
Acknowledgements

First and foremost, I would like to give my heartfelt thanksgiving to <;Jod

for His grace and mercy in completing the first two phase of this project. He has

given me the strength to persevere in finishing this report. I would also like to

thank both my parents, Mering Jau and Unyang Deng for their continuous prayers

and support. They both always encourage me and made me believe in myself even

though at times I am low in confidence. I am eternally grateful for their

involvement.

I would also like to thank my supervising lecturer, Mr. Noorzailly for his

advices and input during the duration of this project. His suggestion on placing a

state machine on my design has helped me tremendously. My two laboratory

mates in Mohd Norazmi (Bon) and Zulfikri, for knowledge-sharing while we are

busy laboring in. our respective projects. Also, to Mr. Y amani , though was not my

supervising lecturer, was kind enough to help me at times.

ii

Univ
ers

ity
 of

 M
ala

ya

Abstract

This project is about the development of DES in hardware. DES, and it's

variants (tripleDES) are the main encryption methods used in industry today. The

DES designed should be able to process a 64-bit data block and it's 64-bit key and

produces a 64-bit encrypted output. It also acts as decryptor, which is done by

entering the 64-bit encrypted data together with the sub-key (operate in decrypt

mode, where key is entered in reverse order). In order for our DES to work,

modules are designed. These modules are controller, RAM, the DES core (initdata)

and sub-key generator. All these submodules are developed, and then integrated

as a complete DES cryptosystem. This DES system will be developed using

VHSIC Hardware Description Language (VHDL). This is a complete report, from

the designing phase up to the system testing at the end.

1ll

Univ
ers

ity
 of

 M
ala

ya

Contents

No SUBJECT: PAGES

1 Introduction 1-3

2 Literature Review

1. Cryptography 4

2. DES 5-24

3. VHDL 25-39

4. Why DES in VHDL? 40

3 Methodology 41-52

4 DES Analysis 53-55

5 DES Design 56-72

6 DES Design Implementation (Tools and Codes) 73-88

7 DES Verification- Manual Example 89-97

8 DES Design Verification 98-107

9 Discussion 108-110

10 Summary 111-112

11 Appendix- DES practical example and Source Code 113-125

12 Reference 126

IV

Univ
ers

ity
 of

 M
ala

ya

Diagrams List

No FIGURE SUBJECT: PAGES

1 - Project Schedule 3
2 2.01 Sub-key Generator 15
3 2.02 DES Core 16
4 2.03 Function/ 17
5 2.04 Triple DES 22
6 3.01 DES Development Process-flow 42
7 3.02 Digital Systems Design Process 44
8 3.03 Architectural Design 45
9 3.04 Top-down Design/ Bottom-up Implementation 47
10 3.05 Verifying levels of partitioning 48
11 3.06 Verifying hardware implementation of SSC 1 and SSC2 49
12 3.07 Verifying the fmal design 49
13 3.08 Verifying hardware implementation of SSC3 50
14 3.09 Verifying the final design, an alternative to setup 3.07 51
15 4.01 DES functions tree 54
16 4.02 Non-functional tree 55
17 4.03 Top-down View of DES 55
18 5.01 DES overall functional block diagram 56
19 5.02 State module 57
20 5.03 Subkeygen module 57
21 5.04 Fullround module 58
22 5.05 Control module 59
23 5.06 PC1 module 60
24 5.07 Shifter module 60
25 5.08 PC2 module 61
26 5.09 IP module 61
27 5.10 Mux32 module 62
28 5.11 Initdata module 62
29 5.12 Ov32 module 63
30 5.13 FP module 63
31 5.14 XP module 64
32 5.15 Desxor 1 module 64
33 5.16 sboxN module 65
34 5.17 PP module 65
35 5.18 Desxor2 module 66
36 5.19 Reg32 module 67
37 5.20 Subkeygen RTL diagram 68
38 5.21 Initdata RTL diagram 68
39 5.22 Fullround RTL diagram 69
40 5.23 State module RTL diagram 69

v

Univ
ers

ity
 of

 M
ala

ya

41 5.24 FSMdiagram 70
42 5.25 Shifter decoder table 72
43 5.26 Left shifts per iteration 72
44 6.01 Entry Screen for peakFPGA 73
45 6.02 Main Application 74
46 6.03 Simulator Application 76
47 6.04 Hierarchy Browser 78
48 6.05 Hierarchy Browser toolbar 79
49 6.06 Compile Process 80
50 6.07 Signals selection 82
51 6.08 VHDL simulator Interface 83
52 7.01 After pel 89
53 7.02 After split 90
54 7.03 Afterip 94
55 7.04 Afterxp 94
56 7.05 After desxor 1 94
57 7.06 After sbox 95
58 7.07 Afterp 95
59 7.08 EndofRI 96
60 7.09 After fp 97
61 8.01 Compiling state tb.vhd 98
62 8.02 Select simulation signals 99
63 8.03 Results from state Init - R6 100
64 8.04 Results from state R 7 - R 12 101
65 8.05 Results from state R13 -Key end 102
66 8.06 Results Init - R6 (decrypt mode) 104
67 8.07 Results R7- R12 (decrypt mode) 105
68 8.08 Results R12- Key end (decrypt mode) 106
69 9.01 Pipelined design for DES 109

vi

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

1.0 Introduction.

Cryptography is the most common method used in implementing security in

data communication networks. Over a period of time, several cryptographic

algorithms have been developed, such as DES, RSA, Rjindeal and etcetera. DES,

along with its variant (3DES, AES) is among the most widely used cryptographic

methods in data and information protection today. The DES algorithm has been

written and implemented in programming languages such as C, C++, Java, Basic

and others. But these are software versions. After comparing the performance of its

hardware implementation, most of it which are implemented on Application

Specific Integrated Circuits {ASIC), they outperform the software implementation.

With the advancements that have been made in reconfigurable devices, Field

Programmable Gated Arrays (FPGA) and Complex Programmable Logic Devices

{CPLD), brings about the possibility of reconfigurable cryptographic devices into

the real world. Cryptographic algorithms implemented on FPGA and CPLDs,

provide a high level of flexibility, though it is in the expense of performance. This

paper is about the development of hardware based security processor module, the

DES using Very high speed integrated Hardware Description Language, (VHDL).

The code will then be implemented on a reconfigurable device, specifically FPGA.

1.1 Problems to be addressed

1.1.1 Identifying functions, modules within algorithm.

The DES algorithm is a sequence of functions that is used to encrypt

information represented in bits. We are designing a standard 64 bit DES

chip. In order to develop this chip, we will have to identify the

1

Univ
ers

ity
 of

 M
ala

ya

module/components of this chip. A module comprised of a combination of

functions in relation to the algorithm. Inputs (in bits) will be passed around

within these modules, in which are processed by the functions in it.

By reviewing the literature related to DES, the functions that are used

in the algorithm can be identified. We can develop the relevant source code

based on the functions.

1.1.2 Learning VHDL.

VHDL is the most common language in developing digital systems.

So, it is absolutely essential to learn this programming language in order to

build a DES chip. This also includes getting familiar with a suitable

development tool.

1.1.3 Develop a project schedule.

Develop a workable project schedule to design and complete a DES

chip.

1.2 Scope of Research

The scope of this research just involves cryptography, and the DES

algorithm in particular. Also about VHDL, and its related development tools.

1.3 Objective

The objective is to develop a hardware implementation of DES encryption

algorithm based on VHDL, in other words, a DES chip.

1.4 Project Limitation

This project is limited to developing a simulatable model of DES

algorithm. The DES algorithm runs on several modes. The design is based

2

Univ
ers

ity
 of

 M
ala

ya

on Electronic Code Book (ECB) mode of operation, which is the direct

application of the DES algorithm to encrypt and decrypt data. There are

three other modes of operations, Cipher Block Chaining (CBC) mode, the

Cipher Feedback (CFB) mode, and the Output Feedback (OFB) mode. The

characteristics of these modes are explained later in literature review.

1.5 Project Schedule

Below is the designated project schedule.

No. Task ••• •• • •

Jun July August September

1 Early Research

2 Literature Review

3 System Analysis

4 System Design

5 System

Development •• 6 Testing ••
System Design will be continous throughout the duration of project. The initial

duration (March- April) is the design based on system analysis. The following

duration is in response to system development requirements.

3

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

2.0 Introduction to Literature Review

This chapter serves as an introduction to everything that is

related/needed in developing a DES chip. This review is a critical evaluation

of the literature, which provides an academic background to the area of

study. Literature review is important to review on certain information

resources. These resources were gained through reading of books, magazines,

journals and also from the Internet. Through careful analysis on the

information, the pros and cons of this project could be extracted from. AU

these will contribute to the development of this project, which is the

hardware implementation of DES algorithm using VHDL.

The first part of this literature review is on cryptography, and an in

depth analysis of DES algorithm. Then, a review on the development

language, VHDL.

2.1.0 Introduction to Cryptography

What is cryptology? Cryptography? Plaintext? Ciphertext? Encryption? Key?

The story begins: When Julius Caesar sent messages to his trusted

acquaintances, he didn't trust the messengers. So he replaced every A by a D,

every B by a E, and so on through the alphabet. Only someone who knew

the ·'shift by 3" rule could decipher his messages.

A cryptosystem or cipher system is a method of disguising messages

so that only certain people can see through the disguise. Cryptography is the

art of creating and using cryptosystems. Cryptanalysis is the art of breaking

cryptosystems---seeing through the disguise even when

4

Univ
ers

ity
 of

 M
ala

ya

you're not supposed to be able to. Cryptology is the study of both

cryptography and cryptanalysis.

The original message is called a plaintext. The disguised message is

called a ciphertext. Encryption means any procedure to convert plaintext into

ciphertext. Decryption means any procedure to convert ciphertext into

plaintext.

A cryptosystem is usually a whole collection of algorithms. The

algorithms are labeled; the labels are called keys. For instance, Caesar

probably used ''shift by n" encryption for several different values of n. It's

natural to say that n is the key here.

The people who are supposed to be able to see through the disguise

are called recipients. Other people are enemies, opponents, interlopers,

eavesdroppers, or third parties.

2.2.0 The DES algorithm

Introduction

The DES algorithm is based on a 128-bit block algorithm developed

in the 1960s by IBM. In technical terms, LUCIFER is an iterative block

cipher, using Feistel rounds - a block of data is encrypted a number of

several times, each time applying the key to half of the block and then

XOR'ing with the other half of the block.

DES was designed to use a 64-bit key to encrypt and decrypt 64-bit

blocks of data using a cycle of permutations, swaps, and substitutions.

Encryption and decryption use the same key.

5

Univ
ers

ity
 of

 M
ala

ya

A block to be encrypted is subjected to an initial permutation, then to

a key-dependent computation, and then to a final permutation. The initial

and final permutations take the 64-bit block and change the position of each

bit in a pre-determined manner. The fmal permutation is the reverse of the

initial permutation.

A DES key consists of 64 binary digits of which 56 bits are randomly

generated and used directly by the algorithm. The other 8 bits, which are not

used by the algorithm, are used for error detection. The 8 error detecting bits

are set to make the parity of each 8-bit byte of the key odd, i.e., there is an

odd number of" 1 "s in each 8-bit byte.

2.2.1 History and Issues on DES

In 1972, the National Institute of Standards and Technology (called

the National Bureau of Standards at the time) decided that a strong

cryptographic algorithm was needed to protect non-classified information.

The algorithm was required to be cheap, widely available, and very secure.

NIST envisioned something that would be available to the general public

and could be used in a wide variety of applications. So they asked for public

proposals for such an algorithm. In 1974 ffiM submitted the Lucifer

algorithm, which appeared to meet most ofNIST's design requirements.

NIST enlisted the help of the National Security Agency to evaluate

the security of Lucifer. At the time many people distrusted the NSA due to

their extremely secretive activities, so there was initially a certain degree of

6

Univ
ers

ity
 of

 M
ala

ya

skepticism regarding the analysis of Lucifer. One of the greatest worries was

that the key length, originally 128 bits, was reduced to just 56 bits,

weakening it significantly. The NSA was also accused of changing the

algorithm to plant a 11back door" in it that would allow agents to decrypt any

information without having to know the encryption key. But these fears

proved unjustified and no such back door has ever been found.

The modified Lucifer algorithm was adopted by NIST as a federal

standard on November 23, 1976. Its name was changed to the Data

Encryption Standard (DES). The algorithm specification was published in

January 1977, and with the official backing of the government it became a

very widely employed algorithm in a short amount of time.

Unfortunately, over time various shortcut attacks were found that

could significantly reduce the amount of time needed to find a DES key by

brute force. And as computers became progressively faster and more

powerful, it was recognized that a 56-bit key was simply not large enough

for high security applications. As a result of these serious flaws, NIST

abandoned their official endorsement of DES in 1997 and began work on a

replacement, to be called the Advanced Encryption Standard (AES). Despite

the growing concerns about its vulnerability, DES is still widely used by

financial services and other industries worldwide to protect sensitive on-line

applications.

7

Univ
ers

ity
 of

 M
ala

ya

To highlight the need for stronger security than a 56-bit key can

offer, RSA Data Security has been sponsoring a series of DES cracking

contests since early 1997. In 1998 the Electronic Frontier Foundation won

the RSA DES Challenge II-2 contest by breaking DES in less than 3 days.

EFF used a specially developed computer called the DES Cracker, which

was developed for under $250,000. The encryption chip that powered the

DES Cracker was capable of processing 88 billion keys per second. More

recently, in early 1999, Distributed. Net used the DES Cracker and a

worldwide network of nearly 100,000 PCs to win the RSA DES Challenge

III in a record breaking 22 hours and 15 minutes. The DES Cracker and PCs

combined were testing 245 billion keys per second when the correct key was

found. In addition, it has been shown that for a cost of one million dollars a

dedicated hardware device can be built that can search all possible DES keys

in about 3.5 hours. This just serves to illustrate that any organization with ·

moderate resources can break through DES with very little effort these days.

2.2.2 Steps in DES

1 Process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit (the least significant bit of
each byte) is considered a parity bit. For a key to have correct parity, each
byte should contain an odd nwnber of "1" bits.) This key can be entered
directly, or it can be the result of hashing something else. There is no
standard hashing algorithm for this purpose.

1.2 Calculate the key schedule.

1.2.1 Perform the following permutation on the 64-bit key. (The parity bits
are discarded, reducing the key to 56 bits. Bit I (the most significant bit) of

8

Univ
ers

ity
 of

 M
ala

ya

the permuted block is bit 57 of the original key, bit 2 is bit 49, and so on
with bit 56 being bit 4 of the original key.)

Permuted Choice 1 (PC-1)

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

63 55 47 39 31 23 15
7 62 54 46 38 30 22
1466153453729
21 13 5 28 20 12 4

1.2.2 Split the permuted key into two halves. The first 28 bits are called C[O]
and the last 28 bits are called D(O].

1.2.3 Calculate the 16 sub keys. Start with i = 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and D[i-1] to
get C[i] and D[i], respectively. The number of shifts per iteration are given
in the table below.

Iteration # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Left Shifts 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

1.2.3.2 Permute the concatenation C[i]D[i] as indicated below. This will
yield K[i], which is 48 bits long.

Permuted Choice 2 (PC-2)

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
1672720132

41 52 31 37 47 55
304051453348
44 49 39 56 34 53
46 42 50 36 29 32

9

Univ
ers

ity
 of

 M
ala

ya

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.

2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it should be
padded as appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

58 5042 342618102
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
635547393123157

2.3 Split the block into two halves. The first 32 bits are called L[O], and the
last 32 bits are called R[O].

2.4 Apply the 16 sub keys to the data block. Start with i = 1.

2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the bit-selection
function below.

Expansion (E)

32 1 2 3 4 5
456789

8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

10

Univ
ers

ity
 of

 M
ala

ya

2.4.2 Exclusive-or E(R[i-1]) with K[i].

2.4.3 Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are B[1], bits
7-12 are B[2], and so on with bits 43-48 being B[8].

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start withj = 1.
All values in the S-boxes should be considered 4 bits wide.

2.4.4.1 Take the lst and 6th bits ofB[j] together as a 2-bit value (call it m)
indicating the row in sm to look in for the substitution.

2.4.4.2 Take the 2nd through 5th bits ofBU] together as a 4-bit value (call it
n) indicating the column in S(j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box I (S[l])

14 4 13 1 2 15 11 8 3 10 6 12 59 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 53 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 50
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S[2]

1518146113497213120510
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 58 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S[3]

10 0 9 14 6 3 15 51 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 I
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 52 12

S[4]

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 56 15 0 3 4 7 2 12 1 10 14 9
1069012117131513145284
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

11

Univ
ers

ity
 of

 M
ala

ya

S[5]

2 I2 4 1 7 IO 11 6 8 53 15 13 0 I4 9
14 11 2 12 4 7 13 I 50 15 10 3 9 8 6
4 2 1 1110 13 7 8 IS 9 12 56 3 0 I4
11 8 12 7 I I4 2 13 6 15 0 9 10 4 53

S£6]

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 56 I 13 14 0 11 3 8
9 14 15 52 8 I2 3 7 0 4 10 I 13 11 6
4 3 2 12 9 5 IS 10 11 14 1 7 6 0 8 13

S[7]

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 I IO I4 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 59 2
6 11 13 8 1 4 10 7 9 50 15 14 2 3 12

S[8]

13 2 8 4 6 15 II 1 10 9 3 14 50 12 7
I 15 13 8 10 3 7 4 I2 56 11 0 I4 9 2
7 11 4 I 9 12 14 2 0 6 IO 13 15 3 58
2 I 14 7 4 10 8 13 15 12 9 0 3 56 11

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.

2.4.5 Permute the concatenation ofB(1] through B[8] as indicated below.

Permutation P

16 7 20 21
2912 28 17
1 15 23 26
5183110
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

12

Univ
ers

ity
 of

 M
ala

ya

2.4.6 Exclusive-or the resulting value with L[i-.1]. Thus, all together, your
R[i] = L[i-1] xor P(S[1](B[1]) .. .S[8](B[8])), where B[j] is a 6-bit block of
E(R[i-1]) xor K[i]. (The function for R[i] is more concisely written as, R[i] =
L[i-1] xor f{R[i-1], K[i]).)

2.4.7 L[i] = R[i-1].

2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perfonn the following pennutation on the block R[l6]L[l6]. (Note that
block R precedes block L this time.)

Final Pennutation (IP**-1)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 64614 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

342421050185826

33 1 41 9 49 17 57 25

This has been a description of how to use the DES algorithm to

encrypt one 64-bit block. To decrypt, use the same process, but just use the

keys K[i] in reverse order. That is, instead of applying K[l] for the first

iteration, apply K[16], and then K[l5] for the second, on down to K[1].

13

Univ
ers

ity
 of

 M
ala

ya

Summaries:

Key schedule:
C[O]D[O] = PCI(key)
for 1 <= i <= 16
C(i] = LS[i](C[i-1])
D[i] = LS[i](D[i-1])
K[i] = PC2(C[i]D[i])

Encipherment:
L[O]R[O] = IP(plain block)
for 1 <= i <= 16
L[i] = R[i-1]
R[i] = L[i-1] xor f(R[i-1], K[i])
cipher block= FP(R[16]L[16])

Decipherment:
R[16]L[16] = IP(cipher block)
for 1 <= i <= 16
R[i-1] = L[i]
L[i-1] = R[i] xor f(L[i], K[i])
plain block = FP(L[O]R[OJ)

2.2.3 Flow Diagram of DES Algorithm

The diagrams below summarizes how the DES algorithm works.

14

Univ
ers

ity
 of

 M
ala

ya

PERMUTED
CHOICE 2

PERMUTED
CHOICE 2

PERMUTED
CHOICE 2

Figure 2.01 Sub~key Generator

15

Univ
ers

ity
 of

 M
ala

ya

PERMUTED
INRJT

PF£11JTPUT

INITIAL F£RMUTATION

0''''''' "" ... '!' ... "."" ... ¥n

Figure 2.02 DES Core

16

Univ
ers

ity
 of

 M
ala

ya

K(48BITS)

Figure 2.03 Function/

2.2.4 Practical Example of DES Algorithm

For a practical example of DES algorithm, please turn to Appendix
A in the Appendix. This example was worked by Adrian Grigoroff.

2.2.5 Modes of DES Operations

2.2.5.1 ECB (Electronic Code Book)

This is the regular DES algorithm, exactly as described above. Data

is divided into 64-bit blocks and each block is encrypted one at a time.

Separate encryptions with different blocks are totally independent of each

other. This means that if data is transmitted over a network or phone line,

transmission errors will only affect the block containing the error. It also

means, however, that the blocks can be rearranged, thus scrambling a file

beyond recognition, and this action would go undetected. ECB is the

weakest of the various modes because no additional security measures are

implemented besides the basic DES algorithm. However, ECB is the fastest

17

Univ
ers

ity
 of

 M
ala

ya

and easiest to implement, making it the most common mode of DES seen in

commercial applications. This is the mode that is used by the DES chip

designed.

2.2.5.2 CBC (Cipher Block Chaining)

In this mode of operation, each block of ECB encrypted ciphertext is

XORed with the next plaintext block to be encrypted, thus making all the

blocks dependent on all the previous blocks. This means that in order to find

the plaintext of a particular block, we need to know the ciphertext, the key,

and the ciphertext for the previous block. The first block to be encrypted has

no previous ciphertext, so the plaintext is XORed with a 64-bit number

called the Initialization Vector, or IV for short. So if data is transmitted over

a network or phone line and there is a transmission error, the error will be

carried forward to all subsequent blocks since each block is dependent upon

the last. This mode of operation is more secure than ECB because the extra

XOR step adds one more layer to the encryption process.

2.2.5.3 CFB (Cipher Feedback)

In this mode, blocks of plaintext that are less than 64 bits long can be

encrypted. Normally, special processing has to be used to handle files whose

size is not a perfect multiple of 8 bytes, but this mode removes that necessity

(Stealth handles this case by adding several dummy bytes to the end of a file

before encrypting it). The plaintext itself is not actually passed through the

18

Univ
ers

ity
 of

 M
ala

ya

DES algorithm, but merely XORed with an output block from it, in the

following manner: A 64-bit block called the Shift Register is used as the

input plaintext to DES. This is initially set to some arbitrary value, and

encrypted with the DES algorithm. The ciphertext is then passed through an

extra component called the M-box, which simply selects the left-most M bits

of the ciphertext, where M is the number of bits in the block we wish to

encrypt. This value is XORed with the real plaintext, and the output of that is

the final ciphertext. Finally, the ciphertext is fed back into the Shift Register,

and used as the plaintext seed for the next block to be encrypted. As with

CBC mode, an error in one block affects all subsequent blocks during data

transmission. This mode of operation is similar to CBC and is very secure,

but it is slower than ECB due to the added complexity.

2.2.5.4 OFB (Output Feedback)

This is similar to CFB mode, except that the ciphertext output of

DES is fed back into the Shift Register, rather than the actual final

ciphertext. The Shift Register is set to an arbitrary initial value, and passed

through the DES algorithm. The output from DES is passed through the M

box and then fed back into the Shift Register to prepare for the next block.

This value is then XORed with the real plaintext (which may be less than 64

bits in length, like CFB mode), and the result is the fmal ciphertext. Note

that unlike CFB and CBC, a transmission error in one block will not affect

subsequent blocks because once the recipient has the initial Shift Register

19

Univ
ers

ity
 of

 M
ala

ya

value, it will continue to generate new Shift Register plaintext inputs without

any further data input. However, this mode of operation is less secure than

CFB mode because only the real ciphertext and DES ciphertext output is

needed to find the plaintext of the most recent block. Knowledge of the key

is not required.

2.2.6 Variation of DES- Triple DES

2.2.6.1 Introduction

Triple DES is a minor variation of this standard. It is three times

slower than regular DES but can be billions oftimes more secure if used

properly. Triple DES enjoys much wider use than DES because DES is so

easy to break with today's rapidly advancing technology. In 1998 the

Electronic Frontier Foundation, using a specially developed computer called

the DES Cracker, managed to break DES in less than 3 days. And this was

done for under $250,000. The encryption chip that powered the DES

Cracker was capable of processing 88 billion keys per second. In addition, it

has been shown that for a cost of one million dollars a dedicated hardware

device can be built that can search all possible DES keys in about 3.5 hours.

This just serves to illustrate that any organization with moderate resources

can break through DES with very little effort these days. No sane security

expert would consider using DES to protect data.

20

Univ
ers

ity
 of

 M
ala

ya

Triple DES was the answer to many of the shortcomings of DES.

Since it is based on the DES algorithm, it is very easy to modify existing

software to use Triple DES. It also has the advantage of proven reliability

and a longer key length that eliminates many of the shortcut attacks that can

be used to reduce the amount oftime it takes to break DES. However, even

this more powerful version of DES may not be strong enough to protect data

for very much longer. The DES algorithm itself has become obsolete and is

in need of replacement. To this end the National Institute of Standards and

Technology (NIST) is holding a competition to develop the Advanced

Encryption Standard (AES) as a replacement for DES. Triple DES has been

endorsed by NIST as a temporary standard to be used until the AES is

finished sometime in 2001.

The AES will be at least as strong as Triple DES and probably much

faster. Many security systems will probably use both Triple DES and AES

for at least the next five years. After that, AES may supplant Triple DES as

the default algorithm on most systems if it lives up to its expectations. But

Triple DES will be kept around for compatibility reasons for many years

after that. So the useful lifetime of Triple DES is far from over, even with

the AES near completion. For the foreseeable future Triple DES is an

excellent and reliable choice for the security needs of highly sensitive

information.

21

Univ
ers

ity
 of

 M
ala

ya

2.2.6.2 In Depth

Triple DES is simply another mode of DES operation. It takes three

64-bit keys, for an overall key length of 192 bits. In Stealth, you simply type

in the entire 192-bit (24 character) key rather than entering each of the three

keys individually. The Triple DES DLL then breaks the user provided key

into three subkeys, padding the keys if necessary so they are each 64 bits

long. The procedure for encryption is exactly the same as regular DES, but it

is repeated three times. Hence the name Triple DES. The data is encrypted

with the first key, decrypted with the second key, and finally encrypted again

with the third key.

Plaintext

I DES Encryption :- Key1
J,

I DES Decryption J Key2
J,

I DES Encryption l: Key3

\

Ciphertext

Figure 2.04 Diagram of Triple DES

Consequently, Triple DES runs three times slower than standard DES,

but is much more secure if used properly. The procedure for decrypting

something is the same as the procedure for encryption, except it is executed

22

Univ
ers

ity
 of

 M
ala

ya

in reverse. Like DES, data is encrypted and decrypted in 64-bit chunks.

Unfortunately, there are some weak keys that one should be aware of: if all

three keys, the first and second keys, or the second and third keys are the

same, then the encryption procedure is essentially the same as standard DES.

This situation is to be avoided because it is the same as using a really slow

version of regular DES.

Note that although the input key for DES is 64 bits long, the actual

key used by DES is only 56 bits in length. The least significant (right-most)

bit in each byte is a parity bit, and should be set so that there are always an

odd number of 1 s in every byte. These parity bits are ignored, so only the

seven most significant bits of each byte are used, resulting in a key length of

56 bits. This means that the effective key strength for Triple DES is actually

168 bits because each of the three keys contains 8 parity bits that are not

used during the encryption process.

2.2.6.3 Modes of Operation

Triple ECB (Electronic Code Book)

This variant of Triple DES works exactly the same way as the ECB

mode of DES. This is the most commonly used mode of operation.

23

Univ
ers

ity
 of

 M
ala

ya

Triple CBC (Cipher Block Chaining)

This method is very similar to the standard DES CBC mode. As with

Triple ECB, the effective key length is 168 bits and keys are used in the

same manner, as described above, but the chaining features of CBC mode

are also employed. The first 64-bit key acts as the Initialization Vector to

DES. Triple ECB is then executed for a single 64-bit block of plaintext. The

resulting ciphertext is then XORed with the next plaintext block to be

encrypted, and the procedure is repeated. This method adds an extra layer of

security to Triple DES and is therefore more secure than Triple ECB,

although it is not used as widely as Triple ECB.

24

Univ
ers

ity
 of

 M
ala

ya

2.2 Introduction to VHDL

VHDL is a language for describing digital electronic systems. It

arose out of the United States Government's Very High Speed Integrated

Circuits (VHSIC) program, initiated in 1980. In the course of this program,

it became clear that there was a need for a standard language for describing

the structure and function of integrated circuits (ICs). Hence the VHSIC

Hardware Description Language (VHDL) was developed, and subsequently

adopted as a standard by the Institute of Electrical and Electronic Engineers

(IEEE) in the US.

VHDL is designed to fill a number of needs in the design process.

Firstly, it allows description of the structure of a design, that is how it is

decomposed into sub-designs, and how those sub-designs are interconnected.

Secondly, it allows the specification of the function of designs using familiar

programming language forms. Thirdly, as a resul4 it allows a design to be

simulated before being manufactured, so that designers can quickly compare

alternatives and test for correctness without the delay and expense of

hardware prototyping.

For our introduction, I will only touch on the lexical elements and

main language constructs. I will also touch on a bit on the levels of

abstraction used in the language. This is based on VHDL '93 specification.

25

Univ
ers

ity
 of

 M
ala

ya

2.2.1 Lexical Elements

The behaviour of a module may be described in programming

language form. This chapter describes the facilities in VHDL which are

drawn from the familiar programming language repertoire.

2.2.1.1 Comments

Comments in VHDL start with two adjacent hyphens('--') and

extend to the end of the line. They have no part in the meaning of a VHDL

description.

2.2.1.2 Identifiers

Identifiers in VHDL are used as reserved words and as programmer

defined names. They must conform to the rule:

identifier : := letter { [underline] letter_ or_ digit }

Note that case of letters is not considered significant, so the

identifiers cat and Cat are the same. Underline characters in identifiers are

significant, so This _Name and ThisName are different identifiers.

2.2.1.3 Numbers

Literal numbers may be expressed either in decimal or in a base

between two and sixteen. If the literal includes a point, it represents a real

number, otherwise it represents an integer. Decimal literals are defined by:

decimal _literal::= integer [.integer] [exponent]

integer ::= digit { [underline] digit }

exponent : := E [+] integer I E - integer

26

Univ
ers

ity
 of

 M
ala

ya

Some examples are:

0 1 123_456_789 987E6 -- integer literals

0.0 0.5 2.718_28 12.4E-9 - - real literals

Based literal numbers are defined by:

based_literal ::=base# based_integer [. based_integer] # [exponent]

base::= integer

based_integer ::= extended_digit { [underline] extended_digit}

extended_digit ::=digit !letter

The base and the exponent are expressed in decimal. The exponent

indicates the power of the base by which the literal is multiplied. The letters

A to F (upper or lower case) are used as extended digits to represent 10 to 15.

Some examples:

2#1100_0100#

196

16#C4# 4#301#E1 -- the integer

2#1.1111_llll_lll#E+ll 16#F.FF#E2 --the real number 4095.0

2.2.1.4 Characters

Literal characters are formed by enclosing an ASCII character in single

quote marks. For example:

'A' '*' Ill f t

2.2.1.5 Strings

Literal strings of characters are formed by enclosing the characters in

double-quote marks. To include a double-quote mark itself in a string, a pair

27

Univ
ers

ity
 of

 M
ala

ya

of double-quote marks must be put together. A string can be used as a value

for an object which is an array of characters. Examples of strings:

"A string"

!Ill

empty string

"A string in a string: ""A string'"'. " -- contains quote marks

2.2.1.6 Bit Strings

VHDL provides a convenient way of specifying literal values for

arrays of type bit ('O's and 'l's, see Section 2.2.5). The syntax is:

bit_string_literal ::= base_specifier" bit_ value"

base_ specifier : := B I 0 I X

bit_ value::= extended_digit { [underline] extended_digit}

Base specifier B stands for binary, 0 for octal and X for hexadecimal.

Some examples:

B" 1 01 011 0" -- length is 7

0"126"

X" 56"

--length is 9, equivalent to B"OOI_OIO_llO"

--length is 8, equivalent to B"0101_0110"

2.2.2 VHDL Language Constructs

VHDL is made up of these 5 primary constructs. They are:

• Entities and Architectures

• Package

28

Univ
ers

ity
 of

 M
ala

ya

• Package Bodies

• Configuration

2.2.2.1 Entities and architectures

Entities and Architectures

Every VHDL design description consists of at least one

entity/architecture pair.

Large design, many entity/architecture pairs and connect them together

to form a complete circuit.

entity declaration describes the circuit as it appears from the "outside"-

from the perspective of its input and output interfaces.

Example:-

entity fulladder is

port (X: in bit;

Y: in bit;

Cin: in bit;

Cout: out bit;

Sum: out bit);

end fulladder;

A VHDL architecture declaration is a statement (beginning with the

architecture keyword) that describes the underlying function and/or

structure of a circuit.

29

Univ
ers

ity
 of

 M
ala

ya

• Package Bodies

• Configuration

2.2.2.1 Entities and architectures

Entities and Architectures

Every VHDL design description consists of at least one

entity/architecture pair.

Large design, many entity/architecture pairs and connect them together

to form a complete circuit.

entity declaration describes the circuit as it appears from the "outside"-

from the perspective of its input and output interfaces.

Example:-

entity fulladder is

port (X: in bit;

Y: in bit;

Cin: in bit;

Cout: out bit;

Sum: out bit);

end fulladder;

A VHDL architecture declaration is a statement (beginning with the

architecture keyword) that describes the underlying function and/or

structure of a circuit.

29

Univ
ers

ity
 of

 M
ala

ya

Example:·

architecture concurrent of fulladder is

begin

Sum <=X xor Y xor Cin;

Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end concurrent;

2.2.2.2 Packages and Package bodies

A VHDL package declaration is identified by the package keyword, and is

used to collect commonly-used declarations for use globally among different

design units.

A package can consist of two basic parts: a package declaration and an

optional package body. Package declarations can contain the following types

of statements:

• Type and subtype declarations

• Constant declarations

• Global signal declarations

• Function and procedure declarations

• Attribute specifications

• File declarations

• Component declarations

• Alias declarations

• Disconnect specifications

30

Univ
ers

ity
 of

 M
ala

ya

• Use clauses

Example:·

package conversion is

function to_ vector (size: integer; num: integer) return std _logic_ vector;

end conversion;

package body conversion is

function to_ vector(size: integer; num: integer) return std _logic_ vector is

variable ret: std _logic_ vector (1 to size);

variable a: integer;

begin

a :=num;

for i in size downto 1 loop

if ((a mod 2) = 1) then

ret(i) := '1 ';

else

ret(i) := '0';

end if;

a:= a/ 2;

end loop;

return ret;

end to_ vector;

end conversion;

31

Univ
ers

ity
 of

 M
ala

ya

2.2.2.3 Configuration

The fmal type of design unit available in VHDL is called a

configuration declaration. A configuration declaration (identified with the

configuration keyword) specifies which architectures are to be bound to

which entities, and it allows you to change how components are connected

in your design description at the time of simulation.

Configuration declarations are always optional, no matter how

complex a design description you create. In the absence of a configuration

declaration, the VHDL standard specifies a set of rules that provide you with

a default configuration. For example, in the case where you have provided

more than one architecture for an entity, the last architecture compiled will

take precedence and will be bound to the entity.

Example:-

configuration this_ build of rcomp is

for structure

for COMPl: compare use entity work.compare(comparel);

for ROTl: rotate use entity work.rotate(rotatel);

end for;

end this_ build;

32

Univ
ers

ity
 of

 M
ala

ya

2.2.3 Levels of abstraction

VHDL supports many possible styles of design description. These

styles differ primarily in how closely they relate to the underlying

hardware. When we speak of the different styles ofVHDL, we are really

talking about the differing levels of abstraction possible using the

language--behavior, dataflow, and structure.

Suppose the performance specifications for a given project are: "the

compressed data coming out of the DSP chip needs to be analyzed and

stored within 70 nanoseconds of the strobe signal being asserted ... " This

human language specification must be refined into a description that can

actually be simulated. A test bench written in combination with a

sequential description is one such expression of the design. These are alJ

points in the behavior level of abstraction.

After this initial simulation, the design must be further refined until

the description is something a VHDL synthesis tool can digest. Synthesis is

a process of translating an abstract concept into a less-abstract form. The

highest level of abstraction accepted by today' s synthesis tools is the

dataflow level.

The structure level of abstraction comes into play when little chunks

of circuitry are to be connected together to form bigger circuits. (If the little

chunks being connected are actually quite large chunks, then the result is

what we commonly call a block diagram.) Physical information is the most

basic level of all and is outside the scope ofVHDL. This level involves

33

Univ
ers

ity
 of

 M
ala

ya

actually specifying the interconnects of transistors on a chip, placing and

routing macrocells within a gate array or FPGA, etc.

Note: In some formal discussions of synthesis, four levels of abstraction

are described; behavior, RTL, gate-level and layout. It is our view that the

three levels of abstraction presented here provide the most useful

distinctions for today's synthesis user.

As an example of these three levels of abstraction, it is possible to

describe a complex controller circuit in a number of ways. At the lowest

level of abstraction (the structural level), we could use VHDL's hierarchy

features to connect a sequence of predefined logic gates and flip-flips to

form the complete circuit. To describe this same circuit at a dataflow level

of abstraction, we might describe the combinational logic portion of the

controller (its input decoding and transition logic) using higher-level

Boolean logic functions and then feed the output of that logic into a set of

registers that match the registers available in some target technology. At

the behavioral level of abstraction, we might ignore the target technology

(and the requirements of synthesis tools) entirely and instead describe how

the controller operates over time in response to various types of stimulus.

2.2.3.1 Behavior

The highest level of abstraction supported in VHDL is called the

behavioral level of abstraction. When creating a behavioral description of a

circuit, you will describe your circuit in terms of its operation over time.

34

Univ
ers

ity
 of

 M
ala

ya

The concept of time is the critical distinction between behavioral

descriptions of circuits and lower~ level descriptions (specifically

descriptions created at the dataflow level of abstraction).

Examples of behavioral fonns of representation might include state

diagrams, timing diagrams and algorithmic descriptions.

In a behavioral description, the concept of time may be expressed

precisely, with actual delays between related events (such as the

propagation delays within gates and on wires), or it may simply be an

ordering of operations that are expressed sequentially (such as in a

functional description of a flip-flop). When you are writing VHDL for

input to synthesis tools, you may use behavioral statements in VHDL to

imply that there are registers in your circuit. It is unlikely, however, that

your synthesis tool will be capable of creating precisely the same behavior

in actual circuitry as you have defined in the language. (Synthesis tools

today ignore detailed timing specifications, leaving the actual timing results

at the mercy of the target device technology.) It is also unlikely that your

synthesis tool will be capable of accepting and processing a very wide

range of behavioral description styles.

If you are familiar with software programming, writing behavior

level VHDL will not seem like anything new. Just like a programming

language, you will be writing one or more small programs that operate

sequentially and communicate with one another through their interfaces.

The only difference between behavior-level VHDL and a software

35

Univ
ers

ity
 of

 M
ala

ya

programming language is the underlying execution platform: in the case of

software, it is some operating system running on a CPU; in the case of

VHDL, it is the simulator and/or the synthesized hardware.

2.2.3.2 Dataflow

In the dataflow level of abstraction, you describe your circuit in

terms of how data moves through the system. At the heart of most digital

systems today are registers, so in the dataflow level of abstraction you

describe how information is passed between registers in the circuit. You

will probably describe the combinational logic portion of your circuit at a

relatively high level (and let a synthesis tool figure out the detailed

implementation in logic gates), but you will likely be quite specific about

the placement and operation of registers in the complete circuit.

The dataflow level of abstraction is often called register transfer

logic, or RTL. This level of abstraction is an intermediate level that allows

the drudgery of combinational logic to be simplified (and, presumably,

taken care of by logic synthesis tools) whlle the more important parts of the

circuit, the registers, are more completely specified.

There are some drawbacks to using a dataflow method of design in

VHDL. First, there are no built-in registers in VHDL; the language was

designed to be general-purpose, and the emphasis was placed by VHDL's

designers on its behavioral aspects. If you are going to write VHDL at the

dataflow level of abstraction, you must first create (or obtain) behavioral

descriptions of the register elements you will be using in your design.

36

Univ
ers

ity
 of

 M
ala

ya

These elements must be provided in the form of components (using

VHDL's hierarchy features) or in the form of subprograms (functions or

procedures).

But for hardware designers, it can be difficult to relate the sequential

descriptions and operation of behavioral VHDL with the hardware being

described (or modeled). For this reason, many VHDL users, particularly

those who are using VHDL as an input to synthesis, prefer to stick with

levels of abstraction that are easier to relate to actual hardware devices

(such as logic gates and flip-flops). These users are often more comfortable

using the dataflow level of abstraction.

2.2.3.3 Structure

The third level of abstraction, structure, is used to describe a circuit

in terms of its components. Structure can be used to create a very low-level

description of a circuit (such as a transistor-level description) or a very

high-level description (such as a block diagram).

In a gate-level description of a circuit, for example, components such

as basic logic gates and flip-flops might be connected in some logical

structure to create the circuit. This is what is often called a net/ist. For a

higher-level circuit--one in which the components being connected are

larger ftmctional blocks-structure might simply be used to segment the

design description into manageable parts.

37

Univ
ers

ity
 of

 M
ala

ya

Structure-level VHDL features, such as components and

configurations, are very useful for managing complexity. The use of

components can dramatically improve your ability to re-use elements of

your designs, and they can make it possible to work using a top-down

design approach.

To give an example of how a structural description of a circuit relates

to higher levels of abstraction, consider the design of a simple 5-bit

counter. To describe such a counter using traditional design methods, we

might connect five T flip-flops with some simple decode logic.

The following VHDL design description represents this design in the

form of a netlist of connected components:

entity andgate is
port(A,B,C,D: In bit := '1'; Y: out bit);

end andgate;

architecture gate of andgate is
begin

Y <= A and B and C and D;
end gate;

entity tff Is .
port(Rst,Cik,T: in bit; Q: out bit);

end tff;

architecture behavior of tff is
begin

process(Rst, Ctk)
variable Qtmp: bit;

begin
If (Rst = '1') then

Qtmp := '0';
elsif Clk = '1' and Clk'event then

If T = '1' then
Qtmp := not Qtmp;

end If;
end if;
Q <= Qtmp;

end process;
end behavior;

38

Univ
ers

ity
 of

 M
ala

ya

entity TCOUNT Is
port (Rst,Cik: In bit;

Count: out bit_vector(4 downto 0));
endTCOUNT;

architecture STRUCTURE of TCOUNT Ia
component tff

port(Rst,Cik,T: In bit; Q: out bit);
end component;
component andgate

port(A,B,C,D: In bit:= '1'; Y: out bit);
end component;
constant vee: bit := '1 ';
signal T,Q: bit_vector(4 downto 0);

begin
reo><= vee;
TO: tff port map (Rst=>Rst, elk=> elk, T=> T(O), O=>Q(O));
T(1) <= Q(O);
T1 : tff port map (Rst=>Rst, Clk=>Cik, T=>T(1), Q=>Q(1});
A1 : andgate port map(A=>Q(O), 8=>0(1), Y=>T(2));
T2: tff port map (Rst=>Rst, eJk=>Cik, T=> T(2), 0=>0(2));
A2: andgate port map(A=>O(O), 8=>0(1), C=>0(2), Y=> T(3));
T3: tff port map (Rst=>Rst, Clk=>Cik, T=> T(3), 0=>0(3));
A3: andgate port map(A=>O(O), B=>Q(1), C=>0(2), 0=>0(3), Y=>T(4));
T4: tff port map (Rst=>Rst, eJk=>Cik, T=>T(4), 0=>0(4));

Count<= 0;

end STRUCTURE;

This structural representation seems a straightforward way to describe a 5-

bit counter, and it is certainly easy to relate to hardware since just about any

imaginable implementation technology will have the features necessary to

implement the circuit. For larger circuits, however, such descriptions quickly

become impractical.

39

Univ
ers

ity
 of

 M
ala

ya

2.3 Why DES in VHDL?

The appropriate question should be, why DES in electronic devices?

Since VHDL is a development language for digital electronic systems, we

discuss the benefits of implementing DES in such devices.

[FIPS 74] Implementation of the DES algorithm in special purpose

electronic devices provides the following economic and security benefits:

1. Efficiency of algorithm operation is much higher in specialized electronic

devices.

2. Basic implementation of the algorithm in specialized LSI electronic

devices which can be used in many applications and environments should

result in cost savings to the user through high volume production.

3. Functional operation of the device may be tested and validated

independently of the environment in which it is used.

4. An encryption key may be entered directly into the device without

appearing elsewhere in the computer system.

5. Unauthorized modification of the algorithm is very difficult in such a

device.

6. Independent devices may encipher the data simultaneously and the output

may be tested before the cipher is transmitted.

7. The control and data paths, to and from the device, may be controlled and

monitored.

40

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

3.0 Introduction

This chapter describes the methodology used in developing our

cryptosystem. The first part is the definition of methodology (3.1). Then,

this is followed by the selected project's life-cycle (3.2). The next part (3.3)

is the explanation of real-world digital systems design process, and the

methodology used. The final part is this chapter's conclusion.

3.1 What is methodology?

methodology noun

a system of ways of doing, teaching or studying something:

The methodology and findings of the research team have been criticized

(from Cambridge Advanced Leamer's Dictionary)

In the development of computer systems, be it in software, hardware

or a combination of both, an appropriate methodology must be selected to

ensure a smooth and systematic running of operation to achieve designated

goals.

3.2.0 Project's Life-Cycle Model

For our project, the appropriate life-cycle would be the "Cascading

Waterfall" model. It is very straightforward and sequential, with every step

following the other. Figure 3.01 shows the diagram of"Cascading

Waterfall" process flow.

41

Univ
ers

ity
 of

 M
ala

ya

Requirements
Analysis -----,

System's
Design

' ,
....
' ' ' ' " ' ' ' ' ' ' -.......... \

' \ ' \ " \ " \ ' \
\ \

\ \
\ \-------, \ \

\ \

Coding
1 \ Validate System

I I
I I

\ \
I I

I Varify Design \
I Unils 1
I I

Unit and
Integration

Testing

I
I
I
I

' ' I
I

' I
' '

System's
Testing

Figure 3.01 DES Process-flow Diagram

3 .2.1 Brief explanation for process flow

We begin with the requirements analysis. Here, we analyze all that

is needed by the system, like it's intended input, and expected output. This is

done by understanding the algorithms involved. Then, from the algorithms,

we extract all the functions used to describe the behavior of DES.

Next, we proceed to the system design phase. Here, we will design

the sub modules and data paths for our DES cryptosystem.

42

Univ
ers

ity
 of

 M
ala

ya

Following the system design phase is the coding phase. This is

where the functions and algorithm are written in VHDL. The penultimate

phase would be the unit and integration testing phase. Every design unit

are individually tested to verify if it matches the intended behavior from the

system design phase.

The ftnal phase would be the testing of the overall syste~ and the

system would be considered successful if it does everything from the

requirements analysis.

3.3.0 Methodology used: Top-Down Design I Bottom-Up Implementation

This methodology is commonly used in real-world digital systems

design. It is adapted from Zainalabedin Navabi's" VHDL: Analysis and

modeling of Digital Systems, 2"d ed (1998)". First, we have to discuss a

common digital system design process.

3.3.1 Digital System Design Process

Figure 3.02 shows a typical process for the design of digital systems.

An initial design goes through several transformation before it's hardware

implementation is obtained.

43

Univ
ers

ity
 of

 M
ala

ya

Design Idea

Flow graph, Pseudo code

Logic Design

Bus and Register
Structure

r---i~Gate wirellst. Nellist

Tran<Hstor LisL Layout

Chip or Board

Figure 3.02 Digital Systems Design Process

Initially, a hardware designer starts with a design idea. A more

complete definition of the intended hardware must then be developed from

the designed idea. Therefore, the designer must generate general behavioral

definition of system under design. It could be represented by pseudocode,

flow-chart or flow-graph. The designer specifies the overall functionality

without architectural or hardware details of system under design.

The next phase is designing system data path. Here, the designer

specifies registers and logic units necessary for implementation of system.

Components may be interconnected by uni- or bi-directional busses. Data

components communicate via busses, while control procedure controls flow

of data within components. As shown in Fig 3.03, this phase shows

44

Univ
ers

ity
 of

 M
ala

ya

architectural design with specification of the control flow. No information

about implementation of the controller- e.g. , hard-wired, encoding

technique, or microprogrammed - is given in this phase.

Data Control

I Reg1 I I Reg2 -1

I I
I r Procedure for

control of
movement of Data

Main Logic

~ I
between Registers

Unit Reg3 and buses

I
Logic I I

Figure 3.03

Logic design is the next step and this phase involves the use of

primitive flip-flops and gates for implementation of registers, busses, logic

units and their controlling hardware. The result of this stage is the netlist of

gates and flip-flops. Components used and their interconnections are

specified in this netlist. Gate technology and even gate-level details of flip-

flops are not included in this netlist

The :pext design stage transforms the netlist into a transistor list or

layout. This involves the replacement of gates and flip-flops with transistor

equivalents or library cells. This stage considers loading and timing

requirements in its cell or transistor selection process.

45

Univ
ers

ity
 of

 M
ala

ya

The final step in the design is manufacturing, which uses transistor

list or layout specification to burn fuses of field-programmable device to

generate masks for integrated-circuit fabrication.

The designer is involved only up to the logic design phase. The other

two phases is done automatically by vendor-specific development tools.

3.3.2 Top-Down Design/ Bottom-Up Implementation Methodology

Instead of trying to implement the design of a large system all at

once, a divide-and-conquer strategy is taken in a top-down design process. A

top-down design process is referred to dividing a system into subcomponents,

and if necessary, repeating the process on its subcomponents until all

become manageable design parts. Perhaps the word hierarchy should best

explain the system and its subcomponent. Each level of dividing

component/subcomponent is referred to as partitioning. Design of a

component is manageable if the component is available as part of a library, it

can be implemented by modifying existing design parts, or built from scratch

by the designer.

Figure 3.04 shows the original design initially described at

behavioral level. In the first level of partitioning, two of its subcomponents

(SSCl and SSC2) are mapped to hardware. Further partitioning for hardware

implementation is required for SSC3 and SSC4. SSC3 subcomponent is

partitioned into n numbers of identical subcomponent, and each ofthese is

realized by SSC3il and SSC3i2 hardware parts. The SSC4 subcomponent is

46

Univ
ers

ity
 of

 M
ala

ya

partitioned into SSC4_1 and SSC4_2 in which hardware implementations

are available.

SUD: System under design

SSC: System Subcomponent

Shaded areas designate subcomponents with hardware implementations

Figure 3.04 Top-down design/ Bottom-Up Implementation

3.3.3 Verification

At each level oftop-down design, multilevel simulation tool plays an

important role in the correct implementation of the design. Initially a

behavioral description of a system under design (SUD) must be simulated to

verify the designer's understanding of the problem. After the first level of

partitioning, the behavioral description of each subcomponent must be

developed, and these descriptions must be wired to form a structural

hardware model of SUD. Simulation of this new model and comparing the

results of the original SUD description will verify the correctness of the first

47

Univ
ers

ity
 of

 M
ala

ya

level of partitioning. Figure 3.05 shows simulation of the first level of

partitioning of the top-down design tree.

SSCI

... ,

Behavioral Model
. ,

SID

......

SSC2 SSC3

.. . · · .. · · · · .. "lnteroonnection or · ·· · ·· ·

Behavioral Models

. ..

....

Figure 3.05 Verifying first level of Partitioning

After verifying the frrst level of partitioning, the hardware

...

implementation ofSCl and SC2 must be verified. Another simulation is run,

with the behavioral description of SCI and SC2 replaced by a more detailed

hardware level model. Figure 3.06 shows this phase. Shaded boxes represent

component models, which are hardware implementation that are functionally

equivalent to its behavioral counterparts. It has representation for physical

characteristics of the hardware. Typical physical characteristics are timing,

power consumption, and temperature dependencies. Such models are

referred to as hardware-level model.

48

Univ
ers

ity
 of

 M
ala

ya

Behavioral Model
.... ······

SUD

SSC4

~---~ .. ·
., , ·····

Mixed Level Model

Figure 3.06 Verifying hardware implementation ofSSCl and SSC2

The process of partitioning and verification continues throughout the

design process. At the end, a simulation model, consisting of interconnection

specification of hardware-level models of the terminals of the partition tree,

will be formed. The simulation of this model, as shown in Figure 3.07, and

comparing the results with those of original behavioral description of SUD

verify the correctness of the complete design.

Figure 3.07 Verifying the final design

49

Univ
ers

ity
 of

 M
ala

ya

3.3.4 Conclusion

In a large design where simulation of a complete hardware-level

model such as shown in 3.07, is too time consuming, subsections of the

partition will be independently verified. Verified behavioral models of such

subsections will be used in forming the simulation model for final design

verification. Figure 3.08 shows simulation and comparison run for verifying

the behavioral model of SSC3 component. Figure 3.09 shows the final

design verification using the verified behavioral model of SSC3.

·· ···

-..... .

Behavioral Model
.. --·· -· · · -.

SSC3

SSC31 SSC3n

.... ' ············ , ·· ·· ·········· ·· ·· ·

· · t-i~~C!ware Leva·,·· ···· · · · · · · · · · · · · ·
Model

Figure 3.08 Verifying hardware implementation ofSSC3.

50

Univ
ers

ity
 of

 M
ala

ya

BehaVlOOII Model

Mixed level Model

Figure 3.09 Verifying the final design, an alternative to setup 3.07

Although the behavioral- and hardware-level models of SSC3 may

be functionally equivalent, difference may exist in their timing and other

physical properties. If such characteristics are necessary for design

verificatio~ the behavioral model of a subcomponent can be adjusted to

mimic such properties of hardware level models. Adjusting upper-level

models based on characteristics of actual devices or more detailed models is

referred to as back annotation. Hardware level models often contain

sufficient timing properties of a device that can be reliably used for timing

back annotation of behavioral models.

3.4. Summary

The goal of this project is to develop a simulatable VHDL code for

DES.

The process flow will be based on the "Cascading Waterfall" model. We

would use the "divide and conquer'' approach of"Top-down design/Bottom

up Implementation" methodology. Even though the eventual goal is to

51

Univ
ers

ity
 of

 M
ala

ya

implement all the description in hardware, it is possible for the cryptosystem

to run well even with the combination of both behavioral and hardware level

description. The upper levels are usually the ones implemented in behavioral

description. So there is no guarantee that the final system will be fully

implemented in hardware level description.

52

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

4.0 DES Analysis -An Overview

We begin by having the requirements analysis. Requirements are

divided into two, which is functional requirements, and non-functional

requirements. Functional requirements are the requirements needed to make

the system behave the way it is supposed to behave. These include the

functions extracted from the algorithm, and also the data flow of input. Non

functional requirements are requirements needed in support of executing the

algorithm. This includes clock for timing purposes and also other

miscellaneous input (reset, control, clear key etc.). Then, these overall

functional and non-functional requirements are mapped into the sub module

in our DES design. We will have a top-down view of our DES cryptosystem.

4.1 Requirements analysis

For requirements analysis, we should look at the functions used in

the algorithm. DES functions involve just bit-wise operations. These

operations are the:

1. shift left

u. permutation (where values in bit positions are swapped) and

iii. XOR operations.

4.1.1 Functions in DES

There are two main blocks in DES. They are

i. Sub-key generator and

ii. The DES core.

53

Univ
ers

ity
 of

 M
ala

ya

The functions in the Sub-key generator

i. Permutation Choice 1

ii. Shift Left

m. Permutation Choice 2

The functions in DES Core

i. Initial Permutation

ii. Function/

1. Expansion

2. Selection box

3. Permutation P

iii. Final Permutation

The functions are swnmarized by the figure 4.01 below.

DES

I
Sub-key

DES Core
Generator

I I
Permutation Permutation Initial Inverse/Final

Choice 1 Shift Left Choice 2 Permutation f Permutation
(PC-1) (PC-2) (IP) (IP"-1)

I
Expanslon(E) Selection P Permutation

Box(Sbox) (P)

Figure 4.01 DES functions Tree Diagram

54

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

5.0 DES Design- An Overview

In this chapter, each module is seen at its block diagram level and

look at its input and output. We will define the functions it contained. These

functions are also in their own respective modules. Before we begin, here is

a look at our DES design at functional block level. We will see the design

from top down, then work it way up again for RTL level design. After that,

we will see how it all works, by looking at the State machine (FSM) diagram

with its detailed description.

~-

1
I
I
I
I
I
I

Pre-clphan.ext (pt)f
64

- ----

I

reset ell<

I I

--1-

IP

I
I ~ mux32 I \
I
I
I
I

full riO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

un~ I

lnitdata

Control

1" --
I

I
mux3*

I

I
I ~ ov32 ov32 I

J I
I
I
I
I
I
I
I
l-

I I

I FP I
-----------i-------------~

Ciphertoxt(ct)/64

Key/64

Subkey
generator

Figure 5.01 DES overall functional block diagram

56

Univ
ers

ity
 of

 M
ala

ya

5.1 DES module top level (Black box)

dnc

p1!1141

k<!yf841
l'll&lr.

dk

State

Figure 5.02 State module

ct

Here is the top-most view of our DES design. Pt stands for pre~

cipher-text, while ct stands for cipher-text. This module encapsulates all the

modules needed in DES. The parameters are

Inputs:-

1. pt for 64 bit data input

ii. key for 64 bit key input

iii. dec for DES to operate in encrypt/decrypt mode (' 1' for

decrypt)

iv. reset for reset

v. elk for active clock used for timing purposes

Outputs:-

i. Ct for 64 bit cipher-text output.

5.2 Main sub-modules (Black box)

5.2.1 Subkeygen

dnc

lhc_keyiiJ.41
<h~t(ll

<:k
Subkeygen

Figure 5.03 Subkeygen module

kl(48)

57

Univ
ers

ity
 of

 M
ala

ya

The submodules contained are PC 1, shifter and PC2. More on those

later. The parameters are

Inputs:-

i. the_key for 64 bit key input

ii. shift for shift command input

iii. dec for DES to operate in encrypt/decrypt mode(' 1' for

decrypt)

iv. elk for active clock used for timing purposes

Outputs:-

i. ki for 48 bit subkeys output entered into DES core.

5.2.2 Fullround

Pll641

re~t

c:k

load_new _p':

culpul_d<

full round ct(64)

Figure 5.04 Fullround module

This submodules encapsulates IP, mux32, initdata and FP. The

parameters are

Inputs:-

1. pt for 64 bit pre-ciphertext input.

ii. xkey for 48 bit subkeys input

iii. reset for reset

tv. elk for active clock used for timing purposes

v. load_new_pt for loading new pre-ciphertext command

58

Univ
ers

ity
 of

 M
ala

ya

VI. output_ ok for output verification after 16 rounds of

permutation.

Outputs:~

1. ct for 64 bit ciphertext output ..

5.2.3 Control

........
dk control

Figure 5.05 Control Module

This subrnodule controls the flow of our DES operation. The

parameters are

Inputs:-

i. reset for reset

u. elk for active clock used for timing purposes

Outputs:·

i. load_ new _pt for loading new pre-ciphertext command

ii. output_ ok for output verification after 16 rounds of

permutation

111. shift for shift command instructions

59

Univ
ers

ity
 of

 M
ala

ya

5.3 Submodules

Subkeygen

5.3.01 PCl

pc1

Figure 5.06 pel module

dlxt28l
cf.b(28)

Inputs:-

1. 64 bit original data input

ii. dec for DES to function in encrypt/decrypt mode (1 for

decrypt)

Outputs:-

5.3.02

Inputs:-

i. cOx is for the 28 bit c-half of subkey into shifter

n. dOx is for the 28 bit d-half of subkey into shifter

Shifter

shifter

Figure 5.07 shifter module

1. datac for 28 bit c-half output from pel

ii. datad for 28 bit d-half output from pc2

di:IIIOC_cut(28l

cn.-..,d_oJI(28)

m. shift for shift control input from controller

60

Univ
ers

ity
 of

 M
ala

ya

iv. elk for clock input

Outputs:-

1. datac _out is for the 28 bit c-half of subkey into pc2

n. datad _out is for the 28 bit d-half of subkey into pc2

5.3.03 PC2

pc2

Figure 5.08 pc2 module

Inputs:-

i. c for 28 bit c-half of subkey

ii. d for 28 bit d-half of sub key

Outputs:-

i. cOx is for the 28 bit c-half of subkey

ii. dOx is for the 28 bit d-half of subkey

Fullround

5.3.04 IP

ip

Figure 5.09 ip module

k(48)

10.132)
r{b(32)

61

Univ
ers

ity
 of

 M
ala

ya

5.3.05 Mux32

Inputs:-

ell(32)

e1(32)
set mux32

Figure 5.10 mux32 module

i. 32 bit eO to keep data for permutation

ii. 32 bit el to keep data for permutation

c(32)

iii. sel to start the first of 16 rounds of permutation

Outputs:-

i. 32 bit permuted data

5.3.06 lnitdata

Inputs:-

dk

r(32)

11!~2:

k(4ft)

initdata

Figure 5.11 initdata module

1. elk for clock input

ii. reset for reset

m. ri for right half input of data

iv. li for left half input of data

loil2j
r<l(32)

62

Univ
ers

ity
 of

 M
ala

ya

v. ki for 48 bit key from subkey generator

Outputs:-

1. lo is for the 32 bit left half of permuted data

u. ro is for the 32 bit right half of permuted data

5.3.07 Ov32

Inputs:-

" sel
d k

ov32

Figure 5.12 ov32 module

1. e for bit permuted data input

a1(:12)

a2(32)

ii. sel to select if permuted data is the last round, to end

permutation round.

iii. Clk for clock input.

Outputs:-

1. ol is for the 32 bit c-half of subkey

ii. o2 is for the 28 bit d-half of sub key

5.3.08 FP

1132.1
r\32)

fp

Figure 5.13 fp module

r.t(M)

63

Univ
ers

ity
 of

 M
ala

ya

Inputs:-

1. li for 32 bit left half of permuted data

ii. ri for 32 bit right half of permuted data

Outputs:-

1. ct for 64 bit ciphertext output.

Initdata (a submodule offullround)

5.3.09 XP

ri(321 xp

Figure 5.14 xp module

Inputs:-

1. ri for 32 bit right half to be expanded

Outputs:-

i. e is for the 48 bit expanded data

5.3.10 desxorl

desxor1
k(48)

e(48)

bx1J6)

bx2t6)

bx3J6)

h>4J6)

b•5i6)

bx6J6)

bx7J6) 1------------ bxBJ6)

Figure 5.15 desxor module

Inputs:-

1. e for 48 bit expanded data from xp module

ii. ki for 48 bit subkey from subkey generator

64

Univ
ers

ity
 of

 M
ala

ya

Outputs:-

1. bx 1 for 6 bit data to be entered in sbox 1

n. bx2 for 6 bit data to be entered in sbox2

iii. bx3 for 6 bit data to be entered in sbox3

iv. bx4 for 6 bit data to be entered in sbox4

v. bxS for 6 bit data to be entered in sbox5

vt. bx6 for 6 bit data to be entered in sbox6

vii. bx7 for 6 bit data to be entered in sbox7

viii. bx8 for 6 bit data to be entered in sbox8

5.3.11 sboxN

l:u,6) sbox n

Figure 5.16 sbox module

Inputs:-

i. b for 6 bit data input.

Outputs:-

i. so for 4 bit output.

5.3.12 pp

::<)1:.(4:
002>(4:
ro3><(4:
Sf.)4)11(4:
00~(4:

S<Jf.x\41
ro7•(41
&:l!lll(41

pp

Figure 5.17 pp module

!1014)

65

Univ
ers

ity
 of

 M
ala

ya

Inputs:-

I. solx for 4 bit data from sboxl

ii. so2x for 4 bit data from sbox2

iii. so3x for 4 bit data from sbox3

iv. so4x for 4 bit data from sbox4

v. so5x for 4 bit data from sbox5

vi. so6x for 4 bit data from sbox6

Vll. so7x for 4 bit data from sbox7

viii. so8x for 4 bit data from sbox8

Outputs:-

u. ppo for 32 bit permuted data after P-pennutated

5.3.13 desxor2

desxor2 q(l2)

Figure 5.18 desxor2 module

Inputs:-

1. d is for 32 bit input from pp

11. 1 is for 32 bit input from mux32

Outputs:-

1. q is for the 32 bit data passed into registers.

66

Univ
ers

ity
 of

 M
ala

ya

5.3.14 reg32

reg32 Q(32)

Figure 5.19 reg32 module

Inputs:-

i. a is for 32 bit input from desxor2

u. reset is for reset

iii. elk is for clock input

Outputs;-

ii. q is for the 32 bit data passed into ov32.

5.4 How they are connected (RTL)

The next few pages will show the diagrams on how all functional

submodules are sub connected. These are the Register Transfer Level

description (RTL). We will work our way up from each main module, then

at the DES (State) block module.

67

Univ
ers

ity
 of

 M
ala

ya

'Shifi(Jj

ck

5.4.1 Subkeygen

) pc1

5.4.2 Indtdata

Subkeygen

a' .lie (2S) ltllac c0Ki281 OUI(2I!J

Jt:lx(261 t ;stld <2B J dr.11d oul_!_2il) ~28) pc2

shifter
di28l

Figure 5.20 Subkeygen RTL diagram

lnitdata

~ee; -1------------------------,

xp reg32

kl411 1 -+------;

Figure 5.21 Indtdata RTL diagram

k.\4
111(48)

68

Univ
ers

ity
 of

 M
ala

ya

5.4.3 Fullround

full round

pi(Sol) IP I
Mux32 Ov32 Tp IRxr ;;.__ c0(:1.2) - n(:\2) loitdat.a lr.(l2) r1)x(L c1(:1.2) ojl2 -- lii3~J ~32) - Dll32! _ ,

~I 5r.l

k(48l
a2(l2) _ , - - r.t(M)

5al ----..j

Figure 5.22 fullround RTL diagram

5.4.4 Top level (RTL)

State
cl~

re!le':

J pl(fl4) full round
load_ nerN .Jf.
oul;lrJ_ok r.:l

r- l00!~(48i

lt:W_ ~,, IX

ree
oulput rJt

t~Jw.YI.li4 1 dr.ckii<UI.I
~

control
r.lk

9hlllf,3 Subkeygen

Figure 5.23 State module RTL diagram

69

Univ
ers

ity
 of

 M
ala

ya

5.5 Finite State Machine (FSM)

This part describes the basic operation of our DES design. Data is looped

and pennuted 16 times, before passed out as ciphertext. Below is the FSM

diagram. The operation is controiJed in the control module, through the

changing of values of three main parameters; shift, load_ new _pt and

output_ok.

·otnerwlse stated. all input is ·o·.

Figure 5.24 FSM Diagram

70

Univ
ers

ity
 of

 M
ala

ya

We can imagine that we have a state machine of 16 states (16 rounds

of permutation), but in reality we will have 17 (because we need one state to

load the key). Shift begins at init state, because the first round of

permutation already needs a single bit shift for its subkeys. With this

architecture, we have a throughput divided by 17 (one cipher every 17 clock

cycles). We also add the key_ end state to end the entry of subkeys into

subkeygen. So overall, there are 18 states. Below describes the behavior of

our control component.

Init: load a new key, shift once

State 1 : shift once

State 2: shift twice

State 3: shift twice

State 4: shift twice

State 5: shift twice

State 6: shift twice

State 7: shift twice

State 8: shift once

State 9: shift twice

State 10: shift twice

State 11 : shift twice

State 12: shift twice

State 13: shift twice

State 14: shift twice

71

Univ
ers

ity
 of

 M
ala

ya

State 15: shift once

State 16: none

Key_ end: Ends key loading, no shift, give the output (ct).

All the related instructions to the state are executed the next state

(future state). The state "key_end" is necessary, as the name says, to end

loading of key to end rounds of permutation.

Below is a table displaying the shifter's decoder.

Value action
000 No shift, no new key
010 Shift once, no new key
011 Shift once, new key
100 Shift twice, no new key

''others" error=no shift

Table 5.25 shifter decoder

The least significant bit (bit located in the far right) indicates if a new

key is needed, while the middle bit tells if we want to shift once (1 =yes, O=no)

and fmally the most significant bit tells to shift twice. Values like 111, 110 are

impossible (there aren't states coded with 111 or 110). The signal shift will be

decoded using a case statement in the VHDL.

The shift signal tells the machine to shift the 28 bits to left, either one or

two bits, depending on each round. Below is a table of how each key are shifted.

Iteration#
Left Shifts

Table 5.26 Left Shifts per iteration.

72

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 6.0 Design Implementation

Tills chapter is divided into two. The first part discusses the tool used to

develop our DES design. The tool of choice is peakFPGA. Tills will act as a simple

user guide to our tool. The next part is about the implementation of our DES

functions in VHDL.

6.1 peakFPGA

PeakFPG.4 Desig11er Suite
FPGA SynChealt Edition

520c
c-vollDl.Pioloi_M..,..._

Figure 6.01 Entry Screen for peakFPGA

Our tool of choice is peakFPGA from Accolade. It is chosen because it is

recommended by the faculty as one of the most user-friendly VHDL designer suite

available. It is a complete package, allowing our VHDL design to be completed up

to board level synthesizing process. Below is the definitive guide to the peakFPGA

software. (taken from User's Manual Booklet)

73

Univ
ers

ity
 of

 M
ala

ya

1 2 3 4 5 6 7

Fl ·· fNTITYTfSTDH0-1 VHD)
El fB ARCHIT£cn..RE STCMU.US[TEsrAOO.VHD]

, ~· fFj COHPOIIENT DUT [TESTAOO.\IHO)
! i... ffJ f/IIITTY t'UI.l.AOOfR ["U.lACO.IHJ]

-='!·· tB MOOU.E FUUAOD. YHD
8 f¥# ENTJTV FULLAI)()EJ:t [FULlAOD. \IHD]

···· ~ AR.CHITfClt.Rf CONCURRENT [FUllAOD. VHD]

8 9

Figure 6.02 Main Application

6.1.1 Main application

1. Project file buttons. These buttons are used to create, open and save

PeakFPGA projects.

2. Design management buttons. These buttons are used to create new VHDL

design files, open files for viewing, and add existing VHDL design files to a

project.

3. Simulation buttons. These buttons are used to compile, link and execute a

selected part of your design (or the entire design) for simulation.

74

Univ
ers

ity
 of

 M
ala

ya

4. Synthesis button. This button is used to invoke PeakFPGA's powerful FPGA

synthesis routines to generate an FPGA netlist from one or more of your

VHDL design files.

5. Options button. This button allows you to view and modify various program

and project options, including simulation and synthesis options.

6. Search button. This button allows you to search for specific text in all project

files.

7. Help button. Provides access to PeakFPGA's comprehensive on-line help

system.

8. Hierarchy Browser. This window and its associated tool bar give you control

over design processing (simulation and synthesis) as well as providing you

with a visual display of your design source file dependencies, and providing

a convenient place to manage your design files.

9. Status bar. This area of the PeakFPGA application displays useful

information such as the current line ofVHDL source code being edited and

displays a percent complete indicator that is active when certain processes

are invoked.

75

Univ
ers

ity
 of

 M
ala

ya

1 2 3 4 5 6

9

10 11

Figure 6.03 Simulator Application

6.1.2 Simulator application

I. Print and save buttons. These buttons allow you to print your simulation

results (as waveforms) or to export them to a file.

2. Zoom in/out buttons. These buttons allow you to view all or part of your

simulation waveform.

3. Simulation control buttons. These buttons are used to reset, start, step (by a

predetermined amount of time) or stop the current simulation.

4. Source-level debug buttons. These buttons allow you to step through your

design one executable line at a time for debugging purposes.

5. Options button. This button allows you to view and modify various

simulation options, including waveform data formats and default time steps.

76

Univ
ers

ity
 of

 M
ala

ya

6. Help button. Provides access to simulation-related on-line help.

7. Waveform display. This window displays a scrollable waveform

representing simulation results in a logic analyzer format. Selectable cursors

can be used to precisely measure the time between events.

8. Signal display. This window shows the currently selected signals and their

display order in the associated waveform window. The current values of

signals are also displayed here.

9. Source level debugging window. This window shows the current line of

VHDL source statements that is being processed during simulation.

Breakpoints can be set in this window, and statement execution can be

observed in detail.

10. Transcript window. This window displays simulation-related messages, as

well as displaying any text 1/0 from your VHDL source code.

11. Status bar. This area of the simulator application displays useful information

including a percent complete indicator that is active during simulation.

6.13 How do I create a new project in PeakFPGA Design Suite?

1. Select the PeakFPGA Design Suite icon in the Programs » PeakFPGA

Design Suite folder of your Windows Start menu to start the application.

2. Select File » New Project.

3. Select File» Save Project As to name the project and select a project

directory.

4. Select File » Add Module or File » Create Module to add existing VHDL

design files to the project or create new VHDL files, respectively.

77

Univ
ers

ity
 of

 M
ala

ya

5. Select File» Rebuild Hierarchy to analyze the VHDL files and generate

dependency information in the Hierarchy Browser.

6. Select File » Save Project to save the project.

7. When you have created a new project in PeakFPGA (or have opened one of

the sample designs included with theproduct) you will see the VHDL files

associated with that project listed in the Hierarchy Browser as shown here.

tl"' ':·.J•.· · ·_.r, ... •:.:"'• .. ••= · :- ... 1:r::: " • t.::~ I !. Jt•.:11 __ ~· !.-

Be tea ..,.,. ~ s~ ~ ~ I::Jitl
• iQ g CJ .li a c:t. ~ CEJ •

fl'lfT1 Tn'ESTII OT W.C:•)
_ rJ N»CKJr£CllA: srMU£ flESl'SHF.'-H)J

= ra <«"Faelr DUT r~ '1M>)
" 01111" SHFTER 19-ff'IER.'H:>)

~ l'J ..:cu.£ SHJFTDI 'M:)
- rJ ENTJl'I'SHJFTEJI [SHIABI. 'H:>l

rJ .II'CKfrE:CTl.FI£ ~ ISHFTER 'M:))

Figure 6.04 Hierarchy Browser

6.1.4 Hierarchy Browser toolbar

1. Rebuild Hierarchy - analyzes source files and updates hierarchy

2. Show Hierarchy - expands tree display to show alJ levels of hierarchy

3. Hide Hierarchy- co11apses tree to display only the top level modules

4. Clean Up Project - deletes various intermediate and dynamically created

files from the project directory

78

Univ
ers

ity
 of

 M
ala

ya

Figure 6.05 Hierarchy Browser toolbar

6.1.5 How do I simulate my VHDL project?

Before simulating your project you must first ensure that it is complete, including

not only a VHDL description of the FPGA design you are attempting to create but a

test bench for that design as well. If you are unfamiliar with test benches and test

bench design you may want to examine one or more of the example projects

supplied with the product.

Once your design is ready for simulation, perform the foilowing steps:

1. Compile each VHDL file, starting with the files that are lowest in the design

hierarchy. (Alternatively, you can select the top-most VHDL file, which is

normally the test bench, and let PeakFPGA automatically compile the other

files based on the dependency information created when the project was last

rebuilt.) To compile a file, highlight (select) that file by clicking on its name

once in the Hierarchy Brower, then select Compile from the Simulate menu
'

or click the Compile button in the main toolbar. Correct any VHDL errors

(as indicated in the Compile Transcript window that appears) and recompile

until all files have been successfully compiled.

Note: for some projects, depending on your design requirements, you may need

to specify an alternate library (the default library is "work") in which to compile

one or more VHDL modules. To specify an alternate library or set other

79

Univ
ers

ity
 of

 M
ala

ya

Compile options, highlight a specific file in the Hierarchy Browser, then open

the Options dialog by choosing Options from the main menu. Enter the alternate

library name in the Compile into Library text entry field.

2. After all files have been successfully compiled, select the top-most VHDL

file in the design hierarchy (the test bench) and select Link from the

Simulate menu, or click the Link button. Your compiled design files will be

combined together to create a special kind of executable file called a

Simulation Executable. Errors during the Link process (if any) will be

reported to the Transcript window.

3. After the design has been successfully linked, click the Load Simulation

button to invoke PeakFPGA Design Suite's integrated VHDL simulator.

WDWLE TES l.SHFT8 VHD fJ (NTil'r'lrf" Tf*trn rr,.t>r N•rrthntr,,

- {'} olfO
aJ ~ r

•,, l•t. t"r 4 1no..'~· l' l .ll~uj•q•.J ~..._.., ,. : I i'J 1,1'' ,,I',.~ ~ ~

. " • 1,

Figure 6.06 Compile Process

80

Univ
ers

ity
 of

 M
ala

ya

6.1.6 How do I use the VHDL simulator?

To simulate a VHDL design using PeakFPGA Design Suite, you must

provide a VHDL test bench in addition to your synthesizable VHDL design

description. Test bench design is beyond the scope of this tutorial, but you can

examine a variety of sample test benches by opening some of the sample projects

provided with the PeakFPGA product.

When you have successfully compiled, linked and loaded your design,

including its test bench. the integrated VHDL Simulator is launched and a signal

selection dialog appears. This dialog allows you to select the signals of greatest

interest to you (for simulation purposes) and arrange them in a useful order for

display. For your convenience, the Add Primaries button allows you to quickly add

only those signals that were defmed in the top-most file in your design (the primary

design inputs and outputs). Once you have selected and ordered the signals to your

satisfaction (keeping in mind that you will be able to change the selections and

display order at any time), click the Close button to exit the dialog and view the

simulation interface.

The simulation interface consists of four primary windows that can be sized

using slider bars. The upper left window is the signal display window, in which the

signals you selected are displayed, along with their simulated values. Immediately

to the right of the signal selection window is the waveform window.

This window displays simulation results for all selected signals in a logic analyzer

format. The waveform window can be scrolled horizontally and vertically, and

zoom features allow you to get a close· up look at any portion of the waveform.

81

Univ
ers

ity
 of

 M
ala

ya

•. - ' l •r t., . ~~ ·" ,..,., •~oV;, \,, . ~lint l ''w .. •- •.1\,. ••\'•...t• \..,..,... •"'II •_..

.. ., • 0 h , I ·-
1

-' a • f, f • t.... 1
10

• 1•" .. ' ·· r _., "'

Figure 6.07 Signals selection

Measurement cursors can also be selected (by clicking with the mouse) to

determine the exact amount of time between any two events. The source code

display window, which is located directly below the waveform and signal display

windows, provides you with a source-level view of the design being simulated. This

window allows you to set breakpoints in your VHDL code and execute your design

one line at a time to help in debugging. The window located below the source code

display window is the transcript window. This window contains messages generated

during simulation. Messages may be generated by the simulator to provide various

types of status information, or may be generated from your VHDL code through the

use of assertion statements or text I/0. To start simulation and view the results, click

the Run To Time button (the large green VCR-styJe arrow). The simulator wiU

execute your design to the end time that has been previously specified for your

design, and a set of simulation waveforms will appear.

82

Univ
ers

ity
 of

 M
ala

ya

• oo ,,
0(15/J:
DD ~ :

006(11

OD6l 1

~t t~c P~I ~~~ .

el : = not rlt: p;
I:Jk .:• clll:~:q~ ~ -- ll.t.ta<'h yaut clr>dc M t •

t. dD.At • t.We tlJ.eo.

Y!ll '

<Ooct.>nv '6t t obL••- ••
R.,.~ ..

F<wln:lniJ to Cllll! : xw.JQOD Dll

Figure 6.08 VHDL Simulator Interface.

Our design is not up to the synthesis stage because we do not have the

needed tools for circuit level board (CLB) synthesizing process. Besides, our goal

since the beginning of this project is just to design a simulatable code for DES in

VHDL. Therefore, it is not relevant to go further in describing peakFPGA's next

features (synthesis stage).

6.2 DES functions in VHDL

This part shows how all the DES functions are implemented in VHDL. It is

not the entire source code for the module, but just the excerpt, the one that

makes the function work.

6.2.1 PCI

archltec:tu .. behaviCM' of pc1 Ia
......, XX : atd_Jogtc:_nctor(f to 50);

If dec. '1' u..n
XX(1)<•key(8);
XX(5)<:okey(40);
XX(8)<•key(M);

-eclddecvai-
XX(2)<•key(16); XX(3)<•key(2A); XX(4)<•key(32);
XX(6)<ookey(48); XX(T)<,.key(56);
XX(II)<•key(T); XX(10)<•key(15); XX(11)<•key(23); XX(12)<•key(311;

83

Univ
ers

ity
 of

 M
ala

ya

XX(tJ)Cltlkew(H)r
XX(tl)<ak~P}J
XX(20)<•'-Y(JO)&
XX(22)~ ... ,.
XX(I'J')CIIUJ(21JJ
XX(28)<a'-Y(2)1
XX(U)<alkew(G)I
XX(38)<8'-Y(S8)1
XX(41)<•1M¥(31)1
XX(Q)~51)1

XX(48)<8'-Y(21)a
JD((IO)<a'-Y(....);
-XX(U)<~a);
XX(t)<ak-,(57);
XX(I)Cltllt~Y(U)f

JCX41)<ook~1);
XX(13}<11My(:Mh
XX(1~0);

XX(liO)<•k~35)J
XX(21)<aqy(18);
XX(27)oc•...,...);
XX(~
XX(U)oC~3);

XX(Ja~

XX(41~3etf
XX(4Jtc~14);
XX(48~37)a
XX(SO)<aMI(21);
XX(~12);

.-...-;

6.2.2 Shifter

If (elk'-' elk. '11
-slllftla

-'-"'001 ...
--MNt,-ur

XX(t4)Clt'-Y(47)a
XX(18~e3)1
XX(21)<8key(J8)1
XX(2J)<a'-Y(S4)1
~(ft)f
XX(30)<•'-Y(10);
XX(~IO)I

XX(J7)<a'-Y(3)1
XX(G)<a'-Y(Q);

XX("")<a'-Y(H);
XX(4t)<•'-Y(31)1
XX(It)<ak-,(ft)l
XX(M)<~at);

XX(Z)~-);

~)CIIk~17)a
XX(t)Ok~Mk
XX(14)<11MJ(t8);
XX(11)~2);

XXf21~
XX(23~11)1

)0((211~38);
XXCHt 01M~~(III);
XX(JS)<•Mr(1S);
XX(~) I
XX(G)C8~);
XX(....)<aMr(a);
XX(49)oCaMr(28JI
XX(S1~1S);

~4);

dM8c_out __ oCIIIhlt8cl;

..... _OIIl_~ ...

..._-otr•>
- _., ... - "-¥

XX(1~8)1 XX(ti)CIIk~14)1

XX(:M)<a'-Y(82)1 XX(2S)<a'-Y(S)I

XX(31)<a'-Y(18); XX(U)~);

XX(38)<-'-Y(t1)1 XX(3t)Clt'-Y(1t);

xxc•~<-"~"" XX(<M)~12);

XX(~M); XX(53)CltUy(37)a

XX(3)oCIIUy(41); XX(4)<alc4oy(33);
XX(7)oColke,(t);
XX(tO)<Iill&eJ(SO)I XX(11~);

XX(1'7)CIIII&eJ(H); XX(te)oC~St);

XX(M)<•'-Y{3)1 JCX(aS~80)1

XX(3'1~ ~);

XX(J8)<....,(lW); XX(Jt)~48);

XX(~1)1 XX('M)~53);

XX(~ XX($$)<..,..,;

utac:_....___-ro_etdLoglcVectDr(to llltwec;tor(ollatec_out..._) rol 'I);
diiUd_out_~o_S~~ bltYec:tor(.._._out __) rol1)1

wMe"'tt•o

-....,. -·-...,
IIMIIc:_out__.c.To_8tdLotfc:Vector(to llltv..:tor(UU.C:) rol1);
...... _..._~·-ltiiLellc:~llltvec:tere J rolt)l

wt..'"100"'a>

-lllllft twice, - - qy
...__~o_SW.....,cVectw(to_~_. __)rol 2)1

......_out..._.IITo_~VMtor(to.JIItVoc:ter(detell_out..._) roi2)J

wlleft'"10'1•o
- twice,-~~.,.

....__out...~•-~YMtor(to_llllwa ta~e.c:) rol a,
diiUd_..t___.c.To_lltdLatllaVMtor(to_WW.Cterf.._.) ro1 2);

wlllltotllera
___, __

XX(tt)<•by(U)I

XX(:M)<alkew(13)1

XX(33)<•'-Y(U);

XX(40)<alle¥(17)t

XX(47)<aklly(20);

XX(M)Clt~41)1

XX('I2)-cak~U);

XX(18)<aqy(Q);

XX(:M)<a'-Y(IIa)a

XX(~Jt)l

XX(40)<•1M¥(3e)J

XX(47)aoltew(45);

XX(M~20)1

84

Univ
ers

ity
 of

 M
ala

ya

6.2.3 PC2

&I chi,.._.,pc2,yy, .e.t..Jollc_ncllllr(1 te M)f
YY(1 to 28)<'8c; YY(Jit to A)C-.1$

k(1)-YY(14); 11(2)0YY(1'7); k(3)<WYY(11); 11(4t-YY(M);
k(IS)<•YY(I)J
11(7)CaYY(3)1 11(1)-YY(D)s 11(1t)<•YY(11)t ll(10)caYY(a)t
ll(1lt)<•YY(10);
11(13)<•YY(D); k(14t-YY(18)J 11(11)<•YY(12)J 11(11S)<aYY(4);
11(1e)<WYY(I);
k(18)<•YY(18); 11(20t-YY(7)s ll(21)<•YY(27)s ll(U)<aYY(20);
k(M)UYY(Z);
k(IS)<8YY(41); II(H)<aYY(S2); 11(21)<-YY(31); k(U)<8YY(3'7);
11(30)<aYY(IS)J
k(31)<8YY(30); ll(32)<•YY(40); k(33)<8YY(!I1)f 11(34)CaYY(45);
ll(M)<aYY(48)1
ll(37)<8YY(44)1 ll(~YY(48)1 ll(38)<•YY(38)1 k(40)<aYY(A)J
11(42)<aYY(83);
~YY(4e)J llf44)<aYY{'U)t ll(4f)OYY«t0); 11(48)<aYY(3ft;
ll(48)<•YY(32)1

6.2.4 IP

..........._.......,...,lp ..

....... -4011: 111ft eat, rOll: for diM Ollt

10x{1)<apt(l8)1
IOil(S)<"Pt(lll);
10x(8)0pt(to);
10x(13)<'"Pt{U);
10x(17)<lopt(ez)J
101l(21)<11pt(3.,
IOX(ZS)CIIpt(M);

-~
t0x(1)<apt(S7);
IOK(S)<"Pt(2S);
tOx(e)Opt(H);
r0x(13)<'"Pt{27)1
t0x(17)<"Pt(61);
t0x(21)<"Pt(28);
r0x(2S)<CIIpt(83);
.eX{28)<*1Mf31"

6.2.5 FP

IOX(2)<"'fii(ICI)I
10x(C)CIIpt(11S);
10x(i0)<apt(S2);
10x(14)Calll4(20);
10x(18)CIIpl(84);
10x(22)<apt(22);
10x(H)<alii4(M)I

lOx{~

t0x(2)capt(G);
t0x(e).:.pt(17);
t0x(10)<apt(St);
t0x(14)<11pt(18)1
t0x(11)CIO!It(S3);
r011(22)<8pt(21)1
tOx(B)<..,.e(SS);
r011(30)Callt(23)f

IOX(3)<"1d(42);
10x(7)<apt(10);
10x(11)<apt(44);
10x(11)<apt(12)J
IOX(18)<apt(48);
10x(23)<apt(14);
10x(27)<1tpt(48);
10x(31)<'"1tt(1et;

t0x(3)<apt(41);
r011(7).:.pt(8)1
r011:(11)<"Pt(43);
r011(1 S)Citptt11);
r011(1e)<apt(41);
r011(23)<"Pt(13);
r8x(27)<"Pt(47);
r0x(31~(11)t

10x(4)<11pt(34)1
10x(8~(2);

10x(12)<"'Pt(H);
10x(11S)<Wpt(4);
10x(20)<apt(:sa);
101l(24)<11pt(IS);
10x(2a)<apt(40);
10x(32)<1opt(e)l

t0x(4)<•pt(33)1
r011(8)<apt(1);
10x(12)<"Pt(3!1);
10x(11S)<"Pt(:S)J
t0x(20)<apt(3'7);
tOx(M)<IIpl(S)c
r011:(2a)<llpt(38);
t0x(3a~('7);

k(S)<8YY{1)1

k(11)<8YY(21)1

11(17)<•YY(21Jf

k(23t-YY(13);

ll(Jit)<8YY(4'7);

ll(35)<•yyt33)1

k(41)<8YY(34)1

kf4'7l-YY(28t;

ct(1)CIIt(l); ct(2)<101(1);ct(3)<111(1e); ct(4)cal(1e)l ct(S)<III(M); ct(8)<•1(24);
c:t(7)CIII(U); ct(I)C*I(:SZ);

ct(8)01('7); ct(10)01(7)s ct(11)<111(11)1 ct(1Z)<ai(1S)I ct(13)car(23); ct(14)ca1(23);
ot(1S)-..(31)J ct(1.,_r(31)J

ct(17)CIIt(8)1 ct(18)<al(8)t ct(18)<111(14)1 ct(20)< .. (14)J ct(21)<81'(22); ct(Z2)<81(22)t
ct(23)C11r(30); ctt24)cal(30);

ct(2S)Oir(S); ct(Ze)<ai(S)a ct(27)CIIt(13); ct(2a)< .. (13); ct(28)<8r(21); ct(30)C111(21);
ct(31t<-r(.28J; ct(32)<101{28);

ct(33)<8r(4)1 ct(34)<81(4); ct(H)<ar(12); ct(H)<al(12); c:t(37)<ar(20); ct(31)<ai(H);
ct(38)<ar(U)t ct(40)<•1(28)1

ct(41)<ar(3); ct(42)<al(3); ct(43t-r(11); ct(44)<101(11); ct(41)<""(11); ct(48)<aoi(18)1

ct(4 J""<l.& r 1i

85

Univ
ers

ity
 of

 M
ala

ya

f r: I I I 10
f 00

i f f
i I f ..

f f I I T
.1.::

t •

I I i
f 1: i i i tt i
i i t I
f f 'i i If .1.::

I I •

f
.. ...

' I
~ I i I f

i I
llllll!i!fli!fli!iiiiiiiiJ

I , . ..
f t ' I f i I i I T

i
f f I f

i , I , , ..
IJJJJJI J!JIIiJJIIJJJJJJ .• I t
1111111 t illilllliilllfl_

,,,, i i ; g f ! f f I I f
I I I f I I I I I I I I I fiiff(fftf(fflfff(ff~flff(-i.=f li ...

I I .I

i''''~'''g'~'''~l~~~,,~~ii
t s

if if ' I I I I , I ; I f f f I l >< JJJ;;;J,JJJ~F~jJJJJ;;;;;;
~ I i ' i i I ~ I i i i t I .8 11111111111111111111111111 .=i.=i 00

I I 10 r--. lti C'i I 1 C'i
,0 ,0

Univ
ers

ity
 of

 M
ala

ya

:;.

f

~~EEE~tfEE~fEfr~~f~~Eff£~f£r£ff£EE~££!
JJiJJiiiiJfii1flifJiJJJffiffiiiJIIIIII
~,,, ii~lliii'iiiitiiiliiii~iiiliii~il
Itt; ttl;;tt; lttttttt;tttt ttttttt!tt
rrrr1rrrrrrrrrtrrrrrfrrrrrrrrrrrrrrrr
Pt1tlt~Af1flt'~itC'ifl!ltPtPtllltPtlt1

1 •~i~•~ ~-~~~-~ i ~~~·~t~•~i;'~ii'~i;' ••~~;; ~~~';;~ ••~~;; Iii~~;; ••~·; ~P~ • Booa •~•~~••• o••o~•••••• PPPPPPrrrrrrr rrrrrrrrrrrrrrrrrrrrrrr
11111111111111111111111111111111111111

I
II

f
i

i='JI: f ail! i
Iff !! !. !

h '1 iUhi
ss i i ! l
t!J: k ~~= J: aa I a-il I

If ll n ii ~~i
~, e~i J i:;. i ;::-

' ~~ ~ !

1
-iii• , ' f)C ll! i I i J:=t:~ 1 11 I lllaaa

~ •s lll

1 it iii
~ Iff ··~-... ll ~~if·f~fl.(
• .. 1 ::-."=~iaaa- a
a ;s lit !!l l

~ I t 1

t-
oo

Univ
ers

ity
 of

 M
ala

ya

6.2.9 Non functional requirements description

• Mux32

..,.ceA(MI,eO,e1)
lfMI•'O'thell

o<•eOJ
o-•1;

• Reg32

.............. .,.... flf NtPll ..

....... ~ 111td.Jotllc_._._ t1 to Uj f
IMitlln
.-ceM'(CIIIl,-.t)

....
lf(clk. '1' ctk'-..t)

• Ov32

ARCHITeCTUIU! .,..at OF OVU 18
IIEGttt
procou(MI,clk)
If (dll"-' •• dll • '1'} ...
lf(MI•'1')thell

o2<t~et

The complete source codes are in the diskette enclosed.

88

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 7.0 DES results verification

In order to verify our DES output, we must have a sample data and key

flowed through all the DES functions. This chapter shows each step of permutation

with the changes to the data at each step.

7.1 Generating 16 subkeys through pel, shifter and pc2 (functions from

subkeygen)

The suitable key selected is FFOOFFOOFFOOFFOOH. The reason why will be

explained later.

After pcl. The y-axis shows the first numbers after a gap of eight bits. The

eighth bits are stripped (bits on shaded area) because we only need 56 bits.

1 2 3 4 5 6 7 ! J
1 1 1 1 1 1 1 1 1 ...

9 0 0 0 0 0 0 0 0 '
' ..

~ ,f :

17 1 1 1 1 1 1 1 1· ••
;;.·

25 0 0 0 0 0 0 0 0 ·~

33 1 1 1 1 1 1 1 1' -
i\.

41 0 0 0 0 0 0 0 0 ...

49 1 1 1 1 1 1 1 1 ·..,:
•.

·l

57 0 0 0 0 0 0 0 0

Table 7.01 After pel

89

Univ
ers

ity
 of

 M
ala

ya

Split into two halves, c and d.

[c]

1 to 7 0 1

8 to 14 1 0

15 to 21 0 1

22 to28 1 0

[d]

1 to 7 0 1

8 to14 1 0

15 to 21 0 1

22 to 28 1 0

0 1 0

1 0]

0 1 0

1 0 I

0 I 0

1 0 I

0 1 0

1 0 I

Table 7.02 After Split

1 0

0 1

1 0

0 1

I 0

0 1

1 0

0 1

This is the reason why this key is selected. As you can see, the two halves

are identical, so we only have to work once.

Shift the bits. This stage, we will shift the bits leftward, according to table

5.26. The most significant bits are then shifted to the right.

Pseudocode:- i = 0, i ++, i <17

i = 0 (initial stage)

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 010I 010I 010I 0101 0101 010I 0101

i = 1 (frrst round of permutation)

c :- 10101010 1010 1010 1010 1010 1010

d:- 101010101010 1010 1010 1010 1010

90

Univ
ers

ity
 of

 M
ala

ya

i = 2

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i = 3

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i = 4

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i = 5

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i=6

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i=7

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i = 8

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

i = 9

c :- 1010 1010 1010 1010 1010 1010 1010

91

Univ
ers

ity
 of

 M
ala

ya

d:- 1010 1010 1010 1010 1010 1010 1010

i = 10

c :- 1010 1010 1010 1010 1010 1010 1010

d:- 1010 1010 1010 1010 1010 1010 1010

i = 11

c :- 1010 1010 1010 1010 1010 1010 1010

d:- 1010 1010 1010 1010 1010 1010 1010

i = 12

c :- 1010 1010 1010 1010 1010 1010 1010

d:- 1010 1010 1010 1010 1010 1010 1010

i = 13

c :- 1010 1010 1010 1010 1010 1010 1010

d:- 1010 1010 1010 1010 1010 1010 1010

i = 14

c :- 1010 1010 1010 1010 1010 1010 1010

d:- 1010 1010 1010 1010 1010 1010 1010

i = 15

c :- 1010 1010 1010 1010 1010 1010 1010

d:- 1010 1010 1010 1010 1010 1010 1010

i = 16

c :- 0101 0101 0101 0101 0101 0101 0101

d:- 0101 0101 0101 0101 0101 0101 0101

92

Univ
ers

ity
 of

 M
ala

ya

After pc2.After 16 rounds of iteration, we could see that actually,

there are only two permutations. Values after permutation 1, 9, 10, 11, 12,

13, 14 and 15 are the same, while the same also goes to values after

permutation 2, 3, 4, 5, 6, 7, 8 and 16. We send this value to pc2, and this is

what we get.

ia = 1, 9, 10, 11, 12, 13, 14 and 15

[0110][11

10] [1010]

1100] [00

01] [1010]

[1011] [11

00] [1110]

[0110] [01

00] [0010]

ib = 2, 3, 4, 5, 6, 7, 8, 16

[1001] [00

01] [0101]

[0011] [11

10] [0101]

[0100] [00

11] [0001]

[1001] [10

11] [1101]

For all the values in the bracket, it is converted into hexadecimal. Below are

the processed keys.

Keys ia = 6EAC1ABCE642

Keys ib =9153E98319BD

7.2 16 rounds of data permutation

Now, we will pass the keys into the DES core. The data will be

passed through functions ip, function/then finally, fp. The sample data

selected is OOOOOOOOFFFFFFFFF H·

93

Univ
ers

ity
 of

 M
ala

ya

After IP. After passing through the IP function, the values are split

into two halves, R for top half, and L for lower half.

1 2 3 4 5 6 7 8
1to8 1 1 1 1 0 0 0 0
9 to 16 1 1 1 1 0 0 0 0
17 to 24 1 1 1 1 0 0 0 0
25 to 32 1 1 1 1 0 0 0 0
33 to 40 1 1 1 1 0 0 0 0
41 to 48 1 1 1 1 0 0 0 0
49 to 56 1 1 1 1 0 0 0 0
57 to 64 I 1 1 1 0 0 0 0

Table 7.03 After IP

After XP. Values are entered into ffunctions, and the first function is

the Expansion (xp) function.

1 2 3 4 5 6
1 to 6 0 1 1 1 1 0

7 to 12 1 0 0 0 0 1
13 to 18 0 1 1 1 1 0
19 to 24 1 0 0 0 0 1
25 to 30 0 1 1 1 1 0
31 to 36 I 0 0 0 0 1
37 to 42 0 1 1 1 1 0
43 to48 1 0 0 0 0 1

Table 7.04 After XP

XOR with key. Values passed from XP into the desxor1 function,

XOR with subkey R1.

After xp Subkey After R1 Product of xp XOR
r1

011110 011011 000101

100001 101010 001011

011110 110000 101110

100001 011010 111011

011110 I 01111 110001

100001 001110 101111

011110 011001 000111

100001 000010 100011

Table 7.05 After desxorl

94

Univ
ers

ity
 of

 M
ala

ya

Sbox substitutions. The XOR product ofxp and rl are then split into

eight equal adjoining parts, and entered into sboxes. (Refer to 2.4.4 for sbox

guide) Below are the values obtained. For coordinate, it's in (x,y) form.

sbox Bit value Coordinate Value In binary
lto6 1 0 0010 1 1,2 7 0111

7 to 12 2 1 0101 1 1,5 2 0010
13 to 18 3 1 0111 0 2,7 0 0000
19 to 24 4 1 1101 1 3,13 7 0111
25 to 30 5 1 1000 1 3,8 6 0110
31 to 36 6 1 0111 1 3,7 10 1010
37 to 42 7 0 0011 1 1,3 7 0111
43 to 48 8 1 0001 1 3,1 1 0001

Table 7.06 After sbox

P Permutation. After the sbox substitutions, the values are once

again permuted according to P permutation. Here is the result.

After P
1101
0010
0111
0100
1001
1110
1000
0010

Table 7.07 After P

95

Univ
ers

ity
 of

 M
ala

ya

XOR2. This is the final function before it is passed through as a complete

round (becoming Li+J, remember, Ri = Li+J ?)

P values Rl keys Product Value (H)
1101 1111 0010 2
0010 0000 0010 2
0111 1111 1000 8
0100 0000 0100 4
1001 1111 0110 6
1110 0000 1110 E
1000 1111 0111 7
0010 0000 0010 2

Table 7.08 End ofR1

These steps are repeated another 15 times for 16 rounds of permutation. Due

to space constraints, I will only display the final values after each round of

permutation, before sending the values into FP for our final ciphertext.

R 1 = 22846E72 H R9 = CD2242FE H

R2 = 65C800B9 H RIO= 251B5698 H

R3 = E1AD5D5B H Rll = 4DC0735E H

R4 = 7F86D9C7 H Rl2 = 4EA2005D H

R5 = CBA86EAB H R13 = F41FEB2F H

R6 = E4968AE9 H Rl4 = 70074950 H

R7 = DE8F8B35 H R15 = 9A850263 H

R8 = 9D4C8B41 H Rl6 = 57816792 H

R17 = D8645168 H

The two values to enter FP are R15 and Rl6. Rl5 will become the left half,

R16 is the right half. R17 is just permuted data that is needed to end the key, and it

is discarded.

96

Univ
ers

ity
 of

 M
ala

ya

After FP. Below is the fmal ciphertext output of DES for our sample data

and key. If the design's output does not tally with what we get here, then the design

is considered a failure.

Values

1 to 16 0111 0110 1010

17 to 32 0110 0100 1001

33 to 48 1010 0001 0000

49 to 64 0100 0110 1011

Table 7.09 After fp

Ciphertext= 76CF6480C10646B1 H

1111

0000

0110

0001

* Refer to chapter 2 on permutation arrangements of data.

hexadecimal

76CF

6480

C106

46Bl

97

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 8.0 DES Design Testing I Verification

This chapter shows if our design reaches its objective. A sample data

is entered along with its key, and then we look at its product. If the design is

able to decrypt our ciphertext, then it is considered successful. Sample data

is the same as the one example that we worked in chapter 7.

8.1 Compile All Design

All finished designs are compiled at the top-most level of design. In

our case, the State TB module. This is a testbench module, and it is

autogenerated from an online automatic vhdl testbench generator. The

website is available in the reference.

Before that, here are the values entered into the testbench.

Pt = x"OOOOOOOOFFFFFFFF";

Key = x"FFOOFFOOFFOOFFOO";

Dec ='0';

Reset ='0';

Figure 8.01 Compiling state_tb.vhd

98

Univ
ers

ity
 of

 M
ala

ya

8.2 Simulate State TB

li!i1
eliiii!JB*••

1111: -- i nithh •chile
1112: --this 1s •~rt ••
1113: --~d• yp •f np•n
IISII: --and r-egishr s(n
1115:
1116: Ubnry bee;
1117:
11•: use il'tt.sttl_lagic

"":
1111: I'Atlty biU~t~ is
1111 : (

luiU a,r 1t 1999.
loading ...
i nttblizing ...
llone
Inithllntion co~~~pll!h ...
Settiftg nriftles . ..
Indy .
(-

--w_oec
W_AESET

............

, __ ,
Obiecftto~

OuT *ILlig

~
DUTdatapailWLn
Dlll~IIULlto_JOI.ftd

AddAI»j OUT dltapllh..ln.ILLtiLrard
OUT dat~CN_lto_fp

---!.J OUT~OY-lto...J'UC
DUT~""'-'-tQ..h:l

RemoYe~ OUT datapalt\.OIII_I_Io_IIUI
DUTdlt~,
DUTdei~Lto_oor

u, lo-1 DUT d~Upeth.IIDIRt,.r_to_O¥
OUT ~_g~nerlkr c
DUT~MOt-el
DUT~~alord
DUTa.tlkari_gene~atcun

Srte Obtacb J
OUTki_flig
OUTCJUtpJ_c:*

loedObttct•
w_ax
DUTiood_I'IIMJ!f
OUTCCriJol_ripre_..,..

~ OUTconllol..ri.h.(_ata
w_cr

""'*""""·

Figure 8.02 Select simulation signals

....

For simulation signals, all signals selected except for reset and dec.

8.3 Waveform Analysis

The most important waveforms to be analyzed are the keys and the

permuted data from each round. These values are checked to see if it tallies

with our Controlled Result from Chapter 7. Figure 8.03-8.05 shows the

simulation results (up till Key_ end state)

99

Univ
ers

ity
 of

 M
ala

ya

- !rNITDATA.VHD · I
bUT.datapath.ov: l_to: muM•E1AD505B 9ns 18ns 27ns 36ns 45ns 54ns 63ns ~,.,.r ·

OUT . d~tapath.ov_r_to_fp-LJUUUUUUU

OUT.datapath. ov_r_to_mU)(•7F8609C7 UULUUUUL 22846E72 li5C80lJif!f :IAL:>U: / l"t!OU!:fl.. / L~A!jb~A~

0 UT. datapath. right_irPFOFOFOFO
OUT.datapathrOU'ld_l_to_ov•El A05058 uuuuuuuu FUFOFOFO 22B46E72 b~L~~ E:lAlJ505B 7F8609C7 Cl
OUT.datapathf<X.I'ld_r_to_ov•7F8609C7 UULUUUUL 22B46E72 65COOOB!f E:lAlJ5U~B 7FB609C7 !:!~All t
OUT.stbkey_generator.c•5555555
OUT .stbkey_generator.c1·5555555 ll_~~Li I'I'JlAilAA !:>~~~!:>

OUT .wbkey _generator.d•5555555
OUT .otbkey_generator.d1•5555555 UUUUL API¥>APA ·~!:l

OUT .ki_sig=9153ES4319BO IJUUUUIJ. b~ALlA~L~b4< ~l!:l±!:l4Jl0t!U

~ OUT.output_ok='O'
W_CLK='O' ,_J r l__j r
pur . ~_new_pt='O' J
pur. control_ un~.pre_ state•A5 INI H' RZ R3 H4 Hb R6
DUT.control_unUut_state=A6 H' RZ R3 -m- H!:l R6 ~
W_CT=UUUUUUUUUUUUUUUU
W = KEY-FFO!fHXFFOOFFOO
W)T ..OOOOOOOOFFFFFFFF v

< > < il . ~ ...

I

.. - - - - - - '·

loading .•• r.-.·,
initializing ...

::....1

done
Initialization coAplete ...
Getting uariables ...
Ready. f]
Running to ti~e: 2100 ns .v

< - - .l >
Ready Stopped at .VHO: 0 Selected line : 0 NUM

Figure 8.03 Results from state Init- R6

100

Univ
ers

ity
 of

 M
ala

ya

,.._...._.. -- _,. fiNIIDATA.VHD yl
OUT . ~~ov_l_to_rr<.ll<-E1AD505B 63ns 72ns 81ns OOns 99ns 10Sns 117ns 126ns "
OUT .~apalh.ov_r_to_fp..UUUUUUUU

OUT .~~ov_r_to_mU!C•7f860~7 btAI:I ~4~~~ Dt6f8B35 904CW41 CIJm2Ft ~5185636 4L.JLUI.=

OUT . ~apath.r;g,t_in-FCFCHFO
OUT ~~rouncll_to_ov=E1AD505B J':LI UlAtlbtAil ~4=t:S DEBFBB35 S0'1Ltfll_41 LUU4b~ '"->1856SB -
OUT .~~rounclr_to_ov•7FB60~7 btAI:I ~4~t~ DE6f8835 904CW4' ~E. :011~ 4L.JL ::Jt
OUT.subkey_generalor.c-5555555
OUT. subkey _generalor.c 1 s5555555

I

AAAAI>I>A
OUT.subkey_gene<ator.d-5555555
OUT .subkey _generalor.d1•5555555 AAf:>.OAOA I I
OUT .ki_sig•9153E54319BD
OUT .~ ok•'O'
W_CI..Ks'[J- r=-'""
OUT .load_new__pt•'O'
DUT . cortml_lri.~e_stale•R5 HI Hll H~ RlO H HU
pur. cortrol_ lri.fut_ state=R6 Hll RS R10 R1 Hl~ Rl3
~-CT•UUUUUUUUUUUUUUUU
W =KEY·FHXFFOO'FOOFFOO

I
'

W =PT •[)(XX)()fXXFFFFFFFF :VI
'')"! < l. < ~ \ I t>:

loading ... ~
initializing •. •
done
Initialization conplete •••
Getting uariables ..•
Ready. n
Running to ti~: 2000 ns ~~'
< - -~ - I >

Ready Stopped at . 't'HD: 0 Selected lne : 0 NLI>1

Figure 8.04 Results from states R7 to R12

101

Univ
ers

ity
 of

 M
ala

ya

- !rNITDATA.VHD · I
OUT .d!II!IP"th.ov_L to_roox-57816792 127ns 136ns 145ns 154ns 163ns 172ns 181 ns t~l
OUT.dat!IP"th.ov_r_to_lp-57816792
OUT .d!II!IP"th. ov _r_ to_rru>e-0 8645168 l s.Jt . 4tAAA)~U ~4l~tl:!b IW/4~0 li'\WUlb.:l ~flflbf:lL IJ!l64!>168
OUT d!II!IP"th.ri!#_ir,.f(Hlfll'O
OUT .d!II!IP"th. r0l.r.d_l_to_ovz57816792 5698 4UL 01: 4tALW. ~41 ~tl:!b I UUI4:l:lll ::1'\=.:t ~ft!l bf:lL -.
OUT.d!II!IP"th. r0l.r.d_r_to_ov-D8645168 I .:lot 4tAlW~U Hl~tH£1- 70074950 li'\WUd>.:l oflfllif~~ 08645168
OUT .SI.bkey __generator. c-5555555
OUT .stbkey _generator. c 1-5555555 >AAA ~~~=
OUT . oubkey_gene~ator.d-5555555

OUT .stbkey_generator.dl a5555555 >PAP. . ~~~~~~

OUT.ki._aga9153E5431 9BO ~Ltb4l ~l::.Jt04.:1l:Jij~ 6E
OUT.outpU_ok•'O'
W'_D.K•1 ' ·r--
DUT.IMCI_new_pi•'O' r
OUT .cootrol_lri.pe_state..JNIT HI .:I Hl4 Hl~ R16 "-t' _tNU INII
OUT .cootrol_ tri.fut_state=Al Hl4 R15 R16 KE' oNL INI R'
~-CT •76CFS480C1~68 1
W'~KEY..mxFf(D'fCXFFOO
w _PT ooOIXDlDJFFFFFFFF ~,

i"-l
(f>1i <:, ~ I p1,

. - - -- -- -- - - -- -· ~---- - ---- -- -·-- - -- .. --- ---- .

loading ___
initializing •.•

~~

done
Initialization conplete ...
Getting uariables ..•
Ready. n'
Running to ti~e: 2000 ns ~r.
(--~--- ---~-- I >

Ready Stopped ~t .1/HD: 0 Selected ~ne : 0 NliM

Figure 8.05 Results from states R13 to Key_end

102

Univ
ers

ity
 of

 M
ala

ya

As we can see from the figures, the waveform for each value for keys

and permuted data during each state tallies with our Controlled Results.

However, the state value for permuted data is shown in its future state. Rl

will have no value, but its supposed value is displayed in R2. But other than

that, all values are right. However, this does not mean anything unless we

can decrypt the ciphertext and get the original data.

The testbench is run again, this time in decrypt mode. Figures 8.06 to

8.08 displays the waveform.

Pt = x" 76CF6480C10646Bl";

Key = x"FFOOFFOOFFOOFFOO";

Dec ='1 ';

Reset ='0';

103

Univ
ers

ity
 of

 M
ala

ya

- . ltNITDATA.VHD · I _______...,. ..
DUT.datapath.ov_r_to_fP-UUUUUUUU 9ns 1Bns 27ns 36ns 45ns 54ns 63ns "
DUT.datapath.ov_r_to_mUlFF41FEB2F uuuuuuuu ruur4~:>u ~41~1:.~~ _4_EA_2(JlJ5D 4LJLU(Jtll:. ~tll~tlb!Jtl

DUT.datapath.right_in=9AB50263
DUT.datapath.round_l_to_ov=70074950 uuuuuuuu ::l".lltlUlb::t /Wf4~~ F41FEI:s. 41:.A.!IJUtll) 4UUJf::ttlt 2
DUT.datapath.round_r_to_ov=F41FEB2F UUUUL UUL 70074950 F41FEB2F 4EA2ll!hL 4DC0735E ltlllltlb~ L
DUT. subkey_generator. c=f>lli:>A6.0A
DUT . stbkey_generator.cl~ ~UUUUL! :l:l:l=:l ~

DUT . sl.bkey_general01.~

DUT.sl.bkey_generator.d1~ ~UUUUL! tlt>t>=t> ~

DU T. ki_ sig..sEAC1 ABCE 642 UUuUI] <.;St::l4' ~l:lL btAL IAI:lt-~b4l

DUT .ot.tput_ok='O'
W_CLK='O' - r
DUT .load_new_pt='O'
DU T. control_ t.ri.pre_ state=R3 INII Hl Hi H:l R4 Htl Hb
DUT .control_t.ri.fut_stale=R4 H Hi HJ rr..- ~ Hli Ri
~-CT=UUUUUUUUUUUUUUUU
w~KEY=FFOOFFIXHOOFFOO
w _PT =76CF6480C1 ro\681

v -
<! .. 1 > -~ -I f>:',

•.- - -

- ---- ... -
loading ... [":
initializing ...
done
Initialization co~plete ... ~

Getting va~iables ...
Ready. ! :
Running to tiRe: 2000 ns .v ...

< II .l
Ready stopped at . YHO: 0 selected line : o NUM

Figure 8.06 Results lnit- R6 (decrypt mode)

104

Univ
ers

ity
 of

 M
ala

ya

-- - IINITDATA.VHD · I
OUT.datapathov_r_to_fp..UUUUUUUU 63ns 72hs 8111$ SOns 99ns 108ns 117ns 126ns A

OUT.datapalh.ov_r_to_rnux•25185698 pb~ L..UU4l~t. ::JU4U:Il4l DEBFBB35 E4::1b!1At::t l..t!AIA:ii::.AB 7F8609C
OUT.datapath.right_ins9A850263
OUT . dat~round_t_to_ov•4DC0735E ,735E ~ltl:lb:ll:l l.UU4~t ::IJ4l..tltl4" DEBFtli:IJ~ t.4!:tbti".t!:t UlAtll:itAB
OUT .datapath.round_r_to_ov•251 85698 ~98 I l..UU'I~~t. !:tU4l..l:ltl41 Ut~tltl3~ l::.4::rtXlAt.:l l..tlAtJbtAtl (1-tlb!J::JL
OUT .stbkey .Jlener ator. c=I>AOAI>M ,....
OUT .stbkey_generetor.c1 ~

I
5555555 I I

OUT.sl.bkey_generetor.do<AAAAMA

I
: I OUT .stbkey_generetor.cl1 ~ ~::.~55

OUT.ki_$ig-6EAC1ABCE642 :n::.::~t.04Jl3BD

DUT.output_ok•'O'
I

W_CLK•'O' r
DUT.Ioad_new_pt•'O'
OUT .control_unit.pre_statecR6 I> R/ I RB R9 llU H. R12
DU T .cortrol_ ri fut. stele= A 7 Htl RS RlO Hll Rl:J
w_cT-uuuuuuuuuuuuuuuu uu I

I

w' _KEY=FHXFFO!HOOFFOO
w' _PT •76CF6400C1004681 I I!

,! ~v!

~ j,;j
..

J>"' <) _ n_ - ·- - - - - f>1'
~ . ·-

loading ... 'A

initializing ••.
,_

done
Initialization co~lete ••• r Getting variables ..•
Ready.
Running to ti~: 2111 ns ~v
' 1 ...

Ready Stopped at .VH): 0 Time: 60 ns 1'-lJM

Figure 8.07 Results R7- Rl2 (decrypt mode)

105

Univ
ers

ity
 of

 M
ala

ya

jiNITDATA.VHD · I
OUT.datapath.ov=r=to=lp=FOFOFOFO 127ns 136ns 145ns 154ns 163ns 172ns 181ns ;.,

OUT.datapath.ov_r_to_muxzA4210979)~{ t1AOoD5B b::JI..i:jUUi:j~ l£tl4btf£ rut-Ut-Ut-U ll840E72
OUT .datapath.ri!t>t_in=9A850263
OUT .da!apath.round_Lto_ov=22846E72 6EAB 7F86DOC7 tlAD005B 65C80089 Ulj4btf£ FOFOFOFU .
DU T .datapath.round_r_to_ovzA421 0979)~{ t::1AD5D5B b::JI..i:jUUtl::l Z2B46t72 t-Urut-Ut-U 22840E72
OUT .subkey_gener at01. c=f:>AO.OA6A
OUT .subkey_generator.c1 =5555555)555 flPili'P.PA
DU T .subkey_generat01.cJ..AAAO.AAA
OUT .subkey_generator.d1 =5555555)!)!)!) flPili'P.PA

DUT .ki_sig--91 53E 543198D ~Jl ::AJO

DUT.output_ok='O'
W_CLK='1' r=
OUT .load_new_pt='1' r
OUT .control_unit.pre_state=R1 I ~ HU 1114 Hl::J 1 lb X KEY_END I INI
pur .control unil.fut state=R2 13 X t1T4 Hl!:l R16 KEY_:Nl INI R'

f.o/_cr =OOOOOOOOFFFFFFFF
~~KEY ·FFOOFFOOFFOOFFOO
W _PT =76CF64BOC1 ~681 =

v

_t.JI ~ ~~;. ~ 1! PI ,> ..

·--· ·- --·--·-- -
loading ... A -initializing . ..
done
Initialization co~plete ..•

~ Getting ua~iables ...
Ready.
Running to ti~: 2000 ns

·- ~~
(- - -- -- Jl t ·-

Ready Stopped at , VHO: 0 Select-ed ~ne : 0

Figure 8.08 Results Rl2 - Key_end (decrypt mode)

106

Univ
ers

ity
 of

 M
ala

ya

As we can see, ct' s value at the end of the process is

OOOOOOOOFFFFFFFFFH , which is the original data. From the results obtained, our

design has reach its objective, which is to successfully encrypt a 64 bit data based

on DES standards, and decrypt the data using the same key. I have also included

other sample data's and keys to fully verify our design.

Pt = x"ABCDEFABCDEFABCD";
Key = x"OOOOOOOOOOOOOOOO";

Ct = x"AA4FE87B44C87AAB"
Dec ='0';

Pt = x"AA4FE87B44C87 AAB";
Key = x"OOOOOOOOOOOOOOOO";
Ct = x"ABCDEFABCDEFABCD";
Dec ='1';

Pt =x"
Key =x"1100ABCD0011DCBA";
Ct =x"92F88CDBFB 1 F8FE2";
Dec ='0';

Pt =x"92F88CDBFB 1 F8FE2";
Key =x"1100ABCD0011DCBA";
Ct = x"
Dec =' 1 ';

107

Univ
ers

ity
 of

 M
ala

ya

0 0

Univ
ers

ity
 of

 M
ala

ya

Chapter 9 Discussion

This chapter discusses the problems related to this project, its

strength and weaknesses, future improvements consideration and the

projects development process.

In the world of digital systems design, there are two ways in

implementing any design. I came to this deduction because of the

numerous research papers on DES designs I've come across, there is

always trade-off between speed and size of design. There is a fast

version, in which all operation are pipelined and done in just one

clock cycle, while the other is small, where operations are permuted

by looping data through the machine according to requirements,

causing delay based on the amount ofloops required. Eventually, a

hardware design will be hard-wired onto FPGA or CPLB boards. In a

fast design, all operations are split to be executed individually;

certain architectures are repeated, thus wasting space on the limited

space available on the targeted circuit boards. This method is also

called pipe-lining.

If space is premium, then a small design is appropriate. By

using state machine, the operation can be manipulated. If certain

operation could not be done on a clock cycle yet it uses the same

resources, it can be set in the future state, where the operation is done

108

Univ
ers

ity
 of

 M
ala

ya

the following clock cycle. Thus this saves space, as we do not have

to build an identical architecture.

My DES design is a design where space is premium, in other

words, it is a small design. For a variation of my design, I feel it is

possible to develop a fast pipelined design. The lnitdata architecture

could be arranged sequentially, because if we consider the DES

algorithm, the left part of the next round is the right part of the

preceding one. So only half of the information needs to be stored. By

doing this way, we store only 32 bits instead of 64 bits. The figure

below illustrates my point.

Rl Ro Rl Ro Rl

Lo u Lo U

Figure 9.01 Pipelined design for DES

This design will be at least 17 times faster than our original

design, but in term of space required for FPGA circuit board, it will

be much, much larger.

In term of strength and security the DES offers, the level of

security is still adequate, but considering the strength of computers

nowadays, it is not safe, because the length of key (56 bit) is

109

Univ
ers

ity
 of

 M
ala

ya

considered too short and is breakable using brute-force attacks.

Nowadays, only the Triple DES variation of DES offers adequate

security.

In order to arrive at my fmal design, a lot of effort has been

put into designing, then re-designing the DES architecture. The

hardest part is in designing the shifter and state machine. My initial

design was without a state machine whatsoever, and needless to say,

it was anarchy. Credits should be given to the website, "VHDL

tutorial through example" by Wei Jun Zhang. My state machine and

registers design are taken and adapted from here.

110

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 10 Summary

This project is about the development of DES cryptosystem

in VHDL. In other words, a hardware implementation of DES in

VHDL. Two main subjects important in the development for this

project are the DES algorithm, and VHDL programming language.

In-depth research has been done to these two subjects.

The process flow used is based on "Cascading-Waterfall"

model. It is used because of its simplicity and sequential process. The

proposed methodology is "Top-down Design/Bottom-up

Implementation". Here, in analyzing the system, a top-view is taken,

then broken into modules of components. Recursive partitioning will

produce subsequent levels, and the smaller modules are referred to as

subcomponents. The implementation phase will take a bottom-up

approach, where each submodules are built. These submodules are

then tested individually and all components will be integrated. In

other words, take a "divide-and-conquer" approach in this projects

development.

In DES analysis, based on functions involved, it is deduced

that DES contains two main modules. All functions are identified,

and some are combined to form sub-modules for DES. Results from

the analysis will be the basis of our DES design.

111

Univ
ers

ity
 of

 M
ala

ya

For DES design, in addition to the two main modules, two

additional modules are required, which are RAM and Controller. The

RAM modules acts as temporary buffers, and come in three different

designs, in the reg32, ov32 and mux32 modules. The Controller is to

control DES operations using state machine.

The tool of choice used in this project is peakFPGA. DES

operation is performed manually, so we have a benchmark value to

evaluate our design. After individual modules are built, they are

linked and simulated. Then, finally, the top-level design of our DES

testbench is simulated. From the waveform obtained, our design has

successfully encrypted and decrypt 64 bit data based on DES

standards, operating in ECB mode.

112

Univ
ers

ity
 of

 M
ala

ya

0

0

Univ
ers

ity
 of

 M
ala

ya

Appendix A -A practical example of the DES algorithm encryption

By Adrian Grigorof- adrian@grigorof.com
December 2000

The sample 64-bit key:
ddd,bbbbbbbb
222,11011110
16,00010000
156,10011100
88,010 I 1000
232,I I IOIOOO
164,10 I 00100
166,IOIOOIIO
48,00I 10000

The 64-bit key is (hex): DE,10,9C,58,E8,A4,A6,30

The original 64-bit key with parity bits

1 I 0 1 I I I 0 bits I -8
0 0 0 I 0 0 0 0 bits 9-16
1 0 0 I I 1 0 0 bits I7-24
0 1 0 I 1 0 0 0 bits 25-32
1 I I 0 1 0 0 0 bits 33-40
I 0 I 0 0 I 0 0 bits 41-48
I 0 1 0 0 I I 0 bits 49-56
0 0 1 I 0 0 0 0 bits 57-64

The original bit positions:

12345678
9 IO I I I2 13 I4 I5 16
I 7 I 8 I 9 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
4I 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

The 56-bit key (parity bits stripped)

1101111
0001000
IOOIIIO
0 I 0 I 1 0 0
II10100
1010010
IOI0011
OOliOOO
The original positions of the bits after the parity is stripped:

113

Univ
ers

ity
 of

 M
ala

ya

1234567
9 10 11 12 13 14 15
1 7 18 19 20 21 22 23
25 26 27 28 29 30 31
33 34 35 36 37 38 39
41 42 43 44 45 46 47
49 50 51 52 53 54 55
57 58 59 60 61 62 63

The positions of the remained 56 bits after Permuted Choice 1 (PC-I)

57 49 41 33 25 17 9
1 58 50 42 34 26 18
102595143 3527
19 11 3 60 52 44 36
63 55 47 39 3123 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

The permuted 56-bit key:

0111010
1000110
0110001
0001000
0100000
lOilOOI
0100011
1011111

Split the permuted key into two halves. The first 28 bits are called C[O] and the last 28 bits are called
0(0].
C(O]

0111010
1000110
0110001
0001000

D(O]

0100000
1011001
OlOOOil
1 0 1 I I 1 1

Calculate the I6 sub keys. Start with i = 1
Perform one or two circular left shifts on both C[i-1] and D[i-1] to get C[i] and D[i],
respectively. The number of shifts per iteration are given in the table below.

Iteration # 1 2 3 4 5 6 7 8 9 10 11 12 I3 14 15 16
Left Shifts 1 1 2 2 2 2 2 2 I 2 2 2 2 2 2 1

C[O]

114

Univ
ers

ity
 of

 M
ala

ya

0111010100011001100010001000

D[O]
0100000101100101000111011111

C[1]
1110101000110011000100010000

D[1]
1 0 0 0 00101 1 0 01010 0 01 1 l 0 l 1 1 1 10

C[2J
1101010001100110001000100001

D[2]
0000010110010100011101111101

C[3]
0101000110011000100010000111

D[3]
0001011001010001110111110100

C[4]
0100011001100010001000011101

D[4]
0101100101000111011111010000

C[5]
0001100110001000100001110101

D[5]
01 10 0 1 0 100 01 1 10 1 1 1 1 101 0 0 0 0 01

C[6]
0110011000100010000111010100

D[6]
1001010001110111110100000101

C[7]
1001100010001000011101010001

D[7]
0 1 0 1 0 0 0 1 I 1 0 1 l 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0

C[8]
0110001000100001 l 10101000110

D[8]
0 1 0 0 0 1 1 1 0 1 l 1 1 1 0 1 0 0 0 0 0 l 0 1 1 0 0 1

C[9]
1100010001000011101010001100

115

Univ
ers

ity
 of

 M
ala

ya

D[9]
I 0 001 1 101 I 1 1 1 0100 0 0 0 I 01 10 010

C[lO]
0001000100001110101000110011

D(10]
0 0 I 1 l 0 l 1 1 1 1 0 1 0 0 0 0 0 1 0 I 1 0 0 1 0 1 0

C[11]
0100010000111010100011001100

D[ll]
1110111110100000101100101000

C[l2)
0001000011101010001100110001

D[12]
1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1

C[13]
0100001110101000110011000100

D[13]
1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0

C[14]
0000111010100011001100010001

D[14]
1110100000101100101000111011

C[l5]
0011101010001100110001000100

D[15]
1010000010110010100011101111

C[16J
0111010100011001100010001000

D[16]
0 I 0 0 0 0 0 1 0 1 1 0 010 10 00 1 1 1 01 1 1 1 1
Permute the concatenation C[i]D[i] as indicated below. This will yield K[i], which is 48 bits long.
Permuted Choice 2 (PC-2)

14 17 11 24 I 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

116

Univ
ers

ity
 of

 M
ala

ya

C(O]D(O]
0 I I I 0 I 0 bits I-7
I 0 0 0 I I 0 bits 8-I4
0110001 bits 15-21
0 0 0 1 0 0 0 bits 22-28
0 1 0 0 0 0 0 bits 29-35
I 0 I 1 0 0 I bits 36-42
0 1 0 0 0 1 1 bits 43-49
I 0 1 1 I 1 1 bits 50-56

K[O]
010000
100110
OOIIOl
IOOOII
0 I 0 00 I
10000I
Ill101
OII100

Loop back until K(16] has been calculated (for this example, the calculation ofthe rest of the K[x] is
skipped)

Process a 64-bit data block.
Get a 64-bit data block. ffthe block is shorter than 64 bits, it should be padded as appropriate for the
application.

Sample 64 bit data:
86,01010110
233,11I01001
158,10011110
I 72, 1 0 1 0 11 00
222, 11 0 1 I II 0
95,0IOIIII1
244,11 I10100
1 77, I 0 11000 I

The original bit positions:
I2345678
9 IO 11 12 13 I4 I5 16
I7 18 19 20 2I 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Perform the following permutation on the data block.

117

Univ
ers

ity
 of

 M
ala

ya

Initial Permutation (IP)

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 I6 8
5749413325179I
595I433527I9I13
61534537292Il35
635547393123157

Original data:
0 1 0 I 0 1 1 0 bits I-8
1 1 1 0 1 0 0 1 bits 9-I6
I 0 0 l 1 1 I 0 bits I7-24
1 0 I 0 1 1 0 0 bits 25-32
1 1 0 1 I I I 0 bits 33-40
0 I 0 I 1 I I 1 bits 4I-48
I I I 1 0 I 0 0 bits 49-56
1 0 I 1 0 0 0 I bits 57-64

Permuted data:
OI1I0011
1 1 1 I 0 I 0 I
0 I 1 I 1 I 0 I
IOIOOOlO
110I1110
11001010
00111110
0011010I

Split the block into two halves. The first 32 bits are called L[O], and the last 32 bits are called R[O].

L[O]
01110011
11110I01
01111101
10100010
R[O]
11011110
Il0010IO
001II110
OOllOIOI
Apply the 16 sub keys to the data block. Start with i = 1. Expand the 32-bit R[i-1] into 48 bits

according to the bit-selection function below.

Expansion (E)
32 I 2 3 4 5
456789
8 9 10 Il 12 13
12 13 14 I5 16 I7
I6 1 7 1 8 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 3 1 32 1

R[O]

118

Univ
ers

ity
 of

 M
ala

ya

1 1 0 1 1 1 1 0 bites 1-8
I 1 0 0 1 0 I 0 bites 9-16
0 0 I 1 I I 1 0 bites 17-24
0 0 1 1 0 I 0 1 bites 25-32

12345678
9 10 II 12 I3 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32

Expanded R[OJ or E(R[OJ)
I 1 0 1 1 1
11I101
OI1001
OI0100
000111
I11100
OOOJIO
IOIOII

Exclusive-or E(R(i-1]) with K(i].

E(R[O])
1 1 0 1 1 1
111101
011001
OI0100
000111
11I100
0001IO
I01011

K[O]
010000110111
1 0 0 1 1 0 1 1 1 1 0 1
001101011001
I00011010IOO
010001000111
100001111100
I 1 I 1 0 1 0 0 0 1 1 0
OI110010I011
XOR: If one, and only one, of the expressions evaluates to True, result is True

Perfonn Exclusive-or E(R(i-1]) with K[i].

E(R[i-I]) xor K[i]

100111
011011
OI1IOO
111001
01I110
011101
I I I 0 1 1
1 1 0 1 1 I
Break E(R[i-1]) xor K[i] into eight 6-bit blocks.
Bits 1-6 are B[I], bits 7-12 are B[2], and so on with bits 43-48 being B[8].

119

Univ
ers

ity
 of

 M
ala

ya

B[l]
100111

Bf2J
011011

B[3]
011100

B[4]
111001

B[5]
011110

B[6J
011101

B[7]
111011

B[8]
110111

Substitute the values found in the S-boxes for all B[j]. Start with j = 1.
All values in the S-boxes should be considered 4 bits wide.

Take the 1st and 6th bits ofB[j] together as a 2-bit value (call it m)
indicating the row in SUJ to look in for the substitution.
Take the 2nd through 5th bits ofB[j] together as a 4-bit value (call it n)
indicating the column in S[j] to find the substitution.

B[1]
100111
1 2 3 4 5 6 bit order

m = 11 == 3
n == 0011 = 3

Replace B[j] with S[j][m][n}.

Substitution Box 1 (S[l J)

1441312151183106125907
0157414213110612119538
4114813621115129731050
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

.120

Univ
ers

ity
 of

 M
ala

ya

S[I][3][3] = 2

B[2]
011011

m = 01 = 1
n = 1101 = 13

S[2]

1518146113497213120510
3 13 4 7 15 2 8 14 12 0 I 10 6 9 II 5
0 I4 7 11 10 4 13 1 58 12 6 9 3 2 15
I3 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S[2][1](13] = 9

B[3]
OI1100

m = 00 = 0
n = 1110 = 14

S[3]

1009146315511312711428
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 I5 3 0 1 I I 2 I2 5 10 14 7
1 10 I3 0 6 9 8 7 4 I5 I4 3 11 52 12

S[3][0][14] = 2

B[4]
I 1 100 I

m = 11 = 3
n = 1100 = 12

S[4]

7 13 I4 3 0 6 9 10 1 2 8 5 11 12 4 15
1381156150347212110149
1069012117131513145284
3 15 0 6 1 0 1 13 8 9 4 5 11 12 7 2 14

S(4][3](12]= I2

B[5]
011110

m = 00 = 0
n = II1I = 15

121

Univ
ers

ity
 of

 M
ala

ya

S[5]

2 I2 4 I 7 10 II 6 8 53 15 I3 0 I4 9
I4 11 2 I2 4 7 13 1 50 15 10 3 9 8 6
4 2 1 II IO 13 7 8 15 9 I2 56 3 0 I4
II 8 I2 7 I I4 2 13 6 15 0 9 10 4 53

S(5](0][1 5] = 9

B[6]
OII101

m = OI = 1
n = 11IO = I4

S[6]

l21IO 1592680 I334I475II
1015427129561131401138
9 I4 15 52 8 12 3 7 0 4 10 I 13 II 6
432129515IOIII41760813

S[6][1][I4]=3

B[7]
11I011

m = II = 3
n = IIOI = 13

S[7]

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 I
13 0 1 I 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 IO I5 6 8 0 59 2
6 II 13 8 1 4 10 7 9 50 I5 14 2 3 12

S[7](3][13] = 2

B(8]
110111

m = 11 = 3
n = IOII = II

S[8]

1328461511110931450127
1 15 13 8 lO 3 7 4 12 56 I I 0 I4 9 2
7 II 4 I 9 12 14 2 0 6 10 I3 15 3 58
211474108I315129035611

122

Univ
ers

ity
 of

 M
ala

ya

S[8][3][11] = 0

Permute the concatenation of8[1] through 8[8] as indicated below.

8[1] = S[I][3][3] = 2 = 0010
8[2] = S[2][1][13] = 9 = 1001
8[3] = S[3][0][14] = 2 = 0010
8(4] = S[4][3][I2] = 12 = 1100
8(5] = S[5][0][I5] = 9 = I 00 I
8[6] = S[6][I][14] = 3 = OOII
8[7] = S[7][3][13] = 2 = 0010
8(8] = S[8][3][1I] = 0 = 0000

8[1-8]

0010100100I01100100I001IOOIOOOOO
I 2 3 4 5 6 7 8 9 I 0 1 I 12 13 14 15 16 I7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Permutation P

1672021
29122817
I I5 23 26
5I83110
2 8 24 14
32 27 3 9
I913306
22 I1 4 25

P(S[1](8(1]) ... S[8](8[8]))
0 0 1 0
0 0 0 I
0010
I 0 0 0
0 I 1 1
0 I 1 0
0100
0 1 0 0

Exclusive-or the resulting value with L[i-1].
Thus, all together, your R[i] = L[i-I] xor P{S[1](8[1]) ... S[8](8(8])),
where 8[j] is a 6-bit block of E(R[i-1]) xor K[i].
(The function for R[i] is more concisely written as, R[i] = L[i-1] xor f(R[i-1], K[i]).)

L(O) xor P(S[1](B[l]) .. . S[8](B[8]))

L(O] (see above)
0111001I
1I11010I
0 1 I 1 1 I 0 l
I 0 1 0 0 0 1 0

123

Univ
ers

ity
 of

 M
ala

ya

L[O]

0 I 1 1
0 0 1 I
1 I 1 1
0 1 0 1
0 I 1 1
1 1 0 1
1 0 1 0
0010

xor with

P(S[1](B[l]) ... S[S](B[8]))
0010
0001
OOIO
1000
0 I I 1
01IO
0100
0100

R[1)
0 1 0 I
OOIO
1 1 0 I
1 1 0 I
0000
1 0 1 1
1 1 1 0
OIOO

124

Univ
ers

ity
 of

 M
ala

ya

Appendix B - DES source codes

There are 26 modules altogether, and due to space constraints, I have

decided to submit it in soft copy. This appendix serves to explain how to use the

source code, in term of entering values into the system. Thus, we can say, a very

simplified user's manual.

Signals/ Data are entered in the State_ TB module. The four parameters are

pt, key, dec and reset. Values entered should follow the correct VHDL syntax.

Below are the correct examples. Note that the signals are mapped to the P _signal

port.

begin

W PT <= x"OOOOOOOOfffilfff';

W KEY <= x"ffDOffOOftDOffDO";

W RESET <= '0';

W DEC <='0';

W PT <= x"76CF6480Cl0646Bl ";

W KEY <= x"ffDOffOOffOOffDO";

W _RESET <= '0';

W DEC <='I';

We can also enter values in pure binary from, but we will have to omit the x

operand before the double quote.

125

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

References

Books:-

Zainalabedin Navabi. (1998). VHDL: Analysis and Modeling of Digital

Systems. 2nd ed. McGraw-Hill.

Peter Ashenden (1998). The VHDL Cookbook. 1st ed.

Eric Maiwald. (200 1). Network Security :A beginner's Guide. 1st ed. McGraw

Hill.

Intemet:-

1. http://www.opencores.org

2. http://www.acc-eda.com/vhdlref/

3. http://www.itl.nist.gov/fipspubs/index.htm

4. http://www.itl.nist.gov/fipspubs/fip74.htm

5. http://www.itl.nist.gov/fipspubs/fip81.htm

6. http://www.itl.nist.gov/fipspubs/fip46-2.htm

7. http:/ /isc.faqs.org/faqs/ cryptography-faq/

8. http://www.eventid.net/docs/desexample.htm

9. http://www.free-ip.com/DES/index.html

1 0. http://www .cs. ucr. edu/ content/ esd/labs/tutorial/

11. http://www. vhdl-online.de/~vhdl/TB-GEN/ent2tb 1.htm

126

Univ
ers

ity
 of

 M
ala

ya

