
A RECOMMENDER OF PHYSICAL GAMES FOR
LEARNING PROGRAMMING AND COMPUTATIONAL

THINKING

MOHAMMAD AHSAN HABIB

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2019Univ

ers
ity

 of
 M

ala
ya

A RECOMMENDER OF PHYSICAL GAMES FOR
LEARNING PROGRAMMING AND COMPUTATIONAL

THINKING

MOHAMMAD AHSAN HABIB

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTERS IN
COMPUTER SCIENCE (APPLIED COMPUTING, MIX

MODE)

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019 Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mohammad Ahsan Habib

Matric No: WOA160022

Name of Degree: Master of Computer Science (Applied Computing)

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

A Recommender of Physical Games for Learning Programming and Computational

Thinking

Field of Study: Computers and Education.

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this work, I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

A RECOMMENDER OF PHYSICAL GAMES FOR LEARNING

PROGRAMMING AND COMPUTATIONAL THINKING

ABSTRACT

Keeping students engaged while teaching programming courses is a big challenge for

instructors in general, even with the availability of all modern facilities in a classroom.

There are numerous approaches to teaching programming such as through online and

offline software applications, digital games, Lego bricks, and robotic aids as well as

physical activities such as board games, dancing, and unplugged computational thinking

(CT) activities. This type of activities is called active learning approach. The objective of

the present research is to design, develop, and evaluate a programming and computational

thinking assistive tool to bridge the gap through physical and tactile games. The research

methodology starts with qualitative preliminary study that was conducted by observing

121 students on different stages and arranged semi-structured interview sessions for 18

randomly selected students. In this study, CT elements are identified and have been

mapped to programming codes. Following that, a prototype called Code Analyzer was

developed which consists of four main components. i.e. user interface, Control, CT

element calculator, and Instructors’ window components. This prototype tool is intended

to guide instructors to choose suitable physical or tactile activities by analysing students’

code in relation to CT elements.

Keywords: computational thinking elements, tactile games, assistive tool

Univ
ers

ity
 of

 M
ala

ya

iv

PENCADANG PERMAINAN FIZIKAL UNTUK PEMBELAJARAN

PENGATURCARAAN DAN PEMIKIRAN KOMPUTASI

ABSTRAK

Mengekalkan keterlibatan pelajar sambil mengajar kursus pengaturcaraan adalah satu

cabaran besar untuk pengajar pada umumnya, walaupun dengan adanya semua

kemudahan moden di dalam bilik darjah. Terdapat banyak pendekatan untuk mengajar

pengaturcaraan seperti melalui aplikasi perisian dalam talian dan luar talian, permainan

digital, blok Lego, dan bantuan robot serta aktiviti fizikal seperti permainan papan,

menari, dan aktiviti Pemikiran Komputasi (CT) tanpa plug. Jenis aktiviti ini dipanggil

pendekatan pembelajaran aktif. Objektif penyelidikan ini adalah untuk merekabentuk,

membangun dan menilai alat bantu pengaturcaraan dan pemikiran komputasi untuk

merapatkan jurang melalui permainan fizikal dan taktil. Metodologi penyelidikan ini

bermula dengan kajian awal kualitatif yang dijalankan dengan memerhati 121 pelajar

pada peringkat yang berbeza dan mengatur sesi wawancara separa berstruktur untuk 18

pelajar yang dipilih secara rawak. Dalam kajian ini, elemen CT dikenalpasti dan telah

dikaitkan dengan kod pengaturcaraan. Selepas itu, prototaip yang dinamakan Kod

Analyzer telah dibangunkan yang terdiri daripada empat komponen utama. iaitu antara

muka pengguna, (kawalan, elemen kalkulator CT), dan komponen tetingkap pengajar.

Alat prototaip ini bertujuan untuk membimbing pengajar untuk memilih aktiviti fizikal

atau taktil yang sesuai dengan menganalisis kod pelajar yang berkaitan dengan unsur CT.

Kata kunci: elemen pemikiran komputasional, permainan fizikal dan taktil, perisian

alat bantu

Univ
ers

ity
 of

 M
ala

ya

v

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor, Raja Jamilah Yusof, lecturer at Faculty

of Computer Science and Information Technology, University of Malaya. The door to Dr.

Raja’s office was always open whenever I ran into a trouble spot or had a question about

my research or writing. She consistently allowed this paper to be my own work but steered

me in the right the direction whenever she thought I needed it.

I would also like to thank the experts who were involved in the validation survey for

this research project. Without their passionate participation and input, the validation

survey could not have been successfully conducted.

I would also like to thank University of Malaya for granting RU009-2017M RU grand-

UMCAS for conducting the preliminary study.

Finally, I must express my very profound gratitude to my parents and to my hall-mates

for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

Author

Mohammad Ahsan Habib

Univ
ers

ity
 of

 M
ala

ya

vi

TABLE OF CONTENTS

Abstract ... iii

Abstrak ... iv

Acknowledgements ... v

Table of Contents ... vi

List of Figures .. xi

List of Tables.. xiii

CHAPTER 1: INTRODUCTION .. 14

1.1 Background .. 14

1.2 Motivation.. 14

1.3 Problem Statement ... 16

1.4 Objectives .. 16

1.5 Research Questions .. 17

1.6 Scope of Research.. 18

1.7 Methodology .. 18

1.8 Target Group .. 20

1.9 Significance of the Research ... 20

1.10 Overall structure of the Thesis ... 20

CHAPTER 2: LITERATURE REVIEW .. 22

2.1 Related Work ... 22

2.2 Assistive Tool for Teaching Programming.. 23

2.3 Unplugged Computer Science ... 24

2.4 Computational Thinking (CT) ... 26

2.4.1 Decomposition .. 27

2.4.2 Pattern Recognition .. 27

2.4.3 Abstraction ... 27

Univ
ers

ity
 of

 M
ala

ya

vii

2.4.4 Algorithm ... 27

2.5 Connecting CT Elements with Programming .. 27

2.5.1 Decomposition .. 28

2.5.2 Pattern Recognition .. 28

2.5.3 Pattern Generalization / Abstraction .. 28

2.5.4 Algorithm ... 28

CHAPTER 3: RESEARCH METHODOLOGY ... 30

3.1 Preliminary Study .. 30

3.1.1 Activities .. 31

3.1.1.1 Academic Test Score ... 32

3.1.1.2 Feedback .. 32

3.2 Identify CT Elements ... 32

3.3 Prototype (Assistive Tool) ... 32

3.3.1 Target Users ... 32

3.3.2 CT Elements Calculation Mechanism .. 32

3.3.3 Activity Suggestion Module ... 33

3.4 Tool Development (Experimental Technique) .. 33

3.4.1 User Interface ... 33

3.4.2 User Type ... 33

3.4.3 CT Elements Calculation .. 33

3.4.4 Business Logic ... 34

3.5 Implementation .. 34

3.5.1 Tool Selection ... 34

3.5.2 Module Development ... 34

3.5.3 Testing .. 35

3.6 Testing and Evaluation of the Prototype ... 35

Univ
ers

ity
 of

 M
ala

ya

viii

3.7 Summary .. 35

CHAPTER 4: PRELIMINARY STUDY .. 36

4.1 Game Design ... 36

4.1.1 Study Setting and Participants .. 36

4.1.2 Participant Observation .. 37

4.1.3 Interview and Survey Procedure .. 38

4.1.4 Grade Performance Observation .. 38

4.1.5 Research Procedure and Data Collection ... 39

4.1.5.1 Game Procedure .. 39

4.1.5.2 Game Materials ... 39

4.1.5.3 Grade Performance Observation ... 40

4.1.5.4 Learning Session Observation ... 41

4.1.5.5 Game Procedure .. 41

4.2 Validation .. 44

4.2.1 Game Activity Validation .. 44

4.3 Result ... 44

4.3.1 Students’ Interest .. 45

4.3.2 Confidence and Understanding .. 46

4.3.3 Learning Through Computational Thinking .. 46

4.3.4 Academic Performance and Productivity ... 47

4.3.4.1 Comparing Groups .. 48

4.4 Discussion .. 49

4.5 Summary .. 50

CHAPTER 5: DESIGN AND IMPLEMENTATION .. 51

5.1 Tool Design ... 51

Univ
ers

ity
 of

 M
ala

ya

ix

5.1.1 Model Design ... 51

5.1.2 Formula Design .. 52

5.1.2.1 Layer 1 ... 52

5.1.2.2 Layer 2 ... 53

5.1.2.3 Layer 3 ... 53

5.1.3 Activity Suggestion Formula .. 54

5.1.3.1 Step-1 .. 54

5.1.3.2 Step-2 .. 54

5.1.4 System Design .. 55

5.1.4.1 Use Case .. 56

5.1.4.2 System Flowchart .. 57

5.1.4.3 Database Overview ... 57

5.1.5 Interface and Component Design ... 58

5.1.5.1 User Interface Component .. 58

5.1.5.2 CT Elements Generator Component ... 60

5.1.5.3 Suggestion Window Component ... 60

5.1.5.4 Controller Component ... 61

5.1.6 User Accessibility Scope .. 62

5.2 Implementation .. 62

5.2.1 Tools ... 62

5.2.2 Development .. 63

CHAPTER 6: TESTING AND EVALUATION .. 67

6.1 Testing ... 67

6.1.1 Unit Test ... 67

6.1.2 Module Test .. 68

6.1.3 Integration Test ... 69

Univ
ers

ity
 of

 M
ala

ya

x

6.2 Evaluation .. 69

6.3 General Aspects ... 70

6.4 Structure and Navigation ... 70

6.5 System Evaluation ... 70

6.6 Summary .. 71

CHAPTER 7: CONCLUSION ... 72

7.1 Research Findings .. 72

7.2 Significant of Study ... 74

7.3 Concluding Remark ... 74

7.4 Research Challenges .. 75

7.5 Scope of Improvements ... 75

References ... 76

List of Publications and Papers Presented .. 81

Appendix A ... 82

Appendix B ... 85

Apppendix C ... 91

Univ
ers

ity
 of

 M
ala

ya

xi

LIST OF FIGURES

Figure 1.1 Flow chart of research methodology ... 20

Figure 3.1 Flow chart of research methodology ... 30

Figure 3.2 Steps of implementation .. 34

Figure 4.1 Steps for game sessions ... 42

Figure 4.2 Thematic Analysis with students’ feedback .. 45

Figure 4.3 Average mark in final exam for the 2016 and 2017 student batches 48

Figure 5.1 Modeling CT elements .. 52

Figure 5.2 Use Case diagram for instructors and students .. 56

Figure 5.3 System flowchart for Code Analyzer .. 57

Figure 5.4 Table structures of (a) reference_sheet and (b) activities 57

Figure 5.5 Front view of the tool .. 58

Figure 5.6 Code canvas ... 59

Figure 5.7 CT elements view and compare window ... 59

Figure 5.8 Add new activity window and Group Suggestion tabs (instructors only) 60

Figure 5.9 Screenshot of the Code Analyzer showing the average CT elements and
Suggested activities ... 61

Figure 5.10 Screenshot of the ‘generate’ module of the prototype 63

Figure 5.11 Screenshot of association of second layer with first layer 64

Figure 5.12 Screenshot of the ‘saving CT elements’ module ... 64

Figure 5.13 Screenshot of association of third layer with second layer.......................... 65

Figure 5.14 Screenshot of the ‘analyze’ module of the prototype 65

Figure 5.15 Screenshot of the activity add by teacher module 66

Figure 6.1 Demo code for testing. ... 67

Univ
ers

ity
 of

 M
ala

ya

file:///F:/00%20Universiti%20Malaya/Research/Dr.%20Raja/Minor%20amendments/thesis_final_amended%20v2.docx%23_Toc4974050

xii

Figure 6.2 (a) Array output of ‘generate’ module; (b) data received by the ‘save module
 ... 68

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF TABLES

Table 2.1 Game based Assistive Tools ... 24

Table 2.2 Examples of physical activities to teach programming 25

Table 2.3 Mapping CT elements to programming .. 29

Table 4.1 Participant observations and statistics... 38

Table 4.2 List of items based on activity type .. 40

Table 4.3 Comparative observation of SD, mean, and median marks of two groups 41

Table 4.4 Comparative observation of mean, median and Standard Deviation. 43

Table 5.1 Keyword-syntax and attribute table for CT elements 51

Table 5.2 List of all tools that is used in the development of the prototype 62

Table 6.1 Average rating for general aspects of the tool given by the users 70

Table 6.2 Average rating for structure and navigation of the tool given by the users 70

Table 6.3 Average rating for system evaluation of the tool given by the users 70

Univ
ers

ity
 of

 M
ala

ya

14

CHAPTER 1: INTRODUCTION

1.1 Background

There are many approaches to teach programming languages and one of them is

through assistive tools by means of digital games (Papastergiou, 2009) or multimedia

(Brown, 2007). Several such approaches are related to computational thinking (CT), such

as Code.org (hour of code), MIT Scratch Programming, Serious Games, Robo games

(Weintrop & Wilensky, 2013), The Tessera (Marcolino & Barbosa, 2017), and others

(Brady et al., 2017; Farrell, 2014; Weintrop et al., 2016; Weintrop & Wilensky, 2013).

CT on the other hand is the thought process required to be able to translate formulated

ideas into data and instructions in a computer or even translating them into tasks to be

carried out in the real world (Ortiz et al., 2017; Rosen, 1831; Wing, 2006; Wolfram,

2016). It is, therefore, a skill needed for programming. From a different perspective,

programming is a subset of CT. A few practitioners view CT as an algorithmic process

involving formulation of the thinking process to be executed by the computer (Wolfram,

2016), and a few others relate CT to elements such as decomposition, abstraction,

automation, pattern recognition, sequential, recursion, and parallelism (Barr &

Stephenson, 2011). Therefore, problems associated with learning to program are

essentially problems related to CT (Ying Li, 2016).

1.2 Motivation

There are several motivations that drives this research project, one of which is related

to active learning. It is an approach to teaching in classrooms in which the student is at

the centre. In an active learning environment, the teachers’ role closely resembles that of

a facilitator, and students are engaged in activities to stimulate the learning of certain

topics (as mentioned in Appendix A, Table A, column Game.). Common examples of

active learning include classroom discussions, presentations, and hands-on experience

Univ
ers

ity
 of

 M
ala

ya

15

(Roehl et al., 2013). The traditional approach is teacher-centred, and knowledge is

delivered to the students by the teacher in a classroom.

Contrary to popular belief, the brain is not designed for thinking. It is designed to save

you from having to think, because the brain is actually not very good at thinking. Thinking

is slow and unreliable. Nevertheless, people enjoy mental work if it is successful. People

like to solve problems, but not to work on unsolvable problems. If schoolwork is always

just a bit too difficult for a student, it should be no surprise that she doesn't like school

much (Willingham, 2012). Moreover, they are distracted by other things such as

smartphone in classroom (Anshari et al., 2017). As they need to keep focused

continuously on the lecture board without having them involved actively in the lecture

which is contradictory to the nature of our cognitive brain (Willingham, 2012). Therefore,

something different is needed compared to conventional model of teaching. Learning

environment should be reformed by making it enjoyable, competitive, fun, engaging and

content rich. By employing some competitive physical activities in a class with specific

targets, educators can resolve this and make students involved and get undivided attention

from learners.

Another motivation is that there had not been extensively studies of the effectiveness

of physical and tactile movements to teach programming concepts. This approach is

motivated by learning style theories that students learn in different manners. For example,

according to the Kolb learning style (Ateş & Altun, 2008), students learning can be

classified as Concrete Experience (Feeling), Abstract Conceptualisation (Thinking),

Active Experimentation (Doing), and Reflective Observation (Watching) (Campbell &

Johnstone, 2010). Sprenger, on the other hand, defined learning styles as auditory,

kinaesthetic, and visual (Ateş & Altun, 2008; Klement, 2014; Noor et al., 2014). Norwawi

defined learning styles as active/reflective, sensing/intuitive, visual/verbal, and

Univ
ers

ity
 of

 M
ala

ya

16

sequential/global (Norwawi et al., 2009). In context of teaching programming, it can be

sensed that most teaching approaches minimally benefit the active and kinaesthetic types,

and therefore, physical and tactile games can be used to promote understanding of

fundamental and advanced concepts of programming.

1.3 Problem Statement

Computer programming courses play a major role in preparing programmers who can

produce state-of-the-art software and applications. Currently, the social media landscape

leads the direction of technology with the support of cloud and big data. Teaching

programming courses have always been a challenge for many lecturers and instructors

(Hegazi & Alhawarat, 2015; Ortiz et al., 2017; Yusof & Abdullah, 2005), even with the

tremendous effort invested by institutions (Lethbridge, 2000). The success rate for

teachers to teach students is generally low especially in introductory programming

language classes. From this viewpoint, a few problems have been identified, i) difficulty

in applying basic programming knowledge (Ab Hamid, 2004), ii) translating problems

into solutions in the form of data and instructions (Ortiz et al., 2017), and iii)

understanding existing codes and pseudocode (Marcolino & Barbosa, 2017). Problems

related to programming can essentially be associated with problems related to CT (Ying

Li, 2016).

It is envisioned that an assistive tool is needed to relate program codes to CT elements.

Program codes written by students can be analyzed. Physical and tactile games can

therefore be suggested based on the CT elements found lacking based on the analysis of

the tool.

1.4 Objectives

The main aim of the present research is to bridge the gap between programming and

computational thinking. A model tool (experimental technique) was designed and built to

Univ
ers

ity
 of

 M
ala

ya

17

address this issue by which the CT elements can be connected with programming easily

and subsequently be able to suggest CT activities through physical and tactile games.

Therefore, the following objectives are needed to achieve the main aim.

i. To explore students’ engagement in a programming classroom through

computational thinking activities

ii. To associate CT elements in program codes

iii. To develop an assistive tool that gives output of CT elements from a

program code

a. To generate a reference sheet of standard program to identify CT

elements

b. To analyze students’ code with the reference code

c. To give suggestions for classroom activities on the basis of obtained

CT elements

iv. To test and evaluate the assistive tool

1.5 Research Questions

Next, A prototype is sculpted and developed in web application platform named Code

Analyzer by which CT elements can be calculated in terms of percentage value from a

given programming code. Code Analyzer tool can compare CT elements values of a class

or a student with its reference sheet. It can suggest classroom activities based on the

performance and CT score of a student or a class. The following research questions have

been addressed:

i. Do students enjoy classroom activities while it enhances their understanding

of programming concept and improves their academic performance?

ii. How the CT elements relates to the code?

iii. Does the tool able to generate CT elements correctly?

Univ
ers

ity
 of

 M
ala

ya

18

iv. Does the tool able to compare CT elements correctly?

v. Is the tool able to suggest suitable activities based on students need?

vi. Does this tool able to help teachers/instructors to guide to choose CT class

activities?

1.6 Scope of Research

Eight common activities namely Bubble Sort, Selection Sort, Quick Sort, Merge Sort,

Insertion Sort, Shell Sort, Graph Theory has been covered in this study. And web platform

is opted using PHP Laravel framework since this application needs to be accessible from

anywhere from any computer through browser.

1.7 Methodology

CT concepts are the mental processes (e.g. abstraction, algorithm design,

decomposition, pattern recognition, etc.) and tangible outcomes (e.g. automation, data

representation, pattern generalization, etc.) associated with solving problems in

computing. There are 11 concepts of CT (Jimoyiannis & Tsiotakis, 2017) as follows:

 Abstraction: Identifying and extracting relevant information to define main

idea(s)

 Algorithm Design: Creating an ordered series of instructions for solving similar

problems or for doing a task

 Automation: Having computers or machines do repetitive tasks

 Data Analysis: Making sense of data by finding patterns or developing insights

 Data Collection: Gathering information

 Data Representation: Depicting and organizing data in appropriate graphs, charts,

words, or images

 Decomposition: Breaking down data, processes, or problems into smaller,

manageable parts

Univ
ers

ity
 of

 M
ala

ya

19

 Parallelization: Simultaneous processing of smaller tasks from a larger task to

more efficiently reach a common goal

 Pattern Generalization: Creating models, rules, principles, or theories of observed

patterns to test predicted outcomes

 Pattern Recognition: Observing patterns, trends, and regularities in data

 Simulation: Developing a model to imitate real-world processes

First, an extensive literature review was done regarding classroom activities and CT

elements to address the objectives. All the CT elements can be narrowed down to four

elements based on literatures. They are namely decomposition, pattern recognition,

abstraction, algorithm. As of preliminary study, six classroom activities have been

designed and exploit in the classroom very carefully to collect comparative performance

data of the students. These activities and the data went through evaluation and validation

process by three lecturers and all the participants. A tool has been designed to get

appropriate classroom activity suggestion by which CT elements have been linked with

program based on the information from literature review. A novel relationship was

established to translate a program into computational thinking elements. Having this

facility, classroom activities can be redirected from these CT elements. Finally, usability

of the tool will be evaluated and validated by at least seven university lecturers and seven

postgraduate students.

The following flowchart in Figure 1.1 displays the steps to achieve the objectives

anticipated for this research while adopting all the research questions stated in an earlier

subsection.

Univ
ers

ity
 of

 M
ala

ya

20

Figure 1.1 Flow chart of research methodology

1.8 Target Group

Target group for the present research are instructors who teach programming language

in the universities.

1.9 Significance of the Research

The preliminary study will extend existing knowledge about the impact and

effectiveness of nonconventional classroom activities especially using physical games.

The present study will identify CT elements from program codes through an assistive

tool. The novelty in this study is that for the first time a system is able to analyze python

programming code and produce four CT elements. This idea can be scaled up by including

more programming languages.

1.10 Overall structure of the Thesis

The following sections cover the literature review, research methodology, CT element

identification, tool design and implementation, tool evaluation and validation, discussion

and conclusion. Chapter one contains introductory research background, motivation,

problem statement, objectives of the research, research questions, scope of the research,

summary of methodology, target group, thesis structure, and the significance of the thesis.

Preliminary study (observe and analyze
classroom activities through qualititive study)

Literature review (Identifying CT elements)

Make a prototype to identify computational
thinking elements for some of the activities

Testing and evaluation of the prototype

Univ
ers

ity
 of

 M
ala

ya

21

Chapter two elaborates the literature review of the research finding related works,

research gaps, and defining computational thinking. The methodology of this research

has been elaborated in this chapter three in four steps. These four steps are illustrated in

Figure 1.1. Preliminary study has been described in chapter four to address the first

research question of the thesis. And the intended assistive tool has been modelled,

developed and implemented in chapter five. The process of testing and evaluating the tool

can be found in chapter six. Finally, all the research findings and outcomes have been

concluded in chapter seven.

Univ
ers

ity
 of

 M
ala

ya

22

CHAPTER 2: LITERATURE REVIEW

2.1 Related Work

Many software applications have been developed to teach people to program such as

BlueJ (David J. Barnes and Michael Kölling, 2013; Kölling et al., 2003) in Australia and

Scratch (Resnick et al., 2009) in MIT, United States of America. Some are available

online and some requires us to buy the licence to access the features and functionalities.

These are software that covers fundamental topics of programming such as variables, if

statements, loops, arrays, pointers and data structures (Farrell, 2014). This software is

useful although the associated users did not claim any significant difference between

those students using the software and not using them because of reasons associated to

ethics and difficulties of setting the learning environment in using these software in their

courses for experimental studies (Kunkle & Allen, 2016).

Another approach of teaching programming is through robotic technology (Liu et al.,

2013) or other external devices that controls the environment such as Lego Bricks

programming set, the Raspberry Pi microcontroller and the Arduino circuit board. These

need the users to buy the hardware and software involved for the development of the

programs and can be quite expansive in nature.

In order for students to be genuinely engaged in computational thinking, teachers need

to facilitate an environment what they would be interested in. Researchers found that

young people have intrinsic affinity towards playing games (Papastergiou, 2009). Games

that incorporate scholastic objectives and themes have the potential to render learning of

academic subjects easier, more enjoyable, more interesting, thus, more effective (Kafai,

2001; Malone, 1980). Specifically, games constitute potentially powerful learning

environments for a number of reasons (Oblinger, 2004): (i) they can support multi-

sensory, active, experiential, problem-based learning, (ii) they favor activation of prior

Univ
ers

ity
 of

 M
ala

ya

23

knowledge given that players must use previously learned information in order to

advance, (iii) they provide immediate feedback enabling players to test hypotheses and

learn from their actions, (iv) they involve opportunities for self-assessment through the

mechanisms of scoring and reaching different levels, and (v) they progressively become

social environments involving communities of players. One of the two most important

factors is affordability of pricing of the online digital contents, LEGO or robotic

components for all the students, who are taking the programming courses. Second most

important factor is opportunity/availability of interconnected facilities, i.e. electricity,

computer or product shops. Therefore, these cannot be the best solutions considering

many students are living outside the city area, who are less likely to have the prospect to

use electricity let alone computers.

2.2 Assistive Tool for Teaching Programming

One of the most popular methods of teaching tool for programming is through games

(Ab Hamid & Leong, 2007; Hamid & Ismail, 2007). Searching through literatures and

resources from the internet, 12 games were found that are used as assistive learning tools

in teaching programming. Table 2.1 shows the details of each game. Overall analysis

shows that these games are suitable for all ages, and many of them are made for computer-

based platforms, with only a few in the form of board games. Most of these games are to

create an experience that kids, parents, and grandparents could share; and in the process

allow children to exercise their immense learning capabilities through play. Most of these

games cost less than USD$50. These digital game programs (such as the one by Al-Bow

et al. (2009)) are highly rated, and they are offered on multiple platforms such as the web,

mobile, and desktop. Such an approach raises interest because many young students

themselves are regular players of digital games. The interest in playing games eases the

learning process. However, in terms of non-game-based educational programming

Univ
ers

ity
 of

 M
ala

ya

24

software, there is no hard evidence of effectiveness, although the interest showed in these

games is already a significant finding to consider them as tools for teaching programming.

Table 2.1 Game based assistive tools

No Name of Game
Age (years) Platform Pricing (USD)

<7 7 -
13

>13 Computer Board
game

Board
game

<10 10 -
50

>50

1 Lightbot and
Lightbot Jr. ✓ ✓ ✓ ✓

2 Code Monkey Island ✓ ✓ ✓

3 Kodable ✓ ✓ ✓

4 Robozzle ✓ ✓ ✓ ✓ ✓

5 Cargo-Bot ✓ ✓ ✓ ✓ F

6 SpaceChem ✓ ✓ ✓ ✓

7 Robot Turtles ✓ ✓ ✓ ✓

8 Code Combat ✓ ✓ ✓ F

9 Ludos ✓ ✓ ✓ ✓

10 Codemancer ✓ ✓ ✓ ✓

11 Machineers ✓ ✓ ✓

12 Bee-Bot ✓ ✓ ✓ ✓
(Source: http://venturebeat.com/2014/06/03/12-games-that-teach-kids-to-code/view-all/)

Note: F == Free

2.3 Unplugged Computer Science

Unplugged Computer Science is a novel approach in the pedagogical realm of teaching

computer science. It promotes CT. Nevertheless, it can be adapted a to range of other

disciplines, for example, life sciences (Rubinstein & Chor, 2014). In addition, Unplugged

activities are widely and freely available as materials and reference books, such as the

book uploaded under the Creative Commons Licence (Bell et al., 2006).

Univ
ers

ity
 of

 M
ala

ya

25

Table 2.2 shows existing physical activities related to programming topics. Sorting

algorithms such as bubble sort, insertion sort, and quicksort have been demonstrated using

traditional Hungarian and Romanian dances. Other examples include the physical activity

of students becoming boxes to explain variable concepts and passing batons to

demonstrate flow control.

Table 2.2 Examples of physical activities to teach programming

No Physical
activity

Programming
concept

Source of the content

1 Human
sort

Bubble sort https://www.youtube.com/watch?v=8QD-
R_MfDsQ

2 Hungarian
folk dance

Bubble sort https://www.youtube.com/watch?v=lyZQPjUT5B
4

3 Romanian
folk dance

Insertion sort https://www.youtube.com/watch?v=ROalU379l3
U&list=RDlyZQPjUT5B4

4 Hungarian
folk dance

Quicksort https://www.youtube.com/watch?v=ywWBy6J5gz

www.merlot.org/merlot/viewMaterial.htm?id=113
2554

5 Students
become
boxes

Variables

Swaps

https://teachinglondoncomputing.files.wordpress.c
om/2014/02/activity-boxvariables.pdf

6 Passing
baton

Loops
If-Else
Flow control

https://teachinglondoncomputing.org/free-
workshops/programming-unplugged-
programming-without-computers/

However, these activities do not directly measure the understanding of the audience or

the actors/performers but surely improve their understanding on the related topic

(referencing to preliminary study). There can be several reasons for them to not measure

the understanding, i) they didn't focus on actual understanding of students. ii) measuring

understanding is quite counterintuitive normally, thus haven't been measured; on the other

hand, we measured it by explicitly asking student feedback.

Univ
ers

ity
 of

 M
ala

ya

https://www.youtube.com/watch?v=lyZQPjUT5B4
https://www.youtube.com/watch?v=lyZQPjUT5B4
https://www.youtube.com/watch?v=ROalU379l3U&list=RDlyZQPjUT5B4
https://www.youtube.com/watch?v=ROalU379l3U&list=RDlyZQPjUT5B4
https://www.youtube.com/watch?v=ywWBy6J5gz8&list=RDlyZQPjUT5B4&index=3

26

The primary goal of the Unplugged project is to promote computer science among

young people as an interesting, engaging, and intellectually stimulating discipline (Bell,

Alexander, Freeman, & Grimley, 2009). It can effectively convey fundamentals that do

not depend on specific software or systems, ideas that will still be fresh in 10 years (Bell

et al., 2006). This method can be useful where high-tech educational solutions are

infeasible to implement (Curzon, 2013). Unplugged activities are not only a powerful way

to familiarise children and students with computing concepts, and a study shows that they

are a powerful way to introduce computing concepts to adult teachers (Curzon, McOwan,

Plant, & Meagher, 2014). However, such games are not used in the mainstream standard

educational structure, except for scattered personal efforts by a few educators.

2.4 Computational Thinking (CT)

Computational thinking allows us to take a complex problem, understand what the

problem is and develop possible solutions. In this way, humans can present these solutions

in a way that a computer, or a human, or both, can understand. It involves taking that

complex problem and breaking it down into a series of small, more manageable problems

(decomposition). Each of these smaller problems can then be looked at individually,

considering how similar problems have been solved previously (pattern recognition) and

focusing only on the important details, while ignoring irrelevant information (pattern

generalization and abstraction). Next, simple steps or rules to solve each of the smaller

problems can be designed (algorithms) (Curzon et al., 2014; Silapachote & Srisuphab,

2017; Weintrop et al., 2016; Wolfram, 2016). And therefore, through the literature review

four major CT elements namely Decomposition, Pattern Recognition, Abstraction,

Algorithm were found.

Univ
ers

ity
 of

 M
ala

ya

27

2.4.1 Decomposition

It merely indicates the method of breaking a bigger problem into smaller problems so

that it can be conceived and managed easily (Barr & Stephenson, 2011).

2.4.2 Pattern Recognition

Once a complex problem have been decomposed into smaller problems the following

step is to look at similarities they share (Sa Lorca, 2018). Patterns are shared

characteristics that occur in each individual problem (Bishop, 2008).

2.4.3 Abstraction

“Abstraction” refers to focusing on the important information only while ignoring

irrelevant features. In order to achieve a solution, a close look right through unnecessary

traits is needed to focus on those that we do (Sa Lorca, 2018). The process of abstraction

can be seen as an application of many-to-one mapping (Hazzan & Kramer, 2008).

2.4.4 Algorithm

An algorithm is a plan; a set of step-by-step instructions used to solve a problem (Sa

Lorca, 2018). A program code that gives output correctly as intended is algorithmic. It

relates to obtain an intended output by following a definite sequence. Interpolating this

idea of solving a problem to a smaller regime, it can be found that functions are used to

solve an apparent smaller problem. For a good solution, statements need to be placed in

correct sequence hence the use of proper sequence of statements are algorithmic.

2.5 Connecting CT Elements with Programming

The ability to use the concepts of computer science to formulate and solve problems

is CT. Coding is generally understood as a tool to teach CT, but CT entails a wider range

of abilities (C. Lee et al., 1997). A link will be formed between CT elements and coding

in the following sections.

Univ
ers

ity
 of

 M
ala

ya

28

2.5.1 Decomposition

In programming, each keyword is used to address a small problem. Likewise,

calculating values, assigning values, or calling functions are the statements to resolve a

small problem each and contribute to succeed a bigger problem. Hence, it can be said that

use of keywords, assignments and functions have straightforward correlation to the idea

of decomposition.

2.5.2 Pattern Recognition

While comparing two things, either some similarities or dissimilarities were

considered that is pattern. In the same way, when a small problem of similar pattern being

repeating repeatedly, it is better to put in the loop. Hence, every loop asserts a pattern to

be solved.

2.5.3 Pattern Generalization / Abstraction

In programming, the act of calling a function induced the perception of abstraction.

The process of abstraction can be seen as an application of many-to-one mapping (Hazzan

& Kramer, 2008). i.e. the exact role of a function upon its usage.

2.5.4 Algorithm

An algorithm is not related to code itself but to achieve the desire output by ordering

statements appropriately. An algorithm is a plan; a set of step-by-step instructions used

to solve a problem (Sa Lorca, 2018). A program code that gives output correctly as

intended is algorithmic. It relates to obtain an intended output by following a definite

sequence. Interpolating this idea of solving a problem to a smaller regime, it can be found

that functions are used to solve an apparent smaller problem. For a good solution,

statements need to be placed in correct sequence hence the use of proper sequence of

statements are algorithmic. The mapping layout can be found in Table 2.3.

Univ
ers

ity
 of

 M
ala

ya

29

Table 2.3 Mapping CT elements to programming

CT elements Programming notation

Decomposition Keywords, assignments

Pattern Recognition Loops, comparisons, Conditions, function definitions

Abstraction Function calls

Algorithmic A correct sequence of statements that capable of produce
output, defining a function, loop, statements

All the assistive tools we have found above including hardware-based gaming tool for

learning, software-based learning applications, even the unplugged games have not really

identified the computational thinking elements. But the approach should be able to

address CT elements in gaming activities and enrich it with assistive functionalities.

Univ
ers

ity
 of

 M
ala

ya

30

CHAPTER 3: RESEARCH METHODOLOGY

This research study has been done in four steps. These steps are design so that all five

research questions are addressed. Research questions are mentioned in section 1.5 of

chapter one.

The following flowchart in Figure 3.1 shows the steps to achieve the objectives

intended for the present research while addressing all the research questions mentioned

above.

Figure 3.1 Flow chart of research methodology

3.1 Preliminary Study

A primarily qualitative research method was adopted that involves observing 123

students who participate in the aforementioned games during lecture time. Semi-

structured interview sessions are conducted with and open-ended survey questions are

administered to 18 students, and their opinions regarding their experiences of the lecture

sessions are recorded. The recorded data are analysed using thematic coding based on the

following research questions:

a) Do students show interests in participating in/playing the games?

Literature review (Identifying CT elements)

Preliminary study (observe and analyze
classroom activities through qualitative study)

Make a prototype to identify computational
thinking elements for some of the activities

Testing and evaluation of the prototype

Univ
ers

ity
 of

 M
ala

ya

31

b) How do the competitive physical games help the students understand computational

thinking concepts more effectively?

c) Do the students show confidence in handling CT concepts?

d) Do the games improve the students’ understanding of programming concepts?

e) Did the students’ interests enhance their academic performance?

The overall result of the interviews was validated and then analysed through thematic

analysis. This is to answer questions related to interest, understanding and confidence of

the programming and to analyse whether computational thinking elements are activated

in the thinking process.

In the thematic analysis, each of the themes was designed through the lens of the

research questions. Students were asked specific questions based on these themes. These

feedback-questionnaire can be found in appendix C. Their diverse responses were

grouped into sub-theme categories aligned with the main themes.

Examination result was analysed of one of the students’ groups involved in the game

activities and been compared to the previous year students’ group who did not go through

such activities. This is to answer the fifth research question.

3.1.1 Activities

Six most popular and common unplugged sorting games (Bell et al., 2006; Curzon,

2013) available online are selected for the preliminary study. The authors were inspired

by the unplugged computer science activities conducted by Curzon (Bell et al., 2006; Bell

et al., 2012; Bell & Newton, 2013; Curzon, 2013) and CT video materials from Code.org.

They are Quick Sort, Merge Sort, Selection Sort, Insertion Sort, Radix Sort, Bubble Sort.

Details of the games attached in the appendix A. These activities were conducted on

university students to measure their engagements in the classroom.

Evaluation of the activities were done in two steps:

Univ
ers

ity
 of

 M
ala

ya

32

3.1.1.1 Academic Test Score

The test score or academic result of the students will be considered and statistical t-

test will be done on their scores to find if there is any significant difference between the

groups. (Glen, 2016)

3.1.1.2 Feedback

Participants’ direct feedbacks were taken by asking specific questions to measure their

engagement in class. A thematic analysis has been done to elaborate the understanding of

their participation.

3.2 Identify CT Elements

Through literature review the main elements of computational thinking are identified.

Following that these elements are being connected with programming codes on the basis

of their common essences.

3.3 Prototype (Assistive Tool)

3.3.1 Target Users

The targeted users were both the students and the teachers since this will allow more

collaboration between them. Further it will allow the teachers to advise suggestions for

the students.

3.3.2 CT Elements Calculation Mechanism

Using the model above four CT elements are calculated (detail of the calculation structure

is shown in section 5.1.2) in relative percentage by analysing the code through regular

expression and output obtained.

Univ
ers

ity
 of

 M
ala

ya

33

3.3.3 Activity Suggestion Module

Here, Instructors will be given classroom activity suggestions based on the average

performance of any specific group of students in a classroom. Also, teachers will have

the possibility to add new activities.

3.4 Tool Development (Experimental Technique)

It will require database to store information, programming language for development,

backend framework support the structure of the application, frontend technology have

user interface, and a server to maintain the protocols between users and system. There are

four modules for the prototype. They are described as follows,

3.4.1 User Interface

There are four main components of the user interface (UI). The following things will

be addressed in the UI developments, i) Code canvas, ii) CT element display, iii) Add

new activity, iv) See activity suggestions for classroom.

3.4.2 User Type

Role selection: there will be two types of users— students and lecturers. Teachers (i.e.

lecturers) will get all the access of the four components while student role is restricted to

use the sections that are in teachers’ window.

3.4.3 CT Elements Calculation

 The proposed model for computational thinking elements in Figure 5.1 would be

implemented in the model segment of the Model–View–Controller (MVC) architecture

in Laravel1.

1 Laravel is a free, open-source PHP web framework, created by Taylor Otwell and intended for the
development of web applications following the model–view–controller (MVC) architectural pattern and
based on Symfony. It can be found here, github.com/laravel/framework

Univ
ers

ity
 of

 M
ala

ya

34

3.4.4 Business Logic

The business logic of the prototype will be scattered all throughout the MVC

framework model, view, controller and services. Standard coding convention will be used

as advised in the Laravel documentation.

3.5 Implementation

The following steps will be followed to implement. Figure 3.2 shows the major steps

of implementation.

Figure 3.2 Steps of implementation

3.5.1 Tool Selection

 Fast, reliable, well documented, and latest are the parameters that will be considered

while choosing technologies or tool for the prototype.

3.5.2 Module Development

All the required modules of the tool will be built using PHP programming in MVC

architecture of Laravel framework. Programming convention will be followed throughout

the development.

Tool
selection

Develop
modules

Testing

Univ
ers

ity
 of

 M
ala

ya

35

3.5.3 Testing

In testing part (experimental technique), the prototype is tested to verify its

functionality. This has been elaborated in detail in testing and evaluation chapter.

3.6 Testing and Evaluation of the Prototype

Two basic testing models will be used to test the prototype. For to test each part of the

program and show that the individual parts are correct unit test will be conducted and to

test overall functionality and interconnections of each of the module integration test will

be performed.

University lecturers and educators will be asked to use the tool and evaluate the

usability of the tool in three aspects. These are general aspect, structure and navigation,

and system evaluation. Evaluation process is further explained in the Testing and

Evaluation chapter.

3.7 Summary

This chapter describes overall method of the research. It shows that all four steps are

done one after another while preliminary study and literature review was done back and

forth. Then, it attempted to connect the CT elements identified through literature reviews.

Then a prototype tool is developed to generate CT elements and calculate the mean CT

elements of a class to assist teachers to choose a suitable activity for a specific class/group.

Then it addresses the implementation of the model designed for tool finish it through

testing. All the research objectives shall be achieved by addressing respective research

questions.

Univ
ers

ity
 of

 M
ala

ya

36

CHAPTER 4: PRELIMINARY STUDY

This is a qualitative preliminary study that will provide the practical data of the

research. Secondly, the design and implement a model to assist in objective number one

by linking up CT elements with program. This chapter attempts to reveal preliminary

study and the most suitable approach for the gaming activities by means of CT elements.

This study aims to explore the students’ engagements in a programming classroom

through competitive physical and tactile games.

4.1 Game Design

We adopted a naturalistic observational research design. Naturalistic observation

captures real-world activities and generates rich data (Johnstone & Kanitsaki, 2006) . The

observations were videotaped. This was followed by structured interviews and a survey

administered to 18 randomly selected participants; the interview questions included

research questions that could not be answered by means of observation alone.

4.1.1 Study Setting and Participants

We proposed playing competitive physical and tactile games by using learners' body

movements and a part of their motor control (such as hands, body, and legs) in contrast

to purely computer-based or board games as tools for teaching programming. This part of

the study was conducted in lecture rooms and computer labs. The gaming activities

involved first to fourth year undergraduate students. 13 students from the fourth year in

the Algorithm class, 44 students from the second year Algorithm class, 21 third year

students from the Data Structure class, and nine first year students from an extra

programming class, and 36 pre-university class, resulting in a total of 123 students. We

randomly selected 18 students to be interviewed in a semi-structured manner. Only 18 of

them were interviewed because of a few reasons:

Univ
ers

ity
 of

 M
ala

ya

37

 We invited all, however only 18 responded for the interview session

 For a qualitative data, 18 interviews (approximately 15% of the participants) would

be sufficient to carry out the investigation inline with the research objective. As

suggested by Creswell (2007) recommends 5 – 25 and Morse (1994) suggests at

least six. For phenomenological studies.

Their ages were 20–24 years, and there were sis females and 12 males. Data were

collected between September 2016 and January 2017. We arranged another programming

session with 34 freshers (12 female and 22 male) aged between 19 to 20. In this session,

we had a common presentation and lecture session on basics of programming. Following

that they all sat for a pretest. At this stage, they were divided into two groups. They are

Gaming Group (GG) and Lecture Group (LG) where only students from GG will

participate in computational thinking activities. Following that both groups sat for a

posttest. These test questions can be found in the appendix B.

Thematic analysis was adopted through the lens of our research questions. Students

were asked specific questions based on these themes. Later, their diverse responses were

grouped into sub-theme categories aligned with the themes.

4.1.2 Participant Observation

Students’ behaviour during the game activities were observed in the class. A few

sessions were videotaped to remind us how the games were conducted and how the

students’ interacted in and responded to the sessions. The statistics shown in Table 4.1

below.

Students’ behaviour during the game activities were observed in the class. A few

sessions were videotaped to remind us how the games were conducted and how the

students’ interacted in and responded to the sessions.

Univ
ers

ity
 of

 M
ala

ya

38

Table 4.1 shows, a total of 11 videos were recorded, and their total duration was 6

minutes and 5 seconds. The videos were recorded in the algorithm, programming, and

data structures classes, and they were related to the sorting and graph topics.

Table 4.1 Participant observations and statistics

Observed class Number of
videos recorded

Duration of videos
(Seconds)

Topic of focus

Algorithm 3 45, 65, 95 Sorting
Programming (1st
year)

5 8, 8, 17, 21, 22 Sorting

Data Structure 3 22, 23, 30 Graph, Sorting
TOTAL 11 6 minutes 5 seconds

4.1.3 Interview and Survey Procedure

Interviews were conducted in three different ways. First, a structured Google Form

and a paper-based form were used to collect data from the participants before meeting or

calling them to further clarify their answers. These forms comprised specific MCQs and

short open questions. Second, we arranged a personal meeting with the participants to

note down their feedbacks about the workshops. Each of the meeting sessions were

recorded in audio format. Later, these recordings were transcribed into readable texts,

after which, the transcripts were sent to the interviewees for verification. Last; one-to-one

self-recorded video interviews were conducted to add to the flexibility of how students

could express their answers. The questions were the same as those written in the form

earlier. All transcribed interview data were merged before they were analysed.

4.1.4 Grade Performance Observation

Performance observation was conducted by comparing the examination results of two

groups of students. The 1st group consisted of 8 students from the Algorithm class in 2016.

The second group comprised 12 students from the Algorithm class in 2017. The 2017

Univ
ers

ity
 of

 M
ala

ya

39

group were exposed to the competitive physical games, while the 2016 group was not.

Another observation on 36 first-year students from 2018/2019 batch was conducted.

4.1.5 Research Procedure and Data Collection

4.1.5.1 Game Procedure

Two types of activities were performed based on participant involvement. Activities

that required only one participant were assigned to the type-I category, and activities that

required a group of participants were assigned to the Type-II category. Type-I activities

were conducted and observed several times for everyone, and Type-II activities were

conducted with a group and observed once in a session.

Activity sessions were conducted in four parts: i) Introduction of things to do, ii)

Demonstration, iii) Game among students, iv) Winner selection and present distribution.

4.1.5.2 Game Materials

Eight CT game activities were conducted, namely, swapping, bubble sort, quick sort,

merge sort, selection sort, insertion sort, radix sort, and graph theory. Four major

components of CT elements (i.e. abstraction, decomposition, pattern recognition and

algorithm design) were incorporated while designing all activities/games. The game

instructions were provided to two programming lecturers for validation, and positive and

negative feedback were recorded for improving game description.

Table 4.2 illustrates the playing team size, materials used, and playable games for each

category and gift items. Type-I refers to those games which a single player could play

using cards. By contrast, Type-II refers to those games in which students formed groups

consisting 5–15 members each.

Univ
ers

ity
 of

 M
ala

ya

40

Table 4.2 List of items based on activity type

Activity Type(s) Type-I Type-II
Experiment
Sample Size

single student 5–15 students

Material Coloured paper cards with
number written on it: 10–20
pieces

 size: 15 X 10 cm2

 Coloured paper cards with
numbers: 8-12 pieces

 size: A4 colour
 Alphabet (A-Z) mat

Games Quick Sort
 Merge Sort
 Selection Sort

 Swap
 Quick Sort
 Bubble Sort
 Graph Theory
 Bubble Sort

Winners 3 Winners get special price
 M&M chocolate, Mentos candy, note-books
 All get a small bag of sweets for participating.

4.1.5.3 Grade Performance Observation

Special permission was obtained to analyse the answer scripts of the participating

students. This is because, exam scripts are classified for outsiders (i.e. examinees,

examiners). Therefore, to get access to have statistical evaluation of those script required

special permission. The topics considered in the present study were sorting and graphs.

The students’ marks remained anonymous so that the result could be presented without

any controversies. The two sets of examination questions from two different years were

set by the same lecturers, and their difficulty levels were the same. We have concluded

the difficulty level being same mainly because of the following reasons, i) same course,

ii) conducted by same lecturer, iii) exam question was prepared by same lecturer, iv) same

type of question for same topic. The students’ marks (max 10 points) were identified and

recorded. A total of 20 students’ marks were analysed over consecutive exams. It can be

inferred from Table 4.3 that the standard deviation (SD) of both groups is almost the

same, that is, 1.72 and 1.71, but the mean and median of marks of the 2017 group are

higher than those of the 2016 group. Increment in mean (mark) indicates overall

Univ
ers

ity
 of

 M
ala

ya

41

improvement of the entire class. Median (mark) indicates the mark of a student who

represents the midpoint of the distribution.

Table 4.3 Comparative observation of SD, mean, and median marks of two
groups

 Group 2016 Group 2017
Standard Deviation 1.72 1.71
Mean mark 5.55 8.13
Median mark 5.67 8.00

4.1.5.4 Learning Session Observation

A learning session on “Programming Basics” was arranged where 34 first-year

students (admission year 2018) and 36 pre-university students participated. None of them

had prior experience of participating in any programming class. Session consists of three

parts. In the first part, a lecture on basic programming was delivered, a practical

presentation of writing code in computer was exercised, and a pretest exercise was

conducted for all 71 students. Then the students were divided into two groups namely GG

(15 students, 15 students) and LG (19 students, 21 students). LG was asked to skip part

two of the session and proceed to part three. In part two of the session, participants from

GG had partaken in three Gaming Activities. Bubble Sort, Radix Sort, and Selection Sort

activities were conducted among GG participants. All the above-mentioned gaming

activity information can be found in Table A of Appendix A.

4.1.5.5 Game Procedure

Activity session was conducted in four parts (A, B, C and D). The first part (A)

involved the verbal explanation to introduce and describe the algorithm involved and this

takes approximately five minutes. Part A is to capture students’ awareness of topics. The

second part (B) involved a short demonstration of the competitive, physical and tactile

games. Part B is to capture students’ attention. This takes approximately 10 minutes. The

Univ
ers

ity
 of

 M
ala

ya

42

third part (C) is the beginning of the actual game session among students. The instructors

keep track of the time taken for each group to complete the game or just merely keeping

record of which team completed the game first. Part C is to capture student’s engagement.

The last part (D) is to selector identify the winners of the game based on students’

performance of the game. The winners were given acknowledgment of their achievement

by distributing special prizes given. Figure 4.1 shows steps of the game sessions.

Figure 4.1 Steps for game sessions

In the final part, both groups sat for the test. Table 4.4 shows the test result summary

of the both groups. Complete result of the test results can be found in Table B(i) of

appendix B.

Part-A:
Intro

Verbal
explanation

of algorithms

Short

description
of

algorithm
game

5
minutes

Part-B:
Example

Demonstrate a short and
simple example of the

game

10
minutes

Part-C:
Play

Game
begins
among

students

Instructors
keep time
record of

games

15
minutes

Part-D:
Winner & Price

Select winner
based on

performance

Give out
winning
prices to
winners

5
minutes

Description of Activities Time taken Output

Student’s
Engagement

Student’s
Awareness
of topics

Student’s
Attention

Student’s
Satisfaction

Univ
ers

ity
 of

 M
ala

ya

43

Table 4.4 Comparative observation of mean, median and Standard Deviation.

Session Group Pretest Posttest
Oct 2018 Gamming Group N 15 15

Mean 3.63 7.20
Std. Deviation 2.408 4.161
Median 3.00 7.00

Lecture Group N 19 19
Mean 3.84 4.11
Std. Deviation 1.756 2.622
Median 3.50 3.00

Feb 2019 Gamming Group N 14 15
Mean 3.43 12.47
Std. Deviation 2.593 7.090
Median 2.50 17.00

Lecture Group N 21 21
Mean 4.05 7.95
Std. Deviation 1.949 5.054
Median 3.50 6.00

Total Gamming Group N 29 30
Mean 3.53 9.83
Std. Deviation 2.457 6.309
Median 3.00 8.00

Lecture Group N 40 40
Mean 3.95 6.13
Std. Deviation 1.839 4.479
Median 3.50 4.00

An independent-samples t-test was conducted by using IBM SPSS Statistics

application to compare test-marks for GG and LG. The t-test for equality of mean has

shown below in Table 4.5.

Table 4.5 The t-test for equality of means

 t df Sig. (2-tailed)
[p-value]

Mean
Difference

95% Confidence Interval
of the Difference

Lower Upper
Pretest -0.77 49.51 0.446 -0.42 -1.502 0.671
Posttest 2.74 49.78 0.008 3.71 0.992 6.424

Univ
ers

ity
 of

 M
ala

ya

44

There was no significant difference in the scores for GG (M=3.53, SD=2.25) and LG

(M=3.95, SD=1.84) conditions for pretest; t (50) = -0.77, p = 0.446. But There was a

significant difference in the scores for GG (M=9.83, SD=6.31) and LG (M=6.13,

SD=4.48) conditions for posttest; t (50) = 2.74, p = 0.008. These results suggest that

gaming session really does have an effect on students’ marks. Specifically, our results

suggest that when students go through academic gaming activity, they score higher.

4.2 Validation

4.2.1 Game Activity Validation

First, all data from interviews were transferred into an Excel tabulation sheet. Some of

the collected data were already in digital text format, while some were in

audio/video/handwritten formats. The participants were asked to listen to/read

transcriptions of their responses into digital text data. A follow-up validation process was

conducted with 15 students who were representative of the study population to facilitate

a member-check of the data.

4.3 Result

According to the data gathered from the activities conducted by the us, the students

seemed enthusiastic when they were told that they would be playing an educational game.

During their interaction with the game, they seemed very absorbed and interested in the

task and exhibited high levels of engagement in their effort to maintain their competency

toward winning the game or the completing it with high scores. Figure 4.2 shows the

overall result of the interview through thematic analysis.

Univ
ers

ity
 of

 M
ala

ya

45

Figure 4.2 Thematic Analysis with students’ feedback

4.3.1 Students’ Interest

Nearly 71.25% of the students reported that the game they were playing was “really

interesting”. One of the most essential part of this research is to study the feedback from

students by which we can rate whether and how the participants benefited from these

physical and tactile games. The interviewed participants (86.88%) pointed out that most

of them loved and accepted this new method of teaching and are looking forward to more

of similar activities on a range of different topics. Confidence to compete in CT exercises

for solving a programming problem is one of the most vital things that are clearly

noticeable among all participating students.

Univ
ers

ity
 of

 M
ala

ya

46

4.3.2 Confidence and Understanding

Around 56.15% of the participants thought that the games boosted their confidence

their own programming abilities. Humans learn faster through experience by mapping

their cognitive mind into reality or physicality (Bransford, Brown, & Cocking, 1999),

which we aspired for in the present study. The majority of the students (67.50%) indicated

conviction in understanding programming through games, cleared old confusions, and

improved their understanding through game activities compared to learning only through

slides (reported by 69.38% of the participants). Furthermore, they expect additional

activities similar to the ones in this study for a wide range of topics in the future.

4.3.3 Learning Through Computational Thinking

It can be observed that most of interviewed participants (81.88% students) thought that

the games boosted their confidence in programming and therefore improved their CT

abilities as well. Although the issue of CT is a part of programming that has attracted

considerable attention from the non-computer science community, the characteristics,

practices, and perspectives have almost indisputably come from the analysis,

development, and testing stages of software lifecycle (Brennan & Resnick, 2012; Lye &

Koh, 2014). It is therefore acceptable from the viewpoint of the computer science

community that programming practices improve CT or vice versa.

Most of the interviewed participants thought that the games were an effective method

to cover certain topics in programming (82.50%) and important take ways (61.11%). The

introduction of games in the classroom was thought of as a simple, short, step-by-step,

and clear method for explaining sorting algorithms. The games inspired the participants

to think about the set of rules and ignore irrelevant details. These findings are indicators

of the presence of CT elements, as emphasised by Barr & Stephenson (2011) and Wing

(2006), especially decomposition of complex tasks into simpler step-by-step solutions

Univ
ers

ity
 of

 M
ala

ya

47

and manipulation of thinking through levels of abstractions by simplifying or ignoring

details whenever appropriate. However, data on other elements of CT, such as pattern

recognition, were not captured in the interview.

4.3.4 Academic Performance and Productivity

About 61.88% participants opined that their academic performance in the topics

related to the games increased because of the games they played and 63.33% of the

students found these games to be well related to academics and helpful for education. The

exam results of the students in the group that played the competitive physical and tactile

games (2017 batch) were better than those of the students in the group that did not play

the games (2016 batch) in both the sorting and graph questions. This implies that the

games had a positive effect on the learning outcomes and, consequently, the exam scores

of the students. This is in contrast to the findings of a longitudinal study by Hanus & Fox

(2015) .

• Longitudinal study on effects of gamification in the classroom.

• 71 students surveyed at four time points in gamified or non-gamified course.

• Over time, gamified students were less motivated, empowered, and satisfied.

• Gamified course negatively affected final exam grades through intrinsic motivation.

• Gamified systems strongly featuring rewards may have negative effects.

Most students (62.50%) admitted that the game concepts helped them understand the

concepts and cleared their view of the problems (about 53.33%), as indicated by their

exam results. These findings can be used to support efforts related to the use of active

learning activities in classrooms for increasing academic performance (about 66.88%).

Univ
ers

ity
 of

 M
ala

ya

48

However, the competitive element applied in our study may be a crucial ingredient that

should be included.

4.3.4.1 Comparing Groups

It has been observed that students enjoyed the class. The participants were more

committed to finishing assignments in class (the game problem). Regarding the topic of

sorting and graphs, the answer scripts had been analysed in the final exams and saw

improvements in the students’ examination scores. The students that were introduced to

games scored higher marks compared to the previous batch in the course WKES3311:

Analysis of Algorithm Class.

In Figure 4.3, the results of our analysis of students’ academic records show that the

average mark in the graph algorithms class in 2016 was around 60%, whereas in 2017

batch the average mark was about 80%, representing an increase of 20% in the average

mark. In the sorting codes class, the average mark was around 40% in 2016 and 80% in

2017, representing an increase of almost 40%. Figure 4.3 presents the relevant descriptive

statistics.

Figure 4.3 Average mark in final exam for the 2016 and 2017 student batches

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Graph Alg Code

Relative Marks
Comparison of year 2016-

2017

2016 2017

Univ
ers

ity
 of

 M
ala

ya

49

4.4 Discussion

Six lesson games were designed and executed incorporating a scholastic approach to

illustrate swapping; the sorting algorithm, that is, bubble sort, quicksort, and selection

sort; and graph theory. The activities were conducted involving students from years one

to four of a batch of undergraduate students. Thirteen student participants from

WKES3311 2016/2017 semester-I managed to attain a noticeable change in their

academic performance; 44 students from WIA2005, 21 students from Data Structure class

2016/2017 Semester-II, 9 students from extra-class semester-II, 36 first-year undergrad

students that is, a total of 121 students, showed similar improvements. Our research

questions were related to the participants’ interests, understanding of the topic, CT, and

academic performance.

It is been observed that most of the interviewed participants thought that the games

boosted their confidence in programming and therefore improved their CT abilities as

well. Although the issue of CT is a part of programming and that has attracted

considerable attention from the non-computer science community as well as, the

characteristics, practices, and perspectives have almost indisputably come from the

analysis, development, and testing stages of software the lifecycle (Brennan & Resnick,

2012; Lye & Koh, 2014). It is therefore acceptable from the viewpoint of the computer

science community that programming practices improve CT or vice versa.

Additionally, most of the interviewed participants thought that the games were an

effective method to cover certain topics in programming. The introduction of games in

the classroom was thought of as a simple, short, step-by-step, and clear method for

explaining sorting algorithms. The games inspired the participants to think about the set

of rules and ignore irrelevant details. These findings are indicators of the presence of CT

elements, as emphasised by Barr & Stephenson (2011) and Wing (2006), especially

Univ
ers

ity
 of

 M
ala

ya

50

decomposition of complex tasks into simpler step-by-step solutions and manipulation of

thinking through levels of abstractions by simplifying or ignoring details whenever

appropriate. However, data on other elements of CT, such as pattern recognition, were

not captured in the interview.

The interviewed participants (81.88% of them) thought they learned new things, new

skills, and algorithms, and that they were getting direct knowledge transfer. This indicates

that the students not only learned new topics, but they were stimulated to acquire certain

skills that should be thought of as CT skills.

4.5 Summary

In this chapter, the entire qualitative preliminary study has been done to address the

first research question of the thesis. Some of responses were just above 50%, it means

those students are sure that they have improved their understanding and grow confidence

in those topics. And what it does not mean for the rest of the participant is that it did not

cause anything to lose their confidence or understanding in those topics. From this chapter

it has been demonstrated that how physical and tactile games are interesting and helpful

for the students by comparing their feedback and academic performances.

Univ
ers

ity
 of

 M
ala

ya

51

CHAPTER 5: DESIGN AND IMPLEMENTATION

In this chapter, the prototype design and implementation of the tool is expanded in two

sections.

5.1 Tool Design

The prototype design is elaborated through Model design, Formula design, System

design, Interface and component design, User accessibility scope

5.1.1 Model Design

First, the user code is analyzed into keywords and syntax. These keywords, syntax,

and output of the program is used to find the attributes for the CT elements. List of

parameters of all layers are shown in Table 5.1.

Table 5.1 Keyword-syntax and attribute table for CT elements

Keyword-syntax

analysis

Attributes CT elements

Keywords Function definitions Decomposition

Syntax Function calls Pattern Recognition

 Loops Pattern generalization/Abstraction

 Comparisons Algorithm

 Conditions

 Assignments

 Statements

The model diagram of CT elements from coding is shown below in Figure 5.1,

Univ
ers

ity
 of

 M
ala

ya

52

Figure 5.1 Modeling CT elements

5.1.2 Formula Design

The formula was designed for CT element identification and activity suggestions. The

CT elements was obtained from python program, the calculations have been done in three

layers.

5.1.2.1 Layer 1

In the first layer of calculation, the keywords and syntaxes are obtained by means of

regular expression analysis of the code typed by the users. Here, keywords include all the

python keywords.

𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠 ⇒ {𝐹𝑎𝑙𝑠𝑒, 𝑐𝑙𝑎𝑠𝑠, 𝑓𝑖𝑛𝑎𝑙𝑙𝑦, 𝑖𝑠, 𝑟𝑒𝑡𝑢𝑟𝑛, 𝑁𝑜𝑛𝑒, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑓𝑜𝑟, 𝑙𝑎𝑚𝑏𝑑𝑎, 𝑡𝑟𝑦, 𝑇𝑟𝑢𝑒,

𝑑𝑒𝑓, 𝑓𝑟𝑜𝑚, 𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙, 𝑤ℎ𝑖𝑙𝑒, 𝑎𝑛𝑑, 𝑑𝑒𝑙, 𝑔𝑙𝑜𝑏𝑎𝑙, 𝑛𝑜𝑡, 𝑤𝑖𝑡ℎ, 𝑎𝑠, 𝑒𝑙𝑖𝑓, 𝑖𝑓, 𝑜𝑟,

 𝑦𝑖𝑒𝑙𝑑, 𝑎𝑠𝑠𝑒𝑟𝑡, 𝑒𝑙𝑠𝑒, 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑝𝑎𝑠𝑠, 𝑏𝑟𝑒𝑎𝑘, 𝑒𝑥𝑐𝑒𝑝𝑡, 𝑖𝑛, 𝑟𝑎𝑖𝑠𝑒};

 And syntax includes mathematical operators, python operators, special operators. i.e.

“”,+,-,*,/, =, <, (), %, !, [] etc. PHP built-in functions were used to facilitate these

calculations.

Univ
ers

ity
 of

 M
ala

ya

53

𝑆𝑦𝑛𝑡𝑎𝑥𝑒𝑠 ⇒ {(𝑝𝑦𝑡ℎ𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠), (𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠), (𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠)}

Output are obtained from online compiler that is directly linked to the code canvas

module.

5.1.2.2 Layer 2

The results, obtained in layer one, are classified into seven parameters based on

standard programming convention and python code standard. Parameters are function

definitions, function calls, loops, comparisons, conditions, assignments, statements.

Pseudocodes are given below,

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑙𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑙𝑠

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑖𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝐿𝑜𝑜𝑝𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑝𝑠

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑑𝑜𝑛𝑒

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ⇒ 𝑐𝑜𝑢𝑛𝑡𝑠 ℎ𝑜𝑤 𝑚𝑎𝑛𝑦 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑐ℎ𝑒𝑐𝑘𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑅𝑢𝑛𝑠 ⇒ 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑜𝑛𝑙𝑖𝑛𝑒 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟

5.1.2.3 Layer 3

Following that, in third layer of calculation, CT elements are estimated in percentage

on the basis of total valid statements by associating the parameters found in layer two.

Following pseudocodes shows the computation of the CT elements.

𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ⇒ [{(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠), (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠)} ∶ {(𝑣𝑎𝑙𝑖𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠)}] ∗ 100

Univ
ers

ity
 of

 M
ala

ya

54

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 ⇒ [{(𝑙𝑜𝑜𝑝𝑠), (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠), (𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠)}

∶ {(𝑣𝑎𝑙𝑖𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠)}] ∗ 100

𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ⇒ [{(𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑙𝑠), (𝑢𝑠𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑙𝑠)}

∶ {(𝑣𝑎𝑙𝑖𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠)}] ∗ 100

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

⇒ [(𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚) {(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠), (𝑙𝑜𝑜𝑝𝑠), (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)}

∶ {(𝑣𝑎𝑙𝑖𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠)}] ∗ 100

5.1.3 Activity Suggestion Formula

This calculation has been done in two steps.

5.1.3.1 Step-1

Each activity has its four CT components. Based on these components, the tool

generates four sorted lists of available activities in descending order. Pseudocodes are

given below,

𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡

= 𝑠𝑜𝑟𝑡 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑃𝑎𝑡𝑡𝑒𝑟𝑛_𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡

= 𝑠𝑜𝑟𝑡 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 = 𝑠𝑜𝑟𝑡 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡 = 𝑠𝑜𝑟𝑡 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑣𝑎𝑙𝑢𝑒

5.1.3.2 Step-2

In step-2, the system calculates four mean value of the CT elements of a particular

class/group from their corresponding program code. If expected mean value is less than

class/group mean value, then activity lists obtained instep-1 are suggested for each of the

Univ
ers

ity
 of

 M
ala

ya

55

respective CT elements. Here, default expected mean value is 50% for each of the CT

elements. This expected mean value depends on the instructors’ decision for a particular

class. The four CT means are denoted as decomposition mean (DM), pattern recognition

mean (PM), abstraction mean (AM), algorithm mean (AlgM) in the following

pseudocode,

𝐶𝑙𝑎𝑠𝑠 𝐷𝑀 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑙𝑎𝑠𝑠

𝐶𝑙𝑎𝑠𝑠 𝑃𝑀 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑙𝑎𝑠𝑠

𝐶𝑙𝑎𝑠𝑠 𝐴𝑀 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑙𝑎𝑠𝑠

𝐶𝑙𝑎𝑠𝑠 𝐴𝑙𝑔𝑀 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑙𝑎𝑠𝑠

𝐼𝑓 (𝑐𝑙𝑎𝑠𝑠 𝐷𝑀 < 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑀) 𝑠𝑢𝑔𝑔𝑒𝑠𝑡 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡

𝐼𝑓 (𝑐𝑙𝑎𝑠𝑠 𝑃𝑀 < 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑀) 𝑠𝑢𝑔𝑔𝑒𝑠𝑡 𝑃𝑎𝑡𝑡𝑒𝑟𝑛_𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡

𝐼𝑓 (𝑐𝑙𝑎𝑠𝑠 𝐴𝑀 < 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑀) 𝑠𝑢𝑔𝑔𝑒𝑠𝑡 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡

𝐼𝑓 (𝑐𝑙𝑎𝑠𝑠 𝐴𝑙𝑔𝑀 < 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑙𝑔𝑀) 𝑠𝑢𝑔𝑔𝑒𝑠𝑡 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡

Bases on above formulas, suggestions are displayed in the teachers’ window.

5.1.4 System Design

This chapter starts with the architectural design of Code Analyzer tool, the functional

modules, interface, and Use Case diagram. Finally, the implementation and algorithm are

highlighted according to the designed components.

Univ
ers

ity
 of

 M
ala

ya

56

5.1.4.1 Use Case

There are two different roles that can be performed in the tool. In Figure 5.2 user scope

has been illustrated.

Figure 5.2 Use Case diagram for instructors and students

Univ
ers

ity
 of

 M
ala

ya

57

5.1.4.2 System Flowchart

The following Figure 5.3 illustrates flowchart of the tool. It starts with code canvas

where students can save their code according to their associated group/class name.

Figure 5.3 System flowchart for Code Analyzer

5.1.4.3 Database Overview

Tt requires a database containing two tables to manage all the data. Namely ‘activities’

and ‘reference_sheet’. They are illustrated below in Figure 5.4,

(a) (b)

Figure 5.4 Table structures of (a) reference_sheet and (b) activities

Univ
ers

ity
 of

 M
ala

ya

58

In ‘reference_sheet’, program code, name of the program, author, group name, and CT

elements are saved in eight columns. If author is a teacher, code will be saved as reference

in this table of the database, as student code otherwise.

In the ‘activities’ table, instructions for classroom activities, author of the activity,

activity name, short description of the activity along with four corresponding CT elements

are saved in eight different columns.

5.1.5 Interface and Component Design

Figure 5.5 shows the complete view of the web application in which the tool was

implemented in the backend.

Figure 5.5 Front view of the tool

This tool has three basic components.

5.1.5.1 User Interface Component

It has two level of access. Level 1 for teachers and level 2 is for students. User interface

consists of three subcomponents.

Univ
ers

ity
 of

 M
ala

ya

59

 Code canvas where user may write python codes. [Figure 5.6]

Figure 5.6 Code canvas

 CT elements view. [Figure 5.7]

Figure 5.7 CT elements view and compare window

Univ
ers

ity
 of

 M
ala

ya

60

 Activity Suggestion, available for instructors only, where instructors can add new

classroom activity and/or get classroom activity suggestion based of class

performance. [Figure 5.8]

Figure 5.8 Add new activity window and Group Suggestion tabs (instructors
only)

5.1.5.2 CT Elements Generator Component

It processes code based on keywords, functions, loops, conditions, and statements used

inside code and generates four CT elements in percentage value.

5.1.5.3 Suggestion Window Component

In this section, teachers/instructors can find Classroom Activity Suggestions with

Instructions. Shown in Figure 5.9.

Univ
ers

ity
 of

 M
ala

ya

61

Figure 5.9 Screenshot of the Code Analyzer showing the average CT elements
and Suggested activities

5.1.5.4 Controller Component

Controller component has 4 major functionalities. They have been listed as follows:

Map CT Elements: For any given python code, it can map CT elements value in

percentage.

Compare: Seven python programs have been saved in the database as reference in

order to compare with students’ codes.

Univ
ers

ity
 of

 M
ala

ya

62

Save: Students can save their program and fetch it later.

Make Suggestion: Based on the correlation of CT elements between reference sheet

and students code it can suggest possible game activities. It includes instructions and steps

on how to conduct/play the games.

5.1.6 User Accessibility Scope

It has accessibility scopes for instructors as well as for students. It has been

demonstrated in Figure 5.2 using a Use Case diagram.

5.2 Implementation

This section illustrates the implementation of the prototype in following subsections.

5.2.1 Tools

The list of tools was selected based on development of the prototype’s need. The list

is shown in Table 5.2.

Table 5.2 List of all tools that is used in the development of the prototype

Name Value Reason for selection

Database MySQL Opensource, free

Programming Language PHP 7.2 Agile, OS independent

Backend Framework Laravel v5.6 Mature MVC framework with

adequate documentation

Frontend technology HTML, CSS,

JavaScript

Platform independent (browser)

Server Apache Light weight

Univ
ers

ity
 of

 M
ala

ya

63

5.2.2 Development

Development has been done by using above mentioned tools. The following figures

shows the backend modules of the prototype that has been designed in design section of

this chapter.

Here, in Figure 5.10, in the generate module, requested code and other information

from the code canvas are received and keywords are initialized at this module. The

relevant pseudocode can be found in Section 5.1.2.

Figure 5.10 Screenshot of the ‘generate’ module of the prototype

Figure 5.11 shows the association of elements between first layer and second layer. Univ
ers

ity
 of

 M
ala

ya

64

Figure 5.11 Screenshot of association of second layer with first layer

Saving the generated CT score into the database has been performed in ‘save’ module.

[shown in Figure 5.12].

Figure 5.12 Screenshot of the ‘saving CT elements’ module

Univ
ers

ity
 of

 M
ala

ya

65

In Figure 5.13, the association of third layer and second layer has been shown.

Figure 5.13 Screenshot of association of third layer with second layer

The code canvas being connected with other modules and database are shown in Figure

5.14.

Figure 5.14 Screenshot of the ‘analyze’ module of the prototype

Lastly, the activity addition is handled by the ‘add’ module show in the Figure 5.15

next page. Univ
ers

ity
 of

 M
ala

ya

66

Figure 5.15 Screenshot of the activity add by teacher module

This chapter discussed and illustrated the tool design, tool development and its

implementation. In design section, model design, formula design, system design,

interface design, and user accessibility scope are explained. Following that, tool

implementation begins by selecting proper tools and technologies. Then development

begins from the scratch on MVC architecture of Laravel framework using PHP

programming language. In this section, all important parts of the development are shown

in through screenshots. Univ
ers

ity
 of

 M
ala

ya

67

CHAPTER 6: TESTING AND EVALUATION

6.1 Testing

For to test the tool three testing methods were used. In the test, multiple known

standard python codes were run through the model and their resulting outputs were

verified by external calculations. Here is one example, presented for illustration. The

following code shown in Figure 6.1 was written in the code canvas for testing. Testing

methods will be farther discussed in the following testing sections.

Figure 6.1 Demo code for testing.

6.1.1 Unit Test

Using unit test, the validity of the proposed model was checked through in-built testing

functions provided by Laravel. It passes each of the tests that have been mentioned in this

section. Some of the example values are mentioned below,

Univ
ers

ity
 of

 M
ala

ya

68

$stats['loops'] = 2, $stats['comparisons'] = 2, $stats[defined_func] = 1,

$stats[conditions]= 0, $stats[statements] =11 etc. Here, all can be seen as correct.

6.1.2 Module Test

After the unit test was done the system went through module test. All modules have

passed the module test. Again, multiple known standard python codes were run through

the model and their resulting CT scores were verified. For the demo code, some of the

examples are given below as shown in Figure 6.2.

 (a) (b)

Figure 6.2 (a) Array output of ‘generate’ module; (b) data received by the ‘save
module

Using the formula for pattern recognition,

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 ⇒ [{(𝑙𝑜𝑜𝑝𝑠), (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠), (𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠)}

∶ {(𝑣𝑎𝑙𝑖𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠)}] ∗ 100

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 ⇒ [{(2), (0), (2)} ∶ {(11)}] ∗ 100

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 ⇒
4

11
∗ 100 ⇒ 36.36

Therefore, it can be seen that the module test result is correct.

Univ
ers

ity
 of

 M
ala

ya

69

6.1.3 Integration Test

After the module test was done the CT model was integrated within the server and to

access frontend HTML CSS were used. Laravel views were properly integrated with its

controllers and models. Henceforth, all the values generated by the modules are able to

communicate each other where necessary and pass necessary information is tested and

found to be correct. This integration was alpha tested by other developers and teachers.

6.2 Evaluation

The Code Analyzer interface is specifically built to incorporate the code canvas with

visual of generated CT elements and reference CT elements for comparison. Meanwhile,

there is an additional tab for instructors to see classroom activity summary and get the

suggestions.

Seven university students and seven university lecturers were invited to use the

application in order to evaluate the usability of the application tool. The recorded data can

be found in Table B(ii) of Appendix B. After going through Code Analyzer Tool, they

responded to a questionnaire to evaluate the general aspects, Structure and Navigation,

and System evaluation. Here, the ranking is indexed from 1 to 5 with 1-strongly disagree,

2-disagree, 3-neutral, 4-agree, 5-strongly agree. Table 6.1, Table 6.2, and Table 6.3 show

the average value of the responses for the general aspects, structure and navigation, and

system evaluation. It can be seen that university students and lecturers generally agree to

the Code Analyzer tool for generating and comparing CT elements of student’s codes and

providing classroom activity suggestions.

Univ
ers

ity
 of

 M
ala

ya

70

6.3 General Aspects

Average rating for general aspects is 4.04 (shown in Table 6.1) which indicates on

average everyone agrees on all the general aspects mentioned in this section.

Table 6.1 Average rating for general aspects of the tool given by the users

No Aspects Average score

I Goals of the sites are concrete and well defined. 4.07

II Contents are precise and complete. 4.00

III General design of the website is recognizable. 4.00

IV General design of the site is coherent. 4.07

V The system has been designed as the intended objectives. 4.07

6.4 Structure and Navigation

Average rating for Structure and Navigation is 4.11 (shown in Table 6.2) which

indicates on average everyone agrees on all the Structure and Navigation aspects

mentioned in this section.

Table 6.2 Average rating for structure and navigation of the tool given by the
users

No Aspects Average score

I Structure and navigation are adequate. 4.00

II Links, buttons are easily recognizable as such. 4.07

III Broken links/buttons are avoided. 4.00

IV Redundant links/buttons are avoided. 4.21

V A link to the initial stage of the page is always present. 4.29

6.5 System Evaluation

Average rating for system evaluation is 4.10 (shown in Table 6.3) which indicates on

average everyone agrees on all the system evaluation aspects mentioned in this section.

Univ
ers

ity
 of

 M
ala

ya

71

Table 6.3 Average rating for system evaluation of the tool given by the users

No Aspects Average score

I Tool is intuitively understandable to use. 3.86

II System takes all the necessary inputs in correct order. 4.21

III Tool is capable to suggest correct gaming activities. 3.93

IV Suggested instructions are clear and precise. 4.00

V The system is fast and responsive. 4.21

VI Tool can save important data for further management. 4.57

VII Rate the Code Canvas section 4.14

VIII Rate the CT Elements view section 4.07

IX Rate the Activity Suggestion section 3.93

6.6 Summary

Through this chapter, testing and evaluation are shown. In testing, unit test, module

test, and integration test have been done for the prototype. Then, evaluation of the tool is

done through seven university lecturers and seven postgraduate students. The average

evaluation score is a little above four for both type of testers.

Univ
ers

ity
 of

 M
ala

ya

72

CHAPTER 7: CONCLUSION

The conclusion begins with revisiting the aim and objectives of this research. The

following are then on the outcome and subsequently the research challenges and scope of

improvements.

7.1 Research Findings

The aim of the present research was to explore teaching programming and CT through

competitive physical and tactile games by means of a qualitative study. Through our

research questions related to participants’ interest, understanding of topics, CT, and

academic performance, positive results were found for all research questions. This

approach of teaching students through competitive physical and tactile games constitutes

a potentially powerful tool for instilling interest in students while keeping the classroom

maximally effective and enjoyable. The competitive element in game activities may be a

crucial ingredient that helped secure students’ commitment toward completing the

assigned game tasks.

Students could grasp/understand the topics/algorithms covered as the learning

outcomes. The game activities also promoted decomposition, as well as algorithmic and

abstraction thinking, which are indicators of CT. Finally, the academic performance of a

group of students who learned through physical games was higher than that of a group of

students who learned in a more traditional classroom.

The second aim of the research was to design and develop a prototype that can link CT

with programming directly. From literature review and methodology chapter information

regarding CT elements are extracted and a calculable relation between CT and

programming was form based on keywords, functions, statements, comparisons and

conditions. Then build a MySQL database to manage all the resources. And finally, the

Univ
ers

ity
 of

 M
ala

ya

73

entire tool has been successfully put in the web platform with the aid of Laravel

framework.

Objective-1

In preliminary stage the students participated in classroom activities and their

engagement was confirmed through the result shown in Figure 4.2. They enjoyed

classroom activities while it enhances their understanding of programming concept and

improves their academic performance as well.

Objective-2

The proposed model shown in Figure 5.1 was used to associate the CT elements to the

program codes. The hint for this association was gathered from literature review. The

improvement of the students’ CT scores after conducting the activities infers the validity

of the model.

Objective-3

The prototype developed meets the intended requirement of the Objective-3. The

standard code given by the lecurer was used to calculate the referencing CT elements for

students. Using the proposed model, the tool is able to generate CT scores of the students’

code and students are able to compare CT elements of their codes with the corresponding

reference CT elements correctly. The prototype does a cumulative average of students’

CT scores and enables lecturers to choose suitable classroom activities for further

improvement of the class.

Univ
ers

ity
 of

 M
ala

ya

74

Objective-4

The improvement shown in Table 4.1 confirms the effectiveness of the tool. The

students who played the games suggested by the prototype developed has obtained higher

score compared to controlled group. Student’s improved performance confirms that the

generated and compared CT percentage was correct and useful.

7.2 Significant of Study

The preliminary study prolongs our existing knowledge about the impact and

effectiveness of nonconventional classroom activities especially using physical games.

And this study identifies CT elements from program codes through an assistive tool. The

novelty in this study is that for the first time a system is able to analyze python

programming code and produce four CT elements which can have much bigger

implication in teaching by adding other programming language like Java, C/C++ etc.

7.3 Concluding Remark

Therefore, it can be concluded, based on the evidences gathered herein, that the

competitive physical and tactile games enhanced students’ understanding of

programming and CT concepts. Our execution of the physical game to explain

programming concepts, especially in a competitive scenario, clearly showed a

tremendous potential to instil interest, capture focus, and increase grade performance

among various groups of university students. Also, the design architecture of the tool has

been successfully implemented enabling it to generate CT elements from code in

percentage value and to give instructors compatible gaming activities for the class.

Comparing the obtained CT value with reference value, now teachers and instructors

can easily find which activities to play for a particular student (or a class) to improve

his/her lacking in understanding/skill in programming language.

Univ
ers

ity
 of

 M
ala

ya

75

7.4 Research Challenges

A limitation of the present study is that only a few academic topics were covered. More

games could be created to cover as many topics as possible. It was intended to use games

in all lecture periods and observe the students’ performance through summative and

formative evaluations.

The major challenge was to conduct workshops with a group of students and keep

track of them after. Some participants were out of reach after activity to note the feedback

and for validation where some were slow to response from distance makes research

progress slower.

7.5 Scope of Improvements

Its functionality is limited to python programming for the moment. Later, C/C++, Java,

PHP, and other programming languages can be added as a functioning platform.

In the interim, it does not verify whether an intended objective has been achieved

through programming, rather it processes based on keywords, functions, loops, conditions

etc. used. Hence, there is a scope to improve it by validating whether intended objective

of particular program has been achieved or not achieved.

Univ
ers

ity
 of

 M
ala

ya

76

REFERENCES

Ab Hamid, S. H. (2004). Solutions To Teaching Object-Oriented Programming. WSEAS
Transactions on Communications, 3(1), 99–104. Retrieved from
http://www.wseas.us/e-library/conferences/cancun2004/papers/485-210.doc

Ab Hamid, S. H., & Leong, Y. F. (2007). Learn programming by using mobile
edutainment game approach. In Proceedings - DIGITEL 2007: First IEEE
International Workshop on Digital Game and Intelligent Toy Enhanced Learning
(pp. 170–172). https://doi.org/10.1109/DIGITEL.2007.31

Al-Bow, M., Austin, D., Edgington, J., Fajardo, R., Fishburn, J., Lara, C., … Meyer, S.
(2009). Using Game Creation for Teaching Computer Programming to High School
Students and Teachers. Iticse 2009: Proceeding of the 2009 Acm Sigse Annual
Conference on Innovation and Technology in Computer Science Education, 104–
108406.

Anshari, M., Almunawar, M. N., Shahrill, M., Wicaksono, D. K., & Huda, M. (2017).
Smartphones usage in the classrooms: Learning aid or interference? Education and
Information Technologies. https://doi.org/10.1007/s10639-017-9572-7

Ateş, A., & Altun, E. (2008). Learning styles and preferences for students of computer
education and instructional technologies. Egitim Arastirmalari - Eurasian Journal
of Educational Research, (30), 1–16.

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is
Involved and What is the Role of the Computer Science Education Community?
ACM Inroads. https://doi.org/10.1145/1929887.1929905

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer Science Unplugged:
School Students Doing Real Computing Without Computers. Journal of Applied
Computing and Information Technology, 13(1), 20–29.

Bell, T., & Newton, H. (2013). Using Computer Science Unplugged as a teaching tool.
Improving Computer Science Education, 1–18. Retrieved from routledge-
ny.com/books/details/9780415645379/

Bell, T., Rosamond, F., & Casey, N. (2012). Computer science unplugged and related
projects in math and computer science popularization. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-30891-8_18

Bell, T., Witten, I. H., Fellows, M., Adams, R., McKenzie, J., Powell, M., & Jarman, S.
(2006). CS Unplugged. Retrieved May 27, 2018, from http://csunplugged.org/

Bishop, J. (2008). Language features meet design patterns: raising the abstraction bar. In
Proceedings of the 2nd international workshop on The role of abstraction in
software engineering. https://doi.org/10.1145/1370164.1370166

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilensky, U. (2017). All
Roads Lead to Computing: Making, Participatory Simulations, and Social

Univ
ers

ity
 of

 M
ala

ya

77

Computing as Pathways to Computer Science. IEEE Transactions on Education.
https://doi.org/10.1109/TE.2016.2622680

Bransford, J. D., Brown, A., & Cocking, R. (1999). How people learn: Mind, brain,
experience, and school. Washington, DC: National Research Council, 374.
https://doi.org/10.1016/0885-2014(91)90049-J

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Annual American Educational Research
Association Meeting, Vancouver, BC, Canada. https://doi.org/10.1.1.296.6602

Brown, C. (2007). Learning Through Multimedia Construction-A Complex Strategy.
Journal of Educational Multimedia and Hypermedia, 16(2), 93–124. Retrieved from
http://search.proquest.com.ezp.lib.unimelb.edu.au/docview/205853446?accountid=
12372%5Cnhttp://sfx.unimelb.hosted.exlibrisgroup.com/sfxlcl41?url_ver=Z39.88-
2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=article&sid=ProQ:ProQ%
3Aeducation&atitle=Learnin

Campbell, V., & Johnstone, M. (2010). The significance of learning style with respect to
achievement in first year programming students. In Proceedings of the Australian
Software Engineering Conference, ASWEC.
https://doi.org/10.1109/ASWEC.2010.33

Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing cmong five
traditions. Qualitative Health Research. https://doi.org/10.1111/1467-9299.00177

Curzon, P. (2013). cs4fn and computational thinking unplugged. In Proceedings of the
8th Workshop in Primary and Secondary Computing Education on - WiPSE ’13 (pp.
47–50). https://doi.org/10.1145/2532748.2611263

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers to
computational thinking using unplugged storytelling. In Proceedings of the 9th
Workshop in Primary and Secondary Computing Education on - WiPSCE ’14 (pp.
89–92). https://doi.org/10.1145/2670757.2670767

David J. Barnes and Michael Kölling. (2013). Objects First with JavaTM: A Practical
Introduction Using BlueJ. University of Kent.
https://doi.org/10.1017/CBO9781107415324.004

Farrell, J. (2014). Java Programming. (M. Lee, Ed.) (7th ed.). Boston, USA: Cengage
Learning.

Glen, S. (2016). T Test (Student’s T-Test): Definition and Examples.
https://doi.org/10.1007/978-94-007-0753-5

Hamid, S. H. A., & Ismail, N. (2007). The design of MobiGP by using Tamagotchi. In
Proceedings of the 2007 1st International Symposium on Information Technologies
and Applications in Education, ISITAE 2007 (pp. 382–387).
https://doi.org/10.1109/ISITAE.2007.4409309

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom:
A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort,

Univ
ers

ity
 of

 M
ala

ya

78

and academic performance. Computers and Education.
https://doi.org/10.1016/j.compedu.2014.08.019

Hazzan, O., & Kramer, J. (2008). The role of abstraction in software engineering. In
Companion of the 13th international conference on Software engineering - ICSE
Companion ’08. https://doi.org/10.1145/1370175.1370239

Hegazi, M. O., & Alhawarat, M. (2015). The Challenges and the Opportunities of
Teaching the Introductory Computer Programming Course: Case Study. In 2015
Fifth International Conference on e-Learning (econf).
https://doi.org/10.1109/ECONF.2015.61

Jimoyiannis, A., & Tsiotakis, P. (2017). Beyond students’ perceptions: investigating
learning presence in an educational blogging community. Journal of Applied
Research in Higher Education. https://doi.org/10.1108/JARHE-06-2015-0046

Johnstone, M. J., & Kanitsaki, O. (2006). Culture, language, and patient safety: Making
the link. International Journal for Quality in Health Care, 18(5), 383–388.
https://doi.org/10.1093/intqhc/mzl039

Kafai, Y. B. (2001). The Educational Potential of Electronic Games : From Games – To
– Teach to Games – To – Learn. Playing by the Rules, 1–6. Retrieved from
http://culturalpolicy.uchicago.edu/papers/2001-video-games/kafai.html

Klement, M. (2014). How do my Students Study? An Analysis of Students’ of
Educational Disciplines Favorite Learning Styles According to VARK
Classification. Procedia - Social and Behavioral Sciences, 132, 384–390.
https://doi.org/10.1016/j.sbspro.2014.04.326

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ System and its
Pedagogy. Computer Science Education, 13(4), 249–268.
https://doi.org/10.1076/csed.13.4.249.17496

Kunkle, W. M., & Allen, R. B. (2016). The impact of different teaching approaches and
languages on student learning of introductory programming concepts. ACM
Transactions on Computinig Education, 16(1). https://doi.org/10.1145/2785807

Lee, C., Potkonjak, M., & Mangione-smith, W. H. W. H. (1997). MediaBeinch : A Tooi
for Evaluating and Synthesizing Multimedia and Communications Systems The
University of California at Los Angeles 1 Introduction 3 MediaBench Components
2 Previous Work. Micro’97. https://doi.org/10.1109/MICRO.1997.645830

Lethbridge, T. C. (2000). Priorities for the education and training of software engineers.
Journal of Systems and Software, 53(1), 53–71. https://doi.org/10.1016/S0164-
1212(00)00009-1

Liu, A., Newsom, J., Schunn, C., & Shoop, R. (2013). Students learn programming faster
through robotic simulation. Tech Directions, 72(8), 16–19. Retrieved from
http://www.education.rec.ri.cmu.edu/content/educators/research/files/p16-19
Shoop et al.pdf

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

Univ
ers

ity
 of

 M
ala

ya

79

thinking through programming: What is next for K-12? Computers in Human
Behavior. https://doi.org/10.1016/j.chb.2014.09.012

Malone, T. W. (1980). What makes things fun to learn? heuristics for designing
instructional computer games. In Proceedings of the 3rd ACM SIGSMALL
symposium and the first SIGPC symposium on Small systems - SIGSMALL ’80 (pp.
162–169). https://doi.org/10.1145/800088.802839

Marcolino, A. S., & Barbosa, E. (2017). A survey on problems related to the teaching of
programming in Brazilian educational institutions. In Proceedings - Frontiers in
Education Conference, FIE (Vol. 2017–Octob, pp. 1–9).
https://doi.org/10.1109/FIE.2017.8190495

Morse, J. M. (1994). Designing funded qualiative research. In Handbook of qualitative
research.

Noor, N. M., Aini, M., & Hamizan, N. I. (2014). Video Based Learning Embedded with
Cognitive Load Theory: Visual, Auditory, and Kinaesthetic Learners’ Perspectives.
In 2014 International Conference on Teaching and Learning in Computing and
Engineering. https://doi.org/10.1109/LaTiCE.2014.19

Norwawi, N. M., Abdusalam, S. F., Hibadullah, C. F., & Shuaibu, B. M. (2009).
Classification of students’ performance in computer programming course according
to learning style. In 2009 2nd Conference on Data Mining and Optimization, DMO
2009. https://doi.org/10.1109/DMO.2009.5341912

Oblinger, D. G. (2004). The Next Generation of Educational Engagement. Journal of
Interactive Media in Education, 2004(8), 1–18. https://doi.org/10.5334/2004-8-
oblinger

Ortiz, O. O., Franco, J. A. P., Garau, P. M. A., & Martin, R. H. (2017). Innovative mobile
robot method: Improving the learning of programming languages in engineering
degrees. IEEE Transactions on Education.
https://doi.org/10.1109/TE.2016.2608779

Papastergiou, M. (2009). Digital Game-Based Learning in high school Computer Science
education: Impact on educational effectiveness and student motivation. Computers
& Education, 52(1), 1–12. https://doi.org/10.1016/j.compedu.2008.06.004

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
… Kafai, Y. (2009). Scratch: Programming for All. Communications of the ACM,
52, 60–67. https://doi.org/10.1145/1592761.1592779

Roehl, A., Reddy, S. L., & Shannon, G. J. (2013). The Flipped Classroom: An
Opportunity to Engage Millenial STudents through Active Learning Strategies.
Journal of Family and COnsumer Sciences.

Rosen, F. (1831). The Algebra of Mohammed Ben Musa. London: The Oriental
Translation Fund. https://doi.org///catalog.hathitrust.org/Record/006552165

Rubinstein, A., & Chor, B. (2014). Computational Thinking in Life Science Education.
PLoS Comput Biol, 10(11), e1003897+.

Univ
ers

ity
 of

 M
ala

ya

80

https://doi.org/10.1371/journal.pcbi.1003897

Sa Lorca, L. (2018). The Basics of Computational Thinking. Retrieved July 8, 2018, from
https://webdesign.tutsplus.com/articles/the-basics-of-computational-thinking--cms-
30172

Silapachote, P., & Srisuphab, A. (2017). Teaching and learning computational thinking
through solving problems in Artificial Intelligence: On designing introductory
engineering and computing courses. In Proceedings of 2016 IEEE International
Conference on Teaching, Assessment and Learning for Engineering, TALE 2016.
https://doi.org/10.1109/TALE.2016.7851769

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining Computational Thinking for Mathematics and Science Classrooms.
Journal of Science Education and Technology. https://doi.org/10.1007/s10956-015-
9581-5

Weintrop, D., & Wilensky, U. (2013). RoboBuilder: A Computational Thinking Game.
Sigcse. https://doi.org/10.1145/2445196.2445430

Willingham, D. T. (2012). Why Don’t Students Like School?: A Cognitive Scientist
Answers Questions About How the Mind Works and What It Means for the
Classroom. Why Don’t Students Like School?: A Cognitive Scientist Answers
Questions About How the Mind Works and What It Means for the Classroom.
https://doi.org/10.1002/9781118269527

Wing, J. (2006). Computational Thinking - It represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager to learn and use.
Communications of the ACM. https://doi.org/0001-0782/06/0300

Wolfram, S. (2016). How to Teach Computational Thinking—Stephen Wolfram Blog.
Retrieved July 11, 2018, from http://blog.stephenwolfram.com/2016/09/how-to-
teach-computational-thinking/

Ying Li. (2016). Teaching programming based on Computational Thinking. In 2016 IEEE
Frontiers in Education Conference (FIE) (pp. 1–7). IEEE.
https://doi.org/10.1109/FIE.2016.7757408

Yusof, A. M., & Abdullah, R. (2005). The Evolution of Programing Courses: Course
curriculum, students, and their performance. ACM SIGCSE Bulletin, 37(4), 74–78.
Retrieved from https://dl.acm.org/citation.cfm?id=1113881

Univ
ers

ity
 of

 M
ala

ya

81

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Title: Enhancing Understanding of Programming Concepts through Physical Games

Conference: Learning Innovation and Teaching Enhancement Research Conference 2017

Date: March 15th - 16th, 2017

Location: Pullman Hotel, Bangsar, Kuala Lumpur, Malaysia

Univ
ers

ity
 of

 M
ala

ya

