CHAPTER 2
REVIEW OF LITERATURE

2.0 Introduction
This study attempts to find out the computational errors in division
of whole number of a sample of Form One students. The literature review
in this study focuses on the following aspects:
* The meaning of the division process
¢ The Division algorithms
« Error patterns in division computation

¢ Individual interviews in diagnosis of errors

2.1 The Meaning of the Division Process

The Curriculum Standards for School Mathematics (NCTM, 1989)
encomp.asses “Concept of Whole-Number Operations” and “Whole-
Number Computation” as two of its thirteen standards for K-4
mathematics. Students are expected to develop meaning for the
operations by modelling and discussing a rich variety of problem
situations. Besides, they should be able to relate mathematical language
and symbolism of operations to problem situations and informal language.
Understanding the meaning of division process is essential before the
students are introduced to the division algorithm. Very often, errors in
division are due to student's misconceptions or lack of understanding of

the division concept.



To understand division process, two different types of situations
are suggested: measurement situation and partition situation (Bates &
Rousseau, 1986; Burton, 1992; Fischbein, Nello, & Marino, 1985;
Grossnickle & Brueckner, 1959; Reys et al.,1995).

(a) In measurement situation, the number in each group is known
and one needs to determine the number of groups. For example, 12 + 3

means: How many groups of 3s are in 12? This can be related to a
problem situation such as: When 12 marbles are packed into boxes with 3
in each box, how many boxes can one get? The measurement situation
finds out how many equal groups are there in a set.

(b) In partition, or sharing situation, one looks for the number within

each of several equal groups. For example, 12 + 3 means: If 12 is

divided into 3 equal groups, how many are there in each group? This
concept can be related to a problem situation such as: 12 candies are
shared among 3 brothers, how many candies will each boy get? In short,
the partition situation refers to equal sharing in a set.

These two division situations can be modelled by using
manipulatives (Beattie, 1986; Burton 1992; Vest, 1985). In the
measurement situation, the answer can be obtained by repeatedly
removing a group of 3s from a set of 12 counters. While in the partition
situation, the procedure is to deal a set of 12 counters to 3 children. If the
divisor is small, many teachers are found to prefer the partition situation
to the measurement situation in illustrating the meaning of division. Some
teachers felt that the concept of equal sharing relates better to the

children’s daily encounters in sharing. However, when the divisor is big,



such as in 51 + 17, the measurement situation might provide a better

picture of the division process. For example, partitioning a set of 51
marbles into 17 piles is not as practical as the measurement situation of
making piles of 17 marbles from a box of 51 marbles. Nevertheless, both
situations are necessary in order to understand the meaning of division
process. The students should have the ability to relate division process to
both problem situations.

Vest (1986) found that children in the third and fourth grades were
able to distinguish between the two division situations. Burton (1992)
interviewed 117 grade two pupils using a set of 12 measurement and
partition situation problems. His study found that partition problems were
not much more difficult than measurement problems for these children.
Nevertheless, earlier findings by Anghileri and Johnson (1988) indicated
that primary children found partition problems more difficult than
measurement problems, although the differential difficulties disappeared
after grade five. In another study, Bell, Fischbein, and Greer (1984),
found that 27 out of the 28 correct responses for writing stories for the
division expression 18 + 3, comprised stories of the partition type. The
findings showed that the partition model was the preferred structure in the
12 and 13-year-olds. Hence, these findings indicate that there is no
general agreement as to which division situation is easier for the children.

In Malaysian schools, the division concept is introduced in primary
two. The Teacher's Guide for Primary Two (Malaysia, 1983) introduced
division process through partition situation. Measurement situation, which

was only considered at the later stage, was often ignored by most



teachers. However, the revised Primary School Integrated Curriculum
(Malaysia, 1994a) placed the measurement situation before the partition
situation. No particular reason was given for the switch in the order. To
the knowledge of the researcher, no study had been done in Malaysia on
the comparison between the two situations in division operation.
Nevertheless, informal observations by the researcher during the in-
service and the pre-service courses in a teacher training college revealed
that many teachers preferred to use the partition situation when
introducing the meaning of division operation in their classroom
instructions. One plausible explanation is the term “divide”, which is
translated as “bahagi” in the Malay language, and that implies “equal
sharing”. Many of the in-service and pre-service teachers were of the
opinion that “equal sharing” should be more appropriate in introducing the
meaning of division operation. Informal interviews with some teachers
further revealed that many of them used only the partition situation in their
instructions. They believed that introducing the measurement situation
might confuse the students.

This observation was supported by the findings of Tirosh and
Graeber (1990). Their study, which was based on individual interviews
on 21 pre-service teachers in America, found that many of them were
relatively unfamiliar with the measurement interpretation of the division.
They relied heavily on the partition model. This is in line with their earlier
findings (Tirosh and Graeber, 1989), which indicated that American
preservice elementary teachers tend to think predominantly in the

partition model.



2.2 The Division Algorithms

Besides understanding the meaning of the division process, the
Curriculum Standards for Grade K-4, on “Whole number computation”,
require the students to be able to model, explain, and develop reasonable
proficiency with basic facts and algorithms (NCTM, 1989). The students
need to acquire considerable proficiency in using algorithm for basic
division computation. Although calculators are easily available for
computation, the importance of algorithm in basic computation should not
be de-emphasized. The algorithm is useful as it provides a concise and
efficient procedure in computation.

In division computation, two algorithms are generally used: the
distributive algorithm (also referred to as the standard algorithm), and the
subtractive algorithm.

(a) The distributive algorithm is the more commonly used algorithm
(Reys et al., 1995). An example of the distributive algorithm is shown
below:

_94
4)376
36— How many 4s are in 37? 4x9=36
E - How many 4s are in 167 4x4=16
When 376 is divided by 4, the first step is to take 37 as the partial
dividend, and then working out, “How many 4s are there in 37?" The
answer 9 is then written down as the quotient figure in the tens place.
The remainder 1 (37 -36) is written down, and 6 from the ones digit in the
dividend is then brought down, resulting in 16 as the next partial dividend.

Similarly, the procedure to obtain the next quotient is to find out “How



many 4s are there in 16?” The answer 4 is written down as the next
quotient figure in the ones place. As there is no remainder (16 —16), the
quotient for 376 divided by 4 is 94.

(b) The subtractive algorithm involves repeated subtraction of the

partial products. An example of the algorithm is illustrated below:

4)376

-200 - 50x4 =200
176

-160 — 40x4 =160
16

16 - _4x4= 16

94

When 376 is divided by 4, the first step is to find out “How many 4s are
there in 376?” An estimate is made of the number of 4s in the dividend.
Assuming there are fifty 4s, 50 multiplied by 4 is 200, subtracting 200
from 376 gives a remainder of 176. However, 176 still contains 4s.
Hence, the same procedure is repeated to find out “How many 4s are
there in 176?" Assuming there are forty 4s, 40 multiplied by 4 is 160,
subtracting 160 d from 176 gives a remainder of 16. The same
procedure is repeated by asking, “How many 4s are there in 16?" This
time, 4 multiplied by 4 is 16, and gives no remainder. Therefore, the total
number of 4s in 376 is 94 (50 + 40 + 4 = 94) (Grossnickle & Brueckner,
1959; Reys et al., 1995).

Van Engen and Gibb (1956) compared the effect of using each of
the two algorithms among the low and high achieving pupils. The
findings showed that the subtractive algorithm had some beneficial

effects on performance in division, especially for low achievers. The



subtraction algorithm might be easier for them because there was no
necessity to make correction on the quotient figure if the estimation made
is too small. However, they also found that high achievers showed little
differences in performance between the two methods. According to
Gallahan and Glennon (1975), the findings of Van Engen and Gibb
resulted in many elementary school teachers using the subtractive
algorithm in initial introduction of the division process, and then gradually
switching to the distributive algorithm at a later stage. Nevertheless,
another study by Kratzer and Willoughby in 1973, seemed to favour the
distributive approach over the subtractive approach (cited by Gallahan &
Glennon, 1975)

Both distributive and subtractive algorithms have their merits and
demerits. The distributive algorithm is neat and concise. But when the
distributive algorithm is used, it is noted that some students tend to
consider each partial dividend independently without referring to its place
value. On the other hand, the subtractive algorithm has the merit of
being closely related to the measurement model of division as repeated
subtraction. Moreover, it does not require bringing down new dividend
digit for each new partial dividend. However, the subtractive algorithm is
not as concise as the distributive algorithm. This method is also new to
many teachers (Reys et al., 1995).

In Malaysian schools, distributive algorithm is used exclusively in
the textbooks and in the teacher's guides. The researcher’s informal

interactions with the in-service teachers revealed that majority of the



teachers were not exposed to the subtractive algorithm. Consequently,
the teachers seldom used subtractive algorithm.

Although algorithm is important in computation, teachers should
not focus their instructions only on the mastery of the mechanics of
algorithm. Students also need to understand the rationale behind each
step of the algorithm. The reason for teaching algorithm should change
from merely obtaining the correct answers through the rote manipulation
of symbols to understanding the meaning of the operations (Beattie,
1986). Very often, students rely too heavily on memorized algorithm and
use very little reasoning when performing their computation (Monroe &
Clark, 1998). Reasoning is fundamental in knowing and learning
mathematics (NCTM, 1989).

In building conceptual understanding of the meaning of division
process, current studies suggested the use of manipulative materials in
the instructional process (Beattie, 1986; Burton, 1992; Steffe and Cobb,
1998; Vest. 1985). Manipulative materials also help in building the
procedural understanding of the algorithm by associating the steps of an
algorithm with the actions on the manipulative materials. Mathematics
teachers should make use of this facility to make connections between
the meanings of an operation, the associated manipulation of materials,
the verbal explanations accompanying the manipulations, and the steps
of algorithm (Beattie, 1986).

It is noted that inappropriate instructional process of the teachers
could have attributed to the difficulties encountered by some students in

division computation. Some teachers spend insufficient time in activities



that help to develop conceptual understanding in division operation
before moving on to drills and practice on algorithm in division
computation (Downes & Paling, 1968). Steffe and Cobb (1998)
suggested that division algorithm must be based on the child’s concept
and existing scheme. They found that children’s elementary division
scheme was built on their counting scheme. The division algorithm
should therefore be viewed as resulting from a series of reorganizations,
which started with the child’s elementary counting algorithm. The teacher
should therefore provide opportunities for children to reflect and abstract
the concepts from their problem solving activities that help them to
construct non-counting methods. Learning would be effective only if
instruction is in harmony with the student’s schemes.

Reys et al. (1995) on the other hand attributed the difficulty in
division computation to the inherent nature of the division algorithm.
While the computations for addition, subtraction, and multiplication begin
from riéht to left, division computation starts from left to right. Moreover,
the algorithm in division computation necessitates the use of not only the
division facts, but also the multiplication and subtraction facts. Added to
this difficulty, the algorithm also requires making the correct estimation for
the quotient. Their observations were supported by other studies on
computational errors in division computations, which indicated that basic
fact error (division, subtraction, and multiplication facts) and making
incorrect estimation were among the common errors in division (Buswell
& John, 1926; Grossnickle, 1936,1939; Lim, 1980; Stefanich & Rokusek,

1992; Williams & Whitaker, 1937).



2.3 Error Types in Division Computation

Children’s errors in computation often follow a consistent pattern
(Ashlock, 1976; Cox, 1975; Grossnickle, 1936, 1939; West, 1971). These
error patterns indicate certain rules in their computations (Rudnistsky,
Drickamer & Handy, 1981). Thus recognizing the error pattern is
important in diagnostic and remedial teaching (Ashlock, 1976; Fowler,
1980; Reisman, 1978).

Burrow (1976) made a review of literature on errors in computation
with whole number from the period of 1917 to 1976, he listed a total of 35
addition errors, 31 subtraction errors, 56 multiplication errors, and 72
division errors. For the errors in division, they are mainly errors identified
by Buswell and John (1926), and Grossnickle (1936, 1939).

Buswell and John identified 41 division errors from a sample 352
third to sixth graders using the diagnostic interview technique. Among the
errors liéted, the most frequent ones were:

(a) Errors in division combinations

(b) Errors in subtraction

(c) Errors in multiplication

(d) Used remainder larger than divisor

(e

Neglected to use remainder within example
(f) Omitted zero resulting from another digit
(g9) Used wrong operation

(h) Omitted digit in dividend

(i) Omitted final remainder



() Omitted zero resulting from zero in dividend

(k) Used too large a product

Grossnickle analyzed errors made by 453 students in grades five
to eight, in long division with a one-digit divisor, and he compiled a list of
57 errors. He classified these errors into six types, in decreasing
frequency of occurrence:

(a) Errors in combination (basic fact)

(b) Errors resulting from the use of remainders
(c) Errors resulting from zero

(d) Errors caused by faulty procedure

(e) Errors resulting from lapses of attention

(f) Errors resulting from bringing down

Except for errors resulting from lapses of attention, the other five
classificétions are systematic errors. Grossnickle's classification of errors
was also employed in the recent study by Stefanich and Rokusek (1992)
on computational errors in division.

The findings by Buswell and John, and Grossnickle indicated that
errors in basic facts were the most frequent errors, followed by errors in
the use of remainder, and errors involving the use of zero. Particularly,
in Grossnickle’s study, errors in combination, omission of final zero in
quotient only, using a remainder greater than the divisor, and dropping
the remainder when zero is final in the quotient only; made up about 60%

of the total errors in division computation.
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William and Whitaker's (1937) study on 516 children from grades
four to eight found that for division computation, 63% of pupils showed
errors in combination, 29% used remainder larger than divisor, 23%
omitted final remainder, 28% omitted zero resulting from another digit.
The study indicated that the more frequent errors in the division
computation were: errors in combination, remainder errors, and zero
errors. These observations supported the earlier findings of Grossnickle.

In Malaysia, Lim (1980) made a similar study on 237 primary four
pupils using Cox’s instrument for identifying systematic errors. The
findings showed that in the division computation: 28% used remainder
larger than the divisor, 20% omitted zero not final in quotient, and 14%
used wrong operation. Nevertheless, Lim's findings did not indicate
errors in combination as a frequent error. Instead, he found using wrong
operation as a frequent error.

In another study, Schonell & Schonell (1965) identified six types of
errors in division. Among these errors, only “carried wrong number” was
not an additional error (cited by Burrow,1976). Grossnickle (1939)
followed up with another study on computational errors in division by two-
digit divisors. Although he recorded 24 types of errors made by the
sample of 221 fourth-graders, no additional error pattern was identified.
Nevertheless, his study indicated that the fourth-graders showed a high
constancy of errors in division.

Lankford (1974) conducted individual interviews on 176 seventh-
grade pupils to find out their computational strategies. He also made

comparisons between good computers and poor computers. He found
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that children who were poor in computation also had difficulty in
remembering the conventional operational algorithms. Moreover, they
had difficulty matching the correct algorithms with the computational
questions. Consequently, they devised simple “shortcut” procedures that
would give them quick answers. This observation was supported by
Fowler (1980), who found that many children soon forgot the
mathematical rationalization for a procedure, but retained its mechanical
operation. Robert (1968) classified such defective algorithm as one of the
five failure strategies of the pupils.

Based on the review of literature on the error patterns in division of
whole numbers, the researcher has grouped the error patterns under:
basic fact errors, wrong operations, remainder difficulties, zero errors, and

inversion of orders for discussions.

2.3.1 Basic Fact Errors

Division algorithm requires knowledge of basic number facts in
division, multiplication, and subtraction. Buswell and John's (1926)
findings indicated that basic fact error was the most frequent error in
division computation. Their findings were supported by Grossnickle
(1936) who found that basic fact error alone accounted for about 40% of
the errors in division computation. Grossnickle also found that about 80%
of the multiplication fact errors in the division computation were the
correct products to other combinations. For example, for a response
such as 8 x 4= 24, the incorrect product 24 is actually the correct

multiplication product for 8 x 3= 24. The incorrect response is only one



factor from the correct product. His study found that about 53% of
students exhibited this pattern of error. The findings indicated that
students often derived their multiplication products from known
multiplication facts.

Division facts are closely related to the multiplication facts. As
division is the inverse of multiplication, division facts can be derived from
multiplication facts. Kalin (1983) used division fact test and interviews to
explore the nature of fourth-graders’ thinking on how they arrived at their
division facts. He identified two strategies that were used by the children:
the multiplication and the solution strategies.

In the multiplication strategy, the pupil obtained 6 + 3 = 2 because
3 multiplied by 2 was 6. In solution strategy, the pupil multiplied the
divisor by a number as close to the dividend as possible, then using
adding on method to get the final answer. For example, to get 27 + 3 =9,
he started with 7 x 3 = 21, then adding on 3s to 21, he obtained 24, 27.
He used his fingers to keep count of the number of 3s added on and
found that he needed to add 2 more 3s to obtain 27. The student used
fingers to help him in counting. This indicates that children build their
division scheme from their elementary counting scheme (Steffe and Cobb,
1998).

However Lankford’s (1974) study on seventh-graders using
individual interviews found that more frequently, in division exercise such
as 27 }E there was little thinking in the pattern of “27 x ? =81". The
thinking was usually expressed as: “81 divided by 27", “27 goes into 81"

and “How many 27s in 812"
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These findings indicated that fourth-graders and seventh-graders
use different thinking pattern in their strategy to arrive at the basic division
fact. The findings also suggests that seventh-graders have developed
their non-counting division scheme, whereas the fourth-graders still need
to rely on their elementary counting scheme to obtain their basic division
fact.

Itis not easy to differentiate between division fact error and
multiplication fact error, since the division facts are often derived from
multiplication facts. Nevertheless, in division algorithm, the division facts
and multiplication facts may be differentiated as shown in the following
examples:

(a) Division fact error:

8
3J27
The error is due to incorrect division fact: 27 + 3 = 8.
(b) Multiplication error:
8
3J27
26
1
The error in this example is due to incorrect multiplication fact: 3 x 8 = 26
(Reisman, 1978).
For subtraction facts, Grossnickle (1936) found that error in
subtraction combination decreased significantly from grade five through

grade eight. As they progressed to grade eight, most of the pupils had

acquired considerable proficiency in subtraction facts.



Roberts (1968) classified basic fact errors as obvious
computational errors. He suggested that pupils’ obvious computational
errors arose from being unable to recall basic number facts. His study
showed that 18% of the pupils made errors in computation due to errors
in basic number facts.

In another study on 198 third and fourth-graders, using an 84-item
arithmetic test, Engelhardt (1977) found that basic fact errors accounted
for 38% of the computational errors in the four basic operations. In
contrast, Lim's (1980) study did not indicate basic fact errors as among
the more common errors in division computation. In fact, basic fact error
was not observed in Stefanich and Rokusek'’s (1992) study on 25
students in grade four.

Nevertheless, the above studies indicated that basic fact errors in
multiplication, division, and subtraction were the major causes of division
computational errors. However, errors in subtraction facts decline as
pupils prbgress to higher grade. Most pupils derive their division facts

from the multiplication facts.

2.3.2 Wrong Operation
Roberts (1968) defines wrong operation as the pupil's attempt to
respond by performing an operation other than the one that is required to
solve the problem. He found that using wrong operation accounted for
18% of the total errors in computation in his sample of 766 third-graders.
Earlier study by Buswell and John (1926) indicated that using

wrong operation occurred in 22% of the pupils in the first quartile, and



11% of the pupils in the fourth quartile. This observation suggests that
higher achieving pupils are less inclined to use the wrong operation in
their computation as compared to the low achieving pupils.

Lim (1980) found that using the wrong operation was the third most
common error. Examples of error due to wrong operation observed in his
study are:

(a) Multiplication:
Multiplying each digit of the dividend by the divisor.
182412
6 )342
(b) Subtraction
Subtracting the divisor from each of the dividend digits.
56
2J78
(c) Addition
Adding the divisor to each digit of the dividend.
101110
8)232

Other recent studies also indicated the use of wrong operation by
the pupils in division computation. The report on the National
Assessment of Education Progress (NAEP) of 1980 found that 6% of the
9-year-olds did an operation other than division for the question 6)1_8.
and 3% made a similar error for 3[35 (cited by McKillip,1981).
Engelhardt (1977) found that using the wrong operation accounted for 4%
of the errors in computation in the four operations, for the third to sixth

grade pupils in his study. Nevertheless, the report on the NAEP of 1980



indicated that using wrong operations did not occur in the 13-year-olds

(cited by McKillip, 1981).

2.3.3 Remainder Difficulties
Unlike other operations, which require only recalling basic number

combinations, division algorithm requires the estimation of the quotient
figure. In division algorithm, the quotient digit should give the partial
product that is either equal to the partial dividend (in the case where there
is no remainder), or less than the partial dividend (when there is
remainder). Moreover, if there is a remainder, the remainder resulting
from subtracting partial product from the partial dividend should be less
than the divisor. Remainder errors in division computation are often
caused by difficulty in making the correct estimation of the quotient digit.
This error may also occur during regrouping process to obtain the
remainder. Buswell and John (1926) listed nine errors in remainder
difficulties as:

(@) Used remainder larger than divisor

(b) Neglected to use remainder within example

(c) Wrote remainders within example

(d) Omitted final remainder

(e) Used too large a product

(f) Used remainder without new dividend figure

(9) Wrote all remainders at end of example

(h) Added remainder to quotient

(i) Added remainder to next digit of dividend



28

Grossnickle (1936) identified another two remainder errors not
listed before:
(a) Final reminder reduced in fraction form and numerator of
fraction written as remainder

(b) Last partial dividend written as a remainder

Grossnickle noted that remainder error was the second most
frequent error, next only to basic fact errors. This error constituted about
24% of the total errors made. In particular, he found that “leaving a
remainder bigger that the divisor” was the most frequent error in
remainder difficulties. This error was sometimes followed by error in
“using remainder as a new partial dividend without the new dividend
figure”.

Lim (1980) also found that “using remainder greater than the
divisor" was the most frequent error in division in his study. The NAEP of
1980, showed that 5% of the 13 -year-olds did not include the remainder
as part of the answer for the question 6 [Wa (cited by McKillip, 1981).
Stefanich and Rokusek (1992) found that approximately 11% of the
fourth-graders in his study committed remainder errors.

Regrouping is sometimes necessary in computing the remainders
within the computation and final remainder. Some regrouping errors that
occur in subtraction of partial product from partial dividend are: “omitting
carried number” and “carried the wrong number”. Regrouping errors that

occur in bringing down dividend digit include: “failure to bring down new
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dividend digit” and “bringing down two digits at a time”. Engelhardt
(1977) found that 22% of the fourth-graders made errors in regrouping in
the four operations. Stefanich and Rokusek'’s (1992) study indicated that
errors in regrouping accounted for 25 % of the errors.

Remainders were often wrongly interpreted by children (Lankford,
1974). Studies on problem solving in realistic problem situation indicated
that the presence of remainders increased problem difficulty (Burton,

1992).

2.3.4 Zero Errors
Pupils are often confused in the use of zero in computation.

Buswell and John (1926) identified five zero errors as:

(a) Omitted zero resulting from another digit

(b) Omitted zero resulting from zero in dividend

(c) Added zero to dividend when quotient was not a whole

number
(d) Wrote rows of zeros

(e) Dropped zero from divisor and not from dividend

To further differentiate between the different zero errors,
Grossnickle (1936) constructed his test in such a way that zero occurred
in five different positions in dividends and quotients. Zeros were found: (i)
final in the quotient only, (ii) final in dividend only, (i) final in both

dividend and quotient, (iv) not final in quotient only, and (v) not final in
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dividend only. He listed fifteen errors resulting from zero (in decreasing
frequency of occurrence) as:

(a) Omitted final zero in quotient

(b) Zero final in quotient only, final dividend figure was written for
quotient figure

(c) Omitted final zero in both dividend and quotient only

(d) Omitted zero not final in quotient only

(e) Extra zeros written in quotient because each remainder treated
as a new partial dividend

(f) After zero not final in quotient only, dividend disregarded and
zero written in quotient

(g) After zero not final in quotient only, dividend written as
remainder

(h) Omitted zero in the quotient when final in both dividend and
quotient, but added zero as a remainder

(f) Zero not final in quotient only, dividend figure written in quotient

(i) Zero final in quotient only, extra zero annexed to dividend

(k) Example completed only to zero, not final in quotient only

(I) Remainder not carried to next dividend figure when zero was
not final in quotient only

(m)Zero written for remainder when zero was not final in quotient
only

(n) Last two quotient figures interchanged when zero was final in

both dividend and quotient
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(0) Zero and next quotient figures interchanged when zero was not

final in quotient only

His findings indicated that the greatest number of zero errors
occurred when “zero is final in the quotient only”, as in error (a), (b), (j),
and (n). Among these errors, “omitting final zero in quotient only”
occurred most frequently and accounted for about 50% of the total zero
errors.

Another common zero error is “omitted zero not final in quotient”.
The report on numeracy by City and Guilds of London Institute mentioned
that when a zero appeared between two digits (embedded zero) in the
answer of a division computation, 49% of the candidates omitted it (cited
by Barr, 1983). Barr also noted the study by the Mathematics Education
Group at Brunei University on “the Embedded Zero task” in the division
operation. The findings indicated that for the question 4669 + 23, about
38% of the subjects aged between 13+ to 27+ gave the incorrect answer
of 23 when they omitted the embedded zero in the quotient. The NAEP
report of 1980 also found that approximately 4% of the students omitted
the zero in the quotient in the question 28 m and 3% did the same
for6 )608 (cited by McKillip, 1981). McKillip further suggested that the
error may be due to the inaccurate placement of quotient digits or simply
forgetting to write the zero.

Engelhardt (1982) suggested that errors in omitting zeros might be
caused by difficulty with concept of zero as placeholder. He cited the

following examples of zero errors involving zero as placeholders:



(a) Omitting place-holding zero in dividend

11R6
12 Jia08
12
18
12
6

In this example, the embedded zero in the dividend was omitted.

(b) Inserting zero as placeholder unnecessarily

n
w
oo olo o |8

An extra zero was added to the quotient as placeholder.

Some “zero errors” are caused by confusion over the identity
element involving zero (the identity element for addition) and one (the
identity element for multiplication) in the four operations
(Engelhardt,1977; Lankford, 1974). Stefanich and Rokusek(1992), in
particular, found that zero errors due to confusion of zero and one as
identity element contributed to approximately 18% of the systematic error

made by the fourth-graders.

2.3.5 Inversion of Order

The algorithm in division computation involves many steps.
Moreover, the students need to adhere to the order in the sequence of
numbers in carrying out the various computational steps. Roberts (1968)

found that many pupils had not yet internalised the concept of order of



sequence to develop proficiency in multi-step processes. He cited the
following examples that showed inappropriate inversion of order:
(a) Reversed subtrahend and minuend:
Reversing subtrahend and minuend was a common error found in
subtraction computation, as shown in the following example,
332
-175
246
The pupil subtracted in each column in the direction, which offered the
least difficulty. In this case, he subtracted the smaller digit from the
bigger digit regardless of whether it was minuend or subtrahend. He had
avoided the regrouping step (Ashlock, 1976; Reisman, 1978; Roberts,

1968).

(b) Reversed divisor and dividend:

Roberts also found that in division computations, the single-digit
divisor was often used as a dividend or alternated as a divisor or dividend
as in the following example:

421

8248

By inversion of the divisor and dividend, that is 2 + 8 to 8 + 2, the pupils
obtained a quick response and avoided regrouping.

Other studies also supported these findings (Engelhardt,1977;
Grossnickles, 1936; Lankford, 1974). Engelhardt, in particular, found that
in computations involving the four operations, inappropriate inversion

occurred in 21% of the fourth-graders.



2.4 Individual Interviews in Diagnosing Errors

Although written paper and pencil test is an important tool in
diagnosing a pupil’s error in computation, individual interview has the
added advantage of enabling a teacher to explore the thinking process
associated with a pupil's computation. Error patterns displayed by
students are sometimes caused by using incorrect rules or procedures in
computations (Rudnisky et al., 1981). These incorrect rules used may not
be discernible in their written computations. Individual oral interviews are
sometimes necessary to uncover the sources of errors (Cox, 1975;
Liedtke, 1988; Shaw and Pelosi, 1983).

Lankford (1974) interviewed 176 seventh-grade pupils to explore
the computational strategies used by the pupils. He suggested that
knowledge of a pupil's thinking as he compute might be successfully
determined by employing carefully conducted interviews. From his study,
he produced a list of guidelines for teachers in conducting individual
interviews with the pupils.

Cox (1975) suggested that oral interviews should be conducted
after preliminary analysis of computational errors based on a written test.
The teacher should encourage the pupil to tell what he thinks as he works
the problem.

According to Liedtke (1988), an interview setting can furnish
specific and detailed information about a student’s cognitive strengths
and weaknesses besides his affective needs. It is important to find out
what the student does not know, or what has been learned incorrectly.

Moreover, interview has the added advantage over written test because



35

various adjustments can be made during the interview. He also
suggested that interview protocol should use questions that begin with
“Show me how you would..." or “Try to...", rather than “Can you...” which
tend to get the response “No!" Furthermore, an interviewer should also
avoid comments such as “Look again.” and “Are you sure?” that hinted of
incorrect response.

Rudnistky et al. (1981) recommended using dialogues or “talking
mathematics” with children. They cited four ways of locating a proper
level of difficulty and adjustment of content in an interview:

(a) lllustration, which involves asking students to represent or
define a concept in terms that are more concrete than those
used in an earlier response.

(b) Redirection, which entails changing the content of a line of
questioning or adjusting the difficulty of the content.

(¢) Particularization, which implies the use of an example to
help the student to explain a procedure.

(d) Generalization, which comprises an attempt to elicit a rule
for a specific type of computation and apply the rule to a
different example.

These findings indicated that the search for computation errors
must go beyond the standard paper and pencil test to determine the

thinking processes involved in the computations.



