
Faculty of Computer Science and Information Technology
University of Malaya

Kuala Lumpur

Perpustakaan SKTM

Cloth cJimulation

Nor Azlina Binti Mohamad Salleh
WEK000266

Project Supervisor : Mr Amirrudin Bin Haji Kamsin
Project Moderator : Mrs Nornazlita Binti Hussin

A project report submitted to the
Faculty of Computer Science and Information Technology

University of Malaya
Kuala Lumpur

Dissertation submitted in partial fulfillment of the requirement for the
Degree of Bachelor of Computer Science

Session 2003/2004

Univ
ers

ity
 of

 M
ala

ya

---+-+---- Clotb e)imulation

WXES 3181

Univ
ers

ity
 of

 M
ala

ya

~BSRTACT

With cloth simulation, as in most of Computer Graphics, the chaJienge lies in making

the artifact on the screen look realistic. In particular, the cloth's movements and

interactions with its surroundings ought to look familiar to the viewer, who should

even be able to recognize different types of cloth simply by watching the simulation's

behaviour.

In the literature, realistic cloth movement has been obtained using a network

of particles connected by springs (in that case, the system is referred to as a mass­

spring system) or other natural forces. With such a model, perturbations at one cloth

vertex are propagated to the other areas of the cloth as dictated by the system of

differential equations that links the forces acting on all the particles.

Any cloth simulation system needs efficient numerical methods for

integrating the equations that describe the mechanical behaviour of the discrete

representation of the cloth. Choosing the adequate method should be done with full

knowledge of the advantages and weaknesses of the main techniques.

Most simple simulators use explicit integration, which is easy to implement

and fairly fast for small pieces of cloth. Freecloth uses implicit integration, which is

harder to implement but gives much better results for large pieces of cloth.

Implementation was done in OpenGL. It has been compiled on Linux and

under Windows, and it should be straightforward to port to other operating systems.

Univ
ers

ity
 of

 M
ala

ya

~CKNOWLEDGEMENT

In the name of God, Most Gracious, Most Merciful, AlhamduliLlah, thanks to

ALlah, The Almighty for giving me the strength and confidence to complete this

project.

First and foremost I would like to express my gratitude to the Faculty of

Computer Science and Information Technology (FCSIT), University of Malaya for

giving me an opportunity to do my final year project. FCSIT has provided valuable

and good facilities and commitments to assist me in completing my final year project

report successfully and smoothly.

My greatest thank you and appreciation to Mr. Amirrudin Bin Kamsin, my

remarkable supervisor for whom I respect and salute to the utmost degree. Thank you

for giving this golden opportunity to do this project under his privilege supervision.

Your numerous and varied tasks as well as guidance has contributed a lot in my self­

improvement.

Special thanks to Mrs. Nomazlita Binti Hussin, my thesis moderator for

taking off attending my VIVA presentation and putting efforts in his valuable query

and questions to me. Without him, I would not have made this thesis report a

success.

My most gratitude also goes to my colleagues, coursemates and housemates,

for their comments and advice throughout this project. Thank you very much for

your suggestions and ideas which had further enhance the value of Cloth

Simulation.

11

Univ
ers

ity
 of

 M
ala

ya

Last but foremost , my warmest thank you to my parents , Mr. Mohamad

Salleh Bin Selamat and Mrs. Suleha Bin Selama, for all the supports materially and

non-materiaJiy, for raising me since birth up tiJI now. Also to my siblings, very much

gratitude. Families are forever ..

Finally , mil1ions of thanks to all who have assisted me during this project officially

or non- officially.

"So, verily, with every difficulty, there is relief:

Verily, with every difficulty there is relief."

The Holy Quran,

Chapter 94 (AI Sharh), Verses 5 & 6

lll

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iv
LIST OF FIGURES . vii
LIST OF TABLES vii

CHAPTER 1 : INTRODUCTION
1.1 Computer Graphics .. 1
1.2 History of Computer Graphics . 1
1.3 Introduction to Computer Simulation . 3
1.4 Objectives . 3
1.5 Scope........... 4
1.6 Target User . 4
1. 7 Project Outcome . 5
1.8 Schedule . 5

1.8.1 Planning .. 5
1.8.2 Deliverables and Milestone of Development Stage 6

CHAPTER 2 : LITERATURE REVIEW
2.1 Introduction . 7
2.2 Overview.. 7

2.2.1 How cloth simulation work? . 8
2.2.2 Numerical models . 1 0
2.2.3 Internal force representation 11
2.2.4 External force representation 12
2.2.5 Fundamental Dynamic Equation 14
2.2.6 Numerical integration methods 14
2.2.7 Collision handling 18

2.3 Review On Existing System . .. 19
2.3.1 Syflex - The Cloth Simulator . 19
2.3.2 Stitch Lite - The Cloth Simulator 21
2.3.3 ClothSim- The Cloth Simulator 22

2.4 Review of Journal . 24
2.4.1 Large Steps in Cloth Simulation .. 24
2.4.2 Devil in the Blue-Faceted Dress: Real-Time Cloth Animation 27

2.5 Technological Review ... 29
2.5.1 Programming Language Overview 29

2.5.1.1 Microsoft Visual Basic 6.0 . 29
2.5.1.2 C++ 30
2.5.1.3 OpenGL . 30
2.5.1 .4 Java 32

2.5.2 Software Overview .. 33
2.5.2.1 MAYA 33
2.5.2.2 3D Studio Max 33
2.5.2.3 Adobe Photoshop 6.0 34

IV

Univ
ers

ity
 of

 M
ala

ya

2.5.3 Operating System Overview 35
2.5.3.1 Microsoft Windows 2000 as Network Operating System 35
2.5.3.2 UNIX Operating System 35
2.5.3.3 Linux Operating System 36

CHAPTER 3 : METHODOLOGY AND SYSTEM ANALYSIS
3.1 Methodology 37

3.1.1 Waterfall Model 38
3.1.2 Prototyping Model 40

3.2 Information Gathering Methods 43
3.3 Requirements Analysis ... 44

3.3.1 Functional Requirements 44
3.3.2 Non-functional Requirements 45

3.4 System Requirement 46
3.4.1 Hardware Requirement 46
3.4.2 Operating System Requirement.. 46
3.4.3 Programming Language Requirement.................................... 49

3.4.3.1 C++ 49
3.4.3.2 OpenGL 49

3.4.4 Software Requirement . 50
3.4.4.1 Microsoft Visual C++... 50

3.5 Conclusion 51

CHAPTER 4 : SYSTEM DESIGN
4.1 Overview 52
4.2 Program Design 52

4.2.1 Module Design 52
4.2.2 System Structured Chart 53
4.2.3 Process Flowcharts 54

4.3 User Interface Design 56
4.4 Conclusion 57

CHAPTER 5 : SYSTEM IMPLEMENTATION
5.1 Introduction... 58
5.2 Development Environment I Platform...................................... 58

5.2.1 Hardware Requirement 58
5.2.2 Software Requirement 59

5.3 How Cloth Simulation Work?.. 60
5.3.1 Mass-Spring Models Of Cloth.. 60
5.3.2 Surface Topology.. 60
5.3.3 Types Of Springs... 61
5.3.4 Evolving A Mass-Spring System... 62
5.3.5 Cloth Simulation Algorithm.. 63

5.4 Overview of OpenGL API (Application Programmer's interface) 64
5.4.1 Three Views Of Opengl . 64
5.4.2 Opengl Functions... 65

5.5 Coding and Coding Approach.. 66
5.5.1 Pseudo Code.. 66

v

Univ
ers

ity
 of

 M
ala

ya

5.6 Documentations . 67
5.6.1 Internal Documentation.. 68
5.6.2 External Documentation.. 69

CHAPTER 6 : SYSTEM TESTING
6.1 Introduction .. 70
6.2 Types of Errors . 70
6.3 Testing Organization... 72

6.3.1 Unit Test 72
6.3.2 Module Test 72
6.3.3 Integration Test 73

6.4 Testing Strategies.. 73
6.5 Summary... 74

CHAPTER 7 : SYSTEM EVALUATION
7.1 Introduction... 75
7.2 Problems Encountered and Recommended Solutions......................... 75

7.2.1 Determining the Scope of System 75
7.2.2 Time Constraint... 76
7.2.3 Lack of Mastery in Technical & Programming Skill.................... 76
7 .2.4 User Interface .. 77

7.3 Strengths of Project.. 78
7.3.1 Interesting 3D Performance.. 78
7.3.2 Object Interaction and 3D Environment................................... 78
7.3.3 Real Images .. 78

7.4 Limitations of Project . 78
7.4.1 Interface... 78

7.5 Future Enhancement... 79

7.6 Knowledge and Experiences Gained . 80
7.6.1 Introduction Phase 80
7.6.2 Literature Review 80
7.6.3 Methodology and System Analysis.. 81
7.6.4 System Design 81
7.6.5 System Implementation... 81
7.6.6 System Testing.. 82

7. 7 Conclusion . 82

APPENDIX A 83
APPENDIX 81..... 89
APPENDIX 82 100

REFERENCES 112

VI

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1 : How cloth simulation work . 8
Figure 2.2 : The vertex I mass...... 11
Figure 2.3 : Structural, Shear and Bend springs.... 11
Figure 2.4 : Explicit integration methods: the over-elongation problem.... 16
Figure 2.5 : Syflex - The Cloth Simulator.. 19
Figure 2.6 : Stitch Lite- The Cloth Simulator.. 21
Figure 2.7 : ClothSim - The Cloth Simulator................. 22
Figure 3.1 : System Development Process Model.. 37
Figure 3.2 : The waterfall model........... 39
Figure 3.3 : The prototyping model...... 40
Figure 3.4 : The Evolutionary Prototyping... 41
Figure 3.5 : The waterfall model with prototyping... 42
Figure 4.1 : Structured chart for Cloth Simulation. 53
Figure 4.2 : Flow chart for main menu in Cloth Simulation... 54
Figure 4.3 : Flow chart for gravity and wind affect modules. 55
Figure 4.4 : Interface for Cloth Simulation...... 57
Figure 5.1 : Force a linear spring exert on the two particles it connects. 60
Figure 5.2: A cloth surface modeled with a triangular and quadrilateral

m.esh of particles . 60
Figure 5.3 : The three different types of springs used in the mass-spring

model of cloth 61
Figure 6.1 : Testing Steps 72

Table 1.1 : First Semester 5
Table 1.2 : Second Semester 5
Table 1.3 : Deliverables and Milestone 6
Table 3.1 : Hardware Requirement 46

Vll

Univ
ers

ity
 of

 M
ala

ya

-+-+---- (lotb cJimulation

C.haptor 1 :
lntroduetion

Univ
ers

ity
 of

 M
ala

ya

CHAPFER.l: IN1RODUCI10N

1.1 Computer Graphics

Computer Graphics is concerned with theories and techniques to input, output,

generate, transform, manipulate and transmit pictures with the aid of computers. It

objects are artifacts obtained by synthesis. In contrast, picture or image processing

deals with images obtained from the real world, it is field quite distinct from

computer graphics although some overlap exists.

Graphics are natural and efficient way of communicating information.

Computer graphics is an applied branch of computer science. Computer graphics is

applied in Computer Aided Design (CAD), presentation graphics, computer arts,

entertainment, education and training (simulator), image processing and Graphical

User Interface (GUI).

The topics of computer graphics include output primitives, two-dimensional

transformation, two-dimensional viewing, three-dimensional object representation,

three-dimensional transformation, visible surface detection and surface rendering.

Three-dimensional graphics is a graphics system in which a three-dimensional data

set is converted to two-dimensional for viewing.

1.2 History of Computer Graphics

The middle 50's to early 60's was the 'beginning' era. The early 60's to the late 60's

was the 'gee whiz, look what aerospace and automotive is doing' era and the late

60's to the early 70's was the 'let's form a new graphics company' era.

>>1950s

In 1950, the first computer-driven display, attached to Massachusetts Institute of

Technology's (MIT), was used to generate simple pictures. This display made use of

1

Univ
ers

ity
 of

 M
ala

ya

~1:9~,

a cathode-ray tube. During 1950s, interactive computer graphics made little progress

because the computers of that period were so unsuited to interactive use. These

computers were number crunchers.

>>1960s

In the spring of 1963, Dr Ivan Sutherland a MIT described Sketchpad with some of

the seminal data-structure work laying the software-theoretical basis for computer

graphics. The system uses a light pen to draw pictures on the display. The promoted

interactive computer graphics. Around 1963, Steve Coons began developing surface­

patch techniques for computer graphics modelling. In early 1960s, there were beam­

forming techniques, dot raster systems and line raster system.

IBM organized a program call Demand in an effort to evolve CAD and CAM

techniques. There were inefficient operating systems and high cost of development

and implementation of interactive graphics applications. The applications in 1960s

included CAD in the aircraft and textile industries, management information system,

simulations, process control, graphics arts and computer generated movies.

>>1970s

The early systems use keyboards and light pens. Graphic tablets, digitizers and touch

sensitive device were included later. Early system require the user to create their own

software. In 1960s, a wide variety of proprietary package were available. Since early

1970s, complete turnkey system have becan1e available. Throughout 1960s and early

1970s, computer graphics devices were considered 'expensive toys'. In late 1960s

and early 1970s, a number of new computer graphics companies were organized. In

the early 1970s, the development of semiconductor and integrated memory hardware

lower the size and cost of pixel image storage systems and raster devices were

available comrnercialJy. In the mid 1970s, multi-console systems were available.

2

Univ
ers

ity
 of

 M
ala

ya

1.3 Introduction to Computer Simulation

The goal of this project is to implement and study cloth-simulation. Cloth simulation

is a subject of significant interest to the Computer Graphics (CG) community.

Computer network simulation is the discipline of designing a model of an actual or

theoretical physical system. After designing, the model is executed on a digital

computer.

Computer Simulation is becoming an increasingly popular method for

network performance analysis. It is the process of designing and executing

experiments with a model of actual or imaginary system using computer. A typical

network simulator can provide the programmer with the abstraction of multiple

threads of control and inter-thread commutation. It usuaJiy comes with a set of

predefined modules and user friendly graphical user interface (Gill). The objective

of computer simulation is to experimentally test and analyze a system without

building an actual system.

Simulation process is divided into three main fields. They are Model Design,

Model Execution and Model Analysis. Computer Simulator is developed using

certain programming languages.

1.4 Objectives

Objective to develop this cloth simulation are :

1. To achieve a real-time cloth simulation.

u. To simulate the c1oth under gravity and under wind affect.

m. Using mass and spring damper for increase the realism in real-time

graphic simulation.

3

Univ
ers

ity
 of

 M
ala

ya

~1:1~,

1v. To provide information regarding internal and external force of cloth.

The system not only offers information but the information is presented

in such a way that it facilities user understanding about the cloth.

v. To attract the interest in fashion designer who wants to learn briefly

about cloth simulation and to define the user about the latest computer

technology especially for 3D and virtual reality.

1.5 Scope

In this section, the scope of the project will be defined.

1. To present the internal and external force of cloth.

n. Simulate the deformation of the cloth in under gravity, under wind effect.

m . Showing information about the cloth structure.

vt. To show the mathematical method in this project.

1.6 Target User

1. Computer graphics animators- who have been engrossed only with the

draping and shape of cloth from an animators point of view for the sheer

pleasure of animating a natural phenomena. They wanted to produce

models which exhibit cloth like behaviour.

n. Fashion designer - this was mainly inspired by apparel designers, interior

designers etc who were interested in the behaviour of different types of

cloth which was part of their professional work.

111. Public user - for the public users especiaiiy for those who interested to

learn about design cloth

4

Univ
ers

ity
 of

 M
ala

ya

1.7 Project Outcome

Basically, for the expected outcome project usually fix before . the development has

been done. Therefore, the factor must be identifY before it. The factor are time

bound to finish the project, technology and other resources. These are the outcome

of the simulation project:

1. Present the cJoth in different situation such as under gravity and under

wind affect.

u. The system can implement the basic function and fulfil the criteria such

as stable, consistence, and reliable.

The system allowed the upgrading in future and the new reliable function can be add.

1.8 Schedule

1.8.1 Planning

The planning of the project development :

WXES 3181
Mar-03 Apr-03 MBJ-03

ID Task Name Start Finish Duration 1 2 34 1 2 34 1 2 3.&1
1 Feasibility Study

2 Literature Study

3 Requirement Analysis

4 System Design

5 Program Design
6 Documentation

Table 1.1 : First Semester

WXES3182
ID Task Name Start Finish Duration Jun-03 Jul-03 Auu-C3

1 2 34 1 ~ 3 ~ 1 2 3 <4

1 Development & Implementation

2 Functional Unit Testing

3 Integration Testing

4 System Testing

5 Delivery Testing

6 Maintenance

7 Documentation

Table 1.2 : Second Semester

5

Univ
ers

ity
 of

 M
ala

ya

~1:1~,

1.8.2 Deliverables and Milestone of Development Stage

Stage of Development Deliverables I Milestone

Project proposal
Feasibility Study Supervisors approval

Scope of literature study
Literature Study Methods of literature study

Material Collection Ended
Material read and processed

Requirement Analysis Plan
Requirement Analysis Requirement Report

System Specification

System Design System Architecture design
System Abstract view

Program Design Logical functional design
State I Activity I Data flow diagrams

Development & Logical design learning
Implementation Coding

Internal & External documentation

Unit testing plan
Functional Unit Testing Unit acceptance

Documents verifications

System Testing System testing Plan
System acceptance

Delivery System deliverables document
User guide

Maintenance Maintenance Plan

Table 1.3 : Deliverables and Milestone

6

Univ
ers

ity
 of

 M
ala

ya

~---Clotb e)imulation

C.hapt~r 2:
Liforaturo
Roviow

Univ
ers

ity
 of

 M
ala

ya

~2~~~-;e~,

CHAJY.rER 2 : LITElUTlJRE REPIEJI7

2.1 Introduction

The background study about the knowledge and information gained to development

this project is the meaning of literature review. Through this, the writer can get a

better understanding on the development tools that can be used to develop a project.

The writer can also get a better idea on the development methodologies used while

developing a project. Besides that, it a1lows the developer to study existing or past

develop projects and find out the weakness and strength of it.

2.2 Overview

The goal of this project is to implement and study cloth-simulation. Cloth simulation

is a subject of significant interest to the Computer Graphics (CG) community. CG

characters need to wear clothes, which in-tum need to be animated to make the

characters more realistic. Since clothes don't have active controllers built in, their

behavior can be classified as being passive response to the environment. This means

that the behavior of cloth is relatively well-defined once the external forces acting on

the cloth are known - as opposed to say a human who can exert forces and torques to

control his/her motion as desired. The modeling of such passive systems is best

accomplished through physics based simulation.

Cloth behavior is determined by collisions between the cloth and the body

and self collisions within the cloth itself Many different kinds of models have been

used in animation of cloth and similar deformable surfaces. In this simulation the

writer is looking forward to use a physical model based on Ne~on's motion

equation applied to a particle system. This model allows us to handle each element

of the cloth separately for manipulation of position, speed and direction. The

7

Univ
ers

ity
 of

 M
ala

ya

simulation involves a cloth suspended in air with an initial position. Would have to

provide properties of the cloth such as structural, bending and shear which in

essence models different types of cJoth fabrics. As well as providing external

properties which affect the behavior of the cloth such as gravity and wind forces.

Objects can also be placed in the scene by the user such as hanging on two fixed

point and resting on a chair which the cloth can interact with. As the animation

proceeds the cloth wi11 behave according to its internal physical properties, the

external properties of the environment and the how it responds to objects in the

scene.

2.2.1 How cloth simulation work?

Cloth
Simulation

I
I I I T l

Numerical Internal External Numerical
Collision Models Forces Forces c- Integration

~

1- Finite Structural
Gravity Explicit Collision

element 1- spring
I-

integration
1-

detection

Particles Shear Implicit Collision ,_
1- Wind affect system spring 1- integration - response

Bend Semi-implicit
L-

spring '- integration

Figure 2.1 : How cloth simulation work

8

Univ
ers

ity
 of

 M
ala

ya

The cloth object can be described by its properties and how it behaves in the

real world. We can describe the cloth as have certain properties such as tension,

shearing and bending. To describe the cloth, these properties model the internal

stresses and strains of the cloth and can be controlled to model different types of

cloth from ones that are soft to rigid, or can bend to some degree. There are also

external forces that can be modelled for the cloth, such as gravity and wind

resistance. The cloth is suspended by holding points on the cloth at various points,

this determines the orientation and shape of the cloth in space. Threads in cloth may

be stretched or relaxed. The points on the cloth are affected by the stress and strain

rules which deform and stretch the cloth. The points on the cloth can be treated as a

system of particles each with a 3D position in space, direction and a velocity. Each

particle has a trajectory which can be calculated from all the forces acting on the

particle. The particles form sets of vertices and triangles. The sets of vertices and

triangles form the shape of the cloth. The strains and tension between the triangles

are the basis for modelling the cloth in the animation. This rules along with the

external forces acting on the cloth allow it to deform and change shape.

Fabrics such as cloth have been mode11ed in different ways to describe their

draping behaviour. This simulation will be based on a physically based elastically

deformable model to represent the behaviour of the cloth object. This model is based

on the Dynamic laws of physics which describe how objects behave when they are

acted on by forces. Some of these forces affecting our cloth object are the

gravitational force acting on the falling cloth, the air or wind resistance which offsets

the full effect of gravity and the frictional forces such as a cloth sliding off a box.

The basic laws controlling the cloth's behaviour are based on the Newton's laws of

motion. We will primarily be using Newton's second law of motion that describes

9

Univ
ers

ity
 of

 M
ala

ya

the acceleration of an object depends on the forces acting on the object and it's

mass. Often several forces are acting on an object at one time the net force is the

vector sum of a11 of them. For each control point in our cloth we sum all the forces

acting on the cloth to determine the acceleration including all the internal and

external forces of the cloth.

2.2.2 Numerical models

Several models have been proposed to modelize a cloth structure. They can be

divided into two categories:

• Finite element based models

Finite element based models are the most accurate, but only work well for

static rendering. No dynamic forces (for instance wind) are included in the

simulation. Extending this model for including some dynamic forces may be

possible, but quite difficult though. Furthermore, these methods require high

computational time.

• Particle ~ystem based models

These models are discrete representations of smooth surfaces. Here the cloth

is represented by a finite number of control points called nodes. Easier to

implement than finite elements, this model also gives rather correct results.

Besides they are less time-consuming.

The goal of this project was to achieve a real-time cloth simulation, so it used the

particle system based model.

10

Univ
ers

ity
 of

 M
ala

ya

2.2.3 Internal force representation

The cloth model will be composed of masses and springs, where the cloth model is

an array of masses which form the control points for the cloth.

0 0 0
0 0 0
0 0 0

Figure 2.2 :The vertex I mass

Each mass is linked to it's neighbour by springs. There are three different kinds of

spnngs:

Structural springs handle compression and traction stresses. Structural spnngs

connect adjacent horizontal and vertical vertices. Shear springs handle shear

stresses. Shear springs connect vertices diagonally. Bend springs handle stresses

from the cloth bending. Flexion springs connect every other vertex in the horizontal

and vertical directions.

~ Middle particule not
_ connected

Shearing fibres J

Bending fibr&s

Figure 2.3 Structural, Shear and Bend springs

11

Univ
ers

ity
 of

 M
ala

ya

2.2.4 External force representation

External forces that will be modelled will be a gravitational force, wind resistance

and a damping force.

The force due to gravity is a force that acts on all objects. This cloth suspended in

the air will fall due to the force of gravity pushing downwards to the earth. Since

this force depends on mass a cloth wiJl a larger mass will fall faster than one with a

smaller mass.

- f..l is the mass of the cloth for point Pij

- g is the acceleration of gravity, this is usually 9.8 m/s2

The force of air resistance or wind is a vector exerting a force on a object depending

on the normal to the surface. This force is greatest when the normal and the wind

vector are perpendicular since this gives the greatest cross sectional area and greater

air resistance. Wind or air are a specific case of a type of Viscous fluid which can

also be water or an oil. The viscous force for wind in our model is:

Fvi(Pij·) = Cvi[nij(Unuid - Vij)] nij

- The unuid is a vector in our case for wind

- Cvi is a a viscous constant provided by the user. Different constants model

different types of viscous fluid from water to a thick oil, oil having a higher

viscous coefficient.

nij the normal to the surface at point Pij

12

Univ
ers

ity
 of

 M
ala

ya

The force due to viscous damping. This force models the loss of mechanical energy

of the cloth.

FdiscPij·) =- cdisVij

- Cdis is a damping coefficient given by the user

- Vij is the velocity of point Pij

Again summing up all the external forces gives a net external force vector.

The two internal and external force vectors are summed to give the final force

acting on the point Pij, this force is used in Newton,s motion equation to find the

acceleration of point Pij, which is substituted back into the velocity equation. Now

we know the velocity for Pij and we can find the displacement ofPij at time t +L1t.

The force due to viscous damping. This force models the loss of mechanical energy

of the cloth.

Fdis(Pij·) = -CdisVij

- Cdis is a damping coefficient given by the user

- Vij is the velocity of point Pij

Again summing up all the external forces gives a net external force vector.

The two internal and external force vectors are summed to give the final force

acting on the point Pij, this force is used in Newton's motion equation to find the

acceleration of point Pij, which is substituted back into the velocity equation. Now

we know the velocity for Pij and we can find the displacement ofPij at time t +L1t.

13

Univ
ers

ity
 of

 M
ala

ya

2.2.5 Fundamental Dynamic Equation

Cloth with nodes (masses) can use the Newton Fundamental Dynamic Equation :

This equation is a second order differential equation where m is the mass, F the

forces and x the acceleration. At this point, what we have to do is to retrieve the

velocity and the position of each node each time step. To achieve this, we must

integrate this differential equation.

2.2.6 Numerical integration methods

In order to integrate the previous equation, we will use numerical integration

methods. These methods are splitted into two categories:

• Explicit Integrations

These methods are based on Taylor expansion of the previous equation :

Euler (1st order), Mid-point (2nd order), Runge-Kutta (4th order). They are

relatively easy to implement but are submitted to instability.

• Implicit Integrations

These methods reformulate the previous equation into a system of equations.

These methods are very stable but difficult to implement.

• Explicit integradon methods

First of a11 , note that the fundamental dynamic equation is applicable to each node.

Each one has a position, a velocity and forces represented by vectors. For this

project, writer use Euler explicit integration. It consists in approximating the

previous equation by a first order Taylor expansion. Note that the dynamic

fundamental equation, which is a second order differential equation, was splitted into

14

Univ
ers

ity
 of

 M
ala

ya

two first order differential equations. This method is very simple to implement

but very instable. For a stable system, we must choose a small time step and small

spring constants.

To resume,

Strong points

- low computational time

- easy to implement

Weak points

- small time step

- small spring constant

- over-elongation problem

{

dt
V (ll + 1) = V(11) +- F (11)

111
X (ll + 1) = X(11) + dt >I< "l -(11)

• Explicit lntegradon methods : the over-elongation problem

As with explicit methods, it cannot use high spring constants, cloth fibres are over-

elongated when submitted to external forces (see figure below). To prevent this

issue, used some post-correction methods. These methods intervene just after the

integration step and work directly on positions and/or velocities.

Position correction:

The algorithm first checks the distances between spring. For over-elongated springs

(springs whose length is bigger than the maximum allowed), it changes the node

position as illustrated in the figure below. These two steps are iteratively repeated

until no over-elongated springs remain. This algorithm, first proposed works well in

15

Univ
ers

ity
 of

 M
ala

ya

simple situations but fails when too many collisions occur between cloth and other

objects, because the method does not converge.

Velocity correction:

Another approach is to correct the velocity of each node. First, decompose the

velocity into two components : the normal component and the tangential component.

In other words, suppose two nodes linked by a spring. Only the velocity component

projected on the line passing through the two nodes is responsible for over­

elongation.

v

Maximum length overstep eel

Leng h is snuler than
mimmal length

Figure 2.4 : Explicit integration methods : the over-elongation problem

• Implicit integration methods

To obtain an implicit scheme, the writer introduce a little change in the 1st order

Taylor expansion used by Euler integration. In the equation below, in the first line,

forces are not expressed any more at time t but at time t+ 1. This little change forces

the force field to be coherent at time t+ 1. Therefore assume that there will not be any

unstability.

TheoricalJy, this scheme is stable whatever the time step and the spring

constants are. The main drawback is that we have to compute forces at time t+ 1, and

cannot be computed directly. To solve this problem, we can use another first order

16

Univ
ers

ity
 of

 M
ala

ya

Taylor expansion to express forces at time t+ 1. Once done, we can reformulate the

equation to obtain the final result specified in figure below.

This is a linear equation system. We have to solve it in order to find the

velocity, and then the position of each node.

dt
1'(11 + 1) = v(n +- F(11 + 1

Ill
x(n+1 =x(n +dt*r 11)

• Implicit lntegradon methods

Now for implicit scheme, we must solve the linear system. While the resolution itself

is not that difficult, the problem is that the system is very large : suppose our cloth is

defined by 2500 nodes. The system then has 7500 equations. That means we have to

store a 7500x7500 matrix, and then solve the system.

Fortunately, the matrix is sparse. That is, only few values are not zero. This

property is very important. First, we can save some memory space by storing only

the non-zero values, and secondly we can use a special iterative method to solve the

linear system : the conjugate gradient. This iterative method is designed to exploit

the sparsity property. It uses only vector-matrix products. Obviously, the matrix-

vector product implementation exploit the sparsity described before.

To resume

Strong points

- stable whatever the chosen time step

- high spring constants allowed

17

Univ
ers

ity
 of

 M
ala

ya

Weak points

- storing a big matrix

-solving a linear system

- real-time execution difficult to obtain

• SemJ-lmplicit integration methods

In this project, the writer will only present the main ideas of this method. In the

integration process, instabilities are due to high frequencies. The idea is to filter the

force field to attenuate high frequencies. Here is a general description of the method:

i. Compute the inverse matrix of linear forces

This step is only made at the beginning of the simulation. This inverse matrix

remains unchanged during all the simulation.

ii. Filter the force field by the previously obtained matrix

It is a standard matrix-vector product.

iii. Make an Euler integration step to retrieve velocities and positions

As we filtered the force field, instability is no more an issue.

iv. Post-correction step

This step is used to preserve the angular momentum.

This method gives good results, but it is usable for small system only because of the

matrix inversion step at the beginning of the simulation, which is very expensive.

2.2. 7 Collision handling

To improve the realism of simulation, it includes cloth-object collisions. The

collision processing is performed in two steps. The first step is the collision

detection, and the second is the collision response.

• Collision detecdon

• Collision response

18

Univ
ers

ity
 of

 M
ala

ya

e::~2:~~;e~~

--- ~
2.3 Review On Existing System

2.3.1 Syflex - The Cloth Simulator

•

• ~ 'it.1n - - • • .. ·• • • " , ... • " • • ~ • • •· "' <'(• • • • "'

Figure 2.5 : Syjlex - The Cloth Simulator

Syflex is the latest in cloth simulation. It features an incredibly fast and stable

simulator that allows to create highly realistic cloth animations. The simulator adapts

to whichever movements a characters perform: running, dancing, jumping and

others. It allows an artist to animate any kind of clothes: t-shirts, pants, aprons, skirts,

jackets. It also provides all the flexibility necessary to model any kind of material:

cotton, silk, leather and others material.

Its user interface is simple and doesn't require the artist any specific skill.

Syflex is available for Maya 4.0, and Maya 4.5, on Irix, Linux, Windows 2000 and

MAC OS X.

Features For Syflex :

Speed

Syflex is an extremely fast cloth simulator. Syflex is an order of magnitude faster

than any other cloth simulator. The following animation was computed at a rate of 50

frames per second on a Pill 933 MHz.

19

Univ
ers

ity
 of

 M
ala

ya

Stability

Syflex technology provides for a perfectly stable simulation. Whatever the

constraints or the forces are, the software always computes an accurate animation,

without vibrations.

Easeofuse

Syflex is easy to use. It doesn't require any special fashion-designer skill from the

animator. There is no need to model the cloth using flat panels and stitch them

together: the artist just uses any traditional polygonal object. Moreover, Syflex is

seamlessly integrated in Maya.

Cache

The simulation can be saved in files, allowing to re-play it quickly. It also allows to

re-simulate just one or many frames, without recomputing all the frames. Blend

together cache files, choosing which part of the cloth to keep for each cache.

Nails, Pins

Any vertex of the cloth can be nailed. These nails may be animated as any other

object. Any vertex can be pinned to another static or moving object.

Collisions

Collisions of the cloth with any static or moving object are computed accurately. To

optimize collisions, the user can specify which faces may collide. Self-collisions are

also available.

SDK

Syflex can be customized by adding new forces and constraints.

20

Univ
ers

ity
 of

 M
ala

ya

2.3.2 Stitch Lite - The Cloth Simulator

Figure 2. 6 : Stitch Lite - The Cloth Simulator

Stitch Lite is the number one cloth and fabric simulator for 3ds max. Stitch

Lite is a quick and practical solution for one of the most challenging of all animation

tasks - the animation of realistic fabric. Stitch Lite can handle it all, from stretchy

rubber to more sophisticated fabrics like heavy cotton, silks and canvas.

Stitch Lite is also perfect for combining cloth objects. Create shirts with

pockets and collars. Simulate upholstered furniture, drapery, bedding, even complete

fabric structures like heavy canvas tents. Best of all, because Stitch Lite is fully

integrated with 3ds max, it easily applies dynamic secondary motions to cloth by

adding Wind and Gravity Space Warps. This tight integration allows fabrics to flow,

fold, bunch and gather just would expect it to characters and objects move.

More advanced controls include vertex level control over the dynamic and

static properties of the cloth. Some of these controls include air resistance, and the

ability to attach parts of the cloth to other objects. These powerful controls allows a

character to grab a scarf without relying on the simulation alone. There are also

controls for positioning the cloth by grabbing and pulling it during a simulation.

21

Univ
ers

ity
 of

 M
ala

ya

2.3.3 ClothSim - The Cloth Simulator

Figure 2. 7 : ClothSim - The Cloth Simulator

With ClothSim we can watch vanous cloth models (tablecloths, flags,

garments and others) blowing in the wind, and we can freely move around them: we

can examine each single wrinkle under every angulation. But ClothSim isn't limited

to this: we can change the wind speed, stop the time, and ask for a series of statistical

information's. In particular, we will see the the astonishing frame rates which this

powerful implementation is able to achieve.

Features:

• Fast.

• Numerical stability assured.

• Physically correct.

• Precise and fast normals generation (only one cross product for each vertex).

• A personal technique for the computation of wind forces, 2 times faster than

the conventional method.

• Rendering via TriangleStrips.

22

Univ
ers

ity
 of

 M
ala

ya

• Texturing I Lighting.

• C/othSim simulates whatever mass-spring system, cloths of any form, and

even volumetric structures (e.g. molecules, tents, leaves, paper, strings, ropes,

cobwebs, jeiJy, hair via skeletal animation).

• Enhanced tablecloth: the elements (mass and springs) on the table are fiXed,

and so they leaved the scene at all. Moreover, the triangles' orientation is

customized for the folds of a tablecloth.

• Variable integration step: animation speed is unrelated to the frame rate.

Timescale is physically accurate.

• For each cloth a maximum integration step can be specified (e.g. 0.5s); in this

way the integrator will never exit the region of absolute stability, even in

stress conditions (swapping I loading); this guarantees the total absence of

"explosions" (an aged obstacle in the explicit integration of stiff systems).

• Vibration free rest condition (hard to obtain, especially with variable step).

• OOProgramming for the maximum flexibility, portability and reusability of

the code.

• Specifically studied to dress quality videogames.

• Time stats.

• Smooth movements and mouse filtering (fundamental when both strafing and

aiming).

23

Univ
ers

ity
 of

 M
ala

ya

2.4 Review on Journal

2.4.1 Large Steps in Cloth Simulation

This paper presents a cloth simulation system that can stably take large time

steps. The system combines a new technique for enforcing constraints on the cloth

particles with an implicit integration method. The simulator discretizes the cloth as a

triangular mesh. It uses a simple continuum formulation to derive the internal cloth

forces that model operations like local anisotropic stretch or compression. It also

includes a unified treatment of damping forces. A modified conjugate gradient

method is used to solve the large sparse matrix generated at each time step of the

implicit method. Due to the modification, the constraints are enforced exactly at each

iteration step. The modified conjugate gradient method converges at a similar rate to

unmodified CG.

Summary

Physically based cloth animation is of interest to computer animation and poses a

significant challenge because of the computational and mathematical complexity.

The main chalJenges in cloth animation are the following: numerical instability due

to stiffness of the material, high resolution requirement to show the realistic

wrinkling and folding of cloth, constraint maintenance between cloth and solids or

between cloth and cloth. The simulation system presented here provides a framework

that meets all of the above challenges making it viable and useful for generating

realistic animations of non-trivial cloth models.

24

Univ
ers

ity
 of

 M
ala

ya

Representation

Cloth is modelled as a triangular mesh of particles. Each particle has an associated

position, velocity, and force acting on it. The simulator computes the position and

velocity for each particle at each time step.

Implicit Integration Method

The stability of this cloth simulation system results from the use of an implicit

integration method rather than explicit method like Euler's method. Explicit methods

require small time steps to maintain stability and typically perform poorly on stiff

systems. For system with some very stiff components, the entire simulation can grind

to a halt. On the other hand the implicit method is based an implicit backward Euler

method using a Taylor series expansion to convert the resulting non-linear system

into a large unhanded sparse linear system. Without constraints, this linear system

can be converted to a symmetric, positive definite system and solved using a

conjugate gradient method with a running time of roughly O(m.s). While the running

time for an explicit method, like Euler, is O(n), the implicit method permits the use

of much larger time steps without compromising stability. This in tum allows higher

resolution models to be simulated without increasing the overall running time.

Forces

Cloth's material behaviour is often described in terms of a scalar potential energy E.

The quadratic energy formulation with arbitrarily large stiffness is chosen because it

fits well with the numerical model of the simulation system. Simple and intuitive

continuum-based force models are developed that allow the system to support

operations like local anisotropic stretching, shrinking, and bending. Damping forces

are easily derived using this energy formulation and integrated into the system.

25

Univ
ers

ity
 of

 M
ala

ya

Modified Conjugate Gradient Method

The linear system with mass modifications cannot be directly solved using the

conjugate gradient method, because the modified mass matrix is singular so the

system cannot be trivially converted to a symmetric system. Instead, the traditional

CG method is modified to include a filter that guarantees the constraints exactly at

each step of the iteration. This simple modification also has the side benefit of

allowing the system to compute the force needed to release the constraint. The

modified CG method converges at a rate ofO(m.s) empirically.

Collision

The system doesn't introduce a new collision detection method, instead it does have a

quick and robust way of handling penetration. Penetrations between cloth/cloth

particles are handled using a penalty force. For cloth to solid penetration, the system

makes an alteration to the position that is integrated into the ODE. In combination

with mass alteration, the system has total control of the velocity and position of the

constrained particle.

26

Univ
ers

ity
 of

 M
ala

ya

2.4.2 Devil in the Blue-Faceted Dress: Real-Time Cloth Animation

This journal describes methods of dynamic simulation using mass and spring

systems. These techniques dramatically increase the realism in real-time graphic

simulation. One of dynamic simulation's key benefits is that it creates a scaleable

game expenence.

Traditional Cloth AnittUltion in Games

Cloth animation is tricky. Even in the world of high-end computer graphics, it's

difficult to get right. Most of the time, it's wise to avoid the whole issue. Anyone

who has ever created a female character in a skirt is familiar with the problem of the

legs poking through the cloth mesh during animation. This is pretty difficult to fix,

especially if animation requires a variety of motions. Unfortunately, it's also a really

obvious animation problem that any end user can spot. Most loose clothing doesn't

look natural in digital art because it's static. It doesn't move along with the body. It's

possible to morph the shape of the skirt to match the motion of the character, but this

requires quite a bit of detailed animation work. Likewise, deforming the skirt with a

bone system can be effective, but not necessarily realistic.

The Latest Springy Fashions

The mass and spring dynamics simulation proved effective for simulating soft body

objects in real time. Thought it should be possible to use these techniques to create a

cloth simulation. Mass-spring model consists of a square grid of particles, each with

unit mass and at (initially) unit distance away from the adjacent particles in its row

and column. Holding the masses in the grid formation are three types of springs, as

seen in the diagram below. Vertices that are adjacent along column or row Jines are

connected by structural springs, and springs that connect two vertices at opposite

27

Univ
ers

ity
 of

 M
ala

ya

corners of a grid square are shear springs. Bend springs extend in the same

directions as structural springs but connect nodes that have one node between them.

Problems to Avoid and Ignore

The simulation has a couple of problems. The first is that the way to simulate cloth

realistically is to use a Jot of points in the simulation. This takes more computation

time. High-end animation programs rely on a great number of particle points for

realism. Of course, in other fields, hour-long render times are perfectly acceptable.

This is another good area for scaling game performance. If the system is running

quite fast, subdivide the cloth patches a little more. Game players with a white-hot

system should have smooth-looking cloth.

Another problem is that each spring acts independently. This means that each

spring can be stretched to a great extent. In many cases, the amount of stretch can

exceed I 00 percent. This is not very realistic. Actual fabric will not stretch in this

manner. The problem have is that using linear springs when fabric actually displays a

nonlinear spring behaviour. As the amount of stretch increases, the strength of the

spring increases also. The fabric will also stretch to some limit and then if the force

continues, it will rip. Increasing the spring strength dynamically can lead to

instability problems just like any other stiff spring problem. The suggestion is

checking the amount of stretch in each spring, and if it exceeds a set deformation

limit, the springs are adjusted to achieve this limit. While his agree this solves a

definite problem, a second pass through the springs is costly.

28

Univ
ers

ity
 of

 M
ala

ya

2.5 Technological Review

Before any processes is started, as developers should review the technology

available to them, so they may choose the most ideal one to be used. There is more

than one aspect of technology to be review on, we may have programming

languages, platform and object reuse technologies. All of these have their pros and

cons. Developers of the project should have those pros and conts reviewed to ensure

the quality of the output developed.

2.5.1 Programming Language Overview

2.5.1.1 Microsoft Visual Basic 6.0

Visual Basic programming language is fairly simple and uses common

English words and phrases for the most part. Visual Basic has evolved from the

simplest programming language for Microsoft Windows to an exceedingly complex

development environment, capable of delivering virtually anything from tiny utilities

to huge n-tier client/server applications.

Control are tools on the Toolbox window that you can place on a form to

interact with the user and control the program flow.

Microsoft Visual Basic 6.0, the latest and greatest incarnation of the old

BASIC language, gives a complete Window application development system in one

package. Visual Basic lets ones write, edit, and test Windows applications. In

addition, VB includes tools ones can use to write and compile help files, ActiveX

controls, and even Internet applications.

29

Univ
ers

ity
 of

 M
ala

ya

2.5.1.2 Microsoft Visual C++

Microsoft has built into its C++ development environment to enable

developers to create very advanced applications for the Windows and NT platforms.

When Microsoft's developers first came up with the idea behind Visual C++, they

decided to take their world-class C++ compiler and create a development

environment and set of tools that would enable developers to create Windows

applications with a level of ease and speed that was unheard of among C++

development environment. Since that first version, Microsoft has continued to

improve the tools that are a part of Visual C++ to make it even easier to cerate

Windows applications.

2.5.1.3 OpenGL

OpenGL is the premier environment for developing portable, interactive 2D

and 3D graphics applications. Since its introduction in 1992, OpenGL has become

the industry's most widely used and supported 2D and 3D graphics application

programming interface (API), bringing thousands of applications to a wide variety of

computer platforms. OpenGL fosters innovation and speeds application development

by incorporating a broad set of rendering, texture mapping, special effects, and other

powerful visualization functions.

Developer-Driven Advantages

Industry standard

An independent consortium, the OpenGL Architecture Review Board, guides the

OpenGL specification. With broad industry support, OpenGL is the only truly open,

vendor-neutral, multiplatform graphics standard.

30

Univ
ers

ity
 of

 M
ala

ya

Stable

OpenGL implementations have been available for more than seven years on a wide

variety of platforms. Additions to the specification are well controlJed, and proposed

updates are announced in time for developers to adopt changes. Backward

compatibility requirements ensure that existing applications do not become obsolete.

Reliable and portable

All OpenGL applications produce consistent visual display results on any OpenGL

API-compliant hardware, regardless of operating system or windowing system.

Evolving

Because of its thorough and forward-looking design, OpenGL allows new hardware

innovations to be accessible through the API via the OpenGL extension mechanism.

In this way, innovations appear in the API in a timely fashion, Jetting application

developers and hardware vendors incorporate new features into their normal product

release cycles.

Scalable

OpenGL API-based applications can run on systems rangmg from consumer

electronics to PCs, workstations, and supercomputers. As a result, applications can

scale to any class of machine that the developer chooses to target.

Easy to use

OpenGL is well structured with an intuitive design and logical commands. Efficient

OpenGL routines typically result in applications with fewer lines of code than those

that make up programs generated using other graphics libraries or packages. In

31

Univ
ers

ity
 of

 M
ala

ya

addition, OpenGL drivers encapsulate information about the underlying hardware,

freeing the application developer from having to design for specific hardware

features.

Well-documented

Numerous books have been published about OpenGL, and a great deal of sample

code is readily available, making information about OpenGL inexpensive and easy to

obtain.

2.5.1.4 Java

Java designer started with C++, removed numerous constructs, changed

some, and added a few others. The resulting language provides much of the power

and flexibility of C++, but in a smaller, simpler, and safer language.

Java, like many programming languages, was designed for an application for

which there appeared to be no satisfactory existing language. In the case of Java,

however, it was actually a sequence of applications, the first of which was the

programming of the embedded consumer electronic devices, such as toaster,

microwave ovens, and interactive TV system. It may not seem that reliability would

be an important factor in the software for a microwave oven. If an oven dad

malfunctioning software, it probably would not pose a grave danger to anyone and

probably would not lead to large legal settlements. Realibility is an important

characteristic of the software in consumer electronic product.

32

Univ
ers

ity
 of

 M
ala

ya

2.5.2 Software Overview

2.5.2.1 MAYA

" MAYA's simulation software supports many element types; lump masses,

beams, triangular and quad shells, bricks, wedges, and most important, tetrahedral

elements which are needed for the really complicated geometry - our geometry just

isn't rectangular " (Tom Hatfield, Operations Manager Motorola Inc.)

MAY A offers several technologies which are completely integrated within

MAY A's software and make simulation modelling easier and more effective.

Technology that allows you to build complex assemblies of parts and still maintain

individual thermal/flow models on each of these parts or sub-assemblies. MAY A

provides the tools to build individual thermal/flow models and then connect or

couple them into a thermal/fluid simulation assembly.

2.5.2.2 3D Studio Max

3D Studio MAX is one of the most powerful desktop 3D graphics programs

available today. It is used for a wide variety of commercial and artistic applications,

including architecture, computer games, film production, web design, forensics,

scientific visualization and virtual reality.

One of the most exiting aspects of 3D graphics is animation. To animate

literaJJy means to give life. In MAX, animation is easily achieved by changing an

object over time.

33

Univ
ers

ity
 of

 M
ala

ya

2.5.2.3 Adobe Photoshop 6.0

As the industry standard for digital image manipulation software, Adobe

Photoshop has revolutionized the photography and prepress industries and has

provided commercial and fine artists with an exciting new medium for photographic

editing. Adobe has integrated into Photoshop a design based upon traditional photo

manipulation technique, where tools and processes directly correspond with those

used in 'physical' photography. Photoshop introduces features and enhancements

which go far beyond the capabilities of the darkroom technician, thanks to digital

technology; yet through and interface based on traditional technique, Adobe ensure a

relevant, familiar but powerful program environment. Covering a few of the general

elements of the program will give us a better perspective on how it works, aUowing

us to cover technicalities in more efficient terms. The pixels represent a unit of color

information, all changes in Photoshop occur at a two-dimensional level. The closest

Photoshop comes to the versatility afforded object-based software is through the use

of layers, which are not unlike cells used in the physical graphics industry.

34

Univ
ers

ity
 of

 M
ala

ya

2.5.3 Operating System Overview

For any development of the application that runs on PCs, the platform or

more specific, the operating system is always taken into accounts. It tells how far a

developer needs to develop, and what has already been taken care of

2.5.3.1 Microsoft Windows 2000 as Network Operating System

Windows 2000 Professional is the latest commercial version of microsoft' s evolving

windows operating system. Microsoft emphasize that Window 2000 Professional is

evolutionary from Windows NT 5.0 and 'Build on NT Technology'. The change,

both fundamental and cosmetic, have made Windows 2000 faster, more reliable,

heavier-duty and easier to use.

Windows 2000 Professional is designed to appeal to small business and

professional users as well as to the more technical and large business market for

which the NT was designed.

Windows 2000 is reported to be more stable than Windows 98/NT system. A

significant new feature is Microsoft's Active Directory, which enables a company to

set up virtual private network in order to encrypt data locally or on the network and

to give users access a shared files in a consistent way from any network computer.

2.5.3.2 UNIX Operating System

UNIX is an increasing popular operating system that traditionally used on

minicomputers and workstations in the academic community. UNIX is now available

on personal computer and the business community has started to choose it for its

openness [Gottschalk, 1996].

UNIX, like any other operating system, is a layer between the hardware and

the application that run on the computer. It has functions that manage the hardware

35

Univ
ers

ity
 of

 M
ala

ya

~ 21~ if!wtew.'
and functions that manage the executing application. Besides that, UNIX includes the

traditional operating system components.

In addition, a standard UNIX system includes a set of libraries and a set of

application. It includes the file system and process control and a set of libraries. One

of the greatest strength of UNIX is the consistent way in which it treats files.

2.5.3.3 Linux Operating System

Linux is a free; UNIX work-alike designed for Intel processors on PC architecture

machines. Linux is not UNIX, as UNIX is a copyrighted piece of software that

demands license fees when any part of its source code is used. Linux was written

from scratch to avoid license fees entirely, although the operation of the Linux

operating system is based entirely on UNIX and it shares UNIX's command set.

In addition Linux has the following features :

• It is capable of multitasking.

• Has support for Netware clients and server.

• It multi-platform, that is it can run on any processor.

• Has memory protection between processes ensuring that a program cannot

crash the entire system.

One oftha main weakness ofLinux is lack of support for hardware making is

to be difficult in setting up a machine with Linux. Fortunately support for Linux is

growing every single day and more peripherals are being added to Linux's list of

supported hardware. Besides that, Linux also suffers from non-standardized version

issues, and each version has its own exclusive features.

36

Univ
ers

ity
 of

 M
ala

ya

---~--~---- (lotb e)imulation

C.hapfgr 3:

Mothodology &
. ~ygfom AnalgJ:iJ:

Univ
ers

ity
 of

 M
ala

ya

C/M.PFER 3: METHODOLOGY AND SYSTEM ANALYSIS

3.1 Methodology

The system development methodology is a method to create a system with a series of

steps or operations or can be defined as system life cycle model. Every system

development process model (see Figure 3.1) includes system requirements (user,

needs, resource) as input and a fmished product as output.

User, Needs, System Finished
Resource Development Product

Evaluation

Figure 3.1 : System Development Process Model

There are several process models in system development:

1. Waterfa1l Model

n. Waterfa1l- V Model

111. Waterfall Model with prototyping

iv. Model System Development Life Cycle (SDLC)

v. Spiral Model

vt. Phased Development Model

vu. Transfonnation Model

vm. Operational Specification Model

37

Univ
ers

ity
 of

 M
ala

ya

Before any model has been decided to be used, i~ has to be very careful about why

model is chosen. These are the requirement :

1. It must be able to form a common understanding of activities, resources and

constraints involved in the software development.

u. It must help the development team in find inconsistencies, redundancies, and

omissions in the process and in its constituent parts. As these problems are

noted and corrected, the process becomes more effective and focused on

building the final product.

m. It must also able to reflect the goals of development, such as building high

quality software, finding fault early in development, and meeting required

budget and time constraints.

tv. It must be able to tailor a process for the special situation in which will be

used. By using the model, the development team can understand where that

tailoring is occurred

3.1.1 Waterfall Model

In a waterfall model, the stage are depicted as cascading from one to another. As the

figure implies, one development stage should be completed before the next begins.

Thus, when all of the requirements are elicited, analyzed for completeness,

consistency and documented in requirements document, system design activities will

be carried out. The waterfall model presents a very high-level view of what goes on

during development, and it suggests to developers the sequence of events they should

expect to encounter.

38

Univ
ers

ity
 of

 M
ala

ya

Program
Design

Figure 3. 2 : The waterfall model

Acceptance
Testing

The waterfall model can be very useful in helping developers lay out what

they need to do. Its simplicity makes it easy to explain to customers who are not

familiar with software development; it makes explicit which intermediate products

are necessary in order to begin the next stage of development. Many other, more

complex models are really just embellishments of the waterfall, incorporating

feedback loops and extra activities.

However, there are two major drawback concerning the waterfall model.

Firstly, it shows how each major phase of development terminates in the production

of come artifact (such as requirement, design or code) and this no insight into how

each activity transforms one artifact to another, such as requirements to design. Thus,

the model provides no guidance to managers and developers on how to handle

changes to products and activities that likely to occur during development. Secondly,

the model fails to treat the system as a problem-solving process.

39

Univ
ers

ity
 of

 M
ala

ya

3.1.2 Prototyping Model

Evaluate
Pradype

Figure 3.3 : The prototyping model

Anal
ReqLirerre'lt

Prototyping methods are considered highly useful for developing educational

technology. There are a number of different name being used to describe similar

design, development methods, including prototyping, rapid application development,

rapid prototyping and so on. There two main categories of prototyping technique, as

outlined below.

a) Rapid Prototyping

Rapid prototyping is used to discover flaws in a design in a short amount of time.

The initial design is tested and corrected then tested and corrected again and so on,

until a certain level of satisfaction the end product. Others name for this technique

include rapid application development. The emphasis is on quick, fast, interactive

design.

b) Evolutionary Prototyping

Evolutionary prototyping or software prototyping can use rapid techniques, but the

emphasis is more on creating a prototype in software, that wiJI (not necessarily

rapidly) form the basis of the final product. In a strict sense, once a satisfactory

prototype has been created, the project continues on the more waterfall like method

of development.

40

Univ
ers

ity
 of

 M
ala

ya

Requirement

Build
~

Prototype

Design

Evaluate
Prototype

Implementation

______. Final Implementation &
~ Maintenance

Figure 3. 4 The Evolutionary Prototyping

Prototyping techniques are very useful in situations where the user interface is of

primary importance such as developing educational software. There are problems

with prototype methods. At some point the prototyping has to stop, add the project

continue. It is important the iterations be managed appropriately, and not continue on

into actual development, where correcting mistakes is difficult and time consuming.

After a through research and analysis the writer has decided on the

combination of WaterfaU and Prototype Methodology to develop Cloth

Simulation.

41

Univ
ers

ity
 of

 M
ala

ya

Requirements
Analysis

11"1 ~:
! l , I Program
lj j! Design

l jl •• "1r-----
I , , , -

I i I! I+ "1r-----l, :I ::
: !I I : i I Coding II I l '
: l II II +! t : ,, r-----------.

I I
I Prototyping :
I I 1 ___________ ...

~ Unit & Integration
Testing

~, SySem Testing I
~~I

~~~on& I Maintenance 

Figure 3.5 The waterfall model with prototyping 

42 

Univ
ers

ity
 of

 M
ala

ya



3.2 Information Gathering Methods 

This refers to the methods that are used to gather information regarding a 

system. It is necessary to employ the fact-finding techniques in order to establish 

understanding of the state and future requirement. The techniques used to obtain the 

needed information are : 

• Printed resources - Material like journals let me have a better 

understanding the capabilities, feasibilities and the possibilities on how 

the system should be designed to give the best of it. Reference books 

were read to get information and a clearer picture how the system should 

be developed. Besides that, past year's thesis were referred too. 

• Internet- The main resource to search for information and to refer any 

ambiguities that arise during the entire development period. Vast 

information could be found from the software of the system to the design 

of the system. 

• Supervisor - Useful keyword and continuous advises are given for each 

section meeting. It is tremendously useful for further helpful survey, 

error-correctness and yet as a reminder when carrying out the whole 

system development process. 

• Past Research - This research is my main reference in developing my 

system. Although there are different types that has already been built, it 

helps me to get some ideas on how to work on it, how to start and 

complete my report and how to start in developing my system. 

43 

Univ
ers

ity
 of

 M
ala

ya



3.3 Requirements Analysis 

The analysis phase during developing a Cloth Simulation is one of the most 

important phases. In this phase, the entire package initial need such as identifying the 

objective, scope, functions, modules and others related information could be defmed. 

Through the information's gathered, the outline for Cloth Simulation is prepared. 

There are two types of requirements. It can either be functional and non-functional 

requirement [ Somrnerwille, 2001 ]. 

i. Functional Requirements are services that are offered by the system, how 

the system reacts towards the input and the characteristic of the system at 

different situation. 

ii. Non-functional Requirements are limitations or constraints towards 

services that is offered by the system. This includes limitation that exists on 

system developing process and time limitation 

3.3.1 Functional Requirements 

A functional requirement describes an interaction between the system and its 

environment. It also describes how the system should behave given certain stimuli. 

After analysis has been done, functional requirements that wi11 be developed consists 

of a several modules. 

1. Main Module: It's function is to allow user to make options on what do they 

want to Jearn in particular. There will be link to other pages that includes; 

gravity and wind affect module. Clicking on right button for the information 

that are desired will activate the links. 

n . Exit Module : The purpose of this module is to allow user to exit from 

system. 

44 

Univ
ers

ity
 of

 M
ala

ya



iii. Gravity Module : This module have two sub-module which user can see the 

cloth in the different situations. First, hanging the cloth on two fixed points 

and second, resting on a chair. 

tv. Wind Affoct Module : This module have two sub-module which user can see 

the cloth in the different situations. First, hanging the cloth on two fixed 

points and second, resting on a chair. 

3.3.2 Non-functional Requirements 

A non-functional requirements or constrain describes a restriction on the 

system that limits one choices for constructing a solution to the problem (Pfleeger, 

1998). Non functional requirement to this project is described as below: 

• User friendly - the usage of suitable and meaningful options and icon will 

help the user to use the system with more confidence, easy and save time. 

User are allowed to browse and use the site without any problem. 

• Usability- The application system must be easy to use. Then can enhance 

and support rather than limit or restrict business processes. 

• Attractive and interactive interface - With attractive interface, users will 

be able to enjoy surfing the website. With an interactive multimedia, the 

users are more comfortable and can have fan while visiting this website. 

• Reliability - The reliability is to convince the user that this system wiJJ 

make the correct respond and provide error handling ability. 

• Efficiency - efficiency is understood as the ability of a process procedure 

to be caJled or accessed unlimitedly to produce similar perfonnance 

outcomes at an acceptable or credible speed [Sommerwille, 1995]. Even 

so, the efficiencies of usage of resources beside time are equally 

important. 

45 

Univ
ers

ity
 of

 M
ala

ya



• 

3.4 System Requirement 

In this phase developer will need to study and analyze the current system to 

gain an in-depth understanding if the system and assess its strength and weakness in 

meeting current and future requirements. Choosing hardware and software is very 

important in order for the developed system to be successful. Task to choose 

hardware and software needs to be done particularly to make sure it fulfill system 

requirement. 

3.4.1 Hardware Requirement 

As the networks technology grow, the aspects of openness and transparency 

of the software and hardware layer has reached a point that generally agreed upon. 

Thus, even though the system evolves both software and hardware, the architecture 

of the hardware architecture is nor critical. Below are the minimum requirement : 

Main Machine IBM Micro Computer or So Called PC 

Hard Disk space At least lOG 

Memory RAM 128MB 

Others Graphic card 

Table 3.1: Hardware Requirement 

3.4.2 Operating System Requirement 

Operating system that referred here means that operating system that operate 

underlying the application or system being developing, instead of operating system 

used in the developing phase. Those operating system that fall into consideration 

domain with be evaluated from the perspective of end-users and developer, which 

they are available in the market, such as Microsoft Window 98, Microsoft Windows 

46 

Univ
ers

ity
 of

 M
ala

ya



NT Server 4.0, UNIX and LINUX. After the deep consideration Windows 2000 

Professional is chosen. As the description going on the criteria will be explained. 

Usability 

Firstly, we consider the element of usability, which mean how easily the 

operating system can be used. 

From the view of the installation of the operating system itself, user need a 

simple, straight forward, user friendly and wizard guided operating system 

installation. In survey done, we found that UNIX, LINUX and Server 2000 are more 

difficult to install and configure. Unlike Windows 2000, UNIX or LINUX is not an 

end-user-oriented operating system known for its user friendliness, the user need user 

have a certain level ofiT knowledge fitness in order to get them installed well. 

Technological Ability 

Windows professional 2000 is built on Windows NT technology which 

highly supportive in developing and running a networked application. It provides a 

dynamic middleware to ease developer in developing the application. Furthermore, 

because its network technology supportive feature, most small networked based 

offices and plants are using it. 

Most of the software, such as APis, are developed exclusively for Microsoft 

Windows operating system, while they were originally developed for other system 

such as UNIX, but false for the reverse. 

47 

Univ
ers

ity
 of

 M
ala

ya



Maintenance 

Maintenance is very critical in a Software Developing Life Cycle (SDLC), 

because of the strong background, the technical support is provided well by its 

vendor. Every detail documentation of Windows 2000 is documented well and freely 

available online. Unlike Windows 2000 professional, LINUX and UNIX are free and 

opened software, no specific party is responsible for the technical support. There is 

no standard version of LINUX and UNIX, thus, it would be a nightmare for the 

develops as searching for technical and maintenance information. 

Cost 

Among the entire platform, the pricing of Windows professional 2000 is not 

so expensive, even some may say some other operating system like UNIX and 

LINUX are well known as license free Operating System. Though, cost is only 

evaluate from the license paid. Besides the cost for buying the license this operating 

system, there is cost of setting up the operating system. For UNIX, which have 

cryptic user interfaces are hard to manage and give way to high admjnistration cost. 

In this trade-off, Windows 2000 Professional still stand up to be cost-effective. 

Reliability 

From the experience of the developer and the information colJected from the 

survey done, Windows 2000 professional is the most stable and reliable operating 

system among the product of Microsoft such as Windows 98, Windows NT 4.0 and 

Windows ME. Undeniable, UNIX and LINUX are very reliable as well, but in 

previous evaluation such as maintenance and cost-effective aspects, they has been 

removed from the consideration list. 

48 

Univ
ers

ity
 of

 M
ala

ya



3.4.3 Programming Language Requirement 

3.4.3.1 C++ 

The developer choose C++ because in the first place, a compiled program 

will always be faster than an interpreted program. Think about high performance 

spreadsheet program with cell formulas and macros. Just-in-time compilation, it's 

necessary to compile the program every time programmers load it. That code will be 

as good as the optimized output from a C++ compiler. Execution speed is one 

factors; access to the operating system is another. 

3.4.3.2 OpenGL 

OpenGL routines simplify the development of graphics software-from rendering a 

simple geometric point, line, or filled polygon to the creation of the most complex 

lighted and texture-mapped NURBS curved surface. OpenGL gives software 

developers access to geometric and image primitives, display lists, modelling 

transformations, lighting and texturing, anti-aliasing, blending, and many other 

features. 

Every conforming OpenGL implementation includes the full complement of 

OpenGL functions. The well-specified OpenGL standard has language bindings for 

C, C++, Ada, and Java. All licensed OpenGL implementations come from a single 

specification and language binding document and are required to pass a set of 

conformance tests. Applications utilizing OpenGL functions are easily portable 

across a wide array of platforms for maximized programmer productivity and shorter 

time-to-market. 

49 

Univ
ers

ity
 of

 M
ala

ya



All elements of the OpenGL state-even the contents of the texture memory 

and the frame buffer-can be obtained by an OpenGL application. OpenGL also 

supports visualization applications with 2D images treated as types of primitives that 

can be manipulated just like 3D geometric objects. 

OpenGL supported on alJ UNJX® workstations, and shipped standard with 

every Windows 95/98/2000/NT and MacOS PC, no other graphics API operates on a 

wider range of hardware platforms and software environments. OpenGL runs on 

every major operating system including Mac OS, OS/2, UNIX, Windows 95/98, 

Windows 2000, Windows NT, LinlJ?', OPENStep, and BeOS; it also works with 

every major windowing system, including Win32, MacOS, Presentation Manager, 

and X-Window System. OpenGL is caJlable from Ada, C, C++, Fortran, Python, Perl 

and Java and offers complete independence from network protocols and topologies. 

3.4.4 Software Requirement 

3.4.4.1 Microsoft Visual C++ 

Microsoft has built into its C++ development environment to enable 

developers to create very advanced applications for the Windows and NT platforms. 

When Microsoft's developers first came up with the idea behind Visual C++, they 

decided to take their world-class C++ compiler and create a development 

environment and set of tools that would enable developers to create Windows 

applications with a level of ease and speed that was unheard of among C++ 

development environment. Since that first version, Microsoft bas continued to 

improve the tools that are a part of Visual C++ to make it even easier to cerate 

Windows applications. 

50 

Univ
ers

ity
 of

 M
ala

ya



3.5 Conclusion 

The reviewing of the methodology being used, procedures that specifies the 

system requirements in detail, analysis of development tools wiU help in gaining the 

advantages and knowledge about the implementation of the proposed system. The 

following chapter will discuss about the design of the system, which includes the 

system architecture review, system interface design and other system components. 

51 

Univ
ers

ity
 of

 M
ala

ya



__._.... ___ (lotb cJimulation 

Chapfgr 4: 

~ygfgm DoAign 

Univ
ers

ity
 of

 M
ala

ya



CILfPTER 4: SYSTEM DESIGN 

4.1 Overview 

According to Webster, the process of design involves conceiving and 

planning out in the mind, and making a drawing, pattern, or sketch of Design is the 

creative process of transforming the problem into solution and the description of the 

solution [ Pelfre, 1998]. 

System design is the evolution of alternative solution and the specification of 

a detailed computer based solution. During this phase, the detail of how the system 

wiH meet the requirement identified during the requirement phase is described. Then 

the user requirement wiJI be transformed into a working model. A working model is 

used as guidance to developer before developing the complete system. 

4.2 Program Design 

Program designing for development of system to be, using up-bottom approach 

design. These type of designing is described as a big system and decomposed to 

smalJer parts [ KendaH and KendaH, 1995 ]. 

Advantages of up-bottom design are : 

1. It avoids development cycle from developing overa11 system at one time. 

11. It avoids developing cycle from misdirect from its purposes. 

4.2.1 Module Design 

Modular approach is needed in system designing when up-bottom approach is used. 

Modular approach is done by decomposed system into logic modules and 

manageable. 

52 

Univ
ers

ity
 of

 M
ala

ya



Advantages on using modular program are : 

1. Easier to write and compile modules because it is able to stand-alone. 

11. Modules are easier to manage for modifying certain function and not the 

whole program. 

m. Easier to understand the characteristic of each module. Developer able to take 

a module and understand it' s functions. 

4.2.2 System Structured Chart 

Structured chart are used during architectural design to document hierarchical 

structure, parameters and interconnections in a system. A structure chart differs from 

a flowchart in two ways : a structure chart has no decision boxes and the sequential 

ordering of tasks inherent in a flowchart can be suppressed in a structured chart 

[Fairley, 1985]. 

I 
Gravity 

I 
Hanging 

I 
I 

Cloth 
Simulation 

I 

VIAnd Affect 

I 
Gravity 

Resting 

l 
VIAnd Affect 

Figure 4.1 : Structured chart for Cloth Simulation 

53 

Univ
ers

ity
 of

 M
ala

ya



4.2.2 Process Flowcharts 

Process flowcharts depicts the breaking of any process down into individual 

events or activities and display these in shorthand from showing the logical 

relationship between them. Process flowcharts provide better understanding of 

processes because it is a pre-requisite for effective development ofthe system. 

Start 

Main Menu 

~ ~ No 
Choose Menu>·--------. 

~ 
' 

Hanging Main menu 

Activities l 
j 

Ll _____ v_e_s _______________ ~Conti~ 
~ 

1 No 
Exit 

Figure 4.2 Flow chart for main menu in Cloth Simulation 

54 

Univ
ers

ity
 of

 M
ala

ya



Start 

Menu 

No 
Choose Menu 

Yes 
~------------------~/~------------------

Hanging Chair Main menu 

' 
Activities 

Yes 

Continue 

No 

Exit 

Figure 4.3 : Flow chart for gravity and wind affcet modules 

55 

Univ
ers

ity
 of

 M
ala

ya



4.3 User Interface Design 

The interface is the infrastructure of the application. All online and offline 

websites and application have an infrastructure that links the component parts 

together so that users understand what is contained in them, how the information is 

organizes and what they need to do to activate the separate pieces. An analogy that is 

often used refers to navigation within the application and the routes that the users can 

explore [England and Finney, 1999 ]. 

Interface is used in many different kinds of purpose such as for searching, as 

a tool, browsers, learning and entertaining. In designing interfaces, few factors have 

to be considered in order to make the interface look attractive and easy to navigate by 

the user. It is also important to keep the interface simple yet attractive in order to 

keep the user interested. 

• Break down decision making - Decision steps have to be broken down 

into manageable parts using group boxes and labels to help them 

distinguish which decision they should be making at a given point of 

time. 

• Provide context- Context provides specific meaning and interpretation. 

Some ways of providing context are using titles, labels on screen titles, 

buttons and menus. 

• Be consistent- The font, size and way of approaching must be consistent 

so that it will give a focus view for the user. The user may find it easy and 

comfortable as well. 

• Use of color - The use of background colors, the colors of text against a 

colored background and color linked with layout. The selection of color 

need to be readability and legibility. 

56 

Univ
ers

ity
 of

 M
ala

ya



------·------ -Klliil} Toolbar buttons 

Modules 

Figure 4.4 : Interface for Cloth Simulation 

References : 

Toolbar Buttons -to control the windows size 

Modules - modules in the system 

Presentation Field - cloth in 3D will be present 

Information 
Field 

Presentation 
Field 

Information Field - information and calculation about the cloth can give a view the 

concept in this system 

4.4 Conclusion 

Functional and non-functional requirements found in the system analysis 

stage are turned into design specification. System design will model how operations 

routine look like logically, and determine the success of the application. 

57 

Univ
ers

ity
 of

 M
ala

ya



--+-+---- (lotb e)imulation 

WXES 3182 

Univ
ers

ity
 of

 M
ala

ya



--+--~----Clotb cJimulation 

C.hapfgr 5: 
~ygfgm 

. lmplamantation 

Univ
ers

ity
 of

 M
ala

ya



CIL1PTER 5: SYSTEM IMPLEMFNrATION 

5.1 Introduction 

System implementation is a process that takes place after the design phase. It will 

convert the system requirement to the programming codes. This phase will describes 

how the initial and revised process design put into the real world. Besides that, this 

chapter will also explain the coding methods, techniques, important scripts involved in 

the development or implementation of Cloth Simulation as wel1 as the functions or effect 

that are produced by these methods and scripts. 

5.2 Development Environment I Platform 

The review and the consideration of the development environment have been discussed 

in the previous chapters. In the implementation phase only basic minimum hardware and 

software requirements of a PC is needed, where they are : 

5.2.1 Hardware Requirement 

The hardware that I have been using for the development of the Cloth Simulation has the 

specifications as below : 

};;> Pentium 133Mhz 

};;> Memory of 32Mbytes 

};;> Minimum of 1 OMbytes hard disk space 

( excluding the development platform ) 

};;> Keyboard and mouse as input devices 

};;> Basic input I output devices 

58 

Univ
ers

ity
 of

 M
ala

ya



5.2.2 Software Requirement 

A number of software has being used to develop Cloth Simulation. The software 

environment needs to be set up are : 

);.>- Windows 2000 as the operating system of the machine 

;;... Microsoft Visual C++ 6.0 

;;... Microsoft Word 2002 

;;... OpenGL 

We will use OpenGL Utility Toolkit (GLUT). Its API includes the standard 

operations for window system and allows use of keyboard and mouse. In order to 

use glut with OpenGL programs , we need the following three files: 

1. glut.h m c:\Program Files\ Micro Soft Visual Studio\ VC98\include\gl 

2 glut32.dll in c:\ WINNT\System32 

3. glut32.1ib in c:\Program Files\ Micro Soft Visual Studio\VC98\lib 

These files are available at 'http://www.xmission.com\- nate\glut.html' 

Mter setting up these, we may proceed to the section of writing codes. 

59 

Univ
ers

ity
 of

 M
ala

ya



5.3 How cloth simulation work? 

5.3.1 Mass-spring models of cloth 

The simplest way to model a piece of cloth for dynamic simulation is with a mass-spring 

system. This is a special form of particle system which consists of a number of particles 

of (usually small) mass which are interconnected by (linear) springs. 

The simplest type of spring, the linear spring connecting two particles i and j, is 

shown schematically in Figure 5 .1. A linear spring has a certain rest length rij that it wiU 

attempt to maintain by exerting the necessary restoring forces on the two particle 

endpoints in case it is stretched or compressed to a different length. The force the spring 

exerts on one of those endpoints is dependent on its current length lij. 

• r, 
) • 

IE-----IIJ ---~ 

Flgurr 5.1: Forces alinrar spring exrrlS onrhe two panldrs II cc•mtects 

5.3.2 Surface topology 

Just as a real piece of cloth can be created by weaving together fibers in a large number 

of ways, connecting particles in a particle system model for cloth can be done in at least 

as many ways. The two most common topologies used in cloth simulation are those 

where the cloth swface is modeled as a triangular or quadrilateral mesh of particles, see 

Figure 5.2. 
.l. ~ I 
f 1 

--i 

n) 

Figure 5.2: A cloth surface modeled with a triangular and quadrilateral mesh of 
particles. 

60 

Univ
ers

ity
 of

 M
ala

ya



The use of triangles has certain advantages, such as easier formulation of accurate 

physical behavior for each surface element and easier calculations for coJJision detection 

than compared to quadrilaterals. However, we chose to use a quadrilateral structure, 

since it captures the warp/weft structure of real cloth much better than when using 

triangles and so we get a bit of extra realism ' for free', although accurate modeling of 

cloth's physical properties is not our primary concern. 

5.3.3 Types of springs 

'i r• 1 j r•? J 

o•1 r1 

'r4> . 

I I 

a) Structural springs b) Shear springs c) Bend springs 

Figure 5.3: The three different types of springs used in the mass-spring model of cloth 

The first type, ca11ed structural springs. That is, there are horizontal connections 

between particles (i; j) and (i + I; j) and vertical connections between particles (i; j) and 

(i ; j+I). 

The second type of springs, cal1ed shear springs, make in-plane shearing of the 

doth more difficult. Shear springs cormect particles in a diagonal way in each cloth 

quadrilateral. Connections are between particles (i; j) and (i + I; j + I) and between 

particles (i; j + I) and (i + I; j). The shear springs do not need to be very stiff in order to 

be effective. 

61 

Univ
ers

ity
 of

 M
ala

ya



The third and last type of springs used here are bend springs. These springs make 

bending the cloth harder. Although real cloth bends very easily, it still has a small 

resistance to this kind of deformation. These springs connect every other particle along 

the two directions of the rectangular cloth structure, connecting particles (i; j) and (i + 2; 

j) and particles (i; j) and (i; j + 2). 

5.3.4 Evolving a mass-spring system 

The physical simulation of the dynamics of a mass-spring model can be summed up as 

the following sequence of steps: 

I . Gather the forces that act on the mass particles both from internal sources (from 

springs connecting particles) and external ones (gravity, wind and drag forces acting 

on the particles). The external forces also include those resulting from user 

interaction and collisions with other objects in the environment. 

2. Calculate the particle accelerations resulting from these forces. 

3. Update the particle velocities and positions using the found accelerations. 

The details of Step 1, the gathering of the forces, is not that important at the moment. 

We will simply assume that when the first step is completed, each particle i will have 

received the accumulation of the forces acting on it, fi for a particle i. 

Step 2 from the list, calculating a particle's acceleration from the forces acting on 

it, is easily done using Newton's second law, f =rna. The acceleration of a particle i is ai 

= fi=mi, where mi is the particJe's mass. By repeating this for each particle, all the 

accelerations can be computed. 

62 

Univ
ers

ity
 of

 M
ala

ya



Step 3, updating positions and velocities, can be perfonned in a large variety of 

ways and the different methods of c1oth simulation will each do this step differently. 

This area is also where the largest part of cloth simulation research is done. 

5.3.5 Cloth Simulation Algorithm 

4 passes: 

• Each passes renders a single quad with a fragment program: 

I . Perform integration (move particles) 

2. Apply constraints: 

• Distance constraints between particles 

• Sphere collision constraint 

3. Calculate normals from positions using partial differences 

4. Render mesh 

63 

Univ
ers

ity
 of

 M
ala

ya



5.4 Overview of OpenGL API (Application Programmer's interface) 

OpenGL is an application programmer' s interface (API) that allows programmers to 

write graphics programs that access graphics hardware. 

Main advantages are: 

(i) OpenGL is close enough to hardware so those programs written with 

OpenGL run efficiently. 

(ii) It is easy to learn and use. 

(iii) Programs written using OpenGL are portable to any computer that 

supports the interface. 

(iv) Implementations are available for most hardware and operating systems. 

Implementations range from pure software to pure hardware 

implementation 

Disadvantages are: 

(i) does not have input functions 

(ii) does not have windowing functions. 

5.4.1 Three views of OpenGL 

(i) Tbe programmer's view 

Most application programs consist of three major elements: 

(a) specifying geometric objects 

(b) describing properties of these objects 

(c) Defining how these objects should be viewed. 

This gives a way of categorizing the OpenGL functions but it does not 

tell us how OpenGL works. 

64 

Univ
ers

ity
 of

 M
ala

ya



(ii) The OpenGL state machine 

The inputs are description of geometric objects that are specified to 

function calls. 

The machine produces the image. 

The output is an image that we see on the display. 

How the machine processes its inputs depends on its state. The state of 

the machine is set by OpenGL function calls. 

(iii) The OpenGL Pipeline 

Based on a pipeline model. 

Primitives are generated in the application program and flow though the 

pipeline. 

5.4.2 OpenGL functions: 

OpenGL contains more than 200 functions for building application programs. We can 

group them by their functionality. 

(i) Primitive functions 

Tl1ese are functions that define elements that can produce images on the screen. 

(a) geometric primitives - such as polygons, lines etc 

(b) bitmaps 

(ii) Attribute functions 

These control the appearance of functions such as color, line type, light sources 

etc 

(iii) input functions 

These are not part ofOpenGL. These are contained in the library called GLUT. 

65 

Univ
ers

ity
 of

 M
ala

ya



(iv) Viewing functions 

Determines the properties of camera. Controls focal length. Wide angle, 

telephoto. 

(v) Control functions 

These allow us to start and terminate OpenGL programs and to tum on various 

OpenGL features. 

OpenGL is not object oriented. We shall be using C language binding. This means no 

overloading and other object oriented features. 

5.5 Coding and Coding Approach 

Coding of a program can be considered as the building block of a system or application, 

it is written in a particular syntax to be a programming statement. An executable 

collection of programming statements that follows certain routine will be a program. Yet 

doing coding without a proper strategy and approach will be messy. At the same time, it 

wiJI be bard to match the actual design. Thus, pseudo codes are necessary. 

5.5.1 Pseudo Code 

Pseudo code is an intennediate language between the actual design or blue print and the 

statements with correct syntax. The main advantages of writing pseudo codes are : 

• Programming statement needs to be written in the correct syntax, whereas 

pseudo codes does not. So, a programmer can define the routines of the 

statement before searching for the specific codes , functions, classes and etc. 

66 

Univ
ers

ity
 of

 M
ala

ya



Translating pseudo code is, in certain cases, easier tban translating graphic 

data flow. 

A clear view of logic or semantic can be obtained. Since a programmer can 

easily got lost while cracking his I her head looking for the suitable 

functions or classes. 

Since it is a human language like statement, it can be a very good 

documentation of the coding. 

A well written pseudo codes means the 50% of the coding is done. 

5.6 Documentations 

Documentations here means the record of programming process and routine. It also 

record down the techniques used in this phase. It focuses on the descriptions 

accompanying a collection of programs. It explains to a reader, most probably one of the 

stakeholders in developing tbe software. There are two type of documentations here; 

Internal documentation is descriptive material written directly within the code; whereas 

another documentation is external documentation. Which both of it are highly crucial 

especially working in a team. [Pfleeger, 1998] 

67 

Univ
ers

ity
 of

 M
ala

ya



5.6.1 Internal Documentation 

Internal documentation contains information directed reader who is reading the source 

code of the programs. Thus, summary information is provided to identify program and 

describe its data structure, algorithms and control flow. For such documentation, there 

are a few methods to implement : 

0 Header Comment Block 

It is written at the beginning of each component in a set of comments that 

includes author name, matrix no., title and subtitle. 

0 Other Program Comments 

A header block acts as the introduction of the coding. An additional comment 

will enlighten reader as they go through the programmatic statement. This helps 

them to understand bow the intentions described by the programmer at the 

header block, is implemented in term of code. 

0 Meaningful Naming System 

An effective or meaningful naming variables, operations or objects are already a 

kind of clear documentation by itself. It makes the statement so obvious that 

reader can spontaneously understand the statement by the very first sight. 

68 

Univ
ers

ity
 of

 M
ala

ya



5.6.2 External Documentation 

External documentation is intended to be read by those who never look at the actual 

code. For example, an individual that reviews the external documentation when 

considering modification or enhancements. External documentations also explains things 

more detail as it might be within program comments. External documentation is part of 

the overall system documentation. The closest instance is this document you are reading 

right now. This is an overall documentation for the components developed. [Pfleeger, 

1998] 

A method need to be stressed here is continuous documenting, which is a 

demand that documentation is to be done parallel to the code itself. Programmers writes 

document in real time, as program has been coded; instead of recall the program routine 

after sometime upon rmishing coding. 

The external documentation prepared for this project are : 

User manual 

User manual is a reference or guide for programmers. It wiJJ explain and 

describes how the component can be used in their application, 

Please refer to Appendix A for more details. 

G Sample Coding 

The sample of coding that have developed and deploy in this system will be 

shown partly (not all in order to maintain intellectual property) 

It is as references for the readers to know how OpenGL Coding looks like. 

Please refer to Appendix B for more details. 

69 

Univ
ers

ity
 of

 M
ala

ya



---~-~---- (lotb e)imulation 

C.hapfgr 6: 
~ygfom T ggfing 

Univ
ers

ity
 of

 M
ala

ya



~6:~7~, 

CIL1PTER 6: SYSTEM TFS11NG 

6.1 Introduction 

System testing is a verification and validation process. Verification and validation are 

sometimes confused but actually both are different activities. Testing in focused on 

finding faults and there are many ways we can make our testing effort more efficient and 

effective. It is an essential series of steps that helps assure the quality of the eventual 

system. A successful testing will uncover errors in the software and demonstrates that 

system functions appear to be working according to specification. 

To develop and deliver robust systems, we need a high level of confidence that 

[Beizer, 1990] : 

• Each component wiiJ behave correctly 

Collective behaviour is correct 

No incorrect collective behaviour wiii be produced 

6.2 Types of Errors 

One reason why quality assurance is needed is because computers are infamous for 

doing what uses tell them to do, not necessarily what users want them to do. To close 

this gap, the code must be free from errors of bugs that caused unexpected results, a 

process caiJed debugging [Ali Bahrami, 1999]. 

Debugging is t11e process of finding out where something went wrong, and 

correcting the code to eliminate the errors of bugs that cause unexpected results. A 

software debugging system can provide tools to find errors in programs and corrects 

them. Below are a few types of error that encountered when the programs are run : 

70 

Univ
ers

ity
 of

 M
ala

ya



~6:S~7~' 

Language (syntax) errors result from incorrect code. These are the most 

common type of error that usually occurs. It is also the most easiest type to 

detect, for most part we need no debugging tools to detect them. The very first 

time we run the program the system will report the existence of these errors. For 

example, type mismatch for parameter of function, especially there are a few 

types of character string data type or object (char*, char[], BSTR, wchar,_bstr .. ). 

o Run - time errors occur and are detected as the program is running, when a 

statement attempts an operation that is impossible to carry out. This error 

happens when the operating system try to execute an operation that cannot be run 

under the system. 

Logic errors occur when code does bit perform the way programmers 

intended. The code might syntactically valid and run without performing any 

valid operations and yet produce incorrect results. Only by testing the code and 

analyzing the results can programmers verify that the code performs as intended. 

Logic errors also can produce run -time errors. 

The test will not find everything, not they will cover at least the higher visibility system 

interaction bugs [Marick, 1995 ]. 

71 

Univ
ers

ity
 of

 M
ala

ya



~6:S~7~' 

6.3 Testing Organization 

Generally, testing are involves several stages. There are actually three stages of testing 

to by gone through. The three stages are unit testing, module testing and integration 

testing. 

~ 

"= Q 

u .... e = 8. a 
Q 

u 

Unit 
Test 

6.3.i Unit Test 

Verified, 
Module Integration 

f----. Test f-+ Test 
,...._. Validated 

software 

Figure 6.1 : Testing Steps 

Unit test is very important to make sure the system can be correct without cause any side 

effect to the system. Unit test also make sure each of every sub module can be execute 

without error. Each program unit wiJI be tested to make sure the correctness and able to 

run without ·error. Unit test is done under a controHed environment whenever possible. 

6.3.2 Module Test 

Module test wiH be apply when aU module are done. This is to make sure aU codes 

with·in a programming ·can function well and correctly when the code are integrated 

together. Before the modules are integrated, there are a few value cannot be manipulate 

correctly. That'·s why the correct values need to put ·in to run the testing process. After 

that, each module wiiJ be examine and if there is any error appears, the part of module 

are determine and unit test will go through again to ·detect the error. 

72 

Univ
ers

ity
 of

 M
ala

ya



~6:S~7~' 

6.3.3 Integration Test 

Integration test is to test whether the whole system can be execute as a program. That is 

also to make sure all the module can be function with each others. When all the modules 

are meet the requirement, they will be integrated as a system. During the integration 

process, testing will be gone through to detect the faults and errors that cause by the 

process of integration. 

During the integration test, all the module prototype "WilJ combine together and 

tested under the testing environment. The testing environment must be consistence for 

all module. All program flows and testing requirement "Will be check. At the end, other 

users will test the system to get the feedback and comment about the develop system. 

6.4 Testing Strat~gie.s 

The extent of testing system is controlled by many factors, such as the risks ijjvolved, 

limitations on resource and deadlines. In spite of these issues, we must deploy a testing 

strategies that does the best job of fmdings defects in a product within given constraints. 

There are many testing strategies, but most testing uses the combination of those, which 

are black box testing, white box testing, top down testing and bottom up testing. 

However no strategies truly can prove the correctness of a system; it can establish only 

its "acceptance", [Ali Bahrami, 1999]. 

• Black Box Testing 

Is used to represent a system whose inside working are a bit available for 

inspection. The test item is treated as "black", since its logic is unknown. 

73 

Univ
ers

ity
 of

 M
ala

ya



~6:S~7~' 

White Box Testing 

Assumes that the specific logic is important and must be tested to guarantee the 

system's proper functioning. One form of white box testing is called path testing, 

as it make sure every path in the object is tested. 

Top Down Testing 

Assumes that the main logic or object interactions and systems of the application 

need more testing than an individual object's method or supporting logic. 

• Bottom- Up Testing 

Starts with the details of the system and proceed to higher level by a progressive 

aggregation of detail until they collectively fit the requirement of the system. 

6.5 Summary 

Testing is a balance art of art, science and luck. It may seem tl1at everything will 

fall into place without any preparation and a bug free product will be shipped. However 

in the real world, we must deploy a test plan for locating and removing bugs. [Ali 

Balrrami, 1999] 

There are no ideal test plan and debugging, however, by selecting appropriate 

testing and test plan, we should be able to locate errors in the component and fix them 

by utilizing debugging tools. 

In road maps of tests we had gone through, a few errors and bugs were 

encountered. Yet, all the bugs and errors were corrected in a short duration without 

affecting the whole time1ine of entire project. 

74 

Univ
ers

ity
 of

 M
ala

ya



---t-1---- (lotb e)imulation 

-
-

C.hapfgr 7: 
~ygfom 

Evaluation 

Univ
ers

ity
 of

 M
ala

ya



CJMFrER 7: SYSTEM EY ALUA/10N 

7.1 Introduction 

Evaluation is a process that occurs continuously at all phases of the system 

development. Evaluation phase was to determine the extent to which the system's 

expected outcomes have been realized, and the prescriptive value of the process 

where extraneous factors were taken consideration. 

In system evaluation we will discuss on problems encountered, solutions for 

encountered problems, user's evaluation, system constraints, future enhancements 

and experience gained in developing the project. Lastly we will conclude the quality 

for the system been developed. 

7.2 Problems Encountered and Recommended Solutions 

Along with the development stage of Cloth Simulation, a few problems were 

encountered. The following are the problem encountered : 

7.2.1 Determining the Scope of System 

Since there is no less experience for developer in developing a system, it was hard to 

determine to which extent to define the scope of the system so that it can be 

completed within the given time frame. The problem has been added by defining the 

work scope of project for the developer. A lot of time had been taken in discussing 

the work scope. By reference to a few software engineering reference books and 

articles, we had decided to develop the project using component based software 

development. 

Following the right track, I had also engaged the iterative and waterfaJJ and 

Prototype model for my development methodology. By selecting the ideal 

methodology, the process of development is run with a guideline, and work become 

much more easier. 

75 

Univ
ers

ity
 of

 M
ala

ya



7.2.2 Time Constraint 

Time is always the most important resource of the project I face the problem from 

the beginning of the project which a schedule with milestones is to be sketched out. 

Such tasks is cbalJenging and sometimes hard to cope for a junior developer like me. 

I hardly estimate the amount of time that should be spent for particular job. For an 

inexperienced developer , it is very likely to over or under estimate the effort needed 

for certain tasks. The uncertainty can only be reduced by referring the masterpiece of 

our seniors, which are provided at the thesis document room. 

Following schedule is the second challenge, some of the time space given 

may not be sufficient, and some delays happened. Extra time was used for certain 

process. A lot of adaptation needs to be done in order to tune the time line back onto 

the correct track. 

The project uses a developing time that is a bit longer than a commercial 

product in the market, this is due to the effort that being put in developing the 

application. I am not a full time developer, thus concentrating on the developing 

work is a tough job. My time is also occupied with my degree education programs. 

However , I am stiJI feeling relieved that the project is done in the given time. 

7.2.3 Lack of Mastery in Technical & Programming Skill 

In prior to developing the project, developer was only equipped with a basic 

programming knowledge of OpenGL, VC++ and VB, fundamental understanding of 

certain tools and a few concept of latest technologies. Though, what a developer need 

is of course more than that. Mastery of technical skills gives a direct affects in time 

usage upon the development process. 

76 

Univ
ers

ity
 of

 M
ala

ya



~ 1, s~ ~ffuttuJ, ' 

In selecting the idle tools and technologies, consultancy of experienced 

seniors play a very important role. I would need to find a suitable technology to suit 

my Cloth Simulation. Then information regarding the technologies need to be 

gathered thoroughly. Tools and technologies chosen must also suited developer's 

lack of experience in developing a system. 

At first, the application was planned to be developed using VB.net. 

However, it is possible for the developer to have done it alone since this project is 

single developed. A team of two is the more suitable team to develop application 

such as this. 

7.2.4 User Interface 

User's interface is an important aspect in a system's development to ensure users 

can use the system easier. However, in this system, to develop the interface is the 

hardest part. To insert a button that leads the user to other module is a tough job. 

Plenty of time is need to caU different libraries and procedures. 

I have consulted more than one lecturer and seniors expert in OpenGL, and 

they have suggested to me, to use VB.NET. However, it is impossible to complete 

the task as time left is very limited major changes in source code have to made. As 

an alternative, I instead have used the Console Application to display the orders for 

users to use. Users have to use manually. 

77 

Univ
ers

ity
 of

 M
ala

ya



7.3 Strengths of Project 

The implementation, testing and evaluation of the project has defined several 

strengths of this project which are worth mentioned here : 

7.3.1 Interesting 3D Performance 

Cloth Simulation is a 3D application. Its 3D modelling and environment are the main 

attractions that could inspired users with great imagination. 

7.3.2 Object Interaction and 3D Environment 

Users can interact with the system by only pressing button on the keyboard or by 

clicking the mouse. Repetition are allowed as many as the user wants in order to 

have a setter look at the graphic. Thrills of virtual environment can be felt by users 

While using Cloth Simulation. 

7.3.3 Real Images 

Images displayed wiJJ look like an actual one. It can interact with side effects such as 

gravity and wind. 

7.4 Limitations of Project 

Not aU humans are perfect. I am not surprised if somebody said that my system is 

very weak. However, it still can fulfil the main objective of the system. 

7.4.1 Interface 

The interface is the weakness of my system. However, instructions will be displayed 

on the screen as user's references. Users could to alternately change the modules 

they intended to use manually. 

78 

Univ
ers

ity
 of

 M
ala

ya



7.5 Future Enhancement 

Due to lack of time, there some ideas about the project that couldn't be completed or 

implemented. These ideas hopefully will be added into the Cloth Simulation in 

future. 

• Self collisions of the cloth allowing the cloth to exhibit more complex 

deformations. Self collisions happen when the cloth penetrates parts of itself 

Checking for self coJJision requires a more complex and efficient collision 

algorithm since we need to test a greater number of intersecting polygons and we 

need to handle multiple collisions at a time. Our model handles only simple 

collisions between two objects one at a time. In this simulation we will ignore 

self collisions with the cloth although it allows us to model more complex 

behavior such as crumpling of the cloth. 

• The ability to compose primitives such as boxes to build more complex objects 

like tables, the table would have a surface and four legs each being boxes. 

• Draping of more complex objects like people. 

• The Modeling of friction, currently when the cloth vertex points collide with an 

object their velocity become zero 

79 

Univ
ers

ity
 of

 M
ala

ya



7.6 Knowledge and Experiences Gained 

Knowledge and experiences were gained during each phase of the project 

development. A developer should not only gain knowledge and experience in 

technical aspects, but in aspect of managing a project as well. In the following 

section, knowledge and experiences gained will be discussed according to the phase 

throughout the project development. 

7.6.1 Introduction Phase 

Introduction phase is actuaJly involving part like project objectives, project scope, 

project limitation and target user. The most challenging part of all is project scope 

defining. If there are any errors in defining the scope of the project , it is always time 

consuming. In some cases, the project has to be start from the beginning. A clear 

project scope will lower down the development risks, and be a good guideline for 

the following phases. 

7.6.2 Literature Review 

Literature review is the part the chapter is knowledge based. In the chapter, 

developer have done a lot of technical review, besides describing the overview of 

Cloth Simulation and analysing existing systems. 

In analysis of existing systems, I have reviewed the architecture of each 

system and application such as the Syflex, Stitch Lite, CJothSim and others. It helped 

me a lot to understand the design of Cloth Simulation. Ideas collected can also be 

implemented in other application. 

On the other hand, technical review has given me the chance to analyse 

current technologies. It includes further understanding of variety of programming 

80 

Univ
ers

ity
 of

 M
ala

ya



~ 1: Sfi4UM ~i.tatttNt ' 

languages, reusable component I object technologies, network technologies and 

strength of various operating systems. 

Only with correct tools and matched technologies, the constraints in the 

project development could be minimized. 

7.6.3 Methodology and System Analysis 

This is the part where the knowledge of software engineering and software 

development management are actively used. One of the missions in this chapter is to 

select one combination of system developing methodology. It was a very good 

experience in analysing which methodology is idle and suits fairly with the system. 

A developer would have to consider the tools and techniques that may help us along 

the development line. 

Knowledge of system's analysis is very practical here. By listing out the 

requirements of the application design, the consideration of the technologies used 

was carried out. Such experiences gained in this phase will surely help in the 

following system development and also system maintenance works. 

7.6.4 System Design 

System design is the evolution of alternative solution and the specification of a 

detailed computer based solution. During this phase, the detail of how the system 

wiJI meet the requirement identified during the requirement phase is described. Then 

the user requirement will be transformed into a working model. A working model is 

used as guidance to developer before developing the complete system. 

7.6.5 System Implementation 

This is the part where technical knowledge counts. In this chapter , the main role 

Player were system analyst and programmer. System analyst will decide layout of 

81 

Univ
ers

ity
 of

 M
ala

ya



~ 7: S~Et14itut~ ~ 

the coding and programmer wilJ deploy it into lines of codes. How good will this 

phase be will depend on the layout given out by the system analyst and how well the 

programmer codes. This can be evaluated by the tools mastered by the programmer. 

The programmer needs to explore the developing tools as well. As I'm using 

OpenGL in VC++, I would have to master OpenGL programming. In this phase of 

developing, I've learned and gained experiences from creating the project in an 

Integrated Environment. Every steps involved needs my technical knowledge. 

7.6.6 System Testing 

A test plan is developed to test every functional unit involved. A set of test is 

documented to give a route map of component testing. 

7.8 Conclusion 

Developing Cloth Simulation is a very novel and exciting experience. It offers 

practical experience in designing and developing a system in real life usage and 

working environment. Still more, I learned a Jot and have the chance to apply my 

knowledge and theory gained from my classes at the FCSIT especiaJly in 

programming language. 

The development process was defined through a combination Waterfall and 

Prototype Model, which has made the system most expandable in terms of 

alternatives. I should say that I do enjoy the experience and learned a lot from 

mistakes and trouble I faced. 

Lastly, all the efforts that I had put just for this projects, the adventures, ups and 

downs would be my source to be more high spirit for the sake of our field of 

computer science and information technology. 

82 

Univ
ers

ity
 of

 M
ala

ya



..._...... ___ Cloth e)imulation 

~ Appgndix A . 
~ Appgndix B . 
~ Rgfgrgnegg 

Univ
ers

ity
 of

 M
ala

ya



APPENDIX A 

USER MANUAL ........ 

Installing GLUT 

If you don't have it already, you will need to install GLUT before you can follow the rest of the 
directions. 

Download the GLUT libraries and header files. There's no installer, so you will have to put the 
files manually in places where the compiler will find them. Assuming Developer Studio is in the 
standard places, put: 

1. glut.h in C:\Program Files\Microsoft Visual Studio\VC98\include\ 
2. glut32.lib in c:\Program Files \Microsoft Visual Studio\ VC98\lib 
3. glut32.dll in c:\windows\system32 (or c:\WINNT\system32, if you're nmning Windows 

NT/2000) 

You should only have to do this once. 

Writing an OpenGL program on Windows 

This document will guide you through the steps needed to write an application that uses OpenGL 
on the Windows platform. We assume you're using Microsoft Visual Studio 6.0. If you're not, 
you should be able to adapt these instructions to suit your development environment. 

1. Start Visual Studio. 

2. Create a new project by selecting "New" from the "File" menu. 

r file .Edit ':/Jew Insert BCIU1ds.O'l 

· . Mic1osoft V• s ucc~l C++ 

_0 
~ .Qpen... Ctri+O 

83 

Univ
ers

ity
 of

 M
ala

ya



3. Select "Win32 Console Application" from the list of choices, and give your project a 
name. 

Fin Projects 

.!J 
pwr~32 

OK Cancel 

4. Create an empty project. 

n ' •I P.plnt l l]EJ, 

r A "Helo. ~OIIdl" eppic.llion. 

r An~ lhet .._.ml!fFC. 

5. From the "Project" menu, choose "Settings ... ". 

Vts ual Cu 

Set Acti:ie Project 

Add To Project 

E ICPOII Makefte ... 

!naert Project no Workspace ... 

• 
• 

84 

Univ
ers

ity
 of

 M
ala

ya



6. Choose the "Link" tab. 

r-~ ·-- --- --·--- -- -----~ --~---- ----- , __ 
' . 

0~~--~----------~ 
!I'Umllldlle ,_ 

JDebu!l 

7. Add "opengl32.lib glu32.lib glut32.lib" to the end of the list oflibraries. 

8. Click "OK". 

P' Link jl(:r~ r Genera ,maplie 

r£nableproling 

Project ,Cptiona: 

kernel32.1ib user32.11l gd32.1ib win$p00llib corrdg32.1ib • 
advapi32.1ib shel32.1ib ole32.1ib oleaut32.1ib uuid.lib 
odlc32Jb odlccp32.1ib kernel32.itl user32.1ib gd32.itl .=.J 

OK I Cancel 

85 

Univ
ers

ity
 of

 M
ala

ya



Your project is now ready to use OpenGL, the GLU library, and the GLUT library. To test your 
setup, try the following: 

1. create a new C file called "teste" by choosing "New" from the "File" menu and picking 
"C++ Source File". 

OK I 

2. Type source code for 'Cloth Simulation'. Please refer to Appendix B for more details : 

> B 1 to hanging situation and B2 for resting situation. 

#include <windows.h> 
#include <GL/glut.h> 
#include <math.h> 
#include <stdio.h> 
#include <string> 

int main(int argc, char** argv) 

{ 
glutlnit(&argc, argv); 
glutlnitDisplayMode(GLUT _DOUBLE I GLUT_ RGB I GLUT_ DEPTH); 
glutlnitWindowSize(700, 700); 
glutCreateWindow("Hanging"); 
initO; 

86 

Univ
ers

ity
 of

 M
ala

ya



} 

I /Set up control functions 
glutldleFunc(idle ); 
glutDisplayFunc( display); 
glutReshapeFunc( reshape); 
glutK.eyboardFunc(keyboard); 
glutMotionFunc(mousemove ); 
glutMouseFunc(mousedown); 
my Help(); 
glutMainLoop(); 
return 0; 

3. Select "Build TestOpenGL.exe" from the "Build" menu (or press F7) 

[lest c) 

Belch BWJd.., 

{oid Di:FF~Cban-=·~,......==::-::==::: ======== 
gld St.wtQebug " 
g lC Debugger Flemote Caonec;tion. .. 
glM~--~-=~-=~==~~= 
glrl I 
glM 
glrl 
gld 

EJ!IICUie T es!OpenGL.exe Ctri+F5 

Set Active ~alian. .. 
Ca{lgwatiom. .. 

froftle. .. 
" R-------------------~ 

4. Select "Go" from the "Debug" submenu of the "Build" menu (or prss F5) 

. - ~- -~-~~- -~-~- -~ "-- ~-
(teste) 

· fr~ L~~ !~ Tl]de(overage T1ueTime :y{ll'ldow H~ 
mbers) ' ~ ~teste Ctri+F7 ~p~:a:::::;::;;;::-=~r::-::::"'1 
- iuild T estOpenGL.e~~e F7 

0-: -r n w Beb!Mid All 
· i ncl uc:Ii Batch BJild ... 

1 OJan 
·oid Dij 

gld 
glq DabuggerAemoteCq]neclion... Steplnto 
glM 
gll; I EpCIAeTestOpenGLexe Ctri+FS "{} Aunlo,l;;l.nOf Ctri+F10 
g lMl Attech to Pr~ ... 
g ll Set Actiw CQI'lfigl.tation. .. 
glO 

I C~atiom. .. 
gl$ frolie. .. 
nlH---------------------~ 

87 

Univ
ers

ity
 of

 M
ala

ya



Y~~:.: :;!1onld ~ ~ window that looks like the followin~ : 

>>> FOR HANGING SITU A TTON 

::: : · ~- FOR RESTING SITUATION 

00 

Univ
ers

ity
 of

 M
ala

ya



APPENDIX 81 

II Author : Nor Azlina Mohamad Salleh 
II Matrix No : WEK 000266 
II Title : Cloth Simulation 
II Subtitile : Hanging Situation 

#include <windows.h> 
#include <GUglut.h> 
#include <math.h> 
#include <stdio.h> 
#include <string> 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 

using namespace std; 

#include "fonts.h" 
#define CLOTH SIZE 5.0f 
#define CONSTRAINT UPDATE 3 
#define TEXTURE SIZ-E 16 
#define CLOTH RESOLUTION 16 
#define TIME STEP 0.01f 
#define TIME=FACTOR TIME_STEP*TIME_STEP 

/*Constraint structure*/ 
struct CONSTRAINT 
{ 

}; 

int particle 1, particle2; 
float restlength; 

/*Texture object*/ 
GLuint texName; 
/*Texture data array*/ 
GLubyte texture[3 *TEXTURE_ SIZE* TEXTURE_ SIZE]; 
/*Number of particles in the cloth*/ 
const int numparticles = CLOTH_RESOLUTION * CLOTH_ RESOLUTION; 
!*Array of forces on the particles in the cloth*/ 
float forces[numparticles * 3); 
/*Array of normals for particles in the cloth*/ 
float normals[numparticles * 3); 
/*First particle array for cloth*/ 
float cloth1 [numparticles * 4]; 
/*Second particle array for cloth*/ 
float cloth2[numparticles * 4); 
/*Pointer to current cloth array* I 
float *currentcloth; 
/*Pointer to previous cloth array*/ 
float *previouscloth; 
/*Number of constraints on cloth particle system*/ 
canst int numconstraints = 2 * CLOTH_RESOLUTION * (CLOTH_RESOLUTION -1} 

+ (CLOTH_RESOLUTION -1) * (CLOTH_RESOLUTION -1); 
/*Array of constraints on the cloth particle system*/ 
CONSTRAINT constraints[numconstraints]; 

/*The gravity force*/ 
float gravityforce = -9.8f; 

89 

Univ
ers

ity
 of

 M
ala

ya



} 

rvariables for controlling the wind*/ 
float winddirection{3] = {O.Of, O.Of, -1 .0f}; 
float windspeed = 0 .Of; 
float windvectorf3) = {O.Of, O.Of, O.Of}; 
rughting variables*/ 
float lightpos{4] = {1.0f, 1.0f, 1.0f, O.Of}; 
float lightambient{4] = {0.2f, 0.2f, 0.2f, 1.0f}; 
float lightdiffuse{4] = {1 .0f, 1.0f, 1.0f, 1.0f}; 
float material{4] = {1 .0f, 1.0f, 1.0f, 1.0f}; 

rThe elapsed time of the program*/ 
int currenttime = 0; 
rHow far into the simulation the program is*/ 
int simulationtime = 0; 

rKeeps track of where the mouse was last*/ 
int lastx = 0, lasty = 0; 

rcamera control variables*/ 
float rotation = 0; 
float elevation = 1 .Of; 
float camera distance = B. Of; 
float camerapos{3] = {O.Of, O.Of, O.Of}; 

rcontrols what mouse position changes update*/ 
int controlmode = 0; 

rstores the current texture used for the flag*/ 
int currenttexture = 0; 

void myHelpO 
{ 

cout << endl << endl << " "; 
cout <<"=========================="<< endl << " "· 
cout «'WELCOME TO CLOTH SIMULATON "« endl « .. • ... 

f 

cout <<"==========================" << endl << endl << " "· 
cout << "keyboard controls:" << endl << endl << " "; ' 
cout << "+ >> wind speed +ve" << endl << " "; 
cout << "- >> wind speed -ve" << endl << " "; 
cout << "t >> change color of cloth"<< endl <<" "· 
cout « "c » initialcloth (start)" « endl « " "; 
cout << "z >> camera zoom -ve" << endl << " "; 
cout << "x >> camera zoom +ve" << endl << " "; 
cout << "e >> exit" << endl << endl << endl << endl <<" "; 
cout << "right clik to mouse function" << endl << endl; 

void generatetexture(void) 
{ 

inti, j; 

roepending on which texture is desired, generate different 
coloured checkerboard textures*/ 
if(currenttexture == 0) 
{ 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

for(j = 0; j <TEXTURE_ SIZE; j++) 
{ 

texture{3 * (i *TEXTURE_ SIZE+ j)] = 255 - ((i + j)% 2) • 255; 
texture{3 * (i *TEXTURE_ SIZE+ j) + 1] = 255- ((i + j)% 2) • 255; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 2] = ((i + j)% 2) • 255; 

90 

Univ
ers

ity
 of

 M
ala

ya



} 

} 
else if( currenttexture == 1) 
{ 

} 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

} 

for(j = 0; j <TEXTURE_ SIZE; j++) 
{ 

texture(3 * (i *TEXTURE_ SIZE+ j)J = ((i + j)% 2) • 255; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 1] = 255- ((i + j)% 2) * 255; 
texture[3 * (i * TEXTURE_ SIZE + j) + 2] = 0; 

else if(currenttexture == 2) 
{ 

} 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

} 

for{j = 0; j <TEXTURE_ SIZE; j++) 
{ 

} 

texture[3 * (i *TEXTURE_ SIZE + j)] = 50 + ((i + j) % 2) * 205; 
texture(3 * (i *TEXTURE_ SIZE+ j) + 1] =50+ ((i + j)% 2) * 205; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 2] =50+ ((i + j)% 2) * 205; 

else if(currenttexture == 3) 
{ 

} 

for(i = 0; i < TEXTURE_ SIZE; i++) 
{ 

} 

for(j = 0; j <TEXTURE_ SIZE; j++) 
{ 

} 

texture(3 * (i *TEXTURE_ SIZE+ j)] = 255 - ((i + j)% 2) * 255; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 1] = 255- ((i + j)% 2) * 255; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 2] = 255; 

/*Load the texture into OpenGL*/ 
giBindTexture(GL_ TEXTURE_2D, texName); 
giTexEnvf(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_MODULATE); 
giTexParameteri(GL_ TEXTURE_2D, GL_TEXTURE_WRAP _S, GL_REPEAT); 
giTexParameteri(Gl_ TEXTURE_2D, GL_ TEXTURE_ WRAP_ T, GL_REPEA T); 
giTexParameteri(GL_ TEXTURE_2D, GL_ TEXTURE_MAG_FIL TER, 

GL_NEAREST); 
giTexParameteri(GL_ TEXTURE_2D, GL_ TEXTURE_MIN_FILTER, 

GL_NEAREST); 
gluBuild20Mipmaps(GL_ TEXTURE_2D, GL_RGB, TEXTURE_ SIZE, TEXTURE_ SIZE, GL_RGB, 

GL_UNSIGNED_BYTE, texture); 
} 

void accumulateforces(void) 
{ 

inti; 
float windforce; 

//Determine the wind force vector 
windvector(OJ = winddlrection[O] * windspeed; 
windvector(1] = winddirection[1] * windspeed; 
windvector(2] = winddirection[2] * windspeed; 

91 

Univ
ers

ity
 of

 M
ala

ya



} 
} 

for(i = 0; i < numparticles; i++) 
{ 

//Initialize forces 
forces(3 * i] = O.Of; 
forces(3 * i + 11 = O.Of; 
forces(3 * i + 2] = O.Of; 

//Gravity force 
forces(3 * i + 11 += gravityforce; 

/!Wind force 
windforce = windvedor[O] * normals[3 * ij 

+ windvector[1 1 * normals[3 * i + 1] 
+ windvector[2] * normals(3 * i + 2]; 

forces[3 * i] += normals[3 * ij * windforce; 
forces(3 * i + 11 += normals(3 * i + 1] * windforce; 
forces[3 * i + 21 += normals£3 * i + 2] * windforce; 

//Dampening force 
windforce = (previouscloth[4 * i] - currentcloth(4 * i]) * normals(3 * i] 

+ (previouscloth(4 * i + 1]- currentcloth[4 * i + 11) * normals[3 * i + 11 
+ (previouscloth[4 * i + 2] - currentcloth(4 * i + 2]) * normals[3 * i + 2]; 

forces(3 * i) += BO.Of * normals(3 * i] * windforce; 
forces[3 * i + 1] += BO.Of * normals(3 * i + 1] * windforce; 
forces[3 * i + 2] += 80.0f* normals(3 * i + 2] * windforce; 

void verlet(void) 
{ 

inti; 
float *tempfloatptr; 

//Update each particle via vertet integration 
for(i = 0; i < numparticles; i++) 
{ 

previouscloth(4 * i] = 2.0 * currentcloth[4 * i1 
- previouscloth[4 • iJ 
+ forces[3 * i) * currentcloth[4 * i + 3]* TIME_FACTOR; 

previouscloth[4 * i + 1] = 2.0 * currentcloth(4 * i + 1] 
- previouscloth[4 * i + 11 
+ forces[3 * i + 1] * currentcloth[4 * i + 3] • TIME_FACTOR; 

previouscloth[4 * i + 2) = 2.0 * currentcloth[4 * i + 2) 
- previouscloth[4 * i + 2] 
+ forces[3 * i + 2] * currentcloth[4 * i + 3] * TIME_FACTOR; 

} 

//Update the current and previous cloth pointers 
tempfloatptr = previouscloth; 
previouscloth = currentcloth; 
currentcloth = tempfloatptr; 

void satisfyconstraints(void) 
{ 

inti; 
float deHalength; 
float delta[3]; 
float diff; 
float invmass1, invmass2; 

92 

Univ
ers

ity
 of

 M
ala

ya



} 

//Satisfy stick constraints within cloth 
for(i = 0; i < numconstraints; i++) 
{ 

delta(O] = currentcloth[4 * constraints[i].particle1) 
- currentcloth[4 * constraints[ij.particle2); 

delta[1) = currentcloth(4 * constraints[i].particle1 + 1] 
- currentcloth[4 * constraints(ij.particle2 + 1); 

delta[2] = currentcloth[4 * constraints(i].particle1 + 2] 
- currentcloth[4 * constraints[i].particle2 + 2); 

invmass1 = currentcloth[4 * constraints[ij.particle1 + 3]; 
invmass2 = currentcloth(4 * constraints[i].particle2 + 3); 

deHalength = (float)sqrt(delta(OJ * deHa(O] + delta[1] * delta[1] + delta[2) * delta[2J); 

diff = (deltalength - constraintsp].restlength) I (deltalength * (invmass1 + invmass2)); 

currentcloth[4 * constraintsp].particle1] -= invmass1 * delta[O] * diff; 
currentcloth(4 * constraintsp].particle1 + 1] -= invmass1 * delta[1] * diff; 
currentcloth(4 * constraintsp].particle1 + 2] -= invmass1 * delta[2] * diff; 

currentcloth[4 * constraintsp].particle2) += invmass2 * delta[O) * diff; 
currentcloth[4 * constraints[i].particle2 + 1] += invmass2 * delta[1] * diff; 
currentcloth[4 * constraints(i].particle2 + 2] += invmass2 * delta[2) * diff; 

void calculatenormals(void) 
{ 

inti, j; 
float vector1ength; 
float trianglenormal[3]; 
float v1 [3), v2(3]; 

//Set all normals to 0 
for(i = 0; i < numparticles; i++) 
{ 

normals(3 * i] = O.Of; 
normals[3 * i + 1] = O.Of; 
normals[3 * i + 2] = O.Of; 

//Calculate the normal of each triangle 
!lin the mesh and factor it into all the vertices 
llthat are a part of it 
for(i = 0; i < CLOTH_RESOLUTION - 1; i++) 
{ 

for(j = 0; j < CLOTH_RESOLUTION - 1; j++) 
{ 

v1[0) = currentcloth(4 * (i * CLOTH_RESOLUTION + j)J 
- currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j)]; 

v1[1] = currentcloth[4 * (i * CLOTH_RESOLUTION + j) + 1] 
- currentcloth[4 * ((i + 1) *CLOTH_ RESOLUTION+ j) + 1]; 

v1[2J = currentcloth[4 * (i * CLOTH_RESOLUTION + j) + 2] 
- currentcloth[4 * ({i + 1) * CLOTH_RESOLUTION + j) + 2]; 

v2[0) = currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1)] 
- currentcloth[4 *(I * CLOTH_RESOLUTION + j)]; 

v2[1] = currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1) + 1] 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j) + 1]; 

v2[2) = currentcloth[4 * (i *CLOTH_ RESOLUTION+ j + 1) + 2] 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j) + 2) 

93 

Univ
ers

ity
 of

 M
ala

ya



} 

} 

trianglenonnai[O] = v1 [1) * v2[2]- v1[2] * v2[1]; 
trianglenonnal[1] = v1 [2] * v2[0]- v1 [0] * v2[2]; 
trianglenonnal[2) = v1 [0] * v2[1)- v1 [1] * v2[0); 

nonnals[3 * (i * CLOTH_RESOLUTION + j)] += trianglenonnai[O]; 
normals[3 * (i * CLOTH_RESOLUTION + j) + 1] += trianglenormal[1]; 
nonnals[3 * (i * CLOTH_RESOLUTION + j) + 2] += trianglenormal[2]; 

nonnals[3 * (i * CLOTH_RESOLUTION + j + 1)] += trianglenormai[O); 
normals[3 * (i * CLOTH_RESOLUTION + j + 1) + 1 J += trianglenormal{1]; 
normals[3 * (i * CLOTH_RESOLUTION + j + 1) + 2] += trianglenormal[2]; 

nonnals[3 * ((i + 1) * CLOTH_RESOLUTION + j)) += trianglenonnai[OJ; 
nonnals[3 * ((i + 1) * CLOTH_RESOLUTION + j) + 1] += trianglenonnal{1]; 
nonnals[3 * ((i + 1) * CLOTH_RESOLUTION + j) + 2] += trianglenonna1[2]; 

v1[0] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1)] 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1 )]; 

v1[1] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 1) 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1) + 1 ]; 

v1[2) = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1} + 2] 
- currentcloth(4 * (i * CLOTH_RESOLUTION + j + 1) + 2]; 

v2[0] = currentcloth(4 * ((i + 1) * CLOTH_RESOLUTION + j)] 
- currentcloth(4 * ((i + 1) * CLOTH_RESOLUTION + j + 1)]; 

v2[1J = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j) + 1] 
- currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 1]; 

v2[2] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j) + 2) 
- currentcloth[4 * ((i + 1} * CLOTH_RESOLUTION + j + 1} + 2); 

trianglenonnai[O] = v1 [1] * v2[2)- v1 [2] * v2[1]; 
trianglenonnal(1) = v1 [2] * v2[0J- v1[0J * v2[2); 
trianglenonnal[2) = v1[0] * v2[1]- v1[1) * v2[0); 

nonnals[3 * ((i + 1) * CLOTH_RESOLUTION + j + 1 )) += trianglenonnai(O]; 
normals[3 * ((i + 1} * CLOTH_RESOLUTION + j + 1) + 1) += trianglenormal[1]; 
normals[3 * ((i + 1) * CLOTH_RESOLUTION + j + 1} + 2] += trianglenormai[2J; 

nonnals[3 * (i * CLOTH_RESOLUTION + j + 1 )] += trianglenormai[O]; 
nonnals(3 * (i * CLOTH_RESOLUTION + j + 1} + 1] += trianglenormal[1); 
normals[3 * (i * CLOTH_RESOLUTION + j + 1) + 2) += trianglenormal[2]; 

nonnals[3 * ((i + 1) * CLOTH_RESOLUTJON + j}) += trianglenonnai[O); 
normals[3 * ((i + 1) * CLOTH_RESOLUTION + j) + 1] += trianglenonnal(1]; 
normals[3 * ((i + 1) *CLOTH_ RESOLUTION + j} + 2] += trianglenonnai[2J; 

//Normalize vertex normals 
for{i = 0; i < numparticles; i++) 
{ 

} 

vectorlength = 1.0f I (float)sqrt(nonnals(3 * i) * normals[3 * i) 

normals[3 * i) *= vectortength; 
normals[3 * i + 1] *= vectorlength; 
normals[3 * i + 2] *= vectortength; 

+ nonnals[3 * i + 1] * normals[3 * i + 1] 
+ nonnals[3 * i + 2] * normals(3 * i + 2]); 

void updatecloth(void) 

94 

Univ
ers

ity
 of

 M
ala

ya



{ 

} 

inti; 

//Accumulate forces on the particles 
accumulateforcesO; 
//Do varlet integration 
verletO; 
//Attempt to satisfy all the constraints on the system 
for(i = 0; i < CONSTRAINT_UPDATE; i++) 
satisfyconstraints(); 
//Calculate the triangle normals 
calculatenormals(); 

void initializecloth(int setuptype) 
{ 

inti , j, currentconstraint = 0; 
float restlength; 
float diagonallength; 

//Initialize cloth position and point weights 
if(setuptype == 0) 
{ 

for(i = 0; i < CLOTH_RESOLUTION; i++) 
{ 

for(j = 0; j < CLOTH_RESOLUTION; j++) 
{ 

cloth1[4 * (CLOTH_RESOLUTION * i + j)) =-CLOTH_ SIZE 12.0f + j • 
CLOTH SIZE I CLOTH RESOLUTION; 

- - cloth 1 [4 * (CLOTH_RESOLUTION * i + j) + 1] = 2.0f; 

CLOTH_ RESOLUTION; 
cloth1[4 * (CLOTH_RESOLUTION * i + j) + 2) = -i *CLOTH_ SIZE 1 

cloth1[4 * (CLOTH_RESOLUTION * i + j) + 3) = 1.0f; 
} 

} 
} 

//Initialize 2 comer points to infinite weight 
cloth1[3] = O.Of; 
cloth1[4 * (CLOTH_RESOLUTION- 1) + 3) = O.Of; 

for(i = 0; i < 4 * CLOTH_RESOLUTION *CLOTH_ RESOLUTION; i++) 
cloth2[i) = cloth1 [i); 

//Set up pointers for the previous frame and the current frame for the cloth 
currentcloth = cloth1 ; 
previouscloth = cloth2; 

restlength =CLOTH_ SIZE I CLOTH_ RESOLUTION; 

//Constraints in the horizontal direction along the cloth 
for(i = 0; i < CLOTH_RESOLUTION; i++) 
{ 

} 

for(j = 0; j < CLOTH_RESOLUTION - 1; j++) 
{ 

} 

constraints[currentconstraint).particle1 = i * CLOTH_RESOLUTION + j; 
constraints[currentconstraint).particle2 = i * CLOTH_RESOLUTION + j + 1; 
constraints[currentconstraint).restlength = restlength; 
currentconstraint++; 

//Constraints in the vertical direction along the cloth 
for(i = 0; i < CLOTH_ RESOLUTION- 1; i++) 

95 

Univ
ers

ity
 of

 M
ala

ya



{ 

} 

for(j = 0; j < CLOTH_RESOLUTJON; j++) 
{ 

} 

constraints[currentconstraint).particle1 = i * CLOTH_RESOLUTION + j; 
constraints[currentconstraint].particle2 = (i + 1) .. CLOTH_RESOLUTJON + j; 
constraints[currentconstraint).restlength = restlength; 
currentconstraint++; 

//A single diagonal constraint across every square in the cloth grid 
diagonallength = (float) sqrt(2.0f .. restlength * restlength); 
for(i = 0; i < CLOTH_RESOLUTION- 1; i++) 
{ 

} 

for(j = 0; j < CLOTH_RESOLUTJON- 1; j++) 
{ 

} 

constraints[currentconstraint).particle1 = i * CLOTH_RESOLUTJON + j; 
constraints[currentconstraint].particle2 = (i + 1) * CLOTH_RESOLUTION + j + 1· 
constraints[currentconstraint).restlength = diagonallength; ' 
currentconstraint++; 

void drawcloth(void) 
{ 

inti, j ; 

//Draw a series of triangle strips for the cloth 
for(i = 0; i < CLOTH_RESOLUTION - 1; i++) 
{ 

giBegin(GL_ TRIANGLE_ STRIP); 
for(j = 0; j < CLOTH_RESOLUTION; j++) 
{ 

g1Norrnal3fv(&(norrnals[3 * ((i + 1) * CLOTH_RESOLUTION + j)))); 
glTexCoord2f(((float)j) I (CLOTH_RESOLUTION- 1), ((float)(i + 1)) 1 

(CLOTH_RESOLUTJON -1)); 
g1Vertex3fv(&(currentcloth[4 .. ((i + 1) * CLOTH_RESOLUTION + j)J)); 
glNorrnal3fv(&(norrnals[3 * (i * CLOTH_RESOLUTJON + j)J)); 
giTexCoord2f(((float)j) I (CLOTH_RESOLUTJON- 1), ((float)i) I 

(CLOTH_RESOLUTJON -1)); 

} 

} 
glEnd(); 

glVertex3fv(&(currentcloth[4 * (i .. CLOTH_RESOLUTJON + j)])); 

} 

void menu(int selection) 
{ 

controlmode = selection; 
} 

void idle(void) 
{ 

currenttime = glutGet(GLUT_ELAPSED_TlME); 

//Update the simulation to match the current time 
while(simulationtime < currenttime) 
{ 

updatecloth(); 
simulationtime +=TIME_ STEP* 1000; 

} 
glutPostRedisplayQ; 

96 

Univ
ers

ity
 of

 M
ala

ya



} 

} 

void init(void) 
{ 

initializecloth(O); 

giShadeModei(GL_SMOOTH); 
g/Disab/e(GL_ CULL_ FACE); 
giEnable(GL_DEPTH_ TEST); 

//Setup texturing 
giPixeiStorei(GL_ UNPACK_ALIGNMENT, 1 ); 
giGen Textures( 1 , &texName ); 
generatetextureQ; 
giEnable(GL_ TEXTURE_20); 

//Setup lighting 
gllightfv(GL_LIGHTO, GL_AMBIENT, lightambient); 
gllightfv(GL_LIGHTO, GL_DIFFUSE, lightdiffuse); 
gllightfv(GL_LIGHTO, GL_POSITION, lightpos); 
giEnable(GL_LIGHTING); 
giEnable(GL_LIGHTO); 
gllightModeli(GL_LIGHT _MODEL_ TWO_ SIDE, 1 ); 
giMaterialfv(GL_FRONT _AND _BACK, GL_AMBIENT _AND _DIFFUSE, material); 

void display(void) 
{ 

//Set the camera position 
camerapos[O] = sin( rotation} *sin( elevation)* cameradistance; 
camerapos[1) = cos(elevation} * cameradistance; 
camerapos(2] = cos(rotation) * sin( elevation) * cameradistance; 

//Set up for rendering 
giCiear(GL_COLOR_BUFFER_BIT 1 GL_DEPTH_BUFFER_BIT); 
giLoadldentityQ; 
gluLookAt(camerapos(O), camerapos[1], camerapos(2], 

O.Of, O.Of, O.Of, 

//Draw the cloth 
g1Color3f(1 .0f, 1.0f, 1.0f); 
drawc/oth(}; 

O.Of, 1.0f, O.Of); 

giDisable(GL_ TEXTURE_2D}; 

//Draw the wind direction 
g1Color3f(O.Of, 1.0f, 4.0f); 
glDisable(GL_LIGHTING}; 
giBegin(GL_LINES}; 
g1Vertex3fv(windvector}; 
g/Vertex3f(O.Of, O.Of, O.Of); 
giEnd(}; 
giEnable(GL_LIGHTING}; 
g1Color3f(1 .0f, 1.0f, 1.0f); 

giEnable(GL_ TEXTURE_2D); 

glutSwapBuffers(}; 

void reshape(int w, int h) 
{ 

giViewport(O, 0, (GLsizei} w, (Glsizei) h); 
giMatrixMode(GL_PROJECTION}; 

97 

Univ
ers

ity
 of

 M
ala

ya



} 

glloadldentityO; 
gluPerspective(60.0, (Glfloat) w/(Glfloat) h, 0.1, 1 00.0); 
giMatrixMode(GL_MODELVIEW); 

void mousemove(int x, int y) 
{ 

} 

double modelviewmatrix[16J, projectionmatrix[16J; 
int viewport{4]; 
double projectedpoint[3); 
float u; 
float veclength; 

//Move camera 
if(controlmode == 0) 

{ 
rotation+= (x - lastx) /100.0f; 
elevation+= (y -lasty) /100.0f; 

if(elevation < 0.1f) 

} 

elevation = 0.1f; 
if(elevation > 3.0f) 

elevation = 3.0f; 

//Change wind direction 
else if(controlmode == 2) 
{ 

glloadldentityO; 
gluLookAt(camerapos[O), camerapos[1), camerapos[2], 

O.Of, -0.5f, O.Of, 
O.Of, 1.0f, O.Of); 

giGetDoublev(GL_MODELVIEW_MATRIX, modelviewmatrix); 
giGetDoublev(GL_PROJECTION_MATRJX, projectionmatrix); 
giGetlntegerv(GL_ VIEWPORT, viewport); 
gluUnProject(x, (viewport[3)- y), 1.0, modelviewmatrix, projectionmatrix, viewport, 

&(projectedpoint{O)), &(projectedpoint[1)), &(projectedpoint{2])); 

//Calculate wind direction 
u = camerapos[1)/ (camerapos[1)- projectedpoint[1)); 
winddirection[O) = camerapos[O) + u * (projectedpoint(O] - camerapos[O]); 
winddirection[2) = camerapos[2] + u * (projectedpoint{2] - camerapos(2]); 

//Normalize wind direction 
veclength = (float) sqrt(winddirection[O] * winddirection[O) 

winddirection[O] /= veclength; 
winddirection[2] /= veclength; 

+ winddirection[2J * winddirection[2j); 

lastx = x; 
lasty = y; 
idleO; 

void mousedown(int button, int state, int x, int y) 
{ 

} 

lastx = x; 
lasty = y; 

void keyboard (unsigned char key, int x, int y) 
{ 

switch (key) 
{ 

98 

Univ
ers

ity
 of

 M
ala

ya



} 

} 
} 

case'+': 
case'=': 

case'-': 

windspeed += 1.0f; 
break; 

windspeed -= 1.0f; 
break; 

case 'c': 

case 'z': 

case 'x': 

case 't': 

case 'e': 

default: 

initializecloth(O); 
break; 

cameradistance += 0.5f; 
break; 

cameradistance-= 0.5f; 
if(cameradistance < 4.0f) 

cameradistance = 4.0f; 
break; 

currenttexture++; 
currenttexture %= 4; 
generatetextureO; 
break; 

exit(-1); 
break; 

break; 

int main(int argc, char** argv) 
{ 

glutlnit(&argc, argv); 
glutlnitOisplayMode(GLUT_OOUBLE I GLUT_RGB I GLUT_DEPTH); 
glutlnitWindowSize(700, 700); 
glutCreateWindow(''Hanging'); 
in itO; 

//Setup menu 
glutCreateMenu(menu); 
glutAddMenuEntry("Mouse changes view direction", 0); 
glutAddMenuEntry("Mouse changes wind direction", 2); 
glutAttachMenu(GLUT _RIGHT _BUTTON); 

//Set up control functions 
glutldleFunc(idle); 
glutOisplayFunc(display); 
glutReshapeFunc(reshape); 
glutKeyboardFunc(keyboard); 
glutMotionFunc(mousemove); 
glutMouseFunc(mousedown); 
myHelp(); 
glutMainloop(); 
retum 0; 

99 

Univ
ers

ity
 of

 M
ala

ya



APPENDIX 82 

II Author : Nor Azlina Mohamad Salleh 
II Matrix No : WEK 000266 
II Title : Cloth Simulation 
II Subtitile : Resting Situation 

#include <windows.h> 
#include <GUglut.h> 
#include <math.h> 
#include <stdio.h> 
#include <string> . 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 

using namespace std; 

#include ''fonts.h" 

/*Constraint structure*/ 
struct CONSTRAINT 
{ 

}; 

int particle1, particle2; 
float restlength; 

#define CLOTH SIZE S.Of 
#define CONSTRAINT UPDATE 3 
#define TEXTURE SIZE 16 
#define CLOTH RESOLUTION 16 
#define TIME STEP 0.01f 
#define TJME=FACTOR TIME_STEP*TIME_STEP 

/*Texture object*/ 
GLuint texName; 
/*Texture data array*/ 
GLubyte texture[3 "'TEXTURE_ SIZE* TEXTURE_ SIZE]; 
/*Number of particles in the cloth*/ 
const int numparticles = CLOTH_RESOLUTION * CLOTH_RESOLUTION; 
I* Array of forces on the particles in the cloth* I 
float forces[numparticles * 3]; 
/*Array of normals for particles in the cloth*/ 
float normals(numparticles * 3); 
/*First particle array for cloth*/ 
float cloth1 (numparticles * 4]; 
/*Second particle array for cloth*/ 
float cloth2[numparticles • 4]; 
/*Pointer to current cloth array*/ 
float *currentcloth; 
/*Pointer to previous cloth array* I 
float *previouscloth; 
/*Number of constraints on cloth particle system*/ 
const int numconstraints = 2 * CLOTH_RESOLUTION * (CLOTH_RESOLUTION- 1) 

+ (CLOTH_RESOLUTION -1) * (CLOTH_RESOLUTION -1); 
/*Array of constraints on the cloth particle system*/ 
CONSTRAINT constraints[numconstraints]; 

/*Position and radius of the sphere*/ 
float sphere{4] = {O.Of, O.Of, -2.0f, 1.0f}; 

100 

Univ
ers

ity
 of

 M
ala

ya



} 

/*The gravity force*/ 
float gravityforce = -9.8f; 

/*The elapsed time of the program*/ 
int currenffime = 0; 

/*Variables for controlling the wind*/ 
floatwinddirection{3J = {O.Of, O.Of, -1.0f}; 
float windspeed = O.Of; 
float windvector(3J = {O.Of, O.Of, O.Of}; 

/*Lighting variables*/ 
float lightpos{4J = {1 .0f, 1.0f, 1.0f, O.Of}; 
float lightambient(4) = {0.2f, 0.2f, 0.2f, 1.0f}; 
float lightdiffuse{4J = {1.0f, 1.0f, 1.0f, 1.0f}; 
float materiai{4J = {1 .0f, 1.0f, 1.0f, 1.0f}; 

/*How far into the simulation the program is*/ 
int simulationtime = 0; 

/*Keeps track of where the mouse was last*/ 
int lastx = 0, lasty = 0; 

/*Camera control variables*/ 
float rotation = 0; 
float elevation = 1.0f; 
float cameradistance =B.Of; 
float camerapos{3J = {O.Of, O.Of, O.Of}; 

/*Controls what mouse position changes update*/ 
int controlmode = 0; 

/*Stores the current texture used for the flag*/ 
int currenttexture = 0; 

void myHelpO 
{ 

cout << endl << endl « " "; 
cout <<"==========================" << endl << " "; 
cout «'WELCOME TO CLOTH SIMULA TON "« endl « " "· 

I 

cout <<"=========================="<< endl << endl << " "· 
cout << "keyboard controls:" << endl << endl << " "; ' 
cout << "+ >> wind speed +ve" << endl << " "; 
cout << "- >> wind speed -ve" << endl << " "; 
cout << "t >> change color of cloth" << endl << " "; 
cout « "c >> initialcloth (start)"<< endl << " "; 
cout << "z >> camera zoom -ve" << endl << " "; 
cout << "x >> camera zoom +ve" << endl << " "; 
cout << "e >> exit"<< endl << endl << endl << endl <<" "· 
cout « "right c/ik to mouse function" « end/ << endl; 

void generatetexture(void) 
{ 

inti, j; 

/"Depending on which texture is desired, generate different 
coloured checkerboard textures*/ 
if(currenttexture == 0) 
{ 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

for(j = 0; j < TEXTURE_ SIZE; j++) 
{ 

texture[3 * (i *TEXTURE_ SIZE + j)J = 255-((i + j) % 2) • 255; 

101 

Univ
ers

ity
 of

 M
ala

ya



texture[3 * (i "TEXTURE_ SIZE+ j) + 1] = 255- ((i + j)% 2) • 255· 
texture[3 * (i *TEXTURE_ SIZE+ j) + 2] = 255; ' 

} 
} 
else if(currenttexture == 1) 
{ 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

for(j = 0; j < TEXTURE_SIZE;j++) 
{ 

} 

texture[3 * (i "TEXTURE_ SIZE+ j)] = 255- ((i + j)% 2) * 255· 
texture[3 * (i *TEXTURE_ SIZE+ j) + 1] = 255- ((i + j)% 2) * l55· 
texture[3 * (i *TEXTURE_ SIZE + j) + 2} = ((i + j)% 2) • 255; ' 

} 
} 
else if(currenttexture == 2) 
{ 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

for(j = 0; j < TEXTURE_ SIZE; j++) 
{ 

} 

texture[3 * (i *TEXTURE_ SIZE+ j)] =50+ ((i + j)% 2) * 205; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 1] =50+ ((i + j)% 2) * 205· 
texture[3 * (i *TEXTURE_ SIZE + j) + 2] =50 + ((i + j) % 2) * 205; 

} 
} 
else if(currenttexture == 3) 
{ 

for(i = 0; i <TEXTURE_ SIZE; i++) 
{ 

for(j = 0; j <TEXTURE_ SIZE; j++) 
{ 

texture[3 * (i *TEXTURE_ SIZE + j)J = ((i + j) % 2) * 255; 
texture[3 * (i *TEXTURE_ SIZE+ j) + 1] = 255- ((i + j)% 2) • 255· 
texture[3 * (i *TEXTURE_ SIZE+ j) + 2} = 0; ' 

} 
} 

} 
rLoad the texture into OpenGl*/ 
giBindTexture(Gl_ TEXTURE_2D, texName); 
giTexEnvf(Gl_ TEXTURE_ENV, GL_ TEXTURE_ENV_MODE, GL_MODULATE); 
giTexParameteri(GL_ TEXTURE_2D, GL_ TEXTURE_WRAP _s, GL_REPEAT); 
giTexParameteri(GL_ TEXTURE_2D, GL_ TEXTURE_ WRAP_ T, GL_REPEAT); 
giTexParameteri(GL_ TEXTURE_2D, GL_ TEXTURE_MAG_FILTER, GL_NEAREST); 
giTexParameteri(Gl_ TEXTURE_2D, GL_ TEXTURE_MIN_FILTER, GL_NEAREST); 
gluBuild20Mipmaps(GL_TEXTURE_2D, GL_RGB, TEXTURE_SIZE, TEXTURE_SJZE, GL RGB, 

Gl_UNSJGNED BYTE, texture); -
} -

void accumulateforces(void) 
{ 

inti; 
float windforce; 

//Determine the wind force vector 
windvector[OJ = winddirection[OJ * windspeed; 
windvector[1) = winddirection[1] • windspeed; 
windvector[2) = winddirection[2] • windspeed; 
for(i = 0; i < numparticles; i++) 
{ 

1/Jnitialize forces 
forces[3 • i} = O.Of; 

102 

Univ
ers

ity
 of

 M
ala

ya



fon::es[3 • i + 1) = O.Of; 
fon::es[3 * i + 2) = O.Of; 

//Gravity force 
forces(3 * i + 1) += gravityforce; 

//Wind force 
windforce = windvector{O) * nonnafs[3 * ij + windvector{1)* nonnafs{3 * i + 11 

+ windvector{2] • normals(3 * i + 2); 
forces[3 • i) += nonnafs[3 * ij * windfon::e; 
fon::es(3 * i + 1) += nonnafs[3 * i + 1) * windforce; 
forces[3 • i + 2) += nonnals(3 * i + 2) * windforce; 

//Dampening force 
windforce = (previouscloth[4 * i] - currentcloth[4 * i]) • nonnals(3 • i] 

+ (previouscfoth(4 * i + 1) - currentcloth[4 • i + 1)) * normals(3 * ; + 11 
+ (previouscfoth[4 * i + 2) - currentcloth(4 • i + 2)) * normals[3 • ; + 2)· 

fon::es[3 * i) += BO.Of • normals(3 * i) * windforce; ' 

} 

void verfet(void) 
{ 

inti; 

forces[3 • i + 1) += BO.Of * nonnafs[3 • i + 1) * windforce; 
forces(3 * i + 2] += BO.Of* nonnals[3 * i + 2]* windforce; 

float *tempfloatptr; 

//Update each particle via verfet integration 
for(i = 0; i < numparticles; i++) 
{ 

previouscloth[4 * i) = 2.0 • currentcloth(4 • i]- previouscloth[4 • ij 
+ forces[3 * i) * currentcloth[4 * i + 3) * TIME_FACTOR; 

previouscloth{4 * i + 1) = 2.0 * currentcloth[4 * i + 1)- previouscloth(4 •; + 1) 
+ forces[3 * i + 1) * currentcloth[4 * i + 3]* TIME_FACTOR; 

previouscloth[4 * i + 2) = 2.0 * currentcloth[4 * i + 2) - previouscloth[4 • ; + 2) 
+ forces[3 * i + 2) * currentcloth[4 * i + 3) * TIME_FACTOR; 

} 

//Update the current and previous cloth pointers 
tempfloatptr = previouscloth; 
previouscloth = currentcloth; 
currentcloth = tempfloatptr; 

void satisfyconstraints(void) 
{ 

inti; 
float sphereradius; 
float deltalength; 
float delta[3]; 
float diff; 
float invmass1 , invmass2; 

sphereradius = sphere(3) + 0.05; 

//Satisfy stick constraints within cloth 
for(i = 0; i < numconstraints; i++} 
{ 

delta[O) = currentcloth[4 * constraints[i).particle1) 
- currentcloth[4 * constraints[ij.particle2); 

defta[1) = currentcfoth{4 * constraints[i).particle1 + 1) 
- currentcloth[4 * constraints(ij .particle2 + 1]; 

delta[2) = currentcloth[4 * constraints[i).particle1 + 2) 
- currentcloth[4 * constraints[ij.particle2 + 2); 

103 

Univ
ers

ity
 of

 M
ala

ya



} 
} 

} 

invmass1 = currentcloth(4 * constraints{ij.particle1 + 3); 
invmass2 = currentcloth(4 * constraints{ij.particle2 + 3); 
deltalength = (float)sqrt(delta[O) * delta(O) + delta(1) * delta(1) + delta[2] * delta(2)); 
diff = (deltalength - constraints(i).restlength) I (delta length * (invmass 1 + invmass2)); 

currentcloth(4 * constraintsp).particle1) -= invmass1 * delta(OJ * diff; 
currentcloth[4 * constraints[i].particle1 + 1] -= invmass1 * delta(1] * diff; 
currentcloth(4 * constraints(i).particle1 + 2] -= invmass1 * delta(2) • diff; 

currentcloth[4 * constraintsp).particle2] += invmass2 * delta[O) • diff; 
currentcloth[4 * constraints(i).particle2 + 1) += invmass2 * delta[1) • diff; 
currentcloth[4 * constraintsp].particle2 + 2] += invmass2 * delta[2] • diff; 

//Satisfy constraint that cloth points can't enter the sphere 
for(i = 0; i < numparticles; i++) 
{ 

delta[O) = currentcloth[4 * i)- sphere(O); 
delta[1] = currentcloth(4 * i + 1)- sphere(1]; 
delta{2] = currentcloth(4 * i + 2] - sphere{2]; 

deltalength = delta(O] * delta[O) + delta(1) * delta[1] + delta(2] * delta[2); 

//If the particle is in the sphere, move it to outside the sphere 
if(deltalength < sphereradius * sphereradius) 
{ 

} 

deltalength = (float)sqrt(deltalength); 
currentcloth[4 * i] += delta[OJ * (sphere radius - deltalength) I sphereradius; 
currentcloth[4 * i + 1] += delta[1] * (sphereradius- deltalength) 1 sphereradius· 
currentcloth(4 * i + 2) += delta(2] * (sphereradius- deltalength} 1 sphereradius; 

void calculatenormals(void) 
{ 

inti, j; 
float vector!ength; 
float trianglenorrnal[3]; 
float v1 [3), v2[3]; 

//Set all normals to 0 
for(i = 0; i < numparticles; i++) 
{ 

} 

norrnals[3 * i] = O.Of; 
normals[3 * i + 1) = O.Of; 
normals(3 * i + 2] = O.Of; 

//Calculate the normal of each triangle 
/lin the mesh and factor it into all the vertices 
1/that are a part of it 
for(i = 0; i < CLOTH_RESOLUTION- 1; i++) 
{ 

forO= 0; j < CLOTH_RESOLUTION- 1; j++) 
{ 

v1 [0) = currentcloth[4 * (i * CLOTH_RESOLUTION + j)] 
- currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j)); 

v1(1) = currentcloth(4 * (i * CLOTH_RESOLUTION + j) + 1) 
- currentcloth(4 * ((i + 1) *CLOTH_ RESOLUTION+ j) + 1]; 

v1 [2] = currentcloth[4 * (i * CLOTH_RESOLUTION + j) + 2] 
- currentcloth(4 * ((i + 1) * CLOTH_RESOLUTION + j) + 2); 

v2(0] = currentcloth(4 * (i * CLOTH_RESOLUTION + j + 1)] 
- currentcloth(4 * (i * CLOTH_RESOLUTION + j)); 

104 

Univ
ers

ity
 of

 M
ala

ya



} 

} 
} 

v2[1) = currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1) + 1] 
- currentcloth[4 * (i * CLOTH_RESOLUTJON + J) + 1); 

v2[2] = currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1) + 2) 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j) + 2]; 

trianglenormai[O] = v1 [1] * v2[2)- v1 [2] * v2[1]; 
trianglenormal[1] = v1 [2} * v2[0} - v1 (0} * v2[2}; 
trianglenormal[2] = v1 [0] * v2[1]- v1[1] * v2[0J; 

normals[3 * (i * CLOTH_RESOLUTION + J)} += trianglenormai[O); 
normals[3 * (i * CLOTH_RESOLUTION + j) + 1) += trianglenormal[1]; 
normals(3 * (i * CLOTH_RESOLUTION + j) + 2] += trianglenormal(2]; 

normals[3 * (i * CLOTH_RESOLUTION + j + 1)] += trianglenormai[O]; 
normals[3 * (i * CLOTH_RESOLUTION + j + 1) + 1] += trianglenormal(1]; 
normals[3 * (i * CLOTH_RESOLUTJON + j + 1) + 2] += trianglenormai[2J; 

normals(3 * ((i + 1) * CLOTH_RESOLUTION + j)) += trianglenonnai(O]; 
normals[3 * ((i + 1) * CLOTH_RESOLUTJON + j) + 1] += trianglenormal(1]; 
normals(3 * ((i + 1) * CLOTH_RESOLUTION + j) + 2] += trianglenormal(2]; 

v1[0] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1)] 
• currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1)]; 

v1[1] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 1] 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1) + 1 ]; 

v1[2] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 2] 
- currentcloth[4 * (i * CLOTH_RESOLUTION + j + 1) + 2]; 

v2[0) = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j)] 
- currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1 )]; 

v2[1] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j) + 1] 
- currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 1]; 

v2[2] = currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j) + 2] 
- currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 2}; 

trianglenormal[O] = v1 [1] * v2[2]- v1 [2) * v2[1 ]; 
trianglenormal[1] = v1 [2] * v2[0)- v1[0] * v2[2]; 
trianglenormal[2] = v1[0J * v2[1]- v1[1] * v2[0); 

normals[3 * ((i + 1) * CLOTH_RESOLUTION + j + 1 )] += trianglenormai[O]; 
normals(3 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 1] += trianglenormal[1); 
normals[3 * ((i + 1) * CLOTH_RESOLUTION + j + 1) + 2] += trianglenormal(2]; 

normals[3 * (i * CLOTH_RESOLUTION + j + 1)) += trianglenormai[O]; 
normals[3 * (i * CLOTH_RESOLUTION + j + 1) + 1} += trianglenormal(1}; 
normals{3 * (i * CLOTH_RESOLUTION + j + 1) + 2] += trianglenormai[2J; 

normals{3 * ((i + 1) * CLOTH_RESOLUTION + j)] += trianglenonnai[O]; 
normals{3 * ((i + 1) * CLOTH_RESOLUTION + j) + 1] += trianglenormal[1]; 
normals(3 * ((i + 1) * CLOTH_RESOLUTION + j) + 2] += trianglenormal(2]; 

//Normalize vertex normals 
for(i = 0; i < numparticles; i++) 
{ 

vector1ength = 1.0f I (float)sqrt(normals[3 * i] * normals[3 * i]+ normals[3 * i + 1] * 
normals[3 * i + 1]+ normals[3 • i + 2) * normals[3 *; + 2]); 

normals[3 * i] *= vectorlength; 
normals[3 * i + 1] *= vectorlength; 
normals[3 • i + 2} *= vectorlength; 

105 

Univ
ers

ity
 of

 M
ala

ya



} 

void updatecloth(void) 
{ 

inti; 

//Accumulate forces on the particles 
accumulateforcesO; 
liDo ver1et integration 
ver1etO; 
//Attempt to satisfy all the constraints on the system 
for(i = 0; i < CONSTRAINT_UPDATE; i++) 

satisfyconstraintsO; 
//Calculate the triangle normals 
calculatenormalsO; 

void initializecloth(int setuptype} 
{ 

int i, j , currentconstraint = 0; 
float restlength; 
float diagonallength; 

1/Jnitialize cloth position and point weights 
if(setuptype == 0) 
{ 

for(i = 0; i < CLOTH_RESOLUTION; i++) 
{ 

for(j = 0; j < CLOTH_RESOLUTION; j++) 
{ 

cloth1[4 * (CLOTH_RESOLUTION * i + j}) =-CLOTH SIZE 12.0f + j • 
CLOTH_ SIZE I CLOTH_RESOLUTION; -

cloth1(4 * (CLOTH_RESOLUTION * i + j) + 1) = 2.0f; 
cloth1(4 * (CLOTH_RESOLUTION * i + j} + 2) = -i * CLOTH_SIZE 1 

CLOTH_ RESOLUTION; 

} 
cloth1[4 * (CLOTH_RESOLUTION * i + j) + 3) = 1.0f; 

} 

lllnitialize second cloth array to match first 
for(i = 0; i < 4 * numparticles; i++) 

cloth2[iJ = cloth1 {ij; 

//Initialize 2 comer points to infinite weight 
cloth1{3J = O.Of; 
cloth1[4 * (CLOTH_RESOLUTION -1} + 3) = O.Of; 

for(i = 0; i < 4 * CLOTH_RESOLUTION *CLOTH_ RESOLUTION; i++) 
cloth2fi) = cloth1fi]; 

//Set up pointers for the previous frame and the current frame for the cloth 
currentcloth = cloth 1 ; 
previouscloth = cloth2; 

restlength = CLOTH_ SIZE I CLOTH_RESOLUTION; 

//Constraints in the horizontal direction along the cloth 
for(i = 0; i < CLOTH_RESOLUTION; i++) 
{ 

for(j = 0; j < CLOTH_RESOLUTION - 1; j++} 
{ 

constraints{currentconstraintj.particle1 = i * CLOTH_RESOLUTION + j; 
constraints(currentconstraint).particle2 = i * CLOTH_ RESOLUTION + j + 1; 

106 

Univ
ers

ity
 of

 M
ala

ya



} 

} 

constraints[currentconstraint].restlength = restlength; 
currentconstraint++; 

//Constraints in the vertical direction along the cloth 
for(i = 0; i < CLOTH_RESOLUTION- 1; i++) 
{ 

} 

for(j = 0; j < CLOTH_RESOLUTION; j++) 
{ 

constraints(currentconstraintJ.particle1 = i *CLOTH RESOLUTION + j· 
constraints(currentconstraint).particle2 = (i + 1) * CLOTH_RESOLUTION + j· 
constraints[currentconstraint].restlength = restlength; ' 
currentconstraint++; 

IIA single diagonal constraint across every square in the cloth grid 
diagonallength =(float) sqrt(2.0f * resHength * restlength); 
for(i = 0; i < CLOTH_RESOLUTION- 1; i++) 
{ 

} 

for(j = 0; j < CLOTH_RESOLUTJON - 1; j++) 
{ 

} 

constraints[currentconstraintj.particle1 = i * CLOTH_RESOLUTION + j; 
constraints[currentconstraint).particle2 = (i + 1) * CLOTH_RESOLUTION + j + 1· 
constraints[currentconstraint].restlength = diagonallength; ' 
currentconstraint++; 

void drawcloth(void) 
{ 

inti, j ; 

//Draw a series of triangle strips for the cloth 
for(i = 0; i < CLOTH_ RESOLUTION - 1; i++) 
{ 

giBegin(GL_ TRIANGLE_ STRIP); 
for(j = 0; j < CLOTH_RESOLUTION; j++) 
{ 

g1Normal3fv(&(normals[3 * ((i + 1) * CLOTH_RESOLUTION + j)])); 
giTexCoord2f(((float)j) I (CLOTH_RESOLUTION- 1), ((float)(i + 1)) 1 

(CLOTH_RESOLUTION - 1 )); 
g1Vertex3fv(&(currentcloth[4 * ((i + 1) * CLOTH_RESOLUTION + j)])); 
g1Normal3fv(&(normals(3 * (i * CLOTH_RESOLUTION + j)J)); 
giTexCoord2f(((float)j) I (CLOTH_RESOLUTION- 1), ((float)i) I 

(CLOTH_RESOLUTION -1)); 

} 

} 
glEndO; 

g1Vertex3fv(&(currentcloth[4 * (i * CLOTH_RESOLUTION + j)J)); 

} 

void menu(int selection) 
{ 

controlmode = selection; 
} 

void idle(void) 
{ 

currenttime = glutGet(GLUT_ELAPSED_TIME); 

//Update the simulation to match the current time 
while(simulationtime < currenttime) 
{ 

107 

Univ
ers

ity
 of

 M
ala

ya



} 

updatecloth(); 
simulationtime +=TIME_ STEP* 1000; 

} 
glutPostRedisplayO; 

void init(void) 
{ 

initializecloth(O); 

giShadeModei(GL_ SMOOTH); 
giDisable(GL_ CULL_FACE); 
giEnable(GL_DEPTH_ TEST); 

//Setup texturing 
giPixeiStorei(GL_ UNPACK_ALIGNMENT, 1 ); 
giGenTextures(1, &texName); 
generatetextureO; 
giEnable(GL_ TEXTURE_2D); 

//Setup lighting 
gllightfv(GL_LIGHTO, GL_AMBIENT, lightambient); 
gllightfv(GL_LIGHTO, GL_DIFFUSE, lightdiffuse); 
gllightfv(GL_LIGHTO, GL_POSITION, lightpos); 
giEnable(GL_LIGHTING); 
giEnable(GL_LIGHTO); 
gllightModeli(GL_LIGHT _MODEL_lWO _SIDE, 1 ); 
giMaterialfv(GL_FRONT _AND _BACK, GL_AMBIENT _AND _DIFFUSE, material); 

void display(void) 
{ 

//Set the camera position 
camerapos[O] = sin(rotation) *sin( elevation)* cameradistance; 
camerapos[1] =cos( elevation)* cameradistance; 
camerapos[2J = cos(rotation) * sin( elevation) * cameradistance; 

//Set up for rendering 
giCiear(GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT); 
glloadldentityQ; 
glulookAt(camerapos[OJ, camerapos[1 ], camerapos[2], 

O.Of, O.Of, O.Of,O.Of, 1.0f, O.Of); 

//Draw the cloth 
g1Color3f(1 .0f, 1.0f, 1.0f); 
drawcloth(); 

giDisable(Gl_ TEXTURE_2D); 

//Draw the wind direction 
g1Color3f(O.Of, 1.0f, O.Of); 
giDisable(GL_LIGHTING); 
giBegin(GL_LINES); 
g1Vertex3fv(windvector); 
g1Vertex3f(O.Of, O.Of, O.Of); 
giEnd(); 
giEnable(GL_LIGHTING); 
g1Color3f(1 .0f, 1.0f, 1.0f); 

//Draw the sphere 
giTranslatef(sphere[O], sphere[1], sphere[2]); 
glutSolidSphere(sphere[3], 16, 16); 

108 

Univ
ers

ity
 of

 M
ala

ya



} 

giEnable(GL_ TEXTURE_2D); 

glutSwapButfersO; 

void reshape(int w, int h) 
{ 

} 

giViewport(O, 0, (Glsizei) w, (Glsizei) h); 
giMatrixMode(GL_PROJECTION); 
giLoadldentityO; 
gluPerspective(60.0, (Gltloat) w/(Glfloat) h, 0.1, 100.0); 
giMatrixMode(GL_MODELVIEW); 

void mousemove(int x, int y) 
{ 

} 

} 

double modelviewmatrix[16J, projectionmatrix[16]; 
int viewport[4]; 
double projectedpoint{3]; 
float u; 
float veclength; 

//Move sphere 
if(controlmode == 1) 
{ 

g1Loadldentity0; 
gluLookAt(camerapos[O], camerapos[1], camerapos[2], 

O.Of, -0.5f, O.Of, 
O.Of, 1.0f, O.Of); 

giGetDoublev(GL_MODELVIEW_MATRIX, modelviewmatrix); 
giGetDoublev(GL_PROJECTION_MATRIX, projectionmatrix); 
giGetlntegerv(GL_ VIEWPORT, viewport); 

gluUnProject(x, (viewport{3)- y), 1.0, modelviewmatrix, projectionmatrix, viewport 
&(projectedpoint{O]), &(projected point{ 1 }), &(projectedpoint{2]});' 

u = camerapos[1] I (camerapos[1J- projectedpoint[1]); 

sphere[OJ = camerapos[O) + u * (projectedpoint{OJ - camerapos{OJ); 
sphere[2J = camerapos[2J + u * (projectedpoint[2J - camerapos{2J); 

//Move camera 
else if(controlmode = 0) 
{ 

rotation += (x- lastx) /100.0f; 
elevation+= (y -lasty) /100.0f; 

if(elevation < 0.1f) 
elevation = 0.1f; 

if(elevation > 3.0f) 
elevation = 3.0f; 

camerapos[OJ = sin(rotation) *sin( elevation) * cameradistance; 
camerapos{1] = cos(elevation) * cameradistance; 
camerapos[2] = cos(rotation) *sin( elevation) * cameradistance; 

//Change wind direction 
else if(controlmode == 2) 
{ 

glloadldentity0; 
gluLookAt(camerapos[OJ, camerapos{1 ], camerapos[2], 

O.Of, -0.5f, O.Of, 
O.Of, 1.0f, O.Of); 

giGetDoublev(GL_MODELVIEW_MATRIX, modelviewmatrix); 
giGetDoublev(GL_PROJECTION_MATRIX, projectionmatrix); 

109 

Univ
ers

ity
 of

 M
ala

ya



} 

giGetlntegerv(GL_ VIEWPORT, viewport); 

gluUnProject(x, (viewport{3]- y), 1.0, modelviewmatrix, projectionmatrix, viewport, 
&(projectedpoint[O]), &(projectedpoint[1]), &(projectedpoint[2])); 

//Calculate wind direction 
u = camerapos[1] I (camerapos[1]- projectedpoint[1]); 
winddirection[O) = camerapos[O] + u • (projectedpoint[O] - camerapos[O]); 
winddirection[2] = camerapos(2] + u • (projectedpoint{2] - camerapos(2]); 

//Normalize wind direction 
veclength = (float) sqrt(winddirection[OJ * winddirection[OJ 

winddirection[O] /= veclength; 
winddirection[2] /= veclength; 

+ winddirection[2] • winddirection(2)); 

} 

} 
lastx =x; 
lasty= y; 
idleO; 

void mousedown(int button, int state, int x, int y) 
{ 

} 

lastx= x; 
tasty= y; 

void keyboard (unsigned char key, int x, int y) 
{ 

} 

switch (key) 
{ 

case'+': 
case'=': 

windspeed += 1.0f; 
break; 

case·-·: 
windspeed -= 1.0f; 
break; 

case 'c': 
initializecloth(O); 
break; 

case 'z': 

case 'x': 

case 't': 

case 'e': 

default: 

cameradistance += 0.5f; 
break; 

cameradistance-= 0.5f; 
if(cameradistance < 4.0f) 

cameradistance = 4.0f; 
break; 

currenttexture++; 
currenttexture %= 4; 
generatetextureO; 
break; 

exit(-1); 
break; 

break; 

110 

Univ
ers

ity
 of

 M
ala

ya



} 

int main(int argc, char** argv) 
{ 

glutlnit(&argc, argv); 
gfutlnitOispfayMode(GLUT_DOUBLE I GLUT_RGB I GLUT_DEPTH); 
gfutlnitWindowSize(700, 700); 
glutCreateWindow("Resting"); 
in itO; 

//Setup menu 
glutCreateMenu(menu); 
glutAddMenuEntry("Mouse changes view direction", 0); 
gluiAddMenuEntry("Mouse changes sphere position", 1); 
gfutAddMenuEntry("Mouse changes wind direction", 2); 
gluiAttachMenu(GLUT _RIGHT _BUTION); 

//Set up control functions 
glutldleFunc(idle); 
gfutOisplayF unc(display); 
glutReshapeFunc(reshape); 
glutKeyboardFunc(keyboard); 
gfutMotionFunc(mousemove ); 
glutMouseFunc(mousedown); 
myHelp(); 
glutMainloop(); 

return 0; 

I I I 

Univ
ers

ity
 of

 M
ala

ya



REFEREJ\ICE!i 

1. Ali Bahrami (1999), Object Oriented System Development, (1 81 Ed.), 
Singapore: Irwin McGraw-Hill. 

2. Baraff, David and Andrew Witkin, Large Steps in Cloth Simulation, 
Proceedings ofSIGGRAPH 1998, ACM SIGGRAPH, pp. 43-54. 

3. Eberhardt B, Weber A and Strasser W. A fast, flexible, particle-system 
model for doth-draping. IEEE Computer Graphics and Applications 
1996; 16:52-59. 

4. Jeff Lander, Devil in the Blue-Faceted Dress: Real-Time Cloth 
Animation. Journal of Game Developer, March 27,2000. 

5. Kenneth E. Kendall and Julie E. Kendall (1999), System Analysis and 
Design, ( 4 tb Ed.), United States of America, Prentice Hall International, 
Inc. 

6. M. Kass, An Introduction To Physically Based Modeling, chapter 
Introduction to Continuum Dynamics for Computer Graphics. SIGGRAPH 
Course Notes, ACM SIGGRAPH, 1995. 

7. Pascal Volino and Nadia Magnenat Thalmann, Interactive Cloth 
Simulation: Problems and Solutions, Journal of .MIRALab, 1998. 

8. Pfleeger, Shari Lawrence (200 I), Software engineering: Theory and 
practice, (2nd Ed.), United States of America, Prentice Hall International, 
Inc. Me GrawHill. 

9. Sommerville, I. (2001), Software Engineering (6th Ed.), Addison Wesley. 

10. T. Vassilev, B. Spanlang and Y. Chrysanthou, Fast Cloth Animation on 
Walking Avatars, EUROGRAPHICS, Vol. 20, No.3, 2001. 

11. Tania H. Gottschalk (1996), Computer in Distance Education, 
University ofidaho, Engineering Outreach. 

12. Vivek Kwatra. Cloth Simulation : Numerical Methods for PDEs. 
College of Computing. 

13. F.S.Hill, Jr (2001), Computer Graphics Using OpenGL, (2nd Ed.), 
United States of America, Prentice Hall International. 

14. McReynolds, Tom and David Blythe, Programming with OpenGL : 
Advanced Rendering, (Course Nodes) SIGGRAPH' 97. 

112 

Univ
ers

ity
 of

 M
ala

ya



15. http://www.cgchannel.com 

16. http://www.digimationcom 

17. http:/ /web. tiscali. it/no-redirect-tiscali/hiforce/ClotSim/indexeng.htm 

18. http://www.qru.com/studio/tech/aug0398/cghistory.htm 

113 

Univ
ers

ity
 of

 M
ala

ya




