
LEVERAGING PROACTIVE FLOW TO IMPROVE
SCALABILITY IN SOFTWARE DEFINED NETWORKING

OSEGHALE OSEMUDIAMEN VICTOR

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2019
Univ

ers
ity

 of
 M

ala
ya

LEVERAGING PROACTIVE FLOW TO IMPROVE
SCALABILITY IN SOFTWARE DEFINED

NETWORKING

OSEGHALE OSEMUDIAMEN VICTOR

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENT FOR THE
DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: OSEGHALE OSEMUDIAMEN VICTOR

Matric No: WGA120028

Name of Degree: MASTERS OF COMPUTER SCIENCE

Title of Dissertation (“this Work”): LEVERAGING PROACTIVE FLOW TO
IMPROVE SCALABILITY IN SOFTWARE DEFINED
NETWORKING
Field of Study: COMPUTER SYSTEMS AND NETWORK

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

 iii

LEVERAGING PROACTIVE FLOW TO IMPROVE SCALABILITY IN

SOFTWARE DEFINED NETWORKING

ABSTRACT

The concept of Software Defined Networking (SDN) is a concept which necessitates

decoupling the network control plane from the data plane and makes each plane evolves

independently. This controller architecture supporting versatile communication services

is a complex paradigm. The need to coordinate the interaction of the control plane

components such as QOS modules, routing information base, security policy, resource

scheduling, etc. is a complex operation and based on the controller. The coordination of

the actions of these components sometimes have conflicting goals and require careful

handling. Some of these components exist in the network as distributed protocols and the

inconsistency in coordinating these protocols could lead to critical problems in the

network. Apart from the coordination of these distributed protocols, there is an issue that

can arise due to flow request from data plane devices to the controller, which could

eventually lead to a bottleneck as the network flow request scale at large network. The

use of a centralized controller to address some of these challenges has been proposed by

researchers. By centralizing the controller, the network simplifies the state distribution

and hence have a better control over the network consistency. However, it is difficult to

scale at larger network size and flow request. It is also important to maintain low latency

in request handling and at the same time having high scalability throughput. For this

thesis, an implementation of proactive flow programming on the data plane and improved

I/O systems is proposed as leverage in the design of the SDN controllers. Through

experiments, this work shows that implementing these concepts improve the controller

scalability by enhancing the flow handling rate as the network size increases.

Keywords: Quality of Service, Security Policy, SDN Controllers, Throughput

Univ
ers

ity
 of

 M
ala

ya

 iv

ALIH PROACTIVE LEVERAGING UNTUK MENINGKATKAN KALUNGAN

DALAM RANGKAIAN YANG DITERBITKAN PERISIAN

ABSTRAK

Konsep Rangkaian Perisian Terperinci (SDN) adalah konsep yang memerlukan

pemisahan pesawat kawalan rangkaian dari satah data dan membuat setiap satah berubah

secara sendiri. Seni bina pengawal ini yang menyokong perkhidmatan komunikasi serba

boleh adalah paradigma yang kompleks. Keperluan untuk menyelaraskan interaksi

komponen pesawat kawalan seperti modul Servis Kualiti (QoS), pangkalan maklumat

penghalaan, dasar keselamatan, penjadualan sumber, dan lain-lain adalah operasi yang

kompleks dan berdasarkan pengawal. Penyelarasan tindakan komponen ini kadang-

kadang mempunyai matlamat yang saling bertentangan dan memerlukan pengendalian

yang teliti. Sesetengah komponen ini wujud dalam rangkaian sebagai pengagihan

protokol dan keadaan yang tidak konsisten dalam menyelaraskan protokol ini boleh

membawa kepada masalah kritikal dalam rangkaian. Selain dari penyelarasan pengagihan

protokol ini, terdapat satu isu yang boleh timbul kerana permintaan Aliran dari peranti

pesawat data ke pengawal, yang akhirnya boleh membawa kepada kesesakan kerana

permintaan aliran rangkaian berskala pada rangkaian yang besar. Penggunaan pengawal

terpusat untuk menangani beberapa cabaran ini telah dicadangkan oleh penyelidik.

Dengan memusatkan pengawal, kita dapat mempermudahkan pengedaran kawasan

rangkaian dan oleh itu mempunyai kawalan yang lebih baik ke atas konsistensi rangkaian.

Walau bagaimanapun, sukar untuk berskala pada saiz rangkaian dan permintaan aliran

yang lebih besar. Ia juga penting untuk mengekalkan kependaman rendah dalam

pengendalian permintaan dan pada masa yang sama mempunyai penskalaan

penghantaran yang tinggi. Untuk tesis ini, pelaksanaan pengaturcaraan aliran proaktif

pada pesawat data dan sistem I / O yang lebih baik dicadangkan sebagai penekanan dalam

reka bentuk pengawal SDN. Melalui eksperimen, kami akan menunjukkan bahawa

perlaksanaan konsep ini meningkatkan kemampuan pengawal penskalaan dengan

meningkatkan kadar pengendalian aliran apabila saiz rangkaian meningkat.

Kata Kunci: Kualiti Perkhidmatan, Dasar Keselamatan, Pengawal SDN, Daya

Pemprosesan

Univ
ers

ity
 of

 M
ala

ya

 v

ACKNOWLEDGEMENTS

To my life-coach, Rev. (Dr.) Chris Oyakhilome DSc. DD and my parents Mr and Mrs

Oseghale: because I owe it all to you. Many Thanks!

Special mention goes to my enthusiastic supervisor, Madam Fazidah Binti Othman.

My Masters has been an amazing experience and I thank my supervisor wholeheartedly,

not only for her tremendous academic support during the Thesis writing, but also for

giving me so many wonderful supports as my referee for my current employment.

Similar, profound gratitude goes to Bimba Andrew, who has been a truly dedicated

academic mentor. I am particularly indebted to Andrew for his constant faith in my lab

work, and for his support when so generously responding to all my request. I have very

fond memories of my time with him.

Special mention goes to Hayden Gilgan, Gloria Benjamin Dusman, Pastor Rhema for

going far beyond the call of duty.

Finally, but by no means least, thanks go to siblings, for almost unbelievable support.

They are the most important people in my world and I dedicate this thesis to them.

Univ
ers

ity
 of

 M
ala

ya

 vi

TABLE OF CONTENTS

Abstract ... iii

Abstrak .. iv

Acknowledgements .. v

Table of Contents .. vi

List of Figures ... ix

List of Tables .. x

List of Symbols and Abbreviations .. xi

CHAPTER 1: INTRODUCTION .. 1

 SDN ……………………………………………………………………………… 3

1.2 Problem Statement... 3

1.3 Objectives ... 5

1.4 Methodology ... 6

1.5 Mitigating the Scalability Challenges... 7

1.6 Summary and Layout of this thesis .. 7

CHAPTER 2: LITERATURE REVIEW ... 9

2.1 Introduction ... 9

2.2 4D Architecture ... 11

2.3 NOX and BEACON .. 13

2.4 McNettle ... 14

2.5 DevFlow .. 15

2.6 DIFANE .. 16

2.7 HyperFlow .. 17

2.8 ONIX …………………………………………………………………………… 18

Univ
ers

ity
 of

 M
ala

ya

 vii

2.9 SANE ………………………………………………………………………….. 19

2.10 Ethane ………………………………………………………………………….. 19

2.11 Summary ... 25

CHAPTER 3: BACKGROUND OF CONCEPT OF NETWORK COMPLEXITY

AND PROACTIVE FLOW .. 26

3.1 Introduction ... 26

3.2 Overload Caused by Complexity of Computer Network 28

3.3 The Goal of Using Proactive Flow ... 30

3.4 Flow …………………………………………………………………………….. 31

3.5 Summary ... 32

CHAPTER 4: IMPLEMENTATION .. 33

4.1 Introduction ... 33

4.2 Design Consideration .. 34

4.3 Fair Capacity Allocation .. 34

4.4 Interaction ... 35

4.5 Packet Statistic .. 37

4.6 Registers Condition to the Data Plane .. 39

 Summary ... 39

CHAPTER 5: EVALUATION ... 40

5.1 CPU utilization .. 41

5.2 Packet Loss ... 42

5.3 Average Throughput .. 44

5.4 Summary ... 46

Univ
ers

ity
 of

 M
ala

ya

 viii

CHAPTER 6: CONCLUSION ... 47

6.1 Future Work .. 47

REFERENCES ... 49

Univ
ers

ity
 of

 M
ala

ya

 ix

LIST OF FIGURES

Figure 1.1 Basic SDN Architecture ... 2

Figure 1.2 Packet forwarding in SDN ... 5

Figure 3.1: Case diagram for the Proactive Flow with preset rules 31

Figure 4.1 Algorithm to Identify Link Load .. 35

Figure 4.2 Layer 3 IP header for the flow .. 35

Figure 4.3 TCP Ethernet frame ... 36

Figure 4.4 Additional TCP Header .. 37

Figure 4.5 Proactive Flow Setup ... 37

Figure 5.1 CPU Utilization of both reactive and proactive flow 42

Figure 5.2 Plot showing the average packet loss.. 44

Figure 5.3 Average Throughput .. 45

Univ
ers

ity
 of

 M
ala

ya

 x

LIST OF TABLES

Table 2.1: The various work done to solve scalability challenges SDN, their objectives,
findings and challenges ... 21

Table 5.1 Table showing the total number of runs, reactive and proactive flow setup . 42

Table 5.2 Average Throughput ... 44

Univ
ers

ity
 of

 M
ala

ya

 xi

LIST OF SYMBOLS AND ABBREVIATIONS

CMIP : Common Management Information Protocol

NIB : Network Information Base

NMP : Network Management Protocol

QOS : quality of service

SDN : Software Defined Network

VOIP : Voice Over IP

Univ
ers

ity
 of

 M
ala

ya

 1

CHAPTER 1: INTRODUCTION

According to the Open Network Foundation (Sezer et al., 2013), Software Defined

Networking (SDN) is an architecture based on the decoupling of the Network control and

forwarding functions which makes the network control directly programmable,

centralized and the underlying infrastructure abstracted for applications and the network

services. The application layer which comprises of the business logic communicates with

the controller with the northbound application programming interface, while the

communication of component in the separate planes, controller and forwarding of the data

plane uses the Southbound API. The responsibility of control in the data plane devices

such as switch and router, by the control plane is enabled by the OpenFlow® protocol,

which is a standard communication interface based on the controls and forwarding planes

of the SDN architecture (Bakshi, 2013). This forms the basic building blocks for SDN

solutions as shown in Figure 1.1 Basic SDN Architecture.

The controller allows to manipulate flow entries of different devices, but the

OpenFlow® helps updates these flows.

OpenFlow® enabled switches to have one or several flow tables in a pipeline, and a

group table either for packet lookup and also fundamental for packet forwarding; it also

consists of a channel (TCP, TLS) to an external controller (Lantz, Heller, & McKeown,

2010). The TCP or TLC connection can be established over the Ethernet or the Internet

by the legacy routing protocols.
Univ

ers
ity

 of
 M

ala
ya

 2

A switch has to only support a flow table to be compliant with the standard, but

multiple tables give scalability when you have to match a large flow or match a large set

of data in a group table. The group table group multiple interfaces into a single group,

and when traffic is sent to the group, it is forwarded out of all interfaces in that group. So,

if a broadcast or multicast application is to be implemented, a group table will be used.

The OpenFlow® protocol contains a set of API that the control plane controller leverages

to control the elements of the flow entries (DELETE, ADD and UPDATE) in the flow

table of the data plane devices in a reactive or proactive state. The flow table’s entities or

entries consist of MATCH fields, counters and set of instructions that are applied to

matching packets. These packet matching is first initiated on the first flow table usually

Protocol

Implementation

N
et

w
or

k
C

on
tro

l

N
et

w
or

k
C

on
tro

l

N
et

w
or

k
C

on
tro

l

N
et

w
or

k
C

on
tro

l

Firewall, Policies

Northbound API

APPLICATION

CONTROL

OpenFlow® Southbound API

FOWARDING
PLANE

Figure 0.1 Basic SDN Architecture

Univ
ers

ity
 of

 M
ala

ya

 3

Table0 and may continue to additional flow tables in the pipeline using the GOTO Tables.

Matching is matched in a priority order of higher priority to lower priority. When traffic

arrives, it is first matched in against entries in Table 0. Matching flow entry in the flow

table executes the instruction associated with the specific flow entry executed i.e. drop,

Go to table X, send out of Port X, etc. If for a particular flow, there is no entry found to

match such flow in the flow table, the outcome of such flow depends on the controller for

processing

The independent evolution of both the control and data plane is enabled by this

decoupling. This leads to several significant benefits.

 SDN

With the evolution of cloud computing, several eco systems and business paradigm

are changing and demand for network centric applications, business logics are

transcending to a more complex paradigm. To meet these trend, there is a need for a

dynamic network logic and open system to enable the dynamic nature of business and

network requirement. SDN is a promising architecture where the decoupling of the data

plane and the control plane makes the network functions readily programmable, and is a

potential advantage for the need of recent network trends. Due to real time performance,

cost-effective, dynamic, manageable, adaptable state and high availability requirement,

telecom networks are adopting the concept of Software Defined Networking (SDN)

which aims to transform the way networks function.

1.2 Problem Statement

According to the work done by (Murat Karakus, 2017), regardless of the definition of

scalability or its knowledge by system users, it is an important consideration for SDN

architecture. Scalability challenges and mitigation proposed for a network may introduce

tradeoffs that may be introduce mitigating factors for other useful properties in the

Univ
ers

ity
 of

 M
ala

ya

 4

network. A useful example of this is; in a proactive rule setup in SDN switches reduces

the load of the controller, with an outcome of reduced processing time and flow initiation

overhead in the controller. However, this constrain the flexibility coming from reactive

flow proactive flow setup, reduces decision-making dynamicity of the controller and

management of the network.

(Murat Karakus, 2017), also proposed that controller distribution is one way to

overcome computational load on controller but it brings consistency and synchronization

problems as well.

Despite the benefits of SDN, there is a vital and critical concern about the scalability

as the network devices and application interaction grows (increase in the number of data

plane devices i.e. router, switches, etc.), flows and bandwidth (Yeganeh, Tootoonchian,

& Ganjali, 2013) will lead the controller to become a bottleneck of itself or fail to handle

incoming request while providing consistent service level guarantee. These challenges

although not peculiar with SDN but they arises from the decoupling and independent

evolution of the planes. Because of this decoupling, the flow setup process could create

potential overheads which could limit scalability.

When packet arrives at the ingress switch and it does not match any flow table entry,

the switch forwards the packet to the controller with flow request on how to treat that

packet. The controller forwards the packet to the destination switch and pushed the new

flow entries to the switches which then update the entries to the flow table in the network.

Subsequent flows are forwarded by the updated flow table rule.

As the flow and network request increases, these flow request and update process can

produce overheads which can subsequently lead to limited scalability in the controller as

shown in Figure 0.2.

Univ
ers

ity
 of

 M
ala

ya

 5

Figure 0.2 Packet forwarding in SDN

Figure 0.2 shows a high-level flow of packet in SDN network, for this illustrative

diagram, the details of each component are not included for clarity, as it’s intended as a

high level overview. In the illustration, when incoming packets arrive at the data plane, it

checks the flow table for a match for the packet, it first starts in table 0, if the flow needs

to continue to another table, GOTO statement routes the flow to the table specified in the

instructions. If there is not matching flow in the flow table, the packet is pushed to the

controller. The controller processes the packets and route the flow to the required egress

port and update the data plane flow table with the entry of this packet.

1.3 Objectives

The main aim of this thesis is to critically explore the root causes of limited scalability

in SDN and propose a solution. To achieve this, the following objectives are presented.

1. To design an architectural framework for SDN data plane that implements

proactive flow.

2. The framework will implement a proactive trigger for packet forwarding to the

controller if the packet reaches specified threshold

Univ
ers

ity
 of

 M
ala

ya

 6

3. To evaluate the developed module by testing it on a simulated SDN network and

compare with a Reactive flow of the same simulation to mitigate scalability issues

in SDN.

This thesis explores the root causes of limited scalability in SDN and propose a

solution for the scalability challenge.

Representational state transfer (REST) API is used to proactively program the flow

table of OpenFlow enabled switches. REST puts together sets of controls applied to

designing set of flows that can be used to program the data plane. The evaluation will be

carried out on a testbed composing of OpenVSwitch run on Docker container,

OpenDayLight controller run on an Ubuntu Server, a virtual network simulator and a

modify ‘cbench’, a bash script for network evaluation to suit the purpose of testing for

scalability.

1.4 Methodology

The approach is to first get a detailed clarification of the problem by reviewing relevant

literature to identify understand the relevant research aspect of Scalability challenges in

SDN and studied methods that has been previously used to solve this problems. With

these findings, a design of the framework which uses threshold trigger in a proactive flow

SDN; only when a particular flow satisfies the conditions for a trigger will a controller be

involved with the flow control of the SDN network herby reducing the flow setup

overhead which is identified one of the basic causes of the Scalability challenge in SDN.

We tests this framework by implementing it with an Open source controller Open

Daylight (ODL) which allows for the implementation of Northbound API programmed

with JAVA programming language and REST API.

Univ
ers

ity
 of

 M
ala

ya

 7

1.5 Mitigating the Scalability Challenges

By reconnoitering proactively programming flows to the data plane flow setup and

request rate that can cause an overhead to the control plane can be addressed and also

increasing control plan processing capacity can be a good balance for fulfilling the SDN

architectural goal. A comparison of the implementation with ODL (Medved, Varga,

Tkacik, & Gray, 2014) and HP VAN SDN (Dixon et al., 2014) controllers in reactive

control state. The key significance of our experiment is that with the proactive flow

programming implementation leveraging high control plane processing, throughput at

high data path devices is still achieved and there is an improved scalability at scale. Flow

overhead is limited by the proactive flow. The design and experiments show an extensive

insight in throughput, scalability, latency in the load based SDN implementation setup.

1.6 Summary and Layout of this thesis

In this chapter a high level concept of Software Defined Networking (SDN), the

eminence of implementing it in the present Information Technology (IT) networking

environment is discussed, as well as the challenges in the deployment of SDN.

Additionally we highlight the aim of using the proactive flow on data path and improve

I/O performance to enable scalability in the deployment of the SDN.

In Chapter 2 a background study is done to understand the relationship between the

complexity of the computer network and the elements that cause the overhead in the

network because these overheads are a vital cause of the scalability challenge in the SDN.

In this chapter, the goal of using proactive flow in the SDN setup to mitigate the

scalability challenge is emphasized, and finally a brief discussion on how the tools

required to achieve SDN flow programming. In Chapter 3 a review in the Evolution of

the legacy network is explained; and the various work done to mitigate the scalability

challenge in SDN. In chapter 4 is the explanation or architecture for the proposed system,

Univ
ers

ity
 of

 M
ala

ya

 8

and the various critical aspect of the architecture. In chapter 5, an evaluation of the system

and the results to determine if the proposed objectives were achievable by this work done.

And a conclusion by detailing contribution and future work to be done to improve this

work.

Univ
ers

ity
 of

 M
ala

ya

 9

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The concept of computing has evolved in the past decade. The continuous replacement

of dedicated servers with virtualized cloud data centers with lower cost and high

flexibility. This is built on middleware and virtualization technologies. The manual

performance of management and usage of the network elements is usually slower and an

outage in the network can lead to a significant loss, with the less predictability of network

change.

An approach to solve this evolving paradigm is the decoupling of the network from

computing volatility into one flat static communication service.

However from the underlying network, traffic from each tenants need to be segregated

for the need of security and performance. This imposed requirement network elements

like deep packet inspection, and QOS and Load balancing which are on-demand need to

couple to computing functions and this cannot be fully achieved with the flat static

communication configuration. The need to map this static network to a dynamic

configuration has led to the innovation of SDN, which uses software network switches

(e.g. Open vSwitch) to rout packets from the different tunnels over the network

established by separate virtual machines. SDN automates network elements and

configurations for a unified network-wide communication. The connectivity

requirements of the network are communicated to the network controller which used

API’s such as OpenFlow® to implement the required in the virtual switches (Tourrilhes,

Sharma, Banerjee, & Pettit, 2014).

According to a survey made by (Murat Karakus, 2017), there is an inherent scalability

issue as a result of the delay in new flow rule setup processing in the control plane, and

Univ
ers

ity
 of

 M
ala

ya

 10

several modes of flow setup some of which are proactive mode and reactive mode. These

two are prominent modes to setup a flow in the flow table of SDN.

In proactive mode, latency is not introduced in the flow rule setup from the controller’s

point of view, however, in the reactive mode, the controller response time is crucial as

some latency is introduced.

OpenFlow which is a flow-based programing standard for Ethernet switches was

proposed from the success of Ethane and SANE. This standard defines that an OpenFlow

enabled Ethernet Switch will forward traffic according to the rules defined in the flow

table of such switches; these rules are pushed to the switches by the central controller.

The flow tables contain rules which consists of actions with which a packet will be

processed based if matched, and communication with the central controller is by a secure

OpenFlow Channel.

OpenFlow provides opportunities for researches to test and develop new applications

for the control plane and enables researchers to learn more about traffic classifications.

The OpenFlow specification defines that for every flow that arrives at the data OpenFlow

enabled switch, the data is first forwarded to the central controller and the controller sends

an update to the flow table on the action with which the packet is to be processed. In the

scenario of a large network, there is a large flow request and as well a large flow overhead.

This is the primary cause of a bottle neck to the control plane. This work which is based

on the OpenFlow standard defines that for each flow that arrives at the data path, they are

processed by the proactive flow defined in the switch memory. Our concept limits the

controller interaction at flow setup. The controller explicitly provisions the network

needs. The issue with this centralized management system is that as the underlying

network flow requirement increases, there will be need for the controller to scale and in

Univ
ers

ity
 of

 M
ala

ya

 11

most cases, this is not so because the controller is not able to meet the flow request of the

underlying network device. A solution to this concern is to improve on adequate flow

management. VMware and HP provisioned a solution where the controller manages the

elephant flows in the underlying network. Another solution to this is to eliminate the

network learning and discovery and the core switches functions as the forwarding devices,

and tunnel configurations are programmed through OpenFlow®. This division of

functions between the control and forwarding path is evolving. On the data-path, complex

packets can be treated while the decision policies are handled by the controller functions.

This idea relies on the delegation of some of the control functions to the data plane so as

to alleviate the load on the controller(s), thereby reducing controller switch

communication frequency.

2.2 4D Architecture

The management and control planes management complexity is the root reason for an

uncontrollable and fragile network as argued by the authors (Tourrilhes et al., 2014). The

packet forwarding functions coupled with the control plane logics distributed among the

network elements limits the enforcement of network-wide objectives; however

management goals are achieved by ad hoc ways of manual scripting. The lack of network-

wide coordination between network elements makes it error prone whenever there are

some changes in the network. Control of all functions is realized through inherent tuning

i.e. the correct and successful setup of the data path is a factor implicitly important for the

management control to function correctly. This brings about dependency of the control

plane on the data plane. But from the concept of SDN, they are to evolve independently.

A complete repartitioning of the functionalities of computer networks which is called

4D is a proposed solution in an attempt to address these problems (Greenberg et al., 2005;

Yan et al., 2007). It is a four-plane architecture comprising of Decision, Dissemination,

Univ
ers

ity
 of

 M
ala

ya

 12

Discovery and Data planes. The distributed protocols handling packet forwarding is

separated from (Schehlmann, Abt, & Baier, 2014) the decision logic of the network.

Based on the network-wide view of the underlying data plane, the decision plane specifies

the network-wide objectives which are translated by some algorithms into control

configurations for the data plane devices. The data plane handles packet forwarding,

filtering queuing and address translation; these functionalities are controlled by the

decision plane to fulfill the networks objectives. Between the decision and data plane is

the communication mechanism handled by the dissemination plane. The data planes

changes with the change of the plane configuration policies, instead dissemination plane

which requires no pre-configuration and needs reliability should not change with changes

in the data plane. The discovery of the physical network components and the creation of

logical identifiers to present them is the responsibility of the discovery plane. It is also

the responsibility of the discovery plane to collect measurement data of the network-wide

view for the decision plane to achieve the networks objectives. Exchange of secret keys

at the boot strap stage phase is required for the security of the discovery plane. 4D has

no real prototype built however it brings researchers attention to very important

challenges in the present network management and control plane. And creates a trend

aimed at the clean slate design of network architecture.

The work done in this thesis focuses on the data plane from the proposed 4D

architecture. 4D only enumerates the data handing functionalities; but in our work, a dive

into how to realize these functionalities without the complete control of the decision plane

is made. The total control of flows in the data plane by the control plane would likely lead

to a bottleneck in the decision plane as the network scales; our work is based on how to

allocate certain low level flow to the data plane and let the decision plane handle only

elephant and complex decision flows requiring special treatments. We are confident that

Univ
ers

ity
 of

 M
ala

ya

 13

our work will contribute significantly in solving the scalability concern in this research

area.

2.3 NOX and BEACON

NOX and BEACON is a follow up on the success of SANE and Ethane (Erickson,

2013; Gude et al., 2008). Previous controller architecture has a complex control plane in

which all the control functions are hard coded, this lives the users with a difficult task of

replacing or writing control components for the desired goal. Modular and flexible control

plane architecture will make it easier for users to achieve the network management goals.

NOX is designed to provide a modular and flexible design framework for users to achieve

complicated control function using OpenFlow® enabled switches (Gude et al., 2008).

The OpenFlow® design, where the controller installs every flow in the data path; if the

controller does not have enough control plane capacity to handle all these request, it will

become a bottle neck of itself, and unfortunately NOX can only utilize a single CPU core.

NOX is designed to reduce overhead by not relying on the I/O operations but it is not

multi-threaded to leverage multi-core processing. NOX handles each request individually

so overhead is introduced by such operation. BEACON is a multi-threaded programmable

OpenFlow® controller which allows users to write simple threaded applications and can

be run together with NOX in parallel to enable Scale in multi-core processors (Erickson,

2013). However in practice, not all workers tread run at the same rate and this could lead

to a bias even under a uniform workload. They use static batching strategy to improve the

throughput of individual workers tread and this can lead to large request handling latency

under heavy load. A good way to improve the performance of NOX and BACON is to

commit the flow handling to the OpenFlow® enabled data plane devices and only control

policies are handled by the controllers which would reduce the flow overhead limited

workers tread. So we propose that our implementation of proactive flow for flow setup of

Univ
ers

ity
 of

 M
ala

ya

 14

data plane and enhancing the scalability of the control plane capacity which is a major

contribution to the implementation concept for enhancing scalability in SDN.

2.4 McNettle

The work by Andreas V et.al is a motivation from the argument that the simplicity of

the logically centralized controller comes at a cost of control plane scalability and changes

in network state is a problem to distributed controllers (Voellmy & Wang, 2012).

McNettle is extended by writing event handlers and background programs in high-level

programming language with a shared state and memory transaction. The control

processing events throughput scales with the number of CPU cores. The event handler

includes the packet miss function which updates switch local and network state variables.

Messages from each switch are handled in sequence and from different switches are

executed concurrently, this provision a synchronized access to the network state. It fully

parallelizes waiting and dispatching of threads on I/O devices stabilizing the multi-core

load balancing algorithm and prevent excessive cache-trashing due to work migration.

McNettle avoids contention on sockets by processing each message on a single CPU core

thereby reducing inter-core synchronization except required by user-specified controller

logic.

This framework was tested in Haskel and leveraged the multi-core facility of the

Glasgow Haskel Compiler and runtime system; it was shown to reduce system calls and

optimizes cache usage and runtime overhead (Terei & Chakravarty, 2009). It is also

shown that it schedules event handlers, optimizes message parsing, allocates memory and

serialization. The implementation also shows that McNettle can achieve a throughput of

over 14 million flows per second (Voellmy & Wang, 2012). From the evaluation,

McNettle scaled better that NOX a distributed controller for more than 30 CPU cores and

the previous stopped scaling at 20 CPU cores.

Univ
ers

ity
 of

 M
ala

ya

 15

2.5 DevFlow

The authors argued that the design implementation of OpenFlow® comes at the cost

of excessive overheads; and that this cannot meet the need of today’s high-performance

network. The involvement of the switch implementation where the switch control plane

is involved so often and the frequency of the distributed system involving the control

plane; both for flow setup and statistic gathering. Devflow is a modification of the

OpenFlow® model with the objectives of gently breaking the coupling of the control logic

and global visibility (Curtis et al., 2011). In this model, switch-internal communication

between the control and data plane are reduced and potentially reduce the need for a

controller for most flow setup. Rule cloning, statistics gathering, approximate counters,

and the bin packing algorithm are used to achieve these objectives. For the Rule cloning,

the action properties of the installed wildcard configuration is augmented with the flag

CLONE, and the data plane switches follows the default wildcard behavior when flag is

clear otherwise to create a new rule, it locally clones the wildcard rule with all field are

replaced with the with values matching the micro flow. This rule are installed in the

lookup table and consequently reduces the switch TCAM usage and also the cost of

power. DevFlow multipath support is relatively bring into line to the equal-cost multipath

(ECMP) routing, however, in ECMP the flows are split evenly across selected paths and

it is a none ideal case because some path may consume relatively more bandwidth

compared to the others (Chiesa, Kindler, & Schapira, 2017). Devflow allows clonable

wildcard rules to randomly select flow path according to some probability distribution.

Statistics gathering uses sampling where each packet headers is sent to the controller in

1/1000 probability and Threshold Triggers which sets a threshold per flow to be reached

before flow are sent to the controller, thereby living only fine-grained flow at the data

path and elephant flows to be processed by the controller. When flows match these

wildcard rules, an approximate counter using streaming algorithm is used to track these

Univ
ers

ity
 of

 M
ala

ya

 16

flows thereby enabling a fine-grained statistic collection. The evaluation shows that

DevFlow balanced data center traffic without as many overheads. In a reactive manner,

all flows are installed only if identified as elephant flows. In multiple simulations

performed on a large data network simulator show that the pull-based setup with

minimum update interval maximizes data throughput in the network (Curtis et al., 2011).

In this case, the performance comes at a price, significantly large flow table in comparison

with the other schemes.

 The Threshold Triggers is most optimal, as the data throughput increases, less traffic

is required between the switch and the controller thus flow table size is minimal.

2.6 DIFANE

DIFANE proposed a suitable solution for the flow based network. This solution keeps

all traffic in the data plane by selectively redirecting packets through intermediate

switches or Authority Switches, that store the necessary rules, and relegates the controller

to the simple task of partitioning these rules over the switches (Tootoonchian, Gorbunov,

Ganjali, Casado, & Sherwood, 2012). DIFANE partitions the rule space and assigns each

partition to one or more Authority switches that handle packets and sends the rules to

ingress switches. In this model, when a packet arrives at the ingress switches with no

matching flow, it is forwarded to the Authority switch which pushes the relevant rule to

the ingress switch; the ingress switches caches this rule locally. Subsequent rules can be

encapsulated and forwarded to the egress switch by packet redirection. DIFANE

controller uses partition algorithm to subdivide the space of all rules. The controller pre-

computes the low-level rules based on the high-level policies by substituting high-level

names with network addresses. To avoid redirecting all flow traffic to the Authority

switch, the authority switches caches all rules in the ingress switch. DIFANE achieves a

small delay for first packets of a flow compared and a higher throughput to NOX

Univ
ers

ity
 of

 M
ala

ya

 17

(Tootoonchian & Ganjali, 2010). DIFANE scales linearly with the number of authority

switches; the Authors propose the use of authority switches to keep packets in the data

plane.

In this reviewed literature, the solution proposed is to divide the workload of the

network over several instances of a controller. However, difficulties come with optimum

scalability solution for SDN networks. From the observation in this literature, flows are

reactive as against our proposed framework. These problems can be sufficiently solved

by combining the reduction of control overhead, distributing multiple controllers among

a network and proactively programming flows.

2.7 HyperFlow

Hyper-Flow extends NOX into a distributed control plane by Synchronizing network-

wide state among distributed controllers. HyperFlow localizes the processing of a single

flow to an individual controller machine, and minimizes response time forwarding plane

requests and subsequently improve throughput. To complement the solutions that are

aimed at leveraging the performance of the control plane physical controller machine,

several types of research have been done to enable a cluster of the control plane controller

working together as a single logical controller for improved scalability. HyperFlow is

implemented as an application for NOX by making minimum changes to NOX, and

minimum modification to NOX application (Tootoonchian & Ganjali, 2010). By

distributed file system, network state is synchronized among these distributed controllers.

The processing of flow request is localized to a single controller to minimize the control

response time from the data plane request; this scale the system throughput. The first

limitation according to the Authors was found in the (WheeIFS) performance. All

network events and status information need to be synchronized among the controllers and

this requires fast distributed storage systems. This leads to the fact that the global view of

Univ
ers

ity
 of

 M
ala

ya

 18

the network not converging in a timely manner. HyperFlow is resilience to network

partitioning and components failures because of the distributed instances running in

parallel, however, there is no guarantee against network state inconsistency (van Asten,

van Adrichem, & Kuipers, 2014). This is a common challenge with the distributed

controllers. In Hyper flow, traffic is dropped when it exceeds the controller processing

capacity, even if the controller load is reduced by assigning lesser numbers of the switch

to it, a single switch can generate a large traffic which will subsequently be dropped by

the controller.

2.8 ONIX

The network state inconsistency of the distributed controller is a common challenge

with. By default, ONIX is proposed to provides a framework for building distributed

coordination in the network control plane (Koponen et al., 2010). The Network

Information Base (NIB), is provisioned to provide access to different network states and

synchronization framework of different network availability requirements. The NIB uses

two data stores SQL-database for slow changing topology information and a Dynamic

Hash table for link utilization which has a rapid trip time. This application of these two

data storages mitigates the challenges faced by Hyperflow Controllers. ONIX has switch

availability and status of link information which so the path computation is not limited to

the information provided by the OpenFlow protocol. The computed paths are installed in

the switch flow table by the ONIX distributed. Combining the HyperFlow and ONIX, a

single controller can be developed to become fully distributed to attain a better scalability

and availability in the network. The advantage of the ONIX is the partitioning of the

payload over multiple instances thus if one ONIX instance has a limiting traffic

throughput due to the high payload, switches can be reassigned to other instances of

ONIX.

Univ
ers

ity
 of

 M
ala

ya

 19

2.9 SANE

Inspired by the 4D architecture, SANE leverages a clean-slate approach with

separation of routing control plane from data plane or forwarding plane (Casado et al.,

2006). Just like 4D where the routing and the security is centralized, this approach is also

leveraged by SANE. Spanning tree at the Control plane carries traffic between forwarding

devices and the central controller similar to the role of the dissemination plane proposed

in 4D. However, SANE does not allow the communication between end hosts. SANE

argues that its way is better than the other one, because it requires no interaction between

the routing and filter/firewall control. We think that although such security policies

enforcement is very strong, it on the other hand limits the functionalities that with

filters/firewalls a network can realize. For example, with filters/firewalls, not only

malicious traffic can be blocked, but legitimate traffic can be shaped or modified, to

achieve different goals. Since the central controller is really critical in SANE, whether it

can scale up its throughput is very important. Again we argue that, ideas developed in our

work in the proceeding chapter would help in scaling the network.

2.10 Ethane

Ethane is a follow-up of the SANE except that Ethane takes a less complex approach

than SANE (Casado et al., 2009). Ethane is similar to SANE in Incremental deplorability

except that Ethane can be incrementally deployed in an Enterprise network unlike SANE

that require a complete replacement of the enterprise network. In Ethane, the central

controller is used to compute for the enforcement of security policy for flows in the

network (Lara, Kolasani, & Ramamurthy, 2014). The central Controller contains the

global network policy for all packets processing. The controller has a global view of the

network and the security policies determine the applied filter to each flow presented by

each packet. The controller can be replicated to enhance redundancy and scalability. The

Switches are simple and Consisting of a simple flow table and a secure channel to the

Univ
ers

ity
 of

 M
ala

ya

 20

Controller. When a packet arrives that is not in the flow table, the Switch forwards that

packet to the Controller and it is forwarded according to the Controller’s directive. Not

every switch in an Ethane network needs to be an Ethane Switch. Ethane design allows

Switches to be added gradually, and the network becomes more manageable with each

added Switch. Ethane showed that there are different ways of replication for the system

robustness improvement. Programmed by the policy composition, Language Pol-Eth was

proposed to program security policies based on identity binding. Ethane address source

address spoof problem by binding entities to their location for security enforcement.

The deployment of the real system at the Stanford’s Computer Science department for

real experience in designing and evaluation is an important contribution of Ethane.

Different ethane switches were built and Ethane is used to achieve the security policies

for the campus network. They claim from their evaluation of ethane that one central

controller can handle a network with as large as 22,000 hosts. This evaluation was done

with the work-load of the campus.

Adding new features to the control plane might not be an easy task. The interaction

between the controller's elements are not modularized but hard-wired, this makes the

management a non-trivial task. The authors recognized this problem and thus

reintroduced the NOX which we will discuss in a later section (Gude et al., 2008). The

central controller cannot scale up in Ethane very well as required.

Univ
ers

ity
 of

 M
ala

ya

 21

Table 0.1: The various work done to solve scalability challenges SDN, their objectives, findings and challenges

Publication SDN
Implementation

Objectives Methodology Findings Challenges Flow

(Tourrilhes et
al., 2014)

4DArchitecture

Centralization of
network wide decision
making to ease
management
complexity

Partitioning network
functionalities

Optimal network
control for shortest-
path routing.

Only handing
functionalities in
the controllers

O

(Erickson,
2013; Gude et
al., 2008)

NOX and
BEACON

Modular and flexible
design framework using
OpenFlow enabled
switches.

BEACON runs
together with NOX in
parallel to enable Scale
in multi-core
processors.
Static batching.

Throughput
Scalability is
achieved by
parallelism.

Bias Large
request handling
latency under
heavy load

O

(Voellmy &
Wang, 2012)

McNettle Writing event handlers.
Shared state and
Memory Transaction

-Event handler to
include the packet miss.

-Parallelizes waiting
and dispatching of
threads on I/O devices.
 -Avoids contention on
sockets.

Maximum
throughput.

Reduce system
calls.

McNettle scaled
better that NOX.

Large CPU Core
requirements

O

(Curtis et al.,
2011)

DevFlow Breaking the coupling
of the control logic and
global visibility.

switch implementation
system involving the
switch control plane for

Rule cloning, statistics
gathering, approximate
counters, and the bin
packing algorithm

Cloneable wildcard
rules.

Helps operators
target only the flows
that matter for their
management
problem.

Significantly
large flow table in
comparison with
the other
schemes.

I

 Univ
ers

ity
 of

 M
ala

ya

 22

Publication SDN
Implementation

Objectives Methodology Findings Challenges Flow

both flow setup and
statistic gathering
comes

Statistics gathering

Threshold

Reducing control-
plane for most flow
setups.

Scalable

management
architectures.

(Yu, Rexford,
Freedman, &
Wang, 2010)

DIFANE Suitable solution for the
flow-based network

Traffic monitor.
Authority Switches.

Achieves small
delay for first
packets of a flow
compared and a
higher throughput to
NOX.

Scales linearly

with the number of
authority switches.

Much Authority
Switch needed

O

(Tootoonchia
n & Ganjali,
2010)

Hiperflow Distributed event-based
control plane for
OpenFlow.

Minor modifications to
previous control
applications.
Synchronizing network
wide state among
distributed controller.
Event Propagation.

Improved flow
handling rate.

Handles fluctuation
in network
synchronization.

Enables network
operators deploy any

Network state
inconsistency

O

Univ
ers

ity
 of

 M
ala

ya

 23

Publication SDN
Implementation

Objectives Methodology Findings Challenges Flow

number of
controllers to tune
the performance.

Resilient to network
component failures

(Koponen et
al., 2010)

ONIX

Framework for building
distributed coordination
in the network control
plane.

Network Information
Base (NIB).

Synchronization
framework.

Fully distributed
to attain.

Scalability.

Availability.

Scalability and
Inconsistency

O

(Casado et al.,
2006)

Sane Actions of both
routing and access
control in a centralized
plane for right security
policies.

Separation of plane.

4D approach of
centralized routing and
the security.

Deployable in
current networks.

Scale to networks
of tens of thousands
of nodes.

Central Controller
lacks scalability

O

Univ
ers

ity
 of

 M
ala

ya

 24

Publication SDN
Implementation

Objectives Methodology Findings Challenges Flow

(Casado et al.,
2009)

Ethane Define a single fine-
grained policy for
enterprise network to
operate.

Ethernet switch.

Ethane Extends SANE

Security, flow
management;

Incremental
deplorability;

Significant deployment
experience.

Compactable design
with existing
network

Manageability.

Straightforward to
add new features.

Ease of innovation
and evolution.

Management
Complexity

O

 O ---- No proactive flow method used.
 I ---- Proactive flow method used.

Univ
ers

ity
 of

 M
ala

ya

 25

2.11 Summary

In this chapter, a discussed of the evolution of Network system was done and a review of

some researches done in the process of attaining a reliable and efficient network that will

leverage scalability as an important advantage. This chapter is concluded by summarizing

the uniqueness of our proposed techniques as a contribution to this evolution progress.

We discovered that much work has not been done to using proactive flow in deploying

SDN for enterprises.

The review show that the current controllers will depredate at scale and will not able to

meet increasing demands in communication for future network traffic as new flow are

introduced. Despite the various optimization efforts, a centralized control logic remains

subject to the single-point of failure issue. Needless to mention the harmful consequences

that may occur during a controller failure in a dense network. Additionally, as the network

expands both in size and space, the centralized model will inevitably encounter several

limitations.

Proactive flow improves scalability, which perfectly fits the demands of fine-grained

functional of controllers. In proactive flow, we install flow rules on the data plane, so

some responsibility of flow control is pushed to the data plane and only for flow that reach

certain threshold is pushed to the controller for processing. With this, the shared

responsibility of the control plan and data plane will allow for scalability in SDN as the

network increase. This is a motivation for this thesis.
Univ

ers
ity

 of
 M

ala
ya

 26

CHAPTER 3: BACKGROUND OF CONCEPT OF NETWORK COMPLEXITY

AND PROACTIVE FLOW

3.1 Introduction

There are six major components of an SDN network.

The first plane is the management plane. The management plane consists of network

applications which are responsible for the management of the control logic in the SDN.

In place of a command line interface, SDN enabled networks use programmable

interfaces for flexibility and ease to the task of implementing new applications and

services, such as routing, load balancing, policy enforcement, or a custom application

from a service provider. It also allows orchestration and automation of the network via

existing APIs.

Second is the control plane that is the most intelligent and important layer of an SDN

architecture. It contains one or various controllers that forward the different types of rules

and policies to the infrastructure layer through the southbound interface.

Third, the data plane, also known as the infrastructure layer, represents the forwarding

devices on the network (routers, switches, load balancers, etc.). It uses the southbound

APIs to interact with the control plane by receiving the forwarding rules and policies to

apply them to the corresponding devices.

Fourth, the northbound interfaces that permit communication between the control layer

and the management layer are mainly a set of open source application programming

interfaces (APIs).

Univ
ers

ity
 of

 M
ala

ya

 27

Fifth, the east-west interfaces, which are not yet standardized, allow communication

between the multiple controllers. They use a system of notification and messaging or a

distributed routing protocol like BGP and OSPF.

Sixth, the southbound interfaces allow interaction between the control plane and the

data plane, which can be defined summarily as protocols that permit the controller to push

policies to the forwarding plane.

The OpenFlow protocol is the most widely accepted and implemented southbound API

for SDN-enabled networks.

OpenFlow is normalized by the Open Networking Foundation (ONF) (M. Smith et. al,

2014), backed by the leaders of IT industry like Facebook, Cisco, Google, HP, and others.

For this reason, understanding the OpenFlow architecture is important to grasp the notion

of SDN, which we are going to present in the next subsection. Before that, we should

realize that OpenFlow is just an instantiation of SDN, as there are many existing and

under development southbound APIs, for instance, CISCO OpFlex (United States of

America Patent No. US10033622B2, 2015), which distributes some of the complexity of

managing the network to the infrastructure layer to improve the scalability.

As previously explained, the intent of this thesis is to implement a scalable mechanism to

reduce controller overhead in a software defined network. In this perspective, a possible

improvement in the current OpenFlow (OF) communication model can be achieved by

more precisely proactively programming flow to meet predefined rule. This mechanism

enables switching nodes to instantly redirect traffic in advent of node or link overload

without having to re-compute a backup path. Implementing proactive flow in OF-based

networks requires the controller to proactively forward backup rules on each switching

Univ
ers

ity
 of

 M
ala

ya

 28

node. Thus, this mechanism can potentially introduce an additional load on the controller

and as such, requires a careful deployment.

3.2 Overload Caused by Complexity of Computer Network

Computer networks mainly deployed simple data communication channels among

connected computers. The question of data flow was the main decision of the computer

network. However, this has changed with the evolution of the architecture and

requirements of computer networks. As a result of this trend, computer network requires

complex operations like traffic engineering, security policies and well grained control to

address each block of control decision with fair isolation from other component; this

brings about the concepts of virtualization which is an underlying technology for software

defined networks.

In an enterprise network, the routing decision responsibility is handled using the OSPF

protocol component, while global routing decision is the responsibility of BGP protocol

component. In enterprise network packet filter placement and configuration component

are responsibility of blocking, dropping are related traffic engineering policies, and the

packet redirection serves for load balance across multiple servers, suspicious traffic

forwarding to the Intrusion Detection System; the QOS(quality of service) routing

enables capability of voice over IP (VOIP) traffic with low delay and loss rate; the virtual

private intra-networks is handled by the tunneling services, and so on. With this

complexity of managing, a network which requires scale will introduce more and more

complexity for handling critical functions. This trend leads to an accurate prediction that

network will continue to grow and become more complex.

Although SDN architectural approach and control components helps to decompose

this complexity in operation and management of networks into more manageable pieces,

it is also critical to note a fundamental behavior of network control components that at

Univ
ers

ity
 of

 M
ala

ya

 29

the same time modifies the behavior of the underlying shared physical network; i.e.

modular network control components are in reality not isolated from or independent of

one another. The decision of one component may depend on the decision of another

component (e.g. best-effort routing may determine the residual bandwidth available for

voice over IP traffic). Thus, components need to communicate their decisions with each

other, and their execution schedule must be managed. The network behavior (e.g. network

load distribution) caused by one component may inadvertently change the input

conditions for another control component. Thus, unintended feedback and implicit

dependency is possible and must be managed. These continuous interaction and flow of

information in the network can be a major challenge to the network and concurrent actions

of interdependent network control components may lead to an inconsistent network state.

Thus, concurrency must be managed as well as finding a modular way to manage the

components interactions. The control decision a component makes may fail to be

implemented due to network hardware outages, and transient effects may be observed

during a network state transition. Thus, the implementation of control decisions must

ensure the correct transition of network state and component interaction. In summary, the

network state dependency is critical in creating network interaction problems that must

be solved to ensure SDN scalability.

There is little support for solving this network problem. The widely used protocols

Network Management Protocol (SNMP) and Common Management Information

Protocol (CMIP) are analogous to low level device drivers; they provide the means for

network control components to interact with the network, but they are not meant to solve

the higher-level problems. These tools serve to assist a human operator to monitor the

network and to carry out simple network configuration changes. For example, they help

a human operator recognize and analyze changes in the network load, and they enable the

human operator to analyze the effects of changing the network topology based on past or

Univ
ers

ity
 of

 M
ala

ya

 30

present network conditions. However, these network management tools do not manage

the interactions among modular network control components at run time. The problems

identified in this thesis are not caused by flaws in individual network control components

but rather by their dynamic interactions. It should be quite clear that it will take a system

that orchestrates the network control components to solve these problems. Such a system

is analogous to a network “operating system”. But unlike a traditional operating system

(e.g. Linux, FreeBSD) that manages applications running on an individual device, a

network “operating system” will orchestrate the network control components that govern

the behavior of a network of devices. However, because of the distributed nature of these

individual network control components, such a network “operating system” is much

harder to design than a traditional operating system. Determined by the speed of light,

there is an in-eliminable delay in the network no matter how fast the network can be built,

and this fundamentally makes it a complex task to collect and synchronize the state and

information distributed among individual components across the entire network. This

delay could cumulate over operational time lead to increased network payload or flow

data.

3.3 The Goal of Using Proactive Flow

The goal of proactively programming flow is to enable a reduction in the interaction

between the network components and thereby reducing the flow request rate; this

reduction of flow and resource consumption can help the network scale with increased

network devises and user interaction. In this section I assume that the network is

controlled by centralized control components, the controller in this is a central system that

provides a layer of indirection between all the centralized control components and the

underlying network of devices. For the proactive flow design, the REST API is used to

push flow to the controller to register in the data plane. REST offers additional

decoupling, so as to allow for extensive scalability of the network. There is no

Univ
ers

ity
 of

 M
ala

ya

 31

conversational state, this allows for a wide range of scalability adding additional switch

nodes behind central controller. REST API is used to program a proactive flow at runtime

which enabled the network to scale with increased load or resource request, as new flows

can be introduced at any point of network runtime.

The support of dynamic loading of routes and flow tables without restarting the whole

system more easily make REST API very flexible to extend and it is very easy to migrate

to different platforms and data path devices.

3.4 Flow

For this work, HTTP protocol is used to make HTTP requests for the various flow

processing actions and calling the respective payload from the controller and how the data

will be formatted as shown in Figure 0.1below.

Figure 0.1: Case diagram for the Proactive Flow with preset rules

 Listeners are used to interact with the controller in order to create a stream on which

these messages or interaction will be sent. Apart from reading the network inventory of

switches and hosts, we will use Models to parse the output of a request to get the topology.

After our flow know how to communicate with the controller and network inventory and

other information from the network topology, OpenFlow standard flow processing

Univ
ers

ity
 of

 M
ala

ya

 32

standards will be used to process the flow with network requirements and also

communicate certain instructions to the devices in the network.

To realize flexible and finer granularity routing in network in which users have the

ability to control the routing decision for each individual or flow in the network, proactive

flow can be leveraged and it comes with the advantage of increased scalability. For

example, different security policies can be realized by controlling whether a flow should

be allowed or not in the network; dynamic traffic engineering can be achieved because

the network operators now have the ability to flexibly route the flow traffic in any

arbitrary way that they consider optimal; network operators can also dynamically route

flows through any arbitrary middle boxes in the network, for monitoring purposes.

This research focuses on how proactive flow can be used so that data path can handle

most flow request at flow setup and from network devices thereby optimizing the

performance of a controller machine from the workload characteristics of OpenFlow at

flow setup and flow processing.

3.5 Summary

In this chapter, the background discussion is on the complexity of computer network

and the interaction between components which can lead to overhead in the control system

and loss of processing or hardware capacity. We will further discuss the need for the

development of proactive flows with the use of representational state transfer REST API

which is neither propriety nor a contribution of this thesis. We will finally conclude this

chapter with the design and implementation of our proposed solution.

Univ
ers

ity
 of

 M
ala

ya

 33

CHAPTER 4: IMPLEMENTATION

4.1 Introduction

A basic feature of OpenFlow is the controller is responsible for establishing every flow

in the network. Whenever a switch receives the first packet of a flow, because there is no

flow entry configured on the switch to match this flow, the first packet will be forwarded

to the controller. The controller runs user defined applications to process a flow request.

As the network grows in requests, it will become a network bottleneck. We investigate

how to flexibly use threshold triggers in a proactive flow to optimize the scalability of a

controller machine under the workload characteristics of OpenFlow. This interaction is

reduced by proactively programming the flow in SDN to limit the controller interaction

and when a packet matches a predefined match, the PacketOut message is sent to the

controller, to process such packet. To realize this flexibility and more granularity in SDN

control, a flow-based threshold-based trigger approach has the advantage, by giving

network operators the flexibility of controlling the flow processing in the network. This

can be explained in a scenario where different flow policies are realized by controlling

whether a DROP or ACCEPT Acton should be applied for a particular flow in the

network.

This concept of dynamicity in traffic engineering where the network operators have

the ability to flexibly route flow traffic in any arbitrary way that they consider optimal

and dynamically route flows through any subjective middleboxes in the network can be

applied in the decision-making process of the network operator in setting up the threshold.

Every network operator has a plan for the network according to specific network

requirement such as expected capacity and required software and client base to use the

network, this understanding will help the operator to adequately select the best practice

for network planning (Di Francesco, Kibilda, Malandrino, Kaminski, & DaSilva, 2017).

Univ
ers

ity
 of

 M
ala

ya

 34

4.2 Design Consideration

The objective using proactive flow at the data plane is to distribute workload among

the SDN planes in is order to maximize the system’s throughput. We observed that how

such distribution is done will directly affect the scalability, and at the same time the

fairness in allocating the capacity of the system. Optimizing the performance of a

controller means more than just hitting the highest aggregate flow request handling

throughput. A controller that does so but unintentionally starves some subset of requests

is useless. More generally, a controller that has arbitrary performance bias against certain

requests is undesirable. A controller that achieves high throughput but has uncontrollable

latency is also undesirable. Optimizing performance requires a balance between fairness,

latency, and throughput. So installing flow rules in the Data plane will enable the fair

distribution of workload.

4.3 Fair Capacity Allocation

The capacity of the controllers must be “fairly” allocated among source switches that

generate requests according to a well-defined fairness policy. Especially when the offered

workload is larger than the capacity of the controller. Fair distribution of workload in the

SDN network. To achieve fairness, the controller performs periodic monitoring of each

ingress port from the data plane switch. Controller does this by polling each switch every

t=10 seconds for port statistics using Open Flow message ofp_port_stats. Controller

sends OpenFlow port status request message ofp_port_stats_request (with port_no =

OFPP_ANY, for all ports of a switch) to all the switches connected to the controller.

Each switch responds by sending ofp_port_stats_reply message. Controller then

computes port utilization for each port using transmitted bytes count tx_bytes using Link

Load Algorithm (Ian F. Akyildiz, 2016);

Univ
ers

ity
 of

 M
ala

ya

 35

 Algorithm 1: Identifying Link Load
Input: Threshold T, time-interval t, port Speed, 100-Mbos Ethernet
Output: List of conjected ports

If a port is utilized up to a given threshold, such ports link is added to a list of links to
be ignored for packet forwarding, and this links are subsequently updated in the flow table
so subsequent flow will not be routed through these links. With this, only controllers that
are ready to process packets will receive packets.

4.4 Interaction

To achieve the desired goal of this design, our proactive flow setup needs to be setup

based on the network requirements, so this is the sole responsibility of the network

operator to make the required decision.

The starting point is an analysis of the intended network traffic. The system network flow

first takes into consideration the intended traffic for the network, and uses the TCP layer

Figure 0.2 Layer 3 IP header for the flow

3 header IP address Figure 0.2 to determine the source and destination of the packet.

So a fine grain flow is created to be installed in the data plane.

Begin:
 LinkLoadIdentification()
 Initialize LinkLoad as Empty
 for <every switch> do
 for <each port> do #Compute Port utilization
 U = (data * 8 bits * 100)* bandwidth * interval 5.

 If U ≥ T then
 Add link to LinkLoadList LL.
 end if
 end for
 end for

Figure 0.1 Algorithm to Identify Link Load

Univ
ers

ity
 of

 M
ala

ya

 36

With this, every packet with source IP that matches specific flow table entry, is

processed with the respective action.

By the RFC 791 standard, the length of an IP datagram including internet header and data

allows up to 65,535 octets datagram length. For this choice of network design as show in

Figure 0.2, the Maximum Transmission Unit (MTU) that can be transmitted by a protocol

at an instance taking the default Ethernet interface excluding the Ethernet frame header

and trailer is 1500 byte. This means that one frame contains 20 byte IP header, 20 byte

TCP header, leaving a 1460 byte of the payload that can be transmitted in one frame MSS

(Maximum Segment Size).

In this case, there is no encapsulation header i.e. IPsec, MPLS headers etc. The flow

table proactively contains rules where by IP headers matching this MTU is forwarded

based on Source and destination IP addresses.

In a likely case where additional encapsulation with MPLS label swapping, IPsec etc.

an additional header will be introduced in the packet as shown in Figure 0.3.

Figure 0.3 TCP Ethernet frame

Univ
ers

ity
 of

 M
ala

ya

 37

Figure 0.4 Additional TCP Header

When this traffic arrives in the data plane, it is pushed to the controller for processing

and routes the packets through the network data plane.

Figure 0.5 shows the gives a pictorial insight from traffic definition to the action taken

for packets based on the match in the flow table.

Figure 0.5 Proactive Flow Setup

We will leverage a proactive design of the flow setup based on Ethernet address. Packet

delivery to the control plane is controlled by a flag bit i.e. 1. A set flag bit implies a

threshold that will trigger control plane for rule configuration.

4.5 Packet Statistic

Our architecture depends on the OpenFlow packet processing rule. The OpenFlow policy

on a switch consists of a set of flow control rules. Each rule has a pattern, a priority,

actions, and counters. A new flow in the switch is matched to a set of rules which checks

the flow priority and takes the actions on the flow table of such a flow. The OpenFlow

per flow meter enables the implementation of rate limiting. Meters are used to measure

Define a traffic
statistic

Registers condition
to the data plane

Data plane checks the
condition against its
current locally collected

Trigger a flow-request
and insert a flow rule
into a specified flow

Trigger a flow-request
and insert a flow rule
into a specified flow
table

Univ
ers

ity
 of

 M
ala

ya

 38

the rate of packet assigned to it and enables the flow control of such packets. To match

the statistic of a packet introduced to the network against our proactive flow, we use

OpenFlow ovs-ofctl interface which accept an argument that describes a flow or

flows, output(port=port,max_len=xbytes) (output the packet to the OpenFlow port

number, with maximum packet size set to xbytes). When a packet larger than xbytes is

received in the port, it is processed using the Openflow PacketIn message. The PacketIn

message is a way for the switch to send a captured packet to the controller.

The PacketIn is a message which consists of header, and a buffer id which is used to

assign unique value for buffered packet, and the length of the captured packet total_len.

The port in_port is a reference to the port in which the packet is received. A field which

is a representation of the reason a packet has been captured and forwarded; this could ba

an action because of match, or a miss in the match flow tables, or an error. A packet with

a 56 bits payload is treated and a normal packet and the specified action in the flow table

is applied according to the flow table mapping configurations and when packets with

additional flow instructions or otherwise arrives at the flow table mapping, the threshold

condition is met and so the trigger involves the controller in such a flow. By this selective

approach of involving the controller in flow processing, the flow overhead that is incurred

by a reactive flow which is a primary cause of the scalability limitation is reduced.

According to the open flow specification, the flow meter is enabled and used to take

statistics. For our architecture, we register the flow, using the OpenFlow interface ovs-

ofctl to pass in the flow;

ovs-ofctl add-flow<bridge><match-field>actions=controller(key=value...) (4.1)

Taking this action will send packets to OpenFlow controller as "packet-in" message. The

key-value pairs max_len=xbytes: which limit the maximum length of packets sent to the

controller when a packet match proactive flow rule.

Univ
ers

ity
 of

 M
ala

ya

 39

The wild card rule can route packets to all the required destination so this will require that

the network administrator has a specific knowledge of the type of traffic to be handled by

the network. Since we need to update the rules as the dynamics of the network changes,

we use rule priority so because there might be situations where the packets might match

several rules in the flow table and this can cause Rule overlaps.

4.6 Registers Condition to the Data Plane

This flow table is registered or installed in the Data plane memory at the start of the

network, checks the condition against its current locally collected. To maintain

consistency in the network, when a new switch is added to the network, the flow setup

modules deletes all previous flows and install the table miss flows. A broadcast tree is

maintained so that every packet forwarded trough the network is dropped due to

unintended loops in the network

 Summary

This chapter discusses the implantation of proactive flow, and the various elements of

a network traffic that is vital to design a fine-grained proactive flow in SDN. First, we

examined the architecture of OpenFlow and the challenge with control plane interaction

in packet control which is a scalability bottleneck. We discussed that even with a fine

grain proactive flow setup, a mitigating factor of scalability could still exist, which is link

failure. This can occur when a controller link is overwhelmed with traffic so much that

traffic to such links are dropped. To mitigate this, we extend the controller plane

functionality for a fair distribution of workload. This is done by pooling port utilization,

with this, traffic will only be received from underutilized ports, thereby avoiding packet

drop by over flooded ports.

Univ
ers

ity
 of

 M
ala

ya

 40

 CHAPTER 5: EVALUATION

The hardware used for the evaluation 3 Ubuntu Server machines. The Helium

OpenDayLight controller hosted on a machine with Intel Core i7-4790 CPU @ 3.60GHz,

32G of system memory, and 1GB/s Ethernet channel.

The Open vSwitch run on Docker container and hosted on a machine with Intel Core

i7-4790 CPU @ 3.60GHz, 16G of system memory, and 1GB/s Ethernet channel.

The the packet generator is hosted on a machine with Intel Core i7-4790 CPU @

3.60GHz, 16G of system memory, and 1GB/s Ethernet channel.

The traffic will flow from a physical port on the traffic generator (port A) to a physical

port on the Open vSwitch and then back to the physical port (port B) on the traffic

generator. This script uses the TRex Realistic Traffic generator (TRex, 2015). TRex is an

open source, low cost, stateful and stateless traffic generator fueled by DPDK. It generates

traffic based on pre-processing and smart replay of real traffic templates.

The performance of the system is analysed based on the average packet loss, the

average throughput, and end to end delay based on work done by (Larry L. Peterson,

2007) and (James F Kurose, 2014). Packet loss is the number of packets that fails to arrive

at the destination. It is represented as loss percentage

Packet Loss = Number of packets dropped * 100. (5.1)

 Total number of packets sent

The Average Throughput is the average amount of data delivered in unit time

represented in Mbps. Average throughput is calculated using the formula:

Univ
ers

ity
 of

 M
ala

ya

 41

 (5.2)

(where N is total simulation time * to total number for flow).

5.1 CPU utilization

We implemented with a linear topology with an Open vSwitch and a Helium

OpenDayLight controller. We generate traffic using with the setup for both reactive and

proactive flow. The traffic generator keeps generating packet of random bytes and a

varied flow rate of between 250 flows per seconds to 20000 flows per second to test the

CPU utilization of the controller when implementing the proactive and reactive flow. The

CPU utilization of each proactive and reactive flow is taken on separate run time to get

the load average of each. To calculate Linux CPU usage time, subtract the idle CPU time

from the total CPU time as follows:

Total CPU time since boot = user+nice+system+idle+iowait+irq+softirq+steal

Total CPU Idle time since boot = idle + iowait

Total CPU usage time since boot = Total CPU time since boot - Total CPU Idle time

since boot

Total CPU percentage = Total CPU usage time since boot/Total CPU time since boot X

100

Each packet processing instruction involves the CPU, the more packets are pushed to

the controller for processing there is an expected spike in CPU usage Figure 0.1 shows

that there is a higher CPU utilization with the reactive flow compared to the proactive

flow setup. The proactive setup has matching flow for the packets based on source and

Univ
ers

ity
 of

 M
ala

ya

 42

destination IP address on the flow table, only flows without entry in the flow table were

pushed to the controller which accounts for the increment of

Figure 0.1 CPU Utilization of both reactive and proactive flow

5.2 Packet Loss

Packet loss for each flow shown in Table. 5-1

Table 0.1 Table showing the total number of runs, reactive and proactive flow
setup

Number of

packets sent (pps)

Reactive routing

flow (packet loss in %)

Proactive routing flow

(packet loss in %)

1000 0 0

2000 1.9 0

3000 2.3 0

4000 3.2 2.39

5000 3.91 2.63

6000 4.7 3.43

7000 9.55 4.49

8000 13.69 6.38

Univ
ers

ity
 of

 M
ala

ya

 43

Number of

packets sent (pps)

Reactive routing

flow (packet loss in %)

Proactive routing flow

(packet loss in %)

9000 14.16 6.78

10000 15.44 7.87

11000 17.26 6.63

12000 18.19 5.32

13000 23.56 6.11

14000 25.23 10.23

15000 16.34 12.22

16000 25.34 12.45

17000 29.39 18.75

18000 33.22 16.98

19000 45.56 23.93

It is observed that the setup system with proactive flow reported much lesser packet

loss than the system with reactive flow. Initially, packet loss remained approximately

equal for both the system as the network did not have a high volume of flow to process.

When the number of flows increased, proactive flow results in much lesser packet loss

than reactive flow setup. Fig. 5-2 shows the variation of packet loss with varying number

of packet rate of flows.

Univ
ers

ity
 of

 M
ala

ya

 44

Figure 0.2 Plot showing the average packet loss

5.3 Average Throughput

We measure the average throughput for both the proactive flow SDN setup and the

reactive flow setup.

Table 0.2 Average Throughput

Number of flows Reactive routing flow

(Mbps)

Proactive routing flow

(Mbps)

1 6.55 6.54

2 6.58 6.58

3 6.81 6.82

4 6.83 6.83

5 6.24 6.53

6 6.36 6.56

7 6.43 6.43

8 5.64 6.46

Univ
ers

ity
 of

 M
ala

ya

 45

Number of flows Reactive routing flow

(Mbps)

Proactive routing flow

(Mbps)

9 5.02 5.74

10 4.51 5.18

12 4.32 5.19

13 5.21 6.76

14 5.45 6.23

15 5.45 6.29

We generate traffic for 120 seconds and measure average throughput with constant

proactive flow over the experiment.

It is observed that proactive flow setup reported much better throughput than reactive

flow setup. In the proactive flow, packet drop is reduced which resulted in higher

throughput. Fig. 5-3 shows average throughput with varying number of flows.

Figure 0.3 Average Throughput

Univ
ers

ity
 of

 M
ala

ya

 46

5.4 Summary

From Fig.5.1, It is observed that at run time, the proactive setup CPU utilization was

lower than for the case of the reactive flow. This is because the controller did not interact

in most of the flow setup, so CPU resources are conserved. From the experiment, the

lesser the CPU resource a controller process will consume the better the system overall

performance. With proactive flow, the SDN will scale at high network packets. In the

case of reactive flow, the flows do not match with any flow table entry and so according

to the open flow specification; the flow is pushed to the controller for processing. We

observed that as the flow increased, the CPU resource utilization increased significantly,

and the packet loss slightly increased, showing that the controller was not processing the

flow at scale, this is an indication that at a high flow rate, there is a possibility of a bottle

neck due to the amount of CPU required to process flow in the controller.

We have systematically evaluated and compared different design choices. The results

have shown that the proactive implementation design can achieve optimal scalability,

while at the same time having optimum throughput. Scalability control make OpenFlow

implementation of proactive flow a popular choice for different networking scenarios, but

the performances of the OpenFlow controller must be optimized for high throughput.

Univ
ers

ity
 of

 M
ala

ya

 47

CHAPTER 6: CONCLUSION

In this thesis, we argue that as the interaction of flow request between the control and

data plane increases an unavoidable growth in the network flow increases. The

fundamental complexity of reactive flow setup of the control plane lies in the fact that,

different network control components are interacting with each other in and this increases

with the increment of operational time. It is achievable to implement proactively

programmed flows in data plane to manage the flow request rate to the controller and all

together using high and affordable processing capacity for the control plane deployment,

thus scalability is improved; this also gives the system the benefit of ideal and good

responsiveness. Using the proactive flow, we eliminated the flow setup time and

subsequent flow request from the controller. This scaled the controller significantly.

6.1 Future Work

Our work has a limitation in the case of dynamic network changes which may affect

the objective of the desired goal, in order to mitigate this, further studies needs to be done.

Up to now, we have only studied how to solve the scalability problem of OpenFlow

controllers by using relatively simple applications, such as “learning switch” or “routing”.

We have also only considered the network in steady state where there are no changes or

failures. However, in reality there could be much more complicated application scenarios,

or the network state is changing dynamically. As a result, we plan to investigate more

complicated scenarios in the future.

First of all, one interesting problem to address is how to design data structures for

applications with scalability as the primary objective, especially under dynamic condition

where the network is undergoing changes. For example, how to design better routing

tables and security policy data structures, to support scalable and efficient accesses by

Univ
ers

ity
 of

 M
ala

ya

 48

concurrent worker threads. If there are concurrent modifications, accesses should be

efficient to minimize synchronization overhead, while at the same the correctness must

be enforced. We think a systematic evaluation of the system’s performance under

different failure or changing conditions is necessary.

Univ
ers

ity
 of

 M
ala

ya

 49

REFERENCES

Byungjoon Lee, S. H. (2014). IRIS: The Openflow-based. ICACT, pp. 1237-1240.

 Casado, M., Garfinkel, T., Akella, A., Freedman, M. J., Boneh, D., McKeown, N., &

Shenker, S. (2006). SANE: A Protection Architecture for Enterprise Networks.

Paper presented at the USENIX Security Symposium.

Byungjoon Lee, S. H. (2014). IRIS: The Openflow-based. ICACT, 1237-1240.

Chiesa, M., Kindler, G., & Schapira, M. (2017). Traffic engineering with equal-cost-

multipath: An algorithmic perspective. IEEE/ACM Transactions on Networking

(TON), 25(2), 779-792.

CISCO. (2015). United States of America Patent No. US10033622B2.

Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., & Banerjee, S.

(2011). DevoFlow: scaling flow management for high-performance networks.

Paper presented at the ACM SIGCOMM Computer Communication Review.

Di Francesco, P., Kibilda, J., Malandrino, F., Kaminski, N. J., & DaSilva, L. A. (2017).

Sensitivity Analysis on Service-Driven Network Planning. IEEE/ACM

Transactions on Networking (TON), 25(3), 1417-1430.

Dixon, C., Olshefski, D., Jain, V., DeCusatis, C., Felter, W., Carter, J., . . . Recio, R.

(2014). Software defined networking to support the software defined

environment. IBM Journal of Research and Development, 58(2/3), 3: 1-3: 14.

Erickson, D. (2013). The beacon openflow controller. Paper presented at the Proceedings

of the second ACM SIGCOMM workshop on Hot topics in software defined

networking.

Univ
ers

ity
 of

 M
ala

ya

 50

Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J., Xie, G., . . . Zhang,

H. (2005). A clean slate 4D approach to network control and management. ACM

SIGCOMM Computer Communication Review, 35(5), 41-54.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., & Shenker, S.

(2008). NOX: towards an operating system for networks. ACM SIGCOMM

Computer Communication Review, 38(3), 105-110.

Ian F. Akyildiz, A. L. (2016). Research Challenges for Traffic. IEEE Network, 30 - 58.

James F Kurose, K. R. (2014). Computer Networking A Top-down approach. Fifth

Edition, Pearson.

Kanagavelu Renuga, K. M. (2015). SDN Controlled Local Re-routing to Reduce

Congestion in Cloud Data Center. International Conference on Cloud Computing

Research and Innovation (ICCCRI), 26-27.

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., . . . Hama, T.

(2010). Onix: A distributed control platform for large-scale production networks.

Paper presented at the OSDI.

Lantz, B., Heller, B., & McKeown, N. (2010). A network in a laptop: rapid prototyping

for software-defined networks. Paper presented at the Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks.

Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using openflow:

A survey. IEEE communications surveys & tutorials, 16(1), 493-512.

Larry L. Peterson, B. S. (2007). Computer Networks a Systems Approach. Elsevier, 4th

Edition.

Univ
ers

ity
 of

 M
ala

ya

 51

M. Smith et. al. (2014). OpFlex Control Protocol. Internet Draft, Internet Engineering

Task Force.

Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014, June). Opendaylight: Towards a

model-driven sdn controller architecture. In Proceeding of IEEE International

Symposium on a World of Wireless, Mobile and Multimedia Networks 2014 (pp.

1-6). IEEE.

Murat Karakus, A. D. (2017). A survey: Control plane scalability issues and approaches

in Software-Defined Networking (SDN). Computer Networks 112, 279-293.

Schehlmann, L., Abt, S., & Baier, H. (2014, November). Blessing or curse? Revisiting

security aspects of Software-Defined Networking. In 10th International

Conference on Network and Service Management (CNSM) and Workshop (pp.

382-387). IEEE.

Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., . . . Rao,

N. (2013). Are we ready for SDN? Implementation challenges for software-

defined networks. IEEE Communications Magazine, 51(7), 36-43.

Terei, D. A., & Chakravarty, M. M. (2009). Low level virtual machine for Glasgow

Haskell Compiler (Doctoral dissertation, Bachelor’s Thesis, Computer Science

and Engineering Dept., The University of New South Wales, Sydney, Australia).

Tootoonchian, A., & Ganjali, Y. (2010). Hyperflow: A distributed control plane for

openflow. In Proc. NSDI Internet Network Management Workshop/Workshop on

Research on Enterprise Networking (INM/WREN).

Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., & Sherwood, R. (2012). On

Controller Performance in Software-Defined Networks. Hot-ICE, 12, 1-6.

Univ
ers

ity
 of

 M
ala

ya

 52

Tourrilhes, J., Sharma, P., Banerjee, S., & Pettit, J. (2014). SDN and OpenFlow evolution:

A standards perspective. Computer, 47(11), 22-29.

TRex. (2015). TRex Retrieved from Realistic traffic generator: https://trex-tgn.cisco.com/

van Asten, B. J., van Adrichem, N. L., & Kuipers, F. A. (2014). Scalability and resilience

of software-defined networking: An overview. arXiv preprint arXiv:1408.6760.

Voellmy, A., & Wang, J. (2012). Scalable software defined network controllers. ACM

SIGCOMM Computer Communication Review, 42(4), 289-290.

Yan, H., Maltz, D. A., Ng, T. E., Gogineni, H., Zhang, H., & Cai, Z. (2007, April).

Tesseract: A 4D Network Control Plane. In NSDI (Vol. 7, pp. 27-27).

Yeganeh, S. H., Tootoonchian, A., & Ganjali, Y. (2013). On scalability of software-

defined networking. IEEE Communications Magazine, 51(2), 136-141.

Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking

with DIFANE. ACM SIGCOMM Computer Communication Review, 40(4), 351-

362.

Univ
ers

ity
 of

 M
ala

ya

