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LEVERAGING PROACTIVE FLOW TO IMPROVE SCALABILITY IN 

SOFTWARE DEFINED NETWORKING 

ABSTRACT 

The concept of Software Defined Networking (SDN) is a concept which necessitates 

decoupling the network control plane from the data plane and makes each plane evolves 

independently. This controller architecture supporting versatile communication services 

is a complex paradigm. The need to coordinate the interaction of the control plane 

components such as QOS modules, routing information base, security policy, resource 

scheduling, etc. is a complex operation and based on the controller. The coordination of 

the actions of these components sometimes have conflicting goals and require careful 

handling. Some of these components exist in the network as distributed protocols and the 

inconsistency in coordinating these protocols could lead to critical problems in the 

network. Apart from the coordination of these distributed protocols, there is an issue that 

can arise due to flow request from data plane devices to the controller, which could 

eventually lead to a bottleneck as the network flow request scale at large network. The 

use of a centralized controller to address some of these challenges has been proposed by 

researchers. By centralizing the controller, the network simplifies the state distribution 

and hence have a better control over the network consistency. However, it is difficult to 

scale at larger network size and flow request. It is also important to maintain low latency 

in request handling and at the same time having high scalability throughput. For this 

thesis, an implementation of proactive flow programming on the data plane and improved 

I/O systems is proposed as leverage in the design of the SDN controllers. Through 

experiments, this work shows that implementing these concepts improve the controller 

scalability by enhancing the flow handling rate as the network size increases.  

Keywords: Quality of Service, Security Policy, SDN Controllers, Throughput 

Univ
ers

ity
 of

 M
ala

ya



 iv 

ALIH PROACTIVE LEVERAGING UNTUK MENINGKATKAN KALUNGAN 

DALAM RANGKAIAN YANG DITERBITKAN PERISIAN 

ABSTRAK 

Konsep Rangkaian Perisian Terperinci (SDN) adalah konsep yang memerlukan 

pemisahan pesawat kawalan rangkaian dari satah data dan membuat setiap satah berubah 

secara sendiri. Seni bina pengawal ini yang menyokong perkhidmatan komunikasi serba 

boleh adalah paradigma yang kompleks. Keperluan untuk menyelaraskan interaksi 

komponen pesawat kawalan seperti modul Servis Kualiti (QoS), pangkalan maklumat 

penghalaan, dasar keselamatan, penjadualan sumber, dan lain-lain adalah operasi yang 

kompleks dan berdasarkan pengawal. Penyelarasan tindakan komponen ini kadang-

kadang mempunyai matlamat yang saling bertentangan dan memerlukan pengendalian 

yang teliti. Sesetengah komponen ini wujud dalam rangkaian sebagai pengagihan 

protokol dan keadaan yang tidak konsisten dalam menyelaraskan protokol ini boleh 

membawa kepada masalah kritikal dalam rangkaian. Selain dari penyelarasan pengagihan 

protokol ini, terdapat satu isu yang boleh timbul kerana permintaan Aliran dari peranti 

pesawat data ke pengawal, yang akhirnya boleh membawa kepada kesesakan kerana 

permintaan aliran rangkaian berskala pada rangkaian yang besar. Penggunaan pengawal 

terpusat untuk menangani beberapa cabaran ini telah dicadangkan oleh penyelidik. 

Dengan memusatkan pengawal, kita dapat mempermudahkan pengedaran kawasan 

rangkaian dan oleh itu mempunyai kawalan yang lebih baik ke atas konsistensi rangkaian. 

Walau bagaimanapun, sukar untuk berskala pada saiz rangkaian dan permintaan aliran 

yang lebih besar. Ia juga penting untuk mengekalkan kependaman rendah dalam 

pengendalian permintaan dan pada masa yang sama mempunyai penskalaan 

penghantaran yang tinggi. Untuk tesis ini, pelaksanaan pengaturcaraan aliran proaktif 

pada pesawat data dan sistem I / O yang lebih baik dicadangkan sebagai penekanan dalam 

reka bentuk pengawal SDN. Melalui eksperimen, kami akan menunjukkan bahawa 

perlaksanaan konsep ini meningkatkan kemampuan pengawal penskalaan dengan 

meningkatkan kadar pengendalian aliran apabila saiz rangkaian meningkat. 

Kata Kunci: Kualiti Perkhidmatan, Dasar Keselamatan, Pengawal SDN, Daya 

Pemprosesan 
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CHAPTER 1: INTRODUCTION 

According to the Open Network Foundation (Sezer et al., 2013), Software Defined 

Networking (SDN) is an architecture based on the decoupling of the Network control and 

forwarding functions which makes the network control directly programmable, 

centralized and the underlying infrastructure abstracted for applications and the network 

services. The application layer which comprises of the business logic communicates with 

the controller with the northbound application programming interface, while the 

communication of component in the separate planes, controller and forwarding of the data 

plane uses the Southbound API. The responsibility of control in the data plane devices 

such as switch and router, by the control plane is enabled by the OpenFlow® protocol, 

which is a standard communication interface based on the controls and forwarding planes 

of the SDN architecture (Bakshi, 2013). This forms the basic building blocks for SDN 

solutions as shown in Figure 1.1 Basic SDN Architecture.  

The controller allows to manipulate flow entries of different devices, but the 

OpenFlow® helps updates these flows. 

OpenFlow® enabled switches to have one or several flow tables in a pipeline, and a 

group table either for packet lookup and also fundamental for packet forwarding; it also 

consists of a channel (TCP, TLS) to an external controller (Lantz, Heller, & McKeown, 

2010).  The TCP or TLC connection can be established over the Ethernet or the Internet 

by the legacy routing protocols. 
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A switch has to only support a flow table to be compliant with the standard, but 

multiple tables give scalability when you have to match a large flow or match a large set 

of data in a group table. The group table group multiple interfaces into a single group, 

and when traffic is sent to the group, it is forwarded out of all interfaces in that group. So, 

if a broadcast or multicast application is to be implemented, a group table will be used. 

The OpenFlow® protocol contains a set of API that the control plane controller leverages 

to control the elements of the flow entries (DELETE, ADD and UPDATE) in the flow 

table of the data plane devices in a reactive or proactive state. The flow table’s entities or 

entries consist of MATCH fields, counters and set of instructions that are applied to 

matching packets.  These packet matching is first initiated on the first flow table usually 
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Table0 and may continue to additional flow tables in the pipeline using the GOTO Tables. 

Matching is matched in a priority order of higher priority to lower priority. When traffic 

arrives, it is first matched in against entries in Table 0. Matching flow entry in the flow 

table executes the instruction associated with the specific flow entry executed i.e. drop, 

Go to table X, send out of Port X, etc. If for a particular flow, there is no entry found to 

match such flow in the flow table, the outcome of such flow depends on the controller for 

processing 

The independent evolution of both the control and data plane is enabled by this 

decoupling. This leads to several significant benefits. 

 SDN   

With the evolution of cloud computing, several eco systems and business paradigm 

are changing and demand for network centric applications, business logics are 

transcending to a more complex paradigm.  To meet these trend, there is a need for a 

dynamic network logic and open system to enable the dynamic nature of business and 

network requirement. SDN is a promising architecture where the decoupling of the data 

plane and the control plane makes the network functions readily programmable, and is a 

potential advantage for the need of recent network trends. Due to real time performance, 

cost-effective, dynamic, manageable, adaptable state and high availability requirement, 

telecom networks are adopting the concept of Software Defined Networking (SDN) 

which aims to transform the way networks function. 

1.2 Problem Statement  

According to the work done by (Murat Karakus, 2017), regardless of the definition of 

scalability or its knowledge by system users, it is an important consideration for SDN 

architecture. Scalability challenges and mitigation proposed for a network may introduce 

tradeoffs that may be introduce mitigating factors for other useful properties in the 
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network. A useful example of this is; in a proactive rule setup in SDN switches reduces 

the load of the controller, with an outcome of reduced processing time and flow initiation 

overhead in the controller. However, this constrain the flexibility coming from reactive 

flow proactive flow setup, reduces decision-making dynamicity of the controller and 

management of the network.  

(Murat Karakus, 2017), also proposed that controller distribution is one way to 

overcome computational load on controller but it brings consistency and synchronization 

problems as well. 

Despite the benefits of SDN, there is a vital and critical concern about the scalability 

as the network devices and application interaction grows (increase in the number of data 

plane devices i.e. router, switches, etc.), flows and bandwidth (Yeganeh, Tootoonchian, 

& Ganjali, 2013) will lead the controller to become a bottleneck of itself or fail to handle 

incoming request while providing consistent service level guarantee. These challenges 

although not peculiar with SDN but they arises from the decoupling and independent 

evolution of the planes. Because of this decoupling, the flow setup process could create 

potential overheads which could limit scalability.  

When packet arrives at the ingress switch and it does not match any flow table entry, 

the switch forwards the packet to the controller with flow request on how to treat that 

packet. The controller forwards the packet to the destination switch and pushed the new 

flow entries to the switches which then update the entries to the flow table in the network. 

Subsequent flows are forwarded by the updated flow table rule. 

As the flow and network request increases, these flow request and update process can 

produce overheads which can subsequently lead to limited scalability in the controller as 

shown in Figure 0.2. 
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Figure 0.2 Packet forwarding in SDN 

Figure 0.2 shows a high-level flow of packet in SDN network, for this illustrative 

diagram, the details of each component are not included for clarity, as it’s intended as a 

high level overview. In the illustration, when incoming packets arrive at the data plane, it 

checks the flow table for a match for the packet, it first starts in table 0, if the flow needs 

to continue to another table, GOTO statement routes the flow to the table specified in the 

instructions. If there is not matching flow in the flow table, the packet is pushed to the 

controller. The controller processes the packets and route the flow to the required egress 

port and update the data plane flow table with the entry of this packet.  

1.3 Objectives 

The main aim of this thesis is to critically explore the root causes of limited scalability 

in SDN and propose a solution. To achieve this, the following objectives are presented. 

1. To design an architectural framework for SDN data plane that implements 

proactive flow. 

2. The framework will implement a proactive trigger for packet forwarding to the 

controller if the packet reaches specified threshold 
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 6 

3. To evaluate the developed module by testing it on a simulated SDN network and 

compare with a Reactive flow of the same simulation to mitigate scalability issues 

in SDN. 

This thesis explores the root causes of limited scalability in SDN and propose a 

solution for the scalability challenge.  

Representational state transfer (REST) API is used to proactively program the flow 

table of OpenFlow enabled switches. REST puts together sets of controls applied to 

designing set of flows that can be used to program the data plane. The evaluation will be 

carried out on a testbed composing of OpenVSwitch run on Docker container, 

OpenDayLight controller run on an Ubuntu Server, a virtual network simulator and a 

modify ‘cbench’, a bash script for network evaluation to suit the purpose of testing for 

scalability. 

1.4 Methodology 

The approach is to first get a detailed clarification of the problem by reviewing relevant 

literature to identify understand the relevant research aspect of Scalability challenges in 

SDN and studied methods that has been previously used to solve this problems. With 

these findings, a design of the framework which uses threshold trigger in a proactive flow 

SDN; only when a particular flow satisfies the conditions for a trigger will a controller be 

involved with the flow control of the SDN network herby reducing the flow setup 

overhead which is identified one of the basic causes of the Scalability challenge in SDN. 

We tests this framework by implementing it with an Open source controller Open 

Daylight (ODL) which allows for the implementation of Northbound API programmed 

with JAVA programming language and REST API. 
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1.5 Mitigating the Scalability Challenges 

By reconnoitering proactively programming flows to the data plane flow setup and 

request rate that can cause an overhead to the control plane can be addressed and also 

increasing control plan processing capacity can be a good balance for fulfilling the SDN 

architectural goal. A comparison of the implementation with ODL (Medved, Varga, 

Tkacik, & Gray, 2014) and HP VAN SDN (Dixon et al., 2014) controllers in reactive 

control state. The key significance of our experiment is that with the proactive flow 

programming implementation leveraging high control plane processing, throughput at 

high data path devices is still achieved and there is an improved scalability at scale. Flow 

overhead is limited by the proactive flow. The design and experiments show an extensive 

insight in throughput, scalability, latency in the load based SDN implementation setup. 

1.6 Summary and Layout of this thesis 

In this chapter a high level concept of Software Defined Networking (SDN), the 

eminence of implementing it in the present Information Technology (IT) networking 

environment is discussed, as well as the challenges in the deployment of SDN. 

Additionally we highlight the aim of using the proactive flow on data path and improve 

I/O performance to enable scalability in the deployment of the SDN.  

In Chapter 2 a background study is done to understand the relationship between the 

complexity of the computer network and the elements that cause the overhead in the 

network because these overheads are a vital cause of the scalability challenge in the SDN. 

In this chapter, the goal of using proactive flow in the SDN setup to mitigate the 

scalability challenge is emphasized, and finally a brief discussion on how the tools 

required to achieve SDN flow programming. In Chapter 3 a review in the Evolution of 

the legacy network is explained; and the various work done to mitigate the scalability 

challenge in SDN. In chapter 4 is the explanation or architecture for the proposed system, 
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and the various critical aspect of the architecture. In chapter 5, an evaluation of the system 

and the results to determine if the proposed objectives were achievable by this work done. 

And a conclusion by detailing contribution and future work to be done to improve this 

work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The concept of computing has evolved in the past decade. The continuous replacement 

of dedicated servers with virtualized cloud data centers with lower cost and high 

flexibility. This is built on middleware and virtualization technologies. The manual 

performance of management and usage of the network elements is usually slower and an 

outage in the network can lead to a significant loss, with the less predictability of network 

change.  

An approach to solve this evolving paradigm is the decoupling of the network from 

computing volatility into one flat static communication service.  

However from the underlying network, traffic from each tenants need to be segregated 

for the need of security and performance. This imposed requirement network elements 

like deep packet inspection, and QOS and Load balancing which are on-demand need to 

couple to computing functions and this cannot be fully achieved with the flat static 

communication configuration. The need to map this static network to a dynamic 

configuration has led to the innovation of SDN, which uses software network switches 

(e.g. Open vSwitch) to rout packets from the different tunnels over the network 

established by separate virtual machines. SDN automates network elements and 

configurations for a unified network-wide communication. The connectivity 

requirements of the network are communicated to the network controller which used 

API’s such as OpenFlow® to implement the required in the virtual switches (Tourrilhes, 

Sharma, Banerjee, & Pettit, 2014).  

According to a survey made by (Murat Karakus, 2017),  there is an inherent scalability 

issue as a result of the delay in new flow rule setup processing in the control plane, and 
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several modes of flow setup some of which are proactive mode and reactive mode. These 

two are prominent modes to setup a flow in the flow table of SDN.  

In proactive mode, latency is not introduced in the flow rule setup from the controller’s 

point of view, however, in the reactive mode, the controller response time is crucial as 

some latency is introduced.  

OpenFlow which is a flow-based programing standard for Ethernet switches was 

proposed from the success of Ethane and SANE. This standard defines that an OpenFlow 

enabled Ethernet Switch will forward traffic according to the rules defined in the flow 

table of such switches; these rules are pushed to the switches by the central controller. 

The flow tables contain rules which consists of actions with which a packet will be 

processed based if matched, and communication with the central controller is by a secure 

OpenFlow Channel. 

OpenFlow provides opportunities for researches to test and develop new applications 

for the control plane and enables researchers to learn more about traffic classifications. 

The OpenFlow specification defines that for every flow that arrives at the data OpenFlow 

enabled switch, the data is first forwarded to the central controller and the controller sends 

an update to the flow table on the action with which the packet is to be processed. In the 

scenario of a large network, there is a large flow request and as well a large flow overhead. 

This is the primary cause of a bottle neck to the control plane. This work which is based 

on the OpenFlow standard defines that for each flow that arrives at the data path, they are 

processed by the proactive flow defined in the switch memory. Our concept limits the 

controller interaction at flow setup. The controller explicitly provisions the network 

needs. The issue with this centralized management system is that as the underlying 

network flow requirement increases, there will be need for the controller to scale and in 
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 11 

most cases, this is not so because the controller is not able to meet the flow request of the 

underlying network device. A solution to this concern is to improve on adequate flow 

management. VMware and HP provisioned a solution where the controller manages the 

elephant flows in the underlying network. Another solution to this is to eliminate the 

network learning and discovery and the core switches functions as the forwarding devices, 

and tunnel configurations are programmed through OpenFlow®. This division of 

functions between the control and forwarding path is evolving. On the data-path, complex 

packets can be treated while the decision policies are handled by the controller functions. 

This idea relies on the delegation of some of the control functions to the data plane so as 

to alleviate the load on the controller(s), thereby reducing controller switch 

communication frequency.  

2.2 4D Architecture  

The management and control planes management complexity is the root reason for an 

uncontrollable and fragile network as argued by the authors (Tourrilhes et al., 2014). The 

packet forwarding functions coupled with the control plane logics distributed among the 

network elements limits the enforcement of network-wide objectives; however 

management goals are achieved by ad hoc ways of manual scripting. The lack of network-

wide coordination between network elements makes it error prone whenever there are 

some changes in the network. Control of all functions is realized through inherent tuning 

i.e. the correct and successful setup of the data path is a factor implicitly important for the 

management control to function correctly. This brings about dependency of the control 

plane on the data plane. But from the concept of SDN, they are to evolve independently. 

A complete repartitioning of the functionalities of computer networks which is called  

4D is a proposed solution in an attempt to address these problems (Greenberg et al., 2005; 

Yan et al., 2007). It is a four-plane architecture comprising of Decision, Dissemination, 
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Discovery and Data planes. The distributed protocols handling packet forwarding is 

separated from (Schehlmann, Abt, & Baier, 2014) the decision logic of the network. 

Based on the network-wide view of the underlying data plane, the decision plane specifies 

the network-wide objectives which are translated by some algorithms into control 

configurations for the data plane devices. The data plane handles packet forwarding, 

filtering queuing and address translation; these functionalities are controlled by the 

decision plane to fulfill the networks objectives. Between the decision and data plane is 

the communication mechanism handled by the dissemination plane. The data planes 

changes with the change of the plane configuration policies, instead dissemination plane 

which requires no pre-configuration and needs reliability should not change with changes 

in the data plane. The discovery of the physical network components and the creation of 

logical identifiers to present them is the responsibility of the discovery plane. It is also 

the responsibility of the discovery plane to collect measurement data of the network-wide 

view for the decision plane to achieve the networks objectives. Exchange of secret keys 

at the boot strap stage phase is required for the security of the discovery plane.  4D has 

no real prototype built however it brings researchers attention to very important 

challenges in the present network management and control plane. And creates a trend 

aimed at the clean slate design of network architecture.  

The work done in this thesis focuses on the data plane from the proposed 4D 

architecture. 4D only enumerates the data handing functionalities; but in our work, a dive 

into how to realize these functionalities without the complete control of the decision plane 

is made. The total control of flows in the data plane by the control plane would likely lead 

to a bottleneck in the decision plane as the network scales;  our work is based on how to 

allocate certain low level flow to the data plane and let the decision plane handle only 

elephant and complex decision flows requiring special treatments. We are confident that 

Univ
ers

ity
 of

 M
ala

ya



 13 

our work will contribute significantly in solving the scalability concern in this research 

area. 

2.3 NOX and BEACON 

NOX and  BEACON is a follow up on the success of SANE and Ethane (Erickson, 

2013; Gude et al., 2008). Previous controller architecture has a complex control plane in 

which all the control functions are hard coded, this lives the users with a difficult task of 

replacing or writing control components for the desired goal. Modular and flexible control 

plane architecture will make it easier for users to achieve the network management goals. 

NOX is designed to provide a modular and flexible design framework for users to achieve 

complicated control function using OpenFlow® enabled switches (Gude et al., 2008). 

The OpenFlow®  design, where the controller installs every flow in the data path; if the 

controller does not have enough control plane capacity to handle all these request, it will 

become a bottle neck of itself, and unfortunately NOX can only utilize a single CPU core. 

NOX is designed to reduce overhead by not relying on the I/O operations but it is not 

multi-threaded to leverage multi-core processing. NOX handles each request individually 

so overhead is introduced by such operation. BEACON is a multi-threaded programmable 

OpenFlow® controller which allows users to write simple threaded applications and can 

be run together with NOX in parallel to enable Scale in multi-core processors (Erickson, 

2013). However in practice, not all workers tread run at the same rate and this could lead 

to a bias even under a uniform workload. They use static batching strategy to improve the 

throughput of individual workers tread and this can lead to large request handling latency 

under heavy load. A good way to improve the performance of NOX and BACON is to 

commit the flow handling to the OpenFlow®  enabled data plane devices and only control 

policies are handled by the controllers which would reduce the flow overhead limited 

workers tread. So we propose that our implementation of proactive flow for flow setup of 
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data plane and enhancing the scalability of the control plane capacity which is a major 

contribution to the implementation concept for enhancing scalability in SDN.  

2.4 McNettle 

The work by Andreas V et.al is a motivation from the argument that the simplicity of 

the logically centralized controller comes at a cost of control plane scalability and changes 

in network state is a problem to distributed controllers (Voellmy & Wang, 2012).  

McNettle is extended by writing event handlers and background programs in high-level 

programming language with a shared state and memory transaction. The control 

processing events throughput scales with the number of CPU cores. The event handler 

includes the packet miss function which updates switch local and network state variables.  

Messages from each switch are handled in sequence and from different switches are 

executed concurrently, this provision a synchronized access to the network state. It fully 

parallelizes waiting and dispatching of threads on I/O devices stabilizing the multi-core 

load balancing algorithm and prevent excessive cache-trashing due to work migration. 

McNettle avoids contention on sockets by processing each message on a single CPU core 

thereby reducing inter-core synchronization except required by user-specified controller 

logic. 

This framework was tested in Haskel and leveraged the multi-core facility of the 

Glasgow Haskel Compiler and runtime system; it was shown to reduce system calls and 

optimizes cache usage and runtime overhead (Terei & Chakravarty, 2009). It is also 

shown that it schedules event handlers, optimizes message parsing, allocates memory and 

serialization. The implementation also shows that McNettle can achieve a throughput of 

over 14 million flows per second (Voellmy & Wang, 2012). From the evaluation, 

McNettle scaled better that NOX a distributed controller for more than 30 CPU cores and 

the previous stopped scaling at 20 CPU cores. 
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2.5 DevFlow 

The authors argued that the design implementation of OpenFlow® comes at the cost 

of excessive overheads; and that this cannot meet the need of today’s high-performance 

network. The involvement of the switch implementation where the switch control plane 

is involved so often and the frequency of the distributed system involving the control 

plane; both for flow setup and statistic gathering. Devflow is a modification of the 

OpenFlow® model with the objectives of gently breaking the coupling of the control logic 

and global visibility (Curtis et al., 2011). In this model, switch-internal communication 

between the control and data plane are reduced and potentially reduce the need for a 

controller for most flow setup. Rule cloning, statistics gathering, approximate counters, 

and the bin packing algorithm are used to achieve these objectives. For the Rule cloning, 

the action properties of the installed wildcard configuration is augmented with the  flag 

CLONE, and the data plane switches  follows the default wildcard behavior when flag is 

clear otherwise to create a new rule, it locally clones the wildcard rule with all field are 

replaced with the with values matching the micro flow. This rule are installed in the 

lookup table and consequently reduces the switch TCAM usage and also the cost of 

power. DevFlow multipath support is relatively bring into line to the equal-cost multipath 

(ECMP) routing, however, in ECMP the flows are split evenly across selected paths and 

it is a none ideal case because some path may consume relatively more bandwidth 

compared to the others (Chiesa, Kindler, & Schapira, 2017). Devflow allows clonable 

wildcard rules to randomly select flow path according to some probability distribution. 

Statistics gathering uses sampling where each packet headers is sent to the controller in 

1/1000 probability and Threshold Triggers which sets a threshold per flow to be reached 

before flow are sent to the controller, thereby living only fine-grained flow at the data 

path and elephant flows to be processed by the controller. When flows match these 

wildcard rules, an approximate counter using streaming algorithm is used to track these 
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flows thereby enabling a fine-grained statistic collection. The evaluation shows that 

DevFlow balanced data center traffic without as many overheads.  In a reactive manner, 

all flows are installed only if identified as elephant flows. In  multiple simulations 

performed on a large data network simulator show that the pull-based setup with 

minimum update interval maximizes data throughput in the network (Curtis et al., 2011). 

In this case, the performance comes at a price, significantly large flow table in comparison 

with the other schemes. 

 The Threshold Triggers is most optimal, as the data throughput increases, less traffic 

is required between the switch and the controller thus flow table size is minimal. 

2.6 DIFANE 

DIFANE proposed a suitable solution for the flow based network. This solution keeps 

all traffic in the data plane by selectively redirecting packets through intermediate 

switches or Authority Switches, that store the necessary rules, and relegates the controller 

to the simple task of partitioning these rules over the switches (Tootoonchian, Gorbunov, 

Ganjali, Casado, & Sherwood, 2012). DIFANE partitions the rule space and assigns each 

partition to one or more Authority switches that handle packets and sends the rules to 

ingress switches. In this model, when a packet arrives at the ingress switches with no 

matching flow, it is forwarded to the Authority switch which pushes the relevant rule to 

the ingress switch; the ingress switches caches this rule locally. Subsequent rules can be 

encapsulated and forwarded to the egress switch by packet redirection. DIFANE 

controller uses partition algorithm to subdivide the space of all rules. The controller pre-

computes the low-level rules based on the high-level policies by substituting high-level 

names with network addresses. To avoid redirecting all flow traffic to the Authority 

switch, the authority switches caches all rules in the ingress switch. DIFANE achieves a 

small delay for first packets of a flow compared and a higher throughput to NOX 
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(Tootoonchian & Ganjali, 2010). DIFANE scales linearly with the number of authority 

switches; the Authors propose the use of authority switches to keep packets in the data 

plane. 

In this reviewed literature, the solution proposed is to divide the workload of the 

network over several instances of a controller. However, difficulties come with optimum 

scalability solution for SDN networks. From the observation in this literature, flows are 

reactive as against our proposed framework. These problems can be sufficiently solved 

by combining the reduction of control overhead, distributing multiple controllers among 

a network and proactively programming flows. 

2.7 HyperFlow 

Hyper-Flow extends NOX into a distributed control plane by Synchronizing network-

wide state among distributed controllers.  HyperFlow localizes the processing of a single 

flow to an individual controller machine, and minimizes response time forwarding plane 

requests and subsequently improve throughput. To complement the solutions that are 

aimed at leveraging the performance of the control plane physical controller machine, 

several types of research have been done to enable a cluster of the control plane controller 

working together as a single logical controller for improved scalability. HyperFlow is 

implemented as an application for NOX by making minimum changes to NOX, and 

minimum modification to NOX application (Tootoonchian & Ganjali, 2010). By 

distributed file system, network state is synchronized among these distributed controllers. 

The processing of flow request is localized to a single controller to minimize the control 

response time from the data plane request; this scale the system throughput. The first 

limitation according to the Authors was found in the (WheeIFS) performance. All 

network events and status information need to be synchronized among the controllers and 

this requires fast distributed storage systems. This leads to the fact that the global view of 
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the network not converging in a timely manner. HyperFlow is resilience to network 

partitioning and components failures because of the distributed instances running in 

parallel, however, there is no guarantee against network state inconsistency (van Asten, 

van Adrichem, & Kuipers, 2014). This is a common challenge with the distributed 

controllers. In Hyper flow, traffic is dropped when it exceeds the controller processing 

capacity, even if the controller load is reduced by assigning lesser numbers of the switch 

to it, a single switch can generate a large traffic which will subsequently be dropped by 

the controller. 

2.8 ONIX 

The network state inconsistency of the distributed controller is a common challenge 

with. By default, ONIX is proposed to provides a framework for building distributed 

coordination in the network control plane (Koponen et al., 2010). The Network 

Information Base (NIB), is provisioned to provide access to different network states and 

synchronization framework of different network availability requirements. The NIB uses 

two data stores SQL-database for slow changing topology information and a Dynamic 

Hash table for link utilization which has a rapid trip time.  This application of these two 

data storages mitigates the challenges faced by Hyperflow Controllers. ONIX has switch 

availability and status of link information which so the path computation is not limited to 

the information provided by the OpenFlow protocol. The computed paths are installed in 

the switch flow table by the ONIX distributed. Combining the HyperFlow and ONIX, a 

single controller can be developed to become fully distributed to attain a better scalability 

and availability in the network. The advantage of the ONIX is the partitioning of the 

payload over multiple instances thus if one ONIX instance has a limiting traffic 

throughput due to the high payload, switches can be reassigned to other instances of 

ONIX. 
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2.9 SANE  

Inspired by the 4D architecture, SANE leverages a clean-slate approach with 

separation of routing control plane from data plane or forwarding plane (Casado et al., 

2006). Just like 4D where the routing and the security is centralized, this approach is also 

leveraged by SANE. Spanning tree at the Control plane carries traffic between forwarding 

devices and the central controller similar to the role of the dissemination plane proposed 

in 4D. However, SANE does not allow the communication between end hosts. SANE 

argues that its way is better than the other one, because it requires no interaction between 

the routing and filter/firewall control. We think that although such security policies 

enforcement is very strong, it on the other hand limits the functionalities that with 

filters/firewalls a network can realize. For example, with filters/firewalls, not only 

malicious traffic can be blocked, but legitimate traffic can be shaped or modified, to 

achieve different goals. Since the central controller is really critical in SANE, whether it 

can scale up its throughput is very important. Again we argue that, ideas developed in our 

work in the proceeding chapter would help in scaling the network. 

2.10 Ethane 

Ethane is a follow-up of the SANE except that Ethane takes a less complex approach 

than SANE (Casado et al., 2009). Ethane is similar to SANE in Incremental deplorability 

except that Ethane can be incrementally deployed in an Enterprise network unlike SANE 

that require a complete replacement of the enterprise network. In Ethane, the central 

controller is used to compute for the enforcement of security policy for flows in the 

network (Lara, Kolasani, & Ramamurthy, 2014). The central Controller contains the 

global network policy for all packets processing.  The controller has a global view of the 

network and the security policies determine the applied filter to each flow presented by 

each packet. The controller can be replicated to enhance redundancy and scalability. The 

Switches are simple and Consisting of a simple flow table and a secure channel to the 
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Controller.  When a packet arrives that is not in the flow table, the Switch forwards that 

packet to the Controller and it is forwarded according to the Controller’s directive. Not 

every switch in an Ethane network needs to be an Ethane Switch. Ethane design allows 

Switches to be added gradually, and the network becomes more manageable with each 

added Switch. Ethane showed that there are different ways of replication for the system 

robustness improvement. Programmed by the policy composition, Language Pol-Eth was 

proposed to program security policies based on identity binding. Ethane address source 

address spoof problem by binding entities to their location for security enforcement. 

The deployment of the real system at the Stanford’s Computer Science department for 

real experience in designing and evaluation is an important contribution of Ethane. 

Different ethane switches were built and Ethane is used to achieve the security policies 

for the campus network. They claim from their evaluation of ethane that one central 

controller can handle a network with as large as 22,000 hosts. This evaluation was done 

with the work-load of the campus. 

Adding new features to the control plane might not be an easy task. The interaction 

between the controller's elements are not modularized but hard-wired, this makes the 

management a non-trivial task. The authors recognized this problem and thus 

reintroduced the NOX which we will discuss in a later section (Gude et al., 2008). The 

central controller cannot scale up in Ethane very well as required. 
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Table 0.1: The various work done to solve scalability challenges SDN, their objectives, findings and challenges 

Publication SDN 
Implementation 

Objectives Methodology Findings Challenges Flow 

(Tourrilhes et 
al., 2014)  

4DArchitecture  

 

Centralization of 
network wide decision 
making to ease 
management 
complexity 

Partitioning network 
functionalities 

Optimal network 
control for shortest-
path routing. 

Only handing 
functionalities in 
the controllers 

O 

(Erickson, 
2013; Gude et 
al., 2008)  

NOX and 
BEACON 

Modular and flexible 
design framework using 
OpenFlow enabled 
switches. 

BEACON runs 
together with NOX in 
parallel to enable Scale 
in multi-core 
processors. 
Static batching.  

Throughput 
Scalability is 
achieved by 
parallelism. 

Bias Large 
request handling 
latency under 
heavy load 

O 

(Voellmy & 
Wang, 2012)  

McNettle Writing event handlers. 
Shared state and 
Memory Transaction 

-Event handler to 
include the packet miss. 

-Parallelizes waiting 
and dispatching of 
threads on I/O devices. 
 -Avoids contention on 
sockets. 

Maximum 
throughput. 

Reduce system 
calls. 

McNettle scaled 
better that NOX. 
 

Large CPU Core 
requirements 

O 

(Curtis et al., 
2011)  

DevFlow Breaking the coupling 
of the control logic and 
global visibility. 

 
switch implementation 
system involving the 
switch control plane for 

Rule cloning, statistics 
gathering, approximate 
counters, and the bin 
packing algorithm 

 
Cloneable wildcard 
rules. 

Helps operators 
target only the flows 
that matter for their 
management 
problem. 

 

Significantly 
large flow table in 
comparison with 
the other 
schemes. 

I 
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Publication SDN 
Implementation 

Objectives Methodology Findings Challenges Flow 

both flow setup and 
statistic gathering 
comes 

 
Statistics gathering 
 

Threshold 

Reducing control-
plane for most flow 
setups. 

 
Scalable 

management 
architectures. 

(Yu, Rexford, 
Freedman, & 
Wang, 2010)  

DIFANE Suitable solution for the 
flow-based network 

Traffic monitor. 
Authority Switches. 

 

Achieves small 
delay for first 
packets of a flow 
compared and a 
higher throughput to 
NOX. 

 
Scales linearly 

with the number of 
authority switches. 

Much Authority 
Switch needed 

O 

(Tootoonchia
n & Ganjali, 
2010)  

Hiperflow Distributed event-based 
control plane for 
OpenFlow. 

Minor modifications to 
previous control 
applications. 
Synchronizing network 
wide state among 
distributed controller. 
Event Propagation. 

Improved flow 
handling rate. 
 
Handles fluctuation 
in network 
synchronization. 
 
Enables network 
operators deploy any 

Network state 
inconsistency 

O 
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Publication SDN 
Implementation 

Objectives Methodology Findings Challenges Flow 

number of 
controllers to tune 
the performance. 
 
Resilient to network 
component failures 

(Koponen et 
al., 2010)  

ONIX 

 

Framework for building 
distributed coordination 
in the network control 
plane. 

Network Information 
Base (NIB). 
 
Synchronization 
framework. 

Fully distributed 
to attain. 

 
Scalability. 
 
Availability. 

Scalability and 
Inconsistency 

O 

(Casado et al., 
2006)  

Sane Actions of both 
routing and access 
control in a centralized 
plane for right security 
policies. 

Separation of plane.  
 

4D approach of 
centralized routing and 
the security. 

Deployable in 
current networks. 
 

Scale to networks 
of tens of thousands 
of nodes. 

Central Controller 
lacks scalability 

O 
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Publication SDN 
Implementation 

Objectives Methodology Findings Challenges Flow 

(Casado et al., 
2009)  

Ethane Define a single fine-
grained policy for 
enterprise network to 
operate. 

Ethernet switch. 
 
Ethane Extends SANE 
 
Security, flow 
management; 
 
Incremental 
deplorability; 
 
Significant deployment 
experience. 

Compactable design 
with existing 
network 
 
Manageability. 
 
Straightforward to 
add new features. 
 
Ease of innovation 
and evolution. 
   

Management 
Complexity 

O 

    O ---- No proactive flow method used. 
     I ---- Proactive flow method used. 
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2.11 Summary 

In this chapter, a discussed of the evolution of Network system was done and a review of 

some researches done in the process of attaining a reliable and efficient network that will 

leverage scalability as an important advantage. This chapter is concluded by summarizing 

the uniqueness of our proposed techniques as a contribution to this evolution progress. 

We discovered that much work has not been done to using proactive flow in deploying 

SDN for enterprises. 

The review show that the current controllers will depredate at scale and will not able to 

meet increasing demands in communication for future network traffic as new flow are 

introduced. Despite the various optimization efforts, a centralized control logic remains 

subject to the single-point of failure issue. Needless to mention the harmful consequences 

that may occur during a controller failure in a dense network. Additionally, as the network 

expands both in size and space, the centralized model will inevitably encounter several 

limitations. 

Proactive flow improves scalability, which perfectly fits the demands of fine-grained 

functional of controllers. In proactive flow, we install flow rules on the data plane, so 

some responsibility of flow control is pushed to the data plane and only for flow that reach 

certain threshold is pushed to the controller for processing. With this, the shared 

responsibility of the control plan and data plane will allow for scalability in SDN as the 

network increase.  This is a motivation for this thesis. 
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CHAPTER 3: BACKGROUND OF CONCEPT OF NETWORK COMPLEXITY 

AND PROACTIVE FLOW 

3.1 Introduction 

There are six major components of an SDN network. 

The first plane is the management plane. The management plane consists of network 

applications which are responsible for the management of the control logic in the SDN. 

In place of a command line interface, SDN enabled networks use programmable 

interfaces for flexibility and ease to the task of implementing new applications and 

services, such as routing, load balancing, policy enforcement, or a custom application 

from a service provider. It also allows orchestration and automation of the network via 

existing APIs. 

Second is the control plane that is the most intelligent and important layer of an SDN 

architecture. It contains one or various controllers that forward the different types of rules 

and policies to the infrastructure layer through the southbound interface. 

Third, the data plane, also known as the infrastructure layer, represents the forwarding 

devices on the network (routers, switches, load balancers, etc.). It uses the southbound 

APIs to interact with the control plane by receiving the forwarding rules and policies to 

apply them to the corresponding devices. 

Fourth, the northbound interfaces that permit communication between the control layer 

and the management layer are mainly a set of open source application programming 

interfaces (APIs). 
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Fifth, the east-west interfaces, which are not yet standardized, allow communication 

between the multiple controllers. They use a system of notification and messaging or a 

distributed routing protocol like BGP and OSPF. 

Sixth, the southbound interfaces allow interaction between the control plane and the 

data plane, which can be defined summarily as protocols that permit the controller to push 

policies to the forwarding plane.  

The OpenFlow protocol is the most widely accepted and implemented southbound API 

for SDN-enabled networks. 

OpenFlow is normalized by the Open Networking Foundation (ONF) (M. Smith et. al, 

2014), backed by the leaders of IT industry like Facebook, Cisco, Google, HP, and others. 

For this reason, understanding the OpenFlow architecture is important to grasp the notion 

of SDN, which we are going to present in the next subsection. Before that, we should 

realize that OpenFlow is just an instantiation of SDN, as there are many existing and 

under development southbound APIs, for instance, CISCO OpFlex (United States of 

America Patent No. US10033622B2, 2015), which distributes some of the complexity of 

managing the network to the infrastructure layer to improve the scalability.  

As previously explained, the intent of this thesis is to implement a scalable mechanism to 

reduce controller overhead in a software defined network. In this perspective, a possible 

improvement in the current OpenFlow (OF) communication model can be achieved by 

more precisely proactively programming flow to meet predefined rule. This mechanism 

enables switching nodes to instantly redirect traffic in advent of node or link overload 

without having to re-compute a backup path. Implementing proactive flow in OF-based 

networks requires the controller to proactively forward backup rules on each switching 
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node. Thus, this mechanism can potentially introduce an additional load on the controller 

and as such, requires a careful deployment. 

3.2 Overload Caused by Complexity of Computer Network 

Computer networks mainly deployed simple data communication channels among 

connected computers. The question of data flow was the main decision of the computer 

network. However, this has changed with the evolution of the architecture and 

requirements of computer networks. As a result of this trend, computer network requires 

complex operations like traffic engineering, security policies and well grained control to 

address each block of control decision with fair isolation from other component; this 

brings about the concepts of virtualization which is an underlying technology for software 

defined networks.  

In an enterprise network, the routing decision responsibility is handled using the OSPF 

protocol component, while global routing decision is the responsibility of BGP protocol 

component. In enterprise network packet filter placement and configuration component 

are responsibility of blocking, dropping are related traffic engineering policies, and the 

packet redirection serves for load balance across multiple servers, suspicious traffic 

forwarding to the Intrusion Detection System; the QOS( quality of service) routing 

enables capability of voice over IP (VOIP) traffic with low delay and loss rate; the virtual 

private intra-networks is handled by the tunneling services, and so on. With this 

complexity of managing, a network which requires scale will introduce more and more 

complexity for handling critical functions. This trend leads to an accurate prediction that 

network will continue to grow and become more complex. 

Although SDN architectural approach and control components helps to decompose 

this complexity in operation and management of networks into more manageable pieces, 

it is also critical to note a fundamental behavior of network control components that at 
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the same time modifies the behavior of the underlying shared physical network; i.e. 

modular network control components are in reality not isolated from or independent of 

one another. The decision of one component may depend on the decision of another 

component (e.g. best-effort routing may determine the residual bandwidth available for 

voice over IP traffic). Thus, components need to communicate their decisions with each 

other, and their execution schedule must be managed. The network behavior (e.g. network 

load distribution) caused by one component may inadvertently change the input 

conditions for another control component. Thus, unintended feedback and implicit 

dependency is possible and must be managed. These continuous interaction and flow of 

information in the network can be a major challenge to the network and concurrent actions 

of interdependent network control components may lead to an inconsistent network state. 

Thus, concurrency must be managed as well as finding a modular way to manage the 

components interactions. The control decision a component makes may fail to be 

implemented due to network hardware outages, and transient effects may be observed 

during a network state transition. Thus, the implementation of control decisions must 

ensure the correct transition of network state and component interaction. In summary, the 

network state dependency is critical in creating network interaction problems that must 

be solved to ensure SDN scalability. 

There is little support for solving this network problem. The widely used protocols 

Network Management Protocol (SNMP) and Common Management Information 

Protocol (CMIP) are analogous to low level device drivers; they provide the means for 

network control components to interact with the network, but they are not meant to solve 

the higher-level problems. These tools serve to assist a human operator to monitor the 

network and to carry out simple network configuration changes. For example, they help 

a human operator recognize and analyze changes in the network load, and they enable the 

human operator to analyze the effects of changing the network topology based on past or 
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present network conditions. However, these network management tools do not manage 

the interactions among modular network control components at run time. The problems 

identified in this thesis are not caused by flaws in individual network control components 

but rather by their dynamic interactions. It should be quite clear that it will take a system 

that orchestrates the network control components to solve these problems. Such a system 

is analogous to a network “operating system”. But unlike a traditional operating system 

(e.g. Linux, FreeBSD) that manages applications running on an individual device, a 

network “operating system” will orchestrate the network control components that govern 

the behavior of a network of devices. However, because of the distributed nature of these 

individual network control components, such a network “operating system” is much 

harder to design than a traditional operating system. Determined by the speed of light, 

there is an in-eliminable delay in the network no matter how fast the network can be built, 

and this fundamentally makes it a complex task to collect and synchronize the state and 

information distributed among individual components across the entire network. This 

delay could cumulate over operational time lead to increased network payload or flow 

data.  

3.3 The Goal of Using Proactive Flow  

The goal of proactively programming flow is to enable a reduction in the interaction 

between the network components and thereby reducing the flow request rate; this 

reduction of flow and resource consumption can help the network scale with increased 

network devises and user interaction. In this section I assume that the network is 

controlled by centralized control components, the controller in this is a central system that 

provides a layer of indirection between all the centralized control components and the 

underlying network of devices. For the proactive flow design, the REST API is used to 

push flow to the controller to register in the data plane. REST offers additional 

decoupling, so as to allow for extensive scalability of the network. There is no 
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conversational state, this allows for a wide range of scalability adding additional switch 

nodes behind central controller. REST API is used to program a proactive flow at runtime 

which enabled the network to scale with increased load or resource request, as new flows 

can be introduced at any point of network runtime. 

The support of dynamic loading of routes and flow tables without restarting the whole 

system more easily make REST API very flexible to extend and it is very easy to migrate 

to different platforms and data path devices. 

3.4 Flow 

For this work, HTTP protocol is used  to make HTTP requests for the various flow 

processing actions and calling the respective payload from the controller and how the data 

will be formatted as shown in Figure 0.1below.  

 

 

 

 

Figure 0.1: Case diagram for the Proactive Flow with preset rules 

 

 Listeners are used to interact with the controller in order to create a stream on which 

these messages or interaction will be sent. Apart from reading the network inventory of 

switches and hosts, we will use Models to parse the output of a request to get the topology. 

After our flow know how to communicate with the controller and network inventory and 

other information from the network topology, OpenFlow standard flow processing 
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standards will be used to process the flow with network requirements and also 

communicate certain instructions to the devices in the network. 

To realize flexible and finer granularity routing in network in which users have the 

ability to control the routing decision for each individual or flow in the network, proactive 

flow can be leveraged and it comes with the advantage of increased scalability. For 

example, different security policies can be realized by controlling whether a flow should 

be allowed or not in the network; dynamic traffic engineering can be achieved because 

the network operators now have the ability to flexibly route the flow traffic in any 

arbitrary way that they consider optimal; network operators can also dynamically route 

flows through any arbitrary middle boxes in the network, for monitoring purposes. 

This research focuses on how proactive flow can be used so that data path can handle 

most flow request at flow setup and from network devices thereby optimizing the 

performance of a controller machine from the workload characteristics of OpenFlow at 

flow setup and flow processing.  

3.5 Summary 

In this chapter, the background discussion is on the complexity of computer network 

and the interaction between components which can lead to overhead in the control system 

and loss of processing or hardware capacity. We will further discuss the need for the 

development of proactive flows with the use of representational state transfer REST API 

which is neither propriety nor a contribution of this thesis. We will finally conclude this 

chapter with the design and implementation of our proposed solution. 
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CHAPTER 4: IMPLEMENTATION 

4.1 Introduction 

A basic feature of OpenFlow is the controller is responsible for establishing every flow 

in the network. Whenever a switch receives the first packet of a flow, because there is no 

flow entry configured on the switch to match this flow, the first packet will be forwarded 

to the controller. The controller runs user defined applications to process a flow request. 

As the network grows in requests, it will become a network bottleneck. We investigate 

how to flexibly use threshold triggers in a proactive flow to optimize the scalability of a 

controller machine under the workload characteristics of OpenFlow. This interaction is 

reduced by proactively programming the flow in SDN to limit the controller interaction 

and when a packet matches a predefined match, the PacketOut message is sent to the 

controller, to process such packet. To realize this flexibility and more granularity in SDN 

control, a flow-based threshold-based trigger approach has the advantage, by giving 

network operators the flexibility of controlling the flow processing in the network. This 

can be explained in a scenario where different flow policies are realized by controlling 

whether a DROP or ACCEPT Acton should be applied for a particular flow in the 

network.  

This concept of dynamicity in traffic engineering where the network operators have 

the ability to flexibly route flow traffic in any arbitrary way that they consider optimal 

and dynamically route flows through any subjective middleboxes in the network can be 

applied in the decision-making process of the network operator in setting up the threshold. 

Every network operator has a plan for the network according to specific network 

requirement such as expected capacity and required software and client base to use the 

network, this understanding will help the operator to adequately select the best practice 

for network planning (Di Francesco, Kibilda, Malandrino, Kaminski, & DaSilva, 2017). 
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4.2 Design Consideration 

The objective using proactive flow at the data plane is to distribute workload among 

the SDN planes in is order to maximize the system’s throughput.  We observed that how 

such distribution is done will directly affect the scalability, and at the same time the 

fairness in allocating the capacity of the system. Optimizing the performance of a 

controller means more than just hitting the highest aggregate flow request handling 

throughput. A controller that does so but unintentionally starves some subset of requests 

is useless. More generally, a controller that has arbitrary performance bias against certain 

requests is undesirable. A controller that achieves high throughput but has uncontrollable 

latency is also undesirable. Optimizing performance requires a balance between fairness, 

latency, and throughput. So installing flow rules in the Data plane will enable the fair 

distribution of workload. 

4.3 Fair Capacity Allocation 

The capacity of the controllers must be “fairly” allocated among source switches that 

generate requests according to a well-defined fairness policy. Especially when the offered 

workload is larger than the capacity of the controller. Fair distribution of workload in the 

SDN network. To achieve fairness, the controller performs periodic monitoring of each 

ingress port from the data plane switch. Controller does this by polling each switch every 

t=10 seconds for port statistics using Open Flow message ofp_port_stats. Controller 

sends OpenFlow port status request message ofp_port_stats_request (with port_no = 

OFPP_ANY, for all ports of a switch) to all the switches connected to the controller. 

Each switch responds by sending ofp_port_stats_reply message. Controller then 

computes port utilization for each port using transmitted bytes count tx_bytes using Link 

Load Algorithm (Ian F. Akyildiz, 2016); 
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 Algorithm 1: Identifying Link Load 
Input: Threshold T, time-interval t, port Speed, 100-Mbos Ethernet 
Output: List of conjected ports 

If a port is utilized up to a given threshold, such ports link is added to a list of links to 
be ignored for packet forwarding, and this links are subsequently updated in the flow table 
so subsequent flow will not be routed through these links. With this, only controllers that 
are ready to process packets will receive packets.  

4.4 Interaction 

To achieve the desired goal of this design, our proactive flow setup needs to be setup 

based on the network requirements, so this is the sole responsibility of the network 

operator to make the required decision.  

The starting point is an analysis of the intended network traffic. The system network flow 

first takes into consideration the intended traffic for the network, and uses the TCP layer  

Figure 0.2 Layer 3 IP header for the flow 

3 header IP address Figure 0.2 to determine the source and destination of the packet. 

So a fine grain flow is created to be installed in the data plane.  

Begin: 
   LinkLoadIdentification() 
     Initialize LinkLoad  as Empty 
     for <every switch> do 
         for <each port> do  #Compute Port utilization 
     U = (data * 8 bits * 100)* bandwidth * interval 5.

       If U ≥ T then 
              Add link to LinkLoadList LL. 
          end if 
       end for 
   end for 
 

Figure 0.1 Algorithm to Identify Link Load 
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With this, every packet with source IP that matches specific flow table entry, is 

processed with the respective action. 

By the RFC 791 standard, the length of an IP datagram including internet header and data 

allows up to 65,535 octets datagram length. For this choice of network design as show in 

Figure 0.2, the Maximum Transmission Unit (MTU) that can be transmitted by a protocol 

at an instance taking the default Ethernet interface excluding the Ethernet frame header 

and trailer is 1500 byte.  This means that one frame contains 20 byte IP header, 20 byte 

TCP header, leaving a 1460 byte of the payload that can be transmitted in one frame MSS 

(Maximum Segment Size).  

In this case, there is no encapsulation header i.e. IPsec, MPLS headers etc. The flow 

table proactively contains rules where by IP headers matching this MTU is forwarded 

based on Source and destination IP addresses. 

In a likely case where additional encapsulation with MPLS label swapping, IPsec etc. 

an additional header will be introduced in the packet as shown in Figure 0.3. 

Figure 0.3 TCP Ethernet frame 
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Figure 0.4 Additional TCP Header 

 

When this traffic arrives in the data plane, it is pushed to the controller for processing 

and routes the packets through the network data plane. 

Figure 0.5 shows the gives a pictorial insight from traffic definition to the action taken 

for packets based on the match in the flow table. 

Figure 0.5 Proactive Flow Setup 

We will leverage a proactive design of the flow setup based on Ethernet address. Packet 

delivery to the control plane is controlled by a flag bit i.e. 1. A set flag bit implies a 

threshold that will trigger control plane for rule configuration. 

4.5 Packet Statistic 

Our architecture depends on the OpenFlow packet processing rule. The OpenFlow policy 

on a switch consists of a set of flow control rules. Each rule has a pattern, a priority, 

actions, and counters. A new flow in the switch is matched to a set of rules which checks 

the flow priority and takes the actions on the flow table of such a flow. The OpenFlow 

per flow meter enables the implementation of rate limiting. Meters are used to measure 

Define a traffic
statistic 

Registers condition 
to the data plane 

 

Data plane checks the
condition against its
current locally collected

Trigger a flow-request 
and insert a flow rule 
into a specified flow 

Trigger a flow-request 
and insert a flow rule 
into a specified flow 
table 
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the rate of packet assigned to it and enables the flow control of such packets. To match 

the statistic of a packet introduced to the network against our proactive flow, we use 

OpenFlow ovs-ofctl interface which accept an argument that describes a flow or 

flows, output(port=port,max_len=xbytes) (output the packet to the OpenFlow port 

number, with maximum packet size set to xbytes). When a packet larger than xbytes is 

received in the port, it is processed using the Openflow PacketIn message. The PacketIn 

message is a way for the switch to send a captured packet to the controller.  

The PacketIn is a message which consists of header, and a buffer id which is used to 

assign unique value for buffered packet, and the length of the captured packet total_len. 

The port in_port is a reference to the port in which the packet is received. A field which 

is a representation of the reason a packet has been captured and forwarded; this could ba 

an action because of match, or a miss in the match flow tables, or an error. A packet with 

a 56 bits payload is treated and a normal packet and the specified action in the flow table 

is applied according to the flow table mapping configurations and when packets with 

additional flow instructions or otherwise arrives at the flow table mapping, the threshold 

condition is met and so the trigger involves the controller in such a flow. By this selective 

approach of involving the controller in flow processing, the flow overhead that is incurred 

by a reactive flow which is a primary cause of the scalability limitation is reduced. 

According to the open flow specification, the flow meter is enabled and used to take 

statistics. For our architecture, we register the flow, using the OpenFlow interface ovs-

ofctl to pass in the flow;  

ovs-ofctl add-flow<bridge><match-field>actions=controller(key=value...) (4.1) 

Taking this action will send packets to OpenFlow controller as "packet-in" message. The 

key-value pairs max_len=xbytes: which limit the maximum length of packets sent to the 

controller when a packet match proactive flow rule. 
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The wild card rule can route packets to all the required destination so this will require that 

the network administrator has a specific knowledge of the type of traffic to be handled by 

the network. Since we need to update the rules as the dynamics of the network changes, 

we use rule priority so because there might be situations where the packets might match 

several rules in the flow table and this can cause Rule overlaps. 

4.6 Registers Condition to the Data Plane  

This flow table is registered or installed in the Data plane memory at the start of the 

network, checks the condition against its current locally collected. To maintain 

consistency in the network, when a new switch is added to the network, the flow setup 

modules deletes all previous flows and install the table miss flows. A broadcast tree is 

maintained so that every packet forwarded trough the network is dropped due to 

unintended loops in the network 

 Summary 

This chapter discusses the implantation of proactive flow, and the various elements of 

a network traffic that is vital to design a fine-grained proactive flow in SDN. First, we 

examined the architecture of OpenFlow and the challenge with control plane interaction 

in packet control which is a scalability bottleneck. We discussed that even with a fine 

grain proactive flow setup, a mitigating factor of scalability could still exist, which is link 

failure. This can occur when a controller link is overwhelmed with traffic so much that 

traffic to such links are dropped. To mitigate this, we extend the controller plane 

functionality for a fair distribution of workload. This is done by pooling port utilization, 

with this, traffic will only be received from underutilized ports, thereby avoiding packet 

drop by over flooded ports. 
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 CHAPTER 5: EVALUATION 

The hardware used for the evaluation 3 Ubuntu Server machines. The Helium 

OpenDayLight controller hosted on a machine with Intel Core i7-4790 CPU @ 3.60GHz, 

32G of system memory, and 1GB/s Ethernet channel. 

The Open vSwitch run on Docker container and hosted on a machine with Intel Core 

i7-4790 CPU @ 3.60GHz, 16G of system memory, and 1GB/s Ethernet channel.  

The the packet generator is hosted on a machine with Intel Core i7-4790 CPU @ 

3.60GHz, 16G of system memory, and 1GB/s Ethernet channel.  

The traffic will flow from a physical port on the traffic generator (port A) to a physical 

port on the Open vSwitch and then back to the physical port (port B) on the traffic 

generator. This script uses the TRex Realistic Traffic generator (TRex, 2015). TRex is an 

open source, low cost, stateful and stateless traffic generator fueled by DPDK. It generates 

traffic based on pre-processing and smart replay of real traffic templates.  

The performance of the system is analysed based on the average packet loss, the 

average throughput, and end to end delay based on work done by (Larry L. Peterson, 

2007) and (James F Kurose, 2014). Packet loss is the number of packets that fails to arrive 

at the destination. It is represented as loss percentage 

Packet Loss = Number of packets dropped * 100.                                     (5.1) 

                                Total number of packets sent 

 

The Average Throughput is the average amount of data delivered in unit time 

represented in Mbps. Average throughput is calculated using the formula: 
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  (5.2) 

 

 

(where N is total simulation time * to total number for flow). 

5.1 CPU utilization 

We implemented with a linear topology with an Open vSwitch and a Helium 

OpenDayLight controller. We generate traffic using with the setup for both reactive and 

proactive flow. The traffic generator keeps generating packet of random bytes and a 

varied flow rate of between 250 flows per seconds to 20000 flows per second to test the 

CPU utilization of the controller when implementing the proactive and reactive flow. The 

CPU utilization of each proactive and reactive flow is taken on separate run time to get 

the load average of each. To calculate Linux CPU usage time, subtract the idle CPU time 

from the total CPU time as follows: 

Total CPU time since boot = user+nice+system+idle+iowait+irq+softirq+steal 

Total CPU Idle time since boot = idle + iowait 

Total CPU usage time since boot = Total CPU time since boot - Total CPU Idle time 

since boot 

Total CPU percentage = Total CPU usage time since boot/Total CPU time since boot X 

100 

Each packet processing instruction involves the CPU, the more packets are pushed to 

the controller for processing there is an expected spike in CPU usage  Figure 0.1 shows 

that there is a higher CPU utilization with the reactive flow compared to the proactive 

flow setup. The proactive setup has matching flow for the packets based on source and 
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destination IP address on the flow table, only flows without entry in the flow table were 

pushed to the controller which accounts for the increment of  

Figure 0.1 CPU Utilization of both reactive and proactive flow  

5.2 Packet Loss 

Packet loss for each flow shown in Table. 5-1 

Table 0.1  Table showing the total number of runs, reactive and proactive flow 
setup 

Number of 

packets sent (pps) 

Reactive routing 

flow (packet loss in %) 

Proactive routing flow 

(packet loss in %) 

1000 0 0 

2000 1.9 0 

3000 2.3 0 

4000 3.2 2.39 

5000 3.91 2.63 

6000 4.7 3.43 

7000 9.55 4.49 

8000 13.69 6.38 
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Number of 

packets sent (pps) 

Reactive routing 

flow (packet loss in %) 

Proactive routing flow 

(packet loss in %) 

9000 14.16 6.78 

10000 15.44 7.87 

11000 17.26 6.63 

12000 18.19 5.32 

13000 23.56 6.11 

14000 25.23 10.23 

15000 16.34 12.22 

16000 25.34 12.45 

17000 29.39 18.75 

18000 33.22 16.98 

19000 45.56 23.93 

 

It is observed that the setup system with proactive flow reported much lesser packet 

loss than the system with reactive flow. Initially, packet loss remained approximately 

equal for both the system as the network did not have a high volume of flow to process. 

When the number of flows increased, proactive flow results in much lesser packet loss 

than reactive flow setup. Fig. 5-2 shows the variation of packet loss with varying number 

of packet rate of flows. 
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Figure 0.2 Plot showing the average packet loss 

5.3 Average Throughput  

We measure the average throughput for both the proactive flow SDN setup and the 

reactive flow setup. 

Table 0.2 Average Throughput 

Number of flows Reactive routing flow 

(Mbps) 

Proactive routing flow 

(Mbps) 

1      6.55 6.54 

2 6.58 6.58 

3 6.81 6.82 

4 6.83 6.83 

5 6.24 6.53 

6 6.36 6.56 

7 6.43 6.43 

8 5.64 6.46 
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Number of flows Reactive routing flow 

(Mbps) 

Proactive routing flow 

(Mbps) 

9 5.02 5.74 

10 4.51 5.18 

12 4.32 5.19 

13 5.21 6.76 

14 5.45 6.23 

15 5.45 6.29 

 

We generate traffic for 120 seconds and measure average throughput with constant 

proactive flow over the experiment. 

It is observed that proactive flow setup reported much better throughput than reactive 

flow setup. In the proactive flow, packet drop is reduced which resulted in higher 

throughput. Fig. 5-3 shows average throughput with varying number of flows. 

 

   

 

 

 

 

Figure 0.3 Average Throughput 

Univ
ers

ity
 of

 M
ala

ya



 46 

5.4 Summary 

From Fig.5.1, It is observed that at run time, the proactive setup CPU utilization was 

lower than for the case of the reactive flow. This is because the controller did not interact 

in most of the flow setup, so CPU resources are conserved. From the experiment, the 

lesser the CPU resource a controller process will consume the better the system overall 

performance. With proactive flow, the SDN will scale at high network packets. In the 

case of reactive flow, the flows do not match with any flow table entry and so according 

to the open flow specification; the flow is pushed to the controller for processing. We 

observed that as the flow increased, the CPU resource utilization increased significantly, 

and the packet loss slightly increased, showing that the controller was not processing the 

flow at scale, this is an indication that at a high flow rate, there is a possibility of a bottle 

neck due to the amount of CPU required to process flow in the controller.  

We have systematically evaluated and compared different design choices. The results 

have shown that the proactive implementation design can achieve optimal scalability, 

while at the same time having optimum throughput.  Scalability control make OpenFlow 

implementation of proactive flow a popular choice for different networking scenarios, but 

the performances of the OpenFlow controller must be optimized for high throughput.  
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CHAPTER 6: CONCLUSION 

In this thesis, we argue that as the interaction of flow request between the control and 

data plane increases an unavoidable growth in the network flow increases. The 

fundamental complexity of reactive flow setup of the control plane lies in the fact that, 

different network control components are interacting with each other in and this increases 

with the increment of operational time. It is achievable to implement proactively 

programmed flows in data plane to manage the flow request rate to the controller and all 

together using high and affordable processing capacity for the control plane deployment, 

thus scalability is improved; this also gives the system the benefit of ideal and good 

responsiveness. Using the proactive flow, we eliminated the flow setup time and 

subsequent flow request from the controller. This scaled the controller significantly. 

6.1 Future Work 

Our work has a limitation in the case of dynamic network changes which may affect 

the objective of the desired goal, in order to mitigate this, further studies needs to be done. 

Up to now, we have only studied how to solve the scalability problem of OpenFlow 

controllers by using relatively simple applications, such as “learning switch” or “routing”. 

We have also only considered the network in steady state where there are no changes or 

failures. However, in reality there could be much more complicated application scenarios, 

or the network state is changing dynamically. As a result, we plan to investigate more 

complicated scenarios in the future. 

First of all, one interesting problem to address is how to design data structures for 

applications with scalability as the primary objective, especially under dynamic condition 

where the network is undergoing changes. For example, how to design better routing 

tables and security policy data structures, to support scalable and efficient accesses by 
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concurrent worker threads. If there are concurrent modifications, accesses should be 

efficient to minimize synchronization overhead, while at the same the correctness must 

be enforced. We think a systematic evaluation of the system’s performance under 

different failure or changing conditions is necessary. 
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