
/
Abstract

This documentation contains information about the Wireless Application

Converter (WAC) for WXES 3181. It is divided into four chapters. The c chapters

are Chapter 1: Introduction, Chapter 2: Literature Review & Analysis, hapter 3:

Methodology, Chapter 4: System Design, Chapter 5: ystem Implementation,

Chapter 6: System Testing and Chapter 7: System valuation. The objective of this

documentation is to provide the reader with an overview of the purpo e of

developing WAC, the architecture and functionality of it.

Chapter 1: Introduction provides the introduction for reader a ut the

objectives of developing WA . It covers the objective , development cope ,

targeted user , development limitation and a propo cd chcdulc to Cini h thi

project.

Chapter 2: Literature Review & Anal si pro id informati n on cveral

terms that are related to this project. These term are taken from the current wirclcs

technology field. Beside , there are two tern de cribed in detail that u se the

similar approach which arc the reference f r WA . This chapter al pr vide

information about the technol g require to de 'lop WI\ , whi ·h in ludc

development software wirele. s hardware, proto ol for wir ·I '.'S n itwor , file stern ' ·

and erver for WA .

haptcr 3: Methodolog de .ribc the 111 nhod I 1 us .d t(lo WA .

The descriptions include an intrc Ju uon (I' Ill ·the l and th' r 'JI.' II fi.H II. 11\l' it.

Included in this .h pt ·r a' \ ·II ir \ th. I qui 'ltl iurs r th' ' st ·m Th ·s \ ll • th.

system Iuncriotu lutes hard ire and sol at re 1w1c111 11t:

Univ
ers

ity
 of

 M
ala

ya

Chapter 4: System Design explains how the system is designed. It cover the

system architecture, system modules, system functionality design and module

functionality design. Explanation on system architecture covers a brief introduction

on the chosen architecture, how this architecture can be implemented in WA ', the

advantages for choosing it and the disadvantages. xplanations on other part of this

chapter cover the descriptions on the functions involved, the data flowing and how

the functions integrating with each others.

Chapter 5: System Implementation explains how the system is developed. It

covers the coding approach, scripting language and development t ol u ed to

develop each module.

hapter 6: ystem Testing explains the te ting done on the y tern. This

chapter cover the type of te ting being implemented, testing approach and testing

resources. It also covers the changes that had been done on the y tern.

Chapter 7: System valuation is the fin I chapter. It cover the problem

encountered during the development and the relevant luti n , c aluation by the end

user, pros and con of the system, future enhancement and al o knowledge and

experience gained from the <level pmcnt. Thi, chapter will con iludc the detail,

about Wireless Application on erter.

..
ll

Univ
ers

ity
 of

 M
ala

ya

Compliment

First, I would like to thank for my supervisor, Miss Rafidah Mohd. Noor for

willing to supervise me in this final year thesis. I would like to express my gratitude

for her guidance in preparing this documentation as well on the system design.

Secondly, I would like to thank Mr. Andrew Khoo, Director of J fandisplay

(M) Sdn. Bhd for his valuable advice in pursuing research in wireless field. I would

like to thank Mr. Rachmat Hartono, Senior Software ngineer of B Technologie .

Under his guidance during the industrial training periods, I am able to learn the

technique that is helpful in developing WA .

Finally, I would like to exprcs my gratitude lo all my friend . -or their

willingnes in sharing information and tea hing, I am able lo gather .omc

information related to my development of WA .

m

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

1. Chapter 1 : Introduction

1.1. Objectives

1.2. Scopes

l.3. Targeted Users

1.4. Project Limitations

l.5. Schedule (Gantt chart)

2. Chapter 2: Literature Review & Analysi

2. 1. Wireless

2.2. Wireless Application

2.3. Converter

2.4. Wirelc s Network nvironrncnt

2.5. Wireless Application Protocol (WAP)

2.6. General Packet Radio crvicc R)

2.7. Personal Digital Assistant (POA)

2.8. 2.5 en ration (2.5

2.9. 3rd eneration (3)

2.10. wo imilar System

2. 10. I. I landi play marl creen rearer

2.10.2. Avant oMo ile Internet

2. 1 I. Technology

2.11.1. ollwarc for WA

2.11.1.1. A ti c xer

2.11.1. . Id (

2.11.2. pcrating

2

2

3

4

6

8

8

11

11

2

22

23

2

... 7
Univ

ers
ity

 of
 M

ala
ya

2.11.3. Architecture of WAC

2.11.4. Wireless Protocol: Wi-Fi (802.1 lb)

2.11.5. Wireless Hardware

2.11.6. WACluster

2.11.7. WAC Server

3. Chapter 3: Methodology

3. l. System Analysis

3.2. System Requirements

3.2. I. Functional Requirements

3.2.2. Non-Functional Requirements

3.2.3. Hardware Requirements

3.2.4. Software Requirement

3.3. Conclusion

4. Chapter 4: System Design

4.1. System Architecture Design

4.2. System Module

4.3. System unctionality e 1gn

4.4. Module unctionality esign

4.5. er Interface

4.6. onclu ion 0

32

33

33

34

34

36

36

37

37

38

38

3

9

41

41

5. haptcr 5: y tern Impl .mcntau n

. I. Intrr duct ion

.2. Proccssin , Mo ulc

. I. Pr ices ·111 1 Module. ud111 ,

5.3. on er ion Module

v

Univ
ers

ity
 of

 M
ala

ya

5.3.1. Conversion Module: Coding

5. 4. Storing Module

5.4.1. Storing Module: Coding

5.5. Complement Component Object

5.6. System Setup

5.7. Summary

6. Chapter 6: System Testing

6.1. Introduction

6.2. Types of Testing

6.2.1. Unit Testing

6.2.2. Module esting

6.2.3. Integration Testing

6.2.4. Real-World Testing

6.3. Testing Resources

6.4. Changes Done

6.5. Summaryt

7. hapter 7: ystem _..valuation

7.1. Introduction

7.2. Problem ... ncountcred

7.2.1. Developer kill

7.2.2. Development re our 'e

7.2. . Raw Materials

7. ~ aluntion b end 11 "rs

7.4. S st nn Str ·11 zths

7.5. tern on, traim:

4

65

5

7

J

70

71

71

/.

7

VI

Univ
ers

ity
 of

 M
ala

ya

7.6. Future Enhancements

7.6.1. Support form query and hyperlink

7.6.2. Text editing

7. 7. Knowledge and Experience Gained

7.8. Summary

7.9. Conclusion

8. Appendix A: Active Server Pages (ASP)

9. Appendix B: Component Object Model (COM)

10. Appendix C: Internet Information Server (II)

11. Appendix D: Coding - A P

t 2. Appendix : Coding- Visual +

13. Appendix F: reating ATL M with Yi ual 1 1

14. Reference

15. Bibliography

Attachment: User Manual

73

73

74

74

75

76

78

80

82

89

9

126

129

13

Vil

Univ
ers

ity
 of

 M
ala

ya

Table Reference

Table 1.1: Gantt chart for WAC development duration

Table 1.2: Date and duration for each t.ask

Table 6.1: Testing Resources

6

7

65

Vlll

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 2.11:

Figure 3.1:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4. :

Figure 4.7:

Figure Reference

W AP Programming Model

WAP Proxy

PKI Portal

W AP Client Architecture

W AP Architecture

Example ofWAP 1.x Gateway

Architecture of Smart Screen Creator

Component needed

How Avant o work

How the process is working

Desktop to client proce

Transformation Model

WAC Architecture

WAC system module

WA system functionality de ign

Proce ing Module functionalit de ign

toring Module functionalit de. i in

nver i n Module run nioneli: d • ·i m

scr interface for wirelc de ice

14

16

16

17

18

20

25

27

28

29

29

36

41

43

44

47

18

9

~igurc 5.1: WA Proce in' Module ample

Figurc6.1: WA~ Bottom-Up Tcsnng

Figure >.2: WA Tree 'tru .tur

Fi 1urc 6 .. WA, St111 iturc I

'- Figure 8. I: New Proje t

IX

Univ
ers

ity
 of

 M
ala

ya

Figure 8.2:

Figure 8.3:

Figure 8.4:

Figure 8.5:

Wizard dialog

ATL Object Wizard

A TL Object Wizard properties

Add Method to Interface

127

127

128

128

Univ
ers

ity
 of

 M
ala

ya

Chapter 1: Introduction

Now a day, the wireless technology is advancing in tremendous pace.

Wireless technology is no longer only for wireless communication: surfing internet,

voice messaging, picture messaging and traffic navigation are evolving from theory

to practical.

Technologies such as General Packet Radio Services (PRS), Wirclc s

Application Protocol (WAP) and I-MOD (only available in Japan have been

invented to make full use of the advantage of wireless communication. ommunity

defined the current wireless technology as 2.5 and it i m ving toward· the 3

era.

Under the influence of wireless wave, everal re earcher and developer' arc

currently running re earch on implementing wirclc tcchn log that cmpha izcd the

use of server. This technique is t overcome certain constraint of the wirelc s

devices such as lower processing capability that make it unable to view a varict of

multimedia content.

There are some products already availa le in the market that im lcmcntinu

this technique, uch as AvantGo. The crver is re pon .iblc for pre-pr cc sing bcf re

sending back the result to the client.

Wirele Application n crter (WA 1 • a s st nn that ·nabl .s ' tr ·l ss

devices such a PDA and web-enabled phone t re · the same intc; net .on tent

within a wirelc nctwor .

IL is also impl ·m •11ti11 • th· s ir n-srd · t • ·lmi 1u nll th' pt ' J 10' S lllp

is done at th· s ·rv ·r b 'for· displn m • th' r sult at th· ih nt, Fu \ \ trl'll'~S k 1 • .,

to view irucmct content, the C(ntcnt 11111~1 l l uilt in th ti. 11n ti th ti sup; HI ·d b th·

de ice , uch a WAI. Throu 1h W nl 1 to t ., th' ont nt

Univ
ers

ity
 of

 M
ala

ya

although it is not written in the supported format because the pre-processing

procedure of WAC will eventually change the content format to the one that

supported by the devices.

Furthermore, WAC provides real-time internet browsing ability, which means

the requesting, pre-processing and resuJt display are done once the users make the

request.

1.1. Objectives

The objective of WAC is to enable information haring in a form of internet

content between wireless device and desktop computer within a wirele network.

For example in a corporate company, the staff can have the late t information about

today meeting schedule or event with their handhcld devices a. long as there i

wireless connectivity between the device and the rvcr.

Besides, it is a mean in providing a cro s platform support f r different

wireless devices. Wireless devices are different in me a pect , uch a the

operating system, processing power and . up rted format. W /\ i able to

overcome this problem by building the content int the r rmat u ported b the

wireless devices without the need 10 modif the ori iinal c nt mt.

Finally it i to overcome the onstruints of

processing power, low bandwidth and mall di splu sc een. Th· r re-pro .cssinu of
W /\ is re pon ible to optimize the content t

1.2. Scope.

For the ruiunl xturt, th· d · lopm nt

HTML to Wirclc Application Prot AP

t\ ' will ft '\IS Oil Oil 11111 •

2

Univ
ers

ity
 of

 M
ala

ya

The reason for choosing W AP is because most of the wireless devices have

this feature. These devices are ranging from handheld computer such as Personal

Digital Assistant (PDA) to mobile phone.

In Malaysia, most of the telecommunication companies offer the W AP

service, such as Telekom and Maxis Mobile. With this service, the users arc able to

connect to the internet with their mobile phone every time they wish to.

Besides W AP, the other consideration will be the operating system.

Operating system does affect the performance of the handheld device .

Currently, Microsoft Pocket PC and Palm 0 are the two major operating

systems that have been used on handheld computer. In comparison, Pocket P is

more powerful than Palm

functionalities.

The id al operating ystem for development purp e will be Palm . It i

because most of the features that supported by it is upportcd by Pocket P . Jn

in proces ing power, multimedia feature and

contrast the features supported by Pocket P cannot be supported by Palm

For the operating environment, WA will operate und 'r Micro oft Window

platform. The reason for choo ing thi · latf rm i · ccau c r cas de clopmcnt.

There are a lot of Windows ased re ource and buildin tools a ail able which ·c uld

help in ea e the <level pment rogres s.

1.3. Targeted scrs

Th tar ietcd us 'TS will be th int .ru I '(11t 'Ill ;1cl11111ustllllt • lituu the

oorporat • world and horn • us r.

For the corporate us ·rs th· m.: nl 1 • I u$ tlus s st ·111 IC. 1 1111' rn111m11

haring as well as data qu throu ih intern l.

3

Univ
ers

ity
 of

 M
ala

ya

The reason for choosing them as the targeted users is because mobility is one

of the features that they needed, as this can enable them to connect and retrieve data

from any where within the wireless network without being constraint by cabling.

For home users, they could use this system to connect to the internet and surf

their favourites web site within a wireless network.

This system is very simple because it only needed a normal desktop computer

as server and wireless LAN to work. It is very convenient to own these things now a

day and it is affordable for home user.

Besides, the system provides the home u er an alternative l connect t

internet without the need to sit down every time in front of the desktop computer.

1.4. Project Limitations

The development progress might encounter ome limitation . urrently,

there are few limitations for the initial start. These limitation are time, lack of

references and internet standard.

Developing WA is very time c n urning bccau e there arc a lot of

considerations during the development pr ccs . These con idcrauons arc:

I) Types of devices need to be upportcd . uch as Personal i iitul

As istant or mobile ph n ·

2) Type f content that can be con crted which is related lo J ITM tau.

3) Type of protocol to be uppc rtcd ·u ih as WAI .

4 Pre cessinu stru tur ·.

incc thcr • i not mu ·h time is nil ill id WA '\ ill Io 'II' 011 Al 111d P 1'111 S

Furthcrmor ', there arc not Ill Ill I f'•t mces ()UI th r tl ut till, k111 l r
Althou rh th r • ar

4

Univ
ers

ity
 of

 M
ala

ya

references out there, some of it are only theory and some of it even using different

approach, like artificial inteJligent, which is difficult to implement

Besides, the internet standard is also an issue to be considered. There is no

standard define how the internet content should be. It might be pure J ITML script,

mixture of HTML script and JavaScript, or totally JavaScript. It is impossible to

come out with a solution that could fix into all of the mentioned above. or the

development purpose, it will focus on certain web site that is either HTML or

mixture with JavaScript.

5

Univ
ers

ity
 of

 M
ala

ya

u
<
~
OJ)
~ ·- ,-... 0.. t: 0

o:s ~ ..cl > 0 4)

~ "O

~ .9
4) c.:i '3 ..._,
"O (1) o - ..Q ::I o

~ Vl
4) ..cl
~

0
00

"l

<D

8 0)
~N
lL - . -~

8~
c m
--; ~ -

N
N

.,.,

M

..

Univ
ers

ity
 of

 M
ala

ya

Table 1.2 shows the exact durations for each task mentioned in Table 1.1.

Table 1.2: Date and duration for each task

ID Task Name Start Date End Date Duration (davs)
1 System Analysis 17/6/2002 26/7/2002 30
2 System Modeling 29/7/2002 23/8/2002 20
3 System Design 26/8/2002 20/9/2002 20
4 Prozram Design 23/9/2002 13/12/2002 60
5 Testing & Modification 16/12/2002 101112003 20
6 Final Testing & System Delivery 13/1/2003 7/2/2003 20 -
7 Documentation 17/6/2002 7/2/2003 170

Below is the description of each task:

1. System analysis: Analyzing the ystem and capture the asic requirement .

These requirements include the operating environment, architecture and

resources available for development.

2. System modeling: Thi task include capturing the functional and non-

functional requirement . From these requirement , the peci ficau n f WA

can be determined and it shall be used for initial start of the development.

3. System design: ft is about designing the internal proces and data flow f

WAC by using the data flow figure.

4. Program design: Thi i the implcmcntati n tatc where the programming

comes into action.

5. Testing & modification: ptimization of WA i · done at this stat throu ih

testing and making change in the internal r ro cs·

6. Final testing & y tcm d liver : It IS the final .tatc { r th' J' It pm ut

procc s. The s st ·m will l · deli ·r ·d afi ·1 it is full t • ·t ·d

7. Do ·um intation: II is about d um ·ntin i th l ro · · · l I ·a ·ht L ~

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 2: Literature Review & Analysis

2.1. Wireless

Wireless is a way of using the radio-frequency spectrum or clcctr magnetic

waves for transmitting and receiving voice, data and video signals for

communications. The signals are transmitted without physical conductor, but

through air or water.

The radio-frequency spectrum is divided into eight ranges, cal led band , each

regulated by government authorities. These bands are rated as follow:

1. Very Low Frequency (VLF: 3 KHz - 30 KHz): or long-range radio

navigation and submarine communication.

2. Low Frequency (LF: 30 KHz - 300 KHz): For long-range radio navigation

and radio beacons or navigational locator.

3. Middle Frequency (MF: 300 Kllz - 3 Miiz): l·or AM radi maritime

radio, radio direction finding (RD) and emergency frequencic .

4. High Frequency (HF: 3 MHz - 30 MHz): For intcrnau nal broaden ting,

military communication, long-distan c aircraft and ship communi ation,

telephone, telegraph and facsimile.

5. Very High Frequency (VHF: 30 Milz - 00

1~ M radio, aircraft. AM radi and air rall na igatioual aid.

6. Ultrahigh Frequency (HF: 300 Hz - lfa). h>

mobile telephone. cellular 1 idio, pu tin • and 1111 ·rt lrnks.

7. up ,rhi~h ~ r equenc (llJ.': 3 (.llz .JO (~llz) hu t 'tt •sto 11 in I sntdltt ·

mi ·rowuvc und rada commutu · 1t1on.

8

Univ
ers

ity
 of

 M
ala

ya

8. Extremely High Frequency (EID': 30 GHz-300 GHz): For radar, satellite,

and experimental communication.

The radio wave transmission is propagate in five different ways as describe

below:

1. Surface Propagation: The radio waves travel through the lowest portion of

the atmosphere, surrounding the earth. The signals are at the lowest

frequencies. The signals transmitted will move in all direction, following the

curvature of the earth. The greater the amount of power in the signal, the

further distance it can travel.

2. Tropospheric Propagation: This propagation way can be done in two way,

that is directing the signals in a straight line from antenna t antenna line-of

sight) or broadcast at an angle into the upper lay r of troposphere and

reflected back to earth's surface. The first way require the transmitter and the

receiver to be within line-of-sight di tance , while the ccond way allow

greater distance to be covered.

3. Ionospheric Propagation: I Iighcr-frcqucncy rudi wa c arc transmitted

upward into the ionosphere where the rcllc tcd back to earth. : mtuall ,

the radio wave will chan 'C dire tion and s ··I up wh •n trav ·I from

troposphere into i n phere. It ha' a greater ran re of trnnsmissir n c cred

with lower power utput.

4. Lin ~-of-. i~ht Propn~ntion: Vc1 hi 1h fr ·qu •n · si 111 lls tu ' 1w11s1111ll I in

nrai 1ht tin'. dir • ti from ant .nnn tc ant nun Th· unt ·111ms 11111 t l · litc.·111 •

each othc un I either tnll .nou 1h or ·ll)s • .nou h for not In l e 111' ·t ·ti b th·

curvature of the earth.

9

Univ
ers

ity
 of

 M
ala

ya

5. Space Propagation: It utilizes satellite relays in place of atmospheric

refraction. Signal is received by an orbiting satellite, which rebroadcasts the

signal to the intended receiver back on the earth. Basically, it is a line-of

sight transmission with an intermediary, the satellite. The di. tancc fi r

transmission is the greatest compare to others propagation ways.

2.2. Wireless Application

Wireless application is specially builds for the wireless devices such as the

mobile phone.

An article written by Christoffer Andersson says that wireless application i

divided into two categories: client-server and client re ident application .

Client-server: WAP i the first example of client- crver applications. Mo t

of the applications that we see arc WAP applications or u ing similar technologi

(web clipping, I-MOD). Most of these applications arc br wser-likc menus with

the content on a remote server. WAP and ultra-light clients are very appealing,

they don't require any skill from the u er. There i no nc d to downl ad, in tall or

configure each application. The update arc done at the central crvcr, and therefore

instant to the user.

lient resident applications: It i · nn appl: ation thttl is ilwa . r ·ad le>

connection. User will be able to connect to the apphcatic n an tim · th· want end

only paying for the content the ha c rctric id. t · t 1<.Jit1 • ur 1 li ·ati< 11 1 · 1111

example. It is constant! onlinc, ti in, us .rs a I· •I or int 'Ill ·11 it llmt i.· I oud

what we get with br wsin >,

10

Univ
ers

ity
 of

 M
ala

ya

2.3. Converter

Converter is a device, process or application that transforming a format from

one to another. Digital-to-analog converter is an example of converter. It is use to

transform the signal from digital format to analog format.

WAC is considered to be a converter. Lt is responsible in converting the

HTML format web page to W AP format page. rt is done in real-time basis; once th

user request for a HTML page, WAC will convert it to W AP page within a few

second.

2.3. Wireless Network Environment

Wireless Network nvironrnent is an environment f network comp ncnt ,

which are link together with the use of wircles tcchnolog . Wirclc · · ocal Arca

Network and Bluetooth are examples of the envir nmcnt.

Wireless Local Area Network (W AN i the new implication of network

technology that allows the devices such as desktop computer, lapt p, handheld

computer and PDAs to be connected together wirclc ly. It i. like an intranet but

without cabling.

W AN is gaining its acceptance in the market no a da . The r .asou for this

is because W AN offer lower price but for transmission s • ·d ran iin ' from I to

Mbps depending n the prot col it u ed. Furthermore WL/\N can l c v r mu rn a

reasonable range and docs not need line-of- i iht rcquir .mcnt

The benefits or WL/\N is th ll it IS 'It I. It I ·a ih out to (It •a \ h 'I • IS II)I

possible for wirin 1• It also h •lps 111 r .ducc th' futur · ·o I for oll'il' · re I 1 c. ut Ill It ·

location as it is able to c< mplcmcnt th u11 •nt ' 11 d n !\ 01!... I ·1tJ .s, N 1~

11

Univ
ers

ity
 of

 M
ala

ya

more cost effective for infrastructure project and even in generate new revenue for

Hotspot operator.

There are three types of deployment network models for WLAN. These

models are Small Office Home Office (SOHO), Enterprise and Hotspot. A

requires only sharing information and resources within a small office, which usually

consist of a printer, a personal computer and a notebook. Compare to wired network,

WLAN is more cost effective because it reduces the cost for wiring, especially when

the re-layout has to take place.

Enterprise model is more complex than H , where it needs to connect

many computers, usually more than 50, to the internal server for information harinu

and internet connectivity. It requires reasonable ecurity feature t en urc the

integrity and avoid unauthorized accc s. The architecture of this m del can b

deployed together with the current telecommunication tcchnol gy uch as PR and

Virtual Private Network for accessing the resources in the office r motely.

Hotspot is mainly used by consumer for email, web surfing, Virtual Private

Network, voice over IP service and multimedia entertainment. It requires

intermediate service provider between the internet and the wire le' accc point.

These service providers are re pon iblc in providing the servic · a· mentioned

above.

Bluetooth is a c rnputing and telecornmunicauons industr s ccif ·at ion thot

describes how mobile phones, compute and P As can easil int ·r .onu · ·t ith

each other and with home and busin .ss 1 h n ·: nnd xnnput •rs us1111 n shot t 11nt c

wireless connection.

With Blucto th, u icrs v 11! b bl· I< l u a tin· ·-111-on • 1 h >11 • th tl • rn

double as a portable phon at home or in the ClJ 1 • 1 "t ~ui kl s n h miz ·d with

12

Univ
ers

ity
 of

 M
ala

ya

information in a desktop or notebook computer, initiate the sending or receiving of a

fax, initiate a print-out, and, in general, have aJJ mobile and fixed computer devices

be totally coordinated. It requires that a low-cost transceiver chip be included in

each device. The transceiver transmits and receives in a previously unused frequency

band of 2.45 GHz that is available global1y (with some variation of bandwidth in

different countries).

In addition to data, up to three voice channels are available. ach device has a

unique 48-bit address from the IE E 802 standard. Connections can be point-to

point or multipoint. The maximum range is 10 meters. ata can be exchanged at a

rate of I megabit per second (up to 2 Mbps in the econd generation of the

technology).

Furthermore, it has a frequency hop scheme which allow device to

communicate even in areas with a great deal of electromagnetic interference.

Besides, it also has built-in encryption and verification that enhance the security

features.

WAC will operate inside Wi-Fi connectivity. The rca n for it will be

discussed in Section 2. 11.4 Wireles Pr tocol.

2.5. Wirele s Application Protocol (WAI')

The W AP (Wirele Applicati n Protocol is a spccilicuti m fir · ·ct of

communication protocol t tandardizc the wa that 11 ·I .ss 1 • 1c .s, su ·h 11'

cellular telephones and adio trans ·i crs, ran b · u · id f(r int n ·t a· x-ss as ·II 1.·

intrancl. It i · a 'land ird d .fln I b th I f llltl \ hi h ·unsist· ul' No i 1,

Motorola, :rik. son and Phonc.c m.

13

Univ
ers

ity
 of

 M
ala

ya

W AP is developed for the wireless devices which have several constraints as

follow:

• Less powerful processing unit

• Less memory

• Restricted power consumption

• Smaller displays

• Different input devices (e.g. a phone keypad)

The wireless network as well has the following constraints:

• Less bandwidth

• More latency

• Less connection stability

• Less predictable availability

WAP Do·1ito ltpph'catlo'I Scrvor

Rtqua 1 (UR I ton'Tfl

Figur • 2.1: W /\P Pro~nunmin~ Iodel

The W J\P programming mod I i a tuall th W rid Wid · W ·h WWW

programming mod ·I with a fc mhun ctn .nts In WW pro 11am1111n 1 nu d •I th ·

client request for a UR r om th· a1 pli ·nttc n s • 't. Th' tppli · 1tH 11 s •1 ·1 ' ill

response to the ·Ii int t l 1 •th ·1 \l tlh th· ·mt nt

14

Univ
ers

ity
 of

 M
ala

ya

W AP programming model is optimizing the WWW programming model to

match with the characteristic of the wireless environment. Figure 2. 1 shows the

W AP programming model. Instead of web browser like the WWW, the WAP device

has the micro browser with telephony support, ca11ed the WT A. At the W /\P device,

it will request a URL from an application server. Like the WWW model, the HTTP

server response with the content. In addition to the content response, the server will

push the content to the W AP device as well with the Push Initiator at the server.

In order to optimize and enhance the connection between the wireless domain

and the WWW, WAP utilize the proxy technology. The W AP proxy provides

functions as follow:

• Protocol Gateway - A gateway to translate request from a wireless

protocol stack. .g., the W AP 1.x stack (from top to bottom) W P

(Wireless Session Protocol), WTP (Wireless Tran p rt Protocol),

WTLS (Wireless Transport Layer Security Protocol) and W P

(Wireless Datagram Protocol).

• Content encoders and decoder - It is use to tran late the WAP

content into a compact format that allow for ctter utilization r the

underlying link due to its reduced size.

• User agent profile management - Describe the client .apabilities and

personal preferences are compo ed and pre ented to the applications.

• Caching proxy - To improve the pcrcci cd p irtonnan · and notv ork

utilization by maintainin 1 a iachc of r iqu ·nil ace ·ss ·Ir sour· ·s

15

Univ
ers

ity
 of

 M
ala

ya

fg I B l"
-

Cient Proxy Application ScNer

I HtTfi HT1P

'l'IAP
En::&lde;f fl,tq.iest ;LJR L) Prox, R•(ll.lO$t (JM.) StMf

Mero
8mwer fl o0e< eon1i:i1~

FM111111
&.ti:11m1n.arta::

Figure 2.2: WAP Proxy

Figure 2.2 shows the WAP proxy. This infrastructure is meant to ensure the

users are able to access a wide variety of internet content and application.

WAP architecture also includes supporting servers that provide services to

device, proxies and applications as needed. hcse crvicc arc oft n specif in

function but are of general use to a wide variety of applications. The upporting

servers defined by the W AP forum are as below:

• PKl Portal - As shown in Figure 2.3. It is to allow device to initiate

the creation of new public key certificate .

-
Figur 2.3: PK I Portal

Univ
ers

ity
 of

 M
ala

ya

• UAProf Server - Allows applications to retrieve the client capabilities

and personal profiles of user agents and individual users.

• Provisioning server - It is trusted by WAP device to provide its

provisioning information.

In order to have the WAP services, the W AP device needs to have the W AP

client architecture. The detail of the architecture is as shows in Figure 2.4:

App'1cafon Framewcrk
(WAE, Push Oispatchor, Mossaging Cliein)

v111.• m
Co"il•.inl ~ ichro·B Corimo~ runctlln

f~thJO , (fv el I 111)C
MJllmrota, f r. Syro etc.I

Figure 2.4: WAP lient Architecture

• Application framework - Provide the device execution environment

for the WA P applications. W AP applications arc con i t of markup,

script, style sheets and multimedia content. WAP Application

Environment (WA ...) defines the tructure of an u f rm of

executable and non-executable content interaction.

• Network protocols - It is har d ct ween client and the crv ir.

• ontent renderers - Interpret pccific form of .out ·nt and pres ·nt

them to the end u scr for interaction.

• ommon functions cfincd to b utilized b th apph ution

framework, including persist .nc und dutu : n .lu H\11 \It in

• Wireless ldcntit Modul WIM c ntams th· id inut 1 c r th· d •

and er ptographic means to mutu 111 \ttth nu int •

servers.

17

Univ
ers

ity
 of

 M
ala

ya

• External Functionality Interface (EFJ) - Provides the mechanism to

access external functions that are embedded or attached to the devices.

For the W AP architecture, it is designed in a stack layer as shown in Figure 2.5. ft is

designed this way to provide a scaleable and extensible application development

environment for mobile communication devices.

~t1ic. •il1 Mu ... "'- ,,. Cr1 r. - I'd•

n~ """'"""' §1
l.l')':I&

~b
C-1 !J .. \.'WlfTP.U ·.l,;tt1'1 " ~ •:Jie I

:fHfjit."t

·~·~1.p Pll

re
11r"l)OO

11!

:..aiab , ~gC!lat r

f•' .,.,

H 111

''· •r
f) r TIMI~ .I

U.1 :) Cl:lll .r.l .I.\ '-'PM

Fi 'Ure 2.5: WAP Ar .hite .ture

Each layer has a set of function and/or service to other er i es and appli ation ·

through a set of well-defined interfaces. It i al o accc iblc b the la er abo '

The explanati n for each comp ncnt in the WAP ar hit' tu ·is a· Iollov :

• Hearer Net work. 'c Ill~ .usut

fort lcrate varying level or scr i .cs ol er b th h 'H1 ·1, su h is she 11

message scrvic ', ir uit swit h 'd data and p ik ·1 d lt 1

I s

18

Univ
ers

ity
 of

 M
ala

ya

• Transport Services - Transport unstructured data across the

underlying bearer networks. It provides a set of consistent services to

the upper layer protocols and maps those services to the available

bearer services. It also creates a common abstraction that is consistent

across all bearers.

• Transfer Services - It provides structured transfer of information

between network elements.

• Session Services - It provides the establishment of shared state

between network elements that span multiple network requests or data

transfers, i.e. the Push session establishes that the W AP Device is

ready and able to receive pushes from the Push Proxy.

• Application Framework - A general-purpose application envir nrnent

based on a combination of World Wide Web (WWW), internet and

mobile telephony technologies. The objective is to e tabli .h an

interoperable environment which allow operators and ervice

providers to build applications and service that r ach a wide van t

of different wireless platforms in an efficient and uscf ul manner.

• Security Services - It is a fundamental part r the WAP ar hitccturc

and its services can be found in many la ers. Th' t in .ral s · urit

facilities offered are privacy, authentication and n n-repudiation.

• ervice Discovery - It is a fundamental part of WAI) ar hit tut i and

the crviccs provided can b • found 111 mun I l ·r.

include External Functionalit Interfa c, I ro isu run •• Na I U(IOll

I i .covcry and crvice I .oo u .

Univ
ers

ity
 of

 M
ala

ya

WAP Web
Oe\lice WAPGateway server

WAE WAE

WSP \Jl#'SP
11nP riTIP

WiP WTP

wns WTLS SS SSL

\V p WOP CP TCP

' Beater I B~rer IP '"
Figure 2.6: Example ofWAP l.x Gateway

As the services in the W AP stack can be provided using different protocol

based circumstances, there are more than one possible stack configurations. Figure

2.6 is one of the examples that show the protocol stacks for the original WAP

architecture.

2.6. General Packet Radio Service (GPRS)

GPRS is a non-voice value added service that al lows information to be sent

and received across a mobile telephone network. ft upplement toda ' ircuit

Switched Data and Short Message Service. It ha several unique feature which can

be summarized as below:

Speed: Theoretical maximum pecds of up to 171.- kil bit per ·c nd bps

are achievable by using all eight tirnesl l at the ame time. hi· i a ut thre times

as fast as the data transmission eds po iblc o er t da '. li · ·d

telecommunications n twork and ten time. as fast as urr •nt 'ir uit \ it ihc i I nt 1

services on M networks. By allowing information to h · transmit! cl mer' quick! •

immediately and efficiently a ross the mo 11' n ·t ork, ti HS mo ·II b :t

_Q

Univ
ers

ity
 of

 M
ala

ya

relatively less costly mobile data service compared to SMS and Circuit Switched

Data.

Immediacy: GPRS facilitates instant connections whereby information can be

sent or received immediately as the need arises, subject to radio coverage. No dial-up

modem connection is necessary. This is why GPRS users are sometimes referred to

be as being "always connected". Immediacy is one of the advantages of GPRS (and

SMS) when compared to Circuit Switched Data. High immediacy is a very important

feature for time critical applications such as remote credit card authorization where it

would be unacceptable to keep the customer waiting for even thirty extra seconds.

New Applications: GPRS facilitates several new applications that have not

previously been available over GSM networks due to the limitations in speed of

Circuit Switched Data (9.6 kbps) and message length of the hort Me age ervice

(160 characters). GPRS will fully enable the Internet application used on desktop

from web browsing to chat over the mobile network. Other new application for

GPRS, profiled later, include file transfer and home automation- the ability t

remotely access and control in-house appliances and machine .

Service Access: To use GPRS, user specifically need a mo ile ph nc or

terminal that supports GPRS (existing M phones do N support PRS) and a

subscription to a mobile telephone network that support PR . he u ·e of PR

must be enabled for that user. ome mobile network operator may allow automatic

access to the PR while others will require a ccific o t-in. csidc ·, u .crs n · .d to

have knowledge of how to send and/ or rccci c 11 R~' informatic n u. 1r1 • th i1

pecific model of mobile phone, includinu Oft ware nd hnrdv nrc ' nf 1lll tli< II this

er ates a customer crvicc requirement . Also. it nee :Js to ha i dc: Iinnu in to send 01

receive information through PR . Whcrca with M this ' a on ·n in th

Univ
ers

ity
 of

 M
ala

ya

mobile phone, in the case of GPRS, it is likely to be an Internet address, since GPRS

is designed to make the Internet fully available to mobile users for the first time.

From day one, GPRS users can access any web page or other [ntemet applications

providing an immediate critical mass of uses.

2.7. Personal Digital Assistant (PDA)

PDA is a term for any small mobile handheJd device that provides computing

and information storage and retrieval capabilities for personal or business use, often

for keeping schedule calendars and address book information handy.

The term handheld is a synonym. Many people use the name of one of the

popular PDA products as a generic term. These include Hewlett-Packard' Palmtop

and 3Corn's PalmPilot.

Most PDAs have a small keyboard. Some PDA have an electr nically

sensitive pad on which handwriting can be received. Apple's Newton which ha

been withdrawn from the market, was the first widely sold P I\ that accepted

handwriting.

Typical the PDA include functions like schedule, addre book toragc,

retrieval and note entering. Many applications have been written for P As.

Increasingly, PDAs are combined with telephone and paging stem .

Operating system for PDAs is varying from their manufacturer. It might u. c

the operating system developed by it own manufa .tur ·r fr in thcr compan .

The most common operating systems in-used ar ·Mi 'ro .o Po· ·t I · •111 I Palm)S

Univ
ers

ity
 of

 M
ala

ya

2.8. 2.5 Generation (2.5 G)

2.5 G is a term used to describe the state of wireless technology and

capability usually associated with General Packet Radio Services (GPRS) - that is,

between the second and third generations of wireless technology.

The second generation or 2G-1evel of wireless is usually identified as Global

System for Mobile (GSM) service and the third generation or 3G-level is usually

identified as Universal Mobile Telecommunication Service (UMTS).

Most of the telecommunication companies in Malaysia provide the 2.5

services, such as Telekom, Maxis Communication and DiGi.

2.9. 3rd Generation (JG)

The next generation of wireless technology beyond personal communication

services is cal led the 3 G.

The World Administrative Radio Conference a signed 230 megahertz C

spectrum at 2 GHz for multimedia 3G networks. These networks mu l be able to

transmit wireless data at 144 kilobits per second at mobile u er speed 384 kb at

pedestrian user speeds and 2 megabits per second in fixed location .

The 3G mobile communication standards and technologies ' ill enable

communication using voice, text, image and video. The f llowin > e ample

illustrate the possibility with 3 :

• 3 is being on a train and watching clips from our Ia orit • 'Out

• i being out and iendin > ima iC, bu ·k t h 'Hdqu•1 I ns

• 3 is usin r our phone to take holida pi tur ·: lo ill 'I tntl s •nd It

friends at home

• 3 i using your phone for a in ·1 ta, i

Univ
ers

ity
 of

 M
ala

ya

Multimedia Messaging (MMS) is one of the 3G services that combine imaging with

mobility using exciting new content and high quality displays.

The first 3G networks launched in Japan in 2001 have already proven the

possibilities, encouraging operators elsewhere to build their own 3G networks. In

Malaysia, two of the telecommunication companies Telekom and Maxis

Communication have started to provide 3G services starting this year, after they have

succeeded in getting the license.

GPRS, EDGE, WCDMA and UMTS - the technologies leading up to 3

may fascinate and surprise people, bat the services and applications they enable will

be easy and fun to use.

Univ
ers

ity
 of

 M
ala

ya

2.10. Two Similar Systems

2.10.1 Handisplay Smart Screen Creator

Smart Screen Creator is a server side technology that is developed to enable

wireless devices to view online internet content based on real-time basis. It is

developed by Handisplay (M) Sdn. Bhd.

It provides a cross platform support for different kind of wireless devices,

range from PDA to W AP enabled phone. ln order for Smart Screen Creator to work,

it needs only a server and wireless network connectivity. Figure 2.7 show the

architecture of it.

WAN.I
Worl Wit. W h

Hand held computer

smon Screen creator

Figure 2.7: Architecture of mart er' ·n rearer

First, the wirele s devices will need to make onne tion to the s ·r ·r b

simply type in the URL addre . After the onnecti n, th wir le .. de 1 ·s or th·

client now able to surf the internet as the do usinu int .rnct xplor r 011 a d ·~ 101

computer.

Univ
ers

ity
 of

 M
ala

ya

When the client makes the request, Smart Screen Creator will fetch the

appropriate content from the internet. It will do some pre-processing before sending

the content to the client.

Smart Screen Creator pre-processing is responsible to make the content suit

for various types of wireless devices. It is able to detect what type of device make

the request, what is the format used by the device and then change the content into

the format that the device supported

Another uniqueness about Smart Screen Creator is it capability in

customizing the content. It provides a user interface at the server which enabled the

administrative to view the pre-processed content. It allows the administrative to

choose the content they want, save the customization and every time the same UR

is requested, it will refer to the customized content.

The disadvantage of Smart Screen Creator is that it cannot support dynamic

content. The reason for this is because the targeted devices such as mobile phone

and Palm OS PDA are not able to run the dynamic script as the normal de ktop

computer due to its lower processing power and limited bandwidth.

Furthermore, since all the pre-processing is done at the erver, it will be

overloaded with heavy workload if there arc many user log n at the amc time.

This situation can cause the performance and reliability g ing down.

Overall, Smart Screen reator i one r the creati e technol gie a ailable.

Due to its ability in centralizing the procc , different de ice \ ith dirTcn.:111 format

can be used to log on to the internet and share informati n ' ithin th· v rt I ·ss

network. Although it is still under development it is a io d ·111 rnuti · in pro 1 linn

information with mobilit .

_6

Univ
ers

ity
 of

 M
ala

ya

2.10.2. AvantGo Mobile Internet

The AvantGo Mobile Internet is a service that provides free interactive and

personalized content and applications to handheld device or Internet-enabled mobile

phone real-time via wireless connection or desktop synchronization.

AvantGo enable seamlessly transition between wireless and offline modes to

browse the websites on mobile devices or select from the AvantGo channel for up-to-

date news and events.

Basically, AvantGo channel is another web site. lt is a simplified version

HTML web site that is able to be viewed on mobile devices. To use Avant o

Mobile Internet service, one must first register and configure an account on the

server. This account contains information about certain detail, such as u ernamc,

password and the subscribed channels.

AvantGo
client Mobile Link

jqpubllc's
account

Handheld Desktop Avant Go

Figure 2.8: ompon •nt n sed •t.l

Avant o require a web browser lo and a mini web e er to be install' I on

the mobile devices operating sy. tcm, u h a. Palm on Wincfo, s 'E. It ohm

requires a mobile link lo be in. tall d on d '. t p mput r. tion to

Avant o . crvcrs whenever s nchronization i don ·. .8 sh \ ' the

component needed.

_7

Univ
ers

ity
 of

 M
ala

ya

When synchronizing the handheld device, Mobile Link will take over and

connect to AvantGo server. At first, the server will look at what channels is

subscribed. Then, it will download those pages from the WWW. In many cases,

these sites are distinct areas that contain pages optimized specifically for Avant o

channels. Figure 2.9 shows how it works.

L
.

. /
Sync for
eccount
jqpublic

Web Servers

I
L

Handheld Desktop
Avant Go

Web Servers

Figure 2.9: Bow AvantGo work

AvantGo server will download all the internet contents and perf rm ·ome

pre-processmg. This includes shrinking images that i too large f r di play on

mobile devices, discarding pieces that cannot be used b A ant o client and

compressing the rest of the HTM . Figure 2. I 0 show the pr ces .

_8

Univ
ers

ity
 of

 M
ala

ya

Hand held

Desktop

L
BIG Web Servers

PAGES
Compressed

pages

Avant Go

Web Servers

Figure 2.10: How the process is working

Once the pre-processing is done, these pages are uploaded to the mobile

devices. The Mobile Link then will disconnect. All page that ar from a channel

need to be uploaded once for viewing without connection to the Internet.

Compressed
pages

Hand held

L
Web Servers

Desktop

AvantGo L
Web Servers

Figure 2.11: Desktop to ·Ii ·nf process

After the pages arc uploaded to th' mobil ti·

with the AvantGo client brow. er. The mini ,, -b . ' ir thnt in mtion d earli r i

Univ
ers

ity
 of

 M
ala

ya

responsible for displaying pages whenever a link is clicked while the A vantGo

browser is for reading the channel page. Figure 2.11 shows the process.

Although AvantGo provides the user with the ability to surf the web without

connection to the internet, it stilJ has disadvantage. It needs to perform a lot of

procedure in order to get the content and update that the user wants. It affects the

information mobility since everything needs to be downloaded before it can be

viewed.

Besides, in order to enable a web content to be viewed with A vantGo, the

web page must be constructed with the format predefined by it. 1f the web site is not

build in AvantGo format, than it would not be able to be viewed. Thi is very

cumbersome, as the web developer ne d to learn the format and redo everything in

order to fit the format for mobility purpose.

Furthermore, it is device independent. As mentioned before, the content need

to be synchronized to the device before it can be viewed. urrcntly, only P A with

Pocket PC and Palm OS are supported. Other devices such as mobile phone cannot

be used for AvantGo since it does not has the ynchronize ability. e ide , mobile

phone has some limitations compare to PDAs, such a proce ·ing p wer, memo

storage and web browsing features that does not support dynamic feature .

Jn conclusion, AvantGo is created for the u er who prefer mobilit

especially in the business field who needs to get the corp rate information within the

network. It is able to provide reliability and performan c in deli 1 in' th·

information, as the content is well organized at the · · 'r or de ·ktnp ·< mr ut ·r l .Iorc

pa ing it to the wireless device. A the numb ·r or A Ont 1) ·hnnn 'I IS in ·r ·asin \ ti

is very likely that it will become a stander in wir 'le. s !i .ld,

0

Univ
ers

ity
 of

 M
ala

ya

2.11. Technology

2.11.1.

2.11.1.1.

Software for WAC

Active Server Page (ASP)

ASP is a technology created by Microsoft. It is use to create dynamic internet

content with the script contain inside an ASP page execute at the server. Like

normal internet content, ASP page can be viewed on normal web browser, such as

Internet Explorer. The content written in ASP is identified by the extension .asp.

In order to run an ASP page, the server must have either Internet Information

System that comes with Windows 2000/Server or Personal Web Manager for

Windows 98.

As part of the development, ASP will be used to create the interface that act

as a browser to surf the internet, create the content and then display it. Through the

web-based interface created by it, user is able to interact with WA to make reque t

and view the output.

Further information about ASP can be found in the appendix A

2.11.1.2. Component Object Model (COM)

COM is an interface specification for reu able oftware c mp nent . rt i

identifies by a unique ID. ach COM has it own functi nality which can be u ed b

other programs, web applications or by other Mo jcct.

M provides an interface that allows the pro 1ra111 tc a · · ·s. th· mb · Id · J

M functions. It can be written in an pro zr mmin 1 I in 1w1 1-. .·u h us · t I or

Java, as long as the pro tramrnin 1 lo I. ha c the abili: to implctt1 ·nt th' '(

interface. Further information can be found in the appcndi: B.

Univ
ers

ity
 of

 M
ala

ya

For WAC, COM will be written using Visual C++. It is responsible for the

underlying core processing, like the content formatting and information storing. This

COM object will cooperate with the ASP interface in providing the information

needed to create the output.

2.11.2. Operating System for WAC

The operating system that will be used for WAC development is Windows

2000 professional edition or server edition.

The reason for using Windows 2000 is because it has the Internet Information

System which is very easy to be used to setup a web server and the available

resources that support the use of ASP and COM.

2.11.3. Architecture of WAC

The architecture for WAC is Client-Server Wireless ocal Area Network

with access to the internet. This architecture can be as simple as a computer which

acts as a server and a wireless device which is the client.

WAC will be running on the erver. The client will first call f r the WI\ ut

the server to establish a connection. After a connection ha· been c tabli hcd, the

client is able to request for information it require . ·urther cxplanati n will b

provided in Chapter 3.
Univ

ers
ity

 of
 M

ala
ya

2.11.4. Wireless Protocol: Wi-Fi (802.llb)

Wi-Fi is a popular term for a high-frequency wireless local area network

(WLAN). It is rapidly gaining acceptance in many companies as an alternative to a

wired LAN. It can also be instal1ed for a home network.

Wi-Fi is specified in the 802.1 lb specification from the Institute of lectrical

and Electronics Engineers (IEEE) and is part of a series of wireless specifications

together with 802.11, 802. lla, and 802. L lg. All four standards use the themet

protocol and CSMA/CA (carrier sense multiple access with collision avoidance) for

path sharing.

The 802. l lb (Wi-Fi) operates in the 2.4 GHz range offering data speed up to

1 I-megabits per second. The modulation used in 802.11 has historically been phas -

shift keying (PSK). The modulation method elected for 802. l 1 b i known a.

complementary code keying (CCK), which allows higher data speeds and is I

susceptible to multipath-propagation interference.

2.11.5. Wireless Hardware

Wi-Fi compliant router or access point is needed to etup the networ f r

WAC. It serves as a terminal between the wireless devices and server.

Router is a simple device that capable of doing certain pecific ta k s. It a 'I'

as a station on a network, which it has the addrc e and link t two or m re

networks at the same time. It relays the packet' amonu multipl inter nn ·t .d

networks with the used of the routine proto ol. Th' rout in 1 pn I ·ol is u routing

algorithm that allow the router to dctcrrnin · the hort ··1 ath r th· be 'I r uuiu 1 10

send the packets to the de tination.

r:

..).}

Univ
ers

ity
 of

 M
ala

ya

Access point is a device that allows multiple users to connect to a wireless

network at the same time. It is like a terminal that provides an open connection for

any devices to a network. Unlike router, it does not have any addresses and links

of other networks or routing protocol because it is not design to passing data between

multiple networks.

2.11.6. WACluster

WACluster is a file storage that keeps the information of requested internet

content. The information contain the address of the internet content, the total

segmentation for that web content and the displaying sequence of the segments.

When WAC is servicing a request, the information inside WA luster will be

referred first. If there is information of that particular internet content, it will be u ed

to construct the display. If not, the internet content will be retrieved from the World

Wide Web and will go through the processing module of WA .

A file will be generated for each web's content to store its information. ach

file will be identified by a unique fD number which is generated by the

WAC.

M part of

2.11.7. WAC Server

The WAC server is con idered a a web server. It is etup u ing Internet

Information ystem (II) which is available with Windows 000.

Internet Information Sy stern is a rnana 1 nncnt .onsol · xnn -.· v ith Wir1 I)\, s

2000 that enables information publish in 1 over th int rn 'I.

Univ
ers

ity
 of

 M
ala

ya

The reason for choosing Internet Information System for the web server is

because it has the Active Server Page snap-in that enable internet content built with

this technology to be displayed, which is used to create the interface of WAC.

Furthermore, Internet Information System provides the easy implementation

in setup the web server with a friendly user interface in a few steps. Further

information is available in appendix C.

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 3: Methodology

3.1. System Analysis

The modeling technique used to develop WAC rs called transformation

model. Process of this method is shows in Figure 3. 1 .

,, ...,
Compare with FORMAL DEVELOPM NT RECORD I Requirements;

Update as needed l Sequence of transformations. Plus
""

,
'"

rationale for them

TRANSFORMN

1•
FORMAL ~ TRAN FORM 2 - .

SPECCFTCATION r T ST
.____ TRANSFORM 1 jl

.i.
SYSTEM

REQUIREMENTS
(sometimes informal or

incomplete)

DE IV R D
YST M

Figure 3.1: Transformation Model

Transformation model applies a eries of tran formation to change a

specification into a deliverable y tern. It tries to rcduc the opportunit f r error l

eliminating several major development steps. The tran formation .an in lud ·

changing the data repre entations, electing algorithm , ptimizing ind mpilin '·

A many path can be taken from the • pccification to th · I ·Ii crcd s st 'Ill,

the sequence of transformation and the de Lions th· r 'flc ·t ire k ·µt 1 • u lh111111

development record. This approa ·h mu. 1 h ' 1 Ionnnl s~ ·ifi ·n110n ixprcss ·cl

Univ
ers

ity
 of

 M
ala

ya

The reasons for choosing this modeling technique for WAC development are

as follow:

• Changes in selecting the pre-processmg algorithm: The chosen

algorithm might need to be change when it cannot used to handle

majority of the internet content.

• Function optimizing: Either new features or changes will be made to

the function to improve its efficiency in processing.

• Changes in data representations: The data representations here refer to

the result display at the client. Changes are made to optimize the

display for well organize display.

3.2. System Requirements

3.2.1. Functional Requirements

The following is a list of the functional requirements for WA

1. WAC must able to receive request from the wireles device. It will retrieve

the requested internet content from the World Wide Web.

2. Identifying the format supported by the wirelc devices. The f rmat refer

to is either W AP or HTML.

3. Analyzing the content to check whether each element is suitable f r

converting to other format r not.

4. ividc the content into , cveral sc nncnts. Eu h sc •1111.:nt v ill t .comc 111

independent WAP page when it i s di pla cd on a ir I" d ·

onvorting the content's elem mts inside ·a h sc nn »u into

7

Univ
ers

ity
 of

 M
ala

ya

6. Creating W AP page for each segment and organizing the sequence of each

created W AP page to be displayed accordingly.

7. Create a text file which contains the information from the pre-processed

content. This text file will be stored inside WACBase for future reference

when the same content is requested.

3.2.2. Non-Functional Requirements

The following is a list of the non-functional requirements for WAC:

1. Check the requested web site to see whether it requires secure connection like

Secure Socket Layer.

2. Secure connection need to be provided if it is needed.

3. Image processing. The image must be proces ed to fit the di play mode of

the wireless device.

3.3. Hardware Requirements

The basic hardware requirement for WAC i a de ktop computer and a P A.

The desktop computer is where the WAC will be in talled. It pla he role

as the server in the whole system. The specification for the de ktop computer i. as

follow:

• 400 MHz processing speed.

• 256 MB memory.

• 40 I lard Disk rive for storage.

The P A is used to tc t the output of WA . Th r · 1uir ·m int for i.t is th·

operating system preferable to be a Palm . · his h 1 d ir is < ption 11, · ius

there is simulator that can be downloaded for de el pm ·nt tcstin r.

8

Univ
ers

ity
 of

 M
ala

ya

3.4. Software Requirements

Windows 2000 professional edition or server edition will be used as the

operating system for WAC. Windows 2000 has the Internet Information System that

enables the server to be setup easily with a few steps.

Furthermore, WAC is operating inside a network environment. Windows

2000 has the features that enables network setup can be done easily. It has the ability

to automatically detect the network configuration and set it up according to the

appropriate protocol.

Besides Windows 2000, Palm OS simulator is needed for testing purpose.

This simulator will be used to test the output result of WAC. It is an alternative to

own the real device.

3.5. Conclusions

Basically, WAC is responsible in retrieving the internet content, performing

the internal processing and then converting the content to WAP format before

sending it to the client. Compare to the available sy tem in chapter 2, WA ts

simpler because it performs less complex processing.

Although it is simple, it still has some constraints. omc web ite implement

the security features such as SSL which is quite tricky. In rder lo iew it WA

must have a security feature like certificate authority l enable it t retrie e the

content from the secure site. A~ a re ult, omc of the web it' mi iht not t ·at I· lo •

displayed.

Besides the mentioned above, the intern ·t nt int is 1uit • tiff ·ull in 1: ·11 •

that there is no tandard that define the . tructur • and Ion 1un 1' thut she uld h 11 ed.

Univ
ers

ity
 of

 M
ala

ya

As a result, it is very difficult to determine the appropriate internal logic of the pre

processing operation.

For the reason mentioned above, Windows 2000 is used as the platform for

WAC for reasons of available resources, easy implementations and user-friendly

development environment. There are library files, classes or other resources in a

form of dynamic link library. These resources are predefined to perform certain task

that can be used as part of WAC. Although it might not fully solve the constraints

mentioned, but at least it is able to handle them until certain state.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 4: System Design

4.1. System Architecture Design

Architecture for WAC is client-server. It is implemented as shows in Figure

4.1.

lntomot
Hand held computer

Wireless Application Converter
Server

Wcb-enobled
cell phone

Figure 4.1: WAC Architecture

As shown in Figure 4. I, the WAC server is connected with the client'

wireless device through the use of wireless router. The server must has a connection

to the internet in order to retrieve the client requested content.

For the client to make request, it must establish a connection with the er er.

After the connection has been setup, client can tart to make its r que t. The

requested content will be pre-processed at the erver before sending the end re 'uh

back to the client.

It is considered as a three tiered client- erver. A thr · tier d Ii .nt-s ·r ·r 1 • u

technique that the data manipulations and logic implcm mtations a · ·, • ut •d nt th·

server. The client is only responsible for r 'pr cntin l th· dal 1 \ ithc ut th n • · I tc

perform any proccs ing.

41

Univ
ers

ity
 of

 M
ala

ya

In this architecture, WAC is the server for the three tiered client-server. It is

responsible in serving the request, retrieve the requested internet content, perform the

processing and send the end result to the client.

The wireless device, which is the client, is only responsible to show the end

result. When the user interact with the displayed content, such as accessing a

hyperlink, the process will be sent to the server for excecution. After it is done, the

server will send the result back to the client.

The advantage for using this architecture:

• The server can handle variety of content element. With this, it is able to

push as much content as possible to the client.

• Wireless devices with different operating specifications can be used to

surf the internet regardless their differences as the underlying proce se

are done at the server. It is an advantage to overcome certain constraint

of wireless devices, such as lower processing power.

• The system is scalable in supporting different wirele s protoc I. -or long

term, WAC can serves different kind of wireless protocol other than

WAP, such as (-MOD . It can be done by adding the specific proccs ing

for that particular protocol at the server.

Although the three tiered client-server ha the ad antagc a rn anti ncd

above, but it has disadvantage as well. As the procc ing i concentrated at the

server, it will become a burden if there ar a lot or client need to c :I.! cd ut the

amc time. Therefore, the erver need· t ha c hi zhcr pro cssin 1 ·upabilt1i s 111 I

larger storages to accommodate the rcque t .

Univ
ers

ity
 of

 M
ala

ya

4.2. System Module

WAC is divided into three modules. These modules are shown in Figure 4.2.

Wireless
Application
Converter

Processing
Module

Conversion
Module

,

r
Storing
Module

,

Figure 4.2: WAC system module

Processing Module: This module is the core for the prc-proce: sing f WI\ .

The functions of this module include retrieving and analyzing the internet content,

storing the necessary content ard divide it into several segments.

Storing Module: This module is responsible for storing the pre-processed

web content information in a form of text file, which will be tored in WI\ Ba c. It

works closely with Processing Module because the information it need i pr duccd

by that module.

Conversion Module: Thi module is re pon iblc fi r c n crtin 1 the rcquc 'lcd

URL content into the format that supported by the wirele device. The functions of

it are making request on client behalf to retrieve the content from the internet, 1ct lh •

pre-processed information from either WI\ I us· or from Pn iessin 1 Mc lul ', and

check for the client supported format, crcatin 1 the out 111 to be i iv xl b usin • th·

prc-proccs cd information and scndinu the .on! ·111 ba kt} th' hcnt

Univ
ers

ity
 of

 M
ala

ya

4.3. System Functionality Design

Figure 4.2 shows the system functionality design for WAC.

Client
~ BrONserFormat

,. .
1

asuu

I Format
Conversion ..._ProcessedContent

~t
lnlormationFllo

Uri Internet

UrlContont

EndR u~--_.+.-----'2"----~

Processing
Content

u~
3 Proc Contonl

_J
WACBase Inform t1011rne

Information
Storing

Figure 4.3: WAC system functionality design

The tree main processes represent the modules that have been mentioned

earlier: Format Conversion represents the Conversion Module; Content Proce sing

represents the Processing Module; Information toring reprc ent the Information

Storing.

xplanation for the data flow is as follow:

l , First, the client sends the URL requc t t gethcr with its row 'Cr inf rmation

to the Format 'onvcrsion procc s.

2. The -orrnat Conversion proccs will first scar ·h for th similar URI.

information. ff the information is a ailal Jc, it v ill r ·tri' · ii and us th·

informati n provided to build the ontcnt and nd. th •nd r isul: t) th·

client. If the information i not a ail. blc, it will end the RL lt the ' nt ·111

Procc ing proccs ·.

44

Univ
ers

ity
 of

 M
ala

ya

3. At the Content Processing process, it will retrieve the respective URL content

from the internet and processed it. The processed information will be sent to

the Format Conversion process and the Information Storing process.

4. At the Format Conversion process, it will use the information provided from

the Content Processing process to build the content. After the content is

build, it wil1 be send to the client.

5. At the Information Storing process, the processed content will be stored

inside the WACBase in a form of text file. Each text file has its own unique

ID number for reference.

4.4. Module Functionality Design

Internet

Uri Ur!Conlont

2.1
Retrieve
Content

1--Ur!Con1on1

2.2
i.--- ---1

Content
Analyzing

Conversion
Module

AnalyzcdCon1 nl

t 2.4 23
Content
Buffering

Content
Segmentation ProcessodCont nt

Procusso<lConl nt

i
Storing
Module

Figure 4.4: Processing Module functionality d 1gn

Thi part is the c planati n of each module fun ·ti unlit . It -.·r Inns th

proccssc involved inside each modulo thnt ar · 'Ot pcrutin 1 in r lounin th·

module's task. igure 4.4 hows the funcu nalit de i 111 of Pro 'S in Modul .

Univ
ers

ity
 of

 M
ala

ya

Processes involve in this module are Retrieve Content, Content Analyzing,

Content Segmentation and Content Buffering.

The data flow for this module is as follow:

1. First, it receives the URL content from the Conversion Module. 1 hen, the

Retrieve Content process will use the URL and retrieve the content from

the internet.

2. Then, the content will send to the Content Analyzing Process for

analyzing. This process is responsible in scanning the content's elements

and determines the needed elements by filtering.

3. The analyzed content is send to Content Segmentation process for

division into segments.

4. This segmented content will send to the Content Buffering pr ce . Thi

process is responsible to output the processed content to the onvcrsion

Module and the Storing Module.

46

Univ
ers

ity
 of

 M
ala

ya

For the Storing Module functionality design, it is shows in Figure 4.5.

Processing
Module

Processed
Content

Create
Information File

RequestNewlD __.,

3.2 3.1
Generate
New ID

.----Newl0---1
,

lnformatlonFile

' WAC Base

Figure 4.5: Storing Module functionality design

The processes include in this module are Create Information File and

Generate New ID. Following expl.ain the data flow for this module:

I. First, Processing Module will send the processed content to the Create

f nformation File process in this module.

2. Then, Create Information File process will request for a new file I from the

Generate New TD process.

3. Create Information File process will create a information file with the

information obtained from processed content and the new I .

4. The information file created will be stored inside the WA Base for future

reference if the same UR is requested.

7

Univ
ers

ity
 of

 M
ala

ya

Figure 4.6 shows the Conversion Module functionality design. ft rs the

finalmoduleforW AC.

Uri-----• Processing
Module

1----BrowserFormat

l--------Ur1----
ProcessedContent---

Client

GetDisplayCode

D1sptayCode

EndResult
1.3

Generate
Content

1.1
lnlormationF1le Content

Information WAC Base

Cor>entlnlormation

Figure 4.6: Conversion Module functionality design

The processes involved in this module arc ontcnt lnformati n, et Di play

Code and Generate Content. The following explain the data flow for this module:

1. First, the module will receive the requested URL and br w er format

from the client.

2. Content Information process will receive the UR and retrieve the

appropriate content information. /\t first, it will check the W /\ asc

with the URL for the similar content. If the checking return true, than the

appropriate information file will be retrieved from W /\ Ba c; if not, the

URL will be sent to Proce sing Module. The Pr cc ing M dule will

return the related processed content for gencratin 1 the ·nd r sult,

3. At the same time, the Get r i pla 'ode process v ill

information to generate the appropriate di. pla This hspln co I

will be used b the no: I process in produ inn th· ind result 1()1 Ii 'tll

48

Univ
ers

ity
 of

 M
ala

ya

4. Finally, the Generate Content process will get the content information

from Content Information process and display code from Get Display

Code process to generate the end result. The content information is used

to build the W AP pages and create display sequence while the display

code is used as a supplement in optimizing the display.

4.5. User Interface Design

In WAC, there are two types of interface that specially created for different

purpose.

For the wireless device, the interface is simple with just only a query column

for the user to make the request. This interface is shows in Figure 4. 7.

Figure 4.7: User interface for wireless device

A complex interface is created at the server. It allows user to make rcque t

and to see the structure of the end result that will be di pla ed at the .lient, Th

structure is about the segmentation of the requested content the c n erted clements

and also the display sequence.

This interface is build by u ing the Act: c _., ·r I auc, It ' ill d t '·t th·

request make from either the crvcr it sci c or rom the licnt. A 01.; th d ·t lion, ii

will load the appropriate interface cforc the u · ·r can mu i r ·qu 'SL

Univ
ers

ity
 of

 M
ala

ya

4.6. Conclusion

WAC is designed to be a three tiered client-server architecture. This

architecture enables devices with different format to retrieve the internet content

regardless to the knowledge of the underlying processing. Besides, it is also

expandable as new support for new devices can be added to it.

In exchange, it can be overwhelmed by too many requests at the same time.

Therefore it needs computer with higher processing power and storage to do the job.

WAC is divided into three modules: Processing Module, Conversion Module

and Storing Module. These are the basic modules that have been identified. In

future, new module can be added to enhance the performance.

Since the devices make request has the possibility to be either ITML or

WAP, therefore the interface is designed in a way that suit these two formats. ne 1

a simple interface for display at the wireless device while the other is a more

complex interface build for improvement purpose that will be showed at the server.

Overall, WAC is designed in this way to support different kind of device

that come with different format. Although it only supports WAP and certain

functions at the development states, there might be con ideration in putting in more

features that support variety of format or provide new functionality uch as editing.

0

Univ
ers

ity
 of

 M
ala

ya

Chapter 5: System Implementation

5.1. Introduction

System implementation is the next step in realizing the system. It is a process

that transforming each requirement that had been phased out during the design stage

into executable program codes.

In the design stage, WAC is consists of three modules. The coding approach

is based on these moduJes, which mean each module will have different way of

implementation. For example, the processing module is the core of WAC. ince it

requires real-time processing power, therefore it will have to be written using real

time capable scripting language, such as C +. On the other hand, the onversion

module involved displaying output on different devices, ba ed on the type of web

browser they used. Since US is used, therefore the possible implementation used i

ASP. Further explanation will be done in the following section.

5.2. Processing Module

Processing module is the core of WAC. ll doe all the internal processing,

such as read the source stream, identify the elements, st re the element using data

structure approach and passes the elements to the onver i n m dule r r further
display processing.

Before going into further details, here i a ricf cxplanati n about hov the

Processing Module work . As shown in ·i iurc . I, the first st 'P of hut it J .s is I<

open the ource file in 11 ML format) pccificd the r ci ·d nriubl · · 1111d le re

it in stream form. ·1 hen, it will procc , the. trearn b idcntif th· I ITML ·I nu .nts,

the name of the tags, the tag 1 properties and the corrc p ndin 1 t , t ont mt. 'he

Univ
ers

ity
 of

 M
ala

ya

elements will be pushed into a link list. After that, the link list will be passed to the

Conversion module for further processing.

FILE *fSrc;
fSrc = fopen(sSrcLocation.c_str(), "r") ;
char ch;
while((ch= fgetc(fSrc)) != EOF)
{
pszHtml +=ch;
}
CNode *pNode =new CNode;
COutProcess *pOut =new COutProcess;
string sOut = "";
II ProcessNode(pszHtml, pNode);
II if(pNode->HasChild())
II pNode->GetChildNode(sOut);
II pOut->ProcessOutput(pNode, m_sOutPath, m_sID); //Using linked pointer.
SpecificPush(pszHtml, pNode);
if (!m bWap)
pOut->specificOutputProcess(pNode, m_sOutPath, m_sID, m_sDomainUrl);
//Pushing
all to one.
else
pOut->WapOutput(pNode, m_sOutPath, m_sID, m_sDomainUrl); //Pushin
all to one (WAP);
if(pOut->CreateindexFile(m_sOutPath, m_sID)
{
/*
Index file being created.

Figure 5.1: WAC - Processing Module am pie

5.2.1. Processing Module: Coding

The Processing Module is part of the WA component, WA .dll. It is a

Component Object Module (COM) created using Visual t 1. The object-oriented

approach is used to program this module.

Object-oriented programming is an appr ach where it i u 111g jcct, An

object is an entity with its own properties and functions. An obj t .an l ' us id l<

perform several proces cs and il can be reused. 1 he reason for h r sin thi ·

approach is because the objects defined an b · rcu cd throu rhout the whol · pro n un

2

Univ
ers

ity
 of

 M
ala

ya

Since the function is already defined in an object, all we need to do is just

calling the object and ask it to perform that particular function. It helps in reducing

the need to code that particular function, which will make work more difficult.

The language used to code this module is C++. It is coded using Microsoft's

Visual C++. Visual C++ is a very useful development tool. Besides compiling

program codes, it has several features that aid the developer in developing the

application according to their needs. At first, Visual C++ will create the workspace

that suits the application. For example, if the application is a COM, then the

developer will specify the specification. After that, Visual C++ will generate the

COM workspace, with all the necessary basic codes served as blueprint. The

developer will only need to add in the codes they wanted to make a complete M.

After it is complete, Visual C++ will help to build the OM, and then it i ready to

be used.

C++ is a scripting language that supports object-oriented programming. Each

object is identified by the keyword class. Inside each class, there will be several

functions/methods and properties. These function /methods and properties can be

categorized into three groups: private, public or protect. Private specified that onl

the member functions of the class can access the function /propcrtic in this

category. Public category functions/properties can be acce sed out ide f the cla s.

Protect category functions/properties only allow the member function of the cla it

selves or its sub class to acccs .

There re 3 classc in this module: Ne de, 'Ta 1 and I ro] ·tt . Nt t • 1s 11

class that perform operati n 011 the source sir .am. It id ·ntifi ·s th· I ITML

clements: the name, the a sociatc properue: and the content. fl ·r it mnnn · .s t >

3

Univ
ers

ity
 of

 M
ala

ya

identify the elements, it will store them mto a stack. This stack will be passed to the

Conversion module for further processing.

CTag is a class that stores information of an HTML element. [t wil I store the

name of the tag, the properties of the tag and the content associated with the tag. It

has functions that will return the information stored upon request.

CProperty is a class where it stores information of the element's properties.

It will store the name of the property and the associate value. Like CTag, it also has

functions that will return the information stored when it is requested.

5.3. Conversion Module

The conversion module is responsible for constructing the end-result display.

It is separated into two parts: the internal processing, which is part of the WA .dll,

and the displaying process, which is part of the ASP scripting.

The internal processing will use the stack produced by the proce sing module

to construct the output with a mathematical method. At first, the method will

determine the maximum number of elements should be placed inside an output.

After determine the number, it will construct the output by writing the element into

a text file. The number of text files is determined by the maximum number of

elements. ff the maximum number is reached, than the following element will be

written into a new text file.

5.3.1. onversion Module: oding

The internal proces ing i written usin , the obj ect-ori 111 ·d npproa .h. Th ·r'

is nly one eta defined, utProccs.. utPro cs: contains m •tho t · and

properties that responsible for the di play pro c sing. Th1,; pro' .s in 1 rn •tho f us .

4

Univ
ers

ity
 of

 M
ala

ya

the mathematical approach as described above. After the processing is done,

COutProcess will create an index file that contains the link to each processed output.

The displaying process, which is part of the ASP, is responsible in displaying

the output. The approach used is structure programming. There are several functions

inside the ASP that working together to perform the task. First, it needs to know

what is the browser that making the request. If it is a W AP browser, the displaying

process wi1l construct the output according to the WAP standard. lf not, it will

construct the output according to the HTML standard.

The conversion module will provide the user with a web based interface.

There are two types of interface, which are written in WML and HTML. The reason

for having two types of interface is because the mobile devices, such as cell phone or

Pa1m PDA is using W AP standard, while other devices uch a Pocket P i u ing

HTML standard. As mentioned before, the displaying process of this module will

detect what is the browser used by the user. It is determined by a ervcr variable

called User Agent, which is included inside the HTTP request header.

5.4. Storing Module

The storing module is responsible in storing the processed files. It is n t

using any database for storing purpose. Instead, it stores all the proce cd file int

one folder, called WACluster. WA luster is the main folder that t re all pr cc scd

files for the requested web contents. The proccs cd files arc store a· ·o diuu to the

requested web content.

At first, when the user requesting r r a v cb ·c nt nu tlu iu ih W ', th·

request will be given an identification number I . WI\ will rcatc a old .r insi J'

WA luster, using the I a the fi Ider name. Thi fold .r v ill be us •d to stor 111 th'

55

Univ
ers

ity
 of

 M
ala

ya

data needed for that particular request. Such data are the source file and the

processed files.

5.4.1. Storing Module: Coding

The management of WACluster and its contents are done within the ASP.

There is one object that can be used to perform this task, the FileSystemObject. rt is

a scripting object that used at the server to access the file system. It allows user to:

• Get and manipulate the information about all of the drives in the server.

• Get and manipulate information about all of the folders and sub-folders on a

drive.

• Get and manipulate information about all of the files inside of a folder.

It can be used to perform any task on the file system aside from etting security

information.

The identification number is generated by a COM object called genuid. It i a

dynamic link-library, which can be used to generate a long string of number. The

reason to generate a long number is to avoid the possibility of unauthori ed acce st

the files inside the folder. Each time it will generate a different tring of number

when it is called to avoid collision among the folders.

5.5. Complement Component Object

here is one M called HtmTcar, which i not includ ·d in side th' d , i n

module. H is a standalone M that rcspon iblc in mu in 1 onnc lion v ith th·

reque ted server, retrieved the source file and tore th t ur ' fil insid th

W /\ luster.

6

Univ
ers

ity
 of

 M
ala

ya

HtmTear is written usmg Microsoft Foundation Class (MFC). ft is a

predefined library written in C++. Writing MFC application is different from

ordinary C++ application, for it has its own structure and its own syntax, which is

totally different from the conventional C++ structure. There are many classes inside

MFC that help the developer to develop application faster, especially Windows based

application.

The classes that used by HtmTear is called Clnternet. This class is used to

perform internet connection using the HTTP protocol. Although it does not perform

as well as normal web browser, but it is useful for its ability in retrieving data from

destination web server.

When HtrnTear create the internet connection, it will retrieve the data from

the targeted web server. The data will be written into a buffer. After the writing

process is finish, HtrnTear will create a source file of that particular request, using all

the information given such as the folder identification number inside WACluster and

the source file name. The data inside the buffer will be written to that file and after

that, it is ready for further processing.

5.6. System setup

After the system being implemented, the next step is s tern ctup. WA

consists of a collection of A P files, HTML file and three dynamic-link library

CO Ms.

The A P files and 11 ML files need to be stored inside on· fol I ·r whi ·It 1 ·t '

as the root for II to refer. The root folder will be ailed wv H 01. AO ·r storin • th

files, the next step will be configuring the If. to point t thi r t f(Ider,

7

Univ
ers

ity
 of

 M
ala

ya

Inside IIS management console, expand the tree until it reaches the default web site.

Right click on the default web site then click the properties. Inside the properties

dialog, point to Home Directory section. Set the local path to where the wwwroot is

located, for example C:\Handisplay\Inetpub\wwwroot. After setting the root, the

next step is to set the default file. The default file is the file that will be referred to

when a web application is accessed. Go to the Document tab under the same dialog

box, add a new document called index.asp and move the file name to the highest

location. The file name at the highest location will have the priority to be referred

first. After it is done, click OK to come out from the dialog box.

The next step is to register the COM. In order to use a COM, it needs to be

register into the registry. When a COM is called, Windows will refer to the registry

to find the match. If the match is found, Windows wiJI use the information obtained

from the registry to call the COM.

First, store all the COM into Windows system folder, C:\ WlNNT\ ystem32.

After storing the COM, open the command prompt. Then, in the command prompt,

type the regsvr32 [COM name] (i.e. regsvr32 WAC.dll) to regi ter the OM. 1 here

will be a dialog prompted stated that either the regi tration i ucce r fail. ne

COM can only be registered at a time, therefore this process need to e repeated until

all COM had been successfully registered.

8

Univ
ers

ity
 of

 M
ala

ya

5.7. Summary

The system implementation of WAC is done based on the modules it has.

Each module uses different implementation approaches. These approaches are the

coding approach, the scripting language used and the development tool.

To put it in a nut shell, the two major coding approaches used are object

oriented and structure programming. All COM components are written using the

object-oriented approach, while the ASP is written using structure programming

approach.

The scripting languages used are C++, VBScript, HTML and WML. C++ is

used to code the COM, while VBScript, HTML and WML are us d to code ASP.

The development tool used to develop COM is Visual C +,while Visual lnterDev is

used to develop ASP web based application.

9

Univ
ers

ity
 of

 M
ala

ya

Chapter 6: System Testing

6.1. Introduction

System testing is a series of identification process, where the purpose is to

discover the weaknesses. These weaknesses will be used to improve the system

performance. However, not all weaknesses can be corrected due to the outcome such

as non-standardized internet content structure.

The following section will explain how the system testing is done on WAC.

For a brief introduction, the testing is done on each moduJe. These testing are unit

testing, module testing, and integration testing as well as real-world testing. These

testing are done either during or after the system implementation.

6.2. Types of Testing

As mentioned before, there are several types of testing being done for WA

These testing are unit testing, module testing, and integration testing as well as real-

world testing.

6.2.1. Unit Testing

Unit testing is the first type of testing being implemented. It i perf rmed n

each basic function either during or after system implementation. It i d ne on each

individual function. The purpo c of unit testing is t ma c . urn the fun ition is

working as required and reduce the error rate of the module p irforman · •.

his testing is done to examine and re icw the · de or en h tun ·tic 11. Al

first, the function i con tructed into an executable pro zram. 'I he le tin) r .sour .e for

the function is specified within the code it sclvc . The re ur ' mi ht be a simple

0

Univ
ers

ity
 of

 M
ala

ya

string or a simple file. Extra codes are added into the main code for debugging

purpose. This way, the bug and error can be easily identify and help to ease the

debugging and correction process.

6.2.2. Module Testing

Module testing is the next testing stage after unit testing. ft combines aJI

units under the same module for testing. In other word, it is an integration test

among the units. Although the units have been tested, module testing will make sure

the integration among the units are working as required. If there are errors during the

testing, each unit will need to be tested again to identify the causes and correct it.

Module testing is done by combining the related functions of a m dule into

one executable program. The testing resource is either the combination of all unit

testing resources or a new test file. lt is specified inside the executable program.

Module testing consumes more time compare to unit testing. The reason is

because the size of the program, where it is the combination of all units and will

consume more time in debugging and correction. Furthermore, it i very difficult to

trace the error as well due to the complexity of the code, alth ugh e tra code had

been added.

After the module testing had been done succes fully, the next step i to

perform the integration test. Before performing the integration tc 'I, .ome of the

modules need to be converted into other f rmat. If the m dulc is M, than it nc .d

to be converted into a dynamic link-libra file, in order for oth 'r modul -, whi ·h is in

A P, to communicate with it.

61

Univ
ers

ity
 of

 M
ala

ya

6.2.3. Integration Testing

Integration testing is performed by combining all three modules together.

These three modules are working together to perform the required functionality of

WAC. Integration testing is done to make sure that each module, after being

combined, will still perform as it is required.

Integration testing uses the approach of Bottom-Up method. This method

stated that every unit would be tested individually. After each unit being tested, the

testing advances to the next level, where it involves combination of several units.

The process continue until it reaches the highest level, where the combination of all

tested units to perform the final test. Figure 6.1 shows the Bottom-Up approach used

for WAC.

62

Univ
ers

ity
 of

 M
ala

ya

WAC

I
H G F

I

D E

I
A B c

Test A B.
C. D. E. F-,
G. fl

Test E

Test G

Legend

A: CNode
B: CTag
C: CProperty
D: WAC.dll
E: WACTear.dll
F: Processing Module
G: Conversion Module
F: Storing Module

Figure 6. t: WAC - Bottom-Up Testing

rror tracing will become more difficult ever time it 10 • up nc I· ·J. If

error occurred in the highest level, it will c ·r hard to tra .c thc r or,

ASP has this ability where it will inform whcr the .rror is and ulk u to ·c 11 ·ct ii.

difficult, as dynamic link-library it cl c i n I an ' utablc J ro rram. ·1 h r eforc '

Univ
ers

ity
 of

 M
ala

ya

the alternative is to store the testing source file where error is created, convert the

COM back into an executable program and use the source file to trace the error. The

disadvantage of this alternative is that it consumes time.

6.2.4. Real-World Testing

Real-world testing is an extra stage of testing after integration testing. The

purpose of this testing is to tune the system to perform on its optimum performance

in the real environment.

Although testing had been done previously, the real environment provides the

best resources to test how the system is working. If most of the real environment

resources cannot be handled, the whole system needs to be rebuilt. Furthermore,

another reason to have this testing is to collect data about the reaction of WA to

certain web sites, such as Yahoo, MSN and Google. The c data then can be used to

improve WAC features in the future.

64

Univ
ers

ity
 of

 M
ala

ya

6.3. Testing Resources

Table 6.1 below shows the testing resources being used for each type of

testing. The local.htm file is in the appendixes.

Table 6.1: Testing Resources

Testing Type Types of Resources Example

Unit Simple HTML String <html><head></head><body></body></html>

Module HTML String <html><head><title></title><fhead><scrip <Iseri

p <body></body></htm I>

Integration Simple Internet Content http://ocalhost/local.htm

Real-World Internet Content http:/fo·\H\·.yalton com, http://·,, w ,, 101.?h.: com

6.4. Changes Done

There is one modification done on the Processing Module. At first,

Processing Module uses tree data structure method to store the elements. After the

testing had been done, this method is not suitable in doing the job due to the

complexity of the algorithm it selves and the tructure of the internet c ntcnt.

An example of a HTML tree data structure i shown in igure 6.2 below.

Starting from the root, there is HTM , then follow by i children node , 11 :./\ and

BODY. Inside each tag, there arc other I ITML clements, such a· Ml·TA TITLE,

SCRIPT, PARA RAPII and l I ADIN .

65

Univ
ers

ity
 of

 M
ala

ya

TITLE ANCHOR

TR TD

Figure 6.2: WAC-Tree Structure

During the testing, the tree structure is suitable for smaller uncomplicated

internet content. But when it comes to much more complicated internet content, it

cannot handle the processing properly. If the tree is very big, it is very difficult to

traverse to and forth to obtain the information from each node.

After careful consideration, it is better to use a stack structure to store the

H™L elements. The reason is because it is easier to implement in Visual C + by

using Standard Template Library (STL), compare to tree structure where we have to

define our own algorithm. Figure 6.3 shows an example of stack tructure.

66

Univ
ers

ity
 of

 M
ala

ya

HTML

HEAD

TITLE

/TITLE

/HEAD

.

.

.

.

/HTML

Figure 6.3: WAC - Stack Structure

Since STL provides functionality to manipulate the stack, the information

stored in the stack can be easily obtained. Processing Module will be able to

determine the wanted and unwanted element by specifying the condition. Although

it requires the developer to hard code the specification of the condition, the case-of

use is the reason why it is used.

6.5. Summary

System testing is needed to make sure the y tern i pcrf rming a· it i

required. It is to determine whether modification need to be d ne on the current

coding and algorithm used, as well as to collect data f r future enhancement.

There are four stages of testing. 1 hey are:

• Unit testing- It i re p nsiblc in te ting the basi • Cun ·ti)11 '.

• Module testing It combines functions that bclou 1 to a 11'10dul • for Iur thc1

unit te ting.

67

Univ
ers

ity
 of

 M
ala

ya

• Integration testing - After each module being tested, the next stage is to

combine all modules to perform the integration testing. This testing uses

Bottom-Up approach.

• Real-environment testing- Finally, the system will be tested inside the real

environment to determine how well it can perform.

After the testing, there is one modification done to Processing Module.

Instead of using tree structure, it had been change to stack structure to store the

HTML elements. The main reason is because stack is easier to manipulate with the

help of Standard Template Library compare to tree, where developer need to come

out with their own algorithm.

System testing is very important, as it helps to recognize the pro and cons of

the internal implementation. It consumes time to perform te ting on each

component. However, it helps to reduce the error rate and makes the ystcm works

better when it is implemented in the real environment.

8

Univ
ers

ity
 of

 M
ala

ya

Chapter 7: System Evaluation

7.1. Introduction

System evaluation is a process taken to measure the achievement of the

developed system. The evaluation process will determine whether the system have

fulfilled the requirements, achieved the goals and the worth to advance.

This chapter will explain the evaluation done by the end user and the

developer. It will cover the problems encountered during or after the

implementation, the strengths and the constraints, and future enhancements.

7.2. Problems Encountered

Problems are encountered during the system implementation and testing

stage. Such problems are categorized into developer's skill, development re ourcc ,

and raw materials.

7.2.1. Developer's skill

The problems encountered here are during the ystem implementation. Such

problems are as explain below.

Lack of programming experience - When developing WA the pr lcm

faced is the programming skill and experience. A menti ncd in pre iou · chapter,

WAC is developed using COM and A P. Although ha ing c pcrience in writine

C++ program, but when it comes to write M, thcr · arc dif1i ulti ·s a, writin ,

OM is totally a new expo e. The M .an onl be ' rirtcn h u in' th· wi:t 1 d

available in the development tool, but cannot write it sta t f om crutch, fl '(M has

its own way of writing.

69

Univ
ers

ity
 of

 M
ala

ya

Beside COM, MFC is also a problem, especially in writing the HtmTear

COM. As mentioned before MFC is a set of predefined classes, which aid developer

in building Windows application. Like COM, there is a special way of writing MFC.

As I never expose to MFC before, there are difficulties during writing using MFC.

Besides MFC, the standard template library (STL), which is a predefined set of

template library that help in writing data structure application is a problem, for I have

to know which type of STL should be used, what are the proper syntax, how it is

used and what are the complement header need to be included.

The only way to solve these programming skill problems is by reading

relevant programming resources, either from the internet or books. Although the

online resources are there, it stills not enough because a novice developer might not

be able to understand it, as most of the resources assumed that the user have

experience in such field.

7.2.2. Development resources

The development resources here refer to hardware and software. WA

developed to be used in a wireless environment. Devices such as wireles network

devices and a mobile device such as PDA are needed. ince the co t to have uch

devices are expensive, especially a PDA, therefore it is hard to test WA in the real

environment. Therefore, the only way to test WA i by u ing simulator, which hu

similar functions of a PDA.

The software pr blerns arc the imulator u ed fort .stin ' purr SC. Althou rh

there arc varieties of simulator can be u .d, but th con ft iurations or ca ·h simulnto

arc different. Some might en aflc ·t the lu I, irutinu s st m, SU ·h us th.

70

Univ
ers

ity
 of

 M
ala

ya

Microsoft's Embedded Studio Pocket PC 2002 simulator, that could cause the

performance of the whole operating system decrease.

7.2.3. Raw Materials

The raw materials refer to the internet contents. The reason for saying that

internet contents can cause problem is because so far there is no standard that defined

how internet content should be built.

The major problem here is that not all internet contents can be processed

correctly by WAC, as the internal processing algorithm can only suit some standard.

There is no way WAC can hundred percent handle all internet content if there is no

standard being initialized. The only thing that can be done is to optimize WA to

handle as much internet content as possible.

7.3. Evaluation by end users

Although WAC being tested successful by developer him selves, it needs to

be tested by the end user as well. The reason to have other people to do the testing i

to get opinion the feed back on how the system being perform, how u er friendly it

can be and how well it can meet the end user requirement.

Several feed back from the people who are using WA aid that it i a very

innovative ystem, where it allows different platform to view the arne internet

content, while optimizing the content to suit different mobile device.

Since WAC can only support text streaming, se eral user found out that it i:

not suitable to be used to urf the internet. e pit of thnt WA " nn uliliz' J t<

retrieve information within a local area nctwor , cs · ·iull for · rrp lrnt · mobile

71

Univ
ers

ity
 of

 M
ala

ya

users, where they will be able to use WAC to view the documents inside there

company file server by using their mobile devices when they are on the run.

The feed back also stated that the other disadvantage of WAC is that it needs

to be installed manually on the server, where everything can become troublesome

and error prone. They request that in the future, there will be a way to install WAC

automatically without the need to perform manual installation.

7.4. System Strengths

Cross-platform viewing - WAC provides the ability to view the same

internet content in different devices. It helps internet content developer especially in

constructing different internet content that suit different devices, where developer

does not need to learn specific internet content development language or technology.

Web-based interface - WAC provides a simple user interface that suits

different types of mobile devices' format. The interface serves as a portal for mobile

users to access WAC. As long as there is network connection, mobile users will be

able to access WAC from anywhere.

Display optimization - WAC is able to divide the input into several

segments. Each segment will become an individual content. It enables mall screen

devices such as web enabled phone to view the document without the need to croll

too much.

72

Univ
ers

ity
 of

 M
ala

ya

7.5. System Constraints

Variety internet standard - Although W3C has defined XHTML as the

standard in writing internet content, there are still many people who do not use this

standard, where they still kept with HTML standard. There is no precision in writing

internet content with HTML, where developer can use either capital letter or small

letter throughout the whole content. Such problem can effect the internal processing

of WAC, where it is very difficult to identify each element inside the content.

Multimedia content - Currently, WAC can only support text-based internet

content. It cannot supports multimedia content, such as sound and video images. It

can only support image file to a certain extend and it only applicable for Pocket PC

PDA. It will only provide text support for W AP devices.

Dynamic content - Dynamic contents are written using different languages

such as Javascript. WAC does not support dynamic contents because it docs not

have the ability to compile or to decode Javascript.

HTML elements - There are several HTM elements that cannot be

supported by WAC. Such elements are Form, Anchor, Frame and element that

defined styles and format of templates, such as Style, Span, Div and Link. ft can

only support basic text formatting elements, such as I reading, Break and Paragraph.

7.6. Future Enhancements

7.6.1. Support form query and hyperlink

One of the enhancements that need to be done i to support quo in' and

redirection. There are many internet .ontcnt uch a Ynh

query. If query can be upportcd, carch en rinc su h es Yuhoo ·an b · i 'Wed on

73

Univ
ers

ity
 of

 M
ala

ya

mobile devices such as W AP phone, where the user will be able to search the web

from there.

7.6.2. Text editing

WAC can provide a user interface that allows administration level users to

generate different format content from a single text format file. This enhancement

helps the user to create different format content without the need to learn the

know]edge in constructing each type of content.

There are several things that need to be considered in implementing this

enhancement. First, the format of the text file needs to be specified; if there is no

format within the text file, it will be very hard for WAC to identify the internal

elements. Second, the increasing text file might overload the server storage and

workload; WAC users need to make sure there i enough space to store the

increasing text file. They can either delete the unused file or use a file server to store

the files. Thirdly, since the input will be a text format file, WA needs to have

security features in avoiding these files being altered by unauthorized users. One of

the ideas is to have a database that contains record of the user that ha permi ·ion in

modifying the content.

7.7. Knowledge and Experience Gained

There are a lots of experience gained during the de eloprncnt of WA . I· irst

the development proce s it elves is a very good experience whcr · I oul l rposc to

how a system is develop, what arc the reps and pr · xlur .s in ol ed.

74

Univ
ers

ity
 of

 M
ala

ya

The programmmg skills that I have had been improving during the

implementation. Although I have learnt the skills from the courses that r have

attended, it is very different when trying to implement it inside an application. There

are several new things that I have learnt, such as ASP and COM. I learnt both of it

during the industrial attachment program. There are difficulties when I try to

implement it within WAC but with trial and error, I managed to come out with a

functional application.

The other important aspect that I have learnt is to come out with a plan.

Planning is very important as it helps to recognize the stages involved for the

development. A proper planning will aid developers to progress in each tage, make

sure the objective of each stage is fulfilled, and finally reach the overall objective and

able to finish the work within the planned period.

7.8. Summary

System evaluation rs a process of measuring the achievement of the

developed system, whether it meets the predefined specifications and criteria.

There are several problems encountered during the development, which can

be categorized into Developer's Skill, Development Resources and Raw Materials.

Developer's Skill is about the programming kill and e periencc. evel prncnt

Resources is about the development infrastructure, such a the de cl prncnt tool and

testing equipments. Raw Materials are about the input that will be u sed to tc 'I WA

such as the internet content.

The feed back from the end u er nn 'r th iir • nluati n st 1t l thut WA ' is 1

very innovative system. incc it docs not support multimcdin .outcnts, it is not

75

Univ
ers

ity
 of

 M
ala

ya

suitable to use for surfing the internet, but it has the potential to be used for corporate

purposes.

The strengths of WAC are allowing cross-platform viewing, web-based

interface for easy access and display optimization for different mobile devices. The

constraints of WAC are unable to support multimedia contents, dynamic content, and

some HTML elements such as Anchor, Frame, Form and other style formatting

related elements.

Future enhancements of WAC are allowing text editing and support for form

query and redirection. Text editing will allow user to generate different format

content from the same text file. Whi]e support for form query and redirection will

enable search engine such as Google to be operate on mobile devices.

The experiences gained during the development of WAC are programming

skill, proper planning and the expose to the development process.

7.9. Conclusion

WAC is an application that enable different types of mobile devices to access

the WWW same WWW content. It is able to convert the format of the WWW

content into the format supported by the mobile devices. For example if the user i a

W AP device, WAC will generate WM content from the original WWW content

without modifying the original files.

The objectives of WAC are information harine amonu different wircl • ,

devices through the utilization of wirele s network, pro idin 1 a .ros: pl uform lo

allow different wireless device to view the um· intern ·t .ont •nl and lo oplimii' ·th·

generated output to fit the crcen resolution or ca h different ird ·ss d i .e, These

objectives have been fulfilled after the.' st m b ·in 1 re t id.

76

Univ
ers

ity
 of

 M
ala

ya

Although WAC cannot support multimedia content at the moment, it is very

useful in distributing word document through the utilization of wireless network.

Since it is a web-based application, user can access their WWW documents using

their mobile devices, as long as there is network connectivity. ft can help the

corporate users especially, where they are always on the move.

There are several enhancements for WAC. From these enhancements, two

had been mentioned as both have the priority compare to the others. Such

enhancements are document editing, perform form query and redirection. Other

enhancements would be like enable support for dynamic content, but due to the

difficulty level and the limited resources, it will take time to solve.

There is a potential for WAC in the future, as technologies are advancing,

mobile devices are becoming even more sophisticated. Such improvement will

benefit WAC, as multimedia content can be pushed into the devices, and helps to

reduce unnecessary internal processing.

Although there are new scripting standard coming out, such as XML that

support multiple types of format, the advantage of WAC is that it can produce many

format of content, such as WML and HTML 3.0 (Pocket PC), from a ingle HTM

file. It helps to reduce the need to learn new technique in reconstructing the content

to fit different mobile devices format as the learning proce consumes time.

Finally, the vision of WAC is that it will be able to crve as a 'tarting

platform for research and development purpose in this field. u i · not a new

technology for there are many companie arc venturing in thi · f ild, such as

Avant o and l landisplay, l Iope that in th· future, thcrc , ill be a arie; ofsuch

application available.

77

Univ
ers

ity
 of

 M
ala

ya

Appendix A: Active Server Pages (ASP)

Microsoft Active Server Pages (ASP) is a server-side scripting environment

that enables developer to create and run dynamic, interactive web server applications.

With ASP, developer is able to combine HTML pages, script commands, and C M

components to create interactive web pages or powerful web-based applications,

which are easy to develop and modify.

The server-side scripts written in ASP are an easy way to begin creating

complex, real-world web applications. It provides a compelling solution in storing

HTML form information into a database, personalize web sites according to visitor

preferences or use different HTML features based on the browser. For example,

previously to process user input on the web server, one will have to learn language

such as Perl or C to build a conventional Common Gateway Interface (

application. However, ASP is able to collect HTML form information and pass it to

a database using simple server-side scripts embedded directly inside the TML

document. If a person is already familiar with scripting languages such a Microsoft

VBScript or Microsoft JScript (Jscript is the Microsoft implementation of the CMA

262 language specification), he or she will have only little trouble in learning A P.

Since ASP is designed to be language-neutral, a per on who i skilled at a

scripting language such as VBScript, JScript, or P RL, he or he i alread know

how to use Active Server Pages. J· urthcrmore, A P pages allow developer to u e

any scripting language for which a M compliant scrir ting en in· hud b • ·n

installed. A P comes with VB cript and J cript scriptin 1 ·11 1i11, 1 I u(d · clop ·rs

can also install scripting engine for PhRL, RE 1 , on l P lh< 11, v hi ·h 11 1 iii 1ul

through third-party vendors.

78

Univ
ers

ity
 of

 M
ala

ya

ASP is a flexible way for back-end web applications programmer in creating

web applications. Besides adding scripts to create an engaging HTML interface for

the application, it allows developer to include the COM components as well. The

logical operations behind the app]ication can be encapsulated into a reusable module

that can be called from ASP scripts, from another component or from another

program.

If you develop back-end Web applications in a programming language, such

as Visual Basic, C++, or Java, you will find ASP a flexible way to quickly create

Web applications. Besides adding scripts to create an engaging HTML interface for

your application, you can build your own COM components. You can encapsulate

your application's business logic into reusable modules that you can call from a

script, from another component, or from another program.

A server-side script begins to run when a browser requests an .asp file fr m

the web server. The web server then calls ASP, which processes the requested file

from top to bottom, executes any script commands, and sends a web page to the

browser. Because the scripts run on the server rather than on the client, the web

server does all the work involved in generating the HTML pages sent to browsers.

Server-side scripts cannot be readily copied because only the result of the script i

returned to the browser. Users cannot view the script c mmand · that created the

page they are viewing.

79

Univ
ers

ity
 of

 M
ala

ya

Appendix B: Component Object Model {COM)

Defining COM

COM is a platform-independent, distributed, object-oriented system for

creating binary software components that can interact. COM objects can be created

with a variety of programming languages, such as C++. Object-oriented languages,

such as C++, provide programming mechanisms that simplify the implementation of

a COM object. These objects can be within a single process, in other processes, or

even on remote machines.

To understand COM-and therefore all COM-based technologies-it is

crucial to bear in mind that it is not an object-oriented language, but a standard. Nor

does COM specify how an application should be structured. Language, structure and

implementation details are left to the software developer.

COM does specify an object model and programming requirements that

enable COM objects-also called COM components, or sometimes simply object

to interact with other objects. They can have been written in other languages and may

be structurally quite dissimilar. That is why C M is referred to as a binary

standard-it is a standard that applies after a program has been translated to binary

machine code.

COM Language Requirements

The only language requirement for M is that .od • is i •11 rut •d 111 a

language that can create structur of point srs ·ith ·r · pli ·itl or impli ·itl ·ull

function through pointers. bjcct oriented Inn iua l:S su ·h is '1 t an t Smull I 11

provide pro ramminn mechanisms that simplif th· impl 'Ill ntution or M >bjc ns,

80

Univ
ers

ity
 of

 M
ala

ya

Languages such as C, Pascal, Ada, Java, and even BASIC programming

environments can create and use COM objects.

COM Objects

COM defines the essential nature of a COM object. Generally, a software

object is made up of a set of data and the functions that manipulate the data. A COM

object is one in which access to an object's data is achieved exclusively through one

or more sets of related functions. These function sets are calJed interfaces, and the

functions of an interface are called methods. Further, COM requires that the only

way to gain access to the methods of an interface be through a pointer to the

interface.

Besides specifying the basic binary object standard, COM defines certain

basic interfaces that provide functions common to a11 COM-based technologies. It

also provides a small number of API functions that all components require. COM

has now expanded its scope to define how objects work together over a distributed

environment, such as the digital car environment, and added security features lo

ensure system and component integrity.

Additional information about COM can be found on the Microsoft evelopor

web site (http://msdn.microsoft.com).

81

Univ
ers

ity
 of

 M
ala

ya

Appendix C: Internet Information Server (IIS)

IIS is a group of internet servers (including a Web or Hypertext Transfer

Protocol server and a File Transfer Protocol server) with additional capabilities for

Microsoft's Windows NT and Windows 2000 Server operating systems. With IIS,

Microsoft includes a set of programs for building and administering web sites, a

search engine, and support for writing web-based applications that access databases.

Microsoft points out that HS is tightly integrated with the Windows NT and 2000

Servers in a number of ways, resulting in faster Web page serving.

A typical company that buys fJS can create pages for Web sites u mg

Microsoft's Front Page product (with its WYSIWYG user interface). Web

developers can use Microsoft's Active Server Page (A P) technology, which mean,

that applications - including ActiveX controls - can be imbedded in Web page that

modify the content sent back to users. Developers can also write program that filter

requests and get the correct Web pages for different users by using Micro ofl'

Internet Server Application Program Interface (I APT) interface. A P and I AP!

programs run more efficiently than common gateway interface I) and crvcr- ido

include (SSI) programs, two current technologie (However, there arc c mparablc

interfaces on other platforms).

Microsoft includes special capabilitie for erver adrnini trators de 'i lnt:d lo

appeal to Internet service provider (I Ps). It in Jude a ·in ilc windo, 0

"cons le'') from which all service and users can b · Imini 'I .r d. It' d ·si in id to I ,

easy to add components a nap-in that ou didn't initinll in tnll. The

adrnini urativc window can be customized for u cc 'Sb indi i iuul 'USf< 11tc1s.

82

Univ
ers

ity
 of

 M
ala

ya

Features

Internet Information Services 5.0 has many new features to help W b

administrators to create scalable, flexible Web applications.

• Security

• Administration

• Programmability

• Internet Standards

Security

• Digest Authentication: ige t authentication allows ecure and ro u ·t

authentication of u er acros proxy server and firewalls. In additi n,

Anonymous, HTTP Ba ic, and integrated Window authentication formerly

known as Windows N hallcngc/Rcspon c authentication and NTLM

authentication) arc still available.

• ecure Communications: ecurc ckets ayer (3. and Tran port

Layer Security (TLS) provide a ecure way to exchange information etween

clients and server . In addition, 3. and T pr vidc a wu for th'

erver to verify wh the client i before the u r log on to th · ·rv ir. In

11 5.0, client certificate ar · e ed to both I /\Pl and Act: c er er P•11c ·,

that pro irarnmcr · 'an tra k u .er throu th their .itc . Al 'O, 11 ' . can ma

the client certificate to a Window: us ·r uc · nint, so that u lministrntors · 11

c ntr I acce ·Ii ·nt · ·1tifi ·at

• I Cr pht~rnph : t8 nit

c ten. ion of' 'L thut ull vs Iinuu inl 111st1tulH n. \ uh 1::1 rt r. ions t I' 11 '

to us· uron · 1pabil1ti ·s ll built into

11 tal rtif 'nt i r quir d to u

83

Univ
ers

ity
 of

 M
ala

ya

• Security Wizards: Security wizards simplify server administration tasks.

o The Web Server Certificate Wizard simplifies certificate

administration tasks, such as creating certificate requests and

managing the certificate life cycJe.

o The Permissions Wizard makes it easy to configure Web site access

by assigning access policies to virtual directories and files. The

Permissions Wizard can also update NTFS file permissions to reflect

these Web access policies.

o The CTL wizard helps you configure your certificate trust Ii t

(CTLs). A CTL is a list of trusted certification authorities (As) ti r a

particular directory. CTLs are especially u eful for Internet ervicc

providers (ISPs) who have several Web sites on their erver and who

need to have a different list of approved certification authoriti for

each site.

• IP and Internet Domain Restrictions: You can grant or deny Web acce · t

individual computers, groups of computers, or entire domain .

• Kerberos v5 Authentication Protocol ompliance: II is fully integrated

with the Kerberos v5 authentication protocol implem nted in Micro oft

Windows 2000, allowing you to pass authenticati n rcdcntial am ng

connected computers running Window .

• Certificate torage: ll certificate torage 110 inl • >rnl ·d ith th

Windows ryptoAPI storage. he Wind w · •rtifi ·u1 • M uu1 ., pn id ·s a

single point of entry that all w

certificate .

u to • tor , n k u] , nn I

8

Univ
ers

ity
 of

 M
ala

ya

• Fortezza: The U.S. government security standard, commonly called

Fortezza, is supported in IIS 5.0. This standard satisfies the Defense Message

System security architecture with a cryptographic mechanism that provides

message confidentiality, integrity, authentication, and access control to

messages, components, and systems. These features can be implemented

both with server and browser software and with PCMCIA card hardware.

Administration

• Restarting ITS: Now you can restart yow Internet services without having to

reboot your computer.

• Backing Up and Restoring I IS: You can back up and ave your mctabasc

settings to make it easy to return to a safe, known state.

• Process Accounting: Provides information about h w individual Web itc

use CPU resources on the server. This information is useful in dctcnnining

which sites are using disproportional high PU resources or which might

have malfunctioning scripts or CGI processes.

• Process Throttling: You can limit the percentage of tim the P pend

processing out-of-process ASP, lSAPI, and J application f r individual

Web sites. Tn addition, misbehaving proce c can e t pped and r tarted.

• Improved ustom Error Messages: Now administrator an end

informative me sages to client when l n Tl err r· ccur n their Web ·itc ·.

Also includes detailed A P err r proces un capsbilitic · th ou rh th· u ' r

the 500-100.asp custom error mes. a ic. You .an us th · .ust m 1 rms th It

ll 5. provides, or create our own.

• onfigurution Options: y u can ct permi '.I II f r r itc, h. · ut -,

Univ
ers

ity
 of

 M
ala

ya

• Remote Administration: IIS 5.0 has Web-based administration tools that

allow remote management of your server from almost any browser on any

platform. With IIS 5.0, you can set up administration accounts called

Operators with limited administration privileges on Web sites, to help

distribute administrative tasks.

• Terminal Services: Terminal Services is a feature of Windows 2000 that

allows you to run 32-bit Windows applications on terminals and terminal

emulators running on personal computers and other computer de ktop .

Terminal Services allows virtually any desktop to run applications on the

server. This enables you to remotely administer Windows 2000 ervice such

as US as if you were at the server console, including administration from

older legacy PCs, or even non-PC devices such a UNIX workstations with

compatible client software. (Non-Windows-based client device require third

party add-on software.)

• Centralized Administration: Administration tools for fl u e the

Microsoft® Management Console (MMC). MMC hosts the program called

snap-ins that administrators use to manage their ervers. You can u c JI

snap-in from a computer running Windows 2 00 Profes ional to administer a

computer on your intranet running Internet Inforrnati n

Windows 2000 Server.

Programmability

• Active erver Pa es: You can create d namic cont 'nl b usin 1

scripting and components to create brow rcr-inde in f nt I nurni · ·onl 'HI

Active crvcr Pages ASP) provide an ca -I -u c (ltcrnat! , t ii uud

I APl by allowing content developer to mb d an . iptm, Jan iu)r

rvi c n

8

Univ
ers

ity
 of

 M
ala

ya

server component into their HTML pages. ASP provides access to all of the

HTTP request and response streams, as well as standards-based database

connectivity and the ability to customize content for different browsers.

• New ASP Features: Active Server Pages has some new and improved

features for enhancing performance and streamlining your server-side scripts.

• Application Protection: IIS 5.0 offers greater protection and increased

reliability for your Web applications. By default, ffS will run all of your

applications in a common or pooled process that is separate from core IJ

processes. In addition, you can still isolate mission-critical applications that

should be run outside of both core IIS and pooled processes.

• ADSI 2.0: In llS 5.0, administrators and application developers will have the

abiJity to add custom objects, properties, and method to the existing A

provider, giving administrators ev n more flexibility in configuring their

sites.

Internet Standards

• Standards Based: Microsoft Internet Information Service 5.0 complie with

the HITP 1.1 standard, including features uch as PUT and T , th

ability to customize HTTP error messages, and upport f r cu tom I J p

headers.

• Multiple ites, One I P Address: With upport for ho t header', ou can ho st

multiple Web sites on a single computer runnin r Microsofl Windov s o

Server with only one IP address. This i useful for Int im ·t s r i

and corporate intranets ho ning multiple ires,

87

Univ
ers

ity
 of

 M
ala

ya

• Web Distributed Authoring and Versioning (WebDAV): Enables remote

authors to create, move, or delete files, file properties, directories, and

directory properties on your server over an HTTP connection.

• News and Mail: You can use SMTP and NNTP Services to set up intranet

mail and news services that work in conjunction with IIS.

• PICS Ratings: You can apply Platform for Internet Content Selection (PICS)

ratings to sites that contain content for mature audiences.

• FTP Restart: Now File Transfer Protocol file downloads can be resumed

without having to download the entire file over again if an interruption occur

during data transfer.

• HTTP Compression: Provides faster transmission of pages between the We

server and compression-enabled clients. Compresses and cache tatic file ,

and performs on-demand compression of dynamically generated file .

88

Univ
ers

ity
 of

 M
ala

ya

Appendix D: Coding - ASP

1. File: index.asp

<%
dim strHttpUserAgent
dim nDevType 'I =html 4.0; 2 =html 3.0; 3 = wap;
strHttpUserAgent = Request.ServerVariables("HTTP _USER_AGENT")
iflnStr(strHttpUserAgent, "Mozilla")> 0 then

Response.Redirect "Redirection.asp"
else

Response.Redirect "wap.asp"
nDevType= 3
end if
%>

2. File: html.asp

<html>
<head>
<meta NAME="GENERATOR" Contcnt="Microsof1 Visuil Studio 6.0">
<link REL="styleshect" TYPE="tcx1/css" I IREF="_ lhemcs/surnipntg/THEME.CSS" Vl6.0TI IEME="Sumi Painting">
<link REL="stylcshect" TYP ;-•text/css" l-U{.EF="-'ll1cm1.11/sumipntg/GRAPI JO. S'" Vl6.0'rI IEME "Sumi Painting">
<link REL="styleshect" TYPE="tcxt/css" l llWF="_Thcm(S/surnipnlg/ 'OLORO.CSS" Vl6.0TI IEME="Sumi Pumting">
<link REL="styleshcet" TYPE="text/css" I IREF="_Themcs/sumipntg/CUSTOM. S "Vl6.0TI IEME•"Sumi Painting"
</head>
<body rightmargin=O topmargin=O lcflrnargin marginwiith•"O" mnrginheight "O">
<table border=O width= "103%" heighr=" !00%" bgcolo =lccpskyhluc cellspecing=z ccllpadding >
<tr>
<td width= 187>
<!MG stylc="Wff)TH: 200px; l lEIGI IT: 86px" height= lOsrc-imngcs/logo.jpP,. width• l 87 >
</ld>
<td align=left>
<form action=tscript/lnterfacc.asp" mcthod=tget • target='_parcnt ">
<input typo=vhidden" narne=thcador" vulu -"http://">
<input lype="tcxt" nomc="url">

<input type="reset" value="Clcar">
<input type="submit" value="Go ">
</form>
</td>
</tr>
</table>
</body>
</html>

3. File: html\index.asp

<1-
<htrnl>
<bead>
<meta N/\MEc"GENl\R/\ TOR" 'ontcnt•"Micrnsot\ Vi:m1l Studio 1 O"
<link REL="stylcshcct • TYPE "iext/css" 1 IRnF " . ./ _'11wncs/ ·wnipnt!ifl'l IFME 'SS" VI () 11 lhMI~ "Swn1 I' inuug">
<link REL="stylcshcct" TYPE "tcxt/css" I !REF " .. / _Tlumcs/sumipntp/ lR/\Pl ICI ·ss• Vl60II11· ME "S11n11 p 1111111 •

<link REJ;=•"stylcsh ct" TYPE •1 •xt/c. s" I !REF " .. / Thnn ·sf ·unupntp/ ·c LC IW SS" Vl(1 Oll ll'MI· "S111111 P111111t111t"
<link REI .•"st leshcct" TYPE "tcxt/css' 111rnF • 1_·111e111 ·v unupnt 'IJS I OM C'ss· V1<1 o I l ll'MI• "..'111111 I 11111t111t"
</head>
->
<O/u
dim strl3od F me
strBod Fromu " .. /scnpl/hod 11sp'/1 • I{ ·q11 •. t Q11c1~Stn11µ("1")
%
<sen pt;>
<I cnp1>
<fuunc. ·t rnws
fn11nc nnm •
fr11111c rl/lnt •

</frame. c
<!--
</html>

8

Univ
ers

ity
 of

 M
ala

ya

-->

4. File: wap\indeLasp

<!--#include file=" . ./script/setting.asp"->
<!--#include file=" .. /script/ProSupport.asp"-->
<°lo
Response.ContentType = "text/vnd.wap.wml"
%>
<?xm! version='l.0'?>
<fDOCTYPE wml PUBLIC "-//WAPFORUM/IDTD WML 1.1//h'N" "http://www.wapforum.org/01D/wm! I.Lxml"> <wml> -
<head>
<meta http-equiv="Cache-Control" content="max-age=O"/>
</head>
<%
dimstrID
dim strFullOutPath
dim strID
strID = Request.QueryString("i")
iflen(strlD) <> 0 then
strFuJ!OutPath = strOutPath & strID & "/i.btm"
dim objFso, objOut
set objFso = server.CrcateObject("Scripting.FilcSystemObject")
if objFso.FileExists(strFullOutPath) then
call Displ.ayPage(J, sllOutPath, strlD)
else
Response.Write "<card id=""main"" label=""Menu"">" & vbCrLf
Response. Write "<p>Thero is no monu</p>" & vrCrLf
Response. Write "<Icard>" & vbCrLf
end if
end if
%>
<wml>

5. File: script\Display.asp
<1--#include tile="setting.asp"->
<html>
<head>
<title>WAC-FlexDisplay<ltitle>
<!bead>
<body>
<%
dim strID
dim strFile
dim strLocation
dim strlndex
dimnProv
climnNext
dim nTotal
strJD .. Request.QueryString("i")
strFile ""Request.QucrySl:ring("J")
strlndex e Roque t.Qw:ryStri11g("in")
nProv • Rcqucst.QucryString("prcv")
nNext ... Rcquest.QueryString("ncxt")
nTotal .. Reql.lClit.Query lring("«ollll")
iflt-'l1(11tr[O) > 0 and lcn(strlD) > 0 then
strlocation = sUOulPath& strl & "\" & strFilo
dim objFso, objSrc
set objFso • terv(;'f.Crait bjllci("Scripfing.FilcS stem hjcc!")
5ilt objSrc • ohjF,<1.0pcn'l'llxtFilc(strLoootio11, I, fol1 ·2)
do while uot objSro.AtcndOfStruurn
Response. Writ.o objSro.R®dl.in ·O & vbNcwJ.ine
loop
ohjSro.olose()
s l bjFso • notl1ing
R pon8C. Write "<'b ll> ll'>"
if 1trlndo "lil'llt" tbcn
Re ponso.Writo "<o hrcl ""di pl11y.o~p'li•" & strfD
Re3ponsc.Wtl10 "&t1 • & nNoxt & "i.htm"
Re ponsc. Write "&iucmid"

90

Univ
ers

ity
 of

 M
ala

ya

Response.Write "&prev=l"
Response. Write "&next=3"
Response.Write "&total=" & nTotal
Response.Write """>Next"
elseif strlndex = "last" then
Response.Write "<a href.=""display.asp?i=" & strID
Response.Write "&f.=" & nPrev & "i.htm"
Response. Write • &in=mid •
Response.Write "&prev=" & nPrev-1
Response.Write "&next=" & nTotal
Response.Write "&total=" & nTotal
Response. Write """>Previous</o>"
elseif strlndex = "mid" then
Response.Write "<a href.=""display.asp?i=" & strID
Response.Write "&f=" & nPrev & "i.htm"
if nPrev = l then
Response. Write • &in=first"
Response. Write "&next=" & nPrev+ l
Response.Write "&total=" & nTotal
else
Response. Write • &in=mid"
Response.Write "&prov=" & nPrev-1
Response.Write "&next=" & nNext·l
Response.Write "&total=" & nTotal
end if
Response. Write """>Prev "
Response.Write "<a href=""display.asp'li:." & strlD
Response.Writc vaf=" & nNext & "i.htm"
ifnNext"' nTotal then
Response.Write "&in=lasl"
Response.Write "&prov=" & nProv+l
Response.Write "&total:." & nTotol
else
Response.Write "&in=mid"
Response.Write "&proV"'" & nPrev+I
Response.Write "&next=" & nNext+l
Response.Write "&totul=" & nTotal
end if
Response. Write """>Next</a.>"
eodif
else
Response. Write "Oops, no delft available"
end if
%>
</body>
<./html>

6. File: script\body .asp
<!--#include file2"setting.asp"->
<!--#include filo="ProSupport.a p"->
<"lo
dimstr_ID
dim strScript
strScript"' "Display.asp"
str_ID"' RequcstQucryString("i")
if not str ID= •• then
call DispJoyPugc(l, 11J'Ou1J>n1h, slr_lD, strScript)
else
%>
<html>
<bead>
<title>WAC<ltitlc>
<thcad>
<body>
<p>Thero is nl.l di pl11y<I
</body>
</html>
<%
end if
o/t>

Univ
ers

ity
 of

 M
ala

ya

7. File: script\Interface.asp

<!--#include file="setting.asp"-->
<%
dim strUserAgent
dim strUrl
dim strID
dim strUrU-Ieader
dim nDevType
dim nVersion
dim nVerPos
strUserAgent = Request. Server Variables(" HTTP_ VSER_AGENT")
iflnStr(strUserAgent, "Mozilla")<> -I then
nVerPos = InStr(strUserAgent, "/")
ifnVerPos > 0 then
nVersion =mid(strUserAgent, nVerPos+l, I)
ifnVersion >= 4 then 'IE or compatible
nDcvType= I
elseifnVersion < 4 then 'Pocket IE or compatible
nDevType= 2
end if
end if
else
nDevType = 3 'W1.1p devices
end if
strID = ""
if nDcvType = 1 or nDevTypc = 2 then
strUrl = Request.QucryStringf'Url")
strUrlHeader = RequcsLQueryString("hcader")
elseifnDevTypc = 3 then
strUrl = Request.QucryString("url ")
end if
%>
<!--#include file="Process.asp"->

8. File: Mobile.asp
<html>
<head>
<meta Nt\ME="GENERATOR" Content="Microsofl Visual S11.1dio ~' O">
<link REL="styleshcet" TYPE="texl/css" I IREF=" _ 111cmcs/sum~pnt.~/TI IEME.CS " Vl6.0TI IEME="Sumi Pumung"> -
<link REL="stylcshcet" TYPE="tcxt/css" HREF="_ Thcmcs/surn~pnly ilw:>lJO. SS" Vl6.0TllEME "Sumi Peinung">»
<link REL="stylesheel" TYPE="tcxt/cs " I Jll~l'.="-:r11cmes/sum~pn\f' LORO. SS" Vl6 0'11 U~ME "Sumi J>oin1111g"> 1 ••
<link REL="stylesheet" TYPE="tcxt/css" HREI·=" _lllcmes/sumipn\f USTOM.CSS" VI6.0THEME=" urm Pamung">-c
</head>
<body>
<table bordor=O width=" 100%" height=" 100%" bgcolor=#0098c6 CCJlspacing 2 ccllpaddmg I>
<tr>
<td style=tcolor-whitefont-stylc.italic;" valign=tccntcr" align ccntcr><h>ENTlm lJRL) </Id
<lit>
<tr>
<td valign=centcr align- renter>
<form action=rscript/lntorfacc.usp" rnethod=tgct">
<input typ • "hidden" nam "header" vnlu "hllp://">
<LNPUT type=ttext" namc-"url"> r><hr>
<input type=Ycset" valuc="clcar">
<lNPUT typ "submit" value "Clo"
</form>
<ltd>
</tr>
</table>
</body>
</html>

9. File: cript\Pro ·css.asp

%
dim slrl omninlJtl
dim It F11llOu11'11th
dim obj .. '. , c bjFoldcr
ct oh1Fso = ecrvcr. 'rootc.'<)hjc t("Soriplmg.JlilcS .1 :mObJOOl")

Univ
ers

ity
 of

 M
ala

ya

if InStr(strUrl, "http://") = 0 then
strDomainUrl = strUrlHeader & strUrl
elseif InStr(strUrl, "http://") > 0 then
strDomainUrl = strUrl
end if
if len(strUrl) > 0 then
iflen(strID) > 0 then
strFul!OutPath = strOutPath & strID
else
ifstrID =""then
strID = GetIDO
end if
strFullOutPath = strOutPath & strlD
set objFolder = objFso.CreateFolder(strFullOutPath)
end if
if objFso. F olderExists(strFullOutPath) then
ifCreateHTML(strDomainUrl, strFullOutPath, strOutPath,strSrcFile, strlD) = tr th
if nDevType = I then uc en
Response.Redirect " .. /html/index.asp?i=" & strlD
elseifn.DevType = 2 then
Response.Redirect "body.asp'li=" & strID
else'ifnDcvType = 3 then
Response.Redirect "WapBody.asp?i=" & strm
end if
end if
end if
set objFso =nothing
'call the error page
end if
%>

10. File: script\ProSupport.asp

<%
function GctlDQ
GetlD = "" 'set default return value to nothing,
Dim objUID
DimslD
Set objUlD = Servcr.CrcatcObjcct("gcnuid.GcnUJOObj")
slD = objUID.UlD
Set objUlD = nothing
GetlD = CStr(slD) 'setting tile return value lo new ID.
end function
, .
function GclTotal(strSrcLocation)
dim objFso, objTotal
dim nTotal
dim strTemp
nTotal = 0
strTemp = ""
set objFso = server.CreateObject("Scripting.FilcS st ·mObjcct")
set obj'Total = objFso.Opc.11TcxtFilc(strSrcLocalion, I, false, -2)
'Response.Write 'Gl~t total"
do while not objTotal.AtEndOfStrcam
strTcmp = strTemp objTolJ.ll.RcadLin ·
nTotal = nTotal + I
loop
Get'I'otal = n'I'otal
strTcmp = ••
'Response. Write n'l'otal
' Rcsponsc.Endf)
obj'l'otal.closc
set objl'so = nothing
end function
··•••\············
function I 1 pl 1yl' 1p, •(nl v't p-,. lr0111PotJ1, ldl , . trS 11pl)
dim obj Fso, bj(IJl
dim sll'SrcLocation
dim nPo~
dnn n'l'olnl
nPo~ I
n'I'otal 0
sh8rcl.oonli1111 tJ011t1'1th trll) "\1 t t"
n'l'otal <JctTotnl(~trSr I .o 1lu n)
Mel objl'so =- server, 'rcoll.'Objoc1("Scri11111g.FilcS sh:mObJC t")

Univ
ers

ity
 of

 M
ala

ya

'set objTotal = objFso.OpenTextFile(strSrcLocation, I, false, -2)
set objOut = objFso.OpenTextFile(strSrcLocation, 1, false, -2)
ifnDevType = 2 or nDevType =I then 'html
Response.Write "<html>" & vbNewLine
Response.Write "<head>" & vbNewLine
Response.Write "<title>WAC-Mobile View</title>" & vbNewLine
Response.Write "<zhead>" & vbNewLine
Response.Write "<body>" & vbNewLine
'do while not objTotal.AtEndOfStream
'nTotal = nTotal + I
'loop
'objTotal.closeO
'Response.write nTotal
' Response.EndO
do while not objOut.AtEndOfStream
Response.write "<a href='"?'
Response. write strScript & "?i=" & strID
Response.write "&f="
Response. write objOut.readLineO
if nPos = nTotal then
Response. Write "&in=last&prev=" & (nPos-1)
Response. Write "&total=" & rrTotal
elseifnPos = I then
Response.Write "&in=first&next=" & (nPos+I)
Response.Write "&tollll=" & nTotal
else
Response.Write "&in=mid&pre -" & (nl'os-I)
Response. Write "&next=" & (nPos+ I)
Response.Write "&total=" & n'l'otel
end if
Response.write '"!">"
Response.write "Page" & nPos
Response.write "
" & vbNcwLine
nPos = nPos + I
loop
'process the lite
Response.Write "</body>" & vbNewLine
Response. Write "</html>"
elseifnDcvType = 3 then
dim strWmlOut
strWmJOut = ""
dim nWapPos
nWapPos= 1
do while not objOut.AtEndOf'Strcam
strWmJOut ="<a href="""
strWmlOut = strWm!Out & strScript & "'Ii=" & str!O & "&I'="
strWmJOut = strWmlOut & objOut.readLineO
ifnWapPos = nTotal then
strWmlOut = strWmlOut & "&in=last&pre -" & (nWopPos-1)
strWmlOut = strWmlOul & "&total=" & nTotal
elseifnWapPos =I IJ1en
strWmlOut = strWmlOut & "&omp;in .. lirst&omp;ncxl='' & (n Wepl'os I)
strWmJOut = strWmlOut & "&omp;tolal=" & nTowl
else
strWmJOut = strWm!Out & "&in=mid&prc -" & (nWupPos-1)
strWmJOut = strWmlOut & "&nmp;nexl=" & (nWapPos+J
strWmJOut = strWmJOul & "&runp;tolal=" & nTolal
end if
strWmJOut "'slrWmlOut & "''">"
strWmJ ul = strWmlOut & "Page" & nWopPos
SlrWmJOul = slrWrnlOut & "</u><'brl>" & vhNitwLinc
Response. Write strWmJOut
nWupPos = nWopPo~ + I
loop
end if
olajOut.closo
sci objFHo •nothing
:nu Jimction

'••···
limc1io11 'rcol J rJMI. Mir J)ornninlJd, Ml1 FullOutPuth, ~hC u1P111h. 1181 Falt\ II II}
't lief 11 ML• tru
'Fi1 'I, p,cl IJ1 •0111 ·nt from tli tJR I •.
'1fRcqu ·~1P 1p, •(lllJtl, 1r01~1F1l , 110u!Typu, 1h1111111lh,lc11111111r1hud, 1111) h11 tlu:·n
dim II Sr Local icm
strSrcJ,oc111ion s1rOu1JlntJ1 & slrlD & "\" & ~trSrcFil
ifRcques1Pogc(s1rl m iinUrl, strSr Locotwn, strlD) tru then

Univ
ers

ity
 of

 M
ala

ya

'then, process the page.
'if ProcessFilter(strSrcLocation, strID, strSrcFile) =true then
dim strAgent
strAgent = request.ServerVariables("HTTP _USER_ AGENT")
dimobjWac
set obj Wac= server.CreateObject("WAC.FlexDisplay")
iflnStr(strAgent, "Mozilla")> 0 then
objWac.WmlProcess = false
else
objWac.WmlProcess =true
end if
call objWac.FlexProcDisp(strDomainUrl, strSrcFile, strOutPath, strID)
set obj Wac= nothing
'end if
else
CreateHTML = false
Response. Write "Cannot be processed"
exit function
end if
end function
•••
function RequestPage(strDomainUrl, strSrcLocation, strlD)
dim objTear
dim strValue
'set obj Tear= servcr.CreateObject("Tear.(Itm'l'ear")
'RequestPage = objTear.Requeslintemel(strDomainUrl, strSrcLocation)
set obj Tear= server.CreateObject("WACTear. WocHtmTear")
objTear.UserAgent = Request.Scrvervariablesr'H'Fl'P _USER_AGENT")
'objTcar.FollowRcdirecl =false
'objTear.ConlentTypc = rcquest.Servcr Variablosj 'H'Tl'P _CONTENT _TYPE")
'objTear.Accept = requcst.Scrvcrvuriablcs/"l ITTP_ACCliPT")
'for each item in request.Servcrvariables
'if item<> "H'Fl'P _USE_AGENT" and item<> "IJTfP_CONTl-!NT_TYJ>l;!" and item<> "ll'n'P A' 'EPT" then
'strValue = rcqucst.ScrvcrVoriablcs(itcrn) -
' objTcar.Addl eador item, strValuc
''end if
'next
RequestPage = objTear.GetPogo(strDomainUrl,2,"",strSrcLocation, "'. "")
set objTcar =nothing
end function
••
o/o>

11. File: Redirection.asp
<"/o
dim strUserAgt."llt
dim nVerPos
dim nVersion
strUserl\gcnt = Rcquest.ScrvcrVuriables("I rrrP _ lJSER_AGENT")
nVerPos = lnStr(strUscrAgcnt, "/")
nVersion = mid(strUserAg<.."llt,nVerPos+I, I)
lfnVc.'fsion >=4 then
Response. Redirect " . ./wu c/htrnl/i ndcx.asp"
clseif nVcrsion < 4 then
Response.Redirect "mobile.asp"
end if
%>

D:\WJ\C\WA '_Local\script\~clling usp I
<%
'variables dclincd for web url
'this include direcio
SlrOuU)ir • "WA 'Ju ter"
NtrSrcFil "sr .lxl"
sh{)uU:ilc • "displ11 .lum"

'••····························· .,.
1emOh; ··t")

SCI objSc.-t - nothing

Univ
ers

ity
 of

 M
ala

ya

o/o>

12. File: wap.asp

<°lo
Responsc.ContentTypc = "text/vnd.wap.wml"
o/o>
<%
dim strLocation
dim strScriptFile
dim strServerblamc
st:rServerName = Request.ServcrVariables("SERVER _NAME")
strScriptFile = "Interface.asp"
strl.ocation ="http://" & strServcrNamc & "/wac/script/" & strScriptFilc
o/o>
<?x:ml version=' 1.0'?>
<f[X)CTYPE wml PUBLIC "-//W APFORUM//J)'TU WML 1.1//J~N" "hup://www.wapforum.orp/1)11)/wml_ l. l .xml">
<wml>
<head>
<meta hup-equi -"Cochc-Control" contcnt="max-agc "/>
</head>
<cord id="rnain" title="WA ">
<p align=tccntcr">
Welcome to WAC
<Ip>
<do typc="aceept" label="Scarch">
<go hrcf="llscarch"/>
</do>
</card>
<card id2"search" titlc="WA '">
<p align 'centcr">Entcr Url

<input nam ·-"url" volu "hltp://" t "text"/>
<Ip>
<do typo='uccept" lnbcl•"Go">
<go hrcf'-"<% slrl.ocution%>" method "get">
<postfield nom "url" value "S(url)"/>
<Igo>
</do>
<zcard>
</wml>

13. File: script\WapBody.asp

<1-- llineludo fil -'ProSupport nspt->
<1-- llin Jude file "sett ins u p"-->
<%
Re pon e. 0111 ·ntTypc "tc. t/vncl wap wml"
'Rcsponsc.Addl louder "Prsgmn", •m · he"
'Rcsponse.Addl louder" .uche 'ontrol", "no-ca he, must-r \ hdatc"
%>
<'/ ml crsion '1.0''/>
<llX>CTYPE wml PlJIJJ,I '"-1/W/\PFOR\JM//I II) WMI. I 11/l·:N" "hllp./lww' " p nrum ullf'I I l)/\\1111 I I ml"
<wml>
<card id "main" till· "WI\ "

Wrll "No hie 1 t •

"opt11 1• I.I I "I 1 \. •

96

Univ
ers

ity
 of

 M
ala

ya

14. File: script\WapProcess.asp

<!--#include file="setting.asp"->
<"lo
Response.ContentType = "text/vnd.wap.wml"
%>
<?xml version='l.O'?>
<!DOCTYPE wmJ PUBLIC "-//W APFORUM//0'11) WML I. I !!EN" "ht1p://www.w11pfonun.ors/D11)/wml_ 1 l.xml"
<wml>
<card id="Page" title="WAC">
<p>
<"lo
dim strID
dim strFile
dim strl.ocation
dim strlndex
dimnPrev
dim nNext
dim nTotal
strlD =Rcqucst, ueryString("i")
slrFile = Request.Query'Stringt'T')
strlndcx = Rcquest.Query Stringj tin")
nPrev = Requesl.QueryString("prev")
nNext = Request.Query tring("next")
nTotal = Requcst.QucryString(''total")
'Re ponsc, Write strlD & "
"
'Re pon e. Write sirl-ilc
ifle11(i.irlD) > 0 and len(strlD) > 0 then
trl.ocation = slrOutPutl1 & strlD & -v & strl-ilc

' Response. Write "here"
dim ol~jFso, objSrc
set ohjFso = scrvcr. rcatcObjcct("Scripting.FilcSys1cm(bject")
sci objSrc = objl'so.Opcn'I'e tFilc(strLooition, I, fol. e -2)
do while not objSrc.J\tEndOfS1rcam
Response. Write obj Src.Readl .in '0 bNewLino
loop
objSrc.closcO
set objfso = nothing
ifstrlndcx .. "first" then
Response. Wriw "<n hrcf .. Wapl'rocesi .asp?i • & , trll)
Response.Write "&f•" & nNcxt & "i htrn"
Re ponsc, Write "&omp;in rd"
Rcspon c, Write "&pre -I"
Re ponsc.Writc "&ncxt-3"
Response.Write "&l<>lal=" & n'Iotal
Response. Write """>Next</u>"
cl cif strlndcx "la t" then
Respon c. Write "<a href ""WupProcc .. usp'/1 • ~ll II)
Response.Write "&ump,f • & nPrcv & "1 furn•
Response. Wnlc "&t1111p;1n mid"
Responso. Write "&ump;p1c • & nli'c1 ·I
Rc.-spon .Write "&u.tnp,ncxt • & nTot 11
lk-sponsc. Write "&,1011ll • nTollll
Rcspons . Write """>fJreVJOU <lo>"
elscif strlndcx •"mid" tl11m
l~cspons •. WriL• • 1 hr ·C ""WopProc • 1rll
lfo pon.' . Write• mp,f • 111'1 •

ifnP1 · I 1hm
Rcsponsc.Wnlc "&.111np,1n Ii :t"
Response. Wnt ' "&nntp,ncxt • nPt 1 I I
Hcspo11. . WtiL • 1111p,t11tnl •' nT1lt11I
cl. •
Rc prn1sc. Wntc • 1mp.1t1 1111d"
I~ '.1')()11 .W11f •• •fllf .pl I •• \ 11l>i .,
l~1''J)(lJI . Wnt .• ' lll!lfUtt''\;I • nN (l
H · p1111 W11t "Ill ltl•f).h l.>il • 11 l dnl
•nd rf
Re. pon ··• Pi '' lo •
H ·. rx 11~ • Wr111-• •• u hid· ••
I~ ·~ n . Wn1c • imp,l • '
1f11N 1 nlo11l1lw11
1{1-· I 111 c 111 • nmp,m b 1•
lk pons'. nl!l • 1mp,Pft'1 • .~ nPrt'1 t I
lkspon Wnrc • &. mp,t t.11 • ,\.\ n Int. I
·I •

97

Univ
ers

ity
 of

 M
ala

ya

Response. Write "&in=mid"
Response. Write • &prev=" & nPrev+ J
Response.Write "&next=" & nNext+l
Response.Write "&arnp;total=" & nTotal
end if
Response. Write "''">Next"
end if
else
Response.Write "Oops, no data available"
end if
o/o>
</p>
<do type="option" label=Back">
<prev/>
</do>
<Icard>
</wml>

15. File: wap\index.asp

<!--#include file=" . ./script/sctting.asp"-->
<J--#inoludo file=" . .zscript/Pro: upport.asp"-->
<%
Responsc.Content'Iypc = "text/vnd.wap.wml"
o/o>
<?xml version=' 1.0"/>
<!DOCTYPE wrnl PUBLI · "-//WAPFORUM/llYm WML 1.1//l~N" "http://1 w1 wepforurn urg/DTI /v.rnl I J xml">
<wml>
<head>
<mCUI http-cqui -· 'uchc ontrol" conn .. 'flt•"nwx-ag')'/>
</head>
<°lo
dim strl I)
dim s1rFul!Ou1Po1h
dim strll)
strlD = Rcqucst.QucrySl.ring('i")
if kn(str/D) <> 0 tJ1Cm
strFul!OutPath • strOutPoth & trll) & 'Ii htm"
dim obj F ·o, obj Out
set objl-so =scrver. 'rc11tcObjcc1("Scripling.FilcS s1c111
if objFso.FileExists(strFullOutJ'ath) then
call DisplayPagc(3, strOutPath, strlD)
else
Response.Write "<card id="'main'" lubcl•"'Menu"'>" vhCrLr
Res] nse, Writo "<pxThcrc i no 111 ·nu</p>' & v1 'rLf
Re ponsc, Write '<Icard>' & vbCrLf
end if
end if
o/o>
</wml>

98

Univ
ers

ity
 of

 M
ala

ya

Appendix E: Coding- Visual C++

1. File: FlexDisplay .cpp

II FlexDisplay.cpp: Implementation of"CFlcxDisplay
#include "stdafx.h"
#include "WAC.h"
#include "FlexDisplay.h"
#include<allconv.h>
#include<string.h>
using narnespacc std;
using namespace std;
1111111111111111111 I/ I II I II I I I I II I I I I II I I I /I I I// I I ///I I I! !I I I /I I I I ///I I I/ II I I
II CFlcx.Display
STDMETHODIMP CFicxDisplay::FlcxProcDisp{USTR bstrDomainUrl, OSTR bstrSrcFilc, 13STR bstrOutPath
• Bsm. bstr!D, BSTR •pbPageJndcx)
{
AFX MANAGE ST/\TE(/\Cx 1clStatioModulcStaL00)
II TOTx): Add yo~ir implementation code hero
US ·S_CONVERSION;
m_sDomainUrl = OW2T(bstrDomainUrl);
m_sOutl'alh = OLE2T(bst utPalh);
m_sSrcFile = OLE2T(bstrSrcFilc);
m_slD = OLE2T(bstr10);
string sSroLocation = "";
sSrcLocation = m sOutPnth + m sfD "\\" 111 sSrcFilc;
String pszl ltm I; - -

FILE •fSrc;
f'Src = Copen(sSrcLocation c_strO, "r");
char ch;
while((ch= fgctc(fSrc)) I• EOF)
{
pszJ ltrnl +=ch;
}
'Node •pNodc new 'Node;
COutProct.-ss •p()ut = new 'OutProce. s;
string sOut = "";
II ProccssNodc pszl ltrnl, pNodc);
II if(pNodc->1 Ia Child)
II pNode-> et 'hildNode(. Out),
II pOut->ProccssOutput(pNode, m_sOt111'01h, m_slD); 1/IJsing linked pointer.
SpccilicPu h(pszl itrnl, pNodc);
ifllm_bWap)
p()ut->SpecificOutpulProec s(pNodc, m_sOutPath, m_ II), m_sDomainlJrl), //Pushmg
all to one.
else
p()ut->WupOutput(pNodc, rn_ ~c)utPuth, m_ 11 , rn_sl rn 1111Url • //l\1xl11ng
all tu one (WAP);
if(ut->Crc11tcl11dcxFtlc rn u1Poth, m , fl))
{ -
1•
Ind ·x file being crc.:itcd.
•1
}
fclosc(fSrc);
d ·I ·to pOut,
dcl•t pNod·,
1ctum S OK;
} - , ••.........•...............•...........................•............. ,
I , ••.•..............•.....•.......•...•..•......•.•.•...•.........••... ,
'Ntl<J • .,.., . 1 1 p111 1 ·1P1 , 11 u N tr C'N1 It•• r ·11111·111N11.i1., t1111~ t r111pl
{
t•

(I th Ill I IUll II< k

I 1(1.11 'II(I k(• , , 111p
•.-11111.\N.1111•)

, ..•.....•....•......•...•... ,
,... ,

99

Univ
ers

ity
 of

 M
ala

ya

void CFiexDisplay::PushNode(CNode* pCurrentNodc, CNode* pTl.mpf>ushNod(.))
{
1•
Pushing Nodes: Push nodes into structure.
•1
pCurrentNode->AddChiJde(pTempPushNod.e);
pCurrentNode->SetConlenl("Cl I I LO");
while(pTempPushNod.e->HasParentO && pTempPushNode->GciJ>arcntNodcO l pC11ncntNod
{
pTempPushNode = pTempPushNode->GetParentNodcO;
pCurreotNode->AddChilde(p'Fempf'ushblodc);
pCum>ntNode-> elContcnt("CHILD");
}
}

1··1
/•••••••••••••Generic push function, not used••••••••••••••••••••••••/
void CFiexDisplay: :ProccssNodc(consl char •pszlltml, CNodc *pCurrcntNodc)
{
const char" pszProcl Itml =new char;
const char• pszBackup = new char;
char ch;
string s'I'emp;
string sNamc;
string s Property;
string sJ>ropValuc;
string sContcnl = "";
CNode *pTcmpNode = new Node;
CNodc •pTcmpPushNodc new 'Node;
ps.illockup = pszl ltml;
while((ch= *(psz! hml)) I= NULL)
{
if(ch '<')
{
ift (ch=•(psz! lrml)) = '/')
{
1•
Push Node: .reetc the tree structure.
•1
while((ch=*(psz! ltml+r)) - '>')
s'l'emp +- tolowcrrch);
=pszl ltml;
if(sTcmp = pCu.m.11lNod • JctTugNomc))
{
if(pCurrcnlNode->! !asParcnt
{
(pCurrenlNode->GctParenlNodcO)->Add hild (pCurrcntNodc).
(pCurrcnlNodc-> 1etP11rl.-nLNodc)->Set 'ontcnt(" '!!!I.I "),
r 'urrcnLNodc = µCurrcntNod •-> 'ctP 1rcn1Nodc ,
}
}
else
{
2
//Recursive proccs lo get th· parent node.
pTcmpPushNocfo pC:ut11mlNod \
pCurrcntNodo • UctPruV1ousNod..:(I 'un :ntNod , , l' ·rnp),
PuRhNodc(pCun..:ntNod '. rT ·mrPushNoo' .
}
sTemp •••
}
..:lsc ii\ ch ")
011111111 •,

Cf"
I
··p 1[[(111[,
1•
l •K N tn1 l'u ·. N111K 1 t lh f\1111\<' nl ·1111 11 I 11M
•1

100

Univ
ers

ity
 of

 M
ala

ya

{
if(!(pCurrentNode->GetTagNameQ.emptyO))
{
pTempNode->SetTagName(sName);
pTempNode->SetParentNode(pCurrentNode);
pCurrentNode = pTempNode;
pTempNode = new CNode;
}
else
{
pCurrentNode->SetTagName(sNamc);
}
if(ch=")
{
1•
Property Processing: Get the properties for current tag.
•1
while((ch= *(pszl ftml++)) f; '>')
{
if(ch= 'c')
{
whilct' (ch= *(pszl ltml++)) I= '>')
{
if(ch=' ')
break;
else
sPropValue +=ch;
}
pCurrmtNodc->SctTagPropertics(sPropcrt • sPropVuluc);
sPropValuc = ••;
sPrnpcrt = "";
··ps:t.I Itml;
}
else if(isalpha(ch))
sPropcrt +-ch;
}
--pszl Itml;
}
sNamc= ":
}
}
}
else if(chi='<' && ch!-'>')
3
{
r•
'ontcnt Processing: Gelling tho Text content.
•1
=pszl ltml;
while(ch •(ps,d11.ml
s 'ontcn; i ch;
ii'(Is 'ontcnt.emptyO)
{
pCurrcnlNodc->S l 'ont ·nt('ont mt),
l
--p~ll Itrnl;
s on tent '".

1•··1 t•••••••••••••••P11 h 1111 hc111••••••••••••••••••••••••••••••••••••u•1
void 'Fl xi i ·pli .. : 111 1'11.,h msl i;n • p 'I lt111J, 'N• I• •1 s1 ·t11 t 11 h)
{ ,.
html h•nd
II-lilt-In
II-till
11 • npt co11to1101)
11 . . I Ill (1~,11111111)
11-tink 1ir11 11.il)
I
I hud
11-1 ble
111--tr
111-td

101

Univ
ers

ity
 of

 M
ala

ya

/ / /----standard element
II
/ /--standard element
I
1---script(optional, not included) .,
const char" pszf'rocl-ltml =new char;
const char" pszBackup =new char;
char ch;
string s'I'emp;
string sNarne;
string sProperty;
string sPropValue;
string sContent = "";
CNode *pTempNode = new CNode;
CNode *pTempCloseNode =new CNode;
II CNode *pTcmpPushNode =new CNode;
pszBackup = pszHtml;
while((ch= *(pszHtml++)) I= NULL)
{
if(ch='<')
{
if((ch=*(pszl ltmH+)) = '/')
{
1•
Closing tag: If' it's the some, with current node,
skip it; If not, push the temp node into the structure
and skip the closing wg . . ,
while((ch=*(pszl ltml)) I='>')
s'l'cmp += rolowcrrch);
s'!' nnp "t" . Temp;
if(lsTemp.cmptyO)
4
{
ii~ pTcrnpClos ·Node->GclTugN irn · .crnpt O)
{
p'l'cmpCloseNode·>SetTagName(sTemp),
if(lpTempNode->GetTagNomeO.cmpl ())
{
pSpecificPush->/\ddChildc(p'rc.'ll1pNode);
pTcmpNode = new Node;
}
pSpceificPush->/\dd hilde(pTcmpCloscNodc),
pTempCloseNode =new CNodc,
}
s'I'emp .. "";
)
}
cl • if(ch ' ')
{ ,.
Filtering the comment 111g
•1
char chNcxl;
II string sEndCommcnl '":
in ch •ep. 11111111++) ·.·)
I
lit (ch 0(ps1l llml t))- '.')
{
do
(
II p. 11 ltml H,
·h •p 1110111,
hN XI 0(f Ip 1llt1111),
)wh1l • I (·h '·'). 1\l (•hN1· I ' ')))
I
I
}
I
l

11 1l lt111I, ,.
I 11B Num · 171 • ·ssintt Ci ·1thr11.1m • 111' 'lllH'IH I 1i.1 .,
wh1k{ (h •(p. 11 ltmli I)} I '}

102

Univ
ers

ity
 of

 M
ala

ya

{
if(ch='')
break;
else
sName += tolower(ch);
}
if(sName ="script")
{
I*
Filtering the script tag.
*I
string sEnd = "";
while((ch=*(pszHtml++)) !=NULL)
{
if(ch='<')
{
if((ch=*(pszHtmH+)) = '!)
{
while((ch= *(pszHtml++)) I='>')
slind += tolower(ch);
if(sEnd = "script")
{
if((ch= •pszHtml) = "")
{
slind = "";
5
continue;
}
else
{
--ps:d ltml;
break;
}
}
else
{
sEnd ":
}
}
}
}
sNamc = '":
}
else
{
if(!sNomo.cmptyO)
{
if(!(pTcmpNodo->GclTugNom "inply()))
{
pSpcci licPush-> Add 'hild (p l'empN(:)d • ,
pTcrnpNodc • ni:w 'Nod ,
pTempNodc->SctTogNomc sNomc),
}
el. e
{
pTc.inpNod >SclTogNnrn sNnm •),
I
ilt ch
{

I ropcrt Pw •cssi111l (l •t th ., li>r 'lll'tl'lll IOI{

wh1I · (h '{J>. 1l Itrnl I I)} . ')
I
11(·h ' ')
l
wlule h •1r 111111111 1 I . ')
{
1f(·h '')
I 1c11k,
•I •
JP11i11V11hu• I ~h
I
p I CITif'INO<k• •!'kt I 1jtPt{lp.!1t1c (•fllt)fX'rt~. flhlf ulue ,
sProp V lu ••
.Prt1JM1

103

Univ
ers

ity
 of

 M
ala

ya

+pszl-ltml;
}
else //if(isalpha(cb))
sProperty += tolower(cb);
}
--pszHtmJ;
}
sNam.e= ":
}
}
}
}
else if(ch= '\n' I) ch = '\r')
continue;
else if(ch != '<' && ch !='>')
6
{ ,.
Content Processing; Getting the Text content.
•1
=pszl Itrnl;
while((ch=•(pszl ltmJ++))!='<'
sCootent +s= ch;
if(!sConlcnl.emptyO
{
pTcmpNodc->Sct ontcnl(sContcmt);
}
=pszl lunl;
sContcnl = "";
}
}
delete pTernpNode;
delete pTempCloscNodc;
}

1···1 1••••••• •••••••*Tog ·r she r1 do1nu111•••••• •••• ••••• •• ••••••/
string 'FlexD1splay:.OciShortDon111111(:;1nng. I orru11ntJrl)
f
string sShonDomain;
char ch;
for(int 1:-0;i< Dornainlfrl 11 ;H)
{
ch= sDomoinUrLul i);
sShortJ)omain ch;
if(i > 7 && ch= '!)
break;
}
return sShortDomain;
}

1-···1 /•••••••••To get long dornoan•••••••••••••••••••••••••••••••;
rtring 'Flcxl ispla :.CietLongD mlllfl(•tnng D rnomlJ l)
{
string sLongDomain,
int nf'om],
har ch,

for(i111 i J)(rnoinHrl .1,1 ., .t l.1-)
{
h
if(

· muinlM ut(1),
'!

nP()lrll 1,

b1 ·111...
}
}
fo1 I 0, I 11Pt 11111 I. I' ')

l,tm!tl)t10111111 l I 11111111Jrl t1t(1)

11:111111 I. •ftµ! ft 11n,
)
1•···1
s11 Ml! 11101 IMP 'HI.' 1 a 11 "' \ pl 1 111.i, ns 11, r 111 111.11nlla1, us rn 1 ,11:1 1-11 u:-1 rn t .1101111',1
lh, llS 11 !r>1tU), US 11~ •phJ'.af Ind '

104

Univ
ers

ity
 of

 M
ala

ya

7
II TODO: Add your implementation code here
return S_OK;
}
STDMETHODIMP CFiexDisplay::get_ WmlProcess(DOOL *pVal)
{
AFX_MANAGE_STA TE(AfxGetStaticModuleStatcO)
II TODO: Add your implementation code here
*pVal = m_bWap;
retumS_OK;
}
STDMETHODJMP CflcxDisplay::put_ WmlPr~""Ss(BOOL ncwVol)
{
AFX_MANAGE_STATl.i(J\fxGctStaticModulcStatcO)
II TODO: Add your implementation code here
m_bWap = oewVal;
return S_OK;
}

2. File: Node.cpp

II Node.cpp: implementation of the CNode class.
II
Ill /I I/ I I/ II /I I/ I II/ I///// 11 ///////////I /I I I Ill I/ /I /I //I /I /I I/I Ill II 11
#include "stdafx.h"
#include "resource.h"
#include "Node.h"
#ifdef _o BUG
#undef THIS_FrL
static char THI _FILE(]- _FIL _,
#-define new D •B NEW
#end if
Ill// I I II Ill I I II 11 II II II I II I 1111 II I Ill I I///// //I I I/ I/ I II I/ I/ II/ I/ II I 11
II onstruction/Destruction
I II/ I II/ I I /I I/ II I I I I 111I111III11 II////// 1111 /I II// I II/ I I I I/ II I I I I I II 11
Node:: Node()

{
m ParentNode =NULL;
II m_sName = "";
II m Tag= new Tag;
}
Node::- Node()

{
}
1························1
bool Node::Has ntent()
{
II return m Tag.Has ntcnt)·
return (!m_s ntent. rnpl ());
}
b I N do::H ·ragPr pert
{
return m pTa 1.H
}
void
{

Ill 'II(

ll I)

105

Univ
ers

ity
 of

 M
ala

ya

return m _pParentNode·;
}
boo! CNode::HasParentO
{
return (m_pParentNode !=NULL);
}
bool CNode::HasChild()
{
return (m_sChildNode.size() > O);
}
string CNode::GetTagName()
{
return m_pTag.GetName();
}
void CNode::SetTagName(string sName)
{
m_pTag.SetName(sName);
}
void CNode::AddChilde(CNode* p hildNodo)
{
m_s hild.Node.push_back(p hildNode);
}
1···1 ;•••••uu et hild Node, not used••••••••/
1•
void Node::Get hildNode(string &s ut)
{
vector<string>::iterafor pl;
unsigned int i = O;
sOut += "<" this-> etTagName();
if(this->HasTagProperty(})
this->GetTagProperties(sOut);
sOut-+= ">";
if(this->Has ontent())
{
for(pl = m_sContent.begin();pl<m_s ontent.end();pl)
{
if'((*p I)=" HILD" && this->Has hild())
{
sOut += "\11";
ift m_s hildNode.at(i)->Has hild() II m_ hildNod .at i ->11 ontcnt())
{
m_s hildNodc.at(i)-> et hildNodc Out);
}

else
sOut +a (*p 1);
}
}
Out "<I" -i thi -> ctTa Nam •) t " 1",

} */
1·································1
1··································1
void Nod ·01 pin ont 11(
{
c t r · Inn '

if(1h1. • I Jo.
{
for(p2 Ill .
{
//viowin • lh
}
}

,II 'lilt r p ,
nr ·n1()

nt •111 b m(.r>~ ! m ~ nl'nt t u I(, p t I)

nt ·nt

106

Univ
ers

ity
 of

 M
ala

ya

}
/********************************/
/**•••••••;
void CNode::SetTagProperties(string sProperty, string sPropValue)
{
m_pTag.SetProperties(sProperty, sPropValue);
}
void CNode::GetTagProperties(string &sOut, string sShortDomain, string sLongDomain)
{
m_pTag.GetProperties(sOut, sShortDomain, sLongDomain);
}
unsigned int CNode::GetNodeSize()
{
return m_sChildNode.size();
}
/******************************/
/******************************/
/*
CNode* CNode::GetBodyNode()
{
vector<CNode*>::iterator pl;
boo! bFound = false;
for(pl = m_s hildNode.begin(); pl != m_ hildNode.end(); pH 1-)
{
i ft (*p I)->GetTagName() = "body")
{
bFound = true;
return "p l;
break;
}
}
if{bFound =false)
return NULL;
}
*/
Node* Node::GetNode(unsigned int i)

{
return m_s hildNode.at(i);
}
string NoderGe« ontent(unsigned inti)
{
return m_s ontent.at(i);
}
unsigned int Nodc.: cl ont nt iz
{
return m_s onrent.sizet);
}
1•····································1
1·····································1
1• This fun tion is n t used
void C'Node::01spln hild(
{

111 , p I I Ill :-;(luld ml1• •11tl(), p I I f)

nt em)

107

Univ
ers

ity
 of

 M
ala

ya

(*pl)->DisplayContent();
}
}
}
*/
string CNode: :GetSpecificContent()
{
string sContent = '"';
vector<string>::iterator p2;
ifl this->HasContent())
{
for(p2 = m_sContent.begin();p2 != m_sContent.end(); p2++)
{
sContent += (*p2);
}
}
return sContent;
}
1···················*················1

3. File: OutProcessl.cpp

II Out Process I .cpp: implementation of the 'Outl'roccss ctass.
II
Ill I I/ I I/ I I I/ Ill/ I I I I I I/ I/ I I/ I I I I/ I I I/ I I// I I/ I///// 111III1111I11I11111
llinclL1dc ", rdufx.h"
#include "resource.h"
#includo "Outf'roccss l.h"
llifdcf Dlll3UG
#undcfnJIS FILE
s1111ic char TlllS_FlLEI , .. _FILE_:
#define new DEBUG NEW
l/cndif -
111I!IllIIIll11 /II/ II/ I// I I// 11I1111II111 I Ill/ I/ I//////// II/ I/ I I I/ I/ II
II Constructionll)estruction
I I I I I I/I Ill I I 1111111I11II11 Ill Ill Ill/ I Ill I/ I Ill I Ill II Ill I/I Ill II I I II II
COL1LProccss:: 'OutProcess
{
}
COutProcess: :-COuU'rocc, O
{ .
}
/•function is not used
void 'OutProccs. :·ProccssOutpul('Nooe• pM01nNod , stnng 1110utl'oth, ·tnnll .vii))
{
II size of page 800 x 600 dpt
II number of •gml--nl fX.T page: 4. :gmcnt(ca h !_IJn mt "111 he unn fo1111 I 11110 111rf1v11J11ul h
nkcd pages)
II number of node: p r page: s11d4
unsigned int nscgmcrn 4,
unsigned i11t nNod ::1P ·rP1111- •. ,
un igned int n 'ontcn1S1r ,
unsigned int 11Pos O,
char tmp] IOI,
Fl LE •ft>t1t,
stnns s(111 '".
string sLocu11011 '":
string h 'ontcnt •
'Nod·• plfocl N()(J '
'Nod • p(. 'ut tNod 11 ·11 C'NuJ •

plfoJ Nod pM 1111N1 I · · ·11 k-.1\ Nt I· l.
1 f(pl lod Nock•)
I

kte'o111c11t. II<)

108

Univ
ers

ity
 of

 M
ala

ya

unsigned int nMax;
static unsigned int nContentNav;
static unsigned int nChild.Nav;
nContentNav = 0;
nChild.Nav = O;
nMax = nNodesPerPages;
if(nMax >= 4)
{
for(unsigned int i=O; i< 4; i++)
{
for(; nContentNav < pBodyNode->GetContentSi7.cO; n 'ontcntNavH
{
sContent = pBodyNode->GetContent(nContentNa v);
if((nConlcntNav%nNodcsPcrPagcs) == 0)
break;
else
{
sOut += "<html>\n";
sOut += "<head>\n<lhcad>\n\n";
sOut += "<body>\n";
if(s ontent ="Cf fif .D")
{
pCWTNode = pDodyNodc->GetNodc(nChildNa);
pCWTNode->GctChild.Node(sOut);
}
else
{
sOut += s ontcnt ~ "\n";
}
sOut += "\n</body>\11'';
sOut += "\n<lblml>";
nPag
_itoo(nPagc, tmp, 10);
sl.o ation = S7.0utJ>ath + szll);
sl .ocation "\\";
sl.ocarion trnp,
sl.ocation "i.htm";
fOut = fopcn(sLocotion.c_strO, ·, ");
fprintf(fOut, "%. ", sOutc strO);
fcl osc(IOu I);
sOut= ":
sl.ocation = "':
}
}
}
m_nPagcs = nJ>agc;
}
else if(nMax < 4)
{
for(; n 'ontcntNuv < nMax; n 'ontcntN1
{
sOul " 1tmJ>\n";
sOul "<hcud>\n</hc11d>\n\11";
sOut -t- "<bod >\n";
h '011tcnl pllod Nod-··><lct 'c nt nl(n 'ontt:ntN 1

if(s ontent " 'I JILi "
{
I 'un Nnd pllcxl Nod •• 0 ·1No(.k{11 'JuldN I\ H).
pCurrN(xlc->Oct 'h1ltJNod ·(.Out),
}
cl, •

sOut t ~ '111tcnt;
)
0111 f "\n' xxJ \11".

, Out I "\11~/'11r11l •••

''· lllon 1110111P1th t 111 ,
I ··111011 i "\\ •.
11 1(nl' •ti , tmp, 10 .

RI,(• th(11 ' llllJl.

I .I ·11111111 ' ., '11111•

ft)ut open(1l • 11ino • ~tr~ "" "),
fpnnt(lft)u1, "'Yi. •, C ul • 11),
r 10' •(ll>ul),

109

Univ
ers

ity
 of

 M
ala

ya

sOut = 1111~

sLocation = "";
}
m _ nPages = nPage;
}
}
}
•1
boo) COutProcess::CreateindexFile(string szOutPath, string szll))
{
boo! bCondition;
string sl.ink;
string sl.ocation;
string slndex;
sl.ocation = szOulPalh + szlO;
slndex = sLoeation + "\\i.lxt ";
FILE *Ondex;
Ilndex = fopeo(slndex.c _ str(), "w");
if(llndex)
{
if(m_nPages > 0)
{
for(unsigncd inl i = O; i < m_nPuges; i++)
{
fprintf(flndox."o/odi.htm\n", i 1);
II fprintf(flndex, "\n");
}
bCondition • true;
}
else
b ondition = false;
}
else
bCondition =fol. c;
fcloscrflndcx);
return b<.:ondilion;
}
void OulProccss::SpccificOutputProccs. (Node •pMainNodc,. Inns 10u1P111J1 1nn1;1 111), tnn
g sDomainUrl)
{
unsigned int nScgment = 4;
unsigned int nNodcsPcrPo cs;
unsigned int nPugc 0;
unsigned int nNodcSizc;
string sPropcrtics = "";
char trnp] I 0 j;
char ch;
FILE •t ut;
m_sDomuinUrl • sl muinUrl:
string • ut • ••;
string sl .ocation ••;
string s 'on tent ••;
'Node• pCurrNodc new .Nodo:

nNodcS11.c pMuinNod ·-> I ·tNod ·S11 •).
i~ n.NodcSi1.c > '1)
nNodcsl' ·r Page IO.
lso it' nNodl.lS11 • ii)

nNodc. l'crPogcs nNud S11 ,
w1signcd i11t nMox,
stutic UJl ign J int n '011t ·ntN 1

• tauc un~1s11cd 1nt 11 'h1! IN t\,
n 'onl<.'111N 0,
n 'hildN1.1v 0,
11M11 11Nod ·S11 '.
1t{11M1 11
I
fc.)r(1111 1p,11 1111 1 <l, 11 't111lffitN 1 uMr1 , 1 I I)
(
!111(, n '1111 ·n1N ' nM 1 n ' nti:ntN l\i t)
{
I '1111NtJtl pM11111NP<lc• -(t"INo..k H 't111k11tN,I\)
fl 'h1hlN \ Ii.
1f \1rrNode~ ti •t J n!tN me)
II

"h .td"

'w-rNod ; ti' p.N m "I

110

Univ
ers

ity
 of

 M
ala

ya

"II
pCurrNode->GetTagNameO ="meta" II pCurrNode->GctTagNamcO- "table
" II
pCurrNode->GetTagNameO ="tr" II pCurrNode->GetTagNamcO = "td" II
pCurrNode->GctTagNameO = "tbody" II llpCurrNodc->GctTagNamcO === "im
g" II
pCurrNode->GetTagNameO ="span" II pCurrNode->GctTagNamcO "style
"II
pCurrNode->GetTagNameO ="div" II llpCurrNodc->OctTagNamcO = "stro
ng" 11

pCurrNode->GetTagNameO = "frame" II pCurrNodc->GctTagNameO "from
eset" 11

(strncmp(pCurrNode->GetTagNameO.c_strO. "/", I))= 0)
{
nChild.Nav--;
continue;
}
else if(pCurrNode->GetTagNameO = "br ")
sContent - "<" + pCurrNode->Ge!TagNameO + ">";
else if(pCurrNodc->GetTagNameO = "ul" II pCunNodc-> 1ctT11gNumc "ol
")
ch='•'~
else if(pCurrNode->OetTagNamcQ ="Ii")
{
sContcnt "<p>";
ilt pCwTNodc->J fusContentO)
{
s ontent ch+ pCurrNod 'ctSpccifi 'ontcntO,
sContcnt-+- "\n";
}
s ontcnt +c "</p>\n";
}
else
{
II sConlcnt +- 11 'hikJNuv ":" 4 n 'ontcntNn ,
s onrcnt "<" pCurrNodc->GctTugNnmcO.
if(pCurrNodc->JJas agPropcrtyO)
{
pCurrNooc->(ictTugPropcrtics(sJ>ropcrlics, ictShortl)on1111n , ictl.cng
OomllinQ);
sContent +<= sPropertics,
s Pro pert i es = "';
}
sContcnt -tc: ">\n";
if(pCurrNodc->J l.asContent
{
sContcnt pCurrNodc-><Jct ipecific 'ontcnt ,

sContcnt "\n ";
}
sContcnt +- "</" i pCunNodc->GctTogNumc ,
sContcnt +- "> r>\n",
}
if(n hildNav - nNodc Pc.-rPogc
{
n 'ontcntNuv++;
n 'hildNuv 0,
break;
}
)
if(~ '011tcut "")
{
Out•"";

. 1.ocntion
I fCi)k,

;,(hll I ~l'onknt,
nflogcfi.
11(~1(11P !\ '. tlllf), JO).
Le 101111',Hh I '1111

111

Univ
ers

ity
 of

 M
ala

ya

sOut= 11";

sLocation = "";
sContent = "";
}
rn _ nPages = nPage;
}
else if(nMax < 4)
{
for(; nContentNav < nMax; nContentNav++)
{
pCWTNode = pMainNode->GetNode(nContentNav);
if(pCWTNode->GetTagNameO ="html" II pCWTNode->GctTagNamc "head" I/
pCurrNode->GetTagNameO ="title" II pCurrNodc->GetTagNamcQ = "body" II
pCurrNode->GctTagNameO ="meta" II pCurrNodc->(ietTagNameO "tablo" 11
pCurrNode->GetTagNarneO = "tr" II pCurrNode->GetTagNamc() = "td" II
pCurrNode->GetTagNameO = "tbody" 11 //pCurrNodc->GetTagName - "img" I
I
pCurrNode->GetTagNameO = "div" II pCurrNode-> ictTagNarneO = "span" II
pCurrNode->GetTagNameO = "style" II
pCWTNode->GetTagNamcO ="frame" II pCurrNodu->Gc1T1.1gNamc "Irumesct
" II
(strncmp(pCurrNodc->GetTagNameO.c_strO, "/", I))= 0)
{
s ut = "";
continue;
}
else if(pCurrNode->GetTagNameO = "br")
sContent +- "<" + pCurrNcxle->(letTugNome ">",
cl o if pCurrNodu->OclTagNamcO= "ul" II pCurrNodc-->Gc!TugNumcO "ol")
ch='•';
else if(pCurrNodo->ClctTap,NamcO "Ii"
{
sContcnt += "<p>";

if(pCtUTNodo-->l lus ' mlcntQ
{
sCon1c111 +•ch pCurrNodc->Gct 'pccilic 'ontcnt(),
sContcnl += "\n";
}
s 'ontcnt "</p>\n";

else
{
//sOut "smaller";
sOut += "<" + pCurrNodc-->GctTagNamuQ;
if(pCurrNodc->I Ias'Tagf'ropert O)
{
pCurrNode->UctTagPropcrtics(sPropcrtiu , Jct. 'hortDonu1111 , (ictL0111,.tl < m 1
in);
s< ut +- " • sPr pcrtics:
sOut "\n";
s Propcrti c. "•;
}
sOut += ">";
if(pCurrN<xlo->l 'lab 'ontcnt
{
sOut ·I I 'u.nNode l ·t~J · rfi 'c>rH ·111().
)
sOut "</";
· ut 'urrNocl ·- CJ ·tTnp,N 1m •),
sOut I • b \11";
}
nPu ·H,
Locurmn d. u1P111J1 1 ... 11 ,

~J.o 'lflOll I "I\",
1tt>11(11Jl11~ • llllp, 10).
l,c • 11to11 i Imp,
Le ·•!ton I •, htn1".
ft)u(fol 'II((.o' l!Hlll
fj)111Hl(ft}u1, •n4 ", (111
fclo. 10111).

lt .• ,\ "),
•II)),

(ut ... \
l.t '1111111

m nPoR
I

112

Univ
ers

ity
 of

 M
ala

ya

else
{
m_nPages = O;
}
}
string COutProcess: :GetLongDomainO
{
intnPos;
char ch;
string sTemp = '"';
nPos = m_sDomainUrl.rfind('t);
if(nPos > 0)
{
for(int i=O; i<nPos+ I; i++)
{
ch= m _sDomainUrl.at(i);
sTemp+=ch;
}
}
else

sTemp = m_sDomainUrl + '/';
if(ls'I'emp.emptyf))
return s'Temp;
else
return "No Domain specified";
}
string COutProccss::GetShort.DomainO
{
int nPos;
char ch;
string sTcmp = '"';
nPos = m_sl)omainUrl.!ind(/'. 7);
if(nPos > 7)
{
for(int i=O;i<nPos;i++)
{
ch= m_sDomainUrl.aL(i);
sTcmp+=ch;
}
}
else
sTcmp = m_sDomainUrl;
if(ls'Tcrnp.cmptyf))
return sTemp;
else
return "No Domain";
}
void COutProcess::PutWap(BOOL bWap)
{
m_bWopProccss = bW11p;
}
vc\id tOuU'rocc. s::W11pOl1tput(CNodc •rMainNorJ··. string ~/.Outl'uth. 'lnnp. S/ID. s1t11114 •!:>rnn.1111\111
)
{
unsigned i11t 118cg1 neut ~;
unsigned int nNodcsPl.-rPagcs;
unsigned int nPag • O;
unsigned int nNo<leSi1.c;
siring sPropcrtics = '":
char clJI;
char trnp] 101,
FILE •fUul;
m_sJ)omuinUrl sl nnuml Irl,
stung sOul
siring 11 Jt 11100 "\
string s 'nn1cn1
'Nocfo• I 'unN<Klo 11 w 'Nod •

nNod •Sii'c pM11i11Nod · (i ·tNod ·811.c(),
1f(nNod S11 • 4
nNo<lt:MP rPngt:.
else if(11Noc.lcS11 •l)
nNod., I' ·rl' 1gc. nN01kS11c.
unngned tnl nMa ;
slntic unsign ·d int n 'onl 'ntN 1 •

static unsign ·d 1111 n 'h1ldNuv;

11

Univ
ers

ity
 of

 M
ala

ya

nContentNav = O;
nChildNav = O;
nMax = nNodeSize;

if(nMax >= 4)
{
for(unsigned int i=O; i< 4; i+r)
{
for(; nContentNav < nMax; nContentNav-H-)
{
pCurrNode = pMainNode->GetNode(nContentNav);
nChildNav-H-;
if(pCurrNode->GetTagNameO ="html" II pCurrNode->GelTagNameO ="head"
II
pCurrNode->GetTagNameO ="title" II pCurrNod.e->GetTagNameO = "body
"II
pCurrNode->GetTagNameO ="meta" II pCurrNode->GetTagNameO ="table
"II
pCurrNode->GetTagNameO ="tr" II pCurrNode->GetTagName() = "td" 11
pCurrNode->GetTagNameO = "tbody" II pCurrNode->GeLTagNameO ="th"
II
pCurrNode->GetTagNameO ="style" II pCurrNodc->GctTagNameO = "img"
II
pCurrNode->GetTagNameO ="span" II pCurrNode->GetTagNameO ="div"
II
pCurrNode->GctTagNamcO = "frame" II pCurrNodc->GclTugNamcO-== "f1u111
eset" II
(slrncmp(pCurrNode->GetTagNarneO.c_strQ, "/",I))= 0)
{
nChildNav--;
continue;
}
else if(pCurrNodc->GctTagNamcO = "ol" II pCurrNodc->GctTagNamcO "ul
")
cUI = '-';
else if(pCurrNode->GetTagNamcO ="Ji")
{
sConteut "\n
";
sContent += oUI;
ilt pCurrNode->[lasContcntO)
{
sContent += pCurrNodc->GetSpccificContentO;
sContent += "
\n";
}
}
else if(pCurrNodc->GetTagNameO = "br")
sContent += "
";
else
{
sContent += "\n";
if(p urrNodc->l fosCont<-'11l0)
{
sContent += pCurrNode-> 1ctSpccific 'ontcnt
}
}
if(nChildNav = nNodcsPcrPuges
{
nConl<-'11lNav++;
n hildNuv = O;
break;
}
}
ift sContcnl ""-" "")
{
)ul ••;
Lo ht l'1 ••
break;
}
.-(ut 1 ~ 'ont •nt,
nl'us 11;
itou(nPup,u, l111p, 10);

Ml.O 11<)11 sd }utPoth ~ /II),

Lo· uron 1 "\\ •,
. Location i• I.mp;
~Locntion ~ "i him";

l 1

Univ
ers

ity
 of

 M
ala

ya

tout= foperusl.ocation.c strt), "w");
fprintf(fDut, "%s", sOut.c_strO);
fclose(tout);
sOut= 11";

sLocation = "";
sContent = "";
}
m _ nPages = nPage;
}
else if(nMax < 4)
{
for(; nContentNav < nMax; nContentNav++)
{
pCurrNode = pMainNode->GetNode(nContentNav);
if(pCurrNode->GetTagNameO ="html" II pCurrNode->GetTagNameO ="head" II
pCurrNode->GetTagNameO ="title" II pCurrNode->GetTagName() = "body" II
pCurrNode->GetTagNameO ="meta" II pCurrNode->GetTagName() ="table" II
pCurrNode->GetTagNameO = "tr" II pCurrNode->GetTagNamcO = "td" II
pCurrNode->GetTagNameO = "tbody" I/ pCurrNcxle->GetTagNameO ="th" II
pCurrNode->GetTagNameO ="style" II pCurrNode->GetTagNamcO = "img" 11
pCurrNode->GetTagNameO =="span" II pCurrNode->GctTagNamcO ="div" II
pCurrNode->GetTagNameO =="frame" II pCurrNode->GctTagNamcO = "framcscr
"II
(strncmp(pCurrNodc->GctTagNameO.c_strO, "/", 1)) = 0)
{
sOut= '":
continue;
}
else if(pCurrNcxlc-> ictTagNamcO = "ol" II pCurrNodc->GctTugNamcO =- "ul")
cUl='-';
else if(pCurrNodc->OctTagNamcO ="Ii")
{
sContcnt "\n
";
sContcnt += clJI;
if(pCurrNodc->l lasContcnlO)
{
sContcnt pCurrNcxlc->GctSpccificConlcntO;
sContent += "
\n";
}
}
else if(pCurrNcxle->GctTagNumcO = "br")
sContent += "
";
else
{
sContent += "m";
if(pCurrNodc->1 JasContcntO)
{
sContcnt += pCurrNodc->GctSpccilicContcntO;
}
}
nf'agc++;
sl.ocation = s:1.0utl'oth + szll);
sl.ocation += "\\";
_itoa(nPagc, unp, 10);
sl.ocation +-= imp;
sl.ocation += "i.htrn";
IDut = Iopcntsl.ocuuon.c jsu(), "w");

fprintf(IDut, "%s", sOut.c strQ),
fclosc(t);
sOut=11";

sl.ocation • "";
}
m nJ'a cs
} -
IH

{
m_nPag,c
}
}

o· '

115

Univ
ers

ity
 of

 M
ala

ya

4. File: Property.cpp

II Property.cpp: implementation of the CProperty class.
II
////////////////II II/////////////// II/// II// II II I /Ill// II I /Ill// II II//
#include "stdafx.h"
#include "resource.h"
#include "Property.h"
#ifdef _DEBUG
#undef THIS _FILE
static char THIS_FILE[I= _FILE_;
#define new DEBUG_NEW
#endif
lllll////llllll//lll
II Construction/Destruction
II//////////// II// I/////// Ill/ II///// I I I///// II I///// I//// I// I//// II//
CProperty: :CPropertyO
{
}
CProperty: :-CPropert y0
{
}
1••••••••••••function Lo set value•••••••••••••;
void CProperty::SelProperty(string sPropcrty)
{
m_sProperty = sProperty;
}
void CProperty: :SctPrc p V aluotstring sProp V aluc)
{
m_sPropValuc = sPropValuc;
}
1••···1

5. 1~ ile: Tag.cpp
II Tag.cpp: implementation of the C'Tag class.
II
/l//l///l///////l/ll//////ll/ll/////lll///ll////////l//lll!ll///////ll
#include "stdafx.h"
#include "resource.h"
#include "Tag.h"
#ifdcf DEBUG
#undefnHS FILE
static char TlflS_FJLEI != _JiILl2_;
#define new DEBUG_NEW
#endif
/I I/!/ I I I I! I I/// I/ I I I/// II I/// I//// I /I// I/ I I/// I////// II II//// I/// I/ I I
II Construction/Destructicn
////I/ 1 ///////I/////// II/ I I// I I I /////I I// II I///// I I/// I/ 1 //////11 /Ill/
CTag::CTag()
{
}
Tag::....CTugO

{
}
1··1
void CTug::SctContcnt(string s .ontent)
{
m_ onlA..-nl.push_lwck(~ 'ontcnl);
) ,•............................• ,
1··1
void ''1'111:1::8 ·1N111m: 111ng aNt1111)
{
m_sNumc N 1111 ,

1··1 ,•......•...................•.................. ,
void 'TUR. Hcll'rop ·ni-. (sl11ns Pwpcn • Ht11nl' Pr< pV 1111,·)
{
'Prtlpcr1 •p'f'llmp;

p't'cmp « new CJ>rop1."11
pTcmp->SctProp ·rty(11Prnpcr1);

116

Univ
ers

ity
 of

 M
ala

ya

pTemp->SetPropValue(sPropValue);
m _pProperties.push _ back(pTemp);

} , , , ,
void CTag::GetProperties(string &sOut, string sShortDomain, string sLongDomain)
{ ,.
To get all the properties of a tag . . ,
vector<CProperty*>::iterator p I;
string sTernpProperty;
string sTempPropValue;
for(pl = m_pProperties.beginO; pl l= m_pProperties.endQ; pl++)
{
sTempProperty = (*pl)->GetProperty();
sTempPropValue = (*pl)->GetPropValueO;

if((*pl)->GetPropValucQ.at(O) = "")
sTempPropValue = (*pl)->GetPropValueQ.substr(l, ((*p l)->GetPropVulucQ.lcngth0-2))

else
sTempPropValue = (*pl)->GetPropVulueO;
if(sTempPropcrty = "onclick" II sTempPropcrty = "onsubmit" II
sTempProperty = "onload" II sTcmpProperty = "onmouscdown'")
{
sTempProperty = "";
sTcmpPropValuc = "";
continue;
}
if(sTempPropcrty = "src")
{
if(sTcmpPropVoluc.ot(O) = '/')
{
t• if the first char is a slash*/
sTcmpPropVoluc = sShortDomain + sTempPropVuluc;
}
else if(sTcmpPropValuc.find("ht1p://") = 0)
sTempPropValuc = sTempPropVoluc;
else
{
/*if the first char is neither 'h' of http nor slash•/
sTempPropValuc = sLongDomain + sTcmpPropVulue;
}
}
else
sTcmpPropValue = sTempPropValuc;
t• else if(sTempProperty = "href")
{
if(sTempPropValuc.at(O) ='I')
{
/*if the first char is 11 slash
sTempPropValuc = sShortDomain + sTempPropValuo,
}
else if(sTcmpPropVuluc.al(O) 'h')!fuse the siring. enrch lo search for th • · i. 1
ent ofhttp:/I
{
/*no process
}
else
{
I* if tho first char is neither 'h' or http nor. lush
sTempPropValuc sLongD01ru.tin; sTcrupPropVolu ••
}
} .,
sOul 1 " • ; • Templ'tolll:riY I " ",
Out 1 '"' -i sT1..111pl'ropV11lu · t '"',
~TcmpP1opc11 ""·
~T ·mpJ>1opV 1luc
}
} ;·························· / ,•....................... ,
oool CTug::l l11sP10pc111csO
{

117

Univ
ers

ity
 of

 M
ala

ya

return (m _pProperties.sizeQ>O);
}
boo! CTag::HasContentO
{
return (!m_sContent.ernptyO);
}
l********************************I

6. File: WAC.cpp
II WAC.cpp: Implementation ofDLL Exports.
II Note: Proxy/Stub Infonnation
II To build a separate proxy/stub DLL,
II run nrnake -f WACps.mk in the project directory.
#include "stdafx.h"
#include "resource.h"
#include <initguid.h>
#include "WAC.h"
#include "WAC i.c"
#include "FlexDisplay.h"
CComModulc _Module;
BEGrN _OBJECT_ MAP(ObjectMap)
OBJECT_ ENTR Y(CLSID _FlexDisplay, CFlexDisplay)
END_ OBJECT _MAPO
class CWACApp : public CWinJ\pp
{
public:
II Overrides
II Class Wizard gcncrutcd virtual function overrides
II{ {i\FX_ YIRTUi\L(CWACApp)
public:
virtual BOOL lnitlnstancct);
virtual int llxitlnslanccO;
II} }AFX_ VIRTUAL
II{ {AFX_MSG(CWJ\CJ\pp)
II NOTE - the Class Wizard will add and remove member function. here.
II DO NOT EDIT what you sec in these blocks of generated code I
II} }i\FX_MSG
DECLARE_ MESSJ\GE_MJ\PO
};
BEGrN_MESSAGE_MAP(CW J\Ci\pp, CWinJ\pp)
II{ {AFX_MSG_MAP(CW J\CApp)
II NOTE - the Class Wizard will add and remove mapping macros here.
II 00 NOT EDIT what you see in the e blocks of generated code!
//} }AFX_MSG_MAP
END _MESSJ\GE_MAPO
CWJ\CApp thc/vpp;
BOOL CWACJ\pp::lnitlnstancc0
{
_Module.lnit(ObjectM11p, 111_hl11st nee, &I.IBID WJ\Cl.ib);
return CWinJ\pp::lnitlnst.ance();
}
int CWACJ\pp: :Exitlnstancc
{
_ Modulc.Tcrrm);
return CWinApp::Exitlnslancc();
}
I I/ I I I I I//// I I I II I I I/ I I I I/ I I I I I I I I// I I/ I I/ I I I/ I I II II I 1111IIII11III/IIII11111 I
II Used to determin ·whether the DLI. con be unloaded h (l.E
S'll)J\PI 1)11 'anlJnloodNow(v111d)
{
AFX_MJ\NJ\GE STJ\TE(Af GetSlllticM11dulcSt11t ·O),
return (J\fxl)ll '1111Unlo11dNow(S OK Mod11l •< ·tl.1 k '01111t) 0) '/ S OK S F I SF,
}
///I/ I I// I// I I II/ I I/// Ill I I 11 I// I I// Ill I I/ I!////// 11 I I Ill Ill II I I I 11Ill111 /I II
II Returns 11 clus, liic101 to c1 • 111i 1111 ohJ • •t of th r 111 • t I l 'I
STl)J\PI I ll<lct 'lo sOhj ··t(REF 'I.Sil 1 ·I id, IWFlll) 111 I. I PVOIJ)• 1 p\)
I

return MoJ11lo.Clc1 'lo. ·Obj 'l(I laid, 111<.I, r p).
}
/l//l/ll!ll/lll//ll/ll//lll//l!/l/ll//l/lll//l/l//1/llllllll!ll!lllll/llll/ll
II DllRcg1< tcrS rver ~Adds mrn •. to ibe H st ·m r.:jl.l t
STDAPI I lllfop,istl."TScrvcr oid)

118

Univ
ers

ity
 of

 M
ala

ya

II registers object, typelib and all interfaces in typelib
return_ Module.RegisterServer(IRUE);
}
!/////////!//!//////l///l/l/l/l///lll/lll!llll/l!////lllll/////!/////lll/ll!I
II DllUnregisterServer - Removes entries from the system registry
SIDAPI DllUnregisterServer(void)
{
return_ Module. UnregisterServer(fRUE);
}

7. File: W ACTear.cpp
II WACTear.cpp : Implementation ofDLL Exports,
II Note: Proxy/Stub Information
II To build a separate proxy/stub DLL,
II run nrnake -f WACTearps.mk in the project directory.
#include "stdafx.h"
#include "resource.h"
#include <initguid.h>
#include "WACTear.h"
#include "WACTear_i.c"
#include "Wacl ltmTear.h"
CComModulc Module;
BEGIN_ OB.IECT _ MAP(ObjectMap)
OBJECT ENTR Y(CLSID Wacl-itm'l'ear, CWacHtmTear)
END_OBJECT_MAPO -
class CWACTcarApp: public CWinApp
{
public:
I I Overrides
II Class Wizard generated virtual function overrides
//{ {AFX VlRTUAL(CW ACTearApp)
public: -
virtual 1300L lnitlnstancc();
virtual int Exitlnstancct);
//} }AFX VIR11JAL
//{ {J\.FX=MSG(CWACTcarApp)
II NOTE - the Class Wizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks of generated code I
//}}AFX MSG
DECLARE_ MESSAGE_ MAPO
} ;
BEGIN_MESSAGE_MJ\P(CWACTearApp, CWinApp)
//{{AFX MSG MAP(CWACTearApp)
II NOTE-:: the Class Wizard will odd and remove mopping macros here,
II 00 NOT EDIT what you sec in these blocks of generated codel
//} }AFX_MSG_MAP
END_MBSSAGE_MNJO
CWACTcarApp theApp;
IJOOL CWACTcarApp::JnitlnstanceO
{
_Module.lnit(ObjeclMap, m_hJnswncc, &LJDU)_ WA 'Tl~ARL1b);
return CWinApp::fnillnstoncc();
}
int CWACTcarApp: .Exitlnstancc
{
_Module. Ternu);
return CWini\pp:: l~xitlnstonee();
}
///////I 11 I////////// I I! II///// I/ I II 111I/II11I11 II I /!!I /II I !I/ I !I/ I// II/ I I/ II
II Used lo determine whether the DLL con be unloaded h 01.f\
STDAPI Dll 'unUnloudNow(oid
{
AFX_MANACjlUffATl\(A~ lctSt1111 Mod11l ·S1.11c()),
return (Alid)I! 'onllnfoudNow S OK '• M01l11l • (cll.1 •k 'onn1
}
I////!// II/ I/ 1/11// I I 111/II111 !////I I I I II II! I II Ill 111 I! I I I/ I! I I I I I 1/111!1 /I II
II Return 11 In. H Iii to to ·1 • 11 1111 OhJCCI of ih 1 • fu •. t 1 t I •
S'll)API l Jl(Jc('luff. Objoct(lmF 'I.Sil rel id, l~EFlll 11111, I 11VOll • f'I \)
{

)) ' S)" S F I SI•

1 ·tum _Modul ·.Oct 'lnssObjccl(r ·!Rid, n1d, ppv),
)

119

Univ
ers

ity
 of

 M
ala

ya

////ll///////////l/////////l///////////lll//llll///////////////ll////ll//////
II DllRegisterServer - Adds entries to the system registry
STDAPI DllRegisterServer(void)
{
II registers object, typelib and all interfaces in typelib
return _Module. RegisterServer(TRUE);
}
/////II II/////// II II/// II//////// II//// I/////////// II////////////////////////
II DllUnregisterServer - Removes entries from the system registry
STDAPI Dl!UnregisterServer(void)
{
return _Module.UnregisterServer(TRUE);
}

8. File: WacHtmTear.cpp

II Wacl-JtmTear.cpp: Implementation ofCWacI-JtmTear
#include "stdafx.h"
#include "WACTear.h"
#include "WacHtmTear.h"
#include "TearData.h"
#include "direct.h"
#include "io.h"
#include <atlconv.h>
////////////1////1//// II///// I////////// !II /II////// II///////// II I //II /I !II II
II CWacHtmTcar
13 L CWacl ItrnTeur::_InitQ
{
return m_info.lnitQ;
}
int CWucJJtrnTcur::_MakcDir(LP STR pszFileNumc)
{
cons! int SUCCESS = O;
const int ERR NOT FULL !'/\Tl I= I;
cons! int ER.R=MAKi:_rnR-= 2;
TCH/\R szDrvl_MAX_DRIVEI;
TCHAR szDirl_M/\X_DIRI;
TC! l/\R szFNamel_M/\X_FNAME!;
TCI l/\R szExtL_MJ\X_l~XTI;
TCllJ\R szPathl_MAX_P/\TIIJ;
_ splitpath(psz.FileName, szDrv, s1J)ir, si.FName, s:d~xt);
if(strlen(szDrv) = 0)
return ERR NOT fULL PA Tl I;
//make directory ~me including drive name.
sprintf(szl'ath, "%s%s\O", s1.Drv, szDir);
if(_aocess(szJ'ath, 06) = -1)//path exists? access permission? using ANSI '\.~mo.
{
TCHA.RszTmpl_MAX_PATlll;
LPS'ffi. pos = strchr(szPath, '\\');
do
{
pos = strchr(pos+ I, '\\');
if(pos I= NULL)
{
strcpy(szTmp, szf'ath);
sz'Implpos - si'Puthj = '\O';
}
else if(s1.Pathl strlen(s1J>ath) - I] I '\\')
strep (sz'l'mp, s1.P11th);
else //no more.
return O;
if acccsstszfrnp, 0) = -1) //sec if it ulread c 1;t. .

//1111ko dir ''l()I
if(_mkd1r(N1.Tmp) -1)
return EJm MAKE J IR,
}
[wlul •(po NlJl.L),

return Sll · 'ESS,
)
I !RESULT 'Wool Itrn'l' · 1r · I~ ·portl'.n1n(l.I ·s·1H1w. I llU·:stJl. I hHc:ttm1 I I t~t·:-.llt l hl-n um)
{
uses 'ONVl~lt ION,

LO

Univ
ers

ity
 of

 M
ala

ya

Error(T20LE(psz), GetObjectCLSIDO. hErrNum);
return hReturnVal;
}
SIDMETHODIMP CWacHtmTear::_ StrToVarArray(LPCS'JR psz, V ARlANT *pvar)
{

SAFEARRA YBOUND sabBound;
SAFEARRA Y *psa.Array =NULL;
HRESUL T hResult;
VARIANT varEiem;
V ariantlrllt(&varElem);
V_ VT(&varElem) = VT_Ull;
hResult = VariantCiear(pvar);
if(F AILED(hResult)) return hResult;
V_VT(pvar)= VT_ARRAY I VT_VARIANT;
sabBound.cElements = strlen(psz);
sabBound.lLbound = O;
psaArray = SafeArrayCreate(VT _VARIANT, I, &sabBound);
if(!psaArray) return S_FALSE;
V ARlANT HUGEP •pvarArray;
hR.esult = SafeArrayAccessData(psaArray, (void 1-fUGt::P• FAR•)&pvarArray);
if(F AILED(hResult))
{
SafeArrayDest.roy(psaAmiy);
return hkesult;
}
for(int i=O; i<(inl)strlen(psz); i++)
{
V _Un (&vurElem) =(unsigned chur)pszl i];
pvarArray(ij = varElem;
)
SafcArrayUnacccssData(psaArray);
V _ARRA Y(pvar) = psaArray;
return S_OK;
)
STDMETI IODJMP CWocl JtmTeor::Ge1Pogc(BSTR bstrl Jrl, short nMclliod, 13STR hsW 1 loud, mrm b ttFihuun
e, BSTR bstrl.Iscmamc, IJSTR bstrPassword, V /\Rl/\NT_13 X)l. •pbR1:sult
(
AFX_M/\N/\GE_STATE(/\fxGetStaticModuleStatcQ)
II TOOO: Add your implementation code here
USES CONVERSION;
•pbRe-;ull =(VARIANT _BOOL)OxOOOO;
LPSTR pszUrl = OLE2T(bstrUrl);
LPSTR pszPayload = OLE2T(bstrPayload);
LPSTR pszUsemamc = OLE2T(bstrUSt.mrunc);
LPSTR pszPassword = OLE2T(bstrPassword);
LPSTR pszFilcName = OLE2T(bstrFilenama);
if(strlen(pszUrl) = 0) return _Report.Error("lnvulid URL", E_FAIL, J 1),
if~strlen(pszFileName) = 0) return _ReportError("lnvalid filename", E_FAIL, 12),
if(strlen(pszPayload) = 0) pszl'ayload = NUI .L;
if(strlen(pszUsername) = 0) pszUscmume = NULL;
if(strlen(pszP11ssword) == 0) pszPassword =NULL;
int n V erb = CllttpConncction:: HTTP_ VERB_ GET;
if(nMethod =I) nVerb = CllttpConnection::flTrP _ VERH_POST;
else il~nMcU1o<l-=2) nVcrb • 'J lttpConn<..'Ction::I rITI'_ Vl~Rll_<JET;
if(0 I= _MakeDir(ps;r,FilcName))
return _Report.Error(" annot create specified dir to ", E_FAIL, l'.l),
//cre<Jtc the output file.
FILE •pFilc fopcn(p zFileNamc, "w+b");
il~lpFile) return _Report.Error("Cannot create specified tile", E_)o'AIL, 1<1),
CWacTca.rProc tcarObj;
tcarObj. I nit (m_in lo);

BOOL bRc ·ult= ltlllrObj.lfoquestf'11gc(pFilc, p. 1;U1 I, n V ·1 h, ps1P11 lot1d, p. 111. ·mum'• I 1p11 ",1 l
);
111 info 111 strl I d ·r 1 • 11< >h' <i ·ti I· 1d ·1 (),
m:info.m=nSl!llus 'ode I· rObj.0 ·ISi 1111 · 'od · ,
folosc(pFilc);
if(lbR .. ult)rc111m_lfopo1tHrro1(1•1rOhj. J•tl.o 1Frrnr(),E_FAll.,m 1nli1111 11S111111 (' It•.
•pblfosult (VAIHANT_llOOl.)O llHF,
rc1u111 S 0 ,
} -
Ill Iii. STI Miff! l()lJIMI' 'Wu l llmT · 11 t11vc111w1:r()
Ill HL I
lfl)EL AFX MAN/\C1I~ ST/\TE(MxOctSt 111 Mod11lcStn1 ·
/fl)EL - -

Univ
ers

ity
 of

 M
ala

ya

//DEL II TODO: Add your implementation code here
//DEL
//DEL return S_OK;
//DEL}
SIDMETHODIMP CWacHtmTear::AddHeader(BSTR bstrHeaderName, BSTR bstrHeaderValue, V ARIANT_B(X)L •pbRc
sult)
{
AFX _MANAGE_ STA TE(AfxGetStaticModuleState0)
fl TODO: Add your implementation code here
USES_ CONVERSION;
LPSTR pszHeaderName"' OLE2T(bstrHeaderName);
LPSTR pszl-leadervalue= OLE2T(bstrHeaderValue);
if(strlen(pszHeaderName) > 0 && strlen(pszHeaderValue) > 0)
{
m_info.m_strHeaderExtra += pszHeaderNarne;
m_info.m_strHeaderExtrd += ": ";
m_info.m_strHeaderExtra += pszl-leader Value;
m_info.m_slrHeaderExtra + "\r\n";
*pbResult"' (VARIANT _BOOL)OxJ•FFF;
}
else
*pbResull"' (V ARlANT_BOOL)OxOOOO;
return S_OK;
}
SIDMETI IODIMP CWacl ltmTcar::get_Accept(l)STR •pVal)
{
J\.FX _Mi\NAGE_ STA TE(/\f xGctStaticModuleState())
II TODO: Add your implementation code here
USES_CONVERSION;
*pVal = A20STR(m_info.m_slrAcccpl);
return S_OK;
}
STDMETI JODIMP CWacl ltrnTear::put_Acccpt(B ·m.ncwVal)
{
N'X _MANAG Ii_ ST ATE(/\fxGctStaticModulcSliltcQ)
II TOOO: Add your implementation code here
USES CONVERSION;
m_info.m_strAcccpt = OLE2T(ncwVal);
return S_OK;
}
STDMETI IODlMP CWacl ltrnTcar::gct_Cachc(l300L •pVul)
{
AFX_MANACiE_STATE(AfxGctStaticModulcStatcQ)

II TOOO: Add your implementation code here
*pVal = m_info.m_bCachc;
return S_OK;
}
STDMETHODJMP CWacT ltmTcar::put_ Cachc(l)OOLnewVal)
{
J\FX_MANAGI _ST A TE(i\ fxGctSu1ticModulcStutcQ)
If TOTX): Add your implementation code here
m_info.m_bOlchc = newVal;
return S_OK;
}
STDMETI IODIMP CWacl ltmTcar::gc1_ConncctionTi1ncout(I< ng •pVol)
{
J\FX _ MJ\NAGE_ ST A TE(Af xOctStoticModulcStutc
II TOI)(): Add your implementation code here
*pVul = m_info.m_n 'onncctionTimcout I 1000,
return S_OK;
}
STDMJffl IODIMP CWacl ltm'J'car::put_ 'onn ·ctwnTim ·out(lon1:4 11·wV11)
{
AFX MANAOE STATl\(Mx I ·1S11.11i ·Mudul ·St it·())
II 'JCT · Add our nnplcmcm nion od • 11 ·1 •
m info m_n 'on11cctiunTi111 ·0111 11 ·wVul • IOOO,
return SOK,
)
ST! METllOI IMP 'W1 l ltrn'l'ea: p.·1 '0111 nt l I :(llSllt •1W1I
{
t\FX MAN/\ Iii STi\Tl·:cMx<l ·1Sl1li •Mtl(l1il •St11ll'

II 'fOIX)· Add our 11npl :1111,.'111 hon •ode hl-'1 •

USES (NVERSION,
•pVol A2USTR(m info m .·Ir .ontcnt l'ypc),
return S OK;

l

Univ
ers

ity
 of

 M
ala

ya

}
STDMETHODIMP CWacHtmTear: :put_ ContentType(BSTR newvrl)
{
AFX _MANAGE_ STA TE(Afx.GetStaticModuleStateO)
II TODO: Add your implementation code here
USES_CONVERSION;
m_info.m_strContentType = OLE2T(newVal);
return S_OK;
}
STDMETHODIMP CWacHtrnT ear: :get_ Cookies(BOOL *p Val)
{
AFX _MANAGE_ STA TE(Af-xGetStaticModuleStateQ)
II TODO: Add your implementation code here
*pVal = m_info.m_bCookies;
return S_OK;
}
STDMETHODIMP CWacHtmTear::put_Cookies(BOOL newVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuleStateO)
II TODO: Add your implementation code here
m_info.m_bCook:ies = newVal;
return S_OK;
}
STDMETHODIMP WaclltmTear::get_FollowRedirect(BOOL *pVal)
{
AFX_MANAGE_STATE(AfxGctStaticModuleStatcQ)
II TODO: Add your implementation code here

*pVal = m_info.m_bFollowRcdirecls;
return S_OK;
}
S'll)METl IODIMP CWacHtmTear::put_FollowRcdircct(l100L nlwVal)
{
AFX MANAGE STATE(AfxGetStaticModulcStutcQ)
II roix» Add yo7rr implementation code here
m_info.m_bFollowRedirects = ncwVal;
return S _OK;
}
S1DMETIIODIMP CWucl ltmTear::get_ForccReload(BOOL *pV1l)
{
AFX _MANAGE_ STATE(Af xGetStaticModuleStatcQ)
II TOOO: Add your implementation code here
*pVal = m_info.m_bForceRcload;
return S_OK;
}
STDMETI IODIMP CWucl ltmTear::putJorceReload(BOOJ, newval)
{
AFX_ MANAGE_ ST ATE(Af xGetStoticModuleStotc.'())
II TODO: Add your implementation code here
m_info.m_bforceRcload = ncwVol;
return S_OK;
}
STDMETI !ODIMP CWacl ltmTcar::gct_l lttpVersion(l3STR *pV11l)
{
AFX_MANAOl~_STATE(A f GctStaticMuduleStatcQ)
II TODO: Add your implementation code here
UScS CONVERSION;
*pVul~ A213STR(m_info.m_strl Iup Version),
return S_OK;
}
STDMETI JOl)IMP 'Wucl ltmTcur::put I JttpVcr, ion(llSTR ncwVul)
{
AFX_MANAGli_STA'J'E(/\fxCictStatJcModulcStalc
II TOJX): Add our implement 1tio11 code lrer •
USES 'ONVl\RSION;
m_mfo.rn_Klrl 111rV rHum < LE2T(n wV11l),
return S_OK,
}
STDMETI IOl)IMP 'W11ol lt111T ·111. get lgnor iln il1tl '·111 .11 ·(IK)01, •1lV11l)
{
AFX M/\N/\Cil\ ST/\TH(/\f Ci ·tSt 1ttcMod11I St It))
ll'IOJ)C)' Adu 01111111pl 1n·11t11fln11 ud·lw1v
•pVnl 111 info in_blgno1 l11v11lidt: ·111 111 ,
return S OK;
}
S'l1 METI IODlMP 'Wncl h111Tc:1t put l14norelnv 111 I ':itl .11 (HOOi, llt'\\ ll

L..

Univ
ers

ity
 of

 M
ala

ya

{
AFX _MANAGE_ ST ATE(AfxGetStaticModuleStateQ)
II TODO: Add your implementation code here
m _ info.m _ blgnorelnvalidCertDate = new Val;
return S_OK;
}
SIDME1HODIMP CWacHtmTear: :get_JgnoreinvalidCN(BOOL *p Val)
{
AFX _MANAGE_ STATE(AfxGetStaticModuleStateQ)

II TODO: Add your implementation code here
*p Val = m _ info.m _ blgnoreinvalidCN;
return S_OK;
}
SIDMETHODIMP CWacHtmTear::put_ IgnorelnvalidCN(BOOL new Val)
{
AFX MANAGE STA TE(AfxGetStaticModuleStateO)
II TOOO: Add your implementation code here
m_info.m_bTgnorelnvalidCN = newVal;
return S_OK;
}
STDMETHOO[MP CWacHtmTear::get_Port(long *pVul)
{
AFX MANAGE STATE(AfxGetStat.icModuleStateO)
II TODO: Add yo-ur implementation code here
*pVul = m_info.m_nPort;
return S_OK;
}
STDMETHODLMP CWacl ltmTcar::put_Port(long new Val)
{
AFX_MANAGE_ ST ATE(J\f xGetStalicModuleStalc
II TOOO: Add your implementation code here
m_info.rn_nPort = new Val;
return S_OK;
}
S'n)METI IOD!MJ) CWacl ItmTear::gct_Proxy(BSTR *pVul)
{
AFX MANAGE ST A TE(AfxGetSlaticModulcStatcQ)
II TOOO: Add. yo7ir implementation code here
USES_CONVERSION;
*pVal = J\2BSTR(rn_info.m_strProxy);
return S_OK;
}
STDMEH10DlMP CWacHtmTear::put_Proxy(O ''m ncwVal)
{
Af7X MANAGE STATE(J\fxGctStaticModulcS!atcO)
II TOOO: Add y;ur implementation code here
USES_ CONVERSlON;
m_info.m_strProxy = OLE2T(ncwVul);
return S_OK;
}
STDMETI IODIMP CWucl ltmTcar::gct_ReccivcTimcout(long *pVal)
{
AFX_MANAGE_STATE(J\fx ctStalicModule 'tatcO)
II TOl:X): Add our implcmcntution code here
*pVal = m_info.rn_nRccciveTimeout/1000;
return S_OK;
}
STDMlffl IOl)IMP CWocl ltmTcur::put Ro ·ive'l'11neou1(1011~ n :wVul)
{
/\FX M/\NACJE ST/\Tl\(Af:~oc1 '1111icModulcSt11h;
II TC J)(: Add y<n:ir irnplcmcruarion code here
m_iJJfo.m_nlfoceivcTirni:oul ncwval • IOOO,
return S OK;
} -
S'J'I METJ I< l)IMP 'Wucl lt111Tc11r:: ·t I< Icn ·r(l)8'1 I~ •11V ti)

{
AFX MANAGE STAl'l\(Af OclSllJh Modul SIM·
II TOI)(); Add 011r imp! •1n 11101wn cod· lwil'
wms 'ONVl!IHH<JN,
•pV11J- A2JlSTl~(rn info 111 td{ ·f1'1'Jcr),
return S OK,
}
S'l1)METI !Of)JMP .Wac! ltmTcor:.p111_Rcfcrr-c1(llS 11~ n ·wV 11)
{

Univ
ers

ity
 of

 M
ala

ya

AFX _MANAGE_ STATE(AfxGetStaticModuleStateO)
II TODO: Add your implementation code here
USES_ CONVERSION;
m _ info.m _ strReferrer = OLE2T(newVal);
return S_OK;
}
STDMETHODIMP CWacHtmTear::get_SendClientCertificate(BOOL *pVal)
{
AFX _MANAGE_ ST A TE(AfxGetStaticModuleStateO)
II TODO: Add your implementation code here
*p Val = m _info.ID_ bSendClientCerti ficate;
return S _OK;
}
STDMETHODIMP CWacHtmTear::put_SendClientCertificate(BOOL ncwVal)
{
AFX _MANAGE_ STA TE(AfxGetStaticModuleStateO)
II TODO: Add your implementation code here
m_info.m_bSendClientCert.ificate = newVal;
return S_OK;
}
STDMETHODlMPCWacHtmTear::get_StatusCode(long *pVal)
{
AFX_MANAGE_STATE(AfxGetStaticModuJeStateO)
II TODO: Add your implementation code here
*pVal = m_info.m_nStatusCode;
return S_OK;
}
STDMETI JODIMP CWacI!tmTear: :put_ SwtusCode(long new Val)
{
AFX MANAGE STATE(AfxGetStaticModulcSwteO)
II TOOO: Add yo~r implementation code here
return S_OK;
}
STDMETrIODIMP CWacHtmTcar::gct_ TrustUnknown A(J300L *pVal)
{
AFX _MANAGE_ ST ATE(J\fxGetStaticModulcStatc
II TODO: Add your implementation code hero
*pVal = m_info.m_bTrustUnknownCA;
return S_OK;
}
STDMETI JODIMP CWacHtmTear::put_TrustUnknownCA(l300L ncwVul)
{
AFX_MANAGE_STATE(AfxGctStaticModuJcStatc())
II TODO: Add your implemernation code here
m_info.m_bTrustUnknownCA = ncwval;

return S_OK;
}
STDMETI lODlMP CWacHtmToar::get_UserAgcnt(RSTR *pVal)
{
AFX_MANAGE_STATE(AfxGetStaticM(xJulcStatcQ)
II TOI)(): Add your implementation code here
USES_CONVERSION;
*pVal = A2BSTR(m_info.m_strUscrA.gcnt);
return S_OK;
}
S1DMETI IODIMP Wac! ltmTcar::put_Uscri\gent(IJSTR 111iwVol)
{
AFX_MANAGE_STATE(AfxGctSIJtti ModulcState
II TODO: Add your implementation ode here
USES NVEWllON;
m_inlb.m_strlJsori\gcnt • OLE2T(nowVol),
return S_ K;
}

I 5

Univ
ers

ity
 of

 M
ala

ya

Appendix F: Creating ATL COM with Visual C++

The steps below show how to create an ATL COM object using the Visual

C++ ATL COM wizard.

1. In the Visual C++ development tool, go to File-+New.

2. In the Projects, select ATL COM AppWizard (Figure 8.1). Type in the name

for the project and specify the location to store the project' file .

Ae• PIO!ecl• I We> Cl)OC)<!t I o~ Docunents I
.;jATL COM "'1!Mru.d ~\Y;:;)2stollc Lbory
• O.stt< Resouce T~ Wiz&Jd
Cu>'\om AppW1z.,d
OatobMe Projec1

~OevSlud10AddnW1Z&1d
· E.tended Si0<od Pioc \Y1Z1<d
ISAPI E•tention \Yud
Makellie
MFC ~ Conlto/l.lf1Zo1d
MFC~IZ.,d (ell)
MFC AllPW1t<Wd (axe)

j. 'New DatoboteW'ctord
I Utlly Piot00t
Wnl2~
WrJJ. C<lnsole Applicabon

<:. WrJ2 0)'Nm0.i.ri. Lb"'y
f\olf01111l" f""'1n32=------

.__ _ _,I~ ----
Figure 8.1: New Project

3. In the wizard dialog box (Figure 8.2), there are se eral opti n h re. The

ATL COM can be either in service , dynamic link-libra re e utablc file .

The example is tick on dynamic link-library an al upport M · . /\11 r

finish, the necessary files will be generated.

'-

Univ
ers

ity
 of

 M
ala

ya

I ff I r . -
:b • • [Set as A

,.,;, II l::lew Cla•
+ ..J (; .#J New8TL

• -~D Ne![!!Fold .. ~ - " !.; Docking
Hide

~ Prgpertie

.. ·:;~ ':

ThisWizardcr~es anATLprojec.t Wlltlo!Jt any
initial COM objects. Alter comJ)lelrlg lhi: Wizard,
use the New ATL Object command from
ClassView to specify the type cJ obfec:I you wouk1
like to add ti this p<Oiect

Server l}9e

r. D]"l<lric Link Library (OLLI

r E>ecutable (EXE]

r Servi:e (EXE)

r Allow mirging cJ p1oxy/,tub cooe

f\l SupportMFC

r SuppatMTS

<Back J. c nool J I I F1n1!h

Figure 8.2: Wizard dialog

4. Next, go to Insert New ATL Object (Figure 8.3). el ct object in the

category field, then select simple object in the objects field. lick K t g

to the next step.

~tegory Q.biecls
I•

~ ~
"' Controls

Miscellaneous
Data Access Simple Object Add-in Object Internet

Ex;ilor

~)~
'·

Active>< Server MMC Sn n MS
COfll)oo Tr n b

v

Fi zure 8.3: A TL Obj t Wizard

5. ln the name field (Figure 8.4), t pc in the nam · or th· c>bj t.

type in the name, the thcr field will automau ult I • fill ·d

h .n Oil

L.7

Univ
ers

ity
 of

 M
ala

ya

Na mes j Attributes l
C++

Short Name: !CNewln~ ---~
Class: J CCN ewl nt

.H Fie: jCNewlnt.h

.CPP Fie: jCNewlnt.cpp

I COM

CoClau: j CNewl nt

lrterface: j1cNewlnt

T _ype. f(Newlnt Dau

Prog ID: jNew.CNewlrt

OK C nc I I

Figure 8.4: ATL Object Wizard properties

6. Using CNet as an example, in the class view, expand CNet by cl ick on the

plus sign. Then, right click on INet. There will be a dialog box prompted out

that allow you to add in method and property for this object. There are

specifics format on writing the method and also the prop rty. We will n t go

further detail about it. Below is an example of adding a method int the

object (Figure 8.5).

Return Type:

Method Name:

jNew Altrb.Jte$

Parameter;:

!fin) BSTR bstrStiing, [outretvalJVAAIANT "pbAe

Implementation:
[td(1), help string(' 'method N ew"l]

HAESULT New([in] BSTA b't1Str1ng, (OUl;etvel)VARIANT
'pbAesuJt);

Figure 8.5: Add Method to Int rfa •

7. For further information, plea. c refer t the M N Lit rur 1 o is1t

http://msdn.micr oft.corn.

1-8

Univ
ers

ity
 of

 M
ala

ya

Reference

AvantGo, Inc. (2002). Channel Developer: Getting Started http://www.avantgo.com

Chris, Tull. (2002). PDAs and Handheld: Introduct ion.

http://www.anywhereyougo.com.

Nokia, Inc. (2001). What is 3rd Generation. http://www.nokia.com

Rachmat, Hartono. (1999). 'mart Screen Creator. I Iandisplay (M) dn. hd.

Simon, Buckingham. (2000). What is General Radio Pack ~1 Service. Mobile
Lifestream Ltd. http://www.mobilelifestreams.com

W AP Forum. (2001). Wireless Application Protocol Architecture pecificati n. WAP

Architecture Version 12-.July-2001.

Shari, L. Pfleeger. (2001). oftware Engine ring: Theor and Pra ti ?, 200 ed.

Prentice Hall International, Inc.

Behrouz, A. -orouzan. (2001). I ata Commun! iations and Networking, 111 ·I.

McGraw-Hill.

Microsoft cvclopcr Network. 200 . MS/ N l.thr tr . Mi ro fl.

12

Univ
ers

ity
 of

 M
ala

ya

Bibliography

Any Where YouGo.com. (2002). i-Mode: Introduction.

http://www.anywhereyougo.com.

1 0

Univ
ers

ity
 of

 M
ala

ya

WOU7®0®~~ &~~DO©@~D®uu
©@UUW@[f~@U

M~@[f ~@UUOD@O

Univ
ers

ity
 of

 M
ala

ya

WAC: USER MANUAL

Table of Content
1. Introduction... 2

1.1. Objectives :······························ 2
1.2. System Features ::::::::::::::::::::::::::::::: 3

2. About the manual·· 4
3. System Requirements 4

3.1.
3.2.
3.3. Network environment. 5

4. Installation Guide.. 6
4.1. DLLs registration ::::::::::::::::::::::::::::::: 6
4.2. WAC virtual directory setup 7
4.3. WAC properties configuration 1
4.4. WAC Operation.. J 1
4.5. Accessing WAC from Pocket PC. :::::::::::::::::::::::::::::: 12
4.6. Accessing WAC from a W AP device or WAP simulat0r 12

5. Troubleshooting 14

~~~::. ::: : :: : :: : :: : : ::: : :: :: ::: : : :: : : : : : : : : : :: : : : : : : : : :: : ::: : : : : : ::::::::::: ::: : :· :: :: : : : : :: : : : : : : : :: :: : :: : : : : : : : ~ 

Table of Figures 

Figure 1: Registering DLL. ·: . 
Figure 2: Internet Information Services 7 
Figure 3: Virtual Directory 8 
Figure 4: Virtual Directory Alias 8 
Figure 5: Web Site Content Directory . 
Figure 6: Access Permission . 
Figure 7: Properties...................................................................... J ······························· 
Figure 8: Documents.................................................................... J ······························· 
Figure 9: Result of Internet Explorer.. : 11 
Figure 10: Pocket IE..................................................................... 12 ······························ 
Figure 11: W AP Interface I 
Figure 12: W AP Output............................................................... t ,. . Univ

ers
ity

 of
 M

ala
ya



WAC: USER MANUAL 

Table of Content 
1. Introduction 2 

1.1. Objectives 2 
1.2. System Features 3 

2. About the manual 4 
3. System Requirements 4 

3. 1. Server 4 
3.2. Client 5 
3 .3. Network environment.. 5 

4. Installation Guide 6 
4.1. DLLs registration 6 
4.2. WAC virtual directory setup 7 
4.3. WAC properties configuration I 
4.4. WAC Operation 11 
4.5. Accessing WAC from Pocket P 12 
4.6. Accessing WAC from a W AP device or WAP simulator.. 12 

5. Troubleshooting 14 

Table of Figures 

F . 1 R . . DLL 1gure .. : egistenng . 
Figure 2: Internet Information Services 7 
Figure 3: Virtual Directory 8 
Figure 4: Virtual Directory Alias .. 
Figure 5: Web Site Content Directory . 
Figure 6: Access Permission . 
Figure 7: Properties I 
Figure 8: Documents 1 
Figure 9: Result of Internet xplorer 11 
Figure 10: Pocket I 1- 
Figure 11: WAP Interface I 
Figure 12: WAP Output. I Univ

ers
ity

 of
 M

ala
ya



1. Introduction 

Wireless Application Converter (WAC) is a server-side application that enables 

different mobile devices with different format to view the same web document. It 

has the ability to convert the web document into different format supported by the 

mobile devices, such as WML and Pocket IE. The conversion is done without 

modifying the original document. 

Before embark on the installation process, here is a brief explanation of the WA 

architecture. The architecture of WAC is as shown in igure I. By using a 

centralized server, where WAC is installed, it will act as a "middle man', where it 

will retrieve information from the requested URL address, generate the output and 

send it back to the clients. 

The different of WAC with a proxy server is that it is not permanent and compul ry 

to go through it, as the clients can use it whenever it is needed. It can e done 

because WAC is web-based and it only respon e when the client rcque t fi r it 

services. 

1. 1. Objectives 

• To allow information haring arnonu diff rent v irclcss d 

utilization of wireles network. 

. \ ith th. 

Univ
ers

ity
 of

 M
ala

ya



• To provide cross platform that support different wireless device format, 

where every devices will be able to view the same internet content without 

the need to modify the original content. 

• To optimize the output that will fit the screen resolution of the wireless 

device. 

1.2. System Features 

WAC can only support text based document. The following element are not 

supported. 

• Form 

• Query 

• Table 

• Image (not supported by WAP only) 

• Audio streaming 

• Video streaming 

• Hyperlink I redirection 

3 

Univ
ers

ity
 of

 M
ala

ya



2. About the manual 

This manual consists of three parts. The first part explains the hardware and 

software requirements, follow by second part, which are the installation procedure . 

The final part is about how to use or interact with WAC from different devices. 

There are figures in this user manual as well. It helps to aid the user in the 

installation process, as well as the operation I usage. Such visual aid can help the 

user to understand the procedure clearly. 

3. System Requirements 

3.1. Server 

• CPU: Intel Pentium II /AMD K611166 MHz or above 

• Memory: 128 MB (256 Recommended) 

• Storage: 2 GB 

• Operating System: Microsoft Windows (2000 Profe ional I er er ·amil I 

XP Professional) 

• Others: Internet Information ervrce 4. or above Int .m ·t L:., µI r ·r . 

above 

4 

Univ
ers

ity
 of

 M
ala

ya



3.2. Client 

• PDA: Pocket PC with Wirele AN ard 

• Mobile Phone: W AP enabled 

3.3. Network environment 

• Wireless Network Acee s Point 802. l 1 , Wi- i 

• GPR AN Acee P int (required for Mobile phone 

5 

Univ
ers

ity
 of

 M
ala

ya



4. Installation Guide 

4. 1. DLLs registration 

1. Copy all the D L extension files to th windows s stem 32 folder. Example 

for Windows 2000: :\WINN Y T M32\. 

2 Th are 3 LL extension file . . ere · hey are: 

a. genuid.dll 

b. WA .dll 

WA Tear.di! c. 

3. The L need to be regi tered in order f r WA to acccs it. 

Typ then me of pro rem, fold r, docum nt, or 
Internet resource, and Windows will open 1t for you. 

Open: r osvr32 WACTear .dll v 

O I l C nc_l } l Browse ... J 
11 igurc I: R •gist •ring OLL 

1 1 'tart- I un, In th' I un di ilo 1 b , Fi iur • 1 , t pc in 

name 1 to re iist 'r th· I I.Ls. ~. nmpl ·: 

•dur' l< r isl •r •111 l 1,1.s. 

1 
•11u1<.l.<.Jll P irfo 11 this 

pr 

Univ
ers

ity
 of

 M
ala

ya



4. Installation Guide 

4. 1. DLLs registration 

1. Copy all the DLL extension files to the windows system 32 folder. -.xampl 

for Windows 2000: C:\WINNT\SYST M32\. 

2. There are 3 DLL extension files. They are: 

a. genuid.dl I 

b. WAC.dll 

c. W ACTear.dll 

3. The DLL need to be registered in order for WA t acce it. 

Typ the name of progrem, folderi document, or 
Int rnet resource, nd Windows will open 1t for you. 

Open: r gsvr32 WACTear.dll v 

OK I [ C nc I J [~wsk] 

igur I: Registerin D L 

4. Go to tart->Run. Jn the Run dial g b · Figure I 

name] to register the ~ ample: re is r _ 1 .nuid.dl I. I .rform this 

procedure to rcgi tor all L . 

6 

Univ
ers

ity
 of

 M
ala

ya



4.2. WAC virtual directory setup 

1. Copy the WAC folder from the source disc to directory :\. 

2. Go to Control Panel->Administrative Tool , double click on Internet crvice 

Manager icon to open the Internet Information crviccs console (Figure 2). 

" r., ' U • 
~( . 

~· 

Figure 2: Intern ·t Information ervices 

3. xpand the computer icon and then expand the web ites by click on the plus 

sign beside. 

7 

Univ
ers

ity
 of

 M
ala

ya



''""''' ·-.- 
¢o t!J IE ~ 111 ~ d? • 11 
~ Internet Information Services ;... Nllme J Poth l '!Ill°"' - a STAR (locel computer) ~IISHelp c:\wlndowt\h'.llpVl.hclp - __J Web Sites 

C:\WI"-OOWS\w b\ $W b 
Explore C:\Wlf\OOWS\w b\llfln ors 

+ ..Jits Open C:\l l!mdlsptcy\lnatp11b\fc1 ts 
Browse C1\H ndl,pl y\rn tpub\,crl l'\hd\nc ... + ,...p, 

C:\PrOQram Fllos\Common 11 s\Mlcr ... 
+ ~5, 
+ h. D:\rlnal Year Course\mobllo\MobApp Stop 
+ ~-· Pause 
+ M 
+Uh• ] + L.J j~ All Tasks 

Server Extensklns Web + w rr 
+ w _· View Server Extensions Achllnlstr or 
+ _J .: Rename _vtljog 
+ Refresh _vu_cnf 
+ _J .: Export List ... _private 
+ _J .: dhtml 
+ ..J .J Properties pdf 
+ wd1 

Help aspnet_cient 
+ ·...J po v 

e > 

Figure 3: Virtual Directory 

4. Right click on Default Web ite, go to New->Virtual ircct ry Figure ). 

Then, follow the on creen in truction to create the virtual directory. 

a. Type in WI\ in the Virtual ire tory Alia dialog Figure 

Vutu I Ouectory AJuu 
You muit give the vutu&I d1roctOI}' 111holt nomo. °' oiei, IOI quok 1cle1cnce 

Type lhe oJ. you wM! lo ~e to gein accetc to thot VJeb virl\1111 d1eclOI}'. U e the 
tame nemlng convention that }<OU would IOI naming 41 dwect01y 

Aias· 

Figur 4: irtual Dir "tor Alins 

b. Type in or br w c to the dire to where WI\ 1, tor ·d 1'i iur 

xarnple: :\WA . 

8 

Univ
ers

ity
 of

 M
ala

ya



\lleb Site Content Direct.ory 
Where is the conl'!int you w.ant to pubfiih on the Web iito? 

Enter the path to the directoiy that cont.eins the content. 
Directory: 
jD:\WAC 

Figure 5: Web ite ontent Directory 

Access Pe1mission1 
'w'hat !ICCeH permissions do you want to ~et for this virtlUll directory? 

Allow the followtng: 

Reed 

Aun tcriptt (tuoh "'ASP) 

r Execute (such M I SAP! applications 01 CGIJ 
rwrlte 

r Browce 

Click Nut to complete the wlzatd 

Figure 6: Access Permission 

c. Jn the Acccs Pcrrni ion, make urc R .ad and Run ript arc licked 

(Figure 6). 

9 

Univ
ers

ity
 of

 M
ala

ya



4.3. WAC properties configuration 

1. In the Internet Information Services console, right click on the WA virtual 

directory. Then, go to Properties Figure 7). 

UIP New • lmeges Uime Att Tasks .. _Layouts U _vt 
LI _vt View .. _Themes 

LJ _vt _derived 

L.1 _vt Delete _Scriptlibrar>y 
(_J _vt Rename html 
l_J _pr Refresh script 
_J dht Export List. .. wep 
'_J pdf global.asa 
lJ esp search.htm 
U out Help index.asp 
~ Mobile.esp 
~test ~html.asp 

Figure 7: Propertie 

2. In the Properties dialog box, tab on the ocument tab Figure 8 . 

HTTP Heed r; 
Duectory 

Custom E11ori 
Documents 

S rver E><t n ions 
Duectory Securl\,y 

0 Enable Default Document 

D 
D 

index.esp 
Default.him 
Default.aq) 
index.btm 
iiutert.esp 

Add ... 

Figur 8: Docum .nts 

3. Under the Documents dialog bo , ma e : ur • th' ·nabl • iIault l o ium .nts 

option is ticked. 

4. If the index.a .p i not in the Ii t, v e ha c t add it in rd r it t 

automatically wh ·n v · a ces · WA . 'Ii ·k th A Id l 111to11. di ilu I bu: 

will appear. 

In the dialo 1 lox, t pc 111 in J • as , th in lick K 

10 

Univ
ers

ity
 of

 M
ala

ya



6. The index.asp file is added into the list. Highlight the index.asp, click on the 

Up Arrow key beside the dialog box to move index.asp to the hi ihcst 

position. Figure 8 is the example of the result. 

7. Click OK to save the changes and exit the Properties dialog. 

4.4. WAC Operation 

Accessing WAC from Internet xplorer 

I. Open Internet xplorer, type in the URL of the machine where WA is 

installed. --xample: http:/1192.168.168.103/wac. 

2. A web based interface will be how d. T pc in the URL f the required 

WWW document, then click to rctrie c the c ntcnt. 

.. " ., •• t ~ • 

•Iv. "I •' * • 

Figur <: R .sult of Int .ru •t E plor r 

an » ample or th' utput 

11 

Univ
ers

ity
 of

 M
ala

ya



4.5. Accessing WAC from Pocket PC 

1. Open Pocket Internet Explorer, type in the URL of the machin where W J\ 

is installed. Example: http:/1192.168.168.103/wac. 

2. A web based interface will be showed. This interface (Figure I is sp ciall 

optimized for Pocket PC screen resolution. 

Fi ure I 0: Pocket IE 

3. In the address bar, type in the RL of the required WWW d curnent, then 

click G to retrieve the content 

4.6. Accessing WAC from a WAP device or WAP 
simulator 

l. pen any W AP r w er t pe in the R r the machine wh ire WA 1 • 

installed. 

2. J\ web ba ed interface will be, howcd. This int ·rfa · · Fi rur · 11 is s · iiull 

12 

Univ
ers

ity
 of

 M
ala

ya



Enter I.XI 
http·/~ 

Figure 11: WAP interface 

3. Go to Search, it will be redirected to the searching page. 

4. From the searching page, type in the URL of the required WWW document, 

then click GO to retriev the c ntent. 

SIEMENS 

•igurc 12: W P Output 

5. igurc 12 is an e ample f the ut ut. 

13 

Univ
ers

ity
 of

 M
ala

ya



5. Troubleshooting 

There might be problem encounter during the operation. If there i any problem 

encountered, please do not hesitate to contact our technical taff at 

husin _ d@hotmail.com. 

14 

Univ
ers

ity
 of

 M
ala

ya




