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A VOTING-BASED HYBRID MACHINE LEARNING APPROACH FOR 

FRAUDULENT FINANCIAL DATA CLASSIFICATION 

ABSTRACT 

Credit card fraud is a growing concern in the financial industry.  While financial losses 

from credit card fraud amount to billions of dollars each year, investigations on effective 

predictive models to identify fraud cases using real credit card data are limited currently, 

mainly due to confidentiality of customer information.  To bridge this gap, this research 

embarks on developing a hybrid machine learning approach to identify credit card fraud 

cases based on both benchmark and real-world data.  Standard base machine learning 

algorithms, which include a total of twelve individual methods as well as the AdaBoost 

and Bagging methods, are firstly used.  The voting-based hybrid approach consisting of 

various machine learning models with the ability to tackle issues related to missing and 

imbalanced data is then developed.  To evaluate the efficacy of the models, publicly 

available financial and credit card data sets are evaluated.  A real credit card data set from 

a financial institution is also analysed, in order to evaluate the effectiveness of the 

proposed hybrid approach.  In addition to the standard hybrid approach, a sliding window 

method is further evaluated using the real-world credit card data, with the aim to simulate 

and assess the capability of real-time identification of fraud cases at the financial 

institution.  The empirical results positively indicate that the hybrid model with the sliding 

window method is able to yield a good accuracy rate of 82.4% in detecting fraud cases in 

real-world credit card transactions. 

Keywords: Classification; fraud detection; hybrid model; credit cards; predictive 

modelling. 
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PENDEKATAN PEMBELAJARAN MESIN HIBRID BERASASKAN PENGUNDIAN 

UNTUK PENGKLASIFIKASIAN DATA KEWANGAN YANG PALSU 

ABSTRAK 

Penipuan kad kredit dalam industri kewangan amat membimbangkan. Walaupun 

kerugian kewangan dari penipuan kad kredit berjumlah berbilion ringgit setiap tahun, 

siasatan terhadap model ramalan yang berkesan untuk mengenal pasti kes-kes penipuan 

menggunakan data kad kredit sebenar adalah terhad, terutamanya kerana kerahsiaan 

maklumat pelanggan. Untuk merapatkan jurang ini, penyelidikan ini membangunkan 

pendekatan pembelajaran mesin hibrid untuk mengenal pasti kes-kes penipuan kad kredit 

berdasarkan data awam dan data dunia sebenar. Algoritma pembelajaran mesin asas 

piawai yang merangkumi sejumlah dua belas kaedah individu serta kaedah AdaBoost dan 

Bagging, digunakan terlebih dahulu. Pendekatan hibrid yang terdiri daripada pelbagai 

model pembelajaran mesin dengan keupayaan untuk menangani isu-isu yang berkaitan 

dengan data hilang dan tidak seimbang kemudiannya dibangunkan. Untuk menilai 

keberkesanan model, set data kewangan dan kad kredit awam yang dinilai. Data kad 

kredit sebenar yang ditetapkan dari institusi kewangan juga dianalisis, untuk menilai 

keberkesanan pendekatan hibrid yang dicadangkan. Di samping pendekatan hibrid 

piawai, kaedah tetingkap gelongsor dinilai dengan menggunakan data kad kredit dunia 

sebenar, dengan matlamat untuk mensimulasikan dan menilai keupayaan pengenalpastian 

masa nyata kes-kes penipuan di institusi kewangan. Keputusan empirikal secara positif 

menunjukkan bahawa model hibrid dengan kaedah tetingkap gelongsor mampu 

menghasilkan kadar ketepatan yang baik sebanyak 82.4% dalam mengesan kes-kes 

penipuan dalam transaksi kad kredit dunia sebenar. 

Kata Kunci: Klasifikasi; pengesanan penipuan; model hibrid; kad kredit; pemodelan 

ramalan. 
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CHAPTER 1: INTRODUCTION 

In this chapter, an overview of the research is first given.  This is followed by the 

problem statement and research objectives.  Organization of this thesis is given at the end 

of this chapter. 

1.1 Overview 

Fraud is a wrongful or criminal deception aimed to bring financial or personal gain 

(Sahin et al., 2013).  To prevent loss from fraud, two types of methods can be utilized; 

fraud prevention and fraud detection.  Fraud prevention is a proactive method, in which 

the fraud is stopped from its occurrence, while fraud detection aims to detect a fraudulent 

transaction by a fraudster as soon as possible. 

A variety of payment cards, which include credit, charge, debit, and prepaid cards, are 

widely available nowadays.  They are the most popular means of payments in some 

countries (Pavia et al., 2012).  Indeed, advances in digital technologies have paved the 

way we handle money, especially in payment methods that have changed from being a 

physical activity to digital transactions over electronics means (Pavia et al., 2012).  This 

has revolutionized the landscape of monetary policy, including business strategies and 

operations of both large and small companies. 

Credit card fraud is an unlawful use of information from the credit card for the purpose 

of purchasing a product or service.  Transactions can be either done physically or digitally 

(Adewumi & Akinyelu, 2017).  In physical transactions, the credit card is present 

physically during the transactions.  On the other hand, digital transactions take place over 

the internet or telephone.  A cardholder normally gives the card number, card verification 

number, and expiry date through website or telephone. 
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With the rapid rise of e-commerce in the past years, usage of credit cards has 

tremendously increased (Srivastava et al., 2008).  In Malaysia, the number of credit card 

transactions were about 317 million in 2011, and increased to 447 million in 2018 (BNM 

FSPSR, 2018).  As reported by The Nilson Report (2016), the global credit card fraud in 

2015 reached to a staggering USD $21.84 billion.  The number of fraud cases has been 

rising with the increased use of credit cards. While various verification methods have 

been implemented, the number of credit card fraud cases have not been effectively 

reduced.   

The potential of substantial monetary gains, combined with the ever-changing nature 

of financial services, creates a wide range of opportunities for fraudsters (Edge & 

Sampaio, 2012).  Funds from payment card fraud are often used in criminal activities, 

e.g., to support terrorism acts which are hard to prevent (Everett, 2003).  The internet is 

a place favoured by fraudsters as their identity and location are hidden.   

The increase in credit card fraud directly hits the financial industry hard.  Losses from 

credit card fraud mainly affects merchants, in which they bear all costs, including card 

issuer fees, charges, and administrative charges (Quah & Sriganesh, 2008).  As merchants 

need to bear the loss, this comes with a price to the consumer where goods are priced 

higher, and discounts reduced.  Hence, it is vital to reduce the loss.  An effective fraud 

detection system is needed to eliminate or at least reduce the number of cases.  

Numerous studies on credit card fraud detection have been conducted.  The most 

commonly used methods are machine learning models, which include Artificial Neural 

Networks, Decision Trees, Logistic Regression, Rule-Induction techniques, and Support 

Vector Machines (Sahin et al., 2013).  These methods can be either used standalone or 

merged in forming hybrid models. 
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Over the years, fraudulent mechanisms have evolved along with the models used by 

the banks in order to avoid detection (Bhattacharyya et al., 2011).  Therefore, it is 

imperative to develop effective and efficient payment card fraud detection methods.  The 

developed methods also need to be revised continually in accordance with the advances 

in technologies. 

There are challenges in developing effective fraud detection methods. Researchers 

face the difficulty in obtaining real data samples from credit card transactions, as financial 

institutions are reluctant to share their data owing to confidentiality issues (Dal Pozzolo 

et al., 2014). This leads to limited research studies on using real credit card data in this 

domain.   

1.2 Problem Statement 

According to the American Bankers Association (Forbes, 2011), it is estimated that 

10,000 credit card transactions occur every second across the world.  Owing to such a 

high transaction frequency, credit cards become the targets of fraud.  Indeed, credit card 

companies have been fighting against fraud since Diners Club issued the first credit card 

in 1950 (Forbes, 2011).  Each year, billions of dollars are lost due to credit card fraud.  

Fraud cases occur under different conditions, e.g., transactions at the Point of Sales 

(POS), transactions made online or over the telephone, i.e., Card Not Present (CNP) cases, 

or transactions with lost and stolen cards.  Credit card fraud reached $21.84 billion in 

2015, with issuers bearing the cost of $15.72 billion (Nilson Report, 2016).  Based on 

European Central Bank, in 2012, the majority (60%) of fraud stemmed from CNP 

transactions, and another 23% at POS terminals. 
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The value of fraud is high globally, and also locally here in Malaysia. The volume of 

credit, debit, and charge cards was at 383.8 million, 107.6 million, and 4.1 million, 

respectively in 2016 and increased to 447.1 million, 245.7 million, and 5.2 million, 

respectively in 2018 (Payment and Settlement Systems, 2018).  The overall payment (i.e. 

credit, debit, and charge cards) fraud volume was at 0.0186% in 2016 and increased by 

37.6% to 0.0256% in 2018 (Payment and Settlement Systems, 2018).  Potential of huge 

monetary gains combined with the ever-changing nature of financial services give 

opportunities to fraudsters.  In Malaysia, 1,000 card transactions occur every minute.  

Fraud directly hits merchants and financial institution, who incur all the costs. Increase in 

fraud affects customers’ confidence in using electronic payments. 

There are three main issues faced by financial institutions.  Firstly, human intervention 

is typically required to stop fraud cases upon detection.  Secondly, there are missing data 

from transactions which could happen during transmission of data to the fraud detection 

systems.  Thirdly, the current fraud detection systems are based on foreign technology 

customized for foreign transactions, which also creates a high cost of acquisition. 

1.3 Objectives of Study 

Based on the issues faced by financial institutions, the main aim of this research is to 

identify fraudulent credit card transactions using a hybrid machine learning approach.  

The key research objectives are three-fold:  

• to develop a hybrid approach using machine learning with the capability of 

recognizing patterns and stopping fraud cases without human intervention; 

• to classify fraudulent credit card transaction patterns with missing data using the 

developed hybrid approach; 

• to monitor and identify locally-based fraudulent credit card cases from time-series 

transaction data in real-time. 
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1.4 Research Scope and Significance  

The financial fraud scope is given in Figure 1.1.  In this study, the scope is focused 

on detection of real fraudulent credit card transactions in Malaysia. 

 

Figure 1.1: Scope of financial fraud (Popat & Chaudhary, 2018) 

The research significance involves the design and development of a hybrid neural 

network for credit card fraud detection with the capabilities of addressing problems 

associated with class imbalance, missing data, and with real-time detection. The 

developed system offers a low-cost local technology customized to detecting fraudulent 

spending patterns of Malaysian cardholders. 
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1.5 Dissertation Organization 

This dissertation is organized as follows. A literature review is first conducted in 

Chapter 2.  The reviewed articles cover studies on credit and payment card fraud 

detection, with both benchmark and real-world data sets. 

Various base models, from individual, AdaBoost, to Bagging are introduced in 

Chapter 3.  Specifically, a total of twelve machine learning algorithms are used for 

detecting credit card fraud cases.  The algorithms range from standard neural networks to 

deep learning models.  Then, a hybrid machine learning approach is formulated and 

developed. 

A series of systematic experiments using publicly available financial and credit card 

data sets is presented in Chapter 4.  A total of four publicly available data sets are 

evaluated, with results compared to those in literature. 

In Chapter 5, real-world credit card data from a financial institution is used to evaluate 

the developed hybrid model.  The results are analysed and discussed.  Finally, conclusions 

are drawn in Chapter 6. Contributions of this research are presented and a number of areas 

to be pursued as further work are suggested. 
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CHAPTER 2: LITERATURE REVIEW 

A literature review encompassing credit and payment cards fraud detection is 

presented in this chapter.  The literature review is structured into two main parts: 

individual and hybrid models.  It is further divided into benchmark, synthetic, to real data 

from banks and the industry. 

As the number of fraud cases are relatively small to the number of genuine 

transactions, an extreme class imbalance occurs in the data set.  Most algorithms work 

well when the number of samples in each class are about equal, as the algorithms are 

designed to maximize accuracy and reduce error.  Being a common problem in fraud 

detection, data imbalance can be resolved using sampling techniques.   

Oversampling works by adding additional minority classes in the data.  It can be used 

when there is not much data to work with.  Undersampling works by removing some of 

the observations in the majority class.  This can be a good choice when there is too much 

data, but one drawback is valuable data might be removed.  This may lead to underfitting 

of the data set.  

A number of metrics are available to evaluate the classifier performance.  A common 

one is the confusion matrix.  True Negative (TN) represents the number of normal 

transactions being flagged as normal while False Negative (FN) are the number of 

fraudulent transactions wrongly flagged as normal, i.e. missed fraud cases.  True Positive 

(TP) are fraudulent transactions flagged as fraud, i.e. detected fraud cases while False 

Positive (FP) are the number of normal transactions flagged as fraud. 
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The Area Under the Curve (AUC) has been used in various domains.  In the literature, 

there are two types of AUC.  The Receiver Operating Characteristic (ROC)-AUC plots 

TP against FP.  The Precision Recall (PR)-AUC plots precision against recall.  In addition, 

f-measure (or F1 score) is the harmonic average of precision and recall, in which it reaches 

the highest score of 1 (perfect precision and recall) and the worst score of 0. 

In the following sub-chapters, a review of the various models is done.  The literature 

review encompasses the research objectives for developing a hybrid approach using 

machine learning, classifying fraudulent transactions, and identifying cases in real-time.  

A summary is given at the end of the chapter. 

2.1 Individual Models 

The individual models are reviewed in accordance with the types of data, i.e., 

benchmark, real data, and real data with feature aggregation. 

2.1.1 Benchmark Data 

Awoyemi et al. (2017), Manlangit et al. (2017), and Saia (2017) used the same data 

set of European cardholders that is available from Kaggle. It contained 284,807 

transactions in a span of 2 days with 492 fraudulent transactions.  A total of 30 attributes, 

consisting of Time, Amount, and 28 other features were transformed using the Principal 

Component Analysis (PCA).  No details of the transformed attributes were given due to 

the sensitivity of the data. 

A comparative analysis using Naïve Bayes (NB), k-nearest neighbor (kNN), and 

Logistic Regression (LOR) for credit card fraud detection was performed in Awoyemi et 

al. (2017).  A hybrid technique with oversampling and under-sampling was used for 

analysing the skewed data.  The results indicate the best accuracy rates for NB, kNN and 

LOR classifiers are 97.92%, 97.69%, and 54.86%, respectively (Awoyemi et al., 2017). 
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Analysis of credit card fraud was performed using Random Forest (RF), kNN, LOR, 

and NB in Manlangit et al. (2017).  Data imbalance was addressed using a combination 

of undersampling and Synthetic Minority Oversampling Technique (SMOTE).  The 

accuracy highest rate achieved by RF was 97.84%, followed by kNN (97.44%), LOR 

(94.49%), and NB (91.9%) (Manlangit et al., 2017). 

A Discrete Wavelet Transform (DWT) approach was used in Saia (2017) for credit 

card fraud detection.  No details of data sampling were provided.  The f-scores and ROC-

AUC for DWT were at 0.92 and 0.78, respectively, while for RF, it was at 0.95 and 0.98, 

respectively (Saia, 2017). 

2.1.2 Real Data 

A cost-sensitive decision tree approach that minimizes the sum of misclassification 

costs while using the splitting attribute for each non-terminal node was reported in Sahin 

et al. (2013).  The data set included 22 million records, with 978 fraudulent cases.  The 

data set was undersampled using stratified sampling.  The Saved Loss Rate (SLR) was 

used as the performance indicator.  It represents the saved percentage on the potential 

financial loss, i.e. the available usable limit of the cards which had fraudulent transactions.  

The highest SLR was at 95.8% using the Gini method (Sahin et al., 2013). 

A Bayesian Network Classifier (BNC) algorithm was used in de Sá et al. (2018) for a 

real credit card fraud detection problem.  The data set from a payment company in Brazil 

consisted of 887,162 genuine and 16,639 fraud transactions.  Undersampling was 

conducted with the data.  The data consisted of 24 attributes.  BNC produced the highest 

F1 score of 0.827 in the evaluation. 

A data mining-based system was used in Carneiro et al. (2017) for credit card fraud 

detection.  The data set was taken from an online luxury fashion retailer.  The number of 
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features was 70, while the total transactions was not mentioned.   Missing data were 

tackled using the imputation method.  RF, SVM and LOR achieved ROC-AUC rates of 

0.935, 0.906, and 0.907, respectively (Carneiro et al., 2017). 

Artificial Immune Systems (AIS) was used by Brabazon et al. (2010), Wong et al. 

(2012), and Halvaiee and Akbari (2014) for credit card fraud detection.  In Brabazon et 

al. (2010), the data set was provided by WebBiz, with 4 million transactions and 5417 

fraudulent ones.  Using a modified negative selection with AIS, an accuracy rate of 95.4% 

was achieved.  In Wong et al. (2012), a data set from a major Australian bank was used.  

The data consisted of 640,361 transactions from 21,746 credit cards.  The highest 

detection rate was 71.3%.  In Halvaiee and Akbari (2014), the data set was from a 

Brazillian bank, with 3.74% of the transactions were fraudulent.  The detection rate was 

at 0.518 with the FP rate at 0.017. 

Association rules were applied to credit card fraud detection in Sánchez et al. (2009).  

The data set was taken from retail companies in Chile, which consisted of 13 features, 

including amount, age, and customer category.  Using different confidence and support 

values, a certainty factor of 74.29% was presented for the rule typically used by risk 

experts (Sánchez et al., 2009). 

The Modified Fisher Discriminant (MFD) method was used in Mahmoudi and Duman 

(2015) for credit card fraud detection.  A data set from a bank in Turkey was examined, 

with 8,448 genuine and 939 fraudulent transactions.  A total of 102 attributes were used.    

The developed model was skewed on correct classification of beneficial transactions, in 

order to maximize profit.  MFD achieved a profit of 90.79%, which was higher as 

compared with that of the original Fisher method at 87.14% (Mahmoudi & Duman, 2015). 
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Credit card fraud detection was performed using the Long Short-Term Memory 

(LSTM) networks in Jurgovsky et al. (2018).  Two data sets, ECOM and F2F, with 0.68 

million and 0.97 million transactions, respectively, were used.  Both data sets consisted 

of 9 features, and the data were undersampled.  The PR-AUC for ECOM was 0.404 for 

RF, and 0.402 for LSTM, while for F2F, it was 0.242 for RF and 0.236 for LSTM 

(Jurgovsky et al., 2018), respectively. 

Sequential fraud detection for prepaid cards using Hidden Markov Model (HMM) was 

investigated in Robinson and Aria (2018).  The data set was taken from CardCom, 

consisting of 277,721 records with 9 features.  The technique automatically created, 

updated, and compared HMM, with an average f-score of 0.7 (Robinson & Aria, 2018). 

Detection of credit card fraud was reported in Minegishi and Niimi (2011) using a 

Very Fast Decision Tree learner.  A data set consisting of 50,000 transactions with 84 

attributes was used.  Undersampling was performed, with a ratio of 1:9 for fraud to normal 

transactions.  Accuracy rates from 71.188% to 92.325% were achieved (Minegishi & 

Niimi, 2011). 

Hormozi et al. (2013) analysed credit card fraud detection by parallelizing a Negative 

Selection Algorithm using cloud computing.  A total of 300,000 records from a Brazilian 

bank with 17 features from 2004 were utilized. Using a MapReduce framework, the 

detection rate hit as high as 93.08% was achieved (Hormozi et al., 2013). 

Surrogate techniques in checking fraud detection technique for credit card operations 

were used in Salazar et al. (2014).  The data set consisted of 8 million records, with 1,600 

fraud cases.  A total of 8 variables existed in the data.  Using discriminant analysers, the 

ROC-AUC values from the experiments ranged from 0.8563 to 0.8708 (Salazar et al., 

2014). 
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Credit card fraud detection based on Artificial Neural Networks (ANN) and Meta Cost 

was investigated in Ghobadi and Rohani (2016).  A data set from a Brazilian credit card 

company with 3.75% of fraudulent transactions was used.  A total of 18 attributes were 

available.  In tackling imbalanced data, Meta Cost was used, where the model was named 

Cost Sensitive Neural Network (CSNN).  The detection rates from the experiments were 

at 31.4% for ANN and 61.4% for CSNN (Ghobadi & Rohani, 2016). 

Braun et al. (2017) aimed to improve credit card fraud detection through suspicious 

pattern discovery. A data set comprising of 517,569 transactions with 0.152% fraudulent 

transactions was used.  The data set contained 21 features.  Undersampling was done on 

the data, so that each set of data had 13,500 genuine and 1500 fraudulent transactions.  

The ROC-AUC and accuracy scores of RF and LOR were 0.971 and 99.9% as well as 

0.944 and 99.6%, respectively (Braun et al., 2017). 

A credit card fraud detection study for a bank in Turkey was reported in Duman and 

Elikucuk (2013) and Duman et al. (2013).  A total of 22 million transactions with 978 

fraudulent transactions and 28 different variables were analysed.  Stratified sampling was 

carried out in both studies to balance the data.  In Duman and Elikucuk (2013), the 

Migrating Birds Optimization (MBO) algorithm achieved the highest TP rate at 88.91%.  

In Duman et al. (2013), the highest TP rate was achieved by ANN at 91.74%. 

Based on the review of individual models that use real data, it can be seen that most 

data sets originate from either payment, retail or banks.  Most datasets have low amounts 

of fraud, creating an imbalanced data set.  To resolve this issue, the authors used sampling 

techniques, with the undersampling most commonly used. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

13 

2.1.3 Real Data with Transaction Aggregation 

In addition to standard features, some studies include aggregated features in addition 

to standard features.  Transaction aggregation includes aggregated information related to 

the status of each account, which is continuously updated as new transactions occur.  The 

use of additional features can directly influence the results of the models and has been 

found to be advantageous in many but not all circumstances (Whitrow et al., 2009). 

An approach, named APATE, was proposed in Van Vlasselaer et al. (2015) for an 

automated credit card transaction fraud detection system using network-based extensions.  

A data set from a Belgian credit card issuer with 3.3 million transactions and 48,000 

fraudulent data was used.  A total of 60 new aggregated features, such as single merchant, 

country, currency, were created.  The ROC-AUC and accuracy rate of LOR were 0.972 

and 95.92%, ANN were 0.974 and 93.84%, and RF were 0.986 and 98.77%, respectively 

(Van Vlasselaer et al., 2015). 

Feature engineering strategies using DT, LOR, and RF for credit card fraud detection 

was conducted in Bahnsen et al. (2016).  A data set from a large European processing 

company with 120 million transactions was used.  Based on the original 15 features, new 

aggregated features such as number of transactions and country from the past 24 hours 

were added.  Using the proposed periodic features, the results showed an average 

accuracy increase of 13% (Bahnsen et al., 2016). 

Credit card fraud detection using transaction aggregation was reported in Jha et al. 

(2012).  A data set containing 49.8 million transactions over a period of 13 months was 

used.  The original data had 14 primary features, and 16 new features such as average, 

amounts, and same merchants, were aggregated and added to the data.  Using LOR, the 

model wrongly detected 377 transactions as fraud, while it wrongly detected 582 

transactions as legitimate (Jha et al., 2012). 
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Transaction aggregation using multiple algorithms was examined in Whitrow et al. 

(2009) for credit card fraud detection.  Two bank data sets were used, where Bank A data 

had 175 million transactions, with 5,946 fraudulent cases and 30 features.  For Bank B, it 

had 1.1 million transactions, with 8,335 fraudulent cases and 91 features.  Transaction 

aggregation depicted an advantage in many, but not all, circumstances.  The loss function 

was calculated, where for Bank A and Bank B, the lowest loss was achieved by using RF 

with 7 days of aggregated data (Whitrow et al., 2009). 

An evaluation of different methods for credit card fraud detection was done in 

Bhattacharyya et al. (2011). A total of 50 million real transactions from 1 million 

cardholders were used.  In the experiments, a smaller dataset with 2,420 fraudulent 

transactions with 506 customers was analysed.  On top of the original 14 features, 

additional 16 features such as average, amounts, same merchant, were added. The 

accuracy rates and AUC from the experiments were 94.7% and 0.942 for LOR, 93.8% 

and 0.908 for SVM, and 96.2% and 0.953 for RF, respectively (Bhattacharyya et al., 

2011). 

From the literature, it can be seen that the addition of aggregated features improved 

the algorithms ability to detect fraud.  The use of transaction aggregation for various 

features are proposed for the experiments in Chapter 5. 
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2.2 Hybrid Models 

The hybrid models are reviewed according to the types of data, namely benchmark, 

synthetic, and real data.  Hybrid models are a combination of two or more classifiers that 

work together.  It is typically designed for a particular task, where the combination of 

multiple models can greatly improve the final results. 

2.2.1 Benchmark Data 

A Deep Belief Network (DBN) based resampling SVM ensemble for classification 

was proposed in Yu et al. (2018).  Two data sets from UCI, i.e., the German credit and 

Japanese credit data, were used.  Both oversampling and undersampling were conducted 

on the data.  The SVM model was used as a base classifier, creating ensemble input 

members to DBN.  Using undersampling on the German credit data, the best results were 

achieved, with TP and TN of SVM at 72.7% and 63.93%, majority voting at 80.2% and 

67.8%, and DBN at 87.9% and 61.6%, respectively. For the Japanese credit, the 

oversampling method performed the best, with TP and TN of SVM at 94.08% and 

80.57%, majority voting at 94.5% and 81.14%, and DBN at 94.5% and 81.14%, 

respectively (Yu et al., 2018). 

2.2.2 Synthetic Data 

Synthetic data contain information created algorithmically and artificially 

manufactured rather than generated by real-world events.  Kundu et al. (2009) and 

Panigrahi et al. (2009) applied synthetic credit card transaction records. 

Two models, Basic Local Alignment Search Tool (BLAST) and Sequence Search and 

Alignment by Hashing Algorithm (SSAHA), named BLAST-SSAHA, were used in 

Kundu et al. (2009) for credit card fraud detection.  A profile analyser determined the 

sequence similarity based on past spending sequences, while a deviation analyser 
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determined the possible past fraudulent behaviour.  The TP rate varied from 65% to 

100%, while the FP rate varied from 5% to 75% (Kundu et al., 2009). 

A fusion approach using Dempster–Shafer theory and Bayesian learning was proposed 

in Panigrahi et al. (2009) for credit card fraud detection.  The system consisted of a rule-

based filter, Dempster–Shafer adder, transaction history database and Bayesian learner.  

Using the Dempster–Shafer theory, an initial belief was developed.  The belief was further 

strengthened or weakened using Bayesian learning.  The TP rate varied from 71% to 83% 

while the FP rate varied from 2% to 8% (Panigrahi et al., 2009). 

2.2.3 Real Data 

A framework for a hybrid model that consists of one-class classification and rule-based 

approaches for plastic card fraud detection systems was proposed in Krivko (2010).  A 

total of 189 million transactions of real debit card data were used.  Undersampling was 

performed on the data to divide them into smaller data sets.  Hybrid and rule-based models 

were compared.  The hybrid model identified only 27.6% of the compromised accounts 

while the rule-based method identified 29% (Krivko, 2010). 

Duman and Ozcelik (2011) proposed the Genetic Algorithm and Scatter Search 

(GASS) method for detecting credit card fraud.  Using data set from a bank in Turkey, 

undersampling ratios of 1:100 and 1:1000 were used on the data set. The method 

increased accuracy by up to 40% with the number of alerts being as many as four times 

from the suggested solution (Duman & Ozcelik, 2011). 

A Scalable Real-time Fraud Finder (SCARFF), integrating Big Data tools (Kafka, 

Spark and Cassandra) with a machine learning approach was formulated in Carcillo et al. 

(2018).  A total of 8 million transactions with 17 features were used.  The experimental 

results indicated that on average, 24 out of 100 alerts were correct (Carcillo et al., 2018). 
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A credit card fraud prediction model based on cluster analysis and SVM was proposed 

in Wang and Han (2018).  A data set from a bank in China was used.  Undersampling 

ratio of 1:19 was used, with the data samples were clustered using k-means.  A total of 3 

models were then tested, i.e., the base SVM, KSVM (k-means with SVM), and KASVM 

(KSVM with AdaBoost).  The AUC and f-measure results for SVM were 0.7755 and 

0.975, KSVM were 0.7949 and 0.956, and KASVM were 0.9872 and 0.982, respectively 

(Wang & Han, 2018). 

An ensemble consisting of six models was used in Kültür and Çağlayan (2017) for 

detection of credit card fraud.  The six models consisted of DT, RF, Bayesian, NB, SVM, 

and k-models.  A data set from a bank in Turkey which consisted of 152,706 transactions 

was used.  Optimistic, pessimistic, and weighted voting were conducted in the 

experiments.  Weighted voting yielded the highest accuracy at 97.55%, while optimistic 

voting showed the lowest FP rate at 0.1% (Kültür & Çağlayan, 2017). 

A hybrid fuzzy expert system, FUZZGY, was proposed in HaratiNik et al. (2012) for 

credit card fraud detection.  A real data set from a payment service provider was used.  

FUZZGY applied fuzzy rules, which identified logical contradiction between merchant 

current activities with trend of historical ones.  The FP and TP rates from the experiments 

were 10% and 66% for a fuzzy expert system and 22.5% and 91.6% for FUZZGY, 

respectively (HaratiNik et al., 2012). 

Heryadi et al. (2016) utilized Chi-Square Automatic Interaction Detection (CHAID) 

and kNN for detecting debit card fraud transaction.  The data set used was taken from a 

bank in Indonesia, which consisted of 6,820 transactions with 1,939 fraudulent records.  

A total of 51 variables were used.  The model achieved an accuracy rate of 72% (Heryadi 

et al., 2016). 
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2.3 Summary 

It can be seen that researchers used various types of data from synthetic to benchmark, 

and real-world data, in financial fraud detection.  Various models such as standard models 

of ANN to nature inspired metaheuristic approach, such as MBO have been used.  The 

undersampling method is the most popular method used in order to tackle the imbalanced 

data problem, with various ratios used in different studies. Performance metrics of 

accuracy, TP, FP, and ROC-AUC have been used, but there is no standard metric in 

measuring the results.  A summary of the performance across the various models is listed 

in Table 2.1. 

Table 2.1: Performance comparison across models 

Classifier Reference Acc. TP FP ROC
-AUC 

Individual models 

B
en

ch
m

ar
k  

NB 
Awoyemi et al. 

(2017) 

97.92%    
kNN 97.69%    
LOR 54.86%    
RF 

Manlangit et al. 
(2017) 

97.84%    
kNN 97.44%    
LOR 94.49%    
NB 91.90%    

DWT 
Saia (2017) 

   0.780 
RF    0.980 

R
ea

l d
at

a 

RF 
Carneiro et al. (2017) 

   0.935 
SVM    0.906 
LOR    0.907 
AIS Brabazon et al. (2010) 95.40%    

AIS Halvaiee and Akbari 
(2014)   0.017  

AIS Minegishi & Niimi 
(2011) 92.33%    

MapReduce Hormozi et al. (2013) 93.08%    
Discriminant 

analysers Salazar et al. (2014)    0.871 

RF 
Braun et al. (2017) 

99.9%   0.971 
LOR 99.6%   0.944 

Univ
ers

ity
 of

 M
ala

ya



 

19 

MBO Duman and Elikucuk 
(2013) 88.9%    

ANN Duman et al. (2013)  91.7%   
LOR 

Bhattacharyya et al. 
(2011) 

94.70%   0.942 
SVM 93.80%   0.908 
RF 96.20%   0.953 

Hybrid models 

Sy
nt

he
tic

 BLAST-
SSAHA 

Kundu et al. (2009) 
  100% 75%  

Dempster–
Shafer + 
Bayesian 

Panigrahi et al. (2009)  83% 8%  

R
ea

l d
at

a 

KASVM Wang & Han (2018)    0.987 
DT, RF,  

NB, SVM, 
Bayesian 

Kültür & Çağlayan 
(2017) 97.50%    

FUZZGY HaratiNik et al. (2012)  91.6% 22.5%  
CHAID + kNN Heryadi et al. (2016) 72.00%    

 

It can be seen for individual models that the accuracy rates are generally above 90% 

for the benchmark experiments while RF acquired one of the highest accuracies and ROC-

AUC rates.  In hybrid models, there is no similar model across literatures, instead a 

combination of models, such as ensembles provide a boost to the individual models.  In 

this work, both benchmark data and real data is used. 

While the use of individual models can achieve good accuracy rates, the use of hybrid 

models in the literature have shown improved results as compared to individual models.  

Hybrid models are typically designed for a particular data set or task, and by combining 

two or more models, the overall results are greatly improved by each model adapting to 

the specific tasks.  In addition, it can be seen that no model reported in the literature 

identifies fraudulent transactions in real-time. 
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CHAPTER 3: DEVELOPMENT OF HYBRID MODEL 

In this chapter, various individual classifiers used in this study are described.  

Development of the hybrid machine learning approach is then presented.  The novelty of 

this thesis is the proposition of a hybrid model (achieved via majority voting) to identify 

fraud in financial data. 

3.1 Classifiers 

In this study, a total of twelve classification algorithms are used.  An overview of each 

algorithm with the settings used in RapidMiner is described, as follows. 

3.1.1 Naïve Bayes 

Naïve Bayes (NB) utilizes the Bayes’ theorem with naïve or strong independence 

assumptions for classification.  Some features of a class are assumed to be independent 

from others.  It needs only a small training data set in estimating the mean and variance 

for classification. According to Bayes’ theorem,  

P(Y|𝐗) =
P(Y) ∗ P(𝐗|Y)

P(𝐗) , (3.1) 

 
where input X comprises a set of n features/attributes of X1, X2, X3, …, Xn, and Y is the 

label class; P(Y|X) is the posterior probability of class Y given X, P(X|Y) is conditional 

probability of input X given Y, while P(X) is the probability of evidence of X.  A class 

label with the highest P(Y|X) is selected as the predicted output of input X.  In an example 

with n attributes, 

P(Y|𝐗) =
P(Y) ∗ ∏ P(𝐗𝐢|Y),

-./

P(𝐗) , (3.2) 
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The default settings used in RapidMiner was that of Laplace correction being used. 

Laplace correction is used in handling zero values, where it adds one to each count to 

avoid the occurrence of zero values. 

3.1.2 Decision Tree 

The DT model uses a set of nodes to connect the input features to certain classes.  Each 

node denotes a splitting rule of a feature.  The Gini impurity measure is used to determine 

how frequent a randomly chosen input sample is incorrectly labelled, which is computed 

using 

G =1(1 − 𝑝56), (3.3) 

 
where pk represents the proportion of samples in class k.  New nodes are created till the 

stopping criterion is met.  The class label is decided from the majority of samples that are 

from a particular leaf. 

In RapidMiner, the default settings were used, with criterion of gain ratio, maximal 

depth of 20, pruning confidence of 0.25, prepruning minimal gain of 0.1, and minimal 

leaf size of 2. Gain ratio is a variant of information gain that adjusts the information gain 

for each attribute to allow the breadth and uniformity of the attribute values. 

3.1.3 Random Tree 

The Random Tree (RT) model functions as an operator of DT, with the difference on 

each split, only a random subset of input features is available.  The learning process uses 

both numerical and nominal data samples. A subset is determined by a subset ratio 

parameter. 

Similar to DT, the default settings were criterion of gain ratio, minimal size for split 

of 4, minimal leaf size of 2, minimal gain of 0.1, maximal depth of 20, and confidence of 
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0.25.  Parameter confidence specifies the confidence level used for the pessimistic error 

calculation of pruning. 

3.1.4 Random Forest 

The model of Random Forest (RF) generates an ensemble of RTs. A user sets the 

number of trees, and the resulting RF model uses voting to determine the final 

classification outcome based on the predictions from all created trees.  Structure of RF is 

shown in Figure 3.1.  Classes are given as k while number of trees as T.  The construction 

of RF is based on the bagging method, using random attribute selection. 

Similar default settings to RT and DR, default settings were criterion of gain ratio and 

maximal depth of 20.  The other default settings included number of trees of 10, pruning 

confidence of 0.25, minimal gain of 0.1, and minimal leaf size of 2. 

 

Figure 3.1: Structure of Random Forest 

3.1.5 Gradient Boosted Tree 

The Gradient Boosted Tree (GBT) is an ensemble model consisting of either regression 

or classification methods.  It utilizes a forward-learning ensemble model to obtain 

predictive results using gradually improved estimations. Boosting assists to increase the 

tree accuracy.  

tree1

k1

voting

k

. . .tree2

k2

treeT

kT

D

Univ
ers

ity
 of

 M
ala

ya



 

23 

In RapidMiner default settings, the number of trees of 20, maximal depth of 5, 

minimum rows of 10, number of bins of 20, and learning rate of 0.1 were used.  While 

the default setting of learning rate of 0.1 was used, the range was from 0.0 to 1.0, which 

comes at the price of increasing computational time both during training and scoring, with 

lower learning rate requires more iterations. 

3.1.6 Decision Stump 

The Decision Stump (DS) model generates a DT with one split only.  DS can be 

utilized to classify uneven data sets.  It makes prediction from value of just one input 

feature, which is also called as 1-rules. 

The default settings used in RapidMiner was criterion of gain ratio and a minimal leaf 

size of 1. 

3.1.7 Neural Network with Back Propagation 

The feed-forward Neural Network uses the supervised Back Propagation (NNBP) 

algorithm for training.  The connections between the nodes do not form a directed cycle.  

Information only flows forward from the input nodes to the output nodes through the 

hidden nodes. 

Default settings in RapidMiner included 2 hidden layers for the network, training 

cycles of 50, learning rate of 0.3, and momentum of 0.2.  The momentum simply adds a 

fraction of the previous weight update to the current one, which prevents local maxima 

and smoothes optimization directions. 

3.1.8 Linear Regression 

Linear Regression (LIR) models the relationship of scalar variables by fitting a linear 

equation onto the observed data.  The relationships are then modelled using linear 

predictor functions, where the unknown model parameters are estimated using the data 
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samples.   When there are two or more predictors, the target output is a linear combination 

of the predictors, which can be expressed as 

y = b9 + b/x/ + b6x6	+	. . . +	b>x>, (3.4) 

 
where y is the dependent variable, bi’s are the coefficients of xi’s, which are the 

explanatory variables.  In a two-dimensional example, a straight line through the data 

samples is formed, whereby the predicted output, y?, for a scalar input x is given by 

y? = b9 + b/x, (3.5) 

 
In RapidMiner, the default settings were used, which were minimum tolerance of 0.05 

and ridge of 1E-8.  The ridge parameter is used in ridge regression. 

3.1.9 Logistic Regression 

Another regression method, i.e., Logistic Regression (LOR), is able to handle both 

nominal and numerical features.  It estimates the probability of a binary response based 

on one or more predictors.  The linear function of predictor x is given by 

logit =
log p
1 − p = b9x + b/, (3.6) 

 
where p is the probability of the event happening.  Similar to Eq. (3.4), in the case 

involving independent variables, xi’s, 

logit = b9 + b/x/ + b6x6+. . +b>x>, (3.7) 

 
The output probability is computed using 

p =
eGHIJK

1 + eGHIJK
, (3.8) 
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There is only a single default setting in RapidMiner, in which the solver was set to 

automatic. 

3.1.10 Support Vector Machine 

SVM handles both regression and classification problems.  It creates a model by 

assigning new samples to a category or another, which creates a non-probabilistic binary 

linear classifier.  The data in SVM are mapped in a way that samples from different 

categories can be segregated using a parallel margin, as wide as possible.  A line (or a 

hyperplane in the general case) separating two attributes, x1 and x2, is established as 

H = b + w ∙ x = 0, (3.9) 

 
where x is the input attribute vector, b is the bias, and w is the weight vector.  In an optimal 

hyperplane, H0, the margin, M, is given by 

M =
2

R𝑤9 ∙ 𝑤9
, (3.10) 

 
where w0 is formed with training samples, known as the support vectors, i.e., 

Tw9 =1yJJ xJT, (3.11) 

 
The default settings in RapidMiner were used, which were kernel type of dot, 

convergence epsilon of 0.001, L positive of 1, and L negative of 1.  Convergence epsilon 

is an optimizer parameter. 
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3.1.11 Rule Induction 

The Rule Induction (RI) algorithm begins with less common classes and grows as well 

as prunes the rules until no positive instances are available, or the error rate is more than 

50%.  The rule accuracy, A(ri), is calculated using 

A(r-) =
Correct	records	covered	by	rule
All	records	covered	by	rule , (3.12) 

 
During the growing phase, specific conditions are added to the rule until it is 100% 

accurate.  During the pruning phase, the final sequence of each rule is removed using a 

pruning metric. 

The default settings in RapidMiner were used, where criterion of information gain, 

sample ratio of 0.9, pureness of 0.9, and minimal prune benefit of 0.25 were selected.  In 

information gain, the entropy of all attributes is calculated, and attribute with the 

minimum entropy is selected for split. 

3.1.12 Deep Learning 

Deep Learning (DL) is created from the base of a feedforward neural network trained 

using a stochastic gradient descent method with backpropagation.  It has a large number 

of hidden layers, which consist of neurons with “tanh”, “rectifier”, and “maxout” 

activation functions.  Each node takes a copy of the global model parameters from the 

local data, then periodically contributes towards the global model using model averaging. 

In RapidMiner, the default settings were used, with activation of rectifier and epochs 

of 10.  The activation function is used by neurons in the hidden layers while epochs detail 

the number of times a dataset should be iterated. 
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3.1.13 Classification Algorithm Strengths and Limitations 

The strengths and limitations of each method discussed are given in Table 3.1. 

Table 3.1: Strengths and limitations of machine learning methods 

Models Strengths Limitations 

Bayesian 
models 

Good for classification 
problems; excellent use of 

computational resources; can 
be used in real-time operations. 

Requires in depth understanding 
of normal and abnormal 

behaviours for various types of 
fraud cases. 

Decision 
Trees 

Simple to understand and 
implement; requires low 

computational power; good for 
real-time operations. 

Potential of over-fitting if the 
training set does not represent the 
underlying domain information; 

re-training is needed for new fraud 
cases types. 

Artificial 
Neural 

Networks 

Good for classification 
problems; mainly used for 

fraud detection. 

Need a high computational power, 
re-training is needed for new types 

of fraud cases. 

Linear 
Regression 

Provides optimal results when 
the relationship between 

independent and dependent 
variables are linear. 

Sensitive to outliers. 

Logistic 
Regression 

Simple to implement, and 
historically used for fraud 

detection. 

Poor classification performances 
when compared with other data 

mining methods. 

Support 
Vector 

Machines 

Can solve non-linear 
classification problems; 

requires little computational 
power; good for real-time 

operations. 

Difficult to process the results due 
to the transformation of the input 

data. 

Rule-based 
models 

Easy to understand, and 
existing knowledge can be 

easily added. 

Poor scaling with the training set 
size, and not suitable for noisy 

data. 
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3.2 Base Models 

A total of three base models are used for the first set of experiments: Individual, 

AdaBoost, and Bagging.  All models used are constructed graphically and simulations are 

conducted using RapidMiner. 

3.2.1 Individual Models 

In individual models, individual classifiers from a total of twelve algorithms detailed 

in Chapter 3.1 are used.  The setup of individual model is shown in Figure 3.1.  The 

process begins by retrieving data.  Missing values are replaced.   A sampling block is 

used, if the data set requires to be balanced. 

 

Figure 3.2: Setup of individual model 

The cross-validation (CV) block, as shown in Figure 3.2, consists of the classifier, such 

as Naïve Bayes as given in the example.  The performance, such as accuracy rate of the 

model, is then calculated. 

 

Figure 3.3: Expanded view of CV block for individual model 
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3.2.2 Adaptive Boosting (AdaBoost) 

With a similar setup to the individual model, the AdaBoost model differs in which a 

block of classifier (as in Figure 3.2) is replaced with the AdaBoost block, as shown in 

Figure 3.3.  AdaBoost adapts the subsequent weak learners in favour of instances wrongly 

classified by the classifier.  

F^(𝑥) =1𝑓a(𝑥)
^

a./

 (3.13) 

 
where ft is a weak learner that takes object x as input and returns a value indicating the 

target class of an object.  It is sensitive to outliers and noisy data, while being less 

vulnerable to overfitting problems.  While individual learners can be weak, the final 

output model is proven to converge to a strong learner, provided that the performance of 

any weak learner is slightly better than random guessing. 

 

Figure 3.4: Expanded view of CV block for AdaBoost model 

As an example, Naïve Bayes is used in Figure 3.4.  The AdaBoost process completes 

in the Training section before moving to the Testing section.  Default settings in 

RapidMiner was used, where the number of iterations was set to 5. 
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3.2.3 Bootstrap Aggregating (Bagging) 

Similar to AdaBoost, the block is replaced with Bagging.  Bagging is a machine 

learning ensemble meta-algorithm which increases accuracy and stability of classification 

algorithms.  It helps reduce variance and avoids overfitting.  Bagging is a special case of 

model averaging method.  The setup is shown in Figure 3.5. 

 

Figure 3.5: Expanded view of CV block for Bagging model 

As an example, Naïve Bayes is used in Figure 3.5.  Similar to Figure 3.4, once the 

Bagging process completes Training, it moves to the Testing section. 

In total, twelve classification algorithms are used, where Naïve Bayes is one of them.  

Results from each of the algorithms are recorded in order to compare the performance.  

Similar to AdaBoost, the default settings in RapidMiner was used, where the number of 

iterations was set to 5. 
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3.3 Hybrid Machine Learning Approach 

From the base models, a hybrid machine learning approach (hereinafter known as 

hybrid model) is developed.  A hybrid model is a combination of two or more models.  

As discussed in Chapter 2.2, a variety of hybrid models have been used in the past by 

researchers. 

Based on the individual models, the hybrid model is developed.  The hybrid model is 

a complete system that can be used in the financial industry.  A brief overview of the steps 

is as follows: 

1) In this model, real-world data is first used. 

2) If there are missing data, they will be imputed, where missing data are replaced with 

the mean value of that attribute.  

3) If the data are unbalanced, the undersampling technique is used, where some of the 

majority class is removed.   

4) The hybrid model uses a voting operator, with confidence and prediction of each 

model.   

The pseudocode for the hybrid model is given in Table 3.2. 
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Table 3.2: Pseudocode of the hybrid model 

Input: A set of data samples 

Output: Prediction of transaction 

while each input sample do 

          check if data is complete 

          if missing values exists then 

          replace missing values using imputation 

end 

          check for number of samples in each class 

          if data samples for each class differ >100 times then 

          balance the data using undersampling 

end 

split data into training and prediction 

train the data using hybrid model 

predict new data using the hybrid model 

compute output using majority voting operator in Eq. (3.14) 

end 
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With the data samples checked for missing values and balanced, the data is then split 

as in Figure 3.6.  The data set is first split into training and prediction sets, where both 

data sets are not overlapping each another. 

The Vote block, as expanded in Figure 3.7, which has three classifiers, gives the output 

together with the prediction confidence.  The performance measure provides the results, 

such as accuracy rates, sensitivity, and specificity. 

 

Figure 3.6: Expanded view of the Subprocess 

A simple voting operator picks a winner based on the highest number of winning votes.  

Based on the literature review in Chapter 2.2, it can be seen that most hybrid models are 

made up from two or three classifiers.  For instance, in the case of two classifiers voted 

against one classifier, the resulting winner will be from the two classifiers.  To reduce the 

chance of bias, an odd number of classifiers is chosen, hence a total of three classifiers is 

chosen.  Having more than three classifiers, such as five classifiers may slow down the 

identification of fraud when used in real-time. 
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Figure 3.7: Expanded view of Vote block 

A majority voting operator is developed for the experiments.  The majority voting 

operator provides the final output based on the confidence and prediction of each model, 

𝐶(𝑋) =1𝑤-𝑝-d

e

d./

 (3.14) 

 
where wj are the weights between 0 to 1 (1 being most confident), pij are the prediction, 

and B are the classifiers.   

As compared with a simple voting operator, the majority voting operator takes into 

account of the confidence of each model output.  A total of three classifiers, based on the 

best results from individual experiments, are used.  SVM, DL, and GBT are the classifiers 

that perform best in most of the experiments (as in Chapters 4 and 5); therefore, they are 

used in the Vote model.  
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An example of how the majority voting operator works in given in Table 3.3.  A total 

of three classifiers are used.  The weight (confidence) for fraud and non-fraud is 

calculated for each classifier.  Weight for both fraud and non-fraud is then averaged across 

the three classifiers. 

Table 3.3: Sample of majority voting operator output 

 Weight 
Model Fraud Non-fraud 
SVM 0.99 0.01 
DL 0.49 0.51 

GBT 0.49 0.51 
Average 0.66 0.18 
Result Fraud - 

 

As seen in the example above, the weight for fraud is 0.66 while non-fraud is 0.18.  As 

the fraud has a much heavier weight, the data sample is said to be a fraudulent transaction.  

As compared to a simple voting operator, the result would have been non-fraud as both 

DL and GBT favour more towards non-fraud.  In this case, the use of weights, or 

confidence from each model is helpful in predicting the fraud. 
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3.4 Summary 

In this chapter, a total of twelve classifiers have been detailed.  The strengths and 

limitations of the models are summarized.  Development of the models are then done in 

stages.  The individual models are first developed in RapidMiner.  This is followed by 

AdaBoost and Bagging models.   

From the results of the individual, AdaBoost and Bagging models, a hybrid machine 

learning approach is then developed.  The hybrid model consists of three classifiers that 

performed the best in the experiments, i.e. SVM, DL, and GBT.  A majority voting 

operator is used in summarizing the output prediction from the classifiers.  In addition, 

the hybrid model includes the ability to handle missing information and imbalanced data. 
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CHAPTER 4: BENCHMARK EXPERIMENTS 

In this chapter, a series benchmark experiments using publicly available data sets, from 

UCI Machine Learning Repository and Kaggle, is presented. 

4.1 Experimental Setup 

In this study, all experiments are conducted using RapidMiner Studio 7.6.  All 

parameters are set based on the default settings in RapidMiner.  The 10-fold cross-

validation (CV) method is used in all experiments, as it reduces the bias associated with 

random sampling in the test stage.  CV is known also as rotation estimation, where the 

data set is divided into train and test set, and each of the fold contains non-overlapping 

data for both training and testing. 

The results from the 10-fold CV is then computed using the bootstrap method, where 

the averages were computed using a resampling rate of 5,000 to provide a good 

performance (Efron & Tibshirani 1993).  Bootstrapping relies on random sampling with 

replacement. 

Instead of describing the true and false positive rates and negative cases using one 

indicator, a good general measure is the Matthews Correlation Coefficient (MCC) 

(Powers, 2011).  MCC measures the quality of a two-class problem, which considers the 

true and false positive and negative instances.  It is a balanced measure, even with classes 

from various sizes.  MCC can be calculated using 

MCC = ^f×^hijf×jh
R(^fkjf)(^fkjh)(^hkjf)(^hkjh)

,  (4.1) 

 
where the result of +1 indicates a perfect prediction, and −1 a total disagreement. 
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4.2 UCI Data 

Three data sets from the UCI Machine Learning Repository are used, namely Statlog 

(Australian Credit), Statlog (German Credit), and Default of Credit Card; hereinafter 

denoted as Australia, German, and Card, respectively.   

4.2.1 Australia Data Set 

In the first benchmark data set, there are a total of 690 instances with 14 variables and 

2 classes.  The data set is related to credit card applications. All attribute names and values 

have been changed to meaningless symbols, in order to protect confidentiality.  Accuracy 

rates for the Australia data set are shown in Figure 4.1.  In general, most of the classifiers 

acquire accuracy rates over 85%, with RT the lowest.  DL acquires the highest accuracy 

rates.  It can be seen that AdaBoost helps increase the accuracy rates for weak classifiers, 

such as NB and RT, but does the opposite for GBT and LIR.  Bagging gives a higher 

accuracy rate for NB and RT, as compared with those of AdaBoost. 

 

Figure 4.1: Accuracy rates for Australia data set 
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The MCC scores for the Australia data set are shown in Table 4.1.  The highest rates 

are acquired using DL and LIR on the standard model at 0.730.  There is a big boost of 

MCC for RT using AdaBoost and Bagging, while a moderate boost for NB.  In some 

classifiers, AdaBoost and Bagging reduce the MCC rate, and in some cases, there is no 

difference.  In the case of the classifier in AdaBoost and Bagging makes the wrong 

prediction multiple times, the MCC rate will fall.  This is a downside of using a single 

type of classifier in AdaBoost and Bagging, hence selection of the right classifier is 

crucial. 

Table 4.1: MCC rates for Australia data set 

Model Standard AdaBoost Bagging 
DL 0.730 0.724 0.722 
LIR 0.730 0.696 0.726 
LOR 0.726 0.726 0.725 
DS 0.720 0.720 0.720 

GBT 0.719 0.705 0.738 
SVM 0.716 0.716 0.716 

RI 0.716 0.721 0.730 
NNBP 0.702 0.698 0.707 

RF 0.690 0.690 0.718 
DT 0.681 0.681 0.716 
NB 0.600 0.643 0.730 
RT 0.231 0.572 0.659 

 

For the Australian data set, the study in Ala’raj & Abbod (2016) is used for 

comparison.  The best accuracy rate of 86.8%, as shown in Table 4.2, is yielded by RF 

w/GNG (Ala’raj & Abbod, 2016), DT w/GNG (Ala’raj & Abbod, 2016), and RF 

w/MARS (Ala’raj & Abbod, 2016).  In comparison with the results, GBT (Bagging) 

produces comparable accuracy of 87.00%. 

While the highest MCC scores were from DL and LIR, the accuracy rates for GBT 

(Bagging) were the highest.  This is mainly due to the computation method for both 
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metrics.  In MCC, a balanced approach which considers the true and false positive and 

negative instances is used.  For accuracy, it is a measure of the correctly identified 

instances over the entire population, hence a highly imbalanced data set may have a high 

accuracy rate but a low MCC score if the minority class has a high number of wrongly 

identified instances. 

Table 4.2: Comparison of accuracy using the Australia data set 

Model Accuracy 
RF w/GNG (Ala’raj & Abbod, 2016) 86.80% 
DT w/GNG (Ala’raj & Abbod, 2016) 86.80% 
NB w/GNG (Ala’raj & Abbod, 2016) 86.50% 

ANN w/GNG (Ala’raj & Abbod, 2016) 85.90% 
SVM w/GNG (Ala’raj & Abbod, 2016) 86.30% 
RF w/MARS (Ala’raj & Abbod, 2016) 86.80% 
DT w/MARS (Ala’raj & Abbod, 2016) 82.80% 
NB w/MARS (Ala’raj & Abbod, 2016) 78.50% 

ANN w/MARS (Ala’raj & Abbod, 2016) 86.50% 
SVM w/MARS (Ala’raj & Abbod, 2016) 85.30% 

GBT (Bagging) 87.00% 
 

4.2.2 German Data Set 

The German data set consists of 1,000 instances with 20 variables and 2 classes.  The 

data samples with numerical attributes are provided by Strathclyde University, where the 

data set has been edited with several variables added to make it suitable for algorithms 

which cannot handle categorical variables.  The accuracy rates for the German data set 

are shown in Figure 4.2.  It can be seen that LIR and LOR produce the best rates, while 

DS, DT, RF, and RT yield the same low rates at 70%.  AdaBoost does not help much in 

most experiments, except for NB.  Bagging helps increase the accuracy rates of LOR, RI, 

NNBP, GBT, and DL. 
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Figure 4.2: Accuracy rates for German data set 

The MCC rates for the German data set are shown in Table 4.3.  It can be seen that the 

rates are relatively low, between 0.3 and 0.4, with LIR achieves the highest.  DS, RF, and 

RT rates are all at zero as MCC cannot be calculated.  Similar to the accuracy rates, 

AdaBoost and Bagging are little to no help for most of the classifiers. 

Table 4.3: MCC rates for German data set 

Model Standard AdaBoost Bagging 
LIR 0.425 0.425 0.415 
LOR 0.411 0.411 0.424 
NB 0.379 0.386 0.374 

GBT 0.368 0.342 0.359 
RI 0.356 0.337 0.324 

SVM 0.355 0.355 0.335 
DL 0.344 0.324 0.384 

NNBP 0.338 0.330 0.384 
DT 0.039 0.039 0.039 
DS 0.000 0.000 0.000 
RF 0.000 0.000 0.000 
RT 0.000 0.000 0.000 
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For the German data set, the results reported in Ala’raj & Abbod (2016), Cardoso et 

al. (2016), and Abellán et al. (2017) are used for comparison.  A 5-fold CV was used in 

Ala’raj & Abbod (2016), while both Cardoso et al. (2016) and Abellán et al. (2017) used 

the 10-fold CV, i.e., the same as in this study.   As shown in Table 4.4, the best accuracy 

achieved in the literature is from RF w/GNG (Ala’raj & Abbod, 2016) and SVM (Cardoso 

et al., 2016), while the best accuracy rate from this study is 77.40% using LIR.  

Table 4.4: Comparison of accuracy using the German data set 

Model Accuracy 
RF w/GNG (Ala’raj & Abbod, 2016) 77.00% 
DT w/GNG (Ala’raj & Abbod, 2016) 74.50% 
NB w/GNG (Ala’raj & Abbod, 2016) 75.90% 

ANN w/GNG (Ala’raj & Abbod, 2016) 75.10% 
SVM w/GNG (Ala’raj & Abbod, 2016) 76.80% 
RF w/MARS (Ala’raj & Abbod, 2016) 76.70% 
DT w/MARS (Ala’raj & Abbod, 2016) 72.10% 
NB w/MARS (Ala’raj & Abbod, 2016) 74.40% 

ANN w/MARS (Ala’raj & Abbod, 2016) 74.80% 
SVM w/MARS (Ala’raj & Abbod, 2016) 76.60% 

ClusWiSARD (Cardoso et al., 2016) 76.70% 
SVM (Cardoso et al., 2016) 77.00% 

BA-C4.5 (Abellán et al., 2017) 73.01% 
BA-CDT (Abellán et al., 2017) 74.64% 

RF (Abellán et al., 2017) 76.08% 
CRF (Abellán et al., 2017) 76.38% 

LIR 77.40% 
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4.2.3 Card Data Set 

The Card data set consists of 30,000 instances with 24 variables and 2 classes.  The 

data samples are from customers with default payments in Taiwan.  The outcome is to 

evaluate whether the client is credible or not.  The accuracy rates for the Card data set are 

given in Figure 4.3.  It can be seen that most of the rates hover around 80%, with NB the 

lowest at 40%.  Again, AdaBoost and Bagging are of little to no help in improving the 

results.  NNBP produces the highest accuracy rate at 82.2%. 

 

Figure 4.3: Accuracy rates for Card data set 

The MCC rates for the Card data set are shown in Table 4.5.  NNBP achieves the best 

MCC rate at 0.422 while DS the lowest at 0.035.  Most classifiers produce MCC rates of 

around 0.3, while Bagging improves the performances of LOR, NB, DL, and RF.  

Bagging can improve the performance of certain classifiers when they constantly get the 

correct predictions. 
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Table 4.5: MCC rates for Card data set 

Model Standard AdaBoost Bagging 
NNBP 0.422 

 
 
 

0.422 0.383 
RT 0.375 

 

0.375 0.000 
RI 0.347 0.205 0.358 

GBT 0.343 0.285 0.329 
SVM 0.335 0.335 0.300 
DT 0.332 0.332 0.329 

LOR 0.307 0.307 0.313 
DL 0.306 0.325 0.363 
LIR 0.231 0.231 0.231 
NB 0.132 0.000 0.140 
RF 0.058 0.058 0.068 
DS 0.035 0.035 0.035 

 

A performance comparison for the Card data set is conducted with those in Lu et al. 

(2017).  The highest reported accuracy rate in Lu et al. (2017), as shown in Table 4.6, is 

81.96% from RF.  In this study, NNBP yields the best accuracy rate of 82.20%. 

Table 4.6: Comparison of accuracy using the Card data set 

Model Accuracy 
ELM (Lu et al., 2017) 76.86% 

AdaBoost (Lu et al., 2017) 78.99% 
KNN (Lu et al., 2017) 81.66% 
SVM (Lu et al., 2017) 81.83% 
RF (Lu et al., 2017) 81.96% 
NB (Lu et al., 2017) 69.97% 

NNBP 82.20% 
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4.3 Kaggle Data Set 

A publicly available credit card data set is available from Kaggle.  It has a total of 

284,807 transactions made by European cardholders in September 2013.  Only 492 

fraudulent transactions are available, making it highly imbalanced. 

For data protection reasons, a total of 28 principal components, namely V1 to V28 

based on transformation are provided, except two features, i.e. Time and Amount.  No 

metadata on the original features are given, hence pre-analysis or a study on the features 

is not possible in this case. 

A correlation study is first conducted.  A correlation matrix is a table that shows the 

correlation coefficients between the variables.  Every cell in the table indicates the 

correlation in between two different variables.  In other words, it can be used to 

summarize data that is present in the large data set. 

Based on the correlation matrix in Figure 4.4, it can be seen that there is not much 

correlation between all the features, i.e. V1 to V28.  Only Amount and the class label 

have some correlation between the features. 
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Figure 4.4: Correlation matrix for Kaggle data set 

As the data set is highly imbalanced, undersampling is conducted.  As reviewed in 

Chapter 2, the undersampling method is the most popular method used in order to tackle 

the imbalanced data problem various ratios were used, from 1:9 to 1:1000.  Different 

ratios were used across different data sets, as the number of genuine to fraudulent 

transactions differed.  In the experiments, two ratios are used, i.e. 1:50 and 1:100.  These 

two ratios were selected based on the size of the data set and number of fraudulent 

transactions.  The MCC, sensitivity, and specificity scores are presented and discussed in 

the following sub-chapters. 
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4.3.1 MCC 

The MCC rates with ratio of 1:50 and 1:100 are shown in Figures 4.5 and 4.6, 

respectively.  The results of both ratios are almost identical.  While NNBP yields the 

highest MCC score from the ratio of 1:50, SVM produces the highest MCC score from 

the ratio of 1:100.  Most MCC rates are above 0.8, close to 0.9, except that from RI 

(cannot be computed). 

 

Figure 4.5: MCC rates for Kaggle data set, ratio 1:50 

 

Figure 4.6: MCC rates for Kaggle data set, ratio 1:100 
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4.3.2 Sensitivity 

The sensitivity rates with ratios of 1:50 and 1:100 are listed in Tables 4.7 and 4.8, 

respectively.  Sensitivity in this case is the genuine transactions that are correctly 

classified.  The results show good sensitivity rates, with most classifiers achieving 100% 

or close to 100%, for both ratios.  Again, there is not much difference in sensitivity 

between both ratios. 

Table 4.7: Sensitivity rates for Kaggle data set, ratio 1:50 

Model Standard AdaBoost Bagging 
LIR 100.0% 99.6% 100.0% 
RI 100.0% 100.0% 100.0% 

SVM 100.0% 100.0% 100.0% 
RF 100.0% 99.9% 100.0% 
DS 100.0% 100.0% 100.0% 

NNBP 100.0% 100.0% 100.0% 
RT 100.0% 100.0% 100.0% 
DL 99.9% 99.9% 100.0% 

LOR 99.9% 99.9% 99.9% 
DT 99.9% 99.9% 99.9% 

GBT 99.9% 99.9% 99.9% 
NB 97.4% 98.3% 97.4% 

 

Table 4.8: Sensitivity rates for Kaggle data set, ratio 1:100 

Model Standard AdaBoost Bagging 
LIR 100.0% 99.8% 100.0% 
RI 100.0% 100.0% 100.0% 
DS 100.0% 100.0% 100.0% 

SVM 100.0% 100.0% 100.0% 
NNBP 100.0% 100.0% 100.0% 

RT 100.0% 100.0% 100.0% 
RF 100.0% 100.0% 100.0% 
DT 100.0% 99.9% 100.0% 

LOR 99.9% 99.9% 99.9% 
DL 99.9% 99.9% 100.0% 

GBT 99.9% 100.0% 100.0% 
NB 97.7% 98.6% 97.7% 
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4.3.3 Specificity 

The specificity rates with ratios of 1:50 and 1:100 are listed in Tables 4.9 and 4.10, 

respectively.  Specificity is the fraudulent cases that are correctly classifier.  RI produces 

no results, indicating it cannot detect any fraudulent case.  DL yields one of the best 

specificity rates in detecting fraudulent cases, which is followed by NB, GBT, and NNBP.  

Similar to the previous results, both ratios indicate similar performances. 

Table 4.9: Specificity rates for Kaggle data set, ratio 1:50 

Model Standard AdaBoost Bagging 
DL 83.7% 81.3% 80.5% 
NB 82.1% 82.9% 82.1% 

GBT 80.5% 78.9% 79.7% 
NNBP 79.7% 79.7% 79.7% 
SVM 78.9% 78.9% 78.9% 
LOR 78.0% 78.0% 78.0% 
DT 77.2% 78.9% 78.0% 
RF 67.5% 68.3% 63.4% 
DS 62.6% 62.6% 62.6% 
RT 61.8% 61.8% 54.5% 
LIR 54.5% 80.5% 54.5% 
RI 0.0% 0.0% 0.0% 

 

Table 4.10: Specificity rates for Kaggle data set, ratio 1:100 

Model Standard AdaBoost Bagging 
DL 83.7% 82.1% 84.6% 

LOR 82.1% 82.1% 82.9% 
NB 82.1% 83.7% 82.1% 
DT 81.3% 80.5% 80.5% 

NNBP 81.3% 81.3% 80.5% 
GBT 80.5% 79.7% 78.9% 
SVM 78.9% 78.9% 78.9% 
RF 75.6% 72.4% 73.2% 
DS 58.5% 58.5% 61.8% 
LIR 58.5% 83.7% 58.5% 
RT 54.5% 54.5% 55.3% 
RI 0.0% 0.0% 0.0% 
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4.3.4 Performance Comparison 

For performance comparison, the results in Awoyemi et al. (2017) and Manlangit et 

al. (2017) are compared.  Both studies use a train-test ratio of 70:30. A comparative 

analysis using NB, kNN, and LOR is included in Awoyemi et al. (2017), with a sampling 

rate of 10:90.  A hybrid technique of under-sampling and oversampling is carried out on 

the skewed data.  In Manlangit et al. (2017), an analysis using RF, kNN, LOR, and NB 

has been conducted.  Data imbalance has been addressed using a combination of 

undersampling and Synthetic Minority Oversampling Technique (SMOTE). 

The results are shown in Table 4.11.  The sensitivity rates are all above 70%, with DL 

(Bagging) achieve a perfect score.   The specificity rates are generally good except that 

of LOR (Awoyemi et al., 2017), while kNN (Awoyemi et al., 2017) yields a perfect 

specificity score. 

Table 4.11: Comparison of accuracy and sensitivity using the Kaggle data set 

Model Sensitivity Specificity 
NB (Awoyemi et al., 2017) 82.1% 97.5% 
kNN (Awoyemi et al., 2017) 82.9% 100.0% 
LOR (Awoyemi et al., 2017) 71.6% 29.4% 
RF (Manlangit et al., 2017) 96.1% 99.6% 

kNN (Manlangit et al., 2017) 98.3% 96.6% 
LOR (Manlangit et al., 2017) 91.6% 97.3% 
NB (Manlangit et al., 2017) 86.0% 97.7% 

DL (Bagging) 100% 84.6% 
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4.4 Summary 

In this chapter, benchmark experiments from UCI (Australia, German, Card) and 

Kaggle have been conducted.  Accuracy rates and MCC are presented and compared with 

those in the literature.  As the Kaggle data set was highly imbalanced, two ratios (1:50 

and 1:100) were used to balance the data.  In addition, specificity and sensitivity rates 

were computed for the Kaggle data set.  The standard, AdaBoost, and Bagging models 

that were developed in RapidMiner were able to perform as good as, or better with those 

reported in the literature.  These models are then used in developing the hybrid model, 

which is used in the next chapter. 
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CHAPTER 5: REAL-WORLD EXPERIMENTS 

A real credit card data set from a Malaysian financial institution is used in this 

experiment.  The data set contains transactions from September to November 2016.  A 

total of 68,597 records from 10,685 customers are available for evaluation.  No 

identifying information about the customer such as name and address were taken, other 

than the masked account number. 

The transactions cover activities in 124 countries, with various spending items ranging 

from online website purchases to grocery shopping.  Among the transactions, 49% of 

them are made locally in Malaysia.  This is followed by transactions made in Indonesia 

and Singapore.   

Total of 28 transactions are labelled as fraud, with the remaining as genuine, or non-

fraud cases.  A general overview of the data set is given.  The average transaction amount 

is RM 344.44, used over a total of five types of transactions (i.e. internet transaction, over 

the counter).  There were 255 different types of Merchant Category Code (MECC) that 

were being transacted on.   

The two top MECC were for airlines and advertising services.  The trend for airlines 

is seen as more cardholders today book their flight and their related services bookings 

online.  The highest number of accumulative transactions per cardholder over the data set 

period was 35, while the average transaction was 3.  Most transactions take place in the 

evenings. 
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For the fraud cases, most of them had high number of total transactions, with an 

average of 20 per cardholder.  The average transaction amount however did not have a 

specific amount, it ranged from a few ringgits to a few thousand.  Most of the cases 

happen over the internet, with a few over the counter.  The top two MECC codes that 

were part of the fraud cases were related to airlines and business services.  This is in line 

with the total number of transactions seen in the data set. 

A total of nine original features are acquired from the financial institution, consisting 

of two classes.  The account number was masked for confidentiality purposes.  A total of 

eight new aggregated features are added, which consist of the number and sum of the 

transaction amount, acquiring country, MECC, and transaction type.  These eight features 

are added based on the literature review in Chapter 2.1.3.  Feature aggregation adds 

information on each account status continuously, which is updated whenever a new 

transaction takes place.  The list of features used is given in Table 5.1. 

The experiments procedures were similar to those in Chapter 4.  The 10-fold CV was 

used with results computed using bootstrap method with a resampling rate of 5,000. 
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Table 5.1: List of features 

Features Type 
Masked Account Number Original 

Transaction Amount Original 
Transaction Date Original 
Transaction Time Original 

Device Type Original 
MECC Original 

Acquiring Country Original 
For Country Original 

Transaction Type Original 
Transaction Amount No. Aggregated 
Transaction Amount Sum Aggregated 

Acquiring Country No. Aggregated 
Acquiring Country Sum Aggregated 

MECC No. Aggregated 
MECC Sum Aggregated 

Device Type No. Aggregated 
Device Type Sum Aggregated 

 

5.1 Individual Models 

This evaluation consists of the individual models, AdaBoost, and Bagging.  The results 

of MCC, sensitivity, and specificity are discussed in the following sub-chapters.  The 

same ratios of 1:50 and 1:100 are used. 

5.1.1 MCC 

MCC rates are shown in Figures 5.1 and 5.2.  A similar trend can be seen, however the 

rates for the ratio of 1:100 are higher.  GBT produces the highest MCC rates, which is 

followed by DL and NB.  The remaining classifiers do not yield any MCC rates, due to 

the lack of specificity rates. 
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Figure 5.1: MCC rates for real-world data set, ratio 1:50 

 

Figure 5.2: MCC rates for real-world data set, ratio 1:100 
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5.1.2 Sensitivity 

The sensitivity rates with ratio of 1:50 are listed in Table 5.2.  All classifiers, with the 

exception of NB, achieve perfect or near perfect scores.  AdaBoost helps NB to achieve 

a perfect score, while Bagging does not help much. 

Table 5.2: Sensitivity rates for real-world data set, ratio 1:50 

Model Standard AdaBoost Bagging 
DT 100.0% 100.0% 100.0% 
LIR 100.0% 100.0% 100.0% 

NNBP 100.0% 100.0% 100.0% 
RF 100.0% 100.0% 100.0% 
RI 100.0% 100.0% 100.0% 
RT 100.0% 99.9% 100.0% 

SVM 100.0% 100.0% 100.0% 
DS 99.9% 99.9% 99.9% 

LOR 99.9% 99.9% 99.9% 
GBT 99.1% 99.4% 99.9% 
DL 96.2% 97.4% 100.0% 
NB 29.7% 100.0% 29.6% 

 

For ratio of 1:100, sensitivity rates are listed in Table 5.3.  Similar to Table 5.2, NB 

acquired the lowest rates, with exception of being helped by AdaBoost. 
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Table 5.3: Sensitivity rates for real-world data set, ratio 1:100 

Model Standard AdaBoost Bagging 
DT 100.0% 100.0% 100.0% 
LIR 100.0% 100.0% 100.0% 
LOR 100.0% 100.0% 100.0% 

NNBP 100.0% 100.0% 100.0% 
RF 100.0% 100.0% 100.0% 
RI 100.0% 100.0% 100.0% 
RT 100.0% 100.0% 100.0% 

SVM 100.0% 100.0% 100.0% 
DS 99.9% 99.9% 100.0% 

GBT 99.5% 99.6% 100.0% 
DL 97.4% 98.3% 100.0% 
NB 31.3% 100.0% 31.4% 

 

5.1.3 Specificity 

The specificity rates are listed in Table 5.4 for ratio 1:50.  Only NB, GBT, and DL 

produce the results, meaning that others cannot detect fraudulent transactions.  NB 

produces a detection rate of 96.4% (ratio 1:50), which is followed by GBT and DL, at 

about 40%.  AdaBoost and Bagging do not help improve the results.   

Table 5.4: Specificity rates for real-world data set, ratio 1:50 

Model Standard AdaBoost Bagging 
NB 96.4% 0.0% 96.4% 

GBT 42.9% 39.3% 17.9% 
DL 39.3% 14.3% 0.0% 
DS 0.0% 0.0% 0.0% 
DT 0.0% 0.0% 0.0% 
LIR 0.0% 0.0% 0.0% 
LOR 0.0% 0.0% 0.0% 

NNBP 0.0% 0.0% 0.0% 
RF 0.0% 0.0% 0.0% 
RI 0.0% 0.0% 0.0% 
RT 0.0% 0.0% 0.0% 

SVM 0.0% 0.0% 0.0% 
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For ratio of 1:100, specificity rates are listed in Table 5.5.  Similar results are recorded 

with ratio of 1:50, where both AdaBoost and Bagging do not help in improving the results. 

Table 5.5: Specificity rates for real-world data set, ratio 1:100 

Model Standard AdaBoost Bagging 
NB 92.9% 0.0% 92.9% 

GBT 42.9% 46.4% 21.4% 
DL 39.3% 32.1% 0.0% 
DS 0.0% 0.0% 0.0% 
DT 0.0% 0.0% 0.0% 
LIR 0.0% 0.0% 0.0% 
LOR 0.0% 0.0% 0.0% 

NNBP 0.0% 0.0% 0.0% 
RF 0.0% 0.0% 0.0% 
RI 0.0% 0.0% 0.0% 
RT 0.0% 0.0% 0.0% 

SVM 0.0% 0.0% 0.0% 
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5.2 Hybrid Model 

With the experiments using base models in Chapter 5.1 complete, the experiments are 

continued using the hybrid model developed in Chapter 3.3.  The hybrid model consists 

of the classifiers that perform best in the experiments, which are SVM, DL, and GBT.  

Results from the experiments are listed in Table 5.6.  Two ratios, 1:50 and 1:100 were 

used. 

Table 5.6: Hybrid model results for real-world data set 

Ratio 1:50 1:100 
MCC 0.598 0.642 

Sensitivity 100% 100% 
Specificity 56.3% 62.5% 

 

The MCC rates were at 0.598 and 0.642 for ratio of 1:50 and 1:100, respectively.  The 

sensitivity rates were at 100%, similar to those in individual models.  Specificity rates 

however was not as good.  Using ratio of 1:50 and 1:100, the specificity rates were at 

56.3% and 62.5%, respectively. 

As compared with individual models, the results of the hybrid model is much higher.  

The hybrid model managed to acquire better rates than GBT, NB, SVM, and DL which 

scored well in the individual models. 
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5.3 Sliding Window Method 

A sliding window method for prediction of transactions in real-time is designed for the 

experiments.  The method is based on the developed hybrid model in Chapter 3.3.  It 

consists of three classifiers, i.e. SVM, DL, GBT. 

To simulate a real-time process in the financial institution, the evaluation conducted 

consists of multiple training and prediction days.  A total of one and two training days 

with a combination of one, two, and three prediction days are evaluated.  These 

evaluations are done separately, only the specific number of training and prediction days 

are taken. 

A total of 17 features, which consists of the original and aggregated features as listed 

in Table 5.1 are used.  For the experiments, a total of six sliding windows (i.e. one training 

day to one prediction day) are constructed based on scattered fraud are done.  As an 

example, on two training and prediction days, for the first set, the training window covers 

Monday and Tuesday, while the prediction covers Wednesday and Thursday.  For the 

second set, the training window covers Wednesday and Thursday, while the prediction 

covers Friday and Saturday.  This process repeats a total of five times, with the results 

averaged and presented in Figures 5.3 and 5.4. 

The sensitivity rates are shown in Figure 5.3.  The sensitivity rates are all at 100%, 

which implies that regardless the training or prediction days, the genuine transactions can 

be classified correctly.  The specificity rates are shown in Figure 5.4.  The highest score 

comes from two days of training with one or two days of prediction, both at 82.4%, which 

is the fraud detection score.  Training just one day is not sufficient, with a score lower 

than 10%.  As such, it is important to have a longer training period, with a minimum of 

two days in order to get a good prediction outcome. 
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Figure 5.3: Sensitivity rates for sliding window model 

 

Figure 5.4: Specificity rates for sliding window model 

Finally, the MCC rates from the sliding window model are shown in Figure 5.5.  The 

results show the highest MCC rate, at 0.692, comes from two days of training with one 

day of prediction.  This is followed by two days of training and two days of prediction, 

with an MCC rate of 0.557.  It can be seen that the longer the training days, the better the 

prediction outcomes.  Having a big enough training set is vital in order for the model to 

provide accurate predictions. 
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Figure 5.5: MCC rates for sliding window model 

For financial institutions, the ability to detect genuine transactions correctly and fraud 

cases accurately is important.  A genuine transaction that is labelled as fraud causes 

dissatisfaction from the affected customer. As such, having high sensitivity and 

specificity rates is vital for a prediction model to operate in the real-world. 
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5.4 Summary 

In this chapter, an evaluation with real-world data from a financial institution in 

Malaysia has been conducted.  Results from individual experiments indicate that DL and 

GBT acquire good results, as compared with the other classifiers.  A hybrid model 

developed using classifiers that perform well in all experiments was then used in the 

experiments.  The novelty of the hybrid model is the ability to deal with missing and 

imbalanced data and uses a voting operator that takes into account the confidence and 

prediction of each model.  The MCC results from the hybrid model was 0.642, higher 

than individual models.  In addition, another novelty of this thesis is a sliding window 

method that predicts days ahead of training is conducted, with the ability to accurately 

predict fraud cases up to two days in advance at 82.4%. 
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CHAPTER 6: CONCLUSIONS 

In this chapter, concluding remarks are made and future research directions are 

discussed. 

6.1 Conclusions 

In this study, credit card fraud detection using machine learning models have been 

presented.  A literature review was first conducted.  Researchers used various types of 

data from synthetic to benchmark, and real-world data, in financial fraud detection. 

Various machine learning models, from individual to hybrid models were used.  In 

detailing the performance, various metrics were used, with no standardization to quantify 

the results. 

Development of models were then done.  Individual models followed by AdaBoost 

and Bagging models were developed.  Based on the results from these models, a hybrid 

model is then developed.  The hybrid model uses a majority voting operator that combines 

three classifiers, i.e. SVM, DL, and GBT.  Not only classifying data, the hybrid model 

handles missing information and also balances the data. 

Publicly available data sets from UCI and Kaggle related to credit card fraud detection 

have been used for evaluation using standard and hybrid models.  The metric of MCC has 

been used for measuring the performance, as it considers both true and false positive and 

negative predicted outcomes. 

Initially, three benchmark UCI data sets were used for evaluations, namely Australian, 

German, and Card. GBT (Bagging), LIR, and NNBP achieved the best accuracy rates 

pertaining to the Australia, German, and Card data sets, respectively. Then, with the 

Kaggle credit card data set, two ratios were used in undersampling, i.e., 1:50 and 1:100. 
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The best MCC score was achieved by DL (Bagging) at 0.914, with 100% sensitivity and 

84.6% specificity.   

A real payment card data set from a financial institution in Malaysia was then used for 

evaluation.  The data set contained three-month transactions from 10,685 customers.  The 

individual and hybrid models used in the benchmark experiments were employed.  

Similar to the Kaggle data set, two ratios were used in undersampling, i.e., 1:50 and 1:100. 

Using standard models, the best MCC rates was acquired by GBT (AdaBoost) at 0.497.  

MCC results from the hybrid model was 0.642. 

Based on the hybrid model, a sliding window model was then developed and 

evaluated.  The test consisted of multiple training and prediction days, in order to simulate 

a real-time model used in the financial institution. While the best MCC rate was at 0.692, 

the hybrid model was able to predict fraud transactions up to two days ahead at an 

accuracy rate of 82.4%. 

In summary, the main objective of this study, which is to detect fraudulent credit card 

transactions using a hybrid machine learning approach has been met.  The contribution 

of this study includes the design of a hybrid approach that is able to recognize patterns 

from a large data set, classifying fraudulent credit card transaction patterns with missing 

data, and most importantly is the ability of predict fraudulent credit card cases in real-

time. 
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6.2 Future Work 

A number of enhancements can be made in future research.  Firstly, newly developed 

machine learning models can be used to replace the standard models.  The developed 

models can be customized specifically for the detection of fraudulent transactions. 

The use of a parameter optimizer can be explored.  Individual parameters for each 

setting in the classifier can be fine-tuned.  New features based on existing features can 

also be extracted to enhance the fraud detection rate.   

Next, supporting various types of payment methods, such as online banking can be 

explored.  As the transactions happen in real-time on the web, a system that is able to 

detect fraudulent transactions in real-time will be able to save any potential money lost. 

In addition, a model that covers spending patterns in various countries can be 

developed.  As users spend differently in different parts of the world, it is important for a 

model to adapt so that fraudulent cases are not missed, while not wrongly classifying 

genuine transactions. 

Finally, the hybrid model can be enhanced to support online learning.  Not only that, 

other online learning models can be investigated.  Online learning allows a rapid detection 

of fraud cases, potentially in real-time.  This enables the detection and prevention of 

fraudulent transactions, which in turn reduces the number of incurred losses each day by 

the financial industry. Univ
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