
 
  
  
 
  

 NETWORK TRAFFIC ENGINEERING USING  

LINEAR REGRESSION APPROACH 

 

 
 
 

 
  
  
 
  
  
  
  
  

 VATHSALA DEVI D/O KUNALAN 
 

 
 
 
 

 
 
 
 

 
FACULTY OF COMPUTER SCIENCE & INFORMATION 

TECHNOLOGY 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 

 

2006 

Univ
ers

ity
 of

 M
ala

ya



  

 
 
 
 

NETWORK TRAFFIC ENGINEERING USING  
LINEAR REGRESSION APPROACH 

 
 
 
 

A thesis submitted to 
the Faculty of Computer Science & Information Technology, 

University of Malaya 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Computer Science 
 

(12 Credit Hours) 
 
 

by 
 
 
 

VATHSALA DEVI D/O KUNALAN 
(WGA020044) 

 
 
 
 

May, 2006 
 
 
 
 
 
 
 

 

 

Univ
ers

ity
 of

 M
ala

ya



 i 

ABSTRACT 

Quality of Service (QoS) routing is becoming a very important criteria in Internet for 
supporting the ever-increasing diverse multimedia applications that demand very high 
level quality of service from the underlying network. To achieve this, QoS-enabled 
routers need to maintain accurate view of the network resource availability by 
exchanging global network state information among themselves at appropriate 
intervals. Frequent dissemination of global network state information introduces two 
major problems: increased computational costs and higher protocol overheads. In this 
thesis, a new mechanism that disseminates link state updates based on the bandwidth 
utilization trend of a link, called TE-LR (Traffic Engineering using Linear 
Regression), is proposed. The main idea of the mechanism is to sample the bandwidth 
utilization ratio of a link at regular intervals and use these sampled data to construct 
linear regression line equations. The tangent value obtained from the equation is used 
to decide when to send link state updates. Simulation results showed that the proposed 
mechanism had been successful in reducing the update message overheads by almost 
78% with minimal impact to other parameters such as packet loss ratio, packet 
commit ratio, average link utilization and average end-to-end delay.  
 

Univ
ers

ity
 of

 M
ala

ya



 ii 

ACKNOWLEDGEMENT 

First and foremost, I would like to thank GOD for giving me strong heart and 

willpower to endeavor into this study. Without HIS grace and blessings, I would not 

have been able to complete this thesis. I also owe my gratitude to a number of kind 

souls who had made my thesis research work a great experience. 

 

First in the list is my wonderful supervisor, Dr.Phang Keat Keong. His kindness and 

understanding had improved my level of self-confidence that helped me to carry on 

with this work despite many times meeting the dead end. His words of encouragement 

and motivation had also helped me to boost my self-estime. 

 

A special thanks goes to Dr.Ling Teck Chaw for his valuable ideas and thoughts that 

helped me to finalize my research scope and objectives. Without his support and 

constructive criticisms, I would have still been struggling to decide which area of 

research to undertake. My gratitude also goes to Mr.Por Lip Yee, Mr.Liew Chee Sun 

and Mr.Ang Tan Fong for their insightful ideas and opinions during discussions. 

 

There is a very special person in my life that I would like to convey my thanks to, my 

fiancé Mr.Sajilal Divakaran. Without his persuasion and encouragement, I would not 

be sitting here writing this acknowledgment. His unconditional love and support had 

really been an energy booster for me to continuously concentrate on my research 

work without any interference. I would like to dedicate this thesis to him as it is his 

dream that I fulfilled. This thesis would not have been possible without his love. He is 

GOD’s greatest gift to me.   

Univ
ers

ity
 of

 M
ala

ya



 iii 

Next comes my parents, brother and sister-in-law. Their patience and understanding 

throughout this study had really given me motivation to complete this thesis. My 

special thanks goes to my mother for bringing me to this world in the first place, 

educating me and being there for me whenever I needed her. Her love and support had 

been my source of energy and strength. 

 

Last but not least, I would like to thank the following individuals who worked with 

me in the Network Research Laboratory of University of Malaya: Soo Wooi King, Ng 

Eng Seong, Chan Siew Yin, Lim Gek Pei, Ngo Foong Kiew, Ng Wai Keat, Gawri 

Kumar and Judy Anne Sharmini. These people had made my working environment 

lively. Heartfelt thanks especially goes to Chan Siew Yin and Lim Gek Pei who had 

helped me to learn and use UMJaNetSim to implement and simulate my proposed 

mechanism. They had been supporting and guiding me from the beginning till the end 

of this thesis. 

 

Finally, I would like to extend my gratitude to Mr. Trevor Ward for helping me 

proofread this thesis report. 

 

This research is supported by the Postgraduate Scheme. 

 

  
Univ

ers
ity

 of
 M

ala
ya



 iv 

CONTENTS 

ABSTRACT ................................................................................................................................................... I 

ACKNOWLEDGEMENT ...........................................................................................................................II 

CONTENTS ................................................................................................................................................ IV 

LIST OF FIGURES ................................................................................................................................ VIII 

LIST OF TABLES ..................................................................................................................................... IX 

ABBREVIATIONS ...................................................................................................................................... X 

 

CHAPTER 1 .................................................................................................................................................. 1 

INTRODUCTION ......................................................................................................................................... 1 

1.1 MOTIVATION ................................................................................................................................  .... 2 

1.2 OBJECTIVES OF THE THESIS ..........................................................................................................  .... 4 

1.3 SCOPE OF THE THESIS ...................................................................................................................  .... 5 

1.4 THESIS ORGANIZATION .................................................................................................................  .... 5 

 

CHAPTER 2 .................................................................................................................................................. 7 

LITERATURE REVIEW ............................................................................................................................. 7 

2.1  NETWORK TRAFFIC ENGINEERING AND QUALITY OF SERVICE .....................................................  .... 7 

2.1.1  Internet QoS Models ................................................................................................................ 8 

2.2 CONCEPTS OF QOS ROUTING ........................................................................................................  .. 11 

2.2.1 Objectives of QoS Routing ..................................................................................................... 14 

2.2.2 Interior Routing Protocols..................................................................................................... 15 

2.2.2.1 Routing Information Protocol (RIP) ........................................................................................... 16 

Univ
ers

ity
 of

 M
ala

ya



 v 

2.2.2.2  Open Shortest Path First (OSPF) ................................................................................................ 19 

2.3  QOS EXTENSIONS TO OSPF ..........................................................................................................  .. 22 

2.4  QOS ROUTING PROCESS ...............................................................................................................  .. 24 

2.4.1 Link Metric ............................................................................................................................ 24 

2.4.2 Link State Advertisement ....................................................................................................... 26 

2.4.3 Path Selection ........................................................................................................................ 29 

2.5 ISSUES OF QOS ROUTING ..............................................................................................................  .. 30 

2.5.1 Co-existence with BE traffic .................................................................................................. 30 

2.5.2 Additional Overheads ............................................................................................................ 31 

2.5.3 Routing Information Inaccuracy ........................................................................................... 32 

2.5.4 QoS Routing Instability ......................................................................................................... 32 

2.6 RELATED STUDY ON ROUTING INFORMATION INACCURACY ........................................................  .. 33 

2.6.1 Safety-based Routing ............................................................................................................. 34 

2.6.2 Multipath Routing .................................................................................................................. 36 

2.6.3 Randomized Routing .............................................................................................................. 39 

2.6.4 ALCFRA ................................................................................................................................ 40 

2.6.5 Cost-Adaptive OSPF (CA-OSPF) .......................................................................................... 43 

2.6.6 Dynamic Cost-based Update Policies ................................................................................... 45 

2.6.7 Moving Average Filtering ..................................................................................................... 49 

2.6.8 TE-QOSPF ............................................................................................................................ 50 

2.7 CONCEPT OF LINEAR REGRESSION ................................................................................................  .. 53 

2.7.1 Least Square Methods ........................................................................................................... 54 

2.7.1.1 Why square the sum of the errors? ............................................................................................. 55 

2.8 CHAPTER SUMMARY .....................................................................................................................  .. 56 

 

CHAPTER 3 ................................................................................................................................................ 57 

PROPOSED LINK STATE UPDATE MECHANISM ............................................................................ 57 

3.1 ASSUMPTIONS ...............................................................................................................................  .. 57 

3.2 LINK STATE UPDATE MECHANISM USING LINEAR REGRESSION ...................................................  .. 57 

Univ
ers

ity
 of

 M
ala

ya



 vi 

3.2.1 Sampling of bandwidth utilization ratios ............................................................................... 59 

3.2.2 Construction of linear regression line equations .................................................................. 60 

3.2.3 Comparison of tangent difference ......................................................................................... 61 

3.4 CHAPTER SUMMARY .....................................................................................................................  .. 62 

 

CHAPTER 4 ................................................................................................................................................ 63 

IMPLEMENTATION AND TESTING .................................................................................................... 63 

4.1 METHODOLOGY ................................................................................................................................  .. 63 

4.2 WHAT IS NETWORK SIMULATION?................................................................................................  .. 65 

4.3 EXISTING NETWORK SIMULATION SOFTWARE ..............................................................................  .. 66 

4.3.1 MIT’s NETSIM ...................................................................................................................... 67 

4.3.2 NIST ATM/HFC Simulator .................................................................................................... 68 

4.3.3 OPNET .................................................................................................................................. 69 

4.3.4 REAL ..................................................................................................................................... 71 

4.3.5 Network Simulator 2 (NS2).................................................................................................... 73 

4.4 OVERVIEW OF THE SIMULATION ENVIRONMENT...........................................................................  .. 75 

4.5 IMPLEMENTATION OF TE-LR ........................................................................................................  .. 78 

4.5.1 Collection of bandwidth utilization ratio samples ................................................................. 80 

4.5.2 Construction of linear regression line equation .................................................................... 84 

4.5.3 Advertisement of link state updates ....................................................................................... 85 

4.6 THE TESTING PROCESS .................................................................................................................  .. 86 

4.6.1 Testing TE-LR ........................................................................................................................ 88 

4.6.1.1 Testing the bandwidth utilization ratio sampling process .......................................................... 88 

4.6.1.2 Testing the linear regression line equation construction process ................................................ 93 

4.6.1.3 Testing the link state advertisement process .............................................................................. 96 

4.6.1.4 Testing the proper working of the routing algorithm ................................................................. 97 

4.7 CHAPTER SUMMARY .....................................................................................................................  103 

 

Univ
ers

ity
 of

 M
ala

ya



 vii 

CHAPTER 5 .............................................................................................................................................. 104 

SIMULATION RESULTS AND PERFORMANCE ANALYSIS ......................................................... 104 

5.1 SIMULATION ENVIRONMENT .........................................................................................................  104 

5.2 PERFORMANCE ANALYSIS ............................................................................................................  107 

5.2.1 Packet Loss Ratio ................................................................................................................ 107 

5.2.2 Link Utilization .................................................................................................................... 109 

5.2.3 Packet Commit Ratio ........................................................................................................... 112 

5.2.4      Update Message Overhead .................................................................................................. 113 

5.2.5 End-to-End Delay ................................................................................................................ 116 

5.4 CHAPTER SUMMARY.........................................................................................................................  119 

 

CHAPTER 6 .............................................................................................................................................. 120 

CONCLUSIONS AND FUTURE WORK ............................................................................................... 120 

6.1 THESIS CONTRIBUTION .....................................................................................................................  120 

6.2 SUGGESTIONS FOR FUTURE RESEARCH .............................................................................................  122 

 

REFERENCES .......................................................................................................................................... 124 

  

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 viii 

LIST OF FIGURES 

FIGURE 2.1  THE SLOW, MODERATE AND FAST REGIONS OF COL FUNCTION  ...................... 46 

FIGURE 2.2  THE CHARACTERISTICS OF DCUH ............................................................................. 47 

FIGURE 2.3  BEST FIT LINE ................................................................................................................. 54 

FIGURE 2.4  LINEAR REGRESSION LINE WITH DEVIATION ........................................................ 55 

FIGURE 3.1  A FLOWCHART THAT ILLUSTRATES THE PROPOSED TE-LR MECHANISM ...... 59 

FIGURE 3.2  LINEAR REGRESSION LINE PLOTTED ON A SCATTER DIAGRAM ....................... 61 

FIGURE 4.1  THE ARCHITECTURE OF UMJANETSIM ..................................................................... 77 

FIGURE 4.2  THE TESTING PROCESS ................................................................................................ 87 

FIGURE 4.3  TEST TOPOLOGY FOR TE-LR ....................................................................................... 89 

FIGURE 4.4  TEST TOPOLOGY FOR WIDEST-SHORTEST PATH ROUTING ALGORITHM ........ 98 

FIGURE 4.5  OSPF ROUTING TABLE FOR R1 BEFORE CONGESTION ........................................ 101 

FIGURE 4.6  OSPF ROUTING TABLE FOR R2 BEFORE CONGESTION ........................................ 101 

FIGURE 4.7  OSPF ROUTING TABLE FOR R1 AFTER CONGESTION .......................................... 102 

FIGURE 4.8  OSPF ROUTING TABLE FOR R4  AFTER CONGESTION.......................................... 102 

FIGURE 5.1  SIMULATION TOPOLOGY ........................................................................................... 105 

FIGURE 5.2  PACKET LOSS RATIO ................................................................................................... 108 

FIGURE 5.3  AVERAGE LINK UTILIZATION .................................................................................. 111 

FIGURE 5.4  PEAK LINK UTILIZATION ........................................................................................... 112 

FIGURE 5.5  PACKET COMMIT RATIO ............................................................................................ 114 

FIGURE 5.6  UPDATE MESSAGE OVERHEAD ................................................................................ 116 

FIGURE 5.7  AVERAGE END-TO-END DELAY ............................................................................... 117 

FIGURE 5.8  PEAK END-TO-END DELAY ........................................................................................ 119 

  

 

 

Univ
ers

ity
 of

 M
ala

ya



 ix 

LIST OF TABLES 

TABLE 3.1   EXAMPLE OF SAMPLED DATA VALUES ................................................................................. 60 

TABLE 4.1   IP SETTINGS FOR R1 AND R2 ............................................................................................... 89 

TABLE 4.2   PROPERTY SETTINGS FOR R1 AND R2 .................................................................................. 89 

TABLE 4.3   CHARACTERISTICS OF VBR1 ............................................................................................... 90 

TABLE 4.4   CHARACTERISTICS OF CBR1 ............................................................................................... 90 

TABLE 4.5   SOURCE ADDRESS SETTINGS FOR BTE1 AND BTE2 ............................................................ 90 

TABLE 4.6   LINK SPEED SETTINGS FOR L1, EXT1 AND EXT2 .................................................................. 91 

TABLE 4.7   IP SETTINGS FOR ALL ROUTER INTERFACES ........................................................................ 99 

TABLE 4.8   PROPERTY SETTINGS FOR ALL ROUTERS .............................................................................. 99 

TABLE 4.9   SOURCE ADDRESS SETTINGS FOR BTE1 AND BTE2 ............................................................ 99 

TABLE 4.10 CHARACTERISTICS OF CBR1 ............................................................................................. 100 

TABLE 4.11 LINK SPEED SETTINGS FOR ALL LINKS .............................................................................. 100 

TABLE 5.1   PROPERTY SETTINGS FOR ALL ROUTERS ............................................................................ 106 

TABLE 5.2   CHARACTERISTICS OF VBR TRAFFIC SOURCES ................................................................. 106 

TABLE 5.3   CHARACTERISTICS OF CBR TRAFFIC SOURCES ................................................................. 106 

TABLE 5.4   PACKET LOSS RATIO (%) ................................................................................................... 108 

TABLE 5.5   AVERAGE LINK UTILIZATION ............................................................................................ 110 

TABLE 5.6   PEAK LINK UTILIZATION ................................................................................................... 111 

TABLE 5.7   PACKET COMMIT RATIO (%) .............................................................................................. 113 

TABLE 5.8   UPDATE MESSAGE OVERHEAD .......................................................................................... 115 

TABLE 5.9   AVERAGE END-TO-END DELAY (IN MS)............................................................................. 116 

TABLE 5.10 PEAK END-TO-END DELAY (IN MS) ................................................................................... 117 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 x 

ABBREVIATIONS 

ALSP Aggregated Level Simulation Protocol 

AS Autonomous System 

ATM  Asynchronous Transfer Mode 

ATMLSR ATM Label Switching Router 

BE Best Effort 

BGP Border Gateway Protocol 

BTE Broadband Terminal Equipment 

B-TE Broadband Terminal Equipment 

CA-OSPF Cost-Adaptive Open Shortest Path First 

CBR Constraint-Based Routing 

CBRIPApp Constant Bit Rate IP Application 

CL Controlled-Load Service  

COL  Competitive On-Line Routing Algorithm 

DARPA Defence Advanced Research Projects Agency 

DCU Dynamic Cost-based Update Policy 

DCUCT DCU Update with Cost-Threshold Policy 

DCUCTT DCU Update with Cost-Threshold and Hold-Down Timer Policy 

DCUH DCU Update with Hyteresis Policy 

DiffServ Differentiated Services 

DIS Distributed Interactive Simulation 

DS field Differentiated Services field 

EF-PHB Expedited-Forwarding PHB 

EGP Exterior Gateway Protocol  

Univ
ers

ity
 of

 M
ala

ya



 xi 

FIFO First-In First-Out 

FTP File Transfer Protocol 

FU Full Update Policy 

GS Guaranteed Service 

GUI  Graphical User Interface 

HFC Hybrid Fiber Coax 

HLA High Level Architecture 

IDRP Inter-Domain Routing Protocol 

IETF Internet Engineering Task Force 

IGP Interior Gateway Protocol  

IntServ Integrated Services 

IP Internet Protocols 

IPBTE IP Broadband Teminal Equipment 

LAN Local Area Network 

LBNL Lawrence Berkeley National Laboratory 

LRBU Logarithm of Residual Bandwidth Update Policy 

LSA Link State Advertisement 

LSR Label Switching Router 

MPLS Multi-Protocol Label Switching 

OSPF Open Shortest Path First 

PHB Per-Hop Behaviour 

PNNIU PNNI Time-based Update Approach 

QoS Quality of Service 

QOSPF QoS Extension to OSPF 

Univ
ers

ity
 of

 M
ala

ya



 xii 

QoS-OSPF QoS Extension to OSPF 

RIP Routing Information Protocol 

TBP Ticket-Based Probing 

TCP Transmission Control Protocol 

TE-LR Traffic Engineering using Linear Regression  

TE-QOSPF Traffic Engineering enhancements to QoS-OSPF 

VINT Virtual InterNetwork Testbed 

  

 

Univ
ers

ity
 of

 M
ala

ya



 1 

CHAPTER 1 

INTRODUCTION 

The sudden burst of Internet traffic in recent years has inspired and forced researchers 

to design a new framework that incorporates Quality-of-Service (QoS) in Internet 

Protocol (IP) networks. The increasing growth of diverse Internet applications ranging 

from real-time multimedia applications to mission-critical business transactions 

demand certain level of guaranteed service from the underlying network technology. 

Unfortunately, today’s Internet which is connectionless and best-effort has become 

inadequate to provide QoS-guaranteed services to these applications. 

 

The best-effort Internet treats all packets equally regardless of their importance. They 

are forwarded on a First-In-First-Out (FIFO) basis without any regards to the resource 

availability on the chosen path and the traffic’s service requirements. This results in 

significant performance deterioration in terms of longer packet delivery delay and 

excessive packet drops during heavy congestion periods. This scheme may work well 

for conventional text-based applications but it does not support the stringent 

bandwidth requirements and delay constraints of high-speed applications. 

 

To cater for such applications, a real connection-oriented infrastructure has to be 

established over the underlying connectionless IP infrastructure, i.e., a QoS-based 

routing mechanism that runs on an IP network without impacting the performance of 

the existing best-effort services. QoS-based routing or simply QoS routing can be 

defined as the process of selecting the path to be used by the packets of a flow based 

on its QoS requirements, e.g., bandwidth and delay [Apostolopoulos98i]. This will not 

Univ
ers

ity
 of

 M
ala

ya



 2 

only improve the services provided to user applications but also improves the overall 

network efficiency in terms of better resource utilization. Over the past several years, 

the Internet Engineering Task Force (IETF) group has been working to define new 

Internet QoS models and proposed a framework that contains the following 

components: Integrated Services (IntServ) [Braden94], Differentiated Services 

(DiffServ) [Carpenter02], Multi-Protocol Label Switching (MPLS) [Armitage00] and 

Constraint-Based Routing (CBR) [Younis03].  Till now, there is not a single solution 

that can provide the exact QoS support required by today’s assorted Internet 

applications. 

 

Most QoS routing algorithms require the most accurate information of the current 

state of the network on which they operate. Maintaining accurate global network state 

information in a large network with dynamic nature is impossible due to many factors 

such as non-negligible propagation delay, infrequent link-state update due to overhead 

concerns, link-state update policies used and hierarchical state aggregation [Yuan02]. 

Inaccurate network state information causes non-optimal path selection and higher 

call blocking rate which could degrade the network’s performance significantly. In 

order to ensure higher percentage of accuracy, nodes in the network must be updated 

with the link state information at the proper time interval. The rule that governs when 

to perform an update is called the link state update policy [Guerin97(i)] which will be 

discussed in detail in Chapter 2.  

 

1.1 Motivation 

QoS routing, though sounds theoretically simple, is difficult to be deployed due to 

various problems that it manifests such as diverse QoS specifications, dynamically 

Univ
ers

ity
 of

 M
ala

ya



 3 

changing network state and the need to co-exist with best effort traffic. These issues 

will be discussed in detail in Chapter 2 and readers are referred to [Oliveira01, 

Bruin06] for more information. One of the main problems of deploying QoS routing 

mechanism is the dynamic nature of the network itself. The network grows in terms of 

size and the number of user applications dramatically every second and with it the 

demand for more sophisticated QoS-based services grows too. To provide better QoS-

based routing services, the underlying QoS routing algorithm must know exactly the 

current state of the network such as the network topology and the link state 

information (i.e., available bandwidth, delay of the links, etc) of every link on the 

network. However, obtaining accurate network state information is impossible due to 

the continuously changing network states caused by traffic load fluctuations. 

 

One way to achieve this is by transmitting the network state information to every 

router on the network frequently so that whenever there is a change in the network 

state each router is made known immediately. This is a very impractical solution 

because frequent update messages themselves have the potential of congesting the 

network and consuming network resources causing higher protocol overheads. Apart 

from that, routers are also burdened with the extra job of computing routing tables 

which in turn increases the computational overhead.  

 

On the other hand, routers have the option of transmitting update messages 

periodically at a fixed interval. This however introduces another major problem. If the 

interval is very short, the updates will be sent frequently resulting in increased 

protocol overheads . If the interval is very long, then the network states transmitted 

will be outdated and no longer reflect the actual state of the network at that point of 

Univ
ers

ity
 of

 M
ala

ya



 4 

time. This will cause routing algorithms to make incorrect routing decisions and thus 

degrade the entire network performance. 

 

Having these problems in mind, it is the motivation of this thesis to devise a simple 

mechanism which can be incorporated into the existing QoS routing protocol that 

operates with the existance of inaccurate link state information. Specifically, the 

objective of the mechanism is to control the frequency of the link state generation and 

distribution so as to reduce the overheads incurred by the update frequency as 

discussed above. 

  

1.2 Objectives of the Thesis 

After conducting a detailed study of IP QoS models and their related issues, the next 

important task of the thesis is to study various mechanisms that are capable of 

reducing both the protocol and computational overheads in a network. Thus, the main 

objectives of the thesis can be summarized as follows. 

• To study and undertand various problems related to QoS routing especially the 

problem of routing overheads. 

• To propose a new link state update mechanism that can overcome the routing 

overheads problems. 

• To develop and evaluate the proposed mechanism on a suitable simulation 

environment. 

• To analyze the effectiveness of the proposed mechanism in reducing routing 

overheads, specifically the protocol overheads. 

Univ
ers

ity
 of

 M
ala

ya



 5 

1.3 Scope of the Thesis 

As outlined in the objectives section above, it is clear that the main emphasis of this 

thesis is to propose and implement a mechanism that reduces protocol overheads due 

to inappropriate dissemination of link state update messages. Hence, the scope of the 

thesis has been narrowed down to focus on this part of the objective and has been 

specified as follows:                                                                         

• To study the impact of inaccurate link state information on the existing link state 

update mechanism called QoS-OSPF. 

• To investigate how QoS-OSPF overcome the identified problems.  

• To propose a new link-state update mechanism that can improve performance 

especially in reducing protocol overheads. 

• To develop the proposed mechanism and test it using an appropriate QoS routing 

algorithm to ensure its correctness.  

• To develop a suitable simulation environment on UMJaNetSim network 

simulator. 

• To analyze and evaluate the performance of the proposed mechanism.  

 

1.4 Thesis Organization 

The remainder of the thesis is organized as follows: Chapter 2 discusses the concept 

of QoS routing and the main building blocks of a QoS routing mechanism. Further, 

various mechanisms proposed in literatures to control the amount of information 

flooded by link state advertisements are described in detail. Finally, the fundamentals 

of data sampling and regression concepts which form the basis of this research work 

are also presented. Chapter 3 lays out the design of the proposed link state update 

Univ
ers

ity
 of

 M
ala

ya



 6 

mechanism. The details of how the bandwidth utilization ratios of the links are 

sampled and how the construction of the linear regression line equation is performed 

is provided. Also, a detailed explanation of how the linear regression line is used to 

determine when to trigger link state updates is given in this chapter. 

 

Chapter 4 presents the implementation of the simulation environment and the 

methodology used. Some of the existing network simulators are reviewed in this 

chapter followed by a brief overview of the simulator used in the implementation and 

testing of the propsed mechanism A number of test cases are proposed to test the 

proposed mechanism and the test results are layed out as output traces. Finally, the 

proposed mechanism is tested using various network topologies and parameter 

settings to evaluate its correctness. 

 

Chapter 5 provides the actual topology and parameter setting details during the actual 

simulation run of the proposed mechanism. The results were analyzed and the 

proposed mechanism’s effectiveness was evaluated. Chapter 6 concludes the thesis 

and the main contribution of the thesis is presented. Finally, the possible future 

enhancements to the proposed mechanism is highlighted. 

Univ
ers

ity
 of

 M
ala

ya



 7 

CHAPTER 2 

LITERATURE REVIEW 

This chapter presents an overview of the QoS routing concept and its strategies. A 

detailed literature review will be conducted to identify the various mechanisms 

proposed to achieve QoS routing in a network with dynamic nature. The problem of 

overheads related to link state update policies are discussed thoroughly. Other issues 

related to QoS routing deployment and the proposed solutions are also presented. 

Finally, the linear regression model that will be used by the proposed mechanism is 

discussed. 

 

2.1  Network Traffic Engineering and Quality of Service 

Traditional routing protocols were merely aimed at providing faster packet processing 

and quicker convergence in the case of failures, without any regards to the security 

and packet delivery guarantees. Traffic flows with different service requirements were 

treated equally and network resources were not efficiently allocated and utilized. To 

handle this situation, the concept of network traffic engineering was brought into the 

picture whose main objective is performance optimization by efficient resource 

utilization. Two main benefits offered by good traffic engineering are [Lim04]: 

 

• Improving the efficiency of overall network resources usage.  

• Providing greater end-to-end quality of service to each traffic flow. 

  

Hence, there has been a general move towards networks that provides services based 

on the QoS demands of user applications. As stated in the previous chapter, the IETF 

Univ
ers

ity
 of

 M
ala

ya



 8 

QoS models such as IntServ, DiffServ, MPLS and CBR exist with the intention to 

induce QoS capabilities into the underlying network architecture.  

 

2.1.1 Internet QoS Models 

In this sub-section, a detailed description of the above-mentioned IETF QoS models 

with their pros and cons are presented. 

 

IntServ 

The prime goal of IntServ model is to provide QoS support to individual flows by 

reserving the required resources apriori. This is done using the most commonly 

adopted reservation setup protocol called Resource Reservation Protocol (RSVP) 

[Braden97]. RSVP protocols use two types of messages to reserve the required 

resources along the path. They are the PATH message and RESV message. A PATH 

message contains the characteristics of the traffic sent by the source node and will be 

forwarded by the routers along the path to the destination node. Based on the traffic 

characteristics specified in the received PATH message, the destination node makes 

the resource reservation via the RESV message. Upon reception of the RESV 

message, an intermediate router can either reject the request if it cannot provide the 

requested resource or reserve the requested resource by allocating the link bandwidth 

and buffer space for the flow. 

 

Two service classes are proposed by IntServ in addition to the Best-Effort Service 

[Wu99], namely 1) Guaranteed Service (GS), that provides a fixed delay bound for 

applications; and 2) Controlled-Load Service (CL), that provides reliable and 

enhanced best-effort service. The main problem of IntServ model is scalability. The 

Univ
ers

ity
 of

 M
ala

ya



 9 

amount of state information increases proportionally with the number of flows,  

placing huge storage and processing overhead on the routers. 

 

DiffServ 

The scalability problem imposed by IntServ model has led to the introduction of 

DiffServ model [Carpenter02, Chen03]. Unlike IntServ model, the DiffServ model 

places very light load on core routers by assigning the packet classification and 

conditioning tasks to the edge routers, leaving only the implementation of Behaviour 

Aggregate (BA) classification tasks to the core routers. DiffServ classifies packets 

entering the network by means of the Differentiated Services (DS) field [Stallings92]. 

The DS field is made up of 8 bits of which the leftmost 6 bits form the DS codepoint 

and the rightmost 2 bits are currently unused. The DS codepoint functions as a DS 

label used to classify packets for differentiated services. All IP packets having the 

same DS codepoint will be treated the same way by the routers regardless of which 

flow they belong to. 

 

Packets entering the DS domain are forwarded by the core routers based on the Per-

Hop-Behaviour (PHB) specification. PHBs define the queuing disciplines and packet 

dropping rules for each packet. Different PHBs can be associated with different 

differentiated services and at the moment two such PHBs exist: 1) Assured 

Forwarding PHB (AF-PHB) that guarantees reliable end-to-end packet delivery 

service during heavy congestion periods; and 2) Expedited Forwarding PHB (EF-

PHB) that guarantees low-loss, low-delay, low-jitter and assured bandwidth services 

for packets. The main problem with the DiffServ model is its method of marking 

packets as IN and OUT. Packets that conform to its traffic profile are marked as IN 

Univ
ers

ity
 of

 M
ala

ya



 10 

and those that does not as OUT. All packets whether marked as IN or OUT are stored 

in a shared queue together regardless of their priority and will be treated equally. 

When congestion occurs, the IN packets may be dropped first and this causes 

performance degradation for TCP traffics.    

 

MPLS 

The emergence of MPLS was motivated by the need to standardize a base technology 

that integrates label swapping paradigm with network level routing [Rosen01]. In 

other words, MPLS can be seen as a convergence of connection-oriented forwarding 

techniques and the Internet routing protocol. In an MPLS network, every packet is 

associated with a fixed length label which makes them more manageable and flexible. 

Routers in an MPLS networks are called Label Switching Routers (LSRs) and they 

are classified as edge LSRs and core LSRs. Every incoming packet is assigned a fixed 

length label by the ingress edge LSRs and then forwarded to the egress edge LSRs via 

a number of core LSRs. Since packet forwardings are performed just by referring to 

the labels, scalability can be achieved. MPLS has a number of advantages compared 

to the other two models described above and these can be found in [Rosen01]. 

 

CBR 

Most routing algorithms perform route computations that are subject to only one QoS 

constraint. CBR [Younis03], on the other hand, is a mechanism that computes routes 

subject to multiple constraints. Though the use of multiple constaints in real networks 

can lead to NP-Complete problem, simplifying the routing algorithm makes it 

possible.  The goals of CBR is to select routes that meet a flow’s QoS requirements 

and at the same time increase the network utilization. CBR takes into consideration a 

Univ
ers

ity
 of

 M
ala

ya



 11 

lot of factors when determining a route. These includes the network topology, the 

flow’s QoS requirements, the link’s resource availability and other network policies. 

Therefore CBR is capable of distributing network traffics more evenly by choosing a 

longer and lightly loaded path rather than a shorter but heavily loaded path. However, 

CBRs do have some drawbacks: 1) higher communication and computation overhead; 

2) larger routing table size; 3) more resource consumption by longer paths; and 4) 

potential routing instability. 

 

Though all the above models have their own ways of supporting QoS services, their 

limitations as discussed above suggests that relying on one single solution is not 

feasible. Therefore, a solution that is scalable, reliable and provides quantitative 

guarantees is required. 

 

2.2 Concepts of QoS Routing 

In any network-based communication system, the most integral part to its operation is 

routing. Routing is the process of forwarding data packets from one router to another 

within a single network or across networks, via the most appropriate path. Finding the 

most appropriate path on the other hand is the most crucial aspect of any routing 

algorithm and therefore every router in a network has to have a common view about 

the network topology and its resource availability.  

 

There are two ways in which routing can be performed [Ma97]. The first is called 

static routing in which the network administrator himself or herself manually 

configures each router with a pre-computed set of routes that he or she knows to be 

suitable. The second method is called dynamic routing in which individual routers in 

Univ
ers

ity
 of

 M
ala

ya



 12 

the network perform the route configuration dynamically. Each router collects the link 

state of each of its interface and disseminates this information to every other router in 

the network. The collective link state information will then be used by a routing 

algorithm operating at the router to build a routing table consisting of all the feasible 

paths which can be used to forward the data packets to their destination(s). A 

comparison of both static routing and dynamic routing in terms of their advantages 

and disadvantages is given in [Ballew97].These are summarized below: 

 

Static Routing 

Advantages: 

• The network administrator can easily control the path a packet takes to reach its 

destination since it is known in advance. 

• Since there is no need to exchange information among routers the message 

overhead is minimal. 

• Easy to configure on a small network due to its simplicity. 

 

Disadvantages: 

• When the number of nodes in the network grows, it becomes difficult for the 

network administrator to configure the routes manually thus making the algorithm 

non-scalable. 

• Because of its static nature, it cannot adapt to changes in the network such as 

failure of links or nodes, movements of network segments, addition of new routers 

and so on. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 13 

Dynamic Routing  

Advantages: 

• Highly scalable due to its dynamic nature. This means that the network can grow 

in size without impacting the underlying routing mechanism. 

• Any changes in the network can also be easily adapted in a dynamically routed 

network. 

• When there is a network failure, dynamic routing can still perform its functions, 

most likely in a degraded fashion without causing any major interference to other 

mechanisms. 

 

Disadvantages: 

• Dynamic routing has increased message overhead due to the exchange of 

enormous routing information among the huge number of routers.  

• In a network, not all routers can run dynamic routing scheme. When this is the 

case, then the only option is to use static routing. 

 

With all the disadvantages inherent in both static and dynamic routing, it is difficult 

for a network administrator to choose the best routing scheme between the two. 

However, a simple solution is to use both schemes together, that is, to use static 

routing in one part of the network and dynamic routing in other parts. This type of 

routing is called the hybrid routing scheme. Ballew, S.M., in [Ballew97] had proposed 

one way of implementing this that is to use static routing at the access networks and 

dynamic routing at the core and distribution networks. The advantage of doing this is 

that at access network, the main components are user machines which are connected 

to a small number of routers. Since the route configuration complexity is very small 

Univ
ers

ity
 of

 M
ala

ya



 14 

and manageable by the network administrators, default routes will do in most cases. 

On the other hand, at core and distribution networks, there will be many routers with 

many connections requiring larger number of routing tables. Also, the network 

becomes dynamic in nature, thus requires a more scalable dynamic routing scheme. It 

is in this dynamic routing scheme one can incorporate QoS features to provide better 

service quality to applications requiring special kind of treatments known as QoS 

routing.   

 

2.2.1 Objectives of QoS Routing 

As stated in the previous chapter, the main goal of QoS routing is to find the most 

feasible path among the ones that can satisfy the maximum possible number of flows 

with QoS requirements and at the same time maximize the overall resource 

utilization.  Therefore the objectives of QoS routing can be summarized as follows 

[Crawley98]: 

 

• Dynamic determination of feasible paths: Any QoS routing algorithm should be 

able to determine the best path that has the highest chance of satisfying the QoS 

requirements of a given flow even though there are many choices. Feasible paths 

may be selected based on constraints such as high bandwidth, low path cost, low 

delay and etc. For instance, if the constraint is high available bandwidth, then a 

path is said to be feasible if the total amount of the unused bandwidth of all links 

on the path is greater than a flow’s requested bandwidth value.  

• Optimization of resource usage: A QoS routing algorithm that depends on the 

network’s state information can help optimize network resource utilization by 

maximizing the overall network throughput. 

Univ
ers

ity
 of

 M
ala

ya



 15 

•  Graceful performance degradation: During heavy network load conditions, a 

QoS routing algorithm can provide better throughput and a more graceful 

performance degradation. 

 

2.2.2 Interior Routing Protocols 

QoS routing is composed of two basic entities [Oliveira01]. The first is the collection 

of global network state information, while the second is the path selection algorithm 

that uses the collected information to perform path calculation and selection. The 

process of collecting network state information is the responsibility of routing 

protocols such as OSPF which will be discussed in detail later.  

 

There are two types of routing protocols namely Interior Gateway Protocol (IGP) and 

Exterior Gateway Protocol (EGP). When IGP is used, routers within a single 

autonomous system (AS) exchange routing information among themselves. An AS is 

a collection of networks, or more precisely, the routers joining those networks that are 

under the same administrative authority and share a common routing strategy 

[Stallings02]. The most common IGPs are Routing Information Protocol (RIP) 

[Malkin98] and Open Shortest Path First (OSPF) [Moy98]. On the other hand, when 

EGP is used, routers from more than one AS exchange routing information among 

themselves. For this, they have to have a minimal information concerning other ASs 

outside their own AS. The most common EGPs are Border Gateway Protocol (BGP) 

[Rekhter95] and Inter-Domain Routing Protocol (IDRP) [Huston01]. Since the main 

focus of this thesis is IGP, EGP protocols will not be discussed any further and 

readers are referred to literature for more details. 

 

Univ
ers

ity
 of

 M
ala

ya



 16 

2.2.2.1 Routing Information Protocol (RIP) 

RIP is a very simple protocol, which can be implemented in small networks with very 

little complexity and overhead. It runs on top of UDP (User Datagram Protocol) and 

uses a technique known as distance-vector routing to distribute routing information 

and perform route computation [Malkin98]. A typical metric used in the computation 

of shortest-path is the number of hops (i.e., the number of routers a packet has to visit 

before reaching its destination). Since RIP operates in small networks, the maximum 

number of hops is limited to 15. To indicate that a particular destination is 

unreachable, the value of 16 (for infinity) is used.  

 

An RIP-enabled router operates by sending the routing information in the form of 

update messages to all its neighbors every 30 seconds. Two routers are said to be 

neighbors if they are both directly connected to the same network. If a router, say A 

does not receive an update message from a neighboring router say B within 180 

seconds, it assumes either B has crashed or the link connecting A to B has failed. In 

either case, router A assigns 16 in the routing table indicating that there is no valid 

route to B. If another router say C knows a valid route to B, router A replaces 16 with 

the new route as stated by C. The reason why 180 seconds is used as the update 

interval is due to UDP’s nature of not providing guarantees for data packet deliveries. 

If there is a link break-down or congestion, data packets may be lost forever and the 

destination may not be aware of it at all.     

 

Despite its unreliability, RIP continues to be popular because of its simplicity. One of 

its main advantage is that it reduces routing loops by the use of split horizon with 

Univ
ers

ity
 of

 M
ala

ya



 17 

poisoined reverse rule. Besides that, RIP also reduces routing overheads caused by 

excessive distribution of update messages by randomly delaying the update trigger.  

 

Though simple, RIP presents a number of disadvantages that deemed the protocol to 

be less popular when it comes to larger networks [Stallings02]. The first problem is 

that it cannot be deployed in a network with more than 15 hops because the maximum 

admittable hop count is 15. Thus, when used in this type of network, data packets 

addressed for destinations allocated more than 15 hops away cannot be sent. Although 

modifications can be done to the algorithm, when it is applied in larger networks, 

convergence time could be lengthy and costly. The second problem is that due to its 

simplistic metric even though there is a better path the algorithm may only choose a 

sub-optimal path leading to slower packet delivery.  

 

Thirdly, any RIP-enabled router may still accept updates from other routers including 

non-RIP-enabled routers. When a misconfigured non-RIP-enabled router sends an 

update to a RIP-enabled router, the entire configuration may be disrupted. Finally, 

RIP requires considerable amount of information transmission that eventually leads to 

considerable amount of propagation time during significant link state change. 

Therefore, to compensate these problems, a more scalable protocol called OSPF was 

introduced by [Moy98].    

 

Distance-Vector Routing Protocol 

In distance-vector routing protocol, routers exchange routing information among 

themselves that consists of vectors of known distances to other destinations at a fixed 

interval. Once this information is made available, routers can find a feasible route 

Univ
ers

ity
 of

 M
ala

ya



 18 

through the neighbour that provided the information to reach the destination. Three 

types of vectors are maintained by each router [Stallings02]: 

 

(i) Link cost vector 

 

 

 

where x is the current router, N is the number of networks to which router x is 

directly connected to and w(x, i) is the link cost associated with the output side of 

each router for each attached network i. 

 

(ii) Distance vector 

 

 

 

where L(x, i) is the current estimate of minimum delay from router x to network i 

and N is the number of networks router x is directly attached to.  

 

(iii)Next-hop vector 

 

 

 

where R(x, i) is the next router in the current minimum delay route from router x 

to network i. 

 

  L(x, 1)
   . 
Lx =   .  
  . 
  L(x, N)
  
 

  R(x, 1)
   . 
Rx =   .  
  . 
  R(x, N)
  
 

(2.1) 

(2.2) 

(2.3) 

  w(x, 1)
   . 
Wx =   .  
  . 
 w(x, N)
  
 

Univ
ers

ity
 of

 M
ala

ya



 19 

To determine the best path that can accommodate a QoS request, distance-vector 

routing protocol uses an algorithm called Bellman-Ford algorithm. The algorithm is 

stated as follows in [Stallings02]: “Find the shortest path from a given source vertex 

subject to the constraint that the path contain at most one link, then find the shortest 

path with a constraint of path of at most two links, and so on”. A formal description 

of the algorithm follows: 

 

Definition: 

 

The Algorithm: 

 

 

 

 

 

 

 

 

 

2.2.2.2  Open Shortest Path First (OSPF) 

OSPF is an interior gateway protocol used for routing between routers belonging to a 

single AS [Moy98]. In order to perform routing function, every OSPF-enabled router 

        s =  source vertex 
w(i, j)  =  link cost from vertex i to vertex j; w(i,i) = 0; w(i, j) = ∞ if the two vertices are   
                not directly connected; w(i, j) ≥ 0 if the two vertices are directly connected. 
   h  =  maximum number of links in a path at the current stage of the algorithm. 
Lh(n)   =  cost of the least-cost path from vertex s to vertex n under the constraint of no     
                more than h links. 

1. [Initialization] 
L0(n) = ∞, for all n ≠ s 
Lh(s) = 0, for all h    

 
2. [Update] 

For each successive h ≥ 0: 
 For each n ≠ s, compute 
   
   Lh+1(n) –        [Lh(j) + w(j, n)] 
 

Connect n with the predecessor vertex j that achieves the minimum, and eliminate 
any connection of n with a different predecessor vertex formed during an earlier 
iteration. The path from s to n terminates with the link from j to n. 

 

3. [Repeat] 
Repeat step 2 until no more changes occur in the iteration. 

min  
j 

 

Univ
ers

ity
 of

 M
ala

ya



 20 

has to maintain an identical database describing the autonomous system's topology. 

This is achieved by sending each other information about the direct connections and 

links, which they have to other routers periodically using the link-state routing 

protocol.  

 

The information in the database is then used by the router to construct shortest-path 

trees to every destination using the Dijkstra’s algorithm though other algorithms can 

be equally applied. To achieve scalability, OSPF partitions the AS in which it 

operates into several parts called areas. These areas are connected by a central 

backbone area (i.e Area 0). A router in an area knows the topology of only that area 

and sends routing information to routers within the same area. This allows significant 

reduction of routing traffic. When there is a need to send routing information to 

routers outside the area, area border routers (ABR) are used. An ABR summarizes the 

routing information received from routers belonging to other areas into single 

aggregated information and forwards it to the requesting router. 

 

For a router to exchange routing information with its neighboring routers, it has to 

first know who its neighbors are. OSPF uses Hello Protocol to learn about other 

routers on their directly attached networks dynamically. The router does this by 

sending out a small hello packet to each of its interfaces every ten seconds. When a 

router receives the hello packet, it knows about the existence of the originating router 

and thus they become neighbors. All neighbor routers must have the same topological 

view of the network. If no hello packet is received from a particular neighbor for 40 

seconds, that neighbor is considered down.  

 

Univ
ers

ity
 of

 M
ala

ya



 21 

Link-State Routing Protocol 

In contrast with distance-vector routing protocol, the link-state routing protocol do 

not exchange information about the direction to reach the destination. Instead, it 

provides information about the state of the links to which the router is directly 

connected. This information is disseminated throughout the network using a simple 

flooding technique. By doing this, routers can construct their own map of the network, 

compute best paths to every destination and populate their routing tables with these 

information.  

 

When there is a change in one of the link states, a notification, called link state 

advertisement (LSA) is flooded throughout the network. Upon receiving the LSA, 

each router re-computes its routing table to reflect the current state of the network. 

Compared to distance-vector routing protocol, link-state routing protocol is more 

reliable, easier to debug and less bandwidth-intensive. On the other hand, it is also 

more complex and requires intensive memory. Despite its complexity the protocol 

still survives as the most popularly used protocol in OSPF. Due to this, we will 

assume that a link-state protocol is used in this thesis. 

 

The link-state routing protocol uses Dijkstra’s algorithm to perform route 

computation and the algorithm is stated as follows in [Stalling02]: “Find the shortest-

path from a given source vertex to all other vertices by developing the paths in order 

of increasing path length”. The algorithm proceeds in stages. By the kth stage, the 

shortest-path to k vertices closest to (least cost away from) the source vertex have 

been determined; these vertices are in a set T. At stage (k + 1), the vertex not in T that 

Univ
ers

ity
 of

 M
ala

ya



 22 

has the shortest path from the source vertex is added to T. As each vertex is added to 

T, its path from the source is defined.  

 

2.3  QoS Extensions to OSPF 

OSPF in its basic form does not provide support for QoS routing. Therefore, 

Apostolopoulous, et al. had proposed in [Apostolopoulos99iv] some extensions to the 

basic OSPF protocol that allows the incorporation of QoS routing mechanisms which 

takes into consideration the QoS demands of flows from various user applications. 

The OSPF protocol with QoS extension is known as QoS-OSPF or in short QOSPF 

and it is defined as an intra-domain routing protocol. The difficulty to apply the 

extensions lie in its need to support demands of QoS flows while at the same time 

ensuring that the best effort flows are not deprived of their services as well. Thus, the 

ultimate goal of QOSPF as stated in [Guerin97(i)]  is to provide the requested QoS to 

the flows to improve their performances with minimal impact to the existing OSPF 

protocol. 

 

To achieve this goal, a number of restrictions have been imposed on the proposed 

extensions by Apostolopoulos et al in [Apostolopoulos99iv]. The first restriction is 

that only the link available bandwidth and delay will be advertised as part of the 

extended LSA packets, and the path selection algorithm should consider only the 

bandwidth requirements of the flows when performing path computation and 

selection. These are necessary to ensure that the complexity and the amount of 

network resources allocated to flows are minimal. The second restriction is that the 

path selection algorithm should use pre-computation to compute and select path so 

that the computing overhead can be reduced. Other methods such as hop-by-hop 

Univ
ers

ity
 of

 M
ala

ya



 23 

routing and explicit routing can still be used provided that only one single algorithm is 

used within a single AS for better operation. Finally, whatever mechanism is to be 

used to advertise link state information must ensure that the link state update 

overheads due to frequent link state changes is minimal. Two important assumptions 

are also made [Apostolopoulos99iv]: 1) every QoS-enabled routers are capable of 

distributing the available resources to both QoS and best-effort flows appropriately by 

accurately identifying the available resources, and 2) the QoS flows themselves must 

be capable of defining their QoS requirements in some quantifiable manner. 

 

[Apostolopoulos99iv] had defined three important building blocks of a QoS routing 

process. The first process involves the specification of QoS requirements in some 

measurable fashion called link metrics. Several useful link metrics are link available 

bandwidth, link propagation delay and hop count. Once the link metric to be used has 

been decided, it has to be advertised so that every router in the network can build the 

network topology database. The accuracy of the link state information is very 

important and it depends on the frequency of the advertisement. Two options are 

available and they are periodic update, and trigger-based updates. The periodic 

update mechanism has the disadvantage of advertising stale state information if the 

update interval is very long and introducing additional protocol overheads if the 

update interval is very short. Conversely, when trigger-based update mechanisms are 

used, updates are only issued when there is a significant change in the link state 

metrics.  

 

The final part of the QoS routing process is the path selection. The topology used is 

the standard OSPF topology given in [Moy98]. The main objective here is to select a 

Univ
ers

ity
 of

 M
ala

ya



 24 

path that can accommodate a flow’s QoS requirements without compromising the 

path cost. Hence, QOSPF uses the widest-shortest path algorithm to compute the 

“cheapest” path. If there are more than one such path exist, then the one with the 

maximum available bandwidth is selected. The aim is to balance the network load as 

well as to provide guaranteed resources. The QoS path selection algorithm computes 

paths either on-demand, that is, a path is computed whenever there is a new request, 

or pre-computed, that is, a path is computed in advance. Although both techniques are 

reliable, they are computationally expensive. For more details about the 

implementation methods and issues of QOSPF, readers are referred to 

[Apostolopoulos00iv, Apostolopoulos99v]. 

 

2.4  QoS Routing Process 

As stated in the previous sub-section, the process of routing based on QoS 

requirements of a flow is made up of three major steps. The first is the metric on 

which the routing algorithm operates. The second is the mechanism used to propagate 

updates of this metrics. Finally the path selection algorithm itself. 

  

2.4.1 Link Metric 

A link metric is consists of information such as available bandwidth, delay, jitter, path 

cost, loss probability, reliability, etc. These QoS metrics follow some rules of metric 

composition as stated in [Wang96]. 

 

Let m(n1, n2) be a metric for link (n1, n2). For any path P = (n1, n2,…,ni, nj), metric m 

is: 

 

Univ
ers

ity
 of

 M
ala

ya



 25 

• additive, if 

m(P) = m(n1, n2) + m(n2, n3) + … + m(ni, nj)             (2.4) 

Examples are delay, jitter, path cost and hop-count. For instance, the 

delay of a path is the sum of the delay of every hop. 

• multiplicative, if 

m(P) = m(n1, n2) * m(n2, n3) * … * m(ni, nj)              (2.5) 

Examples are reliability and loss probability. 

• concave, if 

m(P) = min{m(n1, n2), m(n2, n3), …, m(ni, nj)}            (2.6) 

Example is bandwidth, which means that the bandwidth of a path is   

determined by the link with the minimum available bandwidth. 

 

Though the use of combined metrics is permitable in QoS path computation, using 

two additive or multiplicative, or one additive and one multiplicative metrics is 

proven to be NP-Complete [Younis03, Xiao02]. 

 

[Apostolopoulos99iv] describes the following metrics on which the path selection 

process is based: 

• Link available bandwidth. Each link is assumed to be associated with a  maximal 

bandwidth value. For supporting a particular flow with a certain amount of 

bandwidth requirement, the link must have minimal bandwidth value which is 

greater than the requested bandwidth value. Thus, the metric here is the amount of 

available bandwidth. When there is a change in this metric, it has to be advertised 

as part of extended LSA in order to provide accurate link state information for the 

path selection algorithm. 

Univ
ers

ity
 of

 M
ala

ya



 26 

• Link propagation delay. The metric is usually used to select a path for a delay-

sensitive request, which means pruning the links to identify high latency links. It 

is not suitable for real-time requests, therefore timely dissemination of this 

information is not necessary. The change in this metric value is also advertised as 

part of the extended LSA. 

• Hop count. This metric represents the cost of the path that a flow takes to reach its 

destination. The lesser the number of hops on the path the cheaper the cost of the 

path will be. Since the metric is used implicitly as part of the path selection 

algorithm, no changes need to be distributed. 

 

2.4.2 Link State Advertisement  

The performance of a QoS routing algorithm is greatly influenced by the mechanisms 

used to trigger link state updates. Link state update policies can be classified as 

follows [Shaikh98]: 

• Timer-based link state update policy 

This is the type of triggering policy that was traditionally used in protocols such as 

Open Shorted Path First (OSPF). It is also known as periodical link state update 

policy. In this policy, link state updates are periodically generated and 

disseminated across the network at a fixed time interval. It is very important to 

define a proper minimal spacing between each consecutive update intervals. If the 

update interval is too frequent, the link state information will be more accurate but 

results in more protocol overhead. On the other hand, if the update interval is less 

frequent, the link state information will become more inaccurate but results in 

smaller protocol overhead. The spacing between the two consecutive update 

Univ
ers

ity
 of

 M
ala

ya



 27 

intervals can be controlled using a timer, i.e., hold-down timer or clamp-down 

timer. 

• Trigger-based update policies 

In this policy, updates are generated immediately when there is a significant 

change in the value of the link metric. The change can be measured as either 

absolute or relative. When the former is used, the link state metric value is 

partitioned into several classes of equal size. Update is triggered only when the 

current link state metric value changes significantly to cross the class boundary. In 

constrast, when the latter is in use, updates are triggered when the percentage of 

change of the metric value exceeds a certain pre-defined threshold. In either case, 

the metric values advertised could either be actual or quantized 

[Apostolopoulos99i]. Actual metric values are used when there is a need for 

frequent updates so that the accuracy can be maintained. In the case of less 

frequent updates, quantized values are used to increase robustness in the presence 

of inaccurate link state information. 

  

There are several ways of implementing the trigger-based update policy as stated 

in [Apostolopoulos99i]: 

• Threshold-based link state update policy 

A link state update is triggered whenever the relative difference between the 

current and the previously advertised link state exceeds a pre-defined constant 

threshold value. For example, if bo is the last advertised available bandwidth 

value of a link, bc is the current available bandwidth value and th is the pre-

defined threshold, an update is triggered when   

Univ
ers

ity
 of

 M
ala

ya



 28 

 

                              (2.7)

       

The main advantage of this policy is that it allows more accurate link states to 

be maintained since updates are triggered immediately when there is a 

significant change rather than waiting for the next update period. To control 

the update intervals, hold-down timers can be used. 

 

• Class-based link state update policy 

This policy uses a concept similar to absolute threshold where a link’s available 

bandwidth is partitioned into several classes and an update is triggered when the 

current link state value crosses a class boundary. The class-based link state update 

policy can be further subdivided into: 

1) Equal class-based updates. The available bandwidth is partitioned into 

multiple equal sized classes using a constant value B. For instance, (0, B), (B, 

2B), (2B, 3B), …, etc. When the available bandwidth of an interface changes 

significantly until it crosses its own class boundary, an update will be 

triggered. 

2) Exponential class-based updates. This policy is similar to equal class based 

update policy in that it also partitions the available bandwidth into classes. The 

difference is that the partitioned classes are of unequal sizes such as (0, B), (B, 

(f+1)B), ((f+1)B, (f2 + f + 1)B), …, etc. To achieve this, two constants are 

used: B and f (f >1). 

 

|bo – bc|   > th. 
     bo 

Univ
ers

ity
 of

 M
ala

ya



 29 

j = 1 

2.4.3 Path Selection 

The final and most important function of a QoS routing process is to select the most 

feasible path that can satisfy the QoS requests of a flow. Every QoS-enabled router 

has a routing algorithm that selects best paths based on the link metrics that have been 

exchanged among the routers. There are different types of routing algorithms in use 

today, some of which are discussed briefly in [Ma97] as given below:  

 

Shortest Path. A path with the minimum hop count among all paths is selected. The 

term “shortest” here does not necessarily mean the physical distance. It could also 

refer to a path with minimum monetary cost. 

 

Widest-Shortest Path. Among all the feasible paths, the one with the least number of 

hops is selected. If more than one such path exists, then the one with maximum 

available bandwidth is selected. Again, if more than one widest-shortest path exists, 

then any one of them will be selected randomly by the algorithm. 

 

Shortest-Widest Path. Among all the feasible paths, the one with the maximum 

available bandwidth is selected. If more than one such path exists, then the one with 

the least number of hops is selected. Again, if more than one shortest-widest path 

exists, then any one of them will be selected randomly by the algorithm. 

 

Shortest Distance Path. Among all the feasible paths, the one with the shortest 

distance is selected where the distance function is defined by 

         dist(p) =                      (2.8) 

where Rij is the bandwidth available on link ij.  

k 1 

Rij 

Univ
ers

ity
 of

 M
ala

ya



 30 

Dynamic Alternative Path. In this algorithm, the number of hops of a minimum hop 

path is given as n. A path is called dynamic alternative if it is a widest-shortest path 

containing no more than n+1 hops. 

 

2.5 Issues of QoS Routing 

Although QoS routing is conceptually simple, the distribution of routing information 

on the network and the path selection algorithms rise several issues in its development 

and deployment [Oliveira01, Bruin06]. Some of the issues related to QoS routing are 

discussed in detail in the following sub-sections. 

 

2.5.1 Co-existence with BE traffic 

Though significant amount of efforts have been directed towards the development and 

deployment of efficient QoS routing mechanisms, there is always a need for traffics 

with QoS requirements to co-exist with Best Effort (BE) traffics [Oliveira01]. This is 

due to the reason that most Internet traffics do not require specific QoS requirements 

and simple best effort service is more than adequate. As such, any QoS routing 

mechanism to be devised has to take into consideration the BE traffics by providing 

fair and efficient resource sharing so as not to starve them. Starvation of BE traffic 

could be caused by QoS traffics that consume all the resources leaving very little 

resource for BE traffics. Limiting the maximum reservable resources, usually 

bandwidth, for QoS traffics and allocating unused resources to BE traffics, can reduce 

this impact. 

   

Univ
ers

ity
 of

 M
ala

ya



 31 

2.5.2 Additional Overheads 

The additional overheads of QoS routing can be specified in terms of computational 

overheads [Apostolopoulos99v] and protocol overheads [Apostolopoulos99i]. 

• Computational Overheads. To perform QoS routing efficiently, routing 

information has to be updated frequently so that every router in the network has 

the same view about the network’s global state. The use of more sophisticated link 

state update mechanisms and the higher frequency of link state updates have 

contributed towards this added computational overheads. Another reason for this 

is the complexity of the path selection algorithm, which is usually the direct 

impact of the increase in the number of constraints that need to be satisfied. This 

places higher processing demands on the processors. Though the additional 

computational overheads can be reduced by the use of latest technologies such as 

faster processors and bigger memories, there can never be a once-and-for-all 

solution to this problem. 

 

• Protocol Overheads. The main reason for the increase in protocol overheads is the 

amount of protocol messages that penetrates the network every second. These 

messages come in many forms depending on the type of approach used. For 

instance, when link-state routing protocol is used, the overhead is caused by the 

excessive amount of link-state information exchanged among routers via flooding. 

When on-demand path computation is used, the amount of signaling messages 

used to request the immediate path computation increases not only the protocol 

overhead but also the computational overhead. In some other situations, when 

probe messages are used to collect the network link state information, protocol 

Univ
ers

ity
 of

 M
ala

ya



 32 

overheads can be increased due to the large number of probe messages issued, the 

size of the probe messages and their transmission frequency. 

 

2.5.3 Routing Information Inaccuracy 

In large networks, the deployment of QoS routing algorithms depends greatly on the 

accuracy of the link state information that are exchanged among the routers. Though 

frequent link state updates could provide more accurate link state information to 

routers, it can also cause problems in terms of higher resource consumption and 

increased protocols overheads [Bruin06]. This can be overcome by using periodic 

updates in which the interval between two consecutive updates is made larger. 

Unfortunately, this introduces another problem where the link state information 

distributed becomes stale and could no longer reflect the actual state of the network. 

This inaccuracy induces major impacts on the QoS routing performance since the path 

selection algorithms tend to make incorrect routing decisions based on this stale link 

state information. 

 

Many factors contribute to the link state information inaccuracy which includes non-

negligible propagation delay, link state update policies used, resource reservation and 

hierarchical topology aggregation [Oliveira01, Bruin06]. Hence, any QoS routing 

algorithm with performance concerns must incorporate mechanisms that can make 

efficient routing decisions even in the presence of inaccurate link state information.  

 

2.5.4 QoS Routing Instability 

QoS routing protocols, which are very sensitive to changes in network states, may 

produce unnecessary traffic re-routing causing instability of the protocol itself. One 

Univ
ers

ity
 of

 M
ala

ya



 33 

major contributor to this problem is the “routing oscillations” [Oliveira01, Ohara03]. 

Most QoS routing algorithms perform path selection based on the current traffic load 

on the network. For instance, to achieve greater throughput, a path selection algorithm 

chooses a path that is lightly loaded to avoid packet losses. However, when the traffic 

load on the path changes frequently, the algorithm tends to shift from one path to 

another in a very short period of time causing oscillations. This is especially very 

obvious during heavy traffic loads or when the traffic is bursty. 

 

2.6 Related Study on Routing Information Inaccuracy 

The original OSPF protocol has proposed periodic updates with minimal interval of 

30 minutes to disseminate link state information. This large interval is inappropriate 

for use in QOSPF whose network state may change frequently within this interval due 

to the network’s dynamic nature. Consequently, routing decisions are performed 

based on outdated link state information and this degrades the performance of the 

network significantly. To overcome the problem caused by large advertisement 

intervals, many research works have been conducted mostly concentrating on the use 

of trigger-based link state update policies.  

 

As mentioned earlier in this chapter, the two main issues of QoS routing are 1) how to 

perform path selection in the presence of inaccurate link state information, and 2) 

when the link state information need to be disseminated in order to preserve its 

validity. A number of proposals have been made in literature which tolerates the 

inaccuracy of the link state information and still able to make accurate routing 

decisions. The most notable ones among them which will be discussed later in this 

section are Safety-based Routing [Apostolopoulos99ii], Multipath Routing [Chen98i], 

Univ
ers

ity
 of

 M
ala

ya



 34 

Randomized Routing [Wang00], ALCFRA [Kowalik02], Cost-Adaptive OSPF 

[Zhou03], Distributed Cost-based Update Policies [Chang02], Moving Average 

Filtering [Lekovic01] and TE-QOSPF [Lim04]. 

 

2.6.1 Safety-based Routing 

Safety-based routing algorithms were first introduced by Apostoloupolous et al in 

[Apostolopoulos99ii], where each link is ranked based on its safety level in order to 

select the path that is most likely able to accommodate the requested bandwidth. The 

safety of a link is measured in terms of the probability that the link can support the 

requested amount of bandwidth. Hence, the most feasible path among those that have 

been ranked is the one with the largest safety. 

 

To determine the safety of a link, three things are essential. They are the requested 

bandwidth value breq, the last advertised bandwidth value badv , and the type of 

triggering policy used. The knowledge of the last advertised bandwidth value is 

necessary to determine the range of values that the actual bandwidth can take before 

the next update, while the values of the lower bound bl and upper bound bu of the 

bandwidth values can be used to estimate the probability that the link can 

accommodate breq. bl and bu are calculated differently for different types of triggering 

policies. For example, if the threshold-based triggering policy is used, bl is given as 

badv * (1 – th) and bu is given as badv * (1 + th). On the other hand, if the class-based 

triggering policy is used and the class to which the last advertised bandwidth value 

belongs to is known, for example Ci, then bl falls in between [Ci-1, Ci], and bu falls in 

between [Ci, Ci+1].       

 

Univ
ers

ity
 of

 M
ala

ya



 35 

Assuming that the triggering policy used is class-based and the available bandwidth 

value is uniformly distributed between bl and bu, then the safety of the link for a 

connection requiring breq units of bandwidth is given as below:  

 

• If bl ≤  breq  ≤  bu, the safety of the link is given as (bu - breq) / (bu - bl). 

• If breq ≤ bl, the safety of the link is 1, which means that the link can definitely 

support the requested bandwidth. 

• If breq ≥ bu, the safety of the link is 0, which means that the link cannot support 

the requested bandwidth. 

 

Once the safety of the links has been calculated, one of the following two routing 

algorithms can be used to perform the selection of the best route 

[Apostolopoulos99ii]: 1) safest-shortest routing algorithm, that selects the shortest 

path. In the case where more than one such path exists, then the one with the highest 

safety is selected, and 2) shortest-safest routing algorithm, that selects the safest path. 

In the case where more than one such path exists, then the shortest one is selected. 

 

Using some experimental models, Apostolopoulos et al in [Apostolopoulos99ii] had 

verified that safety based routing can reduce the update traffic volume and improve 

the overall performance even when insensitive triggering policies are used. It further 

demonstrated that the use of uniformly distributed bandwidth values within the range 

does not cause significant performance loss. 

Univ
ers

ity
 of

 M
ala

ya



 36 

2.6.2 Multipath Routing 

The multipath routing scheme introduced by Chen & Nahrstedt [Chen98i] is a 

distributed routing scheme that works with imprecise link state information. It uses a 

technique known as Ticket-Based Probing (TBP) where probing messages consisting 

of tickets are sent over multiple paths in parallel to maximize the probability of 

finding a feasible path. Every probe message should consist of at least one ticket and 

hence the number of probing messages is bounded by the number of tickets in each 

probe. Since one probe message is capable of searching a single feasible path, the 

number of feasible paths searched is also bounded by the number of tickets. 

 

Two routing problems, which are delay-constrained least-cost routing (DCLCR) and 

bandwidth-constrained least-cost routing (BCLCR) were investigated in [Chen98i] 

where the former suffers from NP-Completeness problem.  The DCLCR algorithm 

finds a feasible path from source s to destination d with delay equivalent to or less 

than the requested delay D (i.e., delay ≤ D). When more than one such path exists, 

then the one with the least-cost among them is selected. The BCLCR algorithm also 

works in the similar manner except that instead of using delay as the main constraint, 

it uses bandwidth such that the most feasible path consists of available bandwidth 

greater than or equals to the requested bandwidth B (i.e., bandwidth ≥ B). The main 

objective of the study conducted by Chen & Nahrstedt is to propose a heuristic 

algorithm to solve the NP-Complete problem exhibited by DCLCR. The proposed 

algorithm is capable of finding a delay-constrained path with lowest cost in the 

presence of imprecise link state information. The same heuristic can also be applied to 

BCLCR. 

 

Univ
ers

ity
 of

 M
ala

ya



 37 

The TBP scheme works as follows: Two types of tickets are carried by a probe 

message and they are differentiated by their colours, for example, yellow and green. A 

yellow ticket is used to maximize the probability of finding the most feasible path that 

satisfies the delay constraint in DCLCR (or bandwidth constraint in BCLCR) and a 

green ticket is used to maximize the probability of finding the most feasible path that 

satisfies the cost constraint. The probe messages that are in transit utilize the link state 

information at the intermediate nodes to guide them through the best possible path. By 

doing this, the success probability can be maximized while the overhead can be 

minimized. When a probe message with yellow ticket arrives at a destination node 

with accumulated delay less than D, that path is identified as a potential feasible path. 

If another probe message with green ticket arrives at the same node with the lowest 

path-cost among all the potential feasible paths, then that path can be considered as 

the most feasible delay-constrained least-cost path. 

 

The algorithm proposed in Chen & Nahrstedt is closely related to the one proposed by 

Guerin & Orda [Guerin97ii] and Lorenz & Orda [Lorenz98]. In addition to the four 

state variables defined in the abovementioned papers, which are connectivity Ri(t), 

delay Di(t), bandwidth Bi(t) and cost Ci(t), Chen & Nahrstedt have defined two more 

state variables: 1) delay variation ∆Di(t), that stores the estimated maximum change 

of Di(t) before the next update where Di(t) is the minimum end-to-end delay from i to 

t, and 2) bandwidth variation ∆Bi(t), that stores the estimated maximum change of 

Bi(t) before the next update where Bi(t) is the maximum end-to-end bandwidth from i 

to t.  

 

Univ
ers

ity
 of

 M
ala

ya



 38 

The algorithm calculates the actual minimum end-to-end delay (or maximum end-to-

end bandwidth) for the next update period based on the current historical information 

accumulated by the probe messages. ∆Di(t) (or ∆Bi(t)) and Di(t) (or Bi(t)) are updated 

periodically and the actual delay (or bandwidth) values are calculated as follows:  

 

∆Di
new(t) =  x ∆Di

old(t) + (1-) x  x |∆Di
new(t) - ∆Di

old(t)|            (2.9) 

 

where ∆Di
old(t) and ∆Di

new(t) are the values of ∆Di(t) before and after the update, 

respectively, and Di
old(t) and Di

new(t) are the values of Di(t) before and after the 

update, respectively.  

 

How fast the history information (∆Di
old(t)) is forgotten and how fast ∆Di 

new(t) 

converges to | Di
new(t) - Di

old(t)| is determined by the factors  (< 1) and (1 - ) 

respectively. The actual bandwidth values can also be calculated using the above 

method. Using the same equation as above (Equation 2.9), the actual bandwidth value 

can be calculated by substituting ∆Di
old(t) with ∆Bi

old(t) and ∆Di
new(t) with ∆Bi

new(t).           

       

The problem with TBR scheme is that tickets of different colors may interfere with 

each other and redundant searching paths may exist. The most significant problem is 

that the probe distribution is not optimized. For example, in order to eliminate infinite 

probing cycles, if a probe message has passed link (i, j), another probe cannot pass the 

same link again. This may block some useful probes from finding better paths. A 

solution to this problem has been proposed by Xiao et al in [Xiao02]. The idea is to 

distribute tickets based on their colours. For example, if a probe message containing 

one yellow ticket and two green tickets try to pass a link that has already been passed 

Univ
ers

ity
 of

 M
ala

ya



 39 

by another probe containing two yellow tickets, instead of blocking the entire probe 

message, only the yellow ticket will be blocked while the two green tickets are still 

allowed to pass the link. Through extensive experimentations, Xiao et al proved that 

this method allows a probe message to be more optimal without increasing the 

message overhead.     

 

2.6.3 Randomized Routing 

A QoS routing algorithm can either be deterministic or randomized. In deterministic 

approach, the algorithm always selects the same path as the “best path” before the 

next update is triggered. This usually happens when there is a frequent network state 

change before the next update period and the link state is not updated accordingly. 

Consequently, the path becomes overwhelmed with more traffic than the path can 

handle leading to heavy congestion. Examples of algorithms that exhibit such 

behaviour are the safest-shortest path routing and shortest-safest path routing 

algorithms. On the other hand, the randomized approach is capable of selecting paths 

randomly by associating each path with some probability value. The approach was 

adopted by Wang et al in [Wang00] where on-demand path selection and computation 

method is used to minimize the computational costs and protocol overheads.  

 

Basically, every QoS request consists of a source node u0, a destination node v0, the 

requested bandwidth value b, the “safety rate requirement” S0 that indicates the 

probability that b can be satisfied on that path, and the delay requirement N0 specified 

in terms of the maximum number of hops allowed in the routing path. A network in 

randomized routing is represented by a graph G = (V, E) where V = {v1, …, vn} is the 

set of hops in G and E = {e1, …, en} is the set of links in G. A probability function fp is 

Univ
ers

ity
 of

 M
ala

ya



 40 

associated with every link such that the probability that link ej has available 

bandwidth of at least b is fj(b). The calculation of the link’s safety rate is similar to the 

one demonstrated by safety-based routing in section 2.6.1. 

 

A routing path P that satisfies the given QoS request R = (u0, v0, b, N0, S0) has the 

following properties [Wang00]: 

1) The probability that the bandwidth of the path P is at least b is not smaller than the 

safety rate requirement S0. 

  ejP  fi(b)    S0.            (2.10) 

2) The number |P| of hops in the path P is not larger than the delay requirement N0. 

|P|  N0             (2.11) 

 

Given the network G and QoS request R, the algorithm works as follows: For every 

node in G, the algorithm records the maximum safety rate and minimum delay from 

that node to v0. Then, all nodes that have maximum safety rate of less than S0 or 

minimum delay of greater than N0 are eliminated from the list. The process is repeated 

until there are no more nodes to be removed. Using the remaining list, the algorithm 

repeatedly looks for a single routing path that satisfies properties (1) and (2). The 

identified path will be the most feasible path that tolerates the link state inaccuracy. 

The algorithm is proven to be effective in achieving good balance of network resource  

distribution.  

 

2.6.4 ALCFRA 

ALCFRA stands for Adaptive Link Cost Function Routing Algorithm and was 

proposed by Kowalik & Collier in [Kowalik02]. The algorithm operates online and to 

Univ
ers

ity
 of

 M
ala

ya



 41 

achieve better performance in the presence of inaccurate link state information, 

ALCFRA uses modified exponential link cost function. The basic idea is to advertise 

the cost of the link as a function of the bandwidth utilization on that link instead of 

advertising the bandwidth utilization value itself.  

 

The exponential link cost function used by ALCFRA has the property that when there 

is a small change in the link load, a lowly utilized link produces only a small change 

in the link cost while a highly utilized link produces a very huge change. Thus, the 

most appropriate link cost update policy that can be used to capture these situations is 

the increasing density utilization change, described by Kowalik & Collier. The policy 

blocks any request that it sees as having the potential of introducing even a slight 

change in a highly loaded link while assuming that the situation rarely happens for a 

lightly loaded links. The main objective of ALCFRA is to reduce the effect of route 

fluctuations/oscillations (i.e., magnet phenomenon) that occurs for both the timer-

based update policies with long update intervals and utilization change based policies 

with long hold-down timers.      

 

A request in ALCFRA is of the form i = (si, di, ri) where si is the source node, di is 

the destination node and ri is the bandwidth requirement. If a least-cost path P that 

can satisfy ri exists, the path is marked as          for the duration of the ith connection or 

else it is rejected. How A is calculated is not given in this thesis but can be found in 

[Gawlick95]. To tolerate the link state inaccuracy, the link cost function has been 

modified so that a small change in a highly loaded link produces huge link cost. To 

achieve this, every link is associated with a  parameter ae which can take a maximum 

value of A and can increase or decrease by some constant value . A utilization 

A 
i P Univ

ers
ity

 of
 M

ala
ya



 42 

threshold utr is pre-defined so that when the long term utilization is under utr, ae takes 

a positive value and when it is greater than utr, ae takes a negative value. Whether ae 

takes positive value or negative value is determined by the following rule: 

 

 

 

where uc(e) is the utilization of link e defined by 

 

 

 

The value of ae changes according to the above rule after every unit of time, say 1 

second. Using the value of ae, ALCFRA defines its link cost function as: 

 

 

 

   

 

 

Thus, ae makes the link cost function more convex under low link load and concave 

under heavy link load. Once the cost of a link has been computed, ALCFRA generates 

and advertises the new cost value using the equal density cost change mechanism. The 

experiments conducted by Kowalik & Collier found that even when the link state 

update is not frequent, ALCFRA works well and it allows QoS routing to be 

introduced in Internet at a reasonable cost. 

 

ae + ,   when: ae  A [ utr - uc(e)] / utr  
 

 

ae - ,    otherwise 

 

ae  = (2.12) 

 uc(e) =  
ri 

 
 

c(e) 
              

A  
 

 i    i,e P  
(2.13) 

log |ae| ((|ae| - 1)uc(e) + 1)   if ae < -1 

ae uc(e)  - 1 
ae - 1 

 uc(e)     if –1 ae  1 

if ae > 1 

cost (e)  = (2.14) 

Univ
ers

ity
 of

 M
ala

ya



 43 

2.6.5 Cost-Adaptive OSPF (CA-OSPF) 

In the basic OSPF, the cost of the interfaces belonging to a router is fixed during the 

router installation phase itself and do not change thereafter. The routing algorithm in 

OSPF always selects the shortest path (i.e., the least-cost path) without regards to the 

bandwidth availability of that path. Also, the long periodic update interval (which is 

30 minutes), gives incorrect information of the global network state. This causes the 

path to be congested with more and more traffic that eventually leads to dramatic 

performance degradation over time. One solution to this problem is to select other 

better paths with low utilization ratio even though the interface costs could be higher.  

 

An improvement to the basic OSPF has been suggested by Zhou et al in [Zhou03] 

known as Cost-Adaptive OSPF (CA-OSPF), where the costs of the interfaces can be 

changed dynamically according to the link’s bandwidth utilization ratio. It is claimed 

that, by doing this the resource utilization ratio can be improved despite the presence 

of inaccurate link state information in a dynamic OSPF environment. According to 

CA-OSPF, the bandwidth utilization ratio U (0  U  100%) of an interface is 

bounded by an upper bound threshold Ua and a lower bound Ub. The state of an 

interface is classified as either over-used state (Ua  U  100%), middle state (Ub  U 

 Ua) and under-used state (0  U  Ub). CA-OSPF allows both non-CA-OSPF 

routers that fixes the interfaces costs at the initialization phase and CA-OSPF routers 

that is capable of adjusting the interface costs based on changes in bandwidth 

utilization ratio to co-exist.  

 

The parameters required by CA-OSPF routers to modify the link costs are the initial 

cost of the current interface C0, the current cost C of the interface, minimum 

Univ
ers

ity
 of

 M
ala

ya



 44 

allowable increment or decrement of the cost , and the maximum allowable total 

interface cost increment max. Given all these parameters and link state 

classifications, the interface’s cost is adjusted at regular intervals as follows: 

1) When the interface’s state falls into the over-used state, the cost of the interface is 

changed only when the bandwidth utilization ratio of that interface exceeds Ua 

thrice successively and the total increment do not exceed max. Once the cost has 

been changed, the CA-OSPF router generates and distributes the link state 

information to other routers. 

2) When the interface’s state falls into the middle state, no changes are done to the 

interface’s cost. 

3) When the interface’s state falls into the under-used state, nothing is done to 

change the cost of the interface if its current cost C is equal to its initial cost C0. If 

C is greater than C0, then the cost will be decreased to not less than C0.    

 

The max parameter is used to reduce the link state update storm resulting from 

unbounded interface cost increment during heavy network congestion. To minimize 

response delay, Ua is usually set to 95% of the network utilization instead of 100%. 

Using CA-OSPF, the overall performance of the network can be improved only when 

the network load is light. Under heavy load, CA-OSPF failed to show any 

improvement. Though CA-OSPF is adaptive to local change and is better than OSPF, 

it can improve performance only to certain a extent. Furthermore, the increment and 

decrement of interface costs at a regular interval introduces higher protocol 

overheads. 

 

Univ
ers

ity
 of

 M
ala

ya



 45 

2.6.6 Dynamic Cost-based Update Policies 

Most mechanisms that were proposed in literature to overcome the effects of stale link 

state information and excessive updates concentrate on improvements to the 

instantaneous link state information advertisement. Also, most of them consider only 

the use of hold-down timers to achieve the above improvements. In [Chang02], Chang 

& Hwang have proposed a new link state update policy called dynamic cost-based 

update policy (DCU) which aims at reducing the inaccuracy of aggregated link state 

information while at the same time reducing the frequency of aggregation and 

information distribution. DCU is mainly intended for use in hierarchical networks to 

reduce the effect of inaccurate aggregated link state information.  

 

In DCU the link state information are aggregated as in hierarchical networks and 

distributed based on the COL link cost function defined in [Gawlick95]. The COL 

link cost function sets the cost of each link in the network as an exponential function 

of the residual bandwidth of the link. That is, when the bandwidth utilization of link  

is i, then the cost of the link can be expressed as;     

 

    Wl(i)=μi/C
ℓ, 

 

where denotes the chosen constant parameter, and Cℓ represents the capacity of link. 

ℓ. The cost of the path is then computed by summing up the cost of all the links in the 

path. 

 

The DCU policy basically divides the link utilization into 3 regions based on how fast 

the link cost function changes: slow, moderate and high. This is shown in Figure 2.1. 

 

 

(2.15) 

Univ
ers

ity
 of

 M
ala

ya



 46 

The boundaries of the regions are determined based on the equations given in 

[Chang02]. Once the boundaries have been set, the individual regions are further sub-

divided into several link states. The accuracy of the aggregated link state information 

becomes higher if there are more link states but this has to be traded-off with the 

increased update overheads. The number of link state updates generated depends on in 

which region the link state resides. The link state update becomes more frequent when 

the link state is in the fast region because of the higher cost variation. Conversely, 

when the link state is in the slow region, the cost variation will be smaller and hence 

reduces the frequency of updates.  

 

  

 

 

 

 

 

 

 

 

Figure 2.1 The slow, moderate and fast regions of COL function 

 

DCU in its basic form suffers from the problem of routing oscillations due to smaller 

class boundaries and dynamic flow arrivals. To confront this problem, Chang & 

Hwang have extended the DCU policy by proposing three more update policies 

referred to as the DCU update with hysteresis policy (DCUH), the DCU update with 

Univ
ers

ity
 of

 M
ala

ya



 47 

cost threshold policy (DCUCT), and the DCU update with cost threshold and hold-

down timer policy (DCUCTT). A brief discussion of how these policies operate comes 

next and readers are referred to [Chang02] for more information. 

 

DCU update with hysteresis policy (DCUH). This policy applies guard bands 

between the boundaries of two link states so that a sudden spike in the cost change 

will not trigger an unnecessary update which is the main cause of routing oscillations. 

The idea is to allow the link state to change from state k-1 to k only when the cost of 

the link exceeds CH
k. Again, the link state is allowed to change from state k back to 

state k-1 only when the cost of the link becomes less than CL
k. This is illustrated in 

Figure 2.2. 

 

 

 

 

 

 

Figure 2.2 The characteristics of DCUH 

 

The technique is applied only in moderate region because the cost intervals of low and 

fast region are very small. 

 

DCU update with cost threshold policy (DCUCT). The main objective of DCUCT is 

to further reduce the update frequency by deciding whether or not the QoS parameters 

should be aggregated and distributed [Chang02]. The policy is based on the dynamic 

Univ
ers

ity
 of

 M
ala

ya



 48 

 cost update policy with aggregated cost threshold where the aggregated cost 

threshold is defined as: 
 

             ,    0   

 

where new is the new aggregated cost, previous is the last advertised aggregated cost 

and  is the cost threshold parameter. If the cost ratio exceeds , then the QoS 

parameters will be aggregated and advertised; otherwise nothing is done. The choice 

of  value is an important factor that determines the success of this technique. A 

larger  value could result in larger fractional reward loss due to inaccurate link state 

information while a lower value causes more update overheads without any 

improvement to fractional reward loss. Through the use of various simulation 

topologies and traffic loads, Chang & Hwang have proposed a value that ranges from 

0.15 to 0.45. 

 

DCU update with cost threshold and hold down timer policy (DCUCTT). The 

primary goal of DCUCTT is to minimize update triggering actions in DCUH and 

DCUCT with the use of hold down timers. Basically, the procedure works as follows 

[Chang02]: First the cost threshold  and the hold down timer are initialized with 

some initial value. Then the hold down timer is started. When the hold down timer 

expires, the process of deciding whether or not to aggregate and advertise the QoS 

parameters as given in DCUCT is performed. If there is a need to aggregate and 

advertise the QoS parameters, then the parameters are advertised and the hold-down 

timer will be restarted; otherwise nothing is done. On the other hand, if the hold down 

timer has not expired, then none of the above is performed. 

 

(2.16) new - previous 
previous 

Univ
ers

ity
 of

 M
ala

ya



 49 

Chang & Hwang compared the performance of all four of the proposed policies with 

the PNNI time-based update policy (PNNIU), the full update policy (FU), and the 

logarithm of residual bandwidth update policy (LRBU). It is proven that all four 

proposed policies perform better in terms of lesser revenue loss and aggregation 

overhead. The DCUCTT has been identified as the most successful policy as it is able 

to reduce the aggregation and advertisement overheads significantly. 

 

2.6.7 Moving Average Filtering 

In [Lekovic01], Lekovic & Miegham has considered the use of threshold-based and 

exponential class-based triggering policies instead of using the conventional timer-

based triggering policies. The objective is to provide consistent link state information 

to the underlying QOS routing algorithms. They have proposed a new technique 

called “moving average filtering” that proved to be effective in limiting the number of 

link state updates generated. Instead of triggering updates for every instant of link 

state change, the technique first monitors the trend of the link state and based on this 

information decides when to trigger the update.  

 

The main motivation of this technique is to overcome the problems caused by 

inversatile hold down timers. It is very difficult to set an appropriate hold down 

interval when the flow arrival rate is unpredictable. This condition is further 

complicated by the sudden utilization spikes after the hold down time causing 

unnecessary link state updates. Thus, the moving average filtering technique suggests 

the monitoring of bandwidth utilization trends before deciding when to trigger the 

updates. The idea behind this is that the smoothed bandwidth utilization curve carries 

Univ
ers

ity
 of

 M
ala

ya



 50 

only valuable information on the utilization trend rather than carrying unnecessary 

information which could cause unnecessary updates. 

 

The technique requires the routing algorithm to obtain a set of successive bandwidth 

utilization values of the link over some period of time. The size of the averaged set is 

called the sample size N. After N number of samples has been taken, the mean of the 

sampled data is computed. This mean value is compared to the mean value of the 

previous set of samples. The difference is then compared to either the absolute or 

relative thresholds to decide when to trigger the link state updates. Since the technique 

is adaptive in nature, a high flow arrival rate causes the next moving average point to 

occur earlier thus generating frequent updates. On the other hand, if the flow arrival 

rate is low, the moving average point occurs much later causing less frequent updates. 

Hence the hold down timer is no longer required. Lekovic & Miegham have proven 

that the moving average filtering technique outperforms the hold down timer concept 

in terms of lesser call blocking rates and, reduced link state update errors and 

overheads. 

 

2.6.8 TE-QOSPF 

Most routing algorithms in use today selects shortest paths (minimum hop paths) as 

best paths when performing routings. One main disadvantage of such algorithms is 

the inefficient utilization of network resources and poor load balancing. For example, 

the widest-shortest path routing algorithm always selects the shortest paths among all 

the available paths without giving any consideration to the path’s resource 

sufficiency. Selecting the same shortest path over and over again eventually leads to 

congestions resulting in greater propagation and queuing delays, and higher packet 

Univ
ers

ity
 of

 M
ala

ya



 51 

drop probabilities. These effects are undersirable since the Internet traffic is growing 

quickly demanding more and more improvements in the services provided. Therefore, 

Lim, S.H., in [Lim04] had proposed an algorithm called TE-QOSPF (Traffic 

Engineering  enhancements to QoS-OSPF) that selects non-shortest paths instead of 

the usual shortest paths.  

 

The algorithm works as follows: If there are two candidate paths, say P1 and P2, and 

P2 is one hop longer than P1, then P1 will be selected if its available bandwidth value 

is two times greater than that of P1. Similarly, if P2 is two hops longer than P1, it will 

only be selected if the available bandwidth value is three times greater than that of P1. 

To ensure that very long paths are not selected, a hop-count difference threshold, c, is 

used. Again, if P1 and P2 are candidate paths, the shorter one will always be selected 

if their hop-count difference is greater than c. The algorithm is summarized below: 

 

Given souce S, desination D, two candidate paths P1 and P2 with a distance of d1 and 

d2 respectively to reach D from S, and the available bandwidth on path P1 and P2 are 

bw1 and bw2 respectively, the selection of non-shortest path abides the following 

rules [Lim04]:      

1) If |d1-d2|  c, then 

r = bw1 / bw2            (2.17) 

(a) If d1 > d2 and r > k , then P1 will be selected. 

(b) If d2 > d1 and 1/r > k , then P2 will be selected.   

2) If d1=d2, then 

(a) If r  1, P1 will be selected. 

(b) If r < 1, P2 will be selected. 

Univ
ers

ity
 of

 M
ala

ya



 52 

3) If |d1-d2| > c, then the normal shortest path rule is applied.   

 

The choice of k value is very important as it effects the choice of a better longer path. 

If it is too small, then a slightly longer path with a very little available bandwith may 

be chosen. On the contrary, if it is too large, then a longer path with larger available 

bandwidth may have very little chance to be chosen. Hence, Lim, S.H., had proposed 

the following value for k in [Lim04]: k = |d1-d2| + 1. However, the value greatly 

depends on many factors such as network load pattern, network topology and duration 

of the existing LSPs.  

 

In terms of link state updates, TE-QOSPF uses a mechanism similar to QoS-OSPF 

that sends an update message for every instantaneous change of the available 

bandwidth. In other words, the percentage of available bandwith on a link is sampled 

at every pre-defined interval and this value is compared to a pre-defined threshold 

value. If it exceeds the threshold, then an update message is immediately sent out. 

Otherwise no updates will be triggered. The problem with this mechanism is that it 

fails to capture false positives which eventually lead to increased update message 

overheads. 

 

Through extensive simulations, Lim, S.H., had verified that TE-QOSPF had been 

successful in reducing the packet loss ratio and packet delay, while at the same time 

improves the link utilization. As per the QoS-OSPF mechanism, even though the 

update message overhead increases as the network load increases, the mechanism 

manages to achieve almost 100% load balancing and higher throughput. 

Univ
ers

ity
 of

 M
ala

ya



 53 

2.7 Concept of Linear Regression 

The concept of linear regression was first introduced by Sir Francis Galton who 

conducted a study to compare the heights of sons to the height of their fathers . Today, 

linear regression is used to show the relationship between two variables in terms of 

mathematical equations [Motulsky03]. Observed data samples are plotted on a scatter 

diagram and a straight line that best fits the sampled data are drawn to represent the 

relationship between the two variables. The main objective of establishing a linear 

relationship between two variables is to show the correlation between the variables 

and to predict the value of one variable based on the value of another. The value of a 

variable can only be predicted provided that the value of another is known in advance. 

The variable whose value is known in advance is called independent variable and is 

denoted by X, while the variable whose value has to be predicted is called dependent 

variable and is denoted by Y. The stronger the correlation between X and Y, the more 

accurate the predicted value of Y will be. 

 

For instance, given a set of data points, (x1, y1), (x2, y2),…,(xi, yi), a straight line that 

“best fits” these data points is drawn on the scatter diagram (see Figure 2.3). A best fit 

line has all the data points scattered very close around it, hence giving greater 

correlation among the data points. Looking at the scatter diagram in Figure 2.3 at one 

glance gives the impression that many straight lines can be drawn for the data points, 

but through careful analysis, one that best fits the data points has to be selected. One 

way to do so is by using least-square methods as described in the next section.       

Univ
ers

ity
 of

 M
ala

ya



 54 

 

 

 

 

 

 

Figure 2.3 Best Fit Line 

 

2.7.1 Least Square Methods 

The least-square method attempts to minimize the sum of the squares of deviations of 

the actual data points from the calculated data points (see Figure 2.4) [Waner02, 

Motulsky03]. The smaller the sum, the more accurate the predicted value of Y will be. 

The least square line that best fits a set of data point, say (x1, y1), (x2, y2),…,(xi, yi), 

has the form: 

     y = mx + b;    (2.18) 

where 

   y = the y-axis variable 

   x = the x-axis variable 

     b = the intercept ( i.e., the value of y when x = 0 ) 

    m = the slope of the line (also known as the tangent of the line) 

 

The formulated equation is called a linear regression equation and the line is called 

the linear regression line of y on x. The regression coefficients, b and m are 

constants whose values can be derived from the following two equations: 

 

y = mx + b 

x 

y 

Univ
ers

ity
 of

 M
ala

ya



 55 

            Intercept = b =                 (2.19) 

 

         Slope (tangent) = m =               (2.20) 

     

If the estimated value of m is known, then it is possible to estimate the change in y 

per unit change in x. The following graph shows the linear regression line with a 

deviation. 

 

 

 

 

 

 

Figure 2.4 Linear Regression Line with Deviation 

 

2.7.1.1 Why square the sum of the errors? 

One may ask why not simply use the sum of the actual deviations instead of summing 

the squares of the deviations. This can be explained using two sets of data, where each 

data set has two (x, y) points [Motulsky03]. In the first set each of the points deviates 

3 units away from the straight line while in the second data set, one point deviates 1 

unit away and the other 5 units away from the straight line. If the absolute sum of the 

deviations are taken, then the absolute sum of the deviations for the first data set will 

be 6 (i.e., 3+3) and for the second data set will also be 6 (i.e., 1 + 5). If the random 

scatter follows Gaussian distribution, then it is far more likely that the line given by 

the second data set will be chosen. This is not preferable because the data of the 

deviation 

Calculated 

value 

Actual 

value 

y = mx + b 

x 

y 

b 

slope 

n(xy) – (x)(y)             
 

                             n(x2) – (x)2  
 

(y) - m(x) 
n 
 

Univ
ers

ity
 of

 M
ala

ya



 56 

second set is more scattered then the first data set and the line produced by this data 

set will not accurately represent the relationship between X and Y.   

 

To solve this problem, the least-square method sums the squares of the deviations so 

that the sum-of-squares of the first data set will be 18 (i.e., 32 + 32) and the sum-of-

squares of the second data set will be 26 (i.e., 12 + 52). Now it is evident that the first 

data set is much more accurate then the second and thus the first data set can produce 

a more accurate best fit line for the given data.  

 

2.8 Chapter Summary 

In this chapter, the concept of QoS routing and mechanisms to provide QoS-based 

services to Internet users was studied and reviewed in detail. Various solutions 

proposed in literatures to overcome the problem of excessive link state update 

message overheads was studied thoroughly as this is essential in the development of 

the proposed mechanism. This is followed by an in-depth discussion of the main 

mechanism applied in the proposed mechanism called linear regression. The 

discussion presented in this chapter had given useful ideas for the design and 

construction of the proposed mechanism which is discussed in the next chapter. 

 

 Univ
ers

ity
 of

 M
ala

ya



 57 

CHAPTER 3 

PROPOSED LINK STATE UPDATE MECHANISM 

Effective QoS routing algorithms rely heavily on the accuracy of the link state 

information. Accurate link state information can be obtained only if the link state 

update is performed frequently enough to capture every instant of the link state 

change. However, this imposes significant burden on the network resources. On the 

other hand, allowing longer update intervals based on hold-down timers do not allow 

for the link state upate policy to be adaptive with respect to the changes in the link 

state. In this thesis, a new link state update mechanism has been proposed which aims 

at providing consistent link state information to the QoS routing algorithm, at the 

same time limiting the number of excessive link state update messages. The 

mechanism is called TE-LR (Traffic Engineering using Linear Regression). 

 

3.1 Assumptions 

The following are the assumptions made for the proposed link state update 

mechanism: 

1. Bandwidth is assumed to be the primary QoS metric. 

2. The routing protocol used is link state which gives a complete view of the 

overall network topology. 

3. The bandwidth utilization ratio of a link is sampled randomly.  

 

3.2 Link State Update Mechanism using Linear Regression  

The basic idea of the proposed link state update mechanism is to observe the link 

bandwidth utilization trend over some period of time. Based on the observed trend, a 

Univ
ers

ity
 of

 M
ala

ya



 58 

decision on whether or not a link state update message should be sent out will be 

made. The mechanism allows an update message to be sent out only when the 

observed trend shows a significant utilization change rather than sending an update 

for every instant of change as in other existing trigger-based update mechanisms, such 

as QoS-OSPF. In QoS-OSPF, link state updates are sent whenever the bandwidth 

utilization ratios exceeds a pre-defined threshold value, thr. This produces excessive 

overhead messages as updates may be sent due to unnecessary bandwidth utilization 

fluctuations. Hence, the proposed mechanism’s main goal is to suppress the unwanted 

update message overheads while at the same time maintaining the link state 

information accuracy. The proposed mechanism is further illustrated using a 

flowchart in Figure 3.1.  

 

In general, the mecahnism is made up of three main functions: 1) the sampling of 

bandwidth utilization ratios of every link, 2) the construction of linear regression line 

equations, and 3) the advertisement of link state updates based on the tangent 

difference. A detailed description of the mechanism follows in the next sub-sections. 

 

Univ
ers

ity
 of

 M
ala

ya



 59 

           

           

           

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A flowchart that illustrates the proposed TE-LR mechanism 

 

3.2.1 Sampling of bandwidth utilization ratios 

A network is modeled as a set of V nodes (i.e., routers) that are interconnected by a 

set E of full-duplex, directed communication links. Each node keeps an up-to-date 

local state about all the outgoing links. The state information of link (i, j) is consist of 

samples_list =  
NULL 

Sample link’s bandwidth 
utilization % every i 

seconds 

Size of 
samples_list 

= 20 ? 

Size of 
samples_list 

> 20 ? 

 

Compute first regression 
line, Lo 

 

Compute second 
regression line, Lc 

 

 

Compare tangent of Lo 

and Lc 

Tangent 
difference > 

thr ? 

 

 

Generate and distribute 
LSA 

 

 

Lo = Lc 

NO NO 

NO 

YES YES 

YES 

Univ
ers

ity
 of

 M
ala

ya



 60 

the bandwidth utilization ratio of the link, i.e., how many percentage of the link’s 

original capacity is in use. At every sampling interval, i seconds, the bandwidth 

utilization ratio of link (i, j) is continuously sampled. The mechanism maintains two 

lists each with 20 elements. One list is used to store the sampled bandwidth utilization 

ratios, while the other is to store the time at which each sample was taken as this is 

required during the linear regression line construction process.  Table 3.1 shows an 

example of the sampled bandwidth utilization ratio and time values. 

 

Table 3.1 Example of sampled data values 
 

Sample Time 

(secs) 

 

 

0.1 

 

 

0.2 

 

 

0.3 

 

 

0.4 

 

 

0.5 

 

 

0.6 

 

 

0.7 

 

 

0.8 

 

 

0.9 

 

 

1.0 

 

Bw 

Utilization 

(%) 

 

 

52.79 

 

 

54.27 

 

 

43.25 

 

 

50.03 

 

 

50.67 

 

 

49.18 

 

 

49.61 

 

 

52.36 

 

 

48.76 

 

 

55.54 

 

 

3.2.2 Construction of linear regression line equations 

For every N values sampled (i.e., both bandwidth utilization ratio and time), the 

intercept and tangent associated with the n = N samples (x1, y1), (x2, y2) , …, (xn, yn) 

are computed using equations (2.19) and (2.20). The tangent, m and intercept, b 

values are then applied into equation (2.18) to get the linear regression line equation. 

Lets assume that the first-most linear regression line computed for the first set of N 

samples is called original line, Lo and each subsequent line is called current line, Lc. 

The tangent of line Lo and Lc, which are mo and mc, are obtained from the respective 

line equations. Figure 3.2 shows an example of the linear regression lines which have 

been computed and plotted on the scatter diagram. The linear regression line 

equations and the tangent values for each of the lines are also shown on the diagram. 

 

    

Univ
ers

ity
 of

 M
ala

ya



 61 

 

 

 

 

 

 

 

 

Figure 3.2 Linear Regression Line plotted on a Scatter Diagram 

 

Let  N = 10. As can be seen on the diagram above, the linear regression line equation 

for line 1, Lo is Y = 10x where mo is 10, while the linear regression line equation for 

line 2, Lc is Y = 5x + 20 where mc is 5. The process of linear regression line equation 

computation will be repeated for every successive sets of N samples obtained 

throughout the entire simulation.   

 

3.2.3 Advertisement of link state updates 

The computed tangent of Lo, which is mo is compared with the tangent of the Lc, 

which is mc  using the following equation. 

 
tangent difference = absolute[ mc- mo ]             (3.1) 

 

If the computed absolute tangent difference exceeds the pre-defined threshold thr, that 

is mc- mo > thr, the router will immediately send a link state update message to all its 

neighboring routers. Upon doing this, the current line is set to act as the original line 

Rate of Change of Banwidth Utilization %

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

Time (seconds)

B
a
n

d
w

id
th

 U
ti

li
z
a
ti

o
n

 %

Line 1
Line 2

Y = 10x 
mo = 10 

Y = 5x + 20 

mc = 5 

Univ
ers

ity
 of

 M
ala

ya



 62 

against which the next linear regression lines, i.e., the next current lines, will be 

compared to. On the other hand, if the computed absolute tangent difference do not 

exceed thr, that is mc - mo < thr, then no update will be sent out. In this case, the 

original line remains as the original line against which the next linear regression lines 

will be compared to until the next update trigger is issued. 

 

For example, in Figure 3.1, mo and mc are given as 10 and 5 respectively. Assume the 

value of thr is 4, then (10 - 5) > 4, hence an update will be triggered. Lc will become 

the new Lo. If thr is 6, then (10 - 5) < 6, so no update will be triggered and the current 

Lo remains as Lo for subsequent comparisons. 

 

 

3.4 Chapter Summary 

The idea behind the proposed mechanism TE-LR was discussed in detail in this 

chapter. Important elements of the mechanism such as the process of bandwidth 

utilization ratio sampling, the costruction of linear regression line equations and the 

process of deciding when to send link state updates were covered in the discussion. In 

the next chapter, the changes done to UMJaNetSim in order to implement TE-LR and 

the testings performed to evaluate TE-LR are presented. Univ
ers

ity
 of

 M
ala

ya



 63 

CHAPTER 4 

IMPLEMENTATION AND TESTING 

This chapter begins with a discussion about the methodology used in implementing 

the proposed TE-LR mechanism. Since simulation had been selected as the tool to 

evaluate the performance of TE-LR, then a review of exisiting network simulators is 

presented, followed by an overview of the selected network simulator, UMJaNetSim. 

Enhancements in UMJaNetSim to incorporate new functionalities of TE-LR is later 

described in detail. Finally, several test cases are produced to evaluate the correctness 

of TE-LR and the results of the test are presented.  

 

4.1 Methodology 

The performance of a computer system is usually evaluated by constructing an 

appropriate model of the system and executing the model to predict the system’s 

behaviour and characteristics. Models allow the observed relationships to be 

summarized in a compact way and it assists in making predictions and inferences. 

Choosing the most appropriate model that suits the specific purpose of the system 

testing is a very complex task. [Stephenson00] had given the following stages that can 

be followed to identify a model that best suits the current problem: 

 

1. Identification - A number of potentially suitable models are identified by 

critically analyzing the data using descriptive techniques. 

2. Estimation - Using least-square methods or maximum likelihood methods, the 

model is fitted to the sample data to estimate the models’ parameters and their 

confidence intervals. 

Univ
ers

ity
 of

 M
ala

ya



 64 

3. Validation - By carefully analyzing the residuals (errors) of the fit and other 

diagnostics, the model’s fit to the data are critically assessed. 

4. Prediction - To select the best model that best suits the current situation, the 

model is used to make predictions. However, it is not necessary that a model 

that provides a good fit will also produce good predictions. 

  

In order to get the best model, the above stages have to be repeated. Once the most 

appropriate model has been identified, it can be used to model a system and evaluate 

its performance. Various techniques are available to test the performance of a system 

either by using a model or without using a model. Three common techniques are 

[Bank00, Law00]: 

• Empirical experimentation 

Empirical experimentation is also known as “real world” testing where it involves 

the construction of the actual system and evaluating it in its own environment. 

Though the technique allows the most intricate details of the system performance 

to be captured, it involves very expensive and complicated laboratory tests and 

“test beds”. It also requires the acquisition of equipment, network and other 

facilities which are very costly and infeasible rendering the technique to be 

impractical. 

• Analytical model 

In analytical model approach, the system is modeled as a set of mathematical 

equations to predict the result and performance of the system. The approach is 

very simple and allows complete control over the created model but it may result 

in some of the key features of the system to be overlooked due to over 

simplification. 

Univ
ers

ity
 of

 M
ala

ya



 65 

• Simulation 

Simulation is the most effective technique to analyze and evaluate the behaviour 

of a system without building the actual system. It allows the testing of various 

types of topologies under various traffic conditions and characteristics. Simulation 

is most useful to explore the unknown and unproven. Due to its simplicity, 

feasibility in terms of cost and time saving, and flexibility, simulation has been 

employed in this thesis to test the proposed TE-LR mechanism. 

 

4.2 What is Network Simulation? 

Network simulation is the process of modeling real world computer network systems  

on a computer in order to determine how the real system performs and predict the 

effect of changes to the system as time progresses. The technology provides the 

analytical power required to evaluate the dynamic aspects of current processes as well 

as to investigate the potential for innovative new processes. 

 

Simulation in general can be classified according to several criteria [Nance93]: 

1. Stochastic Process versus Deterministic Computation 

A stochastic process  (also known as Monte Carlo simulation) is a process of 

change governed by probabilities at each step. The process uses random number 

generators to model the chance or random events. The stochastic process uses 

one or more time-dependent random variables to determine the behaviour of a 

system.  

 

On the other hand, when deterministic computation is used, the system will 

always produce the same final state given the same initial state and the same 

Univ
ers

ity
 of

 M
ala

ya



 66 

input. The most widely used deterministic computation is the deterministic 

finite state machine that has only one transition from the current state for each 

pair of state and input symbol.   

 

2. Discrete Event Simulation versus Continuous Event Simulation  

Discrete event simulation views the process under simulation as a series of state 

changes as the process progresses through a series of events. Associated with 

each process is its own state variables and each event has a starting and ending 

time. In contrast, a continuous event simulation represents those processes 

whose state and output changes continuously throughout the simulation as 

mathematical expressions.  Once the choice of the mathematical expression has 

been made, it is easy to use continous event simulation. 

 

3. Local Simulation versus Distributed Simulation 

Local simulations involves the execution of the simulation model on a stand-

alone system while in the distributed simulations environments, simulations are 

run on a network of interconnected computers. The most common examples of 

distributed simulations are the Aggregated Level Simulation Protocol (ALSP), 

the Distributed Interactive Simulation (DIS) and the High Level Architecture 

(HLA). 

 

4.3 Existing Network Simulation Software 

Network simulation software (also known as network simulators), enables us to 

evaluate network protocols under varying network conditions and over a long period 

of time at low cost. Some systems may have to be operated in harsh environments that 

Univ
ers

ity
 of

 M
ala

ya



 67 

may be too dangerous for human beings to be physically present. Therefore, network 

simulators provide secured atmosphere to test the system before using it in real life 

environments. Many network simulators, such as NS2, OPNET, MIT’S NETSIM, etc 

are widely available for studying and understanding the behaviour and characteristics 

of network protocols. In this research, a network simulator called UMJaNetSim 

developed at the Networks Research Laboratory of  University of Malaya, Malaysia 

has been used. Detailed description of UMJaNetSim will be presented in Section 4.4, 

while a brief description of other commercially available network simulators follows 

next. 

 

4.3.1 MIT’s NETSIM 

NETSIM is an event driven simulator designed by the MIT LCS Advanced Network 

Architecture group intended for modeling packet-switched networks. Though it was 

originally developed for personal use, it was later made available online at  

[Barnett94] for those who are interested in learning and using it. NETSIM’s 

simulation engine is a single process witten in C. 

 

Any kind of network that involves packet transmission can easily be modeled using 

NETSIM. The simple X window graphic user interface (GUI) representation allows 

network topology and its data to be displayed in graphical mode. The parameters of a 

component can either be an input given by the user or outputs produced by the 

simulator. They are stored as a singly-linked list and may be modified during run 

time, thus  allowing effects of the changes to be analysed immediately. 

 

Univ
ers

ity
 of

 M
ala

ya



 68 

The NETSIM package contains an event manager, I/O routines, various structural 

tools such as queues and lists, and a library of C functions. The components provided 

by NETSIM are links, hosts, switches and network connections. Whenever an event is 

sent to any of these components, the action routine is called. Three types of events are 

handled by a component: 1) private, these are events sent by a component to itself, 2) 

regular, these are events that are concerned with the actual running of the simulation, 

and 3) command, these are events that are concerned with housekeeping actions. 

 

The simulator provides very limited functionality, that is, it only provides the means 

to schedule events and to communicate with users [Ernst97]. Other than that, adding 

and removing events are also very slow. However, its simplicity and its ability to 

allow code modifications to suit the needs of different users renders the simulation to 

be one of the best options available. For example, even though it supports only static 

routing, users are allowed to modify the code to implement and test any kind of 

routing algorithm. Users can also easily create their own components by just making 

slight modifications to the code since there is no specific data structure for the 

components.  

 

4.3.2 NIST ATM/HFC Simulator 

A simulator for studying and evaluating the performance of ATM and HFC (Hybrid 

Fiber Coax) networks which is based on NETSIM has been developed by the 

National Institute of Standards and Technology (NIST) [Golmie98i]. The simulator is 

called ATM/HFC simulator where HFC network is a network that uses coax and fiber 

technology to provide high speed digital services to cable TV subscriber premises.  

Univ
ers

ity
 of

 M
ala

ya



 69 

The ATM/HFC simulator is written using C and uses X window graphic user 

interface (GUI) similar to NETSIM to allow interactive modeling. 

 

The simulation engine of the simulator consists of components, event managers, I/O 

routines and other tools that help the creation of the simulation topology and setting 

up of the simulation environment. Two types of windows are available to display the 

components and simulation information: the information windows are used to display 

the component parameters and the meter windows are used to record the network 

activities.  

 

The ATM/HFC simulator plays two important roles: one as ATM network planning 

tool and the other as ATM protocol analysis tool. As a network planning tool, it runs 

simulations with various network configurations and traffic loads, and it produces 

statistics for analysis purpose. On the other hand, as a protocol analysis tool, it is used 

to study the total system effect of a particular protocol.  Several classes of 

components are available within the simulator such as physical links, ATM switches, 

broadband terminal equipment (B-TE) and various types of ATM applications. It is 

claimed that the modules simulating the components can be changed or added.  The 

source code and user manual are made available freely on NIST’s official website for 

those who are interested in using it for teaching or research purposes. 

 

4.3.3 OPNET 

OPtimized Network Engineering Tools (OPNET) is a generic commercial network 

simulator developed by Third Millenium Technologies (MIL3) Inc., to provide 

sophisticated network modeling and simulation environment [Duan06]. It is a 

Univ
ers

ity
 of

 M
ala

ya



 70 

discrete-event simulator that provides very flexible and scalable approach towards the 

design and study of communication networks, devices, protocols and applications.  

 

A number of features are added into OPNET’s software package, such as an event-

driven scheduled simulation kernel, integrated analysis tools for interpreting and 

synthesizing output data, graphical specification of models and a hierarchical object-

based modeling tool. The package provides a range of useful tools to allow users 

specify models in great detail. The tools can be classified into four main categories, 

namely OPNET Modeler, OPNET Planner, Analysis Tools and Modeling Libraries. 

 

The OPNET Modeler employs hierarchical modeling structure where each level 

describes different aspects of the simulated model. This way the models can be reused 

during other simulations. It comes with four types of editors that aid in the 

development of the simulated models: 

• Network Editor. It provides graphical user interface to allow users to design their 

topologies with convenience and ease. The communication entities in OPNET are 

nodes and links. OPNET also allows wireless networks to be modeled using the 

radio links. The characteristics of both nodes and links can be customized via the 

user-friendly GUI-based property windows. 

• Node Editor. It is used to specify the communication entities created by the 

Network Editor in terms of interconnected modules. 

• Process Editor. The process editor is used to create process models that describes 

the processes and queues as a finite state machine where the states and transitions 

are graphically specified using state-transition diagrams written using C-like 

programming language called Proto-C.   

Univ
ers

ity
 of

 M
ala

ya



 71 

The OPNET Planner allows users to analyse the network performance and behaviour 

using discrete-event simulations. Two types of tools are available to define and run 

simulations, and to debug the simulation at run-time. They are the Simulation Tool 

and Debugging Tool. Data and output collected during the simulation can be 

evaluated and manipulated via the use of various tools such as the Probe Editor, 

Analysis Tool, Filter Tool and Animation Viewer. Both OPNET Modeler and OPNET 

Planner are equipped with modeling libraries that provide protocols and analysis 

environments such as ATM, TCP, IP, and so on. 

 

One significant advantage of OPNET is its support for large communication systems 

ranging from a single LAN to global satellite networks. Due to this, the complexity of 

the network model may be very huge causing scalability problems. OPNET handles 

this by applying an abstraction method called subnetworking [Ernst97]. Despite the 

advantage, OPNET also has some disadvantages. Firstly, OPNET do not allow users 

to define new modules. Users have to choose a model from a pre-defined set of 

models that comes with the package. Secondly, to use OPNET for either teaching or 

research purpose, one has to acquire the license which is very costly. Finally, users 

are not allowed to modify the OPNET software except for researchers who have 

obtained special licenses permitting them to do so. 

 

4.3.4 REAL 

REAL (Realistic And Large) is a network simulator written by S.Keshav [Keshav88i, 

Keshav88ii] at Cornell University for studying the dynamic behaviour of flows and 

congestion control schemes in packet-switched data networks. REAL was built based 

on the modified version of NEST 2.5 which was developed at Columbia University. 

Univ
ers

ity
 of

 M
ala

ya



 72 

REAL adopts the client-server arhictecture where the server located at Cornell 

University is connected to the client via Berkeley UNIX socket. Simulations are 

carried out on the server machine, while users set up their simulation environment and 

control their simulations via the display client. 

 

The initial version of REAL allows networks to be modeled only as graphs where the 

descriptions of the network topology, protocols work-load and control parameters are 

transmitted to the server using a single ASCII representation of the network called 

NetLanguage. However, newer releases come with GUI written in Java to allow users 

to create topologies graphically without having to download and build the simulator. 

Once the server machine completes running a simulation, it returns the status 

information and results to the client via the same socket. 

 

REAL’s network layer is datagram-oriented while the transpost layer is modeled 

based on Transmission Control Protocol (TCP) that provides reliable, sequenced 

packet transmissions using standard techniques of flow control, timeout estimation 

and packet retransmission. It provides 30 modules to emulate flow control protocols 

such as TCP and 5 scheduling disciplines such as FIFO (First In First Out), Fair 

Queuing, DEC congestion avoidance and Hierarchical Round Robin. The workload 

presented to the simulator is of three types [Ernst97]: 1) FTP (File Transfer Protocol), 

that allows the transfer of large files, 2) TELNET, that uses exponential inter-packet 

spacing to transfer minimal sized packets, and 3) ill-behaved sources, that 

continuously sends maximally sized packets which is not more than the network’s 

capacity.  

 

Univ
ers

ity
 of

 M
ala

ya



 73 

The main advantage of using REAL is it client-server architecture itself. Users can 

run large simulations parallely on several servers with just a single point of control. It 

also provides library of routines that collect simulator statistics to generate report 

automatically. In contrast to OPNET, REAL is available for free and users can modify 

the source code to suit their specific requirements. The main disadvantage of REAL 

worth-noting is its platform dependency where it runs only on UNIX platform. 

 

4.3.5 Network Simulator 2 (NS2) 

NS is an object-oriented discrete-event simulator intended to study packet switched 

networks. It is mainly used for small scale simulations of queuing algorithms, 

transport protocol congestion control and some multicast related work. The initial 

version of NS, NS version 1.0 was developed by the Network Research Group at the 

Lawrence Berkeley National Laboratory (LBNL) but its later developments and 

evolutions was made part of the VINT project funded by the DARPA in collaboration 

of XEROX PARC and LBNL [Fall03]. The main aim of the VINT project is to unite 

the efforts of people working on network simulations. NS is a very powerful simulator 

in that it is written using two different programming languages, C++ and OTcl. The 

simulator supports a class hierarchy in C++ (also known as compiled hierarchy) and a 

class hierarchy in OTcl interpreter (also known as interpreted hierarchy). Both class 

hierarchies are related to each other by a one-to-one correspondence.  

 

New simulator objects are created through the interpreter and they are closely 

mirrored by a corresponding object in the compiled hierarchy. The idea behind this is 

that, all tasks that require greater run-time speed but lower turn-around time (e.g., run 

simulation, find and fix bugs, re-compile, re-run) can be implemented using C++, 

Univ
ers

ity
 of

 M
ala

ya



 74 

while tasks requiring greater interation time (e.g., changing parameters or 

configurations, quickly exploring various scenarios,etc) but lower run-time are 

implemented using OTcl [Ernst97]. Hence, detailed protocol implementation can be 

done using C++ that is faster to run but slower to change and manipulating simulation 

configurations can be done using OTcl that is slower to run but quicker to change. 

  

The core class in NS2 is the class Simulator, written in C++ to provide procedures to 

create and manage the topology, to initialize the packet format and to choose the 

scheduler. The components supported are nodes, links, agents, FTP and Telnet 

traffics. NS2 simulation engine is single-threaded, meaning that it allows only the 

execution of one complete event at one time. Four types of event schedulers are 

available in NS2: a simple linked-list (default), heap, calendar queue and real-time. 

Unlike NETSIM that supports only static routing, NS2 supports both static and 

dynamic routing strategies. User can choose their choice by specifying it in class 

Simulator. 

 

Whenever a new simulator object is created, three main operations are performed by 

the initialization procedure in class Simulator.  

• initialize packet format 

• create a scheduler 

• create a “null agent” (i.e., discard  sinks) 

 

class Simulator also provides a number of other methods to set up the simulation 

which are categorized as: 

• methods to create and manage topology 

Univ
ers

ity
 of

 M
ala

ya



 75 

• methods to perform tracing 

• helper functions to deal with the scheduler 

 

One problem with NS2 is scaling. When the number of nodes increases, storage 

requirements also increase due to the need to store large routing tables. The VINT 

project has proposed the use of more efficient hierarchical routing table structure 

instead of using the existing flat addressing structure. It also proposes to further 

improve the performance by replacing the linear search insertion algorithm with heap 

or calendar queue. Soon, a distributed version of the simulator will be available via 

the VINT project. 

 

4.4 Overview of the Simulation Environment 

In this section, a general overview of the network simulator used to evaluate the 

correctness and to demonstrate the performance of the proposed mechanism is 

presented. The simulator, known as UMJaNetSim is based on NIST ATM/HFC 

network simulator and was developed by Lim, S.H., et al. [Lim00] for research 

purposes. 

 

• Usage 

UMJaNetSim can be used to model and evaluate any kind of network whose 

components interact with each other by exchanging messages. 

 

• The Architeture 

The use of Java programming language in its development has brought significant 

simplicity and flexibility in creating simulation models and controlling the overall 

Univ
ers

ity
 of

 M
ala

ya



 76 

simulation process. Architecturally, UMJaNetSim is composed of a number of 

classes that are grouped into two main parts, namely the simulation engine and the 

simulation topology (see Figure 4.1).  

 

Classes that reside inside the dotted rectangle area form the main simulation 

engine while claases that reside outside the dotted rectangle area form the 

simulation topology [Lim00]. class Javasim in the simulation engine acts as the 

main controller of the simulator and performs two major management tasks: event 

management and GUI management. As an event manager, JavaSim manages an 

event queue, an event scheduler and a simulator clock. As a GUI manager, 

JavaSim with the support of an helper object called SimPanel handles the creation 

of simulation components, manages the dialog boxes associated to the component 

parameters and, handles user inputs and manipulation of component properties. 

Other classes in the simulation engine provides helper functions to assist in the 

proper functioning of the simulator. For instance, the SimEvent object stores 

descriptions about an event such as the event ID, the source and destination 

(target) components of the event, the time of the event invocation and some other 

parameters. The SimClock object provides functions to convert the real time to 

“ticks” and vice versa. 

 Univ
ers

ity
 of

 M
ala

ya



 77 

 

 

 

 

 

 

 

 

 

Figure 4.1 The Architecture of UMJaNetSim 

 

On the other hand, the simulation topology is consist of classes that support the 

creation of simulation components and settings of the component parameters. To 

create a new component, for instance a router, class SimComponent can be 

inherited. The components of a network and their properties can easily be viewed 

via the GUI representation capability of UMJaNetSim. During the execution of a 

simulation, the simulation engine interacts with the components within the 

simulation topology. The interaction goes through two important steps [Lim00]: 

1. Any simulation component can schedule an event targeted for any other 

simulation component  (target component) or for itself by enqueuing the event 

using the enqueue function. Every event has a specified time (implemented 

using a timer) upon reaching which the event must be fired. 

2. When an event’s timer expires, the simulation engine invokes the event 

handler of the target component in order for the component to react 

accordingly.  

Univ
ers

ity
 of

 M
ala

ya



 78 

• Implementation of the Simulator  

Components in UMJaNetSim are such as ATM switches/routers, Broadband 

Terminal Equipments (BTEs), traffic sources, generic links and applications. They 

are inherited from the SimComponent class. Every component has associated with 

it a set of parameters that describe its behaviour. The parameters are displayed on 

simulation window using GUI-based dialog boxes and they can be classified as 

either external or internal parameters.  

 

External parameters are those that can be edited by the user at run-time and are 

displayed in the parameter dialog box. For example, the packet transmission rate 

and simulation start time. In contrast, internal parameters are those that are not 

editable by the user at run-time and are displayed in the meter dialog box. Packet 

loss ratio and bandwidth utilization ratio are examples of such parameters. 

UMJaNetSim implements the event queue as lists using the java.util.List. Events 

are added to the list and are fired in the order of their arrival. The time is 

represented as a “tick” where the duration of a tick is configurable by the user. 

The default duration of a tick is 10 nanoseconds. 

 

4.5 Implementation of TE-LR 

In this thesis, UMJaNetSim has been used to implement and evaluate the proposed 

TE-LR mechanism due to its flexibility (i.e., components can be extended and added 

quickly) and portability (i.e., can run virtually on any platform).  

 

The simulation environment used to evaluate the proposed algorithm is composed of 

the following existing components of UMJaNetSim: 

Univ
ers

ity
 of

 M
ala

ya



 79 

• ATMLSR 

Generally, a router allows nodes in a network to interact with each other by 

passing messages and data packets to each other. To model the simulation 

environment, ATMLSRs (Asynchronous Transfer Mode Label Switching 

Routers) were used which are capable of routing MPLS’s native L3 packets. 

ATMLSR inherits SimComponent. 

• IPBTE 

An IPBTE (IP Broadband Terminal Equipment) is responsible of aggregating  

traffics from customer sites. Customer sites are represented by traffics sources 

attached to an IPBTE such as CBRIP and VBRIP. There can be more than one 

traffic source attached to one IPBTE and more than one IPBTE can be 

attached to one ATMLSR. IPBTE inherits SimComponent. 

• CBRIPApp 

CBRIPApp (Constant Bit Rate IP Application) is an application that generates 

constant bit rate traffics that require a fixed amount of bandwidth available 

continuously as long as the connection is active. Traffics generated by CBRIP 

applications will be aggregated by an IPBTE. CBRIPApp inherits 

SimComponent. 

• VBRIPApp 

VBRIPApp (Variable Bit Rate IP Application) is an application that generates 

traffics at various rates and requires varying amount of bandwidth (must be 

within the total capacity of the link). It is used to emulate web traffics. Traffics 

generated by VBRRIP applications will be aggregated by an IPBTE. An 

IPBTE can have both CBRIP and VBRIP sources attached to it at the same 

time. VBRIPApp inherits SimComponent. 

Univ
ers

ity
 of

 M
ala

ya



 80 

• GenericLinks 

To connect two ATMLSRs or an ATMLSR to an IPBTE, generic links are 

used. The capacity of the links can be set by the user. The default capacity is 

155Mbps. GenericLink also inherits SimComponent. 

 

In addition to the components described in the previous section, the implementation 

of TE-LR requires some modification to UMJaNetSim. The discussion of the 

modification is broken into several categories: 

• Collection of bandwidth utilization ratio samples. 

• Construction of linear regression line equation. 

• Advertisement of link state updates. 

 

4.5.1 Collection of bandwidth utilization ratio samples 

The construction of linear regression line equation requires the sampling of the 

bandwidth utilization ratio of a link at a fixed sampling interval, i. The 

implementation of the sampling process is done in class ATMLSR’s private method 

called private void sw_averaging_interval(). The code is shown below with some 

parts omitted to shorten the length: 

 

 

 

private void sw_averaging_interval() { 

    long t1,t2; 

    java.util.Iterator i=voports.values().iterator(); 

    while(i.hasNext()) { 

      Port voport=(Port)i.next(); 

      ////// Calculate link utilization 

Double linkspeed = (Double)(voport.to_link.compInfo  

(GenericLink.GET_CAPACITY,this,null))[0]; 

        if(sw_ef_no_traffic.getValue()) { 

        //fake the cellsInWindow 

 

 

 

-- Continued on the next  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 81 

 

 

 voport.cellsInWindow += (int)(voport.EFcurrent / 1000.0 *  

sw_ai.getValue() / 424.0); 

      } 

      voport.utilization.setValue(voport.cellsInWindow * 424.0 /sw_ai.getValue() / 

                               linkspeed.doubleValue() * 100.0); 

    

-------- Code omitted to reduce length -------- 

 

  //The following are the codes to collect samples 

 Double utilization = new Double (voport.utilization.getValue()); 

double myTime = SimClock.Tick2Sec(theSim.now()); 

       Double sampleTime = new Double(myTime);//to store the time in a list 

 

int listSize = 20;//number of samples to collect 

 boolean second = false; //make sure that two lines have been computed  

 boolean trigger = false; //if trigger == true, send LSA 

  

if(myTime > 5.0) { //give some time for convergence 

   //Keep on adding samples to the list until there are 20 samples 

    if(voport.bwUtilPercent_list.size() < listSize) {    

  voport.bwUtilPercent_list.add(utilization);   

  voport.time_list.add(sampleTime);  

   } 

    else {  

  if(voport.bwUtilPercent_list.size() == listSize){    

    Object element = voport.bwUtilPercent_list.getLast(); 

    //20 samples collected, compute the regression line 

    voport.firstLine_M = calculateM(voport, listSize); 

    voport.bwUtilPercent_list.add(utilization); 

     voport.time_list.add(sampleTime); 

    //Start counting number of link state updates advertised  

     startLSACount = true;  

    } 

  else{  

     second = true;  

         voport.bwUtilPercent_list.removeFirst(); 

     voport.time_list.removeFirst(); 

     Object element = voport.bwUtilPercent_list.getLast(); 

     voport.nextLine_M = calculateM(voport, listSize); 

     voport.bwUtilPercent_list.add(utilization); 

     voport.time_list.add(sampleTime); 

  } 

   } 

   

   //Already have two 'm' values, so compare the lines now 

   if(second == true){ 

  trigger = compareM(voport.firstLine_M, voport.nextLine_M); 

  if(trigger == true) { 

         voport.firstLine_M = voport.nextLine_M; 

          }          

   } 

    

 } 

     

      if(delayedLSA) { //if there is a pending advertisement 

        //good, we use the latest value :) 

        delayedLSA=false; 

        voport.lastAdvertisedBandwidth = curpercent *  

                                            linkspeed.doubleValue()/100.0; 

        generate_RouterLSA(); 

      } 

      else if (myThreshold.getValue() == 0) { 

   

   if (trigger == true){ 

         voport.lastAdvertisedBandwidth = curpercent *  

                                                        linkspeed.doubleValue()/100.0; 

               if(sw_dynamic_ospf.getValue()==true) {         

              voport.lsaSent = true; 

           generate_RouterLSA(); 

               } 

       

       } 

 else{ 

   

-- Continued from previous  page --  

 

-- Continued on the next  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 82 

 

 

voport.lastAdvertisedBandwidth = curpercent *  

                                                 linkspeed.doubleValue()/100.0;         

 } 

     

      }  

      else if(myThreshold.getValue() == 1) {  

         if((Math.abs(lastpercent-curpercent)/lastpercent*100) >                          

                                                      sw_dospf_threshold.getValue()) { 

         //ok, changes exceed the threshold, update the available bandwidth  

   voport.lastAdvertisedBandwidth = curpercent *  

                                                  linkspeed.doubleValue()/100.0; 

         if(sw_dynamic_ospf.getValue()==true) {  

      generate_RouterLSA(); 

               } 

         } 

      } 

 

-----------Code omitted to reduce length----------- 

} 

 

 

The following attributes have been added to method sw_averaging_interval() in order 

to perform the abovementioned operation of the proposed mechanism: 

1. Double utilization 

utilization is an object of type Double that is declared and used in method 

sw_averaging_interval() to store the bandwidth utilization ratio each time it is 

sampled. When the value is sampled, it is in the primitive data type double. In 

order to add the value to Java linked-list it has to be converted to an object of 

type Double. 

2. Double sampleTime 

Similar to utilization, sampleTime is also declared to be an object of type 

Double to store the time values at which each sampling is done. Each time the 

time value is read, it will be added to the Java linked-list. 

3. int listSize 

This is a variable of integer type used to specify the number of samples to be 

collected in order to construct the linear regression line equation. Whenever 

the number of sampled bandwidth utilization ratio reaches listSize, the method 

-- THE END --  

 

-- Continued from previous  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 83 

to construct the linear regression line equation will be invoked. The value of 

listSize can be changed to any preferable value. 

4. boolean second 

The variable second can take either the value of true or false. When it is set to 

true, it is an indication that two or more linear regression lines have already 

been computed and the process of comparing the lines can be performed. Its 

value will be false only during the initial stage where only one line has been 

computed. For subsequent lines, it will remain as true. 

5. boolean trigger 

An LSA can only be sent if the computed tangent difference between two 

linear regression lines exceeds a pre-defined threshold value. Whenever this 

happens, the boolean variable trigger will take the value of true indicating that 

an LSA has to be sent out. Otherwise, it remains as false. 

6. java.util.LinkedList bwUtilPercent_list 

bwUtilPercent_list is a linked-list that stores all the sampled bandwidth 

utilization ratio as objects. The maximum size of the list is limited by listSize. 

It is declared in class Port, so that for each interface of a router, there will be a 

separate list. 

7. java.util.LinkedList time_list 

time_list is also a linked-list declared in class Port to store the time at which 

each sample is taken. Similar to bwUtilPercent_list, the maximum size of 

time_list is also limited by listSize. 

8. double firstLine_M 

This is a variable of type double added to class Port to stores the computed 

tangent value of the first-most linear regression line, Lo. The value will then be 

Univ
ers

ity
 of

 M
ala

ya



 84 

compared with the tangent value of the subsequent linear regression lines. In 

the event that an LSA is triggered, firstLine_M will be substituted with the 

tangent value of Lc. 

9. double nextLine_M 

This is a variable of type double that stores the computed tangent value of 

subsequent linear regression lines, Lc. Each time a value is stored in 

nextLine_M, both firstLine_M and nextLine_M will compared using Equation 

(3.1). If the absolute difference exceeds the threshold, firstLine_M will be 

substituted by the value in nextLine_M. 

10. boolean startLSACount 

This is a boolean variable declared as a private variable in class ATMLSR that 

indicates when the counting of LSA should be started. The counting will be 

started the moment the first comparison takes place. Each time the router 

floods the LSA into the network, the number of LSAs sent out will be traced. 

The final value will be used in the calculation of update message overheads to 

evaluate the proposed mechanism’s performance. 

11. SimParamIntTag myThreshold 

myThreshold is a component of type SimParamIntTag that specifies which 

mechanism should be used in the simulation. Two options are available: QoS-

OSPF and TE-LR. It appears on the property window of each router as V 

Threshold_Type so that users can make their selection. 

 

4.5.2 Construction of linear regression line equations 

The construction of the linear regression line equation itself is performed by a new 

method added to class ATMLSR called calculateM( ) which takes the port id and the 

Univ
ers

ity
 of

 M
ala

ya



 85 

size of the sample list as inputs. Equations (2.19) and (2.20) are applied in the 

computation of tangent and intercept values of a line. The implementation of the 

method follows: 

 

private double calculateM(Port voport, int n){ 

  double sumX=0.0, sumY=0.0, sumXY=0.0, sumX2=0.0, sumXX=0.0;    

  double [] arrayX = new double [n];//holds sample time 

  double [] arrayY = new double [n];//holds bw utilization in percentage 

  double M = 0.0; 

  double B = 0.0; 

       

  java.util.Iterator itr1 = voport.time_list.iterator(); 

  java.util.Iterator itr2 = voport.bwUtilPercent_list.iterator(); 

 

  int count = 0; 

  

  //Transfer sample time into arrayX  

  while(itr1.hasNext()) { 

     Object element = itr1.next(); 

     double sampleTime = ((Double)element).doubleValue(); 

     arrayX[count++] = sampleTime; 

  } 

  

  count = 0; 

  

  //Transfer bw utilization into arrayY 

  while(itr2.hasNext()) { 

     Object element = itr2.next(); 

     double bwUtil = ((Double)element).doubleValue(); 

     arrayY[count++] = bwUtil; 

  }  

  

  //Calculate sum of x, sum of y, sum of xy, sum of x squared,  

  //squared sum of x 

  for(int i=0; i<n; i++)  

  { 

  sumX = sumX + arrayX[i]; 

 sumY = sumY + arrayY[i]; 

 sumXY = sumXY + (arrayX[i] * arrayY[i]); 

 sumX2 = sumX2 + (arrayX[i] * arrayX[i]); 

  } 

   

  sumXX = sumX * sumX; 

  

  //Calculate M (tangent of the line)    

  M = ((n * sumXY) - (sumX * sumY)) / ((n * sumX2) - (sumXX)); 

  

  //Calculate B (intercept of the line) 

  B = (sumY - M * (sumX)) / n; 

  

  return M; 

} 

 

4.5.3 Advertisement of link state updates 

Finally, the most important part, that is, the process of deciding when an LSA should 

be distributed was implemented by adding another new method into class ATMLSR 

Univ
ers

ity
 of

 M
ala

ya



 86 

called compareM( ). The main function of this method is to compare the tangent 

values of two successive linear regression lines using Equation (3.1) and then return 

the value of true if there is a need to send an LSA or false otherwise. One important 

attribute that has been defined to allow users to set the preferred threshold value is 

Threshold_M. It is a component that inherits SimParamDouble displayed on every 

router’s property window requiring user input. The implementation of the method 

follows:     

 

private boolean compareM(double m1, double m2){ 

   

  double difference = Math.abs(m2 - m1); 

   

  //If difference is greater than threshold, return true, otherwise false  

  if(difference > Threshold_M.getValue()){ 

   return true;  

  } 

  else { 

      return false; 

  } 

}  

 
 
4.6 The Testing Process 

Testing is the process of validating and verifying a system to ensure that its design 

and implementation meets the actual requirement specifications and that it is 

acceptable by the user. Among all the stages in a software development process, 

testing plays a very important role due to several factors: 

 

1. Identifying errors and problems in early stages of the software development cycle 

helps reduce the cost of the software development significantly. 

2. When a system is tested, the actual functioning of the system can be verified and 

validated against its expected functions. 

3. Systems that are well tested and documented are easy to learn and use, thus 

reduces the cost of staff re-training. 

Univ
ers

ity
 of

 M
ala

ya



 87 

4. Customers who are satisfied with the system tend to be loyal to the system 

developer and will bring in more business opportunities. 

 

A system, whether a software system or a hardware system, is consists of a number of 

sub-systems, each of which may in turn be composed of many modules. A module, on 

the other hand is made up of many procedures and functions.  Therefore system 

testing should not only concentrate on testing the system as a single unit but must also 

test the workings of each individual component and the interactions among them. Five 

main testing stages have been proposed in [Sommerville98], and these are illustrated 

in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The testing process 

 

 

Unit 
Testing 

 
 

Module 
Testing 

 

Sub-system 
Testing 

 

System 
Testing 

 

Acceptance 
Testing 

Component 
Testing  

Integration  
Testing 

User  
Testing 

Univ
ers

ity
 of

 M
ala

ya



 88 

4.6.1 Testing TE-LR 

A number test cases have been developed to test TE-LR to ensure that all the 

components and the interactions among them are working as expected.  The testing 

process started with component testing, then followed by an integration testing and 

finally a full system testing.  A detailed description of the tests carried out are 

presented in the following section. 

 

4.6.1.1 Testing the bandwidth utilization ratio sampling process 

A test was carried out to determine whether the code is able to sample the bandwidth 

utilization ratios at the expected sampling interval. The sampling interval here is 

actually determined by the interval between each successive entry into the 

sw_averaging_interval() method. This test was also intended to ensure that exactly N 

number of samples were collected before the linear regression line equation can be 

constructed. The topology used for this test is as shown in Figure 4.3. Two ATM 

switches denoted by R1 and R2 are connected by a point-to-point generic link, L1. 

Each router has one BTE that aggregates traffics from the customer sites. BTE1 is 

attached to two types of applications, CBR and VBR. CBR is responsible of 

generating constant traffic while VBR is responsible for emulating web traffic. To 

allow protocol comvergence, the simulation was left to run for 5.0 seconds before the 

data sampling was performed. Univ
ers

ity
 of

 M
ala

ya



 89 

 

 

 

 

 

 

 

 

Figure 4.3 Test Topology for TE-LR 

 

Each router is required to sample the bandwidth utilization ratio at every sampling 

interval, S = 0.1 seconds. This means that the method sw_averaging interval() will be 

entered every 0.1 second. Once there are enough samples, that is, N = 20 samples, the 

module should construct the equation of the linear regression line to obtain the 

tangent value for that line. The parameter settings and the trace produced by the 

simulation test run follows: 

Table 4.1  IP Settings for R1 and R2 

Router Name Interface to Link Interface IP Address 
R1 L1 

ext1 
1.0.0.1 

101.0.0.1 
R2 L1 

ext2 
1.0.0.2 

102.0.0.1 
 

Table 4.2   Property Settings for R1 and R2  

Router Properties Settings 
V Threshold Type TE-LR 
Threshold_M 5.0 
Sampling Interval, i (secs) 0.1 
Sample Size, N 20 
Sampling Start Time (secs) 5.0 

 

ext 1 ext 2 
L1 

Univ
ers

ity
 of

 M
ala

ya



 90 

Table 4.3 Characteristics of VBR1 

VBR Source Properties Settings 
Bit Rate (Mbits/s) 0.8 
Mean Burst Length (usecs) 50000 
Mean Interval Bet. Bursts (usecs) 15000 
Start Time (secs) 1.0 
Number of Mbits to be sent 3 
Repeat count (-1 = inf) -1 
Delay between calls (usecs) 1.0 
DiffServ Class Best Effort 
Poisson Model TRUE 
Random Data Size TRUE 
Random Delay Bet. Calls TRUE 
Enable Starting Delay TRUE 
Random Destination FALSE 
Avoid Local Destination TRUE 
Destination IP 102.0.0.0 

 

Table 4.4 Characteristics of CBR1 

CBR Source Properties Settings 
Bit Rate (Mbits/s) 0.8 
Bit Rate Lower Bound (Mbits/s) 0.1 
Bit Rate Upper Bound (Mbits/s) 1.0 
Start Time (secs) 1.0 
Number of Mbits to be sent 3.0 
Repeat count (-1 = inf) -1 
Delay between calls (usecs) 1.0 
DiffServ Class Best Effort 
Random Data Size TRUE 
Random Delay between Calls TRUE 
Enable Starting Delay TRUE 
Random Destination FALSE 
Avoid Local Destination TRUE 
Destination IP 102.0.0.0 

 

Table 4.5  Source Address Settings for BTE1 and BTE2  

BTE Name Source Address 
BTE1 101.0.0.0/24 
BTE2 102.0.0.0/24 

 

Univ
ers

ity
 of

 M
ala

ya



 91 

Table 4.6 Link Speed Settings for L1, ext1 and ext2 

Link Name Link Speed (MBits/sec) 
L1 2.0 
ext1, ext2 155.0 

 

Expected Output of the Test Run: 

• The process should be able to sample every link at the specified sampling interval.  

• Two lists must be maintained, one for storing the sampled bandwidth utilization 

ratios and the other for storing the time at which each sampling was done. 

• Both lists should be able to store a maximum of 20 samples each. 

 

(Note: to shortent the length of the traces produced, some of the traced codes have 

been omitted from the sample traces given in this and subsequent sub- sections.) 

 

Actual Output Trace: 

5029.34443ms: R2-> Interface 1.0.0.2 : 1 sample(s) added to list 
Elements in bw list: [40.068] 

Elements in time list: [5.02934443] 

 

5029.34443ms: R2-> Interface 102.0.0.1 : 1 sample(s) added to list 
Elements in bw list: [0.6401032258064516] 

Elements in time list: [5.02934443] 

 

5039.618920000001ms: R1-> Interface 1.0.0.1 : 1 sample(s) added to list 
Elements in bw list: [52.788000000000004] 

Elements in time list: [5.03961892] 

 

5039.618920000001ms: R1-> Interface 101.0.0.1 : 1 sample(s) added to list 
Elements in bw list: [0.5170064516129033] 

Elements in time list: [5.03961892] 

 

5129.34443ms: R2-> Interface 1.0.0.2 : 2 sample(s) added to list 
Elements in bw list: [40.068, 40.068] 

Elements in time list: [5.02934443, 5.12934443] 

 

5129.34443ms: R2-> Interface 102.0.0.1 : 2 sample(s) added to list 
Elements in bw list: [0.6401032258064516, 0.7221677419354838] 

Elements in time list: [5.02934443, 5.12934443] 

 

5139.618920000001ms: R1-> Interface 1.0.0.1 : 2 sample(s) added to list 
Elements in bw list: [52.788000000000004, 54.272] 

Elements in time list: [5.03961892, 5.13961892] 

 

5139.618920000001ms: R1-> Interface 101.0.0.1 : 2 sample(s) added to list 
Elements in bw list: [0.5170064516129033, 0.5170064516129033] 

Elements in time list: [5.03961892, 5.13961892] 

 

Two lists 

Proper sampling interval 

-- Continued on the next  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 92 

 

 

 

------output omitted------ 

6829.344430000001ms: R2-> Interface 1.0.0.2 : 19 sample(s) added to list 
Elements in bw list: [40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 

39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 

40.068, 39.856, 40.068] 

Elements in time list: [5.02934443, 5.12934443, 5.22934443, 5.32934443, 5.42934443, 

5.52934443, 5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 

6.22934443, 6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443] 

 

6829.344430000001ms: R2-> Interface 102.0.0.1 : 19 sample(s) added to list 
Elements in bw list: [0.6401032258064516, 0.7221677419354838, 0.5771870967741936, 

0.6401032258064516, 0.6428387096774193, 0.6510451612903226, 0.6291612903225806, 

0.6838709677419355, 0.6318967741935484, 0.689341935483871, 0.752258064516129, 

0.752258064516129, 0.6018064516129031, 0.32825806451612904,0.19421935483870967, 

0.17233548387096775, 0.13950967741935483, 0.12583225806451612, 0.10941935483870968] 

Elements in time list: [5.02934443, 5.12934443, 5.22934443, 5.32934443, 5.42934443, 

5.52934443, 5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 

6.22934443, 6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443] 

 

6839.618920000001ms: R1-> Interface 1.0.0.1 : 19 sample(s) added to list 
Elements in bw list: [52.788000000000004, 54.272, 43.248, 50.032, 50.668, 49.184, 

49.608000000000004, 52.364, 48.76, 55.544000000000004, 59.36, 55.120000000000005, 

50.456, 21.412, 11.236, 16.112000000000002, 9.964, 8.692, 7.632] 

Elements in time list: [5.03961892, 5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892] 

 

6839.618920000001ms: R1-> Interface 101.0.0.1 : 19 sample(s) added to list 
Elements in bw list: [0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 

0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 

0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 0.5170064516129033] 

Elements in time list: [5.03961892, 5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001,  

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892] 

 

6929.344430000001ms: R2-> Interface 1.0.0.2 : 20 sample(s) added to list 
Elements in bw list: [40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 

39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068,40.068, 39.856, 40.068, 

40.068] 

Elements in time list: [5.02934443, 5.12934443, 5.22934443, 5.32934443, 5.42934443, 

5.52934443, 5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 

6.22934443, 6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 

6.92934443] 

 

 

6929.344430000001ms: R2-> Interface 102.0.0.1 : 20 sample(s) added to list 
Elements in bw list: [0.6401032258064516, 0.7221677419354838, 0.5771870967741936, 

0.6401032258064516, 0.6428387096774193, 0.6510451612903226, 0.6291612903225806, 

0.6838709677419355, 0.6318967741935484, 0.689341935483871, 0.752258064516129, 

0.752258064516129, 0.6018064516129031, 0.32825806451612904,0.19421935483870967, 

0.17233548387096775, 0.13950967741935483, 0.12583225806451612, 0.10941935483870968, 

0.22978064516129032] 

Elements in time list: [5.02934443, 5.12934443, 5.22934443, 5.32934443, 5.42934443, 

5.52934443, 5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 

6.22934443, 6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 

6.92934443] 

 
 

 

  

-- Continued from previous  page --  

 

20 samples added to list  

-- Continued on the next  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 93 

 

 

6939.618920000001ms: R1-> Interface 1.0.0.1 : 20 sample(s) added to list 
Elements in bw list: [52.788000000000004, 54.272, 43.248, 50.032, 50.668, 49.184, 

49.608000000000004, 52.364, 48.76, 55.544000000000004, 59.36, 55.120000000000005, 

50.456, 21.412, 11.236, 16.112000000000002, 9.964, 8.692, 7.632, 20.988] 

Elements in time list: [5.03961892, 5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892] 

 

6939.618920000001ms: R1-> Interface 101.0.0.1 : 20 sample(s)added to list 
Elements in bw list: [0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 

0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 

0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 

0.5170064516129033] 

Elements in time list: [5.03961892, 5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892] 

 
 

Test Run Result: 

As was expected, the code is able to perform sampling at the specified sampling 

interval and maintain 2 lists, each containing 20 elements to store the bandwidth 

utilization ratio and time values that were sampled.     

 

4.6.1.2 Testing the linear regression line equation construction process 

For this testing, the same topology as shown in Figure 4.3 was used with the same 

parameter settings. The purpose of this test is to ensure that the construction of linear 

regression line equations was performed correctly using Equations (2.18), (2.19) and 

(2.20). 

 

The Expected Output of the Test Run      

• After the first 20 samples have been obtained, the equation of the first linear 

regression line is constructed, i.e, Lo.  

• Once the subsequent 20 samples have been obtained, the equation of the next 

linear regression line is constructed, i.e, Lc. 

-- THE END --  

 

-- Continued from previous  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 94 

Actual Output Trace: 
 

 

-----output omitted----- 

 

Computing line 1 for R2-> Interface 1.0.0.2 

Equation of Line (Y = mX + b): Y = 2.1882579290778118E-13x + 40.00439999999868 

 

7029.344430000001ms: R2-> Interface 1.0.0.2 21 sample(s) added to list 

 

Elements in bw list: [40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 

39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068,40.068, 39.856, 40.068, 

40.068] 

Elements in time list: [5.02934443, 5.12934443, 5.22934443, 5.32934443, 5.42934443, 

5.52934443, 5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 

6.22934443, 6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 

6.92934443] 

 

Computing line 1 for R2-> Interface 102.0.0.1 

Equation of Line (Y = mX + b): Y = -0.32233461072036274x + 2.4230193366263744 

 

7029.344430000001ms: R2-> Interface 102.0.0.1 21 sample(s) added to list 

 

Elements in bw list: [0.6401032258064516, 0.7221677419354838, 0.5771870967741936, 

0.6401032258064516, 0.6428387096774193, 0.6510451612903226, 0.6291612903225806, 

0.6838709677419355, 0.6318967741935484, 0.689341935483871, 0.752258064516129, 

0.752258064516129, 0.6018064516129031, 0.32825806451612904,0.19421935483870967, 

0.17233548387096775, 0.13950967741935483, 0.12583225806451612, 0.10941935483870968, 

0.22978064516129032] 

Elements in time list: [5.02934443, 5.12934443, 5.22934443, 5.32934443, 5.42934443, 

5.52934443, 5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 

6.22934443, 6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 

6.92934443] 

 

Computing line 1 for R1-> Interface 1.0.0.1 

Equation of Line (Y = mX + b): Y = -25.12757894736917x + 188.87662227695608 

 

7039.618920000001ms: R1-> Interface 1.0.0.1 21 sample(s) added to list 

 

Elements in bw list: [52.788000000000004, 54.272, 43.248, 50.032, 50.668, 49.184, 

49.608000000000004, 52.364, 48.76, 55.544000000000004, 59.36, 55.120000000000005, 

50.456, 21.412, 11.236, 16.112000000000002, 9.964, 8.692, 7.632, 20.988] 

Elements in time list: [5.03961892, 5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892] 

 

 

Computing line 1 for R1-> Interface 101.0.0.1 

Equation of Line (Y = mX + b): Y = -3.4191530141840344E-15x + 0.5161858064516335 

 

7039.618920000001ms: R1-> Interface 101.0.0.1 21 sample(s) added to list 

 

Elements in bw list: [0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 

0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 

0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356,   0.5170064516129033,          

0.5170064516129033] 

Elements in time list: [5.03961892, 5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892] 

 

Computing line 2 for R2-> Interface 1.0.0.2 

Equation of Line (Y = mX + b): Y = 0.019127819548940102x + 39.8881153967671 

 

7129.344430000001ms: R2-> Interface 1.0.0.2 22 sample(s) added to list 

 

 

 

 

 

Equation of line LO 
correctly constructed 

-- Continued on the next  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 95 

 

 

 

Elements in bw list: [40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 

40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 

40.068, 40.068] 

Elements in time list: [5.12934443, 5.22934443, 5.32934443, 5.42934443, 5.52934443, 

5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 6.22934443, 

6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 6.92934443, 

7.02934443] 

 

Computing line 2 for R2-> Interface 102.0.0.1 

Equation of Line (Y = mX + b): Y = -0.33673189425176847x + 2.522536262497032 

 

7129.344430000001ms: R2-> Interface 102.0.0.1 22 sample(s) added to list 

 

Elements in bw list: [0.7221677419354838, 0.5771870967741936, 0.6401032258064516, 

0.6428387096774193, 0.6510451612903226, 0.6291612903225806, 0.6838709677419355, 

0.6318967741935484, 0.689341935483871, 0.752258064516129, 0.752258064516129, 

0.6018064516129031, 0.32825806451612904, 0.19421935483870967, 0.17233548387096775, 

0.13950967741935483, 0.12583225806451612, 0.10941935483870968, 0.22978064516129032, 

0.23525161290322583] 

Elements in time list: [5.12934443, 5.22934443, 5.32934443, 5.42934443, 5.52934443, 

5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 6.22934443, 

6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 6.92934443, 

7.02934443] 

 

Computing line 2 for R1-> Interface 1.0.0.1 

Equation of Line (Y = mX + b): Y = -26.182796992482427x + 195.92845594394012 

 

7139.618920000001ms: R1-> Interface 1.0.0.1 22 sample(s) added to list 

 

Elements in bw list: [54.272, 43.248, 50.032, 50.668, 49.184, 9.608000000000004, 

52.364, 48.76, 55.544000000000004, 59.36, 5.120000000000005, 50.456, 21.412, 11.236, 

16.112000000000002, 9.964, 8.692, 7.632, 20.988, 15.052] 

Elements in time list: [5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892, 7.039618920000001] 

 

 

Computing line 2 for R1-> Interface 101.0.0.1 

Equation of Line (Y = mX + b): Y = -1.4397283531711227E-4x + 0.516925771959977 

 

7139.618920000001ms: R1-> Interface 101.0.0.1 22 sample(s) added to list 

 

Elements in bw list: [0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 

0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 

0.5142709677419356, 0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 

0.5170064516129033, 0.5170064516129033, 0.5142709677419356, 0.5170064516129033, 

0.5170064516129033, 0.5142709677419356, 0.5170064516129033,   0.5170064516129033,      

0.5142709677419356] 

Elements in time list: [5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001, 

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892, 7.039618920000001] 

 

Computing line 3 for R2-> Interface 1.0.0.2 

Equation of Line (Y = mX + b): Y = 0.007969924812341026x + 39.944551089503335 

 

----output omitted--- 

           
           
 
Test Run Result: 

The process of constructing the linear regression line equations were correctly 

invoked at the appropriate time, that is, for every 20 samples obtained. The 

Equation of line LC 
correctly constructed 

-- THE END --  

 

-- Continued from  previous  page --  

 

Univ
ers

ity
 of

 M
ala

ya



 96 

construction of two linear regression lines and their respective line equations can be 

seen on the sample trace. 

 

4.6.1.3 Testing the link state advertisement process 

Using the same topology shown in Figure 4.3 and the respective parameter settings, 

the following test was conducted to ensure that an LSA is triggered each time the 

absolute tangent difference between two linear regression lines exceed the pre-defined 

threshold. For the testing purpose, the threshold value is set to 5.0. 

 

The Expected Output of the Test Run      

Whenever two linear regression line equations have been computed, the absolute 

difference of their tangent values should be computed and compared with the 

threshold value to decide whether or not an LSA should be distributed. 

 

Actual Output Trace: 

7129.344430000001ms: R2-> Interface 1.0.0.2 22 sample(s) added to list 

Elements in bw list: [40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 

40.068, 40.068, 39.856, 40.068, 40.068, 39.856, 40.068, 40.068,39.856, 40.068, 40.068, 

40.068] 

Elements in time list: [5.12934443, 5.22934443, 5.32934443, 5.42934443, 5.52934443, 

5.62934443, 5.72934443, 5.82934443, 5.92934443, 6.02934443, 6.12934443, 6.22934443, 

6.32934443, 6.42934443, 6.52934443, 6.62934443, 6.72934443, 6.82934443, 6.92934443, 

7.02934443] 

 

Comparing tangent of two lines 

 

Tangent of line 1 = 2.1882579290778118E-13 Tangent of line 2 = 0.019127819548940102 

Tangent Difference = 0.019127819548721278 

 

Difference < Threshold => DON'T send LSA 

 

 

Computing line 2 for R1-> Interface 1.0.0.1 

 

7139.618920000001ms: R1-> Interface 1.0.0.1 22 sample(s) added to list 

Elements in bw list: [54.272, 43.248, 50.032, 50.668, 49.184, 49.608000000000004, 

52.364, 48.76, 55.544000000000004, 59.36, 55.120000000000005, 50.456, 21.412, 11.236, 

16.112000000000002, 9.964, 8.692, 7.632, 20.988, 15.052] 

Elements in time list: [5.13961892, 5.23961892, 5.33961892, 5.43961892, 

5.539618920000001, 5.63961892, 5.73961892, 5.83961892, 5.93961892, 6.039618920000001,  

6.13961892, 6.23961892, 6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 

6.73961892, 6.83961892, 6.93961892, 7.039618920000001] 

 

Tangent of two lines available for comparison 

-- Continued on the next  page --  

 

No significant difference, so no LSA sent 
Univ

ers
ity

 of
 M

ala
ya



 97 

 

 

 

Comparing tangent of two lines 

 

Tangent of line 1 = -25.12757894736917 Tangent of line 2 = -26.182796992482427  

Tangent Difference = 1.0552180451132571 

 

Difference < Threshold => DON'T send LSA 
 

 

---- Output omitted --- 

 

 

Computing line 10 for R1-> Interface 1.0.0.1 

 

7939.618920000001ms: R1-> Interface 1.0.0.1 30 sample(s) added to list 

Elements in bw list: [55.544000000000004, 59.36, 55.120000000000005, 50.456, 21.412, 

11.236, 16.112000000000002, 9.964, 8.692, 7.632, 20.988, 15.052,9.751999999999999, 

14.628, 17.384, 16.112000000000002, 3.604, 10.388, 12.931999999999999, 40.068] 

Elements in time list: [5.93961892, 6.039618920000001, 6.13961892, 6.23961892, 

6.33961892, 6.43961892, 6.539618920000001, 6.63961892, 6.73961892, 6.83961892, 

6.93961892, 7.039618920000001, 7.13961892, 7.23961892, 7.33961892, 7.43961892, 

7.539618920000001, 7.63961892, 7.73961892, 7.83961892] 

 

Comparing tangent of two lines 

 

Tangent of line 1 = -24.06279699248262 Tangent of line 2 = -17.63425563909774  

Tangent Difference = 6.42854135338488 

 

Difference > Threshold => send LSA 

 
 
 

Test Run Result: 

The code managed to obtain the absolute difference of tangents and correctly compare 

the tangent values to make correct decisions on whether an LSA should or should not 

be sent.  

 

4.6.1.4 Testing the proper working of the routing algorithm 

The purpose of conducting this test is to ensure that whenever a link is congested, TE-

LR is able to make decision to distribute LSA and appropriate action is taken . For 

this, the underlying routing algorithm will be tested to see if it can react accordingly 

and re-route packets according to the link state update invoked by TE-LR. The routing 

algorithm used for this testing is the widest-shortest path routing described in sub-

section 2.4.3.  

-- Continued from previuos page --  

 

-- THE END --  

 

-- Continued from  previous  page --  

 

There is a significant difference, so send LSA 

Univ
ers

ity
 of

 M
ala

ya



 98 

 

Figure 4.4 Test Topology for Widest-Shortest Path Routing Algorithm 

 

For testing the proper working of TE-LR in terms of invoking the underlying routing 

algorithm appropriately, the test topology shown in Figure 4.4 was used. There are 6 

routers in the topology with R1 and R6 acting as the source and destination 

respectively. R1 and R6 are connected to one IPBTE each, that is, BTE1 and BTE2 

respectively. Each BTE generates one CBR type application traffic.  

 

Looking at the topology given in Figure 4.4, it is evident that there are two possible 

shortest paths available from R1 to R6, which are R1->R2->R6 through links L1->L5 

and R1->R4->R6 through links L2->L6. Initially, the widest-shortest path routing 

algorithm should select path R1->R2->R6 since it has the highest available link 

bandwidth of 2 Mbps. In the event that the path gets congested, then the algorithm 

should shift to path R1->R4->R6 even though it has the lowest available link 

bandwidth (1 Mbps) compared to other paths. The idea behind this algorithm is that 

whenever there is a path with the shortest length (i.e., specified in terms of either path 

L1 

L2 

L3 

L4 

L5 

L6 

L7 
L8 L9

 

ext 1 ext 2 

Univ
ers

ity
 of

 M
ala

ya



 99 

cost or the actual physical distance) available, it must be selected first without any 

regards to its available link bandwidth. The parameter settings for all the components 

used in the topology are given in the following tables: 

 

Table 4.7  IP Settings for all Router Interfaces 

Router Name Interface to Link Interface IP Address 
R1 L1 

L2 
L3 

ext1 

1.0.0.1 
2.0.0.1 
3.0.0.1 

101.0.0.1 
R2 L1 

L5 
1.0.0.2 
5.0.0.2 

R3 L3 
L4 
L8 

3.0.0.3 
4.0.0.3 
8.0.0.3 

R4 L2 
L6 
L8 
L9 

2.0.0.4 
6.0.0.4 
8.0.0.4 
9.0.0.4 

R5 L4 
L7 
L9 

4.0.0.5 
7.0.0.5 
9.0.0.5 

R6 L5 
L6 
L7 

ext2 

5.0.0.6 
6.0.0.6 
7.0.0.6 

102.0.0.1 
 

Table 4.8   Property Settings for all Routers  

Router Properties Settings 
V Threshold Type TE-LR 
Threshold_M 5.0 
Sampling Interval, i (secs) 0.1 
Sample Size, N 20 
Sampling Start Time (secs) 5.0 

 

Table 4.9  Source Address Settings for BTE1 and BTE2  

BTE Name Source Address 
BTE1 101.0.0.0/24 
BTE2 102.0.0.0/24 

 

Univ
ers

ity
 of

 M
ala

ya



 100 

Table 4.10 Characteristics of CBR1 

CBR Source Properties Settings 
Bit Rate (Mbits/s) 2.0 
Bit Rate Lower Bound (Mbits/s) 0.1 
Bit Rate Upper Bound (Mbits/s) 3.0 
Start Time (secs) 1.0 
Number of Mbits to be sent 5.0 
Repeat count (-1 = inf) -1 
Delay between calls (usecs) 1.0 
DiffServ Class Best Effort 
Random Data Size TRUE 
Random Delay between Calls TRUE 
Enable Starting Delay TRUE 
Random Destination FALSE 
Avoid Local Destination TRUE 
Destination IP 102.0.0.0 

 

Table 4.11 Link Speed Settings for all Links 

Link Name Link Speed (MBits/sec) 
L1, L3, L4, L5, L7, L8, L9  2.0 
L2, L6 1.0 
Ext1, ext2 155.0 

 

  

The Expected Output of the Test Run      

▪ Initially path R1->R2->R6, that is shortest and with maximum available 

bandwidth of 2 Mbps, should be selected by the widest-shortest path 

algorithm. 

▪ When the path becomes congested, the next shortest path R1->R4->R6 should 

be selected even though it has lower available bandwidth compare to the other 

longer paths. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 101 

Actual OSPF Routing Table: 

The result of the test simulation run is presented as the OSPF routing table produced 

by R1, R2 and R4 before and after the congestion. This can be seen in Figures 4.5, 

4.6, 4.7 and 4.8.         

 

 

 

 

  

 

 

 

Figure 4.5 OSPF Routing Table for R1 Before Congestion 

 

 

 

 

 

 

 

 

Figure 4.6 OSPF Routing Table for R2 Before Congestion 

 

 

 

destination IP next hop is R2 

destination IP next hop is R6 Univ
ers

ity
 of

 M
ala

ya



 102 

 

 

 

 

 

 

 

Figure 4.7 OSPF Routing Table for R1 After Congestion 

 

 

 

 

 

 

 

 

Figure 4.8 OSPF Routing Table for R4 After Congestion 

 

Test Run Result: 

Figure 4.5 is the OSPF routing table for R1 populated by the routing algorithm at the 

beginning of the simulation, that is at time 1.0 second (after allowing the network to 

converge). The next hop from R1 to reach R6 is given as L1 which indicates the link 

connecting R1 to R2. In Figure 4.6, the OSPF routing table for R2 is given that shows 

the next hop to reach R6 from R2 is L5 that connects R2 and R6. After running the 

simulation for 8 minutes, path R1->R2->R6 became congested, and thus the routing 

destination IP next hop is R4 

destination IP next hop is R6 

Univ
ers

ity
 of

 M
ala

ya



 103 

algorithm had to choose an alternative path. Figure 4.7 and 4.8 shows the new path 

taken by R1. In Figure 4.7, the next  hop to reach R6 is given as L2 that connects R1 

and R4. From here, R4 has two options to choose, that is either L6 or L9. However, in 

Figure 4.8, it is obvious that the next hop chosen by R4 is L6 that connects R4 and R6 

directly. This is because, taking L6 requires only one hop to reach R6. On the other 

hand, taking L9 requires two hops. Therefore, it is proven that the algorithm is 

working correctly and managed to select the most appropriate widest-shortest path. 

This in turn proves the correct working of TE-LR’s link state advertisement operation. 

 

4.7 Chapter Summary 

In this chapter, the methodology used to develop the proposed mechanism was 

discussed. An overview of network simulation concept and a brief review of existing 

network simulators were presented. This was followed by the details of major 

components in the chosen network simulator, UMJaNetSim and the changes done to it 

in order to implement the proposed mechanism, TE-LR. Finally, a number of tests 

were conducted to evaluate the correctness of TE-LR and the result of the tests were 

discussed in detail. In the next chapter, a detailed discussion on how the proposed 

mechanism will be evaluated using the simulation environment created in this chapter 

will be presented. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 104 

CHAPTER 5 

SIMULATION RESULTS AND PERFORMANCE 

ANALYSIS 

In this chapter, extensive simulations were done to evaluate the performance of the 

proposed mechanism, TE-LR. Firstly, a detailed discussion on the simulation 

environment such as the simulation topology, the parameter settings and the 

simulation sessions conducted are presented. This is followed by the performance 

analysis of TE-LR in comparison with QoS-OSPF based on the simulation results 

obtained. The performance of TE-LR is evaluated using a number of selected 

performance metrices and these comes later in this chapter. 

 

5.1 Simulation Environment 

To evaluate and compare TE-LR mechanism with QoS-OSPF, the topology shown in 

Figure 5.1 was created and used. The topology depicts the typical ISP topology 

known as MCI backbone topology which is used in [Apostolopoulos99i] and [Lim04]. 

The topology is consist of 18 routers, 32 links and 216 traffic sources which are a 

combination of both CBR and VBR applications. The capacity of the links in the 

topology are classified into 3 types: low capacity (4 Mbps), medium capacity (5 

Mbps) and high capacity (7 Mbps). They have been scaled down from actual capacity 

values to reduce the simulation time and volume.      

Univ
ers

ity
 of

 M
ala

ya



 105 

 

 

 

 

Figure 5.1 Simulation Toplogy 

 

All the assumptions made in Section 3.1 were considered during the preparation of the 

simulation environment. Each ATMLSR router is connected to a single customer site 

represented by IPBTE, and each IPBTE is connected to 12 applications that generates 

both CBR and VBR traffics. The traffic arrival rates of each VBR traffic follow the 

Poisson model. A total of 10 simulation sessions were executed, each with increasing 

traffic load, starting with a normalized load of 1. For each subsequent session, the 

traffic rate and size are increased by 10%. Each simulation session is run for 180 

seconds (i.e., 3 minutes or 1.8 x 1010 ticks). To allow for convergence of the network 

traffic, data transmission starts only after 1 second. Table 5.1, 5.2 and 5.3 shows the 

characteristics of the routers and traffic sources used in this simulation.        

 

Univ
ers

ity
 of

 M
ala

ya



 106 

Table 5.1   Property Settings for all Routers  

Router Properties Settings 
V Threshold Type TE-LR 
Threshold_M (%) 10.0 
Sampling Interval, i (secs) 0.1 
Sample Size, N  20 
Sampling Start Time (secs) 5.0 

 

Table 5.2 Characteristics of VBR Traffic Sources 

VBR Source Properties Settings 
Bit Rate (Mbits/s) 0.8 
Mean Burst Length (usecs) 50000 
Mean Interval Bet. Bursts (usecs) 15000 
Start Time (secs) 1.0 
Number of Mbits to be sent 2.0 
Repeat count (-1 = inf) -1 
Delay between calls (usecs) 3.0 
DiffServ Class Best Effort 
Poisson Model TRUE 
Random Data Size TRUE 
Random Delay Bet. Calls TRUE 
Enable Starting Delay TRUE 
Random Destination TRUE 
Avoid Local Destination TRUE 

 

Table 5.3 Characteristics of CBR Traffic Sources 

CBR Source Properties Settings 
Bit Rate (Mbits/s) 0.8 
Bit Rate Lower Bound (Mbits/s) 0.1 
Bit Rate Upper Bound (Mbits/s) 1.0 
Start Time (secs) 1.0 
Number of Mbits to be sent 2.0 
Repeat count (-1 = inf) -1 
Delay between calls (usecs) 3.0 
DiffServ Class Best Effort 
Random Data Size TRUE 
Random Delay between Calls TRUE 
Enable Starting Delay TRUE 
Random Destination TRUE 
Avoid Local Destination TRUE 

 

Univ
ers

ity
 of

 M
ala

ya



 107 

5.2 Performance Analysis 

The performance of TE-LR was investigated using the performance metrices 

described in the next sub-sections. 

  

5.2.1 Packet Loss Ratio 

Figure 5.2 shows the packet loss ratio of TE-LR compared to QoS-OSPF. Packet loss 

ratio is a parameter used to get an idea of the level of congestion in the network. 

Indirectly, it provides some useful information about the throughput of the evaluated 

routing mechanisms. For instance, higher packet loss ratio indicates lower throughput 

and vice versa. In this thesis, the packet loss ratio is calculated as a weighted average 

packet loss ratio amongst all the routers in the network. The weight used here is the 

total number of packets received by each router. Hence, packet loss ratio can be 

defined as:  

 

 

 

From Figure 5.2, it can be observed that the packet loss ratio of both mechanisms, TE-

LR and QoS-OSPF are comparable. Both mechanisms exhibit moderate increment in 

packet loss as the network load increases. As the network load grows larger, TE-LR 

experiences a slightly higher packet loss compared to QoS-OSPF. As shown in Table 

5.4 and Figure 5.2, it can be seen that TE-LR experiences only 3% to 8% more packet 

loss compared to QoS-OSPF. This outcome is anticipated due to the bursty nature of 

the VBR traffics. VBR traffics are intended to emulate web traffics whose 

transmission bit rate is variable. Therefore, when the flow arrival rate is high (i.e.,the 

interval between successive flow arrivals are short), the link utilization becomes very 

total number of packets dropped 
total number of packets received packet loss ratio  

= = 

x 100% (5.1) 

Univ
ers

ity
 of

 M
ala

ya



 108 

high causing frequent link state advertisements (i.e., the construction of linear 

regression line equation and comparison of tangent difference appear fast). 

Conversely, when the flow arrival rate is very low, the link utilization will also be 

very low causing delays between successive link state advertisements (i.e., the 

construction of linear regression line equation and comparison of tangent difference 

appear late). This delay leads to a delay in conveying the network condition message 

to all the routers and  hence packet loss may be experienced before the routers decide 

to select a new path.     

Table 5.4   Packet Loss Ratio (%) 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QoS-OSPF 0.064

  

0.224

  

0.395

  

0.652

  

0.940

  

1.480

  

1.904

  

2.487

  

3.129

  

3.559

  
TE-LR 0.066

  

0.254

  

0.414

  

0.699

  

0.983

  

1.701

  

2.175

  

2.904

  

3.024

  

3.866

   

 

 

 

 

 

 

 

 

Figure 5.2 Packet Loss Ratio 

 

In contrast, QoS-OSPF slightly outperforms TE-LR due to the fact that for every 

instantaneous change in a link’s banwidth utilization, link state advertisements are 

triggered giving a better picture of the networks congestion condition. However, QoS-

Packet Loss Ratio

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10

Normalized Load

P
a
c
k
e
t 

L
o

s
s
 R

a
ti

o
 (

%
)

QoS-OSPF

TE-LR

Univ
ers

ity
 of

 M
ala

ya



 109 

OSPF may suffer from unnecessary link state advertisements caused by sudden spikes 

in link utilizations creating more overheads. This is because QoS-OSPF is quite 

sensitive to changes in the link state and according to [Apostolopoulos99ii], this 

sensitivity leads to frequent triggering of link state advertisements. TE-LR, on the 

other hand handles these sudden spikes by observing the link state trend before 

deciding to send link state advertisements.    

 

5.2.2 Link Utilization 

Measuring the utilization of a link gives some idea about the network resources 

consumption which is crucial for successful traffic engineering. Link utilization can 

be measured as either average link utilization or peak link utilization. In this thesis, 

both of these have been used as each of them provides different information about the 

network resource utilization. Average link utilization provide information about the 

overall network throughput. For instance, higher throughput is generally an 

implication of higher average link utilization. The average link utilization is  

calculated by measuring the longterm link utilization at each outgoing interface of a 

router (assume every link is bi-directional) separately for every router in the network. 

It is defined as: 

 

           

          

 

Assume that there are n router interfaces in the network, then the longterm link 

utilization of each interface is calculated as: 

    

 
n 

capacity of link i 

 
n 

longterm link utilization of interface i x capacity of link i 
average link 
utilization = 

(5.2) 

i=1 

i=1 

Univ
ers

ity
 of

 M
ala

ya



 110 

       

 

 

In contrast, the peak link utilization gives an indication of how evenly had the 

network load been distributed among all the network links. The lower the peak link 

utilization the better the load distribution is. The peak link utilization is actually the 

highest longterm link utilization measured among all the interfaces using Equation 

(5.3).   

Table 5.5   Average Link Utilization 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QoS-OSPF 33.607

  

36.572

  

39.449

  

41.700

  

44.901

  

47.281

  

49.313

  

51.426

  

53.287

  

55.567

  TE-LR 33.301

  

36.262

  

39.132

  

41.393

  

44.507

  

46.654

  

48.592

  

50.582

  

53.035

  

54.787

   

 

 

 

 

 

 

 

 

Figure 5.3 Average Link Utilization 

 

Figure 5.3 and Figure 5.4 shows the average link utilization and peak link utilization 

measured for both TE-LR and QoS-OSPF. For both measurement, these two 

mechanisms exhibit the same behaviour and they are comparable. In terms of average 

Average Link Utilization

20
25
30
35
40
45
50
55
60

1 2 3 4 5 6 7 8 9 10

Normalized Load

A
v
e
ra

g
e
 L

in
k
 U

ti
li

z
a
ti

o
n

 

(%
) QoS-OSPF

TE-LR

longterm link utilization = (5.3) total cells scheduled 
total simulation time x link capacity x 100% 

Univ
ers

ity
 of

 M
ala

ya



 111 

link utilization, it can be observed that QoS-OSPF slightly outperforms TE-LR. As 

mentioned earlier in Section 5.2.1, TE-LR experiences slight delay in advertising link 

state advertisements due to the variable nature of VBR traffics. This causes the link 

utilization to be slightly lower than QoS-OSPF. However, it can be seen that the 

difference observed is very tiny and insignificant (i.e., the largest difference observed 

is when the load is 8, which is around 1.6%), therefore this can be ignored. In terms of 

peak link utilization, again there is no significant difference between TE-LR and QoS-

OSPF. As the network load increases, both mechanisms show a comparable 

performance in achieving almost 100% load balancing, thus making the network more 

stable.  Overall, TE-LR has exhibited a slightly better load balancing compared to 

QoS-OSPF for all loads except when the load is 3. This has been achieved without 

incurring additional cost. 

Table 5.6   Peak Link Utilization 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QoS-OSPF 83.981

  

88.557

  

91.616

  

93.130

  

94.627

  

96.714

  

96.453

  

96.624

  

97.889

  

98.884

  
TE-LR 81.781

  

87.605

  

92.052

  

92.971

  

94.162

  

95.913

  

96.256

  

96.210

  

97.399

  

98.145

   

 

 

 

 

 

 

 

 

Figure 5.4 Peak Link Utilization 

Peak Link Utilization

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Normalized Load

P
e
a
k
 L

in
k
 U

ti
li

z
a
ti

o
n

 (
%

)

QoS-OSPF

TE-LRUniv
ers

ity
 of

 M
ala

ya



 112 

5.2.3 Packet Commit Ratio 

The packet commit ratio parameter can be used to analyse the percentage of packets 

that have been successfully received by the destination compared to the number of 

packets that have been transmitted by the source.  It provides only an approximate 

indication about the per source packet loss ratio rather than an accurate measurement 

since some packets may still be in transmission at the time of the measurement. 

Packet commit ratio is defined as: 

 

 

 

In most cases, performing multiple simulation sessions under the same network load 

requires exactly the same traffic source characteristics (i.e., the same transmission 

rate) to be used for each session. This allows the network throughput to be analysed 

given the data about the packet commit ratio since network throughput and packet 

commit ratio are approximately proportional to each other. This relationship is shown 

below: 

 

 

           

           

           

         

  packet commit ratio  throughput 

 

total delivered cells 
total sent cells packet commit ratio    = x 100% (5.4) 

total delivered cells 
transmission rate x total time x 100% = 

100% 
transmission rate 

total delivered cells 
total time x = 

= throughput x constant (5.5) 

 

packet commit ratio            = 
total delivered cells 

total sent cells x 100% 

Univ
ers

ity
 of

 M
ala

ya



 113 

In this section, the packet commit ratio of both TE-LR and QoS-OSPF is evaluated 

and the results of the simulations is presented in Figure 5.5. Since packet commit ratio 

indicates the total number of cells successfully received by the receiver, it can be seen 

as an inverse to packet loss ratio. Higher packet loss ratio denotes lower packet 

commit ratio. This result is anticipated as the packet loss experienced by TE-LR is 

unavoidable. However, both TE-LR and QoS-OSPF still demonstrate a comparable 

performance and a steady degradation of performance can be observed as the network 

load increases. 

Table 5.7   Packet Commit Ratio (%) 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QoS-OSPF 99.805 99.303 98.750 98.009 97.158 95.438 94.262 92.462 90.738 89.443 
TE-LR 99.796 99.209 98.704 97.864 96.998 94.784 93.391 91.216 90.997 88.560 

 
 

 

 

 

 

 

 

 
 

 

Figure 5.5 Packet Commit Ratio 

 

5.2.4 Update Message Overhead 

Packets being transmitted in a network do not necessarily be data packets. They may 

be comprised of other packets such as Hello packets and acknowledgement packets 

Packet Commit Ratio

86
88
90
92
94
96
98

100

1 2 3 4 5 6 7 8 9 10

Normalized Load

P
a
c
k
e
t 

C
o

m
m

it
 R

a
ti

o
 (

%
)

QoS-OSPF

TE-LR

Univ
ers

ity
 of

 M
ala

ya



 114 

carrying control messages vital for the correct operations of the network. The 

additional packets may contribute to increasing load in the network placing heavier 

burden on the network administration and control. One of the most important control 

packets necessary to ensure the correct workings of the underlying routing algorithm 

is the link state update messages. Inappropiate distribution of these messages may 

cause additional overheads to the network leading to higher processing costs. Hence, 

the objective of measuring the update message overhead in this section is to identify 

which mechanism produces excessive message overheads and incur higher processing 

costs. The update message overhead is calculated as: 

 

 

 

The main objective of the proposed link state update mechanism, TE-LR is to reduce 

both communication overhead and processing cost by suppressing the total amount of 

update messages produced. Looking at Figure 5.6, it is apparent that TE-LR had 

successfully achieved its objective. Compared to QoS-OSPF, TE-LR had drastically 

reduced the update message overhead up to 78% (load 1). The difference here is very 

significant although both mechanisms reveal a more constant overhead as the network 

load increases.  

 

In the case of QoS-OSPF, the link state advertisement initiated for every instant of 

bandwidth utilization change caused the update message overheads to shoot up so 

high. The mechanism has also failed to capture the fluctuations in bandwidth 

utilization provoked by the inconsistent VBR traffics. It is obvious that for all levels 

of network loads, the update message overhead of QoS-OSPF remains high due to the 

(5.6) update message overhead  = 
total LSA generated 
total time (seconds) 

Univ
ers

ity
 of

 M
ala

ya



 115 

variations in the traffic source leading to unnecessary advertisements of link state 

update. In contrast, TE-LR is more insensivitve to fluctuations since it monitors the 

utilization trend before making any decision to advertise link state updates. Any false 

positives will be captured and turned into data that provides better information about 

the overall link utilization. Therefore, it can be concluded that TE-LR has been 

successful in reducing the overall update message overheads and processing costs 

with minimal impact on other parameters such as packet loss ratio, packet commit 

ratio, average link utilization and average end-to-end delay. 

 

Table 5.8   Update Message Overhead 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QoS-OSPF 1656.583 1649.297 1632.646 1645.886 1635.680 1631.583 1646.451 1612.343 1629.954 1624.051 
TE-LR 361.766 363.914 366.869 369.554 372.509 367.943 368.211 363.646 365.257 368.749 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Update Message Overhead 

Update Message Overhead

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6 7 8 9 10

Normalized Load

T
o

ta
l 
U

p
d

a
te

 M
e
s
s
a
g

e
 p

e
r 

T
im

e
 U

n
it

QoS-OSPF

TE-LR

Univ
ers

ity
 of

 M
ala

ya



 116 

5.2.5 End-to-End Delay 

The end-to-end delay parameter measures the total time taken by a packet from the 

time it is inserted into the network for transmission until it is received by the 

destination. The delay is comprised of queuing delay and propogation delay. Both are 

usually caused by network congestions. Peak end-to-end delay is taken as the highest 

end-to-end delay experienced by a packet. Together, both average end-to-end delay 

and peak end-to-end delay provides an insight into the network congestion condition. 

 

Table 5.9   Average End-to-End Delay (in ms) 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QoS-OSPF 2.949

  

7.370

  

11.388

  

14.498

  

19.246

  

27.095

  

31.959

  

38.886

  

43.883

  

47.699

  TE-LR 2.901

  

7.419

  

10.822

  

14.912

  

20.830

  

29.148

  

33.925

  

40.151

  

42.756

  

49.555

  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Average End-to-End Delay 

 

Looking at Figure 5.7, it can be observed that the average end-to-end delay of both 

mechanisms are comparable. As discussed earlier, end-to-end delays are comprised of 

both queuing and propagation delays. Queuing delays in TE-LR is the result of delays 

Average End-to-End Delay

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Normalized Load

A
v
e
ra

g
e
 E

n
d

-t
o

-E
n

d
 D

e
la

y
 

(m
s
) QoS-OSPF

TE-LR

Univ
ers

ity
 of

 M
ala

ya



 117 

in disseminating link state updates immediately when there is a change. Thus, packets 

had to wait a little longer in the queue before being forwarded. Queuing delays in turn 

aggravates propagation delays in a network with varying traffic conditions.  

 

To better evaluate the average end-to-end delay and peak end-to-end delay of TE-LR, 

the packet loss ratio and packet commit percent parameters should be taken into 

consideration. When the congestion in the network increases, TE-LR had shown a 

slight increase in packet loss ratio and a slight decrease in packet commit percent. 

These condition are obviously caused by the end-to-end delays in the network. Hence, 

it be can concluded that due to these delays TE-LR had resulted in slightly higher 

packet loss ratio and lower packet commit ratio compared to QoS-OSPF, as 

demonstrated in Section 5.2.1 and 5.2.3. Similarly, the peak end-to-end delay of both 

mechanisms experience consistent increment as the network load increases. This is 

shown in Figure 5.8. However, the increment in delay experienced by TE-LR is very 

little and does not effect other parts of the routing process, thus this can be ignored. 

 

Table 5.10   Peak End-to-End Delay (in ms) 

 Normalized Load 
1 2 3 4 5 6 7 8 9 10 

QOS-OSPF 93.473

  

124.416

  

137.862

  

150.599

  

162.797

  

191.190

  

201.256

  

218.928

  

232.493

  

230.038

  
TE-LR 89.575

  

128.102

  

140.734

  

152.908

  

161.970

  

189.772

  

207.620

  

222.684

  

228.891

  

237.478

  Univ
ers

ity
 of

 M
ala

ya



 118 

Peak End-to-End Delay

40

70

100

130

160

190

220

250

1 2 3 4 5 6 7 8 9 10

Normalized Load

P
e
a
k
 E

n
d

-t
o

-E
n

d
 D

e
la

y
 (

m
s
)

TE-QOSPF

TE-LR

 

 

 

 

 

 

Figure 5.8 Peak End-to-End Delay 

 

5.3 Simulation Conclusion and Discussion 

As discussed earlier, the main objective of the proposed mechanism, TE-LR is to 

reduce the total number of update messages produced by monitoring the bandwidth 

utilization trend of every link in the network over some period of time. This is in 

contrast with QoS-OSPF which advetises link state updatse for every instant of 

bandwidth utilization change causing excessive update overheads. By looking at the 

simulation results produced by both TE-LR and QoS-OSPF in the previous sub-

sections, it is proven that TE-LR had managed to successfully reduced the number of 

update message overheads thus reducing the communication overheads and 

processing costs compared to QoS-OSPF. Though the performance of QoS-OSPF in 

other aspects such as packet loss ratio, packet commit ratio, average link utilization 

and average end-to-end delay is slightly better than TE-LR, these are extremely 

insignificant compared to the higher costs saving in terms of processing cost offered 

Univ
ers

ity
 of

 M
ala

ya



 119 

by TE-LR. It had also been proven in this section that TE-LR is able to provide a 

performance comparable to QoS-OSPF under any traffic condition and with the 

uncertainty brought in by the bursty VBR traffics. Therefore, it can be concluded that 

the TE-LR is potentially useful in containing the update message overheads in web 

traffics with uncertainty. 

 

5.4 Chapter Summary 

The most important part in running any simulation is to plan and design the 

simulation environment to be used. This had been covered in the beginning of this 

chapter. The performance metrices applied to test the proposed mechanism was 

discussed in detail and a number of simulation sessions was run to obtain the 

performance criteria of both TE-LR and QoS-OSPF. Finally, the performance of TE-

LR was compared with the performance of QoS-OSPF by analyzing the simulation 

results generated by the planned simulation sessions. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 120 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this last chapter, a summary of the thesis contributions is presented followed by 

some proposals for future enhancements to the proposed mechanism, TE-LR. 

 

6.1 Thesis Contribution 

The thesis provides a detailed report of the research work conducted focusing on IP 

QoS. The report is comprised of a thorough review of related literatures, design of the 

proposed mechanism, examination of existing network simulators, selection of 

appropriate network simulator to develop the simulation environment, the 

implementation and testing of the proposed mechanism, evaluation of both proposed 

and exisiting link state update mechanisms, and finally a detailed analysis of the 

simulation results. 

 

In most of the traditional networks such as the Internet, distributing the link state 

information places heavy burden on the network resources. For the routing algorithm 

to work correctly, it has to have some degree of precision in the link state information 

that it receives from neighboring routers. With the diversity of Internet traffics plus 

constantly varying traffics loads and QoS requirements, the distribution of accurate 

link state information is almost impossible. Therefore, in Chapter 2, the thesis begun 

with a thorough investigation of existing solutions proposed in literatures to identify 

areas of improvements. A number of proposed solutions were carefully studied. In 

Chapter 3, a mechanism had been proposed that is capable of distributing link state 

information more efficiently and as precisely as possible, while at the same time 

Univ
ers

ity
 of

 M
ala

ya



 121 

reducing communication overheads and processing costs. The mechanism is called 

TE-LR (Traffic Engineering using Linear Regression) whose main plus point is the 

use of Linear Regression model to observe each link’s bandwidth utilization 

behaviour before initiating link state update distributions. The mechanism monitors 

the bandwidth utilization ratios of each interface and samples them at regular intervals  

to construct linear regression line equations for the sampled observations. The 

constructed lines are then used to decide whether or not link state updates should be 

advertised. Thus, the major contribution of the proposed mechanism is its ability to 

suppress the number of update messages sent into the network compared to the 

current mechanism, QoS-OSPF.       

 

The next most vital contribution of this thesis is the extensions made to the 

functionalities of UMJaNetSim in Chapter 4. Implementation of TE-LR required 

some of the functionalities in UMJaNetSim to be modified and extended in order to 

support the correct working of the mechanism. The existing mechanism, QoS-OSPF 

performs link state update advertisements entirely based on the instantaneous change 

of bandwidth utilization and assumes that the link state information exchanged among 

the routers are accurate. Although it can be argued that the mechanism provides a 

better picture of the underlying network’s congestion condition, it is inevitably true 

that it increases the protocol overheads and processing costs considerably. Hence, the 

enhancements done to the simulator allowed a more realistic TE-LR mechanism to 

co-exist with the existing one to provide alternative solution to the users.  

 

In addition to the above contributions, in Chapter 4, a platform for evaluating the 

performance of TE-LR was designed and created. The implementation and testing of 

Univ
ers

ity
 of

 M
ala

ya



 122 

TE-LR on the created simulation environment was also featured here. Testing the 

mechanism on a well-design environment allowed the mechanism’s behaviour to be 

examined and issues related to the actual implementation to be highlighted. 

 

Finally, in Chapter 5, the performance of TE-LR was compared against the 

performance of QoS-OSPF using the simulation environment developed earlier. The 

simulation results produced by running a number of simulation sessions for each 

mechanism were demonstrated using a line graph and they were critically analysed. 

From the analysis report, it is verified that TE-LR is capable of controlling the 

unnecessary disseminations of link state update messages without incurring additional 

computation and processing costs compared to QoS-OSPF. 

    

6.2 Suggestions for Future Research 

In this research, the concept of QoS routing and issues related to its deployment had 

been studied and understood. Problems and solutions identified in literatures were 

discussed and a mechiasm had been proposed to overcome one of the main problems 

of QoS provisioning in Internet, that is reducing protocol overheads. There are  a 

number of areas identified for potential future enhancements to the proposed 

mechanism: 

 

1) One of the most valuable improvements that can be done to TE-LR is the 

classification of the sampled bandwidth utilization ratios into 3 different classes: 

low, medium and high. Two thresholds will be defined, upper Tu and lower Tl. 

When the bandwidth utilization ratio falls into the high class, link state updates 

will be immediately generated and distributed. This is to avoid the link from 

Univ
ers

ity
 of

 M
ala

ya



 123 

getting over congested. When it falls into medium class, updates will only be 

generated and distributed when the bandwidth utilization ratio exceeds Tu thrice 

successfully. This is to reduce the effect of false positive caused by oscillations. 

When the bandwidth utilization ratio falls into the low class, no updates will be 

generated until the value falls below Tl. This is to avoid the link from being under-

utilized.  

 

2) TE-LR was initially proposed to work in intra-domain environment (single AS) 

where only routers belonging to the same AS will apply this mechanism. In future, 

TE-LR will be extended to work across multiple ASs.  

Univ
ers

ity
 of

 M
ala

ya



 124 

REFERENCES 

 

[Ansari04] Ansari,N., Cheng, G., & Krishnan, R.N. (2004). Efficient and 

Reliable Link State Information Dissemination, IEEE 

Communications Letters, vol.8, no.5, pp.317-319, May 2004. 

[Alaettinoglu92] Alaettinoglu, C., Zieger, K.D., Matta, I., Shankar, A.U., & 

Gudmundsson, O., (1992). Introducing MaRS, a Routing 

Testbed, ACM SIGCOMM Computer Communication Review, 

vol.22, issue 1, pp.95-96.  

[Alghannam01] Alghannam, A.N., Woodward, M.E., & Mellor, J.E. (2001). 

Security As A QoS Routing Issues,in PGNET 2001 Symposium. 

URL: 

http://www.cms.livjm.ac.uk/pgnet2001/papers/aalghannam.doc. 

[Apostolopoulos99i] Apostolopoulos, G., Guérin, R., Kamat, S., & Tripathi, S.K. 

(1998). Quality of Service Based Routing: A Performance 

Perspective, in Proceedings of ACM SIGCOMM’98, 

Vancouver, BC, Canada, August 31- September 4. 

[Apostolopoulos99ii] Apostolopoulos, G., Guérin, R., Kamat, S., & Tripathi, S.K. 

(1999). Improving QoS Routing Performance Under Inaccurate 

Link State Information, in Proceedings of the 16th International 

Teletraffic Congress (ITC-16), Edinburgh, UK, June 1999. 

[Apostolopoulos99iii] Apostolopoulos, G., Guerin, R., Kamat, S., Orda, A., & 

Tripathi, S.K. (1999). Intradomain QoS Routing in IP 

Networks: A Feasibility and Cost Benefit Analysis, IEEE 

Network, 13(5):42–54, September/October 1999. 

Univ
ers

ity
 of

 M
ala

ya



 125 

[Apostolopoulos99iv] Apostolopoulos, G., Kamat, S., Williams, D., Guerin, R., Orda, 

A., & Przygienda, T. (1999). QoS Routing Mechanism and 

OSPF Extensions, RFC 2676, August 1999. 

[Apostolopoulos99v] Apostolopoulos, G., Guerin, R., & Kamat, S. (1999). 

Implementation and Performance Measurements of QoS 

Routing Extensions to OSPF, IEEE INFOCOM ’99, New York, 

vol. 2, pp.680-688, March 21 - 25. 

[Armitage00] Armitage, G., (2000). MPLS: The Magic Behind the Myths, 

IEEE Communications Magazine, January 2000. 

[Ballew97] Ballew, S.M., (1997). Managing IP Networks with CISCO 

Routers, Sample Chapter 5: Routing Protocol Selection, First 

Edition, 1-56592-320-0, O’Reilley Online Catalog, October 

1997.  

URL: http://www.oreilly.com/catalog/cisco/chapter/ch05.html. 

[Barnett94] Barnett, L., (1994). NetSim User's Manual, Technical Report 

TR-92-01, Department of Mathematics and Computer Science, 

University of Richmond, June 3.  

URL: 

http://www.mathcs.richmond.edu/~barnett/techrpt/tr_1992_01.

pdf. 

[Braden94] Braden, R., Clark, D., & Shenker, S. (1994). Integrated 

Services in the Internet Architecture: An Overview, RFC 1633, 

June 1994. 

Univ
ers

ity
 of

 M
ala

ya

http://www.mathcs.richmond.edu/~barnett/techrpt/tr_1992_01.pdf
http://www.mathcs.richmond.edu/~barnett/techrpt/tr_1992_01.pdf


 126 

[Braden97] Braden, R., Zhang, L., Berson, S., & Herzog, S. (1997). 

Resource ReSerVation Protocol (RSVP), RFC 2205, September 

1997. 

[Bruin06] Bruin, X.M., Yannuuzzi, M., Pascal, J.D., et al. (2006). 

Research Challenges in QoS Routing, Computer 

Communications, vol.29, pp.563-581, 2006.    

[Camarillo00] Camarillo, G. (2000). Influence of Link State Update 

Algorithms on the Cost of QoS Path Computations, Advance 

Signaling Research Laboratory, Finland, 2000.  

 URL: 

http://www.netlab.tkk.fi/tutkimus/ipana/paperit/QoSR/Gonzalo_

simulation.pdf.  

[Carpenter02] Carpenter, B.E., & Nichols, K. (2002). Differentiated Services 

in the Internet, in Proceedings of the IEEE, vol.90, no.9, 

September 2002.  

[Chang99] Chang, X. (1999). Network Simulation with OPNET, 

Proceedings of the 1999 Winter Simulation Conference, 

pp.307-314. 

[Chang02]  Chang, B.J., & Hwang, R.H. (2002). Distributed Cost-based 

Update Policies for QoS Routing on Hierarchical Networks, 

Technical Report CYUT-CSIE-TR-T-2002-006, Chaoyang 

University of Technology, 2002.   

[Chen03] Chen, S., Ling, Y., &  Ting, Y. (2003). A New Routing 

Architecture for DiffServ Domains, in Proceedings of 2nd 

IASTED International Conference on Communications, 

Univ
ers

ity
 of

 M
ala

ya



 127 

Internet and Information Technology (CIIT 2003), Scottsdale, 

AZ, November 17-19. 

[Chen98(i)] Chen, S., & Nahrstedt, K. (1998). Distributed QoS Routing 

with Imprecise State Information, in Proceedings of 7th IEEE 

International Conference on Computer, Communications and 

Networks (ICCCN'98), Lafayette, LA, pp. 614-621, October  

1998.  

[Chen98(ii)] Chen, S., & Nahrstedt, K. (1998). An Overview of Quality of 

Service Routing for the Next Generation High-Speed 

Networks:Problems and Solutions, IEEE Network Magazine, 

Special Issue on Transmission and Distribution of Digital 

Video, 12(6), pp.64-79. 

[Cheng04] Cheng, G., & Ansari, N. (2004). An Information Theory Based 

Framework for Optimal Link State Update, IEEE 

Communication Letter, vol.8, issue 11, pp.692-694, November 

2004. 

[Crawley98] Crawley, E., Nair, R., Rajagopalan, B., & Sandick, H. (1998). A 

Framework for Qos-based Routing in the Internet, RFC 2386 

August 1998. 

[Duan06] Duan, G., & Ma, J. (2006). QoSIP Models User Guide, OPNET 

Technologies,Inc. URL: http://www.opnet.com. 

[Ernst97} Ernst, T. (1997). Notes About Network Simulators, INRIA 

Sophia-Antipolis MISTRAL Team, France, October 30. URL: 

http://www.inrialpes.fr/planete/people/ernst/Documents/simulat

or.html. 

Univ
ers

ity
 of

 M
ala

ya



 128 

[Fall03] Fall, K., & Varadhan, K. (2003). The ns Manual, by The VINT 

Project, December 2003. 

[Gawlick95] Gawlick, R., Kamath, A., Plotkin, S., & Ramakrishnan,K. 

(1995). Routing and Admission Control in General Topology 

Networks, Standford Technical Report, STAN-CS-TR-95-1548, 

Stanford University. 

[Ghaoui 97] Ghaoui, L.E., & Lebret, H. (1997). Robust Solutions to 

Leastsquares Problems with Uncertain Data, SIAM Journal on 

Matrix Analysis and Applications, vol.18, no.4, pp. 1035 1064, 

October 1997. 

[Gojmerac01] Gojmerac, I., Ziegler, T., Ricciato, F., & Reichi, P. (2001).  

Adaptive Multipath Routing for Dynamic Traffic Engineering, 

in Proceedings of QoSIS 2001-2nd International Workshop on 

Quality of Future Internet Services, San Francisco, USA. 

[Golmie98(i)] Golmie, N., Mouveaux, F., et.al. (1998). ATM/HFC Network 

Simulator, Operation and Programming Guide, version 4.0, 

U.S. Department of Commerce, Technology Administration, 

National Institute of Standards and Technology, Gaithersburg, 

MD 20899, December 1998. 

[Golmie98(ii)] Golmie, N., Mouveaux, F., Hester, L., Saintillan, Y., Koenig, 

A., & Su, D. (1998). The NIST ATM/HFC Network Simulator: 

Operation and Programming Guide, version 4.0, 

NISTIR5703R2, U.S. Department of Commerce, December 

1998.  

Univ
ers

ity
 of

 M
ala

ya



 129 

[Grout04] Grout, V., Davies, J., Hughes, M. & Houlden, N. (2004).  A 

New Distributed Link-State Routing Protocol with Enhanced 

Traffic Load Distribution, in Proceedings of BCS/IEE 

International Network Conference - INC 2004, University of 

Plymouth, pp165-172, July 6 - 9.  

URL: http://www.newi.ac.uk/groutv/Papers/NDLSRA.pdf 

[Guerin97(i)] Guerin, R., Orda, A., & Williams, D. (1997). QoS Routing 

Mechanism and OSPF Extensions, Internet Draft, in 

Proceedings of GLOBECOM 1997, March 1997. 

[Guerin97(ii)] Guerin, R., & Orda, A. (1997). QoS-based Routing in Networks 

with Inaccurate Information: Theory and Algorithms, IEEE 

INFOCOMM ’97, April 1997. 

[Hou99] Hou, T., Wu, D., Yao, J., Hamada, T., & Taniguchi, T. (1999). 

A Differentiated Services Architecture for Multimedia Traffic in 

IP Networks, in Proceedings of International Conference on 

Computer Communication (ICCC'99), vol.1, pp.114-123,  

September 14-16.   

[Huston01] Huston, G. (2001). Commentary on Inter-Domain Routing in 

the Internet, RFC 3221, December 2001.  

[Kamei01] Kamei, K., & Kimura, T. (2001). Evaluation of Routing 

Algorithms and Network Topologies for MPLS Traffic 

Engineering, IEEE Global Telecommunications Conference 

2001 (GLOBECOM 01), San Antonio, TX. USA, vol.21, pp. 

25-29. 

Univ
ers

ity
 of

 M
ala

ya

http://www.newi.ac.uk/groutv/Papers/NDLSRA.pdf


 130 

[Keshav88(i)] Keshav, S. (1988). REAL: A Network Simulator, Technical 

Report 88/472, University of California,Berkeley. 

[Keshav88(ii)] Keshav, S. (1998). REAL 5.0 Overview, Correll University, 

URL: http://www.cs.cornell.edu/skeshav/real. 

[Kowalik02] Kowalik, K., & Collier, M. (2002). ALCFRA – A Robust 

Routing Algorithm Which Can Tolerate Imprecise Network 

State Information, in Proceedings of 15th ITC Specialists 

Seminar, Wurzburg, Germany, July 22-24. 

[Kowalik03] Kowalik, K., & Collier, M. (2003). Should QoS Routing 

Algorithms Prefer Shortest Paths?, IEEE International 

Conference on Communications, IEEE-ICC, Anchorage, 

Alaska, May 2003. 

[Kuipers05] Kuipers, F.A., & Mieghem, P.V. (2005). Conditions that 

Impact the Complexity of QoS Routing, IEEE/ACM 

Transactions on Networking, vol.13, no.4, pp.717-730. 

[Lekovic01] Lekovic, B., & Mieghem, P.V. (2001). Link State Update 

Policies for Quality of Service Routing. URL: 

www.nas.its.tudelft.nl/publications/2001/Bojan_LinkStateUpdat

ePolicies.pdf. 

[Lim00]  Lim, S.H., Phang, K.K., Yaacob, M.H., & Ling, T.C. (2000).  

UMJaNetSim User Manual, Networking Research Laboratory, 

Faculty of Computer Science and Information Technology, 

University of Malaya. 

[Lim04]  Lim, S.H., Yaacob, M.H, Phang, K.K & Ling, T.C. (2004). 

Traffic Engineering Enhancement to QoS-OSPF in DiffServ 

Univ
ers

ity
 of

 M
ala

ya

http://www.cs.cornell.edu/skeshav/real


 131 

and MPLS Networks, IEEE Proceedings – Communications, 

151(1), pp.101-106. 

[Lorenz98] Lorenz, D.H., & Orda, A. (1998). QoS Routing in Networks 

with Uncertain Parameters, IEEE INFOCOMM ’98, March 

1998.  

[Ma96] Ma, Q., & Steenkiste, P. (1996). Routing High-Bandwidth 

Traffic in Max-Min Fair Share Networks, Proceedings of ACM 

SIGCOMM96, Stanford, CA, August 1996. 

[Ma97]  Ma, Q., & Steenkiste, P. (1997). On Path Selection for Traffic 

with Bandwidth Guarantees, in Proceedings of IEEE 

International Conference on Network Protocols, Atlanta, 

Georgia, October 1997. 

[Malkin98]  Malkin, G. (1998). RIP Version 2, RFC 2453, November 1998 

[Mieghem04] Mieghem, P.V., & Kuipers, F.A. (2004). Concepts of Exact 

QoS Routing Algorithms, IEEE/ACM Transactions on 

Networking, vol.12, no.5, pp.851-864. 

[Motulsky03] Motulsky, H., & Christopoulos, A. (2003). Fitting Models to 

Biological Data using Linear and Nonlinear Regression: A 

Practical Guide to Curve Fitting, GraphPRISM, version 4.0, 

pp.47-57, April 2003. 

[Moy98]  Moy, J. (1998). OSPF Version 2, RFC 2328, April 1998 

[Nance93] Nance, R.E. (1993). A History of Discrete Event Simulation 

Programming Languages, in Proceedings of the 2nd ACM 

SIGPLAN History of Programming Language Conference. 

Univ
ers

ity
 of

 M
ala

ya



 132 

Reprinted in ACM SIGPLAN Notices, 28(3), pp. 149-175, April 

1993. 

[Nealan04] Nealan, N. (2004). An As-Short-As-Possible Introduction to the 

Least Squares, Weighted Least Squares and Moving Least 

Squares Methods for Scattered Data Approximation and 

Interpolation, Technical Report, May 2004.  

URL: http://www.nealen.com/projects/. 

[Ohara03] Ohara, Y., Bhatia, M., Osamu, N., Murai, J. (2003). Route 

Flapping Effects on OSPF, Symposium on Applications and 

the Internet Workshops (SAINT '03 Workshops), pp. 232, 

January 2003.  

[Oliveira01] Oliveira, M., & Monteiro, E. (2001). An Overview of Quality of 

Service Routing Issues, in Proceedings of the 5th World 

Multiconference on Systemics, Cybernetics, and Informatics 

(SCI 2001) Orlando, USA, June 2001. 

[Orda00] Orda, A., & Sprintson, A. (2000). QoS Routing: The 

Precomputation Perspective, in Proceedings of the Conference 

on Computer Communications (IEEE INFOCOM ‘00), March 

2000. 

[Rekhter95] Rekhter, Y., & Li, T. (1995). A Border Gateway Protocol 4 

(BGP-4), RFC 1771, March 1995. 

[Rosen01] Rosen, E., Viswanathan, A., & Callon, R. (2001). 

Multiprotocol Label Switching Architcture, RFC 3031, January 

2001.   

Univ
ers

ity
 of

 M
ala

ya

http://www.nealen.com/projects/


 133 

[Shaikh98] Shaikh, A., Rexford, J., & Shin, K. (1998). Evaluating the 

Overheads of Source-Directed Quality-of-Service Routing, 

International Conference on Network Protocols (ICNP). 

[Shen04] Shen, S., Xiao, G., & Cheng, T.H. (2004). Evaluating Link 

State Update Triggers in Wavelength-Routed Networks, in 

Proceedings of Asia-Pacific Optical Communications 

Conference and Exhibition (APOC) 2004, November 7-11. 

[Sobrinho02] Sobrinho, J.L. (2002). Algebra and Algorithms for QoS Path 

Computation and Hop-by-Hop Routing in the Internet, IEEE 

Transactions on Networking, 10(4):541-550, August 2002. 

[Sommerville98] Sommerville, I. (1998). Software Engineering, Fifth Edition, 

Addison-Wesley, pp.445-459. 

[Stallings02] Stallings, W. (2002). High Speed Networks and Internets: 

Performance and Quality of Service, Second Edition, Prentice 

Hall. 

[Stephenson00] Stephenson, D.B. (2000). A Few Words About Modeling 

Strategy, September 2.  

URL: http://web.gfi.uib.no/~ngbnk/kurs/notes/node66.html. 

[Waner02] Waner, S., & Costenoble, S.R. (2002). On-Line Tutorials for 

Finite Mathematics, Applied Calculus and, Finite Mathematics 

and Applied Calculus: Linear Regression, Department of 

Mathematics, Hofstra Univeristy, January 2002. URL: 

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutin

dex.html. 

Univ
ers

ity
 of

 M
ala

ya

http://web.gfi.uib.no/~ngbnk/kurs/notes/node66.html


 134 

[Wang00]  Wang, J., Wang, W., Chen, J., & Chen, S. (2000). A 

Randomized QoS Routing Algorithm On Networks with 

Inaccurate Link State Information, in Proceedings of 

International Conference on Communication Technology, 

pp.1617-1622, August 21-25. 

[Wang96]  Wang, Z., & Crawcroft, J. (1996). Quality of Service Routing 

for Supporting Multimedia Applications, IEEE Journal Selected 

Area in Communications, 14(7):1228-1234, September 1996. 

[Wu03] Wu, W., Misra, A., Das, S.K., & Das, S. (2003). Scalable QoS 

Provisioning for Intra-Domain Mobility, IEEE Global 

Telecommunications Conference (GLOBECOM ’03), vol.7, 

pp.3615-3619, December 1-5. 

[Wu99] Wu, D., Hou, Y.T., Zhang, Z.L., and Chao, H.J. (1999). On 

Implementation Architecture for Achieving QoS Provisioning in 

Integrated Services Networks, in Proceedings of the IEEE 

International Conference on Communications (ICC'99), 

Vancouver, British Columbia, Canada, pp. 461-468, June 1999.  

[Xiao02] Xiao, L., Wang, J., & Nahrstedt, K. (2002). The Enhanced 

Ticket-Based Routing Algorithms, in Proceedings of IEEE ICC 

2002, New York, NY USA, April 28 – May 2. 

[Xiao99] Xiao, X., & Ni, L.M. (1999). Internet QoS: A Big Picture, 

IEEE Network, vol.13, issue 2, pp.8-18, March-April 1999. 

[Younis03] Younis, O., & Fahmy, S. (2003). Constraint-Based Routing in 

the Internet: Basic Principles and Recent Research, IEEE 

Univ
ers

ity
 of

 M
ala

ya



 135 

Communications Surveys and Tutorials, vol.5, issue 1, 3rd 

Quarter 2003. 

[Yuan02] Yuan, X., Zheng, W., & Ding, S. (2002). A Comparative Study 

of Quality of Service Routing Schemes That Tolerate Imprecise 

State Information, the 11th IEEE International Conference on 

Computer Communications and Networks (IC3N'02), Miami, 

FL, October 14-16. 

[Zhou03] Zhou, H., Pan, J., & Shen, P. (2003). Cost Adaptive OSPF, 

Fifth International Conference on Computational Intelligence 

and Multimedia Applications (ICCIMA ’03), p.55. 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya




