
FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

WEB SERVICES FOR E-PROCUREMENT
SYSTEM IN THE CONTEXT OF SUPPLY

CHAIN MANAGEMENT

A thesis submitted to
the Faculty of Computer Science and Information Technology,

University of Malaya.

by

YAP KHAY SENG

WGC020054

Supervisor:
PUAN SITI HAFIZAH BINTI AB. HAMID

Session 2006/2007

In partial fulfillment of the requirement for the Degree
of Masters in Software Engineering, University of Malaya

Univ
ers

ity
 of

 M
ala

ya

WEB SERVICES FOR E-PROCUREMENT
SYSTEM IN THE CONTEXT OF SUPPLY

CHAIN MANAGEMENT

YAP KHAY SENG
WGC020054

FACULTY OF COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
SESSION 2006/2007

Univ
ers

ity
 of

 M
ala

ya

 i

ABSTRACT

The current Information Technologies (IT) such as Electronic Data Interchange (EDI)
and Enterprise Application Integration (EAI) have been used by major organizations to
integrate the business processes in the supply chain. However, these technologies are
expensive, inflexible and not dynamic. Web Services seem to be a way to solve these
problems. By using the standard internet protocol, Web Services can easily provide
interoperable software service functions that can be accessible by various hardware and
platform, even passing through the firewalls. The purpose of this project is to develop a
system using Web Services to implement real time information sharing and dynamic
procurement operations in the context of Supply Chain Management. Web Services for
E-Procurement (WSEP) System is a web-based procurement system that provide real
time knowledge sharing and procurement operations. The system is deployed using Web
Services which is not only easier to implement but also integrated well with legacy
system. The system is running under the Microsoft .NET 1.1 Framework and Microsoft
SQL Server 2000 as the backend database.

Univ
ers

ity
 of

 M
ala

ya

ii

ACKNOWLEDGEMENTS

I would like to acknowledge many people for helping me during this project.

First, I would especially like to thank my project supervisor, Ms Siti Hafizah, for her

generous time and commitment. Her invaluable comments and guidance have inspired

me to complete this project within the time schedule.

 I extend many thanks to my friends, especially Hu Heng Siew, Marina and Tan

Chin Kuang, who have provided feedback and inspiration in one way or another that

contributed to the success of this project. Their knowledge of Web Services was also

extremely helpful.

Finally, I would like to thank my parents and sisters for their unwavering love.

Without their support and encouragement, I would never have been able to finish this

project. I am especially grateful to my wife Min Min for her patience and for helping me

keep my life in proper perspective and balance.

Univ
ers

ity
 of

 M
ala

ya

iii

TABLE OF CONTENTS Page

Abstract i

Acknowledgements ii

Table of Contents iii

List of Figures viii

List of Tables xi

Abbreviations xii

CHAPTER 1: INTRODUCTION

1.1 Introduction 1

1.2 Current Problems 2

1.3 Project Objectives 3

1.4 Project Scope 3

1.5 Project Limitation 4

1.6 End User 4

1.7 Expected Outcome 5

1.8 Significance of Project 5

1.9 Research Methodology 5

1.10 Project Schedule 6

1.11 Chapters Summary 8

CHAPTER 2: LITERATURE REVIEW

2.1 Supply Chain 9

2.2 Supply Chain Management (SCM) 10

2.3 E-Procurement 11

2.3.1 Overview of Purchasing Processes 13

2.3.2 Advantages of E-Procurement 14

Univ
ers

ity
 of

 M
ala

ya

iv

2.3.3 Current Issues and Problems of Information Technologies (IT) in the

 Context of Supply Chain Management (SCM) 16

2.4 Web Services 17

2.4.1 Introduction 17

2.4.2 Definition of Web Service 18

2.4.3 Web Service Technologies 19

2.4.3.1. eXtended Markup Language (XML) and XML Schema 21

2.4.3.2. Simple Object Access Protocol (SOAP) 23

2.4.3.3. Web Services Description Language (WSDL) 23

2.4.3.4. Universal Description, Discovery, and Integration (UDDI) 24

2.4.3.5. Microsoft .NET Framework 26

2.5 Existing Project 29

2.5.1 Electronic Business using eXtensible Markup Language (ebXML) 29

2.5.2 Web Service Intelligent Agent Structuring for

 Supply Chain Management 32

2.5.3 Web Service-based Framework for Supply Chain Management 33

2.5.4 Comparison of the Proposed Framework With Others

 (ebXML, Umair and Ben, Zhang Mi et al.) 36

2.6 Conclusion 36

CHAPTER 3: METHODOLOGY

3.1 Research Methodology 37

3.2 Development Methodology 39

3.2.1 Choice of Modified Waterfall Model 39

3.2.1.1 Phase 1 – Requirements 40

3.2.1.2 Phase 2 – Design 40

3.2.1.3 Phase 3 – Implementation 41

3.2.1.4 Phase 4 – Testing 41

3.3 Techniques Used to Define Requirements 41

3.2.1 Analysis of existing projects 42

3.2.2 Review of new technologies 42

Univ
ers

ity
 of

 M
ala

ya

v

3.2.3 Library Research and Internet Research 42

CHAPTER 4: SYSTEM REQUIREMENT ANALYSIS

4.1 Functional Requirements 43

4.1.1 Use Case Diagram 44

4.2 Non-Functional Requirements 55

4.3 Decisions on the choices of Development Technologies 56

4.3.1 Web Services Development Platform 56

4.3.2 Web Server 58

4.3.3 Database Server 58

4.3.4 Development Language 58

4.4 Hardware Requirements 58

CHAPTER 5: SYSTEM DESIGN

5.1 Web Services E-Procurement Architecture Design 62

5.1.1 Authentication Module 64

5.1.2 Maintenance Module 64

5.1.3 E-Procurement Transaction Web Services Module 64

5.1.4 Suppliers’ Web Services 64

5.2 Web Services E-Procurement System Functionality Design 65

5.3 The Design of Dynamic Aspect of WSEP System 75

5.4 Web Services E-Procurement System Design 76

5.5 Web Services E-Procurement Components Design 79

5.6 Web Services E-Procurement Database Design 82

5.6.1 Database Diagram 82

5.6.2 Data Dictionary 83

5.7 User Interface Design 85

5.8 Conclusion 87

CHAPTER 6: SYSTEM IMPLEMENTATION

6.1 Development Environment 88

Univ
ers

ity
 of

 M
ala

ya

vi

6.1.1 Software Development Environment 88

6.1.2 Hardware Development Environment 88

6.2 System Implementation 89

6.2.1 Implementation of Data Access Tier 89

6.2.2 Implementation of Business Logic Tier 91

6.2.3 Implementation of the Web Services 92

6.2.4 Implementation of WSEP Database 98

6.2.5 Implementation of User Interface using ASP.NET 99

6.2.6 Implementation of Supplier Web Services 102

6.3 Implementation of Dynamic Aspect of WSEP System 103

6.4 Conclusion 107

CHAPTER 7: SYSTEM TESTING

7.1 Testing Approach 108

7.1.1 Unit Testing 109

7.1.1.1 Black Box testing 109

7.1.1.2 White Box Testing 111

7.1.2 Module Testing 113

7.1.3 Integration Testing 115

7.1.4 System Testing 115

7.2 Non-Functional Requirements Testing 116

7.3 WSEP Metrics 123

7.3.1 Coupling 124

7.3.2 Cohesion 125

7.3.3 Analysis of Result 127

7.4 Conclusion 129

CHAPTER 8: CONCLUSION

8.1 Problems Encountered 130

Univ
ers

ity
 of

 M
ala

ya

vii

8.2 System Strengths 131

8.3 System Constraints and Future Enhancement 132

8.4 Knowledge and Experience Gained 133

8.5 Conclusion 135

References

Appendices

A. WSDL of Supplier Web Services

B. User Manual

Univ
ers

ity
 of

 M
ala

ya

viii

List of Figures page

Figure 1.1 Project Time Line 7

Figure 2.1 The publish, find, and bind paradigm of Web Services 20

Figure 2.2 How UDDI works 25

Figure 2.3: The .NET Framework architectural components 27

Figure 2.4: ebXML System Overview 30

Figure 2.5 Proposed Web Service Agent by Umair and Ben 32

Figure 2.6 Framework of Supply Chain Management proposed

by Zhang Mi et al. 35

Figure 3.1 Research Methodology 38

Figure 3.2 Modified Waterfall Model with iterative development 40

Figure 4.1 Use Case Diagram of WSEP System 45

Figure 5.1 Proposed Architecture of Web Services E-Procurement

 (WSEP) System 63

Figure 5.2: Sequence Diagram for User Login 65

Figure 5.3 Sequence Diagram for List Suppliers 66

Figure 5.4 Sequence Diagram for Add Supplier 67

Figure 5.5 Sequence Diagram for Edit Supplier 67

Figure 5.6 Sequence Diagram for Delete Supplier 68

Figure 5.7 Sequence Diagram for List Products 69

Figure 5.8 Sequence Diagram for Add Product 69

Figure 5.9 Sequence Diagram for Edit Product 70

Figure 5.10 Sequence Diagram for Delete Product 71

Figure 5.11 Sequence Diagram for List Supplier Web Services URI 71

Figure 5.12 Sequence Diagram for Add Supplier Web Services URI 72

Figure 5.13 Sequence Diagram for Edit Supplier Web Services URI 73

Figure 5.14 Sequence Diagram for Delete Supplier Web Services URI 73

Figure 5.15 Sequence Diagram for Request for Quotation 74

Figure 5.16 Sequence Diagram for Raise Purchase Order 75

Figure 5.17 The n-Tier Architecture of the WSEP System 77

Univ
ers

ity
 of

 M
ala

ya

ix

Figure 5.18 Elements of the Data Tier of Microsoft SQL 2000 Server 78

Figure 5.19 Deployment Diagram for BLLeProcurement 80

Figure 5.20 Deployment Diagram for DLLeProcurement 81

Figure 5.21 Deployment Diagram for DynamicWebServicesLib 81

Figure 5.22 Database design of the WSEP System 83

Figure 5.23 Screen uses terms and objects that have direct analogues

 in the user’s environment and familiar to the user 86

Figure 5.24 Confirmation of destructive actions 87

Figure 6.1 The n-Tier Architecture of the WSEP System 89

Figure 6.2 Function GetAll() that returns a Dataset in the

 Data Access Tier component 91

Figure 6.3 Function GetAll()in the Business Logic Tier component 92

Figure 6.4 List of all web methods in Web Services 93

Figure 6.5 Web Method GetVendor() in the Web Services component 94

Figure 6.6 Web Method RequestForQuotation () in the

 Web Services component 97

Figure 6.7 Create Table and Relationship using SQL

Server Enterprise Manager 98

Figure 6.8 Detailed View Database Diagram 99

Figure 6.9 Adding Web Reference through Visual Studio 2003 100

Figure 6.10 Web Services on the Local Machine 100

Figure 6.11 Dialog box to Add Reference 101

Figure 6.12 WSDL of the Supplier Web Services 103

Figure 6.13 Sample of implementation of Supplier Web Services 104

Figure 6.14: Generate Code From Namespace 105

Figure 6.15: Compile the Codes to Assembly 105

Figure 6.16: Create Instance from Assembly using Activator Class 106

Figure 6.17: Public Function InvokeCall() in

 DynamicWebServicesProxyLib 106

Figure 7.1 Testing Process 109

Figure 7.2 Black Box Testing of a Web Service 110

Univ
ers

ity
 of

 M
ala

ya

x

Figure 7.3 Successful Output of Black Box Testing 111

Figure 7.4 White Box Testing Examining and analyzing the code structure 113

Figure 7.5 Units in a Vendor Module 115

Figure 7.6 Assemblies that are Created Dynamically 117

Figure 7.7 Visual Studio .NET Object Browser Is Used

to Examine the Dynamic Assembly 117

Figure 7.8 Windows Forms Performance Test Screen 118

Figure 7.9 Algorithm for Performance Testing of Request For Quotation

 Transaction 119

Figure 7.10 Bar Chart for Test Result of CPU usage and Memory usage 120

Figure 7.12 Bar Chart for Test Result of SQL Response Time 120

Figure 7.12 SQL Profiler for SQL Response Time Testing 121

Figure 7.13 Windows Performance Utility Tool for Memory and

 CPU Usage Testing 122

Figure 7.14: Software Quality Model 124

Figure 7.15: Bar Char for the WSEP Metrics Result 128

Univ
ers

ity
 of

 M
ala

ya

xi

List of Tables page

Table 2.1 Different terms used for acquiring external products or services 12

Table 2.2 Compilation list of purchasing process by Knudsen 13

Table 4.1 Comparison of .NET and Java Platforms 57

Table 4.2 The minimum requirements to install the .NET Framework 1.1 SDK 59

Table 4.3 The minimum requirements to run Web Services on the .NET

Framework 60

Table 5.1 Table Structure of WSEP System 84

Table 5.2 User interface design principles 85

Table 7.1: Test Result of Performance 119

Table 7.2: Results of Each Module Being Analyzed 128

Univ
ers

ity
 of

 M
ala

ya

xii

Abbreviations

.NET Microsoft .NET Framework

ADO.NET Microsoft ActiveX Data Objects used in the .NET Environment

API Application Programming Interface

ASP.NET Microsoft Active Server Pages used in the .NET Environment

B2B Business To Business

BPSS Business Process Specification Schema

CLR Common Language Runtime

CPA Protocol Agreement

CPP Collaboration Protocol Profiles

DTD Document Type Declaration

ebMS ebXML Messaging Service

ebXML Electronic Business using eXtensible Markup Language

EDI Electronic Document Interchange

ERP Enterprise Resource Planning

HTTP Hypertext Transport Protocol

IDE Integrated Development Environment

IIS Microsoft Internet Information Service

ISP Internet Service Provider

IBM International Business Systems

J2EE Java 2 Enterprise Edition

JIT Just-In-Time

JRE Java Runtime Engine

Univ
ers

ity
 of

 M
ala

ya

xiii

MSDN Microsoft Developer Network

MSIL Microsoft Intermediate Language

OASIS Organization for Advancement of Structured Information Standards

RPC Remote Procedure Call

SCM Supply Chain Management

SDK Software Development Kit

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SQL Standard Query Language, the de facto standard language of all databases

TCP/IP Transport Control Protocol / Internet Protocol

UDDI Universal Description, Discovery and Integration

UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

URI Uniform Resource Identifier

VB.NET Visual Basic.NET

W3C World Wide Web Consortium

WSEP Web Services For E-Procurement System

WSDL Web Service Description Language

XML eXtensible Markup Language

XSD XML Schema Univ

ers
ity

 of
 M

ala
ya

 1

CHAPTER 1: INTRODUCTION

1.1 Introduction

In an increasingly competitive marketplace today, producing quality products is

not enough to meet customers’ expectations and requirements. Customers are now

demanding the same levels of quality not only in the product itself, but also in the

services that are offered with it. Looking for means to respond to these requirements,

enterprises have to reorganize their business processes from traditional operations toward

integrated and strategic partnerships. The result was the emergence of the concept of

Supply Chain Management (SCM).

“A supply chain is a network of facilities that procure raw materials, transform

them into intermediate goods and then final products, and deliver the products to

customers through a distribution system” (Lee and Billington, 1995). By uniting the

disparate business processes, enterprises in the supply chains can effectively improve

transaction performance and reduce costs. In the context of procurement, extending the

business processes across the enterprise involves collaboration of suppliers, which

includes the activities of involvement in production design, daily coordination of

purchased material flows and etc. These activities require system integration as well as

information sharing in a real time manner. However, current supply chain

implementations in Electronic Data Interchange (EDI) systems do not really meet these

requirements.

Web Services are the consequence of the evolution of the World Wide Web

(WWW) that provide a standard protocols and data formats for implementing distributed

components. By using ubiquitous and standard internet protocol, Web services can easily

provide interoperable software service functions that can be accessible by various

hardware and platform, even passing through the firewalls. Therefore, enterprises can use

Web Services to expose their business processes to the external trading partners. The

advent of Web Services has simplified Business-To-Business (B2B) integration.

Univ
ers

ity
 of

 M
ala

ya

 2

The purpose of this research project is to design and develop a system, Web

Services for E-Procurement System (WSEP), using Web Services to apply dynamic

procurement operations and real time information sharing. The system is implemented

using Microsoft .NET framework that provides build-in functions and supports for Web

Services. The architecture and design of the system presented in this project are based on

an n-tier enterprise design pattern.

1.2 Current Problems

Some of the enterprises nowadays still rely on manual processes to identify,

evaluate and select suppliers. This practice is expensive to maintain and prone to human

errors. Besides, these manual processes do not accommodate future growth and cannot

consistently produce the level of services that is needed to optimize the procurement

processes. With the implementation of Supply Chain Management (SCM), the

organizations can streamline the business processes, improve response time to customer

requests and reduce costs. SCM coordinates the processes in production management,

inventory management, order fulfillment, purchasing and distribution.

A Supply Chain typically extends the business process across and beyond

organization. Information is passed through different systems of the companies across the

supply chains. Electronic Data Interchange (EDI) and Enterprise Application Integration

(EAI) have been used by major organizations to integrate the business processes in the

Supply Chain. However, these technologies are expensive, inflexible and not dynamic. If

some of the participating systems change, the integration must be redone which is a time

consuming and expensive process (Zhang Mi, 2005). These problems hinder the

applications of dynamic SCM.

Web Services seem to be a way to solve these problems. This project uses Web

Services technologies to overcome such problems. Web Services for E-Procurement

System (WSEP) is a web-based E-Procurement system that demonstrates the use of Web

Services to provide dynamic procurement operations and real time information sharing

Univ
ers

ity
 of

 M
ala

ya

 3

over the internet.

1.3 Project Objectives

The objectives of this project are:

1. To design an n-tier architecture using Web Services to apply real time and

dynamic procurement operations in the context of Supply Chain Management.

2. To implement the project architecture running on .NET framework.

3. To evaluate the system by using software testing and software metrics.

1.4 Project Scope

 This project will cover the design, development, testing as well as evaluation of

Web Services for E-Procurement (WSEP) System that includes the following modules:

• Authentication Module

This module is to authenticate and authorize the user. This involves accepting

credentials from the users that include username and password, and validating

them against the database. Only purchase officers with access permission are

allowed to access to the system.

• Maintenance Module

This module is to manage and maintain the system’s entities such as products,

suppliers and suppliers’ Web Services Uniform Resource Identifier (URI).

• E-Procurement Transaction Web Services Module

 This module is the main component that handles the interactions between the E-

Procurement system and the suppliers’ Web Services. It queries the database in

order to get the qualified suppliers information as well as suppliers’ Web Services

URI. Based on the information, it will create a proxy dynamically to bind the

suppliers’ Web Services for procurement operations.

Univ
ers

ity
 of

 M
ala

ya

 4

• Suppliers’ Web Services Module

The Suppliers’ Web Services are necessary as part of the WSEP System. All the

suppliers who want to participate in the system have to implement Web Services

that conform to the predefined Web Services Description Language (WSDL)

standard, which is shown in Appendix A. These Web Services integrate with the

supplier internal system to expose the product and inventory information that

enables the submission the quotation in real time.

1.5 Project Limitation

The WSEP System does not really support sophisticated business processes. The

system assumes that the purchasing processes and transactions are straight forward.

However, the system could be extended to support more complicated business processes.

 Due to the limitation of time, this project does not address Web Services Security.

Security is one of the major concerns of many potential Web Services adopters. Web

Services do not have widely adopted security protocols and standards dedicated for Web

Services. This project uses existing security measures such as HyperText Transport

Protocol Secure (HTTPS) to encrypt the whole Simple Object Access Protocol (SOAP)

messages to secure Web Services communications.

1.6 End user

 The system will be mainly used by purchase officer to get product pricing and to

check product availability from the suppliers’ inventory system. By using the Web

Services, the suppliers who participate in the WSEP system can provide information and

accept purchase order placed by the purchase officer.

Univ
ers

ity
 of

 M
ala

ya

 5

1.7 Expected Outcome

The system is designed to be functioned in real time and dynamic manner. Based

on the decision made by the purchase officer, the system will dynamically bind the

suppliers’ Web Services to retrieve the information needed, such as product pricing and

inventory level and process the transactions. The return results are shown to the user.

1.8 Significance of The Project

Web Services provide a standard-based approach to implement distributed

components. They offer data and business logic services over standard protocols namely

HyperText Transport Protocol (HTTP), eXtensible Markup Language (XML), and

Simple Object Access Protocol (SOAP) over the Internet. Using the ubiquitous and low-

cost Internet, Web Services can easily provide interoperable software functions over the

Intranet and the Internet. By deploying Web services, this project significantly reduces

the integration costs of Supply Chain Management, particularly on E-Procurement

application. Besides, by using the dynamic nature of Web Services, this project shows

that the E-Procurement process can be done in real time and dynamic manner.

Information sharing from the suppliers can be easily become available to the system.

The development of this project uses technologies namely Web Services and

.NET Framework that are supposed to improve upon older technologies such as EDI in

terms of easy of use of development, scalability and maintainability.

1.9 Research Methodology

 The research methodology that is used for this dissertation consisted of literature

review and research findings. The data was collected and analyzed on the research

materials such as published papers, journals, white papers, books and other documents.

The gathered requirements are then modeled and captured using use case diagrams.

Univ
ers

ity
 of

 M
ala

ya

 6

 The system is built based on Microsoft .NET XML Web Services technology.

Web Services provide efficient application integration independent of platforms and

hardware. The dynamic binding aspect of the Web Services are examined and applied to

the system. This includes creating a proxy to invoke the Web Services at run time using

Microsoft .NET framework.

 Object-oriented metrics is used in this project to assess the quality aspects of the

system such as maintainability and reliability. The coupling and cohesion of the system

design are measured and analyzed to evaluate the overall quality of the system.

1.10 Project Schedule

The project schedule spans from Feb 2005 to June 2006. The Gantt Chart in

Figure 1.1 shows the tasks and schedules of all phases of the project.

Univ
ers

ity
 of

 M
ala

ya

 7

Figure 1.1 Project Time Line Univ

ers
ity

 of
 M

ala
ya

 8

1.11 Chapters Summary

This is a brief explanation of the chapters included in this report to give an overview of

what is contained herein.

Chapter 1: “Introduction” gives an overview of the project, current problems, project

objectives, significance of the project, project scope, project limitations as well as the

project schedule.

Chapter 2: “Literature Review” is a study on existing systems and projects. The study

includes all the development paths leading to the core technologies used in the project.

Chapter 3: “Methodology” discusses the research and development methodology used in

arriving at this system, as well as the techniques used to define the requirements.

Chapter 4: “System Requirement Analysis” lays out the details of system requirements,

including functional and non-functional requirements, hardware and software

requirements. There is also a comparison of the various development platforms and

languages reviewed.

Chapter 5: “System Design” shows in detail the system design, database design and user

interface design.

Chapter 6: “System Implementation” describes the development environment and

strategy.

Chapter 7: “System Testing” shows various testing methods and software metrics that are

used to validate and measure different aspects of the system.

Chapter 8: “Conclusion” discusses problems encountered, system strengths, system

constraints, future enhancements, and knowledge and experience gained.

Univ
ers

ity
 of

 M
ala

ya

 9

CHAPTER 2: LITERATURE REVIEW

 This chapter covers the study on existing projects and frameworks. The study

seeks to discover the knowledge and ideas that have been established on Supply Chain

Management, E-Procurement and Web Services in terms of their strengths and

weaknesses.

2.1 Supply Chain

Jayashankar (Janyashankar et al, 1996) defines a supply chain to be “a network of

autonomous or semi-autonomous business entities collectively responsible for

procurement, manufacturing, and distribution activities associated with one or more

families of related products.”

Lee and Billington (Lee and Billington, 1995) has a similar definition: “A supply

chain is a network of facilities that procure raw materials, transform them into

intermediate goods and then final products, and deliver the products to customers through

a distribution system.”

The supply chain represents the flow of materials, information and funds as they

move in a process from supplier to manufacturer to wholesaler to retailer and to

consumer. The supply chain activities transform raw materials and components into a

finished product that is delivered to the end customer. The elements of a supply chain

typically consist of production planning, material sourcing, transportation management,

warehouse management and demand management. These functions are tightly integrated

to provide the products and services to the end user in an efficient, timely and profitable

manner (Scott and Oldfield, 2004).

In addition to internal functions, the supply chain also comprises the activities of

external entities which include materials and parts suppliers, manufacturers, distributors,

and transportation providers. The supply chain not only encompasses the movement of

goods between supply chain participants, but also the flow of information and funds.

Univ
ers

ity
 of

 M
ala

ya

 10

Supply Chain execution begins at the point a demand is created and is about the

efficiency and effectiveness with which that demand is fulfilled (Scott and Oldfield,

2004). Many organizations are looking to supply chain optimization as a means of

gaining significant competitive advantages.

2.2 Supply Chain Management (SCM)

Global competition is forcing enterprises to restructure their business process

from conventional operation towards integrated partnership. One of the new strategic

management philosophies that serves to integrate a number of best practices is the area of

Supply Chain Management (SCM) (Ines, 2002). By integrating the disparate business

processes in the supply chain, the enterprises experience noteworthy performance

improvements in transaction and production related costs, in asset utilization, and in

responsiveness to customers needs.

SCM was defined as “the integration of business processes from end user through

original suppliers, that provides products, services and information that add value for

customers and other stakeholders” (Cooper, 1997) .

According to (Christopher, 1992), “Supply Chain Management is the process of

strategically movement and storage of materials, parts and finished inventory from

supplier through the firm and on to the customer.”

Ellram and Cooper (Ellram and Cooper, 1990) defined SCM as “an integrative

philosophy to manage the total flow of a distribution channel from the supplier to the

ultimate user.”

From the above definitions, SCM can be summarized as “the management of

materials and information flows both in and between facilities across Supply Chain.”

SCM is a cross-functional approach in managing the movement of raw materials into an

organization and the movement of finished goods out of the organization toward the end-

Univ
ers

ity
 of

 M
ala

ya

 11

consumer. As organizations are striving to focus on core competencies and become more

flexible, they have reduced their ownership of raw materials sources and distribution

channels. These functions are increasingly being outsourced to other corporations that

can perform the activities better or more cost effectively. The effect has been to increase

the number of companies involved in satisfying consumer demand, while reducing

management control of daily logistics operations. Less control and more supply chain

partners led to the creation of SCM concepts. The purpose of SCM is to improve trust

and collaboration among supply chain partners and thus increasing efficiency and

profitability.

2.3 E-Procurement

One of the key supply chain activities is procurement. This activity is one of the

key factors that will determine the success of the enterprise. E-Procurement, by using e-

business mechanisms deployed on procurement, offers many innovative methods that can

improve the process of procurement. E-Procurement systems can improve efficiency and

effectiveness by automating processes, replacing human labor with information

technology, facilitating the breakdown of functional silos towards horizontal processes

that cut across departments and divisions (Neef, 2001).

In order to define the term “E-Procurement”, we need to know the meaning of

Procurement and Electronic Business (E-Business). The terms ‘procurement’,

‘purchasing’ and ‘supply management’ are always used interchangeably for the meaning

of acquiring external products or services for an organization. Table 2.1 shows the

different terms and meaning respectively proposed by Knudsen (Knudsen, 1999).

 Univ
ers

ity
 of

 M
ala

ya

 12

Table 2.1:Different terms used for acquiring external products or services

(Knudsen, 1999)

Term Meaning

Supply Management To be aware of the strategic impact of procurement and fully

exploit it by formulating a supply strategy

Procurement To satisfy internal demands with external sources which adhere to

objectives set at the strategic level

Purchasing The minimum activities required to obtain external products or

services that result in an invoice from an external source

 Min and Galle state that Electronic Business generally refers to “an inter-

organizational information system that is intended to facilitate Business-To-Business

(B2B) electronic communication, information exchange and transaction support through

a web of either public access or private value-added networks” (Min and Galle, 1999).

 Amit and Zott define that business conducted over the internet is E-Business

(Amit and Zott, 2001).

IBM defines e-procurement as “the acquisition of direct and indirect products and

services using the Internet and new technologies to facilitate a seamless, end-to-end

stream of strategic procurement activities by connecting buyers with suppliers. Typically

includes tools and business intelligence systems that enable improved responsiveness and

analysis within the procurement organization” (IBM, 2005).

 By combining the procurement and e-business definition, we can define E-

Procurement as “the use of IT and Internet to satisfy internal demands with external

sources which adhere to objectives set at the strategic level”.

Univ
ers

ity
 of

 M
ala

ya

 13

2.3.1 Overview of Purchasing Processes

Knudsen has compiled a list of activities of purchasing process done by Novack

and Simco (1991), Archer and Yuan (2000) and van Weele (2002). Table 2.2 shows the

compilation list of purchasing processes.

Table 2.2 Compilation list of purchasing process by Knudsen (Knudsen, 2003)

Novack and Simco Archer and Yuan van Weele

Identify or re-evaluate

needs

Information gathering

(Search for suppliers that

can satisfy requirements)

Determining the

specification of goods and

services that need to be

bought

Define and evaluate user

requirements

Identify type of purchase

Conduct market analysis

Identify all possible

suppliers

Contact supplier

Prescreen all possible

supplier

Do background review

Evaluate remaining

supplier base

 Identify most suitable

supplier

Choose Supplier Negotiate contract Preparing and conducting

negotiations

Deliver product/

performance service

Fulfillment (shipment,

delivery and payment)

Placing an order with the

selected supplier

Post-purchase / make

performance evaluation

Consumption, maintenance

and disposal (evaluation of

performance)

Monitor and control the

order

 Renewal (when product is

consumed)

After-care and evaluation

Univ
ers

ity
 of

 M
ala

ya

 14

From the above table, the purchasing process can be summarized of having 4 basic steps:

1. Identify and determine needs

 The procurement process starts when an organization’s needs have been evaluated

and identified. The specification of goods and services that need to be bought is

determined.

2. Evaluate and Select suppliers

 All possible suppliers are identified. Suppliers are assessed and evaluated based

on various dimension such as quality, delivery, price, supports and etc. Buying

organization negotiates with potential suppliers regarding price, delivery date and other

variables. One or more suppliers will be selected.

3. Place order

 Orders are placed with the selected and qualified suppliers. Products or services

are delivered to the buying organization. Orders are fulfilled.

4. Post-purchase and evaluation of performance

 Post purchase activities include monitoring and evaluating suppliers’ performance

and capabilities. This is to ensure that the suppliers’ deliveries fulfill the specified

requirements.

2.3.2 Advantages of E-Procurement

In the field of E-Business, E-Procurement is regarded as having far greater

potential for cost savings and business improvements than online retailing or Enterprise

Resource Planning (ERP) systems (Neef, 2001). The benefits come not only through

direct cost savings but also through the improved operational efficiency of companies.

They can shrink dramatically the number of suppliers with whom they deal, reduce the

administration costs and gain a clearer picture of their overall purchasing strategy. For

large corporations in particular, E-Procurement may even be the most important element

Univ
ers

ity
 of

 M
ala

ya

 15

of E-Business for operational excellence (Barua et al., 2001).

E-Procurement is the automation of the procurement processes so that the

sourcing, vendor selection, purchasing processes, shipment status tracking and payments

can be being made through the internet. With the increasing pressures on global

competition, organizations are looking at various ways to reduce the costs. This has given

a different definition to the way procurement has been functioning, and making it the

strategic section for cost reduction. The main purpose of the E-Procurement is to reduce

the cycle time for executing purchasing processes which directly drive down the costs

(Knudsen, 2003). Besides, E-Procurement has increased the opportunities to attract

greater number of suppliers. This also provides for greater bargaining power to the buyers

and leads to huge cost advantage to the organization. In addition, E-Procurement gives a

sharper view of disparities which occur between pricing, quality and delivery among the

suppliers.

With the advent of internet, companies can communicate and interact with their

suppliers, customers and employees to an extent that never before possible. Thus, E-

Procurement does not only mean putting purchasing decisions online, but also means

linking suppliers into the purchasing network and broadening the range of employees

who can carry out transactions. This enables aggregation of purchasing process across

multiple departments or divisions without removing individual control. In other words, E-

Procurement improves the operational efficiency of the company (Knudsen, 2003).

From perspective of the suppliers, E-Procurement enables the suppliers to become

more proactive in the way that they do business. Instead of just showing the products in a

catalogue and waiting to be approached by buyers, the suppliers can be linked into

companies' inventory systems to see when goods may be due for renewal. Indirectly, this

has created a more reactive purchasing policy for the buyers to find the best price and

quality across a wide range of suppliers.

Univ
ers

ity
 of

 M
ala

ya

 16

2.3.3 Current Issues and Problems of Information Technologies (IT) in the

Context of Supply Chain Management (SCM)

 A supply chain typically involves multiple parties, including manufacturers,

transportations, warehouses, retailers as well as the customers. Information Technology

(IT) has been playing a key role in improving the efficiency of the supply chain by

integrating information system across multiple organizations.

For more than two decades, enterprises have been using Electronic Data

Interchange (EDI) systems for basic B2B document exchange, i.e. orders, invoices,

shipment notices and etc. EDI enables a company’s trading partners to transmit requests

or documents directly into their business systems. For instance, an electronic version of a

purchase order can be transmitted from the buyer and delivered directly into the order

processing system of the seller. EDI translation software converts the incoming electronic

purchase order from a commonly understood format into the proprietary input

representation expected by a backend business application.

The EDI standard is monolithic, complicated, and coordinated through a heavy

committee process. As a result, high costs are introduced in the way of expensive

translation software, consultant and dedicated staff required for implementation and

maintenance. Even with these disadvantages, EDI is still currently used in SCM for

sharing information and communication.

The XML acronym stands for eXtensible Markup Language. XML can represent

almost any type of information. It is relatively easy to learn, and many inexpensive tools

are available for working with XML-formatted data. In response to these benefits, XML-

based technologies are infusing major emerging e-business initiatives and standards,

ranging from B2B documents, application interfaces, B2B communication protocol and

complete framework.

 As we know, the transactions in the supply chain need to have real-time response.

Univ
ers

ity
 of

 M
ala

ya

 17

However, both EDI and XML documents are often processed in batch. This causes the

information of each entity in the supply chain is not refreshed timely and up-to-date. In

other words, supply chain business processes by using EDI and XML do not really

support real time response.

Web Service is a new technology for companies to integrate the business software

applications within the organization and with trading partners. Web Services use standard

protocols and data formats such as HTTP, SOAP, and XML to connect to other software

applications. This enables the information in the supply chain can be exchanged easily

and in real-time manner.

2.4 Web Services

Web Services are the consequence of the evolution of the Web that provides the

means for software to connect to other software applications through standard protocols

and data formats over the internet. Web services are concerned with the problems of

enabling systematic application-to-application interactions over the Web, and are focused

on interoperability, support for efficient application integration, and the creation of a

uniform representation of applications within heterogeneous distributed systems.

In this section, Web Services will be defined and discussed. The technologies that

make up the Web Services platform will also be described.

2.4.1 Introduction

Web Services model is built upon existing industry standards such as XML. By

using XML-based messaging as the mechanism, both the Web Services client and the

Web Services provider are freed from needing any knowledge of each other beyond

inputs, outputs and location. By using ubiquitous and standard internet protocol, Web

Services can easily provide interoperable software functions over the internet and the

intranet. Since it is accessible through a standard interface, Web Services allow

Univ
ers

ity
 of

 M
ala

ya

 18

heterogeneous systems to work together as a single component. Web Services are

enabling a new era of distributed application development.

2.4.2 Definition of Web Service

Web Service was defined by the World Wide Web Consortium (W3C) Web

Services Architecture Working Group (Hugo, 2004) as:

“A Web Service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards. “

(IBM Web Services Architecture Team, 2000) defined Web Service as:

 “A Web Service is a collection of functions that are packaged as a single entity and

published to the network for use by other programs. Web Services are self-contained,

modular applications that can be described, published, located, and invoked over a

network, generally, the World Wide Web.

According to Microsoft Developer Network (MSDN) (Roger, 2001), there are

probably as many definitions of XML Web Service as there are companies building them,

but almost all definitions have these things in common:

• XML Web Services expose useful functionality to Web users through a standard Web
protocol. In most cases, the protocol used is SOAP.

• XML Web services provide a way to describe their interfaces in enough detail to
allow a user to build a client application to talk to them. This description is usually
provided in an XML document called a Web Services Description Language (WSDL)
document.

• XML Web services are registered so that potential users can find them easily. This is
done with Universal Discovery Description and Integration (UDDI).

Univ
ers

ity
 of

 M
ala

ya

 19

Web Service was defined by Sun Microsystems as (Anne, 2001):

“A Web service represents a unit of business, application, or system functionality that can

be accessed over the Web. Web services are applicable to any type of Web environment,

be it Internet, intranet, or extranet, with a focus on business-to-consumer, business-to-

business, department-to-department, or peer-to-peer communication.”

 Webopedia Computer Dictionary gave the definition of Web Service as

(Computer Dictionary , 2005):

“The term Web Services describes a standardized way of integrating Web-based

application using the XML, SOAP, WSDL and UDDI open standards over an Internet

protocol backbone. XML is used to tag the data, SOAP is used to transfer the data,

WSDL is used for describing the services available and UDDI is used for listing what

services are available.”

 Based on the above definitions, Web Service can be defined as “a standardized

way to support interoperable interaction over a network using the XML, SOAP, WSDL

and UDDI open standards”.

2.4.3 Web Service Technologies

The Web Services model follows the publish, find, and bind paradigm. Web

Service providers publish services to a Web Service client. Web Service clients find

required services using a Web Service Registry and bind to them. These ideas are shown

in the figure 2.1 (IBM Web Services Architecture Team, 2000). Univ
ers

ity
 of

 M
ala

ya

 20

Figure 2.1: The publish, find, and bind paradigm of Web Services (IBM Web Services

Architecture Team, 2000)

The Web Services platform needs a set of features to enable building distributed

applications. To enable interoperability, a standard data representation format and data

type system must be provided by the Web Services platform. This allows the Web

Services to communicate among different type of platforms, programming languages and

component models. In this context, XML and XML Schema (XSD) are used to represent

data information and specify message formats respectively.

Traditionally, interface-based platforms for distributed systems have to describe

the interfaces, methods, parameters and return value in order for others to invoke. Web

Services platform uses Web Services Description Language (WSDL) as a means for

describing Web Services and for providing the information others need to call.

Besides, there must be a mechanism to invoke the Web Services remotely as like

Remote Procedure Call (RPC) Protocol. The Simple Object Access Protocol (SOAP) is

the channel used for communication between a Web Services provider application and a

client application.

Finally, in order for applications to quickly and easily find and bind Web Services

over the Internet, a standard interoperable platform must exist. The Universal

Univ
ers

ity
 of

 M
ala

ya

 21

Description, Discovery, and Integration (UDDI) is the standard used to solve the

problems of registering, finding and binding of the Web Services.

The following sub sections describe in details the technologies, namely XML,

WSDL, SOAP and UDDI, used in making up the Web Services platform.

2.4.3.1. eXtended Markup Language (XML) and XML Schema

Extended Markup Language (XML) is an extensible, portable, and structured text

format. XML has a well-defined syntax and semantics that make it a simple and

powerful, mechanism for capturing and exchanging data between different applications.

It can represent almost any type of information. In response to these benefits, XML-based

technologies are infusing major e-business initiatives and standards, such as B2B

documents, B2B communication protocols and Web Services.

Web Services depend heavily on XML to communicate with each other even if

they are using different information systems (MSDN, 2005). XML makes the data

portable. XML is used in the Web Services architecture as the format for transferring

information and data between a Web Services provider application and a Web Services

client application.

The design goals for XML are (W3C Recommendation, 2004):

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

Univ
ers

ity
 of

 M
ala

ya

 22

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

These design goals show that XML serves as a general framework for developing

almost any special purpose business language. Parties, such as the e-business community,

that share a common data-exchange problem can use XML as an open solution to that

problem.

Schemas are used to describe the grammar and constraints on the elements of an

XML document. Schemas provide a means of defining the structure, content, and

semantics of XML documents that can be used to identify the document rules and

validate the XML documents.

One of the common forms of schema for defining the rules for XML documents is

the Document Type Declaration (DTD). DTDs are like templates that express the rules

and constraints of an XML, such as name and order of the elements, attributes and type of

values that an element or attribute may contain. XML documents are the actual instances

of the template constructed following the rules. Each particular XML document created

can be tested against the rules explicitly defined by the DTD.

Although a DTD can define the structure of the XML document, it cannot

perform robust data-type checking of content. In response to this issue, XML Schema has

been developed. XML Schema specification improves greatly upon the DTD content

model by providing rich datatyping capabilities for elements and attributes as well as

providing Object-Oriented design principles (Galloway, 2002).

The two major goals that the W3C XML Schema working group focused on

during the design of the XML Schema standard were (W3C Recommendation, 2004):

• Expressing Object Oriented design principles found in common Object-Oriented

programming languages into the specification.

Univ
ers

ity
 of

 M
ala

ya

 23

• Providing rich datatyping support similar to the datatyping functionality available

in most relational database systems.

The XML Schema specification allows for the use of both built-in and custom

defined data types making it possible to more accurately express and constrain data found

in compliant XML documents. This provides a flexible and useful mechanism for

automatic data validation.

2.4.3.2. Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol for

exchanging structured information in a decentralized and distributed environment

(Martin, 2003). SOAP was developed for compatibility with many different platforms

and operating systems. It enables machine-to-machine communication in heterogeneous

environments. SOAP defines the minimal syntax and semantics of XML messages that

are used for service invocation, response and fault reporting.

There are several different types of messaging patterns in SOAP. One of the most

common is the Remote Procedure Call (RPC) messaging pattern. By using RPC, one

network client node sends a request message to the server node, and the server

immediately replies with a response message to the client. SOAP does not define any

new transport protocol. Instead, it reuses the Hyper Text Transfer Protocol (HTTP) for

transporting data as messages. Web Services use the SOAP as the channel for

communication between the provider application and the client application. The use of

HTTP as the underlying protocol ensures that Web Services provider applications and

client applications can communicate using the Internet.

2.4.3.3. Web Services Description Language (WSDL)

WSDL stands for Web Services Description Language. According to W3C,

WSDL is “an XML format for describing network services as a set of endpoints operating

on messages containing either document-oriented or procedure-oriented information. The

Univ
ers

ity
 of

 M
ala

ya

 24

operations and messages are described abstractly, and then bound to a concrete network

protocol and message format to define an endpoint. Related concrete endpoints are

combined into abstract endpoints (services). WSDL is extensible to allow description of

endpoints and their messages regardless of what message formats or network protocols

are used to communicate.”

WSDL is an XML-based language for describing operational features of Web

Services. WSDL descriptions are composed of interface and implementation definitions.

The interface is an abstract and reusable service definition that can be referenced by

multiple implementations. The separation of interface from implementation allows the

implementation to change while the interface remains the same.

WSDL represents a contract between the service requestor and the service

provider. The crucial difference is that WSDL is platform- and language-independent and

is used primarily to describe SOAP services. Basically, WSDL describes four critical

pieces of data (Ethan, 2002):

• Interface information describing all publicly available functions

• Data type information for all message requests and message responses

• Binding information about the transport protocol to be used

• Address information for locating the specified service

By using WSDL, a service requestor can locate a Web Service and invoke any of

its publicly available functions. WSDL therefore represents a cornerstone of the web

service architecture because it provides a common language for describing services and a

platform for automatically integrating those services (Ethan, 2002).

2.4.3.4. Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) protocol is a key

member of the group of interrelated standards that comprise the Web Services stack. It

defines a standard method for publishing and discovering the network-based software

Univ
ers

ity
 of

 M
ala

ya

 25

components of a service-oriented architecture (SOA) (UDDI.ORG, 2004).

UDDI is a specification for creating distributed Web-based registries of Web

services. A UDDI registry stores information on businesses, the services offered by these

businesses, and technical information about these services. The data model and

application programming interface(API) used by UDDI, based on XML and SOAP,

enable companies and applications to quickly, easily and dynamically find and use Web

Services over the Internet.

A UDDI registry can be compared to an Internet search engine which contains

indexed and categorized information about pages available on the World Wide Web.

However, where an Internet search engine returns only a URL to a Web page, a UDDI

registry needs to return not only the location of the services, but also information about

the service, how it functions, which parameters to use, its return values and so on.

UDDI provides a programming model and schema, which define the rules for

communicating with the registry. All Application Programming Interfaces (APIs) in the

UDDI specification are defined in XML, wrapped in a SOAP envelope and sent over

HTTP.

Figure 2.2: How UDDI works (Tom, 2002)

1.
Software companies, standards
bodies and programmers populate
the registry with descriptions of
different tModels.

UDDI business registry

4.
Marketplaces, search engines and
business apps query the registry to
discover services at other
companies.

2.
Business populate the
registry with descriptions
of the services they
support.

3.
UDDI assigns a programmatically
UUID to each tModel and
business registration and stores an
internet registry.

5.
Businesses use this data
to facilitate easier
integration with each
other over the Web.

Univ
ers

ity
 of

 M
ala

ya

 26

Figure 2.2 illustrates how a UDDI registry is populated with data and how

customers discover and use this information. A UDDI registry is built on the data

provided by its customers. There are several steps to making data useful in UDDI. As

shown in step 1, publishing useful information to the registry begins when software

companies and standards bodies define specifications relevant to an industry or business,

which they register in UDDI. These are known as technical models, or more commonly

as tModels.

In step 2, companies also register descriptions of their businesses and the services

they offer. A UDDI registry keeps track of all these entities by assigning each one a

programmatically unique identifier, known as a Unique Universal Identifier (UUID) key

as shown in step 3. A UUID key is guaranteed to be unique and never changes within a

UDDI registry.

Other clients, such as e-Marketplaces, search engines, and business applications

in step 4, use a UDDI registry to discover services of interest. In turn, other businesses

may invoke these services, allowing simple and dynamic integration as shown in step 5.

2.4.3.5. Microsoft .NET Framework

The .NET Framework is a general-purpose software development platform that

allows different programming languages and libraries to work together seamlessly to

create applications. It provides development tools, run-time environments, server

infrastructure, and a consistent object-oriented programming model for creating software

that are easier to build, manage, deploy and integrate with other systems. In addition,

.NET provides remoting infrastructure that allows applications running in different

processes on the same or different computers to exchange data using binary or HTTP

protocols (Microsoft .NET, 2005).

The .NET Framework is designed to fulfill the following objectives (MSDN, 2005):

• To provide a consistent object-oriented programming environment whether

object code is stored and executed locally, executed locally but Internet-

distributed, or executed remotely.

Univ
ers

ity
 of

 M
ala

ya

 27

• To provide a code-execution environment that minimizes software

deployment and versioning conflicts.

• To provide a code-execution environment that promotes safe execution of

code, including code created by an unknown or semi-trusted third party.

• To provide a code-execution environment that eliminates the performance

problems of scripted or interpreted environments.

• To make the developer experience consistent across widely varying types of

applications, such as Windows-based applications and Web-based

applications.

• To build all communication on industry standards to ensure that code based on

the .NET Framework can integrate with any other code.

Figure 2.3 breaks down the .NET Framework into its architectural components. The
.NET Framework consists of two main parts, i.e.: Common Language Runtime (CLR)
and the Base Class Library.

Figure 2.3: The .NET Framework architectural components (MSDN, 2005)

• The Common Language Runtime (CLR)

The CLR is the foundation of the .NET Framework. It is an agent that responsible

for run-time services such as language integration, security enforcement, and memory,

process, and thread management and other forms of code accuracy that promote security

Univ
ers

ity
 of

 M
ala

ya

 28

and robustness (MSDN, 2005). In addition, features such as life-cycle management,

strong type naming, cross-language exception handling, and dynamic binding in CLR

helps in reducing the amount of code that a developer need to write to turn business logic

into a reusable component.

The CLR is designed to enhance performance. Although the CLR provides many

standard runtime services, the managed code is never interpreted. Code that targets the

runtime is known as managed code. A feature called just-in-time (JIT) compiling enables

all managed code to run in the native machine language of the system on which it is

executing. The CLR is responsible for providing the execution environment that code

written in a .NET language runs under.

The .NET Framework supports Common Language Specification (CLS) that

provides the necessary foundation for language interoperability (Liberty, 2003). For

example, classes written in C# and can be derived in VB.NET. The CLR provides all

managed code with support for executing in a multi-language environment. The choice of

language would be a personal preference rather than a limiting factor in the application

development.

• Base Class Library

The base classes provide standard functionality such as input output, string

manipulation, security management, network communications, thread management, text

management, and user interface design features. The base class library is a

comprehensive and object-oriented collection of reusable types that tightly integrate with

the common language runtime. This not only makes the .NET Framework types easy to

use, but also reduces the time associated with learning new features of the .NET

Framework. (MSDN, 2005)

The class library includes types that support a variety of specialized development

scenarios. The ADO.NET classes enable developers to interact with data accessed in the

form of XML through the OLE DB, ODBC, Oracle, and SQL Server interfaces. XML

Univ
ers

ity
 of

 M
ala

ya

 29

classes enable XML manipulation, searching, and translations. The ASP.NET classes

support the development of Web-based applications and Web services. The Windows

Forms classes support the development of desktop-based smart client applications.

Together with all the class libraries, .NET framework provides a common and consistent

development interface across all languages supported.

2.5 Existing Projects

2.5.1 Electronic Business using eXtensible Markup Language (ebXML)

Electronic Business using eXtensible Markup Language (ebXML) is a modular

suite of specifications sponsored by Organization for Advancement of Structured

Information Standards (OASIS) and United Nations Centre for Trade Facilitation and

Electronic Business (UN/CEFACT) that enables enterprises of any size and in any

geographical location to conduct business over the Internet (OASIS, 2005). The

specifications cover the analysis of business processes and business documents, the

documentation of a company’s capabilities and the document transfer to conduct E-

Business. Compared to Web Services, ebXML is more at the executive business level

(Alonso, et. al., 2003). ebXML provides an entire architecture that defines a new way of

thinking about business and documenting the business itself.

With ebXML, companies are able to define how to conduct business using a

specific vocabulary. Core components are used to build predefined documents. Messages

are sent using standardizes protocols and formats. All of this information is stored in

ebXML registries. Business Processes and Business Document has to be created prior to

their use. A Business Process Specification describes how a business works and a

Business Document Specification describes the information exchanged between the

partners. Both of these documents are defined by using the Business Process

Specification Schema (BPSS). To facilitate their creation and avoid reinventing the

wheel, these documents can be composed of reusable and extendable Core Components.

Besides, ebXML Messaging Service (ebMS) is used to provide a simple way to exchange

Univ
ers

ity
 of

 M
ala

ya

 30

business documents using standard protocols. It is based on the SOAP specification, but

provides additional headers and envelopes to include information about transport,

routing, policies and security. Moreover, an ebXML Registry provides means for finding

organizations, business processes, core components and other objects. Therefore it does

not store the actual objects but metadata about and associations between them

(Gerstbach, 2005).

By using ebXML, companies are able to define how to conduct trading

relationships and communicate data in common terms. ebXML provides a methodology

for business to determine what information they should exchange and how, as well as a

set of specifications to allow automation of the process. Figure 2.3 shows an ebXML

system overview that involves the following steps (Chase, 2002):

Figure 2.4: ebXML System Overview (Chase, 2002)

1. Search for a Trading Partner. An ebXML registry contains information on

potential trading partners. During the search the registry is queried for a trading

partner that offers the wanted service. Services are described using

Collaboration Protocol Profiles (CPPs).

Univ
ers

ity
 of

 M
ala

ya

 31

2. Create an Agreement. Based on the CPPs of both partners a Collaboration

Protocol Agreement (CPA) is composed. It specifies what kind of business is to

be performed and how. Therefore it includes information on technical issues

such as protocols and requirements regarding security or acknowledgments.

Usually the CPA is negotiated after being proposed by one party.

3. Configure both Business System Interfaces using the CPA. Based on the

agreement it is now possible to configure an ebXML enabled application.

4. Begin performing Business Processes. The final step is the execution of the

process. Based on the fact that both partners use the same documents describing

the business process (the CPA) collaboration between them is possible.

From the point of view of implementation, ebXML is a much more complex

system than Web Services. Indeed, it is true that Web Services-enabled systems can be

implemented very quickly if developers use the existing, powerful libraries, such as

Microsoft .NET libraries. Those libraries allow for developers to accomplish technology-

centric integration assignments quickly. While it is possible to have a simple Web

Service up and running within minutes, a simple ebXML system will require much more

efforts and time. Accordingly, small technology-oriented integration scenarios remain the

strength of Web Services.

ebXML is a domain-specific vertical framework while Web Services are a general

horizontal framework for Service Oriented Architecture (SOA). The specification of

ebXML is not entirely complete and the industry support of ebXML is still lacking. If

industry fails to provide affordable implementations of ebXML, this standard might not

be widely adopted due to its cost and industry support.

 Univ
ers

ity
 of

 M
ala

ya

 32

2.5.2 Web Service Intelligent Agent Structuring for Supply Chain Management

An intelligent agent architecture based on Web Services has been proposed by

Umair and Ben (Umair and Ben, 2005). These agents utilize XML as communication

mechanism and are deployed on each organization. The basis of the proposed agent

model is to share common knowledge among supply chain partners and to update and

adapt to the business environment. These agents provide a mechanism that is used to

store and share the centralized and distributed data across the supply chain. Figure 2.5

shows how the agent is structured. The bottom most part is the UDDI Registry that

contains information about all the agents in the organization and what they are capable

of. This information is necessary for other agents to communicate with the targeted

organization through the SOAP protocol. The WSDL component defines the functions or

operations that are supported by the agents. The information that is required for agent to

communicate with each other is in the WSDL. It is up to the contacting agent to interpret

the information for defining the template of SOAP message (Umair and Ben, 2005).

D
at

ab
as

e

Pr
ob

le
m

 S
ol

vi
ng

 M
et

ho
do

lo
gi

es

C
ou

rs
es

 o
f A

ct
io

ns

B
us

in
es

s C
on

st
ra

in
ts

 C
on

tro
lle

r

Web Services Agents

WSDL

UDDI Registry

Figure 2.5: Proposed Web Service Agent (Umair and Ben, 2005)

Once the agent service is instantiated it can perform the assigned tasks by using

Univ
ers

ity
 of

 M
ala

ya

 33

the other four components in the model (Umair and Ben, 2005):

• Database

It contains information about previous experiences of collaboration with

organization, parent organization’s information like inventory levels, order information,

logistic information and etc.

• Problem Solving Methodologies

This component contains information about the methods available to overcome a

problem. For instance, if a supplier is not capable of supplying the required quantity, the

order should be void.

• Courses of Actions

This component contains the available courses of actions once a function is to be

performed. For example, if an order is received the receiving, agent should inform the

manufacturing unit and obtain information about the progress in a stepwise manner.

• Business Constraints Controller

Business constraints are defined by an organization and vary, depending on an

organization’s state.

2.5.3 Web Service-based Framework for Supply Chain Management

A Web Service-based Supply Chain Management framework which has been

proposed by Zhang Mi (Zhang Mi et al., 2005) is shown in Figure 2.6. The framework is

designed based on Web Services, agents and XML technologies. The key module in this

architecture is the intermediate module that consists of a suite of agents. This module

deals with UDDI organization and management, as well as different processes of supply

chain transactions.

There are three levels in this framework. The first level is the intermediate module

that processes the transactions. The organizations complete their business transactions

Univ
ers

ity
 of

 M
ala

ya

 34

through this module. The second level consists of the users, i.e., business entities in the

supply chain including Product Producer, Manufacturer, Provider, Distribution center,

Sale center, Retailers and consumers. Each entity is comprised of many companies or

individuals who have some business conducts through the supply chain. The third level is

the lowest level, namely the basic databases supplied for those Web services to obtain the

real data (Zhang Mi et al., 2005).

When a request is submitted, it is transferred to an agent first to read the UDDI

organized structure and find an appropriate UDDI discovery order. The paper suggests a

Peer-To-Peer (P2P) search model to search for the right UDDI and find the wanted

information. After that, the request is forwarded to the targeted supply chain entities that

provide the real Web Services for requesters. Finally the requester builds a real

connection to the selected Web service provider. The Web service communicates with

the background database systems to obtain the required data.

Univ
ers

ity
 of

 M
ala

ya

 35

Figure 2.6: Framework of Supply Chain Management proposed (Zhang Mi et al., 2005)

 Univ
ers

ity
 of

 M
ala

ya

 36

2.5.4 Comparison of the Proposed Framework With Others (ebXML, Umair and

Ben, Zhang Mi et al.)

Web Services for E-Procurement (WSEP) System is implemented using Web

Service which is a well-adopted standard for system integration throughout most of the

business sectors. Compared to ebXML, it can apply to most of the industry sector.

Besides, implementation of the WSEP is not as complicated as ebXML. For many

integration projects, organizations do not need full grown e-Business suites. Instead, they

need smaller, more reliable, and easier to handle technologies, such as Web Services, that

have reached a sufficient level of maturity. (Yan and Klein, 2005)

All of these frameworks are using registry or UDDI to register Web Services.

UDDI design center is a high level business or service registry. It is focused on the

discovery aspect of businesses, Web Services, and the technical interfaces they make

available. The support for and use of UDDI is currently very limited (Clabby, 2002). If

the needs are more than simple publish and discovery of business or service metadata,

UDDI should not be used.

From the perspective of E-Procurement, the public UDDI is not suitable for the

proposed WSEP System since it does not provide sufficient information, such as product

information. Therefore a private database system has been used, as compared to UDDI, to

store product and supplier information as well as supplier Web Services URI. A database,

in this case, is easier to maintain and is more efficient.

2.6 Conclusion

In this chapter, Supply Chain, SCM and E-Procurement are defined. Besides, the

purchasing processes in the context of Supply Chain Management are reviewed and

discussed. This chapter also defines and reviews the Web Services technologies and

Microsoft .NET framework. In addition, three of the existing projects that are related to

E-Business are reviewed and are compared with the WSEP System.

Univ
ers

ity
 of

 M
ala

ya

 37

CHAPTER 3: METHODOLOGY

 Methodology can be defined as the branch of philosophy that analyzes the

principles and procedures of inquiry in a particular discipline (WordNet, 2005). In

software engineering, methodology is a framework of principles, techniques and

procedures that defines different phases of the development process, such as planning,

requirements analysis, design, testing and maintenance.

3.1 Research Methodology

The research methodology that was used for this dissertation consists of 4 phases,

as shown in Figure 3.1. Phase I is knowledge and requirements gathering which consists

of literature review and research findings. Other methods such as historical analysis,

interviews, surveys and questionnaires are not suitable for this dissertation. It is due to the

end users or purchase officers are not exposed in the technologies behind such as Web

Services that are used to integrate the Supply Chain. No numerical and statistical data

needs to be collected and analyzed. Therefore, literature and document review was the

only methodology that was used extensively for this dissertation.

Phase II of the research methodology consists of the design of the main

components and system architecture based on the related work. This includes designing

the flow of logic within the system. Phase III is the development and integration of the

components to ascertain that the architecture that uses Web Services can provide dynamic

procurement operations. The final phase is unit testing and documentation. If the testing

result is unsatisfied, the system needs to be redesigned and develop. Univ
ers

ity
 of

 M
ala

ya

 38

Figure 3.1: Research Methodology

yes
o

PHASE II

PHASE IV

PHASE I

PHASE III

Completed ?

Analyse the related work to identify
the main components or

requirements of the system

Perform literature review on
related materials

Development and
Integration of components

Successful ?

Redesign ?

Documentations Unit and Integration
Testing

Redesign ?

Satisfactory ?

Start

End

no
o

no
o

no
o

no
o

yes
o

yes
o

yes
o

yes
o

Univ
ers

ity
 of

 M
ala

ya

 39

3.2 Development Methodology

The software process model can be defined as a networked sequence of activities,

objects, transformations, and events that embody strategies for accomplishing software

evolution (Marciniak, 2001). Each stage of the software process is identified and a model

is then employed to represent the inherent activities associated within that stage. There

are a few software process models that serve as an abstract representation of the software

process. These include:

• waterfall model

• spiral model

• prototyping model

• extreme programming

3.2.1 Choice of Modified Waterfall Model

 By looking at the above software process models, this project has taken the

Waterfall Model coupled with iterative development, as shown in figure 3.1. These

modifications tend to focus on allowing some of the stages to overlap, thus reducing the

documentation requirements and the cost of returning to earlier stages to revise them. The

Modified Waterfall Model uses the same phases as the pure waterfall, but is not done on

a discontinuous basis. This enables the phases to overlap and provide feedback between

phases. Overlapping stages, such as the requirements stage and the design stage, make it

possible to integrate feedback from the design phase into the requirements.

With iterative development, the project is divided into small parts. Each iteration

is actually a mini-Waterfall process with the feedback from one phase providing vital

information for the design of the next phase. The software products which are produced

at the end of the series of steps can go into production immediately as incremental

releases.

Univ
ers

ity
 of

 M
ala

ya

 40

Figure 3.2: Modified Waterfall Model with iterative development.

3.2.1.1 Phase 1 – Requirements

The first phase of the development is to gather and identify the requirements of

the system. The problem is specified along with the desired objectives. The requirements

specification is then produced from the detailed definitions that clearly define the system

functions. The full details of the specification are described in the next chapter, which

includes functional requirements, non-functional requirements and hardware

requirements.

3.2.1.2 Phase 2 – Design

The next phase of the development is system design. System design is a phase

that emphasizes on how the system should perform in order to fulfill the requirements

identified in the analysis phase. This involves architecture design, objects and classes

design, database design and user interface design. Unified Modeling Language (UML)

modeling, such as Sequence Diagrams along with Class Diagrams have been used in this

project to specify, model and document the system.

A new database needs to be designed and implemented in later phase. Database

Requirements

Design

Implementation

Testing

Univ
ers

ity
 of

 M
ala

ya

 41

schema or data dictionary needs to be created during this phase. The details of the

database design are covered in Chapter 5.

3.2.1.3 Phase 3 – Implementation

The implementation phase involves the actual development of the system. With

the documentations from the analysis and design phase, the system should be built upon

what has been documented.

The implementation phase deals with issues of quality, components and

debugging. The development involves the implementation of User Interface, Business

Logic Tier, Data Access Tier and the integration of all these components. The end

deliverable of this phase is the WSEP System. Chapter 6 describes the implementation

phase in details.

3.2.1.4 Phase 4 – Testing

The final stage in this process model is testing. The system needs to be tested for

conformance with the system requirements. The first stage in the testing process involve

unit testing. The second stage will be module testing which involve multiple units to be

tested together. When all these are done, the integration testing phase begins, combining

all the individual modules together. Finally the whole system is tested.

3.3 Techniques Used to Define Requirements

 Various techniques have been used to define the requirements of the system.

These techniques are important in gathering various requirements of the system that will

be essential building blocks for subsequent developments. These techniques are as

follow:

• Analysis of existing projects

Univ
ers

ity
 of

 M
ala

ya

 42

• Review of new technologies

• Library Research and Internet Research

3.2.1 Analysis of existing projects

Research is done based on internet journal and literature review. Journals or white

papers published with similar systems are studied and reviewed. This helped to compare

and evaluate their system with the proposed architecture.

3.2.2 Review of new technologies

 Reviewing new technologies like Web Services and .NET frameworks will give

further understanding of the new features and capabilities. This helps in determining of

requirements that could be included into the system based on the technologies supported.

3.2.3 Library Research and Internet Research

 Library and Internet provide lots of information that is useful for the research of

the project. Books could either be browsed or borrowed from the library to gather

information that would be useful for the development of this project. The library in the

University of Malaya provides valuable of resources to develop this project. Digital

library, such as IEEE journal and ACM, helps in finding useful information for writing

this report.

There are many tutorials and articles that are available for download from the

Internet. White papers from various vendors are valuable information that often can be

downloaded for free. The use of search engines such as Google has proven to result in

vital information which could not be found in books.

Univ
ers

ity
 of

 M
ala

ya

 43

CHAPTER 4: SYSTEM REQUIREMENT ANALYSIS

System Requirement Analysis is the detailed documentation of the system

services and constraints. The goal of the requirements phase of software development is

to decide precisely what to build and document the results. This section lays out

important concepts and discusses capturing functional and non-functional requirements

so that they can drive the architectural decisions and be used to validate the architecture.

4.1 Functional Requirements

Functional requirements capture the intended behavior of the system. This

behavior may be expressed as services, tasks or functions the system is required to

perform. The WSEP system can be divided into four main modules:

• Authentication Module

 Authentication module is responsible for user authentication and authorization of

the system. This involves accepting username and password, and validating them

against database. The module enables single sign-on for users to access the WSEP

system. If an unauthenticated user tries to access a page, the Authentication

Module will redirect the user to the login page to request for credential.

• Maintenance Module

One of the functions of the system is to manage the system’s entities which

include products, suppliers and suppliers’ Web Services Uniform Resource

Identifier (URI). The Maintenance Module should allow the user to perform

CRUD (Create, Read, Update, Delete) operations against the entities in the

database.

• E-Procurement Transaction Web Services Module

 This module is the main component that provides real-time information sharing

and dynamic procurement operations. It interacts with the suppliers’ Web

Univ
ers

ity
 of

 M
ala

ya

 44

Services to request for quotations as well as submit purchase orders. The

operations should be transparent where the users do not need to know what the

supplier business systems are all about.

• Suppliers’ Web Services Modules

 The Suppliers’ Web Services are necessary as part of the WSEP System. All the

suppliers who want to participate in the E-Procurement System have to implement

Web Services that conform to the published Web Services Description Language

(WSDL) format. The suppliers are not restricted to any Web Services platform for

implementing this module since Web Services can easily communicate with each

other no matter what language is used.

In this project, use case diagrams have been used for capturing the functional

requirements. A use case defines a goal-oriented set of interactions between external

actors and the system under consideration. The following sub sections describe in details

all the use cases in the WSEP system.

4.1.1 Use Case Diagram

 Use case diagrams model the functionality of system using actors and use cases.

Figure 4.1 shows all the use cases that capture the intended behavior of the system. The

actor, Purchase Officer, is required to authenticate himself in order to use the system. The

Purchase Officer is responsible to maintain supplier, maintain product, maintain

suppliers’ Web Services URI., request for quotation and raise purchase order. For

Maintain Supplier, Maintain Product and Maintain Supplier WS, each of which is

specialized with List, Add, Edit and Delete use cases. Request For Quotation and Raise

Purchase Order use cases have an extending use case called Query Supplier Web

Services and Invoke Supplier Web Services respectively. The details behind each element

on the use case diagram are captured in textual form as the following.

Univ
ers

ity
 of

 M
ala

ya

 45

Figure 4.1 Use Case Diagram of WSEP System

Univ
ers

ity
 of

 M
ala

ya

 46

Use Case 1: Login

Goal of Use Case: System authenticates the User

Preconditions: Username and password are provided.

Success Post Conditions: The Purchase Officer is authenticated to use the system.

Failed Post Conditions: The Purchase Officer cannot enter into system.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Enter username and password.

2 Submit the credential to the system for
authentication.

Use Case 2: List Suppliers

Goal of Use Case: The Purchase Officer lists all the suppliers.

Preconditions: None.

Success Post Conditions: All the suppliers are listed.

Failed Post Conditions: No supplier information is returned.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. List all the suppliers

Univ
ers

ity
 of

 M
ala

ya

 47

Use Case 3: Add Supplier

Goal of Use Case: The Purchase Officer adds a supplier.

Preconditions: Supplier details are known.

Success Post Conditions: Supplier details are added successfully into database.

Failed Post Conditions: Supplier details are not added into database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer enters the supplier information

2. Purchase Officer submits the information and
save to database

Use Case 4: Edit Supplier

Goal of Use Case: The Purchase Officer edits supplier information.

Preconditions: Supplier details are known.

Success Post Conditions: Supplier details are successfully saved to database

Failed Post Conditions: Supplier details are not saved to database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer modifies supplier information

2. Purchase Officer submits the information and
save to database

Univ
ers

ity
 of

 M
ala

ya

 48

Use Case 5: Delete Supplier

Goal of Use Case: The Purchase Officer deletes a supplier

Preconditions: Supplier to be deleted is identified

Success Post Conditions: Supplier is successfully deleted from database

Failed Post Conditions: Supplier is not deleted from database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer identifies the supplier to be
deleted

2. Purchase Officer delete the supplier from
database

Use Case 6: List Products

Goal of Use Case: The Purchase Officer lists all the products.

Preconditions: None.

Success Post Conditions: All the products are listed.

Failed Post Conditions: No product information is returned.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. List all the products

Univ
ers

ity
 of

 M
ala

ya

 49

Use Case 7: Add Product

Goal of Use Case: The Purchase Officer adds a product.

Preconditions: Product details are known.

Success Post Conditions: Product details are added successfully into database.

Failed Post Conditions: Product details are not added into database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer enters the product information

2. Purchase Officer submits the information and
save to database

Use Case 8: Edit Product

Goal of Use Case: The Purchase Officer edits product information.

Preconditions: Product details are known.

Success Post Conditions: Product details are successfully saved to database

Failed Post Conditions: Product details are not saved to database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer modifies product information

2. Purchase Officer submits the information and
save to database

Univ
ers

ity
 of

 M
ala

ya

 50

Use Case 9: Delete Product

Goal of Use Case: The Purchase Officer deletes a product

Preconditions: Product to be deleted is identified

Success Post Conditions: Product is successfully deleted from database

Failed Post Conditions: Product is not deleted from database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer identifies the product to be
deleted

2. Purchase Officer delete the product from
database

Use Case 10: List Supplier Web Services URIs

Goal of Use Case: The Purchase Officer lists all the supplier Web Services
URI.

Preconditions: None.

Success Post Conditions: All the supplier Web Services URIs are listed.

Failed Post Conditions: No supplier Web Services URI information is returned.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. List all the supplier Web Services URIs

Univ
ers

ity
 of

 M
ala

ya

 51

Use Case 11: Add Supplier Web Services URI

Goal of Use Case: The Purchase Officer adds a Supplier Web Services URI.

Preconditions: Supplier Web Services URI details are known.

Success Post Conditions: Supplier Web Services URI details are added
successfully into database.

Failed Post Conditions: Supplier Web Services URI details are not added into
database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer enters the Supplier Web
Services URI information

2. Purchase Officer submits the information and
save to database

Use Case 12: Edit Supplier Web Services URI

Goal of Use Case: The Purchase Officer edits supplier Web Services URI.

Preconditions: Supplier Web Services URI details are known.

Success Post Conditions: Supplier Web Services URI details are successfully
saved to database

Failed Post Conditions: Supplier Web Services URI details are not saved to
database.

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Univ
ers

ity
 of

 M
ala

ya

 52

Description: Step Action

1. Purchase Officer modifies Supplier Web Services
URI information

2. Purchase Officer submits the information and
save to database

Use Case 13: Delete Supplier Web Services URI

Goal of Use Case: The Purchase Officer deletes a supplier Web Services
URI.

Preconditions: Supplier Web Services URI to be deleted is identified

Success Post Conditions: Supplier Web Services URI is successfully deleted from
database

Failed Post Conditions: Supplier Web Services URI is not deleted from database

Actors: Purchase Officer

Triggers: This process is started by the Purchase Officer (human
interaction)

Description: Step Action

1. Purchase Officer identifies the supplier Web
Services URI to be deleted

2. Purchase Officer delete the supplier Web
Services URI from database

Univ

ers
ity

 of
 M

ala
ya

 53

Use Case 14: Request For Quotation

Goal of Use Case: The Purchase Officer requests quotations from suppliers to
replenish stock for a particular product.

Preconditions: 1. The inventory level of a product has fallen below
its minimum level

2. The Product ID is known

Success Post
Conditions:

The system returns a list of suppliers with the requested
products pricing.

Failed Post Conditions: Null or error message is returned

Actors: Purchase Officer, Procurement Web Services

Triggers: Triggered external suppliers’ Web Services to get products
pricing.

Description Step Action

1 Purchase Officer is alerted that a product has fallen
below its minimum level.

2 Purchase Officer enters the Product Code and
submits to the WSEP system.

3 The system retrieves suppliers’ WSDLs in the
Database based on the Product ID.

4 For each of the WSDLs retrieve, the system
invokes suppliers’ Web Services to get the product
price, quantity on hand and other product
information.

5 The system returns a list of suppliers along with the
requested products pricing.

Univ
ers

ity
 of

 M
ala

ya

 54

Use Case 15: Raise Purchase Order

Goal of Use Case: The Purchase Officer place orders from selected suppliers to
replenish stock for a particular product.

Preconditions: The suppliers are selected and the product quantities are
entered.

Success Post
Conditions:

New Purchase Orders are created and are sent to the
suppliers.

Failed Post Conditions: Null or error message is returned.

Actors: Purchase Officer, Procurement Web Service.

Triggers: None

Description Step Action

1 Purchase Officer selects the suppliers and enters the
order quantity for each selected suppliers.

2 Purchase Officer submits the Purchase Order to the
selected suppliers.

3 Purchase Orders are sent to the suppliers.

Univ
ers

ity
 of

 M
ala

ya

 55

4.2 Non-Functional Requirements

Non-functional requirements define system properties and constraints. They

specify criteria that can be used to judge the operation of a system rather than specific

behaviors. They define the constraints under which the system must operate.

• Dynamic and Real Time Requirements

The system should provide real time product information retrieved directly from

the supplier inventory systems. Any data updates in the supplier inventory

systems should be reflected in the quotation to the purchase officer. Submission

of purchase orders should happen dynamically based on purchase decision.

• Security Requirements

The system should ensure that data is protected from unauthorised access. This is

done by providing user authentication and using secure channel like SSL to

encrypt the data transmits. The system should provide a means to enter user

names and passwords.

• Performance Requirements

The system should perform within a reasonably response time under defined

circumstances. The only foreseen limitations are the performance of the internet

connection speed and the suppliers’ Web Services response time.

• Software Quality Requirements

The system should be maintainable and free of defects. The system should

achieve a high level of product quality such as reliability and maintainability.

Univ
ers

ity
 of

 M
ala

ya

 56

4.3 Decisions On The Choices of Development Technologies

In this section, development technologies such as Web Services platform, web server,

database server as well as development language are compared and discussed.

4.3.1 Web Services Development Platform

Microsoft .NET and Sun Java 2 Enterprise Edition (J2EE) are two of the

dominant development platforms that provide the technologies and tools needed to

develop and deploy Web Services. From a technical standpoint, each platform has its

advantages and disadvantages. Table 4.1 shows a comparison of the .NET framework

over the Java Platform (IBM, 2005).

The most important difference between .Net framework and J2EE is concept of

independence and interoperability of platform versus language. A .Net component can be

written in a combination of languages, e.g. VB.NET and C#. Source code written in these

languages is compiled into Microsoft Intermediate Language (MSIL). This MSIL code

will be just-in-time compiled to native code at run time by the Common Language

Runtime (CLR). However, the only target platform for .NET applications and

components to run is Microsoft Windows Operating System.

J2EE, in contrast, is based on Java language. Java source code is compiled to

bytecode which is analogous to MSIL code. When the code is ready to run, the Java

Virtual Machine interprets this bytecode and executes it at run-time. In theory, any

platform with a Java Virtual Machine, including mainframes, Unix systems and

Windows, will be able to run the Java applications.

Univ
ers

ity
 of

 M
ala

ya

 57

Table 4.1: Comparison of .NET and Java Platforms (IBM, 2005)

Stack Function .NET J2EE

Language C#, VB.NET, C++.NET,

other modified languages

Java

Operating System Microsoft Windows Multiple Platform

Relational Database Access ADO.NET JDBC

Web Client ASP.NET Java Server Pages (JSP)

and Servlets

Standalone Client Windows Forms AWT/Swing

Distributed Components .NET Remoting RMI/IDL

XML System.Xml and .NET in

general is built around

XML

JAX Pack (JAXM,

JAXR, JAXB, JAXP)

Messaging Microsoft Message

Queuing (MSMQ)

Java Messaging Service

(JMS)

Web Services Support Built directly into .NET

and Visual Studio.

Java Web Services

Developer Pack

(JWSDP) as well as

vendor specific tools.

Asynchronous Invocation

COM+ Enterprise Java Beans

(EJB)

Integration Host Integration Server,

BizTalk Server

J2EE Connector

Architecture

.NET framework and Visual Studio.NET have build in support for Web Services

which eases the development of building Web Services application. Besides, existing

Microsoft .NET skill set is also a key factor that should put into the consideration when

choosing the development platform. These factors weigh in the decision to choose the

Microsoft .NET as the Web Services development platform.

Univ
ers

ity
 of

 M
ala

ya

 58

4.3.2 Web Server

Two of the most popular web servers are Apache Server and Microsoft Internet

Information Service (IIS). However, Apache Web Server currently does not support

.NET framework. Thus, Microsoft IIS is the only and natural choice for .Net Web

Services to run.

4.3.3 Database Server

Microsoft SQL Server is chosen as the database server since it is the easier to

configure and integrated well with the Microsoft .NET Framework. There are various

versions of Microsoft SQL Server, and the version chosen is SQL Server 2000 Enterprise

Edition.

4.3.4 Development Language

 One of the key design points for the .NET Common Language Runtime was the

support for different programming languages. Microsoft offers a rich palette of four

programming languages, namely VB.NET, C#, Visual C++.NET and J#, which together

provide developers with the functionality necessary to build robust .NET-connected

application. Each language contains unique features and benefits that make it best-suited

for certain kinds of applications. VB.NET and ASP.NET has been chosen as the language

for the WSEP System due to the simplicity and personal programming experience of

Visual Basic.

4.4 Hardware Requirements

The hardware requirements of WSEP system highly depend on the Microsoft

.NET Framework that make up the system architecture. Table 4.2 and Table 4.3 below

show the minimum system requirements for running the Microsoft .NET Framework 1.1

Univ
ers

ity
 of

 M
ala

ya

 59

SDK and the .NET Framework 1.1 Redistributable respectively (Microsoft .NET, 2005).

Table 4.2: The minimum requirements to install the .NET Framework 1.1 SDK:

Minimum Requirements

Processor Client: 90-megahertz (MHz) Intel Pentium-class processor, or an AMD

Opteron, AMD Athlon64 or AMD Athlon XP processor

Server: 133-MHz Intel Pentium-class processor, or an AMD Opteron,

AMD Athlon64 or AMD Athlon XP processor

Operating

System

The .NET Framework 1.1 SDK can be installed on the following

platforms:

Microsoft Windows® Server 2003 family

Windows 2000, with the latest Windows service pack and critical updates.

Windows XP (Windows XP Professional is required to run ASP.NET)

Note: The .NET Framework SDK 1.1 cannot be installed on 64-

bit computers; Windows Millennium Edition and Microsoft

Windows NT® 4.0 are not supported

Memory Client: 32 megabytes (MB) of RAM, 96 MB recommended

Server: 128 MB of RAM, 256 MB recommended

Hard Disk 660 MB of hard disk space required, 190 MB additional hard disk space

required for installation (850 MB total)

Display 800 x 600 or higher-resolution display with 256 colors

Input Device Microsoft mouse or compatible pointing device

Other Prior to installing the .NET Framework SDK version 1.1, you must first

install the .NET Framework 1.1 Redistributable

Microsoft Internet Explorer 5.01 or later is required

Microsoft Data Access Components 2.6 is required for data scenarios.

Microsoft Data Access Components 2.8 is recommended on a server.

Univ
ers

ity
 of

 M
ala

ya

 60

Table 4.3 :The minimum requirements to run Web Services on the .NET Framework:

Minimum Requirements

Processor Client (a computer not working in a server capacity): 90-megahertz (MHz)

Intel Pentium-class processor, or an AMD Opteron, AMD Athlon64 or

AMD Athlon XP processor

Server (a computer working in a server capacity): 133-MHz Intel Pentium-

class processor, or an AMD Opteron, AMD Athlon64 or AMD Athlon XP

processor

Operating

System

The .NET Framework 1.1 Redistributable is supported on the following

platforms:

Microsoft Windows® Server 2003 (.NET Framework 1.1 is installed as

part of the operating system)

Windows XP Professional

Windows XP Home Edition

Windows 2000

Windows Millennium Edition (Windows Me)

Windows 98

Microsoft Windows NT® 4.0 Service Pack 6a

Notes: ASP.NET Web applications and XML Web services can only be

hosted on Windows XP Professional, Windows 2000, and Windows Server

2003

The .NET Framework 1.1 Redistributable cannot be installed on 64-bit

computers; Windows NT 4.0 Terminal Server is not supported

Memory Client: 32 megabytes (MB) of RAM, 96 MB recommended

Server: 128 MB of RAM, 256 MB recommended

Hard Disk 110 MB of hard disk space required, 40 MB additional hard disk space

required for installation (150 MB total)

Univ
ers

ity
 of

 M
ala

ya

 61

Display 800 x 600 or higher-resolution display with 256 colors

Input

Device

Microsoft mouse or compatible pointing device

Other Microsoft Internet Explorer 5.01 or later is required

Microsoft Data Access Components 2.6 is required for data scenarios.

Microsoft Data Access Components 2.8 is recommended on a server).

Installation of the .NET Framework 1.1 is split into two parts: the core and

language packs. The core contains everything you need to run .NET

Framework applications; all dialog boxes and error messages will be in

English.

Univ
ers

ity
 of

 M
ala

ya

 62

CHAPTER 5: SYSTEM DESIGN

System design is a phase that emphasizes on how the system should perform in

order to fulfill the requirements identified in the analysis phase. Unified Modeling

Language (UML) modeling, such as Sequence Diagrams along with Class Diagrams, are

in few of the important design-level models for application development and have been

used in this project to specify and document the system.

This chapter details the system architecture and system design for the Web

Services E-Procurement System that fully exploits the dynamic characteristic of the Web

Services. In general, the system design includes the architecture design, objects and

classes design, database design and user interface design.

5.1 Web Services E-Procurement Architectural Design

 Software architecture is the high-level structure of a software system. Software

architecture is commonly defined in terms of modules, components and connectors. The

initial process of architectural design is to identify the main modules that build up the

system. Each identified module is then decomposed into a few communicating

components with well-defined interfaces. Each component is assigned responsibilities to

perform certain functions. A framework has to be established to control these modules

and the communication among the modules, and the interactions of components in each

module also have to be defined.

 The Web Services E-Procurement System (WSEP) consists of 4 modules, which

are Authentication Module, Maintenance Module, E-Procurement Transaction Web

Services Module and Suppliers’ Web Services, as depicts in Figure 5.1. Each module will

be described in details in the following sub sections.

Univ
ers

ity
 of

 M
ala

ya

 63

Figure 5.1 Proposed Architecture of Web Services E-Procurement (WSEP) System

Dynamic
Proxy for
SupplierN

Dynamic
Proxy for
Supplier1

Dynamic
Proxy for
Supplier2

Presentation Tier
(Web Forms)

Proxy (SOAP)

Data Access Tier

Business Logic Tier

ASP.NET XML Web
Services

Suppliers’ Web Services

……

……………

Supplier1 WS implemented using J2EE

Supplier2 WS implemented using .NET

SupplierN WS implemented using J2EE

Legacy System for
Supplier1

Legacy System for
Supplier2

Legacy System for
SupplierN

Data Tier
Database

A
ut

he
nt

ic
at

io
n

M
od

ul
e

M
ai

nt
en

an
ce

 M
od

ul
e

E-
Pr

oc
ur

em
en

t T
ra

ns
ac

tio
n

W
eb

 S
er

vi
ce

s M
od

ul
e

Univ
ers

ity
 of

 M
ala

ya

 64

5.1.1 Authentication Module

This module is to validate the identity of a user to allow or deny the access to the

system. ASP.NET provides built-in support for user authentication through several

authentication providers (Kercher, 2001): Forms-based authentication, Microsoft

Passport authentication and Windows authentication. This project has used the Form-

based authentication. User has to provide the username and password in order for the

system to validate against the database.

5.1.2 Maintenance Module

This module is for the Purchase Officer to maintain the entities of the system,

which include suppliers, products and suppliers’ Web Services. This module performs

CRUD (Create, Read, Update and Delete) operations against the entities in the database.

5.1.3 E-Procurement Transaction Web Services Module

The E-Procurement Transaction Web Services is a module implemented using

.NET XML Web Services and Reflection. The main function of this module is to bind the

supplier Web Services and handle the real-time transactions. It acts as the middle-tier

component and provides the necessary business logic rules for procurement processes.

Basically, this module will receive user events from user input. Based on the user

selection, this module will query the database to retrieve the suppliers’ Web Services URI

addresses. It will then dynamically create a proxy to consume the supplier Web Services

for information retrieval or transaction.

5.1.4 Suppliers’ Web Services

Suppliers’ Web Services Module is considered as an external module of the

WSEP System. Suppliers’ Web Services are implemented by the suppliers who want to

Univ
ers

ity
 of

 M
ala

ya

 65

participate in the WSEP System. Suppliers have to adhere to the predefined WSDL

specifications as shown in Appendix A. The Suppliers’ Web Services provide an

interface for the WSEP to access the supplier internal information such as product price

and quantity on hand. The internal implementations of the Suppliers’ Web Services are

not important; they can be implemented using .NET, J2EE or other Web Services

platforms as long as they conform to the predefined WSDL specifications.

5.2 Web Services E-Procurement System Functionality Design

UML Sequence Diagram is used to model the flow of logic within the WSEP

system. It helps in identifying the behavior within the system and validating the business

logic and interfaces by describing the sequence of actions that need to be performed to

complete a task or scenario. Figure 5.2 to Figure 5.16 show all the Sequence Diagrams

that correspond to the use cases in section 4.1.1.

LoginPage Table:AuthUser

Login(Username, Password)

Figure 5.2: Sequence Diagram for User Login

Univ
ers

ity
 of

 M
ala

ya

 66

The Purchase Officer provides the username and password through the LoginPage. The

LoginPage will query the Table AuthUser in database to validate the information. A

successful or failure message will be returned back to the LoginPage to indicate if the

Purchase Officer is authorized to access the system.

SupplierPage TableVendor

ListSuppliers

SupplierListResponse

Figure 5.3: Sequence Diagram for List Suppliers

The Purchase Officer lists the suppliers through SupplierPage. The SupplierPage will

query the Table Vendor in database to get information. The returned results are displayed

to the user in grid format.

Univ
ers

ity
 of

 M
ala

ya

 67

SupplierPage Table:Vendor

AddSupplier(SupplierInfo)

Figure 5.4: Sequence Diagram for Add Supplier

The Purchase Officer enters supplier information. The information is submitted to the

Table Vendor in database. A successful or failure message will be returned back to notify

the Purchase Officer.

SupplierPage Table:Vendor

EditSupplier(SupplierInfo)

Figure 5.5: Sequence Diagram for Edit Supplier

Univ
ers

ity
 of

 M
ala

ya

 68

The Purchase Officer edits supplier information. The information is submitted to the

Table Vendor in database. A successful or failure message will be returned back to notify

the Purchase Officer.

SupplierPage Table:Vendor

DeleteSupplier(SupplierID)

Figure 5.6: Sequence Diagram for Delete Supplier

The Purchase Officer deletes the supplier based on SupplierID through SupplierPage. The

SupplierPage will delete the record in Table Vendor in database based on the SupplierID.

A successful or failure message will be returned back to notify the Purchase Officer.

Univ
ers

ity
 of

 M
ala

ya

 69

ProductPage Table:Product

ListProducts

ProductListResponse

Figure 5.7: Sequence Diagram for List Products

The Purchase Officer lists the products through ProductPage. The ProductPage will query

the Table Product in database to get information. The returned results are displayed to the

user in grid format.

ProductPage Table:Product

AddProduct(ProductInfo)

Figure 5.8: Sequence Diagram for Add Product

Univ
ers

ity
 of

 M
ala

ya

 70

The Purchase Officer enters product information. The information is submitted to the

Table Product in database. A successful or failure message will be returned back to notify

the Purchase Officer.

ProductPage Table:Product

EditProduct(ProductInfo)

Figure 5.9: Sequence Diagram for Edit Product

The Purchase Officer edits product information. The information is submitted to the

Table Product in database. A successful or failure message will be returned back to notify

the Purchase Officer.

Univ
ers

ity
 of

 M
ala

ya

 71

ProductPage Table:Product

DeleteProduct(ProductID)

Figure 5.10: Sequence Diagram for Delete Product

The Purchase Officer deletes the product based on ProductID through ProductPage. The

ProductPage will delete the record in Table Product in database based on the ProductID.

A successful or failure message will be returned back to notify the Purchase Officer.

SupplierWSPage Table:VendorWS

ListSupplierWS

SupplierWSListResponse

Figure 5.11: Sequence Diagram for List Supplier Web Services URI

Univ
ers

ity
 of

 M
ala

ya

 72

The Purchase Officer lists the supplier Web Services through SupplierWSPage. The

SupplierWSPage will query the Table VendorWS in database to get information. The

returned results are displayed to the user in grid format.

SupplierWSPage Table:VendorWS

AddSupplierWS(SupplierWSInfo)

Figure 5.12: Sequence Diagram for Add Supplier Web Services URI

The Purchase Officer enters supplier Web Services information. The information is

submitted to the Table VendorWS in database. A successful or failure message will be

returned back to notify the Purchase Officer.

Univ
ers

ity
 of

 M
ala

ya

 73

SupplierWSPage Table:VendorWS

EditSupplierWS(SupplierWSInfo)

Figure 5.13: Sequence Diagram for Edit Supplier Web Services URI

The Purchase Officer edits supplier Web Services information. The information is

submitted to the Table VendorWS in database. A successful or failure message will be

returned back to notify the Purchase Officer.

SupplierWSPage Table:VendorWS

DeleteSupplierWS(SupplierWSID)

Figure 5.14: Sequence Diagram for Delete Supplier Web Services URI

Univ
ers

ity
 of

 M
ala

ya

 74

The Purchase Officer deletes the supplier Web Services based on SupplierWSID through

SupplierWSPage. The SupplierWSPage will delete the record in Table VendorWS in

database based on the SupplierWSID. A successful or failure message will be returned

back to notify the Purchase Officer.

EProcurementTransactionWS Table:VendorWS

RequestSupplierWS(ProductCode)

SupplierWSResponse

SupplierWS

*[foreach WSDL in WSDLs] RequestPriceQuote(ProductCode)

PriceQuoteResponse

RequestPriceQuotePage

RequestPriceQuote(ProductCode)

PriceQuoteResponse

Figure 5.15: Sequence Diagram for Request for Quotation

 The process starts with the user initiates a request for a product quotation. The

user enters the Product Code in the Quotation Request form and submits to the E-

ProcurementTransactionWS module. The E-ProcurementTransactionWS, which is

implemented as Web Services, will retrieve the Supplier WSDLs from the Database

based on the Product Code. For each WSDL retrieved, the module will send a Quotation

Request in XML format to the respective Supplier Web Services. Based on the request,

the Supplier Web Services will retrieve the product price along with the quantity on hand

from their legacy system and return back the information to the E-

ProcurementTransactionWS. The returned results are displayed back to the user in grid

format.

Univ
ers

ity
 of

 M
ala

ya

 75

EProcurementTransactionWS Table:VendorWS

RequestSupplierPOWS(VendorCode)

SupplierPOWSResponse

SupplierWS

SubmitPO(ProductCode, Quantity)

Confirmation

SubmitPOPage

Confirmation

SubmitPO(ProductCode, Quantity, VendorCode)

Figure 5.16: Sequence Diagram for Raise Purchase Order

 From the results returned, user can select multiple suppliers to place purchase

order with different quantity. Again, the E-ProcurementTransactionWS will retrieve the

Supplier Web Services information from Database in order to send the Purchase Order to

the selected Suppliers. A confirmation of success or failure of the transaction will be sent

back to the user. This ends the E-Procurement process.

5.3 The Design of Dynamic Aspect of WSEP System

 The process of Request for Quotation as shown in Figure 5.15 is happened in real

time and dynamic manner where the product information, such as pricing and inventory

level, is retrieved directly from the supplier inventory systems by interfacing with the

Supplier Web Services. Therefore, changes made in the supplier inventory system will be

reflected in the quotation during the process.

Univ
ers

ity
 of

 M
ala

ya

 76

 The result of the process of Request for Quotation will be shown to the

purchasing officer through the QuotationPage. Once the purchase decision is made,

purchase orders will be submitted to the selected suppliers through the E-Procurement

Transaction Web Services module. Figure 5.16 shows the dynamic processing of

purchase orders in the supply chain. The Web Services URI and WSDL of the supplier

are retrieved from the WSEP system database dynamically and the submission of the

purchase order is happened in real time.

 As shown in Figure 5.1, for each of the selected suppliers, a dynamic proxy is

created at run time to communicate with the Supplier Web Services. A proxy is a class

that functions as an interface to another thing. It provides a surrogate or placeholder for

another object to control access to it (Gamma, 1995). In this context, a proxy is an object

that will bind to the Web Services in order to consume the services provided. In order to

create and instantiate object dynamically at run time, this project uses Microsoft .NET

reflection. Reflection is the mechanism for examining, manipulating and creating objects

dynamically at run time (Gilani et al., 2002). DynamicWebServicesLib is a class library

created in this project that uses reflection to provide dynamic object or proxy creation

facilities to the system. This utility component will handle all the dynamic binding of

supplier Web Services at run time. The implementation of this library will be discussed in

details in Section 6.3.

5.4 Web Services E-Procurement System Design

 The system design of the WSEP is based on n-tier architecture approach which

consists of Presentation Tier, Business Logic Tier, Data Access Tier and Data Tier.

Figure 5.17 depicts the n-tier architecture of the WSEP system.
Univ

ers
ity

 of
 M

ala
ya

 77

Figure 5.17: The n-Tier Architecture of the WSEP System (Based on Chartier R., 2005)

 Data Tier is intended to deal with the storage and retrieval of information. This
tier can be as complex and comprehensive as high-end products such as SQL Server and
Oracle, or all the way down to the simplistic or structured plain text files, e.g. XML, as
well as the engine to read and search these files.

 Data Tier of the WSEP System is actually the Database Management System

(DBMS) that is implemented using Microsoft SQL 2000 Server. According to Microsoft,

the data tier encompasses the database server as a whole which comprised of several

interrelated layers: the SQL code, the database design, the data storage components on

the physical disk, and the server configuration. Figure 5.18 illustrates all the elements of

the Data Tier of Microsoft SQL 2000 Server (Microsoft SQL Server 2000 Resource Kit,

2005). WSEP System uses part of the elements of the Microsoft SQL 2000 Server, which

are Tables, Indexes and Disk storage.

Presentation Tier
Web Forms (ASP.NET)

Data Tier
Microsoft SQL Server

Proxy
(SOAP)

Data Access Tier
.NET Component (VB.NET)

Business Logic Tier
.NET Component (VB.NET)

ASP.NET XML Web
Services

Univ
ers

ity
 of

 M
ala

ya

 78

The Data Tier

Data Components Code Components Storage Components Server Components

Physical Structure

• Indexes

• Tables

• Indexed Views

Layer of Abstraction:

• Stored

Procedure

• Functions

• Standard Views

Filegroups

Disk Storage

sp_configure

Figure 5.18: Elements of the Data Tier of Microsoft SQL 2000 Server (Microsoft SQL

Server 2000 Resource Kit, 2005).

The Data Access Tier is a separate class library that is designed to interface with

the Data Tier. It acts as the relay between the application and the backend data store. All

the generic data access-specific methods are placed in this layer. Database CRUD

(Create, Read, Update and Delete) operations will be supported by this Data Access Tier.

 All the business rules are moved to the Business Logic Tier, which sometimes

referred to as the Business Services or Middle Tier. The Business Logic Tier is the core

component that provides all the functionality services. Normally, this tier is used directly

by Presentation Tier and consumes Data Access Tier to retrieve and manipulate data.

 The ASP.NET XML Web Services tier acts as the relay between the Presentation

Tier and the Business Logic Tier. It provides an interface for the presentation to

consumes the functionality services in the Business Logic Tier.

 The Presentation Tier is focused on presenting information and receiving input

from users. Due to the easy accessible of web application, the Presentation Tier of the

system is implemented using ASP.NET Web Form.
Univ

ers
ity

 of
 M

ala
ya

 79

5.5 Web Services E-Procurement (WSEP) Components Design

 The WSEP system is subdivided into 5 main sub projects:

• DALeProcurement, which implements Data Access Tier,

• BLLeProcurement, which implements Business Logic Tier,

• Web eProcurement, which provides the User Interface interacting with the

users,

• WSeProcurement, which is the Web Services,

• DynamicWebServicesLib, which is a class library providing the dynamic

binding facilities to the system.

 Class diagrams give an overview of the system by showing its classes, operations,

attributes and the relationships, including inheritance, aggregation and association,

among them. UML class diagram is used in this project to model the static design view of

the WSEP System.

 The classes for the business logic component and data access component as well

as the class library component have to be identified during components design. With

UML, these classes and components are modeled using class diagram to visualize the

static aspects of the building blocks and their relationships and to specify the details for

developments, as shown in Figure 5.19, Figure 5.20 and Figure 5.21.

Univ
ers

ity
 of

 M
ala

ya

 80

BLLeProcurement

+GetAll() : DataSet
+Add() : Boolean
+Update() : Boolean
+Delete() : Boolean
+GetVendorProduct() : DataSet
+AddVendorProduct() : Boolean
+DeleteVendorProduct() : Boolean
+DeleteVendorProductByKey() : Boolean

bllVendor

+Authenticate() : Boolean

-m_UserID : Integer
-m_Username : String

bllUser

+GetAll() : DataSet
+Add() : Boolean
+Update() : Boolean
+Delete() : Boolean
+GetAllByProductID() : DataSet

bllVendorWS

+GetAll() : DataSet
+Add() : Boolean

bllPurchaseOrder

+GetAll() : DataSet
+Add() : Boolean
+Update() : Boolean
+Delete() : Boolean
+GetProductIDByProductCode() : Integer

bllProduct

Figure 5.19: Deployment Diagram for BLLeProcurement

The BLLeProcurement consists of 5 main classes, i.e. bllProduct, bllVendor,

bllVendorWS, bllUser and bllPurchaseOrder. Each of which is responsible for the

business rules of the system for their respective module. There is no direct relationship

among the classes in the BLLeProcurement.

Univ
ers

ity
 of

 M
ala

ya

 81

DALeProcurement

+GetAll() : DataSet
+Add() : Boolean
+Update() : Boolean
+Delete() : Boolean
+GetProductIDByProductCode() : Integer

dalProduct

+GetAll() : DataSet
+Add() : Boolean
+Update() : Boolean
+Delete() : Boolean
+GetVendorProduct() : DataSet
+AddVendorProduct() : Boolean
+DeleteVendorProduct() : Boolean
+DeleteVendorProductByKey() : Boolean

dalVendor

+GetAll() : DataSet
+Add() : Boolean
+Update() : Boolean
+Delete() : Boolean
+GetAllByProductID() : DataSet

dalVendorWS

+Authenticate() : Boolean

dalUser

+GetAll() : DataSet
+Add() : Boolean

dalPurchaseOrder

«utility»
SqlHelper

«utility»
SqlHelperParameterCache

Figure 5.20: Deployment Diagram for DLLeProcurement

The DALeProcurement consists of 7 main classes, i.e. dalProduct, dalVendor,

dalVendorWS, dalUser and dalPurchaseOrder, SqlHelper and SqlHelperParameterCache.

These classes are responsible for accessing the database. SqlHelper and

SqlHelperParameterCache are the open source utility classes that used by other DAL

classes to facilitate the process of querying database.

DynamicWebServicesLib

«utility»
DynamicWebServicesProxyLib

«utility»
SoapHttpClientProtocolEx

«utility»
SoapMessageAccessClientExtension

«utility»
SoapMessageAccessClientExtensionAttribute

Figure 5.21: Deployment Diagram for DynamicWebServicesLib

Univ
ers

ity
 of

 M
ala

ya

 82

The DynamicWebServicesLib is a class library that provides utilities for binding

suppliers’ Web Services dynamically. This library would be mainly used by

WSeProcurement as helper classes to construct a dynamic proxy to invoke Supplier Web

Services. The class DynamicWebServicesProxyLib uses .NET reflection to dynamically

load assemblies by specifying assembly name.

5.6 Web Services E-Procurement Database Design

 Database is used in most of the information systems to store data. A Database

Management System (DBMS) is used for creating, updating and modifying and retrieving

data. The following sub-sections discuss about the structure and the design of the

database of the WSEP system.

5.6.1 Database Diagram

 The information of the WSEP system is stored in a relational database. The

selected DBMS is Microsoft SQL 2000 Server, which can be managed using the SQL

Server Enterprise Manager. The database design of the system is presented in Figure 5.22

below. These tables are in Third Normal Form. Normalization is a formal technique for

analyzing relations based on their primary key (or candidate keys) and functional

dependencies. This is done to avoid data redundancy and update anomalies. The Third

Normal Form (3NF) is a relation that is in first and second normal form, and in which no

non-primary key attribute is transitively dependent on the primary key (Thomas and

Carolyn, 2002).

Univ
ers

ity
 of

 M
ala

ya

 83

Figure 5.22: Database design of the WSEP System

 The AuthUser table is used to stored username and password for authentication

purpose. The Product table and Vendor table are the entity types that keep product

information and supplier information respectively. The VendorProduct table is the entity

that provides associative relationship between Vendor and Product. It tells what products

are provided by the suppliers. The VendorWS table is used to keep information for the

Supplier Web Services. The WSDL for accessing the Supplier Web Services is stored

here. For all the purchase orders made, records are kept in the PurchaseOrder table.

5.6.2 Data Dictionary

 The data dictionary is the repository of all the elements in a system. The

following tables are normalized to the Third Normal Form. Table 5.1 shows the table

structure of the database. PK represents the Primary Key of the table, whereas FK

represents one or more Foreign Keys.

Univ
ers

ity
 of

 M
ala

ya

 84

Table 5.1 Table Structure of WSEP System

Table Attribute Index DataType Length AllowNull Notes

AuthUser AuthUserID PK Int 4 No Auto-Increment

AuthUser Username Varchar 32 No

AuthUser Password Varchar 32 No

Product ProductID PK Int 4 No Auto-Increment

Product ProductCode Varchar 16 No

Product ProductName Varchar 32 No

Vendor VendorID PK Int 4 No Auto-Increment

Vendor VendorCode Varchar 16 No

Vendor VendorName Varchar 32 No

VendorProduct VendorProductID PK Int 4 No Auto-Increment

VendorProduct VendorID FK Int 4 No

VendorProduct ProductID FK Int 4 No

VendorWS VendorWSID PK Int 4 No Auto-

Increment

VendorWS VendorID FK Int 4 No

VendorWS WSDL Varchar 128 No

VendorWS WebMethod Varchar 64 No

VendorWS ParamInName Varchar 64 No

VendorWS ParamInType Varchar 32 No

VendorWS ReturnType Varchar 32 No

PurchaseOrder VendorProductID PK Int 4 No Auto-

Increment

PurchaseOrder VendorID FK Int 4 No

PurchaseOrder ProductID FK Int 4 No

PurchaseOrder Price Decimal 9 No

PurchaseOrder Quantity Int 4 No

Univ
ers

ity
 of

 M
ala

ya

 85

5.7 User Interface Design

User interface design must take into account the needs, experience and

capabilities of the system users. Table 5.2 lists the design principles (Ian, 2001) that are

incorporated into the user interface design of the WSEP system.

Table 5.2: User interface design principles (Ian, 2001)

Principle Description

User familiarity The interface should use terms and concepts which are drawn

from the experience of the anticipated class of user.

Consistency The interface should be consistent in that comparable operations

should be activated in the same way.

Least Surprise Users should never be surprised by the behavior of the system.

Recoverability The interface should include mechanisms to allow users to

recover from their errors.

• User familiarity

Novelty is a barrier to entry. It puts a learning burden on the user. Thus, the

interface should use terms and concepts which are drawn from the experience of the

anticipated class of user. The user interface for the WSEP System follows the general

navigation and layout conventions of major web sites that most users may already be

used to those conventions. Figure 5.23 shows one of the screen that uses terms and

objects, e.g. ‘Vendors’, ‘Products’, ‘Request For Quote’, ‘Edit’, ‘Delete’ and so on, that

have direct analogues in the user’s environment and familiar to the user.

Univ
ers

ity
 of

 M
ala

ya

 86

Figure 5.23: Screen uses terms and objects that have direct analogues in the user’s

environment and familiar to the user

• Consistency

The user interface is built on a consistent pattern across all pages that all share the

same navigation menus, basic data grids, graphic themes and layouts. The goal is to be

consistent and predictable so that the users would feel comfortable and confident while

using the system. The menu consists of 3 parts namely Maintenance, Procurement and

Common which presents on every page at the left side panel. The design of the system

supports the same operations such as New, Edit and Delete on all types of the system

entities.

• Least Surprise

As a system is used, users will have a basic concept of the system works. Users

will become frustrated and irritated if a system behaves in an unexpected way. The user

interface design of the WSEP system is striving towards the principle of "least surprise".

If one attribute of an object is changed in a particular way, then it is to be expected that

other attributes of the object would also be changed in a similar fashion.

Univ
ers

ity
 of

 M
ala

ya

 87

• Recoverability

Users may make mistakes when using the system. The WSEP system provides

some resilience to user errors and allows the user to recover from errors. This includes

undo facility and confirmation of destructive actions as shown in Figure 5.24.

Figure 5.24: Confirmation of destructive actions

5.8 Conclusion

The system architecture of WSEP is proposed. UML Sequence diagrams are used

to model the flow of logic within the WSEP system. In addition, the system classes and

components are identified and modeled using UML class diagrams. The design of

dynamic and real time aspects of the WSEP system is discussed. The database structure is

designed and normalized to Third Normal Form. Some of the design interface principles

are incorporated into the user interface design of the WSEP system.

Univ
ers

ity
 of

 M
ala

ya

 88

CHAPTER 6: SYSTEM IMPLEMENTATION

In the implementation phase, the system requirements are converted to system

source codes. With the requirement documentation and the system design documentation

from the previous phase, the system should be built according to what has been

documented. The goal of the implementation phase is to implement the system correctly

on the particular development environment in accordance with the project plan. The end

deliverable of this phase is the system itself.

6.1 Development Environment

6.1.1 Software Development Environment

Most of the programming languages with which we work require a development

environment to code, test and run the programs. For this project, ASP.NET is used as the

development technology for Web Services that is built into the .NET Framework.

ASP.NET Web Services applications can be created with a simple editor like a notepad

or Microsoft integrated development environment (IDE) Visual Studio .NET 2003.

Microsoft Visual Studio .NET 2003 is an advanced IDE tool for developing of .NET

application. It is used in this project for all the development of Web Application, Web

Services and components.

6.1.2 Hardware Development Environment

The following hardware specifications have been used to develop the WSEP

system and also act as the Web Server:

 a. AMD Athlon 2500 ++

 b. 512 MB RAM

 c. 80 GB Hard Disk

 d. Standard hardware for IBM PC compatible machine

Univ
ers

ity
 of

 M
ala

ya

 89

6.2 System Implementation

The system design of the WSEP is based on n-tier architecture approach. Figure

6.1 shows the architecture consists of Presentation Tier, ASP.NET XML Web Services,

Business Logic Tier, Data Access Tier and Data Tier. This section explains the

implementation of each tier in details.

Figure 6.1: The n-Tier Architecture of the WSEP System

6.2.1 Implementation of Data Access Tier

Data Access Tier is a component that interacts with the backend data store. The

generic data access-specific methods, i.e. CRUD (Create, Read, Update and Delete)

operations will be supported by this component. In this project, an open-source helper

class library, Data Access Application Block (DAAB), provided by Microsoft has been

Presentation Tier
Web Forms (ASP.NET)

Data Tier
Microsoft SQL Server

Proxy
(SOAP)

Data Access Tier
.NET Component (VB.NET)

Business Logic Tier
.NET Component (VB.NET)

ASP.NET XML Web
Services

Univ
ers

ity
 of

 M
ala

ya

 90

used to streamline the database operations by simplifying the creation of a connection,

specifying a command, executing the query and etc.

Figure 6.2 shows a function, GetAll(), that returns a Dataset of the Vendor in one

of the class of the Data Access Tier component. First, an SQL string is constructed. The

SQL string may consists of WHERE criteria if the pass-in parameter is not null. Then the

SQL string is executed against the Database by using ExecuteDataset() static method of

the SqlHelper class, provided by DAAB, to fetch the required records from the table.

The Globals.ConnectionString is a variable that keeps the credentials for connecting to

SQL database.

Return SqlHelper.ExecuteDataset(Globals.ConnectionString,

CommandType.Text, strSQL)

Besides ExecuteDataset() which return a set of data, ExecuteScalar() and

ExecuteNonQuery() methods of the SqlHelper class are also used for Updating, Inserting

and Deleting records in the Database.

Univ
ers

ity
 of

 M
ala

ya

 91

Figure 6.2: Function GetAll() that returns a Dataset in the Data Access Tier component

6.2.2 Implementation of Business Logic Tier

 All the business rules are in Business Logic Tier. Normally, this tier is consumed

directly by Presentation Tier and will call Data Access Tier component to retrieve data

required. Figure 6.3 shows one of the functions in the Vendor class that calls GetAll()

method of dalVendor class in Data Access Tier. This function simply returns the Dataset

that is retrieved from the dalVendor class to the Presentation Tier.

Typically, a Business Logic method in this tier can be described as:

Public Function GetAll(ByVal VendorID As Object, ByVal VendorCode As Object,

ByVal VendorName As Object) As DataSet

 Dim strSQL As String = "" ' Used for the sql SELECT clause

 Dim strWHERE As String = "" ' Used for the sql WHERE clause

 ' Build SELECT clause

 strSQL = strSQL & "SELECT [Vendor].[VendorID] "

 strSQL = strSQL & " ,[Vendor].[VendorCode] "

 strSQL = strSQL & " ,[Vendor].[VendorName] "

 strSQL = strSQL & " FROM Vendor "

 ' Build WHERE clause. Only include criteria if parameter is not null.

 If Not VendorID Is DBNull.Value Then strWHERE = strWHERE & " AND

[Vendor].[VendorID] = " & VendorID.ToString()

 If Not VendorCode Is DBNull.Value Then strWHERE = strWHERE & " AND

[Vendor].[VendorCode] = " & SqlHelper.SQLString(VendorCode)

 If Not VendorName Is DBNull.Value Then strWHERE = strWHERE & " AND

[Vendor].[VendorName] = " & SqlHelper.SQLString(VendorName)

 ' Concatenate SELECT and WHERE clauses, removing first AND from WHERE

clause.

 If strWHERE <> "" Then strSQL = strSQL & " WHERE " &

strWHERE.Substring(4)

 ' Execute the SQL and return the data

 Try

 Return SqlHelper.ExecuteDataset(Globals.ConnectionString,

CommandType.Text, strSQL)

 Catch ex As Exception

 Throw New Exception(ex.Message, ex)

 Finally

End Try

Univ
ers

ity
 of

 M
ala

ya

 92

• Instantiate an Data Access object

• Retrieve the crude data.

• Calculate business values from the crude data

• Return the data to the Presentation Tier

Figure 6.3: Function GetAll()in the Business Logic Tier component.

6.2.3 Implementation of the Web Services

The Web Services are implemented using ASP.NET. Figure 6.4 lists all the web

methods or operations supported.

Public Function GetAll(ByVal VendorID As Object, ByVal VendorCode As Object,

ByVal VendorName As Object) As DataSet

 Dim objVendor As New dalVendor

 Try

 Return objVendor.GetAll(VendorID, VendorCode, VendorName)

 Catch ex As Exception

 Throw New Exception(ex.Message, ex)

 Finally

 If Not objVendor Is Nothing Then objVendor = Nothing

 End Try

 End Function

Univ
ers

ity
 of

 M
ala

ya

 93

Figure 6.4: List of all web methods in Web Services

Basically, the Web Services act as an interface for the Business Logic that will be

called by the presentation. Most of Web Services methods will call the Business Logic

Layer components which in turn will call the Data Access Layer components to perform

data functions. Figure 6.5 shows the GetVendor() web method that calls the GetAll()

function in the bllVendor class of the Business Logic Layer component. This method will

return a DataSet of vendors that meet the search criteria to the Presentation Layer. Univ
ers

ity
 of

 M
ala

ya

 94

Figure 6.5: Web Method GetVendor() in the Web Services component

In order to provide dynamic binding of qualified Suppliers’ Web Service,

DynamicWebServicesProxyLib library is used to create the proxy at run time that binds

the Suppliers’ Web Services. The code for the web method RequestForQuotation is listed

in Figure 6.4.

 <WebMethod()> _

 Public Function GetVendor(ByVal VendorID As Integer, _

 ByVal VendorCode As String, _

 ByVal VendorName As String) As DataSet

 Dim objVendor As New bllVendor

 Dim mVendorID As Object

 Dim mVendorCode As Object

 Dim mVendorName As Object

 Try

 If VendorID = 0 Then

 mVendorID = DBNull.Value

 Else

 mVendorID = VendorID

 End If

 If VendorCode = "" Then

 mVendorCode = DBNull.Value

 Else

 mVendorCode = VendorCode

 End If

 If VendorName = "" Then

 mVendorName = DBNull.Value

 Else

 mVendorName = VendorName

 End If

 Return objVendor.GetAll(mVendorID, mVendorCode, mVendorName)

 Catch ex As Exception

 Throw New Exception(ex.Message, ex)

 Finally

 If Not objVendor Is Nothing Then objVendor = Nothing

 End Try

 End Function

Univ
ers

ity
 of

 M
ala

ya

 95

Continue …

<WebMethod()> _

 Public Function RequestForQuotation(ByVal ProductCode As String, ByRef

ErrorMessage As String) As DataSet

 Dim dsWS As DataSet

 Dim dsTempQuotation As New DataSet

 Dim dsQuotation As New DataSet

 Dim WSProxy As New DynamicWebServicesProxyLib

 Dim i As Integer

 Dim m As Integer

 Dim ProductID As Integer

 Dim VendorID As Integer

 Dim VendorCode As String

 Dim VendorName As String

 Try

 ProductID = GetProductKey(ProductCode)

 If ProductID > 0 Then

 dsWS = GetVendorWS(ProductID)

 Dim dcVendorID As DataColumn

 Dim dcVendorCode As DataColumn

 Dim dcVendorName As DataColumn

 Dim dt As DataTable = dsWS.Tables(0)

 For i = 0 To dt.Rows.Count - 1

 VendorID = CType(dt.Rows(i).Item("VendorID"), Integer)

 dsTempQuotation = New DataSet

 Try

 WSProxy.TypeName = "PriceQuote"

 WSProxy.WSDL = dt.Rows(i).Item("WSDL").ToString

 WSProxy.MethodName =

dt.Rows(i).Item("WebMethod").ToString

 WSProxy.AddParameter(ProductCode)

 dsTempQuotation = CType(WSProxy.InvokeCall, DataSet)

 If Not (dsTempQuotation Is Nothing) Then

 dcVendorID = New DataColumn("VendorID",

GetType(Integer))

 dcVendorCode = New DataColumn("VendorCode" ,

GetType(String))

 dcVendorName = New DataColumn("VendorName" ,

GetType(String))

Univ

ers
ity

 of
 M

ala
ya

 96

 Continue …

dsTempQuotation.Tables(0).Columns.Add(dcVend

orID)

dsTempQuotation.Tables(0).Columns.Add(dcVend

orCode)

dsTempQuotation.Tables(0).Columns.Add(dcVend

orName)

 If GetVendorInfo(VendorID, VendorCode, VendorName)

Then

For m = 0 To

dsTempQuotation.Tables(0).Rows.

Count - 1

dsTempQuotation.Tables(0).Rows(m).Item

("VendorID") = VendorID

dsTempQuotation.Tables(0).Rows(m).Item

("VendorCode") = VendorCode

dsTempQuotation.Tables(0).Rows(m).Item

("VendorName") = VendorName

 Next

 Else

 For m = 0 To

dsTempQuotation.Tables(0).Rows.Count - 1

dsTempQuotation.Tables(0).Rows(m).Item

("VendorID") = VendorID

dsTempQuotation.Tables(0).Rows(m).Item

("VendorCode") = "Unknown"

dsTempQuotation.Tables(0).Rows(m).Item

("VendorName") = "Unknown"

 Next

 End If

 dsQuotation.Merge(dsTempQuotation)

 'Reset the object

 dsTempQuotation = Nothing

 dcVendorID = Nothing
 dcVendorCode = Nothing

 dcVendorName = Nothing

 End If Univ
ers

ity
 of

 M
ala

ya

 97

Figure 6.6: Web Method RequestForQuotation () in the Web Services component

Catch ex As Exception

 If GetVendorInfo(VendorID, VendorCode, VendorName)

Then

 ErrorMessage = ErrorMessage & "There are errors

while processing Web Services for Vendor " & VendorCode & " (" & VendorName &

").
"

 ErrorMessage = ErrorMessage & "[Error Message : "

& ex.Message & "]

"

 Else

 ErrorMessage = ErrorMessage & "There are errors

while processing Web Services for VendorID " & VendorID & ".
"

 ErrorMessage = ErrorMessage & "[Error Message : "

& ex.Message & "]

"

 End If

 End Try

 Next

 RequestForQuotation = dsQuotation

 Else

 Return Nothing

 End If

 Catch ex As Exception

 ErrorMessage = ErrorMessage & ex.Message & "

 "

 Throw New Exception(ErrorMessage, ex)

 Finally

 If Not WSProxy Is Nothing Then WSProxy = Nothing

 End Try

 End Function

Univ
ers

ity
 of

 M
ala

ya

 98

6.2.4 Implementation of WSEP Database

The implementation of WSEP database is straight forward. Based on the Data

Dictionary defined in Section 5.5.2, creating tables and relationships among tables can be

done easily by using SQL Server Enterprise Manager. Figure 6.7 shows the easy steps to

create table Vendor and define Relationship between Table Vendor and VendorWS based

on the Primary Key and Foreign Key.

Figure 6.7: Create Table and Relationship using SQL Server Enterprise Manager

Univ
ers

ity
 of

 M
ala

ya

 99

By creating a Database Diagram using SQL Server Enterprise Manager, the

database schema can be viewed in one glance as depicted in Figure 6.8. This simplifies

the changes made to the schema of the database.

Figure 6.8: Detailed View Database Diagram

6.2.5 Implementation of User Interface using ASP.NET

Web Services are accessed by the Web Application by using a proxy class. For

static binding, the proxy class can be created automatically by using Visual Studio. This

is done by setting up a Web Reference by right-clicking the Web Reference for the

project as shown in Figure 6.9. The screen in Figure 6.10 will pop up, giving a choice of

sources for the Web services.

Univ
ers

ity
 of

 M
ala

ya

 100

Figure 6.9: Adding Web Reference through Visual Studio 2003

Figure 6.10: Web Services on the Local Machine

Univ
ers

ity
 of

 M
ala

ya

 101

Clicking on Web Services on the local machine will bring up a list of Web

Services available on the local machine. By selecting the intended Web Services, it will

bring up Figure 6.11 that enables final selection of the Web Service. Clicking on the Add

Reference will add a Web Reference into the Solution Explorer.

Figure 6.11: Dialog box to Add Reference

Univ
ers

ity
 of

 M
ala

ya

 102

6.2.6 Implementation of Supplier Web Services

Suppliers’ Web Services Module is considered as an external module of the

system. The current design of system requires all the participating suppliers to implement

Web Services that conform to the standard as defined by WSDL. The Web Services

provide an interface for the WSEP to access the supplier internal information such as

product price and stock level. By providing the ProductCode, the Web Services method

should return a DataSet that contains all the required information for the product. As

mentioned earlier, the Suppliers’ Web Services can be implemented using .NET, J2EE or

other Web Services platforms. Figure 6.12 illustrates a sample of implementation for

getting the internal inventory information of the supplier using .NET framework that

conformed to the published WSDL.

Univ
ers

ity
 of

 M
ala

ya

 103

Figure 6.12: Sample of Implementation of Supplier Web Services

6.3 Implementation of Dynamic Aspect of WSEP System

 Web method RequestForQuotation from the list of Figure 6.4 is not calling the

BLL components. Instead, it calls the DynamicWebServicesProxyLib class library to

generate proxy in order to connect to the Supplier Web Services. By using .NET

Reflection, the proxy or assembly can be generated at runtime.

 Figure 6.13 shows part of the codes in web method RequestForQuotation. Based

on the Product Code, supplier WSDLs are retrieved from the database. An instance, i.e.

<WebMethod()> _

 Public Function GetInventoryInfo(ByVal ProductCode As String) As DataSet

 Dim conn As New

SqlConnection(ConfigurationSettings.AppSettings("sqlConn"))

 Dim cmd As SqlCommand

 Dim strSQL As String = ""

 strSQL = " SELECT Price, "

 strSQL = strSQL & " QOH AS QuantityOnHand, "

 strSQL = strSQL & " UOM AS UnitMeasurement "

 strSQL = strSQL & " FROM Inventory "

 strSQL = strSQL & " WHERE WSProductCode ='"

 strSQL = strSQL & ProductCode & "'"

 Try

 conn.Open()

 cmd = New SqlCommand(strSQL, conn)

 Dim ds As New DataSet

 Dim da As New SqlDataAdapter(cmd)

 da.Fill(ds)

 GetInventoryInfo = ds

 Catch ex As Exception

 Finally

 conn.Close()

 cmd.Dispose()

 End Try

 End Function

Univ
ers

ity
 of

 M
ala

ya

 104

WSProxy, of class DynamicWebServicesProxyLib is declared and instantiated. dsWS is

the dataset that contains records retrieved from the table VendorWS in the database. For

each of the WSDL retrieved from the table VendorWS, the instance invokes the public

function, InvokeCall(), that returns an object which is then converted into a dataset. This

dataset is the return result of quotation from the supplier Web Services.

Figure 6.13: Part of the codes of Web Method RequestForQuotation

The DynamicWebServicesProxyLib is a class that uses System.Reflection

namespace. When the object WSProxy is instantiated, a temporary dynamic assembly is

built based on the property WSDL. VBCodeProvider is used to compile the assembly at

run-time. VBCodeProvider is a built-in .NET class that provides access to instances of

the Visual Basic code generator and code compiler. CreateGenerator() method in

VBCodeProvider is invoked to get an object that implements the ICodeGenerator

interface. The ICodeGenerator has a number of methods that generate source codes.

ICodeGenerator.GenerateCodeFromNamespace method is used to generate code based

on the ProxyCodeNamespace. The generated codes are output to the specified text writer,

strWriter, as shown in Figure 6.14.

Univ
ers

ity
 of

 M
ala

ya

 105

Figure 6.14: Generate Code From Namespace

After the codes have been generated, they need to be compiled into an assembly.

VBCodeProvider has a method CreateCompiler() that gets an instance of the Visual Basic

code compiler which implements ICodeCompiler interface. Figure 6.15 shows the

CompileAssemblyFromSource method in the ICodeCompiler is called to compile an

assembly from the specified string containing source code, using the specified compiler

settings. proxySource is a string variable that contains the source codes that have been

generated using ICodeGenerator.

Figure 6.15: Compile the Codes to Assembly

 In order to invoke methods in the compiled assembly, an instance or object needs

to be created. Activator class is a .NET built-in class that contains methods to create

types of objects locally or remotely, or obtain references to existing remote objects. The

CreateInstance() method in the Activator class is used to create object of the assembly.

The return result of the method is assigned to the proxyInstance variable as depicted as

Figure 6.16.

Univ
ers

ity
 of

 M
ala

ya

 106

Figure 6.16: Create Instance from Assembly using Activator Class

The methods of the instance created can be invoked using the built-in

System.Reflection.MemberInfo Class. This class is used to discover the attributes of a
member and provide access to member metadata. The proxyInstance is the object which
has been instantiated from the compiled assembly using Activator.CreateInstance(). The
proxyInstance.GetType.GetMethod(MethodName) retrieves the specific public method
information based on the MethodName. MethodName is the public property of class
DynamicWebServicesProxyLib. As shown in Figure 6.17, the MethodName is assigned
with the WebMethod retrieved from the table VendorWS in the database.

The Invoke() method in the MethodInfo class is used to invoke the method

represented by the current instance, using the specified parameters. In this context, when
the Invoke() method is called, the web method, as shown in figure 6.13, of the supplier
Web Services is invoked. The return result is the dataset of the inventory information.

Figure 6.17: Public Function InvokeCall() in Class DynamicWebServicesProxyLib

Univ
ers

ity
 of

 M
ala

ya

 107

6.4 Conclusion

 The software and hardware development environment are identified. The

implementations of all the tiers in the WSEP System are explain in details. Besides, the

implementation of the dynamic aspect of the system using Microsoft .NET Reflection is

discussed.

Univ
ers

ity
 of

 M
ala

ya

 108

CHAPTER 7: SYSTEM TESTING

 Software testing is any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required results (Hetzel, 1988). There

is a plethora of testing methods and testing techniques; each type of testing validates

different aspects of the software. Classified by purpose, software testing can be divided

into correctness testing, performance testing, reliability testing and security testing.

Categorized by life-cycle phase, software testing can be classified into requirements

phase testing, design phase testing, program phase testing, evaluating test results,

installation phase testing, acceptance testing and maintenance testing. By scope, software

testing can be categorized into unit testing, component testing, integration testing, and

system testing. Software metrics provide a quantitative basis for the development and

validation of models of the software development process. Metrics can be used to

improve software quality.

7.1 Testing Approach

The types of testing that are to be executed depends on the stage in the

development and testing. The process of WSEP System testing follows a pattern that can

be shown in the Figure 7.1. The first stage in the testing process involves unit testing. The

multiple boxes of Unit Testing in Figure 7.1 show that there are multiple units to test.

After the Unit Testing, there is the module testing stage, which involves multiple units to

be tested as single module. If any of these modules are defective, it is necessary to return

to unit testing. However, this return path is optional, and is performed only if the module

testing failed. The dotted arrow in Figure 7.1 indicates this optional path. When all of

these are done, the Integration Testing begins by combining all the individual modules

together. Finally the whole system is tested against the system functional requirements.

Other non-functional requirements are also tested.

Univ
ers

ity
 of

 M
ala

ya

 109

Figure 7.1 Testing Process

7.1.1 Unit Testing

In this stage, individual components are tested to ensure that they operate

correctly. Each component is tested independently without other system components. The

aim of unit testing is to isolate each part of the program and show that the individual parts

are correct. For this project, individual Web Services method is considered as a single

unit. Each Web Services method is tested against defects. There are several approaches to

unit testing. Black box testing and white box testing have been used for this testing

purpose.

7.1.1.1 Black Box testing

Unit Testing
Component 1

Module
Testing

Integration
Testing

Non-Functional
Requirements
Testing

Unit Testing
Component 2

Unit Testing
Component n

System
Testing

Code

Module
Testing

Design
Specification

System
Functional
Requirements

Other
Software
Requirements

Code

Code

Univ
ers

ity
 of

 M
ala

ya

 110

Black box testing relies on the specification of the component which is being

tested to derive test cases. It only concerns about what inputs are put in, and what outputs

are generated as a result of the test. It is a functional testing procedure to validate if the

unit meets its specifications. The unit is a ‘black box’ whose behavior can be determined

by studying its inputs and outputs.

Figure 7.2 shows the test input page for GetVendorProduct unit of the Web

Services. The input is the VendorID which is the parameter of the Web Services method.

The return result of the method is in XML format, which may look like Figure 7.3. The

output of the unit is then studied. If the output shows the correct result, the test is

successful and vice versa.

Figure 7.2 Black Box Testing of a Web Service

 Univ
ers

ity
 of

 M
ala

ya

 111

Figure 7.3 Correct Result of Black Box Testing

7.1.1.2 White Box Testing

Another complementary approach to black box testing is white box testing. It is a

behavioral or structural testing. The testing is done with the knowledge of the code used

to execute certain functionality. Figure 7.4 shows the structure of a unit in the Web

Services method, GetVendorProduct, is analyzed. Univ
ers

ity
 of

 M
ala

ya

 112

 Univ
ers

ity
 of

 M
ala

ya

 113

7.4 White Box Testing: Examining and analyzing the code structure

7.1.2 Module Testing

Once all the units have been tested, it is necessary to ensure that these units work

together as a single module. A module encapsulates all the related components so it can

be tested without other modules. Figure 7.5 shows vendor module that consists of User

Interface, Web Services, bllVendor and dalVendor components. Module testing is done

against all the functionalities for the vendor module

Univ
ers

ity
 of

 M
ala

ya

 114

 Univ
ers

ity
 of

 M
ala

ya

 115

Figure 7.5: Units in a Vendor Module

7.1.3 Integration Testing

In integration testing, individual modules are combined together to test as a group.

This testing is concerned with identifying errors which result from unexpected

interactions between modules. There are two most common strategies used for integration

testing:

• Top-down approach that requires the highest-level modules be tested and

integrated first. This allows high-level logic and data flow to be tested

early in the process and it tends to minimize the needs for drivers.

• Bottom-up approach requires the lowest-level units tested and integrated

first. By using this approach, units or modules are tested early in the

development process and the need for stubs is minimized.

 Bottom-up approach is used for integration testing. There are no problems and

issues found during the integration testing since all the modules and components are built

using .NET 1.1 framework.

7.1.4 System Testing

System testing involves testing of a complete application environment that

mimics real-world use, such as interacting with a database, using network

communications, or interacting with other hardware to evaluate the system's compliance

Univ
ers

ity
 of

 M
ala

ya

 116

with its specified requirements. System testing falls within the scope of black box testing,

and thus, should require no knowledge of the inner design of the code. During this

testing, the whole system is tested against functional requirements and system

requirements that have been specified during system analysis phase. Besides, there is also

the need to test for user interface, performance, security and reliability for the system.

7.2 Non-Functional Requirements Testing

• Security Testing

The system is protected from unauthorised access. This is done by providing user

authentication and using secure channel like SSL to encrypt the data transmits. The

system should provide a means to enter user names and passwords. All the web pages are

protected. If an unauthorized user tries to access any pages, the system will redirect the

user to the login page to enter username and password.

• Dynamic Requirement Testing

The system should provide dynamic and real time operations to the user. The

Supplier Web Services should be invoked at run-time instead of design time. In order to

check if the assemblies are created during run-time, a break point is set in the

DynamicWebServicesProxyLib class where the assembly is compiled and created. By

tracing into the code, the temporary path of dynamic assembly is identified, as shown in

Figure 7.6. There are a few assemblies created in the folder during the execution of the

codes. Univ
ers

ity
 of

 M
ala

ya

 117

Figure 7.6 Assemblies that are Created Dynamically

In order to examine the assembly created, Visual Studio .NET Object Browser is

used. The assembly is referenced and imported. As shown in Figure 7.7, the assembly has

the namespace WSEP.Tools.WebServices.DynamicProxy and has a class PriceQuote

with the function GetInventoryInfo(). This assembly acts as the dynamic proxy that will

bind to Supplier Web Services.

Figure 7.7 Visual Studio .NET Object Browser Is Used to Examine the Dynamic

Assembly

• Performance Testing

In software engineering, performance testing is the testing that is performed to

determine how fast some aspect of a system performs under a particular workload.

Performance testing is to demonstrate that the system meets performance criteria. It

Univ
ers

ity
 of

 M
ala

ya

 118

involves obtaining data concerning how well the system executes the functions they were

designed for.

During the testing process, system attributes such as CPU usage, memory usage,

SQL Server response time are captured to gauge the performance of the system. In order

to do this, a Windows Form test program written in .NET is built. The performance test

screen is shown in Figure 7.8. All the tests are conducted using the same algorithm as in

Table 7.1. The test involves looping of M records of products multiply with X records of

suppliers for each product.

Figure 7.8: Windows Forms Performance Test Screen

Univ
ers

ity
 of

 M
ala

ya

 119

Get N number of quotations from N suppliers for M products

Loop through M products

 For Each Product

 Get X suppliers and suppliers WSDL

End Loop Products

Display Results

Figure 7.9: Algorithm for Performance Testing of Request For Quotation Transaction

The results of the tests are shown in Table 7.1, Figure 7.10 and Figure 7.11. The

usage of CPU, memory and SQL server response time are considered normal.

Table 7.1: Test Result of Performance

Number of
Products

Total Records
Returned

CPU
Usage
(%)

Memory
Usage (%)

SQL Duration
(milliseconds)

1 10 2.0 3.0 60
10 100 4.0 4.0 60
20 200 5.0 7.0 60
50 500 8.0 11.0 200
100 1000 19.0 19.0 240
200 2000 27.0 29.0 303
300 3000 36.0 37.0 310
400 4000 43.0 44.0 370
500 5000 47.0 49.0 430

Univ
ers

ity
 of

 M
ala

ya

 120

0
5

10
15
20
25
30
35
40
45
50

10 100 200 500 1000 2000 3000 4000 5000

Total Records

Performance of WSEP

CPU Usage (%)
Memory Usage (%)

 Figure 7.10: Bar Chart for Test Result of CPU usage and Memory usage

0
50

100
150
200
250
300
350
400
450

10 100 200 500 1000 2000 3000 4000 5000

Total Records

SQL Performance

SQL Duration
(milliseconds)

Figure 7.11: Bar Chart for Test Result of SQL Response Time

Univ
ers

ity
 of

 M
ala

ya

 121

Figure 7.12 shows the SQL Profiler that is used to get the SQL response time

during the testing process. The column Duration shows the execution time in millisecond

for the SQL query. Figure 7.13 show the operating system resources usage during the

testing process. The results of performance testing show no significant degradation in

performance when the number of query records increase.

Figure 7.12: SQL Profiler for SQL Response Time Testing

Univ
ers

ity
 of

 M
ala

ya

 122

Figure 7.13: Windows Performance Utility Tool for Memory and CPU Usage Testing

Univ
ers

ity
 of

 M
ala

ya

 123

7.3 WSEP Metrics

 Software metrics can be defined as activities concerned with measurement in

software engineering (Fenton and Neil, 1999). Software metrics provide feedback about

the external quality aspects of software system such as maintainability, reliability and

reusability and provide a ways to estimate the effort needed for testing. They measure

different aspects of software complexity and therefore play an important role in analyzing

and improving software quality (Briand, 1999).

 In recent years many researchers and practitioners have proposed a number of

code metrics for object oriented software. Traditional metrics for measuring software

such as Lines of Code (LOC) have been found inadequate for analysis of object-oriented

software (Fenton and Neil, 1999). The complexity of an object-oriented design may be

quantified by measures that assess its internal quality. Many metrics have been proposed

to statically evaluate the quality of a software design. Two such measures are coupling

and cohesion (Mitchell, 2002).

 Figure 7.14 depicts how different measures of software complexity can

characterize the overall quality of a software product. Internal Quality measures are those

which can be performed in terms of the software product itself. They can be evaluated by

measuring the Coupling and Cohesion of the software design.

 Internal Quality measures have no practical meaning within themselves. To give

meaning to these measures, they have to be characterized in terms of the External Quality

of a software product (Mitchell, 2002). External Quality measures are evaluated with

respect to how a product relates to its environment. The maintainability, reliability and

reusability are examples of External Quality that will be measured in this project. These

measures are considered to be inherently meaningful.

Univ
ers

ity
 of

 M
ala

ya

 124

Figure 7.14: Software Quality Model (Mitchell, 2002)

7.3.1 Coupling

Coupling is defined as “two classes are coupled when methods declared in one

class use methods or instance variables of the other class” (Chidamber and Kemerer,

1994). In ontological terms, "two objects are coupled if and only if at least one of them

acts upon the other, X is said to act upon Y if the history of Y is affected by X, where

history is defined as the chronologically ordered states that a thing traverses in time"

(Vessey and Weber, 1984).

Let X = <x, p(x)> and Y = <y, p(y)> be two objects.

p(x) = { MX }  { IX }

p(y) = { MY }  { IY }

where { Mi } is the set of methods and { Ii } is the set of instance variables of object i.

Using the above definition of coupling, any action by {MX} on {MY} or {IY}

constitutes coupling, as does any action by {MY} on {MX} or {IX}. When MX calls MY,

MX alters the history of the usage of MY; similarly when MX uses IY, it alters the access

and usage history of IY. Therefore, any evidence of a method of one object using methods

Internal Quality External Quality Quality In Use

Depends on Depends on

Influences Influences

Evaluated by Coupling and
Cohesion of the design

Evaluated by the
Maintainability, Reliability

and Reusability of the
design

Univ
ers

ity
 of

 M
ala

ya

 125

or instance variables of another object constitutes coupling. Since objects of the same

class have the same properties, two classes are coupled when methods declared in one

class use methods or instance variables of the other class (Shyam and Chris, 1993).

A class is coupled to another class if it uses the member method and/or instance

variables of the class. A good software design should minimize coupling between objects.

This will promote reusability, maintainability and testability of a class (Chidamber and

Kemerer, 1994). A high level of coupling is undesirable as it prevents reuse and is

detrimental to modular design. The more independent a class is, the easier it is to reuse it

in another application. The larger the number of couples, the higher the sensitivity to

changes in other parts of the design; maintenance is therefore more difficult (Shyam and

Chris, 1993).

Coupling Between Objects (CBO) is used in this project as a metric to measure

coupling of the WSEP system.

Metric 1: Coupling Between Objects (CBO)

CBO is defined as the count of the number of other classes to which it is coupled

(Chidamber and Kemerer, 1994). Two classes are coupled when methods declared in one

class use methods or instance variables defined by the other class. Multiple accesses to

the same class are counted as one access. Only method calls and variable references are

counted. Other types of reference, such as use of constants, handling of events, use of

user-defined types and object instantiations are ignored.

7.3.2 Cohesion

Bunge defines similarity () of two things to be the intersection of the sets of

properties of the two things (Bunge, 1997):

 (X,Y) = p(x)  p(y)

Based on this principle of defining similarity, the degree of similarity of the methods

within the object can be defined to be the intersection of the sets of instance variables that

Univ
ers

ity
 of

 M
ala

ya

 126

are used by the methods. It should be clearly understood that instance variables are not

properties of methods, but it is consistent with the notion that methods of an object are

intimately connected to its instance variables (Shyam and Chris, 1993):

 (M1,M2) = { I1 }  { I2 }

where  (M1,M2) = degree of similarity of methods M1 and M2

and { Ii } = set of instance variables used by method Mi

Example: Let {I1} = {a,b,c,d,e} and {I2} = {a,b,e}. {I1}  {I2} is non-empty, and  (M1,

M2) = {a,b,e}.

The degree of similarity of methods in an object class are related both to the

conventional notion of cohesion in software engineering as well as encapsulation. The

degree of similarity of methods can be viewed as a major aspect of object class

cohesiveness (Shyam and Chris, 1993). The cohesion of a class is the degree to which its

methods are related to each other. It is determined by examining the pattern of state

variable accesses within the set of methods. If all the methods access all the state

variables within the class then they have high cohesion; if they access disjoint sets of

variables then the cohesion is low. If a class exhibits low method cohesion it indicates

that the design of the class has probably been partitioned incorrectly. This is not

desirable. If a class performs several unrelated functions, it should be split up into more

classes with individually higher cohesion. On the other hand, a high value of cohesion

implies that the class is well-designed. A cohesive class will tend to provide a high

degree of encapsulation, whereas a lack of cohesion decreases encapsulation and

increases complexity.

 Cohesion metrics measure how well the methods of a class are related to each

other. For measuring cohesiveness of WSEP system, the improved Lack of Cohesion Of

Methods (LCOM) (Hitz & Montazeri, 1995) is used.

Metric 2: Lack of Cohesion of Methods (LCOM) By Hitz and Montazeri

Univ
ers

ity
 of

 M
ala

ya

 127

Lack of Cohesion in Methods (LCOM) is defined as “the number of pairs of

methods in a class, having no common attributes, minus the number of pairs of methods

sharing at least one attribute” (Chidamber and Kemerer, 1994). The metric is set to zero

when the value is negative.

Li and Henry redefine LCOM as the number of disjoint sets of methods accessing

similar instance variables (Li and Henry., 1993). Hitz and Montazeri restate Li’s

definition of LCOM based on graph theory. LCOM is defined as the number of

connected components of a graph (Hitz and Montazeri, 1995). A connected component is

a set of related methods and class-level variables. There should be only one such a

component in each class. If there are 2 or more components, the class should be split into

smaller classes. In other words, if the LCOM value is equal to or higher than 2, the

system has low cohesion which is undesirable.

The assumption behind the cohesion metrics for the WSEP system is that methods

are related if they work on the same class level variables; and methods are unrelated if

they work on different variables. Constructors and destructors are ignored in the count of

LCOM. This is because they frequently initiate or clear all variables in the class and

making all methods connected through these variables, which will increase cohesion

artificially.

7.3.3 Analysis of the Result

Table 7.2 shows the results in details for each of the modules being analyzed for

CBO and LCOM. There are all together 23 classes with around 4000 lines of code are

analyzed. A bar chart result is shown Figure 7.15.

Univ
ers

ity
 of

 M
ala

ya

 128

Table 7.2: Results of Each Module Being Analyzed

Module Authentication Maintenance

E-Procurement

Transaction WS

Classes 3 17 3

Lines of Code 160 2575 1267

CBO 3.4 3.5 3.85

LCOM 1.28 1.25 1.36

Quality Good Good Medium

WSEP Metrics

0

0.5

1

1.5

2

2.5

3

CBO LCOM

Authentication
Maintenance
E-Procurement Transaction WS

Figure 7.15: Bar Char for the WSEP Metrics Result

According to Houari, CBO value which is higher than 14 is considered too high

(Houari, Robert, Thierry, 2005). The WSEP system has CBO average value of 3.58,

which is considered low. This means that the WSEP system has low coupling where the

objects in the system have high degree of independence and are less coupled from each

Univ
ers

ity
 of

 M
ala

ya

 129

other. The higher the degree of object independence, the more likely it is that objects will

suitable for reuse within the same applications and within other applications.

Besides, a higher degree of coupling between objects is likely to complicate

application maintenance because object interconnections and interactions are more

complex. Uncoupled objects are easier to augment and maintain than those with a high

degree of dependencies.

The WSEP system has the average LCOM value of 1.28 which is closed to 1. In

other words, the objects in system have high cohesion. High cohesion is desirable since it

promotes encapsulation. In object-oriented programming, it is good to assign a single

logical task to a class. This keeps cohesion high and maximizes reusability, while

complexity is kept manageable.

Based on the result of CBO and LCOM, the WSEP system is said to have low

coupling and high cohesion. In conclusion, the low level of coupling and high level of

cohesion promote reuse, increase the maintainability and reliability of the system.

7.4 Conclusion

Software testing is to assure the system performs the functionality for which it

was built. A few testing methods which include unit testing, integration testing, system

testing were carried out to ensure the system meet its requirements. Besides, three of the

non-functional requirements were tested. WESP has passed all these tests. In additional,

two of the metrics techniques were applied for software quality measurement.

 Univ
ers

ity
 of

 M
ala

ya

 130

CHAPTER 8: CONCLUSION

8.1 Problems Encountered

There are a few problems and issues encountered during the development of

WSEP system. This section will discuss the problems and its solutions for each of them.

• Difficulties in Dynamic Binding of Web Services

 Although there are a lot of documentations regarding creating Web Services

applications, none of them explain how to dynamically bind the Web Services. All of the

documentations in Microsoft Developer Network (MSDN) explain the usage of Web

Services by static binding with the proxy using Visual Studio .NET 2003.

In order to find some solutions to this problem, the Web Sites of newsletters were

consulted and questions were posted in the forums in addition to Microsoft’s MSDN web

site. However, the information is inadequate and is not readily available.

• Difficulties in Getting Business Domain Knowledge

 Lacking of exposure in E-Procurement business process had impeded the progress

of analysis phase. However, by reading books and doing research in this field, the process

flow of E-Procurement was identified.

• Problems with Web Forms

There were some problems related to the use of ASP.NET Web Forms. The .NET

Web Services application is stateless programming model. The consequence is that each

incoming request is handled independently of the previous ones. The only state

maintained between requests is anything that saved or persisted in a data store.

Univ
ers

ity
 of

 M
ala

ya

 131

8.2 System Strengths

 The strengths of WSEP lie in the use of technology that overcomes many of the

weaknesses of the traditional system that uses EDI. The following are some of the

strengths:

• Open Standard

WSEP system is implemented using Web Services. Web services are software

components that communicate using pervasive and standards-based Web technologies,

including HTTP and XML-based messaging. Web Services are designed to be accessed

by other applications. Since they are based on open standards such as HTTP and XML-

based protocols including SOAP and WSDL, Web services are hardware, programming

language, and operating system independent. This means that system written in different

programming languages and running on different platforms can seamlessly exchange data

over intranets or the Internet using Web Services.

• Provide Real Time Information

Web Services provide an easy way for integration. Web Services have evolved as

a practical and cost-effective solution for uniting information distributed among

applications. By querying through Web Services, WSEP system can retrieve information

from the supplier legacy systems. Any updates or changes in the supplier systems will be

made available immediately.

• N-Tier Architecture is very flexible

 The n-tier architecture of WSEP made it very easy to extend and add on new

modules. The system is modular and allows the addition of new modules without

changing the overall architecture of the whole system.

• Reliability

WSEP system uses .NET framework and Microsoft SQL Server that are built for

Univ
ers

ity
 of

 M
ala

ya

 132

enterprise level of applications. The system relies on a proven technology that has been

developed and tested by millions of users worldwide.

8.3 System Constraints and Future Enhancement

• System Constraints

The WSEP system is implemented using local server with a private registry that

keeps data on the database. As there is no public UDDI, it is not possible for the

information to be published over the Internet as a whole. There is no real-world

environment for testing the system. However, theoretically, the same system can work

over the Internet once a permanent Internet Service Provider (ISP) link can be

established, and a Web Server configured for this purpose is set up.

• Future Enhancements

A number of potential extensions and enhancements of the project have been

identified. These are discussed in the following:

Enhance User Interface

Since the WSEP system is implemented using Web Services, the user interface can be

implemented using other user interface components, such as mobile devices and Personal

Digital Assistants (PDA). All these components work fine with Web Services. However,

this will require further development to design components for downloading web pages

into mobile devices and PDA.

Performance Enhancement

By configuring IIS, we can allow ASP.NET handles incoming requests by servicing them

with a pool of threads. Usually, when a request comes in, a thread from the pool that is

idle will pop in to service the incoming request. However, there is a limit of threads that

can be created to handle a large number of requests. These factors limit the performance

of Web Service requests.

Univ
ers

ity
 of

 M
ala

ya

 133

The current WSEP system is using synchronous Web Services. We can further improve

the performance of the WSEP system by using asynchronous Web Services calls with

callback functions and multithreading. There can be a performance benefit of up to a few

times the number of service requests processed.

Web Services Security

Security has always been a main problem of implementing Web Services. SSL has been

used in this project to secure the communication between the channels. There is a need to

apply more security measures like authentication of the clients who call the Web Services

to prevent unauthorized access of the services.

8.4 Knowledge and Experience Gained

This project has been a very rewarding experience. There are many knowledge and

experience gained during the development of this project which includes:

• .NET Framework

.NET Framework is powerful platform to build enterprise application. There are

many built-in classes and library in this Framework, and many lessons were learned when

using and applying its concepts when developing this system.

The .NET Framework has been built with Web Services in mind. Therefore

creating Web Services application with .NET is not difficult. It provides full support for

using web standards such as eXtensible Markup Language (XML) and Simple Object

Access Protocol (SOAP) in a seamless manner.

• Visual Studio.NET

Visual Studio.NET is an easy to use and user friendly IDE. There are step by step

tutorials that guide the user of using it. The debugging tool helps a lot in tracing the code

Univ
ers

ity
 of

 M
ala

ya

 134

and finding the errors.

• ASP.NET

ASP.NET is very much different from ASP. ASP.NET is a unified web

development model that includes the services necessary for building enterprise-class web

applications with a minimum of coding. It offers many new opportunities to learn about

programming web pages that are interactive and dynamic. VB.NET has been used as

code behind to develop this project. This enables the ASP.NET application to benefit

from the common language runtime, type safety, inheritance and so on.

• ADO.NET

ADO.NET is a database access technology that offers several advantages over

previous versions of ADO and over other data access components which includes

interoperability, performance, maintainability and scalability. The use of the Dataset has

been very exciting, as they allow easy retrieval of data and direct binding to DataGrid

web control.

• Web Services

Web services extend the World Wide Web infrastructure to provide the means for

software to connect to other software applications. Web Services combine the best

aspects of component-based development and the Web. This project has provided means

to learn more about Web Services.

 Univ
ers

ity
 of

 M
ala

ya

 135

8.5 Conclusion

By using the dynamic nature of Web Services, this project shows the design and

implementation of an E-Procurement system in the context of Supply Chain Management

to provide real time information sharing and dynamic procurement operations. Earlier

Supply Chain Management which uses EDI technology to integrate the business

processes in the Supply Chain seems to be costly and inflexible. With the advent of Web

Services, most of the problems faced by earlier technologies can be overcome. Web

Services use standard protocols and data formats such as HTTP, SOAP, and XML to

connect to other software applications. This project demonstrates the using of Web

Services to provide dynamic procurement operations over the internet.

 The development of this project uses Web Services and Microsoft .NET

technologies that improve upon EDI technology in terms of easy of use in development,

scalability and maintainability. The system is designed using n-tier architecture that

separates the responsibilities of the system into multiple tiers. This separation provides

encapsulation for the different tiers and components, which results in a more scalable and

robust system.

Univ
ers

ity
 of

 M
ala

ya

References

Alonso, G., et. al., (2003). Web Services – Concepts, Architectures and Applications.

Springer Verlag, Heidelberg, Germany.

Amit R. and Zott C., (2001). Value creation in e-Business. Strategic Management Journal,

Vol: 22, Issue:6-7

Anne T. M., (March 2001), Enabling Open, Interoperable, and Smart Web Services: The

Need for Shared Context, at http://www.w3.org/2001/03/WSWS-popa/paper29, Sun
Microsystems

 Archer N. and Yuan Y., (2000). Managing business-to-business relationships throughout the

e-commerce procurement life cycle. Internet Research: Electronic Networking
Applications and Policy, Vol:10

Barua A., Konana P., Whinston A.B., and Yin F., (2001). Driving E-Business Excellence.

Sloan Management Review.

Briand L.C., (March 1999). Empirical Investigations of Quality Factors in Object-Oriented

Software, Empirical Studies of Software Engineering, Ottawa, Canada

Bunge, M., (1977), Treatise on Basic Philosophy : Ontology I : The Furniture of the World,

Boston: Riedel

Chartier R., (2005) Application Architecture: An N-Tier Approach - Part 1, at
 http://www.15seconds.com/issue/011023.htm

Chase N.,(Jun 2002) Introduction to ebXML at

https://www6.software.ibm.com/developerworks/education/x-ebxml/

Chidamber L., Shyam A. and Chris K., (June 1994). A Metrics Suite for Object-Oriented

Design, IEEE Transactions on Software Engineering, pp. 476-492

Christopher M., (1992) Logistics and Supply Chain Management – Strategies for Reducing

Costs and Improving Services, Pitman Publishing (London)

Clabby J., (2002). Web Services Explained: Solutions and Applications for the Real World,

Prentice Hall PTR 1st edition.

Computer Dictionary, September 2005, at

http://www.webopedia.com/TERM/W/Web_services.html

Cooper C.M., Lambert D.M. and Pagh J.D., (1997) Supply Chain Management: More Than

A New Name For Logistic, The International Journal of Logistic Management, Vol 8,

Univ
ers

ity
 of

 M
ala

ya

No1

Ellram L.M. and Cooper C.M, (1990) Supply Chain Management and the Shipper – Third

Party Relationship, International Journal of Logistics Management, pp. 1 - 10

Ethan C., (February 2002) Web Services Essentials - Distributed Applications with XML-

RPC, SOAP, UDDI & WSDL, O'Reilly & Associates

Fenton N. E. and Neil M., (1999), Softwre Metrics: Success Failures and New Directions,

The Journal of System and Software, vol. 47, pp. 149 – 157

Gamma E., (1995), Design Pattern – Elements of Reusable Object Oriented Software

,Addison Wesley.

Gerstbach P., (2005), ebXML vs. Web Services - Comparison of ebXML and the Combination

of SOAP/WSDL/UDDI/BPEL, Vienna University of Technology

Gilani S.F. et al., (2002), Visual Basic .NET Reflection Handbook, Wrox Press Ltd.

Hetzel B., (1988), The Complete Guide to Software Testing, 2nd edition, John Wiley & Sons

Inc.

Hitz M., Montazeri B, (1995). Measuring Coupling and Cohesion In Object-Oriented

Systems, ISACC 1995. Monterrey, Mexico (10 p.)

Houari A. S., Robert G., Thierry M., (September 2005). Can Metrics Help Bridging the Gap

Between the Improvement of OO Design Quality and Its Automation? at
http://www.iro.umontreal.ca/~sahraouh/papers/ICSM00.pdf

Hugo H. and Allen B., (2004), Web Services Glossary, at http://www.w3.org/TR/ws-gloss/,

W3C Working Group

IBM, J2EE vs .NET, October 2005 at
 http://www-06.ibm.com/software/smb/na/J2EE_vs_NET_History_and_Comparison.pdf

IBM, On Demand Glossary, October 2005 at

http://www-306.ibm.com/e-business/ondemand/us/toolkit/glossary_e.shtml

IBM Web Services Architecture Team, (September 2000), Web Services architecture -

overview - the stage of evolution for e-business, at http://www-
106.ibm.com/developerworks/web/library/w-ovr/

Ines Alves De Queiroz, (2002) Supply Chain Management: A Business Approach to Some

Actual Aspects. Financial Engineering, E-Commerce and Supply Chain, Kluwe
Academic Publishers

Univ
ers

ity
 of

 M
ala

ya

Janyashankar M. Swaminathan, Stephen F. Smith, and Norman M. Sadeh, (1996) A Multi
Agent Framework for Modeling Supply Chain Dynamics, Technical Report, The
Robotics Institute, Carnegie Mellon University

Kercher, J., (2001) Authentication in ASP.NET: .NET Security Guidance, MSDN Magazine

August 2001.

Knudsen D, (1999) Procurement Performance Measurement System, Department of Design

Sciences, Lund University

Knudsen D, (2003) Improving Procurement Performance with E-Business Mechanisms,

Department of Design Sciences, Lund University

Lee H.L. and Billington C., (1995) The Evolution of Supply-Chain-Management Models and

Practice at Hewlett-Packard, Interfaces 25

Li, W. and Henry, S., (1993) Maintenance Metrics for the Object Oriented Paradigm,

Proceeding of the First International Software Metrics Symposium, Baltimore, MD,
May 21-22, 1993, pp. 52-60

Liberty J.and Hurwitz D., (2003) Programming ASP.NET, Second Edition, O'Reilly

Marciniak J. (ed.), (2001) , Encyclopedia of Software Engineering, 2nd. Edition, John Wiley

and Sons, pp. 993-1005.

Martin G., Marc H., Noah M., (June 2003), SOAP Version 1.2 Part 1: Messaging

Framework, at http://www.w3.org/TR/soap12-part1/, w3.org

Microsoft .NET, October 2005 at http://www.microsoft.com/net/default.mspx

Microsoft SQL Server 2000 Resource Kit, November 2005 at

http://www.microsoft.com/technet/prodtechnol/sql/2000/reskit/part10/c3361.mspx?mfr
=true

Min H. and Galle W.P., (1999) Electronic commence usage in business-to-business

purchasing. International Journal of Operations & Production Management.

Mitchell A., (2002) Dynamic Coupling and Cohesion Metrics For Java Programs.

Department of Computer Science, NUI Maynooth, Ireland

Monczka, R., Trent, R., and Handfield, R., (2001). Purchasing and Supply Chain

Management 2nd Edition, South-Western.

MSDN, Microsoft .NET Framework Developer Center October 2005 at
http://msdn.microsoft.com/netframework/gettingstarted/default.aspx

Univ
ers

ity
 of

 M
ala

ya

MSDN, Microsoft .NET Framework Developer’s Guide, October 2005 at
http://msdn2.microsoft.com/en-us/library/w9fdtx28(VS.71).aspx

Neef D., (2001) e-Procurement: From Strategy to Implementation, Prentice Hall/Financial

Times

Novack R.A. and Simco S.W., (1991) The Industrial Procurement Process: A Supply Chain

Perspective. Journal of Business Logistics, Vol: 12, Issue:1

OASIS, (September 2005) at

http://www.ebxml.org/

Orfali R. and Harkey D., (March 1998), Client/Server Programming With Java and CORBA,

Wiley Computer Publishing

Roger W., (December 2001), XML Web Services Basics, at

http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?p
ull=/library/en-us/dnwebsrv/html/webservbasics.asp, Microsoft

Roman E., Ambler S. W., and Jewell T., (2001), Mastering Enterprise JavaBeans, Wiley

Computer Publishing.

Scott W. and Oldfield C., (2004) The Nine Basic Rules of a Successful Supply Chain, Waer

Systems

Shyam R. Chidamber, Chris F. Kemerer, (1993). A Metrics suite for Object Oriented design,

M.I.T. Sloan School of Management

Sommerville I., (2001) Software Engineering 6th Edition, Addison Wesley.

Thomas Connolly, Carolyn Begg, (2002) Database Systems, A Practical Approach to

Design, Implementation, and Management Third Edition, Addison Wesley

 Tom B., (July 2002), Understanding UDDI - Tracking the evolving specification, at

http://www-106.ibm.com/developerworks/library/ws-featuddi/, IBM

UDDI.ORG, (October 2004), UDDI Executive Overview: Enabling Service-Oriented

Architecture, at http://uddi.org/pubs/uddi-exec-wp.pdf

Urban S. D., Dietrich S. W., Saxena A., and Sundermier A., (March 2001), Interconnection

of Distributed Components: An Overview of Current Middleware Solutions, Journal of
Computer and Information Sciences and Engineering, 1(1):23-31

 van Weele A., (2002) Purchasing and Supply Chain Management, Analysis, Planning and

Practice. Thomson Learning

Univ
ers

ity
 of

 M
ala

ya

Vessey, I. and Weber, R., (1984) Research on Structured Programming: An Empiricist's
Evaluation, IEEE Transactions on Software Engineering, vol. SE-10, pp. 394-407.

W3C Recommendation, Extensible Markup Language (XML) 1.0 (Third Edition), (February

2004) at http://www.w3.org/TR/

WordNet, October 2005 at
 http://wordnet.princeton.edu/perl/webwn?s=methodology

Yan Y.H. and Klein M., (2005), Web Services vs. ebXML - An Evaluation of Web Services

and ebXML for e-Business Applications, Faculty of Computer Science, University of
New Brunswick, Canada

Zhang Mi, Xu Jianjun, Cheng Zunping, Li Yinsheng, Zhang Binyu, (2005) A Web Services-

based Framework for Supply Chain Management, Object-Oriented Real-Time
Distributed Computing

Univ
ers

ity
 of

 M
ala

ya

