance IEEE/ACM Trans. on 

Networking, 1(4) August, pp. 397-413. 

(INSANE96) INSANE Users Manual, Comp. Sc. Division, UC Berkeley, May 

1996. 

(Jacobson88) 

 

Jacobson, V. (1998) Congestion avoidance and control. IN: 

Proceedings of SIGCOMM ’88, August, Stanford, Ca, ACM. 

(Karthik04) Karthik, S., Venkatesh, C., and Natarajan, A.M. (2004) 

Congestion control in ATM networks using fuzzy logic IN: 

Proceedings of the18th International Parallel and Distributed 

Processing Symposium, 26-30 April, New Mexico, USA, IEEE 

Computer Society Press. pp.162. 

(L’Ecuyer99) L’Ecuyer, P., (1999) Good parameters and implementations for 

combined multiple recursive random number generators. 

Operation Research, 47(1) January, pp.159-164. 

(L’Ecuyer01) L’Ecuyer, P., (2001) Software for uniform random number 

generation: Distinguish the good and the bad. IN: Proceedings of 

the 2001 Winter Simulation Conference, December, pp. 95–105. 

Univ
ers

ity
 of

 M
ala

ya

http://cs-www.bu.edu/faculty/crovella/paper-archive/TR-95-010/paper.html
http://cs-www.bu.edu/faculty/crovella/paper-archive/TR-95-010/paper.html
http://cs-www.bu.edu/faculty/crovella/paper-archive/TR-95-010/paper.html
http://cs-www.bu.edu/faculty/crovella/paper-archive/TR-95-010/paper.html
http://cs-www.bu.edu/faculty/crovella/paper-archive/TR-95-010/paper.html
http://cs-www.bu.edu/faculty/crovella/paper-archive/TR-95-010/paper.html


References 
 

 137 

 

(L’Ecuyer02) L’Ecuyer, P. et al., (2002) An object-oriented random number 

package with many long streams and substreams. Operation 

Research, 50(6) November, pp. 1073-1075. 

(Liang03)  

 

 

Liang, J., Arvanitis, T.N., and Woolley, S.I. (2003) Fair weighted  

round robin scheduling scheme for DiffServ networks. Electronics 

Letters 39(3) February, pp.  333-335. 

(Lin97) Lin, D., and Morris, R. (1997) Dynamics of Random Early 

Detection. IN: Proceedings of ACM SIGCOMM, September. 

Stanford, Ca, ACM, pp. 127-137. 

(Luoma00) Luoma, M..(2000 ) Simulation Studies of Differentiated Services 

Networks Licentiate thesis, Helsinki University of Technology. 

(Maisie96) Maisie User Manual Release 2.2, UCLA Parallel Computing Lab, 

Dec. January, 1996. 

(Nichols97) Nichols, K., Jacobson, V., and Zhang, L., "A Two-bit 

Differentiated Services Architecture for the Internet", Internet-

Draft, December 1997. 

(NS03) The ns Manual, The VINT Project, December 2003. 

(OPNET97) OPNET Modeling Manual Vol. 1. OPNET Version 3.5. MIL3 Inc. 

1997. 

(PARSEC98) PARSEC User Manual Release 1.1, UCLA Parallel Computing 

Lab, August 1998. 

(REAL97) REAL 5.0 User Manual, Cornell University, August 1997. 

(RFC793) Information Sciences Institute, University of Southern California 

TRANSMISSION CONTROL PROTOCOL, RFC 793, September 

1981. 

(RFC896) Nagle, J., Congestion Control in IP/TCP, RFC 896, January 1984. 

(RFC1122) Braden, R., Ed., Requirements for Internet Hosts --Communication 

Layers, RFC 1122, October 1989. 

Univ
ers

ity
 of

 M
ala

ya



References 
 

 138 

 

(RFC2205) Braden, R., Ed. et al., Resource ReSerVation Protocol (RSVP) -- 

Version 1 Functional Specification, RFC 2205, September 1997. 

(RFC2309) Braden, B., et al., Recommendations on Queue Management and 

Congestion Avoidance in the Internet, RFC 2309, April 1998. 

(RFC2415) Poduri, K., and Nichols, K., Simulation Studies of Increased 

Initial TCP Window Size, RFC 2415, September 1998. 

(RFC2474) Nichols, K., Blake, S., Baker, F., and Black, D., Definition of the 

Differentiated Services Field (DS Field) in the IPv4 and IPv6 

Headers, RFC 2474, December 1998. 

(RFC2475) Blake, S. et al. An Architecture for Differentiated Services, RFC 

2475, December 1998. 

(RFC2597) Heinanen, J., et al., Assured Forwarding PHB Group, RFC 2597, 

June 1999. 

(RFC2598) Jacobson, V., Nichols, K., and Poduri, K., An Expedited 

Forwarding PHB, RFC2598, June 1999. 

(RFC2697) Heinanen, J., Finland, T., and Guerin, R. A Single Rate Three 

Color Marker, RFC 2697, September 1999. 

(RFC2698) Heinanen, J., Finland, T., and Guerin, R., A Two Rate Three 

Color Marker, RFC 2698, September 1999. 

(RFC2859) Fang, W., Seddigh, N., Nandy B., A Time Sliding Window Three 

Colour Marker (TSWTCM), RFC 2859, June 2000. 

(Sahu00) Sahu, S. et al. (2000) On Achievable Service Differentiation with 

Token Bucket Marking for TCP. IN: Proceedings of the 2000 

ACM SIGMETRICS international conference on Measurement 

and modeling of computer systems, 18 – 21 June, California, 

United States, ACM Press. pp. 23-33. 

(Stallings02) Stallings, W. (2002) High-Speed Networks and Internets, 

Performance and Quality of Service. 2nd ed., Upper Saddle River, 

N.J., Prentice Hall. 

Univ
ers

ity
 of

 M
ala

ya



References 
 

 139 

 

(Yanfei03) Yanfei, F., Fengyuan, R., and Chuang, L. (2003) Design of an 

active queue management algorithm based fuzzy logic decision. 

IN: Communication Technology Proceedings, 2003. International 

Conference on , 9-11 April, China, IEEE, pp. 286 – 289.  

(Zhang01) Zhang, R. and Ma, J. (2001) Congestion control using fuzzy logic 

in differentiated services networks. IN: Fourth International 

Conference, Proceedings of the Computational Intelligence and 

Multimedia Applications, 30 October-1 November 2001, 

Yokusika City Japan, IEEE. pp. 288 – 292. 

 

Univ
ers

ity
 of

 M
ala

ya




