
A NOUN-BASED FEATURE LOCATION APPROACH
SUPPORTED BY TIME-AWARE TERM-WEIGHTING

TECHNIQUE FOR FACILITATING SOFTWARE MAINTENANCE

SIMA ZAMANI

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

A NOUN-BASED FEATURE LOCATION APPROACH
SUPPORTED BY TIME-AWARE TERM-WEIGHTING

TECHNIQUE FOR FACILITATING SOFTWARE
MAINTENANCE

SIMA ZAMANI

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Sima Zamani

Registration/Matrix No.:WHA100046

Name of Degree: DOCTOR OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): A Noun-Based

Feature Location Approach Supported by Time-Aware Term-Weighting Technique

for Facilitating Software Maintenance

Field of Study: Software Engineering (Computer Science)

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction of
any copyright work has been disclosed expressly and sufficiently and the title of the
Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or any
other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

Feature location is one of the frequent software maintenance activities that aims to

identify a source code location pertinent to a software feature. Most of the proposed

feature location approaches are based, at least in part, on text analysis to determine the

similarity of a new feature with the source code data. However, the text analysis methods

used in feature location originate from the natural language context. Unlike the typical

context in which these methods are applied, text documents in software repositories, such

as source code files, have a corresponding set of metadata including such items as time-

stamps, developer identifiers, and commit comments. Furthermore, the history of changes

of the source code is recorded in the repositories that leads to a larger dataset size. Due

to these differences between the contexts in software repositories and natural language,

the text analysis does not utilize its possible potential for accurately locating software

features. Accordingly, the goal of this thesis is to improve feature location by addressing

the specific characteristics of the repositories’ text data, i.e. incorporation of the data with

metadata and larger dataset size, within the text analysis process.

In this thesis, a new feature location approach is proposed that considers the metadata

of time and developer, and uses only the nouns. The proposed approach analyzes and

weights the data from the aspect of time when the data was recorded and the aspect of

developer who recorded the data in the repository. In this approach, first, a time- and

developer-based corpus is created from the nouns extracted from the repository’s data.

Then, the nouns are weighted using two term-weighting techniques including a time-aware

term-weighting technique and a developers-based time-aware term-weighting technique.

Next, the calculated weights for each noun are combined to obtain the total noun’s weight.

Finally, the source code files were ranked based on the summation of the total weights of

iii

Univ
ers

ity
 of

 M
ala

ya

the nouns that appeared in both the given software feature and the source code files.

The empirical evaluation of the proposed approach on a set of open-source projects

indicates remarkable improvements over the feature location baseline approaches that

utilize VSM (Vector Space Model) and SUM (Smoothed Unigram Model). The proposed

approach outperforms the accuracy, effectiveness and performance of the feature location

baseline approaches as much as 62%, 43% and 30%, respectively. In this approach, the

time-based analysis and weighting of the data make an improvement over the baseline

approaches up to 38%, 35% and 19%, respectively; whereas the developer-based analysis

and weighting of the data make an improvement up to 55%, 39% and 29%, respectively.

Furthermore, the use of nouns-only, instead of using all types of terms, improves the

accuracy, effectiveness and performance as much as 26%, 49% and 23%, respectively and

reduces the dataset size up to 60%. The statistical analysis of the experimental results

demonstrates the significance of the improvement in all aspects. In general, consideration

of time-metadata and developer-metadata in analyzing and weighting the data, along with

the use of only the nouns, makes significant improvements to feature location.

iv

Univ
ers

ity
 of

 M
ala

ya

ABSTRAK

Ciri lokasi merupakan salah satu daripada aktiviti yang kerap dilakukan dalam pe-

nyelenggaraan perisian dengan tujuan untuk mengenal pasti lokasi permulaan dalam kod

sumber yang berkaitan dengan sesuatu fungsi perisian. Kebanyakan daripada pendekatan

ciri lokasi yang dicadangkan adalah berdasarkan sekurang-kurangnya sebahagian kepada

analisis teks bagi mengenalpasti persamaan fungsi yang baharu dengan data kod sumber.

Walaubagaimanapun, kaedah analisis teks yang diguna pakai dalam ciri lokasi berasal

daripada konteks bahasa semula jadi. Berbeza daripada konteks umum di mana kaedah-

kaedah tersebut diaplikasikan, dokumen teks dalam repositori perisian seperti fail-fail

kod sumber, mengandungi satu set metadata yang sepadan termasuk item-item seperti

setem masa, identiti pembangun dan komen komit. Tambahan pula, sejarah perubahan

kod sumber juga direkodkan di dalam repositori di mana ia menyebabkan saiz set data

menjadi lebih besar. Disebabkan oleh perbezaan tersebut antara konteks dalam repositori

perisian dan bahasa semula jadi, analisis teks tidak dapat menggunakan potensinya untuk

mengesan fungsi-fungsi perisian dengan tepat. Dengan wajarnya, matlamat utama thesis

ini adalah untuk menambah baik ciri lokasi dengan menangani sifat khusus data teks

repositori, iaitu penglibatan data dengan metadata beserta saiz set data yang lebih besar

dalam proces analisis teks.

Dalam thesis ini, satu pendekatan ciri lokasi yang baru dicadangkan di mana ia

mengambil kira metadata masa dan pembangun, dan juga menggunakan hanya kata na-

ma. Pendekatan yang dicadangkan menganalisis dan menghitung data dari aspek masa

data direkodkan dan juga aspek pembangun yang direkodkan di dalam repositori. Dalam

pendekatan ini, satu korpus berdasarkan masa dan pembangun dicipta dari kata nama

yang diekstrakkan daripada data repositori. Kemudian, kata nama tersebut dinilai dengan

v

Univ
ers

ity
 of

 M
ala

ya

menggunakan dua teknik hitung-istilah (term-weighting technique) yang terdiri daripa-

da satu teknik sedar-masa hitung-istilah (time-aware term-weighting technique) dan satu

teknik sedar-masa hitung-istilah berdasarkan pembangun (developer-based time-aware

term-weighting technique). Seterusnya, keberatan yang dikirakan bagi setiap kata nama

digabungkan bagi mendapatkan jumlah keberatan bagi kata-kata nama tersebut. Akhir

sekali, fail-fail kod sumber tersebut diatur mengikut kedudukan berdasarkan kepada jum-

lah keseluruhan daripada jumlah keberatan kata-kata nama tersebut yang muncul dalam

sesuatu fungsi perisian dan fail-fail kod sumber.

Penilaian empirikal untuk pendekatan dicadangkan ke atas satu set projek sumber-

terbuka menunjukkan peningkatan yang luar biasa ke atas pendekatan-pendekatan ciri

lokasi asas yang menggunakan VSM (Vector Space Model) dan SUM (Smoothed Uni-

gram Model). Pendekatan dicadangkan ini memberikan keputusan yang lebih baik dari

segi ketepatan, berkesanan, dan prestasi dalam pendekatan-pendekatan ciri lokasi asas,

sebanyak 62%, 43%, dan 30% masing-masing. Dengan pendekatan ini, analisis berda-

sarkan masa dan penghitungan data memberi peningkatan sehingga 38%, 35%, dan 19%

masing-masing berbanding dengan pendekatan-pendekatan asas; manakala analisis ber-

dasarkan pembangun dan penghitungan data memberi peningkatan sehingga 55%, 39%,

dan 29% masing-masing. Tambahan pula, penggunaan hanya kata nama, selain daripada

penggunaan semua jenis istilah, meningkatkan ketepatan, keberkesanan dan prestasi se-

banyak 26%, 49%, dan 23% masing-masing. Pendekatan yang dicadangkan juga berjaya

mengurankan saiz dataset sehingga 60%. Analisis statistik daripada keputusan eksperi-

men menunjukkan penambahbaikan dalam semua aspek. Secara umum, penimbangan

metadata masa dan metadata pembangun dalam menganalisis dan menghitung data, ber-

samaan dengan penggunaan hanya kata nama memberi peningkatan yang ketara ke atas

ciri lokasi.

vi

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENTS

I would like to thank all those people who have helped me to finish this thesis and supported

me throughout my whole study.

First, I am greatly indebted to my supervisor Prof. Lee Sai Peck for her support and

guidance throughout the years. She has taught me many valuable lessons about being

a good researcher. I sincerely appreciate her advice concerning my presentations and

writings.

A special thanks to my husband, Ramin Shokripour, for his endless help, care,

kindness and patience. I would like to thank my family. I am forever indebted to my

parents and my parents in law for their unconditional love and support.

I really appreciate the time and effort that Dr. John Anvik put into reading my papers

and his valuable comments. Also, I am thankful to Dr. Hadi Saboohi for proofreading

this thesis and helping me to improve the quality of my writing.

I would like to thank many great people working with me in the same research lab

for their friendship and their willingness to listen and help me on presenting my ideas.

In particular, I would like to thank Ehab Nabiel Mohammed, Amineh Amini, and Saifur

Rehman Khan.

The work conducted in this thesis uses several open-source projects to provide the

required dataset for experimental evaluation of the proposed methods and approach. I

am grateful for the contributions of developers of these open-source projects for helping

me to collect their repositories data. The proposed methods and approach in this thesis

were developed in TraceLab framework. I am thankful to the developers of this project in

helping us to implement our components in TraceLab.

vii

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

Abstract ... iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents .. viii

List of Figures ... xii

List of Tables... xiv

List of Abbreviations... xvi

CHAPTER 1: INTRODUCTION
...

1

1.1 Background .. 3

1.2 Problem Statement ... 5

1.3 Research Objectives ... 6

1.4 Research Approach .. 8

1.5 Rationales behind the Various Perspectives... 10

1.6 Scope of Research .. 12

1.7 Significance of Research .. 14

1.8 Thesis Organization ... 15

CHAPTER 2: LITERATURE REVIEW .. 17

2.1 Overview of Feature Location ... 18

2.2 Text Analysis based Feature Location.. 21

2.2.1 Related Studies on Pattern Matching (PM) Methods 22

2.2.2 Related Studies on Information Retrieval (IR) Methods 24

2.2.3 Related Studies on Natural Language Processing (NLP) Methods 26

2.2.4 Summary of Text Analysis based Feature Location 27

2.3 Combining Additional Information with Text Analysis....................................... 29

2.3.1 Information Extracted from Compiled or Executed Source Code 33

viii

Univ
ers

ity
 of

 M
ala

ya

2.3.2 Information Extracted from Source Code Entities 39

2.3.3 Information Extracted from Non-source Code Repositories................... 43

2.4 Other Related Works.. 45

2.4.1 Developer-Metadata Consideration ... 47

2.4.2 Noun Usage ... 49

2.5 Summary: Inferences from Literature Reviewed... 51

CHAPTER 3: RESEARCH METHODOLOGY .. 56

3.1 Literature Review... 56

3.2 Problem Statement and Objectives Formulation ... 58

3.3 Proposed Approach.. 59

3.4 Experimental Evaluation.. 63

CHAPTER 4: PROPOSED APPROACH ... 66

4.1 Overview.. 67

4.1.1 Perspectives ... 67

4.1.2 Features and Components ... 71

4.2 Detailed View of TiNoFeLo Method... 77

4.2.1 Data Collection and Corpus Creation Component.................................. 77

4.2.2 Term Weighting Component ... 81

4.2.3 Location Identification Component... 84

4.3 Detailed View of DeNoFeLo Method.. 86

4.3.1 Data Collection and Corpus Creation Component.................................. 87

4.3.2 Term Weighting Component ... 89

4.3.3 Location Identification Component... 94

4.4 Detailed View of TiDeNoFeLo Approach... 95

4.4.1 Data Collection and Corpus Creation Component.................................. 97

4.4.2 Term Weighting Component ... 98

ix

Univ
ers

ity
 of

 M
ala

ya

4.4.3 Location Identification Component... 101

4.5 Summary.. 101

CHAPTER 5: EXPERIMENTAL EVALUATION SETUP................................... 105

5.1 Context Selection ... 106

5.1.1 Subject Systems... 106

5.1.2 Object Systems .. 109

5.1.3 Comparison Systems ... 113

5.2 Experimental Design.. 117

5.2.1 Descriptive Analysis.. 117

5.2.2 Statistical Analysis... 119

5.3 Research Questions and Hypotheses Formulation... 121

5.3.1 Research Questions and Hypotheses of TiNoFeLo Method 121

5.3.2 Research Questions and Hypotheses of DeNoFeLo Method 122

5.3.3 Research Questions and Hypotheses of TiDeNoFeLo Method............... 124

5.4 Experimental Execution... 125

5.4.1 Data Collection and Preparation ... 125

5.4.2 Experimental Implementation ... 127

5.5 Threats to Validity.. 129

5.5.1 Construct Validity.. 129

5.5.2 Internal Validity... 129

5.5.3 External Validity.. 131

5.6 Summary.. 132

CHAPTER 6: EVALUATION RESULTS AND ANALYSIS................................. 135

6.1 Evaluation of TiNoFeLo Method... 135

6.1.1 Descriptive Results .. 136

6.1.2 Statistical Results... 147

x

Univ
ers

ity
 of

 M
ala

ya

6.1.3 Discussion ... 152

6.2 Evaluation of the DeNoFeLo Method... 156

6.2.1 Descriptive Results .. 157

6.2.2 Statistical Results.. 167

6.2.3 Discussion ... 173

6.3 Evaluation of TiDeNoFeLo Approach... 178

6.3.1 Descriptive Results .. 179

6.3.2 Statistical Results... 186

6.3.3 Discussion ... 188

6.4 Summary.. 191

CHAPTER 7: CONCLUSION ... 196

7.1 Summary of Research Work and Contributions .. 196

7.2 Limitations and Future Works ... 202

7.3 Final Remarks .. 204

References .. 205

APPENDICES ... 219

Appendix A: Sample of Feature Location Process ... 219

Appendix B: IR Models .. 222

Appendix C: Term-weighting Techniques .. 227

Appendix D: Location-based Bug Assignment .. 229

Appendix E: Test Sets IDs .. 230

xi

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Figure 1.1: Three perspectives of considering specific characteristics of
repository’s text data in relation with the research objectives 9

Figure 2.1: Hierarchy of topics reviewed in literature review chapter 18

Figure 2.2: Chart of additional information that combined with text data to
improve feature location accuracy .. 53

Figure 3.1: Overview of research methodology.. 57

Figure 3.2: Overall topics of literature review .. 57

Figure 3.3: Modified parts of a typical text analysis process and their
corresponding techniques ... 60

Figure 3.4: Proposed Approach in relation with the proposed methods and the
identified perspectives .. 62

Figure 3.5: Evaluation setup ... 64

Figure 4.1: Abstract view of the first proposed method, TiNoFeLo 72

Figure 4.2: Abstract view of the second proposed method, DeNoFeLo 74

Figure 4.3: TiNoFeLo and DeNoFeLo methods embody TiDeNoFeLo approach...... 75

Figure 4.4: Abstract view of the proposed approach, TiDeNoFeLo 76

Figure 4.5: Detailed view of the TiNoFeLo method ... 78

Figure 4.6: Detailed view of the DeNoFeLo method.. 87

Figure 4.7: Detailed view of the TiDeNoFeLo approach .. 96

Figure 5.1: Evaluation setup steps .. 105

Figure 5.2: TraceLab experiment for the proposed methods and the proposed
approach.. 128

Figure 6.1: Results of TiNoFeLo, SUM and VSM for TopN, MAP and MRR metrics138

Figure 6.2: Results of TiNoFeLo, SUM and VSM for effectiveness metric 140

Figure 6.3: Results of TiNoFeLo and TiNoFeLoT F−IDF for TopN, MAP and
MRR metrics .. 142

xii

Univ
ers

ity
 of

 M
ala

ya

Figure 6.4: Results of TiNoFeLo and TiNoFeLoT F−IDF for effectiveness metric 143

Figure 6.5: Results of TiNoFeLo and TiNoFeLoAll−Terms for TopN, MAP and
MRR metrics .. 146

Figure 6.6: Results of TiNoFeLo and TiNoFeLoAll−Terms for effectiveness metric 146

Figure 6.7: Results of DeNoFeLo, SUM and VSM for TopN, MAP and MRR
metrics .. 159

Figure 6.8: Results of DeNoFeLo, SUM and VSM for effectiveness metric.............. 160

Figure 6.9: Results of DeNoFeLo and TiNoFeLo for TopN, MAP and MRR metrics162

Figure 6.10: Results of DeNoFeLo and TiNoFeLo for effectiveness metric 163

Figure 6.11: Results of DeNoFeLo, DeNoFeLoNo−Time, and
DeNoFeLoNo−Keywords for TopN, MAP and MRR metrics....................... 165

Figure 6.12: Results of DeNoFeLo, DeNoFeLoNo−Time, and
DeNoFeLoNo−Keywords for effectiveness metric .. 166

Figure 6.13: Results of TiDeNoFeLo, SUM and VSM for TopN, MAP and
MRR metrics .. 181

Figure 6.14: Results of TiDeNoFeLo, SUM and VSM for effectiveness metric 182

Figure 6.15: Results of TiDeNoFeLo, DeNoFeLo and TiNoFeLo for TopN,
MAP and MRR metrics .. 185

Figure 6.16: Results of TiDeNoFeLo, DeNoFeLo and TiNoFeLo for
effectiveness metric .. 185

Figure 7.1: Achievement of the main research objective through proposing a
feature location approach.. 198

Figure 1: Abstract view of triaging a change request reported to a project in
maintenance phase of software development ... 219

Figure 2: Sample of a change request .. 220

Figure 3: Sample of a source code file modified to fix the desired change request . 221

Figure 4: Presentation of documents and query as vectors in VSM 222

xiii

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

Table 2.1: Main properties of dynamic, static, and text analyses................................ 20

Table 2.2: Main properties of PM, IR, and NLP methods .. 23

Table 2.3: Properties of related feature location approaches that used text
analysis as the standalone method for feature location 28

Table 2.4: Properties of related feature location approaches that combined text
analysis with additional information .. 30

Table 2.6: Additional information that combined with text data to improve
feature location accuracy.. 53

Table 4.1: Effect of square root and logarithm on time differences 84

Table 4.2: Main properties of the proposed methods and the proposed approach...... 102

Table 5.1: Properties of the subject systems ... 109

Table 5.2: Null Hypotheses of TiNoFeLo method.. 122

Table 5.3: Alternative Hypotheses of TiNoFeLo method... 122

Table 5.4: Null Hypotheses of DeNoFeLo method... 123

Table 5.5: Alternative Hypotheses of DeNoFeLo method.. 124

Table 5.6: Null Hypotheses of TiDeNoFeLo method ... 125

Table 5.7: Alternative Hypotheses of TiDeNoFeLo method 125

Table 6.1: Research questions of TiNoFeLo method .. 136

Table 6.2: Results of TiNoFeLo, SUM and VSM for accuracy, performance
and effectiveness metrics.. 137

Table 6.3: Results of TiNoFeLo using TATW and TF-IDF techniques, for
accuracy, performance and effectiveness metrics 141

Table 6.4: Results of TiNoFeLo using only the nouns and all types of terms,
for accuracy, performance and effectiveness metrics 145

Table 6.5: Dataset sizes when using all types of terms and only the nouns................ 147

Table 6.6: Results of normality test for TiNoFeLo’s experiments 148

Table 6.7: Results of statistical test for TiNoFeLo comparing with baseline
approaches, SUM and VSM... 149

xiv

Univ
ers

ity
 of

 M
ala

ya

Table 6.8: Results of statistical test for TiNoFeLo comparing with
TiNoFeLoT F−IDF and TiNoFeLoAll−Terms .. 150

Table 6.9: Research questions of DeNoFeLo method... 157

Table 6.10: Results of DeNoFeLo, SUM and VSM for accuracy, performance
and effectiveness metrics.. 158

Table 6.11: Results of DeNoFeLo and TiNoFeLo for accuracy, performance and
effectiveness metrics .. 162

Table 6.12: Results of DeNoFeLo, DeNoFeLoNo−Time, and
DeNoFeLoNo−Keywords for accuracy, performance and effectiveness
metrics.. 165

Table 6.13: Results of normality test for DeNoFeLo’s experiment............................... 168

Table 6.14: Results of statistical test for DeNoFeLo comparing with the baseline
approaches and TiNoFeLo method .. 169

Table 6.15: Results of statistical test for DeNoFeLo when time and keywords are
not taken into account .. 171

Table 6.16: Research questions of TiDeNoFeLo approach... 179

Table 6.17: Results of TiDeNoFeLo, SUM and VSM for accuracy, performance
and effectiveness metrics.. 181

Table 6.18: Results of TiDeNoFeLo, DeNoFeLo and TiNoFeLo for accuracy,
performance and effectiveness metrics .. 184

Table 6.19: Results of normality test for TiDeNoFeLo’s experiment 186

Table 6.20: Results of statistical test for TiDeNoFeLo comparing with baseline
approaches, SUM and VSM... 187

Table 6.21: Results of statistical test for TiDeNoFeLo comparing with
TiNoFeLo and DeNoFeLo ... 188

Table 6.22: Comparison of the results for all the experiments 193

Table 1: Term-weighting techniques used in text analysis based feature
location approaches.. 227

xv

Univ
ers

ity
 of

 M
ala

ya

LIST OF ABBREVIATIONS

TiNoFeLo Time-aspect analysis of data in a Noun-based Feature Location

DeNoFeLo Developer-aspect analysis of data in a Noun-based Feature Location

TiDeNoFeLo Combination of Time-aspect and Developer-aspect analysis of data

in a Noun-based Feature Location approach

TATW Time-Aware Term-Weighting technique

TADTW Time-Aware Developers’ expertise Term Weighting technique

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

PM Pattern Matching

IR Information Retrieval

NLP Natural Language Processing

VCS Version Control System

ITS Issue Tracking System

MSR Mining Software Repositories

UM Unigram Model

SUM Smoothed Unigram Model

VSM Vector Space Model

rVSM revised Vector Space Model

LSI Latent Semantic Indexing

LSA Latent Semantic Analysis

LDA Latent Dirichlet Allocation

SVD Singular Value Decomposition

MRR Mean Reciprocal Rank

xvi

Univ
ers

ity
 of

 M
ala

ya

MAP Mean Average Precision

DFR Divergence From Randomness

LM Language Modeling

WWW World Wide Web

ID Identification Code

JDT Eclipse Java development tools

AOIG Action-Oriented Identifier Graph

GrepOF grep with Ontology Fragments

ASDG Abstract System Dependence Graph

Verb-DO Verbs and their corresponding Direct Objects

FCA Formal Concept Analysis

AST Abstract Syntax Tree

BRCG Branch Reserving Call Graph

SPR Scenario-based Probabilistic Ranking technique

HITS Hyperlinked-Induced Topic Search

PROMESIR Probabilistic Ranking of Methods based on

Execution Scenarios and Information Retrieval

LOBSTER LOcating Bugs using Stack Traces and tExt Retrieval

TYRION TraceabilitY link Recovery using Information retrieval

and code OwNership

POS Part-Of-Speech

JS Jenson-Shannon method

NER Named Entity Recognition

AOP Aspect-Oriented Programming

IDE Integrated development environment

xvii

Univ
ers

ity
 of

 M
ala

ya

ANNIE A Nearly-New Information Extraction System

JAPE Java Annotation Patterns Engine

LSD Least Significant Difference

CVS Concurrent Versions System

CVSANALY Analyzing CVS Repositories

JELDoclet Java Export Language doclet

NN Noun, singular or mass

NNP Proper noun, singular

GATE General Architecture of Text Engineering

xviii

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1: INTRODUCTION

Software repositories are great sources of knowledge mainly related to the domain of

a software project. The repositories, in which artifacts of software systems are stored,

are produced from the early stage of software development (Kagdi, Collard, & Maletic,

2007; Witte, Li, Zhang, & Rilling, 2007; Rilling, Witte, Gasevic, & Pan, 2008; Witte,

Li, Zhang, & Rilling, 2008). They are commonly used as record-keeping sources to store

information and documents related to the whole lifecycle of a software system in order to

help the developers and managers in developing, managing, maintaining and publishing

the software system (Hassan, 2006). The software repositories involve the data such as

the source code data recorded in version control systems, bugs or defects recorded in

issue tracking systems, and the communication between project personnel recorded in

communication archives (Hassan, 2006; Kagdi, Collard, & Maletic, 2007).

The data recorded in the repositories is typically changed and revisited multiple times

during the software lifetime. The history of the changes as well as the metadata about the

changes (e.g., developer who made the change, time when the change was done, and why

the change was made) are recorded in the repositories (Kagdi, Collard, & Maletic, 2007).

The action of analyzing the historical data recorded in the software repositories is known as

Mining Software Repositories (MSR1) (Kagdi, Collard, & Maletic, 2007; Gethers, Kagdi,

Dit, & Poshyvanyk, 2011). The aim of mining software repositories is discovering and

extracting the interesting information about the software and its evolution (Hassan, 2008;

Hassan & Xie, 2010) in order to enhance the software development activities (Hassan,

2006; Kagdi, Collard, & Maletic, 2007). Software maintenance is one of the software

development phases which is basically enhanced by the MSR research works.

1The term MSR has been used to explain a broad class of investigations into the examination of
repositories of software (e.g., Subversion and Bugzilla).

1

Univ
ers

ity
 of

 M
ala

ya

One of the frequent maintenance activities is feature (or concept) location which

aims at identifying an initial location in the source code of a software system that needs

to be modified in order to satisfy a particular software feature (Biggerstaff, Mitbander,

& Webster, 1993; Rajlich & Wilde, 2002). A software feature expresses a functionality

defined by software requirements (Dit, Revelle, Gethers, & Poshyvanyk, 2013) and it can

be formulated as a change request for adding a new feature, removing a bug or defect,

or improving an existing functionality (Yang & Pedersen, 1997; Bohner, 1996; Chen &

Rajlich, 2000; Dit et al., 2013). A sample of a change request which was reported to

the Eclipse JDT project is presented in Appendix A. More effective support for change

requests is needed to obtain sustainable, high-quality evolution of software systems.

Typically, in order to satisfy a change request in the source code of a project, a set of

source code files needs to be modified. Thus, one of the key issues in addressing a change

request is finding relevant locations in the source code of the project requiring modification

to address the change request (Sillito, Murphy, & De Volder, 2008; Dit et al., 2013). The

possible starting point of the changes in the source code is identified by feature location2

(Chen & Rajlich, 2010). Feature location is also a frequent software engineering activity

that directly enhances software maintenance and software evolution tasks such as reverse

engineering and incremental change (Marcus, Sergeyev, Rajlich, & Maletic, 2004). A

sample of how feature location process is performed in a software project is explained

in Appendix A. In a medium or large-scale software project with thousands of source

code files, manually performing the feature location process is extremely challenging and

time-consuming.

2The complete extension of the changes in the source code is accomplished using impact analysis. The
methodology of performing impact analysis is different from feature location. In fact, feature location is
known as the starting point of the impact analysis process.

2

Univ
ers

ity
 of

 M
ala

ya

1.1 Background

To facilitate the feature location process, many approaches have been proposed which are

classified into three main categories based on their applied techniques. These categories

involve dynamic analysis, static analysis, and text analysis (Dit et al., 2013). Dynamic

analysis uses the information obtained from the execution of software to simulate the

requested feature, and it is often used when features can be invoked and observed during

run time (Eisenberg & De Volder, 2005; Liu, Marcus, Poshyvanyk, & Rajlich, 2007;

Poshyvanyk, Gueheneuc, Marcus, Antoniol, & Rajlich, 2007; Dit et al., 2013). Unlike

dynamic analysis, static analysis techniques does not require a working software system.

Instead, static analysis deals with structural information such as control or data flow

dependencies (Chen & Rajlich, 2000; Lukins, Kraft, & Etzkorn, 2010). Finally, text

analysis investigates the text data recorded in the historical software repositories and

analyzes them to extract useful information (Petrenko, Rajlich, & Vanciu, 2008; Cleary,

Exton, Buckley, & English, 2009).

A recent survey on feature location literature (Dit et al., 2013) discovered that more

than 51% of the published literature in feature location research area is based, at least

in part, on text analysis. The use of text analysis for feature location is based on the

assumption that identifiers, comments, and other text data found in software repositories

contain domain knowledge that can be used for locating software features (Marcus et al.,

2004; Dit et al., 2013). Text analysis process is taken into account as a fundamental

step in most of the feature location approaches. The primary text analysis methods that

were reported in the literature are Pattern Matching (PM) (Ratiu & Deissenboeck, 2007;

Petrenko et al., 2008), Information Retrieval (IR) (Poshyvanyk et al., 2007; Dit et al., 2013)

and Natural Language Processing (NLP) (Shepherd, Fry, Hill, Pollock, & Vijay-Shanker,

2007; Hill, Pollock, & Vijay-Shanker, 2009).

3

Univ
ers

ity
 of

 M
ala

ya

PM usually involves a text-based technique to search the source code using a utility

such as regular expression matching tool, grep (Ratiu & Deissenboeck, 2007; Petrenko

et al., 2008) being an example. This technique could be considered as the simplest text

analysis technique that is used for feature location. The second class of text analysis

methods consists of IR methods, which are based on statistical methods. IR methods

typically analyze the documents of a corpus and retrieve similar documents to the context

of a given change request (Poshyvanyk et al., 2007; Cleary et al., 2009; Lukins et al., 2010).

IR considers the text resources as a collection of terms that co-occur frequently in the

documents of the corpus (Manning, Raghavan, & Schutze, 2008). NLP, the last category

of text analysis based feature location methods, considers the grammatical category of

a term in the text to analyze and extract the required information from the documents

(Shepherd et al., 2007; Hill et al., 2009). The NLP-based feature location methods apply

NLP techniques to improve the accuracy of feature location process. NLP methods are

query based and originate from a natural language context such as the newspaper articles

(Bassett & Kraft, 2013).

As mentioned above, according to the research of Dit et al. (Dit et al., 2013), text

analysis is the basis of most feature location approaches. Since text analysis process can

be considered a fundamental step in most of the feature location approaches, the overall

accuracy of feature location would be directly affected by the accuracy of the text analysis

process. Investigation of the feature location literature indicates that the origination of the

applied text analysis methods for feature location mostly comes from a natural language

context (Bassett & Kraft, 2013). With respect to the origination of most of the text analysis

methods that are applied for feature location, it is likely that text analysis may not utilize

all possible potential for identifying the correct source code location pertinent to a change

request. In order to address this issue, there is a need for investigating the characteristics

4

Univ
ers

ity
 of

 M
ala

ya

of the text data recorded in the software repositories in comparing to the text data in the

natural language context.

The comparison of the text data recorded in the software repository and the text data

in a natural language context indicates the existence of some differences between these

two types of text data (Bassett and Kraft 2013). As mentioned previously, unlike the

typical context in the natural language, the text data in the repository is associated to a set

of metadata, which is not found in simple text documents (Kagdi, Maletic, & Sharif, 2007;

Ratanotayanon, Choi, & Sim, 2010). Incorporation of the data with metadata provides

the ability of analyzing the data from different aspects such as the aspect of the developer

who changed the data or the aspect of time at which the data was created or changed.

On the other hand, the text documents in the natural language context such as the

newspaper articles are less structured than those found in the software repository such

as the source code files (Bassett & Kraft, 2013). Furthermore, unlike the text data in

the natural language context, the text data recorded in the repository are incrementally

changed in the project lifetime and the history of the changes is recorded in the repository

in order to keep track of the evolution and progress of the software development (Kagdi,

Collard, & Maletic, 2007). Due to the storage of the history of changes, the size of data

recorded for a text document is larger than that of the typical text documents in the natural

language context. These characteristics of the repository’s text data, i.e. incorporation of

the data with metadata of time and developer, and larger dataset size, differentiate the text

data recorded in the repository from the text data in the natural language context.

1.2 Problem Statement

The characteristics related to incorporation of the data with metadata and dataset size,

which differentiate the text data in the repository from the text data in the natural language

context, motivate the researcher to question whether the existing text analysis methods are

5

Univ
ers

ity
 of

 M
ala

ya

efficient enough to be applied for feature location. According to these characteristics, there

is a need for different techniques and methods to analyze the text data in the repository;

or at least, the techniques and methods customary used for analyzing the text data need

to be modified to consider the specific characteristics of the text data in the repository.

Accordingly, the problem statement of this research is identified as follows:

The text analysis does not utilize its possible potential for accurately locating

the software features since the origination of the applied text analysis methods

for feature location mainly comes from a natural language context.

Low accuracy of the text analysis is due to the lack of considering the specific

characteristics of repository’s text data, i.e. incorporation of the data with metadata and

large dataset size, in analyzing the historical text data. Addressing these characteristics

in analyzing the text data enhances the location identification process. Improving the text

analysis process, which is foundational to the most of existing feature location approaches,

will result in increasing the overall accuracy of feature location.

1.3 Research Objectives

With regards to the identified research problem, the main research question that needs to

be addressed in this research is formulated as follows:

Does consideration of specific characteristics of the text data recorded in the

software repository within the text analysis process make an improvement in

feature location accuracy?

To answer this research question, the following research objectives are formulated

that need to be addressed in this research. The main research objective is:

6

Univ
ers

ity
 of

 M
ala

ya

To improve feature location by considering the specific characteristics of the

text data recorded in the software repository within the text analysis process.

With respect to the main objective, a set of objectives are derived as follows:

• Objective 1: To study the existing text analysis methods applied for feature location

and identify the current problems in the existing text analysis methods for feature

location.

• Objective 2: To propose a feature location approach that considers differences

between the text data recorded in the software repository and the text data in the

natural language context to make an improvement in text analysis process of feature

location.

• Objective 3: To evaluate the impacts of considering the specific characteristics

of the text data recorded in the repository within the text analysis process of the

proposed feature location approach.

In order to address the second objective, the characteristics of text data recorded

in the software repository were investigated. As mentioned previously, incorporation of

the data with metadata and large dataset size are two characteristics that differentiate the

text data recorded in the repository from the text data in the natural language context.

The metadata of time and developer are two important pieces of metadata that have the

potential to make an improvement in the accuracy of MSR activities (Sisman & Kak,

2012; T. Zhang & Lee, 2013). More details on the rational of selecting these pieces of

metadata are explained in Section 1.5. In relation with these metadata, it is possible to

analyze the text data recorded in the repository from the aspect of (i) the aspect of time at

which the data was recorded in the repository, (ii) the aspect of developers who recorded

the data in the repository.

7

Univ
ers

ity
 of

 M
ala

ya

On the other hand, due to the storage of the history of changes applied to the

repository’s data (Kagdi, Collard, & Maletic, 2007), a larger size of data is stored in the

repository compared to the natural language context. Although dataset reduction is one

of the challenges in text analysis methods (Crain, Zhou, Yang, & Zha, 2012), the urgency

of reducing the dataset size for the data recorded in the repository is more than that of

in the natural language context due to the larger size of data in the repository. Thus,

the characteristics of the repository’s text data that are addressed in this research are:

incorporation of data with metadata of time and developer, and the larger size of dataset.

With respect to these characteristics, a set of sub-objectives are derived from the second

objective of this research which are formulated as follows.

• Objective 2.1: To improve the accuracy of feature location by analyzing the text data

recorded in the repository from the aspect of time at which the data was recorded

in the repository.

• Objective 2.2: To improve the accuracy of feature location by analyzing the text

data recorded in the repository from the aspect of developer who recorded the data

in the repository.

• Objective 2.3: To reduce the size of dataset used for feature location.

Addressing these sub-objectives will result in addressing the second objective.

1.4 Research Approach

The first objective of this research (Objective 1) is addressed by conducting a compre-

hensive review on feature location literature with more focus on the feature location

approaches that use text analysis methods. The main aim of reviewing the feature location

8

Univ
ers

ity
 of

 M
ala

ya

Figure 1.1: Three perspectives of considering specific characteristics of repository’s text
data in relation with the research objectives

literature is to identify the current problems of applying the text analysis methods for

locating the software features in the source code of software systems.

As shown in Figure 1.1, to tackle the second objective (Objective 2), all identified

sub-objectives have to be addressed. According to the sub-objectives, the identified

characteristics of repository’s text data should be taken into account in the text analysis

process. These characteristics are considered in text analysis process in three perspectives.

In the first perspective, the text data need to be analyzed from the aspect of time at which

the data was recorded in the repository in order to more accurately locating the software

features. In the next perspective, the text data is analyzed from the aspect of developers

who recorded the data in the repository in order to more accurately locating the software

features. The last perspective deals with reducing the size of dataset used for feature

location. The investigation of the literature in other research areas such as traceability

shows that the use of only the noun terms simply reduces the size of dataset (Capobianco,

Lucia, Oliveto, Panichella, & Panichella, 2012). Accordingly, the third perspective aims

9

Univ
ers

ity
 of

 M
ala

ya

at reducing the dataset size by using only the noun terms that exist in the text data recorded

in the repository. As shown in Figure 1.1, each of these perspectives is corresponding to

a different sub-objective. Addressing these perspectives in text analysis process results

in satisfying the corresponding sub-objectives, and consequently, satisfying the second

objective (Objective 2). The rationales behind identifying these perspectives are described

in Section 1.5.

Finally, in order to address the last objective of this research (Objective 3), the

proposed approach is empirically evaluated using a set of open-source projects. The

results obtained from the experiments are compared with the baseline feature location

approaches to approve the improvement which is obtained from considering specific

characteristics of the text data recorded in the repository.

1.5 Rationales behind the Various Perspectives

As mentioned above, three perspectives were identified in order to satisfy the correspond-

ing sub-objectives. These perspectives deal with the consideration of time-metadata,

developer-metadata, and the use of only the noun terms. In the rest of this section, the rea-

sons of identifying each one of these perspectives are briefly explained. More explanation

on these reasons is presented in Chapter 4.

• Considering Time-metadata:

The consideration of time-metadata in analyzing the text data for feature location is

based on two main principles:

– Defect localization: It is known that the most recent modifications to a software

project are most likely the cause of future bugs or defects (Zimmermann,

Weisgerber, Diehl, & Zeller, 2005; Hassan & Holt, 2005; Kim, Whitehead, &

Zhang, 2008). By considering recent modifications in the source code, this

10

Univ
ers

ity
 of

 M
ala

ya

would lead to finding relevant locations that are the cause of a new change

request (Sisman & Kak, 2012).

– Software evolution: Each software project has different goals and requirements

in different periods of the project’s lifetime (Gómez, Kellens, Brichau, &

D’Hondt, 2009). For a given change request, the requested modification to the

source code in the same time period of the project’s lifecycle would likely have

the similar goals or requirements. This principle bears further elaboration in

Section 4.1.

• Considering Developer-metadata:

The consideration of developer-metadata in analyzing the text data for feature loca-

tion is based on the following principles:

– There is an undeniable correlation between the data in the source code files

and the project developers who are working on the source code files. Having

one of these items (the name of source code file or name of developer) can lead

to deriving the other (Kagdi, Gethers, Poshyvanyk, & Hammad, 2012). This

correlation can be re-established by investigating the vocabularies and terms

used by the developer in the source code file, thus revealing the developer’s

expertise (Schuler & Zimmermann, 2008).

– In general, developers work on specific and related subjects and functionalities

during software evolution (Bird, Pattison, D’Souza, Filkov, & Devanbu, 2008).

– For a source code file, centralization of the developers’ activities on a

specific subject indicates the importance of the subject for the source code

location from the developer’s point of view. The relevancy of the subject,

which is determined as an important subject from the developer aspect,

11

Univ
ers

ity
 of

 M
ala

ya

increases the potential of the corresponding location to be the correct lo-

cation of the change request. This principle is further elaborated in Section 4.1.

• Using Noun Terms:

The use of only the noun terms for feature location is based on the following main

reasons:

– Reducing the general dataset size and reducing the amount of noises exist in

the extracted entities from the data-sources (Sarawagi, 2008; Capobianco et

al., 2012), thereby enhancing the effectiveness of improvements made by other

means.

– The noun usage in traceability (Capobianco et al., 2012) and bug assignment

(Shokripour, Anvik, Kasirun, & Zamani, 2014) leads to the improvement of

traceability and bug assignment results, respectively.

– Using only nouns leads to an independence of the approach from dimension-

ality reduction methods, which is one of the challenges in IR methods (Crain

et al., 2012).

1.6 Scope of Research

The abstract research area of this thesis is Software Engineering, concentrated on software

evolution, program analysis, and empirical studies. In particular, this thesis focuses on

identifying a source code location pertinent to a software feature which is known as feature

location. Since the most commonly used data analysis method for feature location is text

analysis (Dit et al., 2013), the core of this research is based on the use of text analysis for

feature location.

12

Univ
ers

ity
 of

 M
ala

ya

The main objective of this thesis is improving the feature location accuracy by con-

sidering the specific characteristics of repository’s text data, i.e. incorporation of the data

with metadata and larger size of dataset. With respect to these identified characteristics,

three sub-objectives are formulated that deal with, (i) analyzing the text data from the as-

pect of time, (ii) analyzing the text data from the aspect of the developer, and (iii) reducing

the dataset size. Addressing these objectives in the text analysis process of feature location

leads to improving the overall accuracy and effectiveness of feature location process.

Since the aim of feature location is identifying the source code entities pertinent to

change requests, the main text data which is basically used for feature location is the source

code of software systems. As the source code and its relevant documents are recorded and

managed in Version Control System (VCS), the main software repository used for feature

location is VCS. Therefore, the expression of software repository in this thesis is mainly

refer to VCS. According to the most recent survey on feature location (Dit et al., 2013),

most of the existing feature location approaches which are based on text analysis do not

deal with the historical information that were recorded in the VCS. The existing feature

location approaches mostly used a specific release of a software project as the data source.

However, consideration of history of changes of the source code has a great potential to

improve the accuracy of feature location. Thus, this research uses the whole history of

changes occurred on the source code of the software project in order to more accurately

perform the location identification process. Thus, in this research, all the data recorded in

the VCS is collected and used to prepare the dataset for feature location process.

Since the data recorded in the repositories of the open-source projects is freely

available, these software projects are used as the datasets in this research. Availability

of the data of open-source projects supplies the access to rich repositories of large-scale

projects that are used by thousands of researchers for MSR activities and provides a

13

Univ
ers

ity
 of

 M
ala

ya

reality evaluation (Hassan, 2008). Thus, required data in this research is collected from

the VCSs of a set of open-source software projects. To prepare the datasets, all the data

recorded in the VCSs of these projects is collected and preprocessed to be used in location

identification process.

1.7 Significance of Research

As mentioned in earlier, feature location is one of the frequent activities of software

maintenance which is an important, time-consuming and costly phase of software devel-

opment. Effective support for maintenance activities, such as feature location, leads to the

improvement of software quality and reduction of software development cost and effort.

In addition, feature location would be considered as one of the traceability activities that

aims to link source code entities to software features (Marcus & Haiduc, 2013). The

ability of recovering traceability links between software artifacts is an important factor for

the effective development and maintenance of a software system (Y. Zhang, Witte, Rilling,

& Haarslev, 2006; Winkler & von Pilgrim, 2010), which explicitly helps to improve the

quality of software development companies (Winkler & von Pilgrim, 2010).

Moreover, feature location, in addition to enhancing the addressing of change re-

quests, is used for some other aspects such as searching in the source code (Hill et al.,

2009), reverse engineering (Marcus & Haiduc, 2013) and bug assignment (Kagdi et al.,

2012). Due to the incrementally changing and continuous growth of software projects,

identifying the related source code elements to a specific feature or task among thousands

of source code files becomes increasingly difficult for either the new and former developers

of the project. Furthermore, as the developers who developed the software project are

different from the maintainers, there is an essential need for feature location approaches

for searching in the source code context. Thus, searching the source code of a software

project helps the project’s developers, especially the developers who are new in some or

14

Univ
ers

ity
 of

 M
ala

ya

all parts of the project, to have a better understanding of the system.

Due to the significance of the feature location activity, more effective support for

this activity is needed to obtain a sustainable, high-quality evolution of a software system.

Considering metadata, such as time and developer, and reducing the dataset size can

enhance the feature location approaches which are based on the text analysis process.

As mentioned previously, text analysis is the most commonly used analysis technique for

feature location which is the basis for different categories of feature location techniques

(Dit et al., 2013), thus improving this process leads to improvement in the overall accuracy

of feature location activity.

1.8 Thesis Organization

The following chapters of this thesis are organized as follows:

In Chapter 2, an overview of the related works on the feature location literature, with

focus on the researches that used text analysis is given.

Chapter 3 explains the methodology which is applied in this research in order to

address the identified objectives. This chapter presents the details of the research method-

ology steps, including literature review, problem statement and research objective formu-

lations, the proposed approach, and experimental evaluation.

In Chapter 4, the feature location approach which is proposed in order to satisfy the

research objectives is described in detail. In order to propose the main approach, two

intermediate methods are proposed that consider the metadata of time and developer in

the text analysis process. In relation with the metadata, in these proposed methods, the

data are analyzed from the aspect of time at which the data was recorded and the aspect

of the developer who recorded the data in the source code of software project. These two

methods embody the proposed approach that analyzes the data from both the aspect of

time and the aspect of the developer. The proposed methods and approach use only the

15

Univ
ers

ity
 of

 M
ala

ya

noun terms to identify the related source code location with the desired change request.

Next, the proposed approach is evaluated through several subject systems with dif-

ferent scales of project using different metrics. Chapter 5 explains the setup for the

experimental evaluation of the proposed approach.

The results of the experiments are reported and analyzed in Chapter 6. The results

are assessed in compared to the most commonly used text analysis-based methods that

have been used in feature location.

Finally, Chapter 7 concludes the whole research work that presented in this thesis.

In this chapter, the achievement of the objectives and the contributions of the research are

highlighted. Finally, the limitations of the study and future directions of the research are

described.

16

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2: LITERATURE REVIEW

Feature location is known as the process of identifying an initial location in the source

code of a software project pertinent to a specific software feature1. Feature location is a

research area closely related to the research areas of concept location and bug localization,

and is also one of the most commonly used activities performed by project developers

during software development and maintenance. This activity is an essential part of the

incremental change process (Dit et al., 2013) and is a prerequisite to some of Mining

Software Repositories (MSR) activities such as program comprehension (Poshyvanyk,

Gueheneuc, Marcus, Antoniol, & Rajlich, 2006).

Feature location is an active research area that has attracted a lot of research effort

resulted in proposing many automatic and semi-automatic feature location approaches.

This chapter reviews the feature location literature highlighting the most related studies.

The research study presented in this thesis covers the consideration of time-metadata, and

developer-metadata as well as the use of only the noun terms for locating the software

features in the source code of software systems. Thus, the research area of feature location

and some other related research areas such as traceability recovery and bug assignment are

investigated to find the related studies. Figure 2.1 shows the structure that was followed

to review the related studies in this chapter.

In this chapter, first of all, an overview of the studies conducted in feature location

research area is presented in Section 2.1. In this section, the main categories of data

analysis methods that have been used for feature location are introduced highlighting the

most commonly used category, which is text analysis. Next, in Section 2.2, the existing

feature location approaches that rely on using text analysis methods are described. In

1A feature can be considered as a special concept associated with the functionality of the system which
is visible for the end user.

17

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1: Hierarchy of topics reviewed in literature review chapter

Section 2.3, the approaches that improved the text analysis by combining the text data

with additional information are investigated. Since this research aims to consider the

metadata of time and developer, and use noun terms to improve the feature location

accuracy, the literature in the area of feature location and other related research areas is

further investigated to identify the related studies in Section 2.4. Finally, a summary of

this chapter and the inferences are explained in Section 2.5.

2.1 Overview of Feature Location

Wilde et al. (Wilde & Scully, 1995) and Biggerstaff et al. (Biggerstaff et al., 1993)

were the first researchers who focused their efforts on addressing the problem of feature

location. Biggerstaff et al. (Biggerstaff et al., 1993) implemented a tool to extract the

identifiers in the source code of the project, and then cluster the extracted identifiers to

support identification of concepts. Wilde and his colleagues (Wilde & Scully, 1995) used

the Software Reconnaissance method that analyzes the dynamic information to address

the problem of feature location. Since then, feature location has attracted many research

18

Univ
ers

ity
 of

 M
ala

ya

efforts resulted in the proposal of many automatic and semi-automatic feature location

approaches that use different types of methods for data analyses. According to the most

recent survey on feature location (Dit et al., 2013), the existing feature location approaches

are classified into three main categories, based on the applied method for data analysis

method:

• Dynamic analysis

• Static analysis

• Text analysis

Dynamic analysis uses the information obtained from the execution of software to

simulate the requested feature, and it is often used when features can be invoked and

observed during run time (Cornelissen, Zaidman, Van Deursen, Moonen, & Koschke,

2009; Eisenberg & De Volder, 2005). Instead, as its name implies, static analysis deals

with the static properties of software project like class structure, dependency graphs and

control/data flow dependencies (Chen & Rajlich, 2000; Lukins et al., 2010; Marcus,

Maletic, & Sergeyev, 2005; Robillard, 2008). Finally, text analysis investigates the

text data stored in the historical project repositories and analyzes them to extract useful

information (Cleary et al., 2009; Gay, Haiduc, Marcus, & Menzies, 2009; Lukins et

al., 2010; Poshyvanyk et al., 2007). The properties of these categories as well as their

strengths and weaknesses are presented in Table 2.1.

According to the itemized strengths and weaknesses in Table 2.1, dynamic and static

analysis may not always be available in real-world scenarios. Furthermore, these types

of data analysis impose considerable overhead to the system, due to extracting dynamic

and static information (Dit et al., 2013). On the other hand, most of the data recorded

in software repositories, i.e. software requirements or source code, are in text format

19

Univ
ers

ity
 of

 M
ala

ya

Table 2.1: Main properties of dynamic, static, and text analyses

Dynamic Analysis Static Analysis Text Analysis

Prerequisites
- Needs compilable source code ()
- Preferred when the requested feature is able
to be exercised during runtime

- Needs compilable source
code

- Needs neither an executable
software system, nor a
compilable source code

Input - Scenario - Program Elements - Query

Properties - Deals with the program execution behavior
- Develops a set of scenarios that exercises
only the requested feature and then extracts
the information of the execution traces
- Works based on finding differences between
the control flows of the passing and failing of
a set of test cases that exercises the requested
feature

- Deals with the static prop-
erties of software project like
class structure, dependency
graphs and control/data flow
dependencies
- Close to the real activity of
the project developers that per-
formed to search a code related
to a software feature

- Deals with the text data
recorded in the historical
project’s repositories to extract
beneficial information
- Relies on the assumption
that identifiers, comments, and
other text data found in soft-
ware repositories contain do-
main knowledge that can be
used for locating software fea-
tures

Strengths - Mitigates the dataset size that needs to be in-
vestigated to identify the related source code
locations (due to developing a bounded set
of scenarios that exercises only the requested
feature) (Cornelissen et al., 2009).
- Provides worthy information to correctly
locate the software feature that may not be
obtained from other types of data analysis
(Poshyvanyk et al., 2007).

- Requires neither a work-
ing software system, nor a
test case that exercises the
requested feature (Dit et al.,
2013).
- Provides useful information
for identifying the source code
elements related to a software
feature that may not be ob-
tained from other types of data
analysis (Marcus et al., 2005).

- Always available in real-
world systems (Dit et al.,
2013).
- Most of data recorded in soft-
ware repositories, i.e. soft-
ware requirements or source
code, are in text format and
also change requests that in
many systems are considered
as the only available sources
for conducting the feature lo-
cation process are written in
text format (Kagdi et al.,
2012).

Weaknesses - Imposes considerable overhead to the sys-
tem, due to developing and executing collec-
tion of traces (Lukins et al., 2010; Dit et al.,
2013).
- Deficiency of developing a concise set of
scenarios to invoke all parts of the source code
which are related to the implementation of the
requested feature (Chen & Rajlich, 2000).
- Difficulty of formulating a set of scenar-
ios that only invokes the desired feature (this
phase may result in executing irrelevant code
that imposes further overhead to the system)
(Chen & Rajlich, 2000).
- Dependent on the quality of the identified
test cases (Gay et al., 2009; Lukins et al.,
2010).
- High cost in distributed and time-sensitive
systems (Robillard, 2008).
- Unable to deal with the non-executable files,
like the files used for configuration or docu-
mentation (Dit et al., 2013).

- Often results in returning
many false positives which
is due to overestimating the
source code elements recog-
nized to be pertinent to the
desired feature (Eisenberg &
De Volder, 2005).
- Imposes overhead to the sys-
tem, due to extracting struc-
tured information (Dit et al.,
2013).
- Static information which is
derived from structural infor-
mation, such as call graphs, is
language specific (Robillard,
2008).
- Unable to deal with the non-
executable files, like the files
used for configuration or doc-
umentation (Dit et al., 2013).

- Applied text analysis meth-
ods for examining the text
data for feature location mostly
originate from a natural lan-
guage context (Bassett &
Kraft, 2013).
- Considers the text data in
a source code file as a col-
lection of terms that co-occur
frequently in the documents
of corpus (Bassett & Kraft,
2013).
- Ignores the differences of
text data recorded in soft-
ware repositories and text data
in a natural language context
within text analysis process

(Bassett & Kraft, 2013).

20

Univ
ers

ity
 of

 M
ala

ya

(Karahasanović, Levine, & Thomas, 2007; Noice, 2013). Moreover, change requests that

in many systems are considered as the only available sources for conducting the feature

location process are written in natural language text (Gethers et al., 2011). Due to the

enumerated reasons, more effective support for the analysis of text-based sources is needed

to obtain a high-quality feature location process that more accurately locates the software

change requests. In addition, improvement in the accuracy of text analysis process of

feature location will affect the overall accuracy of feature location that often works as a

starting point in many MSR activities such as impact analysis.

The research of Dit and his colleagues (Dit et al., 2013) shows that the most commonly

used category of feature location method is text analysis, since more than 51% of the

published literature in this research area is based, at least in part, on text analysis. Thus, it

is reasonable to assume that text-based sources are the most important sources for feature

location and text analysis plays the most significant roles in locating features in the source

code. These reasons encouraged the researcher to focus on improving text analysis process

of feature location to locate software features more accurately. In the rest of this section,

some of the text analysis based feature location approaches are investigated to find their

strengths and weaknesses. Since this thesis mainly focuses on the use of metadata in the

text analysis process, the feature location literature is investigated to find the most related

works. Accordingly, first, the main categories of the text analysis methods used for feature

location are reviewed. Then the use of metadata in text analysis based feature location

approaches is investigated.

2.2 Text Analysis based Feature Location

The text analysis methods that have been used for feature location are mostly classified

into three main categories (Dit et al., 2013):

21

Univ
ers

ity
 of

 M
ala

ya

• Pattern Matching (PM)

• Information Retrieval (IR)

• Natural Language Processing (NLP)

Table 2.2 presents some of the properties of these categories of text analysis methods

highlighting their strengths and weaknesses. In the follows, some of related studies that

use these categories of text analysis are reviewed.

2.2.1 Related Studies on Pattern Matching (PM) Methods

PM, which is the first category of text analysis methods, is considered as the simplest

text analysis feature location method. It usually involves a text-based technique to search

the source code using a utility such as regular expression matching tools, “grep” being

an example. One of the studies that utilized PM for feature location was performed by

Petrenko et al. (Petrenko et al., 2008). They combined the use of grep with ontology

fragments to develop a feature location approach. In this study, the ontology fragments

were used to record partial domain knowledge about software system features in order

to enhance developers to formulate suitable queries and also help them to investigate

the retrieved results. The ontology used in this study was generated manually by the

developer and it can be refined and expanded during the feature location process due to

more knowledge about the system gained by the developer.

The work of Petrenko et al. was extended by Wilson (Wilson, 2010). The author

presented an approach that systematically formulates queries based on the obtained knowl-

edge from ontology fragments. In this approach, developers are able to formulate desired

queries based on the terms recommended in the ontology fragments and then input the

formulated queries to grep to locate software features in the source code. Furthermore,

many modern development environments, such as Microsoft Visual Studio and Eclipse,

22

Univ
ers

ity
 of

 M
ala

ya

Table 2.2: Main properties of PM, IR, and NLP methods

PM IR NLP

Properties - Query based
- Searches the source code using a
text-based technique such as regular
expression matching tools
- Looks for exact matching

- Query based
- Works based on statistical methods
- Deals with the frequency of
terms/words in documents to deter-
mine the amount of similarity between
documents and queries
- Ranks the documents of corpus
according the determined similarity
scores that indicate their relevance
with the given query

- Query based
- Analyzes the parts of speech
of the words used in source
code

Strengths - Simplest category of text analysis
methods (Dit et al., 2013)
- Extended and utilized in many
modern development environments
(Poshyvanyk, 2008)
- Relatively robust but not very precise
(Wilson, 2010)

- Made a significant improvement over
PM (Dit et al., 2013)
- Accepts more general queries
(Cleary et al., 2009)
- Identifies the source code locations
more accurately compared to PM (Dit
et al., 2013)
- Handles multiple-word queries
(Marcus et al., 2004)
- IR is not as fragile as PM and it does
not return un-ranked result sets

(Marcus et al., 2004)

- Considers grammatical
categories of terms within the
text to analyze and extract
the required information from
the documents (Shepherd,
Pollock, & Vijay-Shanker,
2006)
- Typically uses ontol-
ogy/glossary/dictionary to
consider other forms of terms
appearing in a given query
(Abebe & Tonella, 2010;
Petrenko et al., 2008)
- more precise than PM and
IR (Dit et al., 2013)
- Can be used to extend either
source code terms and query
terms (Dit et al., 2013)
- No indexing is necessary
(Shepherd et al., 2006)
- Can be used beside PM
and IR methods to address
feature location problem more
accurately

(Hill et al., 2009)

Weaknesses - Chances of a programmer choosing
query terms that match the vocabu-
lary of unfamiliar source code are rel-
atively low (Marcus et al., 2004)
- Regular expression matching typi-
cally used for PM is extremely fragile
(Wilson, 2010)
- Features such as morphology
changes, synonyms, line breaks, and
reordered terms will cause regular ex-
pression queries to fail (Petrenko et al.,
2008)
- Low recall caused by using regular
expression queries (Abebe & Tonella,
2010)
- Commonly occurring sub-strings in
the code cause even mildly broad
search terms to return large result
sets, leading to low precision searches
(Marcus et al., 2004)
- Typically fails to handling searches
for two interacting words that occur
near to each other (caused by line
breaks and word ordering changes
break most simple regular expression
searches) (Petrenko et al., 2008)

- Typically uses all terms in the doc-
ument after common preprocessing
steps (Rao & Kak, 2011)
- Considers a document as a collec-
tion of terms that co-occur frequently
(Bassett & Kraft, 2013)
- Returns considerable false positives
because it does not account for sen-
tence structure (Dit et al., 2013)
- Rarely handles natural language is-
sues such as morphology or synonym
that lead to low recall

(Lukins et al., 2010)

- More difficult and more ex-
pensive than PM and IR (Dit
et al., 2013)
- Inability to address ill-
formed sentences (Dit et al.,
2013)
- Inability to address syntactic
ambiguities caused by struc-
ture (Hill et al., 2009)

23

Univ
ers

ity
 of

 M
ala

ya

provide a lot of useful add-ons based on simple pattern matching to handle the activities

like referencing to class and method names (Poshyvanyk, 2008).

However, pattern matching methods are simple methods, they may not be highly

accurate due to some weaknesses which are summarized in Table 2.2. To address this

issue, the researchers (Marcus et al., 2004; Poshyvanyk et al., 2006) made a significant

improvement over pattern matching by proposing Information Retrieval (IR) based ap-

proaches that accept more general queries and identify the source code locations more

accurately.

2.2.2 Related Studies on Information Retrieval (IR) Methods

The main properties of IR models were outlined in Table 2.2. The IR methods analyze the

source code documents and determine the amount of similarity between the source code

documents and a query which is typically formulated by a software developer in natural

language. The source code documents are finally retrieved as a list that are ranked based

on their relevancy to the desired query (Cleary et al., 2009; Gay et al., 2009; Poshyvanyk

et al., 2007).

The popular IR models that are typically used for feature location, i.e. Vector Space

Model (VSM), Latent Semantic Indexing (LSI), Latent Dirichlet Allocation (LDA), and

Smoothed Unigram Model (SUM), are explained in Appendix B. These methods are

applied in many feature location approaches to locate software features in source code.

The research study of Marcus et al. (Marcus et al., 2004) is one of the earliest

feature location studies that apply IR for concept location. This study introduced the

use of LSI (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990), which is an

extension of VSM, to identify the source code elements related to a concept written in

natural language. In this study, first, the source code elements were indexed based on

the extracted terms from the identifiers and comments as the documents of corpus. Next,

24

Univ
ers

ity
 of

 M
ala

ya

Singular Value Decomposition (SVD) technique was used to map the documents into the

LSI space. Then, the requested queries were also mapped into the LSI space using the

same process performed for the source code elements. Finally, the similarity between

the source code elements and the requested queries was determined using VSM. Another

IR-based approach was proposed by Lukins et al. (Lukins, Kraft, & Etzkorn, 2008; Lukins

et al., 2010). This study is the first that utilized LDA (Blei, Ng, & Jordan, 2003) as an

alternative model to LSI for bug localization.

One of the recent studies on the use of IR models for feature location is the study of

Wang et al. (S. Wang, Lo, & Lawall, 2014). This study investigated different schemes

of VSM to optimize the feature location problem. The multiple VSM variants with

different weighting schemes have different performance for software systems. This study

considered 15 VSM variants with a different TF-IDF2 weighting scheme and proposed a

genetic algorithm based composite model. Using genetic algorithm, the space of possible

compositions of various VSM variants is explored. The proposed approach in this study

is search-based compositional bug localization that includes two main phases involving

training phase and deployment phase. In the first phase, the approach is trained using a set

of bug reports which are associated with the source code files that were modified to satisfy

the bugs. To discover near-optimal compositions with the best performance on the training

set, search heuristics are employed to identify promising compositions by traversing the

search space. In the second phase, deployment, the composite model is applied to locate

new bug reports.

The use of popular IR models, i.e. VSM, LSI, LDA, and SUM, was examined for the

purposes of feature location in the studies of Rao and Kak (Rao & Kak, 2011), Zhou et

al. (Zhou, Zhang, & Lo, 2012), and Wang et al. (S. Wang, Lo, Xing, & Jiang, 2011).

2Term Frequency-Inverse Document Frequency

25

Univ
ers

ity
 of

 M
ala

ya

According to the research of Dit et al. (Dit et al., 2013), IR is the most commonly

used category of text analysis methods applied for feature location. However, feature

location approaches that use IR methods have some weaknesses that are briefly mentioned

in Table 2.2. IR-based feature location approaches typically use all the terms in the

document after common preprocessing steps. Also, IR considers the text resources as a

collection of terms that co-occur frequently in the documents of the corpus (Manning et

al., 2008). As mentioned earlier, text data in the software repositories is associated with

additional data, such as metadata that records the evolution of the text, not found in simple

text documents that can be considered in text analysis process in order to improve the

feature location accuracy.

2.2.3 Related Studies on Natural Language Processing (NLP) Methods

The last category of text analysis feature location approach, Natural Language Processing

(NLP), utilizes the NLP techniques to provide the ability of dealing with the role of terms

in sentences to locate the software features more accurately. NLP-based feature location

approaches address some of weaknesses of IR-based approaches such as considering mor-

phology or synonym. Furthermore, NLP-based approaches consider different categories

of terms appeared in the requested query or source code elements to locate the features

in the source code. The other properties of NLP-based feature location approaches are

presented in Table 2.2. In this category of approaches, NLP techniques are typically used

to extract desired information from source code elements in order to enhance and facilitate

the process of queries extension and refinement.

The approach applying NLP for feature location in the study of Shepherd et al.

(Shepherd et al., 2006) provided a natural language representation of the source code

elements, named AOIG (Action-Oriented Identifier Graph) deal with the verbs and their

corresponding direct objects (verb-DO) appeared in source code identifiers. AOIG en-

26

Univ
ers

ity
 of

 M
ala

ya

hances the query formulation process by suggesting a set of direct objects for the verbs

requested from the developer.

The other study on applying NLP for feature location was performed by Hill et al.

(Hill et al., 2009). They proposed a NLP-based feature location approach that extended

and refined the requested query to improve location identification process. The approach

proposed by Hill and his colleagues extracted the noun, verb, and prepositional phrases

from method and field names and also generated additional phrases by analyzing the

methods’ parameters. Then, a hierarchy of all the extracted phrases, which are linked to

their corresponding source code elements, was created based on partial phrase matching.

Once a user has formulated a query, the approach inspected the phrases for matches and

returned a hierarchy of phrases and their corresponding source code elements which are

related to the formulated query.

Moreover, Abebe and Tonella (Abebe & Tonella, 2010) introduced a feature location

approach that uses NLP techniques to extract concepts from source code identifiers, and

forms candidate sentences in which those identifiers are used. The formulated sentences

act as an input of an ontology that involves the identifiers (represent the concepts) and their

relations (extracted from the formulated sentences). The functionality of this approach

is similar to the one proposed by Petrenko et al. (Petrenko et al., 2008) with one main

difference related to the way of creating the ontologies. Opposed to the Petrenko’s

approach, the ontology is automatically generated in the approach of Abebe and Tonella.

2.2.4 Summary of Text Analysis based Feature Location

These three categories of text analysis methods which are originated from the natural

language context (Bassett & Kraft, 2013) can be used in feature location approaches

as the standalone methods to perform the feature location activity. The text analysis

based approaches mentioned in this section are some examples of using text analysis

27

Univ
ers

ity
 of

 M
ala

ya

methods as the standalone methods for feature location. Some of important properties

of these approaches are summarized in Table 2.3. Since these approaches used PM, IR,

and NLP as the standalone methods for feature location without considering additional

information, their main strengths and weaknesses are related to their corresponding text

analysis methods mentioned in Table 2.2.

Table 2.3: Properties of related feature location approaches that used text analysis as the
standalone method for feature location

Approach Text
Ana-
lyzer

How to Locate Evaluation
Metric

Subject Sys. Object Sys. Comparison
Sys.

(Petrenko
et al., 2008)

PM Combine regular expression
matching and manually cre-
ated NLP ontology

F-Measure;
Precision and
recall; TopN
Ranked; Time

Eclipse and
Mozilla

10 bug reports:
5 from each
Subj. Sys.

lexical-based
(ELex), IR-
based (GES)

(Wilson,
2010)

PM Combine grep with ontology
fragments called grepOF

Statistical test
of ranked list
of source code
elements

Eclipse and
Mozilla

8 bug reports:
4 from each
Subj. Sys.

grep

(S. Wang et
al., 2014)

IR
(VSM)

Considered 15 VSM vari-
ants with a different TF-IDF
weighting scheme and pro-
posed a genetic algorithm
based composite model

Hit, MAP, and
MRR

AspectJ,
Eclipse, and
SWT.

3,459 bug re-
ports

15 various
VSM variants

(Marcus et
al., 2004)

IR
(LSI)

First use of LSI for feature lo-
cation

Precision and
recall

NCSA Mosaic 8 queries writ-
ten by pro-
grammers

grep and AS-
DGs

(Lukins et
al., 2008,
2010)

IR
(LDA)

First use of LDA for feature
location

Effectiveness;
TopN Ranked;
Average of
ranks

Eclipse,
Mozilla, and
Rhino

5 of Mozilla;
219 of Eclipse;
106 of Rhino

LSI

(Shepherd
et al., 2006)

NLP Define an Action-Oriented
Identifier Graph (AOIG)
and connect code segments
through the actions performed
by the programmers

Precision and
recall; Time
and space costs

JHotDraw – Manual pro-
cess

(Hill et al.,
2009)

NLP Information Extraction F-Measure Rhino 19 change re-
quests

Shepherd ap-
proach (verb-
DO)

(Abebe &
Tonella,
2010)

NLP Use natural language parsing
to extract data from program
identifiers in order to automat-
ically create NLP ontology

F-Measure;
Precision and
recall

WinMerge 7 bug reports Manual pro-
cess with and
without using
ontology

The focus on using only the text data extracted from source code elements such

as identifiers may not be highly accurate in identifying the correct location of software

features.

28

Univ
ers

ity
 of

 M
ala

ya

2.3 Combining Additional Information with Text Analysis

In order to improve the accuracy of feature location approaches which are based on

text analysis process, many research studies focused on using additional data such as

structural information besides text data for feature location. Some of the related studies that

combined text analysis methods with additional information is outlined in Table 2.4. This

table indicates important properties of related feature location approaches that combine

text analysis with additional information such as static, dynamic or historical data to

improve accuracy of feature location process. The third column in this table explains

the additional information which is used in the corresponding text analysis based feature

location approach. The next column briefly describes how the additional information is

used besides text data to locate a software feature. The way that the approaches located the

software features in the source code of software projects is explained in more details in the

rest of this section. The fifth column shows the metrics that were used in the experimental

evaluation of the feature location approach. The next two columns respectively point to

the software projects that were used as the case study to evaluate the approach, called

subject systems, and the set of samples, e.g. bug report or change request, which were

selected from the subject systems for the evaluation, called object systems. To show the

improvement made by the desired approach in feature location process, the last column

in Table 2.4 indicates the related feature location approaches that were used to assess the

improvement made by the approach in feature location. The approaches outlined in this

table and the way they used additional information for feature location are explained in

the rest of this section.

29

Univ
ers

ity
 of

 M
ala

ya

Ta
bl

e
2.

4:
Pr

op
er

tie
so

fr
el

at
ed

fe
at

ur
e

lo
ca

tio
n

ap
pr

oa
ch

es
th

at
co

m
bi

ne
d

te
xt

an
al

ys
is

w
ith

ad
di

tio
na

li
nf

or
m

at
io

n

A
pp

ro
ac

h
Te

xt
A

n-
al

yz
er

A
dd

iti
on

al
In

fo
rm

at
io

n
H

ow
to

Lo
ca

te
Ev

al
ua

tio
n

M
et

ri
c

Su
bj

ec
tS

y s
.

O
bj

ec
tS

y s
.

C
om

pa
ri

so
n

Sy
s.

(Z
ha

o,
Zh

an
g,

Li
u,

Su
n,

&
Ya

ng
,2

00
6)

V
SM

St
at

ic
In

fo
rm

at
io

n
ex

tra
ct

ed
fr

om
str

uc
tu

ra
l

co
rr

el
at

io
n

be
tw

ee
n

so
ur

ce
co

de
el

e-
m

en
ts

U
se

d
V

SM
to

ra
nk

so
ur

ce
co

de
el

em
en

ts
.

Th
en

,
us

ed
B

ra
nc

h
Re

se
rv

in
g

C
al

l
G

ra
ph

s
(B

RC
G

)
to

fu
rth

er
re

co
ve

rt
he

re
le

va
nt

el
em

en
ts

fo
rr

eq
ue

ste
d

fe
at

ur
e

Pr
ec

is
io

n
an

d
R e

ca
ll

G
N

U
D

C
an

d
U

nR
TF

27
f e

at
ur

es
:

21
of

D
C

an
d

6
of

U
nR

TF

V
SM

, a
nd

a
dy

-
na

m
ic

ap
pr

oa
ch

(S
ca

nn
ie

llo
&

M
ar

cu
s,

20
11

)
V

SM
St

at
ic

in
fo

rm
at

io
n

ex
tra

ct
ed

fr
om

cl
us

te
rin

g
th

e
si

m
ila

r
so

ur
ce

co
de

el
em

en
ts

ba
se

d
on

co
m

bi
ni

ng
bo

th
str

uc
tu

ra
l

an
d

te
xt

ua
la

na
ly

si
s

In
de

xe
d

so
ur

ce
co

de
el

em
en

ts
us

in
g

V
SM

an
d

th
en

co
m

pa
re

d
th

ei
nd

ex
ed

el
em

en
ts

w
ith

th
en

ei
gh

bo
r-

in
g

el
em

en
ts

in
a

de
pe

nd
en

cy
gr

ap
h

an
d

cr
ea

te
ne

w
w

ei
gh

te
d

gr
ap

h.
Fi

na
lly

,c
lu

ste
re

d
th

e
so

ur
ce

co
de

el
em

en
ts

us
in

g
B

or
de

rF
lo

w

Eff
ec

tiv
en

es
s

A
tu

ne
s;

A
rt

of
Il-

lu
si

on
;

Ec
lip

se
;

jE
di

t

19
8

bu
g

re
-

po
rts

:
12

fo
r

A
rt

of
Ill

us
io

n,
30

fo
r

A
tu

ne
s,

11
4

Ec
lip

se
,4

1
jE

di
t

V
SM

(A
lh

in
da

w
i,

D
ra

-
ga

n,
C

ol
la

rd
,

&
M

al
et

ic
,2

01
3)

LS
I

St
at

ic
in

fo
rm

at
io

n
ex

tra
ct

ed
fr

om
ste

re
ot

yp
e

in
fo

rm
at

io
n

Id
en

tifi
ed

m
et

ho
d’

ss
te

re
ot

yp
e

by
an

al
yz

in
g

sta
tic

an
d

str
uc

tu
ra

li
nf

or
m

at
io

n
of

th
e

m
et

ho
d

el
em

en
ts

an
d

th
en

ad
de

d
a

co
m

m
en

t
be

fo
re

th
e

m
et

ho
d

de
fin

in
g

th
e

m
et

ho
d’

ss
te

re
ot

yp
e.

Pr
ec

is
io

n
an

d
R e

ca
ll;

R
an

k
of

th
e

fir
st,

an
d

th
e

la
st

re
le

va
nt

el
em

en
ts

H
ip

po
D

ra
w,

Q
t

22
fe

at
ur

es
:

11
fo

r
ea

ch
Su

bj
.

Sy
s.

LS
I

w
ith

an
d

w
ith

ou
t

th
e

ad
de

d
ste

re
ot

yp
e

in
fo

rm
at

io
n

(S
ah

a,
Le

as
e,

K
hu

rs
hi

d,
&

Pe
rr

y,
20

13
)

In
dr

i
St

at
ic

in
fo

rm
at

io
n

ex
tra

ct
ed

fr
om

St
ru

ct
ur

al
co

rr
el

at
io

n
be

tw
ee

n
so

ur
ce

co
de

el
e-

m
en

ts

B
ui

lt
th

ea
bs

tra
ct

sy
nt

ax
tre

e(
A

ST
)f

or
ea

ch
so

ur
ce

co
de

el
em

en
ts

.
Th

en
,c

re
at

ed
str

uc
tu

ra
lv

ie
w

of
el

em
en

ts
an

d
in

de
xe

d
th

em
us

in
g

In
dr

i.

To
pN

R
an

ke
d;

M
R

R
;M

A
P

Ec
lip

se
,

A
s-

pe
ct

J,
SW

T,
Zx

in
g

34
00

bu
gs

B
ug

Lo
ca

to
r

(Y
e,

Bu
ne

sc
u,

&
Li

u,
20

14
)

V
SM

A
PI

de
sc

r ip
tio

ns
an

d
pr

ev
i-

ou
sly

fix
ed

bu
g

re
po

rts
G

iv
en

a
bu

g
re

po
rt,

th
e

ra
nk

in
g

sc
or

e
of

ea
ch

so
ur

ce
fil

ei
sc

om
pu

te
d

as
aw

ei
gh

te
d

co
m

bi
na

tio
n

of
an

ar
ra

y
of

fe
at

ur
es

en
co

di
ng

do
m

ai
n

kn
ow

l-
ed

ge
,w

he
re

th
e

w
ei

gh
ts

ar
e

tra
in

ed
au

to
m

at
ic

al
ly

on
pr

ev
io

us
ly

so
lv

ed
bu

g
re

po
rts

us
in

g
a

le
ar

ni
ng

-
to

-r
an

k
te

ch
ni

qu
e.

A
cc

ur
ac

y ,
M

A
P,

an
d

M
R

R
A

sp
ec

tJ
,

B
ir t

,
Ec

lip
se

,
JD

T,
SW

T,
an

d
To

m
ca

t

22
,0

00
bu

gs
V

SM
,

U
su

al
Su

sp
ec

ts
,

B
u-

gL
oc

at
or

,
an

d
B

ug
Sc

ou
t

(S
.

W
an

g
&

Lo
,

20
14

)
D

FR
an

d
LM

Ve
rs

io
n

hi
sto

ry
,

re
la

te
d

bu
g

re
po

rts
,a

nd
str

uc
tu

re
In

te
gr

at
ed

a
bu

g
pr

ed
ic

tio
n

te
ch

ni
qu

e
us

ed
in

G
oo

gl
e,

w
ith

a
bu

g
lo

ca
liz

at
io

n
te

ch
ni

qu
e

ca
lle

d
B

ug
Lo

ca
to

r,
an

d
th

e
bu

g
lo

ca
liz

at
io

n
te

ch
ni

qu
e

B
LU

iR
.

M
A

P
A

sp
ec

tJ
,E

cl
ip

se
,

S W
T,

an
d

ZX
in

g
3,

00
0

bu
gs

bu
g

lo
ca

liz
a-

tio
n

so
lu

tio
n

of
Si

sm
an

an
d

K
ak

,
B

ug
Lo

ca
to

r,
B

LU
iR

(P
os

hy
va

ny
k

et
al

.,
20

07
)

LS
I

D
yn

am
ic

in
fo

rm
at

io
n

ex
-

tra
ct

ed
fr

om
ex

ec
ut

io
n

tra
ce

s
C

om
bi

ne
d

th
e

re
su

lts
of

LS
I

(a
s

a
te

xt
an

al
ys

is
m

et
ho

d)
an

d
th

e
re

su
lts

of
SP

R
(a

s
a

dy
na

m
ic

an
al

ys
is

m
et

ho
d)

Eff
ec

tiv
en

es
s

M
oz

ill
a,

Ec
lip

se
3

bu
gs

of
Ec

lip
se

an
d

5
bu

gs
of

M
oz

ila

LS
Ia

nd
SP

R

30

Univ
ers

ity
 of

 M
ala

ya

(R
ev

el
le

,
D

it,
&

Po
sh

yv
an

yk
,

20
10

)

LS
I

D
yn

am
ic

an
d

sta
tic

in
fo

rm
a-

tio
n

ex
tra

ct
ed

fr
om

str
uc

tu
ra

l
re

la
tio

n
be

tw
ee

n
so

ur
ce

co
de

el
em

en
ts

an
d

ex
ec

ut
io

n
tra

ce
s

th
at

ar
e

an
al

yz
ed

us
in

g
w

eb
m

in
in

g

R
an

ke
d

so
ur

ce
co

de
el

em
en

ts
,

w
hi

ch
w

er
e

ob
-

ta
in

ed
fr

om
dy

na
m

ic
an

al
ys

is
,

us
in

g
LS

I.
Th

en
,

us
ed

w
eb

m
in

in
ga

lg
or

ith
m

s,
i.e

.H
IT

S
an

dP
ag

eR
-

an
k

to
fil

te
ri

rr
el

ev
an

ts
ou

rc
e

co
de

el
em

en
ts

Eff
ec

tiv
en

es
s

Ec
lip

se
an

d
R

hi
no

,
45

fe
at

ur
es

of
Ec

lip
se

an
d

24
1

fe
at

ur
es

of
R

hi
no

LS
I,

W
eb

m
in

-
in

g,
an

d
ex

e-
cu

tio
n

tra
ce

s
as

as
ta

nd
al

on
ea

p-
pr

oa
ch

(L
e,

O
en

t a
ry

o,
&

Lo
,2

01
5)

V
SM

D
yn

am
ic

in
f o

.e
xt

ra
ct

ed
fr

om
an

al
ys

is
of

pr
og

ra
m

sp
ec

tra
U

se
d

th
re

e
co

m
po

ne
nt

s
to

sc
or

e
th

e
w

or
ds

ap
-

pe
ar

ed
in

th
e

te
xt

ua
ld

es
cr

ip
tio

n
of

bu
gs

,p
ro

gr
am

sp
ec

tra
,a

nd
bo

th
of

th
em

.
Th

en
,c

om
bi

ne
d

th
es

e
th

re
e

sc
or

es
to

de
te

rm
in

e
to

ta
ls

co
re

.

A
cc

ur
ac

y
(T

op
N

),
an

d
M

A
P

A
sp

ec
tJ

,
A

nt
,

Lu
ce

ne
,

an
d

R
hi

no

15
7

bu
gs

IR
LS

ID
yn

bi
n,

PR
O

M
ES

IR
,

LR
an

d
M

U
L-

TR
IC

(S
ism

an
&

K
ak

,
20

12
)

D
FR

an
d

LM
In

fo
rm

at
io

n
ex

tra
ct

ed
fr

om
ve

rs
io

n
hi

sto
rie

s,
i.e

.n
um

be
r

of
bu

gs
,n

um
be

ro
fc

ha
ng

es
to

th
e

co
de

el
em

en
t,

an
d

tim
e

D
efi

ne
d

a
co

effi
ci

en
to

f
pr

ob
ab

ili
ty

of
de

fe
ct

iv
e-

ne
ss

of
th

es
ou

rc
ec

od
ee

le
m

en
ts

by
an

al
yz

in
g

ve
r-

si
on

hi
sto

rie
so

fs
of

tw
ar

e
sy

ste
m

s,
an

d
ad

de
d

th
is

co
effi

ci
en

tt
o

D
FR

an
d

LM
m

et
ho

ds

M
A

P
A

sp
ec

tJ
iB

ug
s

da
ta

se
t

fo
rA

sp
ec

tJ
Pr

ob
ab

ili
sti

c
IR

m
od

el
s,

i.e
.

D
FR

an
d

LM

(Z
ho

u
et

al
.,

20
12

)
V

SM
Le

ng
th

of
so

ur
ce

co
de

el
e-

m
en

ts
an

d
th

e
in

fo
rm

at
io

n
of

th
e

si
m

ila
rb

ug
s

A
dd

ed
a

co
effi

ci
en

tt
o

V
SM

to
sc

or
e

th
e

so
ur

ce
co

de
el

em
en

ts
ba

se
d

on
th

e
fil

e
le

ng
th

.
Fu

rth
er

-
m

or
e,

us
ed

pr
ev

io
us

ly
fix

ed
bu

gs
to

in
de

x
so

ur
ce

co
de

el
em

en
ts

To
pN

R
an

k;
M

R
R

;M
A

P
Ec

lip
se

,
A

s-
pe

ct
J,

SW
T

an
d

Zx
in

g

30
00

bu
g

re
-

po
rts

V
SM

,
LD

A
,

SU
M

,L
SI

(J
.

W
an

g,
Pe

ng
,

X
in

g,
&

Zh
ao

,
20

13
)

TF
-I

D
F

Pa
ck

ag
e

St
ru

ct
ur

e,
In

he
ri-

ta
nc

e
H

ie
ra

rc
hy

,
In

te
nt

,
an

d
ca

lle
d

m
et

ho
d

in
fo

.

A
llo

w
s

de
ve

lo
pe

rs
to

be
gi

n
w

ith
an

in
iti

al
qu

er
y

an
d

gr
ad

ua
lly

re
fin

ei
tb

as
ed

on
pr

ev
io

us
fe

ed
ba

ck
s

Ti
m

e
an

d
F-

m
ea

su
re

JE
di

t
20

de
ve

lo
pe

rs
pe

rfo
rm

in
g

fo
ur

fe
at

ur
e

lo
ca

tio
n

ta
sk

s

G
ro

up
ed

de
ve

l-
op

er
s

in
tw

o
gr

ou
ps

,
ex

pe
r-

im
en

ta
l

gr
ou

p
an

d
co

nt
ro

l
gr

ou
p,

ea
ch

on
e

in
cl

ud
es

10
de

ve
lo

pe
rs

(S
ca

nn
ie

llo
,

M
ar

cu
s,

&
Pa

sc
al

e,
20

15
)

V
SM

Li
nk

an
al

ys
is

A
ug

m
en

te
d

te
xt

re
tri

ev
al

ba
se

d
ap

pr
oa

ch
es

by
us

-
in

g
lin

k
an

al
ys

is
te

ch
ni

qu
es

to
ra

nk
th

es
ou

rc
ec

od
e

el
em

en
ts

du
rin

g
te

xt
re

tri
ev

al

eff
ec

tiv
en

es
s

A
rt

of
Ill

us
io

n,
aT

un
es

,
Ec

lip
se

,
jE

di
t,

C
oc

oo
n,

D
er

by
,

Lu
ce

ne
,

an
d

O
pe

nJ
PA

17
5

bu
g

re
po

rts
V

SM
an

d
C

LC
(C

on
ce

pt
Lo

ca
-

tio
n

us
in

g
C

lu
s-

te
rin

g)

(H
ill

,
P o

llo
ck

,&
V

ija
y-

Sh
an

ke
r,

20
07

)

TF
-I

D
F

In
fo

r m
at

io
n

ex
tra

ct
ed

fr
om

str
uc

tu
ra

lc
or

re
la

tio
nb

et
w

ee
n

so
ur

ce
co

de
el

em
en

ts
an

d
po

-
si

tio
n

of
ap

pe
ar

an
ce

th
et

er
m

s
in

th
e

so
ur

ce
co

de
el

em
en

t

C
om

bi
ne

d
te

xt
an

al
ys

is
w

ith
str

uc
tu

ra
lr

ep
re

se
nt

a-
tio

ns
of

co
de

an
d

sc
or

ed
th

et
er

m
sb

as
ed

on
th

ef
re

-
qu

en
cy

of
ap

pe
ar

an
ce

in
th

ec
or

re
sp

on
di

ng
so

ur
ce

co
de

el
em

en
ta

nd
w

he
re

th
eq

ue
ry

te
rm

sa
pp

ea
ri

n
th

e
so

ur
ce

co
de

el
em

en
t.

Pr
ec

is
io

n
an

d
R e

ca
ll;

F-
M

ea
su

re

G
an

tt,
jB

id
-

W
at

ch
er

,
Fr

ee
-

m
in

d

8
f e

at
ur

es
:

1
fo

r
G

an
tt,

4
fo

r
jB

id
W

at
ch

er
,

3
fo

rF
re

em
in

d

Su
ad

e,
bo

ol
ea

n-
A

N
D

,
an

d
bo

ol
ea

n-
O

R

(B
as

se
tt

&
K

ra
ft,

20
13

)
LD

A
In

fo
rm

at
io

n
ex

tra
ct

ed
fr

om
str

uc
tu

ra
lc

or
re

la
tio

nb
et

w
ee

n
so

ur
ce

co
de

el
em

en
ts

A
ss

es
se

dd
iff

er
en

tc
on

fig
ur

at
io

nf
or

LD
A

to
w

ei
gh

t
th

et
er

m
sb

as
ed

on
th

ei
m

po
rta

nc
eo

ft
er

m
sd

er
iv

ed
fr

om
a

m
et

ho
d’

sn
am

e
an

d
fr

om
th

e
na

m
es

of
th

e
m

et
ho

ds
it

ca
lls

.

Eff
ec

tiv
en

es
s

an
d

M
R

R
A

rg
oU

M
L,

Ec
lip

se
,

Ja
bR

ef
,

jE
di

t,
m

uC
om

-
m

an
de

r

40
0

fe
at

ur
es

an
d

bu
gs

in
fiv

e
op

en
-s

ou
rc

e
Ja

va
sy

ste
m

s

C
om

pa
re

di
ffe

r-
en

t
co

nfi
gu

ra
-

tio
ns

of
LD

A

31

Univ
ers

ity
 of

 M
ala

ya

(P
os

hy
va

ny
k

&
M

ar
cu

s,
20

07
)

LS
I

Fo
rm

al
C

on
ce

pt
A

na
ly

si
s

in
fo

rm
at

io
n

ex
tra

ct
ed

fr
om

sh
ar

ed
te

rm
s

be
tw

ee
n

so
ur

ce
co

de
el

em
en

ts

R
an

ke
d

so
ur

ce
co

de
el

em
en

ts
us

in
g

LS
I,

an
d

th
en

cl
us

te
re

d
th

e
ra

nk
ed

re
su

lts
us

in
g

FC
A

Eff
ec

tiv
en

es
s

Ec
lip

se
2

bu
g

re
po

rts
of

Ec
lip

se
LS

I

(C
le

ar
y

&
Ex

to
n,

20
07

)
LM (c

og
-

ni
tiv

e
as

si
gn

-
m

en
t)

In
fo

r m
at

io
n

de
riv

ed
fr

om
no

n-
so

ur
ce

co
de

re
po

si
to

rie
s

ex
tra

ct
ed

fr
om

re
la

tio
n

be
-

tw
ee

n
te

rm
sc

o-
oc

cu
rr

en
ce

in
no

n-
so

ur
ce

co
de

re
po

si
to

rie
s

D
efi

ne
d

a
m

od
el

of
re

la
tio

ns
hi

ps
be

tw
ee

n
te

rm
s

re
co

rd
ed

in
so

ur
ce

co
de

el
em

en
ts

,t
he

n
w

he
n

tw
o

te
rm

s
ar

e
co

m
pa

re
d,

if
th

er
e

is
no

di
re

ct
co

rr
e-

sp
on

de
nc

e,
co

ns
ul

tt
he

re
la

tio
ns

hi
p

m
od

el
to

se
e

if
an

in
di

re
ct

m
at

ch
ca

n
be

m
ad

e.

Pr
ec

is
io

n
an

d
Re

ca
ll;

Av
er

ag
e

pr
ec

is
io

n

C
H

IV
E

4
co

nc
er

ns
C

la
ss

ic
LM

, d
e-

pe
nd

en
cy

ba
se

d
LM

,a
nd

LS
I

(M
or

en
o,

Tr
ea

d-
w

ay
,

M
ar

cu
s,

&
Sh

en
,2

01
4)

Lu
ce

ne
(V

SM
)

St
ac

k
tra

ce
s

ex
tra

ct
ed

fr
om

bu
g

re
po

rts
an

d
de

pe
nd

en
cy

gr
ap

h

M
ea

su
re

d
th

e
te

xt
ua

ls
im

ila
rit

y
of

so
ur

ce
co

de
el

-
em

en
ts

w
ith

th
e

re
qu

es
te

d
qu

er
y,

an
d

th
en

co
m

-
bi

ne
d

th
e

sc
or

es
w

ith
str

uc
tu

ra
li

nf
or

m
at

io
n

co
l-

le
ct

ed
fr

om
sta

ck
tra

ce
sf

ou
nd

in
bu

g
re

po
rts

,a
nd

de
pe

nd
en

cy
gr

ap
hs

of
so

ftw
ar

e
sy

ste
m

Eff
ec

tiv
en

es
s;

M
R

R
;M

A
P

A
rg

oU
M

L,
B

oo
kK

ee
pe

r,
D

er
by

,
H

ib
er

-
na

te
,

Ja
bR

ef
,

JE
di

t,
Lu

ce
ne

,
M

ah
ou

t,
U

m
-

C
om

m
an

de
r,

O
pe

nJ
PA

,
Pi

g,
So

lr,
Ti

ka
,

Zo
oK

ee
pe

r

15
5

bu
g

re
po

rts
fr

om
14

Su
bj

.
Sy

s.

Lu
ce

ne
(V

SM
)

32

Univ
ers

ity
 of

 M
ala

ya

The information used to improve the text analysis based feature location approaches is

derived from the source code repository or non-source code repositories. The information

derived from source code can be extracted from compiled or executed source code, such

as the dynamic and static information. Moreover, this information can be related to the

source code entities such as the specific properties of the entities or relationships among

the entities. Examples of these types of extracted information are explained through the

feature location approaches which are listed in Table 2.4.

2.3.1 Information Extracted from Compiled or Executed Source Code

The static and dynamic information are derived from the dependency graphs and execution

traces which are extracted from the compiled and executed source code. The first study that

combined static analysis with text analysis for the purpose of feature location is the study

of Zhao et al. (Zhao et al., 2006). This study presented a static, non-interactive feature

location approach, called SNIAFL that used Branch Reserving Call Graphs (BRCG)3 (Tao,

Lu, Zhiying, Dan, & Jiasu, 2003) to provide additional information for feature location.

This approach concentrates on determining both the specific source code elements and

relevant source code elements. Specific source code elements were definitely used to

implement a specific feature but have not been used for any other features. Relevant source

code elements involve all source code elements that contribute to the implementation of

the desired feature. Using IR models, especially VSM, the initial connections between

features and specific source code elements were prepared. In this step, for each feature,

a list of source code elements ranked based on the amount of similarity with the desired

feature was produced. To shorten the list, only the elements with high similarity values

(higher that a determined threshold) were used as the initial set of specific source code

elements for the desired feature.

3BRCG is an extension of call graph that involves branches and sequential information.

33

Univ
ers

ity
 of

 M
ala

ya

After this step, the BRCG which was extracted from the source code is pruned for

each feature based on the obtained initial set of specific elements. Then, the branches

which were found to be irrelevant to the initial set were pruned. The remaining elements

in the pruned BRCG were considered as the set of relevant source code elements to the

feature. In the last step, the BRCG was traversed again to specify the features which

were found to be relevant to any other feature. The output of this approach is a pseudo

execution trace for each feature. Overall, this study investigated the impacts of using static

analysis in text analysis based feature location approaches and indicated the importance

of structural information in improving the accuracy of these approaches.

Similar to Zhao et al. (Zhao et al., 2006) that combined text analysis with structural

representations of source code elements, the research study of Hill et al. (Hill et al.,

2007) presented an approach, called Dora, to facilitate software maintenance tasks such as

feature location and impact analysis. Dora received a formulated query and the identified

seed method set by the user to find the relevant neighborhood source code elements to

the query. In Dora, the relevancy of each source code element to the formulated query

is calculated using the combination of TF-IDF4 scoring and method features such as the

locations of relevant terms in the source code element. For example, Dora gave more value

to the terms that appeared in the method name and the number of statements that contain a

query term. Furthermore, Dora traversed the call graph edges from the seed set to identify

more relevant source code elements to the requested query. Finally, the relevant source

code elements as the "neighborhood" to the requested query were presented to the user.

Generally, this study shows the way of using structural information to identify relevant

source code elements.

Scanniello and Marcus (Scanniello & Marcus, 2011) also combined the textual sim-

4Term Frequency-Inverse Document Frequency

34

Univ
ers

ity
 of

 M
ala

ya

ilarities and the structural dependencies. The contribution of the approach of Scanniello

and Marcus is clustering the source code elements based on the similarities that obtained

from both the text analysis and static analysis. In this approach, the text analysis informa-

tion, obtained from applying an IR model to index the source code elements, was combined

with the obtained information from dependency graph5 in order to create a new weighted

graph. Then, the related source code elements of the new graph were clustered using

a BorderFlow algorithm (A.-C. Ngomo, 2010; A.-C. N. Ngomo & Schumacher, 2009).

Next, for a formulated query, the textual similarities of the source code elements and the

similarity of each cluster with the query were computed. Finally, the similar clusters with

the requested query were retrieved. The source code elements in the retrieved clusters

were ranked based on the amount of similarities in a descending order.

The combination of text analysis and static analysis was also used in the study

of Alhindawi et al. (Alhindawi et al., 2013) that utilized the structural information to

identify a stereotype for each source code element. The stereotype includes the terms

that explained the abstract role of a source code element, i.e. a method. Alhindawi et

al. produced a feature location tool named StereoCode. In this tool, the stereotypes are

identified automatically by analyzing structural and static information. Then, the identified

stereotypes are added to the corresponding source code element as a comment. It means

that the source code elements are re-documented to record the stereotypes in the source

code elements. Then, an IR model, i.e. LSI, is used to index the source code elements in

order to find the most related source code elements to a requested query.

Another study that leverages structural information in source code was conducted

by Saha et al. (Saha et al., 2013) that dealt with the structured information retrieval

based on code constructs, such as the names of classes and methods to improve bug

5This approach focused on static method references as the static dependencies.

35

Univ
ers

ity
 of

 M
ala

ya

localization accuracy. This study presented an automatic bug localization tool, named

BLUiR built on Indri6 (Strohman, Metzler, Turtle, & Croft, 2005). BLUiR builds an

abstract syntax tree (AST) for the source code elements. Then, the source code elements

were inputted to Indri for preprocessing, creating structured documents, and indexing.

This study differentiates between two main parts of a reported bug, i.e. summary and

description, and also distinguished between four different documents’ fields, i.e. class,

method, variable, and comments. Then, BLUiR performed separate searches for each of

the eight different combinations (combination of query represents and document fields)

and weighted the terms appeared in each of these combinations differently. Finally, the

value of a document was obtained based on the summation of the calculated terms’ weights

across all eight searches.

Another related study that combined the text information and static information is the

study of Ye et al. (Ye et al., 2014). This study introduced an adaptive ranking approach

that leverages domain knowledge through functional decompositions of source code files

into methods, API descriptions of library components used in the code, the bug-fixing

history, and the code change history. Given a bug report, the ranking score of each

source file was computed as a weighted combination of an array of features encoding

domain knowledge, where the weights were trained automatically on previously solved

bug reports using a learning-to-rank technique. The ranking function was defined as a

weighted combination of features, where the features draw heavily on knowledge specific

to the software engineering domain in order to measure relevant relationships between the

bug report and the source code file. This study used project specific API documentation to

connect natural language terms in the bug report with programming language constructs

in the code. Furthermore, previously fixed bugs were also used as training examples for

6Indri is an open-source information retrieval toolkit.

36

Univ
ers

ity
 of

 M
ala

ya

the proposed ranking model in conjunction with a learning-to-rank technique.

The other interesting study that dealt with the combination of text information and

static information is the study of Wang et al. (S. Wang & Lo, 2014). This study

proposed a bug localization approach called AmaLgam used to locate relevant buggy

files. The proposed approach dealt with version history, similar reports, and structure

as the dataset. To combine these three together, AmaLgam integrates a bug prediction

technique used in Google (analyzes version history), with a bug localization technique

called BugLocator (analyzes similar reports from Issue Tracking system), and the state-

of-the-art bug localization technique BLUiR (considers structural information for bug

localization). The approach assigns weights to a source code file based on the combination

of probability of the file to be buggy (computed by the bug prediction technique) and the

similarity of the given bug report to the file (computed by integrating BugLocator and

BLUiR).

Another type of additional information which was used to improve the text analysis

process of feature location is derived from executed source code known as the dynamic

analysis information. One of the studies that combined dynamic information and lex-

ical information was conducted by Poshyvanyk et al. (Poshyvanyk et al., 2007). In

this study, Poshyvanyk and his colleagues introduced a feature location approach called

PROMESIR (Probabilistic Ranking of Methods based on Execution Scenarios and In-

formation Retrieval). This approach combined two previously developed techniques for

feature location including an IR-based technique, i.e. LSI (Marcus et al., 2004) and a

scenario-based probabilistic ranking technique, i.e. SPR (Antoniol & Gueheneuc, 2006).

In this approach, the obtained results from the LSI-based and SPR-based techniques were

considered as the judgments of two independent experts, which provide their expertise to

address the problem of identifying a feature. Then, the obtained results from these two

37

Univ
ers

ity
 of

 M
ala

ya

experts, i.e. LSI-based and SPR-based techniques were combined using an inspiration

from the recommended method by Jacobs (Jacobs, 1995).

The study of Revelle et al. (Revelle et al., 2010) also combined text analysis and

dynamic analysis to improve feature location process. This study presented a feature

location approach based on the idea of data fusion. Data fusion aims at combining

multiple sources of information in order to obtain better results compared to the results

of using the data sources individually. The approach by Revelle et al. applied data fusion

on the information obtained from text analysis, execution traces, and web mining. In this

approach, the source code elements that were obtained from analyzing execution traces

(collected by dynamic analysis) were ranked using LSI (used for text analysis). Then, web

mining algorithms, i.e. HITS7 (Kleinberg, 1999) and PageRank8 (Brin & Page, 2012),

were used to filter the results obtained from the combination of dynamic and text analysis

in order to eliminate source code elements which are irrelevant.

Furthermore, the dynamic information is used to improve feature location accuracy

in the study of Le et al. (Le et al., 2015). This study combined the IR-based techniques

and spectrum-based techniques in order to overcome the limitation of existing techniques.

In this study a multi-modal technique was proposed that dealt with both bug reports and

program spectra to locate the bug reports. The proposed technique involved three main

components including AMLText, AMLS pectra, and AMLS uspWord. The first component

considered only the description appeared in bug reports which in text format. The

second component, AMLSpectra only took into account the program spectra. Finally, the

third component, AMLSuspWord dealt with the words which are learned from analyzing

both the textual description and program spectra in the two previous components. This

7HITS (Hyperlinked-Induced Topic Search) basically identifies hubs and authorities rely on the links
of an element to multiple relevant pages.

8PageRank scores elements rely on their relative importance with other elements.

38

Univ
ers

ity
 of

 M
ala

ya

component associated a program element to a set of words obtained from both the previous

components. In this component, the score of a word was computed based on the frequency

of appearances of the corresponding program elements in failing or correct execution

traces. Each of these three components adjusted a score to each program element, and

finally the total score was calculated based on the summation of these scores.

However, the use of static and dynamic information significantly improves the accu-

racy of feature location process, these types of information may not always be available

in real-world scenarios. Furthermore, the use of static and dynamic analysis imposes

considerable overhead to the system, due to extracting static and dynamic information and

analyzing the large amount of data (Dit et al., 2013).

2.3.2 Information Extracted from Source Code Entities

The other set of information is also derived from the source code which is related to the

properties of the source code entities or their internal correlations. This set of information

are extracted from a source code that may or may not contain errors preventing it to be

compliable. The study of Sisman and Kak (Sisman & Kak, 2012) is an example of the

studies that deals with the overall properties of source code elements for the purpose of

bug localization which is a closely related research area to feature location. Sisman and

Kak believed that if a source code element recently modified meaning that it is not stable

and depend on how recently it modified, the probability of being defective for the file will

increase. The estimated defectiveness probability is added to the existing probabilistic

IR models, i.e. DFR framework9 and LM10, as a coefficient to improve the accuracy of

9DFR (Divergence From Randomness) is an information theoretic framework that examines the rele-
vancy of a document with a query based on the divergence of the probabilities of document feature from
pure non-discriminative random distributions. This approach aims at modeling the noise in the data with
simple probability distributions to specify the discriminatory features of document from the background
noise.

10LM (Language Modeling) is a probabilistic approach that ranks the documents in a corpus based on
the likelihood of relevancy of the documents to a given query.

39

Univ
ers

ity
 of

 M
ala

ya

location identification process. This study indicates that the use of information recorded

in the version histories of software projects leads to improving the accuracy of location

identification process. In the Sisman’s study, the histories of changes occurred in a

software project was used to predict the probability of being buggy for the source code

elements. Two main factors are investigated for each source code element to estimate the

probability of defectiveness of the element. The first factor considers the prior defect and

modification probabilities for the corresponding source code element that analyzes the

number of modification of the source code committed in the VCS and the number of bug

fixing commits. The second factor is temporal or time decay which is time required for a

file to be stabilized and bug-free after implementing a change to the file.

The study of Zhou et al. (Zhou et al., 2012) is the other related study that deals

with additional information for the purpose of bug localization. They proposed a bug

localization approach called BugLocator which is an IR-based approach for locating the

relevant source code elements for fixing a bug. BugLocator indexed all source code

elements based on their textual similarity with a reported bug using a revised Vector

Space Model (rVSM). The rVSM considers the length of source code elements as well

as the information about similar bug reports that have been fixed previously to identify

the related source code locations to the given bug report. In general, this study assumed

that the bigger source code files are most likely to be buggy. Based on this assumption, a

coefficient is determined to be added to the VSM method to consider the length of source

code elements for bug localization. Furthermore, rVSM deals with the previously fixed

bugs as extra information to improve the accuracy of location identification process. This

approach indexed source code elements in two paths. In the first path, the source code

elements were indexed based on the textual similarity of the element with the reported

bug by considering the length of the element. In the second path, BugLocator analyzed

40

Univ
ers

ity
 of

 M
ala

ya

the similar bugs that have been fixed before in order to adjust the rankings of the relevant

source code elements. Finally, the ranked lists of source code elements obtained from

those two paths were combined to obtain the final ranked list of source code elements.

Furthermore, another related study was conducted by Wang et al. (J. Wang et

al., 2013). In this research study, first, the Wang and his colleagues investigated the

feature location process and identified this process as a human-oriented and information-

intensive process. They considered the software source code space as a multi-dimensional

information space that software developer need to interactively seek, browse and navigate

in order to locate a query. In this information space, each dimension explains source

code elements from a specific semantic or syntactic facet. The proposed approach in

this study which is implemented as a web-based tool, called MFIE, is semi-automatic

approach. MFIE allows developers to start with an initial query and then gradually refine

and adjust the query based on the feedbacks. In each stage, the MFIE used static program

analysis and data mining techniques to mines multiple facets information extracted from

source code elements. The multiple facets information space includes package structure,

inheritance hierarchy, usage dependencies, and intent.

The other study that dealt with the overall properties of source code elements is the

study of Scanniello et al. (Scanniello et al., 2015). This study improves the feature location

accuracy by considering dependencies between source code elements. The authors found

that two most common kinds of information typically used in the static techniques are

lexical information, such as the text recorded in source code, and structural information,

such as dependencies among source code elements. The existing static techniques mainly

focus on dealing with one of these kinds of information and only a few techniques deal with

the combination of these two. To address this issue, this study proposed a static concept

location approach based on text retrieval or search, and by the work on web document

41

Univ
ers

ity
 of

 M
ala

ya

retrieval. Particularly, the proposed approach augmented text retrieval based approaches

by using link analysis techniques to rank the source code elements during text retrieval.

The PageRank algorithm, which is a link analysis algorithm and used in web document

retrieval applications, was used in this study to provide the statistical information.

In addition to the overall properties of source code elements which are used in the

studies such as of Sisman and Kak (Sisman & Kak, 2012), Zhou et al. (Zhou et al., 2012),

and Wang et al. (J. Wang et al., 2013) consideration of the specific properties of source

code entities improves the text analysis based feature location approaches. For instance,

the study of Hill et al. (Hill et al., 2007) 11, in addition to static information, considers

the place of appearance of source code entities to improve the feature location accuracy.

Another example of considering the place of appearance of source code entities for the

purpose of feature location is the study of Bassett and Kraft (Bassett & Kraft, 2013).

In this study, Bassett and Kraft presented a lightweight feature location approach that

improved the classic LDA model by combining some information obtained from a call

graph. They believed that the accuracy of a LDA-based feature location approach improves

by increasing the weights of the terms derived from method names or method calls. They

defined 16 weighting schemes to emphasize the importance of the terms derived from

the names of the methods and the names of the called methods. One extension on this

study is performed by Eddy and Kraft (Eddy & Kraft, 2014) that increases the number of

weighting schemes from 16 to 1024. Furthermore, in comparison to the study of Bassett

and Kraft, a broader scope of variables - collected from comments, method names, body

comments, parameters, and local variables - was considered and found to have a positive

impact on the results of a text analysis based feature location.

On the other hand, consideration of the correlation among source code entities in

11This study was mentioned in Section 2.3.1

42

Univ
ers

ity
 of

 M
ala

ya

the study of Poshyvanyk and Marcus (Poshyvanyk & Marcus, 2007) improves the feature

location accuracy. Poshyvanyk and Marcus combined Formal Concept Analysis (FCA)

(Wille, 2005) with LSI for the purpose of feature location. Using FCA, a hierarchy of

the concepts is created which includes collection of objects derived from the source code

elements stored in a corpus. In this hierarchy, the objects, which share similar values for

a set of properties, are grouped together in a concept. In FCA, each concept contains two

main parts including the extension, which is a set of objects associated to the concept, and

the intension, which is a set of attributes of the concept. The concepts which are obtained

from the FCA create a concept lattice. The approach by Poshyvanyk and Marcus used LSI

to provide the objects for FCA that includes a collection of source code elements and the

weights of the terms appearing in the corresponding code elements as the attributes. The

source code elements that appear in the concept similar to the concepts of the requested

query were considered as the relevant source elements. The restriction of Poshyvanyk and

Marcus approach is related to the use of FCA. In this approach, for each requested query,

FCA is performed after a query and a ranked list is obtained. It means that generation of

concept lattice imposes additional cost to the feature location system.

2.3.3 Information Extracted from Non-source Code Repositories

The other set of additional information which is used to improve text analysis based feature

location approaches is derived from non-source code repositories such as Issue Tracking

System (ITS) or mailing list. The studies of Sisman and Kak (Sisman & Kak, 2012), and

Zhou et al. (Zhou et al., 2012) explained in Section 2.3.2, and the studies of Ye et al. (Ye

et al., 2014), and Wang et al. (S. Wang & Lo, 2014) described in Section 2.3.1, present

some examples of the feature location approaches that used the information extracted from

ITS to improve the text analysis based feature location process.

On the other hand, the study of Cleary and Exton (Cleary & Exton, 2007) introduced

43

Univ
ers

ity
 of

 M
ala

ya

a feature location approach that incorporated additional non-source code repositories into

the classic Language Modeling (LM). This approach defined a semantic space model of

relationships between terms appearing in a corpus of source code elements and then used

the model when a term from a requested query is compared with the terms appearing in a

source code element. If the query terms were found to have no direct correspondence with

the terms of the desired source code element, the model is used to find any indirect relation

term match. To create the term relations model, the terms were derived from non-source

code repositories12, such as bug reports, emails, and external documentation. This idea is

used to extend the requested query by identifying a set of terms that were found in the term

relation model to be potentially related to the terms in the query. Generally, this study aims

to approve the importance of relevant terms in a query. Also, it shows how properly defined

queries improve the text analysis process for feature location. The suggested approach in

this study requires the developers to make additional natural language documents outside

of the source code available to the technique.

Furthermore, the study of Moreno et al. (Moreno et al., 2014) is an example of feature

location approach that combined text data with the additional information extracted from

stack traces. This study presented a bug localization approach implemented as a tool

referred to as LOBSTER (LOcating Bugs using Stack Traces and tExt Retrieval). In the

first step of this approach, the textual similarity of the source code elements with the

requested query was measured using an IR model. LOBSTER used Lucene (McCandless,

Hatcher, & Gospodnetic, 2010) that combines VSM with a Boolean model to index the

source code elements. Then, the obtained results from text analysis were combined with

structural information. In this study, the structural information was collected from stack

12The use of typical techniques to create term relation model results in incorporation of the terms which
may be added to the model that do not have actual relation with the source code elements’ terms.

44

Univ
ers

ity
 of

 M
ala

ya

traces found in bug reports13, and dependency graphs of software system to be used for

determining the structural similarity of source code elements with the ones found in stack

trace. While the buggy source code elements may not always appear in the stack trace, this

study assumed that there is a structural, direct or indirect, relationship between the source

code elements in stack traces and the buggy elements. LOBSTER defined a stack trace

and a source code element in the software system to be similar when there is a shortest path

distance between any source code element in the stack trace with the target code element

in the software system through the program dependency graph. Finally, total similarity of

a bug report and a source code element was obtained based on their linear combination of

textual similarity and structural similarity.

The analysis of the feature location studies reviewed in this chapter indicates that in

most of these studies, additional information is used besides text analysis, and not into

the text analysis process. On the other hand, extraction of additional information from

source code repository or non-source code repositories imposes an overhead to the feature

location approach. Furthermore, none of the metadata associated to the text data were

taken into account in the text analysis process.

2.4 Other Related Works

The investigation of existing feature location approaches that rely, at least in part, on the

use of text analysis methods indicates that the applied methods for analyzing the text data

for feature location are mostly taken from the baseline text analysis methods which are

originated from a natural language context (Bassett & Kraft, 2013). The natural language

context such as the newspaper articles are less structured than the text documents found

in software repositories such as source code files (Bassett & Kraft, 2013). Furthermore,

unlike the typical context in which these methods are applied, text data in software

13Only a few number of bug reports, for instance 8% of Eclipse’s bug reports, contain stack trace.

45

Univ
ers

ity
 of

 M
ala

ya

repositories have a corresponding set of metadata to record the who, when and why of the

changes occurred in the data (Kagdi, Maletic, & Sharif, 2007; Ratanotayanon et al., 2010).

The investigation of the literature shows that efforts to improve the text analysis based

feature location approaches have been mainly focused on the use of additional information

such as static and dynamic information with text information. This investigation indicates

that none of the metadata associated to text data were taken into account in the text analysis

process.

As mentioned in Chapter 1, the incorporation of the text data with the related metadata

such as time and developer is considered in this thesis as one of the important properties

of the repository’s text data. Incorporation of the terms with metadata, i.e. time and

developer, provides the ability of analyzing the data from different aspects depending on

the desired metadata. To find the related studies that deal with the metadata of time and

developer associated to the text data, the feature location literature was further investigated.

The investigation of the literature indicates that the incorporation of the terms with the

metadata is not properly addressed in feature location literature. The only related study

is the work of Sisman and Kak (Sisman & Kak, 2012) that dealt with time to predict the

defectiveness probability of the source code files. This study was reviewed in Section 2.3.2.

On the other hand, the size of the text data recorded in the repository is larger than

that of the typical text documents in the natural language context due to the storage of

the history of source code changes (Kagdi, Collard, & Maletic, 2007). Thus, the feature

location literature was investigated again to find the related studies that used nouns for

feature location and no related study was found. Therefore, the other related research

areas were investigated to find related studies that deal with the use of noun terms.

As mentioned previously, the other important parameter in this study is developer-

metadata. With the developer-metadata, the data recorded in the repository is able to be

46

Univ
ers

ity
 of

 M
ala

ya

analyzed from the aspect of developer who recorded the data in the source code. The

investigation of feature location literature indicates that all the existing feature location

approaches analyze the data recorded in the repository from the aspect of the location, i.e.

file, class, or method, where the data are contained. This means that there is no feature

location approach which analyzes the repository’s data from the aspect of developer or the

aspect of time. Further investigation of the literature also shows that there is still no study

that deals with the developer-metadata for feature location. Therefore, the other related

research areas were considered to find related studies.

2.4.1 Developer-Metadata Consideration

According to the literature, the analysis of developers’ information is more common in

bug assignment research area. Bug assignment is the task of assigning a bug or defect,

reported to the software project, to one of the project developers who is most likely to

be able to address and fix the bug report14 (Anvik & Murphy, 2007). Many automatic

and semi-automatic bug assignment approaches have been proposed to facilitate the bug

assignment process (Anvik, 2006; Anvik, Hiew, & Murphy, 2006; Kagdi et al., 2012;

Shokripour, Anvik, Kasirun, & Zamani, 2013; Shokripour et al., 2014). The existing bug

assignment approaches are classified into two categories (Shokripour et al., 2013), i.e.

activity-based and location-based.

The location-based bug assignment approaches applied the inverse of the idea of

using developer information in this thesis. These bug assignment approaches used the

location information for developer recommendation. This means that they recommended

the appropriate developers for bug fixing through predicting the source code locations

related to the reported bug (Hossen, Kagdi, & Poshyvanyk, 2014; Kagdi et al., 2012;

14In software systems, a bug is an error, fault, or defect in the software program that leads the software
to produce an unexpected or incorrect result. In well-developed software systems, the bugs are reported to
a bug tracking system to be recorded and keep tracking.

47

Univ
ers

ity
 of

 M
ala

ya

Servant & Jones, 2012; Shokripour et al., 2013, 2014). The location-based bug assign-

ment approaches typically include two phases to first predict the related locations and

then recommend the fixer15 based on collected information from the predicted locations.

However, in the research reported in this thesis, the data recorded in the source code is

analyzed from the aspect of developer who recorded the data. This means that developer

information is used to classify and categorize the data recorded in the source code. Ap-

pendix D introduces the structure of the typical location-based bug assignment approaches

through some examples of the existing location-based bug assignment approaches.

On the other hand, the developer information is also used to improve the accuracy

of traceability link recovery. Traceability link recovery is another related research area to

feature location (Dit et al., 2013). Traceability aims to connect different types of software

repositories, while feature location is more concerned with identifying the source code

file pertinent to a software feature, and not specific parts of a document. Many traceability

link recovery approaches have been proposed to automate the link recovering process

(Briand, Labiche, & Yue, 2009; Mader & Gotel, 2012; Mader, Gotel, & Philippow,

2008; Omoronyia, Sindre, & Stå, 2011), with IR being one of the most commonly used

to facilitate the tracing process (Antoniol, Canfora, Casazza, De Lucia, & Merlo, 2002;

Marcus et al., 2004).

The study of Diaz et al. (Diaz et al., 2013) improved the accuracy of IR-based

traceability methods by leveraging the developer information specially the ownership16of

the code. As mentioned in Chapter 1, project developers generally work on specific

and related functionalities during software evolution. Based on this issue, Diaz and his

colleagues believed that the code elements (e.g., classes) which were authored by a specific

15Fixer is the project developer who is able to fix the reported bug.
16Author of the code

48

Univ
ers

ity
 of

 M
ala

ya

project developer may be related to specific high-level artifacts (e.g., use cases). This

means that if a developer has the ownership of a code element linked to a high-level artifact

(e.g., a use case), then other code elements which were authored by the desired ownership

would likely be related to the same artifact. Based on this assumption, they introduced

a traceability recovery method, called TYRION17. The TYRION method has four steps:

(i) computing textual similarity between high-level artifacts and source code elements,

(ii) identifying the ownership of each source code elements, (iii) defining the ownership

context, and (iv) integrating code ownership information with textual information.

2.4.2 Noun Usage

As mentioned in Chapter 1, one of the characteristics of text data recorded in the software

repository is recording the history of changes occurred to the data, i.e. source code

(Kagdi, Collard, & Maletic, 2007). Due to the storage of the history of changes, the

size of the text documents recorded in the repository is larger than that of the typical text

documents in the natural language context. The language of the text which is recorded

in software documents, e.g. software repositories, is categorized under the technical

language (Capobianco et al., 2012). The technical language is referred to the language

which is used by different people with common interest or working on a particular area

(Jurafsky & Martin, 2014). In this kind of language, noun type of terms provides more

information on the semantics of a document and the verb type of terms has a generic

semantics and mainly plays a connection role (Zou, Settimi, & Cleland-Huang, 2006,

2008). Thus, it is reasonable to say that the use of only the nouns instead of using all types

of terms impact the accuracy of MSR activities. The investigation of feature location

literature indicates that there is no feature location approach that used only the nouns to

identify source code location pertinent to a software feature. Thus, the use of noun terms

17TraceabilitY link Recovery using Information retrieval and code OwNership

49

Univ
ers

ity
 of

 M
ala

ya

in the other related research areas such as traceability link recovery and bug assignment

was investigated.

The noun terms has been used by Capobianco et al. (Capobianco, De Lucia, Oliveto,

Panichella, & Panichella, 2009; Capobianco et al., 2012) in the area of traceability recov-

ery. The study of Capobianco and his colleagues dealt with the noun terms as a simple

dimension reduction method to improve the performance of traceability recovery. They

demonstrated that the use of only nouns reduces amount of noisy data stored in various

types of software repositories and consequently, reduces the number of false positives re-

trieved by IR methods. To filter the nouns, first, they preprocessed the data collected from

the software repositories and used Part-of-speech (POS) tagger to tag all the terms in order

to specify the grammatical nature of the terms such as verb, noun, and adjective. From the

tagged terms, only the nouns were used for traceability recovery. All the extracted nouns

were used to build the corpus without applying the stop word function and/or the stop

word list. Furthermore, they did not use any morphological analysis such as stemming or

lemmatizing.

Capobianco and his colleagues extensively evaluated their approach on different IR

methods, i.e. the Jenson-Shannon (JS) method (Abadi, Nisenson, & Simionovici, 2008) as

well as VSM and LSI, to examine the generalizability of their approach. They conducted

a set of experiments on the software repositories collected from five different software

projects of various areas, i.e. EasyClinic, eTour, Pine, MODIS, and CM1. The results of

the experiments demonstrated a significant improvement on the accuracy of traceability

recovery methods as well as the reduction of the size of dataset.

The other research area related to feature location that used only the noun terms is

bug assignment. As mentioned above, bug assignment aims at assigning the reported

bug to the proper developer for fixing. Shokripour and his colleagues initiated the idea

50

Univ
ers

ity
 of

 M
ala

ya

of using the nouns for bug assignment (Shokripour et al., 2013). They examined the

impacts of using only the noun terms in both the activity-based and location-based bug

assignment approaches. The conducted experimental evaluation showed that the use of

nouns significantly reduces the size of the dataset that needs to be analyzed for bug

assignment. The results of the experiments indicated that the use of noun provides enough

information for bug assignment. The use of nouns makes a small improvement in bug

assignment accuracy which is not a significant improvement (the improvement is between

2% to 9%).

2.5 Summary: Inferences from Literature Reviewed

In this chapter, the feature location literature was investigated to find the related papers to

the research reported in this thesis. According to the recent survey on feature location (Dit

et al., 2013), the existing feature location approaches are classified into three categories

based on the way of analyzing the data recorded in software repositories. These categories

include dynamic, static, and text analyses. Dynamic analysis is based on the program

execution behavior, while static analysis deals with the static properties of software project

like class structure, dependency graphs and control/data flow dependencies. The last

category of data analysis methods in feature location is text analysis that investigates the

text data recorded in the historical project repositories and analyzes them to extract useful

information. According to the research of Dit and his colleagues (Dit et al., 2013), text

analysis is the most commonly used category of data analysis method in feature location.

Furthermore, text analysis process is fundamental in most of feature location approaches

and it is used as a part of other feature location approaches that used dynamic analysis

and static analysis. It means that the accuracy of text analysis process not only affects

the accuracy of feature location approaches that used text analysis individually, but also

impacts the ones using dynamic and static analysis beside the text analysis. Thus, as

51

Univ
ers

ity
 of

 M
ala

ya

mentioned in Section 1.6, text analysis was selected as the scope of this research to

enhance and improve feature location process.

The investigation of the feature location literature indicates that the applied methods

for text analysis originate from a natural language context that have some differences with

the text data found in software repositories. Unlike the typical context in which these

methods are applied, text data in software repositories incorporates with a set of metadata

such as time and developer. Furthermore, due to the storage of the history of changes, the

size of the text documents recorded in the repositories is larger than that of the typical

text documents in the natural language context. Review of the literature indicates that the

existing feature location approaches which are based on text analysis do not address these

differences within the text analysis process. Thus, the feature location approaches that

rely on the use of text analysis methods do not utilize all possible potential for accurately

locating the software features.

The efforts of the researchers on improving the accuracy of text analysis based feature

location approaches mainly focus on the use of additional information besides the text

data. Figure 2.2 summarizes different types of additional information used to improve

text analysis based feature location approaches. Furthermore, Table 2.6 completes the

information presented in Figure 2.2 with examples.

The additional information used to improve text analysis based feature location ap-

proaches is classified in two categories based on the software repository which is used to

provide the additional information. The first category is the information derived from the

source code repository including information extracted from compiled or executed source

code, and the information extracted from the properties of the source code entities. The

other category is derived from non-source code repositories such as ITS.

As shown in Figure 2.2, the static information which is used to improve the text

52

Univ
ers

ity
 of

 M
ala

ya

Figure 2.2: Chart of additional information that combined with text data to improve feature
location accuracy

Table 2.6: Additional information that combined with text data to improve feature location
accuracy

Type of
Additional
Information

Source Code
Repository

Information Extracted
from Compiled
or Executed
Source Code

Dynamic
Information

Information Extracted
From Execution
Traces

(Poshyvanyk et al., 2007)
(Revelle et al., 2010)

Static
Information

Information Extracted
From Dependency
Graphs

(Zhao et al., 2006)
(Hill et al., 2007)
(Scanniello & Marcus, 2011)

Information Extracted
from Source
Code Entities’
Properties or Relations

Overall Properties
of Source Code
Elements

Length of Source Code
Files

(Zhou et al., 2012)

Defectiveness Proba-
bility of Source Code
Files

(Sisman & Kak, 2012)

Specific Properties
of Source Code
Entities

Place of Appearance
of Source Code Enti-
ties

(Hill et al., 2007)
(Bassett & Kraft, 2013)
(Eddy & Kraft, 2014)

Correlation Among
Source Code Entities

(Poshyvanyk & Marcus, 2007)

Non-Source
Code
Repositories

Information Extracted From
Repositories such as
Issue Tracking Sys. or Com-
munication

Issue Tracking System
(ITS) Information

(Sisman & Kak, 2012)
(Zhou et al., 2012)

Bug Reports, Emails,
And External Docu-
mentation

(Cleary & Exton, 2007)

Stack Traces (Moreno et al., 2014)

analysis based feature location approaches is extracted from compiled source code (Hill

et al., 2007; Saha et al., 2013; Scanniello & Marcus, 2011; Zhao et al., 2006). The

other type of additional information used to improve feature location accuracy is dynamic

information which is collected from execution traces of the software project (Poshyvanyk

et al., 2007; Revelle et al., 2010). Even though the combination of text data with these

types of additional information have made a significant improvement in the accuracy

53

Univ
ers

ity
 of

 M
ala

ya

of feature location, obtaining such types of additional information brings a significant

overhead, as they require instrumenting and executing the software, and also analyzing

large amounts of data. Furthermore, improving the accuracy of text analysis process

individually impacts the overall accuracy of feature location process that used text data

separately or in combination with the additional information.

The next type of additional information does not need the compilable nor executable

source code. This type of additional information focuses on the overall or specific proper-

ties of source code entities. According to the literature, a few text analysis based feature

location approaches dealt with the properties of the repository’s text data in order to

improve the feature location accuracy. A number of existing feature location approaches

focused on the overall properties of the source code elements like the source code files’

length (Zhou et al., 2012) and the probability of defectiveness of the files (Sisman &

Kak, 2012). These studies mostly rooted in bug localization research area that aims at

locating the defects and bugs in the source code and accordingly dealt with the source

code files’ properties to rank the files with higher defectiveness probability in the earlier

locations in the retrieved list. Moreover, a number of feature location approaches dealt

with specific properties of source code entities such as the place of appearance of terms

in the source code as an effective property to improve the accuracy of feature location

process (Bassett & Kraft, 2013; Eddy & Kraft, 2014; Hill et al., 2007). In addition to the

specific properties of the source code entities, consideration of the correlation between

the source code entities improves the accuracy of feature location process (Poshyvanyk &

Marcus, 2007).

As shown in Figure 2.2, the other set of additional information is collected from the

software repositories other than the source code repository. For instance, the information

collected from Issue Tracking System (ITS) was used in the studies of Sisman and Kak

54

Univ
ers

ity
 of

 M
ala

ya

(Sisman & Kak, 2012) and Zhou et al. (Zhou et al., 2012) to provide information on the

defectiveness of the source code files. Furthermore, the terms derived from non-source

code data, such as bug reports, emails, and external documentation were used in the study

of Cleary et al. (Cleary & Exton, 2007) to create the term relations model. Moreover,

the information extracted from stack traces recorded in ITS for bug reports was used in

the study of Moreno et al. (Moreno et al., 2014) to enhance the location identification

process.

As mentioned in Chapter 1, one of the important properties of data recorded in

the repository is incorporation of the data with metadata such as time and developer.

Furthermore, since the history of the changes of the source code document is recorded in

the corresponding document, the size of source code documents is larger than that of the

natural language documents. The investigation of the literature indicates that these specific

properties of repository’s text data have not been addressed in the existing text analysis

based feature location approaches. This investigation results in addressing the first research

objective (Objective 1) that aims to study the existing text analysis methods applied for

feature location and identify the current problems in the existing text analysis methods

for feature location. Lacks of addressing these properties leads to deficiency of feature

location process in utilizing all possible potential of text analysis for accurately locating

the software features. On the other hand, due to the availability of these properties,

i.e. time and developer metadata, in the source code, there is no need to extract any

further information from the source code that imposes an overhead to the feature location

approach. Consideration of these properties in text analysis process leads to improving

the overall accuracy of feature location. Moreover, compared with the existing enhancing

strategies described above, consideration of these properties of repository’s text data can

be used to complement the existing feature location approaches.

55

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 3: RESEARCH METHODOLOGY

In this chapter, the research methodology applied in this research is explained. As

shown in Figure 3.1, the research methodology includes four main steps: (i) review of

the existing feature location approaches, (ii) identification of the problem statement and

formulation of the research objectives, (iii) proposing a feature location approach, and

(iv) the experimental evaluation of the proposed approach. The details of the research

methodology steps are presented in the following sections of this chapter.

3.1 Literature Review

To perform this research, first of all, scholarly digital libraries, particularly IEEE, Sci-

enceDirect, and Web of Science were investigated to identify related papers on feature

location research studies. Furthermore, the papers published in related conferences such

as the International Conference on Software Engineering (ICSE), Mining Software Repos-

itories (MSR), Program Comprehension (ICPC), and Software Maintenance (ICSM) were

reviewed. Figure 3.2 shows the overview of the focused topics in reviewing the related

papers in the literature review step of this research.

According to the recent survey on feature location (Dit et al., 2013), the existing

feature location approaches are classified in three categories including dynamic analysis,

static analysis and text analysis, depending on the techniques that they used to analyze the

data. The most commonly used analysis technique in feature location is text analysis. As

shown in Figure 3.2, in order to utilize the effort spent on reviewing the feature location

literature, the researcher mainly focused on the feature location papers that used text

analysis as the main part of their proposed approach.

The investigation of text analysis based feature location literature indicates that the

applied text analysis methods for feature location are originated from the natural language

56

Univ
ers

ity
 of

 M
ala

ya

Figure 3.1: Overview of research methodology

Figure 3.2: Overall topics of literature review

context. Accordingly, the text analysis methods that applied for feature location as well as

the additional techniques and information which were used to improve the accuracy of fea-

ture location process were investigated. This investigation provides a better understanding

of the use of text analysis for feature location and helps the researcher in identifying the

57

Univ
ers

ity
 of

 M
ala

ya

research gaps.

3.2 Problem Statement and Objectives Formulation

The investigation of feature location literature and the applied text analysis methods

reveals the lack of considering the characteristics of the text data recorded in the software

repository compared with the text data in natural language context (Bassett & Kraft,

2013). Lack of considering the specific characteristics of repository‘s text data, i.e. (i)

incorporation of the metadata with the text data, and (ii) larger dataset size, in analyzing

the data leads to low accuracy of text analysis methods applied for feature location.

After identifying the current gap in feature location research area, in the next step,

the researcher defined to what extent the existing text analysis methods can overcome

weaknesses. Accordingly, a set of objectives are formulated as follows to address the main

goal of this thesis which is improving the accuracy of feature location by considering the

specific characteristics of the text data recorded in the repository.

• Objective 1: To study the existing text analysis methods applied for feature location

and identify the current problems in the existing text analysis methods for feature

location.

• Objective 2: To propose a feature location approach that considers the differences

between the text data recorded in the software repository and the text data in the

natural language context to make an improvement in text analysis process for feature

location.

– Objective 2.1: To improve the accuracy of feature location by analyzing the

text data recorded in the repository from the aspect of time at which the data

was recorded in the repository.

58

Univ
ers

ity
 of

 M
ala

ya

– Objective 2.2: To improve the accuracy of feature location by analyzing the

text data recorded in the repository from the aspect of the developer who

recorded the data in the repository.

– Objective 2.3: To reduce the size of dataset used for feature location.

• Objective 3: To evaluate the impacts of considering the specific characteristics

of the text data recorded in the repository within the text analysis process of the

proposed feature location approach.

3.3 Proposed Approach

The formulated objectives are addressed in three perspectives, i.e. (i) analysis of the text

data from the aspect of time at which the data was recorded in the repository, (ii) analysis

of the text data from the aspect of developers who recorded the data in the repository, (iii)

reducing dataset size by using only the noun terms that exist in the text data recorded in the

repository. To address the three perspectives, the text analysis process was investigated to

define to what extent the existing text analysis steps can satisfy the identified perspectives.

Accordingly, a set of text analysis steps are identified as suitable steps to consider the

perspectives in the text analysis process. Figure 3.3 shows the text analysis steps that were

found as the suitable steps to address the perspectives as well as the required techniques

to apply the perspectives in the text analysis process.

As shown in Figure 3.3, the preprocessing step is used to refine the text data and

reduce the size of the dataset. As Manning and his colleagues showed, preprocessing,

which is a sub-step of corpus creation, has a great potential to reduce the size of dataset

and also to filter the data to result in less noises (Manning et al., 2008). In this research,

the text data are preprocessed to only involve the noun terms of the text data. To select

only the nouns, the text stored in the repository is tokenized and categorized. Then, the

59

Univ
ers

ity
 of

 M
ala

ya

Figure 3.3: Modified parts of a typical text analysis process and their corresponding
techniques

terms that are recognized as the noun type are selected to participate in the rest of the text

analysis process.

To analyze the text data from the aspect of time, two steps of corpus creation and

term weighting are found as the suitable steps. To provide the ability of analyzing the

data from the aspect of time, the preprocessed data are associated with the corresponding

time-metadata to create a time-based corpus. The text data stored in the time-based corpus

is used to calculate the similarity of the context of a source code file with a given change

request. To determine the similarity of the file with the given change request, the term

weighting step was found as a suitable step to consider time of creation or modification of

the text data. The term weighting step adjusts the values of the terms appeared in a source

code file. The typical term-weighting techniques such as TF and TF-IDF1, which are

used for text analysis, are briefly explained in Appendix C. These techniques weight the

1Term Frequency-inverse Document Frequency

60

Univ
ers

ity
 of

 M
ala

ya

terms based on the statistical computations. However, consideration of time of creation

or modification of terms enhance the term weighting process. In analyzing the data from

the aspect of time, the term‘s weight is determined over time of creation or modification

of the term. It means that the value of the term is calculated among the other terms which

were created at the same time. Accordingly, in this perspective, the terms are weighted

using a time-based term-weighting technique that determines the values of the terms over

time based on both the statistical computation and the time of usage.

Similar to analysis of the data from the aspect of time, two text analysis steps of corpus

creation and term weighting are considered to provide the ability of analyzing the text

data from the aspect of developers. In the corpus creation step, the preprocessed text data

are associated with the corresponding developer-metadata as well as the time-metadata2

to create a developer-based corpus. A document in the developer-based corpus is a source

code file that classified in the developer expertise profiles and associated with the time-

metadata. To calculate the similarity of the context of a source code file with a given

change request, the term is weighted using a developer-based term-weighting technique.

This technique determines the value of a term in the developer profiles. It means that the

value of a term is calculated based on the developer who used the term in the file and time

when the developer used the term.

Consideration of the identified perspectives in the text analysis process results in

proposing two feature location methods that were finally combined to embody a feature

location approach3. Figure 3.4 shows the relationship between the perspectives and the

2In this corpus, the data is also associated with the time-metadata to be aware of time of creation or
modification of the data by the developer.

3The difference between these two terms, “Method” and “Approach”, is very small. In general, a method
or an approach refer to a regular and systematic way of accomplishing something. However, a method may
contain a set of techniques to perform a desired process and an approach may embody by a set of methods
to address the desired process. Accordingly, the combination of the two proposed methods is referred to as
an approach.

61

Univ
ers

ity
 of

 M
ala

ya

Figure 3.4: Proposed Approach in relation with the proposed methods and the identified
perspectives

proposed methods and the proposed approach.

The first proposed method identifies the related source code files to the given change

request by analyzing the data from the aspect of time when the data was recorded in the

source code files. This method uses a time-based corpus that contains the nouns extracted

from the source code files as the dataset and weights the noun terms recorded in the

dataset using a time-based term-weighting technique. The time-based technique weights

the terms over time. This proposed method is referred as Time-aspect analysis of data in

a Noun-based Feature Location method (TiNoFeLo).

The second proposed method analyzes the data stored in the repository from the

aspect of developer who stored the data in the source code files. This method uses a

developer-based corpus that contains the nouns appeared in the source code files as the

dataset and weights the noun terms using a developer-based term-weighting technique.

The developer-based term-weighting used the latest time of usage of the noun term. This

proposed method is referred as Developer-aspect analysis of data in a Noun-based Feature

62

Univ
ers

ity
 of

 M
ala

ya

Location method (DeNoFeLo).

The combination of Time-aspect and Developer-aspect analysis of data is used to

propose a Noun-based Feature Location approach (TiDeNoFeLo). This approach used

a time and developer-based corpus that contain nouns incorporated with time and de-

veloper metadata. In this approach, nouns are weighted using both the time-based and

developer-based term-weighting techniques. It means that each noun has two weights.

The combination of these two weights results in calculation of total weight of the noun 4.

3.4 Experimental Evaluation

The proposed methods and the proposed approach are evaluated to assess the impact of

considering the identified perspectives in text analysis process of feature location. One

typical methodology to evaluate an approach in software engineering research area is

experimental evaluation. One of the well-known guidelines for conducting experimenta-

tion in software engineering is provided by Wohlin et al. (Wohlin et al., 2012). Since

this guideline is used by several researchers in mining software repositories research area

(De Lucia, Oliveto, & Tortora, 2009; Scanniello & Marcus, 2011), this research follows the

same organization for empirical evaluation of software systems recommended by Wohlin

et al. (Wohlin et al., 2012). To conduct an experimental evaluation in this research, a set

of settings, known as experimental evaluation setup, needs to be specified.

Figure 3.5 shows steps of the experimental evaluation setup including: (i) context

4In this thesis, two expression of “time-based” and “time-aware” are used. The “time-based” expression
is used in the first proposed term-weighing technique that focuses on the use of time-metadata and determines
weight of terms based on the time when the term was used. The “time-aware” expression is used in the
second proposed technique, developer-based technique, that weights the terms based on the developer who
used the term. The developer-based term-weighting technique focuses on the use of developer-metadata and
augmenting the time-metadata. Since the difference between the use of these two expression (time-based
and time-aware) is very small, the researcher used these two expressions to differentiate between the use
of time in the two proposed weighting techniques. Accordingly, the “time-based” expression is used for
the first term-weighting technique to emphasize on the use of the time and the “time-aware” expression is
used for the second term-weighting technique to de-emphasize on the use of time since it focuses on the use
of developer information. In the proposed approach, both the time-based and developer-based techniques
are used to weight the terms. Accordingly, to cover both of the techniques used in this approach, the
“time-aware” expression is used in the title of this thesis.

63

Univ
ers

ity
 of

 M
ala

ya

Figure 3.5: Evaluation setup

selection, (ii) experimental design, (iii) hypotheses identification, and (iv) experimental

execution. The evaluation context deals with identifying the subject systems, object

systems and baseline feature location approaches for evaluating the proposed methods

and the proposed approach. Then, the experimental design explains the descriptive

and statistical analysis setups. Next, in hypotheses identification step, a set of research

questions and the corresponding hypotheses are formulated along with the main research

question identified in Chapter 3.1. Finally, how the data was collected from the subject

systems and preprocessed as well as the implementation of the experiments is explained in

experimental execution step of the experimental evaluation. The details of the evaluation

setup are explained in Chapter 5. According to the evaluation setup settings, the required

experiments are conducted on the proposed methods and the proposed approach. The

obtained results from the experiments are assessed from two aspects, i.e. descriptive

results and statistic results.

To summarize, the identified research gap in this research study is addressed by

proposing two feature location methods. These two proposed methods embody a feature

location approach that considers the specific characteristics of repository‘s text data in

text analysis process. The details of the proposed methods and the proposed approach are

64

Univ
ers

ity
 of

 M
ala

ya

presented in Chapter 4. Furthermore, the proposed methods and approach are experimen-

tally evaluated based on the evaluation setup which is explained in Chapter 5. The results

of the experimentations are reported and analyzed in Chapter 6.

65

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 4: PROPOSED APPROACH

To address the identified problem statement including the lack of utilizing the possible

potential of text analysis methods for analyzing the repository’s text data for feature

location, two feature location methods, i.e. TiNoFeLo and DeNoFeLo, are proposed.

TiNoFeLo stands for Time-aspect analysis of data in a Noun-based Feature Location

method, whereas DeNoFeLo stands for Developer-aspect analysis of data in a Noun-based

Feature Location method. In these two methods, the noun terms stored in the dataset are

analyzed from two different aspects of time and developer. In relation with these two

proposed methods, a new feature location approach, called TiDeNoFeLo1, is proposed

which is the combination of Time-aspect and Developer-aspect analysis of data in a Noun-

based Feature Location approach. The proposed approach analyzes the data from both

aspects of time and developers to locate the features in the source code. The proposed

methods and the proposed approach collect the required data from the Version Control

System (VCS) of the software projects and follow a set of functional components to

identify the related source code locations to a change request.

Accordingly, in this chapter, first of all, an overall view of the proposed methods and

the proposed approach is explained in Section 4.1. Then, the details of the functional

components that embody TiNoFeLo and DeNoFeLo methods are presented in Sections

4.2 and 4.3, respectively. Next, Section 4.4 describes the details of the TiDeNoFeLo

approach, which is the combination of the two proposed methods. Finally, a summary of

this chapter is given in Section 4.5.

1TiNoFeLo DeNoFeLo TiDeNoFeLo

66

Univ
ers

ity
 of

 M
ala

ya

4.1 Overview

As mentioned in Chapter 1, the main goal of this thesis is to improve the feature location

accuracy by considering the specific characteristics of the repository’s text data, i.e.

incorporation of the metadata of time and developer, and larger dataset size, in text analysis

process. To address these characteristics in text analysis process of feature location, three

perspectives were identified that deal with, (i) the analysis of data from the aspect of time,

(ii) the analysis of data from the aspect of developer, and (iii) the use of only the noun

terms to reduce the dataset size. For the rest of this section, first, the notion and rationales

of identifying these perspectives are explained in detail. Then, the features and functional

components of the proposed methods and approach are described briefly. The complete

descriptions of the proposed methods and approach are presented in Sections 4.2, 4.3 and

4.4.

4.1.1 Perspectives

As explained in Chapter 1, in this thesis, three perspectives are identified to improve the

text analysis process of feature location, i.e. the analysis of data from the aspect of time,

the analysis of data from the aspect of developer, and the use of only noun terms to reduce

the dataset size. In this section, after briefly explaining these perspectives, the rationales

of identifying these perspectives are presented in detail.

4.1.1.1 Time-aspect analysis of data

Analysis of the data from the aspect of time provides the ability of dealing with the

importance of the data overtime when the data was recorded in the repository. In other

words, in the time-aspect analysis of data, the value of the data is determined around the

context in which it was recorded at the same time. It is anticipated that analysis of the data

from the aspect of time leads to more accurately locating a change request in the source

67

Univ
ers

ity
 of

 M
ala

ya

code. To facilitate the analysis of data from the aspect of time, the data collected from the

software repository is associated with their corresponding time-metadata.

Consideration of time-metadata in analyzing the text data for feature location is based

on the assumption that for a new change request, the source code entities with the highest

textual similarity that were more recently modified have more relevancy with the change

request. This assumption is based on two principles, (i) defect localization, and (ii)

software evolution. Defect localization refers to the fact that more recent modifications

to a project are more likely the cause of future bugs or defects (Hassan & Holt, 2005;

Zimmermann et al., 2005). By considering recent modifications in the source code, it

leads to finding relevant locations that are the cause of a new change request (Sisman

& Kak, 2012). On the other hand, software evolution deals with the different goals and

requirements that a software project follows in different periods of its lifecycle (Gómez

et al., 2009). For a given change request, the requested modification to the source code

in the same time period of the project’s lifecycle will likely have the same goals. This

assumption is further elaborated in the following paragraphs.

In every period of a project’s lifecycle, the terms that are used across different

repositories, such as source code version and issue tracking, are consistent with the

requirements of the project during that specific time period (Gómez et al., 2009). Change

requests occurring in a different time period of the project’s life may have different goals.

For instance, the change requests which are reported in the initial period of the project

life are usually focused on the fundamental requirements of the project. A common

way of addressing this type of change requests is to create new file(s) or make extensive

modifications to existing files. Consequently, it is common to have a large number of

modified files resulting from this set of change requests, and the changes that are made

are correspondingly extensive.

68

Univ
ers

ity
 of

 M
ala

ya

This claim is supported by the systems used in this study. For example, in the first

working day of the JDT2 project, around 490 files were modified in 490 commits to the

project’s source code repository. Similarly, in the first day of the AspectJ3 project, 87

files were modified in 2873 commits. The number of modified files and the extent of

modifications gradually decreased over time and became stable. The time needed to reach

this stability depends on the age of the project. Accordingly, the time stamp of when the

context of the source code files was used or modified in the project play a significant role

in determining the degree of relevancy of the context with a new change request. This

observation encourages to deal with the time-metadata associated with the repository’s

text data to locate the change request in the software source code.

4.1.1.2 Developer-aspect analysis of data

In developer-aspect analysis of the data, the value of the data is determined based on the

developer who created or modified the data in source code files. In this aspect, the text

data that were created or changed by a project’s developer in a source code file is taken

as the developer’s expertise profile on the corresponding file (Schuler & Zimmermann,

2008). Accordingly, the developer’s expertise profile contains the vocabularies and terms

used by the project developer during the activities she performed on the file such as fixing

a bug, adding new feature or improving an existing feature that resulted in the changes in

the source code file.

The analysis of developers’ expertise is more common in bug report assignment

research area that aims to determine an appropriate project’s developer to fix a new bug

reported to the project (Anvik et al., 2006; Anvik, 2006; Kagdi et al., 2012). Recently,

some bug assignment researches recommend developers through identifying the most sim-

2http://www.eclipse.org/jdt/.
3http://www.eclipse.org/aspectj/.

69

Univ
ers

ity
 of

 M
ala

ya

ilar source code files to the newly reported bug which is due to the undeniable correlation

between the data in the source code files and the project developers who are working on

the source code files (Hossen et al., 2014; Kagdi et al., 2012; Servant & Jones, 2012;

Shokripour et al., 2013, 2014). The basis of the idea of developer-aspect analysis of

data for feature location is determining the location of a new change request based on

the concentration of the developers’ activities on a subject in a source code location that

indicates the importance of the subject for the location. Centralization of the relevant

activities of the developers to the concept of the change request on a specific location of

the project increases the potential of this location to be the correct location pertinent to

the new change request.

The notion of the developer-aspect analysis of data compared to the typical analysis

of data for feature location is illustrated and elaborated through an example. Consider

that the term “security” has appeared in four changesets4 made by different developers

in a source code file. In a typical analysis of data, the term “security” is only weighted

one time due to the appearance of the term in a single source code file. In contrast, in

developer-aspect analysis of data, the term would be weighted differently depending on

the number of developers who used the term in their changesets for the file. In this case,

having two or more developers working on a related subject (e.g. bug report or feature)

in a source code file indicates a higher concentration of the subject in the corresponding

file. This knowledge can then be used to relate a new change request to the locations

that need to be changed in the source code to satisfy the new change request. In short, in

developer-aspect analysis of data, the term that had been used by different developers in a

source code file has more impact in determining the relevancy of the change request and

the source code file.

4A changeset is an atomic set of changes of the source code files committed to the source code repository
by a project developer during a maintenance activity (Ratanotayanon et al., 2010)

70

Univ
ers

ity
 of

 M
ala

ya

4.1.1.3 Noun Usage

In many languages, nouns are known as the most important category of terms that repre-

sents the meaning of a text. Moreover, previous research on text analysis indicates that

nouns carry most of the meaning of a sentence (Bouras & Tsogkas, 2010). Accordingly,

selecting the nouns, which exist in a text, results in better semantic representation of the

text. Furthermore, the use of only nouns results in reducing the amount of noises in the

extracted entities from the data sources (Capobianco et al., 2012; Sarawagi, 2008), thereby

enhancing the effectiveness of improvements made by other means. Moreover, using only

the noun terms leads to significant reduction of the dataset size (Capobianco et al., 2009;

Shokripour et al., 2013).

On the other hand, the noun usage in other research areas such as traceability (Capo-

bianco et al., 2012) and bug assignment (Shokripour et al., 2014) leads to the improvement

of traceability and bug assignment process. Nevertheless, using only nouns leads to in-

dependence of the approach from dimensionality reduction methods, which is one of the

challenges in IR methods (Crain et al., 2012). The use of only nouns provides enough

information to make a feature location decision for a given change request. The results of

this research (reported in Chapter 6) indicate the sufficiency of the information. According

to these enumerated benefits, the proposed approach in this thesis deals only with the noun

terms to locate a change request in the source code of the project.

4.1.2 Features and Components

Applying these perspectives in text analysis process resulted in proposing two methods.

Then, from the combination of these methods, a new approach is proposed. The fea-

tures and main functional components of the proposed methods and approach are briefly

explained in the next few sub-sections.

71

Univ
ers

ity
 of

 M
ala

ya

Figure 4.1: Abstract view of the first proposed method, TiNoFeLo

4.1.2.1 TiNoFeLo Method Overview

The first proposed method in this thesis, TiNoFeLo, analyzes the data from the aspect of

time when the data was recorded in the repository. TiNoFeLo extracts the noun terms that

were recorded in the source code files to determine the similarity between the source code

files and the desired change request. This implies that the two perspectives of analyzing

the data from the aspect of time and the use of only noun terms to reduce the dataset size

were applied in this method to improve the text analysis process of feature location.

As it is shown in Figure 4.1, the TiNoFeLo method locates a change request through

three main functional components, i.e. Data Collection and Corpus Creation, Term

72

Univ
ers

ity
 of

 M
ala

ya

Weighting, and Location Identification. In the Data Collection and Corpus Creation

component, the required data are collected from the VCS of the software system and

preprocessed into a time-based corpus in preparation for the next component - Term

Weighting. The output of this component includes the selected noun terms from the VCS

that are linked to the corresponding source code files as well as the time-metadata related

to the terms creation in the files. The next component, Term Weighting, uses a time-based

term-weighting technique to determine the values of the noun terms extracted from the

VCS based on the number of appearances in the associated source code files and the times

of using those terms in the files. Finally, in the last component, the source code files are

indexed in descending order based on the sum of the calculated weights for the common

terms that appeared in both the source code files and the desired change request. The

higher ranked files in the list have higher similarity with the given change request.

4.1.2.2 DeNoFeLo Method Overview

The second proposed method, DeNoFeLo, improves the text analysis process of feature

location by applying the two perspectives of analyzing the text data from the aspect of

developer and using only the noun terms. As shown in Figure 4.2, similar to the TiNoFeLo

method, DeNoFeLo relies on three main functional components to identify related source

code locations for a new change request by analyzing the developers’ expertise profiles.

The functionality of these components is similar to that of the corresponding components

in the TiNoFeLo method with a few differences. The first component, Data Collection

and Corpus Creation, collects the required data from the VCS, and then, preprocesses into

a developer-based corpus. In the developer-based corpus, the selected noun terms from

the VCS are linked to the corresponding developer’s expertise profile on the source code

files as well as the time-metadata. In the next component, Term Weighting, the values of

the terms that appear in both the developer’s expertise profile and the new change request,

73

Univ
ers

ity
 of

 M
ala

ya

Figure 4.2: Abstract view of the second proposed method, DeNoFeLo

known as the common terms, are determined based on the frequency of usage by the

developer in the corresponding source code files and time of usage. Finally, in the last

component, the source code files are indexed and sorted in descending order based on the

summation of the calculated weights for the common nouns.

4.1.2.3 TiDeNoFeLo Approach Overview

Having the proposed methods, TiNoFeLo and DeNoFeLo, a new feature location approach

is proposed based on the combination of the two proposed methods (See Figure 4.3). The

74

Univ
ers

ity
 of

 M
ala

ya

Figure 4.3: TiNoFeLo and DeNoFeLo methods embody TiDeNoFeLo approach

proposed approach, named TiDeNoFeLo, addresses all identified perspectives in one

approach. The proposed approach analyzes the data from both the aspects of time and

developer, and also uses only the nouns to improve locating the change request in the

source code.

As shown in Figure 4.4, the proposed approach, similar to the proposed methods,

includes three main components to determine the similarity of the source code files with

the given change request. The required data are collected from the VCS in the Data

Collection and Corpus Creation component and preprocessed to extract and refine the

noun terms. The output of this component is a corpus that includes the source code files

as the documents. The documents in this corpus include the refined noun terms that were

linked to the corresponding source code files as well as the developer-metadata and time-

metadata. Then, in the Term Weighting component, the noun terms that appear in both

the source code file and the given change request, known as common nouns, are weighted

through two aspects, i.e. the aspect of time and the aspect of developer. This implies

that two different weights are calculated for each common noun term. The calculated

weights are combined to determine the total weight of the term. The summation of the

total weights of the common noun terms is used to calculate their scores in the Location

Identification component. Finally, the files are ranked based on the scores of the files in

75

Univ
ers

ity
 of

 M
ala

ya

Figure 4.4: Abstract view of the proposed approach, TiDeNoFeLo

descending order.

The details of the components and functionality of each one in the proposed methods

and approach are explained in the rest of this chapter. The details of the TiNoFeLo

and DeNoFeLo methods are presented in Sections 4.2 and 4.3, respectively. Finally, the

TiDeNoFeLo approach which is embodied by TiNoFeLo and DeNoFeLo is introduced in

details in Section 4.4.

76

Univ
ers

ity
 of

 M
ala

ya

4.2 Detailed View of TiNoFeLo Method

In the first phase of this research, a new feature location method is proposed to address

the differences between the repository’s text data and the text data in natural language

context. In the proposed method, TiNoFeLo, the extracted information from the source

code repository, VCS, is used as the dataset. As mentioned previously, only the noun

terms recorded in this dataset is used to identify related source code locations for a new

change request. In TiNoFeLo, the nouns are weighted based on the frequency of their

appearances in the context and the time of usage. Accordingly, a new term-weighting

technique called Time-Aware Term-Weighting technique, TATW, is proposed to consider

both the frequency and time parameters.

In order to locate the new change request in the source code, the proposed method,

which is organized into three components, is applied on the collected data from the VCS.

As shown in Figure 4.5, the main functional components of TiNoFeLo are as follows:

• Data Collection and Corpus Creation

• Term Weighting

• Location Identification

Through these components, the data collected from the VCS is analyzed to identify

the correct source code locations pertinent to the new change request. Details about the

functionality of these components are described in the rest of this section.

4.2.1 Data Collection and Corpus Creation Component

The Data Collection and Corpus Creation component integrates the collected data and

metadata from the software repository based on the identified source code locations. Then,

it provides the integrated data in a format that can be used by the next component. This

77

Univ
ers

ity
 of

 M
ala

ya

Figure 4.5: Detailed view of the TiNoFeLo method

component uses a set of functions called Data Collection, Data Preprocessing, and Corpus

Creation. Note that this component can be reused for other Mining Software Repositories

(MSR) tasks. The rest of this section discusses these functions.

4.2.1.1 Data Collection

The Data Collection function collects the source code files referred to in the activity logs

from the VCS. The data collected from the VCS log contains a history of the committed

modification activities for the source code entities, typically called source code revisions

or commits. A commit involves a number of items including a revision number, a commit

78

Univ
ers

ity
 of

 M
ala

ya

date, a commit message, and the modified code. From the source code files, the identifiers

which are used to name the source code entities such as files, classes, and methods are

extracted.

Identifiers are usually constructed as a combination of terms that identify the func-

tionality and behavior of the desired entity (Abebe & Tonella, 2010). In other words,

this set of terms has a meaningful relationship with the functionality of the associated

source code entity. Based on this relationship, useful information can be extracted from

the identifiers. In this study, the names of classes, methods, fields, and method parameters

are extracted as identifiers, as they contain the most useful and least noisy data. Time of

creation or modification of each of the identifiers is also extracted from the VCS log and

then associated with the desired identifier.

4.2.1.2 Data Preprocessing

A rich set of contents in a variety of formats is found in the software repositories of a

project, and as a result, different techniques are required to analyze them. From the source

code files found using data from the VCS, the identifiers are extracted. Recall that the

identifiers include the names of classes, methods, fields, and method parameters. For each

extracted identifier, the time of commit (which may also be considered the identifier’s

creation or modification time), file name and revision number are extracted to be used in

the term weighting process. As previously discussed, identifiers are usually created by

concatenating a set of terms. Therefore, the identifiers are decomposed using the approach

recommended by Butler et al. (Butler, Wermelinger, Yu, & Sharp, 2011). This results in

a set of terms from which the identifiers are formed (hereafter referred to as decomposed

identifiers). Furthermore, change request reporters sometimes mention the name of a class

or method directly in the explanation of the change requests (Bacchelli, Lanza, & Robbes,

2010). Therefore, both the complete and decomposed identifiers are used for identifying

79

Univ
ers

ity
 of

 M
ala

ya

source code locations.

Furthermore, the new change request that needs to be located in the source code of

the project must be preprocessed to be unified with the data collected from the repository.

From the new change request, Summary and Description fields are used to determine the

textual similarity with the source code files. The text appearing in the Summary and the

Description of the change request is written in natural language and therefore contains

a lot of noisy data. To address this issue, Named Entity Recognition (NER) (Sarawagi,

2008) is used to refine the text data. The output of NER consists of all of the terms in

these two fields that are categorized as nouns, adjectives, or verbs in the sentences. As

previously mentioned, there are many benefits to using only noun terms. Therefore, only

the nouns that are found in the Summary and Description of the new change request are

used.

To extract the noun terms, first, the roles of the terms in their associated sentences are

identified. Then, based on the identified roles, the categories of the terms are determined.

From the categorized terms, only the nouns are extracted to be used in the location

identification process. In this case, the terms that can appear in various roles in a sentence

are categorized based on their role in the specific sentence. For example, if the term

‘book’ appears in two roles like “book room” and “room booking”, the noun extraction

step can categorize the first one as a verb and the second one as a noun.

The nouns of the decomposed identifiers are used to find similarities in the data of

source code entities and the new change request as well as the complete identifiers. More

details on the noun categorization and extraction are explained in Chapter 5. Moreover,

nouns that contain symbols, digits or have less than three characters are filtered out as

it has been done in other mining repository approaches (Shokripour et al., 2013). All

of the selected nouns are lemmatized in order to reduce the different forms of a term.

80

Univ
ers

ity
 of

 M
ala

ya

Lemmatization refers to the preprocessing of terms for use with a particular vocabulary

and morphological analysis of the terms. Typically the goal of lemmatization is the

removal of inflectional endings only, and to return the base or dictionary form of a term.

This form is known as the lemma (Capobianco et al., 2012; Manning et al., 2008).

4.2.1.3 Corpus Creation

As mentioned previously, in this research, both the complete and decomposed identifiers

are used to identify the related source code locations for a new change request. All this

data are associated with the corresponding metadata extracted from the VCS log including

the file name, revision number, and the time of commit to the source code repository. It

means that in this component, each file is represented by the complete identifiers and the

nouns of decomposed identifiers which are associated to their corresponding metadata.

The collection of the files storing the source code of software system forms the time-

based corpus. In this corpus, the metadata associated to the terms provides the ability of

analyzing the data from the aspect of time when the data was created.

4.2.2 Term Weighting Component

In this component, the collected text data from the VCS that were linked to their associated

metadata are weighted using the proposed term-weighting technique. In this technique,

the text data are weighted based on the textual similarity to the new change request, taking

into consideration the value of similar text over time. Due to the importance of time in this

technique, the proposed term-weighting technique is called Time-Aware Term-Weighting

technique (TATW).

Two factors are taken into account in the TATW technique. The first is term frequency

with respect to the source code identifiers. The second is time when the term was used.

Term frequency has been used in other term-weighting techniques, such as the Term

81

Univ
ers

ity
 of

 M
ala

ya

Frequency technique and the TF-IDF technique (Manning et al., 2008). It focuses on the

number of appearances of a term in a document or corpus. In the TF-IDF technique, which

is the most-used term-weighting technique in text analysis methods, the weight of a term is

related to the frequency of that term in an individual document, and its inverse frequency

across the corpus. As previously mentioned, the terms that are used in the proposed

method are restricted to only nouns. To be more specific, noun frequency is used in the

proposed term-weighting technique instead of the more general term frequency.

In addition to considering the noun frequency, the proposed term-weighting technique

considers time of usage, or how far in the past a noun term was used. The consideration

of when a noun term was used is the key difference between the proposed term-weighting

technique and the classic term-weighting techniques. More specifically, in the proposed

term-weighting technique, the following four parameters are considered in the relevancy

calculation of the noun term from the data sources with regard to the new change request.

• Frequency of the noun term i (Ni) in the set of noun terms that were created or

modified at the same time. This parameter represents the frequency of which the

noun term was used overtime.

• Frequency of the noun term i in a specific document which is a source code file (Fk).

• Frequency of a noun term i in the corpus containing all the source code files of

the project (FPrj). This parameter represents the generality of the noun term in the

corpus.

• Time interval between when the new change request was reported (DateNCR5) and

the time of creating or modifying the noun term i in the software repository.

5The format of date is such as “2005-11-21” and the time interval between these two dates is based on
the number of days

82

Univ
ers

ity
 of

 M
ala

ya

The first three parameters are the frequencies of noun term i at different levels

of documentation. Existing term-weighting techniques primarily focus on using the

frequency of appearances of a term in source code files across the project (Manning et al.,

2008; Zhou et al., 2012). However, in the TATW technique, the value of the noun term

over time is considered for the new change request.

In the proposed term-weighting technique, the time difference between uses of a noun

term in the new change request and the source code files is negatively correlated with the

weight of the noun. In other words, a noun that is recently used in this resource, i.e. a

short time difference has a higher value when compared with another noun that was used

farther in the past. The time difference is based on the number of days and can therefore

be very large when the term was used a long time ago.

To normalize the time difference, mathematical solutions such as square root or

logarithm can be used. Table 4.1 shows the effect of square root and logarithm on some

possible time difference (number of days) samples. As shown in this table, the use of

logarithm strongly reduces the time difference value when compared with using square

root. On the other hand, the differences between the logarithms of larger values for the

number of days are not very much. For instance, the difference between the logarithms

of 30 days and 180 days is 0.778 and the difference between the logarithms of 30 days

and 365 days is 1.085. However, the differences of square roots of these pairs of days are

7.939 and 13.628, respectively. In other words, the use of a logarithm dampens the time

difference too much for practical use in a term-weighting technique. Therefore, the use of

square root is more suitable and more effective for term weighting in the proposed method.

The decision to use square root is also supported by the use with the time differences in

other MSR fields (Kagdi et al., 2012; Voinea & Telea, 2006).

In this component, the source code identifiers and the selected noun terms of the

83

Univ
ers

ity
 of

 M
ala

ya

Table 4.1: Effect of square root and logarithm on time differences

Number of Days Square Root Logarithm

7 2.646 0.845
30 5.477 1.477
90 9.487 1.954
180 13.416 2.255
365 19.105 2.562
730 27.019 2.863

decomposed identifiers (both referred to as Ni) are weighted with respect to those four

aforementioned parameters. Accordingly, Equation 4.1 is used to calculate the weight of

noun term i (Ni) in the changeset j (C j) of the source code file k (Fk). A changeset is an

atomic set of changes of the source code files committed to the VCS, and contains the

modified code that is a new revision. In this equation, FreqNi,C j is the frequency of using

noun term i in the changeset j. FreqNi,Fk is the frequency of the noun term i in the source

code file k and is used in existing term-weighting techniques. It highlights the occurrences

of the noun term among all of the noun terms of a file (Manning et al., 2008).

FreqNiFPr j indicates the frequency of the noun term i across all the project’s source

code files in the VCS. Finally, DateNCR-DateNi,C j is the time difference between when

a new change request was reported (DateNCR) and when a noun term i was used in the

changeset j (DateNi,C j).

WeightNi,C j, Fk
FreqNi,C j

∗ FreqNi,Fk

FreqNiFPr j ∗
√

DateNCR − DateNi,C j

(4.1)

4.2.3 Location Identification Component

Having calculated the weights of the nouns appearing in both the new change request

and the source code files, these weights are summed up to determine the scores of the

source code locations. In the existing term-weighting techniques that do not weight terms

84

Univ
ers

ity
 of

 M
ala

ya

with respect to time, each specific term has a single weight (Manning et al., 2008) and

the summation of the term weights is the score of the file. However, using the TATW

technique, the weight of a noun term is related to the creation or modification time of

the term in the data source. In other words, the noun may have more than one weight

depending on the number of times when it was used.

Equation 4.2 is used to compute the score of a source code file (Fk) based on

the weights of the nouns collected from the changesets that were recorded in the VCS

(Score(Fk)), and the weights of the common nouns (i.e. those nouns appearing in both the

new change request and the source code file (k)). A summation of the number of common

nouns between the new change request and the changeset j of the file k is made for each

of the changesets for the file k. In other words, the nouns that appear in more than one

changeset are weighted individually and these weights are added together to calculate the

score of the file k.

S coreFkVCS
#Changesets f orFk

j1

#CommonNouns

i1
WeightNi,C j, Fk (4.2)

The output of this component is a ranked list of source code files in descending order,

based on the calculated scores for the files. Therefore, the most relevant locations for the

new change request are ranked at the top.

To summarize, this method focuses on two main aspects. The first contribution of the

TiNoFeLo method is consideration of time-metadata in analyzing the text data recorded

in the software repository. This contribution provides the ability of analyzing the context

of the repositories over time. It means that we can deal with the evolution of the software

project which is one of the important differences of the text recorded in the repositories

and text in natural language context. The second aspect which is taken into account in

TiNoFeLo is using only the noun terms to make an improvement in text analysis of feature

85

Univ
ers

ity
 of

 M
ala

ya

location by dealing with more meaningful and less noisy data. By using only the noun

terms, not only sufficient data for feature location is provided, but also the size of dataset is

significantly reduced6. Further elaboration on the effects of time consideration and noun

usage is discussed in Chapter 6.

4.3 Detailed View of DeNoFeLo Method

For the second step of this research, another difference of the repository’s text data with

the natural language text is considered in text analysis process of feature location. The data

recorded in the repository are associated with the project developers who are working on

the software project. This implies that the developer who created and modified the data in

the project repository is considered as the owner of the modified data. Accordingly, in the

second phase of this research, a new feature location method is proposed to consider this

specific characteristic of the repository’s text data in order to further improve the accuracy

of feature location. This method is referred to as Developer-aspect analysis of data in a

Noun-based Feature Location method, DeNoFeLo. To consider the metadata of developer

in this method, a new term-weighting technique, called Time-Aware Developers’ expertise

Term Weighting technique (TADTW), is proposed.

As shown in Figure 4.6, similar to the TiNoFeLo method, DeNoFeLo relies on

three main functional components to identify related source code locations for a new

change request. In the first component, the required data are collected from the VCS and

preprocessed into a corpus in preparation for the next component - Term Weighting. In

the Term Weighting component, the values of the common terms, which appear in both

the developer’s expertise profile and the new change request, are determined based on the

frequency of use by the developer and the last time of usage of the term by the developer.

Finally, in the last component, the source code files are indexed and sorted in descending

6The other types of terms such as verbs and adjectives are excluded from the dataset.

86

Univ
ers

ity
 of

 M
ala

ya

Figure 4.6: Detailed view of the DeNoFeLo method

order based on the sum of the calculated weights for the common terms. Details about

the functionality of these components are described in the rest of this section. Some of

the functions in these components are similar to the corresponding ones in the previous

method, TiNoFeLo. Accordingly, a brief description on these functions is presented for

this method and readers are referred to the TiNoFeLo method for further details.

4.3.1 Data Collection and Corpus Creation Component

This component collects the required data from the software repository of the VCS.

Then, the collected data are refined and associated with the metadata of developer and

87

Univ
ers

ity
 of

 M
ala

ya

time to be prepared in the format of data which are used by the next component. This

component involves a set of functions called Data Collection, Data Preprocessing, and

Corpus Creation.

4.3.1.1 Data collection

Similar to TiNoFeLo, the main dataset for DeNoFeLo is the source code data which is

collected from the VCS. In typical feature location methods, a source code file or method

is treated as a unique document of a corpus. However, as mentioned earlier, the recorded

data in the source code file or method can be analyzed from different aspects, e.g. analysis

of the data from the aspect of time as in the TiNoFeLo method. In the DeNoFeLo method,

the data are analyzed from the aspect of developer who works on the source code files

to identify the locations related to the new change request. Accordingly, De NoFeLo’s

corpus, which is a developer-based corpus, is different from the typical corpus used for

feature location.

The required data to create the developer-based corpus is collected from the VCS log

and the history of the committed modification activities performed by the developers on

the source code entities, typically called source code revisions or commits. A commit

has a number of attributes including a revision number, commit date, commit message,

identifier of the developer who modified the code, and the part of code that was modified.

4.3.1.2 Data Preprocessing

The preprocessing steps in DeNoFeLo are similar to the ones performed in TiNoFeLo.

From the entire history of the project’s source code, the identifiers which are used to name

the classes, methods, fields, and method parameters are extracted to be involved in the

corpus of DeNoFeLo. Since an identifier is usually constructed as a combination of terms

(Abebe & Tonella, 2010); the identifiers are decomposed to obtain a set of terms from

88

Univ
ers

ity
 of

 M
ala

ya

which the identifiers are formed. From the decomposed identifiers, only the noun terms

are extracted excluding the noun terms that contain symbols, digits or have less than three

characters. The noun terms are then lemmatized in order to reduce the different forms of a

term (Capobianco et al., 2012; Manning et al., 2008; Shokripour et al., 2013). The detailed

explanation of each of the preprocessing steps has been presented in Section 4.2.1.2.

4.3.1.3 Corpus Creation

Since the DeNoFeLo method analyzes the source code data from the aspect of the develop-

ers who work on the source code files, the DeNoFeLo’s corpus is different from the typical

feature location corpus and also different from TiNoFeLo’s corpus. In this function, both

the complete identifiers and the nouns of decomposed identifiers are used to create the

developer-based corpus. In this corpus, all the data are associated with the correspond-

ing metadata extracted from the VCS log including the file name, developer ID, revision

number, and time of commit to the source code repository. Associating the term data to

this set of metadata provides the ability to analyze the data from the developer-aspect.

Each document in the developer-based corpus is a source code file from which profiles of

developers’ expertise can be derived.

4.3.2 Term Weighting Component

In this component, the data stored in the developer-based corpus are weighted based on the

amount of similarity of the source code files with the given change request. Similarity of

a source code file is determined by analyzing the developers’ expertise profiles for the file.

As mentioned above, the terms used by a developer in a specific file form the developer’s

expertise profile for that file.

To determine the weight of a term in a developer’s expertise profile, in addition to

the statistical computation (e.g. term frequency) which is typically used in existing term-

89

Univ
ers

ity
 of

 M
ala

ya

weighting techniques such as TF-IDF, the developer who modified the term and also time

of usage of the term are taken into consideration. Due to the consideration of these new

factors in the term weighting process of the DeNoFeLo method, a new term-weighting

technique which is named Time-Aware Developer expertise’s Term Weighting, TADTW,

is proposed. In this technique, the weight of a term is determined based on its importance

among the other terms which were used by the same developer in a source code file and

last time of usage of the term by the developer.

As mentioned earlier, similar to TiNoFeLo, the terms that are used in this method

are restricted to only the nouns. Accordingly, the noun frequency is used in the proposed

term-weighting technique, TADTW, to be more specific, instead of the more general term

frequency. In TADTW, the frequency of appearances of a noun term in the developer’s

expertise profile and the last time of usage of the term by the developer is analyzed.

These factors are the main differences of the proposed term-weighting technique from

the existing ones. For more clarification on the proposed term-weighting technique, the

important parameters of weighting a noun term are further investigated. Three parameters

are considered in the similarity calculation of the noun term found in the developer’s

expertise profile with regard to the new change request:

• Frequency of the noun term i (Ni) in the set of noun terms that were created or

modified by a specific developer D j on a specific file Fk. This parameter calculates

the frequency of usage of the noun term or the number of times that the noun

appeared in the developer’s expertise profile on the file Fk.

• Frequency of a noun term i (Ni) in all developers’ expertise profiles. Each noun

term may be used by one or more project developer in different source code files.

We refer to this set of noun terms as keyword noun terms or briefly keywords. This

90

Univ
ers

ity
 of

 M
ala

ya

parameter determines the value of the noun term in the corpus.

• Time interval between when the new change request was reported (DateNCR) and

the last time of usage of the noun term i by the developer j.

The frequency of a noun term in all developers’ expertise profiles shows the impor-

tance of the noun in the project. The noun terms that are used by most of the developers are

general terms in the project. Inversely, the ones that are used by a very small percentage

of the developers have a higher value for determining the similarity of a source code file

and a change request. For an instance of the keywords, in a Health Insurance software

project, the term “insurance” is likely to be used by almost every developer of the project.

However, the term such as “security” may appear in a few developers’ expertise profiles.

The terms that appear too often need to have less effect on determining the similarity.

Conversely, the nouns that are used by a very small set of the developers have a higher

value for determining the similarity. As mentioned above, this set of noun terms that

appear in a small set of profiles are referred to as keywords.

With respect to these parameters, Equation 4.3 is used to calculate the value of a term

from the aspect of developer. This equation considers the statistical analysis of the noun

term used by the corresponding developer and the last time of usage of the noun by the

developer. In this equation, the weight of the noun term i (Ni) in the file k (Fk) that appears

in the expertise profile of developer D j is calculated based on the time and frequency of

usage of the noun by the developer. The first parameter in determining the weight of the

noun term is FreqNi,D j,Fk that adjusts the importance of the noun in the expertise profile of

the developer D j on the file Fk. This parameter calculates the frequency of using the noun

term or the number of times that the noun appeared in the developer’s expertise profile on

file Fk.

91

Univ
ers

ity
 of

 M
ala

ya

WeightNi,D j, Fk

(
FreqNi,D j,Fk × log

#Pr jDev
FreqNi,D j

)
×

 1√
DateNCR − DateNi,D j

1
FreqNi,D j

 (4.3)

Only dealing with the raw noun frequency to determine the similarity signifies that all

the nouns in the developer’s expertise profile are considered equally important. However,

some of the noun terms may have more significant role in locating the new change request.

The terms that appear too often need to have less effect on determining the similarity.

Conversely, the nouns that are used by a very small percentage of the project developers

have a higher value for determining the similarity. This set of noun terms that appear in

a small set of profiles are referred to as keywords. Accordingly, in addition to the noun

frequency, there is a need to specify the keywords by giving more weight to the nouns that

were used by a small number of developers in the project. Accordingly, the logarithm of

the total number of the project developers (#PrjDev) over the number of developers who

used noun term i (Ni) in the project, represented by developer frequency (FreqNi,D j), is

also considered in weighting the noun term.

As previously mentioned, an effective parameter in determining the weight of a term

in the source code file is the last time when it was used by the developer. The time

difference between uses of a noun term in the new change request and the developer’s

expertise profile is negatively correlated with the weight of the noun. Thus, a noun that

is recently used in this resource, i.e. a short time difference, has a higher value when

compared with another noun that was used farther in the past. On the other hand, since

the time difference is based on the number of days, it can be very large for the nouns used

a long time ago. Accordingly, similar to the TiNoFeLo method, the inverse of the square

92

Univ
ers

ity
 of

 M
ala

ya

root of time differences, between the last time of using the noun by the developer and the

time of reporting the change request, is taken into account in weighting the nouns in the

TADTW technique.

However, in TiNoFeLo, all of the specific time(s) that a noun was used in the file

is considered; whereas in the DeNoFeLo method, only the last time that the developer

D j used the noun i (Ni) in her expertise profile is examined. This is to simplify the term

weighting process. Furthermore, in TiNoFeLo, the data are analyzed from the aspect of

time. Thus, all the specific times when the term was used in the source code file need

to be weighted separately. However, in the DeNoFeLo method, the basic assumption is

analysis of the data from the aspect of developer and the focus is not on time of usage of

the term. Consideration of the last time that a developer used a noun term indicates the

most recent time when the developer worked on the feature or subject related to the change

request. In this regard, a higher value is given to the related noun terms that were created

or modified most recently. In time consideration of Equation 4.3, DateNi,D j indicates the

last time when the noun Ni was used by the developer, and DateNCR indicates time that

the new change request was reported to the project7. In this case, the noun terms that had

been used farther in the past would obtain a lower weight.

However, due to the significant role of the keywords in finding the related locations

in the source code (Poshyvanyk, Gethers, & Marcus, 2012), a higher value is given to

these noun terms, even if they have been used further in the past. Accordingly, the inverse

of the number of developers who used noun Ni which is represented by the developer

frequency (FreqNi,D j), is combined with time consideration part of the equation. Without

the inverse of developer frequency, the keywords that were used long time ago will have

a lower weight due to the large time difference. In this case, the keyword terms that

7Note that the time difference is calculated in days

93

Univ
ers

ity
 of

 M
ala

ya

were used recently have a higher weight when compared to the other terms having the

same frequency. In general, this equation gives a higher weight to the unique noun terms

(keywords) that were most recently used and gives a lower weight to the terms that were

used either further in the past or were used by most of the project developers.

4.3.3 Location Identification Component

Having computed the weights of the common noun terms that appear in both the new

change request and the developers’ expertise profiles, the expertise score for the developer

D j is next calculated for the change request with respect to the file Fk. Equation 4.4

calculates the expertise score of developer j by summing up the weights of all common

nouns appearing in the expertise profile of the developer j on the file k and the new change

request.

S coreD j, Fk
#Common Nouns

i1
WeightNi,D j, Fk (4.4)

Since more than one developer may work on the same file, the final score of the file

k is determined by summing the calculated expertise scores of the developers who work

on the file k. Equation 4.5 calculates the final score of the file Fk.

FinalS coreFk
#Developer f or Fk

j1
S coreD j, Fk (4.5)

Finally, the source code files are then sorted in descending order based on the final

scores. The output of this component is a ranked list of the files in descending order of

relevancy. In this list, files ranked at the top of the list have a higher similarity with the

94

Univ
ers

ity
 of

 M
ala

ya

given change request than those ranked lower in the list.

4.4 Detailed View of TiDeNoFeLo Approach

To apply all identified perspectives together in text analysis process of feature location,

a new feature location approach is proposed in the last step of this study. The identified

perspectives include (i) the analysis of data from the aspect of time, (ii) the analysis of

data from the aspect of developer, and (iii) the use of only noun terms to reduce the dataset

size. As mentioned in Section 4.2, the TiNoFeLo method analyzes the data from the

aspect of time and uses only the noun terms. Moreover, the DeNoFeLo method analyzes

the data from the developer-aspect and also uses only the noun terms (See Section 4.3).

The combination of these two proposed methods results in a feature location approach

that addresses all the identified perspectives. Since this approach is the combination

of TiNoFeLo and DeNoFeLo methods, we call it TiDeNoFeLo which is taken from the

combination of the names of TiNoFeLo and DeNoFeLo.

In this approach, the data recorded in source code files is analyzed from both the

aspects of time when the data was recorded in the file and the aspect of the developer

who recorded the data. Furthermore, only the noun terms are extracted from the datasets

to locate the new change request in the source code of the project. This implies that

all the identified perspectives are addressed in the TiDeNoFeLo approach. As shown

in Figure 4.7, similar to the proposed methods, this approach includes three functional

components to determine the similarity of the source code files with the new change

request. These components include (1) Data Collection and Corpus Creation, (2) Term

Weighting, and (3) Location Identification.

In the first component, the required data are collected from the VCS and then prepro-

cessed to extract and refine the noun terms from the data recorded in the source code files.

The refined noun terms were used to create the corpus based on the developer-metadata

95

Univ
ers

ity
 of

 M
ala

ya

Figure 4.7: Detailed view of the TiDeNoFeLo approach

and time-metadata. Next, in the Term Weighting component, the noun terms, which

appeared in both the source code file and the new change request, are weighted through

two aspects, i.e. the time-aspect and the developer-aspect. This implies that there are two

weights for each term. The determined weights are combined in the next step to calculate

the total weight of each noun term. The summation of the total weights of the noun terms

that appeared in both the source code file and the new change request is used to calculate

the score of the file in the Location Identification component. Finally, the files are ranked

based on the score of the files in descending order. The higher the file in the ranked list,

the more similarity it has with the new change request.

96

Univ
ers

ity
 of

 M
ala

ya

Details about the functionality of these components are described in the following

sub-sections. Since this approach is the combination of both the two previously proposed

methods, some details of these components are similar to the corresponding ones in the

previous methods.

4.4.1 Data Collection and Corpus Creation Component

Similar to the two proposed methods, this component collects the required data from

the VCS which are used to record the changes to the source code of software projects.

Then, the collected data are refined and associated with the metadata of developers and

time to be prepared in the format of data which is used by the next component. This

component involves three functions including Data Collection, Data Preprocessing, and

Corpus Creation.

4.4.1.1 Data Collection

As mentioned previously, TiDeNoFeLo analyzes the data recorded in the source code files

from the aspect of time when the data was recorded and the aspect of the developer who

recorded the data to identify the source code locations pertinent to a new change request.

Accordingly, the corpus that is used in this approach is different from the typical corpus

used in previous feature location methods and approaches.

In the Data Collection function, the data is collected from the VCS log and the history

of the committed modification activities performed by the developers on the source code

entities, typically called source code revisions or commits.

4.4.1.2 Data Preprocessing

After collecting the VCS data, the identifiers that identify the source code entities are

extracted from the entire history of the project’s source code. The details of extracting

the identifiers are explained in Section 5.4.1. From the extracted identifiers, the names

97

Univ
ers

ity
 of

 M
ala

ya

of classes, methods, fields, and method parameters are used in this approach similar

to TiNoFeLo and DeNoFeLo. Furthermore, the identifiers are decomposed using the

approach recommended by Butler et al. (Butler et al., 2011) and the terms that recognized

as a noun were extracted from the decomposed identifiers. Moreover, the terms that

contain symbols, digits or have less than three characters are filtered from the set of noun

terms. Then, the terms are lemmatized in order to reduce the different forms of the terms

(Capobianco et al., 2012; Manning et al., 2008; Shokripour et al., 2013).

4.4.1.3 Corpus Creation

In this study, both the complete and the refined nouns of the decomposed identifiers are

used to create the corpus. All the data in this corpus needs to be associated with the

corresponding metadata extracted from the VCS log including the file name, developer

ID, and time of commit to the source code repository. Since, both the time-metadata and

developer-metadata are important in this corpus, the corpus of TiDeNoFeLo approach is

similar to the one used in the DeNoFeLo method. Association of the term data to this set

of metadata provides the ability to analyze the data from different aspects of developer

and time.

4.4.2 Term Weighting Component

As mentioned earlier, in this approach, the analysis of the data for identifying the related

source code files to the desired change request is performed from two aspects of time and

developer. To determine the amount of relevancy of a source code file with the desired

change request, the values of the terms that are appeared in both the source code file and the

change request is calculated in this component. To calculate the weights of the terms, this

component contains three functions involving Time-based Term Weighting, Developer-

based Term Weighting, and Total Term Weighting. The functions of Time-Based Term

98

Univ
ers

ity
 of

 M
ala

ya

Weighting and Developer-Based Term Weighting have been used to determine the weight

of the term from the aspect of time and the aspect of developer, respectively. Then, the

calculated weights by these two functions are combined in the last function, namely Total

Term Weighting. The details of these components are explained in the rest of this section.

4.4.2.1 Time-based Term Weighting

In this function, the terms recorded in a source code file are weighted from the aspect of

time when the terms were used in the file. The value of the term over time is determined

based on the TATW technique which was proposed to weight the terms in the TiNoFeLo

method. The TATW technique determines the weight of the term based on the term

frequency and time of usage. As mentioned in Section 4.2.2, TATW deals with four

parameters to determine the weight of the noun. The first is the frequency of appearances

of the noun in the set of noun terms that were created at the same time. This parameter

deals with the value of the term in the changeset8. The second parameter is the frequency

of the term in the corresponding source code file. The third parameter deals with the

frequency of appearances of the term in the corpus. This parameter counts the number of

files in the corpus that contain the desired noun term. Finally, the fourth parameter is time

interval between time when the new change request was reported and time of commit of

the desired noun term in the source code file (cf. Section 4.2.2).

4.4.2.2 Developer-based Term Weighting

In the second function of the Term Weighting component, the weight of the term is

determined from the aspect of the developer who used the term in the source code file.

The term-weighting technique used in this function is the same technique which was

explained for the DeNoFeLo method. As mentioned in Section 4.3.2, in DeNoFeLo, the

8A changeset is an atomic set of changes of the source code files committed to the VCS, and contains
the part of code that modified in a new revision.

99

Univ
ers

ity
 of

 M
ala

ya

TADTW term-weighting technique is used to adjust the value of the term from the aspect

of developer. In this term-weighting technique, the weight of term is calculated based on

the frequency of appearances of the term in the developer’s expertise profile on a source

code file and the last time that the developer used the term in the file. Three parameters

are considered to determine the weight of term in TADTW. The first parameter is the

frequency of appearances of the term in the set of terms that were used by the developer

on the desired source code file. This parameter calculates the number of times that the

term appeared in the developer’s expertise profile on the source code file. The second

parameter is the frequency of the appearances of the term among all the developers’

expertise profiles. This parameter determines the value of the term in the corpus. In other

words, this parameter determines the values of the keywords in the corpus. Finally, the last

parameter is time interval between time when the new change request was reported and last

time of usage of the term by the developer in the file. The details of this term-weighting

technique have been described in Section 4.3.2.

4.4.2.3 Total Term Weighting

As mentioned above, for each term that appeared in both of the file and the change request,

two different weights, i.e. time-based and developer-based weights, are calculated using

TATW and TADTW techniques, respectively. Thus, the total weight of the term is the

combination of these two calculated weights. Since the calculated weights through TATW

and TADTW have different value ranges, the weights therefore need to be normalized for

combination. A common technique for normalizing numbers from different ranges is to

map them to the same range, such as a range between zero and one (Zhou et al., 2012).

This mapping of values is done using Equation 4.6. In this equation, Weight(max) and

Weight(min) are the maximum and minimum weights obtained for the noun terms in each

function of the Term Weighting component.

100

Univ
ers

ity
 of

 M
ala

ya

NormalWeightNi
WeightNi −Weightmin

Weightmax −Weightmin

0 ≤ NormalWeightNi ≤ 1 (4.6)

After normalizing the weights of the noun terms, the total weight of the noun i

(TotalWeightNi) is the summation of the normalized time-based weight and the normal-

ized developer-based weight. The obtained total weight for each term is between zero and

two.

4.4.3 Location Identification Component

Having computed the total weights of the common noun terms that appear in both the new

change request and the source code file, the score of the source code file with respect to

the change request is calculated by Equation 4.7.

S coreFk
#Common Nouns

i1
TotalWeightNi, Fk (4.7)

The output of this component is a ranked list of source code files in descending order,

based on the calculated score for the file. Therefore, the most relevant locations for the

new change request are ranked at the top.

4.5 Summary

The effort spent on addressing the objectives of this thesis results in proposing two

new methods, TiNoFeLo and DeNoFeLo. From the combination of these two proposed

methods, a new feature location approach, TiDeNoFeLo, is proposed that considers a set

of specific characteristics of text data recorded in the repository. In Table 4.2, the main

101

Univ
ers

ity
 of

 M
ala

ya

properties of these proposed methods and the proposed approach are highlighted.

Table 4.2: Main properties of the proposed methods and the proposed approach

Method/
Approach

Perspectives Properties

TiNoFeLo
Method

- Analyzing text data from the aspect of time
- Reduce the dataset size by using only the noun terms

- Analyze data from the time-aspect
- Use time-based corpus
- Use time-based term-weighting technique
- Use only noun terms

DeNoFeLo
Method

- Analyzing text data from the aspect of developer
- Reduce the dataset size by using only the noun terms

- Analyze data from the developer-aspect
- Use developer-based corpus
- Use developer-based term-weighting technique
- Use only noun terms

TiDeNoFeLo
Approach

- Analyzing text data from the aspect of time
- Analyzing text data from the aspect of developer
- Reduce the dataset size by using only the noun terms

- Analyze data from both the aspects of time and de-
veloper
- Use time- and developer-based corpus
- Use time- and developer-based term-weighting tech-
nique
- Use only noun terms

As shown in Table 4.2, TiNoFeLo method - the first proposed method in this study

– analyzes the data from the aspect of time when the data was recorded in the repository.

In this method, only the noun terms are used to identify the related locations to a newly

reported change request in order to reduce the dataset size. The TiNoFeLo method locates

the change requests using three main functional components, i.e. Data Collection and

Corpus Creation, Term Weighting, and Location Identification. In the Data Collection

and Corpus Creation component, the required data are collected from the VCS of the

software system and preprocessed into a time-based corpus. In this component, from the

recorded data in the VCS, only the noun terms are extracted and linked to the corresponding

metadata of time when the terms were created in the corresponding source code file.

The next component, Term Weighting, uses a time-based term-weighting technique to

determine the values of the noun terms based on the frequency of appearances in the

corpus and time of using the term in the corresponding source code file. Finally, in the last

component of TiNoFeLo, the source code files are indexed in descending order based on

the sum of the calculated weights for the common terms that appeared in both the source

code file and the desired change request. The higher the file in the ranked list, the more

102

Univ
ers

ity
 of

 M
ala

ya

similarity it has with the given change request.

The second proposed method, DeNoFeLo, improves the text analysis of feature

location by analyzing the text data from the aspect of developer and using only the noun

terms. Similar to the TiNoFeLo method, DeNoFeLo relies on three main components to

identify related source code locations for the new change request. With a few differences,

the functionality of these components is similar to that of the corresponding component

in the TiNoFeLo method. The first component, Data Collection and Corpus Creation,

collects the required data from the VCS, and then, preprocesses and extracts the noun

terms to create a developer-based corpus. In this corpus, the noun terms are linked

to the corresponding developer-metadata and time-metadata. In the next component,

Term-Weighting component, the value of the term stored in the developer-based corpus

is determined based on the frequency of usage of the term by the developer in the

corresponding source code file and the last time of usage of the term by the developer.

Finally, in the last component, the scores of source code files are calculated by summing

up the determined value for the term that appear in both the developers’ expertise profile

of the source code file and the new change request. Finally, the source code files are

indexed in descending order based on the calculated scores.

From the combination of two proposed methods, TiNoFeLo and DeNoFeLo, a new

feature location approach is proposed, named TiDeNoFeLo. In this approach all identified

characteristics of the text data recorded in the repository are considered to improve the

accuracy of location identification process. The proposed approach analyzes the data

from both the aspects of time and developer, and also uses only the nouns. The proposed

approach, similar to both the proposed methods, includes three main components to

determine the similarity of the source code files with the new change request. The

required data are collected from the VCS in the Data Collection and Corpus Creation

103

Univ
ers

ity
 of

 M
ala

ya

component and preprocessed to extract and refine the noun terms. Then, the noun terms

are linked to the corresponding metadata of developers and time. Next, in the Term

Weighting component, the noun terms that appear in both the source code file and given

change request are weighted. Since TiDeNoFeLo is the combination of TiNoFeLo and

DeNoFeLo, the terms are weighted through two aspects, i.e. the aspect of time and the

aspect of developer, which means that two different weights are calculated for each noun

term. The calculated weights are combined to obtain the total weight of the term. The

summation of the total weights of the common noun terms is used to calculate the score

of the file in the Location Identification component. Finally, the files are ranked based on

the scores of the files in descending order.

The proposed methods, TiNoFeLo and DeNoFeLo, and the proposed approach,

TiDeNoFeLo, are experimentally evaluated to assess the effects of analyzing the data from

the aspect of time and aspect of developer. Furthermore, the impact of using only the noun

terms is assessed in the experimental evaluation. Accordingly, in Chapter 5, the setting

that needs to be considered in the setup of an experimental evaluation for evaluating the

proposed methods and the proposed approach are explained in detail. Then, in Chapter 6,

the results of the experimental evaluation of the TiNoFeLo and DeNoFeLo methods and

the TiDeNoFeLo approach are presented and analyzed.

104

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 5: EXPERIMENTAL EVALUATION SETUP

In software engineering, one of the typical methodologies to evaluate an approach is

experimental evaluation. To conduct an experiment, a set of specific settings needs to

be identified and setup in relation to the approach. The most well-known guideline for

experimental evaluation in software engineering is recommended by Wohlin et al. (Wohlin

et al., 2012). Accordingly, this research follows the same organization that is recommended

in Wohlin’s guideline to conduct the empirical evaluation. Figure 5.1 shows the steps of

experimental evaluation setup including context selection, experimental design, research

questions and hypotheses formulation, experimental execution, and threats to validity.

These steps are explained in detail in the rest of this chapter.

The first part of this chapter presents the evaluation context including subject systems

(Section 5.1.1), object systems (Section 5.1.2) and comparison systems (Section 5.1.3).

Figure 5.1: Evaluation setup steps

105

Univ
ers

ity
 of

 M
ala

ya

Then, the experimental design including the descriptive and statistical analysis setups

is explained in Section 5.2. Next, according to the main research question that were

identified in Section 1.4, a set of research questions and corresponding hypotheses are

formulated specifically for each of the proposed methods and approach in Section 5.3.

After that, how the data was collected from the subject systems and preprocessed as well

as the implementation of the experiments are explained in Section 5.4. Finally, the internal

and external threats to validity of the proposed methods and approach are presented in

Section 5.5.

5.1 Context Selection

This section first presents the methodology by which the four open-source projects were

selected as the subject systems. Next, the process of choosing the test sets from the

subject systems is explained. Finally, the last part of this section explains how the existing

feature location methods/approaches are chosen as the baseline feature location approaches

against the proposed methods and the proposed approach.

5.1.1 Subject Systems

To evaluate the proposed methods and the proposed approach, a set of real-world projects

is needed. Thanks to the growing popularity of open-source software projects, researchers

are now able to use the information available in the repositories of these projects. Thus,

due to the availability of data from open-source projects, such projects were investigated

to identify the subject systems for the evaluation of the proposed methods and approach.

Although, there are many open-source projects that could be used, the subject systems

were selected based on the following criteria:

• Projects that have been used by other feature location or software repository mining

researchers. Such projects have already been considered valid subject systems by

106

Univ
ers

ity
 of

 M
ala

ya

other researchers.

• Projects that have different sizes of dataset in their repository. It is assumed that

the number of files, commits, and fixed change requests in a project’s software

repositories gives an indication of the scale of the project.

• Projects that have different evolution speeds. As mentioned previously, time-

metadata is one of the important factors in the proposed methods and approach.

It is assumed that the size of data over a project’s lifetime is an indication of the

project’s evolution speed, and therefore, the amount of data over the period of the

project’s lifetime will affect the value of the source code locations.

• Projects that have different number of developers. As mentioned earlier, developer-

metadata is another important factor in the proposed methods and approach. By

selecting projects with different number of developers, the impact of number of

developers on the accuracy of the method and approach that rely on the developer-

metadata will be evaluated.

Based on these criteria, four subject systems were chosen as the subject systems:

• JDT1: The JDT project provides the tool plug-ins that implement a Java integrated

development environment (IDE).

• AspectJ2: The AspectJ project is a simple and practical extension of the Java

programming language that adds aspect-oriented programming (AOP) capabilities

to Java.

1http://www.eclipse.org/jdt/
2http://www.eclipse.org/aspectj/

107

Univ
ers

ity
 of

 M
ala

ya

• Netbeans3: The Netbeans project is an IDE for Java development. It also supports

other languages, in particular PHP, C/C++, and HTML.

• Rhino4: The Rhino project is an implementation of Java-Script developed entirely in

Java and is typically embedded into Java applications to provide scripting capability

to end-users.

Some of the important metrics of these subject systems, such as the numbers of files,

developers and change requests, are shown in Table 5.1. According to the assumption that

the size of data represents the scale of the project, JDT, AspectJ, Netbeans, and Rhino are

treated as large (JDT), medium (Netbeans) and small-scale (AspectJ and Rhino) projects.

On the other hand, the different average sizes of changes per day for the subject systems

indicate differences in their rates of project evolution. Therefore, the effect of time in

weighting the terms for projects with different speeds of evolution would be evaluated.

According to the properties of the selected subject systems, it is expected that, using these

subject systems, the applicability of the proposed methods and the proposed approach on

different scales of projects, different number of developers and different evolution speed

will be shown.

To evaluate the proposed methods and approach, the information recorded in the

VCS5 of the selected subject systems is used as dataset. Also, a set of change requests

which were recorded in the ITS 6 repository of each of the subject systems were selected

as the test set. The details of the test set selection are presented in the next section.

3https://netbeans.org/
4https://developer.mozilla.org/en/docs/Rhino
5Version Control System or source code repository
6Issue Tracking System or bug tracking repository

108

Univ
ers

ity
 of

 M
ala

ya

Table 5.1: Properties of the subject systems

Property
JDT AspectJ Netbeans Rhino

First Commit 2001-05-03 2002-12-17 1999-02-04 1999-04-19
Last Commit 2011-12-15 2012-01-04 2010-06-25 2012-05-04
of Java Files 8308 5998 1375 422
of Commits 162321 37232 67216 9079
of Developers 58 8 175 18
Avg. of Changes per Day 48.8 11.26 16.16 1.9
of Reported Change Requests 47265 2554 185578 834
Avg. of Change Requests per Day 12 0.77 44.62 0.17
of Fixed Change Requests 21466 1598 69651 617
Avg. of Fixed Change Requests per
Day

5.5 0.48 16.74 0.13

5.1.2 Object Systems

As mentioned above, a set of change requests which were reported to each subject system

are selected to evaluate the proposed methods and the proposed approach using the

subject systems. Typically, all reported change requests are recorded in the Issue Tracking

System (ITS) of the projects. ITS is a software repository that records and tracks change

requests reported to the project. To select the test sets of change requests for experimental

evaluation of the proposed methods and approach, all the change requests reported to ITS

of the selected subject systems were investigated. From the project’s ITS, only the change

requests marked as FIXED were collected. Since, this set of change requests is already

resolved, a set of source code locations are modified to satisfy the requests. Thus, this set

of source code locations are considered as the oracle set7. Accordingly, the fixed change

requests of subject systems are investigated to select suitable test sets.

The investigation of feature location literature showed that there is no standard for

the optimal test set size for evaluating a feature location approach. In most of the previous

feature location research studies, a few change requests from a specific release, meaning

a specific period of project lifecycle, were selected as a test set to evaluate an approach

7Oracle set is the answer set for the test set. This set is used as the control to find how accurately the
approach can find the source code locations for the change request which exists in the test set.

109

Univ
ers

ity
 of

 M
ala

ya

(Poshyvanyk et al., 2007; Bacchelli et al., 2010). As discussed in Chapter 1, the change

requests reported in different periods of the project lifecycle may have different goals and

requirements. Therefore, to avoid evaluating the approach in a specific period of the project

lifecycle where confounding conditions may occur and also to assess the applicability of

the proposed methods and approach at different periods of project lifecycle, the change

requests were randomly chosen from all of the fixed change requests of subject systems

as the test set. Furthermore, randomly selecting the change requests for the test sets will

demonstrate the overall performance of the approach on the subject systems. The number

of randomly selected change requests in this study is 200 change requests. This value is

chosen as it is more than that used by Poshyvanyk et al. (Poshyvanyk et al., 2007) (three

from Eclipse and five from Mozilla) but less than that used by Zhou et al. (Zhou et al.,

2012) (3000 from Eclipse).

To select the test set from the fixed change requests, first, a list of IDs of the fixed

change requests was created using a search on the status of the reports in the ITS repository.

Then, the corresponding change requests were downloaded and stored in XML format.

The benefit of downloading XML format of the change request is having specific tags

for each entity of change request that simplify the process of analyzing the content of the

request. In the next step, there is a need to link the fixed change request to the set of source

code locations that were modified to satisfy the requests. There is no default link between

the change requests and the modified source code locations, due to the disconnection of the

software repositories during the project lifetime. Thus, the actual source code locations

which are modified to support the fixed change request are not known. Accordingly, to find

the modified locations that make the oracle set for the test set, the fixed change requests

need to be assigned and linked to the corresponding source code locations.

To link the fixed change requests to the corresponding source code locations, a number

110

Univ
ers

ity
 of

 M
ala

ya

of ways are used (Anvik et al., 2006; Corley, Kraft, Etzkorn, & Lukins, 2011; Shokripour

et al., 2013). The first way is from the patches8 attached to the change requests. In

this way, the patches are examined to extract the source code location information. If

the change request does not have an attached patch, the next way is investigating the

comments of change request that refer to the specific commit ID9 in the VCS10 of the

software project. Typically, when the developer resolves a change request, she/he puts the

ID number of commit in the comment of the change request in the ITS. If none of the

previous ways leads us to the location of the change request, the commit messages11 in the

log of the project’s VCS are used to determine the link. In this case, the commit messages

are analyzed to find the change request’s IDs that may appear in the messages. This way

refers to the assumption that the developer may leave the ID of the change request in the

commit message of the VCS when submitting changes to the projects. Although there are

some keywords, such as ‘fix’ and ‘bug’, that developers typically use in conjunction with

the change request IDs, there is no accepted convention.

To detect the bug IDs in commit messages and the commit IDs in the change request

comments, which are both written in natural language, a set of text mining tools are

employed to analyze the context. To detect these IDs in the commit messages or in the

change request comments, a ruled-based Named Entity Recognition (NER) method was

used (Sarawagi, 2008). To apply NER, the NE transducer component of ANNIE12 plug-in

8A patch is a text file that contains the lines that have been removed and added to a source code file. In
short, it is a text file that includes the modifications made to a specific file in the project. Patch is frequently
used for updating of source code to a newer version.

9The action of saving the changes sent to a software project is known as committing the changes. Any
changes in the source of project is stored in a unique commit that has a specific number as its ID.

10Version Control System
11For any change in the source of project, the developer who made the change should leave a message to

explain the reasons of changing.
12http://www.aktors.org/technologies/annie/

111

Univ
ers

ity
 of

 M
ala

ya

of GATE13 (Cunningham, Maynard, Bontcheva, & Tablan, 2002) was employed that uses

JAPE14 grammars to define the rules of detecting the specific entities. The rules are

defined based on the results of the various steps of text analyzing such as part of speech

(POS) tagger and morphological analysis, or a combination of these steps.

To find the identified rules in the context, the commit message, the comment of the

change request, and the summary and description of the change request are analyzed by

the text mining tools. Accordingly, first of all, the whole text was split into sentences by

the sentence splitter component of ANNIE. Next, the tokenizer component was used to

separate the terms and symbols into tokens. Then, POS tagger component was employed

to determine the roles of the terms in the sentences. In this step, the change request ID

numbers and the commit ID numbers are extracted from the context of commit message

and change request comments, respectively, by using the identified rules in NE transducer

component.

In the next step, the extracted ID numbers are compared with the collected bug report

IDs to improve the confidence of the results obtained from NER. For ID which is matched

with an ID in the list, the date of the commit is also compared with the creation and

resolution date of the change request. For the case that the date of the commit is after

the creation date of the change request or before the resolution date of the request, the

user ID of the committer and user ID of the fixer of the change request are compared.

It is common that the developers have different user names in the VCS and the ITS. To

address this issue, we used a manually created mapping of user names from two systems

when determining a match. In the case that all these comparisons indicate the correct

match, the locations which are changed in the desired commit were linked to the change

13http://gate.ac.uk/
14Jolly And Pleasant Experience

112

Univ
ers

ity
 of

 M
ala

ya

request. From the fixed change requests that are linked to the correct locations, 200 change

requests were randomly selected as the test set and their associated source code locations

were considered as the oracle set. Appendix E lists the IDs of the selected change requests

as the test set for each of the subject systems.

5.1.3 Comparison Systems

The results of the experiments that will be conducted for evaluating the proposed methods

and the proposed approach need to be compared with existing feature location approaches.

Accordingly, the feature location literature was reviewed to find suitable approaches or

methods to assess different aspects considered in the proposed methods and approach.

According to the recent feature location survey in (Dit et al., 2013), Information Retrieval

(IR) is the most commonly used feature location method for analyzing the text data recorded

in historical software repositories. Many models have been used in prior IR-based feature

location research studies. The popular IR models, i.e. Smoothed Unigram Model (SUM)

(Rao & Kak, 2011), Latent Dirichlet Allocation (LDA) (Lukins et al., 2010), Latent

Semantic Indexing (LSI) (Poshyvanyk et al., 2007), and Vector Space Model (VSM)

(Zhou et al., 2012), are described in Appendix B.

The performance and accuracy of these IR models for locating software features were

evaluated by Rao and Kak (Rao & Kak, 2011), Zhou et al. (Zhou et al., 2012), and Wang et

al. (S. Wang et al., 2011). According to these research studies, SUM and VSM obtained

the highest accuracy among IR-based feature location methods. Correspondingly, to

evaluate the proposed methods and the proposed approach, SUM and VSM are selected

for comparison. These two models are briefly explained again as follows.

Vector Space Model (VSM): VSM analyzes text documents in a corpus and measures

their similarity with a query in three steps. First, VSM makes a vector of the terms

appeared in each of the documents. Next, the weights of the terms are determined for

113

Univ
ers

ity
 of

 M
ala

ya

each document. Different term-weighting techniques have been used, with TF-IDF being

the most common (Salton, Wong, & Yang, 1975; Manning et al., 2008). Lastly, the

cosine similarity of document vectors against a vector for the query is calculated and the

documents are indexed based on their similarity with the query. To implement VSM, an

experiment was created in TraceLab15 (Dit, Moritz, & Poshyvanyk, 2012). TraceLab is a

recently published experimentation framework which is used to evaluate feature location

approaches. In this thesis, an experimental approach which was implemented by Dit et

al. (Dit et al., 2012) for utilizing VSM with a TF-IDF term-weighting technique is used.

Hereafter, VSM refers to the VSM approach that utilizes the TF-IDF term-weighting

technique.

Smoothed Unigram Model (SUM): Unigram Model (UM) is a simple case of a

language model where the probability of each term is determined independent of other

terms. UM uses the term count frequencies in each document for calculating the proba-

bilities. The problem of UM assigning a zero probability to a class that is missing one

term of a query (Witten & Bell, 1991) is resolved in Smoothed Unigram Model (SUM) by

measuring the probability of a term in all documents instead of a single document (Bai,

Nie, & Paradis, 2004). In this study, an experiment of SUM with the Dirichlet smoothing

method (Zhai & Lafferty, 2004) implemented in Lingpipe16 API is used to conduct the

evaluation. Hereafter, SUM refers to the SUM approach with the Dirichlet smoothing

method.

Applying the metadata, i.e. time, in the text analysis process of feature location

results in proposing new term-weighting techniques. To evaluate the impact of consider-

ing the metadata in term-weighting process, the proposed methods are evaluated in the

15http://coest.org/coest-projects/projects/tracelab.
16http://alias-i:com/lingpipe/index:html

114

Univ
ers

ity
 of

 M
ala

ya

case of using the proposed term-weighting techniques in compared to the case of using

the baseline term-weighting technique. The popular term-weighting techniques are ex-

plained in Appendix C. The TF-IDF technique is the most commonly used term-weighting

technique in IR-based feature location methods. This technique is explained in details

in Appendix B. TF-IDF deals only with the frequency of appearances of the term in the

document and corpus. Thus, comparison of the proposed methods in the case of using

the proposed term-weighting techniques in comparison to the case of using the TF-IDF

technique reveals the impact of metadata consideration in location identification process.

Furthermore, to assess the other possible impacts of consideration of time-metadata

and developer-metadata in the proposed methods and approach, a set of evaluations are

conducted. In the rest of this section, the specific comparisons that are performed to

evaluate each of the proposed methods and approach are explained.

TiNoFeLo: In light of using time-metadata for feature location in this method, the

TiNoFeLo method is evaluated both with and without the use of time-metadata. Since

time-metadata is used in term-weighting process, TiNoFeLo is evaluated in the case of

using the TATW technique in compared to the case of using the TF-IDF technique. To

conduct this evaluation, first, a version of TiNoFeLo using the TATW technique is applied

to the subject systems (TiNoFeLo). Then, TATW is replaced by the TF-IDF technique,

and the same experiment is performed (TiNoFeLoT F−IDF).

On the other hand, another contribution of this study is the use of only the noun

terms in locating a change request. As mentioned earlier, all the proposed methods and

the proposed approach are restricted to use only the noun terms. Since, the TiNoFeLo

method is the first case that uses only the noun terms for feature location, the impact of

noun usage is evaluated for this method and the results of this evaluation is used for the

next step of this study. To evaluate the use of only noun terms, first, all of the terms were

115

Univ
ers

ity
 of

 M
ala

ya

extracted from the text resources in the software repository and used in the TiNoFeLo

method, which is referred as TiNoFeLoAll−Term. Then, only the noun terms are extracted

from text data and the same experiment was run using those terms.

To summarize all the comparisons that are conducted to evaluate the TiNoFeLo

method, the results of TiNoFeLo are compared with the results of the approaches from

SUM, VSM, TiNoFeLoAll−Term, and TiNoFeLoT F−IDF in order to evaluate the different

aspects of the proposed method.

DeNoFeLo: To evaluate the impacts of developer and time consideration in the

DeNoFeLo method, the results of DeNoFeLo are compared with the first proposed method,

TiNoFeLo. Since the way of dealing with the time in DeNoFeLo is different from that of

TiNoFeLo, the impact of time consideration is evaluated again for the DeNoFeLo method.

To assess the impact of considering time in a developer-based feature location method,

the results of DeNoFeLo are compared with a version of the method that does not take

into account the time-metadata of developers’ activities. This version of the method is

referred to as DeNoFeLoNo−Time.

Furthermore, as it is mentioned in Chapter 4, in regards to the importance of the

keyword terms in analyzing the terms even they were used further in the past, the inverse

of developer frequency is considered in addition to the time difference. Accordingly, the

results of DeNoFeLo are compared with a version of the method that does not have this pa-

rameter and is referred to as DeNoFeLoNo−Keywords. The term-weighting technique which

is used in DeNoFeLoNo−Keywords is similar to the TF-IDF technique. Thus, this compari-

son evaluates DeNoFeLo in the case of using keywords with the baseline term-weighting

technique, TF-IDF. However, instead of using the name of DeNoFeLoT F−IDF , the name

of DeNoFeLoNo−Keywords is used to emphasize on the main goal of this comparison that

focuses on analyzing the impact of keyword consideration in the proposed method.

116

Univ
ers

ity
 of

 M
ala

ya

To summarize the comparison system for the DeNoFeLo method, the results of this

method are compared with the results of the approaches from SUM, VSM, TiNoFeLo,

DeNoFeLoNo−Time, and DeNoFeLoNo−Keywords to evaluate the different aspects in the

proposed method.

TiDeNoFeLo: Since the impacts of consideration of noun, time and developer

are investigated in the evaluation of TiNoFeLo and DeNoFeLo methods; the impacts

of considering these factors are not further evaluated for the TiDeNoFeLo approach.

Thus, here only the impact of combination of two proposed methods in the proposed

approach, TiDeNoFeLo, is evaluated. Accordingly, the results of the proposed approach

are compared with the results of the TiNoFeLo method and the DeNoFeLo method.

Furthermore, the results of TiDeNoFeLo are assessed against the feature location baseline

approaches. Accordingly, the proposed approach is assessed over the time-based feature

location method, TiNoFeLo, the developer-based method, DeNoFeLo, and the location-

based approaches, SUM and VSM.

5.2 Experimental Design

After conducting the experiments of evaluating the proposed methods and approach on

the selected test sets from each of the subject systems, the obtained results are analyzed

from two aspects, i.e. descriptive analysis and statistical analysis. In descriptive analysis,

the results of the evaluation are assessed using a set of metrics presented below, and the

statistical analysis further analyzes the results using the statistical tests and the effect size.

5.2.1 Descriptive Analysis

The proposed methods and the proposed approach are evaluated on the subject systems

using the selected test sets. The selected tests sets are considered as the independent

variables in the experiments. For experimental evaluation, a set of metrics were identified

117

Univ
ers

ity
 of

 M
ala

ya

that are considered as the dependent variables in this experiment. The identified metrics

used in this research are as follows:

• Top N Rank or Likelihood (Rao & Kak, 2011; Zhou et al., 2012): For a new

change request, if top N ranked results contain at least one source code location

where the change request should be fixed, it is counted as a correct answer. This

metric is used to evaluate the accuracy of a feature location approach. In this case,

the higher the value of the metric, the better the accuracy of the feature location

approach.

• Effectiveness (Liu et al., 2007; Poshyvanyk et al., 2007): In feature location,

effectiveness is defined as the position of the first relevant source code location in

the ranked list. Those approaches that rank relevant locations near the top of the

list are deemed more effective because they reduce the number of false positives

a developer has to consider. For this metric, the lower the value, the less effort is

required by the developer, leading to a more effective feature location approach.

• Mean Reciprocal Rank (MRR) (Baeza-Yates & Ribeiro-Neto, 1999): The recip-

rocal rank is the inverse of the rank position of the first relevant location. In fact,

it is the inverse of the effectiveness metric. MRR is the average of the reciprocal

ranks of a set of queries and is calculated using Equation 5.1. In this equation, Q

is the number of queries in the test set, i.e. the number of change requests used for

testing. The higher MRR value, the better the performance of the feature location

approach.

MRR
1
|Q|
|Q|
i1

1
Ranki

(5.1)

118

Univ
ers

ity
 of

 M
ala

ya

• Mean Average Precision (MAP) (Baeza-Yates & Ribeiro-Neto, 1999): MAP is

the mean of the average precisions for a set of queries. Precision is the fraction of

predicted source code locations that are relevant to the given query. It is calculated

using Equation 5.2. P(k) is the precision at the given rank k. The higher MAP value,

the better the feature location performance.

Pk
Numbero f PositiveInstancesInTopkPositions

k
(5.2)

5.2.2 Statistical Analysis

The descriptive analysis of whether one feature location approach outperforms another

one is not enough. A statistical analysis is also needed to determine whether the difference

between the obtained results is significant or not. Due to the sufficiency of the number

of outputs for the accuracy (10 outputs) and effectiveness (more than 60 outputs) metrics,

the statistical analysis is conducted for these two metrics. For two other identified metrics,

MRR and MAP, the evaluation generates only one output that may not be statistically

analyzed. To analyze the accuracy, the results from recommending Top1 to Top10 locations

are used. For the effectiveness metric, the results of the first relevant location for all

change requests in the test sets for a subject system is used. The output of the accuracy

and effectiveness metrics are respectively, the scale and the ordinal variable types.

To identify a suitable statistical test, dependency of the data, whether results are paired

or unpaired, and the normality of the results must be determined (Wohlin et al., 2012).

As this research is dealing with paired data, statistical tests that work on the paired data

are needed. To evaluate the normality of distribution of the results, the Shapiro-Wilk test

based on α = 0.05 is used. A p-value of the Shapiro-Wilk test that is more than α indicates

that the data follows a normal distribution. Furthermore, the values of Skewedness and

119

Univ
ers

ity
 of

 M
ala

ya

Kurtosis are investigated. If the values of Skewness and Kurtosis are between -2 and 2,

the data is considered normally distributed.

For the results that were found as the normally distributed, the paired T-test is used for

statistical comparison of two approaches. In the case of comparing multiple results, the

two-way ANOVA was conducted and a Least Significant Difference (LSD) test was used

as the post hoc test. To statistically analyze the case that an approach is evaluated with or

without one or two factors, a repeated measure ANOVA test -with a Greenhouse-Geisser

correction- is conducted. For results that are not normally distributed, the Wilcoxon test

was conducted for paired data comparison and the Friedman test was used for comparing

multiple results. The significance level of the tests is α = 0.05, meaning that if the p-value

is lower than 0.05, the difference is statistically significant. In the case that the p-value is

equal to α, it can be said that the null hypothesis is rejected with 95% confidence, obtained

by subtracting 1 from α (1 - α).

In addition to assess the statistical significance (the test’s p-value), the effect size of

the difference between the approaches is reported to complement the inferential statistics.

Unlike the statistical significance, effect size is not influenced by the statistical test type

and the sample size. In this research, for the normally distributed data, the effect size

of the Hedges’ g is used, and for the non-normal distributed data, the Cliff’s delta is

calculated17. Hedges’g is a more accurate version of Cohen’s d that adds a correction

factor for small sample sizes. The Hedges’ magnitude is performed using the thresholds

provided by Cohen (Cohen, 1992). The thresholds are |g|<0.2 for “negligible”, |g|<0.5

for “small”, |g|<0.8 for “medium”, and “large” for |g|≥ 0.8. The magnitude of the Cliff’s

delta is assessed using the thresholds provided by Romano (Romano, Kromrey, Coraggio,

& Skowronek, 2006) that consider |delta|<0.147 as “negligible”, |delta|<0.33 as “small”,

17http://softeng.polito.it/software/effsize/

120

Univ
ers

ity
 of

 M
ala

ya

|delta|<0.474 as “medium”, and |delta|≥ 0.474 as “large”.

5.3 Research Questions and Hypotheses Formulation

As mentioned in Chapter 1, the main research question of this thesis investigates whether

consideration of specific characteristics of the text data within the text analysis process

make an improvement in feature location accuracy. To address this research question

and to be more specific, in evaluation of each of the proposed methods and the proposed

approach, a set of research questions along with the contribution of the proposed methods

and the proposed approach are identified in this section. Corresponding to these specific

research questions, a set of null and alternative hypotheses are formulated that need to be

statistically analyzed to demonstrate possible significance of the differences when dealing

with time-metadata, and developer-metadata and also using only the nouns.

In the remaining parts of this section, first in Section 5.3.1, specific research ques-

tions for the TiNoFeLo method and the corresponding null and alternative hypotheses

are formulated. After that, the specific research questions and hypotheses along with

the research questions are formulated for the DeNoFeLo method and the TiDeNoFeLo

approach, in Sections 5.3.2 and 5.3.3, respectively.

5.3.1 Research Questions and Hypotheses of TiNoFeLo Method

As mentioned in Section 5.1.3, a set of evaluations and comparisons needs to be performed

to assess the robustness of the TiNoFeLo method. The main goal of these evaluations is

finding the answers of the following questions:

• Ti.RQ1: Does TiNoFeLo outperform SUM and VSM, as the baseline feature loca-

tion approaches?

• Ti.RQ2: What is the impact of the use of time-metadata in the term-weighting

121

Univ
ers

ity
 of

 M
ala

ya

process for feature location?

• Ti.RQ3: What is the impact of using only noun terms instead of using all types of

terms in feature location process?

These research questions led to identifying a set of null hypotheses which are pre-

sented in Table 5.2.

Table 5.2: Null Hypotheses of TiNoFeLo method

H0,TiNoFeLovs.S UM There is no significant difference between the results of TiNoFeLo and SUM.
H0,TiNoFeLovs.VS M There is no significant difference between the results of TiNoFeLo and VSM.
H0,T ATWvs.T F−IDF There is no significant difference between the results of TiNoFeLo using

TATW technique and using TF-IDF technique.
H0,All−Termsvs.Noun−Terms There is no significant difference between the results of TiNoFeLo when

using all types of the terms, and when using only noun terms.

If a null hypothesis can be rejected with high confidence (95%), the corresponding

alternative hypothesis is supported. The alternative hypotheses are formulated in Table 5.3.

Table 5.3: Alternative Hypotheses of TiNoFeLo method

Ha,TiNoFeLovs.S UM There is significant difference between the results of TiNoFeLo and SUM.
Ha,TiNoFeLovs.VS M There is significant difference between the results of TiNoFeLo and VSM.
Ha,T ATWvs.T F−IDF There is significant difference between the results of TiNoFeLo when using

TATW technique and using TF-IDF technique.
Ha,All−Termsvs.Noun−Terms There is significant difference between the results of TiNoFeLo when using

only noun terms as its input and the results of the method when using all
types of terms.

Statistical testing of these hypotheses demonstrates possible significance of the im-

provements, for the TiNoFeLo method. With regards to the identified metrics in Sec-

tion 5.2.1, the null and alternative hypotheses for either accuracy or effectiveness metrics

are derived analogously from the list of the hypotheses. As mentioned previously, the

output of two other metrics, including MRR and MAP, is only one result that might not

be statistically analyzed.

5.3.2 Research Questions and Hypotheses of DeNoFeLo Method

The goal of evaluating the DeNoFeLo method is to address the following questions:

122

Univ
ers

ity
 of

 M
ala

ya

• De.RQ1: Does DeNoFeLo outperform SUM and VSM, as the baseline feature

location approaches?

• De.RQ2: Does DeNoFeLo, which is a developer-based method, outperform

TiNoFeLo as a time-based feature location method?

• De.RQ3: What is the impact of consideration of time in DeNoFeLo as a developer-

based method?

• De.RQ4: What is the impact of consideration of keywords in DeNoFeLo as a

developer-based method?

Extending from these research questions, a set of null hypotheses were formulated in

Table 5.4. Statistical testing of these hypotheses was used to determine the significance

of the improvements, if any.

Table 5.4: Null Hypotheses of DeNoFeLo method

H0,DeNoFeLovs.S UM There is no significant difference between the proposed developer-
based feature location method, DeNoFeLo, and SUM, as a feature
location baseline approach.

H0,DeNoFeLovs.VS M There is no significant difference between DeNoFeLo and VSM, as
a feature location baseline approach.

H0,DeNoFeLovs.TiNoFeLo There is no significant difference between DeNoFeLo as a developer-
based feature location method and TiNoFeLo as a time-based feature
location method.

H0,DeNoFeLovs.DeNoFeLoNo−Time There is no significant difference between the proposed developer-
based feature location method with time-metadata consider-
ation, DeNoFeLo, and without time-metadata consideration,
DeNoFeLoNo−Time.

H0,DeNoFeLovs.DeNoFeLoNo−Keywords There is no significant difference between the proposed
developer-based feature location method with keywords con-
sideration, DeNoFeLo and without keywords consideration,
DeNoFeLoNo−Keywords.

If a null hypothesis can be rejected with high confidence (95%), then the correspond-

ing alternative hypothesis is supported. With respect to the identified null hypotheses, the

alternative hypotheses for the DeNoFeLo method are formulated in Table 5.5.

Statistical testing of these hypotheses demonstrates possible significance of the im-

provements, for the proposed developer-based method.

123

Univ
ers

ity
 of

 M
ala

ya

Table 5.5: Alternative Hypotheses of DeNoFeLo method

Ha,DeNoFeLovs.S UM There is significant difference between the results of the proposed
developer-based feature location method, DeNoFeLo, and SUM as
the location-based feature location baseline approach.

Ha,DeNoFeLovs.VS M There is significant difference between the results of the proposed
developer-based feature location method, DeNoFeLo, and VSM as
the location-based feature location baseline approach.

Ha,DeNoFeLovs.TiNoFeLo There is significant difference between the results of the DeNoFeLo
method and the TiNoFeLo method as a time-based method.

Ha,DeNoFeLovs.DeNoFeLoNo−Time There is significant difference between the results of the DeNoFeLo
method when considering time-metadata compared with the case of
no time-metadata consideration, DeNoFeLoNo−Time.

Ha,DeNoFeLovs.DeNoFeLoNo−Keywords There is significant difference between the results of the DeNoFeLo
method when considering keywords compared with the case of no
keywords consideration, DeNoFeLoNo−Keywords.

5.3.3 Research Questions and Hypotheses of TiDeNoFeLo Method

Since the TiDeNoFeLo approach is embodied by TiNoFeLo and DeNoFeLo methods, the

robustness of the proposed approach needs to be evaluated in relation to its components,

TiNoFeLo and DeNoFeLo, in addition to comparing with the feature location baseline

approaches. Accordingly, the following research questions are identified:

• TiDe.RQ1: Does TiDeNoFeLo outperform SUM and VSM as the location-based

feature location approaches?

• TiDe.RQ2: Does TiDeNoFeLo outperform TiNoFeLo as a time-based feature lo-

cation method?

• TiDe.RQ3: Does TiDeNoFeLo outperform DeNoFeLo as a developer-based feature

location method?

Along with these questions, the following set of hypotheses was formulated in Ta-

ble 5.6.

With respect to the identified null hypotheses, the alternative hypotheses for the

TiDeNoFeLo approach are formulated in Table 5.7.

124

Univ
ers

ity
 of

 M
ala

ya

Table 5.6: Null Hypotheses of TiDeNoFeLo method

H0,TiDeNoFeLovs.S UM There is no significant difference between the TiDeNoFeLo approach and
SUM as a location-based feature location approach.

H0,TiDeNoFeLovs.VS M There is no significant difference between the TiDeNoFeLo approach and
VSM as a location-based feature location approach.

H0,TiDeNoFeLovs.TiNoFeLo There is no significant difference between the TiDeNoFeLo approach and
TiNoFeLo as a time-based feature location method.

H0,TiDeNoFeLovs.DeNoFeLo There is no significant difference between the TiDeNoFeLo approach and
DeNoFeLo as a developer-based feature location method.

Table 5.7: Alternative Hypotheses of TiDeNoFeLo method

Ha,TiDeNoFeLovs.S UM There is significant difference between the results of the TiDeNoFeLo ap-
proach and the SUM approach.

Ha,TiDeNoFeLovs.VS M There is significant difference between the results of the TiDeNoFeLo ap-
proach and the VSM approach.

Ha,TiDeNoFeLovs.TiNoFeLo There is significant difference between the results of the TiDeNoFeLo ap-
proach and the TiNoFeLo method.

Ha,TiDeNoFeLovs.DeNoFeLo There is significant difference between the results of the TiDeNoFeLo ap-
proach and the DeNoFeLo method.

Rejection of a null hypothesis leads to acceptance of the corresponding alternative

hypothesis. As mentioned previously, the null and alternative hypotheses for either

accuracy or effectiveness metrics are derived from the list of the hypotheses.

5.4 Experimental Execution

In this section, the process of collecting the required data from the subject systems as well

as the way to implement the proposed methods and the proposed approach are explained.

5.4.1 Data Collection and Preparation

As mentioned in Chapter 4, the main data resource which is used in this study to provide the

required data for feature location is the source code of the projects. Moreover, the source

code and its related information are recorded in the VCS (Version Control Repository)

which is one of the most important repositories of the software projects. To collect and

extract the required data from the VCS, some tools were employed.

First, the commit log was downloaded from the VCS of the subject systems. Dif-

125

Univ
ers

ity
 of

 M
ala

ya

ferent projects used different types of VCS repository tools, such as CVS18, Git19, and

Mercurial20. The subject systems employed in this thesis used CVS (JDT and AspectJ),

Git (Rhino), and Mercurial (Netbeans) as their version control systems. We used CVS-

ANALY21 to transfer the data from a project’s VCS to a local repository. CVSANALY

organizes this data based on the source code revisions which include the revision number,

the commit date, and the commit message. Based on the source code revision numbers,

the identifiers were extracted from the source code of the project.

In order to extract the identifiers, first of all, the source code files that were created

or modified in each revision were regenerated using the appropriate VCS commands.

Since, all the subject systems were written in Java programming language, a suitable tool

was employed to extract the identifiers from the generated source code files. Therefore,

JELDoclet22 tool was used to convert the source code files to the JavaDoc XML format.

This conversion makes it possible to extract the identifiers from the source code. From

the generated XML files, the text entities of the <jelclass>, <fields>, <method>, and

<params> tags are extracted to collect the name of classes, fields, methods, and method

parameters, respectively.

The identifiers are typically a concatenation of a set of terms. To decompose an

identifier, the approach recommended by Butler et al. (Butler et al., 2011) was used to

produce a set of terms used to create the identifier. To extract the noun terms from the

decomposed identifiers, ANNIE23 plug-in of GATE24 (Cunningham et al., 2002) was

18http://sourceforge.net/apps/trac/sourceforge/wiki/CVS
19http://sourceforge.net/apps/trac/sourceforge/wiki/Git
20http://sourceforge.net/p/forge/documentation/Mercurial/
21http://metricsgrimoire.github.com/CVSAnalY/
22http://jeldoclet.sourceforge.net/
23http://www.aktors.org/technologies/annie/
24http://gate.ac.uk/

126

Univ
ers

ity
 of

 M
ala

ya

employed. To determine the roles of the decomposed identifiers, part-of-speech (POS)

tagger of ANNIE plug-in was used. The POS tagger was trained by a large corpus taken

from the Wall Street Journal as a training set to make the lexicon and rule set which

are used to tag the input terms. From the output of the POS tagger, the terms that are

labeled as noun (such as NN and NNP) were extracted. Recall that both the complete

identifier and the noun terms of the decomposed identifiers are used as identifier dataset

in this study. For each source code file in the project, the corresponding identifiers and the

noun terms of the decomposed identifiers were used to create the noun index. From the

extracted identifiers in each revision of the source code file, any identifiers that were not

already in the noun index of the associated source code file or developer were added. All

of the entities in the noun index were associated with the corresponding source code file,

time-metadata, and developer-metadata to provide the ability of analyzing the data from

the aspects of location, time, and developer.

5.4.2 Experimental Implementation

The proposed methods, TiNoFeLo and DeNoFeLo, and the proposed approach,

TiDeNoFeLo, were implemented as TraceLab experiments. As mentioned previously,

TraceLab25 is a recently published experimentation framework which is used to evaluate

the feature location approaches. TraceLab is used for creating, conducting, and sharing

experiments on feature location. This framework was used to implement an experimental

approach for each of the proposed methods and the proposed approach. Since, the imple-

mented experiment in TraceLab for the proposed methods and approach is similar with a

few differences, an overall description for the implemented TraceLab experiment for the

proposed methods and approach is presented in the rest of this section.

Figure 5.2 shows an overview of the TraceLab experiment used to implement the

25http://coest.org/coest-projects/projects/tracelab

127

Univ
ers

ity
 of

 M
ala

ya

Figure 5.2: TraceLab experiment for the proposed methods and the proposed approach

proposed methods and approach. This experiment is available online26 for readers wanting

to replicate this work. The data collected from the source code files of each subject system

was preprocessed and refined using the methods that were explained in Section 5.4.1. The

output of this step is a set of identifiers and the noun terms of the decomposed identifiers

with the corresponding time-metadata and developer-metadata extracted from the VCS.

The terms along with their associated metadata, form the input of the TraceLab experiment.

This data was imported using Corpus Importer and Queries Importer components, which

were created by Moritz and his colleagues (Dit et al., 2012). The imported data was used

to calculate the weights of the terms found in the source code files by Term Weighting

component. These weights were used to determine the scores of the source code files in

Location Identification component. The output of this experiment is a ranked list of files

in descending order of the scores based on their relevancy for each change request in the

test set.

The results of these experiments were evaluated using the identified metrics, and

26https://docs.google.com/file/d/0B0sa-hXpOgi JbjYyRzVTei1wZ2M/edit?usp=sharing

128

Univ
ers

ity
 of

 M
ala

ya

compared with the results of SUM, implemented in Lingpip27API, and VSM, implemented

in TraceLab.

5.5 Threats to Validity

Presented in this section are some of the threats to the validity of this study, specifically

threats to the Construct validity (factors that may affect method and approach accuracy),

internal validity (factors that could affect the evaluation results) and threats to the external

validity (factors that affect generalizing the evaluation results).

5.5.1 Construct Validity

The threats to the construct validity concerns the means that are used in the proposed

methods and proposed approach which affect the accuracy assessment as a depiction of

reality.

In the developer-based term-weighting technique, weight of a term may be equal to

zero when the number of developers who used the term in the project is equal to the

frequency of use of the term by a developer. This is due to the use of logarithm for the

#Pr jDevFreqNi,D j expression. In this case, there is a need for a smoothing method to

resolve the zero problem of the developer-based term-weighting technique. There are

several smoothing methods (Zhai & Lafferty, 2004) that could be used to resolve the zero

problem. One of the future works of this study is experimentally evaluating different

smoothing methods to find the appropriate one that improves the developer-based feature

location process as well as resolving the zero problem.

5.5.2 Internal Validity

The threats to the internal validity of this work concern the factors that could affect the

evaluation results. First, in this study, it was assumed that the identifiers were appropriately

27http://alias-i:com/lingpipe/index:html

129

Univ
ers

ity
 of

 M
ala

ya

named, and that the developers adhered to proper programming practices when naming

variables, methods, and classes. In this context, if project developers were to use non-

meaningful names, the effectiveness of the proposed approach would be affected. To

reduce the effect caused by poor naming practices by developers, only projects whose

developers were judged to have generally followed good naming conventions were selected

to be subject systems. Also, the subject systems all fall into the category of software

development tools. Therefore, it is assumed that there is a high probability that the

developers would follow good development practices.

Second, the presented approach is partly based on the content of the new change

request for which source code locations were sought. If the content of the selected

change request is of low quality, meaning that Summary and Description are not well-

defined, then the proposed approach may not be able to identify the correct source code

location. Moreover, if a change request does not provide sufficient information, or provides

misleading information, the effectiveness of the approach would be adversely affected.

However, through manual inspection of a random selection of change requests, it was

found that the number of change requests with low quality or insufficient information was

negligible.

Third, recall that POS tagger component of ANNIE plug-in was used for term

categorization. ANNIE28 is a plug-in of GATE29 (Cunningham et al., 2002) which is an

open-source software supported by the University of Sheffield since 1995. GATE is used

by many researchers and updated to be able to solve almost any text processing problem.

POS of ANNIE is a strange tool for categorizing the terms in sentences. However, this

component was trained using data from the Wall Street Journal, a domain which is not

28http://www.aktors.org/technologies/annie/
29http://gate.ac.uk/

130

Univ
ers

ity
 of

 M
ala

ya

related to software engineering. This may have resulted in some categorization mistakes.

Due to the important role of the noun terms in the proposed approach, the precision of POS

tagger component in term categorization, especially noun determination, could potentially

influence the results of the proposed methods and approach.

The last threat to internal validity is related to the text mining methods used to analyze

the text resources. The text in the information resources does not always conform to proper

grammar. Also, there exists some noisy text in the information resources, such as stack

traces in change requests. This noise can cause the text mining methods to incorrectly

determine the grammatical category of some terms. However, through manual inspection

of a random selection of change requests, it was found that the number of incorrectly

determined categories was negligible.

5.5.3 External Validity

External validity is concerned with whether or not the results of the evaluation can be

generalized to other datasets besides the datasets used in the study. First, all the datasets

used in this work were taken from open-source projects. The nature of the data from open-

source projects may be different from that of the closed-source projects. However, the

effectiveness and performance of the approach was assessed on four open-source projects

that collectively are believed to be good representatives of both projects of different scales

(large, medium and small) and projects with different evolution speeds. Despite this,

it cannot be claimed that these results would be similar for all other open-source or

commercial software projects.

Second, the software projects that were selected met all the factors determined for

selecting the most suitable subject systems. All the subject systems were written in Java

programming language, and they were all software applications that support software

development. This means that all the subject systems fall into a single general software

131

Univ
ers

ity
 of

 M
ala

ya

project domain. It is possible that the obtained results from examining these subject

systems might be different from those found using projects from a different domain

of software projects, such as systems for health care, transportation, or e-commerce.

The evaluation of systems from the other domains might present new issues that are

not present in software applications that support software development. However, it is

believed that this possible difference is minimized by the use of GATE tool that treats

different programming languages in an unbiased manner.

Lastly, the size of the evaluation test sets and the number of subject systems remain

a difficult issue, as there is no accepted standard to follow. The common belief which is

“more is better” may not necessarily yield a rigorous evaluation. In some cases, other

noisy information in a project’s issue tracking repository could enter the data of a test set.

If this issue is not addressed, it may lead to biased results that are positively or negatively

skewed. In this work, 200 fixed change requests were randomly selected from each subject

system. However, this data-set size is not as high as that used by Zhou et al. (Zhou et al.,

2012) nor it is as low as that used by Poshyvanyk et al. (Poshyvanyk et al., 2007). It is

believed that this test set size provides a good compromise between those two sizes of test

set which are used by other works.

5.6 Summary

In this chapter, the details of the setup for evaluating the proposed methods and the

proposed approach were explained. The main part of evaluation setup includes context se-

lection, experimental design, research questions and hypotheses formulation, experimental

execution, and threads to validity.

The context selection comprising the subject systems, object systems and comparison

systems were described in Section 5.1. To determine the subject systems, the open-

source projects were investigated and JDT, AspectJ, Netbeans, and Rhino projects were

132

Univ
ers

ity
 of

 M
ala

ya

selected. From all change requests reported to each of the subject systems, 200 change

requests were randomly selected as the object systems. To evaluate the proposed methods

and approach, the results of the experiments are assessed and compared to the existing

methods and approaches. Specifically, the results of TiNoFeLo method are compared with

SUM, VSM, TiNoFeLoAll−Term, and TiNoFeLoT F−IDF . Then, the results of DeNoFeLo

method are assessed and compared to SUM, VSM, TiNoFeLo, DeNoFeLoNo−Time, and

DeNoFeLoNo−Keywords. Finally, the results of TiDeNoFeLo approach are compared with

the results of the baseline approaches and the proposed methods, i.e. TiNoFeLo and

DeNoFeLo.

Next, Section 5.2 presented the experimental design that analyzes the results of the

experiments from the descriptive and statistical aspects. Descriptive analysis valuates the

results based on the set of metrics, i.e. TopN Rank (accuracy or Likelihood), Effectiveness,

Mean Reciprocal Rank (MRR), and Mean Average Precision (MAP). Then, the descriptive

results are statistically analyzed from the aspects of normality of the results, significance

of the differences between the methods and approaches, and the effect size. Accordingly,

first, the normality of the results is evaluated using Shapiro-Wilk test and Skewedness and

Kurtosis values. Based on the normality evaluation results, suitable comparative tests are

used to assess the significance of the differences between two or more methods/approaches.

In this study, T-test is used to compare two methods or approaches with normal distributed

results. Repeated measure ANOVA test and two-way ANOVA test are used for comparison

of multiple methods or approaches with normal distributed results. For non-normal

distributed results, Wilcoxon test is used for comparison of two methods or approaches,

and Friedman test is used for comparison of multiple methods or approaches. Finally for

effect size assessment, Hedges’ g and Cliff’s delta are used respectively for normal and

non-normal distributed results.

133

Univ
ers

ity
 of

 M
ala

ya

Then, in relation with the identified comparison systems, a set of specific research

questions and hypotheses were formulated for each of the proposed methods and approach

in Section 5.3. Next, how the data was collected from the subject systems and preprocessed

as well as the implementation of the experiments are explained under the experimental

execution in Section 5.4. Finally, in Section 5.5, the threats to validity of the proposed

methods and the proposed approach including the internal and external validities are

explained. Based on all the identified setup settings, a set of experiments are performed

to evaluate the proposed methods and approach. In the next chapter, the obtained results

from the experiments are reported and analyzed based on the descriptive and statistical

analysis.

134

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6: EVALUATION RESULTS AND ANALYSIS

In this chapter, the impacts of considering the metadata of time and developer for lo-

cating the software features, as well as the effects of using only the nouns are assessed.

Accordingly, the proposed methods, TiNoFeLo, DeNoFeLo, and the proposed approach,

TiDeNoFeLo, are experimentally evaluated. As mentioned in Chapter 5, experimental

evaluation is one of typical methodologies to evaluate a proposed approach in software

engineering research area. Following the recommended guideline by Wohlin and his col-

leagues, a set of experiments was conducted (Wohlin et al., 2012). The obtained results

from the experiments are presented and analyzed in this chapter.

The experimental results of TiNoFeLo, DeNoFeLo, and TiDeNoFeLo, are respec-

tively presented in Sections 6.1, 6.2, and 6.3. In each of these sections, first, the evaluation

results including the descriptive and statistical results are reported in separate sections.

Then, the analysis of both the descriptive and statistical results is discussed. Finally,

summary of the achievements and findings in the experimental evaluation are described

in Section 6.4.

6.1 Evaluation of TiNoFeLo Method

This section reports and analyzes the experimental results that measured the effects of time

consideration and noun usage in the proposed method, TiNoFeLo. The settings for the

experimentally evaluation of the TiNoFeLo method were explained in detail in Chapter 5.

The results of the experiments are presented in two main parts including the descriptive

results, Section 6.1.1, and statistical results, Section 6.1.2. In the descriptive analysis of

the results, the obtained results are analyzed from the aspect of the identified metrics (See

Section 5.2.1). After that, the obtained results are statistically analyzed in the next section.

The detailed discussion on the descriptive and statistical results is presented in the last part

135

Univ
ers

ity
 of

 M
ala

ya

of this section with respect to the identified research questions for the TiNoFeLo method.

6.1.1 Descriptive Results

The descriptive results of the experiments performed to evaluate TiNoFeLo method are

reported in this section. The results are reported and analyzed based on the research

questions identified for TiNoFeLo in Section 5.3.1. To remind, these research questions

are represented in Table 6.1.

Table 6.1: Research questions of TiNoFeLo method

Ti.RQ1 Does TiNoFeLo outperform SUM and VSM, as the baseline feature location approaches?
Ti.RQ2 What is the impact of the use of time-metadata in the term-weighting process for feature

location?
Ti.RQ3 What is the impact of using only noun terms instead of using all types of terms in feature

location process?

According to the research questions, first, the results of TiNoFeLo are evaluated by

comparing with the results of the feature location baseline approaches, i.e. SUM and

VSM, in Section 6.1.1.1. Next, in Section 6.1.1.2, the proposed method is evaluated in

terms of using time-metadata in the proposed term-weighting technique. In this case,

the results of TiNoFeLo when using TATW technique are assessed versus the TF-IDF

technique (i.e. TiNoFeLo versus TiNoFeLoT F−IDF). Finally, the impact of using only the

noun terms for feature location is analyzed in Section 6.1.1.3. Accordingly, the results of

TiNoFeLo is assessed when using only the noun terms against using all types of terms

(i.e. TiNoFeLo versus TiNoFeLoAll−Term).

6.1.1.1 TiNoFeLo versus Baseline Approaches

This section presents the descriptive results of the TiNoFeLo method assessment compared

to the feature location baseline approaches that use SUM and VSM. Table 6.2 shows the

results of applying TiNoFeLo, SUM and VSM on the subject systems. The first two

columns of this table list the subject systems and the metrics. To enhance the comparison

136

Univ
ers

ity
 of

 M
ala

ya

process, the last two columns of this table show the differences between the results of

TiNoFeLo, and SUM and VSM, respectively. The results obtained from the experiments

measure three main aspects of accuracy (Top1, Top5, and Top10), performance (MAP),

and effectiveness (Mean Effectiveness, Median Effectiveness, and MRR). The Top1, Top5,

and Top10 metrics summarize the accuracy results of the approaches when recommending

the top 1 to 10 entries from the ranked list of recommended locations.

Table 6.2: Results of TiNoFeLo, SUM and VSM for accuracy, performance and effective-
ness metrics

Project Metric TiNoFeLo SUM VSM Difference
TiNoFeLo
/SUM

Difference
TiNoFeLo
/VSM

Eclipse JDT

Accuracy

Top1 (%) 10.5 3.5 5.5 7 5
Top5 (%) 44 11 17.5 33 26.5
Top10 (%) 54.5 16.5 24 38 30.5

Performance MAP (%) 9 1.8 5.8 7.2 3.2

Effectiveness

MRR (%) 26.4 8.4 12.9 18 13.5
Mean 71 290.2 193.2 -219.2 -122.2
Median 7 75.5 40 -68.5 -33

AspectJ

Accuracy

Top1 (%) 14.5 7 15 7.5 -0.5
Top5 (%) 57 28 36.5 29 20.5
Top10 (%) 77 41 45.5 36 31.5

Performance MAP (%) 12.2 6.3 9.2 5.9 3

Effectiveness

MRR (%) 34.3 17.8 25.4 16.5 8.9
Mean 7.6 38.9 43.1 -31.3 -35.5
Median 4.5 14.5 13.5 -10 -9

Netbeans

Accuracy

Top1 (%) 23.5 10 16 13.5 7.5
Top5 (%) 55.5 34.5 37 21 18.5
Top10 (%) 72 44 50 28 22

Performance MAP (%) 38.6 10.2 25.3 28.4 13.3

Effectiveness

MRR (%) 43.4 24.8 29.1 18.6 14.3
Mean 9.4 30.2 32.3 -20.8 -22.9
Median 3 11 8 -8 -5

Rhino

Accuracy

Top1 (%) 29 18.5 14 10.5 15
Top5 (%) 62 37.5 43.5 24.5 18.5
Top10 (%) 74 54.5 59 19.5 15

Performance MAP (%) 51.5 16.3 32.6 35.2 18.9

Effectiveness

MRR (%) 47 30.4 29.7 16.6 17.3
Mean 6.8 18 16.8 -11.2 -10
Median 3 9 6 -6 -3

In terms of accuracy assessment, TiNoFeLo outperforms SUM on the Top10 ranked

locations by as much as 38%, 36%, 28%, and 20% on the Eclipse JDT, AspectJ, Netbeans,

and Rhino projects, respectively. In comparing to VSM, the TiNoFeLo method obtained

up to 31%, 32%, 22%, and 15% better accuracy for the Eclipse JDT, AspectJ, Netbeans,

137

Univ
ers

ity
 of

 M
ala

ya

Figure 6.1: Results of TiNoFeLo, SUM and VSM for TopN, MAP and MRR metrics

and Rhino projects, respectively.

Figure 6.1 depicts graphs of the accuracy, MAP and MRR results for the TiNoFeLo

and the baseline approaches. As shown in this figure, the accuracy of the TiNoFeLo

method is remarkably better than the SUM and VSM approaches for all the subject

systems.

The performance of TiNoFeLo is also evaluated against the SUM and VSM by

investigating the results of MAP metric. The MAP results indicate the outperformance

of TiNoFeLo over SUM and VSM by up to 35% and 19%, respectively. As mentioned

above, the MAP results are also displayed in Figure 6.1. As shown in this figure, the

performance results of TiNoFeLo are better than the baseline approaches on the subject

systems especially on the Netbeans and Rhino projects.

In terms of effectiveness assessment, the results of MRR, Mean Effectiveness, and

Median Effectiveness are measured. The effectiveness results indicate a significant im-

provement in all the cases. The results for the MRR metric indicate an effectiveness

improvement over both the SUM and VSM. The improvement over SUM for Eclipse JDT,

AspectJ, Netbeans and Rhino are respectively as much as 18%, 17%, 19%, and 17%,

respectively; and the improvement over VSM for these projects are respectively up to

14%, 9%, 14%, and 17%. The graph of these results shown in Figure 6.1 confirms the

considerable improvement made by TiNoFeLo in the effectiveness of feature location on

all the subject systems.

138

Univ
ers

ity
 of

 M
ala

ya

On the other hand, the results of the mean and median of effectiveness also confirm the

effectiveness improvement. As mentioned in Section 5.2.1, low values for these metrics

indicates that less developer effort is required to find a correct source code location in

the retrieved locations list by the method and consequently the more effective method for

feature location. According to this rule, the effectiveness results show that less developer

effort is needed when using TiNoFeLo compared to SUM and VSM. In the worst case,

if SUM is used instead of TiNoFeLo, the developer would need to check on average 219

more locations, and if VSM is used, the developer may need to check 122 more locations

(Eclipse JDT).

The effectiveness results are displayed in Figure 6.2. This figure shows box plot

diagrams for the effectiveness metric for the subject systems. The top and bottom boxes

in these graphs represent the upper and lower quartiles, respectively, and the line between

the boxes represents the median. The whiskers above and below the boxes denote the

maximum and minimum effectiveness values, respectively. Due to the non-normal distri-

bution of the effectiveness values and very high number of outliers that contain extreme

values, the box plot of the effectiveness values cannot be shown properly. Instead, the

“outer fences”1 were temporary removed from the results to make the differences between

the methods/approaches visible in the graphs. Due to the high number of outliers, some

of outlier numbers still remain in the effectiveness results that are shown by the cycle and

star symbols in the box plot diagrams.

In the box plot graphs of effectiveness, low values which represent the positions of

relevant files suggest potentially less effort is needed by a developer to locate relevant

files, because the ranks are among the first results returned by the proposed method. To

remind, the most effective approach for feature location is the approach with the lowest

1The formula for calculating the outer fences is Q3+3×(Q3-Q1).

139

Univ
ers

ity
 of

 M
ala

ya

Figure 6.2: Results of TiNoFeLo, SUM and VSM for effectiveness metric

effectiveness value. Note that the graphs for Eclipse JDT, AspectJ, Netbeans, and Rhino

have different scales as a result of a different number of files in their respective repositories.

This figure shows that for TiNoFeLo, the box plots are smaller and lower than SUM and

VSM. This suggests that developers would potentially require less effort to locate relevant

files for a change request when using TiNoFeLo. The figure also shows that, in general,

the effectiveness of TiNoFeLo is significantly better than the SUM and VSM for all the

subject systems.

6.1.1.2 Impact of Time Consideration

To assess the impact of time consideration in term weighting, the TiNoFeLo method is

evaluated both with and without the use of time-metadata for weighting the noun terms. In

this case, the use of the TATW technique is compared to the use of the TF-IDF technique.

First, a version of TiNoFeLo using the TATW technique is applied to the subject systems,

referred to as the TiNoFeLo. Then, TATW is replaced by TF-IDF and the same experiment

runs which is referred to as the TiNoFeLoT F−IDF . Table 6.3 shows the results of evaluation

comparing the use of TATW, and TF-IDF in TiNoFeLo. This table reports the results of

the experiments measured from the aspects of accuracy, performance and effectiveness. To

enhance the comparison process for the readers, the last column in this table presents the

140

Univ
ers

ity
 of

 M
ala

ya

differences between the results of TiNoFeLo and TiNoFeLoT F−IDF for identified metrics.

Table 6.3: Results of TiNoFeLo using TATW and TF-IDF techniques, for accuracy,
performance and effectiveness metrics

Project Metric TiNoFeLo TiNoFeLo
(TF-IDF)

Difference

Eclipse JDT

Accuracy

Top1 (%) 10.5 9 1.5
Top5 (%) 44 30 14
Top10 (%) 54.5 48.5 6

Performance MAP (%) 9 0.7 8.3

Effectiveness

MRR (%) 26.4 21.4 5
Mean 71 88.1 -17.1
Median 7 10 -3

AspectJ

Accuracy

Top1 (%) 14.5 5.5 9
Top5 (%) 57 42.5 14.5
Top10 (%) 77 63 14

Performance MAP (%) 12.2 6.2 6

Effectiveness

MRR (%) 34.3 22.6 11.7
Mean 7.6 19.8 -12.2
Median 4.5 7 -2.5

Netbeans

Accuracy

Top1 (%) 23.5 16 7.5
Top5 (%) 55.5 46 9.5
Top10 (%) 72 68 4

Performance MAP (%) 38.6 29.6 9

Effectiveness

MRR (%) 43.4 34.5 8.9
Mean 9.4 13.6 -4.2
Median 3 5 -2

Rhino

Accuracy

Top1 (%) 29 27 2
Top5 (%) 62 59.5 2.5
Top10 (%) 74 80 -6

Performance MAP (%) 51.5 56.2 -4.7

Effectiveness

MRR (%) 47 45.4 1.6
Mean 6.8 7.4 -0.6
Median 3 3 0

The accuracy assessment on the Eclipse JDT, AspectJ and Netbeans projects shows

that the use of TATW made an improvement in the accuracy, effectiveness and perfor-

mance. The accuracy results on these subject systems show the improvement on all the

TopN ranked locations. The improvements on the Top10 ranked locations retrieved from

the Eclipse JDT, AspectJ and Netbeans projects are as much as 6%, 14%, and 4%, re-

spectively. For the Rhino project, however, the results of TiNoFeLo using TATW indicate

the improvement for Top1 and Top5; the result of the experiment for the Top10 shows the

141

Univ
ers

ity
 of

 M
ala

ya

Figure 6.3: Results of TiNoFeLo and TiNoFeLoT F−IDF for TopN, MAP and MRR metrics

accuracy reduction as much as 6%. This is likely the result of the low evolution speed of

this project, which is further discussed in Section 6.1.3. Figure 6.3 illustrates the graph

of the results of accuracy for Top1, Top5, and Top10 as well as the results of performance

and effectiveness measured by MAP and MRR. As shown in this figure, the use of the

TATW technique resulted in the accuracy improvements for all of the subject systems

except Rhino.

For the MAP metric, the use of TATW shows an improvement over the TF-IDF

technique between 6% to 9% for JDT, AspectJ and Netbeans. For the Rhino project,

the performance of TF-IDF was found to be better than that of TATW. In terms of

effectiveness assessment, the MRR results show that the use of TATW technique improves

the effectiveness over the use of TF-IDF on the subject systems without any exception.

The improvement is between 2% to 12% that indicates, TATW is more effective than the

TF-IDF technique. The MRR results of the Rhino project show a slight improvement.

The graph of these results shown in Figure 6.3 confirms the improvement made by TATW

in the effectiveness of feature location on all the subject systems.

The effectiveness of TiNoFeLo using TATW is further investigated compared to the

use of TF-IDF by analyzing the results of Mean Effectiveness and Median Effectiveness.

The comparison of the values of mean and median effectiveness reported in Table 6.3 shows

that the results of these metrics follow the same line as MRR results. The effectiveness

comparison shows that TATW is more effective than TF-IDF on all subject systems. This

142

Univ
ers

ity
 of

 M
ala

ya

Figure 6.4: Results of TiNoFeLo and TiNoFeLoT F−IDF for effectiveness metric

indicates that the developer, in the worst case (Eclipse JDT), needs to check 17 locations

more if TF-IDF is used than if TATW is used.

Figure 6.4 shows box plot graphs for the effectiveness results of TiNoFeLo using

TATW and TF-IDF on the subject systems. To remind, low values in the box plots suggest

potentially less effort is needed by a developer to locate features in the relevant source

code files, because the ranks are among the first results returned by the feature location

method. The most effective method/approach for feature location is the one with the

lowest effectiveness value. As explained earlier, the graphs have different scales due to

the different number of files in the subject systems. Due to the non-normal distribution of

the effectiveness values and very high number of outliers that contain extreme values, the

box plot of the effectiveness values cannot be shown properly. Thus, the “outer fences”

were removed from the results and then the box plot diagrams were drawn to make the

differences between the methods visible in the graphs.

As shown in Figure 6.4, the effectiveness results follow the same pattern as that for

the accuracy. For the Rhino project, the differences of the results of effectiveness metrics

reported in Table 6.3 is around zero to two. It means that the use of TATW in TiNoFeLo

on Rhino project is likely as effective as the use of TF-IDF. This exception is likely an

effect of the gradual changes to the Rhino project over time, as compared to more changes

143

Univ
ers

ity
 of

 M
ala

ya

over time for the other projects. This difference would naturally reduce the effect that

time-metadata has in weighting the terms.

Based on these results, it can be concluded that the use of time-metadata in term

weighting makes improvement in the accuracy, performance and effectiveness of feature

location applied on the projects with a medium to high speed of evolution, such as Eclipse

JDT. It means that the use of the TATW technique produces better results for projects with

a higher evolution speed. This conclusion is further discussed in the future.

6.1.1.3 Impact of Noun Usage

To evaluate the impact of using only noun terms, first, all of the terms were extracted from

the text resources in the software repository and used in the TiNoFeLo method with the

TATW technique (TiNoFeLoAll−Terms). Then, only the noun terms were extracted from

the text resources and the same experiment was run using those terms (TiNoFeLo).

Table 6.4 presents the accuracy, performance, and effectiveness results of TiNoFeLo

when using either all of the terms or only the noun terms. Last column in this table shows

the differences between the results of proposed method using all terms and using only

the nouns to enhance the comparison process. As shown in this table, the use of only

the nouns notably improves the accuracy of feature location process. The improvements

on the Top10 ranked locations for Eclipse JDT, AspectJ, Netbeans, and Rhino are by

around 13%, 21%, 24%, and 26%, respectively. Figure 6.5 shows the accuracy graphs

of the evaluation for all of the subject systems. These graphs demonstrate a significant

improvement in the accuracy for the case of using only noun terms.

In terms of performance assessment, the results of MAP metric indicate that the

use of noun-only makes an improvement on all the subject systems. The performance

improvement is between 7% and 49%. On the other hand, the effectiveness of the proposed

method is assessed by investigating the results of MRR, Mean Effectiveness and Median

144

Univ
ers

ity
 of

 M
ala

ya

Table 6.4: Results of TiNoFeLo using only the nouns and all types of terms, for accuracy,
performance and effectiveness metrics

Project Metric TiNoFeLo TiNoFeLo
(All-Term)

Difference

EclipseJDT

Accuracy

Top1 (%) 10.5 5.3 5.2
Top5 (%) 44 32.4 11.6
Top10 (%) 54.5 41.5 13

Performance MAP (%) 9 0.2 8.8

Effectiveness

MRR (%) 26.4 18 8.4
Mean 71 296.9 -225.9
Median 7 13 -6

AspectJ

Accuracy

Top1 (%) 14.5 17.6 -3.1
Top5 (%) 57 41.5 15.5
Top10 (%) 77 56.4 20.6

Performance MAP (%) 12.2 5.3 6.9

Effectiveness

MRR (%) 34.3 28.5 5.8
Mean 7.6 81.6 -74
Median 4.5 8 -3.5

Netbeans

Accuracy

Top1 (%) 23.5 16.5 7
Top5 (%) 55.5 37.8 17.7
Top10 (%) 72 47.9 24.1

Performance MAP (%) 38.6 27.8 10.8

Effectiveness

MRR (%) 43.4 28.3 15.1
Mean 9.4 53 -43.6
Median 3 10 -7

Rhino

Accuracy

Top1 (%) 29 12.8 16.2
Top5 (%) 62 34 28
Top10 (%) 74 47.9 26.1

Performance MAP (%) 51.5 2.4 49.1

Effectiveness

MRR (%) 47 24.2 22.8
Mean 6.8 29.1 -22.3
Median 3 11 -8

Effectiveness. The investigation of the MRR results reveals an improvement as much as

23%, and indicates that the use of only noun terms is more effective than using all of the

terms. Figure 6.5, in addition to demonstrating the accuracy results, displays the MAP

and MRR graphs. As shown in this figure, the use of nouns makes a notable improvement

especially on the Rhino project.

The assessment of the mean and median of the effectiveness results suggest that using

only noun terms leads to less developer effort for finding the correct source code location

for a change request. In the case of using all of the terms, a developer may need to check

145

Univ
ers

ity
 of

 M
ala

ya

Figure 6.5: Results of TiNoFeLo and TiNoFeLoAll−Terms for TopN, MAP and MRR
metrics

Figure 6.6: Results of TiNoFeLo and TiNoFeLoAll−Terms for effectiveness metric

226 more locations in the worst case (Eclipse JDT). Figure 6.6 presents effectiveness box

plot diagrams for using noun terms with TiNoFeLo. As mentioned earlier, due to the

non-normal distribution of the effectiveness values and very high number of outliers that

contain extreme values, the “outer fences” were removed from the results and then the

box plot diagrams were drawn to make the differences between the methods visible in

the graphs. As shown in the effectiveness graphs, the use of only the noun terms notably

improves the effectiveness of the feature location process.

Another benefit to using only the noun terms is on the size of the dataset that needs

to be analyzed for identifying the source code location for new change requests. Table 6.5

shows the number of terms extracted from the data-sources for each project’s dataset,

for both extracting all types of the terms and extracting only the noun terms. As would

be expected, the Difference raw of this table shows that the size of dataset decreased

significantly when extracting only the nouns. For JDT, AspectJ, Netbeans, and Rhino, the

146

Univ
ers

ity
 of

 M
ala

ya

number of terms in the dataset was reduced by 60%, 26%, 39%, and 41%, respectively.

With the reduction in the amount of data that needs to be analyzed, the execution time of

the feature location process naturally decreases.

Table 6.5: Dataset sizes when using all types of terms and only the nouns

JDT AspectJ Netbeans Rhino

All Terms 920760 260170 57390 41052
Noun Terms 364523 192109 35293 24334
Differences 556237

(60.41%)
68061
(26.16%)

22097
(38.5%)

16718
(40.72%)

6.1.2 Statistical Results

In this section, the statistical analysis of the obtained results is reported and interpreted.

First, the normality of the results is investigated to determine the statistical test to be used

for analyzing the statistical significance of the observed improvements from the previous

section. To assess the normality of the results, the values of two criteria, Skewness

and Kurtosis, and one normality test, Shapiro-Wilk, are investigated. For the normal

distributed data, the Skewness and Kurtosis values are between -2 and +2 and the Shapiro-

Wilk p-value is higher than α, which is 0.05. For the Skewness and Kurtosis values which

are more than +2 or less than -2, the data are recognized as the non-normal distributed

data. Also for the Shapiro-Wilk p-value lower than α, (α < 0.05), data are not normally

distributed.

Table 6.6 presents the results of the normality evaluation of TiNoFeLo’s results using

either the TATW technique or TF-IDF technique, and TiNoFeLo using only the noun

terms or all types of terms, as well as the normality evaluation of SUM, and VSM. For

the accuracy metric, due to the values of Skewness, Kurtosis, and Shapiro-Wilk p-value,

all the accuracy results are normal distributed, and therefore a parametric test can be used

for statistical analysis. Therefore, the paired T-test was used for statistical comparison of

147

Univ
ers

ity
 of

 M
ala

ya

Table 6.6: Results of normality test for TiNoFeLo’s experiments

Metric Project Method/ Approach Skewness Kurtosis Shapiro -Wilk

Accuracy

Eclipse JDT

TiNoFeLo -0.971 -0.101 0.133
TiNoFeLoT F−IDF -0.458 -0.703 0.859
TiNoFeLoAll−Terms -0.601 -0.315 0.51
SUM -0.414 -0.666 0.725
VSM -0.755 -0.338 0.462

AspectJ

TiNoFeLo -0.971 0.327 0.371
TiNoFeLoT F−IDF -0.75 -0.28 0.562
TiNoFeLoAll−Terms -0.762 0.114 0.361
SUM -0.551 -0.538 0.742
VSM -0.943 -0.061 0.276

Netbeans

TiNoFeLo -1.01 0.652 0.432
TiNoFeLoT F−IDF -0.509 -0.806 0.486
TiNoFeLoAll−Terms -0.617 -0.701 0.529
SUM -1.009 0.349 0.221
VSM -0.583 -0.712 0.509

Rhino

TiNoFeLo -1.186 1.071 0.17
TiNoFeLoT F−IDF -0.689 -0.089 0.604
TiNoFeLoAll−Terms -0.89 0.416 0.478
SUM -0.281 -0.861 0.895
VSM -0.792 -0.24 0.389

Effectiveness

Eclipse JDT

TiNoFeLo 5.666 34.941 0
TiNoFeLoT F−IDF 11.541 146.133 0
TiNoFeLoAll−Terms 8.604 90.537 0
SUM 2.616 7.157 0
VSM 6.916 66.46 0

AspectJ

TiNoFeLo 5.051 32.607 0
TiNoFeLoT F−IDF 6.188 53.347 0
TiNoFeLoAll−Terms 5.621 42.977 0
SUM 6.08 51.548 0
VSM 4.368 21.919 0

Netbeans

TiNoFeLo 3.922 16.126 0
TiNoFeLoT F−IDF 3.754 15.049 0
TiNoFeLoAll−Terms 3.838 13.588 0
SUM 3.997 22.607 0
VSM 3.325 15.648 0

Rhino

TiNoFeLo 5.618 37.673 0
TiNoFeLoT F−IDF 3.783 15.783 0
TiNoFeLoAll−Terms 4.701 16.728 0
SUM 2.576 7.593 0
VSM 2.137 4.491 0

148

Univ
ers

ity
 of

 M
ala

ya

the two methods/approaches/techniques. In the case of comparing multiple results, the

two-way ANOVA was conducted and a Least Significant Difference (LSD) test was used

as the post hoc test.

On the other hand, according to the normality test for the effectiveness measurement,

the obtained results are non-normally distributed. For example, for the VSM effective-

ness results on the Rhino project, the Skewness and Kurtosis are not in the range of -2

and +2. Also, the Shapiro-Wilk p-value indicates the non-normality of the results. In

general, the effectiveness results are non-normal and need non-parametric tests for sta-

tistical analysis. Therefore, the Wilcoxon test was used for comparing the results of two

methods/approaches/techniques and the Friedman test was used for comparing multiple

cases.

Table 6.7: Results of statistical test for TiNoFeLo comparing with baseline approaches,
SUM and VSM

Metric Project
Two Sample Effect Size

Hypothesis Test Type P-value Type Value

Accuracy

Eclipse JDT
H0,TiNoFeLovs.S UM

T-test

0

Hedgens’ g

2.526
H0,TiNoFeLovs.VS M 0 1.934

AspectJ
H0,TiNoFeLovs.S UM 0 1.655
H0,TiNoFeLovs.VS M 0 0.811

Netbeans
H0,TiNoFeLovs.S UM 0 1.572
H0,TiNoFeLovs.VS M 0 1.27

Rhino
H0,TiNoFeLovs.S UM 0 1.554
H0,TiNoFeLovs.VS M 0 1.109

Effectiveness

Eclipse JDT
H0,TiNoFeLovs.S UM

Wilcoxon

0

Cliff’s delta

0.596
H0,TiNoFeLovs.VS M 0 0.43

AspectJ
H0,TiNoFeLovs.S UM 0 0.477
H0,TiNoFeLovs.VS M 0 0.353

Netbeans
H0,TiNoFeLovs.S UM 0 0.375
H0,TiNoFeLovs.VS M 0 0.313

Rhino
H0,TiNoFeLovs.S UM 0 0.335
H0,TiNoFeLovs.VS M 0 0.304

Table 6.7 shows the statistical analysis on the comparison of TiNoFeLo and the

baseline approaches, SUM and VSM. The statistical test for the accuracy results shows the

rejection of all formulated null hypothesis. This means an acceptance of the corresponding

149

Univ
ers

ity
 of

 M
ala

ya

alternative hypothesis. In the other words, there is a significant difference between

the accuracy of TiNoFeLo comparing to SUM and VSM. Furthermore, to complement

inferential statistics, the effect size values (Hedges’ g and Cliff’s delta) are reported in

Table 6.7. The values of the effect size for the accuracy measurement suggest a medium

to large practical significance on all of the subject systems. Similar results were found

for the effectiveness results which the effectiveness of TiNoFeLo over SUM and VSM is

remarkably significant for all subject systems. The effect size values for the effectiveness

metric indicated a medium to large practical significance difference between TiNoFeLo

and SUM. Comparing to VSM, the effect size values suggest a small to medium practical

significance. In general, the statistical analysis of the obtained results shows that both

the improvements in effectiveness and accuracy of TiNoFeLo over SUM and VSM are

significant and the effect sizes mostly suggest a large practical significance.

Table 6.8: Results of statistical test for TiNoFeLo comparing with TiNoFeLoT F−IDF and
TiNoFeLoAll−Terms

Metric Project
Multiple Sample Two Sample Effect Size
Test
Type

P-
value

Hypothesis Test
Type

P-value Type Value

Accuracy

Eclipse
JDT

Two-
way
ANOVA

0
H0,TiNoFeLovs.TiNoFeLoT F−IDF

LSD

0

Hedgens’
g

0.611
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 0.721

AspectJ 0
H0,TiNoFeLovs.TiNoFeLoT F−IDF 0 0.847
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 1.236

Netbeans 0
H0,TiNoFeLovs.TiNoFeLoT F−IDF 0 0.379
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 1.33

Rhino 0
H0,TiNoFeLovs.TiNoFeLoT F−IDF 0.723* 0.027
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 1.815

Effectiveness

Eclipse
JDT

Friedman

0
H0,TiNoFeLovs.TiNoFeLoT F−IDF

Wilcoxon

0.003

Cliff’s
delta

0.145
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 0.247

AspectJ 0
H0,TiNoFeLovs.TiNoFeLoT F−IDF 0 0.261
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 0.26

Netbeans 0
H0,TiNoFeLovs.TiNoFeLoT F−IDF 0.002 0.136
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 0.335

Rhino 0
H0,TiNoFeLovs.TiNoFeLoT F−IDF 0.393* 0.013
H0,TiNoFeLovs.TiNoFeLoAll−Terms 0 0.436

TiNoFeLo with TATW was also evaluated in terms of term weighting against TF-

IDF, and when using only noun terms instead of all terms. First, these cases are compared

in general with a multiple group analysis. Table 6.8 reports the results of the statistical

150

Univ
ers

ity
 of

 M
ala

ya

analysis of TiNoFeLo comparing to TiNoFeLoT F−IDF and TiNoFeLoAll−Term. Note that

all of the statistical results for the multiple group analysis are less than α (p-value<

0.05). This shows the overall superiority of TiNoFeLo with respect to the accuracy and

effectiveness for feature location. In the other words, TiNoFeLo significantly improves

the process of feature location by using time-aware term-weighting and using only the

noun terms.

Also, a post hoc analysis was conducted to further judge the significance of the differ-

ence for the most important term-weighting and term usage combinations. The selected

pairs of results for comparison are: TiNoFeLo with TiNoFeLoT F−IDF , and TiNoFeLo

using only noun terms with TiNoFeLo using all the terms. As shown in Table 6.8, the

accuracy and effectiveness results of TiNoFeLo and TiNoFeLoT F−IDF are significant for

the Eclipse JDT, AspectJ and Netbeans projects. Furthermore, to complement inferential

statistics, the effect size values (Hedges’ g and Cliff’s delta) are reported in Table 6.8. The

effect size values suggest medium, large and small significance levels for the accuracy

results on the Eclipse JDT, AspectJ and Netbeans projects, respectively. For the effec-

tiveness, the effect size values indicate the negligible to small significance levels for those

subject systems.

The statistical analysis for the Rhino project (marked with an asterix) indicates no

significant difference between the results of TiNoFeLo and TiNoFeLoT F−IDF . The reasons

of this exception are discussed in Section 6.1.3. Furthermore, the effect size values for both

the accuracy and effectiveness of TiNoFeLo against TiNoFeLoT F−IDF suggest a negligible

difference for Rhino. It means that time consideration on Rhino project does not have a

significant impact since the difference is not considerable.

When using noun terms only, the results of TiNoFeLo is significantly better than using

all of the terms with respect to both the accuracy and the effectiveness measurements.

151

Univ
ers

ity
 of

 M
ala

ya

This means that the improvements are not the result of chance and the differences are

statistically significant. The effect size results for the accuracy metric suggest a large

practical significance for most of the subject systems. For the effectiveness metric, the

effect size values suggest a small to medium practical significance. The analysis of the

obtained descriptive and statistical results is discussed in the next section.

6.1.3 Discussion

In the first step of evaluating the proposed method, TiNoFeLo is assessed over the state-

of-the-art IR-based approaches, i.e. SUM and VSM, which are treated as baseline feature

location approaches. The goal of this assessment is evaluating the proposed time-based

method against the location-based feature location approaches. The analysis of the de-

scriptive results for the TiNoFeLo method compared to the feature location baseline ap-

proaches reveals the superiority of TiNoFeLo in all aspects of accuracy, performance, and

effectiveness. Moreover, the statistical analysis of the results emphasizes the significance

of the improvement made by the TiNoFeLo method in feature location process over the

baseline approaches. It means, the rejection of the null hypotheses of H0,TiNoFeLovs.S UM

and H0,TiNoFeLovs.VS M and consequently, acceptance of the corresponding alternative hy-

potheses. Furthermore, the values of the effect size mostly suggest a large practical

significance for TiNoFeLo when compared with SUM and VSM. These results lead to an-

swering Ti.RQ1 and concluding that TiNoFeLo outperforms the feature location baseline

approaches. In other words, considering the time of use of the noun terms improves the

feature location process over the baseline approaches.

Further comparison of TiNoFeLo with the baseline approaches in terms of time

complexity shows that TiNoFeLo and VSM are both in order of |F| × |T | (F is the number

of source code files in the corpus and T is the average of the number of terms in the

files). The comparison of time complexity of TiNoFeLo and SUM shows that SUM with

152

Univ
ers

ity
 of

 M
ala

ya

Dirichlet smoothing method is in the order of |F| × |q| (F is the number of source code

files in the corpus and q is the average of the number of terms in the given query) (Zhai

& Lafferty, 2004). This means that SUM can be considered as efficient as TiNoFeLo in

terms of time complexity.

Moreover, the impact of time consideration is especially investigated by evaluating

TiNoFeLo when using TATW technique versus the TF-IDF technique. The descriptive

results for considering time in the weighting the terms for the JDT, AspectJ, and Netbeans

projects show an improvement for all of the metrics. The statistical testing of these results

confirms the significance of the differences. It means the rejection of the null hypothesis of

H0,T ATWvs.T F−IDFand acceptance of the corresponding alternative hypothesis. Moreover,

the effect size magnitudes for the accuracy metric suggest a small to large significance

level improvement for these projects. For the effectiveness metric, the effect size suggests

a negligible to small level of improvement. The effect size value has a direct relationship

with the outliers in the data and the outliers lead to a misleading effect size calculation.

In these cases, the effectiveness results contain a large set of outliers, and these cannot be

removed due to their usefulness and importance for evaluating the effectiveness metric.

Therefore, although TATW significantly improves the feature location process, the effect

size cannot reflect the real level of improvement for the effectiveness results.

As discussed previously, the consideration of time in term weighting has a different

effect on feature location for the Rhino project. The results of the evaluation on this

project show that TiNoFeLo is not significantly better than TiNoFeLoT F−IDF for projects

with a low evolution speed. This result shows the effect of the volume of modified data

over time on the time-based feature location process. As indicated in Table 5.1 presented

in Chapter 5, the average number of changes or modifications to source code per day for

JDT is 48.8, for AspectJ is 11.26 and for Rhino is 1.9. This modification speed is one

153

Univ
ers

ity
 of

 M
ala

ya

measure of the evolution speed of the project. Another evolution speed measure is the

number of fixed change requests. The average number of fixed change requests per day

for JDT, AspectJ, and Rhino were found to be 5.5, 0.48, and 0.13, respectively. In other

words, the average number of source code changes for JDT is about 25 times more than

for Rhino, and the average number of fixed change requests for JDT is 55 times more than

for Rhino. This indicates that the evolution speed of Rhino is significantly lower than that

of the other projects. Obviously, the volume of modified data and the number of fixed

change requests over time, will affect a technique based on time-metadata.

In other words, when the volume of the data over time is small, it is possible that

TATW would not provide considerable improvement over other term-weighting tech-

niques. In the project with low evolution speed, the first parameter of the proposed

term-weighting technique, which is consideration of frequency of the term in a set of

terms that were created or modified at the same time, may lead to a negligible value.

This parameter has a direct effect on the results of the TATW and cause to misleading

of the weighting function. In this case, the common term-weighting techniques that only

consider the term frequency in the file or project, i.e. TF-IDF, may obtain better results.

Therefore, the use of TATW is not recommended for projects with a low evolution speed,

such as Rhino.

In general, it can be concluded that the TATW technique outperforms the TF-IDF

technique, specifically for those projects with medium and high evolution speeds. The

results lead to answering Ti.RQ2, the impact of considering time in term-weighting. The

consideration of time-metadata in term-weighting can significantly improve the accuracy,

performance and effectiveness of a feature location method for projects with a medium

to high evolution speed, such as Eclipse JDT. This result is encouraging, as these are the

types of projects that most need assistance with feature location. The novelty of TiNoFeLo

154

Univ
ers

ity
 of

 M
ala

ya

is the consideration of the evolution of the text resources over time. This will naturally

have a greater effect for a project with a medium to high evolution speed, as the weights

of the terms are affected by the volume of modifications to the text resources over time.

In terms of using only the noun terms, the descriptive results show a significant

improvement on all aspects of accuracy, performance, and effectiveness. The results

of the statistical test on the obtained results indicate the significant improvement when

using only the nouns. Furthermore, the effect size values suggest a medium to large

practical significance for the accuracy metric and a small to medium improvement for

the effectiveness metric. As mentioned above, the low value of the effect size for the

effectiveness is the result of the high number of outliers that cause a misleading effect

size. In general, the results indicate a positive impact of noun-only use for improving

the accuracy, performance and effectiveness of a feature location process on projects of

different scales.

Furthermore, the use of only noun terms significantly reduces the dataset sizes thereby

improving the execution time for the feature location process. The data collected from the

software repositories is very noisy. Using only the nouns, instead of all types of terms,

not only provides enough information with which to identifying feature locations, but

also reduces the amount of noisy data (Sarawagi, 2008). As with any feature location

method, the aim is to identify the source code files for resolving a change request. As the

name of a source code file is typically a combination of nouns, these nouns would be the

most useful and meaningful terms in determining the relevant source code locations for a

change request.

On the other hand, in many languages, nouns are known as the most important

category of terms that represents the meaning of a text. Moreover, previous research

on text analysis indicates that nouns carry most of the meaning of a sentence (Bouras

155

Univ
ers

ity
 of

 M
ala

ya

& Tsogkas, 2010). Accordingly, selection of the nouns, which exist in a text, results

in better semantic representation of the text. Another effect of using only noun terms

is the elimination of the need for dimensional reduction and threshold determination

methods, which is one of the challenges in the use of IR models (Crain et al., 2012). Also,

using only the noun terms can summarize the source code data and enhance MSR tasks

(Haiduc, Aponte, & Marcus, 2010). In summary, the use of only noun terms has a high

positive impact in the feature location process and strongly supports the fourth alternative

hypothesis (Ha,All−Termsvs.Noun−Terms). Collectively, these reasons answer Ti.RQ3, the

impact of using only noun terms in feature location process, that noun usage not only

reduces the size of dataset but also significantly improves the accuracy, performance and

effectiveness of a feature location process.

6.2 Evaluation of the DeNoFeLo Method

As explained in Chapter 4, DeNoFeLo is a feature location method that analyzes the

text data from the aspect of developers, who created and modified the data recorded

in software repository, to locate a change request in the source code. The DeNoFeLo

method is supported by a term-weighting technique, TADTW. To experimentally evaluate

the robustness of DeNoFeLo for feature location, a set of experiments were conducted.

In Chapter 5, the required settings for experimentally evaluation of DeNoFeLo were

explained in detail. The descriptive and statistical results obtained from the conducted

experiments are reported in Sections 6.2.1 and 6.2.2, respectively. The descriptive and

statistical results are analyzed in Section 6.2.3 with respect to the identified research

questions for the DeNoFeLo method.

156

Univ
ers

ity
 of

 M
ala

ya

6.2.1 Descriptive Results

In this section, the results of the experiments are evaluated from the aspect of the identified

metrics in Section 5.2.1. The results of the experiments are presented based on the specific

research questions defined for DeNoFeLo in Section 5.3.2. To remind, the DeNoFeLo’s

research questions are represented in Table 6.9.

Table 6.9: Research questions of DeNoFeLo method

De.RQ1 Does DeNoFeLo outperform SUM and VSM, as the baseline feature location approaches?
De.RQ2 Does DeNoFeLo, which is a developer-based method, outperform TiNoFeLo as a time-based

feature location method?
De.RQ3 What is the impact of consideration of time in DeNoFeLo as a developer-based method?
De.RQ4 What is the impact of consideration of keywords in DeNoFeLo as a developer-based method?

With respects to the research questions, first, Section 6.2.1.1 reports the results of

DeNoFeLo by comparing with the results of the feature location baseline approaches,

i.e. SUM and VSM. Next, in Section 6.2.1.2, the proposed developer-based method is

evaluated against the time-based method that proposed in this thesis. In this case, the

results of DeNoFeLo are assessed over TiNoFeLo. Then, as regards with the third and

fourth research questions, the impacts of time and keywords consideration in a developer-

based feature location method are examined in Section 6.2.1.3.

6.2.1.1 DeNoFeLo versus Baseline Approaches

In the first step of method evaluation, the results of DeNoFeLo are compared to the results

obtained from the state-of-the-art IR-based approaches, i.e. SUM and VSM, treated as

the baseline feature location approaches. The goal of this comparison is assessing the

proposed developer-based method against the location-based feature location approaches.

Table 6.10 reports the results of DeNoFeLo, SUM, and VSM for the accuracy (Top1, Top5,

and Top10), performance (MAP) and effectiveness (MRR, Mean, and Median) metrics.

The last two columns of this table show the differences of the results of DeNoFeLo with

the SUM and VSM, respectively, to enhance the comparison process.

157

Univ
ers

ity
 of

 M
ala

ya

Table 6.10: Results of DeNoFeLo, SUM and VSM for accuracy, performance and effec-
tiveness metrics

Project Metric DeNoFeLo SUM VSM Difference
DeNoFeLo
/SUM

Difference
DeNoFeLo
/VSM

Eclipse JDT

Accuracy

Top1 (%) 21.5 3.5 5.5 18 16
Top5 (%) 52 11 17.5 41 34.5
Top10 (%) 71 16.5 24 54.5 47

Performance MAP (%) 9.9 1.8 5.8 8 4.1

Effectiveness

MRR (%) 37.7 8.4 12.9 29.4 24.9
Mean 66 290.2 193.2 -224.2 -127.2
Median 4.5 75.5 40 -71 -35.5

AspectJ

Accuracy

Top1 (%) 13.5 7 15 6.5 -1.5
Top5 (%) 47 28 36.5 19 10.5
Top10 (%) 64 41 45.5 23 18.5

Performance MAP (%) 10.4 6.3 9.2 4.1 1.2

Effectiveness

MRR (%) 29.9 17.8 25.4 12.1 4.5
Mean 22.5 38.9 43.1 -16.4 -20.6
Median 6 14.5 13.5 -8.5 -7.5

Netbeans

Accuracy

Top1 (%) 27.5 10 16 17.5 11.5
Top5 (%) 57.5 34.5 37 23 20.5
Top10 (%) 78.5 44 50 34.5 28.5

Performance MAP (%) 41.8 10.2 25.3 31.6 16.5

Effectiveness

MRR (%) 46.6 24.8 29.1 21.8 17.5
Mean 8.5 30.2 32.3 -21.7 -23.8
Median 3 11 8 -8 -5

Rhino

Accuracy

Top1 (%) 30.5 18.5 14 12 16.5
Top5 (%) 65 37.5 43.5 27.5 21.5
Top10 (%) 86 54.5 59 31.5 27

Performance MAP (%) 54.8 16.3 32.6 38.5 22.1

Effectiveness

MRR (%) 49 30.4 29.7 18.6 19.3
Mean 6 18 16.8 -11.9 -10.8
Median 3 9 6 -6 -3

As shown in Table 6.10, DeNoFeLo is notably more accurate than SUM and VSM for

almost all the TopN ranked locations on the JDT, AspectJ, Netbeans, and Rhino projects.

The DeNoFeLo outperforms the accuracy of SUM as much as 55%, 23%, 35%, and

32%, respectively on the JDT, AspectJ, Netbeans, and Rhino projects. In comparing to

the VSM, the accuracy improvement is up to 47%, 19%, 29%, and 27%, respectively,

for those subject systems. The accuracy results are also illustrated in Figure 6.7. The

superiority of DeNoFeLo over SUM and VSM is demonstrated in this figure especially

for Eclipse JDT.

In terms of performance evaluation, the MAP results indicate a higher performance

for DeNoFeLo over SUM and VSM for all the subject systems. For example, on the

158

Univ
ers

ity
 of

 M
ala

ya

Figure 6.7: Results of DeNoFeLo, SUM and VSM for TopN, MAP and MRR metrics

Eclipse JDT project, DeNoFeLo’s MAP is around five times that of the MAP of SUM and

almost two times the MAP of VSM. Also, on the Netbeans project, the DeNoFeLo’s MAP

is almost four times the MAP of SUM and two times the MAP of VSM. The performance

improvement over SUM is between 8% and 39% and over VSM is around 1% to 22%.

The MAP results are also illustrated in Figure 6.7.

The analysis of the results of effectiveness metrics shows that MRR, Mean and

Median Effectiveness follow the same line as accuracy and performance metrics. For the

MRR metric, DeNoFeLo remarkably outperforms SUM and VSM. The improvement over

SUM is by as much as 29%, 12%, 22%, and 19%, on the JDT, AspectJ, Netbeans, and

Rhino projects, respectively. Comparing to VSM, the improvement is by up to 25%, 5%,

18%, and 19%, on these projects. Figure 6.7 also displays the bar chart diagram of the

MRR results for DeNoFeLo, SUM, and VSM.

Further analysis of the effectiveness by investigating the mean effectiveness values

shows that identifying the location using SUM or VSM requires checking around 12 to

224 and 11 to 127 more locations, respectively, for the subject systems, when compared to

DeNoFeLo. Due to the non-normal distribution of the effectiveness results, in addition to

examining the average number of locations that will need to be checked, the median of the

effectiveness results also needs to be investigated. The median of the number of locations

to check for SUM is 6 to 71 and, for VSM, it is 3 to 36 more locations over the median

of DeNoFeLo. Both the mean and median of the effectiveness indicate that DeNoFeLo is

159

Univ
ers

ity
 of

 M
ala

ya

Figure 6.8: Results of DeNoFeLo, SUM and VSM for effectiveness metric

more effective than SUM and VSM.

The box plot graph of the effectiveness results are shown in Figure 6.8. Low values

in the box plots, which represent the positions of relevant files, suggest potentially less

effort is needed by a developer to locate relevant files, because the ranks are among the

first results returned by the feature location approach. The most effective approach for

feature location is the approach with the lowest effectiveness value. The graphs have

different scales due to the different number of files in the subject systems. The top and

bottom boxes in these graphs represent the upper and lower quartiles, respectively, and

the line between the boxes represents the median. The whiskers above and below the

boxes denote the maximum and minimum effectiveness values, respectively. Due to the

non-normal distribution of the effectiveness values and very high number of outliers that

contain extreme values, the “outer fences”2 were temporary removed from the results

to make the differences between the approaches visible in the graphs. Due to the high

number of outliers, the numbers of outliers still remain in the effectiveness results that

are shown by the cycle and star symbols in the box plot diagrams. As it is shown in

Figure 6.8, the box plot of the effectiveness results of DeNoFeLo is smaller than that of

SUM and VSM which indicates the superiority of the DeNoFeLo effectiveness over the

2The formula for calculating the outer fences is Q3+3×(Q3-Q1).

160

Univ
ers

ity
 of

 M
ala

ya

baseline approaches.

6.2.1.2 DeNoFeLo versus TiNoFeLo

As mentioned earlier, DeNoFeLo analyzes the data from the aspect of developer who

created or modified the data in the repository. To further evaluate the developer-aspect

analysis of data for feature location, the results of DeNoFeLo are assessed by comparing

with the results of TiNoFeLo. As discussed in Section 6.1, the use of TiNoFeLo method

for feature location makes a significant improvement in the accuracy, effectiveness and

performance of location identification process. The aim of this assessment is evaluating

the proposed developer-based method over the time-based method. Table 6.11 presents

the results of DeNoFeLo and TiNoFeLo using the identified metrics.

The accuracy results reported in Table 6.11 shows that DeNoFeLo improves the ac-

curacy of TiNoFeLo on all the TopN ranked locations of the JDT, Netbeans and Rhino

projects. The accuracy improvements for Top10 ranked locations on these subject sys-

tems are by as much as 17%, 7%, and 12%, respectively. For the AspectJ project, the

TiNoFeLo method obtained higher accuracy over the DeNoFeLo method. The reason for

no improvement for the AspectJ project is due to the low number of developers working

on this project: 8 developers (See Table 5.1). In projects that have a low number of

developers, analyzing the source code data from the developer-aspect is more challenging

and leads to poorer accuracy in the developer-based feature location approaches. This

issue is further discussed in Section 6.2.3.

The investigation of MAP results, which highlights the performance of the feature

location approaches, indicates that DeNoFeLo performs better than TiNoFeLo on the JDT,

Netbeans and Rhino projects. Similar to the accuracy results, the DeNoFeLo performance

on the AspectJ project is no better than TiNoFeLo performance. The accuracy and

performance results are displayed in Figure 6.9. As shown in this figure, the accuracy

161

Univ
ers

ity
 of

 M
ala

ya

Table 6.11: Results of DeNoFeLo and TiNoFeLo for accuracy, performance and effec-
tiveness metrics

Project Metric DeNoFeLo TiNoFeLo Difference

Eclipse JDT

Accuracy

Top1 (%) 21.5 10.5 11
Top5 (%) 52 44 8
Top10 (%) 71 54.5 16.5

Performance MAP (%) 9.9 9 0.9

Effectiveness

MRR (%) 37.7 26.4 11.3
Mean 66.1 71 -4.9
Median 4.5 7 -2.5

AspectJ

Accuracy

Top1 (%) 13.5 14.5 -1
Top5 (%) 47 57 -10
Top10 (%) 64 77 -13

Performance MAP (%) 10.4 12.2 -1.8

Effectiveness

MRR (%) 29.9 34.3 -4.4
Mean 22.5 7.6 14.9
Median 6 4.5 1.5

Netbeans

Accuracy

Top1 (%) 27.5 23.5 4
Top5 (%) 57.5 55.5 2
Top10 (%) 78.5 72 6.5

Performance MAP (%) 41.8 38.6 3.2

Effectiveness

MRR (%) 46.6 43.4 3.2
Mean 8.5 9.4 -0.9
Median 3 3 0

Rhino

Accuracy

Top1 (%) 30.5 29 1.5
Top5 (%) 65 62 3
Top10 (%) 86 74 12

Performance MAP (%) 54.8 51.5 3.3

Effectiveness

MRR (%) 49 47 2
Mean 6 6.8 -0.8
Median 3 3 0

Figure 6.9: Results of DeNoFeLo and TiNoFeLo for TopN, MAP and MRR metrics

and performance evaluation on JDT, Netbeans, and Rhino show the outperformance of

DeNoFeLo.

The DeNoFeLo effectiveness, assessed by analyzing the results of MRR, Mean, and

Median metrics, follows the same line as the accuracy and performance of DeNoFeLo.

162

Univ
ers

ity
 of

 M
ala

ya

Figure 6.10: Results of DeNoFeLo and TiNoFeLo for effectiveness metric

The MRR results show up to 11% improvement over TiNoFeLo on the JDT, Netbeans, and

Rhino projects. Figure 6.9 illustrates the bar chart diagrams of the MRR results as well

as the accuracy and MAP results. As shown in this figure, the MRR results of DeNoFeLo

are slightly higher than TiNoFeLo on the subject systems, except AspectJ.

Further investigation of the mean and median effectiveness metrics indicates a slight

effectiveness improvement on JDT, Netbeans, and Rhino. Figure 6.10 presents the box

plot graphs of the effectiveness results. As shown in this figure, the effectiveness of

DeNoFeLo is slightly better than TiNoFeLo for all the subject systems, except AspectJ,

which again is due to the low number of developers working on this project.

6.2.1.3 Impact of Time and Keywords Consideration

One of important considerations in this study is the effect of using time-metadata when

analyzing the data from the developer-aspect for feature location. As mentioned in

Section 4.2, since TiNoFeLo analyzes the data from the time-aspect, all times at which

a term was used in the repository were taken into account when weighting the terms. In

that case, the term could have been used at several different times in different commits

of a file, and consequently, the term would have several different weights based on the

different times it was used. Unlike TiNoFeLo, since DeNoFeLo analyzes the data from the

163

Univ
ers

ity
 of

 M
ala

ya

developer-aspect, only the most recent time of use for a term is considered in DeNoFeLo.

This avoids the combination of time and developer aspects analysis of data as well as

simplifying the weighting process for identifying the related location.

To evaluate the effect of using only the most recent time of a term usage, as an

important parameter in weighting the term by DeNoFeLo, the results of the method that

uses time-metadata (i.e. DeNoFeLo) and the results of the same method but does not use

time-metadata (i.e. DeNoFeLoNo−Time) were investigated. Furthermore, as mentioned in

Section 4.2, an inverse of the developer frequency of use of a term was added to weights

of the terms, as the keyword parameter, to have more weight for the keywords terms that

were used by a developer further in the past. Accordingly, to assess the effect of keywords

in DeNoFeLo, the results of the proposed method without the weighting of keywords,

referred to as DeNoFeLoNo−Keywords, was also investigated.

Table 6.12 presents the results of the proposed method with and without these param-

eters, time and keyword. The results of the experiments show that when time-metadata is

not taken into account (DeNoFeLoNo−Time), the performance of DeNoFeLo for all of the

metrics degraded for almost all the subject systems; the Rhino project being the exception.

The results of DeNoFeLo for Rhino are approximately the same as the DeNoFeLoNo−Time

results (around 0% to 2% difference). The reasons of this issue are discussed in Sec-

tion 6.2.3.

The results of the experiment indicate that by not considering time, the accuracy

of DeNoFeLo is reduced between 6% and 9% for JDT, AspectJ, and Netbeans when

recommending the Top10 locations. The performance and effectiveness of DeNoFeLo

highlighted by the MAP and MRR metrics shows the same achievements. The MAP

and MRR results indicate that the performance and effectiveness of DeNoFeLo were

reduced by up to 8% and 6%, respectively, when the time-metadata was not considered

164

Univ
ers

ity
 of

 M
ala

ya

Table 6.12: Results of DeNoFeLo, DeNoFeLoNo−Time, and DeNoFeLoNo−Keywords for
accuracy, performance and effectiveness metrics

Project Metric DeNoFeLo DeNoFeLo
(No-Time)

DeNoFeLo
(No-
Keywords)

Difference on
No-Time

Difference on
No-Keywords

Eclipse JDT

Accuracy

Top1 (%) 21.5 21 10.5 0.5 11
Top5 (%) 52 44 34.5 8 17.5
Top10 (%) 71 63.5 56.5 7.5 14.5

Performance MAP (%) 9.9 12.2 6.6 -2.3 3.3

Effectiveness

MRR (%) 37.7 35.2 24.4 2.5 13.3
Mean 66 80.9 81.2 -14.9 -15.2
Median 4.5 6 7 -1.5 -2.5

AspectJ

Accuracy

Top1 (%) 13.5 11 6 2.5 7.5
Top5 (%) 47 41 36.5 6 10.5
Top10 (%) 64 58.5 57 5.5 7

Performance MAP (%) 10.4 2 1.7 8.4 8.7

Effectiveness

MRR (%) 29.9 25.4 21.9 4.5 8
Mean 22.5 21.5 24.3 1 -1.8
Median 6 8 9 -2 -3

Netbeans

Accuracy

Top1 (%) 27.5 23 16.5 4.5 11
Top5 (%) 57.5 50.5 47.5 7 10
Top10 (%) 78.5 69.5 66.5 9 12

Performance MAP (%) 41.8 35.5 30.8 6.3 11

Effectiveness

MRR (%) 46.6 40.1 34.7 6.5 11.9
Mean 8.5 12 14.4 -3.5 -5.9
Median 3 4 5 -1 -2

Rhino

Accuracy

Top1 (%) 30.5 31 25 -0.5 5.5
Top5 (%) 65 65 60.5 0 4.5
Top10 (%) 86 86.5 79.5 -0.5 6.5

Performance MAP (%) 54.8 55.6 48.8 -0.8 6

Effectiveness

MRR (%) 49 49.6 43.5 -0.6 5.5
Mean 6 6 7.5 0 -1.5
Median 3 3 3 0 0

Figure 6.11: Results of DeNoFeLo, DeNoFeLoNo−Time, and DeNoFeLoNo−Keywords for
TopN, MAP and MRR metrics

(DeNoFeLoNo−Time).

Figure 6.11 shows the bar chart graphs of the Top1 to Top10, MAP and MRR

results. As shown in this figure, for the JDT, AspectJ and Netbeans projects, the results

of DeNoFeLo were reduced when no time-metadata was considered. Moreover, the

effectiveness results on the mean and median show that using DeNoFeLoNo−Time means

checking an average of 15 more locations in the worst case for these subject systems,

165

Univ
ers

ity
 of

 M
ala

ya

Figure 6.12: Results of DeNoFeLo, DeNoFeLoNo−Time, and DeNoFeLoNo−Keywords for
effectiveness metric

compared to DeNoFeLo. Figure 6.12 presents the box plot graphs of the effectiveness

results and shows the need for more developer effort when using the DeNoFeLoNo−Time

method on most of the subject systems.

Examination of the DeNoFeLo results when both the time and keyword parameters are

removed in term weighting shows that the accuracy, performance and effectiveness are fur-

ther reduced on all the subject systems. According to the results, DeNoFeLoNo−Keywords is

up to 15% less accurate than DeNoFeLo and 7% less accurate than DeNoFeLoNo−Time. The

performance and effectiveness of DeNoFeLoNo−Keywords are respectively up to 11% and

13% lower than DeNoFeLo. It is also up to 7% and 11% lower than DeNoFeLoNo−Time.

Comparing the results presented in Table 6.12 and Figure 6.11 show a degradation in

the performance for DeNoFeLoNo−Keywords over both DeNoFeLo and DeNoFeLoNo−Time

for all the subject systems including the Rhino project. Furthermore, the comparison

of the median of the effectiveness results in Figure 6.12 shows a considerable differ-

ence between DeNoFeLo and DeNoFeLoNo−Keywords on all the subject systems as there

is a need for checking an average of 15 more locations in the worst case when using

DeNoFeLoNo−Keywords for feature location over DeNoFeLo.

On the other hand, the comparison of the DeNoFeLoNo−Time with the feature location

166

Univ
ers

ity
 of

 M
ala

ya

baseline approaches, SUM and VSM, also shows the significant improvement in feature

location. The experiment revealed that DeNoFeLoNo−Time outperforms the accuracy of

both SUM and VSM by as much as 47% and 40%, respectively. Furthermore, the perfor-

mance of the baseline approaches was outperformed by up to 39% and 23%, respectively.

Additionally, DeNoFeLoNo−Time is around 27% and 22% more effective than SUM and

VSM, respectively. In general, the results indicate the significant effect of the considering

developers’ expertise for improving the accuracy of feature location.

6.2.2 Statistical Results

In this section, the statistical analyses of all of the obtained results from the descriptive

analysis of the DeNoFeLo method are discussed in detail. First, normality tests were

conducted to help determining a suitable statistical comparison test. To determine the

normality of the results, the value of the Skewness and Kurtosis and also the p-value of

the Shapiro-Wilk normality test were investigated. For the normal distributed data the

Skewness and Kurtosis values are between -2 and +2 and the Shapiro-Wilk p-value is

higher than α (α = 0.05). Otherwise, the data is considered as the non-normal distributed.

Table 6.13 reports the normality test results for the experiment that performed to

evaluate the DeNoFeLo method. The values of the Skewness and Kurtosis for the accuracy

results are between -2 and +2, thus indicating that the accuracy results are normally

distributed. Furthermore, the p-value of the Shapiro-Wilk confirms the normality of the

accuracy results. Since, the accuracy results are normally distributed, the parametric

paired T-test was conducted for a statistical comparison of the two approaches. Since, the

DeNoFeLo method is evaluated in three different forms3, DeNoFeLo, DeNoFeLoNo−Time,

DeNoFeLoNo−Keywords, for the statistical analysis of this method, the repeated measure

ANOVA with a Least Significant Difference (LSD) test as the post-hoc test was conducted.

3The results of the DeNoFeLo with and without two of main parameters, time and keywords is analyzed.

167

Univ
ers

ity
 of

 M
ala

ya

Table 6.13: Results of normality test for DeNoFeLo’s experiment

Metric Project Method/Approach Skewness Kurtosis Shapiro-Wilk

Accuracy

Eclipse JDT

DeNoFeLo -0.649 -0.485 0.508
DeNoFeLoNo−Time -0.451 -0.61 0.794
DeNoFeLoNo−Keywords -0.304 -1.297 0.566

AspectJ

DeNoFeLo -0.8 -0.163 0.39
DeNoFeLoNo−Time -0.603 -0.785 0.528
DeNoFeLoNo−Keywords -0.643 -0.154 0.758

Netbeans

DeNoFeLo -0.587 -0.419 0.781
DeNoFeLoNo−Time -0.572 -0.665 0.625
DeNoFeLoNo−Keywords -0.622 -0.496 0.604

Rhino

DeNoFeLo -0.653 -0.259 0.683
DeNoFeLoNo−Time -0.723 -0.259 0.515
DeNoFeLoNo−Keywords -0.754 -0.033 0.611

Effectiveness

Eclipse JDT

DeNoFeLo 12.496 164.814 0
DeNoFeLoNo−Time 11.461 144.42 0
DeNoFeLoNo−Keywords 11.502 145.02 0

AspectJ

DeNoFeLo 10.519 116.669 0
DeNoFeLoNo−Time 8.186 73.777 0
DeNoFeLoNo−Keywords 11.413 141.147 0

Netbeans

DeNoFeLo 6.199 43.405 0
DeNoFeLoNo−Time 4.285 19.623 0
DeNoFeLoNo−Keywords 3.56 12.599 0

Rhino

DeNoFeLo 5.469 35.579 0
DeNoFeLoNo−Time 5.318 33.369 0
DeNoFeLoNo−Keywords 4.006 18.943 0

For the effectiveness metric, the Skewness and Kurtosis values indicate the non-

normality of the effectiveness results. The results of the Shapiro-Wilk normality test on

the effectiveness metric show the p-value to be lower than α (p-value < 0.05), meaning

that the effectiveness results are not normally distributed. With respect to the normality

test results, the non-parametric Wilcoxon test was used for comparing the results of two

approaches and the Friedman test was used for comparing multiple results.

Table 6.14 shows the results of the statistical tests for the comparison of the DeNoFeLo

with the SUM, VSM, and TiNoFeLo. The statistical test of the results of DeNoFeLo for

both the accuracy and effectiveness metrics indicates the significance of the differences

with both the SUM and the VSM, as the p-values for all cases are less than 0.05. Thus, all

the corresponding null hypotheses are rejected and the alternative hypotheses are accepted

168

Univ
ers

ity
 of

 M
ala

ya

Table 6.14: Results of statistical test for DeNoFeLo comparing with the baseline ap-
proaches and TiNoFeLo method

Metric Project
Two Sample Effect Size

Hypothesis Test
Type

P-value Type Value

Accuracy

Eclipse JDT

H0,DeNoFeLovs.S UM

T-test

0

Hedgens’ g

3.278
H0,DeNoFeLovs.VS M 0 2.72
H0,DeNoFeLovs.TiNoFeLo 0 0.751

AspectJ

H0,DeNoFeLovs.S UM 0 1.289
H0,DeNoFeLovs.VS M 0 0.806
H0,DeNoFeLovs.TiNoFeLo 0* 0.463

Netbeans

H0,DeNoFeLovs.S UM 0 1.718
H0,DeNoFeLovs.VS M 0 1.432
H0,DeNoFeLovs.TiNoFeLo 0.002 0.208

Rhino

H0,DeNoFeLovs.S UM 0 1.658
H0,DeNoFeLovs.VS M 0 1.269
H0,DeNoFeLovs.TiNoFeLo 0.008 0.284

Effectiveness

Eclipse JDT

H0,DeNoFeLovs.S UM

Wilcoxon

0

Cliff’s delta

0.657
H0,DeNoFeLovs.VS M 0 0.537
H0,DeNoFeLovs.TiNoFeLo 0 0.175

AspectJ

H0,DeNoFeLovs.S UM 0 0.335
H0,DeNoFeLovs.VS M 0 0.233
H0,DeNoFeLovs.TiNoFeLo 0* 0.157

Netbeans

H0,DeNoFeLovs.S UM 0 0.413
H0,DeNoFeLovs.VS M 0 0.352
H0,DeNoFeLovs.TiNoFeLo 0.025 0.055

Rhino

H0,DeNoFeLovs.S UM 0 0.38
H0,DeNoFeLovs.VS M 0 0.348
H0,DeNoFeLovs.TiNoFeLo 0.002 0.052

with high confident level. The effect size results suggest a large practical significance in the

differences of accuracy between DeNoFeLo and the feature location baseline approaches,

SUM and VSM. In terms of the effectiveness assessment, the effect size results for

DeNoFeLo suggest that the significance level of the differences is mostly in the range of

medium to large for the subject systems.

For the comparison of the accuracy and effectiveness of DeNoFeLo and TiNoFeLo,

the statistical test shows the significance of the differences on all the subject systems that

leads to the rejection of the H0,DeNoFeLovs.TiNoFeLo and acceptance of the corresponding

alternative hypothesis. However, the statistical test indicates the significance of the differ-

ences between DeNoFeLo and TiNoFeLo on the AspectJ project, which is marked with

169

Univ
ers

ity
 of

 M
ala

ya

an asterix, the comparison of the mean of the methods’ results indicates that TiNoFeLo

obtained better results. As shown in previous section, this exception is due to the low

number of the developers working on this project. The discussion on the reasons of this

issue is presented in Section 6.2.3.

The effect size results for the accuracy and effectiveness assessment on the AspectJ

project indicate a small practical significance level between the results for DeNoFeLo

and TiNoFeLo. For the comparison of the accuracy of DeNoFeLo and TiNoFeLo on

the other subject systems, the effect size results indicate the significance level to be

between small and medium. The effect size results for effectiveness results suggest that

the significance level of the differences between the DeNoFeLo and TiNoFeLo is in the

range of small to negligible for the JDT, Netbeans, and Rhino projects. As mentioned

earlier, the effect sizes for the effectiveness measurements suggest a lower significance

level when compared with the accuracy measurements, which is due to the non-normal

distribution of the effectiveness results. The effect size value has a direct relationship with

the outliers in the data and the outliers lead to a misleading effect size calculation. In these

cases, the effectiveness results contain a large set of outliers, and these cannot be removed

due to their usefulness and importance for evaluating the effectiveness metric. Therefore,

the effect size cannot reflect the real level of improvement for the effectiveness results.

Table 6.15 presents the results of the statistical analysis for considering the use of

time and keywords in DeNoFeLo. Since, DeNoFeLo is investigated in three different

forms, the repeated measure ANOVA was conducted to investigate the significance of

the difference between adding the two parameters of time and keywords. As shown in

Table 6.15, all the p-values for the multiple group comparison of the accuracy results

indicate a significance of the differences. For the two sample comparison, the p-values of

the pair wise comparisons are reported. All the p-values on the accuracy measurement

170

Univ
ers

ity
 of

 M
ala

ya

Table 6.15: Results of statistical test for DeNoFeLo when time and keywords are not taken
into account

Metric Project
Multiple Sample Two Sample Effect Size

Test
Type

P-value Hypothesis Test
Type

P-value Type Value

Accuracy

Eclipse
JDT

Repeated
Measure
ANOVA

0

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

LSD

0

Hedgens’
g

0.396

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0 0.915

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0 0.597

AspectJ 0

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

0 0.378

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0 0.556

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0.003 0.186

Netbeans 0

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

0 0.424

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0 0.621

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0 0.214

Rhino 0

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

0.005* 0.067

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0 0.305

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0 0.37

Effectiveness

Eclipse
JDT

Friedman

0.001

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

Wilcoxon

0

Cliff’s
delta

0.075

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0 0.223

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0.003 0.122

AspectJ 0

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

0 0.107

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0.007 0.126

H0,eNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0.208* 0.004

Netbeans 0

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

0 0.118

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0 0.194

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0.011 0.006

Rhino 0.003

H0,DeNoFeLo vs.
DeNoFeLo(No-Time)

0.139* 0.016

H0,DeNoFeLo vs.
DeNoFeLo(No-Keywords)

0.001 0.092

H0,DeNoFeLo(No-Time) vs.
DeNoFeLo(No-Keywords)

0 0.162

171

Univ
ers

ity
 of

 M
ala

ya

show significance in the differences. However, the p-value of the statistical test on the

Rhino project indicates the significance of the differences, the comparison of the mean

of accuracy results reveals that DeNoFeLoNo−Time works more accurate than DeNoFeLo

on this project. This issue is due to the low evolution speed of the project which was

discussed in Section 6.1.3. The effect size for the accuracy results on DeNoFeLo versus

DeNoFeLoNo−Time suggests a small practical significance for JDT, AspectJ, and Netbeans.

For the Rhino project, the effect size is negligible. The accuracy effect size indicates the

significance level between small and large for DeNoFeLo versus DeNoFeLoNo−Keywords.

For the effectiveness measurement, all the p-values for the multiple group comparison

show a significance of the differences. For the comparison of the two samples, almost

all the p-values except DeNoFeLoNo−Time versus DeNoFeLoNo−Keywords for AspectJ, show

the significance of the differences. However, the p-value of the statistical test on the

Rhino project indicates the significance of the differences, the comparison of the mean of

effectiveness results reveals that DeNoFeLoNo−Time works more accurate than DeNoFeLo

on this project. For the case of comparing DeNoFeLoNo−Time and DeNoFeLoNo−Keywords

for AspectJ, which is marked with an asterix in the table, the reasons of not significance

of the difference will be discussed in the next section. The effect size for the effectiveness

values shows the significance level of difference between negligible and small which is

likely due to the non-normal distribution of the results.

For the effectiveness results on the Rhino project, the p-value is greater than 0.05,

indicating that the differences are not significant. The effect size also shows a neg-

ligible improvement. In terms of an accuracy assessment for the Rhino project, the

statistical results show a significance of differences. Recall that the accuracy results for

DeNoFeLoNo−Time are around 0% to 2% better than DeNoFeLo, which is very low. Also,

the effect size shows a negligibility of the differences. In general, the statistical analysis of

172

Univ
ers

ity
 of

 M
ala

ya

the results shows that both the improvements in effectiveness and in accuracy for almost

all of the cases are remarkably significant.

6.2.3 Discussion

As mentioned in Chapter 1, in a well-organized software project, each requirement is

implemented in a specific set of source code files and there is a set of project developers

who are related to the source code files and the corresponding requirements. On the other

hand, in the typical text analysis based feature location process, the context of the source

code files is analyzed to find the similarity between the source code files and a desired

requirement or software feature. According to the relationship between the source code

files and the project developers who are working on the files, the context of the files can

also be analyzed from the aspect of developers.

Having two or more developers working on a set of related requirements/features on

the same file shows a concentration within the corresponding file for these requirements,

as well as the importance of the requirements within the file. To find the relation between

the requirements and the developers, the context of the developer’s expertise on the source

code files are analyzed. Consideration of the context of developers’ expertise not only

provides the capability for investigating changes to the source code files during a project

lifetime, but also helps to identify important requirements in these files.

The experimental evaluation of the proposed developer-based method indicates that

DeNoFeLo obtained better results in all respects i.e. accuracy, performance, and effec-

tiveness, when compared to the state-of-the-art of IR-based feature location approaches,

SUM and VSM. These approaches treated as the location-based baseline approaches.

More specifically, the statistical analysis of the accuracy and effectiveness results of the

experiments indicates the significance of differences that lead to the rejection of the null

hypotheses of H0,DeNoFeLovs.S UM and H0,DeNoFeLovs.VS M. Accordingly, the corresponding

173

Univ
ers

ity
 of

 M
ala

ya

alternative hypotheses are supported with respect to the significance of the differences be-

tween the proposed developer-based method, DeNoFeLo, and the location-based baseline

approaches, SUM and VSM. Moreover, the effect sizes mostly suggest a significance level

in the range of medium to large. In general, these results emphasize the positive effect

that investigating developers’ expertise has for feature location. These results lead to an-

swering De.RQ1and concluding that DeNoFeLo outperforms the feature location baseline

approaches. In other words, analyzing the developers’ expertise for locating the software

features results in an improvement in feature location process over the location-based

baseline approaches.

Furthermore, the investigation of time complexity of DeNoFeLo and VSM shows

that both of these approaches are in order of |F| × |T | (F is the number of source code files

in the corpus and T is the average of the number of terms in the files). In comparison

with SUM that uses Dirichlet smoothing method, SUM is in the order of |F| × |q| (F is

the number of source code files in the corpus and q is the average of the number of terms

in the given query) (Zhai & Lafferty, 2004). This means that SUM can be considered as

efficient as DeNoFeLo in terms of time complexity.

Moreover, the results of DeNoFeLo are compared with the results of TiNoFeLo

in order to evaluate the proposed developer-based method compared to the time-based

baseline method. The investigation of these results enhances to find the answer of De.RQ2.

The comparison of the experimental results obtained from DeNoFeLo and TiNoFeLo

shows an improvement in all aspects for most of the cases with two exceptions.

The first exception found in the comparison of DeNoFeLo and TiNoFeLo is related

to the results of the experiment on the AspectJ project. These results show that TiNoFeLo

performs better than DeNoFeLo on AspectJ. This exception is due to the low number of

developers working on the AspectJ project as shown in Table 5.1. In this project, eight

174

Univ
ers

ity
 of

 M
ala

ya

developers are working on a large number of source code files, around 6000 Java files.

This means that the ratio of the developers over the source code locations in this software

project is very low. This makes it challenging to analyze the source code data from the

developer-aspect. In this case, the average size of data in developer’s expertise profiles

is large and the likelihood of similarity of the context of a given change request with

the context of a large size of developers’ expertise will be high. Thus, it is possible to

lead to miscalculation of high similarity between the given change request and irrelevant

source code locations. This issue results in misleading of the feature location method in

identifying the correct source code location and consequently, reduction of the accuracy

of the feature location process.

In the other words, in the developer-based feature location process, the data in source

code file is classified in the developer expertise profiles based on the developers who are

working on the files. Accordingly, a low ratio of the project developers to the source

code files leads the developer-based method to create large sizes of profiles. Finding

the similarity between the data in large size profiles and the desired change request will

challenge the method to identify the related developer expertise profile, hence results in a

low accuracy of DeNoFeLo compared to TiNoFeLo.

The second exception is related to the results of the methods on the Netbeans project.

The results of DeNoFeLo and TiNoFeLo for this subject system are close. Further

investigation of the properties of this project reveals that the number of developers to the

source code files of the project is very high. As mentioned in Section 4.2, in time-based

feature location process, the data recorded in source code files is classified based on time of

usage. Since, the source code files are modified several times during project’s lifetime, the

number of classes in time-based process is high and the size of classes is typically small.

On the other hand, in the project with high ratio of the developers over the source code

175

Univ
ers

ity
 of

 M
ala

ya

files, a developer-based feature location process leads to small sizes of developer expertise

profiles (small sizes of classes). In this case, the size of the classes in developer-based

method will be close to the one in time-based method, and consequently, the performance

of these two methods will be close.

Another interesting finding is related to the obtained results from the Rhino project.

As discussed in Sections 6.1.1.2 and 6.1.3, TiNoFeLo was not able to obtain highly

accurate results for Rhino which is due to the project having a gradual and slow evolution

speed. In contrast, DeNoFeLo obtained a notably good result for this subject system. In

DeNoFeLo, however, time is considered, the classification of the source code data is based

on the developer, not time. In the other words, in DeNoFeLo, the data of Rhino project

is analyzed from the developer-aspect, not the time-aspect. As mentioned earlier, in the

TiNoFeLo method that analyzes the data from the time-aspect, all the times that a term

was used in a file were considered and the value of each term was determined based on the

importance of the term at the usage time. In this case, a term that was used several times

in different commits of a file was separately weighted based on its values in the associated

commits. It was demonstrated in Section 6.1 that consideration of the changes of the data

over time leads to significant improvements in the accuracy of feature location process.

Similar to TiNoFeLo, the DeNoFeLo method considers the changes of the devel-

oper’s expertise over time in developer-based feature location process. However, unlike

TiNoFeLo, only the latest time that a term was used by a developer is considered in the

DeNoFeLo method. In this case, the most recent time when the developer works on the

related subject within a file is taken into account without dealing with the complexity of

determining the value of the term for every usage time. Consideration of the changes

in the source code made by the developer provides the ability of giving more value to

the developer’s recent activities and lower value to the developer’s activities which were

176

Univ
ers

ity
 of

 M
ala

ya

recorded further in the past. This issue avoids the need for threshold determination for

the developer activity which is one of the challenges in bug assignment research area that

results in missing part of developer’s expertise (Shokripour et al., 2014).

The impact of time consideration is further investigated by evaluating the proposed

method with and without time consideration (DeNoFeLo versus DeNoFeLoNo−Time). The

experimental results showed the superiority of DeNoFeLo on the JDT, AspectJ, and

Netbeans projects. On the Rhino project, consideration of time did not improve the

accuracy due to the slow evolution speed of the project. While time of the developer’s

activities is considered in identifying the location, the amount of changes of data over

time affects the accuracy of DeNoFeLo (See Section 6.1). When the changes to the

project over time are small, the use of time in weighting the terms may result in a

degradation of the accuracy. As it was discussed in Section 6.1.3, Rhino has a small average

number of changes per day in comparison to the other subject systems. Furthermore, as

discussed in Section 6.2.2, the results of the statistical analysis reveal the significance of

the differences between DeNoFeLo and DeNoFeLoNo−Time on the subject systems except

Rhino. Moreover, the effect sizes suggest a significance level of small for the accuracy

metric and negligible for the effectiveness metric. As mentioned earlier, due to the non-

normality of the effectiveness results, effect size suggests a little level of significance.

In general, the descriptive and statistical results help to answer the De.RQ3 regarding

the investigation of the impact of time consideration in DeNoFeLo. With respect to the

results for projects like JDT, AspectJ, and Netbeans that have a higher evolution speed, the

use of time shows a significant improvement. However, for projects with low evolution

speed, e.g. Rhino, time consideration results in reduction of the accuracy of the location

identification process.

In order to investigate and find the answer of the last research question, De.RQ4, the

177

Univ
ers

ity
 of

 M
ala

ya

results of DeNoFeLo are compared to the results of DeNoFeLoNo−Keywords. As mentioned

in Section 4.3.2, the keyword refers to the terms that appear in a small set of developer’s

expertise profiles. The descriptive results of the experiments indicate the reduction of

the performance of the proposed method when the keyword factor is removed from the

method. The degradation in the performance is for all the subject systems including the

Rhino and AspectJ projects. The statistical analysis of the obtained results emphasizes

the significance of the differences and the effect size suggests the significance level in the

range of medium to large. The results of this experiment confirm the importance of giving

a higher value to these terms which are used by a small set of developers, even if they have

been used further in the past.

In general, the results of the experiments indicate the significant effect of analyzing

the data from the aspect of developers, who recorded data in the source code files, for

improving the accuracy, performance and effectiveness of feature location process. On

the other hand, the consideration of time enhances a feature location process not only in a

time-based method that analyzes the data from the time-aspect (TiNoFeLo), but also in the

developer-based method that analyzes the data from the developer-aspect (DeNoFeLo). In

summary, it can be concluded that the experiments’ results indicate the superiority of the

developer-based feature location over the time-based and location-based feature location.

6.3 Evaluation of TiDeNoFeLo Approach

The main goal of this thesis is proposing a feature location approach that considers the

differences of the text data recorded in the repository and text data in a natural language

context. As mentioned in Chapter 1, three perspectives are considered in order to improve

the text analysis based feature location. These perspectives deal with the consideration

of time-metadata, and developer-metadata and also the use of noun-only in text analysis

process of feature location. The identified perspectives are separately applied and assessed

178

Univ
ers

ity
 of

 M
ala

ya

in two proposed feature location methods, TiNoFeLo and DeNoFeLo. These two methods

embody the proposed approach, TiDeNoFeLo, to apply all the perspectives to the feature

location in one approach. Accordingly, the proposed approach analyzes the data from

both the aspects of time and developer, and also uses only the noun terms in order to more

accurately locate the software features.

The impacts of considering each of the identified perspectives were assessed in the

previous sections. In this section, the proposed approach, TiDeNoFeLo, is evaluated over

the location-based baseline approaches, i.e. SUM and VSM, the proposed time-based

method, TiNoFeLo, and the proposed developer-based method, DeNoFeLo. To assess

the TiDeNoFeLo approach, a set of experiments were conducted based on the identified

settings in Chapter 5. The obtained descriptive and statistical results of the experiments

are reported in Sections 6.3.1 and 6.3.2, respectively. The discussion on the obtained

results is presented in Section 6.3.3.

6.3.1 Descriptive Results

In this section, the results of the experiments of TiDeNoFeLo are assessed based on the

metrics explained in Section 5.2.1. The descriptive results are analyzed based on the

identified research questions for TiDeNoFeLo in Section 5.3.3. To remind, these research

questions are represented in Table 6.16.

Table 6.16: Research questions of TiDeNoFeLo approach

TiDe.RQ1 Does TiDeNoFeLo outperform SUM and VSM as the location-based feature
location approaches?

TiDe.RQ2 Does TiDeNoFeLo outperform TiNoFeLo as a time-based feature location
method?

TiDe.RQ3 Does TiDeNoFeLo outperform DeNoFeLo as a developer-based feature lo-
cation method?

According to these research questions, the results of the proposed approach are

assessed against the results of SUM, VSM, TiNoFeLo and DeNoFeLo. The goal of

179

Univ
ers

ity
 of

 M
ala

ya

these comparisons is assessing the proposed approach against the location-based, time-

based, and developer-based approaches/methods, respectively. According to the research

questions, in Section 6.3.1.1, the results of TiDeNoFeLo are compared to the results of

the location-based baseline approaches, i.e. SUM and VSM. Next, in Section 6.3.1.2, the

proposed approach is evaluated against the proposed time-based method, TiNoFeLo, and

the proposed developer-based method, DeNoFeLo.

6.3.1.1 TiDeNoFeLo versus Baseline Approaches

In the first step of evaluating the proposed method, the results of TiDeNoFeLo are com-

pared with the results obtained from the state-of-the-art IR-based approaches, SUM and

VSM. Table 6.17 reports the results of TiDeNoFeLo, SUM, and VSM for the accuracy

(Top1 to Top10), performance (MAP) and effectiveness (MRR, Mean and Median) met-

rics. The last two columns of this table show the differences of the results of TiDeNoFeLo

with SUM and VSM, respectively, to enhance the comparison process.

As shown in Table 6.17, TiDeNoFeLo is notably more accurate than SUM and

VSM for the Top1 to Top10 ranked locations on all subject systems. The TiDeNoFeLo

outperforms the accuracy of SUM on Top10 location recommendation as much as 62%,

48%, 42%, and 37%, respectively on the JDT, AspectJ, Netbeans, and Rhino projects.

In comparing to the VSM, the accuracy improvement is up to 54%, 44%, 36%, and

32%, respectively, for those subject systems. The accuracy results are also illustrated in

Figure 6.13. As it can be seen in this figure, TiDeNoFeLo significantly outperforms SUM

and VSM on all the subject systems.

In terms of performance evaluation, the MAP results indicate a higher performance

for TiDeNoFeLo over SUM and VSM for all of the subject systems. For example, on the

Eclipse JDT project, TiDeNoFeLo’s MAP is around six times that of the MAP of SUM

and almost two times the MAP of VSM. Also, on the Netbeans project, the TiDeNoFeLo’s

180

Univ
ers

ity
 of

 M
ala

ya

Table 6.17: Results of TiDeNoFeLo, SUM and VSM for accuracy, performance and
effectiveness metrics

Project Metric TiDeNoFeLo SUM VSM Difference
TiDeNoFeLo
/SUM

Difference
TiDeNoFeLo
/VSM

Eclipse JDT

Accuracy

Top1 (%) 19.7 3.5 5.5 16.2 14.2
Top5 (%) 53.7 11 17.5 42.7 36.2
Top10 (%) 78.2 16.5 24 61.7 54.2

Performance MAP (%) 10.4 1.8 5.8 8.6 4.6

Effectiveness

MRR (%) 38.2 8.4 12.9 29.8 25.3
Mean 59.8 290.2 193.2 -230.4 -133.4
Median 4.5 75.5 40 -71 -35.5

AspectJ

Accuracy

Top1 (%) 16 7 15 9 1
Top5 (%) 62.2 28 36.5 34.2 25.7
Top10 (%) 89.4 41 45.5 48.4 43.9

Performance MAP (%) 14.4 6.3 9.2 8.1 5.2

Effectiveness

MRR (%) 37.5 17.8 25.4 19.7 12.1
Mean 6.7 38.9 43.1 -32.2 -36.4
Median 4 14.5 13.5 -10.5 -9.5

Netbeans

Accuracy

Top1 (%) 33.5 10 16 23.5 17.5
Top5 (%) 64.4 34.5 37 29.9 27.4
Top10 (%) 85.6 44 50 41.6 35.6

Performance MAP (%) 48.7 10.2 25.3 38.5 23.4

Effectiveness

MRR (%) 50.9 24.8 29.1 26.1 21.9
Mean 6.5 30.2 32.3 -23.7 -25.8
Median 3 11 8 -8 -5

Rhino

Accuracy

Top1 (%) 38.3 18.5 14 19.8 24.3
Top5 (%) 73.4 37.5 43.5 35.9 29.9
Top10 (%) 91 54.5 59 36.5 32

Performance MAP (%) 59.3 16.3 32.6 43 26.7

Effectiveness

MRR (%) 52.1 30.4 29.7 21.7 22.4
Mean 5.4 18 16.8 -12.6 -11.4
Median 3 9 6 -6 -3

Figure 6.13: Results of TiDeNoFeLo, SUM and VSM for TopN, MAP and MRR metrics

MAP is almost five times the MAP of SUM and two times the MAP of VSM.

For the MRR metric, which highlights the effectiveness of methods/approaches,

TiDeNoFeLo outperforms SUM and VSM. The improvement in comparing to the SUM

is by as much as 30%, 20%, 26%, and 22%, on the JDT, AspectJ, Netbeans, and Rhino

projects, respectively. In comparing to the VSM, the improvement is by up to 25%, 12%,

181

Univ
ers

ity
 of

 M
ala

ya

Figure 6.14: Results of TiDeNoFeLo, SUM and VSM for effectiveness metric

22%, and 22%, on these projects. Figure 6.13 displays the bar chart diagrams of the

results obtained from the MAP and MRR metrics for TiDeNoFeLo, SUM, and VSM. The

superiority of TiDeNoFeLo over both the SUM and VSM is visible in this figure.

Further analysis of the approach effectiveness is performed by investigating the mean

effectiveness values. The results show that identifying the location using SUM or VSM

requires checking around 13 to 230 and 11 to 133 more locations, respectively, for the

subject systems, when compared to TiDeNoFeLo. Due to the non-normal distribution of

the effectiveness results, in addition to examining the average number of locations that will

need to be checked, the median of the effectiveness results also needs to be investigated.

The median of the number of locations to check for SUM is 6 to 71 locations and, for

VSM, it is 3 to 36 locations more than the median of TiDeNoFeLo. Both the mean and

median of the effectiveness indicate that TiDeNoFeLo is more effective than SUM and

VSM.

The box plot graph of the effectiveness results are shown in Figure 6.14. Low values

in the box plots, which represent the positions of relevant files, suggest potentially less

effort is needed by a developer to locate relevant files, because the ranks are among the

first results returned by the feature location approach. The most effective approach for

feature location is the approach with the lowest effectiveness value. The graphs have

182

Univ
ers

ity
 of

 M
ala

ya

different scales due to the different number of files in the subject systems. To remind, the

top and bottom boxes in these graphs represent the upper and lower quartiles, respectively,

and the line between the boxes represents the median. The whiskers above and below

the boxes denote the maximum and minimum effectiveness values, respectively. Due to

the non-normal distribution of the effectiveness values and very high number of outliers

that contain extreme values, the “outer fences”4 were temporary removed from the results

to make the differences between the approaches visible in the graphs. Due to the high

number of outliers, the numbers of outliers still remain in the effectiveness results that

are shown by the cycle and star symbols in the box plot diagrams. According to the

effectiveness results presented in Table 6.17 and Figure 6.14, TiDeNoFeLo is significantly

more effective than SUM and VSM.

6.3.1.2 TiDeNoFeLo versus TiNoFeLo and DeNoFeLo

In this section, the results of the proposed approach are assessed by comparing with

the proposed time-based and the proposed developer-based methods that embody the

approach. Table 6.18 reports the results of TiDeNoFeLo, TiNoFeLo, and DeNoFeLo for

the accuracy (Top1 to Top10), performance (MAP) and effectiveness (MRR, Mean and

Median) metrics. The last two columns of this table show the differences of the results of

TiDeNoFeLo with the TiNoFeLo and DeNoFeLo, respectively, to enhance the comparison

process.

In Table 6.18, the experimental results of TiDeNoFeLo indicate the outperformance

of this approach over both the TiNoFeLo and DeNoFeLo methods on almost all the cases

for accuracy, performance and effectiveness. The accuracy results of TiDeNoFeLo on

Top10 ranked locations shows the improvements of the accuracy of TiNoFeLo by as much

as 24%, 12%, 14%, and 17% on the Eclipse JDT, AspectJ, Netbeans and Rhino projects,

4The formula for calculating the outer fences is Q3+3×(Q3-Q1).

183

Univ
ers

ity
 of

 M
ala

ya

Table 6.18: Results of TiDeNoFeLo, DeNoFeLo and TiNoFeLo for accuracy, performance
and effectiveness metrics

Project Metric TiDeNoFeLo DeNoFeLo TiNoFeLo Difference
TiDe-
NoFeLo
/DeNoFeLo

Difference
TiDe-
NoFeLo
/TiNoFeLo

Eclipse JDT

Accuracy

Top1 (%) 19.7 21.5 10.5 -1.8 9.2
Top5 (%) 53.7 52 44 1.7 9.7
Top10 (%) 78.2 71 54.5 7.2 23.7

Performance MAP (%) 10.4 9.9 9 0.5 1.4

Effectiveness

MRR (%) 38.2 37.7 26.4 0.5 11.8
Mean 59.8 66.1 71 -6.3 -11.2
Median 4.5 4.5 7 0 -2.5

AspectJ

Accuracy

Top1 (%) 16 13.5 14.5 2.5 1.5
Top5 (%) 62.2 47 57 15.2 5.2
Top10 (%) 89.4 64 77 25.4 12.4

Performance MAP (%) 14.4 10.4 12.2 4 2.2

Effectiveness

MRR (%) 37.5 29.9 34.3 7.6 3.2
Mean 6.7 22.5 7.6 -15.8 -0.9
Median 4 6 4.5 -2 -0.5

Netbeans

Accuracy

Top1 (%) 33.5 27.5 23.5 6 10
Top5 (%) 64.4 57.5 55.5 6.9 8.9
Top10 (%) 85.6 78.5 72 7.1 13.6

Performance MAP (%) 48.7 41.8 38.6 6.9 10.1

Effectiveness

MRR (%) 50.9 46.6 43.4 4.3 7.5
Mean 6.5 8.5 9.4 -2 -2.9
Median 3 3 3 0 0

Rhino

Accuracy

Top1 (%) 38.3 30.5 29 7.8 9.3
Top5 (%) 73.4 65 62 8.4 11.4
Top10 (%) 91 86 74 5 17

Performance MAP (%) 59.3 54.8 51.5 4.5 7.8

Effectiveness

MRR (%) 52.1 49 47 3.1 5.1
Mean 5.4 6.1 6.8 -0.7 -1.4
Median 3 3 3 0 0

respectively. Compared to the DeNoFeLo method, the accuracy is improved by up to 7%,

25%, 7%, and 5% on the subject systems, respectively. Figure 6.15 shows the bar chart

of the accuracy results on all the subject systems. The accuracy diagrams show that in

some cases such as Eclipse JDT, DeNoFeLo works more accurately than TiNoFeLo, and

in some cases such as AspectJ, TiNoFeLo works better. The bar charts of TiDeNoFeLo

results show that the proposed approach is more accurate than both the DeNoFeLo and

TiNoFeLo methods.

In terms of performance evaluation, the MAP results of TiDeNoFeLo indicate an

improvement from 1% to 10% compared to TiNoFeLo and improvement from 0.5% to

7% compared to DeNoFeLo. The effectiveness evaluation on the MRR metric shows

improvements around 3% to 12% compared to TiNoFeLo. The comparison of the MRR

184

Univ
ers

ity
 of

 M
ala

ya

Figure 6.15: Results of TiDeNoFeLo, DeNoFeLo and TiNoFeLo for TopN, MAP and
MRR metrics

Figure 6.16: Results of TiDeNoFeLo, DeNoFeLo and TiNoFeLo for effectiveness metric

results of TiDeNoFeLo and DeNoFeLo indicates an improvement from 1% to 8% on the

subject systems. Figure 6.15 also displays the MAP and MRR diagrams of the obtained

results for this experiment. As shown in this figure the MAP and MRR results of the

TiDeNoFeLo approach are better than that of both the TiNoFeLo and DeNoFeLo methods

in most of the cases.

Further investigation of effectiveness results obtained from the Mean and Median ef-

fectiveness metrics indicates a slight improvement over both the TiNoFeLo and DeNoFeLo

methods. Figure 6.16 presents the box plot diagrams of the effectiveness results. As shown

in this figure, the TiDeNoFeLo approach performs slightly more effective than TiNoFeLo

and DeNoFeLo on the subject systems. This means that the project developer needs to

check an average of 11 more locations in the worst case when using TiNoFeLo, and needs

checking an average of 16 more locations in the worst case when using DeNoFeLo.

185

Univ
ers

ity
 of

 M
ala

ya

6.3.2 Statistical Results

In this section, the statistical analysis of the obtained results from the TiDeNoFeLo

experiments is reported. First, the results of the normality test are reported in Table 6.19.

As reported in this table, the results indicate the normality of the accuracy results and

non-normality of the effectiveness results.

Table 6.19: Results of normality test for TiDeNoFeLo’s experiment

Metric Project Skewness Kurtosis Shapiro-Wilk

Accuracy

Eclipse JDT -0.666 -0.247 0.694
AspectJ -0.826 -0.004 0.496
Netbeans -0.659 -0.375 0.704
Rhino -0.874 -0.257 0.319

Effectiveness

Eclipse JDT 6.866 51.127 0
AspectJ 3.79 16.233 0
Netbeans 5.049 30.68 0
Rhino 6.357 55.272 0

As discussed in Section 5.2.2, the paired T-test is used for comparing two sets of

normal distributed results. In the case of comparing multiple normal distributed results,

the two-way ANOVA was conducted and a Least Significant Difference (LSD) test was

used as the post hoc test. For the non-normal distributed results, the Wilcoxon test was

used for comparing the results of two methods/approaches/techniques and the Friedman

test was used for comparing multiple cases.

Table 6.20 reports the results of the statistical test conducted for comparing

TiDeNoFeLo with baseline approaches. The statistical test for the accuracy results shows

the rejection of the null hypothesis. This means an acceptance of the corresponding al-

ternative hypothesis. In the other words, there is a significant difference in the accuracy

of TiDeNoFeLo comparing to SUM and VSM. Furthermore, the values of the effect size

for the accuracy measurement suggest a large practical significance on all of the subject

systems. Similar results were found for the effectiveness results – which means the ef-

186

Univ
ers

ity
 of

 M
ala

ya

Table 6.20: Results of statistical test for TiDeNoFeLo comparing with baseline approaches,
SUM and VSM

Metric Project
Two Sample Effect Size

Hypothesis Test
Type

P-value Type Value

Accuracy

Eclipse JDT
H0,TiDeNoFeLovs.S UM

T-test

0

Hedgens’ g

3.118
H0,TiDeNoFeLovs.VS M 0 2.632

AspectJ
H0,TiDeNoFeLovs.S UM 0 1.842
H0,TiDeNoFeLovs.VS M 0 1.48

Netbeans
H0,TiDeNoFeLovs.S UM 0 2.135
H0,TiDeNoFeLovs.VS M 0 1.851

Rhino
H0,TiDeNoFeLovs.S UM 0 2.117
H0,TiDeNoFeLovs.VS M 0 1.68

Effectiveness

Eclipse JDT
H0,TiDeNoFeLovs.S UM

Wilcoxon

0

Cliff’s delta

0.707
H0,TiDeNoFeLovs.VS M 0 0.592

AspectJ
H0,TiDeNoFeLovs.S UM 0 0.534
H0,TiDeNoFeLovs.VS M 0 0.398

Netbeans
H0,TiDeNoFeLovs.S UM 0 0.462
H0,TiDeNoFeLovs.VS M 0 0.402

Rhino
H0,TiDeNoFeLovs.S UM 0 0.405
H0,TiDeNoFeLovs.VS M 0 0.379

fectiveness of TiDeNoFeLo over SUM and VSM is remarkably significant for all subject

system. The effect size values for the effectiveness metric indicated a medium to large

practical significance for the subject systems. In general, the statistical analysis of the

obtained results shows that both the improvements in effectiveness and the accuracy of

TiDeNoFeLo over SUM and VSM are significant and the effect sizes mostly suggest a

large practical significance.

The statistical analysis of the results of TiDeNoFeLo compared to TiNoFeLo and

DeNoFeLo is reported in Table 6.21. First, the results are compared in general with a

multiple group analysis. Note that all of the statistical results on both the accuracy and

effectiveness for the multiple group analysis are less than α (p-value < 0.05). This shows

the overall superiority of TiDeNoFeLo with respect to accuracy and effectiveness for

feature location. The post hoc analysis on the accuracy results of TiDeNoFeLo compared

to the both of TiNoFeLo and DeNoFeLo shows the significance of the differences on all

the cases. For the effectiveness results, the post hoc analysis indicates that the differences

187

Univ
ers

ity
 of

 M
ala

ya

Table 6.21: Results of statistical test for TiDeNoFeLo comparing with TiNoFeLo and
DeNoFeLo

Metric Project
Multiple Sample Two Sample Effect Size

Test Type P-value Hypothesis Test
Type

P-value Type Value

Accuracy

Eclipse
JDT

Two-
way
ANOVA

0
H0,TiDeNoFeLovs.TiNoFeLo

LSD

0

Hedgens’
g

0.859
H0,TiDeNoFeLovs.DeNoFeLo 0.015 0.154

AspectJ 0
H0,TiDeNoFeLovs.TiNoFeLo 0 1.842
H0,TiDeNoFeLovs.DeNoFeLo 0 0.773

Netbeans 0
H0,TiDeNoFeLovs.TiNoFeLo 0 0.6
H0,TiDeNoFeLovs.DeNoFeLo 0 0.372

Rhino 0
H0,TiDeNoFeLovs.TiNoFeLo 0 0.686
H0,TiDeNoFeLovs.DeNoFeLo 0 0.359

Effectiveness

Eclipse
JDT

Friedman

0
H0,TiDeNoFeLovs.TiNoFeLo

Wilcoxon

0

Cliff’s
delta

0.216
H0,TiDeNoFeLovs.DeNoFeLo 0.051* 0.001

AspectJ 0
H0,TiDeNoFeLovs.TiNoFeLo 0 0.094
H0,TiDeNoFeLovs.DeNoFeLo 0 0.226

Netbeans 0
H0,TiDeNoFeLovs.TiNoFeLo 0 0.353
H0,TiDeNoFeLovs.DeNoFeLo 0 0.067

Rhino 0.000018
H0,TiDeNoFeLovs.TiNoFeLo 0 0.088
H0,TiDeNoFeLovs.DeNoFeLo 0 0.04

are significant in almost all the cases. On the Eclipse JDT project, it can be said that

TiDeNoFeLo is significantly more effective than DeNoFeLo with 94.9% confidence.

Furthermore, to complement inferential statistics, the effect size values (Hedges’ g

and Cliff’s delta) are reported in Table 6.21. The effect size values for the accuracy

of TiDeNoFeLo against TiNoFeLo suggest a medium to large practical significance for

the subject systems. Compared to DeNoFeLo, the effect size on the accuracy shows the

significance level in the range of negligible to medium. For the effectiveness measurement,

the effect size value reveals negligible to medium effect sizes in the case of comparing

TiDeNoFeLo and TiNoFeLo. Compared to DeNoFeLo, the effect size on the effectiveness

suggests a negligible to small practical significance for the subject systems.

6.3.3 Discussion

As mentioned earlier, the proposed approach combined a time-based method, TiNoFeLo,

and a developer-based method, DeNoFeLo. With respect to the identified research ques-

tions, to assess the robustness of the proposed approach, TiDeNoFeLo was assessed

over the location-based, time-based, and developer-based feature location approaches and

188

Univ
ers

ity
 of

 M
ala

ya

methods. Accordingly, first, the TiDeNoFeLo approach was assessed over the location-

based baseline approaches, SUM and VSM. The analysis of the descriptive results for

the TiDeNoFeLo approach compared to the location-based baseline approaches shows

the superiority of TiDeNoFeLo on all identified metrics. Moreover, the statistical anal-

ysis of the results emphasizes the significance of the differences over the location-based

baseline approaches, SUM and VSM. It means, the rejection of the null hypotheses of

H0,TiDeNoFeLovs.S UM and H0,TiDeNoFeLovs.VS M and consequently, acceptance of the corre-

sponding alternative hypotheses. Furthermore, the values of the effect size mostly suggest

a medium to large practical significance for TiDeNoFeLo when compared with SUM

and VSM. These results lead to answering TiDe.RQ1and concluding that TiDeNoFeLo

outperforms the location-based baseline approaches.

Furthermore, the time complexity of the proposed approach is evaluated against the

baseline approaches. The time complexity of the TiDeNoFeLo approach is the summation

of time complexity of TiNoFeLo and DeNoFeLo. The summation of two similar time

complexity results in the same complexity. Accordingly, TiDeNoFeLo has same time

order with VSM. Also, the comparison of TiDeNoFeLo and SUM shows that SUM can

be considered as efficient as TiDeNoFeLo in terms of time complexity.

Regarding the second research questions identified for the TiDeNoFeLo approach,

the proposed approach is evaluated over the time-based baseline approach, TiNoFeLo.

The descriptive results show that TiDeNoFeLo improves the accuracy, performance, and

effectiveness of TiNoFeLo on all the subject systems. The statistically analysis of the

results indicates the significance of the differences between TiDeNoFeLo and TiNoFeLo.

This means the rejection of the null hypothesis of H0,TiDeNoFeLovs.TiNoFeLo and acceptance

of the corresponding alternative hypothesis. The effect size for the accuracy assessment

suggests a medium to large practical significance and for the effectiveness measurement

189

Univ
ers

ity
 of

 M
ala

ya

indicates the significance level of negligible to medium. The descriptive and statistical

analyses of these results lead to the answer of the TiDe.RQ2 that indicates the superiority

of TiDeNoFeLo over TiNoFeLo that treated as the time-based baseline method.

On the other hand, the comparison of the proposed approach with the developer-

based baseline method, DeNoFeLo, also shows the outperformance of TiDeNoFeLo over

DeNoFeLo. The descriptive results on all the subject systems indicate the improvement of

the results by using TiDeNoFeLo over DeNoFeLo and the statistical tests confirm the sig-

nificance of the differences. Accordingly, the null hypothesis of H0,TiDeNoFeLovs.DeNoFeLo

is rejected and the alternative hypothesis of Ha,TiDeNoFeLovs.DeNoFeLo is supported. The

effect size suggests a practical significance in the range of negligible to medium for the

accuracy evaluation and a significance level in the range of negligible to small for the effec-

tiveness measurement. All these results help to find the answer of the last research question

of TiDe.RQ3 which means that the TiDeNoFeLo approach outperforms DeNoFeLo as a

developer-based baseline feature location method.

The other interesting issues are related to the weaknesses of TiNoFeLo and DeNoFeLo

in addressing the feature location process on different subject systems. First issue is related

to the results of TiNoFeLo on the Rhino project. As it was mentioned in Section 6.1.1.2,

the results of the experiments show that the consideration of time is not able to improve

the feature location process for projects such as Rhino with a low evolution speed. This

exception is due to the low ratio of modified data and the low number of fixed change

requests over time that affect a time-based method. Therefore, the use of time-based

methods is not recommended for projects with a low evolution speed, such as Rhino.

The second issue is related to the results of DeNoFeLo on the AspectJ project. The

experiments on DeNoFeLo assessment, reported in Section 6.2.1.2, reveal the weakness

of this method on locating the features in the source code of the projects with the low

190

Univ
ers

ity
 of

 M
ala

ya

ratio of the developers over the source code files such as the AspectJ project. In this case,

the average size of classes in developer expertise profiles is large and the likelihood of

similarity of a given change request with a large size of profiles will be high. This issue

leads to the reduction of the accuracy of the feature location process.

Both these weaknesses are addressed in the proposed approach by combining

TiNoFeLo and DeNoFeLo. It is due to the analysis of data from both the aspects of

time and developer in the TiDeNoFeLo approach. Based on the experimental results, it

can be concluded that the combination of time and developer-aspect of data analysis in a

noun-based feature location approach makes a significant improvement in the accuracy,

performance and effectiveness of feature location process applied on a large set of differ-

ent software projects with various evolution speeds and various ratio of developers over

source code files.

6.4 Summary

In this thesis, to assess the impacts of analyzing the data from the aspects of time and

developer and also using only the nouns, a large set of experiments were conducted. In

these experiments the impact of time, developer and noun consideration was analyzed

on several software projects with different scales, different number of developers, and

various evolution speeds. The obtained results from the experiments were investigated

from different points of view and the findings were analyzed in depth. Discussion on the

analysis of the findings was explained in Section 6.1.3, 6.2.3, and 6.3.3. Summary of the

results and the interesting findings were reviewed in the rest of this section.

Table 6.22 summarizes the comparison of the results obtained from all the experi-

ments conducted for evaluating the proposed methods and approach. As explained earlier,

a set of experiments were conducted to evaluate each of the proposed methods and ap-

proach. Thus, the corresponding boxes in the table are filled up with the comparison

191

Univ
ers

ity
 of

 M
ala

ya

values and the other boxes are empty. The reported results in this table are estimated

from subtracting the values of the accuracy (for Top10 ranked locations), performance

(for MAP metric), and effectiveness (for MRR metric) on the obtained results for each of

the methods/approaches. In this table, the best values of the comparison of the results

obtained from the methods and approaches on different subject systems are reported.

192

Univ
ers

ity
 of

 M
ala

ya

Ta
bl

e
6.

22
:C

om
pa

ris
on

of
th

e
re

su
lts

fo
ra

ll
th

e
ex

pe
rim

en
ts

A
pp

ro
ac

h
/M

et
ho

d
M

et
ri

cs
SU

M
V

SM
Ti

N
oF

eL
o

Ti
N

oF
eL

o
(T

F-
ID

F)
Ti

N
oF

eL
o

(A
ll-

Te
rm

)
D

eN
oF

eL
o

D
eN

oF
eL

o
(N

o-
Ti

m
e)

D
eN

oF
eL

o
(N

o-
K

ey
w

or
ds

)

Ti
N

oF
eL

o

A
cc

ur
ac

y(
%

)
38

32
-

14
26

-
-

-
Pe

rf
or

m
an

ce
(%

)
35

19
-

9
49

-
-

-
Eff

ec
tiv

en
es

s(
%

)
19

17
-

12
23

-
-

-

D
eN

oF
eL

o

A
cc

ur
ac

y(
%

)
55

47
17

-
-

-
9

17
Pe

rf
or

m
an

ce
(%

)
39

22
3

-
-

-
8

11
Eff

ec
tiv

en
es

s(
%

)
29

25
11

-
-

-
6

13

Ti
D

eN
oF

eL
o

A
cc

ur
ac

y(
%

)
62

54
24

-
-

25
-

-
Pe

rf
or

m
an

ce
(%

)
43

27
10

-
-

7
-

-
Eff

ec
tiv

en
es

s(
%

)
30

25
12

-
-

8
-

-

193

Univ
ers

ity
 of

 M
ala

ya

As reported in Table 6.22, the experiment’s results indicates a positive impact of using

noun-only for improving the accuracy, performance and effectiveness of a feature location

process on the projects of different scales. Furthermore, using only the nouns, instead of

all types of terms, not only provides enough information to identifying the correct location

for software features, but also significantly reduces the size of the datasets. Also, using

the noun terms summarizes the source code data and enhances MSR tasks (Haiduc et al.,

2010). In summary, the use of only the noun terms has a remarkable positive impact in

the feature location process.

In terms of time consideration, the analysis of experimental results reported in Ta-

ble 6.22 indicates the significant improvement made by the time-aspect analysis of the

data for feature location. Moreover, the time-aspect analysis of data provides the ability of

considering the evolution of the text data over time. An effective factor on the accuracy of

time-aspect analysis of data is the evolution speed of the software project over time. This

is due to the volume of modified data over time, which is shown by the number of terms

that were recorded at the same time in a source code file, impacts the value of a term in

the time-aspect analysis of data. Accordingly, the performance of the time-based feature

location process is affected by the evolution speed of software projects. This means that

for the projects with high evolution speed, the performance of time-based feature location

process is better. When the volume of the data over time is small, the time-aspect analysis

of data may not be able to provide considerable improvement over a location-based feature

location process.

In terms of developer consideration, the investigation of experimental results shows

the significant improvement made by the developer-based feature location process over

both the time-based and location-based feature location (See Table 6.22). Developer-

aspect analysis of data not only provides the capability for investigating changes in the

194

Univ
ers

ity
 of

 M
ala

ya

source code made by the developer during a project lifetime, but also helps to identify

important requirements in these elements. However, the developer-aspect of data analysis

on the projects with low ratio of developers over source code files is not able to provide

considerable improvement in feature location process due to the large sizes of classes in

the IR sense. Furthermore, the high ratio of the number of developers over source code

files leads to a small size of classes. In this case, the performance of developer-based

and time-based feature location process will be close. Accordingly, it can be said that the

performance of the developer-based feature location process is impacted by the ratio of

developers over source code files.

Finally, as it is shown in Table 6.22, the combination of the developer-based and

time-based feature location methods results in an improved feature location approach.

The TiDeNoFeLo approach addresses the limitations of both the developer-based and

time-based process since it analyzes the data from both the aspects of developer and time,

then sum up the retrieved results. Accordingly, the proposed approach is able to accurately

locate the software feature in a large set of projects with various properties, i.e. scales,

evolution speeds, and number of developers. All in all, the proposed approach is able

to provide high accuracy, performance and effectiveness on a large set of projects with

different evolution speeds and different ratios of developers over source code files. Thus,

it can be concluded that consideration of time-metadata and developer-metadata as two

important pieces of metadata and the use of only the nouns significantly improves the

accuracy, performance and effectiveness of text analysis-based feature location. It means

that the identified research problem regarding with the low accuracy of text analysis of

feature location is addressed by proposing the TiDeNoFeLo approach.

195

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7: CONCLUSION

Feature location aims at identifying an initial location in the source code of a software

system pertinent to a particular software feature (Biggerstaff et al., 1993; Rajlich & Wilde,

2002). According to the recent survey on feature location literature (Dit et al., 2013), most

of the existing feature location approaches are based, at least in part, on text analysis. Text

analysis process is a fundamental step in most of the feature location approaches. Thus,

the overall accuracy of feature location would be directly affected by the accuracy of the

text analysis process.

Investigation of the feature location literature indicates that the origination of the

applied text analysis methods for feature location mainly comes from a natural language

context (Bassett & Kraft, 2013). Thus, it is likely that text analysis may not utilize all

possible potential for identifying the correct source code location pertinent to a software

feature. Low accuracy of the text analysis is due to the lack of considering the specific

characteristics of software repository’s text data – i.e. incorporation of the data with

metadata and large dataset size – in analyzing the historical text data. Addressing this

issue in analyzing the repository’s text data enhances the location identification process.

Since text analysis process is foundational to the most of feature location approaches,

the main goal of this thesis is improving feature location accuracy by considering the

specific characteristics of the text data recorded in the software repository within the text

analysis process. In the next section, a summary of the approach of addressing this goal

is explained.

7.1 Summary of Research Work and Contributions

In order to address the main objective of this thesis, a set of objectives were identified

which are summarized in Figure 7.1. Addressing these objectives results in satisfaction

196

Univ
ers

ity
 of

 M
ala

ya

of the main goal. In the rest of this section, the achievement of the identified objectives,

as well as the contributions of this thesis is briefly explained.

• Objective 1: The first objective of this research aims to study the existing text

analysis methods applied for feature location and identify the current problems in

the existing text analysis methods for feature location. To address this objective,

the literature in feature location research area and the other related research areas

was broadly investigated to gain an insightful understanding of typical text analysis

methods and their weaknesses (See Chapter 2). The investigation of the literature

indicates that the origination of current applied text analysis methods for feature

location mostly comes from a natural language context. As mentioned earlier,

incorporation of the data with metadata, i.e. time and developer, as well as the large

dataset size are considered as two important characteristics that differentiate the

repository’s text data from the text data in a natural language context. However, the

researchers’ efforts to improve the text analysis process have been mainly focused

on the use of additional information such as static and dynamic information with

text analysis. It was found that the incorporation of the data with the metadata is not

properly addressed in feature location literature. Furthermore, there is no simple

and applicable way to reduce the dataset size that results in properly summarizing

the data and reducing the noises for feature location.

• Objective 2: The second objective of this study aims at proposing a new feature

location approach that considers the identified characteristics of repository’s text

data in order to make an improvement in text analysis process. These characteristics

were considered in text analysis process in three perspectives, i.e. (i) analysis

of the text data from the aspect of time at which the data was recorded in the

197

Univ
ers

ity
 of

 M
ala

ya

Figure 7.1: Achievement of the main research objective through proposing a feature
location approach

198

Univ
ers

ity
 of

 M
ala

ya

repository, (ii) analysis of the text data from the aspect of developers who recorded

the data in the repository, (iii) reducing the dataset size by using only the noun

terms that exist in the text data recorded in the repository. Corresponding to

each of these perspectives, a set of sub-objectives were identified (See Figure 7.1).

Applying the identified perspectives in text analysis process resulted in proposing

two feature location methods that were finally combined to embody the proposed

feature location approach. The proposed methods and approach are briefly explained

in the following.

– The first proposed method identifies the source code files by analyzing the

data from the aspect of time when the data was recorded in the repository. In

addition, this method uses only the nouns extracted from the source code files

as the dataset and weights the noun terms using a time-based term-weighting

technique. This method is referred as Time-aspect analysis of data in a Noun-

based Feature Location method (TiNoFeLo).

– The second proposed method analyzes the repository’s data from the aspect

of developer who recorded the data in the repository. Similar to TiNoFeLo,

this method also uses only the nouns as the dataset and weights the noun terms

using a developer-based term-weighting technique. This method is referred as

Developer-aspect analysis of data in a Noun-based Feature Location method

(DeNoFeLo).

– The combination of Time-aspect and Developer-aspect analysis of data is used

to propose a Noun-based Feature Location approach (named TiDeNoFeLo).

The proposed approach addresses all the identified perspectives as a whole in

order to enhance the text analysis based feature location process. Figure 7.1

199

Univ
ers

ity
 of

 M
ala

ya

displays the main objectives, sub-objectives and the identified perspectives in

relation with the proposed methods and approach. This figure also summarizes

the main properties of the proposed methods and the proposed approach.

• Objective 3: The third objective of this thesis investigates the impacts of considering

the identified characteristics of the repository’s data in the text analysis process.

Accordingly, the proposed methods and the proposed approach were experimentally

evaluated with respect to the guidelines recommended by Wohlin et al. (Wohlin

et al., 2012) (See Chapter 5). In this case, the impacts of considering time and

developer-metadata as well as using noun-only for feature location were assessed

in a comprehensive experimental evaluation, and the obtained results were reported

and analyzed in Chapter 6.

With respect to the research work that was accomplished to achieve the identified

objectives, the contributions of this thesis are:

• Introducing three types of feature location approaches, i.e. location based,

time-based and developer-based: In location-based feature location approach, the

data is analyzed from the aspect of source code location where the data is stored.

According to the feature location literature, almost all the existing feature location

approaches are location-based. Time-based feature location approach analyzes the

data from the aspect of time when the data was recorded, and developer-based feature

location approach analyzes the data from the aspect of developer who recorded

the data in the repository. Time and developer-based types of feature location

approaches are new and they are proposed in this thesis.

• Considering time-metadata in feature location process by proposing a time-

based feature location method: As mentioned in Chapter 1, time is an important

200

Univ
ers

ity
 of

 M
ala

ya

piece of metadata which is incorporated with the repository’s data. Consideration

of time-metadata in feature location process provides the ability of analyzing the

data from the aspect of time when the data is recorded in the repository. As

mentioned above, the first proposed method in this thesis, TiNoFeLo, analyzes the

data from the time-aspect. In this method, the data in the repository is classified

based on the time of usage. This approach significantly improves the accuracy,

performance and effectiveness of feature location process over the location-based

baseline approaches.

• Considering developer-metadata in feature location process by proposing a

developer-based feature location method: As mentioned in Chapter 1, developer-

metadata is another important piece of metadata. Consideration of developer-

metadata provides the ability of analyzing the data from the aspect of developer

who recorded the data in the repository. The second proposed method in this thesis,

DeNoFeLo, classified the data in the developer expertise profiles and valued the

data based on the developer who recorded the data in the repository. DeNoFeLo

outperforms the location-based and time-based feature location baseline approaches.

• Using only the noun terms as the dataset for feature location: In this thesis,

the dataset, which is used to identify the related source code locations to a desired

software feature, is restricted to only the noun terms extracted from the repository.

The use of only the nouns leads to significantly reduction of dataset size and

summarizing the data. As demonstrated in Chapter 6, the use of noun-only notably

improves the accuracy, performance and effectiveness of feature location process.

• Combining the consideration of time-metadata and developer-metadata, and

the use of noun-only for feature location: As mentioned above, consideration of

201

Univ
ers

ity
 of

 M
ala

ya

each of time and developer-metadata and also use of noun-only separately improve

the accuracy of feature location process. In the last part of this thesis, these

contributions were combined to obtain a robust feature location approach, called

TiDeNoFeLo. TiDeNoFeLo significantly improves the accuracy, performance and

effectiveness of feature location process over the location-based, time-based, and

developer-based baseline approaches. In TiDeNoFeLo, the data is analyzed from

both the time-aspect and developer-aspect, and also the dataset is limited to noun-

only.

7.2 Limitations and Future Works

The experimental evaluation of the proposed methods, TiNoFeLo and DeNoFeLo, and

proposed approach indicates a significant improvement in feature location process which

is made by considering time and developer-metadata, and using only the nouns. However,

the use of the proposed methods on different software systems reveals few limitations.

As discussed in Chapter 6, the proposed time-based method, TiNoFeLo, is challenged

on the project with a low evolution speed such as Rhino. This exception is due to the

low volume of modified data over time that affects the accuracy of a time-based method.

Therefore, the use of time-based methods is not recommended for software projects with

a low evolution speed, such as Rhino.

On the other hand, the performance of the proposed developer-based method,

DeNoFeLo, depends on the ratio of the project developers over the source code files.

The experimental results reveal lower accuracy of the method on a project, such as As-

pectJ, with a low ratio of the developers over the source code files. In this case, the average

size of classes in developer expertise profiles is large and the likelihood of similarity of

a given software feature with a large size of profiles will be high. This results in the

reduction of the accuracy of the feature location process.

202

Univ
ers

ity
 of

 M
ala

ya

However, all these limitations are addressed in the proposed approach, TiDeNoFeLo,

by combining TiNoFeLo and DeNoFeLo. This is due to the analysis of data from both the

aspects of time and developer in the TiDeNoFeLo approach. Based on the experimental

results, it can be concluded that the combination of time and developer-aspect of data

analysis in a noun-based feature location approach makes a significant improvement in

the accuracy, performance and effectiveness of feature location process applicable on a

large set of different software projects with various evolution speeds and various ratios of

developers over source code files.

For the future work, a number of directions can be explored.

• First, investigating the other metadata incorporated with the repository’s text data

that has the potential to make an improvement on the accuracy of text analysis based

feature location.

• Second, examining other possible ways of analyzing the data from the aspects of

time and developer.

• Third, considering the existing feature location approaches to find possible ways of

adapting them to apply time-metadata or developer-metadata in order to improve

their accuracy.

• Fourth, combining the time-aspect and developer-aspect of data analysis with the

dynamic and static analysis of data to further improve feature location accuracy.

• Fifth, considering the synonym of the noun terms recorded in source code files to

improve the accuracy of feature location process.

• Sixth, investigating different smoothing methods (Zhai & Lafferty, 2004) to resolve

the problem of zero value for the developer-based term-weighting technique.

203

Univ
ers

ity
 of

 M
ala

ya

7.3 Final Remarks

In this thesis, a new feature location approach, named TiDeNoFeLo, is proposed that

considers the metadata of time and developer, and uses only the nouns as the dataset. In

this approach, the data is analyzed from the aspect of time when the data was recorded and

the aspect of developer who recorded the data in the repository. Hence two new feature

location methods were proposed applying each of these aspects of data analysis separately.

The first proposed method, a time-based method named TiNoFeLo, considers time-

metadata in text analysis process and analyzes the repository’s data from the aspect of

time when the data was recorded in the repository. The second proposed method, a

developer-based method called DeNoFeLo, considers the time and developer-metadata in

text analysis process and analyzes the data from the aspect of developer who recorded the

data in the repository. Both the methods use only the noun terms, extracted from the text

resources, as the dataset.

The experimental results indicate that the proposed approach outperforms the

location-based, time-based, and developer-based baseline approaches and consequently

improves feature location accuracy. Since text analysis process is a fundamental step in

most of the feature location approaches, improving the accuracy of text analysis process

individually impacts the overall accuracy of feature location process that used text data

separately or in combination with the additional information.

204

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

Abadi, A., Nisenson, M., & Simionovici, Y. (2008). A traceability technique for speci-
fications [Conference Proceedings]. In The 16th ieee international conference on
program comprehension (icpc 2008) (pp. 103–112). IEEE Computer Society.

Abebe, S. L., & Tonella, P. (2010). Natural language parsing of program element
names for concept extraction [Conference Proceedings]. In Ieee 18th international
conference on program comprehension (icpc 2010) (pp. 156–159). IEEE.

Alhindawi, N., Dragan, N., Collard, M. L., & Maletic, J. (2013). Improving feature
location by enhancing source code with stereotypes [Conference Proceedings]. In
The 29th ieee international conference on software maintenance (icsm 2013) (pp.
300–309). IEEE.

Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to mcmc
for machine learning [Journal Article]. Machine learning, 50(1-2), 5–43.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recover-
ing traceability links between code and documentation [Journal Article]. IEEE
Transactions on Software Engineering, 28(10), 970–983.

Antoniol, G., & Gueheneuc, Y.-G. (2006). Feature identification: An epidemiological
metaphor [Journal Article]. IEEE Transactions on Software Engineering, 32(9),
627–641.

Anvik, J. (2006). Automating bug report assignment [Conference Proceedings]. In
Proceedings of the 28th international conference on software engineering (icse
2006) (pp. 937–940).

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this bug? [Conference
Proceedings]. In Proceedings of the 28th international conference on software
engineering (icse 2006) (pp. 361–370). ACM.

Anvik, J., & Murphy, G. C. (2007). Determining implementation expertise from bug
reports [Conference Proceedings]. In The fourth international workshop on mining
software repositories, 2007. icse workshops msr 2007. (pp. 2–2). IEEE.

Bacchelli, A., Lanza, M., & Robbes, R. (2010). Linking e-mails and source code artifacts
[Conference Proceedings]. In Proceedings of the 32nd acm/ieee international

205

Univ
ers

ity
 of

 M
ala

ya

conference on software engineering (icse 2010) (Vol. 1, pp. 375–384).

Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463)
[Book]. New York: ACM press.

Bai, J., Nie, J.-Y., & Paradis, F. (2004). Using language models for text classification
[Conference Proceedings]. In Asia information retrieval symposium (airs) (p. 6).
Beijing, China.

Bassett, B., & Kraft, N. A. (2013). Structural information based term weighting in text
retrieval for feature location [Conference Proceedings]. In Ieee 21st international
conference on program comprehension (icpc 2013) (pp. 133–141).

Berry, M. W. (1992). Large-scale sparse singular value computations [Journal Article].
International Journal of Supercomputer Applications, 6(1), 13–49.

Biggers, L. R., Bocovich, C., Capshaw, R., Eddy, B. P., Etzkorn, L. H., & Kraft, N. A.
(2014). Configuring latent dirichlet allocation based feature location [Journal
Article]. Empirical Software Engineering, 19(3), 465–500.

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. (1993). The concept assignment
problem in program understanding [Conference Proceedings]. In Proceedings
of the 15th international conference on software engineering (icse 1993) (pp.
482–498).

Bird, C., Pattison, D., D’Souza, R., Filkov, V., & Devanbu, P. (2008). Latent social
structure in open source projects [Conference Proceedings]. In Proceedings of the
16th acm sigsoft international symposium on foundations of software engineering
(pp. 24–35). ACM.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation [Journal
Article]. Journal of Machine Learning Research, 3, 993–1022.

Bohner, S. A. (1996). Software change impact analysis [Journal Article]. IEEE Computer
Society, 196–205.

Bouras, C., & Tsogkas, V. (2010). Noun retrieval effect on text summarization and
delivery of personalized news articles to the user’s desktop. Data & Knowledge
Engineering, 69(7), 664–677. (Advanced Knowledge-based Systems) doi: http://
dx.doi.org/10.1016/j.datak.2010.02.005

206

Univ
ers

ity
 of

 M
ala

ya

Briand, L. C., Labiche, Y., & Yue, T. (2009). Automated traceability analysis for uml
model refinements [Journal Article]. Information and Software Technology, 51(2),
512–527.

Brin, S., & Page, L. (2012). Reprint of: The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 56(18), 3825 - 3833. (The {WEB} we live
in)

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2011). Improving the tokenisation of
identifier names [Conference Proceedings]. In Proceedings of the 25th european
conference on object-oriented programming (ecoop 2011) (pp. 130–154).

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., & Panichella, S. (2009). On
the role of the nouns in ir-based traceability recovery [Conference Proceedings].
In Proceedings of the 17th international conference on program comprehension
(icpc 2009) (pp. 148–157). IEEE.

Capobianco, G., Lucia, A. D., Oliveto, R., Panichella, A., & Panichella, S. (2012). Im-
proving ir-based traceability recovery via noun-based indexing of software artifacts
[Journal Article]. Journal of Software: Evolution and Process, 25(7), 743–762.

Chen, K., & Rajlich, V. (2000). Case study of feature location using dependence graph
[Conference Proceedings]. In Proceedings 8th international workshop on program
comprehension (iwpc 2000) (pp. 241–247). IEEE Computer Society Press.

Chen, K., & Rajlich, V. (2010). Case study of feature location using dependence graph,
after 10 years [Conference Proceedings]. In Proceedings of the 2010 ieee 18th
international conference on program comprehension (icpc 2010) (pp. 1–3). IEEE.

Chowdhury, G. (2010). Introduction to modern information retrieval [Book]. Facet
Publishing.

Cleary, B., & Exton, C. (2007). assisting concept location in software comprehension
[Journal Article]. Psychology of Programming Interest Group (PPIG 2007), 42–
55.

Cleary, B., Exton, C., Buckley, J., & English, M. (2009). An empirical analysis of
information retrieval based concept location techniques in software comprehension
[Journal Article]. Empirical Software Engineering, 14(1), 93–130.

207

Univ
ers

ity
 of

 M
ala

ya

Cohen, J. (1992). A power primer [Journal Article]. Psychological bulletin, 112(1), 155.

Corley, C. S., Kraft, N. A., Etzkorn, L. H., & Lukins, S. K. (2011). Recovering trace-
ability links between source code and fixed bugs via patch analysis [Conference
Proceedings]. In Proceedings of the 6th international workshop on traceability in
emerging forms of software engineering (pp. 31–37).

Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., & Koschke, R. (2009). A
systematic survey of program comprehension through dynamic analysis [Journal
Article]. IEEE Transactions on Software Engineering, 35(5), 684–702.

Crain, S. P., Zhou, K., Yang, S.-H., & Zha, H. (2012). Dimensionality reduction and topic
modeling: from latent semantic indexing to latent dirichlet allocation and beyond
[Journal Article]. Mining Text Data, 129–161.

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). Gate: an architecture
for development of robust hlt applications. In Proceedings of the 40th annual
meeting on association for computational linguistics (pp. 168–175).

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990).
Indexing by latent semantic analysis [Journal Article]. Journal of the American
society for information science, 41(6), 391–407.

De Lucia, A., Oliveto, R., & Tortora, G. (2009). Assessing ir-based traceability recov-
ery tools through controlled experiments [Journal Article]. Empirical Software
Engineering, 14(1), 57–92.

Diaz, D., Bavota, G., Marcus, A., Oliveto, R., Takahashi, S., & De Lucia, A. (2013).
Using code ownership to improve ir-based traceability link recovery [Conference
Proceedings]. In Proceedings of the 21th international conference on program
comprehension (icpc 2013) (pp. 123–132). IEEE.

Dit, B., Moritz, E., & Poshyvanyk, D. (2012). A tracelab-based solution for creating,
conducting, and sharing feature location experiments [Conference Proceedings].
In Proceedings of the 20th international conference on program comprehension
(icpc 2012) (pp. 203–208). IEEE.

Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process, 25(1),
53–95. Retrieved from http://dx.doi.org/10.1002/smr.567 doi: 10.1002/
smr.567

208

Univ
ers

ity
 of

 M
ala

ya

Eddy, B. P., & Kraft, N. A. (2014). Using structured queries for source code search
[Conference Proceedings]. In International conference on software maintenance
and evolution (icsme 2014) (pp. 431–435). IEEE.

Eisenberg, A. D., & De Volder, K. (2005). Dynamic feature traces: Finding features
in unfamiliar code [Conference Proceedings]. In Proceedings of the 21st ieee
international conference on software maintenance (icsm 2005) (p. 337-346).

Gay, G., Haiduc, S., Marcus, A., & Menzies, T. (2009). On the use of relevance feedback
in ir-based concept location [Conference Proceedings]. In Proceedings of the
ieee international conference on software maintenance (icsm 2009) (p. 351-360).
IEEE.

Gethers, M., Kagdi, H., Dit, B., & Poshyvanyk, D. (2011). An adaptive approach to
impact analysis from change requests to source code [Conference Proceedings]. In
Proceedings of the 26th ieee/acm international conference on automated software
engineering (p. 540-543). IEEE Computer Society.

Gómez, V. U., Kellens, A., Brichau, J., & D’Hondt, T. (2009). Time warp, an approach
for reasoning over system histories. In Proceedings of the joint international and
annual ercim workshops on principles of software evolution (iwpse) and software
evolution (evol) workshops (pp. 79–88). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/1595808.1595825 doi: 10.1145/1595808
.1595825

Haiduc, S., Aponte, J., & Marcus, A. (2010). Supporting program comprehension
with source code summarization [Conference Proceedings]. In Proceedings of
the acm/ieee 32th international conference on software engineering (icse 2010)
(Vol. 2, p. 223-226).

Hassan, A. E. (2006, Sept). Mining software repositories to assist developers and support
managers. In Proceedings of the 22nd ieee international conference on software
maintenance (icsm 2006) (p. 339-342). doi: 10.1109/ICSM.2006.38

Hassan, A. E. (2008). The road ahead for mining software repositories [Conference
Proceedings]. In Frontiers of software maintenance (fosm 2008) (p. 48-57).

Hassan, A. E., & Holt, R. C. (2005). The top ten list: Dynamic fault prediction [Conference
Proceedings]. In Proceedings of the 21st ieee international conference on software
maintenance (icsm 2005) (p. 263-272).

209

Univ
ers

ity
 of

 M
ala

ya

Hassan, A. E., & Xie, T. (2010). Mining software engineering data [Conference Proceed-
ings]. In Proceedings of the 32nd acm/ieee international conference on software
engineering (icse 2010) (Vol. 2, p. 503-504). ACM.

Heinrich, G. (2005). Parameter estimation for text analysis (Report). University of
Leipzig.

Hill, E., Pollock, L., & Vijay-Shanker, K. (2007). Exploring the neighborhood with
dora to expedite software maintenance [Conference Proceedings]. In Proceedings
of the twenty-second ieee/acm international conference on automated software
engineering (p. 14-23).

Hill, E., Pollock, L., & Vijay-Shanker, K. (2009). Automatically capturing source code
context of nl-queries for software maintenance and reuse [Conference Proceed-
ings]. In Proceedings of the 31st international conference on software engineering
(icse 2009) (p. 232-242).

Hossen, K., Kagdi, H. H., & Poshyvanyk, D. (2014). Amalgamating source code au-
thors, maintainers, and change proneness to triage change requests [Conference
Proceedings]. In Proceedings of the 22nd international conference on program
comprehension (icpc 2014) (p. 130-141).

Jacobs, R. A. (1995, September). Methods for combining experts’ probability assessments.
Neural Comput., 7(5), 867–888.

Jurafsky, D., & Martin, J. H. (2014). Speech and language processing [Book]. Pearson.

Kagdi, H., Collard, M. L., & Maletic, J. I. (2007). A survey and taxonomy of approaches
for mining software repositories in the context of software evolution [Journal
Article]. Journal of Software Maintenance and Evolution: Research and Practice,
19(2), 77-131.

Kagdi, H., Gethers, M., Poshyvanyk, D., & Hammad, M. (2012). Assigning change
requests to software developers [Journal Article]. Journal of Software: Evolution
and Process, 24(1), 3-33.

Kagdi, H., Maletic, J. I., & Sharif, B. (2007). Mining software repositories for traceability
links [Conference Proceedings]. In 15th ieee international conference on program
comprehension (icpc 2007) (p. 145-154).

210

Univ
ers

ity
 of

 M
ala

ya

Karahasanović, A., Levine, A. K., & Thomas, R. (2007). Comprehension strategies and
difficulties in maintaining object-oriented systems: An explorative study. Journal
of Systems and Software, 80(9), 1541–1559.

Kim, S., Whitehead, E. J., Jr., & Zhang, Y. (2008, March). Classifying software changes:
clean or buggy? IEEE Transactions on Software Engineering, 34(2), 181–196.
Retrieved from http://dx.doi.org/10.1109/TSE.2007.70773 doi: 10.1109/
TSE.2007.70773

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment [Journal
Article]. Journal of the ACM (JACM), 46(5), 604-632.

Landauer, T. K., & Dumais, S. T. (1997). A solution to plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge
[Journal Article]. Psychological review, 104(2), 211.

Le, T.-D. B., Oentaryo, R. J., & Lo, D. (2015). Information retrieval and spectrum based
bug localization: Better together. In Proceedings of the 2015 10th joint meeting
on foundations of software engineering (pp. 579–590).

Linares-Vasquez, M., Hossen, K., Dang, H., Kagdi, H., Gethers, M., & Poshyvanyk,
D. (2012). Triaging incoming change requests: Bug or commit history, or code
authorship? Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM 2012), 0, 451-460. doi: http://doi.ieeecomputersociety.org/
10.1109/ICSM.2012.6405306

Liu, D., Marcus, A., Poshyvanyk, D., & Rajlich, V. (2007). Feature location via infor-
mation retrieval based filtering of a single scenario execution trace [Conference
Proceedings]. In Proceedings of the twenty-second ieee/acm international confer-
ence on automated software engineering (p. 234-243).

Lukins, S. K., Kraft, N. A., & Etzkorn, L. H. (2008). Source code retrieval for bug
localization using latent dirichlet allocation [Conference Proceedings]. In 15th
working conference on reverse engineering (wcre 2008) (p. 155-164).

Lukins, S. K., Kraft, N. A., & Etzkorn, L. H. (2010). Bug localization using latent dirichlet
allocation [Journal Article]. Information and Software Technology, 52(9), 972-
990.

Mader, P., & Gotel, O. (2012). Towards automated traceability maintenance [Journal
Article]. Journal of Systems and Software, 85(10), 2205-2227.

211

Univ
ers

ity
 of

 M
ala

ya

Mader, P., Gotel, O., & Philippow, I. (2008). Enabling automated traceability main-
tenance by recognizing development activities applied to models [Conference
Proceedings]. In Proceedings of the 2008 23rd ieee/acm international conference
on automated software engineering (p. 49-58).

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to information retrieval
(Vol. 1) [Book]. Cambridge University Press Cambridge.

Marcus, A., & Haiduc, S. (2013). Text retrieval approaches for concept location in source
code [Book Section]. In Software engineering (pp. 126–158). Springer.

Marcus, A., Maletic, J. I., & Sergeyev, A. (2005). Recovery of traceability links between
software documentation and source code [Journal Article]. International Journal
of Software Engineering and Knowledge Engineering, 15(5), 811-836.

Marcus, A., Sergeyev, A., Rajlich, V., & Maletic, J. I. (2004). An information re-
trieval approach to concept location in source code [Conference Proceedings].
In Proceedings of 11th working conference on reverse engineering (wcre 2004)
(p. 214-223).

McCandless, M., Hatcher, E., & Gospodnetic, O. (2010). Lucene in action, second
edition: covers apache lucene 3.0. Greenwich, CT, USA: Manning Publications
Co.

Moreno, L., Treadway, J. J., Marcus, A., & Shen, W. (2014). On the use of stack
traces to improve text retrieval-based bug localization [Conference Proceedings].
In Proceedings of the ieee international conference on software maintenance and
evolution (icsme 2014) (p. 151-160). IEEE.

Ngomo, A.-C. (2010). Low-bias extraction of domain-specific concepts [Journal Article].
Informatica, 34(1), 37-44.

Ngomo, A.-C. N., & Schumacher, F. (2009). Borderflow: A local graph clustering
algorithm for natural language processing [Book Section]. In Computational
linguistics and intelligent text processing (p. 547-558). Springer.

Noice, H. (2013). The nature of expertise in professional acting: A cognitive view.
Psychology Press.

Omoronyia, I., Sindre, G., & Stå, T., lhane. (2011). Exploring a bayesian and linear

212

Univ
ers

ity
 of

 M
ala

ya

approach to requirements traceability [Journal Article]. Information and Software
Technology, 53(8), 851-871.

Petrenko, M., Rajlich, V., & Vanciu, R. (2008). Partial domain comprehension in software
evolution and maintenance [Conference Proceedings]. In Proceedings of the 16th
ieee international conference on program comprehension (icpc 2008) (p. 13-22).

Poshyvanyk, D. (2008). Using information retrieval to support software maintenance
tasks (Thesis). Wayne State University.

Poshyvanyk, D., Gethers, M., & Marcus, A. (2012). Concept location using formal
concept analysis and information retrieval [Journal Article]. ACM Transactions
on Software Engineering and Methodology (TOSEM), 21(4), 23.

Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., & Rajlich, V. (2006).
Combining probabilistic ranking and latent semantic indexing for feature identi-
fication [Conference Proceedings]. In Proceedings of the 14th ieee international
conference on program comprehension (icpc 2006) (p. 137-148).

Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., & Rajlich, V. (2007).
Feature location using probabilistic ranking of methods based on execution sce-
narios and information retrieval [Journal Article]. IEEE Transactions on Software
Engineering, 33(6), 420-432.

Poshyvanyk, D., & Marcus, A. (2007). Combining formal concept analysis with infor-
mation retrieval for concept location in source code [Conference Proceedings]. In
Proceedings of the 15th ieee international conference on program comprehension
(icpc 2007) (p. 37-48).

Rajlich, V., & Wilde, N. (2002). The role of concepts in program comprehension
[Conference Proceedings]. In Proceedings of the 10th international workshop on
program comprehension (p. 271-278).

Rao, S., & Kak, A. (2011). Retrieval from software libraries for bug localization: a
comparative study of generic and composite text models [Conference Proceedings].
In Proceeding of the 8th working conference on mining software repositories (msr
2011) (p. 43-52).

Ratanotayanon, S., Choi, H. J., & Sim, S. E. (2010). Using transitive changesets to
support feature location [Conference Proceedings]. In Proceedings of the ieee/acm
international conference on automated software engineering (p. 341-344).

213

Univ
ers

ity
 of

 M
ala

ya

Ratiu, D., & Deissenboeck, F. (2007). From reality to programs and (not quite) back again
[Conference Proceedings]. In Proceeding of the 15th ieee international conference
on program comprehension (icpc 2007) (p. 91-102).

Revelle, M., Dit, B., & Poshyvanyk, D. (2010). Using data fusion and web mining to
support feature location in software [Conference Proceedings]. In Proceedings
of the 18th international conference on program comprehension (icpc 2010) (pp.
14–23). IEEE.

Rilling, J., Witte, R., Gasevic, D., & Pan, J. Z. (2008). Semantic technologies in system
maintenance (stsm 2008) [Conference Proceedings]. In Proceedings of the 2008
the 16th ieee international conference on program comprehension (p. 279-282).
IEEE Computer Society.

Robillard, M. P. (2008, August). Topologyanalysis of software dependen-
cies. ACM Trans. Softw. Eng. Methodol., 17(4), 1–36. Retrieved from
http://doi.acm.org/10.1145/13487689.13487691 doi: 10.1145/13487689
.13487691

Romano, J., Kromrey, J. D., Coraggio, J., & Skowronek, J. (2006). Appropriate statistics
for ordinal level data: Should we really be using t-test and cohend́ for evaluating
group differences on the nsse and other surveys [Conference Proceedings]. In
Annual meeting of the florida association of institutional research (p. 1-33).

Saha, R. K., Lease, M., Khurshid, S., & Perry, D. E. (2013). Improving bug localization
using structured information retrieval [Conference Proceedings]. In Proceedings
of the 28th international conference on automated software engineering (ase’13)
(p. 345-355). IEEE/ACM.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval
[Journal Article]. Information processing & management, 24(5), 513-523.

Salton, G., & McGill, M. J. (1986). Introduction to modern information retrieval. New
York, NY, USA: McGraw-Hill, Inc.

Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing
[Journal Article]. Communications of the ACM, 18(11), 613-620.

Salton, G., & Yang, C.-S. (1973). On the specification of term values in automatic
indexing [Journal Article]. Journal of documentation, 29(4), 351-372.

214

Univ
ers

ity
 of

 M
ala

ya

Sarawagi, S. (2008). Information extraction [Journal Article]. Foundations and trends in
databases, 1(3), 261-377.

Scanniello, G., & Marcus, A. (2011). Clustering support for static concept location in
source code [Conference Proceedings]. In Proceeding of the ieee 19th international
conference on program comprehension (icpc 2011) (p. 1-10).

Scanniello, G., Marcus, A., & Pascale, D. (2015). Link analysis algorithms for static
concept location: an empirical assessment. Empirical Software Engineering,
20(6), 1666–1720.

Schuler, D., & Zimmermann, T. (2008). Mining usage expertise from version archives
[Conference Proceedings]. In Proceedings of the 2008 international working
conference on mining software repositories (p. 121-124).

Servant, F., & Jones, J. A. (2012). Whosefault: Automatic developer-to-fault assignment
through fault localization [Conference Proceedings]. In proceeding of the 34th
international conference on software engineering (icse 2012) (p. 36-46).

Shepherd, D., Fry, Z. P., Hill, E., Pollock, L., & Vijay-Shanker, K. (2007). Using natu-
ral language program analysis to locate and understand action-oriented concerns
[Conference Proceedings]. In Proceedings of the 6th international conference on
aspect-oriented software development (p. 212-224).

Shepherd, D., Pollock, L., & Vijay-Shanker, K. (2006). Towards supporting on-demand
virtual remodularization using program graphs [Conference Proceedings]. In
Proceedings of the 5th international conference on aspect-oriented software de-
velopment (p. 3-14). ACM.

Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2013). Why so complicated?
simple term filtering and weighting for location-based bug report assignment rec-
ommendation [Conference Proceedings]. In Proceedings of the tenth international
workshop on mining software repositories (p. 2-11).

Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2014). Improving automatic bug
assignment using time-metadata in term-weighting [Journal Article]. Institution
of Engineering and Technology, IET , 8(6), 269-278.

Sillito, J., Murphy, G. C., & De Volder, K. (2008). Asking and answering questions during
a programming change task [Journal Article]. IEEE Transactions on Software
Engineering, 34(4), 434-451.

215

Univ
ers

ity
 of

 M
ala

ya

Sisman, B., & Kak, A. C. (2012). Incorporating version histories in information retrieval
based bug localization [Conference Proceedings]. In Proceedings of the 9th ieee
working conference on mining software repositories (msr 2012) (p. 50-59).

Strohman, T., Metzler, D., Turtle, H., & Croft, W. B. (2005). Indri: A language
model-based search engine for complex queries [Conference Proceedings]. In
Proceedings of the international conference on intelligent analysis (Vol. 2, p. 2-
6).

Tao, Q., Lu, Z., Zhiying, Z., Dan, H., & Jiasu, S. (2003). Discovering use cases from
source code using the branch-reserving call graph [Conference Proceedings]. In
Tenth asia-pacific software engineering conference (p. 60-67). IEEE Computer
Society. doi: 10.1109/APSEC.2003.1254358

Voinea, L., & Telea, A. (2006). An open framework for cvs repository querying, analysis
and visualization [Conference Proceedings]. In Proceedings of the 2006 interna-
tional workshop on mining software repositories (p. 33-39).

Wang, J., Peng, X., Xing, Z., & Zhao, W. (2013). Improving feature location practice with
multi-faceted interactive exploration. In Proceedings of the 2013 international
conference on software engineering (p. 762-771).

Wang, S., & Lo, D. (2014). Version history, similar report, and structure: Putting them
together for improved bug localization. In Proceedings of the 22nd international
conference on program comprehension (pp. 53–63).

Wang, S., Lo, D., & Lawall, J. (2014). Compositional vector space models for improved
bug localization. In Proceedings of the 2014 ieee international conference on
software maintenance and evolution (icsme 2014) (pp. 171–180).

Wang, S., Lo, D., Xing, Z., & Jiang, L. (2011). Concern localization using information
retrieval: An empirical study on linux kernel [Conference Proceedings]. In Pro-
ceedings of the 2011 18th working conference on reverse engineering (p. 92-96).
IEEE Computer Society.

Wilde, N., & Scully, M. C. (1995). Software reconnaissance: mapping program features to
code [Journal Article]. Journal of Software Maintenance: Research and Practice,
7(1), 49-62.

Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept
hierarchies [Book Section]. In Formal concept analysis (p. 1-33). Springer.

216

Univ
ers

ity
 of

 M
ala

ya

Wilson, L. A. (2010). Using ontology fragments in concept location. In Proceedings of
the 2010 ieee international conference on software maintenance (pp. 1–2). Wash-
ington, DC, USA: IEEE Computer Society. doi: 10.1109/ICSM.2010.5609555

Winkler, S., & von Pilgrim, J. (2010). A survey of traceability in requirements engineering
and model-driven development [Journal Article]. Software and Systems Modeling,
9(4), 529-565.

Witte, R., Li, Q., Zhang, Y., & Rilling, J. (2007). Ontological text mining of software
documents. In Proceedings of the 12th international conference on applications
of natural language to information systems (pp. 168–180). Berlin, Heidelberg:
Springer-Verlag.

Witte, R., Li, Q., Zhang, Y., & Rilling, J. (2008). Text mining and software engineering:
an integrated source code and document analysis approach [Journal Article]. IET
software, 2(1), 3 -16.

Witten, I. H., & Bell, T. C. (1991). The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression [Journal Article]. IEEE
Transactions on Information Theory, 37(4), 1085-1094.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., & Wessln, A. (2012).
Experimentation in software engineering [Book]. Springer Publishing Company,
Incorporated.

Yang, Y., & Pedersen, J. O. (1997). Acomparative study on feature selection in text catego-
rization [Conference Proceedings]. In Proceedings of the fourteenth international
conference on machine learning (pp. 412–420). Morgan Kaufmann Publishers
Inc.

Ye, X., Bunescu, R., & Liu, C. (2014). Learning to rank relevant files for bug reports
using domain knowledge. In Proceedings of the 22nd acm sigsoft international
symposium on foundations of software engineering (pp. 689–699).

Zhai, C. (2008). Statistical language models for information retrieval [Journal Article].
Synthesis Lectures on Human Language Technologies, 1(1), 1-141.

Zhai, C., & Lafferty, J. (2004). A study of smoothing methods for language models applied
to information retrieval [Journal Article]. Proceedings of the ACM Transactions
on Information Systems (TOIS), 22(2), 179-214.

217

Univ
ers

ity
 of

 M
ala

ya

Zhang, T., & Lee, B. (2013). A hybrid bug triage algorithm for developer recommendation.
In Proceedings of the 28th annual acm symposium on applied computing (pp.
1088–1094). New York, NY, USA: ACM. doi: 10.1145/2480362.2480568

Zhang, Y., Witte, R., Rilling, J., & Haarslev, V. (2006). An ontology-based approach
for traceability recovery [Conference Proceedings]. In Proceedings of the 3rd
international workshop on metamodels, schemas, grammars, and ontologies for
reverse engineering (atem 2006) (p. 36-43).

Zhao, W., Zhang, L., Liu, Y., Sun, J., & Yang, F. (2006). Sniafl: Towards a static
noninteractive approach to feature location [Journal Article]. ACM Transactions
on Software Engineering and Methodology (TOSEM), 15(2), 195-226.

Zhou, J., Zhang, H., & Lo, D. (2012). Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports [Conference
Proceedings]. In Proceedings of the 34th international conference on software
engineering (icse 2012) (p. 14-24). IEEE.

Zimmermann, T., Weisgerber, P., Diehl, S., & Zeller, A. (2005). Mining version histories
to guide software changes [Journal Article]. IEEE Transactions on Software
Engineering, 31(6), 429-445.

Zou, X., Settimi, R., & Cleland-Huang, J. (2006). Phrasing in dynamic requirements
trace retrieval [Conference Proceedings]. In Proceedings of the 30th annual inter-
national computer software and applications conference (compsac 2006) (Vol. 1,
p. 265-272). IEEE Computer Society.

Zou, X., Settimi, R., & Cleland-Huang, J. (2008). Evaluating the use of project glossaries
in automated trace retrieval [Conference Proceedings]. In Software engineering
research and practice (p. 157-163).

218

Univ
ers

ity
 of

 M
ala

ya

