Acknowledgements

First and foremost, I would like to give my heartfelt thanksgiving to God
for His grace and mercy in completing the first two phase of this project. He has
given me the strength to persevere in finishing this report. I would also like to
thank both my parents, Mering Jau and Unyang Deng for their continuous prayers
and support. They both always encourage me and made me believe in myself even
though at times I am low in confidence. I am eternally grateful for their
involvement.

I would also like to thank my supervising lecturer, Mr. Noorzailly for his
advices and iﬁput during the duration of this project. His suggestion on placing a
state machine on my design has helped me tremendously. My two laboratory
mates in Mohd Norazmi (Bon) and Zulfikri, for knowledge-sharing while we are
busy laboring in' our respective projects. Also, to Mr. Yamani , though was not my

supervising lecturer, was kind enough to help me at times.

ii

Abstract

This project is about the development of DES in hardware. DES, and it’s
variants (tripleDES) are the main encryption methods used in industry today. The
DES designed should be able to process a 64-bit data block and it’s 64-bit key and
produces a 64-bit encrypted output. It also acts as decryptor, which is done by
entering the 64-bit encrypted data together with the sub-key (operate in decrypt
mode, where key is entered in reverse order). In order for our DES to work,
modules are designed. These modules are controller, RAM, the DES core (initdata)
and sub-key generator. All these submodules are developed, and then integrated
as a complete DES cryptosystem. This DES system will be developed using
VHSIC Hardware Description Language (VHDL). This is a complete report, from

the designing phase up to the system testing at the end.

iii

Contents

No SUBJECT: PAGES
1 | Introduction 1-3
2 | Literature Review
1. Cryptography 4
2, DES 5-24
3. VHDL 25-39
4. Why DES in VHDL? 40
3 | Methodology 41-52
4 | DES Analysis 53-55
5 | DES Design 56-72
6 | DES Design Implementation (Tools and Codes) 73-88
7 | DES Verification — Manual Example 89-97
8 | DES Design Verification 98-107
9 | Discussion 108-110
10 | Summary 111-112
11 | Appendix- DES practical example and Source Code 113-125
12 | Reference 126

iv

Diagrams List

No | FIGURE SUBJECT: PAGES
1 - Project Schedule 3
2 2.01 Sub-key Generator 15
3 2.02 DES Core 16
4 2.03 Function f 17
> 2.04 Triple DES 22
6 3.01 DES Development Process-flow 42
7 3.02 Digital Systems Design Process et
8 3.03 Architectural Design 45
9 3.04 Top-down Design/ Bottom-up Implementation 47
10 3.05 Verifying levels of partitioning 48
11 3.06 Verifying hardware implementation of SSC1 and SSC2 49
12 3.07 Verifying the final design 49
13 3.08 Verifying hardware implementation of SSC3 50
14 3.09 Verifying the final design, an alternative to setup 3.07 Lf
15 4.01 DES functions tree 54
16 4.02 Non-functional tree 39
17 4.03 Top-down View of DES 55
18 5.01 DES overall functional block diagram 56
19 5402 State module 57
20 5.03 Subkeygen module 57
21 5.04 Fullround module 58
22 5.05 Control module 59
23 5.06 PC1 module 60
24 5.07 Shifter module 60
25 5.08 PC2 module 61
26 5.09 IP module 61
27 5.10 Mux32 module 62
28 5.11 Initdata module 62
29 5.12 Ov32 module 63
30 5.13 FP module 63
31 5.14 XP module 64
32 515 Desxorl module 64
33 5.16 sboxN module 65
34 5.17 PP module 65
35 5.18 Desxor2 module 66
36 5.19 Reg32 module 67
37 5.20 Subkeygen RTL diagram 68
38 5.21 Initdata RTL diagram 68
39 5.22 Fullround RTL diagram 69
40 5.23 State module RTL diagram 69

41 5.24 FSM diagram 70
42 525 Shifter decoder table 72
43 5.26 Left shifts per iteration 72
44 6.01 Entry Screen for peakFPGA 73
45 6.02 Main Application 74
46 6.03 Simulator Application 76
47 6.04 Hierarchy Browser 78
48 6.05 Hierarchy Browser toolbar 79
49 6.06 Compile Process 80
50 6.07 Signals selection 82
L 6.08 VHDL simulator Interface 83
52 7.01 After pcl 89
53 7.02 After split 90
54 7.03 Afterip 94
33 7.04 After xp 94
56 7.05 After desxorl 94
57 7.06 After sbox 95
58 7.07 After p 95
59 7.08 End of R1 96
60 7.09 After fp 97
61 8.01 Compiling state tb.vhd 98
62 8.02 Select simulation signals 99
63 8.03 Results from state Init — R6 100
64 8.04 Results from state R7 — R12 101
65 8.05 Results from state R13 — Key end 102
66 8.06 Results Init — R6 (decrypt mode) 104
67 8.07 Results R7 — R12 (decrypt mode) 105
68 8.08 Results R12 — Key end (decrypt mode) 106
69 9.01 Pipelined design for DES 109

vi

1.0 Introduction.

Cryptography is the most common method used in implementing security in
data communication networks. Over a period of time, several cryptographic
algorithms have been developed, such as DES, RSA, Rjindeal and etcetera. DES,
along with its variant (3DES, AES) is among the most widely used cryptographic
methods in data and information protection today. The DES algorithm has been
written and implemented in programming languages such as C, C++, Java, Basic
and others. But these are software versions. After comparing the performance of its
hardware implementation, most of it which are implemented on Application
Specific Integrated Circuits (ASIC), they outperform the software implementation.
With the advancements that have been made in reconfigurable devices, Field
Programmable Gated Arrays (FPGA) and Complex Programmable Logic Devices
(CPLD), brings about the possibility of reconfigurable cryptographic devices into
the real world. Cryptographic algorithms implemented on FPGA and CPLDs,
provide a high level of flexibility, though it is in the expense of performance. This
paper is about the development of hardware based security processor module, the
DES using Very high speed integrated Hardware Description Language, (VHDL).
The code will then be implemented on a reconfigurable device, specifically FPGA.
1.1 Problems to be addressed
1.1.1 Identifying functions, modules within algorithm.

The DES algorithm is a sequence of functions that is used to encrypt
information represented in bits. We are designing a standard 64 bit DES

chip. In order to develop this chip, we will have to identify the

1.1.2

1.2

1.3

module/components of this chip. A module comprised of a combination of
functions in relation to the algorithm. Inputs (in bits) will be passed around
within these modules, in which are processed by the functions in it.

By reviewing the literature related to DES, the functions that are used
in the algorithm can be identified. We can develop the relevant source code
based on the functions.

Learning VHDL.

VHDL is the most common language in developing digital systems.
So, it is absolutely essential to learn this programming language in order to
build a DES chip. This also includes getting familiar with a suitable
development tool.

Develop a project schedule.

Develop a workable project schedule to design and complete a DES

chip.
Scope of Research

The scope of this research just involves cryptography, and the DES
algorithm in particular. Also about VHDL, and its related development tools.
Objective

The objective is to develop a hardware implementation of DES encryption

algorithm based on VHDL, in other words, a DES chip.

1.4

Project Limitation

This project is limited to developing a simulatable model of DES

algorithm. The DES algorithm runs on several modes. The design is based

on Electronic Code Book (ECB) mode of operation, which is the direct

application of the DES algorithm to encrypt and decrypt data. There are

three other modes of operations, Cipher Block Chaining (CBC) mode, the

Cipher Feedback (CFB) mode, and the Output Feedback (OFB) mode. The

characteristics of these modes are explained later in literature review.

1.5 Project Schedule
Below is the designated project schedule.
No. | Task March | April | May | Jun | July | August | September
1 | Early Research
2 | Literature Review
3 | System Analysis
4 | System Design
5 | System
Development
6 | Testing

System Design will be continous throughout the duration of project. The initial

duration (March — April) is the design based on system analysis. The following

duration is in response to system development requirements.

2.0

2.1.0

Introduction to Literature Review

This chapter serves as an introduction to everything that is
related/needed in developing a DES chip. This review is a critical evaluation
of the literature, which provides an academic background to the area of
study. Literature review is important to review on certain information
resources. These resources were gained through reading of books, magazines,
journals and also from the Internet. Through careful analysis on the
information, the pros and cons of this project could be extracted from. All
these will contribute to the development of this project, which is the
hardware implementation of DES algorithm using VHDL.

The first part of this literature review is on cryptography, and an in-
depth analysis of DES algorithm. Then, a review on the development
language, VHDL.

Introduction to Cryptography

What is cryptology? Cryptography? Plaintext? Ciphertext? Encryption? Key?
The story begins: When Julius Caesar sent messages to his trusted

acquaintances, he didn't trust the messengers. So he replaced every A by a D,

every B by a E, and so on through the alphabet. Only someone who knew

the *shift by 3" rule could decipher his messages.

A cryptosystem or cipher system is a method of disguising messages
so that only certain people can see through the disguise. Cryptography is the
art of creating and using cryptosystems. Cryptanalysis is the art of breaking

cryptosystems---seeing through the disguise even when

22.0

you're not supposed to be able to. Cryptology is the study of both
cryptography and cryptanalysis.

The original message is called a plaintext. The disguised message is
called a ciphertext. Encryption means any procedure to convert plaintext into
ciphertext. Decryption means any procedure to convert ciphertext into

plaintext.

A cryptosystem is usually a whole collection of algorithms. The
algorithms are labeled; the labels are called keys. For instance, Caesar
probably used *“shift by n" encryption for several different values of n. It's
natural to say that n is the key here.

The people who are supposed to be able to see through the disguise
are called recipients. Other people are enemies, opponents, interlopers,
eavesdroppers, or third parties.

The DES algorithm

Introduction

The DES algorithm is based on a 128-bit block algorithm developed
in the 1960s by IBM. In technical terms, LUCIFER is an iterative block
cipher, using Feistel rounds - a block of data is encrypted a number of
several times, each time applying the key to half of the block and then
XOR'ing with the other half of the block.

DES was designed to use a 64-bit key to encrypt and decrypt 64-bit

blocks of data using a cycle of permutations, swaps, and substitutions.

Encryption and decryption use the same key.

22.1

A block to be encrypted is subjected to an initial permutation, then to
a key-dependent computation, and then to a final permutation. The initial
and final permutations take the 64-bit block and change the position of each
bit in a pre-determined manner. The final permutation is the reverse of the
initial permutation.

A DES key consists of 64 binary digits of which 56 bits are randomly
generated and used directly by the algorithm. The other 8 bits, which are not
used by the algorithm, are used for error detection. The 8 error detecting bits
are set to make the parity of each 8-bit byte of the key odd, i.e., there is an

odd number of "1"s in each 8-bit byte.

History and Issues on DES

In 1972, the National Institute of Standards and Technology (called
the National Bureau of Standards at the time) decided that a strong
cryptographic algorithm was needed to protect non-classified information.
The algorithm was required to be cheap, widely available, and very secure.
NIST envisioned something that would be available to the general public
and could be used in a wide variety of applications. So they asked for public
proposals for such an algorithm. In 1974 IBM submitted the Lucifer

algorithm, which appeared to meet most of NIST's design requirements.

NIST enlisted the help of the National Security Agency to evaluate
the security of Lucifer. At the time many people distrusted the NSA due to

their extremely secretive activities, so there was initially a certain degree of

skepticism regarding the analysis of Lucifer. One of the greatest worries was
that the key length, originally 128 bits, was reduced to just 56 bits,
weakening it significantly. The NSA was also accused of changing the
algorithm to plant a "back door" in it that would allow agents to decrypt any
information without having to know the encryption key. But these fears

proved unjustified and no such back door has ever been found.

The modified Lucifer algorithm was adopted by NIST as a federal
standard on November 23, 1976. Its name was changed to the Data
Encryption Standard (DES). The algorithm specification was published in
January 1977, and with the official backing of the government it became a

very widely employed algorithm in a short amount of time.

Unfortunately, over time various shortcut attacks were found that
could significantly reduce the amount of time needed to find a DES key by
brute force. And as computers became progressively faster and more
powerful, it was recognized that a 56-bit key was simply not large enough
for high security applications. As a result of these serious flaws, NIST
abandoned their official endorsement of DES in 1997 and began work on a
replacement, to be called the Advanced Encryption Standard (AES). Despite
the growing concerns about its vulnerability, DES is still widely used by

financial services and other industries worldwide to protect sensitive on-line

applications.

222

To highlight the need for stronger security than a 56-bit key can
offer, RSA Data Security has been sponsoring a series of DES cracking
contests since early 1997. In 1998 the Electronic Frontier Foundation won
the RSA DES Challenge II-2 contest by breaking DES in less than 3 days.
EFF used a specially developed computer called the DES Cracker, which
was developed for under $250,000. The encryption chip that powered the
DES Cracker was capable of processing 88 billion keys per second. More
recently, in early 1999, Distributed. Net used the DES Cracker and a
worldwide network of nearly 100,000 PCs to win the RSA DES Challenge
I1I in a record breaking 22 hours and 15 minutes. The DES Cracker and PCs
combined were testing 245 billion keys per second when the correct key was
found. In addition, it has been shown that for a cost of one million dollars a
dedicated hardware device can be built that can search all possible DES keys
in about 3.5 hours. This just serves to illustrate that any organization with

moderate resources can break through DES with very little effort these days.
Steps in DES

1 Process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit (the least significant bit of
each byte) is considered a parity bit. For a key to have correct parity, each
byte should contain an odd number of "1" bits.) This key can be entered
directly, or it can be the result of hashing something else. There is no

standard hashing algorithm for this purpose.
1.2 Calculate the key schedule.

1.2.1 Perform the following permutation on the 64-bit key. (The parity bits
are discarded, reducing the key to 56 bits. Bit 1 (the most significant bit) of

the permuted block is bit 57 of the original key, bit 2 is bit 49, and so on
with bit 56 being bit 4 of the original key.)

Permuted Choice 1 (PC-1)

5749413325179
1585042342618
1025951433527
1911360524436
63554739312315
7 62 54 46 38 30 22
14 6 61 53 453729
211352820124

1.2.2 Split the permuted key into two halves. The first 28 bits are called C[0]
and the last 28 bits are called D[0].

1.2.3 Calculate the 16 sub keys. Start withi= 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and D[i-1] to
get C[i] and D[i], respectively. The number of shifts per iteration are given

in the table below.

Iteration#12345678910111213141516
Left Shifts 1122222212222221

1.2.3.2 Permute the concatenation C[i]D[i] as indicated below. This will
yield K[i], which is 48 bits long.

Permuted Choice 2 (PC-2)

1417112415
3281562110
2319124268
1672720132
415231374755
304051453348
44 49 39 56 34 53
46 42 50 36 29 32

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.

2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it should be
padded as appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

585042342618102
605244362820124
625446383022 146
645648403224 168
57494133251791
595143352719113
615345372921135
635547393123157

2.3 Split the block into two halves. The first 32 bits are called L[0], and the
last 32 bits are called R[0].

2.4 Apply the 16 sub keys to the data block. Start with i = 1.

2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the bit-selection
function below.

Expansion (E)

3212345
456789
8910111213
1213141516 17
161718192021
202122232425
242526272829
28293031321

10

2.4.2 Exclusive-or E(R[i-1]) with K[i].

2.4.3 Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are B[1], bits

7-12 are B[2], and so on with bits 43-48 being B[8].

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start with j = 1.

All values in the S-boxes should be considered 4 bits wide.

2.4.4.1 Take the 1st and 6th bits of B[j] together as a 2-bit value (call it m)
indicating the row in S[j] to look in for the substitution.

2.4.4.2 Take the 2nd through 5Sth bits of B{j] together as a 4-bit value (call it

n) indicating the column in S[j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box 1 (S[1])

1441312151183106125907
0157414213110612119538
4114813621115129731050
1512824917511314100613

S[2]

1518146113497213120510
3134715281412011069115
0147111041315812693215
1381013154211671205149

S[3]

1009146315511312711428
1370934610285141211151
1364981530111212510147
1101306987415143115212

S[4]

7131430691012851112415
1381156150347212110149
1069012117131513145284
3150610113894511127214

11

S[5]

2124171011685315130149
1411212471315015103986
4211110137815912563014
1181271142136150910453

S[6]

1211015926801334147511
1015427129561131401138
9141552812370410113116
4321295151011141760813

S[7]

4112141508133129751061
1301174911014351221586
1411131237141015680592
6111381410795015142312

S[8]

1328461511110931450127
1151381037412561101492
7114191214206101315358
2114741081315129035611

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.
2.4.5 Permute the concatenation of B[1] through B[8] as indicated below.
Permutation P

16 72021
29122817
1152326
5183110
282414
322139
1913306
2211425

2.4.6 Exclusive-or the resulting value with L[i-1]. Thus, all together, your
R[i] = L[i-1] xor P(S{1](B[1])...S[8])(B[8])), where B[j] is a 6-bit block of
E(R[i-1]) xor K[i]. (The function for R[i] is more concisely written as, R[i] =
L[i-1] xor fiR[i-1], K[i]).)

2.4.7 L{i] = R[i-1].

2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perform the following permutation on the block R[16]L[16]. (Note that
block R precedes block L this time.)

Final Permutation (IP**-1)

40 8 48 16 56 24 64 32
3974715552363 31
3864614 5422 62 30
375451353216129
3644412522060 28
353431151195927
3424210501858 26

33141949175725

This has been a description of how to use the DES algorithm to
encrypt one 64-bit block. To decrypt, use the same process, but just use the
keys K[i] in reverse order. That is, instead of applying K[1] for the first

iteration, apply K[16], and then K[15] for the second, on down to K[1].

13

223

Summaries:

Key schedule:
C[0]D[0] = PCl(key)
for1 <=i<=16

Cli] = LS[i}(C[i-1])
D[i] = LS[i}(D[i-1])
K[i] = PC2(CIi]D[i])

Encipherment:

L[0]R[0] = IP(plain block)
forl <=i<=16

L[i] = R[i-1]

R[i] = L[i-1] xor f(R[i-1], K[i])
cipher block = FP(R[16]L[16])

Decipherment:

R[16]L[16] = IP(cipher block)
forl <=i<=16

Rfi-1] = Lfi]

L[i-1] = R[i] xor f(L[i], K[i])
plain block = FP(L[0]R[0])

Flow Diagram of DES Algorithm

The diagrams below summarizes how the DES algorithm works.

14

KEY l

PERMUTED
CHOICE 1
e ¥
Co Do
EFT LEFT
éim"r : SHIFT]
C1 D
I A 4 PERMUTED
CHOICE 2
LEFT LEFT
SHIFTS SHIFTS
Y Y
(W Dy
T % PERMUTED o
CHOICE 2
LEFT LEFT
SHIFTS SHIFTS
Ci6 Dis
[Y PERMUTED 16
CHOICE 2

Figure 2.01 Sub-key Generator

15

INFUT

(’TNITIAL Hsamumnbb
PERMUTED L - Y
INFUT #0 : i
e
L1=Rg RL =L (4R KON
Y K2
({1
L2:RI R2= LIYRK12
v s Kn
[ﬂfp_%
Li5 =Rl R1s = LI4(+}(R K14)15
Kig
gu e
PRE-QUTPUT | Ru6=L1S(+}#(R Kisne L16 = R1
¥
INVEREE INITIAL PERMUT@
QUTPLT
Figure 2.02 DES Core

16

R (32 BITS)

¢

48 BITS

K (48 BITS)

32 BITS

g %H}M

Figure 2.03 Function f

2.2.4 Practical Example of DES Algorithm

For a practical example of DES algorithm, please turn to Appendix

A in the Appendix. This example was worked by Adrian Grigoroff.

2.2.5 Modes of DES Operations

2.2.5.1 ECB (Electronic Code Book)

This is the regular DES algorithm, exactly as described above. Data

is divided into 64-bit blocks and each block is encrypted one at a time.
Separate encryptions with different blocks are totally independent of each
other. This means that if data is transmitted over a network or phone line,
transmission errors will only affect the block containing the error. It also
means, however, that the blocks can be rearranged, thus scrambling a file
beyond recognition, and this action would go undetected. ECB is the

weakest of the various modes because no additional security measures are

implemented besides the basic DES algorithm. However, ECB is the fastest

17

and easiest to implement, making it the most common mode of DES seen in
commercial applications. This is the mode that is used by the DES chip

designed.

2.2.5.2 CBC (Cipher Block Chaining)

In this mode of operation, each block of ECB encrypted ciphertext is
XORed with the next plaintext block to be encrypted, thus making all the
blocks dependent on all the previous blocks. This means that in order to find
the plaintext of a particular block, we need to know the ciphertext, the key,
and the ciphertext for the previous block. The first block to be encrypted has
no previous ciphertext, so the plaintext is XORed with a 64-bit number
called the Initialization Vector, or IV for short. So if data is transmitted over
a network or phone line and there is a transmission error, the error will be
carried forward to all subsequent blocks since each block is dependent upon
the last. This mode of operation is more secure than ECB because the extra

XOR step adds one more layer to the encryption process.

2.2.5.3 CFB (Cipher Feedback)

In this mode, blocks of plaintext that are less than 64 bits long can be
encrypted. Normally, special processing has to be used to handle files whose
size is not a perfect multiple of 8 bytes, but this mode removes that necessity
(Stealth handles this case by adding several dummy bytes to the end of a file

before encrypting it). The plaintext itself is not actually passed through the

18

DES algorithm, but merely XORed with an output block from it, in the
following manner: A 64-bit block called the Shift Register is used as the
input plaintext to DES. This is initially set to some arbitrary value, and
encrypted with the DES algorithm. The ciphertext is then passed through an
extra component called the M-box, which simply selects the left-most M bits
of the ciphertext, where M is the number of bits in the block we wish to
encrypt. This value is XORed with the real plaintext, and the output of that is
the final ciphertext. Finally, the ciphertext is fed back into the Shift Register,
and used as the plaintext seed for the next block to be encrypted. As with
CBC mode, an error in one block affects all subsequent blocks during data
transmission. This mode of operation is similar to CBC and is very secure,

but it is slower than ECB due to the added complexity.

2.2.5.4 OFB (Output Feedback)

This is similar to CFB mode, except that the ciphertext output of
DES is fed back into the Shift Register, rather than the actual final
ciphertext. The Shift Register is set to an arbitrary initial value, and passed
through the DES algorithm. The output from DES is passed through the M-
box and then fed back into the Shift Register to prepare for the next block.
This value is then XORed with the real plaintext (which may be less than 64
bits in length, like CFB mode), and the result is the final ciphertext. Note
that unlike CFB and CBC, a transmission error in one block will not affect

subsequent blocks because once the recipient has the initial Shift Register

19

value, it will continue to generate new Shift Register plaintext inputs without
any further data input. However, this mode of operation is less secure than
CFB mode because only the real ciphertext and DES ciphertext output is

needed to find the plaintext of the most recent block. Knowledge of the key

is not required.
2.2.6 Variation of DES - Triple DES

2.2.6.1 Introduction

Triple DES is a minor variation of this standard. It is three times
slower than regular DES but can be billions of times more secure if used
properly. Triple DES enjoys much wider use than DES because DES is so
easy to break with today's rapidly advancing technology. In 1998 the
Electronic Frontier Foundation, using a specially developed computer called
the DES Cracker, managed to break DES in less than 3 days. And this was
done for under $250,000. The encryption chip that powered the DES
Cracker was capable of processing 88 billion keys per second. In addition, it
has been shown that for a cost of one million dollars a dedicated hardware
device can be built that can search all possible DES keys in about 3.5 hours.
This just serves to illustrate that any organization with moderate resources
can break through DES with very little effort these days. No sane security

expert would consider using DES to protect data.

20

Triple DES was the answer to many of the shortcomings of DES.
Since it is based on the DES algorithm, it is very easy to modify existing
software to use Triple DES. It also has the advantage of proven reliability
and a longer key length that eliminates many of the shortcut attacks that can
be used to reduce the amount of time it takes to break DES. However, even
this more powerful version of DES may not be strong enough to protect data
for very much longer. The DES algorithm itself has become obsolete and is
in need of replacement. To this end the National Institute of Standards and
Technology (NIST) is holding a competition to develop the Advanced
Encryption Standard (AES) as a replacement for DES. Triple DES has been
endorsed by NIST as a temporary standard to be used until the AES is

finished sometime in 2001.

The AES will be at least as strong as Triple DES and probably much
faster. Many security systems will probably use both Triple DES and AES
for at least the next five years. After that, AES may supplant Triple DES as
the default algorithm on most systems if it lives up to its expectations. But
Triple DES will be kept around for compatibility reasons for many years
after that. So the useful lifetime of Triple DES is far from over, even with
the AES near completion. For the foreseeable future Triple DES is an

excellent and reliable choice for the security needs of highly sensitive

information.

21

2.2.6.2 In Depth

Triple DES is simply another mode of DES operation. It takes three
64-bit keys, for an overall key length of 192 bits. In Stealth, you simply type
in the entire 192-bit (24 character) key rather than entering each of the three
keys individually. The Triple DES DLL then breaks the user provided key
into three subkeys, padding the ke_ys if necessary so they are each 64 bits
long. The procedure for encryption is exactly the same as regular DES, but it
is repeated three times. Hence the name Triple DES. The data is encrypted

with the first key, decrypted with the second key, and finally encrypted again

with the third key.

Plaintext

L

DES Encryption Key 1
v
DES Decryption j« Key2
v
DES Encryption Key 3

v
Ciphertext

Figure 2.04 Diagram of Triple DES

Consequently, Triple DES runs three times slower than standard DES,

but is much more secure if used properly. The procedure for decrypting

something is the same as the procedure for encryption, except it is executed

22

in reverse. Like DES, data is encrypted and decrypted in 64-bit chunks.
Unfortunately, there are some weak keys that one should be aware of: if all
three keys, the first and second keys, or the second and third keys are the
same, then the encryption procedure is essentially the same as standard DES.

This situation is to be avoided because it is the same as using a really slow

version of regular DES.

Note that although the input key for DES is 64 bits long, the actual
key used by DES is only 56 bits in length. The least significant (right-most)
bit in each byte is a parity bit, and should be set so that there are always an
odd number of 18 in every byte. These parity bits are ignored, so only the
seven most significant bits of each byte are used, resulting in a key length of
56 bits. This means that the effective key strength for Triple DES is actually

168 bits because each of the three keys contains 8 parity bits that are not

used during the encryption process.
2.2.6.3 Modes of Operation
Triple ECB (Electronic Code Book)

This variant of Triple DES works exactly the same way as the ECB

mode of DES. This is the most commonly used mode of operation.

23

Triple CBC (Cipher Block Chaining)

This method is very similar to the standard DES CBC mode. As with
Triple ECB, the effective key length is 168 bits and keys are used in the
same manner, as described above, but the chaining features of CBC mode
are also employed. The first 64-bit key acts as the Initialization Vector to
DES. Triple ECB is then executed for a single 64-bit block of plaintext. The
resulting ciphertext is then XORed with the next plaintext block to be
encrypted, and the procedure is repeated. This method adds an extra layer of
security to Triple DES and is therefore more secure than Triple ECB,

although it is not used as widely as Triple ECB.

24

2.2

Introduction to VHDL

VHDL is a language for describing digital electronic systems, It
arose out of the United States Government’s Very High Speed Integrated
Circuits (VHSIC) program, initiated in 1980. In the course of this program,
it became clear that there was a need for a standard language for describing
the structure and function of integrated circuits (ICs). Hence the VHSIC
Hardware Description Language (VHDL) was developed, and subsequently
adopted as a standard by the Institute of Electrical and Electronic Engineers
(IEEE) in the US.

VHDL is designed to fill a number of needs in the design process.
Firstly, it allows description of the structure of a design, that is how it is
decomposed into sub-designs, and how those sub-designs are interconnected.
Secondly, it allows the specification of the function of designs using familiar
programming language forms. Thirdly, as a result, it allows a design to be
simulated before being manufactured, so that designers can quickly compare
alternatives and test for correctness without the delay and expense of
hardware prototyping.

For our introduction, I will only touch on the lexical elements and
main language constructs. I will also touch on a bit on the levels of

abstraction used in the language. This is based on VHDL °93 specification.

25

2.2.1 Lexical Elements
The behaviour of a module may be described in programming

language form. This chapter describes the facilities in VHDL which are

drawn from the familiar programming language repertoire.

2.2.1.1 Comments
Comments in VHDL start with two adjacent hyphens (‘--’) and

extend to the end of the line. They have no part in the meaning of a VHDL

description.

2.2.1.2 Identifiers
Identifiers in VHDL are used as reserved words and as programmer
defined names. They must conform to the rule:
identifier ::= letter { [underline] letter_or_digit }
Note that case of letters is not considered significant, so the
identifiers cat and Cat are the same. Underline characters in identifiers are

significant, so This_Name and ThisName are different identifiers.

2.2.1.3 Numbers
Literal numbers may be expressed either in decimal or in a base
between two and sixteen. If the literal includes a point, it represents a real

number, otherwise it represents an integer. Decimal literals are defined by:
decimal_literal ::= integer [. integer] [exponent]
integer ::= digit { [underline] digit }

exponent ::= E [+] integer | E - integer

26

Some examples are:

0 1 123_456_789 987E6 -- integer literals
00 05 271828 12.4E-9 - - real literals

Based literal numbers are defined by:
based_literal ::= base # based_integer [. based_integer] # [exponent]
base ::= integer
based_integer ::= extended_digit { [underline] extended_digit }
extended _digit ::= digit | letter
The base and the exponent are expressed in decimal. The exponent

indicates the power of the base by which the literal is multiplied. The letters

A to F (upper or lower case) are used as extended digits to represent 10 to 15.

Some examples:

2#1100_0100# 16HC4# 4#3014E1 -- the integer
196

2#1.1111_1111_111#E+11 16#F.FF#E2 -- the real number 4095.0

2.2.1.4 Characters

Literal characters are formed by enclosing an ASCII character in single-
quote marks. For example:
) IA' L

2.2.1.5 Strings

Literal strings of characters are formed by enclosing the characters in

double-quote marks. To include a double-quote mark itself in a string, a pair

27

of double-quote marks must be put together. A string can be used as a value
for an object which is an array of characters. Examples of strings:

"A String"

empty string

"A string in a string: ""A string"". " -- contains quote marks

2.2.1.6 Bit Strings

222

VHDL provides a convenient way of specifying literal values for
arrays of type bit ('0's and '1's, see Section 2.2.5). The syntax is:
bit_string_literal ::= base_specifier " bit_value "
base_specifier ::=B |0 | X
bit_value ::= extended_digit { [underline] extended_digit }

Base specifier B stands for binary, O for octal and X for hexadecimal.
Some examples:

B"1010110" --lengthis 7

0"126" -- length is 9, equivalent to B"001_010_110"
X"56" -- length is 8, equivalent to B"0101_0110"
VHDL Language Constructs

VHDL is made up of these 5 primary constructs. They are :
Entities and Architectures
Package

28

» Package Bodies
» Configuration
2.2.2.1 Entities and architectures
Entities and Architectures

Every VHDL design description consists of at least one

entity/architecture pair.

Large design, many entity/architecture pairs and connect them together

to form a complete circuit.

entity declaration describes the circuit as it appears from the "outside" -

from the perspective of its input and output interfaces.

Example:-
entity fulladder is
port (X: in bit;
Y: in bit;
Cin: in bit;
Cout: out bit;
Sum: out bit);
end fulladder;

A VHDL architecture declaration is a statement (beginning with the
architecture keyword) that describes the underlying function and/or

structure of a circuit.

29

» Package Bodies
» Configuration
2.2.2.1 Entities and architectures
Entities and Architectures

Every VHDL design description consists of at least one
entity/architecture pair.
Large design, many entity/architecture pairs and connect them together

to form a complete circuit.

entity declaration describes the circuit as it appears from the "outside" -

from the perspective of its input and output interfaces.

Example:-
entity fulladder is
port (X: in bit;
Y: in bit;
Cin: in bit;
Cout: out bit;
Sum: out bit);
end fulladder;

A VHDL architecture declaration is a statement (beginning with the

architecture keyword) that describes the underlying function and/or

structure of a circuit.

29

Example:-

architecture concurrent of fulladder is

begin

Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cin) or (Y and Cin);
end concurrent;
2.2.2.2 Packages and Package bodies

A VHDL package declaration is identified by the package keyword, and is

used to collect commonly-used declarations for use globally among different
design units.

A package can consist of two basic parts: a package declaration and an

optional package body. Package declarations can contain the following types

of statements:

« Type and subtype declarations

» Constant declarations

« Global signal declarations

« Function and procedure declarations
= Attribute specifications

File declarations

» Component declarations

Alias declarations

Disconnect specifications

30

» Use clauses
Example:-

package conversion is

function to_vector (size: integer; num: integer) return std_logic_vector;

end conversion;

package body conversion is

function to_vector(size: integer; num: integer) return std_logic_vector is

variable ret: std_logic_vector (1 to size);
variable a: integer;
begin
a = num;
for i in size downto 1 loop
if ((a mod 2) = 1) then
ret(i) :==“1’;
else
ret(i) :=“0’;
end if;
a:=al2,
end loop;
return ret;
end to_vector;

end conversion;

31

2.2.2.3 Configuration
The final type of design unit available in VHDL is called a

configuration declaration. A configuration declaration (identified with the
configuration keyword) specifies which architectures are to be bound to
which entities, and it allows you to change how components are connected

in your design description at the time of simulation.

Configuration declarations are always optional, no matter how
complex a design description you create. In the absence of a configuration
declaration, the VHDL standard specifies a set of rules that provide you with
a default configuration. For example, in the case where you have provided
more than one architecture for an entity, the last architecture compiled will

take precedence and will be bound to the entity.
Example:-

configuration this_build of rcomp is

for structure
for COMP1: compare use entity work.compare{comparel);

for ROT1: rotate use entity work.rotate(rotatel);

end for;
end this_build;

32

2.2.3 Levels of abstraction
VHDL supports many possible styles of design description. These

styles differ primarily in how closely they relate to the underlying
hardware. When we speak of the different styles of VHDL, we are really
talking about the differing levels of abstraction possible using the
language—behavior, dataflow, and structure.

Suppose the performance specifications for a given project are: "the
compressed data coming out of the DSP chip needs to be analyzed and
stored within 70 nanoseconds of the strobe signal being asserted..." This
human language specification must be refined into a description that can
actually be simulated. A test bench written in combination with a
sequential description is one such expression of the design. These are all
points in the behavior level of abstraction.

After this initial simulation, the design must be further refined until
the description is something a VHDL synthesis tool can digest. Synthesis is
a process of translating an abstract concept into a less-abstract form. The
highest level of abstraction accepted by today’s synthesis tools is the
dataflow level.

The structure level of abstraction comes into play when little chunks
of circuitry are to be connected together to form bigger circuits. (If the little
chunks being connected are actually quite large chunks, then the result is
what we commonly call a block diagram.) Physical information is the most

basic level of all and is outside the scope of VHDL. This level involves

33

actually specifying the interconnects of transistors on a chip, placing and

routing macrocells within a gate array or FPGA, etc.

Note: In some formal discussions of synthesis, four levels of abstraction
are described; behavior, RTL, gate-level and layout. It is our view that the
three levels of abstraction presented here provide the most useful
distinctions for today’s synthesis user.

As an example of these three levels of abstraction, it is possible to
describe a complex controller circuit in a number of ways. At the lowest
level of abstraction (the structural level), we could use VHDL’s hierarchy
features to connect a sequence of predefined logic gates and flip-flips to
form the complete circuit. To describe this same circuit at a dataflow level
of abstraction, we might describe the combinational logic portion of the
controller (its input decoding and transition logic) using higher-level
Boolean logic functions and then feed the output of that logic into a set of
registers that match the registers available in some target technology. At
the behavioral level of abstraction, we might ignore the target technology
(and the requirements of synthesis tools) entirely and instead describe how
the controller operates over time in response to various types of stimulus.

223.1 Behavior

The highest level of abstraction supported in VHDL is called the

behavioral level of abstraction. When creating a behavioral description of a

circuit, you will describe your circuit in terms of its operation over time.

34

The concept of time is the critical distinction between behavioral
descriptions of circuits and lower-level descriptions (specifically
descriptions created at the dataflow level of abstraction).

Examples of behavioral forms of representation might include state
diagrams, timing diagrams and algorithmic descriptions.

In a behavioral description, the concept of time may be expressed
precisely, with actual delays between related events (such as the
propagation delays within gates and on wires), or it may simply be an
ordering of operations that are expressed sequentially (such as in a
functional description of a flip-flop). When you are writing VHDL for
input to synthesis tools, you may use behavioral statements in VHDL to
imply that there are registers in your circuit. It is unlikely, however, that
your synthesis tool will be capable of creating precisely the same behavior
in actual circuitry as you have defined in the language. (Synthesis tools
today ignore detailed timing specifications, leaving the actual timing results
at the mercy of the target device technology.) It is also unlikely that your
synthesis tool will be capable of accepting and processing a very wide
range of behavioral description styles.

If you are familiar with software programming, writing behavior-
level VHDL will not seem like anything new. Just like a programming
language, you will be writing one or more small programs that operate
sequentially and communicate with one another througﬁ their interfaces.

The only difference between behavior-level VHDL and a software

35

programming language is the underlying execution platform: in the case of
software, it is some operating system running on a CPU; in the case of
VHDL, it is the simulator and/or the synthesized hardware.

2232 Dataflow

In the dataflow level of abstraction, you describe your circuit in
terms of how data moves through the system. At the heart of most digital
systems today are registers, so in the dataflow level of abstraction you
describe how information is passed between registers in the circuit. You
will probably describe the combinational logic portion of your circuit at a
relatively high level (and let a synthesis tool figure out the detailed
implementation in logic gates), but you will likely be quite specific about
the placement and operation of registers in the complete circuit.

The dataflow level of abstraction is often called register transfer
logic, or RTL. This level of abstraction is an intermediate level that allows
the drudgery of combinational logic to be simplified (and, presumably,
taken care of by logic synthesis tools) while the more important parts of the
circuit, the registers, are more completely specified.

There are some drawbacks to using a dataflow method of design in
VHDL. First, there are no built-in registers in VHDL; the language was
designed to be general-purpose, and the emphasis was placed by VHDL’s
designers on its behavioral aspects. If you are going to write VHDL at the
dataflow level of abstraction, you must first create (or obtain) behavioral

descriptions of the register elements you will be using in your design.

36

These elements must be provided in the form of components (using
VHDL’s hierarchy features) or in the form of subprograms (functions or
procedures).

But for hardware designers, it can be difficult to relate the sequential
descriptions and operation of behavioral VHDL with the hardware being
described (or modeled). For this reason, many VHDL users, particularly
those who are using VHDL as an input to synthesis, prefer to stick with
levels of abstraction that are easier to relate to actual hardware devices
(such as logic gates and flip-flops). These users are often more comfortable

using the dataflow level of abstraction.

2233 Structure

The third level of abstraction, structure, is used to describe a circuit
in terms of its components. Structure can be used to create a very low-level
description of a circuit (such as a transistor-level description) or a very
high-level description (such as a block diagram).

In a gate-level description of a circuit, for example, components such
as basic logic gates and flip-flops might be connected in some logical
structure to create the circuit. This is what is often called a netlist. For a
higher-level circuit—one in which the components being connected are
larger functional blocks—structure might simply be used to segment the

design description into manageable parts.

37

Structure-level VHDL features, such as components and
configurations, are very useful for managing complexity. The use of
components can dramatically improve your ability to re-use elements of

your designs, and they can make it possible to work using a top-down

design approach.

To give an example of how a structural description of a circuit relates
to higher levels of abstraction, consider the design of a simple 5-bit
counter. To describe such a counter using traditional design methods, we
might connect five T flip-flops with some simple decode logic.

The following VHDL design description represents this design in the

form of a netlist of connected components:

entity andgate is
port(A,B,C,D: in bit := ‘“1: Y: out bit);
end andgate,

architecture gate of andgate is
begin

Y <= Aand B and C and D;
end gate;

entity tff is
port(Rst,Clk, T in bit; Q: out bit);

end tff;

architecture behavior of tff is
begin
process(Rst,Clk)
variable Qtmp: bit;
begin
if (Rst = ‘1") then
Qtmp := ‘0,
elsif Clk = ‘1’ and Clk’event then
if T="'1"then
Qtmp := not Qtmp;
end if;
end if;
Q <= Qtmp;
end process,
end behavior;

38

entity TCOUNT is
port (Rst,Clk: in bit;
Count: out bit_vector(4 downto 0));
end TCOUNT;

architecture STRUCTURE of TCOUNT is
component tff
port(Rst,Clk, T: in bit; Q: out bit);
end component;
component andgate
port(A,B,C,D: in bit :=‘1’; Y: out bit);
end component;
constant VCC: bit := '1’;
signal T,Q: bit_vector(4 downto 0);

begin
T(0) <= VCC,;
TO: tff port map (Rst=>Rst, Clk=>Clk, T=>T(0), Q=>Q(0));

T(1) <= Q(0);

T1: tff port map (Rst=>Rst, Clk=>Clk, T=>T(1), Q=>Q(1));

A1: andgate port map(A=>Q(0), B=>Q(1), Y=>T(2));

T2: tff port map (Rst=>Rst, Clk=>Clk, T=>T(2), Q=>Q(2));

A2: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), Y=>T(3));

T3: tff port map (Rst=>Rst, Clk=>Clk, T=>T(3), Q=>Q(3));

A3: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), D=>Q(3), Y=>T(4));
T4: tff port map (Rst=>Rst, Clk=>Clk, T=>T(4), Q=>Q(4));

Count <= Q;
end STRUCTURE;
This structural representation seems a straightforward way to describe a 5-

bit counter, and it is certainly easy to relate to hardware since just about any
imaginable implementation technology will have the features necessary to

implement the circuit. For larger circuits, however, such descriptions quickly

become impractical.

39

23

Why DES in VHDL?

The appropriate question should be, why DES in electronic devices?
Since VHDL is a development language for digital electronic systems, we

discuss the benefits of implementing DES in such devices.

[FIPS 74] Implementation of the DES algorithm in special purpose

electronic devices provides the following economic and security benefits:

1. Efficiency of algorithm operation is much higher in specialized electronic
devices.

2. Basic implementation of the algorithm in specialized LSI electronic
devices which can be used in many applications and environments should

result in cost savings to the user through high volume production.

3. Functional operation of the device may be tested and validated
independently of the environment in which it is used.

4. An encryption key may be entered directly into the device without
appearing elsewhere in the computer system.

5. Unauthorized modification of the algorithm is very difficult in such a

device.

6. Independent devices may encipher the data simultaneously and the output

may be tested before the cipher is transmitted.

7. The control and data paths, to and from the device, may be controlled and

monitored.

40

3.0

3.1

320

Introduction

This chapter describes the methodology used in developing our
cryptosystem. The first part is the definition of methodology (3.1). Then,
this is followed by the selected project’s life-cycle (3.2). The next part (3.3)
is the explanation of real-world digital systems design process, and the
methodology used. The final part is this chapter’s conclusion.

What is methodology?

methodology noun

a system of ways of doing, teaching or studying something:

The methodology and findings of the research team have been criticized.

(from Cambridge Advanced Learner's Dictionary)

In the development of computer systems, be it in software, hardware
or a combination of both, an appropriate methodology must be selected to
ensure a smooth and systematic running of operation to achieve designated
goals.

Project’s Life-Cycle Model

For our project, the appropriate life-cycle would be the “Cascading-
Waterfall” model. It is very straightforward and sequential, with every step
following the other. Figure 3.01 shows the diagram of “Cascading-

Waterfall” process flow.

41

Requirements 2
Analysis o

N\
N
N
N\
\\
’
System’s \
3 -~ \\
Design e \
~ \
\\ \
\ \\
* \
b/ \
3 \
) \
p \
\\ \‘ Validate System
Coding \ \
\ %
) \
\
\
"VedyDedon \
1 Units 1
L \
\
Unit and :
Integration \
Testing !
\
\
1
1
1

System's
Testing

Figure 3.01 DES Process-flow Diagram
3.2.1 Brief explanation for process flow
We begin with the requirements analysis. Here, we analyze all that
is needed by the system, like it’s intended input, and expected output. This is
done by understanding the algorithms involved. Then, from the algorithms,
we extract all the functions used to describe the behavior of DES.

Next, we proceed to the system design phase, Here, we will design
the sub modules and data paths for our DES cryptosystem.

42

3.3.0

3.3.1

Following the system design phase is the coding phase. This is
where the functions and algorithm are written in VHDL. The penultimate
phase would be the unit and integration testing phase. Every design unit
are individually tested to verify if it matches the intended behavior from the
system design phase.

The final phase would be the testing of the overall system, and the
system would be considered successful if it does everything from the
requirements analysis.

Methodology used: Top-Down Design / Bottom-Up Implementation

This methodology is commonly used in real-world digital systems
design. It is adapted from Zainalabedin Navabi’s “ VHDL : Analysis and
modeling of Digital Systems, 2™ ed (1998) « . First, we have to discuss a
common digital system design process.

Digital System Design Process

Figure 3.02 shows a typical process for the design of digital systems.

An initial design goes through several transformation before it’s hardware

implementation is obtained.

43

Design ldea

Behavioral Design

por—— Flow graph, Pseudo code

Data Path Design

Bus and Register
P Structure

Logic Design

- Gate wirelist, Netlist

Physical Dasign

ST Transistor List. Layout

MManufacturing

[Chip or Board

Figure 3.02 Digital Systems Design Process

Initially, a hardware designer starts with a design idea. A more
complete definition of the intended hardware must then be developed from
the designed idea. Therefore, the designer must generate general behavioral
definition of system under design. It could be represented by pseudocode,
flow-chart or flow-graph. The designer specifies the overall functionality
without architectural or hardware details of system under design.

The next phase is designing system data path. Here, the designer
specifies registers and logic units necessary for implementation of system.
Components may be interconnected by uni- or bi-directional busses. Data
components communicate via busses, while control procedure controls flow

of data within components. As shown in Fig 3.03, this phase shows

44

architectural design with specification of the control flow. No information
about implementation of the controller - e.g. , hard-wired, encoding

technique, or microprogrammed — is given in this phase.

Dala Control
Reg1 Reg2 »
Procedure for

control of
movement of Dala
P between Registers

Main Logic
Unit Reg3 and buses
Logic
Figure 3.03

Logic design is the next step and this phase involves the use of
primitive flip-flops and gates for implementation of registers, busses, logic
units and their controlling hardware. The result of this stage is the netlist of
gates and flip-flops. Components used and their interconnections are
specified in this netlist. Gate technology and even gate-level details of flip-
flops are not included in this netlist

The next design stage transforms the netlist into a transistor list or
layout. This involves the replacement of gates and flip-flops with transistor
equivalents or library cells. This stage considers loading and timing

requirements in its cell or transistor selection process.

45

3.3.2

The final step in the design is manufacturing, which uses transistor
list or layout specification to burn fuses of field-programmable device to
generate masks for integrated-circuit fabrication.

The designer is involved only up to the logic design phase. The other
two phases is done automatically by vendor-specific development tools.
Top-Down Design/ Bottom-Up Implementation Methodology

Instead of trying to implement the design of a large system all at
once, a divide-and-conquer strategy is taken in a top-down design process. A
top-down design process is referred to dividing a system into subcomponents,
and if necessary, repeating the process on its subcomponents until all
become manageable design parts. Perhaps the word hierarchy should best
explain the system and its subcomponent. Each level of dividing
component/subcomponent is referred to as partitioning. Design of a
component is manageable if the component is available as part of a library, it
can be implemented by modifying existing design parts, or built from scratch
by the designer.

Figure 3.04 shows the original design initially described at
behavioral level. In the first level of partitioning, two of its subcomponents
(SSC1 and SSC2) are mapped to hardware. Further partitioning for hardware
implementation is required for SSC3 and SSC4. SSC3 subcomponent is
partitioned into » numbers of identical subcomponent, and each of these is

realized by SSC3i1 and SSC3i2 hardware parts. The SSC4 subcomponent is

46

partitioned into SSC4_1 and SSC4_2 in which hardware implementations

are available.

]

:
i e L

$504.2

i
4
g

/

SUD: System under design
SSC: System Subcomponent
Shaded areas designate subcomponents with hardware implementations

Figure 3.04 Top-down design/ Bottom-Up Implementation

3.3.3 Verification

At each level of top-down design, multilevel simulation tool plays an
important role in the correct implementation of the design. Initially a
behavioral description of a system under design (SUD) must be simulated to
verify the designer’s understanding of the problem. After the first level of
partitioning, the behavioral description of each subcomponent must be
developed, and these descriptions must be wired to form a structural
hardware model of SUD. Simulation of this new model and comparing the

results of the original SUD description will verify the correctness of the first

47

level of partitioning. Figure 3.05 shows simulation of the first level of
partitioning of the top-down design tree.

Behavioral Model

0
Coﬂ\‘)a‘ -. SUD

S8C1 S5C2 S5C3 S804

™] A
Behavioral Models

Figure 3.05 Verifying first level of Partitioning

After verifying the first level of partitioning, the hardware
implementation of SC1 and SC2 must be verified. Another simulation is run,
with the behavioral description of SC1 and SC2 replaced by a more detailed
hardware level model. Figure 3.06 shows this phase. Shaded boxes represent
component models, which are hardware implementation that are functionally
equivalent to its behavioral counterparts. It has representation for physical
characteristics of the hardware. Typical physical characteristics are timing,
power consumption, and temperature dependencies. Such models are

referred to as hardware-level model.

43

Behavioral Model

Mixed Level Model
Figure 3.06 Verifying hardware implementation of SSC1 and SSC2
The process of partitioning and verification continues throughout the
design process. At the end, a simulation model, consisting of interconnection
specification of hardware-level models of the terminals of the partition tree,
will be formed. The simulation of this model, as shown in Figure 3.07, and
comparing the results with those of original behavioral description of SUD

verify the correctness of the complete design.

Behavioral Mode!

Figure 3.07 Verifying the final design

49

3.3.4 Conclusion

In a large design where simulation of a complete hardware-level
model such as shown in 3.07, is too time consuming, subsections of the
partition will be independently verified. Verified behavioral models of such
subsections will be used in forming the simulation model for final design
verification. Figure 3.08 shows simulation and comparison run for verifying
the behavioral model of SSC3 component, Figure 3.09 shows the final
design verification using the verified behavioral model of SSC3.

Behavioral Model

.......................

Hardware Level
Model

Figure 3.08 Verifying hardware implementation of SSC3.

50

34.

Behavioral Model

Mixed Level Model

SSC3

%,

Figure 3.09 Verifying the final design, an alternative to setup 3.07

Although the behavioral- and hardware-level models of SSC3 may

be functionally equivalent, difference may exist in their timing and other

physical properties. If such characteristics are necessary for design

verification, the behavioral model of a subcomponent can be adjusted to

mimic such properties of hardware level models. Adjusting upper-level

models based on characteristics of actual devices or more detailed models is

referred to as back annotation. Hardware level models often contain

sufficient timing properties of a device that can be reliably used for timing-

back annotation of behavioral models.

Summary

The goal of this project is to develop a simulatable VHDL code for

DES.

The process flow will be based on the “Cascading Waterfall” model. We

would use the “divide and conquer” approach of “Top-down design/Bottom-

up Implementation” methodology. Even though the eventual goal is to

51

implement all the description in bardware, it is possible for the cryptosystem
to run well even with the combination of both behavioral and hardware level
description. The upper levels are usually the ones implemented in behavioral
description. So there is no guarantee that the final system will be fully

implemented in hardware level description.

52

4.0

4.1

4.1.1

DES Analysis —An Overview

We begin by having the requirements analysis. Requirements are
divided into two, which is functional requirements, and non-functional
requirements. Functional requirements are the requirements needed to make
the system behave the way it is supposed to behave. These include the
functions extracted from the algorithm, and also the data flow of input. Non-
functional requirements are requirements needed in support of executing the
algorithm. This includes clock for timing purposes and also other
miscellaneous input (reset, control, clear key ete.). Then, these overall
functional and non-functional requirements are mapped into the sub module
in our DES design. We will have a top-down view of our DES cryptosystem.
Requirements analysis

For requirements analysis, we should look at the functions used in
the algorithm. DES functions involve just bit-wise operations. These
operations are the:

i. shift left
ii. permutation (where values in bit positions are swapped) and
iii. XOR operations.
Functions in DES
There are two main blocks in DES. They are
i. Sub-key generator and

ii. The DES core.

53

The functions in the Sub-key generator
i. Permutation Choice 1
ii. Shift Left

iii. Permutation Choice 2

The functions in DES Core
i. Initial Permutation
ii. Function f
1. Expansion
2. Selection box
3. Permutation P
iii. Final Permutation

The functions are summarized by the figure 4.01 below.

DES
[—I
Sub-key
Generator i

[| Jy =
Permutation Permutation Initial Inverse/Final
Chaoice 1 Shift Left Choice 2 Permutation f Permutation

(PC-1) (PC-2) (IP) (IP*-1)

[o) |

Selection P Permutation
E
xpansion(E) Box(Sbox) P)

Figure 4.01 DES functions Tree Diagram

54

5.0

DES Design — An Overview

In this chapter, each module is seen at its block diagram level and
look at its input and output. We will define the functions it contained. These
functions are also in their own respective modules. Before we begin, here is
a look at our DES design at functional block level. We will see the design
from top down, then work it way up again for RTL level design. Afier that,

we will see how it all works, by looking at the State machine (FSM) diagram

with its detailed description.
reseat clk
Pre-ciphertext (ptyV J | Key/ta
64
Controt
_____ A ey ppegpamy % i Y s
i 2 =
i P :
3 :
: | | ,
' mux32 mux32 -
| :
= :
fulltpm ol H
' i
! I
! 1
! 1
{ 1
: i
1 Initdata : Subkey

' . generator
= :
! '
' '
! 1
! '
! |
! '
! '
| ov32 ov32 -
1
! '
5 I 1 ;
i FP 1
! |
! 1

Ciphertexi(ciys4

Figure 5.01 DES overall functional block diagram

56

5.1 DES module top level (Black box)

phifid)
hay(84)
rase;
clk

State bt

Figure 5.02 State module
Here is the top-most view of our DES design. Pt stands for pre-
cipher-text, while ct stands for cipher-text. This module encapsulates all the
modules needed in DES. The parameters are
Inputs:-
i. pt for 64 bit data input
ii. key for 64 bit key input
iii. dec for DES to operate in encrypt/decrypt mode (‘1° for
decrypt)
iv. reset for reset
v. clk for active clock used for timing purposes
Outputs:-
i. Ct for 64 bit cipher-text output.
5.2 Main sub-modules (Black box)

5.2.1 Subkeygen

dac
the_keyltd)
<hift(d)
ok

i(48)

Subkeygen

1]

Figure 5.03 Subkeygen module

57

The submodules contained are PC1, shifter and PC2. More on those

later, The parameters are

Inputs:-

ii,

iii.

iv.
Outputs:-

5

the key for 64 bit key input

shift for shift command input

dec for DES to operate in encrypt/decrypt mode (‘1° for
decrypt)

clk for active clock used for timing purposes

ki for 48 bit subkeys output entered into DES core.

5.2.2 Fullround

pied]
xhey|48)
resat
ch

losd_rew_pt
oulput_ck

ci{Ed)

fullround

1]

Figure 5.04 Fullround module

This submodules encapsulates IP, mux32, initdata and FP. The

parameters are

Inputs:-

ii.
iii.

iv.

pt for 64 bit pre-ciphertext input.

xkey for 48 bit subkeys input

reset for reset

clk for active clock used for timing purposes

load_new_pt for loading new pre-ciphertext command

58

Outputs:-

output_ok for output verification after 16 rounds of

permutation,

ct for 64 bit ciphertext output..

5.2.3 Control

R e |

dk

e a3 _neew_pt
output_ck

control

hinid)

Figure 5.05 Control Module

This submodule controls the flow of our DES operation. The

parameters are

Inputs:-

i.

ii.

Outputs:-

ii,

iii.

reset for reset

clk for active clock used for timing purposes

load_new_pt for loading new pre-ciphertext command
output_ok for output verification after 16 rounds of

permutation

shift for shift command instructions

59

53 Submodules
Subkeygen

5.3.01 PC1

dec

key(B4] m— pc1

Inputs:-

ii.

Outputs:-
1
ii.

5.3.02 Shifter

darac {24)
distad |28

«h

Inputs:-

shifl(]] e———

0x128;
Hx(28)

Figure 5.06 pcl module

64 bit original data input
dec for DES to function in encrypt/decrypt mode (1 for

decrypt)

c0x is for the 28 bit c-half of subkey into shifter

dOx is for the 28 bit d-half of subkey into shifter

. e thutac_oul28)
shifter TSR

Figure 5.07 shifter module

i. datac for 28 bit c-half output from pcl

ii. datad for 28 bit d-half output from pc2

iii, shift for shift control input from controller

60

iv. clk for clock input

Outputs:-
i. datac_out is for the 28 bit c-half of subkey into pc2

ii. datad_out is for the 28 bit d-half of subkey into pc2

3.3.03 PC2

pc2

cl28)
2B}

p———— kid8)

Figure 5.08 pc2 module
Inputs:-
i. ¢ for 28 bit c-half of subkey
ii. d for 28 bit d-half of subkey
Outputs:-
i. cOx is for the 28 bit c-half of subkey

ii. dOx is for the 28 bit d-half of subkey

Fullround

5.3.04 1P

10x)32)
rx(32)

plifid) em—— 'p

Figure 5.09 ip module

61

5.3.05 Mux32

O32) —
@132) —
sel

mux32

«32)

Figure 5.10 mux32 module
Inputs:-
i. 32 bit e0 to keep data for permutation
ii. 32 bitel to keep data for permutation
iii. sel to start the first of 16 rounds of permutation
Outputs:-

i. 32 bit permuted data

5.3.06 Initdata
g L
,.,5:): initdata WO
ki44)
Figure 5.11 initdata module
Inputs:-

i. clk for clock input
ii. reset for reset
iii. ri for right half input of data

iv. li for left half input of data

62

ki for 48 bit key from subkey generator

V.
Outputs:-
i. lois for the 32 bit left half of permuted data
ii. ro is for the 32 bit right half of permuted data
5.3.07 Ov32
= —] ov32 S
Figure 5.12 ov32 module
Inputs:-
i. e for bit permuted data input
ii. sel to select if permuted data is the last round, to end
permutation round.
iii. CIk for clock input.
Outputs:-
i. ol is for the 32 bit c-half of subkey
ii. 02 is for the 28 bit d-half of subkey
5.3.08 FP

1132 | et
fp e £t{4)

Pk 7 —

Figure 5.13 fp module

63

Inputs:-

i. li for 32 bit left half of permuted data
ii. i for 32 bit right half of permuted data
Outputs:-
i. ct for 64 bit ciphertext output.
Initdata (a submodule of fullround)

5.3.09 XP

Fi{32) e xXp — L1}

Figure 5.14 xp module

Inputs:-
i. rifor 32 bit right half to be expanded

Outputs:~

i. eis for the 48 bit expanded data

5.3.10 desxorl

RG]
—_—)]
——]

€148 e desxor1 e Lad8)
iy e £x516)

e 1:%65{6)

e 127 |6
Jrsns 2616

Figure 5.15 desxor module

Inputs:-

i. e for 48 bit expanded data from xp module

ii. ki for 48 bit subkey from subkey generator

64

Outputs:-
i. bxl for 6 bit data to be entered in sbox1

ii. bx2 for 6 bit data to be entered in sbox2
iii. bx3 for 6 bit data to be entered in sbox3
iv. bx4 for 6 bit data to be entered in sbox4

v. bx5 for 6 bit data to be entered in sbox5
vi. bx6 for 6 bit data to be entered in sbox6

vii. bx7 for 6 bit data to be entered in sbox7

viii. bx8 for 6 bit data to be entered in sbox8

5.3.11 sboxN

18) e sbox_n f—— so4)

Figure 5.16 sbox module

Inputs:-

i. b for 6 bit data input.

Outputs:-

i. so for 4 bit output.

5312 PR

201%(4)
£02x(4)
EERIEH
ELEH

sotu(4] PP
sufxid]
s07x(4)
soBx(4]

il

o 12)

Figure 5.17 pp module

Inputs:-

i. solx for 4 bit data from sbox1

ii. so2x for 4 bit data from sbox2

iii. so3x for 4 bit data from sbox3

iv. so4x for 4 bit data from sbox4

v. so5x for 4 bit data from sbox5

vi. sobx for 4 bit data from sbox6

vii. so7x for 4 bit data from sbox7

viii. so8x for 4 bit data from sbox8

Outputs:~
ii. ppo for 32 bit permuted data after P-permutated

5.3.13 desxor2

o desxor2 a(a2)

K32)

Figure 5.18 desxor2 module

Inputs:-
i. dis for 32 bit input from pp
ii. 1is for 32 bit input from mux32

Outputs:-
i. qis for the 32 bit data passed into registers.

5.3.14 reg32

832)

reg32 ai32)

FE50! cme—

ok

Figure 5.19 reg32 module

Inputs:-
i. ais for 32 bit input from desxor2
ii. reset is for reset
iii. clk is for clock input
Outputs:-

ii. qis for the 32 bit data passed into ov32.

5.4 How they are connected (RTL)
The next few pages will show the diagrams on how all functional
submodules are sub connected. These are the Register Transfer Level

description (RTL). We will work our way up from each main module, then

at the DES (State) block module.

67

5.4.1 Subkeygen

Subkeygen
dec cOx 28] AC(28) iy w26 4
i pci _uaﬁzT;'—Trmd (28) davac [paTEE)] :;g: pc2 X9
shifter
shifi(1)
ck

Figure 5.20 Subkeygen RTL diagram

5.4.2 Initdata

Initdata
rase;
ok
¥32)
A) des
"i :' abor2 Xor
o ngtg' LECH o
e Xp des b ;b,::i a| 2 232} regaz
T pp d(32) 32) iT%
Xor 1 T *althar rodo, sapandng on ciock cycle
SUCH SONT
K441 eI BT

Figure 5.21 Initdata RTL diagram

68

54.3 Fullround
fullround
plf4)
P Mux32 0Ov32 7
wagz) fexizy | | : P
Muid2) Jaqaz) o192) "::g: Initdata ::i; : . j
load new pl ot 48! 0232 et ¢ eht4)
xkayi4l)
clk
roset
oupLT Ok — -
Figure 5.22 fullround RTL diagram
5.4.4 Top level (RTL)
State i
rese,

Pl a8 fullround
load_new_p
outpit vk

ey 84] wkery|48)
dec
loesd_rew gt
otk ok
e the_kayiéid] 95 kijdd)
cantrol
o e
. Subkeygen

Figure 5.23 State module RTL diagram

69

5.5 Finite State Machine (FSM)
This part describes the basic operation of our DES design. Data is looped
and permuted 16 times, before passed out as ciphertext. Below is the FSM
diagram. The operation is controlled in the control module, through the

changing of values of three main parameters; shift, load_new_pt and

output_ok.

Key_end

Output_ok="1"
shift="000'

Ends here..

“Otherwise stated, all input is ‘0",

Figure 5.24 FSM Diagram

70

We can imagine that we have a state machine of 16 states (16 rounds

of permutation), but in reality we will have 17 (because we need one state to

load the key). Shift begins at init state, because the first round of

permutation already needs a single bit shift for its subkeys. With this

architecture, we have a throughput divided by 17 (one cipher every 17 clock

cycles). We also add the key_end state to end the entry of subkeys into

subkeygen. So overall, there are 18 states. Below describes the behavior of

our control component,

Init: load a new key, shift once

State 1: shift once
State 2: shift twice
State 3: shift twice
State 4: shift twice
State 5: shift twice
State 6: shift twice
State 7: shift twice
State 8: shift once
State 9: shift twice
State 10: shift twice
State 11: shift twice
State 12: shift twice
State 13: shift twice

State 14: shift twice

71

State 15: shift once
State 16: none
Key_end: Ends key loading, no shift, give the output (ct).

All the related instructions to the state are executed the next state
(future state). The state “key_end” is necessary, as the name says, to end
loading of key to end rounds of permutation.

Below is a table displaying the shifter’s decoder.

Value action
000 No shift, no new key
010 Shift once, no new key
011 Shift once, new key
100 Shift twice, no new key
“others” error=no shift
Table 5.25 shifter decoder

The least significant bit (bit located in the far right) indicates if a new
key is needed, while the middle bit tells if we want to shift once (1=yes, 0=no)
and finally the most significant bit tells to shift twice. Values like 111, 110 are
impossible (there aren’t states coded with 111 or 110). The signal shift will be
decoded using a case statement in the VHDL.

The shift signal tells the machine to shift the 28 bits to left, either one or

two bits, depending on each round. Below is a table of how each key are shifted.

Iteration # |1 |2 8 |9 |10]11{12]13{14]15

4 6
2 2

7
2 12 |93 J 2 127 a0TaEEa

5
.

3
Left Shifts [1 [1 |2

Table 5.26 Left Shifts per iteration.

72

e

Tials (Deslg
Jiisiton

Chapter 6.0 Design Implementation

This chapter is divided into two. The first part discusses the tool used to
develop our DES design. The tool of choice is peakFPGA. This will act as a simple
user guide to our tool. The next part is about the implementation of our DES

functions in VHDL.
6.1 peakFPGA

B®L P ol M2+~ 0008

PeakFPGA Designer Suite
FPGA Synthesis Edition

Figure 6.01 Entry Screen for peakFPGA
Our tool of choice is peakFPGA from Accolade. It is chosen because it is
recommended by the faculty as one of the most user-friendly VHDL designer suite
available. It is a complete package, allowing our VHDL design to be completed up

to board level synthesizing process. Below is the definitive guide to the peakFPGA

software. (taken from User’s Manual Booklet)

73

" "eakl P GA Designes :uv':m-

S| E ARCI-ITEC‘ILREST[HLLE[‘IETJDD YHD]

= B COMPONENT DUT [TESTADD VHD]
~[B] ENTITY FULLADDER [FULLADD. WD]

~1- [MODLLE FULLADD, YHD
= B ENTITY FULLADDER [FULLADD VHD]
[ARCHITECTURE COMCURRENT [FULLADD. YHD]

Figure 6.02 Main Application

6.1.1 Main application
1. Project file buttons. These buttons are used to create, open and save

PeakFPGA projects.
Design management buttons. These buttons are used to create new VHD],

design files, open files for viewing, and add existing VHDL design files to a
project.

Simulation buttons. These buttons are used to compile, link and execute a
selected part of your design (or the entire design) for simulation.

74

. Synthesis button. This button is used to invoke PeakFPGA's powerful FPGA
synthesis routines to generate an FPGA netlist from one or more of your
VHDL design files.

. Options button. This button allows you to view and modify various program
and project options, including simulation and synthesis options.

+ Search button. This button allows you to search for specific text in all project

files.

. Help button. Provides access to PeakFPGA's comprehensive on-line help

system.

. Hierarchy Browser. This window and its associated toolbar give you control
over design processing (simulation and synthesis) as well as providing you
with a visual display of your design source file dependencies, and providing
a convenient place to manage your design files.

. Status bar. This area of the PeakFPGA application displays useful

information such as the current line of VHDL source code being edited and

displays a percent complete indicator that is active when certain processes

are invoked.

75

6.1.2

VIEST.VHD
(1 1 I 1 I T pe—
asanay
dd=2663) R .. A kT
DOE-)' — '
2hawils
de=1"
AMDE =1 S
AMWE T i
UT cuntmy_stepmeCempet anple
0083 wart for PERIOD/Z:
O0SE: clkcup = nocr ollitaps
0059 Clk <= clxtap; -- ACTath your olock hace
0050 1f done ~ tcue then
2061, vaic;
aay.
9 to tine: 300000 nx
10 11
Figure 6.03 Simulator Application
Simulator application

Print and save buttons. These buttons allow you to print your simulation
results (as waveforms) or to export them to a file.

Zoom in/out buttons. These buttons allow you to view all or part of your

simulation waveform.
Simulation control buttons. These buttons are used to reset, start, step (by a

predetermined amount of time) or stop the current simulation.
Source-level debug buttons. These buttons allow you to step through your
design one executable line at a time for debugging purposes.

Options button. This button allows you to view and modify various

simulation options, including waveform data formats and default time steps.

76

Help button. Provides access to simulation-related on-line help.

Waveform display. This window displays a scrollable waveform
representing simulation results in a logic analyzer format. Selectable cursors
can be used to precisely measure the time between events.

Signal display. This window shows the currently selected signals and their
display order in the associated waveform window. The current values of
signals are also displayed here.

Source level debugging window. This window shows the current line of

VHDL source statements that is being processed during simulation.

Breakpoints can be set in this window, and statement execution can be

observed in detail.

10. Transcript window. This window displays simulation-related messages, as

well as displaying any text I/O from your VHDL source code.

11. Status bar. This area of the simulator application displays useful information

including a percent complete indicator that is active during simulation.

6.13 How do I create a new project in PeakFPGA Design Suite?

Select the PeakFPGA Design Suite icon in the Programs » PeakFPGA

Design Suite folder of your Windows Start menu to start the application.

Select File » New Project.

Select File » Save Project As to name the project and select a project

directory.

Select File » Add Module or File » Create Module to add existing VHDL

design files to the project or create new VHDL files, respectively.

77

5. Select File » Rebuild Hierarchy to analyze the VHDL files and generate

dependency information in the Hierarchy Browser.

6. Select File » Save Project to save the project.

7. When you have created a new project in PeakFPGA (or have opened one of
the sample designs included with theproduct) you will see the VHDI, files

associated with that project listed in the Hierarchy Browser as shown here.

g g AACHITECTURE STIMULLE [TESTSHIF. A0
= [B <omMPOrENT DUT [TESTSHIF. ‘WD)

" = B ENTITYSHIFTER [SHIFTER W)
B DACHITECTURE BEHAVIOR [SHIFTER, WD)

B S [[~

Figure 6.04 Hierarchy Browser

6.1.4 Hierarchy Browser toolbar

Rebuild Hierarchy - analyzes source files and updates hierarchy
Show Hierarchy - expands tree display to show all levels of hierarchy
Hide Hierarchy - collapses tree to display only the top level modules

Clean Up Project - deletes various intermediate and dynamically created

files from the project directory

78

Figure 6.05 Hierarchy Browser toolbar

6.1.5 How do I simulate my VHDL project?

Before simulating your project you must first ensure that it is complete, including
not only a VHDL description of the FPGA design you are attempting to create but a
test bench for that design as well. If you are unfamiliar with test benches and test
bench design you may want to examine one or more of the example projects

supplied with the product.
Once your design is ready for simulation, perform the following steps:

1. Compile each VHDL file, starting with the files that are lowest in the design
hierarchy. (Alternatively, you can select the top-most VHDL file, which js
normally the test bench, and let PeakFPGA automatically compile the other
files based on the dependency information created when the project was last
rebuilt.) To compile a file, highlight (select) that file by clicking on its name
once in the Hierarchy Brower, then select Compile from the Simulate menu,
or click the Compile button in the main toolbar. Correct any VHDI, errors

(as indicated in the Compile Transcript window that appears) and recompile

until all files have been successfully compiled.

Note: for some projects, depending on your design requirements, you may need

to specify an alternate library (the default library is "work") in which to compie

one or more VHDL modules. To specify an alternate library or set other

79

Compile options, highlight a specific file in the Hierarchy Browser, then open

the Options dialog by choosing Options from the main menu. Enter the alternate

library name in the Compile into Library text entry field.

2. After all files have been successfully compiled, select the top-most VHDL
file in the design hierarchy (the test bench) and select Link from the
Simulate menu, or click the Link button. Your compiled design files will be
combined together to create a special kind of executable file called a
Simulation Executable. Errors during the Link process (if any) will be
reported to the Transcript window.

3. After the design has been successfully linked, click the Load Simulation

button to invoke PeakFPGA Design Suite's integrated VHDL simulator.

o Conphe SelachadMod i br Gvudatun
1 PR S L

[NOCULE SHFTEWD
- [B WODULE TEST_SHFTE VHD

- ﬂ ENI’I]'.’]"'""“"" FEPOT MORETOs N
. P —— |
.y e Goncie | | Sovise| Serbsce|
T !

J

Figure 6.06 Compile Process

80

6.1.6 How do I use the VHDL simulator?
To simulate a VHDL design using PeakFPGA Design Suite, you must

provide a VHDL test bench in addition to your synthesizable VHDL design
description. Test bench design is beyond the scope of this tutorial, but you can
examine a variety of sample test benches by opening some of the sample projects
provided with the PeakFPGA product.

When you have successfully compiled, linked and loaded your design,
including its test bench, the integrated VHDL Simulator is launched and a signal
selection dialog appears. This dialog allows you to select the signals of greatest
interest to you (for simulation purposes) and arrange them in a useful order for
display. For your convenience, the Add Primaries button allows you to quickly add
only those signals that were defined in the top-most file in your design (the primary
design inputs and outputs). Once you have selected and ordered the signals to your
satisfaction (keeping in mind that you will be able to change the selections and
display order at any time), click the Close button to exit the dialog and view the
simulation interface.

The simulation interface consists of four primary windows that can be sized
using slider bars. The upper left window is the signal display window, in which the
signals you selected are displayed, along with their simulated values. Immediately
to the right of the signal selection window is the waveform window.

This window displays simulation results for all selected signals in a logic analyzer
format. The waveform window can be scrolled horizontally and vertically, and

zoom features allow you to get a close-up look at any portion of the waveform.

81

belec) Dieaday 1o (T S B Vi ok
pokbbectiech

s 3

CLOCKT chang
[as n
Data_os
Deucton

deese
Ast
1A <

LI

Figure 6.07 Signals selection

Measurement cursors can also be selected (by clicking with the mouse) to
determine the exact amount of time between any two events. The source code
display window, which is located directly below the waveform and signal display
windows, provides you with a source-level view of the design being simulated. This
window allows you to set breakpoints in your VHDL code and execute your design
one line at a time to help in debugging. The window located below the source code
display window is the transcript window. This window contains messages generated
during simulation. Messages may be generated by the simulator to provide various
types of status information, or may be generated from your VHDL code through the
use of assertion statements or text I/O. To start simulation and view the results, click
the Run To Time button (the large green VCR-style arrow). The simulator wil]

execute your design to the end time that has been previously specified for your

design, and a set of simulation waveforms will appear.

82

11 \
Lod B el

Ch.1r
Fesetalr
30142853 -, - T, e Saa e e
pooe-tr
Dt
pock='1'
RAMOE="T'
FUAE ="

ELunﬁuﬁs-m m %

[T bagin

L JUC] walt for PERLODA2:
onsa: clktap := not clktap.
onss: Clk <= clktzp; -~ Attach your clock hece -
00s01 il done - toue then

ooslr wait:
Geatting vacisbleax... 5

Rendy.
|Runming to tame; 30000 na

=

Figure 6.08 VHDL Simulator Interface.

Our design is not up to the synthesis stage because we do not have the
needed tools for circuit level board (CLB) synthesizing process. Besides, our goal
since the beginning of this project is just to design a simulatable code for DES in
VHDL. Therefore, it is not relevant to go further in describing peakFPGA’s next
features (synthesis stage).

6.2 DES functions in VHDL
This part shows how all the DES functions are implemented in VHDL. It is

not the entire source code for the module, but just the excerpt, the one that

makes the function work.
6.2.1 PCl1
architecture behavior of pc1 is
signal XX : std _logic_vector(1 to 56);
begin
process(dec)
begin
if dec = "1" then —add dec value

XX(1)<=key(8); XX(2)<=key(16); XX(3)<=key(24); XX(4)<=key(32);
XX(5)<=keoy(40); XX(6)<=key(48); XX(7)<=keoy(56);
XX(8)<=key(64); XX(9)<=key(7); XX(10)<=key(15); _ XX(11)<=key(23); XX(12)<=key(31);

83

AX(13)<=key(39); XX(14)<=key(47);
X(15)<=koy(55); XX(16)<=koy(63);
XX(20)<=key(30); XX(21)<=keoy(38);
HX(22)<=hoy(48); XX(23)<=key(54);
XX(27)<=koy(21);
XX(29)<=keoy(2); XX(30)<=key(10);
XX(34)<=koy(42); XX(35)<=key(50);
XX(38)<=key(58); XX(37)<=heoy(3);
AX(41)<=key(35); XX(42)<=key(43);
XX(43)<=key(51) XH(44)<=key(59);
Y((48)<=key(28);
XX(50)<=koy(44); XX(31)<=key(32);
W." 53); XN(S6)<=key(81);
XX(1)<=keoy(57); XX(2)<=key(49);
XXU(B)<=key(25); JOUS)y<=keoy(17);
XX{8)<=koy(1); XX(9)<=key(58);
XX(13)<=key(26); XX(14)<=key(18);
XX(15)<=key(10); XX(18)<=key(2);
XX(20)<=key(35); XX(21)<=key(27);
XX(22)<=key(19); XX(23)<=koy(11);
XX(27)<=koy{44); XX(28)<=koy(36);
KX(29)<=key(63); XN(IO)yc=key(5S);
XX(34)<=koy(23); XX(35)<skoy(15);
XX(38)<=key(T); AX(3T7)<wukey(62);
XX(41)<=key(30); XN(42)<=koy(22);
XX(43)<=key(14); XX{(44)<=key(6);
X(48)<=koy(37); XX(49)<=keoy(29);
XX(SO0)<=key(21); XX(51)<=key(13);
MX(ES)<=koy(12); XXYS)<=keoy(4);
ond if;

end pProcess;

XH(17)<=key(6);
XX(24)<=key(62);
XA(31)<=koy(18);
XX(38)<=key(11)

Xx(4S)<=key(4);
XX(52)<=koy(60);
XX(3)<=key(41);
XX(7)<=koy(9);
XX(10)<=koy(50);
XX(17)<=key(58);
XX(24)<=key(3);
XX(31)<=key(47);
XX(38)<=keoy(54);
XX(aSy<=hay(81);

XX(18)<=keoy(14);
XX(25)<=key(5);
XX(32)<=keoy(26);
XX(39)<=key(19);

XX(48)<=key(12);
JOU(SI)<=koy(3T);

XX(4)<=key(33);
XX(11)<=key{42);
R(18)<=koy(S1);

U(3I0)<ukey(46);
XN (48)<=key(53);

XX(19)<=keoy(22);
XX(26)<=key(13);
XN(33)<mkoy(34);
XX(40)<=key(27);
XX(47)<=key(20);
AX(54)<=keoy(48);

XX(54)<=koy(20);

6.2.2 Shifter

procesas(shift,cik)
begin

H (cik’event and clk = '1°) them
case shift is

when 001" =»

- wo shift, new key
datac_out_mem<udatac;
datad_out_mem<=datad;

when 010" =>
- shift once, no new key

datac_out_mem<=To_StdlLogicVector(to_bitvector(datac_out_mem) rol 1);
datad_out_mem<=To_StdLogicVector(to_bitvector(datad_out_mem) rol 1);

when "011" =>
- shift once, new key

datac_out_mem<=To_StdlogicVector(to_bitvector(datac) rol 1);
datad_owt_mem<=To_StdlLogicVector(te_bitvector(datad) rol 1);

when “100" =>
-~ shift twice, no new key

datec_out_ mem<=To_StdlogicVector(to_bitvector{datac_out_mem) rol 2);
datad_out_mem<=To_StdlLogicVector(to_bitvector{datad_out_mem) rol 2);

when “101" =>
~ shift twice, new key

datac_out_mem<=To_StdLogicVector(to_bitvector(datac) rel 2);
datad_out_mem<=To_StdLogicVector{to_bitvecter(datad) rol 2);

when others =>
- error, no shift, no new key

84

623 PC2

architecture behavior of pc2 is
signal YY 1 std_logic_vector(1 to 56);

begin
YY(1 to 28)<=c; YY(29 to S8)<=d;
k(1)<=YY(14); W{(2)<=YY(17); k(3)<=YY(11); ki4)c=YY(24); k(S)y<=YY{1);
k(B)<=YY(S);
k(7)<=YY(3) k(B)<=YY(28); K(9)<=YY(185); k(10)<=YY(6); k{11)e=YY(21);
K{12)<=YY(10);
H(13)<=YY(23); k{14)<aYY(19); K(15)<=YY(12); k(18)<=YY(4); k(17)<=YY(26);
k(18)<=YY(8);
k(19)<=YY(16); k(20)<=YY(7); k(21)<=¥YY(27); k(22)<=YY(20); k(23)<=YY(13);
k(24)<=YY(2);
k(25)<=YY(41); k(26)<=YY(52); K(27)y<=YY(31); k(28)<=YY(37); k(29)<=YY(47);
k(30)<=YY(5S);
k{(31)<=YY(30); k(32)<=YY(40) K(3)<=YY(51); k(34)<=YY(45); k(35)<=YY(33);
k(38)<=YY(48);
K(37)<=YY(44); k(38)<=YY(49); k(39)<=YY(30); k{40)<=YY(S8); k(41)<=YY(34);
k(42)<=YY(53);
k{43)<=YY(48); hi{d4)<=YY(42); k(45)<=YY(30); k{48)<=YY(38); KATy<=YY(29);
k(48)<=YY(32);

end behavior;

624 1IP

architecture behavior of ip is

bogin -10x for left out, rOx for right out

10x(1)<=pt(S8); 10x(2)<=pt{50); 10x(3)<=pt(42); 10x(4)<=pt(34);

10x(5)<=pt(26); 10x(6)<=pt(18); 10x(7)<=pt(10); 10x(8)<=pt(2);

10x(9)<=pt(60); 0x(10)<=pt(52); 0x(11)<=pt(44); 10x(12)<=pt(36);

10x(13)<=pt(28); 10x(14)<=pt(20); 10x{15)<=pt{12); 10x(16)<=pt(4);

0x(17)<=pt(62); 10x(18)<=pt(54); 10x(19)<=pt(46); 10x(20)<=pt(38);

10x(21)<=pt(30); 10x(22)<=pt(22); 10x(23)<=pt(14); 10x(24)<=pt(8);

10x(25)<=pt(64); 10x(26)<=pt(56); Ox(27)<=pt(48); 10x(28)<=pt{40);

O (29)<=pt(32); 10x(30)<=pt(24); 10x(31)<=pt{16); Ox(32)<=pt(B);

TOx(1)<=pt{57); rOx(2)<=pt(49); rOx(3)<=pt{41); rOx(4)<=pt(33);

r0x(5)<=pt(25); rOx(6)<=pt{17); rOx(7)<=pt(9); rOx(8)<=pt(1);

rOx(8)<=pt(50); rOx(10)<=p&(51); rOx(11)<=pt(43); rOx(12)<=pt(35);

rOx(13)<=pt(27); rox(14)<=pt(19); rox(15)<mpt(11); rOx(16)<=pt(3);

TOx{17)<=pt(B1); rox(18)<=pt(53); rOx(19)<=pt{(45); rOx(20)<=pt(37);

rOx(21)<=pt(29); rOx{22)<=pt(21); r0x(23)<=pt(13); rOx(24)<=pt(S)

rOx(25)<=pt(63); r0x(26)<=pt(55); rOx{27)<=pt(47); rOx(28)<=pt(39);

rOn(29)<=pt(31); rox(30)<=pt(23); rOx(31)<=pt(18); Ox(32)<=pt(7);

end behavior;

6.2.5 FP

architecture behaviour of fp Is

begin

ot(1)<=r(8); ct(2)<=i(B8);ct(3)<=r(18); ct{4)<=i(18); ct(S)<=r(24); ct(8)<=i(24);
ct(T)<=r(32); ct{8)<=i(32);

ct(9)<=r(7); ct(10)<=i(7); ct(11)<=r(18); ct(12)<=i(1S); ct(13)<=r(23); ct{14)<=i(23);
ct(15)<=r(31); ct{18)<=i(31);

cH{17)<=r(B); ct{18)<=i(8); ct(19)<=r(14); ct(20)<=i(14); ct(21)<=r(22); ct(22)<=i(22);
ct(23)<=r(30); ct(24)<=1(30);

cH{25)<=r(S); ct(26)<=i(S); cH27)<=r(13); ct(28)<=1(13); ct(20)<=r(21); cH{30)<=i(21);
ct{I1)<ur(29);

ct(33)<=r(4); ct(34)<=i(4); ct(38)<=r(12); ct(36)<=i(12); ct(37)<=r(20); ct(38)<=i(20);
ct(39)<=r(28); ct{40)<=i(28);

ct{41)<=r(3); ct{42)<=i(3); ct{43)emr(11); ct{44)<=i(11); ct{48)<=r(19); ct{48)<=i(19);

L. cHAT)<=r(2T); ct{ag)<=i(2T);

98

HLO M) 40308A HENOISOAIIBOTMG OLa>0% <u.}b00LO. Woim

H{®. %) 10300 3GM0I0SANBOING O4s>08 <= L000L0. BOYM

H(.3.%), 203907 HAMOIFIOANBOIYNE 042308 <m bbb i00. WeYM
"0, (/13

51 q es=o

uBeq

(a)ssso0sd

Xoqs L'T9

tojaryeq pus
Jur(gy) Uzelu=>(ivle hans(ay)e
Hoelum>(sr)e HeDu=>{yv)e Heziu=>icrle Hez)u=>(zy)e Hazhua>(Lp)e
H22)am>(0V] Hoz)p=>(6c)e HsZhexige)e
Hpzhum>(zc)e HsZ)um>igte pZhmm(sc)e HeThm>(yele Hzz)um{cele
{(1Tmx(zE)e Hozlumx(ic)e {1z)u=>(otle
HoZ)um>(sZ)e “sLhu=>(gZ)e oL (2200 21 Iuar(ozZ)® Horuex(gzle
HLpum>lyz)e Hos)u=>(c2)® Hg1ua>(zZ)e
Hyiuar(s2)e e hmripZ)e HzZhumxigr)e Heshumrigi)e “zphumrisi)e
{rLlusxigile Hot)u=x>{st)e
Helu=>(pi)e Hlusx(ci)w Helu=x(Ztr)o Ha)um>(si)e “L)u=>(0L)olp)nx(g)e
Helu=>(g)elplnx(L)otg)u=>(0)otp)uax(g)el(e)um>(p)otZ)un>(C)ol(1) unx>(2)0 Hzeh=>(i)o

uiBeq

81 dx j0 JojARYeq BN YR

dX 979

Tpue
HsZh=>(yohto gto

Heih=>(zono Herh=>(p0h0 Heli=»(00)3 “el=>(65ho Hh=>(g5ho Hiu=>(1ghs

Hozhi=>(9sho Hoz)i=x(agho

Hes)t=x(peho Hgp)amricghio Hosh=>(ZSho Hole>(bEho Hzh=>(08)32 HzM=>(op)0

L8

HsZhor=>(zelodd {yhor=>(1g)odd «1)xx=>(0)odd {zzhot=>(ez)odd
Hohrx=>(az)odd Hoe)xx=>{1z)odd e xx=>(9z)odd He1)xa=>(gz)odd

{ehix=>(pZ)odd Hehot=>(cz)odd HrEhoxa>(zz)odd zehix=>(s2)odd
{yihote>(oz)odd Hyzhixas(es)odd H@)xx=>(gs)odd {zhot=»{L1)odd
Hon=>(91)odd Lrehx=>(gi)odd HeLxu>(yi)odd Hshotes(c)odd
H9ZhDt=>{Zs)odd HSZhO(=>(1 1)odd “SIHO=>(o1)odd HLh(=>(g)odd
Ln0c=>(g)odd

Hgz)xx=>(L)odd HzZ)x=>()odd HeZ)XX=>{g)odd

Hozhax=>{g)odd HOXA=>(Z)odd Hop)xxK=>(1)odd
fxgosa>(ZE 03 GZIXX XZ08=>(9Z 03 SZ)IXX XPOR=>(FZ 0 LZIXN X§OS=>(0T 03 LLIXX
{3

Ixpos=>(X xgos=>(Zi G EXX DHgos=>(8 o3 S)XX os=>{p 03 LIXX
uiBeg
Hze 03 Llogaea ol mis XX jeuligs
51 dd jo moeyeq MMy
dd 879
fssecosd pue
tesed pue

H(.9.%) 10300 31§)10§20A B0 IS OLu>08 <= LOLOLO. BOYM

6.2.9 Non functional requirements description

e Mux32

process(sel,e0,01)

if sel = "0’ then
o <= ol

o <= o1;
ond ify
#nd process;

e Reg32

architecture synth of reg32 is
signal memory 1 std_jogic_vector {1 to 32) ;
begin
process(cik,reset)
begin
f(reset = *1°) then
memory <= (others => ‘0°);

if(ctk = 1" and clk'event) then
memory <= &

oise

if{sel = *1") then

The complete source codes are in the diskette enclosed.

88

Chapter 7.0 DES results verification
In order to verify our DES output, we must have a sample data and key
flowed through all the DES functions. This chapter shows each step of permutation
with the changes to the data at each step.
7.1 Generating 16 subkeys through pc1, shifter and pc2 (functions from
subkeygen)
The suitable key selected is FFOOFFOOFFOOFF00y. The reason why will be
explained later.
After pcl. The y-axis shows the first numbers after a gap of eight bits. The

eighth bits are stripped (bits on shaded area) because we only need 56 bits.

1 |2 |3 |4 [5 [)7 &=

17 |1 1 1 1 1 1 1
25 |0 0 0 0 0 0 0

33 |1 1 1 1 1 1 1
41 |0 0 0 0 0 0 0

49 (1 [T [1 [1 [T |1 [1 |1
57 [0 |0 |0 [0 [0 [0 [0 |0
Table 7.01 After pcl |

89

Split into two halves, ¢ and d.

[c]
1to7 0 1 0 1 0
81014 1 0 1 0 1
151021 |0 1 0 1 0
221028 |1 0 1 0 1
[d]
1to7 0 1 0 1 0
81014 1 0 1 0 1
151021 |0 1 0 1 0
221028 |1 0 1 0 1
Table 7.02 After Split

This is the reason why this key is selected. As you can see, the two halves
are identical, so we only have to work once.
Shift the bits. This stage, we will shift the bits leftward, according to table

5.26. The most significant bits are then shifted to the right.

Pseudocode :- i=0,i++,1 <17

i = 0 (initial stage)

c:- 0101 0101 0101 0101 0101 0101 0101
d:- 0101 010101010101 0101 0101 0101
i =1 (first round of permutation)

c:- 101010101010 1010 1010 1010 1010

d:- 101010101010 1010 1010 1010 1010

90

i=2
¢:- 0101 0101 0101 0101 0101 0101 0101
d:- 0101 0101 0101 0101 0101 0101 0101
i=3
c:- 0101 0101 0101 0101 0101 0101 0101
d:- 0101 0101 0101 0101 0101 0101 0101
i=4
¢:- 0101 0101 0101 0101 0101 0101 0101
d:- 01010101 0101 0101 0101 0101 0101
i=5
¢ :- 01010101 0101 0101 0101 0101 0101
d:- 01010101 0101 0101 0101 0101 0101
i=6
¢:- 01010101 0101 0101 0101 0101 0101
d:- 01010101 0101 0101 0101 0101 0101
i=7
¢ 01010101 0101 0101 0101 0101 0101
d:- 01010101 0101 0101 0101 0101 0101
i=8
¢ 01010101 0101 0101 0101 0101 0101
d:- 01010101 0101 0101 0101 0101 0101
i=9

¢:- 101010101010 1010 1010 1010 1010

91

d:- 10101010 101010101010 1010 1010
i=10
¢:- 10101010 1010 1010 1010 1010 1010
d:- 10101010 1010 1010 1010 1010 1010
i=11
c:- 10101010 1010 1010 1010 1010 1010
d:- 101010101010 10101010 1010 1010
i=12
c:- 10101010 1010 1010 1010 1010 1010
d:- 10101010 101010101010 1010 1010
i=13
c:- 10101010 1010 1010 1010 1010 1010
d:- 101010101010 1010 1010 1010 1010
i=14
c:- 10101010 1010 1010 1010 1010 1010
d:- 10101010 101010101010 1010 1010
i=15
¢:- 101010101010 1010 1010 1010 1010
d:- 101010101010 1010 1010 1010 1010
i=16
c:- 01010101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

92

1.2

After pc2.After 16 rounds of iteration, we could see that actually,
there are only two permutations. Values after permutation 1, 9, 10, 11, 12,
13, 14 and 15 are the same, while the same also goes to values after

permutation 2, 3, 4, 5, 6, 7, 8 and 16. We send this value to pc2, and this is

what we get.

1,=1,9,10, 11,12, 13, 14 and 15 i,=2,3,4,5,6,7,8,16
[0110][11 [1001] [00

10] [1010] 01] [0101]

1100] [00 [0011][11

01] [1010] 10] [0101]

[1011][11 [0100] [00

00] [1110] 11] [0001]

[0110] [O1 [1001] [10

00] [0010] 11][1101]

For all the values in the bracket, it is converted into hexadecimal. Below are
the processed keys.
Keysi, =6EACIABCE642
Keys i, =9153E98319BD
16 rounds of data permutation

Now, we will pass the keys into the DES core. The data will be
passed through functions ip, function fthen finally, fp. The sample data

selected is 00000000FFFFFFFFFy.

93

Afier IP. After passing through the IP function, the values are split

into two halves, R for top half, and L for lower half.

1 2 3 4 5 6 7 8

1t08 1 1 1 1 0 0 0 0
9to16 1 1 1 1 0 0 0 0
17 to 24 1 1 1 1 0 0 0 0
25to0 32 1 1 1 1 0 0 0 0
33 to 40 1 1 1 1 0 0 0 0
41 to 48 1 1 1 1 0 0 0 0
49 to 56 1 1 1 1 0 0 0 0
57 to 64 1 1 1 1 0 0 0 0

Table 7.03 After IP

After XP. Values are entered into f functions, and the first function is

the Expansion (xp) function.

1 2 3 4 5 6

1to6 0 1 1 1 1 0
7to 12 1 0 0 0 0 1
13t018 | (1 1 1 1 0
19 to 24 1 0 0 0 0 1
25t0 30 0 1 1 1 1 0
31 to 36 1 0 0 0 0 1
37 to 42 0 1 1 1 1 0
43 to 48 1 0 0 0 0 1

Table 7.04 After XP

XOR with key. Values passed from XP into the desxorl function,

XOR with subkey R1.
After xp Subkey After R1 Product of xp XOR
rl
011110 011011 000101
100001 101010 001011
011110 110000 101110
100001 011010 111011
011110 101111 110001
100001 001110 101111
011110 011001 000111
100001 000010 100011
Table 7.05 After desxorl

94

Sbox substitutions. The XOR product of xp and r1 are then split into

eight equal adjoining parts, and entered into sboxes. (Refer to 2.4.4 for sbox

guide) Below are the values obtained. For coordinate, it’s in (x,y) form.

sbox Bit value | Coordinate Value In binary
1to6 1 0 0010 1 1,2 7 0111
7to 12 2 1 0101 1 1,5 2 0010
13t0 18 3 1 0111 O 257 0 0000
19 to 24 B 1 1101 1 3,13 7 0111
2510 30 5 1 1000 1 3,8 6 0110
31 to 36 6 1 0111 1 3.7 10 1010
37 to 42 7 0 0011 1 1,3 7 0111
43 to 48 8 1 0001 1 3,1 1 0001
Table 7.06 After sbox

again permuted according to P permutation. Here is the result.

P Permutation. After the sbox substitutions, the values are once

After P

1101

0010

0111

0100

1001

1110

1000

0010

Table 7.07 After P

95

XOR?2. This is the final function before it is passed through as a complete

round (becoming L;+; , remember, R; = Li; ?)

P values R1 keys Product Value (H)
1101 1111 0010 2
0010 0000 0010 2
0111 1111 1000 8
0100 0000 0100 4
1001 1111 0110 6
1110 0000 1110 E
1000 1111 0111 7
0010 0000 0010 2

Table 7.08 End of R1

These steps are repeated another 15 times for 16 rounds of permutation. Due
to space constraints, I will only display the final values after each round of

permutation, before sending the values into FP for our final ciphertext.

R1=22846E72 H R9 = CD2242FE H
R2 = 65C800B9 H R10=251B5698 H
R3 =E1AD5D5B H R11=4DCO0735E H
R4 = 7F86D9C7 H R12=4EA2005D H
R5 = CBAS6EAB H R13 =F41FEB2F H
R6 = E4968AE9 H R14 =70074950 H
R7 =DE8SF8B35 H R15=9A850263 H
R8 =9D4C8B41 H R16=57816792 H

R17=D8645168 H
The two values to enter FP are R15 and R16. R15 will become the left half,

R16 is the right half. R17 is just permuted data that is needed to end the key, and it

is discarded.

96

After FP. Below is the final ciphertext output of DES for our sample data
and key. If the design’s output does not tally with what we get here, then the design

is considered a failure.

Values hexadecimal
1to 16 0111 0110 1010 1111 76CF
17 to 32 0110 0100 1001 0000 6480
33 to 48 1010 0001 0000 0110 C106
49 to 64 0100 0110 1011 0001 46B1
Table 7.09 After fp

Ciphertext = 76CF6480C10646B1 y

* Refer to chapter 2 on permutation arrangements of data.

97

Chapter 8.0 DES Design Testing / Verification

8.1

This chapter shows if our design reaches its objective. A sample data
is entered along with its key, and then we look at its product. If the design is
able to decrypt our ciphertext, then it is considered successful. Sample data
is the same as the one example that we worked in chapter 7.

Compile All Design

All finished designs are compiled at the top-most level of design. In
our case, the State_ TB module. This is a testbench module, and it is
autogenerated from an online automatic vhdl testbench generator. The
website is available in the reference.

Before that, here are the values entered into the testbench.

Pt = x”00000000FFFFFFFF”;
Key =x"FFOOFFOOFFOOFF00”;
Dec =0’

Reset =°0’;

Comede | Link | Sirudate | Syrahmsize | Systom |

by Protel intemational. 1999,

nserved.
Apt 19 1998,

sntity DESXOR2
= mchuecture behaviou of entity DE SXDR2
ang C\DES H\PP VHD nio lbxary WORK. LB

Conplng 72,90

Figure 8.01 Compiling state_tb.vhd

98

8.2

83

Simulate State TB

_

S BB L P Nmaavio -

| aee:
| see2:
| e0e3:
| seea:

0085 :

0006
| 0ee7:
L H
0009:

L H
oe11:

-= initdata module
-~this is where day
-~made up of expang
~-and registers(red

library ieee;
use ieee.std_logic |

entity imitdata is
¢

PR

R

Toadi

Ready.

FReady

Build Apr 19 1999.

initializing...
done

Initialization complete...
Getting variables...

L T T

g

For simulation signals, all signals selected except for reset and dec.

Figure 8.02 Select simulation signals

Waveform Analysis

The most important waveforms to be analyzed are the keys and the

F

permuted data from each round. These values are checked to see if it tallies

with our Controlled Result from Chapter 7. Figure 8.03 — 8.05 shows the

simulation results (up till Key end state)

99

‘Eﬂﬂh.’@ﬁ@&@

[INITDATA.VHD -

DUTddapahov Lm mw«€1ADSDSB
DUT .datapath.ov_i_to_fp=UUUULUUU
DUT datapath.ov_r_to_mux=7F86DSC7
DUT datapath right_in=FOFOFOF0

DUT .datapath.round_| _to_ov=E1ADSD5B
DUT .datapath.round_r_to_ovy=7F86DSC7
DUT subkey_generator.c=5555555

DUT subkey_generator.c1=5555555
DUT .subkey_generator. d=5555555

DUT subkey_generator.d1=5555555
DUT ki_sig=9153E543198D

DUT .output_ok='0'

Ww_CLK='0

DUT Joad_new_pt="0'

DUT .control_unit. pre_state=R5

DUT control_unit fut_state=R6
W_CT=UUUUULUULUUUUULLY
\W_KEY=FFOOFFOOFFOOFFO0
Ww_PT=00000000FFFFFFFF

<

18ns

27ns

UUuuuuoy

) L3

ETADGDEE |

UUUUUUuu

FOFOFOFD.

~ J2BABE 72

Uuuuuuuy

~220RGE 72

|

Joooog

ALSARAA

i

H

bJUUUL6 ERRARAR,

1

| i

A1

CTNIT
il A2

A3

|»

loading...
initializing...
done

Getting variables...
Ready.
Running to time: 2008 ns

Ready

Initialization complete...

!! el e P D | Al et 41 o o .Q:_‘,ma- R N

Stopped at ,¥HD: 0

Figure 8.03 Results from state Init — R6

Selected line : 0 NUM

100

E B m @ ¢ © ‘B@.{Q @JINITDATA.VHD

DUT. datapdhov I to_| me-E'IADSDSB
DUT .datapath.ov_r_to_fp=ULULUUUUU
DUT.datapath.ov_r_to_mux=7F8609C7
DUT .datapath right_in=FOFOFOF0
DUT.datapath.round_|_to_ov=E 1AD5D5B
DUT datapath.round_(_to_ov=7FB6DIC7
DUT subkey_generator.c=5555555
DUT.subkey_generator.c1=5555555
DUT subkey_generator d=5555555

DUT subkey_generator.d1=5555555
DUT ki_sig=3153E543198D

DUT .output_ok="0"

W _CLK=0'

DUT load_new_pt="0"

DUT .control_unit pre_state=RS
DUT.control_unit.fut_state=R6
Ww_CT=UUUUUUuUUUuUuUUU
W_KEY=FFOOFFOOFFOOFFO0
\W_PT=00000000FFFFFFFF

84

72ns

81ns

90ns

99ns

uuuuuooy

D 1 D O)2 G 0L

41

3l i

TDZ24 E

TBABGEAD

T T G

“E40b0AED

DEOFoB 35

SDACEBAT

b

[L |

1

RE
ik

iE]

R10

AT

R12

H10

RTT

H12

A3

Uougoouuutoououy

|~

[

3

loading...
initializing...
done

Getting variables...
Ready.
Running to time: 2008 ns

L PTG E

Ready

Initialization complete...

b i3 SN |

Stopped at .WHD: 0

Selected fine : 0

ml

|

"

Figure 8.04 Results from states R7 to R12

101

VHDL Simulator [5 ATF /'l/‘

BERLE D

|INITDATA.VHD v

DUT datapath.ov_|_to_mux=57816792
DUT datapath ov_r_to_fp=57816792
DUT datapath ov_r_to_mux=D8645168
DUT datapath.right_in=FOFOFOF0
DUT.datapath.round_|_to_ov=57816792
UT.datapath.round_r_to_ov=D8645168
UT subkey_generator.c=5555555

DUT .subkey_generator.c1=5555555
DUT subkey_generator.d=5555555
DUT subkey_generator.d1=5555555
DUT ki_sig=9153E543198D
DUT.output_ok="0'

W _CLK="1"

DUT load_new_pt="0'

DUT control_unit pre_state=INIT
DUT.control_unit fut_state=R1
W_CT=76CFG480C1064681

W _KE'Y=FFOOFFOOFFOOFFO0

\/_PT =00000000FFFFFFFF

<

127ns

136ns

145ns 154ns

163ns

172ns

e | AEAZGD

Y FAFEBX) 70074950]

GAB50263

ADC075E

TEA 20050

TAIFERZ

70074950

FATFEBZF

70074950

SAB50263

b42

13

R14

— b

R16

il ~

H14

RIS

H16

REY_END.

1L}

loading...

initializing...

done

Initialization complete...
Getting variables...
Ready.

Running to time: 2000 ns

B mebifiorn bl ot oo il

Ready

Stopped at .VHD: 0

Selected line ; 0

|-

-

Figure 8.05 Results from states R13 to Key_end

102

As we can see from the figures, the waveform for each value for keys
and permuted data during each state tallies with our Controlled Results.
However, the state value for permuted data is shown in its future state. R1
will have no value, but its supposed value is displayed in R2. But other than
that, all values are right. However, this does not mean anything unless we
can decrypt the ciphertext and get the original data.

The testbench is run again, this time in decrypt mode. Figures 8.06 to

8.08 displays the waveform.

Pt = x” 76CF6480C10646B1”;
Key =x"FFOOFFOOFFOOFF00”;
Dec =17

Reset =’0’;

103

Oﬂmﬂlﬂ.ofﬂ&ﬂQDmeAmwn -

IDUT. datapath.ov__to_fp=UULLUULL
DUT.datapath.ov_r_to_mux=F41FEB2F
DUT.datapath. right_in=84850263

DUT .datapath.round_|_to_ov=70074350
DUT.datapath.round_r_to_ov=F41FEB2F
DUT . subkey_generator.c=AAAAAAA
DUT .subkey_generator.c1=AAAAAAA
DUT.subkey generator. d=AAAAAAA
DUT subkey_generator.d1=AAAAAAA
DUT ki_sig=6EAC1ABCEB42

DUT .output_ok=0"

Ww_CLK="0'

DUT load_new_pt="0'

DUT.control_unit pre_state=R3
DUT.control_unit fut_state=R4
Ww_CT=UUUUUUUUUUUUULUY
W_KE'Y=FFOOFFOOFFOOFFO0
W_PT=76CFE480C10646B1

<

27ns

UUUuuuuy

[~ 70074950

FATFEBZF

Uuuuuuuyd

FATFEBZF

TADED | DCOTSE

IDC075E
25165698

H1

RZ

HZ

H3

v
I~

|

[} NSy T TR " W S S

loading...

initializing...

done

Initialization complete...
Getting variables...
Ready.

Running to time: 2080 ns

Ready

g S) e e oA W

N

Stopped at .VHD: 0

Selected line ; 0

mll

|| i

Figure 8.06 Results Init — R6 (decrypt mode)

104

2 VHDL Sin

GEMBh.Ow‘E@ﬁ®

|INITDATA.VHD

4

DUT. datapalhov k. _to_| _fp=UUUUULULUU
DUT datapath.ov_r_to_mux=25185698
DUT .datapath.right_in=34850263
DUT.datapath.round_|_to_ov=4DCO735E
DUT datapath.round_r_to_ov=25185698
DUT subkey_generator c=AAAABAA
DUT . subkey_generator.c1=AAAAAAA
DUT subkey_generator d=AAAAAAA
DUT subkey_generator.d1=AASAAAA
DUT ki_sig=6EACIABCEG42
DUT.output_ok="0/

W_CLK=T'

DUT load_new_pt="0'

DUT .control_unit. pre_state=R6
DUT.control_unit.fut_state=A7
W_CT=UUUUuuuUuuUuuuuY
\W_KEY=FFOOFFOOFFOOFFO0
W_PT=76CF6480C10646B1

& i

81ns

90ns

9ns

108ns

117ns

126ns &

EEB—__T_—WJﬂEEFE___r__FUREBu

i

DEGFBE®: |

E49BEAES | CBABBEAB

-

%

(7B 25185698

LD2242FE

LD2242FE

SDACO0AT

E49608E0

g
|
B

TA900AET

-

| RS |

=

Lgm

ik

A10

RTT

3

HI

R10

R1T

R12

>

UouUuuouuuuouuuy

|-

tkeg Lplls.,

|

loading...

initializing...

done

Initialization complete...
Getting variables...
Ready.

Running to time: 2000 ns

Ready

- I R NSRS AR 1SRN e

T 3

Stopped at .VHD: 0

Time: 60ns

ml

|

| e

Figure 8.07 Results R7 — R12 (decrypt mode)

105

CHﬁEﬂlﬁ.oe‘:ﬂ

EERL D

|INITDATA.VHD

DUT. datapdh ov L to _fp=FOFOFOFO0
DUT.datapath.ov_r_to_mux=A421D979
DUT.datapath. right_in=84850263
DUT .datapath.round_|_to_ov=22846E72
DUT .datapath.round_r_to_ov=A421D979
DUT subkey_generator. c=AAAAAAA
DUT.subkey_generator.c1=5555555
DUT.subkey_generator. d=AAAAAAA
DUT subkey_generator.d1=5555555
DUT ki_sig=9153E543198D
DUT.output_ok=1'
W_CLK="1"
DUT load_new_pt="1"
DUT.control_unit.pre_state=R1
DUT.control_unit fut_state=R2
‘w_CT=00000000FFFFFFFF
\W_KEY=FFOOFFOOFFOOFF0O0
W _PT=76CFG480C1 064681

<

127ns 136ns

163ns

172ns

181ns -

FOFOFUFD

1

TEWETZ |

2000E 72|

FUFOFUFD

E1AD5058
B5CE0089

7FOED a7
~E1ADBD5E

FUFUFURD

72

R1E

REY _END

H1b

REY END

INIT

v
|
£

|0 it et i

-

loading...
initializing...

done

Initialization complete...
Getting variables...
Ready.

Running to time: 2008 ns

L PR

Ready

i smra s M e

e e |
Stopped at ,YHD: 0

Selected line : 0

>3

| L

Figure 8.08 Results R12 ~ Key_end (decrypt mode)

106

As we can see, ct’s value at the end of the process is
00000000FFFFFFFFFy which is the original data. From the results obtained, our
design has reach its objective, which is to successfully encrypt a 64 bit data based
on DES standards, and decrypt the data using the same key. I have also included

other sample data’s and keys to fully verify our design.

Pt = x"ABCDEFABCDEFABCD",
Key = x"0000000000000000";

Ct = x"AA4FE87B44C87AAB”
Dec =0’;

Pt =x"AA4FE87B44C87AAB";

Key =x"0000000000000000";
Ct =x"ABCDEFABCDEFABCD";
Dec =17

Pt =x" AAAAAAAAAAAAAAAA”;
Key =x"1100ABCDO0011DCBA";

Ct =x"92F88CDBFBI1F8FE2";

Dec =°0’;

Pt =x"92F88CDBFBI1F8FE2";
Key =x"1100ABCD0011DCBA";
Ct =x" AAAAAAAAAAAAAAAA”;

Dec =1

107

Chapter 9

Discussion

This chapter discusses the problems related to this project, its
strength and weaknesses, future improvements consideration and the
projects development process.

In the world of digital systems design, there are two ways in
implementing any design. I came to this deduction because of the
numerous research papers on DES designs I’ve come across, there is
always trade-off between speed and size of design. There is a fast
version, in which all operation are pipelined and done in just one
clock cycle, while the other is small, where operations are permuted
by looping data through the machine according to requirements,
causing delay based on the amount of loops required. Eventually, a
hardware design will be hard-wired onto FPGA or CPLB boards. In a
fast design, all operations are split to be executed individually;
certain architectures are repeated, thus wasting space on the limited
space available on the targeted circuit boards. This method is also
called pipe-lining.

If space is premium, then a small design is appropriate. By
using state machine, the operation can be manipulated. If certain
operation could not be done on a clock cycle yet it uses the same

resources, it can be set in the future state, where the operation is done

108

the following clock cycle. Thus this saves space, as we do not have
to build an identical architecture.

My DES design is a design where space is premium, in other
words, it is a small design. For a variation of my design, I feel it is
possible to develop a fast pipelined design. The Initdata architecture
could be arranged sequentially, because if we consider the DES
algorithm, the left part of the next round is the right part of the
preceding one. So only half of the information needs to be stored. By
doing this way, we store only 32 bits instead of 64 bits. The figure

below illustrates my point.

Ri Ro Ri Ro Ri
Li Lo Li Lo Li
S T s e i -

Figure 9.01 Pipelined design for DES
This design will be at least 17 times faster than our original
design, but in term of space required for FPGA circuit board, it will
be much, much larger.
In term of strength and security the DES offers, the level of
security is still adequate, but considering the strength of computers

nowadays, it is not safe, because the length of key (56 bit) is

109

considered too short and is breakable using brute-force attacks.
Nowadays, only the Triple DES variation of DES offers adequate
security.

In order to arrive at my final design, a lot of effort has been
put into designing, then re-designing the DES architecture. The
hardest part is in designing the shifter and state machine. My initial
design was without a state machine whatsoever, and needless to say,
it was anarchy. Credits should be given to the website, “VHDL
tutorial through example” by Wei Jun Zhang. My state machine and

registers design are taken and adapted from here.

110

Chaptel

Suimary

Chapter 10

Summary

This project is about the development of DES cryptosystem
in VHDL. In other words, a hardware implementation of DES in
VHDL. Two main subjects important in the development for this
project are the DES algorithm, and VHDL programming language.
In-depth research has been done to these two subjects.

The process flow used is based on “Cascading-Waterfall”
model. It is used because of its simplicity and sequential process. The
proposed methodology is “Top-down Design/Bottom-up
Implementation”. Here, in analyzing the system, a top-view is taken,
then broken into modules of components. Recursive partitioning will
produce subsequent levels, and the smaller modules are referred to as
subcomponents. The implementation phase will take a bottom-up
approach, where each submodules are built. These submodules are
then tested individually and all components will be integrated. In
other words, take a “divide-and-conquer” approach in this projects
development.

In DES analysis, based on functions involved, it is deduced
that DES contains two main modules. All functions are identified,

and some are combined to form sub-modules for DES. Results from

the analysis will be the basis of our DES design.

111

For DES design, in addition to the two main modules, two
additional modules are required, which are RAM and Controller. The
RAM modules acts as temporary buffers, and come in three different
designs, in the reg32, ov32 and mux32 modules. The Controller is to
control DES operations using state machine.

The tool of choice used in this project is peakFPGA. DES
operation is performed manually, so we have a benchmark value to
evaluate our design. After individual modules are built, they are
linked and simulated. Then, finally, the top-level design of our DES
testbench is simulated. From the waveform obtained, our design has
successfully encrypted and decrypt 64 bit data based on DES

standards, operating in ECB mode.

112

Appendix A - A practical example of the DES algorithm encryption

By Adrian Grigorof - adrian@grigorof.com
December 2000

The sample 64-bit key:
ddd,bbbbbbbb
222,11011110
16,00010000
156,10011100
88,01011000
232,11101000
164,10100100
166,10100110
48,00110000

The 64-bit key is (hex): DE,10,9C,58,E8,A4,A6,30
The original 64-bit key with parity bits

11011110 bits 1-8

00010000 bits 9-16
10011100 bits 17-24
01011000 bits 25-32
11101000 bits 33-40
10100100 bits 41-48
101001 10 bits 49-56
00110000 bits 57-64

The original bit positions:

12345678

910111213141516
17 18192021222324
2526272829 303132
3334353637 383940
4142434445464748
49 50 51 52 53 54 55 56
57 5859 60 61 62 63 64

The 56-bit key (parity bits stripped)

1101111
0001000
1001110
0101100
1110100
1010010
1010011

0011000 o
The original positions of the bits after the parity 1s stripped:

113

1234567

910111213 1415
1718 1920212223
25262728293031
33343536373839
414243 44 45 46 47
49 50 51 52 53 54 55
57 58 59 60 61 62 63

The positions of the remained 56 bits after Permuted Choice 1 (PC-1)

5749413325179
1585042342618
1025951433527
19 11 3 60 52 44 36
63 554739312315
7625446 38 3022
14 6 61 53 453729
211352820124

The permuted 56-bit key:

0111010
1000110
0110001
0001000
0100000
1011001
0100011
1011111

Split the permuted key into two halves. The first 28 bits are called C[0] and the last 28 bits are called

D[0].
C[o]

0111010
1000110
0110001
0001000

D[0]

0100000
1011001
0100011
10t 11H11

Calculate the 16 sub keys. Start with i = 1 . _ . .
Perform one or two circular left shifts on both C[i-1] and D[i-1] to get C[i] and D[i],

respectively. The number of shifts per iteration are given in the table below.

Iteration # 1234567891011 1213 141516
Left Shifts 1122222212222221

C[oj

114

0111010100011001100010001000

D[0]
0100000101100101000111011111

Cl1]
1110101000110011000100010000

D[1]
1000001011001010001110111110

C2]
1101010001100110001000100001

D[2]
0000010110010100011101111101

C[3]
0101000110011000100010000111

D[3]
0001011001010001110111110100

Cl4]
0100011001100010001000011101

D[4]
0101100101000111011111010000

C[5]
0001100110001000100001110101

D[5]
0110010100011101111101000001

C[6]
0110011000100010000111010100

D[6]
1001010001110111110100000101

Cl7]
1001100010001000011101010001

D[7]
0101000111011111010000010110

C(8]
0110001000100001110101000110

D(8]
0100011101111101000001011001

9l
1100010001000011101010001100

115

D[9]
1000111011111010000010110010

C[10}
0001000100001110101000110011

D[10]
0011101111101000001011001010

C[11]
0100010000111010100011001100

D[11]
1110111110100000101100101000

C[12]
0001000011101010001100110001

D[12]
1011111010000010110010100011

C[13]
0100001110101000110011000100

D[13]
1111101000001011001010001110

C[14]
0000111010100011001100010001

D[14]
1110100000101100101000111011

C[15]
0011101010001100110001000100

D[15]
1010000010110010100011101111

C[16]
0111010100011001100010001000

D[16]
0100000101100101000111011111

Permute the concatenation C[i]D[i] as indicated below. This will yiel

Permuted Choice 2 (PC-2)

1417112415
3281562110
2319124268
1672720132
415231374755
304051453348
44 49 39 56 34 53
46 42 503629 32

d K[i], which is 48 bits long.

116

C[0]D[0]
0111010 bits 1-7
1000110 bits 8-14
0110001 bits 15-21
0001000 bits 22-28
0100000 bits 29-35
1011001 bits 36-42
0100011 bits 43-49
1011111 bits 50-56

K[0]
010000
100110
001101
100011
010001
100001
111101
011100

Loop back until K[16] has been calculated (for this example, the calculation of the rest of the K[x] is
skipped)

Process a 64-bit data block. :
Get a 64-bit data block. If the block is shorter than 64 bits, it should be padded as appropriate for the

application.

Sample 64 bit data:
86,01010110
233,11101001
158,10011110
172,10101100
222,11011110
95,01011111
24411110100
177,10110001

The original bit positions:
12345678
910111213141516
17 18 192021222324
2526272829 3031 32
3334353637383940
4142 434445464748
49 50 51 52 53 54 55 56
5758 5960 61 62 63 64

Perform the following permutation on the data block.

117

Initial Permutation (IP)

585042342618102
605244362820124
62 5446383022146
645648403224 168
57494133251791

595143352719113
615345372921135
635547393123157

Original data:
01010110 bits 1-8
1110100 1 bits 9-16
10011110 bits 17-24
10101100 bits 25-32
11011110 bits 33-40
01011111 bits41-48
11110100 bits 49-56
1011000 1 bits 57-64
Permuted data:
01110011
11110101
01111101
10100010
11011110
11001010
00111110
00110101

Split the block into two halves. The first 32 bits are called L[0], and the last 32 bits are called R[0].
L[0]

01110011

11110101

01111101

10100010

R[0]

11011110

11001010

00111110

00110101 o .
Apply the 16 sub keys to the data block. Start with i = 1. Expand the 32-bit R[i-1] into 48 bits

according to the bit-selection function below.

Expansion (E)
3212345
456789
8910111213
121314151617
16 17 18 1920 21
202122232425
24 2526272829
28293031321

R[0]

118

11011110 bites 1-8

1100101 0 bites 9-16
00111110 bites 17-24
00110101 bites 25-32

12345678

910111213 141516
1718192021222324
2526272829303132

Expanded R[0] or E(R[0])
110111
111101
011001
010100
000111
111100
000110
101011

Exclusive-or E(R[i-1]) with K[i].

E(R[0])

110111
111101
011001
010100
000111
111100
000110
101011

K[0]

010000110111

100110111101

001101011001

100011010100

010001000111

100001111100

111101000110

011100101011 '
XOR: If one, and only one, of the expressions evaluates to True, result is True

Perform Exclusive-or E(R[i-1) with K[i].

E(R[i-1]) xor K[i]

110111
Break E(R[i-1]) xor K[i] into eight 6-bit blocks. o '
Bits 1-6 are B[1], bits 7-12 are B[2], and so on with bits 43-48 being B[8].

119

B[1]
100111

B[2]
011011

B[3]
011100

B[4]
111001

B[5]
011110

B[6]
011101

B[7]
111011

B[8]
110111

Substitute the values found in the S-boxes for all B[j]. Start with j = 1.
All values in the S-boxes should be considered 4 bits wide.

Take the 1st and 6th bits of B[j] together as a 2-bit value (call it m)
indicating the row in S[j] to look in for the substitution.

Take the 2nd through 5th bits of B[j] together as a 4-bit value (call it n)
indicating the column in S[j] to find the substitution.

B[1]
100111
123456 bit order

m=]1=3
n=0011=3

Replace B{j] with S[j]{m][n}.

Substitution Box 1 (S[1])

1441312151183106125907
0157414213110612119538
4114813621115129731050
1512824917511314100613

120

S[1BIB]=2

B[2]
011011

m=01=:1
n=1101=13

S[2]
1518146113497213120510
3134715281412011069115

0147111041315812693215
1381013154211671205149

S[2][1][13] =9

B[3]
011100

m=00=0
n=1110= 14

S[3]
1009146315511312711428
1370934610285141211151

1364981530111212510147
1101306987415143115212

S[3][0][14] =2

B[4]
111001

m=1l1=3
n=1100=12

S[4]

7131430691012851112415
1381156150347212110149
1069012117131513145284
3150610113894511127214

S[4][3][12]=12

B[5]
Ortito

m=00=0
n=1111=15

121

S[5]

2124171011685315130149
1411212471315015103986
42111101378159125630 14
1181271142136150910453

S[5][0][15]=9

B[6]
011101

m=01=1
n=1110=14

S[6]

1211015926801334147511
1015427129561131401138
9141552812370410113116
4321295151011141760813

S[e][1][14]=3

B[7]
111011

m=11=3
n=1101=13

S[7]

4112141508133129751061
1301174911014351221586
1411131237141015680592
6111381410795015142312

S[7][3][13] =2

B[8]
110111

S[8]

1328461511110931450127
1151381037412561101492
7114191214206101315358
2114741081315129035611

122

S[8][3][11]=0
Permute the concatenation of B[1] through B[8] as indicated below.

B[1]=S[1][3][3] =2 = 0010
B[2] = S[2][1][13] = 9 = 1001
B[3] = S[3][0][14] =2 = 0010
B[4] = S[4][3][12] = 12 = 1100
B{5] = S[5][0][15] = 9 = 1001
B[6] = S[6][1][14] = 3 = 0011
B[7] = S[7][3][13] =2 = 0010
B[8] = S[8][3][11] = 0 = 0000

B[1-8]

00101001001011001001001100100000
12345678910111213 14151617 18 192021 22 23 24 2526272829 30 31 32

Permutation P

16 72021
291228 17
1152326
5183110
282414

322739

1913306
2211425

P(S[1)(B[1])...S[8](B[8]))
0010
0001
0010
1000
0111
0110
0100
0100

Exclusive-or the resulting value with L[i-1].

Thus, all together, your R[i] = L[i-1] xor P(S[!](B[l])...S[8](B[8])),

where B[j] is a 6-bit block of E(R[i-1]) xor K[i]. . ' ' .
(The function for R[i] is more concisely written as, Rfi] = L[i-1] xor f(R[i-1], K[i]).)

L[0] xor P(S[1](B[1])...S[81(B[8]))

L[0] (see above)
01110011
11110101
01111101
10100010

123

L[0]

— ket b €

1
1
1
0
1
0

—_— o0 =00

1010
0010

xor with

P(S[11(B[11)-..S[8](B[8))
0010
0001
0010
1000
0111
0110
0100
0100

R[1]

0101
0010
1101
1101
0000
1011
1110
0100

124

Appendix B — DES source codes

There are 26 modules altogether, and due to space constraints, I have
decided to submit it in soft copy. This appendix serves to explain how to use the

source code, in term of entering values into the system. Thus, we can say, a very

simplified user’s manual.

Signals/ Data are entered in the State_TB module. The four parameters are
pt, key, dec and reset. Values entered should follow the correct VHDL syntax.
Below are the correct examples. Note that the signals are mapped to the P_signal
port.

begin

W _PT <=x"00000000ffffrif";
W _KEY <= x"ffO0ffO0ff00ff00";
W_RESET <=0}

W_DEC <=

W_PT <= x"76CF6480C10646B1";

W KEY <= x"ffO0ff00ff00ff00";
W_RESET <='0';

W_DEC <=1,

We can also enter values in pure binary from, but we will have to omit the x

operand before the double quote.

nﬁW@W@“

GIFIINE

:
D<
|

References

Books:-

Zainalabedin Navabi. (1998). VHDL : Analysis and Modeling of Digital

Systems. 2™ ed. McGraw-Hill.

Peter Ashenden (1998). The VHDL Cookbook. 1% ed.

Eric Maiwald. (2001). Network Security :A beginner’s Guide. 1% ed. McGraw-

Hill.

Internet:-

1.

8.

9,

http://www.opencores.org
http://www.acc-eda.com/vhdlref/
http://www.itl.nist.gov/fipspubs/index.htm
http://www.itl.nist.gov/fipspubs/fip74.htm
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://isc.fags.org/faqs/cryptography-faq/
http://www.eventid.net/docs/desexample.htm

http://www.free-ip.com/DES/index.html

10. http://www.cs.ucr.edu/content/esd/labs/tutorial/

11. http://www.vhdl-online.de/~vhdl/TB-GEN/ent2tb1.htm

