Abstract

This documentation contains information about the Wireless Application
Converter (WAC) for WXES 3181. It is divided into four chapters. These chapters
are Chapter 1: Introduction, Chapter 2: Literature Review & Analysis, Chapter 3:
Methodology, Chapter 4: System Design, Chapter 5. System Implementation,
Chapter 6: System Testing and Chapter 7: System Evaluation. The objective of this
documentation is to provide the reader with an overview of the purpose of
developing WAC, the architecture and functionality of it.

Chapter 1: Introduction provides the introduction for readers about the
objectives of developing WAC. It covers the objectives, development scopes,
targeted users, development limitations and a proposed schedule to finish this
project.

Chapter 2: Literature Review & Analysis provides information on several
terms that are related to this project. These terms are taken from the current wireless
technology field. Besides, there are two systems described in detail that use the
similar approach which are the reference for WAC. This chapter also provides
information about the technology require to develop WAC, which include
development software, wireless hardware, protocol for wireless network, file storage
and server for WAC.

Chapter 3: Methodology describes the methodology used to develop WAC,
The descriptions include an introduction of method and the reason for using it.
Included in this chapter as well, are the requirements of the system. These are the

system functionalities, hardware and software requirements,

Chapter 4: System Design explains how the system is designed. It covers the
system architecture, system modules, system functionality design and module
functionality design. Explanation on system architecture covers a brief introduction
on the chosen architecture, how this architecture can be implemented in WAC, the
advantages for choosing it and the disadvantages. Explanations on other parts of this
chapter cover the descriptions on the functions involved, the data flowing and how
the functions integrating with each others.

Chapter 5: System Implementation explains how the system is developed. It
covers the coding approach, scripting language and development tool used to
develop each module.

Chapter 6: System Testing explains the testing done on the system. This
chapter covers the type of testing being implemented, testing approach and testing
resources. It also covers the changes that had been done on the system.

Chapter 7: System Evaluation is the final chapter. It covers the problems
encountered during the development and the relevant solutions, evaluation by the end
user, pros and cons of the system, future enhancements and also knowledge and
experience gained from the development. This chapter will conclude the details

about Wireless Application Converter.

1

Compliment

First, I would like to thank for my supervisor, Miss Rafidah Mohd. Noor for
willing to supervise me in this final year thesis. I would like to express my gratitude
for her guidance in preparing this documentation as well on the system design.

Secondly, I would like to thank Mr. Andrew Khoo, Director of Handisplay
(M) Sdn. Bhd for his valuable advice in pursuing research in wireless field. I would
like to thank Mr. Rachmat Hartono, Senior Software Engineer of BCL Technologies.
Under his guidance during the industrial training periods, I am able to learn the
technique that is helpful in developing WAC.

Finally, I would like to express my gratitude to all my friends. For their
willingness in sharing information and teaching, I am able to gather some

information related to my development of WAC.

i1

1.

Table of Contents

Chapter 1: Introduction

1.1.

1.2.

1§51

1.4.

133

Objectives

Scopes

Targeted Users
Project Limitations

Schedule (Gantt chart)

Chapter 2: Literature Review & Analysis

2318

292

2]

24.

2.5.

2.6.

2.7.

2.8.

29

Wireless

Wireless Application

Converter

Wireless Network Environment
Wireless Application Protocol (WAP)
General Packet Radio Service (GRPS)
Personal Digital Assistant (PDA)

2.5 Generation (2.5 G)

3" Generation (3 G)

2.10. Two Similar Systems

21113

2.10.1. Handisplay Smart Screen Creator

2.10.2. AvantGo Mobile Internet

Technology

2.11.1. Software for WAC

2.11.1.1. Active Server Page (ASP)

2.11.1.2. Component Object Model (COM)

2.11.2. Operating System for WAC

10

11

11

31

3l

31

31

v

2.11.3. Architecture of WAC

2.11.4. Wireless Protocol: Wi-Fi (802.11b)
2.11.5. Wireless Hardware

2.11.6. WACluster

2.11.7. WAC Server

3. Chapter 3: Methodology

3513

3.2.

3.3.

System Analysis

System Requirements
3.2.1. Functional Requirements
3.2.2. Non-Functional Requirements
3.2.3. Hardware Requirements
3.2.4. Software Requirements

Conclusion

4. Chapter 4: System Design

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

System Architecture Design
System Module

System Functionality Design
Module Functionality Design
User Interface Design

Conclusion

5. Chapter 5: System Implementation

St

2yt

D)3}

Introduction

Processing Module

5.2.1. Processing Module: Coding

Conversion Module

32

33

33

34

34

36

36

37

37

38

38

39

39

41

41

43

44

45

49

50

51

51

51

54

5.3.1. Conversion Module: Coding 54

5.4. Storing Module 55
5.4.1. Storing Module: Coding 56
5.5. Complement Component Object 56
5.6. System Setup 857
5.7. Summary 59
Chapter 6: System Testing 60
6.1. Introduction 60
6.2. Types of Testing 60
6.2.1. Unit Testing 60
6.2.2. Module Testing 61
6.2.3. Integration Testing 62
6.2.4. Real-World Testing 64
6.3. Testing Resources 65
6.4. Changes Done 65
6.5. Summaryt 67
Chapter 7: System Evaluation 69
7.1. Introduction 69
7.2. Problems Encountered 69
7.2.1. Developer’s skill 69
7.2.2. Development resources 70
7.2.3. Raw Materials 71
7.3. Evaluation by end users 71
7.4. System Strengths 72

7.5. System Constraints 73

10.

11.

12.

13.

14.

15.

7.6. Future Enhancements
7.6.1. Support form query and hyperlink
7.6.2. Text editing
7.7. Knowledge and Experience Gained
7.8. Summary
7.9. Conclusion
Appendix A: Active Server Pages (ASP)
Appendix B: Component Object Model (COM)
Appendix C: Internet Information Server (IIS)
Appendix D: Coding — ASP
Appendix E: Coding — Visual C++
Appendix F: Creating ATL COM with Visual C++
Reference

Bibliography

Attachment: User Manual

73

73

74

74

75

76

78

80

82

89

Vil

Table Reference

Table 1.1: Gantt chart for WAC development duration 6
Table 1.2: Date and duration for each task 7

Table 6.1: Testing Resources 65

viii

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 2.11:

Figure 3.1:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 5.1:
Figure 6.1:
Figure 6.2:
Figure 6.3:

Figure 8.1:

Figure Reference

WAP Programming Model

WAP Proxy

PK1 Portal

WAP Client Architecture

WAP Architecture

Example of WAP 1.x Gateway
Architecture of Smart Screen Creator
Component needed

How AvantGo work

How the process is working

Desktop to client process
Transformation Model

WAC Architecture

WAC system module

WAC system functionality design
Processing Module functionality design
Storing Module functionality design
Conversion Module functionality design
User interface for wireless device
WAC - Processing Module Sample
WAC - Bottom-Up Testing

WAC ~ Tree Structure

WAC - Stack Structure

New Project

14

16

16

17

18

29

36

41

43

44

45

47

48

49

63

66

67

126

1X

Figure 8.2:
Figure 8.3:
Figure 8.4:

Figure 8.5:

Wizard dialog 127
ATL Object Wizard 127
ATL Object Wizard properties 128
Add Method to Interface 128

Chapter 1: Introduction

Now a day, the wireless technology is advancing in tremendous pace.
Wireless technology is no longer only for wireless communication: surfing internet,
voice messaging, picture messaging and traffic navigation are evolving from theory
to practical.

Technologies such as General Packet Radio Services (GPRS), Wireless
Application Protocol (WAP) and I-MODE (only available in Japan) have been
invented to make full use of the advantages of wireless communication. Community
defined the current wireless technology as 2.5 G and it is moving towards the 3 G
era.

Under the influence of wireless wave, several researchers and developers are
currently running research on implementing wireless technology that emphasized the
use of server. This technique is to overcome certain constraint of the wireless
devices such as lower processing capability that make it unable to view a variety of
multimedia content.

There are some products already available in the market that implementing
this technique, such as AvantGo. The server is responsible for pre-processing before
sending back the result to the client.

Wireless Application Converter (WAC) is a system that enables wireless
devices such as PDA and web-enabled phone to view the same internet content
within a wireless network.

It is also implementing the server-side technique, where all the pre-processing
is done at the server before displaying the result at the client. For a wireless devices
to view internet content, the content must be built in the format that supported by the

devices, such as WAP. Through WAC, the devices are able to view the content

although it is not written in the supported format because the pre-processing
procedure of WAC will eventually change the content format to the one that
supported by the devices.

Furthermore, WAC provides real-time internet browsing ability, which means
the requesting, pre-processing and result display are done once the users make the

request.

1.1. Objectives

The objective of WAC is to enable information sharing in a form of internet
content between wireless device and desktop computer within a wireless network.
For example in a corporate company, the staff can have the latest information about
today meeting schedule or event with their handheld devices as long as there is
wireless connectivity between the device and the server.

Besides, it is a mean in providing a cross platform support for different
wireless devices. Wireless devices are different in some aspects, such as the
operating system, processing power and supported format. WAC is able to
overcome this problem by building the content into the format supported by the
wireless devices without the need to modify the original content.

Finally, it is to overcome the constraints of wireless devices, such as
processing power, low bandwidth and small display screen. The pre-processing of

WAC is responsible to optimize the content to be viewed at the wireless devices.

1.2. Scopes

For the initial start, the development of WAC will focus on converting

HTML to Wireless Application Protocol (WAP).

o

The reason for choosing WAP is because most of the wireless devices have
this feature. These devices are ranging from handheld computer such as Personal
Digital Assistant (PDA) to mobile phone.

In Malaysia, most of the telecommunication companies offer the WAP
service, such as Telekom and Maxis Mobile. With this service, the users are able to
connect to the internet with their mobile phone every time they wish to.

Besides WAP, the other consideration will be the operating system.
Operating system does affect the performance of the handheld devices.

Currently, Microsoft Pocket PC and Palm OS are the two major operating
systems that have been used on handheld computer. In comparison, Pocket PC 1S
more powerful than Palm OS in processing power, multimedia features and
functionalities.

The ideal operating system for development purpose will be Palm OS. It is
because most of the features that supported by it is supported by Pocket PC. In
contrast the features supported by Pocket PC cannot be supported by Palm OS.

For the operating environment, WAC will operate under Microsoft Windows
platform. The reason for choosing this platform is because of easy development.
There are a lot of Windows based resources and building tools available which could

help in ease the development progress.

1.3. Targeted Users

The targeted users will be the internet content administrative from the

corporate world and home users.

For the corporate users, they are able to use this system for information

sharing as well as data query through internet.

The reason for choosing them as the targeted users is because mobility is one
of the features that they needed, as this can enable them to connect and retrieve data
from any where within the wireless network without being constraint by cabling.

For home users, they could use this system to connect to the internet and surf
their favourites web site within a wireless network.

This system is very simple because it only needed a normal desktop computer
as server and wireless LAN to work. It is very convenient to own these things now a
day and it is affordable for home user.

Besides, the system provides the home user an alternative to connect to

internet without the need to sit down every time in front of the desktop computer.

1.4. Project Limitations
The development progress might encounter some limitations. Currently,
there are few limitations for the initial start. These limitations are time, lack of
references and internet standard.
Developing WAC is very time consuming because there are a lot of
considerations during the development process. These considerations are:
1) Types of devices need to be supported, such as Personal Digital
Assistant or mobile phone.
2) Types of content that can be converted which is related to HTML tag.
3) Types of protocol to be supported, such as WAP.
4) Processing structure,
Since there is not much time is allocated, WAC will focus on WAP and Palm OS,
Furthermore, there are not many references out there about this kind of

system. Currently this kind of system is still under research. Although there are

references out there, some of it are only theory and some of it even using different
approach, like artificial intelligent, which is difficult to implement

Besides, the internet standard is also an issue to be considered. There is no
standard define how the internet content should be. It might be pure HTML script,
mixture of HTML script and JavaScript, or totally JavaScript. It is impossible to
come out with a solution that could fix into all of the mentioned above. For the
development purpose, it will focus on certain web site that is either HTML or

mixture with JavaScript.

S aogoa n

gﬁ&agw@ u ,

TogeIgpom R BRS3], ¢

 uBsap weBoxg| |

W e
‘Buppow wasks| ; |
suskeve wiskg | | |

I__

Ee_ii.ﬁm_:: mmw«_ﬂm:i ! EEEm?ﬁoﬁm;ﬂﬁﬁm;i; sTish| 1] LRMEE Liocjezio6|Z X awmn xse) | ow
£0, 084 £0, Uer | 20,980 20, AON| 20, 0| 20, 0o 20, bny | Zo. | 20, unf'|

uoneinp JudwdoRAIP DV AL 10§ 1IBYD) JUES [*] (e
‘MO[2q [2[qEL Ul HEYD Nuen 3y} Aq smoys st Dy A\ Suidoj2aap ui 2npayos Ay

(11eyd yuen) IMPayPS [

Table 1.2 shows the exact durations for each task mentioned in Table 1.1.

Table 1.2: Date and duration for each task

Task Name Start Date End Date | Duration (days)
1 | System Analysis 17/6/2002 | 26/7/2002 dyo
2 | System Modeling 29/7/2002 | 23/8/2002 | 20
3 | System Design 26/8/2002 | 20/9/2002 | 20 |
4 | Program Design 23/9/2002 | 13/12/2002 | 601, .
5 | Testing & Modification 16/12/2002 10/1/2003 20
6 | Final Testing & System Delivery | 13/1/2003 7/2/2003 DONTNE. |
7 | Documentation 17/6/2002 7/2/2003 170

Below is the description of each task:

1. System analysis: Analyzing the system and capture the basic requirements.
These requirements include the operating environment, architecture and
resources available for development.

2. System modeling: This task includes capturing the functional and non-
functional requirements. From these requirements, the specification of WAC
can be determined and it shall be used for initial start of the development.

3. System design: It is about designing the internal process and data flow of
WAC by using the data flow figure.

4. Program design: This is the implementation state where the programming
comes into action.

5. Testing & modification: Optimization of WAC is done at this state through
testing and making changes in the internal process.

6. Final testing & system delivery: It is the final state of the development
process. The system will be delivered after it is fully tested.

7 Documentation: It is about documenting the process of each task.

2.1

Chapter 2: Literature Review & Analysis

Wireless

Wireless is a way of using the radio-frequency spectrum or electromagnetic

waves for transmitting and receiving voice, data and video signals for

communications. The signals are transmitted without physical conductor, but

through air or water.

The radio-frequency spectrum is divided into eight ranges, called bands, each

regulated by government authorities. These bands are rated as follow:

18

Very Low Frequency (VLF: 3 KHz — 30 KHz): For long-range radio
navigation and submarine communication.

Low Frequency (LF: 30 KHz — 300 KHz): For long-range radio navigation
and radio beacons or navigational locator.

Middle Frequency (MF: 300 KHz — 3 MHz): For AM radio, maritime
radio, radio direction finding (RDF) and emergency frequencies.

High Frequency (HF: 3 MHz — 30 MHz): For international broadcasting,
military communication, long-distance aircraft and ship communication,
telephone, telegraph and facsimile.

Very High Frequency (VHF: 30 MHz — 300 MHz): For VHF television,
FM radio, aircraft AM radio and aircraft navigational aid.

Ultrahigh Frequency (UHF: 300 MHz - 3 GHz): For UHF television,
mobile telephone, cellular radio, paging and microwave links.

Superhigh Frequency (SHF: 3 GHz - 30 GHz): For terrestrial and satellite

microwave and radar communication,

8.

below:

Extremely High Frequency (EHF: 30 GHz - 300 GHz): For radar, satellite,

and experimental communication.

The radio wave transmission is propagate in five different ways as describe

Surface Propagation: The radio waves travel through the lowest portion of
the atmosphere, surrounding the earth. The signals are at the lowest
frequencies. The signals transmitted will move in all direction, following the
curvature of the earth. The greater the amount of power in the signal, the
further distance it can travel.

Tropospheric Propagation: This propagation way can be done in two way,
that is directing the signals in a straight line from antenna to antenna (line-of-
sight) or broadcast at an angle into the upper layers of troposphere and
reflected back to earth’s surface. The first way require the transmitter and the
receiver to be within line-of-sight distances, while the second way allows
greater distance to be covered.

lonospheric Propagation: Higher-frequency radio waves are transmitted
upward into the ionosphere where they reflected back to earth. Eventually,
the radio wave will change direction and speed up when travel from
troposphere into ionosphere. It has a greater range of transmission covered
with lower power output.

Line-of-Sight Propagation: Very high frequency signals are transmitted in
straight lines directly from antenna to antenna. The antennas must be facing
cach other and either tall enough or close enough for not to be affected by the

curvature of the earth.

5. Space Propagation: It utilizes satellite relays in place of atmospheric
refraction. Signal is received by an orbiting satellite, which rebroadcasts the
signal to the intended receiver back on the earth. Basically, it is a line-of-
sight transmission with an intermediary, the satellite. The distance for

transmission is the greatest compare to others propagation ways.

2.2. Wireless Application

Wireless application is specially builds for the wireless devices such as the
mobile phone.

An article written by Christoffer Andersson says that wireless application is
divided into two categories: client-server and client resident applications.

Client-server; WAP is the first example of client-server applications. Most
of the applications that we see are WAP applications or using similar technologies
(web clipping, I-MODE). Most of these applications are browser-like menus with
the content on a remote server. WAP and ultra-light clients are very appealing, as
they don't require any skills from the user. There is no need to download, install or
configure each application. The updates are done at the central server, and therefore
instant to the user.

Client resident applications: It is an application that is always ready for
connection. User will be able to connect to the application anytime they want and
only paying for the content they have retrieved. Stock trading application is an
example. It is constantly online, giving users a level of interactivity that is beyond

what we get with browsing,

10

23. Converter

Converter is a device, process or application that transforming a format from
one to another. Digital-to-analog converter is an example of converter. It is use to
transform the signal from digital format to analog format.

WAC is considered to be a converter. It is responsible in converting the
HTML format web page to WAP format page. It is done in real-time basis; once the

user request for a HTML page, WAC will convert it to WAP page within a few

second.

2.3. Wireless Network Environment

Wireless Network Environment is an environment of network components,
which are link together with the use of wireless technology. Wireless Local Area
Network and Bluetooth are examples of the environment.

Wireless Local Area Network (WLAN) is the new implication of network
technology that allows the devices such as desktop computer, laptop, handheld
computer and PDAs to be connected together wirelessly. It is like an intranet but
without cabling.

WLAN is gaining its acceptance in the market now a day. The reason for this
is because WLAN offer lower price but for transmission speed ranging from 1 to 54
Mbps depending on the protocol it used. Furthermore, WLAN can be working in a
reasonable range and does not need line-of-sight requirement.

The benefits of WLAN is that it is able to reach out to area where is not
possible for wiring. It also helps in reduce the future cost for office re-layout and re-

location as it is able to complement the current wired network, Besides, WLAN 15

11

more cost effective for infrastructure project and even in generate new revenue for

Hotspot operator.

There are three types of deployment network models for WLAN. These
models are Small Office Home Office (SOHO), Enterprise and Hotspot. A SOHO
requires only sharing information and resources within a small office, which usually
consist of a printer, a personal computer and a notebook. Compare to wired network,
WLAN is more cost effective because it reduces the cost for wiring, especially when
the re-layout has to take place.

Enterprise model is more complex than SOHO, where it needs to connect
many computers, usually more than 50, to the internal server for information sharing
and internet connectivity. It requires reasonable security feature to ensure the
integrity and avoid unauthorized access. The architecture of this model can be
deployed together with the current telecommunication technology such as GPRS and
Virtual Private Network for accessing the resources in the office remotely.

Hotspot is mainly used by consumer for email, web surfing, Virtual Private
Network, voice over IP service and multimedia entertainment. It requires
intermediate service providers between the internet and the wireless access point.
These service providers are responsible in providing the services as mentioned
above.

Bluetooth is a computing and telecommunications industry specification that
describes how mobile phones, computers, and PDAs can easily interconnect with
ecach other and with home and business phones and computers using a short-range
wireless connection.

With Bluetooth, users will be able to buy a three-in-one phone that can

double as a portable phone at home or in the office, get quickly synchronized with

12

information in a desktop or notebook computer, initiate the sending or receiving of a
fax, initiate a print-out, and, in general, have all mobile and fixed computer devices
be totally coordinated. It requires that a low-cost transceiver chip be included in
each device. The transceiver transmits and receives in a previously unused frequency
band of 2.45 GHz that is available globally (with some variation of bandwidth in
different countries).

[n addition to data, up to three voice channels are available. Each device has a
unique 48-bit address from the IEEE 802 standard. Connections can be point-to-
point or multipoint. The maximum range is 10 meters. Data can be exchanged at a
rate of 1 megabit per second (up to 2 Mbps in the second generation of the
technology).

Furthermore, it has a frequency hop scheme which allows devices to
communicate even in areas with a great deal of electromagnetic interference.
Besides, it also has built-in encryption and verification that enhance the security
features.

WAC will operate inside Wi-Fi connectivity. The reason for it will be

discussed in Section 2.11.4 Wireless Protocol.

2.5. Wireless Application Protocol (WAP)

The WAP (Wireless Application Protocol) is a specification for a set of
communication protocols to standardize the way that wireless devices, such as
cellular telephones and radio transceivers, can be used for internet access as well as
intranet. It is a standard defined by the WAP forum which consists of Nokia,

Motorola, Eriksson and Phone.com.

13

WAP is developed for the wireless devices which have several constraints as
follow:
e Less powerful processing unit
e Less memory
e Restricted power consumption
e Smaller displays
e Different input devices (e.g. a phone keypad)
The wireless network as well has the following constraints:
e Less bandwidth
e More latency
e Less connection stability

e Less predictable availability

1
| -~
|
! |

1 ,
WAP Devico Application Server

Pea
| Requeel (URL) = HTTP
v N 2 P """) N
| Mierm | < Response (Content) ™ Content.
| Brewser | . l
| WAy _ b) ee—
? < Push (Content] 1M J

.

Figure 2.1: WAP Programming Model
The WAP programming model is actually the World Wide Web (WWW)
programming model with a few enhancements. In WWW programming model, the

client request for a URL from the application server. The application server will

response to the client together with the content.

14

WAP programming model is optimizing the WWW programming model to
match with the characteristic of the wireless environment. Figure 2.1 shows the
WAP programming model. Instead of web browser like the WWW, the WAP device
has the micro browser with telephony support, called the WTA. At the WAP device,
it will request a URL from an application server. Like the WWW model, the HTTP
server response with the content. In addition to the content response, the server will
push the content to the WAP device as well with the Push Initiator at the server.

In order to optimize and enhance the connection between the wireless domain
and the WWW, WAP utilize the proxy technology. The WAP proxy provides
functions as follow:

e Protocol Gateway — A gateway to translate request from a wireless
protocol stack. E.g., the WAP 1.x stack (from top to bottom) — WSP
(Wireless Session Protocol), WTP (Wireless Transport Protocol),
WTLS (Wireless Transport Layer Security Protocol) and WDP
(Wireless Datagram Protocol).

e Content encoders and decoders — It is use to translate the WAP
content into a compact format that allows for better utilization of the
underlying link due to its reduced size.

e User agent profile management — Describe the client capabilities and
personal preferences are composed and presented to the applications.

e Caching proxy — To improve the perceived performance and network

utilization by maintaining a cache of frequently accessed resources.

15

VAP

Mo

Browser

< encomed Content s

Figure 2.2: WAP Proxy

Application Server

Proxy
W A P, HIP
e Poy) USHIRIE | Soer)
o et - IR, o
. N Cortert : N
Fostue | " ‘
Enhanrorsants | i Coniges
I ! :

Figure 2.2 shows the WAP proxy. This infrastructure is meant to ensure the

users are able to access a wide variety of internet content and application.

WAP architecture also includes supporting servers that provide services to

device, proxies and applications as needed. These services are often specific in

function but are of general use to a wide variety of applications. The supporting

servers defined by the WAP forum are as below:

e PKI1 Portal — As shown in Figure 2.3. It is to allow devices to initiate

the creation of new public key certificates.

| 1 [
| A

Chent Appcalion Seever

lm-; Comant 9

' ookt

RS- |
A Bm
(23 i

Supporting Server Supporng Senver

"'“'." oW

i

S Reu——

Figure 2.3: PK1 Portal

16

o UAProf Server — Allows applications to retrieve the client capabilities
and personal profiles of user agents and individual users.
e Provisioning server — It is trusted by WAP device to provide its
provisioning information.
In order to have the WAP services, the WAP device needs to have the WAP

client architecture. The detail of the architecture is as shows in Figure 2.4:

Application Framewcrk
(WAE, Push Dispatcher, Messaging Client)

[1 1 o ¥

| Metwork || Content Rencrers | | Comman Functons | !

| Prelocols || {Imeges, (Porsistence, & VAM 4 EF)
| Multrmedia, #e. Syrc.etc) |

Figure 2.4: WAP Client Architecture

e Application framework — Provides the device execution environment
for the WAP applications. WAP applications are consist of markup,
script, style sheets and multimedia content. WAP Application
Environment (WAE) defines the structure of various form of
executable and non-executable content interaction.

e Network protocols — It is shared between client and the server.

e Content renderers — Interpret specific forms of content and present
them to the end user for interaction.

e Common functions — Defined to be utilized by the application
framework, including persistence and data synchronization.

e Wireless Identity Module (WIM) — Contains the identity of the device
and cryptographic means to mutually authenticate WAP devices and

SCrvers.

17

e External Functionality Interface (EFI) — Provides the mechanism to

access external functions that are embedded or attached to the devices.

For the WAP architecture, it is designed in a stack layer as shown in Figure 2.5. Itis
designed this way to provide a scaleable and extensible application development

environment for mobile communication devices.

Satice S.f_‘..-i" tusrnadic Mf‘lﬂlp v Carvient Formas
Dierenery Saneat | g E B
] L L;’,;;, | 2§ WALMITA Usar-Sgent Aah
Ll Prdsoring e | i g Caatiity Negoatar Sne
. o
Mvigation Kerbity Cookes QA
DNarwvey
Sawiis . { g M
Lockup ¥l | - 3 ;‘;‘ml I Sreamivg Messoe Transer
| | -
| g e -
Secura ‘ B
Transport E § Datagrams Corretons
| ! B
Pawar ‘ Pw NS | | CHOST FIEX 505
| i e WSD | | CUTE | ReREX | MWK

Figure 2.5: WAP Architecture

Each layer has a set of functions and/or services to other services and applications
through a set of well-defined interfaces. It is also accessible by the layers above.
The explanation for each component in the WAP architecture is as follow:

e Bearer Networks — Protocols at this layer are designed to compensate

for tolerate varying levels of services offer by the bearer, such as short

message service, circuit switched data and packet data.

18

Transport Services — Transport unstructured data across the

underlying bearer networks. It provides a set of consistent services to
the upper layer protocols and maps those services to the available
bearer services. It also creates a common abstraction that is consistent
across all bearers.

Transfer Services — It provides structured transfer of information

between network elements.

Session Services — It provides the establishment of shared state

between network elements that span multiple network requests or data
transfers, i.e. the Push session establishes that the WAP Device is
ready and able to receive pushes from the Push Proxy.

Application Framework — A general-purpose application environment

based on a combination of World Wide Web (WWW), internet and
mobile telephony technologies. The objective is to establish an
interoperable environment which allow operators and service
providers to build applications and services that reach a wide variety
of different wireless platforms in an efficient and useful manner.

Security Services — It is a fundamental part of the WAP architecture

and its services can be found in many layers. The general security
facilities offered are privacy, authentication and non-repudiation.

Service Discovery — It is a fundamental part of WAP architecture and

the services provided can be found at many layers. The services
include External Functionality Interface, Provisioning, Navigation

Discovery and Service Lookup.

VAP Neb

Device WAP Gataway Server
WAE WAE
WSP Wep

| HTTP HTTP
WP WTP
WITLS WTLS | SS. S5L
WOP wop | TP | TCP
Bearer - Bearer | 1P & P

Figure 2.6: Example of WAP 1.x Gateway

As the services in the WAP stack can be provided using different protocols
based circumstances, there are more than one possible stack configurations. Figure

2.6 is one of the examples that show the protocol stacks for the original WAP

architecture.

2.6. General Packet Radio Service (GPRS)

GPRS is a non-voice value added service that allows information to be sent
and received across a mobile telephone network. [t supplements today's Circuit
Switched Data and Short Message Service. It has several unique features which can
be summarized as below:

Speed: Theoretical maximum speeds of up to 171.2 kilobits per second (kbps)
are achievable by using all eight timeslots at the same time. This is about three times
as fast as the data transmission speeds possible over today's fixed
telecommunications networks and ten times as fast as current Circuit Switched Data
services on GSM networks. By allowing information to be transmitted more quickly,

immediately and efficiently across the mobile network, GPRS may well be a

20

relatively less costly mobile data service compared to SMS and Circuit Switched
Data.

Immediacy: GPRS facilitates instant connections whereby information can be
sent or received immediately as the need arises, subject to radio coverage. No dial-up
modem connection is necessary. This is why GPRS users are sometimes referred to
be as being "always connected". Immediacy is one of the advantages of GPRS (and
SMS) when compared to Circuit Switched Data. High immediacy is a very important
feature for time critical applications such as remote credit card authorization where it
would be unacceptable to keep the customer waiting for even thirty extra seconds.

New Applications: GPRS facilitates several new applications that have not

previously been available over GSM networks due to the limitations in speed of
Circuit Switched Data (9.6 kbps) and message length of the Short Message Service
(160 characters). GPRS will fully enable the Internet applications used on desktop
from web browsing to chat over the mobile network. Other new applications for
GPRS, profiled later, include file transfer and home automation- the ability to
remotely access and control in-house appliances and machines.

Service Access: To use GPRS, users specifically need a mobile phone or

terminal that supports GPRS (existing GSM phones do NOT support GPRS) and a
subscription to a mobile telephone network that supports GPRS. The use of GPRS
must be enabled for that user. Some mobile network operators may allow automatic
access to the GPRS while others will require a specific opt-in. Besides, users need to
have knowledge of how to send and/ or receive GPRS information using their
specific model of mobile phone, including software and hardware configuration (this
creates a customer service requirement). Also, it needs to have destination to send or

receive information through GPRS. Whereas with SMS this was often another

mobile phone, in the case of GPRS, it is likely to be an Internet address, since GPRS
is designed to make the Internet fully available to mobile users for the first time.
From day one, GPRS users can access any web page or other Internet applications-

providing an immediate critical mass of uses.

2.7. Personal Digital Assistant (PDA)

PDA is a term for any small mobile handheld device that provides computing
and information storage and retrieval capabilities for personal or business use, often
for keeping schedule calendars and address book information handy.

The term handheld is a synonym. Many people use the name of one of the
popular PDA products as a generic term. These include Hewlett-Packard's Palmtop
and 3Com's PalmPilot.

Most PDAs have a small keyboard. Some PDAs have an electronically
sensitive pad on which handwriting can be received. Apple's Newton, which has
been withdrawn from the market, was the first widely sold PDA that accepted
handwriting.

Typical the PDA include functions like schedule, address book storage,
retrieval and note entering. Many applications have been written for PDAs.
Increasingly, PDAs are combined with telephones and paging systems.

Operating system for PDAs is varying from their manufacturer. It might use
the operating system developed by its own manufacturer or from other company.

The most common operating systems in-used are Microsoft Pocket PC and Palm OS.

o
o

2.8. 2.5 Generation (2.5 G)

25 G is a term used to describe the state of wireless technology and
capability usually associated with General Packet Radio Services (GPRS) - that is,
between the second and third generations of wireless technology.

The second generation or 2G-level of wireless is usually identified as Global
System for Mobile (GSM) service and the third generation or 3G-level is usually
identified as Universal Mobile Telecommunication Service (UMTS).

Most of the telecommunication companies in Malaysia provide the 2.5G

services, such as Telekom, Maxis Communication and DiGi.

2.9. 3™ Generation (3G)

The next generation of wireless technology beyond personal communication
services is called the 3 G.

The World Administrative Radio Conference assigned 230 megahertz of
spectrum at 2 GHz for multimedia 3G networks. These networks must be able to
transmit wireless data at 144 kilobits per second at mobile user speeds, 384 kbps at
pedestrian user speeds and 2 megabits per second in fixed locations.

The 3G mobile communication standards and technologies will enable
communication using voice, text, images and video. The following examples
illustrate the possibility with 3G:

3G is being on a train and watching clips from your favorite soap

e 3G is being out and sending images back to headquarters
e 3G is using your phone to take holiday pictures to instantly send to
friends at home

e 3G is using your phone for a video conference in a taxi

Multimedia Messaging (MMS) is one of the 3G services that combine imaging with
mobility using exciting new content and high quality displays.

The first 3G networks launched in Japan in 2001 have already proven the
possibilities, encouraging operators elsewhere to build their own 3G networks. In
Malaysia, two of the telecommunication companies Telekom and Maxis
Communication have started to provide 3G services starting this year, after they have
succeeded in getting the license.

GPRS, EDGE, WCDMA and UMTS - the technologies leading up to 3G -
may fascinate and surprise people, but the services and applications they enable will

be easy and fun to use.

2.10. Two Similar Systems

2.10.1 Handisplay Smart Screen Creator

Smart Screen Creator is a server side technology that is developed to enable
wireless devices to view online internet content based on real-time basis. It is
developed by Handisplay (M) Sdn. Bhd.

It provides a cross platform support for different kind of wireless devices,
range from PDA to WAP enabled phone. In order for Smart Screen Creator to work,
it needs only a server and wireless network connectivity. Figure 2.7 shows the

architecture of it.

= o
LN >
Hand held computer

P

WAN/
g, World Wide Web

\ . Wireless
@q % i Router
.

LTk

o 1IN

Smart Screen Creator

Wab-enabied
cell phone

Figure 2.7: Architecture of Smart Screen Creator

First, the wireless devices will need to make connection to the server by
simply type in the URL address. After the connection, the wireless devices or the
client now able to surf the internet as they do using internet explorer on a desktop

computer.

o
N

When the client makes the request, Smart Screen Creator will fetch the
appropriate content from the internet. It will do some pre-processing before sending
the content to the client.

Smart Screen Creator pre-processing is responsible to make the content suit
for various types of wireless devices. It is able to detect what type of device make
the request, what is the format used by the device and then change the content into
the format that the device supported.

Another uniqueness about Smart Screen Creator is it capability in
customizing the content. It provides a user interface at the server which enabled the
administrative to view the pre-processed content. It allows the administrative to
choose the content they want, save the customization and every time the same URL
is requested, it will refer to the customized content.

The disadvantage of Smart Screen Creator is that it cannot support dynamic
content. The reason for this is because the targeted devices such as mobile phone
and Palm OS PDA are not able to run the dynamic script as the normal desktop
computer due to its lower processing power and limited bandwidth.

Furthermore, since all the pre-processing is done at the server, it will be
overloaded with heavy workload if there are many users log on at the same time.
This situation can cause the performance and reliability going down.

Overall, Smart Screen Creator is one of the creative technologies available.
Due to its ability in centralizing the process, different devices with different format
can be used to log on to the internet and share information within the wireless

network. Although it is still under development, it is a good alternative in providing

information with mobility.

2.10.2. AvantGo Mobile Internet

The AvantGo Mobile Internet is a service that provides free interactive and
personalized content and applications to handheld device or Internet-enabled mobile
phone real-time via wireless connection or desktop synchronization.

AvantGo enable seamlessly transition between wireless and offline modes to
browse the websites on mobile devices or select from the AvantGo channel for up-to-
date news and events.

Basically, AvantGo channel is another web site. It is a simplified version
HTML web site that is able to be viewed on mobile devices. To use AvantGo
Mobile Internet service, one must first register and configure an account on the
server. This account contains information about certain detail, such as username,

password and the subscribed channels.

AvantGo . jqpublic's
client Mobile Link account »

E A B
=)

Handheld Desktop AvantGo

Figure 2.8: Component needed

AvantGo require a web browser to and a mini web server to be installed on
the mobile devices operating system, such as Palm OS and Windows CE. It also
requires a mobile link to be installed on desktop computer. It enables connection to

AvantGo servers whenever synchronization is done. Figure 2.8 shows the

component needed.

When synchronizing the handheld device, Mobile Link will take over and
connect to AvantGo server. At first, the server will look at what channels is
subscribed. Then, it will download those pages from the WWW. In many cases,

these sites are distinct areas that contain pages optimized specifically for AvantGo

e

Web Servers

channels. Figure 2.9 shows how it works.

! E Sync for

~| Sync g ~ account [

" ;—— japublic .
Handheld Desktop \ :
AvantGo

Web Servers

Figure 2.9: How AvantGo work

AvantGo server will download all the internet contents and performs some
pre-processing. This includes shrinking images that is too large for display on
mobile devices, discarding pieces that cannot be used by AvantGo client and

compressing the rest of the HTML. Figure 2.10 shows the process.

|

Handheld
E] Comprasssd BIG Weh Servers
' | _peoes PAGES
Desktop e
AvantGo SR ;
SN
Vyeb Servers

Figure 2.10: How the process is working

Once the pre-processing is done, these pages are uploaded to the mobile
devices. The Mobile Link then will disconnect. All pages that are from a channel

need to be uploaded once for viewing without connection to the Internet.

et % Compressed [Web Servers

- pages

Handheld Desktop

AvantGo

Weh Servers

Figure 2.11: Desktop to client process

After the pages are uploaded to the mobile device, it is ready for browsing

with the AvantGo client browser. The mini web server that mentioned earlier is

responsible for displaying pages whenever a link is clicked while the AvantGo
browser is for reading the channel page. Figure 2.11 shows the process.

Although AvantGo provides the user with the ability to surf the web without
connection to the internet, it still has disadvantage. It needs to perform a lot of
procedure in order to get the content and update that the user wants. It affects the

information mobility since everything needs to be downloaded before it can be

viewed.

Besides, in order to enable a web content to be viewed with AvantGo, the
web page must be constructed with the format predefined by it. If the web site is not
build in AvantGo format, than it would not be able to be viewed. This is very
cumbersome, as the web developer need to learn the format and redo everything in
order to fit the format for mobility purpose.

Furthermore, it is device independent. As mentioned before, the content need
to be synchronized to the device before it can be viewed. Currently, only PDAs with
Pocket PC and Palm OS are supported. Other devices such as mobile phone cannot
be used for AvantGo since it does not has the synchronize ability. Besides, mobile
phone has some limitations compare to PDAs, such as processing power, memory
storage and web browsing features that does not support dynamic features.

In conclusion, AvantGo is created for the user who prefers mobility
especially in the business field who needs to get the corporate information within the
network. It is able to provide reliability and performance in delivering the
information, as the content is well organized at the server or desktop computer before
passing it to the wireless device. As the number of AvantGo channel is increasing, it

is very likely that it will become a standard in wireless field.

30

2.11. Technology

2.11.1. Software for WAC

2.11.1.1. Active Server Page (ASP)

ASP is a technology created by Microsoft. It is use to create dynamic internet
content with the script contain inside an ASP page execute at the server. Like
normal internet content, ASP page can be viewed on normal web browser, such as
Internet Explorer. The content written in ASP is identified by the extension .asp.

In order to run an ASP page, the server must have either Internet Information
System that comes with Windows 2000/Server or Personal Web Manager for
Windows 98.

As part of the development, ASP will be used to create the interface that acts
as a browser to surf the internet, create the content and then display it. Through the
web-based interface created by it, user is able to interact with WAC to make request

and view the output.

Further information about ASP can be found in the appendix A.

21112 Component Object Model (COM)

COM is an interface specification for reusable software components. It is
identifies by a unique ID. Each COM has its own functionality which can be used by
other programs, web applications or by other COM object.

COM provides an interface that allows the program to access the embedded
COM functions. It can be written in any programming languages such as C++ or
Java, as long as the programming tools have the ability to implement the COM

interface. Further information can be found in the appendix B.

31

For WAC, COM will be written using Visual C++. It is responsible for the
underlying core processing, like the content formatting and information storing. This

COM object will cooperate with the ASP interface in providing the information

needed to create the output.

2.11.2. Operating System for WAC

The operating system that will be used for WAC development is Windows

2000 professional edition or server edition.

The reason for using Windows 2000 is because it has the Internet Information
System which is very easy to be used to setup a web server and the available

resources that support the use of ASP and COM.

2:1133: Architecture of WAC

The architecture for WAC is Client-Server Wireless Local Area Network
with access to the internet. This architecture can be as simple as a computer which
acts as a server and a wireless device which is the client.

WAC will be running on the server. The client will first call for the WAC at
the server to establish a connection. After a connection has been established, the

client is able to request for information it requires. Further explanation will be

provided in Chapter 3.

2.11.4. Wireless Protocol: Wi-Fi (802.11b)

Wi-Fi is a popular term for a high-frequency wireless local area network
(WLAN). It is rapidly gaining acceptance in many companies as an alternative to a
wired LAN. It can also be installed for a home network.

Wi-Fi is specified in the 802.11b specification from the Institute of Electrical
and Electronics Engineers (IEEE) and is part of a series of wireless specifications
together with 802.11, 802.11a, and 802.11g. All four standards use the Ethernet
protocol and CSMA/CA (carrier sense multiple access with collision avoidance) for
path sharing.

The 802.11b (Wi-Fi) operates in the 2.4 GHz range offering data speeds up to
11-megabits per second. The modulation used in 802.11 has historically been phase-
shift keying (PSK). The modulation method selected for 802.11b is known as
complementary code keying (CCK), which allows higher data speeds and is less

susceptible to multipath-propagation interference.

2311558 Wireless Hardware

Wi-Fi compliant router or access point is needed to setup the network for
WAC. It serves as a terminal between the wireless devices and server.

Router is a simple device that capable of doing certain specific tasks. It acts
as a station on a network, which it has the addresses and links to two or more
networks at the same time. It relays the packets among multiple interconnected
networks with the used of the routing protocol. The routing protocol is a routing

algorithm that allows the router to determine the shortest path or the best routing to

send the packets to the destination.

Access point is a device that allows multiple users to connect to a wireless
network at the same time. It is like a terminal that provides an open connection for
any devices to a network. Unlike router, it does not have any addresses and links

of other networks or routing protocol because it is not design to passing data between

multiple networks.

2.11.6. WACluster

WACIluster is a file storage that keeps the information of requested internet
content. The information contain the address of the internet content, the total
segmentation for that web content and the displaying sequence of the segments.

When WAC is servicing a request, the information inside WACluster will be
referred first. If there is information of that particular internet content, it will be used
to construct the display. If not, the internet content will be retrieved from the World
Wide Web and will go through the processing module of WAC.

A file will be generated for each web’s content to store its information. Each

file will be identified by a unique ID number which is generated by the COM part of

WAC.

157 WAC Server

The WAC server is considered as a web server. It is setup using Internet
Information System (IIS) which is available with Windows 2000.
Internet Information System is a management console comes with Windows

2000 that enables information publishing over the internet.

34

The reason for choosing Internet Information System for the web server is
because it has the Active Server Page snap-in that enable internet content built with
this technology to be displayed, which is used to create the interface of WAC.

Furthermore, Internet Information System provides the easy implementation

in setup the web server with a friendly user interface in a few steps. Further

information is available in appendix C.

Chapter 3: Methodology

3.1. System Analysis

The modeling technique used to develop WAC is called transformation

model. Process of this method is shows in Figure 3.1.

ST
SOTpArS FORMAL DEVELOPMENT RECORD

Requirements;
Update as needed

Sequence of transformations. Plus
rationale for them

y
TRANSFORM N
A
FORMAL TRANSFORM 2
SPECIFICATION > TEST
TRANSFORM 1

SYSTEM
REQUIREMENTS DELIVERED
(sometimes informal or SYSTEM
incomplete)

Figure 3.1: Transformation Model

Transformation model applies a series of transformation to change a
specification into a deliverable system. It tries to reduce the opportunity for error by
eliminating several major development steps. The transformations can include
changing the data representations, selecting algorithms, optimizing and compiling.

As many paths can be taken from the specification to the delivered system,
the sequence of transformations and the decisions they reflect are kept as a formal
development record. This approach must have a formal specification expressed

precisely in order for the transformations to operate.

36

The reasons for choosing this modeling technique for WAC development are

as follow:

e Changes in selecting the pre-processing algorithm: The chosen
algorithm might need to be change when it cannot used to handle
majority of the internet content.

e Function optimizing: Either new features or changes will be made to
the function to improve its efficiency in processing.

e Changes in data representations: The data representations here refer to
the result display at the client. Changes are made to optimize the
display for well organize display.

3.2. System Requirements

3.2.1.

Functional Requirements

The following is a list of the functional requirements for WAC:

WAC must able to receive request from the wireless device. It will retrieve
the requested internet content from the World Wide Web.

Identifying the format supported by the wireless devices. The formats refer
to is either WAP or HTML.

Analyzing the content to check whether each element is suitable for
converting to other format or not.

Divide the content into several segments. Each segment will become an
independent WAP page when it is displayed on a wireless device.

Converting the content’s elements inside each segment into WAP format.
£

37

6. Creating WAP page for each segment and organizing the sequence of each

created WAP page to be displayed accordingly.
7. Create a text file which contains the information from the pre-processed

content. This text file will be stored inside WACBase for future reference

when the same content is requested.

3.2.2. Non-Functional Requirements

The following is a list of the non-functional requirements for WAC:

1. Check the requested web site to see whether it requires secure connection like
Secure Socket Layer.

2. Secure connection need to be provided if it is needed.

3. Image processing. The image must be processed to fit the display mode of

the wireless device.

3.3. Hardware Requirements

The basic hardware requirement for WAC is a desktop computer and a PDA.
The desktop computer is where the WAC will be installed. It plays the role
as the server in the whole system. The specification for the desktop computer is as
follow:
e 400 MHz processing speed.
e 256 MB memory.
e 40 GB Hard Disk Drive for storage.
The PDA is used to test the output of WAC. The requirement for it is the
operating system preferable to be a Palm OS. This hardware is optional, because

there is simulator that can be downloaded for development testing,

38

3.4. Software Requirements

Windows 2000 professional edition or server edition will be used as the
operating system for WAC. Windows 2000 has the Internet Information System that
enables the server to be setup easily with a few steps.

Furthermore, WAC is operating inside a network environment. Windows
2000 has the features that enables network setup can be done easily. It has the ability
to automatically detect the network configuration and set it up according to the
appropriate protocol.

Besides Windows 2000, Palm OS simulator is needed for testing purpose.

This simulator will be used to test the output result of WAC. It is an alternative to

own the real device.

3.5. Conclusions

Basically, WAC is responsible in retrieving the internet content, performing
the internal processing and then converting the content to WAP format before
sending it to the client. Compare to the available system in chapter 2, WAC is
simpler because it performs less complex processing.

Although it is simple, it still has some constraints. Some web sites implement
the security features such as SSL which is quite tricky. In order to view it, WAC
must have a security feature like certificate authority to enable it to retrieve the
content from the secure site. As a result, some of the web site might not be able to be
displayed.

Besides the mentioned above, the internet content is quite difficult in a sense

that there is no standard that define the structure and language that should be used.

39

As a result, it is very difficult to determine the appropriate internal logic of the pre-

processing operation.

For the reason mentioned above, Windows 2000 is used as the platform for
WAC for reasons of available resources, easy implementations and user-friendly
development environment. There are library files, classes or other resources in a
form of dynamic link library. These resources are predefined to perform certain task
that can be used as part of WAC. Although it might not fully solve the constraints

mentioned, but at least it is able to handle them until certain state.

40

Chapter 4: System Design

4.1. System Architecture Design

Architecture for WAC is client-server. It is implemented as shows in Figure

Hand held computer
Wireless
1 Router

Web-enabled
cell phone

4.1.

Internet

Wireless Application Converter
Server

Figure 4.1: WAC Architecture

As shown in Figure 4.1, the WAC server is connected with the client’s
wireless device through the use of wireless router. The server must has a connection
to the internet in order to retrieve the client requested content.

For the client to make request, it must establish a connection with the server.
After the connection has been setup, client can start to make its request. The
requested content will be pre-processed at the server before sending the end result
back to the client.

It is considered as a three tiered client-server. A three tiered client-server 1s a
technique that the data manipulations and logic implementations are executed at the

server. The client is only responsible for representing the data without the need to

perform any processing.

41

In this architecture, WAC is the server for the three tiered client-server. It is
responsible in serving the request, retrieve the requested internet content, perform the
processing and send the end result to the client.

The wireless device, which is the client, is only responsible to show the end
result. When the user interact with the displayed content, such as accessing a
hyperlink, the process will be sent to the server for excecution. After it is done, the
server will send the result back to the client.

The advantage for using this architecture:

e The server can handle variety of content element. With this, it is able to

push as much content as possible to the client.

e Wireless devices with different operating specifications can be used to
surf the internet regardless their differences as the underlying processes
are done at the server. It is an advantage to overcome certain constraint
of wireless devices, such as lower processing power.

e The system is scalable in supporting different wireless protocol. For long
term, WAC can serves different kind of wireless protocol other than
WAP, such as [-MODE. It can be done by adding the specific processing
for that particular protocol at the server.

Although the three tiered client-server has the advantages as mentioned
above, but it has disadvantage as well. As the processing is concentrated at the
server, it will become a burden if there are a lots of clients need to be served at the
same time. Therefore, the server needs to have higher processing capabilities and

larger storages to accommodate the requests.

4.2. System Module

WAC is divided into three modules. These modules are shown in Figure 4.2.

Wireless
Application
Converter
Conversion Processing Storing
Module Module Module

Figure 4.2: WAC system module

Processing Module: This module is the core for the pre-processing of WAC.,
The functions of this module include retrieving and analyzing the internet content,
storing the necessary content and divide it into several segments.

Storing Module: This module is responsible for storing the pre-processed
web content information in a form of text file, which will be stored in WACBase. It
works closely with Processing Module because the information it needs is produced
by that module.

Conversion Module: This module is responsible for converting the requested
URL content into the format that supported by the wireless device. The functions of
it are making request on client behalf to retrieve the content from the internet, get the
pre-processed information from either WACBase or from Processing Module, and
check for the client supported format, creating the content to be viewed by using the

pre-processed information and sending the content back to the client.

43

4.3. System Functionality Design

Figure 4.2 shows the system functionality design for WAC.

e
li Url
Client | e e F ot 3 Internet
un
UriContent
‘ r
<L 1 E2 - ek 27 ves = my J.
EndResult Url B 2 W
‘ Format Content
Conversion & —ProcessedConient Processing
InformationFlle
it ProcessedContent
+ r 3 x 0COs

Information
WACBase - InformationF lle Storing
'

Figure 4.3: WAC system functionality design

The tree main processes represent the modules that have been mentioned
earlier: Format Conversion represents the Conversion Module; Content Processing
represents the Processing Module; Information Storing represents the Information
Storing.

Explanation for the data flow is as follow:

1. First, the client sends the URL request together with its browser information
to the Format Conversion process.

2. The Format Conversion process will first search for the similar URL
information. If the information is available, it will retrieve it and use the
information provided to build the content and sends the end result to the
client. If the information is not available, it will send the URL to the Content

Processing process.

44

3. At the Content Processing process, it will retrieve the respective URL content
from the internet and processed it. The processed information will be sent to
the Format Conversion process and the Information Storing process.

4. At the Format Conversion process, it will use the information provided from
the Content Processing process to build the content. After the content is
build, it will be send to the client.

5. At the Information Storing process, the processed content will be stored
inside the WACBase in a form of text file. Each text file has its own unique

ID number for reference.

4.4. Module Functionality Design

’ Inté;ét J

Ulﬁ UriContent
(4 2.1) (i 22 i
i e Retrieve _ UrContent - Content
Content Analyzing
L J L |
Conversion AnalyzedContent
Module
« 24 R} 23
) Content SegmontedContont ———— Content
FroocessedContentSa, Buffering s Segmentation
\

ProcessedContent

Storing
Module

Figure 4.4: Processing Module functionality design

This part is the explanation of each module’s functionality. It explains the
processes involved inside each module that are cooperating in performing the

module’s task. Figure 4.4 shows the functionality design of Processing Module.

45

Processes involve in this module are Retrieve Content, Content Analyzing,

Content Segmentation and Content Buffering.

The data flow for this module is as follow:

13

First, it receives the URL content from the Conversion Module. Then, the
Retrieve Content process will use the URL and retrieve the content from
the internet.

Then, the content will send to the Content Analyzing Process for
analyzing. This process is responsible in scanning the content’s elements
and determines the needed elements by filtering.

The analyzed content is send to Content Segmentation process for
division into segments,

This segmented content will send to the Content Buffering process. This
process is responsible to output the processed content to the Conversion

Module and the Storing Module.

46

For the Storing Module functionality design, it is shows in Figure 4.5.

Processing
Module

Processed
Content

.

[2L B = 3.2 N
Create RequestNew!|D —p» Generate
InformationFile NewlD
g — NewlD
) _

!

InformationFile

WACBase

Figure 4.5: Storing Module functionality design

The processes include in this module are Create Information File and

Generate New ID. Following explain the data flow for this module:

1. First, Processing Module will send the processed content to the Create

Information File process in this module.

2. Then, Create Information File process will request for a new file ID from the

Generate New ID process.

3 Create Information File process will create a information file with the
information obtained from processed content and the new ID.

4. The information file created will be stored inside the WACBase for future

reference if the same URL is requested.

47

Figure 4.6 shows the Conversion Module functionality design. It is the

finalmoduleforWAC.
Url - .
4 Processing
Urd
ProcessedContent Module
Client
BrowserFormat
: |
A
(- 1.2) 1.1 ™y
. Content - InformationFile ——
GetDisplayCode o WACBase
| Url i
l 7
DisplayCode
EndResult
ph#
Generate Conlentinformation
Content <
e et

Figure 4.6: Conversion Module functionality design

The processes involved in this module are Content Information, Get Display

Code and Generate Content. The following explain the data flow for this module:

1.

First, the module will receive the requested URL and browser format
from the client.

Content Information process will receive the URL and retrieves the
appropriate content information. At first, it will check the WACBase
with the URL for the similar content. If the checking return true, than the
appropriate information file will be retrieved from WACBase; if not, the
URL will be sent to Processing Module. The Processing Module will
return the related processed content for generating the end result.

At the same time, the Get Display Code process will get browser format
information to generate the appropriate display code. This display code

will be used by the next process in producing the end result for client.

48

4. Finally, the Generate Content process will get the content information
from Content Information process and display code from Get Display
Code process to generate the end result. The content information is used
to build the WAP pages and create display sequence while the display

code is used as a supplement in optimizing the display.

4.5. User Interface Design

In WAC, there are two types of interface that specially created for different

purpose.

For the wireless device, the interface is simple with just only a query column

for the user to make the request. This interface is shows in Figure 4.7.

Figure 4.7: User interface for wireless device

A complex interface is created at the server. It allows user to make request
and to see the structure of the end result that will be displayed at the client. The
structure is about the segmentation of the requested content, the converted elements
and also the display sequence.

This interface is build by using the Active Server Page. It will detect the
request make from either the server it selves or from the client. After the detection, it

will load the appropriate interface before the user can make request.

49

4.6. Conclusion

WAC is designed to be a three tiered client-server architecture. This
architecture enables devices with different format to retrieve the internet content
regardless to the knowledge of the underlying processing. Besides, it is also
expandable as new support for new devices can be added to it.

In exchange, it can be overwhelmed by too many requests at the same time.
Therefore it needs computer with higher processing power and storage to do the job.

WAC is divided into three modules: Processing Module, Conversion Module
and Storing Module. These are the basic modules that have been identified. In
future, new module can be added to enhance the performance.

Since the devices make request has the possibility to be either HTML or
WAP, therefore the interface is designed in a way that suit these two formats. One is
a simple interface for display at the wireless device while the other is a more
complex interface build for improvement purpose that will be showed at the server.

Overall, WAC is designed in this way to support different kind of devices
that come with different format. Although it only supports WAP and certain
functions at the development states, there might be considerations in putting in more

features that support variety of format or provide new functionality such as editing.

50

Chapter 5: System Implementation

5.1. Introduction

System implementation is the next step in realizing the system. It is a process
that transforming each requirement that had been phased out during the design stage
into executable program codes.

In the design stage, WAC is consists of three modules. The coding approach
is based on these modules, which mean each module will have different way of
implementation. For example, the processing module is the core of WAC. Since it
requires real-time processing power, therefore it will have to be written using real-
time capable scripting language, such as C++. On the other hand, the Conversion
module involved displaying output on different devices, based on the type of web
browser they used. Since IIS is used, therefore the possible implementation used is

ASP. Further explanation will be done in the following section.

5.2. Processing Module

Processing module is the core of WAC. It does all the internal processing,
such as read the source stream, identify the elements, store the elements using data
structure approach and passes the elements to the Conversion module for further
display processing.

Before going into further details, here is a brief explanation about how the
Processing Module works. As shown in Figure 5.1, the first step of what it does is to
open the source file (in HTML format) specified by the received variables and store
it in stream form. Then, it will process the stream by identify the HTML elements,

the name of the tags, the tags' properties and the corresponding text content. The

51

elements will be pushed into a link list. After that, the link list will be passed to the

Conversion module for further processing.

MEESES T o7

fSrc = fopen(sSrcLocation.c_str(),
char ch;
while((ch = fgetc(fSrc)) != EOF)

{

pszHtml += ch;
}

CNode *pNode
COutProcess *pOut
string sOut = "";
// ProcessNode (pszHtml, pNode)
// if(pNode->HasChild())

// pNode->GetChildNode (sOut] ;

new CNode:;
new COutProcess;

SpecificPush(pszHtml, pNode):
if (!m_bWap)

//Pushing
all to one.
else

all to one (WAP);

{
/*
Index file being created.

" r"

) ;

// pOut->ProcessOutput (pNode, m_sOutPath, m sID); //Using linked pointer.

pout->SpecificOutputProcess(pNode, m_sOutPath, m sID, m sDomainUrl) ;

pOut->WapOutput (pNode, m_sOutPath, m_sID, m_sDomainUrl) ; //Pushing

if (pOut->CreateIndexFile (m sOutPath, m sID))

Figure 5.1: WAC — Processing Module Sample

5.2.1. Processing Module: Coding

The Processing Module is part of the WAC component, WAC.dIl. It is a

Component Object Module (COM) created
approach is used to program this module.

Object-oriented programming is an

using Visual C++. The object-oriented

approach where it is using object. An

object is an entity with its own properties and functions. An object can be used to

perform several processes and it can be

reused. The reason for choosing this

approach is because the objects defined can be reused throughout the whole program.

Since the function is already defined in an object, all we need to do is just
calling the object and ask it to perform that particular function. It helps in reducing
the need to code that particular function, which will make work more difficult.

The language used to code this module is C++. It is coded using Microsoft’s
Visual C++. Visual C++ is a very useful development tool. Besides compiling
program codes, it has several features that aid the developer in developing the
application according to their needs. At first, Visual C++ will create the workspace
that suits the application. For example, if the application is a COM, then the
developer will specify the specification. After that, Visual C++ will generate the
COM workspace, with all the necessary basic codes served as blueprint. The
developer will only need to add in the codes they wanted to make a complete COM.
After it is complete, Visual C++ will help to build the COM, and then it is ready to
be used.

C++ is a scripting language that supports object-oriented programming. Each
object is identified by the keyward class. Inside each class, there will be several
functions/methods and properties. These functions/methods and properties can be
categorized into three groups: private, public or protect. Private specified that only
the member functions of the class can access the functions/properties in this
category. Public category functions/properties can be accessed outside of the class.
Protect category functions/properties only allow the member functions of the class it
selves or its sub class to access.

There are 3 classes in this module: CNode, CTag and CProperty. CNode is a
class that performs operations on the source stream. It identifies the HTML

elements: the name, the associate properties and the content. After it manages to

53

identify the elements, it will store them into a stack. This stack will be passed to the

Conversion module for further processing.

CTag is a class that stores information of an HTML element. It will store the
name of the tag, the properties of the tag and the content associated with the tag. It
has functions that will return the information stored upon request.

CProperty is a class where it stores information of the element’s properties.
It will store the name of the property and the associate value. Like CTag, it also has

functions that will return the information stored when it is requested.

5.3. Conversion Module

The conversion module is responsible for constructing the end-result display.
It is separated into two parts: the internal processing, which is part of the WAC.dlI,
and the displaying process, which is part of the ASP scripting.

The internal processing will use the stack produced by the processing module
to construct the output with a mathematical method. At first, the method will
determine the maximum number of elements should be placed inside an output.
After determine the number, it will construct the output by writing the elements into
a text file. The number of text files is determined by the maximum number of

elements. If the maximum number is reached, than the following elements will be

written into a new text file.

5.3.1. Conversion Module: Coding
The internal processing is written using the object-oriented approach. There
is only one class defined, COutProcess. COutProcess contains methods and

properties that responsible for the display processing. The processing method uses

54

the mathematical approach as described above. After the processing is done,
COutProcess will create an index file that contains the link to each processed output.

The displaying process, which is part of the ASP, is responsible in displaying
the output. The approach used is structure programming. There are several functions
inside the ASP that working together to perform the task. First, it needs to know
what is the browser that making the request. If it is a WAP browser, the displaying
process will construct the output according to the WAP standard. If not, it will
construct the output according to the HTML standard.

The conversion module will provide the user with a web based interface.
There are two types of interface, which are written in WML and HTML. The reason
for having two types of interface is because the mobile devices, such as cell phone or
Palm PDA is using WAP standard, while other devices such as Pocket PC is using
HTML standard. As mentioned before, the displaying process of this module will
detect what is the browser used by the user. It is determined by a server variable

called User Agent, which is included inside the HTTP request header.

5.4. Storing Module

The storing module is responsible in storing the processed files. It is not
using any database for storing purpose. Instead, it stores all the processed files into
one folder, called WACluster. WACIuster is the main folder that stores all processed
files for the requested web contents. The processed files are store according to the
requested web content.

At first, when the user requesting for a web content through WAC, the
request will be given an identification number (ID). WAC will create a folder inside

WACTluster, using the ID as the folder name. This folder will be used to store all the

55

data needed for that particular request. Such data are the source file and the

processed files.

5.4.1. Storing Module: Coding

The management of WACIuster and its contents are done within the ASP.
There is one object that can be used to perform this task, the FileSystemObject. It is
a scripting object that used at the server to access the file system. It allows user to:
e Get and manipulate the information about all of the drives in the server.
Get and manipulate information about all of the folders and sub-folders on a
drive.
e Get and manipulate information about all of the files inside of a folder.
It can be used to perform any task on the file system aside from setting security
information.
The identification number is generated by a COM object called genuid. Itisa

dynamic link-library, which can be used to generate a long string of number. The

reason to generate a long number is to avoid the possibility of unauthorized access to

the files inside the folder. Each time it will generate a different string of number

when it is called to avoid collision among the folders.

55. Complement Com ponent Object

There is one COM called HtmTear, which is not included inside the design

module. It is a standalone COM that responsible in making connection with the

requested server, retrieved the source file and store the source file inside the

WACluster.

HtmTear is written using Microsoft Foundation Class (MFC). It is a
predefined library written in C++. Writing MFC application is different from
ordinary C++ application, for it has its own structure and its own syntax, which is
totally different from the conventional C++ structure. There are many classes inside
MFC that help the developer to develop application faster, especially Windows based
application.

The classes that used by HtmTear is called Clnternet. This class is used to
perform internet connection using the HTTP protocol. Although it does not perform
as well as normal web browser, but it is useful for its ability in retrieving data from
destination web server.

When HtmTear create the internet connection, it will retrieve the data from
the targeted web server. The data will be written into a buffer. Afier the writing
process is finish, HtmTear will create a source file of that particular request, using all
the information given such as the folder identification number inside WACluster and
the source file name. The data inside the buffer will be written to that file and after

that, it is ready for further processing.

5.6. System setup

After the system being implemented, the next step is system setup. WAC
consists of a collection of ASP files, HTML files and three dynamic-link library
COMs.

The ASP files and HTML files need to be stored inside one folder, which act
as the root for IIS to refer. The root folder will be called wwwroot. After storing the

files, the next step will be configuring the IIS to point to this root folder.

57

Inside IIS management console, expand the tree until it reaches the default web site.
Right click on the default web site then click the properties. Inside the properties
dialog, point to Home Directory section. Set the local path to where the wwwroot is
located, for example C:\Handisplay\Inetpub\wwwroot. After setting the root, the
next step is to set the default file. The default file is the file that will be referred to
when a web application is accessed. Go to the Document tab under the same dialog
box, add a new document called index.asp and move the file name to the highest
location. The file name at the highest location will have the priority to be referred
first. After it is done, click OK to come out from the dialog box.

The next step is to register the COM. In order to use a COM, it needs to be
register into the registry. When a COM is called, Windows will refer to the registry
to find the match. If the match is found, Windows will use the information obtained
from the registry to call the COM.

First, store all the COM into Windows system folder, C:\WINNT\system32.
After storing the COM, open the command prompt. Then, in the command prompt,
type the regsvr32 [COM name] (i.e. regsvr32 WAC.dII) to register the COM. There
will be a dialog prompted stated that either the registration is success or fail. One

COM can only be registered at a time, therefore this process need to be repeated until

all COM had been successfully registered.

58

5.7. Summary

The system implementation of WAC is done based on the modules it has.
Each module uses different implementation approaches. These approaches are the
coding approach, the scripting language used and the development tool.

To put it in a nut shell, the two major coding approaches used are object-
oriented and structure programming. All COM components are written using the

object-oriented approach, while the ASP is written using structure programming

approach.

The scripting languages used are C++, VBScript, HTML and WML. C++ is
used to code the COM, while VBScript, HTML and WML are used to code ASP.

The development tool used to develop COM is Visual C++, while Visual InterDev 1s

used to develop ASP web based application.

59

Chapter 6: System Testing

6.1. Introduction

System testing is a series of identification process, where the purpose is to
discover the weaknesses. These weaknesses will be used to improve the system

performance. However, not all weaknesses can be corrected due to the outcome such

as non-standardized internet content structure.

The following section will explain how the system testing is done on WAC.
For a brief introduction, the testing is done on each module. These testing are unit
testing, module testing, and integration testing as well as real-world testing. These

testing are done either during or after the system implementation.

6.2. Types of Testing

As mentioned before, there are several types of testing being done for WAC.

These testing are unit testing, module testing, and integration testing as well as real-

world testing.

6.2.1. Unit Testing

Unit testing is the first type of testing being implemented. It is performed on
each basic function either during or after system implementation. It is done on each
individual function. The purpose of unit testing is to make sure the function is
working as required and reduce the error rate of the module performance.

This testing is done to examine and review the code of each function. At
first, the function is constructed into an executable program. The testing resource for

the function is specified within the code it selves. The resource might be a simple

60

string or a simple file. Extra codes are added into the main code for debugging
purpose. This way, the bug and error can be easily identify and help to ease the

debugging and correction process.

6.2.2. Module Testing

Module testing is the next testing stage after unit testing. [t combines all
units under the same module for testing. In other word, it is an integration test
among the units. Although the units have been tested, module testing will make sure
the integration among the units are working as required. If there are errors during the
testing, each unit will need to be tested again to identify the causes and correct it.

Module testing is done by combining the related functions of a module into
one executable program. The testing resource is either the combination of all units
testing resources or a new test file. It is specified inside the executable program.

Module testing consumes more time compare to unit testing. The reason is
because the size of the program, where it is the combination of all units and will
consume more time in debugging and correction. Furthermore, it is very difficult to
trace the error as well due to the complexity of the code, although extra code had
been added.

After the module testing had been done successfully, the next step is to
perform the integration test. Before performing the integration test, some of the
modules need to be converted into other format. If the module is COM, than it need
to be converted into a dynamic link-library file, in order for other module, which 15 1n

ASP, to communicate with it

61

6.2.3. Integration Testing

Integration testing is performed by combining all three modules together.
These three modules are working together to perform the required functionality of
WAC. Integration testing is done to make sure that each module, after being
combined, will still perform as it is required.

Integration testing uses the approach of Bottom-Up method. This method
stated that every unit would be tested individually. After each unit being tested, the
testing advances to the next level, where it involves combination of several units.
The process continue until it reaches the highest level, where the combination of all

tested units to perform the final test. Figure 6.1 shows the Bottom-Up approach used

for WAC.

®—3
O

T —

r
A

est A, B,
C,D EF
G, H

C: CProperty

D: WAC.dlI

E: WACTear.dll

F: Processing Module
G: Conversion Module
F: Storing Module

Figure 6.1: WAC — Bottom-Up Testing
Error tracing will become more difficult every time it goes up one level. If
error occurred in the highest level, it will be very hard to trace the error. Fortunately,
ASP has this ability where it will inform where the error is and allow us to correct it.
On the other hand, if the error is inside the COM it selves, it will be even more

difficult, as dynamic link-library it selves is not an executable program. Therefore,

63

the alternative is to store the testing source file where error is created, convert the
COM back into an executable program and use the source file to trace the error. The

disadvantage of this alternative is that it consumes time.

6.2.4. Real-World Testing

Real-world testing is an extra stage of testing after integration testing. The
purpose of this testing is to tune the system to perform on its optimum performance
in the real environment.

Although testing had been done previously, the real environment provides the
best resources to test how the system is working. If most of the real environment
resources cannot be handled, the whole system needs to be rebuilt. Furthermore,
another reason to have this testing is to collect data about the reaction of WAC to
certain web sites, such as Yahoo, MSN and Google. These data then can be used to

improve WAC features in the future.

64

6.3. Testing Resources

Table 6.1 below shows the testing resources being used for each type of

testing. The local.htm file is in the appendixes.

Table 6.1: Testing Resources

Testing Type | Types of Resources Example
Unit Simple HTML String <html><head></head><body></body></html>
Module HTML String <html><head><title></title></head><script></scri

pt><body></body></htm]>

Integration Simple Internet Content | http://ocalhost/local. htm

Real-World Internet Content http://www. yahoo.com, http://www. google.cor

6.4. Changes Done

There is one modification done on the Processing Module. At first,
Processing Module uses tree data structure method to store the elements. After the
testing had been done, this method is not suitable in doing the job due to the
complexity of the algorithm it selves and the structure of the internet content.

An example of a HTML tree data structure is shown in Figure 6.2 below.
Starting from the root, there is HTML, then follow by its children nodes, HEAD and
BODY. Inside each tag, there are other HTML elements, such as META, TITLE,

SCRIPT, PARAGRAPH and HEADING.

65

b

i iy

HEAD

HTML

TITLE

META

Figure 6.2: WAC - Tree Structure

BODY

TABLE

TR

R

ANCHOR

e

During the testing, the tree structure is suitable for smaller uncomplicated

internet content. But when it comes to much more complicated internet content, it

cannot handle the processing properly. If the tree is very big, it is very difficult to

traverse to and forth to obtain the information from each node.

After careful consideration, it is better to use a stack structure to store the

HTML elements. The reason is because it is easier to implement in Visual C++ by

using Standard Template Library (STL), compare to tree structure where we have to

define our own algorithm. Figure 6.3 shows an example of stack structure.

66

HTML
HEAD
ITTLE
/TITLE
/HEAD

/HTML

Figure 6.3: WAC — Stack Structure

Since STL provides functionality to manipulate the stack, the information
stored in the stack can be easily obtained. Processing Module will be able to
determine the wanted and unwanted element by specifying the condition. Although

it requires the developer to hard code the specification of the condition, the ease-of-

use is the reason why it is used.

6.5. Summary
System testing is needed to make sure the system is performing as it is
required. It is to determine whether modification need to be done on the current
coding and algorithm used, as well as to collect data for future enhancement.
There are four stages of testing. They are:
e Unit testing — It is responsible in testing the basic functions,
e Module testing — It combines functions that belong to a module for further

unit testing.

67

e Integration testing — After each module being tested, the next stage is to
combine all modules to perform the integration testing. This testing uses
Bottom-Up approach.

* Real-environment testing — Finally, the system will be tested inside the real
environment to determine how well it can perform.

After the testing, there is one modification done to Processing Module.
Instead of using tree structure, it had been change to stack structure to store the
HTML elements. The main reason is because stack is easier to manipulate with the
help of Standard Template Library compare to tree, where developer need to come
out with their own algorithm.

System testing is very important, as it helps to recognize the pros and cons of
the internal implementation. It consumes time to perform testing on each
component. However, it helps to reduce the error rate and makes the system works

better when it is implemented in the real environment.

68

Chapter 7: System Evaluation

7.1. Introduction

System evaluation is a process taken to measure the achievement of the
developed system. The evaluation process will determine whether the system have
fulfilled the requirements, achieved the goals and the worth to advance.

This chapter will explain the evaluation done by the end user and the
developer. It will cover the problems encountered during or after the

implementation, the strengths and the constraints, and future enhancements.

7.2. Problems Encountered
Problems are encountered during the system implementation and testing

stage. Such problems are categorized into developer’s skill, development resources,

and raw materials.

7.2.1. Developer’s skill

The problems encountered here are during the system implementation. Such
problems are as explain below.

Lack of programming experience — When developing WAC, the problem
faced is the programming skill and experience. As mentioned in previous chapter,
WAC is developed using COM and ASP. Although having experience in writing
C++ program, but when it comes to write COM, there are difficulties as writing
COM is totally a new expose. The COM can only be written by using the wizard
available in the development tool, but cannot write it start from scratch, for COM has

its own way of writing.

69

Beside COM, MFC is also a problem, especially in writing the HtmTear
COM. As mentioned before MFC is a set of predefined classes, which aid developer
in building Windows application. Like COM, there is a special way of writing MFC.
As I never expose to MFC before, there are difficulties during writing using MFC.
Besides MFC, the standard template library (STL), which is a predefined set of
template library that help in writing data structure application is a problem, for I have
to know which type of STL should be used, what are the proper syntax, how it is
used and what are the complement header need to be included.

The only way to solve these programming skill problems is by reading
relevant programming resources, either from the internet or books. Although the
online resources are there, it stills not enough because a novice developer might not

be able to understand it, as most of the resources assumed that the users have

experience in such field.

7.2.2. Development resources

The development resources here refer to hardware and software. WAC is
developed to be used in a wireless environment. Devices such as wireless network
devices and a mobile device such as PDA are needed. Since the costs to have such
devices are expensive, especially a PDA, therefore it is hard to test WAC in the real
environment. Therefore, the only way to test WAC is by using simulator, which has
similar functions of a PDA.

The software problems are the simulators used for testing purpose. Although
there are varieties of simulators can be used, but the configurations of each simulator

are different. Some might even affect the whole operating system, such as the

70

Microsoft’s Embedded Studio Pocket PC 2002 simulator, that could cause the

performance of the whole operating system decrease.

7.2.3. Raw Materials

The raw materials refer to the internet contents. The reason for saying that

internet contents can cause problem is because so far there is no standard that defined

how internet content should be built.

The major problem here is that not all internet contents can be processed
correctly by WAC, as the internal processing algorithm can only suit some standard.
There is no way WAC can hundred percent handle all internet content if there is no
standard being initialized. The only thing that can be done is to optimize WAC to

handle as much internet content as possible.

7.3. Evaluation by end users

Although WAC being tested successful by developer him selves, it needs to
be tested by the end user as well. The reason to have other people to do the testing is
to get opinion the feed back on how the system being perform, how user friendly it
can be and how well it can meet the end user requirement.

Several feed back from the people who are using WAC said that it is a very
innovative system, where it allows different platform to view the same internet
content, while optimizing the content to suit different mobile device.

Since WAC can only support text streaming, several users found out that it is
not suitable to be used to surf the internet. Despite of that, WAC can be utilized to

retrieve information within a local area network, especially for corporate mobile

71

users, where they will be able to use WAC to view the documents inside there
company file server by using their mobile devices when they are on the run.

The feed back also stated that the other disadvantage of WAC is that it needs
to be installed manually on the server, where everything can become troublesome
and error prone. They request that in the future, there will be a way to install WAC

automatically without the need to perform manual installation.

7.4. System Strengths

Cross-platform viewing - WAC provides the ability to view the same
internet content in different devices. It helps internet content developer especially in
constructing different internet content that suit different devices, where developer
does not need to learn specific internet content development language or technology.

Web-based interface — WAC provides a simple user interface that suits
different types of mobile devices’ format. The interface serves as a portal for mobile
users to access WAC. As long as there is network connection, mobile users will be
able to access WAC from anywhere.

Display optimization — WAC is able to divide the input into several
segments. Each segment will become an individual content. It enables small screen

devices such as web enabled phone to view the document without the need to scroll

too much.

7.5. System Constraints

Variety internet standard — Although W3C has defined XHTML as the
standard in writing internet content, there are still many people who do not use this
standard, where they still kept with HTML standard. There is no precision in writing
internet content with HTML, where developer can use either capital letter or small
letter throughout the whole content. Such problem can effect the internal processing
of WAC, where it is very difficult to identify each element inside the content.

Multimedia content — Currently, WAC can only support text-based internet
content. It cannot supports multimedia content, such as sound and video images. It
can only support image file to a certain extend and it only applicable for Pocket PC
PDA. It will only provide text support for WAP devices.

Dynamic content — Dynamic contents are written using different languages
such as Javascript. WAC does not support dynamic contents because it does not
have the ability to compile or to decode Javascript.

HTML elements — There are several HTML elements that cannot be
supported by WAC. Such elements are Form, Anchor, Frame and elements that
defined styles and format of templates, such as Style, Span, Div and Link. It can

only support basic text formatting elements, such as Heading, Break and Paragraph.

7.6. Future Enhancements

7.6.1. Support form query and hyperlink

One of the enhancements that need to be done is to support querying and
redirection. There are many internet contents such as Yahoo and Google that support

query. If query can be supported, search engine such as Yahoo can be viewed on

73

mobile devices such as WAP phone, where the user will be able to search the web

from there.

7.6.2. Text editing

WAC can provide a user interface that allows administration level users to
generate different format content from a single text format file. This enhancement
helps the user to create different format content without the need to learn the

knowledge in constructing each type of content.

There are several things that need to be considered in implementing this
enhancement. First, the format of the text file needs to be specified; if there is no
format within the text file, it will be very hard for WAC to identify the internal
elements. Second, the increasing text file might overload the server storage and
workload; WAC users need to make sure there is enough space to store the
increasing text file. They can either delete the unused file or use a file server to store
the files. Thirdly, since the input will be a text format file, WAC needs to have
security features in avoiding these files being altered by unauthorized users. One of
the ideas is to have a database that contains record of the user that has permission in

modifying the content.

7.7. Knowledge and Experience Gained
There are a lots of experience gained during the development of WAC. First,
the development process it selves is a very good experience, where | could expose to

how a system is develop, what are the steps and procedures involved.

74

The programming skills that I have had been improving during the
implementation. Although I have leamnt the skills from the courses that I have
attended, it is very different when trying to implement it inside an application. There
are several new things that I have learnt, such as ASP and COM. 1 learnt both of it
during the industrial attachment program. There are difficulties when I try to
implement it within WAC but with trial and error, I managed to come out with a
functional application.

The other important aspect that I have learnt is to come out with a plan.
Planning is very important as it helps to recognize the stages involved for the
development. A proper planning will aid developers to progress in each stage, make
sure the objective of each stage is fulfilled, and finally reach the overall objective and

able to finish the work within the planned period.

7.8. Summary

System evaluation is a process of measuring the achievement of the
developed system, whether it meets the predefined specifications and criteria.

There are several problems encountered during the development, which can
be categorized into Developer’s Skill, Development Resources and Raw Materials.
Developer’s Skill is about the programming skill and experience. Development
Resources is about the development infrastructure, such as the development tools and
testing equipments. Raw Materials are about the input that will be used to test WAC,
such as the internet content.

The feed back from the end user after their evaluation stated that WAC is a

very innovative system. Since it does not support multimedia contents, it is not

75

suitable to use for surfing the internet, but it has the potential to be used for corporate
purposes.

The strengths of WAC are allowing cross-platform viewing, web-based
interface for easy access and display optimization for different mobile devices. The
constraints of WAC are unable to support multimedia contents, dynamic content, and

some HTML elements such as Anchor, Frame, Form and other style formatting

related elements.

Future enhancements of WAC are allowing text editing and support for form
query and redirection. Text editing will allow user to generate different format
content from the same text file. While support for form query and redirection will
enable search engine such as Google to be operate on mobile devices.

The experiences gained during the development of WAC are programming

skill, proper planning and the expose to the development process.

7.9. Conclusion

WAC is an application that enable different types of mobile devices to access
the WWW same WWW content. It is able to convert the format of the WWW
content into the format supported by the mobile devices. For example, if the user is a
WAP device, WAC will generate WML content from the original WWW content,
without modifying the original files.

The objectives of WAC are information sharing among different wireless
devices through the utilization of wireless network, providing a cross platform to
allow different wireless devices to view the same internet content and to optimize the
generated output to fit the screen resolution of each different wireless device. These

objectives have been fulfilled after the system being tested.

76

Although WAC cannot support multimedia content at the moment, it is very
useful in distributing word document through the utilization of wireless network.
Since it is a web-based application, user can access their WWW documents using
their mobile devices, as long as there is network connectivity. It can help the
corporate users especially, where they are always on the move.

There are several enhancements for WAC. From these enhancements, two
had been mentioned as both have the priority compare to the others. Such
enhancements are document editing, perform form query and redirection. Other
enhancements would be like enable support for dynamic content, but due to the
difficulty level and the limited resources, it will take time to solve.

There is a potential for WAC in the future, as technologies are advancing,
mobile devices are becoming even more sophisticated. Such improvement will
benefit WAC, as multimedia content can be pushed into the devices, and helps to
reduce unnecessary internal processing.

Although there are new scripting standard coming out, such as XML, that
support multiple types of format, the advantage of WAC is that it can produce many
format of content, such as WML and HTML 3.0 (Pocket PC), from a single HTML
file. It helps to reduce the need to learn new technique in reconstructing the content
to fit different mobile devices format as the learning process consumes time,

Finally, the vision of WAC is that it will be able to serve as a starting
platform for research and development purposes in this field. It is not a new
technology for there are many companies are venturing in this field, such as

AvantGo and Handisplay. Hope that in the future, there will be a variety of such

application available.

77

Appendix A: Active Server Pages (ASP)

Microsoft Active Server Pages (ASP) is a server-side scripting environment
that enables developer to create and run dynamic, interactive web server applications.
With ASP, developer is able to combine HTML pages, script commands, and COM
components to create interactive web pages or powerful web-based applications,
which are easy to develop and modify.

The server-side scripts written in ASP are an casy way to begin creating
complex, real-world web applications. It provides a compelling solution in storing
HTML form information into a database, personalize web sites according to visitor
preferences or use different HTML features based on the browser. For example,
previously to process user input on the web server, one will have to learn language
such as Perl or C to build a conventional Common Gateway Interface (CGI)
application. However, ASP is able to collect HTML form information and pass it to
a database using simple server-side scripts embedded directly inside the HTML
document. If a person is already familiar with scripting languages such as Microsoft
VBScript or Microsoft JScript (Jscript is the Microsoft implementation of the ECMA
262 language specification), he or she will have only little trouble in learning ASP.

Since ASP is designed to be language-neutral, a person who is skilled at a
scripting language such as VBScript, JScript, or PERL, he or she is already know
how to use Active Server Pages. Furthermore, ASP pages allow developers to use
any scripting language for which a COM compliant scripting engine had been
installed. ASP comes with VBScript and JScript scripting engines, but developers

can also install scripting engines for PERL, REXX, and Python, which are available

through third-party vendors.

78

ASP is a flexible way for back-end web applications programmer in creating
web applications. Besides adding scripts to create an engaging HTML interface for
the application, it allows developer to include the COM components as well. The
logical operations behind the application can be encapsulated into a reusable module
that can be called from ASP scripts, from another component or from another
program.

If you develop back-end Web applications in a programming language, such
as Visual Basic, C++, or Java, you will find ASP a flexible way to quickly create
Web applications. Besides adding scripts to create an engaging HTML interface for
your application, you can build your own COM components. You can encapsulate
your application's business logic into reusable modules that you can call from a
script, from another component, or from another program.

A server-side script begins to run when a browser requests an .asp file from
the web server. The web server then calls ASP, which processes the requested file
from top to bottom, executes any script commands, and sends a web page to the
browser. Because the scripts run on the server rather than on the client, the web
server does all the work involved in generating the HTML pages sent to browsers.
Server-side scripts cannot be readily copied because only the result of the script is

returned to the browser. Users cannot view the script commands that created the

page they are viewing.

79

Appendix B: Component Object Model (COM)

Defining COM

COM is a platform-independent, distributed, object-oriented system for
creating binary software components that can interact. COM objects can be created
with a variety of programming languages, such as C++. Object-oriented languages,
such as C++, provide programming mechanisms that simplify the implementation of
a COM object. These objects can be within a single process, in other processes, or
even on remote machines.

To understand COM—and therefore all COM-based technologies—it is
crucial to bear in mind that it is not an object-oriented language, but a standard. Nor
does COM specify how an application should be structured. Language, structure and
implementation details are left to the software developer.

COM does specify an object model and programming requirements that
enable COM objects—also called COM components, or sometimes simply object—
to interact with other objects. They can have been written in other languages and may
be structurally quite dissimilar. That is why COM is referred to as a binary

standard—it is a standard that applies after a program has been translated to binary

machine code.

COM Language Requirements

The only language requirement for COM is that code is generated in a
language that can create structures of pointers, either explicitly or implicitly, call
functions through pointers. Object-oriented languages such as C++ and Smalltalk®

provide programming mechanisms that simplify the implementation of COM objects.

80

Languages such as C, Pascal, Ada, Java, and even BASIC programming

environments can create and use COM objects.

COM Objects

COM defines the essential nature of a COM object. Generally, a software
object is made up of a set of data and the functions that manipulate the data. A COM
object is one in which access to an object’s data is achieved exclusively through one
or more sets of related functions. These function sets are called interfaces, and the
functions of an interface are called methods. Further, COM requires that the only
way to gain access to the methods of an interface be through a pointer to the
interface.

Besides specifying the basic binary object standard, COM defines certain
basic interfaces that provide functions common to all COM-based technologies. It
also provides a small number of API functions that all components require. COM
has now expanded its scope to define how objects work together over a distributed
environment, such as the digital car environment, and added security features to
ensure system and component integrity.

Additional information about COM can be found on the Microsoft Developer

web site (http://msdn.microsoft.com).

81

Appendix C: Internet Information Server (IIS)

IIS is a group of internet servers (including a Web or Hypertext Transfer
Protocol server and a File Transfer Protocol server) with additional capabilities for
Microsoft's Windows NT and Windows 2000 Server operating systems. With 11S,
Microsoft includes a set of programs for building and administering web sites, a
search engine, and support for writing web-based applications that access databases.
Microsoft points out that IIS is tightly integrated with the Windows NT and 2000
Servers in a number of ways, resulting in faster Web page serving,

A typical company that buys IIS can create pages for Web sites using
Microsoft's Front Page product (with its WYSIWYG user interface). Web
developers can use Microsoft's Active Server Page (ASP) technology, which means
that applications - including ActiveX controls - can be imbedded in Web pages that
modify the content sent back to users. Developers can also write programs that filter
requests and get the correct Web pages for different users by using Microsoft's
Internet Server Application Program Interface (ISAPI) interface. ASPs and ISAPI
programs run more efficiently than common gateway interface (CGI) and server-side
include (SSI) programs, two current technologies (However, there are comparable
interfaces on other platforms).

Microsoft includes special capabilities for server administrators designed to
appeal to Internet service providers (ISPs). It includes a single window (or
"console") from which all services and users can be administered. It's designed to be
easy to add components as snap-ins that you didn't initially install. The

administrative windows can be customized for access by individual customers.

Features

Internet Information Services 5.0 has many new features to help Web

administrators to create scalable, flexible Web applications.

e Security

e Administration

e Programmability

e Internet Standards
Security

Digest Authentication: Digest authentication allows secure and robust
authentication of users across proxy SCrvers and firewalls. In addition,
Anonymous, HTTP Basic, and integrated Windows authentication (formerly
known as Windows NT Challenge/Response authentication and NTLM
authentication) are still available.

Secure Communications: Secure Sockets Layer (SSL)3.0 and Transport
Layer Security (TLS) provide a secure way 0 exchange information between
clients and servers. In addition, SSL 3.0 and TLS provide a way for the
server to verify who the client is before the user logs on to the server. In
11S 5.0, client certificates are exposed to both ISAPI and Active Server Pages,
5o that programmers can track users through their sites. Also, IIS 5.0 can map
the client certificate to a Windows user account, so that administrators can
control access to system resources based on the client certificate.
Server-Gated Cryptography: Server-Gated Cryptography (SGC) 1s an
extension of SSL that allows financial institutions with export versions of 118
to use strong 128-bit encryption. Although SGC capabilities are built into

11S 5.0, a special SGC certificate is required to use SGC,

83

* Security Wizards: Security wizards simplify server administration tasks,

o The Web Server Certificate Wizard simplifies certificate
administration tasks, such as creating certificate requests and
managing the certificate life cycle.

o The Permissions Wizard makes it easy to configure Web site access
by assigning access policies to virtual directories and files. The
Permissions Wizard can also update NTFS file permissions to reflect
these Web access policies.

o The CTL wizard helps you configure your certificate trust lists
(CTLs). A CTL is a list of trusted certification authoritics (CAs) fora
particular directory. CTLs are especially useful for Internet service
providers (ISPs) who have several Web sites on their server and who
need to have a different list of approved certification authorities for

each site.

* IP and Internet Domain Restrictions: You can grant or deny Web access to

individual computers, groups of computers, or entire domains.

Kerberos v5 Authentication Protocol Compliance: [IS s fully integrated
with the Kerberos v5 authentication protocol implemented in Microsoft
Windows 2000, allowing you to pass authentication credentials among
connected computers running Windows.

Certificate Storage: IIS certificate storage is now integrated with the
Windows CryptoAPI storage. The Windows Certificate Manager provides a
single point of entry that allows you to store, back up, and configure server

certificates.

84

Fortezza: The U.S. government security standard, commonly called
Fortezza, is supported in IIS 5.0. This standard satisfies the Defense Message
System security architecture with a cryptographic mechanism that provides
message confidentiality, integrity, authentication, and access control to
messages, components, and systems. These features can be implemented

both with server and browser software and with PCMCIA card hardware.

Administration

Restarting IIS: Now you can restart your Internet services without having to
reboot your computer.

Backing Up and Restoring IIS: You can back up and save your metabase
settings to make it easy to return to a safe, known state.

Process Accounting: Provides information about how individual Web sites
use CPU resources on the server. This information is useful in determining
which sites are using disproportional high CPU resources or which might
have malfunctioning scripts or CGI processes.

Process Throttling: You can limit the percentage of time the CPU spends
processing out-of-process ASP, ISAPI, and CGI applications for individual
Web sites. In addition, misbehaving processes can be stopped and restarted.
Improved Custom Error Messages: Now administrators can send
informative messages to clients when HTTP errors occur on their Web sites.
Also includes detailed ASP error processing capabilities through the use of
the 500-100.asp custom error message. You can use the custom errors that
[1S 5.0 provides, or create your own.

Configuration Options: You can set permissions for Read, Write, Execute,

Script, and FrontPage Web operations at the site, directory, or file level.

85

* Remote Administration: IIS 5.0 has Web-based administration tools that
allow remote management of your server from almost any browser on any
platform. With IIS 5.0, you can set up administration accounts called
Operators with limited administration privileges on Web sites, to help
distribute administrative tasks.

e Terminal Services: Terminal Services is a feature of Windows 2000 that
allows you to run 32-bit Windows applications on terminals and terminal
emulators running on personal computers and other computer desktops.
Terminal Services allows virtually any desktop to run applications on the
server. This enables you to remotely administer Windows 2000 services such
as IIS as if you were at the server console, including administration from
older legacy PCs, or even non-PC devices such as UNIX workstations with
compatible client software. (Non-Windows-based client devices require third-
party add-on software.)

o Centralized Administration: Administration tools for [IS use the
Microsoft® Management Console (MMC). MMC hosts the programs, called
snap-ins that administrators use to manage their servers. You can use 11S
snap-in from a computer running Windows 2000 Professional to administer a
computer on your intranet running Internet Information Services on
Windows 2000 Server.

Programmability

» Active Server Pages: You can create dynamic content by using server-side
scripting and components to create browser-independent dynamic content.
Active Server Pages (ASP) provides an easy-to-use alternative to CGI and

ISAPI by allowing content developers to embed any seripting language or

86

server component into their HTML pages. ASP provides access to all of the
HTTP request and response streams, as well as standards-based database
connectivity and the ability to customize content for different browsers.

e New ASP Features: Active Server Pages has some new and improved
features for enhancing performance and streamlining your server-side scripts.

» Application Protection: IIS 5.0 offers greater protection and increased
reliability for your Web applications. By default, IS will run all of your
applications in a common or pooled process that is separate from core 11S
processes. In addition, you can still iso/ate mission-critical applications that
should be run outside of both core IIS and pooled processes.

* ADSI2.0: In IIS 5.0, administrators and application developers will have the
ability to add custom objects, properties, and methods to the existing ADSI
provider, giving administrators even more flexibility in configuring their
sites.

Internet Standards

» Standards Based: Microsoft Internet Information Services 5.0 complies with
the HTTP 1.1 standard, including features such as PUT and DELETE, the
ability to customize HTTP error messages, and support for custom HTTP
headers.

¢ Multiple Sites, One IP Address: With support for host headers, you can host
multiple Web sites on a single computer running Microsoft Windows 2000
Server with only one IP address. This is useful for Internet service providers

and corporate intranets hosting multiple sites.

87

Web Distributed Authoring and Versioning (WebDAV): Enables remote
authors to create, move, or delete files, file properties, directories, and
directory properties on your server over an HTTP connection.

News and Mail: You can use SMTP and NNTP Services to set up intranet
mail and news services that work in conjunction with IIS.

PICS Ratings: You can apply Platform for Internet Content Selection (PICS)
ratings to sites that contain content for mature audiences.

FTP Restart: Now File Transfer Protocol file downloads can be resumed
without having to download the entire file over again if an interruption occurs
during data transfer.

HTTP Compression: Provides faster transmission of pages between the Web
server and compression-enabled clients. Compresses and caches static files,

and performs on-demand compression of dynamically generated files,

88

Appendix I: Coding — ASP

1. File: index.asp

<%
dim strHttpUserAgent
dim nDevType '1 = html 4.0; 2 = html 3.0; 3 = wap;
strHttpUserAgent = Request.ServerVariables("HTTP_USEL_AGENT")
if InStr(strHttpUserAgent, "Mozilla") > 0 then
Response.Redirect "Redirection.asp”

else
Response.Redirect "wap.asp”
nDevType =3
end if
%>

2. File: htmlLasp

<html>

<head>

<meta NAME="GENERATOR" Content="Microsoft Viswl Studio 6.0">

<link REL="stylesheet" TYPE="text/css" HREF="_Theme/sumipntg/THEME.CSS" V16.0THEME="Sumi Painting">
<link REL="stylesheet" TYPE="text/css" HREF="_Theme/sumipntg/GRAPHO0.CSS" VI6.0THEME="Sumi Painting">
<link REL="stylesheet" TYPE="text/css" HREF="_Theme/sumipntg/COLOR0.CSS" VI6.0THEME="Sumi Painting">
<link REL="stylesheet" TYPE="text/css" HREF="_Theme/sumipntg/CUSTOM.CSS" V16,0 THEME="Sumi Painting">
</head>

<body rightmargin=0 topmargin=0 leftmargin=0 marginwilth="0" marginheight="0">

<table border=0 width = "103%" height="100%" bgcolor=leepskyblue cellspacing=2 cellpadding=4>

<tr>

<td width=187>

<td>

<td align=left>

<form action="script/Interface.asp” method="get" target="_parent">

<input type="hidden" name="header" value="http://">

<input type="text" name="url">

<input type="reset" value="Clear">

<input type="submit" value="Go ">

</form>

<fd>

<Ar>

</ftable>

</body>

</html>

3. File: html\index.asp

<|m

<html>

<head>

<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<link REL="stylesheet" TYPE="text/css" HREF="../_Themes/sumipntg/ITHEME.CSS" VI6 0THEME="Sumi Painting">
<link REL="stylesheet" TYPE="text/css" HREF="../_ Themes/sumipnig/GRAPHO.CSS" V16 0THEME="Sumi Painting*>
<link REL="stylesheet" TYPE="text/css" HREF="../ Themes/sumipntg/COLORO.CSS" VI6 OTHEME"Sumi Pamnting*>
<link REL="stylesheet" TYPE="text/css" HREF="./_Themes/sumipntg/CUSTOM. CSS" V16 0 THEME="Sumi Painting ">
</head>

>

<%

dim strBodyFrame

strBodyFrame = *. /script/body asp?i=" & Request QueryString("1*)

%>

<script>

</senpt>

<frameset rows="30%, *" cols="*" scroll="NO">

<frame name="upper” sre=. html asp noresize scrolling="NO">

<frame name="body" sre="<%=strBodyl rame%>">

</frameset>

<-e

</html>

89

4. File: wap\index.asp

<!-#include file="../script/setting.asp"->
<!--#include file=". /script/ProSupport.asp”->
<%

Response.ContentType = “text/vnd.wap.wml"
Yo>

<?xml version='1.0'?>

<IDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1/EN"

<wml>

<head>

<meta http-equiv="Cache-Control" content="max-age=0"/>
</head>

<%

dim strID

dim strFullOutPath

dim strID

strID = Request. QueryString("i")

if len(strID) <> 0 then

strFullOutPath = strOutPath & strlD & "/i.htm"
dim objFso, objOut

set objFso = server.CreateObject("Scripting. FileSystemObject")
if objFso. FileExists(strF ullOutPath) then

call DisplayPage(3, strOutPath, strlD)

else

Response. Write "<card id=""main"" label=""Menu"">" & vbCrLf
Response. Write "<p>There is no menu</p>* & viCrLf

Response. Write "</card>" & vbCrLf

end if

end if

%>

</wml>

5. File: script\Display.asp

<!I-#include file="setting.asp"-->
<html>
<head>
<litle>WAC-FlexDisplay</title>
</head>

<body>

<%

dim strlD

dim strFile

dim strlocation

dim strindex

dim nPrev

dim nNext

dim nTotal

strlD = Request. QueryString("i")

strFile = Request QueryString("f*)

strindex = Request.QueryString("in")

nPrev = Request.QueryString("prev"”)

nNext = Request. QueryString("next")

nTotal = Request. QueryString("total")

if len(strID) > 0 and len(strID) > 0 then

strl.ocation = strOutPath & strlD & "\" & strFile

dim objFso, objSre _ .
set objFso = mwr.Crulo()tsjed(’Scﬁm.FllcSylmﬂtyecl')
set objSre = objFso.OpenTextFile(strLocation, 1, false -2)
do while not objSre. AtlindOfStream ‘
Response. Write objSre.ReadLine() & vbNewLine

loop

objSre.close()

set objFso = nothing

Response, Write "
<hr>
"

if strindex = "first” then '

Response. Write *<a hrefs=""display.asp?i=" & strID
Response, Write "&f=" & nNext & "i.htm"
Response. Write "&in=mid"

"http://www.wapfonun.org/DTD/wml_ L.1.xml">

90

Response. Write "&prev=1"

Response. Write "&next=3"

Response. Write "&total=" & nTotal
Response. Write """>Next"

elseif strindex = "last" then
Response.Write "<a href=""display.asp?i=" & strID
Response. Write "&f=" & nPrev & "i.htm"
Response. Write "&in=mid"

Response. Write "&prev=" & nPrev-1
Response. Write "&next=" & nTotal
Response. Write "&total=" & nTotal
Response.Write """>Previous"

elseif strindex = "mid" then

Response. Write "<a href=""display.asp?i=" & strlD
Response. Write "&f=" & nPrev & "iLhtm"
if nPrev = 1 then

Response. Write "&in=first"

Response. Write "&next=" & nPrev+1
Response, Write "&total=" & nTotal

else

Response. Write "&in=mid"

Response. Write "&prev=" & nPrev-1
Response. Write "&next=" & nNext-1
Response, Write "&total=" & nTotal

end if

Response. Write """>Prev "
Response. Write "<a href=""display.asp?i=" & strID
Response, Write "&f=" & nNext & "Lhtm"
if nNext = nTotal then

Response. Write "&in=last"

Response. Write "&prev=" & nPrev+]
Response.Write "&total=" & nTotal

else

Response. Write "&in=mid"

Response. Write "&prev=" & nPrev+]
Response. Write "&next=" & nNext+1
Response. Write "&total=" & nTotal

end if

Response. Write """>Next"

end if

else

Response. Write "Oops, no data available"
end if

%>

</body>

</html>

6. File: script\body.asp

<l--#include file="setting.asp"-~>
<l--#finclude file="ProSupport.asp"-->
<%

dim str_[D

dim strSeript

strSeript = "Display.asp”

str_ID = Request Query String("i")
if not str_ID = "" then

call DisplayPage(1, strOutPath, str_ID, strSeript)
clse

%>

<html>

<head>

<title>WAC</title>

</head>

<body>

<p>There is no display</p>
</body>

</html>

<%

end if

%>

91

7. File: script\Interface.asp

<!--#include file="setting.asp"-->

<%

dim strUserAgent

dim strUrl

dim strlD

dim strUrlHeader

dim nDevType

dim nVersion

dim nVerPos

strUserAgent = Request.ServerVariables("HTTP_USER_AGENT")
if InStr(strtUserAgent, "Mozilla") <> -1 then
nVerPos = InStr(strtUserAgent, "/")

if nVerPos > 0 then

nVersion = mid(strUserAgent, nVerPos+1, 1)
if nVersion >= 4 then 'IE or compatible
nDevType = 1

elseif nVersion < 4 then 'Pocket IE or compatible
nDevType = 2

end if

end if

else

nDevType = 3 'Wap devices

end if

strlD =""

ifnDevType = 1 or nDevType = 2 then

strUrl = Request.Query String("Url")
strUrlHeader = Request.QueryString("header")
elseif nDevType = 3 then

strUrl = Request.QueryString("url")

end if

%>

<i--#include file="Process.asp"-->

8. File: Mobile.asp

<html>

<head>

<meta NAME="GENERATOR" Content="Microsoft Visual Studio € «.,

<link REL="styleshcct" TYPE="text/css" IlRliI"="_"lhcmcs/sumipmyr| IEME.CSS" V16.0THEME="Sumi l’ainling"><!--
<link REL="stylesheet" TYPE="text/css" llREF="__'lhcmcs/sumipnty(;RAp[10.CSS" VI6.0THEME="Sumi Painting">-->
<link REL="stylesheet" TYPE="text/css" HRE!-‘="_'I11cmcs/sumipmyCO[JOR0.CSS" VI6.0THEME="Sumi Painting"><!--
<link REL="stylesheet" TYPE="text/css" lH{EF="__'lhemcs/slm\imxB/C(JSTOM.CSS* VI6.0THEME="Sumi Painting">-->
<body>

<table border=0 width="100%" height="100%" bgcolor=#0098c6 c€||spqcing=2 cellpadding=4>

<tr>

<td style="color:white;font-style:italic;" valign="center" align=cente¢» <\, > ENTER URL</Ad>

<Mr>

<tr>

<td valign=center align=center>

<form action="script/Interface.asp” method="get">

<input type="hidden" name="header" value="http://">

<INPUT type="text" name="url">

<input type="reset" value="clear">

<INPUT type="submit" value="Co">

</form>

<Nd>

</tir>

</table>

</body>

</html>

9. File: script\Process.asp

<l--fhinclude file = "ProSupport.asp” -

<%

dim strDomainUrl

dim strFullOutPath

dim objFso, objFolder

set objFso = server. CreateObject("Seripting. FileSystemObject”)

if InStr(strUrl, "http://") = 0 then

strDomainUrl = strtUrlHeader & strUrl

elseif InStr(strUrl, "http://") > 0 then
strDomainUrl = strUrl

end if

if len(strUrl) > 0 then

if len(strID) > O then

strFullOutPath = strOutPath & strlD

else

if strID = "" then

strID = GetID()

end if

strFullOutPath = strOutPath & strlD

set objFolder = objFso.CreateFolder(strFullOutPath)
end if

if objFso.FolderExists(strFullOutPath) then

if CreateHTML(strDomainUrl, strFullOutPath, strOutPath,strSrcFile, strlD) = tt
3 ue then
if nDevType = 1 then

Response.Redirect "../html/index.asp?i=" & strID
elseif nDevType = 2 then

Response.Redirect "body.asp?i=" & strlD

else'if nDevType = 3 then

Response.Redirect "WapBody.asp?i=" & strlD
end if

end if

end if

set objFso = nothing

‘call the error page

end if

%>

10. File: script\ProSupport.asp

<%

function GetlD()

GetlD = """ set default return value to nothing.

Dim objUID

Dim sID

Set objUID = Server.CreateObject("genuid. GenUIDOb) ")

sID = objUID.UID

Set objUID = nothing

GetID = CStr(sID) ' setting the return value to new ID.

end function
""‘.‘..““‘"‘.“t““““‘0“.“““0".“‘.“““‘0“..““’.
function GetTotal(strSrelocation)

dim objFso, objTotal

dim nTotal

dim strTemp

nTotal =0

strfemp = ""

set objFso = server.CreateObject("Seripting. FileSystemObject”)
set obj Total = objFso.OpenTextFile(strSrcLocation, 1, false, -2)
' Response.Write "GEt total"

do while not objTotal. AtEndOfStream

strTemp = strTemp + objTotal ReadLine()

nTotal = nTotal + 1

loop

GetTotal = nTotal

strTemp ="

' Response. Write nTotal

' Response.End()

objTotal.close()

set objFso = nothing

end function

T LT LTI L L L L P
function DisplayPage(nDevType, strOutPath, strll, strSenpt)
dim objFso, objOut

dim strSrelocation

dim nPos

dim nTotal

nPos = 1

nlotal =0

strSrelocation = strOutPath & strlD & "\i.txt"

nTotal = GetTotal(strSrelLocation)

set objFso = server, CreateObject("Seripting FileSystemObject”)

"set objTotal = objFs0.OpenTextFile(strSrcLocation, 1, false, -2)
set objOut = objFso.OpenTextFile(strSrcLocation, 1, false, -2)
ifnDevType = 2 or nDevType = 1 then 'html

Response. Write "<htm]>" & vbNewLine

Response. Write "<head>" & vbNewLine .
Response. Write "<title>WAC-Mobile View</itle>" & vbNewLine
Response. Write "</head>" & vbNewLine

Response. Write "<body>" & vbNewLine

'do while not objTotal. AtEndOfStream

'nTotal = nTotal + 1

1 IOOI)

' objTotal.close()

'Response.write nTotal

'Response End()

do while not objOut. AtEndOfStream

Response.write "<a href="""

Response.write strScript & "%i=" & strlD

Response. write "&f="

Response. write objOut.readLine()

ifnPos = nTotal then

Response. Write "&in=last&prev=" & (nPos-1)

Response. Write "&total=" & nTotal

elseif nPos = | then

Response. Write "&in=first&next=" & (nPos+1)

Response. Write "&total=" & nTotal

else

Response. Write "&in=mid&prev=" & (nPos-1)

Response. Write "&next=" & (nPos+1)

Response. Write "&total=" & nTotal

end if

Response.write """>"

Response.write "Page " & nPos

Response.write "
" & vbNewLine

nPos = nPos + |

loop

'process the file

Response. Write "</body>" & vbNewLine

Response. Write "</html>"

elseif nDevType = 3 then

dim strWmlOut

StWmlOut = "

dim nWapPos

nWapPos = |

do while not objOut. AtEndOfStream

StWmlOut = "<a href=""" :
StWmlOut = strWmlOut & strSeript & "?%i=" & strlD & "&f=
SUWmlOut = strWmlOut & objOut.readLine()

1 nWapPos = nTotal then

SUWmlOut = strWmlOut & "&in=last&prev=" & (nWapPos-1)
SrtWmlOut = strWmlOut & *&total=" & nTotal

elseif nWapPos = | then

StrWml()utp = strWmlOut & "&in=first&next=" & (nWapPos+1)
StWmlOut = strWmlOut & "&total=" & nTotal

clse

SrtWmlOut = strtWmlOut & "&in=mid&prev=" & (nWapPos-1)
SUWmlOut = strWmlOut & "&next=" & (nWapPos+1)
StrtWmlOut = strtWmlOut & "&total=" & nTotal

end if

SUWmlOut = strWmlOut & """>"

SUWmlOut = strWmlOut & *Page * & nWapPos ,

SUWmlOut = strWmlOut & "
" & vbNewLine

Response. Write strWmlOut
nWapPos = nWapPos + |
loop

end if

objOut.close()
Set objFso = nothing

end functic
"“."..:n.".....‘.‘...“‘....“‘.00.......‘.“.0‘00.0’..00‘.‘....000000.0000

function Createl ITML(strDomainUrl, strFullOutPath, strOutPath, steSreFile, striD)
g.{uulcl ITML = true o

it lr:u(';uc.gd 3::53:?{';1{".’1."(;u‘;"ilc. nQutType, forminfo,formmethod, striD) = true then
dim strSrel ocation o

StrSreLocation = strOutPath & strlD & "\" & strSreFile

if RequestPage(strDomainUrl, strSrcLocation, striD) = true then

'then, process the page.

'if ProcessFilter(strSrcLocation, strID, strSrcFile) = true then

dim strAgent

strAgent = request. Server Variables("HTTP_USER_AGENT")

dim objWac

set objWac = server.CreateObject("WAC FlexDisplay")

if InStr(strAgent, "Mozilla") > 0 then

0bjWac. WmlProcess = false

else

objWac. WmlProcess = true

end if

call objWac. FlexProcDisp(strDomainUrl, strSrcFile, strOutPath, strl D)

set objWac = nothing

"end if

else

CreateHTML = false

Response. Write "Cannot be processed”

exit function

end if
'c‘n‘d‘flf:c‘n‘(flt‘“.‘“‘..‘t'..t““““““.“.““.‘..“.“.“.“..““.“.
function RequestPage(strDomainUrl, strSrcLocation, strlD)

dim objTear

dim strValue

'set objTear = server. CreateObject("Tear | ltmTear")))

. Requestl’agc = objTear.chucstlmcmcl(slr[)omumUrl'. §trbrcl Location)

set objTear = server.CreateObject("WACTear. WacHtm Icz‘u:") =
Obchar.UscrAgcnt = Request.ServerVariables("HTTP_USER_AGENT")

' objTear.FollowRedirect = false e L

"obj Tear.Content Type = request.Server Variables("HT'T P_f.()‘{\ﬂ ENT_TYPE")

'obj Tear. Accept = request. Server Variables("HTTP_ACCEPT")

" for each item in request. ServerVariables PR ot ' '
"1fitem <> "HTTP USE AGENT" and item <> *I ITTP_CONTENT_TYPE" and item <> *H I'TP_ACCEPT" then
'strValue = rcqucsf ServerVariables(item)

' objTear. AddHeader item, strValue

""end if

: MX(3 L L

RequcslPagc = objTear.GetPage(strDomainUrl,2,"" strSrcLocation,"","")

set obj Tear = nothing
":n‘d.flirl(itl(il:“‘““‘.‘..‘.““.“‘.““.“..".‘.“".“‘.‘.‘...“‘“‘...‘..“‘.“0...‘

Yo>

11. File: Redirection.asp

<%

dim strUserAgent

dim nVerPos

dim nVersion ‘ e
strUserAgent = Request.ServerVariables("HTTP_USER_AGENT")
nVerPos = InStr(strUserAgent, "/*)

nVersion = mid(strUserAgent,nVerPos+1, 1)

ifnVersion >= 4 then

Response.Redirect "../wac/html/index.asp”

elseif nVersion < 4 then

Response. Redirect "mobile.asp”

end if

%>

DAWAC\WWAC_Local\scriptsetting asp 1

<%

"variables defined for web url

" this include directory

SrOutDir = "WACluster"

StrSreFile = “sre.txt"

SttOutkile = "display.htm"

R T T L Lt

StOutPath = "C:\" & strOutDir & "\"

dim objSet, objFoldSet e L jok
set objSet = server. CreateObject("Seripting. FileSystemObject”)
il objSet FolderFxists(strOutPath) = false then

set objFoldSet = objSet. CreateFolder(strOutPath)

end if

set objSet = nothing

%>

12. File: wap.asp

<%

Response.ContentType = "text/vnd.wap.wml"

%>

<%

dim strlLocation

dim strSeriptFile

dim strServerName

strServerName = Request.ServerVariables("SERVER_NAME®)
strScriptFile = "Interface.asp”

strlocation = "http://" & strServerName & "/wac/script/” & strSeriptFile
%>

<xml version='1.0'7>

<IDOCTYPE wml PUBLIC *-//WAPFORUM/DTD WML 1.1/EN" "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<head>

<meta http-equiv="Cache-Control" content="max-age=0"/>
</head>

<card id="main" title="WAC">

<p align="center">

Welcome to WAC

<tp>

<do type="accept" label="Search">

<go href="f#scarch"/>

</do>

</card>

<card id="scarch" title="WAC">

<p align="center">Enter Url

<input name="url" value="http://" type="text"/>

<ip>

<do type="accept" label="Go">

<go href="<%=strLocation%>" method="get">

<postfield name="url" value="$(url)"/>

</go>

</do>

</card>

</wml>

13. File: script\WapBody.asp

<l-- #include file="ProSupport.asp"-~>

<l.- flinclude file="setting.asp"->

<%

Response. ContentType = "text/vnd. wap.wml*

‘Response. AddHeader "Pragma”, "no-cache”

‘Response.AddHeader "Cache-Control”, "no-cache, must-revalidate”

%>

<?xml version='1.0"7>

<DOCTYPE wml PUBLIC *-//WAPFORUM/DTD WML LI/EN" "hitp:/Awww. wapforum.org/DTDAvmI_1 1 xml*>
<wml> i
<card id="main" title="WAC">

<>

<%

dim str_ID

dim strSeript

strSeript = "WapProcess asp”

str_ID = Request.Query String("1")

ifnot str_ID = "* then

call DisplayPage(3, strOutPath, str_ID, strSenpt)

clse

Response. Write "No File exists”
end if

Yo

<tp>

<do type="option" label="Back">
<prev/>

</do>

</card>

</wml>

14. File: script\WapProcess.asp

<!--#include file="setting.asp"-->
<%

Response.ContentType = "text/vnd.wap.wm]"

%>

<?xml version='1.0'?>

<IDOCTYPE wml PUBLIC "-//WAPFORUM/DTD WML 1.1/EN" "http:/fwww.wapforum. org/DT] Ywml_1.1.xm]">
<wml>

<card id="Page" title="WAC">

SP

<%

dim strID

dim strFile

dim strLocation

dim strindex

dim nPrev

dim nNext

dim nTotal

strlD = Request.QueryString("i")

strkile = Request.QueryString("f")

strindex = Request.Query String("in")

nPrev = Request. QueryString("prev")

nNext = Request.QueryString("next")

nTotal = Request.QueryString("total")

'Response. Write strID & "
"

'Response. Write strlile

il len(str1D) > 0 and len(strlD) > O then

strLocation = strOutPath & strlD & *\" & strFile

' Response. Write "here”

dim objFso, objSre

set objFso = server. CreateObject("Seripting FileSystemObject")
set objSre = objFso.OpenTextFile(strLocation, 1, false -2)
do while not objSre. AtEndOfStream

Response. Write objSre.ReadLine() & vbNewLine

loop

objSre.close()

set objFso = nothing

if strIndex = "first" then

Response. Write "<a href=""WapProcess.asp?i=" & strlD
Response. Write "& =" & nNext & "i.htm"
Response. Write "&in=mid"

Response. Write "&prev=1"

Response, Write "&next=3"

Response. Write *&total=" & nTotal

Response. Write """>Next"

clseif strindex = "last” then

Response. Write "<a href=""WapProcess.asp?i=" & st
Response. Write "& =" & nPrev & "i htm"
Response. Write "&in=mid"

Response, Write "&prev=" & nPrey-1

Response. Write *&next=" & nTotal

Response. Write "&total=" & nTotal

Response. Write """>Previous"

elseif strindex = "mid" then

Response. Write "<a href=""WapProcess.asp?i=" & strIl)
Response, Write "&,f=" & nPrev & "i htm"

ifnPrev = | then

Response. Write "&in=first"

Response, Write "&next=" & nPrev+]

Response, Write "&total=* & nTotal

clse

Response, Write "&in=mid"

Response. Write "&prev=" & nPrev-1

Response. Write *&.next=" & nNext-1

Response Write "&total=" & nTotal

end if

Response Write "**>Prev"

Response, Write "<a href="*WapProcess. asphi=" & strll)
Response. Write *&f=" & nNext & "1 htm*

ifnNext = nTotal then

Response, Write "&in=last”

Response, Write "&prev=" & nPrev+|

Response. Write "&total=" & nTotal

clse

Response. Write "&in=mid"
Response. Write "&prev=" & nPrev+1
Response. Write "&next=" & nNext+1
Response. Write "&total=" & nTotal
end if

Response. Write """>Next"

end if

else

Response. Write "Oops, no data available”
end if

Yo>

</p>

<do type="option" label="Back">
<prev/>

</do>

</card>

</wml>

15. File: wap\index.asp

<!--#include file=",./script/setting.asp"-->
<!l--#include file="../script/ProSupport.asp"-->
<%

Response.Content Type = "text/vnd.wap.wml"
%>

<?xml version='1.0'7>

<IDOCTYPE wml PUBLIC "-//WAPFORUM/DTD WML 1.1//EN" *http:/Awvww. wapforum.org/DTDAvml,_ 1.1,

<wml>

<head>

<meta http-equiv="Cache-Control" content="max-age=0"/>
</head>

%

dim strlD

dim strlullOutPath

dim strlD

strlD) = Request. QueryString("1")

if len(strID) <> 0 then

strFullOutPath = strOutPath & strlD) & */i.htm”

dim objFso, objOut

set objFso = server.CreateObject("Seripting. FileSystemObject”)
if objFso.FileExists(strFullOutPath) then

call DisplayPage(3, strOutPath, strlD)

clse

Response. Write "<card id=""main"" label=""Menu"">" & vbCrL{
Response, Write "<p>There is no menu</p>" & viCrl.f
Response. Write "</card>" & vbCrlf

end if’

end if

%>

</wml>

xml">

98

Appendix E: Coding — Visual C++
1. File: FlexDisplay.cpp

// FlexDisplay.cpp : Implementation of CFlexDisplay
#include "stdafx.h"

#include "WAC.h"

#include "FlexDisplay.h"

#include<atlconv.h>

#include<string h>

using namespace std;

using namespace std;

HHHHITHTTTHTTTHTTTH T T]

// CFlexDisplay ’
STDMETHODIMP CFlexDisplay::FlexProcDisp(BSTR bstrDomainUrl, BSTR bstrSrcFile, BSTR bstrOutPath
. BSTR bstrID, BSTR *pbPagelndex)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

/I TODO: Add your implementation code here

USES_CONVERSION;

m_sDomainUrl = OLE2T(bstrDomainUrl);

m_sOutPath = OLE2T(bstrOutPath);

m_sSrcFile = OLE2T(bstrSrcFile),

m_sID = OLE2T(bstrlD),

string sSreLocation = "";

sSrcLocation = m_sOutPath +m_sID + "\" + m_sSrcFile;

CString pszHtml,

FILE *fSrc;

fSre = fopen(sSrcLocation.c_str(), "r");

char ch;

while((ch = fgete(fSre)) 1= EOF)

{

pszHtml += ch;

i

CNode *pNode = new CNode,

COutProcess *pOut = new COutProcess,

string sOut = "";

// ProcessNode(pszHtml, pNode);

/1 if(pNode->HasChild())

// pNode->GetChildNode(sOut),

/ pOut->ProcessOutput(pNode, m_sOutPath, m_sID); #/Using linked pointer.
SpecificPush(pszHtml, pNode);

if{(!m_bWap)

POut->SpecificOutputProcess(pNode, m_sOutPath, m_sID, m_sDomainUrl); /Pushing
all to one.

clse

pOut->WapOutput(pNode, m_sOutPath, m_sID, m_sDomainUrl); //Pushing
all to one (WAP),

if(pOut->CreatelndexFile(m_sOutPath, m_sID))

5

Index file being created.

o/

H
felose(fSre);
delete pOut;
delete pNode,
retun §_OK;
}

/“‘.0.‘0..."OO.‘OOOO...QQQ.Q.00000000..00..00.0000.00‘000‘000'.0..0./

/..0".‘....‘.‘.0.00.0.0.0'0.‘000.00.00..000000‘.0..00..00.0.000000000/
CNode* CFlexDisplay::GetPreviousNode(CNode* pCurrentNode, string s Temp)

{

/*

Get Nodes: Get the previous nodes

*/

i sTemp = pCurrentNode->Get TagName())

return GetPreviousNode(pCurrentNode->GetParentNode(), s Temp);

else if(sTemp == pCurrentNode->Cet TagName())

retumn pCurrentNode,

/‘.00000.000‘00..00..000.0.000000.00.‘0‘.’.0.‘0..0‘0..‘C’......‘..“/
/‘.0...0.0....000..Q..Q........0.000.0..O.."0.0.00‘.00.0“.00.'.0'./

99

void CFlexDisplay::PushNode(CNode* pCurrentNode, CNode* pTempPushNode)

;

Pushing Nodes: Push nodes into structure.

2/

pCurrentNode->AddChilde(pTempPushNode);

pCurrentNode->SetContent("CHILD");

while(pTempPushNode->HasParent() && pTempPushNode->GetParentNode() 1= pCurrentNode)
{

pTempPushNode = pTempPushNode->GetParentNode();
pCurrentNode->AddChilde(pTempPushNode);
pCurrentNode->SetContent("CHILD"),

H

/‘.‘..O“..““.“‘“‘.‘.““““.““‘..“‘.“.‘/
/‘.‘..““‘...(}ma"c push ﬁlmlim' not uwi“‘...‘““.“‘0“'.“.0/
void CFlexDisplay::ProcessNode(const char *pszHtml, CNode *pCurrentNode)

const char* pszProcHtml = new char;
const char* pszBackup = new char;
char ch;

string sTemp;

string sName;

string sProperty;

string sPropValue;

string sContent = "";

CNode *pTempNode = new CNode;
CNode *pTempPushNode = new CNode,
pszBackup = pszHtml,

while((ch = *(pszHtml++)) != NULL)
{

if(ch == '<")

{
if((ch=*(pszHtml++)) == /")
{

/‘

Push Node: Create the tree structure,

*/

while((ch=*(pszHtml4++)) !=">')

sTemp += tolower(ch);

=pszHtml,

if(sTemp == pCurrentNode->Get TagName())
{

i pCurrentNode->HasParent())

{
(pCurrentNode->GetParentNode())->AddChilde(pCurrentNode);
(pCurrentNode->GetParentNode())->SetContent("CHILD"),
pCurrentNode = pCurrentNode->GetParentNode();

H

H

clse

it

2

/Recursive process to get the parent node.

pTempPushNode = pCurrentNode;

pCurrentNode = GetPreviousNode(pCurrentNode, sTemp),
PushNode(pCurrentNode, pTempPushNode),

H

sTemp = ",

else if(ch=="")

continue;

clse

{

~pszHtml,

/*

Tag Name Processing: Get the name of current Tag
*/

while((ch=*(pszHtml++)) 1= >')
{

i(chw="'")

break;

clse

sName += tolower(ch);

}

if{ sName.empty())

100

{
1f({(pCurrentNode->Get TagName().empty()))

i

pTempNode->SetTagName(sName),
pTempNode->SetParentNode(pCurrentNode),
pCurrentNode = pTempNode;

pTempNode = new CNode;

H

else

{
pCurrentNode->SetTagName(sName);

H

if(ch=="")

{

/*

Property Processing: Get the properties for current tag,
*/

while((ch = *(pszHtml++)) I= ">")
t
if(ch=="=")

{

while((ch = *(pszHtml++)) !=">")
{

if(ch==""

break;

else

sPropValue += ch;

}

pCurrentNode->Set TagProperties(sProperty, sPropValue),
sPropValue = ",

spnnxn1y = u%

~pszHtml,

H

else if(isalpha(ch))

sProperty += ch;

]

~pszHtml,

H

sName = "";

H

H

H

else if(ch!='<' && ch!=">")

3

{

o

Content Processing: Getting the Text content.
*/

~pszHtml,

while((ch=*(pszHtml4+))!='<")
sContent += ch;

if(!sContent.empty())

{
pCurrentNode->SetContent(sContent),
]

--pszHtml,

sContent = "";

!

}

/‘..‘.“‘.Q‘..‘.‘.““‘..'...“..............‘0000.0..000000....‘0.0/
[eesenrnrnnanespuih function®####4eessssssssssssessssssrrrnssrsnisy
void CFlexDisplay: :SpecificPush(const char* pszHtml, CNode *pSpecificPush)

5

html---head

| [===meta

| [-==title

| [===seript (optional)

| [====style (optional)

| |===link (optional)

|

[-=-body

| [===table

[|==etr

[}

101

|----standard element

[
[
| |--—-standard element
|

|---script(optional, not included)
2/

const char* pszProcHtml = new char;
const char* pszBackup = new char;

char ch;

string sTemp;

string sName;

string sProperty;

string sPropValue;

string sContent = "";

CNode *pTempNode = new CNode;
CNode *pTempCloseNode = new CNode;
// CNode *pTempPushNode = new CNode;
pszBackup = pszHtml;

while((ch = *(pszHtml++)) I= NULL)

{

if ch =="<')

{

if((ch=*(pszHtml++)) == /')
{

/*

Closing tag: If it's the same, with current node,
skip it; If not, push the temp node into the structure
and skip the closing tag,

o

while((ch=*(pszHtml++)) t=">")

sTemp += tolower(ch);

sTemp = /" + sTemp;

‘i‘r(IsTemp.empty())

{
if(pTempCloseNode->Get TagName(). empty())
{

pTempCloseNode->Set TagName(s Temp),
if(!pTempNode->Get TagName().empty())
{

pSpecificPush->AddChilde(pTempNode),
pTempNode = new CNode;

H
pSpecificPush->AddChilde(pTempCloseNode),
plempCloseNode = new CNode;

H

sTemp ="",
H

H

else if(ch=="1")

{

/‘

Filtering the comment tag,

*/

char chNext,

// string sEndComment = **;
if((Ch=’wl llmlH)) —)
{

if((ch=*(pszHtml4-+)) == ')
{

do

{

Ml pszHtml++,

ch= *psziitml;

chNext = *(++pszHiml);
Iwhile(!((ch ==) && (chNext == '));
H

]

H

else

{
~pszHtml,
/"

Tag Name Processing: Get the name of current Tag.
o7

while((ch=*(pszHtml++) 1= >')

102

{

if(ch==""

break;

else

sName += tolower(ch);

if(sName == "script")

{

/*

Filtering the script tag.

2/

string sEnd = "";

while((ch=*(pszHtml++)) = NULL)
{

if(ch=="'<")

{
if((ch=*(pszHtml++)) == /")
{

while((ch = *(pszHtml++)) |=">")
sknd += tolower(ch);
if(sEnd == "script")

{
if{ (ch = *pszHtml) == ")
{

sknd = "",
5
continue;

H

else

{
~pszHtml;
break;

h

}

else

sName = "";

H

{
if('sName.empty())
{

if({(pTempNode->Get TagName().empty()))
{

pSpecificPush->AddChilde(pTempNode);
pTempNode = new CNode;
pTempNode->Set TagName(sName);

}

else
{
pTempNode->Set TagName(sName),

H

if(ch =="'")

{

/*

Property Processing: Get the properties for current tag.
*/

while((ch = *(pszHtml++)) 1= >')
{

1"(ch == 'w')

|

while((ch = *(pszHtml4-+)) = ')

{

if(ch =="")

break;

clse

sPropValue += ch;

H
pTempNode->Set TagProperties(sProperty, sPropValue),

sPropValue = **;
sProperty = **;

103

--pszHtml;

¥

else //if(1salpha(ch))
sProperty += tolower(ch);

}

--pszHtml;

H

sName = "";

}

}

}

}

else if(ch=="n'|| ch == ")
continue;

clse if(ch !='<' && ch 1=">")
6

{

/‘

Content Processing: Getting the Text content.
*/

--pszHtml;

while((ch=*(pszHtml++))!='<")
sContent += ch;

M(!sContent.empty())

pTempNode->SetContent(sContent),
H
~pszHtml,

sContent = "";

H

H

delete pTempNode,
delete pTempCloseNode;

/“““."..“‘.‘.“..‘.“"‘...‘““.“..‘“‘.“.‘0“‘.‘./
/"“““..‘0.“‘['0 gc‘ .h(“ d(min““Q‘.O‘.“.‘0“.‘.‘.‘/
string CFlexDisplay::GetShortDomain(string sDomainUrl)

{

string sShortDomain;

char ch;

for(int 1=0;1<sDomainUrl size();1++)

{

ch = sDomainUrlat(1);

sShortDomain += ch;

if(1>7&&ch==")

break;

H

return sShortDomain;

/.“..“0.““".“.‘.‘..0.0““.“‘.0.0......‘..“0‘.0‘.0./
/‘.‘..““1‘0 gc(I(mg d(min..’....‘...‘...‘..0......00“../
string CFlexDisplay::GetLongDomain(string sDomainlUrl)

{

string sLongDomain;

int nPoint;

char ch;

for(int i=sDomainlUtl size()1>0.1-)

{

ch = sDomamnUrlat(1),

if{ ch==")

{

nPoint = 1;

break;

H

H

for(1 = 0; 1< nPoint+1; 1++)
{

sLongDomain 4= sDomamUrlat(i),

H
return sLongDomain,

A P T T YT T YY)

STDMETHODIMP CFlexDisplay: FlexWapDisplay(BS TR bstrDomaintUrl, BSTR bstrSreFile, BSTR bstr¢ Jutha
th, BSTR bstrID, BSTR *pbPagelndex)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())

104

7

// TODO: Add your implementation code here

retun S_OK;

H

STDMETHODIMP CFlexDisplay::get WmlProcess(BOOL *pVal)
t

AFX_MANAGE_STATE(AfxGetStaticModuleState())

// TODO: Add your implementation code here

*pVal =m_bWap;

return S_OK;

H
STDMETHODIMP CFlexDisplay::put_ WmlProcess(BOOL newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_bWap = newVal,

return S_OK;

H

2. File: Node.cpp

// Node.cpp: implementation of the CNode class.
/l
T T e
thinclude "stdafx.h"

#include "resource.h"

#include "Node.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS_FILE[]= _FILE ;

#define new DEBUG NEW

#endif
T T T T T T L T
// Construction/Destruction
i
CNode::CNode()

{

m_pParentNode = NULL;

// m_sName = "",

/I m_pTag = new CTag;

CNode::~CNode()
{

/#tt“““““““.““.O/

bool CNode::HasContent()

{
// return m_pTag HasContent(),

return (!m_sContent.empty());

!
bool CNode::HasTagProperty()

{
return m_pTag HasProperties(),
H

void CNode::SetContent(string sContent)

{
m_sContent.push_back(sContent),

//' m_pTag SetSequence(iSeq),
!

void CNode::SetParentNode(CNode* pNode)

{
m_pParentNode = pNode,

]
CNode* CNode::GetParentNode()
{

105

return m_pParentNode;
}
bool CNode::HasParent()

{
return (m_pParentNode != NULL);

}
bool CNode::HasChild()

{

return (m_sChildNode.size() > 0);
}

string CNode::GetTagName()

{
return m_pTag GetName();

void CNode::SetTagName(string sName)

{
m_pTag.SetName(sName);

void CNode:: AddChilde(CNode* pChildNode)

{
m_sChildNode.push_back(pChildNode);

/*‘#1‘#**#‘t#tt##t‘##‘t###*#l##‘t‘*“‘#tt“/

[rexxxraxrGet Child Node, not used*******#+/
/‘

void CNode::GetChildNode(string &sOut)
{

vector<string>::iterator p1;

unsigned int 1 = 0,

sOut +="<" + this->GetTagName();

if{ this->HasTagProperty())
this->GetTagProperties(sOut);

SOut = n>n;

if(this->HasContent())

{
for(pl = m_sContent begin();pl<m_sContent.end();p| ++)

{
if{ (*p1) == "CHILD" && this->HasChild())
{

sOut += "\n";
ift m_sChildNode.at(i)->HasChild() || m_sChildNode. at(i)->HasContent())

{
m_sChildNode.at(1)->GetChildNode(sOut),
}

1+

)

else

sOut += (*pl),

|

sOut += "</" + this->GetTagName() + ">\n";
*/

/,‘*#‘*““““‘0“““00‘0‘.‘00‘.‘/

/“*‘.“t“.“#“‘.““‘.“..‘..“‘/

void CNode::DisplayContent()

{

vector<string>::iterator p2,

if{ this->HasContent())

{

for(p2 = m_sContent begin();p2 = m_sContent end(); p24++)

{

/Iviewing the content.

]

}

106

AR AR ook o AR AR R
/****##***#*4****t###*#***##"#4*4*#““1#““*‘#‘*‘t"“#*t“/

void CNode::SetTagProperties(string sProperty, string sPropValue)

{

m_pTag.SetProperties(sProperty, sPropValue);

}

void CNode::GetTagProperties(string &sOut, string sShortDomain, string sLongDomain)
{

m_pTag GetProperties(sOut, sShortDomain, sLongDomain);

H
unsigned int CNode::GetNodeSize()

{

return m_sChildNode.size();

}

/***‘##*‘tt*‘#‘*‘1‘*#‘*1#“‘#“/
Ao oo oo ook s o ok o s o sk ok o oo /
/llt

CNode* CNode::GetBodyNode()

vector<CNode*>::iterator p1;
bool bFound = false;

for(pl = m_sChildNode.begin(); p1 != m_sChildNode.end(); pli+)

{

if((*p1)->GetTagName() == "body")
{

bFound = true;

return *pl;

break;

}

j

ifibFound == false)

return NULL;

|

-1

CNode* CNode::GetNode(unsigned int 1)

{
return m_sChildNode.at(1);

!

string CNode::GetContent(unsigned int 1)
{

return m_sContent.at(i);

H
unsigned int CNode::GetContentSize()

{

return m_sContent.size(),

/‘““.".‘00“0‘.““‘00‘0‘0.‘0.‘0‘0‘/
/l'#'."“t#‘#““‘Q#“‘##“#““““..“/

/* This function is not used
void CNode::DisplayChild()

{

vector<CNode*>::iterator pl;
string sProperty = ",

for(pl = m_sChildNode.begin(); p1 I~ m_sChildNode end(); p1++)
{

ifl (*p1)->HasTagProperty())
{

(*p1)->GetTagProperties(sProperty),
spmcny = uu;
}

if{ (*p1)->HasContent())
{

107

(*p1)->DisplayContent();
}

}

H

*/

string CNode::GetSpecificContent()
{

string sContent = "";
vector<string>::iterator p2;

if(this->HasContent())

{
for(p2 = m_sContent.begin();p2 != m_sContent.end(); p2++)
{

sContent += (*p2);

}
return sContent;

/‘*#‘*“##*‘###‘#4‘#‘*#‘l‘#“**‘#‘#‘t/

3. File: OutProcessl.cpp

// OutProcess 1.cpp: implementation of the COutProcess class.
I
M L e
#hnclude "stdafx.h"

flinclude "resource.h”

#include "OutProcess 1. h"

fifdef DEBUG

f#lundef THIS_FILE

static char THIS_FILE[]=__FILE

#define new DEBUG_NEW

#endif
T
// Construction/Destruction
T
COutProcess::COutProcess()

{

}

C(Nd’mceu::-(,‘()uﬂ’mcessq

{

}

/*function is not used

void COutProcess::ProcessOutput(CNode* pMainNode, string szOutPath, string szID)

{

/ size of page: 800 x 600 dpi

// mumber of segment per page: 4 segment(each segment will be transformed into individual 1i
nked pages)

// mumber of nodes per page: size/d

unsigned int nSegment = 4,

unsigned int nNodesPerPages,

unsigned int nContentSize;

unsigned int nPage = 0,

char tmp[10],

FILE *fOut;

string sOut = ",

string sLocation = "*;
string sContent = ",

CNode* pBodyNode = new CNode,

CNode* pCurrNode = new CNode;
pBodyNode = pMainNode->GetBody Node(),
il(pBodyNode)

{

nContentSize = pBodyNode->CGetContentSize(),
{ nContentSize > 4)

nNodesPerPages = nContentSize/d,

else i nContentSize <4)

nNodesPerPages = nContentSize,

else i nContentSize == 4)

nNodesPerPages = 4,

108

unsigned int nMax;

static unsigned int nContentNav;
static unsigned int nChildNav;
nContentNav = (;

nChildNav = 0;

nMax = nNodesPerPages;
if(nMax >=4)

{

for(unsigned int i=0; i< 4; i++)
{

for(; nContentNav < pBodyNode->GetContentSize(); nContentNay++)

{
sContent = pBodyNode->GetContent(nContentNav);

if((nContentNav%nNodesPerPages) == 0)
break;

else

{

sOut += "<htmI>\n";

sOut += "<head>\n</head>\n\n";
sOut += "<body>\n";

if(sContent == "CHILD")

{

pCurrNode = pBodyNode->GetNode(nChildNav++);

pCurrNode->GetChildNode(sOut);
}

else

{

sOut += sContent + "\n";

!

sOut += "n</body>\n";

sOut += "\n</html>";

nPag,c-H;

_itoa(nPage, tmp, 10);

sLocation = szOutPath + szID;
sLocation 4= "\\";

sLocation += tmp;

sLocation += "i_htm";

fOut = fopen(sLocation.c_str(), "w");
fprimtf(fOut, "%s", sOut.c_str());
felose(fOut);

sOut = "",

sLocation = ",

}

H

}

m_nPages = nPage;

H

clse if(nMax <4)

{

for(; nContentNav < nMax; nContentNav++)
{

sOut += "<html>\n";

sOut += "<head>\n</head>\n\n";
sOut += "<body>\n",

sContent = pBodyNode->GetContent(nContentNav),

if(sContent == "CHILD")
{

pCurrNode = pBodyNode->GetNode(nChildNav++),

pCurrNode->GetChildNode(sOut),
H

else

{

sOut += sContent;

H

sOut 4= "\n</body>\n",

sOut += "\n</html>",
nPaget+,

sLocation = szOutPath + szID,
sLocation 4= "\",
_itoa(nPage, tmp, 10),
sLocation += tmp,

sLocation += " htm";

fOut = fopen(sLocation.¢_str(), "w"),
fprintf(fOut, "%s", sOut.c_str()),
felose(fOut),

109

sOut ="";
sLocation = "";

}

m_nPages = nPage;

}

h

H

*/

bool COutProcess::CreateIndexFile(string szOutPath, string szID)
{

bool bCondition;

string sLink;

string sLocation;

string sIndex;

sLocation = szOutPath + szID,
sIndex = sLocation + "\i.txt";
FILE *fIndex;

fIndex = fopen(sindex.c_str(), "w");
if(findex)

{

if(m_nPages >0)

{

for(unsigned int i = 0; i < m_nPages; i++)

{

fprintf(findex, "%di htm\n”, i+1);
// fprintf(findex, "\n");

}

bCondition = true,
H

clse

bCondition = false;

H

clse

bCondition = false;

fclose(fIndex),

return bCondition;

H

void COutProcess::SpecificOutput Process(CNode *pMainNode, string szOutPath, string szID), strin
£ sDomainUrl)

{

unsigned int nSegment = 4,
unsigned int nNodesPerPages;
unsigned int nPage = 0,

unsigned int nNodeSize;

string sProperties = "";

char tmp[10];

char ch;

FILE *fOut;

m_sDomainUrl = sDomainlUrl;
string sOut = "";

string sLocation = "";

string sContent = "";

CNode* pCurrNode = new CNode;

nNodeSize = pMainNode->GetNodeSize(),

if(nNodeSize > 4)

nNodesPerPages = 10,

else if{ nNodeSize <= 4)

nNodesPerPages = nNodeSize,

unsigned int nMax;

static unsigned int nContentNay,

static unsigned int nChildNav,

nContentNay = 0,

nChildNav = 0,

nMax = nNodeSize,

i nMax >= 4)

{

for(unsigned int i=0, nContentNay < nMax; i4+)

{

for(; nContentNay < nMax; nContentNav++)

{

pCurrNode = pMainNode->GetNode(nContentNav),
nChildNav++,

1 pCurrNode->Get TagName() == *html® || pCurrNode->Get TagName() == "head"
Il

pCurrNode->GetTagName() == "title” || pCurrNode->Get TagName() == “body

110

}:(ll‘unNodeJGctTagNamc() =="meta" || pCurrNode->GetTagName() == "table
p(”?m'rNode->GelTagNameO =="tr" || pCurrNode->Get TagName() == "d" ||
p?urrNodc->GetTagNameO =="tbody" || //pCurrNode->GetTagName() == "im
?Cll'nrNode&GctTagNanw() == "span" || pCurrNode->Get TagName() == "style
ngnNMc->GetTagNme0 =="div" || //[pCurrNode->Get TagName() == "stro
g(glu'l{!rNodc&GetTagNamc() == "frame" || pCurrNode->Get TagName() == *fram
;:t‘:(nc,rlnp(pCurrNode&GetTagName().c_str(). " 1)==0)

nChildNav--;
continue;

}

else if(pCurrNode->GetTagName() == "br")

sContent += "<" + pCurrNode->Get TagName() + ">";

else if(pCurrNode->GetTagName() == "ul" || pCurrNode->Get TagName() == "ol
")

ch="'+;

else if(pCurrNode->Get TagName() == "1i")

{

sContent += "<p>",

if{ pCurrNode->HasContent())

{

sContent += ch + pCurrNode->GetSpecificContent();
sContent += "\n";

}

sContent += "</p>\n";

}

clse

{

// sContent += nChildNav + ":" + nContentNav:
sContent += "<" + pCurrNode->Get TagName();
1 pCurrNode->Has TagProperty())

{

pCurrNode->GetTagProperties(sProperties, GetShort] Jomain(), GetLong
Domain()),

sContent += sProperties,

sProperties = "",

h

sContent += ">\n";

if(pCurrNode->HasContent())

{

sContent += pCurrNode->GetSpecificContent();

sContent += "\n";

}

sContent += "</" + pCurrNode->Get TagName();
sContent += ">
\n",

H

if(nChildNay == nNodesPerPages)

{

nContentNav++;

nChildNay = 0,

break;

H

}

i sContent == "")

{

sOut = "",
sLocation =
break,

H

sOut += sContent;

nPaget+,

_itoa(nPage, tmp, 10),

sLocation = szOutPath + szID,
sLocation 4= "\",

sLocation 4= tmp,

sLocation += * him*,

1Out = fopen(sLocation.c_str(), "w"),
fprintf(fOut, *%s", sOut.c_str()),
felose(fOut),

111

sOut ="";
sLocation = "";
sContent = "";

3

m_nPages = nPage;
¥

else if(nMax <4)
{

for(; nContentNav < nMax: nContentNav-++)

{

pCurrNode = pMainNode->GetNode(nContentNav);

iff pCurrNode->GetTagName() == "html" || pCurrNode->Get TagName() == "head” |
pCurrNode->Get TagName() == "title" || pCurrNode->GetTagName() == "body" ||
pCurtNode->GetTagName() == "meta” || pCurtNode->Get TagName() == "table” I
pCurrNode->Get TagName() == "tr" Il pCurrNode->Get TagName() == "td" Il
pCurNode->GetTagName() == "tbody" || /pCurrNode->Get TagName() == img" |

|

pCurrNode->Get TagName() == "div" || pCurrNode->Get T agName() == "span" ||
pCurrNode->GetTagName() == "style” ||

pCurrNode->Get TagName() == "frame" || pCurrNode->Get TagName() == "frameset
"l

(slmcmp(pCunNodcchtTngNamc().c__slr(), " 1)=0)

{

sOut = "*;
continue;

H

else if(pCurrNode->Get TagName() == "br")

sContent += "<" + pCurrNode->Get TagName() + *>";

else if(pCurrNode->Get TagName() == "ul" [PCurrNode->Get TagName() == "ol)
ch="'*,

else if(pCurrNode->Get TagName() == "1i")

{

sContent += "<p>",

1 pCurrNode->HasContent())
{

sContent += ch + pCurrNode->GetSpecificContent();
sContent += "\n";

H
sContent += "</p>\n";
}

clse

{

/sOut 4= "smaller";

sOut += "<" + pCurrNode->Get TagName();

if(pCurrNode->HasTagProperty())

{

pCurrNode->Get TagProperties(sProperties, GetShortDomain(), GetLongDoma
n());

sOut += " "+ sProperties;

sOut += "\n";

sProperties = "";
}

sOut 4= ">"
if(pCurrNode->HasContent())
{

sOut += pCurrNode->GetSpecificContent(),
H

sOut 4= "</,

sOut += pCurrNode->Get TagName();
sOut 4= ">
\n";

]

nPage++,

sLocation = szOutPath + szID;
sLocation += "\",

_itoa(nPage, tmp, 10);

sLocation 4= tmp,

sLocation += " htm";

fOut = fopen(sLocation.c_str(), "w"),
fprintf(fOut, *%s", sOut.c_str()),
felose(fOut);

‘M - .l;

sLocation = "%,

H

m_nPages = nPage,

H

112

else

{

m_nPages = 0;
¥

string COutProcess::GetLongDomain()
{

int nPos;

char ch;

string sTemp = "";

nPos =m_sDomainUrl.rfind('/");
if(nPos >0)

{

for(int i=0; i<nPos+1; 1++)

ch =m_sDomainUrl.at(i);
sTemp +=ch;

H

H

else

sTemp = m_sDomainUrl +'/;
if(!sTemp.empty())

return sTemp;

else

retun "No Domain specified”;

string COutProcess::GetShortDomain()
{

int nPos;

char ch;

string sTemp = "",

nPos = m_sDomainUrl.find(/, 7);

if(nPos > 7)

{

for(int i=0;1<nPos;i++)

{

ch =m_sDomainUrLat(i);
sTemp += ch;

H

|

else

sTemp = m_sDomainUrl;
if(!sTemp.empty())
return s Temp;

else

return "No Domain";

}

void COutProcess::PutWap(BOOL bWap)
{

m_bWapProcess = bWap;

;Joid COutProcess:: WapOutput(CNode *pMainNode, string szOutPath, string szID, string sDomainUrl
{

unsigned int nSegment = 4;
unsigned int nNodesPerPages;
unsigned int nPage = 0,

unsigned int nNodeSize;

string sProperties = "";

char cUl;

char tmp| 10];

FILE *fOut,

m_sDomainUrl = sDomainUrl;
string sOut = "",

string sLocation = ",

string sContent = "*;

CNode* pCurrNode = new CNode;
nNodeSize = pMainNode->(jetNodeSize(),
if(nNodeSize > 4)
nNodesPerPages = 5,

else if{ nNodeSize <= 4)
nNodesPerPages = nNodeSize,
unsigned int nMax;

static unsigned int nContentNav;
static unsigned int nChildNav,

113

nContentNav = 0;
nChildNav =0;
nMax = nNodeSize;

if(nMax >=4)

for(unsigned int 1=0; 1< 4; 1++)
{
for(; nContentNav < nMax; nContentNav++)

{

pCurrNode = pMainNode->GetNode(nContentNav);

nChildNav++;

if(pCurrNode->GetTagName() == "html" || pCurrNode->GetTagName() == "head”
I

pCurtNode->GetTagName() == "title" || pCurrNode->GetTagName() == "body

pCurtNode->GetTagName() == "meta” || pCurrNode->GetTagName() == "table
"l

pCurrNode->GetTagName() == "tr" || pCurrNode->GetTagName() == "td" ||
pCurrNode->GetTagName() == "tbody" || pCurrNode->GetTagName() == "th"

I
pCurrNode->Get TagName() == "style" || pCurrNode->GetTagName() == "img"

[
pCurtNode->GetTagName() == "span" || pCurrNode->GetTagName() == "div"

I

pCurrNode->Get TagName() == "frame" || pCurrNode->Get TagName() == "fram
eset” ||

(strnemp(pCurrNode->Get TagName().c_str(), */", 1)) == 0)

{
nChildNav--;
continue;

H

else if(pCurrNode->Get TagName() == "ol" || pCurrNode->Get TagName() == "ul
")

clUl=""

else if(pCurrNode->Get TagName() == "li")

{

sContent += "\n
";

sContent += cUl;

if(pCurrNode->HasContent())

{

sContent += pCurrNode->GetSpecificContent();
sContent += "
\n";

H

}

else if(pCurrNode->GetTagName() == "br")
sContent += "
";

else

{

sContent += "\n";

if(pCurrNode->HasContent())

{
sContent 4= pCurrNode->GetSpecificContent();
H

H

if(nChildNav == nNodesPerPages)
{

nContentNav++t,

nChildNav = 0;

break;

}

}

if(sContent == "")

{

sOut = "";

slocation = "";

break;

}

sOut += sContent,

nPaget+t,

_itoa(nPage, tmp, 10),
sLocation = szOutPath + szID;

sLocation += "\",
sLocation += tmp;
sLocation 4= "1 htm";

114

fOut = fopen(sLocation.c_str(), "w");
fprintf(fOut, "%s", sOut.c_str());
fclose(fOut),

sOut="";

sLocation="";

sContent = "";

h
m_nPages = nPage;

H
else if(nMax < 4)

{

for(; nContentNav < nMax; nContentNav++)

{

pCurrNode = pMainNode->GetNode(nContentNav);

if(pCurrNode->GetTagName() == "html" || pCurrNode->GetTagName() == "head" ||
pCurrNode->Get TagName() == "title" || pCurrNode->GetTagName() == "body" ||
pCurrNode->GetTagName() == "meta” || pCurrNode->GetTagName() == "table" ||
pCurrNode->GetTagName() == "tr" || pCurrNode->GetTagName() == "td" ||
pCurrNode->GetTagName() == "tbody" || pCurrNode->GetTagName() == "th" ||
pCurrNode->GetTagName() == "style" || pCurrNode->GetTagName() == "img" ||
pCurrNode->GetTagName() == "span" || pCurrNode->GetTagName() == "div" ||
pCurrNode->GetTagName() == "frame" || pCurrNode->GetTagName() == "frameset
"l

(stmemp(pCurrNode->Get TagName().c_str(), " 1)=0)

{
sOut="";
continue;

}

else if(pCurrNode->Get TagName() == "ol" || pCurrNode->Get TagName() == "ul")
cm = 4_1.,

else if(pCurrNode->Get TagName() == "1i")

{

sContent += "\n
",

sContent += cUl;

if(pCurrNode->HasContent())

{

sContent += pCurrNode->GetSpecificContent();
sContent += "
\n";

H

H

else if(pCurrNode->GetTagName() == "br")
sContent += "
";

else

sContent += "\n";
if(pCurrNode->HasContent())

{

sContent += pCurrNode->GetSpecificContent();
}

}

nPaget++;

sLocation = szOutPath + szID;
sLocation +="\\";

_itoa(nPage, tmp, 10);

sLocation += tmp;

sLocation += "L.htm";

fOut = fopen(sLocation.c_str(), "W");

fprint{(fOut, "%s", sOut.c_str()),
felose(fOut);

sOut = "";

slocation = "";

i

m_nPages = nPage;
!

clse

{

m_nPages = 0,

H

|

115

4. File: Property.cpp

// Property.cpp: implementation of the CProperty class.
I
I i i
#include "stdafx.h"

#include "resource.h”

#include "Property.h"

#ifdef DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

T T T T T
// Construction/Destruction

I T T T T
CProperty::CProperty()

}
CProperty::~CProperty()

/‘.“.t“““ﬁmcti(m to set Vﬂ]uc“..““...../
void CProperty::SetProperty(string sProperty)

t
m_sProperty = sProperty;

}
void CProperty::SetProp Value(string sPropValue)

m_sPropValue = sPropValue;

/‘“‘““‘O‘.t.“.“0‘.“O.“.“O““““‘.‘/

S. File: Tag.cpp

// Tag.cpp: implementation of the CTag class.

I
I e
fiinclude "stdafx.h"

#include "resource.h”

#include "Tag.h"

#ifdef DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

flendif

I T LT T T T LT
// Construction/Destruction

I T T T LT T
CTag::CTag()

{

]
CTag::~CTag()
{

/“.““‘.‘.“0...000“0‘0..0“.0.0.‘.‘.0/
void CTag::SetContent(string sContent)

{
m_sContent.push_back(sContent);

/“‘.“““....‘.‘“O“..‘.."..‘.“O.‘Q./
/“.0“‘.‘0“‘0‘0“...0‘.0.“‘0..0‘00000‘/
void CTag::SetName(string sName)

{

m_sName = sName,

/..“‘000‘.‘0."."0‘.0.0‘...000.‘00....0/
/O..O‘.00'00‘.‘.‘.t0.‘0‘0."..000.‘00..00.0000..000.0.'.0.../
void CTag::SetProperties(string sProperty, string sPropValue)

{

CProperty *pTemp;

plemp = new CProperty;

pTemp->SetProperty(sProperty).

116

pTemp->SetPropValue(sPropValue);
m_pProperties.push_back(pTemp);

/‘““'“'““‘“"."t‘#"“‘t”‘t““‘.“‘.“.““““““./
/‘"‘t.‘t‘““.“““‘#.“““‘“t“‘...““‘.‘.‘.“““.‘.“/

void CTag::GetProperties(string &sOut, string sShortDomain, string sL.ongDomain)
/%

To get all the properties of a tag.

2/

vector<CProperty*>::iterator p1;

string s TempProperty;

string sTempPropValue;

for(pl = m_pProperties.begin(); pl !=m _pProperties.end(); pl++)

{
sTempProperty = (*p1)->GetProperty();
sTempPropValue = (*p1)->GetPropValue();

if((*p1)->GetPropValue().at(0) ==)

sTempPropValue = (‘pl)->Gctl’ropValuc().subsu(l, ((*p1)->GetPropValue().length()-2))
else

sTempPropValue = (*p1)->GetPropValue();

if(sTempProperty == "onclick" || sTempProperty == "onsubmit" ||

sTempProperty == "onload" || sTempProperty == "onmousedown”)

{

sTempProperty = "";
sTempPropValue = "";
continue;

H

if(sTempProperty == "src")

{

if(sTempPropValue.at(0) == /)

{
/* if the first char is a slash®/
sTempPropValue = sShortDomain + sTempPropValue;

}

else if(sTempPropValue. find("http://") ==0)
sTempPropValue = sTempPropValue;

else

{

/* if the first char is neither 'h' of http nor slash */
sTempPropValue = sLongDomain + sTempPropValue;
}

}

else
sTempPropValue = sTempPropValue;
/* else if(sTempProperty == "href")

{
if(sTempPropValue.at(0) == D)

{
/* if the first char is a slash
sTempPropValue = sShortDomain + sTempPropValue;

H

else if(s TempPropValue.at(0) == 'h' Y//use the string search to search for the exist
ent of http:/

{

/*no process

H

else

/* if the first char is neither 'h* of http nor slash
sTempPropValue = sLongl Yomain + s TempPropValue;
H

}

*/

sOut 4= " * + s TempProperty + ="

sOut 4= " + sTempPropValue + ™,

sTempProperty = ""

sTempPropValue = **

|

[“0‘0‘OOQ‘0‘00.‘00"000000000‘00/
/‘.‘.‘0.‘0‘0‘.0‘.“‘...‘.““000‘/
bool CTag::HasProperties()

117

return (m_pProperties.size()>0);
j
bool CTag::HasContent()

return (‘m_sContent.empty());

/“t“‘#tttt‘l‘#‘t“‘.‘t‘#t‘tttt‘/

6. File: WAC.cpp

// WAC.cpp : Implementation of DLL Exports.

// Note: Proxy/Stub Information

// To build a separate proxy/stub DLL,

// run nmake -f WACps.mk in the project directory.
#include "stdafx.h"

#include "resource.h”

#include <initguid.h>

#include "WAC h"

#include "WAC _i.c"

#include "FlexDisplay.h"

CComModule _Module;
BEGIN_OBJECT_MAP(ObjectMap)
()BJHCT_ENTRY(CLSI])_FlcxI Jisplay, CFlexDisplay)
END_OBJECT_MAP(

class CWACApp : public CWinApp

public:

// Overrides

// Class Wizard generated virtual function overrides
I{{AFX_VIRTUAL(CWACApp)

public:

virtual BOOL InitInstance();

virtual int ExitInstance();

/I}}AFX_VIRTUAL

HI{{AFX_MSG(CWACApp)

J/NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
I} }AFX_MSG

DECLARE_MESSAGE_MAP(

1)

BEGIN_MESSAGE_MAP(CWACApp, CWinApp)
I{{AFX_MSG_MAP(CWACApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

Iy} AFX_MSG_MAP

END _MESSAGE_MAP(Q

CWACApp theApp;

BOOL CWACApp::Initinstance()

{
_Module. Init(ObjectMap, m_hInstance, &LIBID_WACLib),
return CWinApp::Initinstance();

H
int CWACApp::ExitInstance()

{
_Module. Term();
return CWinApp::ExitInstance();

}

///

// Used to determine whether the DLL can be unloaded by OLE
STDAPI DIICanUnloadNow(void)

{
AF X_MANAGIi_S’l‘A'I'l{(Afx(jetStaticModuleState());
return (AfxDIICanUnloadNow()==5_(K && Module GetLockCount()==0) 7§ OK : § FALSE,

i

Wl

// Returns a class factory to create an object of the requested type

STDAPI DIIGetClassObject(REFCLSID relsid, REFIID nid, LPVOID* ppv)

{

return _Module. GetClass(dbject(relsid, riid, ppv);

]
///l//////l///l/l//

// DlIRegisterServer - Adds entries (o the system registry
STDAPI DIIRegisterServer(void)

118

{
// registers object, typelib and all interfaces in typelib

retumn _Module.RegisterServer(TRUE);

h

Vs

// DllUnregisterServer - Removes entries from the system registry
STDAPI DllUnregisterServer(void)

{
return _Module. UnregisterServer(TRUE),
}

7. File: WACTear.cpp

/ WACTear.cpp : Implementation of DLL Exports.

// Note: Proxy/Stub Information

// To build a separate proxy/stub DLL,

// run nmake -f WACTearps.mk in the project directory.

#include "stdafx.h"

#include "resource.h"

#include <initguid.h>

#include "WACTear.h"

#include "WACTear_i.c"

#include "WacHtmTear.h"

CComModule _Module;

BEGIN_OBJECT_MAP(ObjectMap)

OBJECT _ENTRY(CLSID_WacHtmTear, CWacHtmTear)
END_OBIECT MAP()

class CWACTearApp : public CWinApp

{

public:

// Overrides

// ClassWizard generated virtual function overrides

M {AFX_VIRTUAL(CWACTearApp)

public:

virtual BOOL Initlnstance();

virtual int ExitInstance(),

/I}}AFX_VIRTUAL

H{{AFX_MSG(CWACTearApp)

//NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
I} }AFX_MSG

DECLARE_MESSAGE_MAP()

1

BEGIN_MESSAGE_MAP(CWACTearApp, CWinApp)

I {AFX_MSG_MAP(CWACTearApp)

/INOTE - the ClassWizard will add and remove mapping macros here,
// DO NOT EDIT what you see in these blocks of generated code!
I} }AFX_MSG_MAP

END_MESSAGE_MAP()

CWACTearApp theApp;

BOOL CWACTearApp::Initlnstance()

{

_Module. Init(ObjectMap, m_hInstance, &LIBID_WACTEARLib),
return CWinApp::Initlnstance(),

}

int CWAC TearApp::ExitInstance()

{
_Module.Term();
return CWinApp::ExitInstance();

b

T T T

// Used to determine whether the DLL can be unloaded by OLE
STDAPI DIICanUnloadNow(void)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState()),
return (AfxDIICanUnloadNow()==5_OK && Module. GetLockCount()==0) 7§ OK : § FALSE,

H

I

// Returns a class factory to create an object of the requested type

STDAPI DIGetClassObject(REFCLSID relsid, REFIID nid, LPVOID* ppv)

{

return _Module. GetClassObject(relsid, riid, ppv),
H

119

I T]

// DlIRegisterServer - Adds entries to the system registry
STDAPI DliRegisterServer(void)

{

// registers object, typelib and all interfaces in typelib
return _Module.RegisterServer(TRUE);

}

I T T T T

// DIlUnregisterServer - Removes entries from the system registry
STDAPI DllUnregisterServer(void)

{
return _Module.UnregisterServer(TRUE);
}

8. File: WacHtmTear.cpp

// WacHtmTear.cpp : Implementation of CWacHtmTear
#iinclude "stdafx.h"

#include "WACTear.h"

#include "WacHtmTear.h"

#include "TearData.h"

#include "direct.h"

#include "10.h"

#finclude <atlconv.h>

I T T T T T
// CWacHtmTear

BOOL CWacHtmTear::_Init()

{

return m_info.Init();
H
int CWacHtmTear:: MakeDir(LPCSTR pszFileName)

{

const int SUCCESS = 0,

const int ERR_ NOT _FULL_PATH = 1;

const int ERR._ MAKE_DIR = 2;

TCHAR szDrv[MAX_DRIVE],

TCHAR szDir| MAX_DIR];

TCHAR szFName[MAX_FNAME];

TCHAR szExt|_MAX_EXT];

TCHAR szPath] MAX_PATH],
_splitpath(pszFileName, szDrv, szDir, szZFName, szExt);
if(strlen(szDrv) == 0)

return ERR_NOT_FULL_PATH;

//make directory name including drive name.
sprintf(szPath, "%s%s\0", szDrv, szDir),
if(_access(szPath, 06) == -1)//path exists? access permission? using ANSI C ermo.

1

TCHAR szTmp[MAX_PATH];
LPSTR pos = strchr(szPath, \');
do

{

pos = strchr(pos+1, \\');

if(pos != NULL)

{

strepy(szTmp, szPath);
szTmp[pos - szPath] = "0

H

clse if(szPath|strlen(szPath) - 1] 1= \\)
strepy(szTmp, szPath),

else /mo more.

return 0;

if(_access(szTmp, 0) == -1) //see if it already exists.
!

/fmake directory

f(C_mkdir(szTmp) == -1)

return ERR. MAKE_DIR;

H

jwhile(pos = NULL),

H

return SUCCESS;

HRESULT CWacHtmTear::_ReportError(LPCSTR psz, HRESULT hReturnVal, HRESULT hErNum)

!
USES_CONVERSION;

Error(T20LE(psz), GetObjectCLSID(), hErrNum);
return hReturnVal;

i
STDMETHODIMP CWacHtmTear::_StrToVarArmay(LPCSTR psz, VARIANT *pvar)
{

SAFEARRAYBOUND sabBound;

SAFEARRAY *psaArray = NULL;

HRESULT hResult;

VARIANT varElem;

VariantInit(&varElem);

V_VT(&varElem) = VT _UIl;

hResult = VariantClear(pvar);

if(FAILED(hResult)) return hResult;

V_VT(pvar) = VT_ARRAY | VIT_VARIANT;
sabBound.cElements = strlen(psz);

sabBound.ILbound = 0;

psaArray = SafeArrayCreate(VT_VARIANT, 1, &sabBound);
if(!psaArray) return S_FALSE;

VARIANT HUGEP *pvarArray;

hResult = SafeArrayAccessData(psaArray, (void HUGEP* FAR*)&pvarArray),
if(FAILED(hResult))

{

SafeArrayDestroy(psaArray),

return hResult;

}
for(int i=0; i<(int)strlen(psz); i++)

{

V_Ull(&varElem) = (unsigned char)psz[i];

pvarArray(i| = varElem;

H

SafeArrayUnaccessData(psaArray),

V_ARRAY (pvar) = psaArray,

return S_OK;

}

STDMETHODIMP CWacHtmTear::GetPage(BSTR bstrUrl, short nMethod, BSTR bstrPayload, BSTR bstrFilenam
¢, BSTR bstrUsemame, BSTR bstrPassword, VARIANT_BOOL *pbResult)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

// TODO: Add your implementation code here

USES_CONVERSION;

*pbResult = (VARIANT_BOOL)0x0000;

LPSTR pszUrl = OLE2T(bstrUrl);

LPSTR pszPayload = OLE2T(bstrPayload);

LPSTR pszUsername = OLE2T(bstrUsermame);

LPSTR pszPassword = OLE2T(bstrPassword);

LPSTR pszFileName = OLE2T(bstrFilename);

if(strlen(pszUrl) == 0) return _ReportError("Invalid URL", E_FAIL, 11);
if(strlen(pszFileName) == 0) return _ReportError(“Invalid filename®, E_FAIL, 12),
if(strlen(pszPayload) == 0) pszPayload = NULL;

if(strlen(pszUsername) == 0) pszUsemame = NULL;
il(strlen(pszPassword) == 0) pszPassword = NULL;

int nVerb = CHitpConnection:: HTTP_VERB_GET;

if(nMethod == 1) nVerb = CHttpConnection::HTTP_VERB_POST;

else if(nMethod==2) nVerb = CHttpConnection:: HTTP_VERB_GET;

if(0 1= _MakeDir(pszFileName))

return _ReportError("Cannot create specified directory®, EE_FAIL, 13);
/fereate the output file.

FILE *pFile = fopen(pszFileName, "w+b");

if(!pFile) return _ReportError("Cannot create specified file”, E_FAIL, 14);
CWacTearProc tearOby,

tearOby. Init(m_info),

BOOL bResult = tearObj. RequestPage(plile, pszUrl, nVerb, pszPayload, pszUsername, pszPassword
)i
m_info.m_strHeaders = tearObj. GetHeaders();

m_info.m_nStatusCode = tearObj. GetStatusCode(),

felose(plile);

if(!bResult) return _ReportError(tearOby. GetLastError(), E_FAIL, m_info.m_nStatusCode),
*pbResult = (VARIANT_BOOL)OXFFFF;

return §_OK;

}

/DEL STOMETHODIMP CWacHtm Tear: :qwergwer()
/MDEL {

/DEL AFX_MANAGE_STATE(AfxGetStaticModuleState())
//DEL

//DEL // TODO: Add your implementation code here
//DEL

/MEL return S_OK:;

/MDEL }

STDMETHODIMP CWacHtmTear::AddHeader(BSTR bstrHeaderName, BSTR bstrHeaderValue, VARIANT_BOOL *pbRe

sult)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState()

// TODO: Add your implementation code here
USES_CONVERSION;

LPSTR pszHeaderName = OLE2T(bstrHeaderName),

LPSTR pszHeaderValue = OLE2T(bstrHeaderValue),
if(strlen(pszHeaderName) > 0 && strlen(pszHeader Value) > 0)

{

m_info.m_strHeaderExtra += pszHeaderName;
m_info.m_strHeaderExtra +=": ",
m_info.m_strHeaderExtra += pszHeaderValue;
m_info.m_strHeaderExtra + "\r\n";

*pbResult = (VARIANT_BOOL)OXFFFF;

}

else

*pbResult = (VARIANT_BOOL)0x0000;
return §_OK;

}
STDMETHODIMP CWacHtmTear::get_Accept(BSTR *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION,

*pVal = A2BSTR(m_info.m_strAccept);

return §_OK;

i
STDMETHODIMP CWacHtmTear::put_Accept(BSTR newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

m_info.m_strAccept = OLE2T(newVal);

return S_OK;

H

STDMETHODIMP CWacHtmTear::get_Cache(BOOL *pVal)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

// TODO: Add your implementation code here
*pVal = m_info.m_bCache;
return S_OK;

}
STDMETHODIMP CWacHtmTear::put_Cache(BOOL new Val)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
/I TODO: Add your implementation code here
m_info.m_bCache = newVal,

return §_OK;

}
STDMETHODIMP CWacHtmTear::get_ConnectionTimeout(long *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState()
// TODO: Add your implementation code here

*pVal = m_info.m_nConnectionTimeout / 1000;
return §_OK;

STOMETHODIMP CWacHtm Tear::put_Connection Timeout(long new Val)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_nConnectionTimeout = new Val * 1000,
retun §_OK;

]

STODMETHODIMP CWacHtmTear::get_ Content Type(BSTR *pVal)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

/1" TODO: Add your implementation code here
USES_CONVERSION,

*pVal = A2BSTR(m_info.m_strContent Type),

retun §_OK;

122

}
STDMETHODIMP CWacHtmTear::put_ContentType(BSTR new Vil)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

m_info.m_strContentType = OLE2T(newVal);

return S_OK;

}
STDMETHODIMP CWacHtmTear::get_Cookies(BOOL *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here

*pVal = m_info.m_bCookies;

return S_OK;

}
STDMETHODIMP CWacHtmTear::put_Cookies(BOOL newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState()
// TODO: Add your implementation code here
m_info.m_bCookies = newVal;

return S_OK;

H
STDMETHODIMP CWacHtmTear::get_FollowRedirect(BOOL *pVal)

{
AFX_MANAGE_STATI I(AfxGetStaticModuleState())
// TODO: Add your implementation code here

*pVal = m_info.m_blFollowRedirects;
return S_OK;

H
STDMETHODIMP CWacHtmTear::put_FollowRedirect(BOOL newVal)

{
AFX_MANAGE_STATE(AfXGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_bFollowRedirects = newVal;

return S_OK;

H
STDMETHODIMP CWacHtmTear::get_ForceReload(BOOL *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here

*pVal = m_info.m_bForceReload;

retum §_OK;

H
STDMETHODIMP CWacHtmTear::put_ForceReload(BOOL newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_bForceReload = newVal;

retum S_OK;

H
STDMETHODIMP CWacHtmTear::get_HttpVersion(BSTR *pVal)

i
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

*pVal = A2BSTR(m_info.m_strHttpVersion);

retum S_OK;

}
STODMETHODIMP CWacHtm Tear::put_HttpVersion(BSTR new Val)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

m_info.m_strHttpVersion = OLE2T(new Val);

return §_OK,

STODMETHODIMP CWacHtmTear::get_IgnorelnvalidCertDate(HOOL *pVal)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

//'TODO: Add your implementation code here

*pVal = m_info.m_blgnorelnvalidCertDate;

retum S_OK;

H
STOMETHODIMP CWacHtmTear::put_lgnorelnvalidCertDate(HOOL newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())

// TODO: Add your implementation code here
m_info.m_blgnorelnvalidCertDate = newVal;
return S_OK;

H

STDMETHODIMP CWacHtmTear::get_IgnorelnvalidCN(BOOL *pVal)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

// TODO: Add your implementation code here

*pVal = m_info.m_blgnorelnvalidCN;
retun S_OK;

}
STDMETHODIMP CWacHtmTear::put_IgnorelnvalidCN(BOOL new Val)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_blgnorelnvalidCN = new Val;

return S_OK;;

H
STDMETHODIMP CWacHtmTear::get_Port(long *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here

*pVal = m_info.m_nPort;

return S_OK;

}
STDMETHODIMP CWacHtmTear::put_Port(long new Val)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_nPort = new Val;

return S_OK;

h
STDMETHODIMP CWacHtm Tear::get_Proxy(BSTR *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

*pVal = A2BSTR(m_info.m_strProxy);

return S_OK;

¥
STDMETHODIMP CWacHtmTear::put_Proxy(BSTR newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

m_info.m_strProxy = OLE2T(newVal);

return S_OK;

H
STDMETHODIMP CWacHtmTear::get_ReceiveTimeout(long *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here

*pVal = m_info.m_nReceiveTimeout/1000;

return S_OK;

H
STDMETHODIMP CWacHtmTear::put_Receive Timeout(long newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_nReceiveTimeout = newVal * 1000,

return S_OK;

]
STDMETHODIMP CWacHtmTear:get_Referrer(BSTR *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
//'TODO: Add your implementation code here
USES_CONVERSION;

*pVal = A2BSTR(m_info.m_strReferrer),

return §_OK,

H
STDMETHODIMP CWacHtmTear::put_Referrer(BSTR new Val)
{

4

AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

m_info.m_strReferrer = OLE2T(newVal);

return S_OK;

h

STDMETHODIMP CWacHtmTear::get_SendClientCertificate(BOOL *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here

*pVal = m_info.m_bSendClientCertificate;

return S_OK;

}

STDMETHODIMP CWacHtmTear::put_SendClientCertificate(BOOL new Val)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_bSendClientCertificate = new Val;

return S_OK;

}
STDMETHODIMP CWacHtmTear::get_StatusCode(long *pVal)

i
AFX_MANAGE_STATE(AfxGetStaticModuleState())
/I TODO: Add your implementation code here

*pVal = m_info.m_nStatusCode;

return S_OK;

}

STDMETHODIMP CWacHtmTear::put_StatusCode(long newVal)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

// TODO: Add your implementation code here

return §_OK;

]
STDMETHODIMP CWacHtmTear::get_TrustUnknownCA(BOOL *pVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState()
// ' TODO: Add your implementation code here

*pVal = m_info.m_bTrustUnknownCA;

return S_OK;

H

STDMETHODIMP CWacHtmTear::put_TrustUnknownCA(BOOL, newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
m_info.m_bTrustUnknownCA = newVal;

retum S_OK;
H
STDMETHODIMP CWacHtmTear::get_UserAgent(BSTR *pVal)

i
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

*pVal = A2BSTR(m_info.m_strUserAgent),

return S_OK;

¥
STDMETHODIMP CWacHtmTear::put_UserAgent(BSTR newVal)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState())
// TODO: Add your implementation code here
USES_CONVERSION;

m_info.m_strUserAgent = OLE2T(newVal);

retum S_OK;

}

125

Appendix F: Creating ATL COM with Visual C++

The steps below show how to create an ATL COM object using the Visual
C++ ATL COM wizard.

1. Inthe Visual C++ development tool, go to File—>New.

2. In the Projects, select ATL COM AppWizard (Figure 8.1). Type in the name

for the project and specify the location to store the project’s files.

Files Projects I Workspaces | Other Documents |

LI ATL COM AppWizard X Wind2 Static Liary Project name
Cluster Resource Type Wizard New

Database Project Logaton
% DevStudio Add-n Wizard [0:\Final Yoo Course\Thesis W .|
| Extended Stored Proc Wizard
ISAP! Extension Wizard
Makelie " Crodte now wokspace
MFC ActiveX CortrolwWizard -
) MFC AppWeard (di) r

MFC AppWezard (exe) PP hena S A TN
N New Database Wizard I

Plattorms
Win32 Dynamic-Link Lirary [;W n32
b

AR 8
Figure 8.1: New Project

3. In the wizard dialog box (Figure 8.2), there are several options here. The

ATL COM can be either in services, dynamic link-library or executable files.

The example is tick on dynamic link-library and also support MFC. After

finish, the necessary files will be generated.

126

ATL COM Appiizard - Stepd o ..

MI This Wizardcreates an ATL project without any
; = initial COM objects. After completing this \Wizard,
gt war Setash use the New ATL Object command from
otk ClassView b specify the type of object you would
=2l NewCla like to add to this project
: ® I 2 NewATL
‘.—L""—J.F m (3 New Fold Server Tyoe
A rewr g liisddins
[v Docking (& Dynanic Link Library (DLL)
Hide ; " Executable (EXE)
&' Propertie " Service (EXE]
? I ? I Allow merging of proxy/stub code
O AN 3
o }g v IV SuppotMFC
f ™ SuppotMTS
«Back | [[Fmn] Concel |

Figure 8.2: Wizard dialog

4. Next, go to Insert—New ATL Object (Figure 8.3). Select objects in the

category field, then select simple object in the objects field. Click OK to go

to the next step.

AT Object Wizard

Category Objects

9 i -
e T B @

LAEDE o] c=H

Data Access Simple Object Add-in Object Internet

Explor...
s -
2 (X
ActiveX Server MMC Snapln MS
Component Transach. ..

Figure 8.3: ATL Object Wizard
5. In the name field (Figure 8.4), type in the name for the object. When you

type in the name, the other fields will automatically be filled.

S ————

&«Ikl?:_irigét;V!iaatd,Prou?rties § i

Names | Attrbutes |
Cas - COM
Short Name: W’ CoClass: [CHewint
Class: W || Intedface: FEP];MT -
HFie. [CNewinth Type: [CHewint Class

CPP File: {CNewlrtcpp ' PogID: [New.CNewlnt

[0k] cance |

Figure 8.4: ATL Object Wizard properties
6. Using CNet as an example, in the class view, expand CNet by click on the
plus sign. Then, right click on INet. There will be a dialog box prompted out
that allow you to add in method and property for this object. There are
specifics format on writing the method and also the property. We will not go
further detail about it. Below is an example of adding a method into the
object (Figure 8.5).

add Method to Interface

Return Type:

[BRESULT. o %o]
Method Name:

[New

Parameters:
{lin] BSTR bstrString. [out retval] VARIANT *pbRe

Implementation:

il HF;ESULT Nw:ﬁg]smbws VARIANT
in I oul rety,
eobFleadt] ting, [out retyal]

_ Cocel |
Attrbutes. .. l

Figure 8.5: Add Method to Interface
7. For further information, please refer to the MSDN Library or visit

http://msdn.microsoft.com.

Reference

AvantGo, Inc. (2002). Channel Developer: Getting Started. http://www.avantgo.com

Chris, Tull. (2002). PDAs and Handheld: Introduction.

http://www.anywhereyougo.com.

Nokia, Inc. (2001). What is 3" Generation. http://www.nokia.com

Rachmat, Hartono. (1999). Smart Screen Creator. Handisplay (M) Sdn. Bhd.

Simon, Buckingham. (2000). What is General Radio Packet Service. Mobile
Lifestream Ltd. http://www.mobilelifestreams.com

WAP Forum. (2001). Wireless Application Protocol Architecture Specification. WAP

Architecture Version 12-July-2001.

Shari, L. Pfleeger. (2001). Software Engineering: Theory and Practice. 2™ ed.

Prentice Hall International, Inc.

Behrouz, A. Forouzan. (2001). Data Communications and Networking. 2™ ed.

McGraw-Hill.

Microsoft Developer Network. (2002). MSDN Library. Microsoft.

129

Bibliography

AnyWhereYouGo.com. (2002). i-Mode: Introduction.

http://www.anywhereyougo.com.

130

Wireless Application
Converter
User WManual

WAC: USER MANUAL

Table of Content
1 INtrOdUCHON e e e 9
1.1, ODJECHVES.......oveeeeveerrerieesesensseessse s)
IR 1711l = (T e s ettt et e I T 3
2. Aboutithe manuia e e NS g 4
398 19V sTem R eqUITEMENTS e st ettag etee rtesss ettt eresiiaseeesinres MR MIADPCTGOL 1oy | 4
3. 1 L IS erVer ity e I e e £ 4
37 Ejiant. JHEH . AR - EEE B R . oy UGl B ddeic wiiho 5
3.3, Network nVITONMENL..........covvveveeeeeeeeveveveeseenesineieeen T 5
4. InStallation GUIAEovoeeeeeeeeeeeeeeeeeeeeeeee e T 6
4.1, DLLS Ie@iStrationcccooooususrvimmmisssissminissssssssesssnnsns 6
4.2. WAC virtual directory setup.........ccoccccccccccccvvirne 7
43. WAC properties configuration ... 10
44° WA Opéraomm s proness, heis is ¥ Wick S\ W6 1744
4.5, Accessing WAC from PocketPC. b it £ Y. ... 12
4.6. Accessing WAC from a WAP device or WAP simulat,, 12
5. Troubleshootin g o o e e ettt teat dss ok ety s A I oL el e et 14
Table of Figures
Figure 1: Registering DIl ittt tisssressse il M thessrsnsossnicts 10000 6
Figure 2: Internet Information SErviCes.............fpsseersesrerensnsnsnor 7
Figure 3 Virual DT C oLy e rar et st oA Tt re e e tbta s LU EFEOEAT Pt o bttt s Tttt 8
Figure 4: Virtual Directory Alias......c.. 0. i nsssssmsninsnsisn 8
Figure 5: Web Site Content Directory.............ooovvvvivvviviciian 9
R QUre 61 A CCESS B OIS SI T et e NP B SR oL o=t R0k s sestesttoressiiibt it RUEE Mt 9
R Ure (7 P T O DT O e ot et e At Y TRy (e e UMt s UL ve oy b b haat Attt ot W L 10
Figlire 87 DOC U SIS T et MR (B Lttt Tl 1 s thaesrrstsettEirirsetrivtreessrr e e, e T8 10
Figure 9: Result of Internet EXplOrer. ..o 11
28 VT DO) el b e R 1 O O T T LT Lot e po e s oo 12
Rigure 11 W A DA R e et e esert trectuntieeted s ies s at st e e e R e LAY, e b o e ol st btoisbn e 13
T BN 0 T L e e e T 10 11 Lt L T Lo LT o S e 13

WAC: USER MANUAL
Table of Content
1. TIITOQUCHIOM ..eeeeeevrerereeasacsessassetessssasssssstassesssssssstansbsssssnssshesssasssanssssssssisssssssussses 2
11, ODJECHVES. coeuiueieiaseeserasrsesssrssssess bbb 2
1.2, System FEAMUIES..........ccormmremeirmiiseieiiiniisisiintnisi s 3
D ADOUL e T ANIUIAL S et T seares o osesesonibansassonpastssatsrsasssagssstonsssotarssssssrsanesassnsssts 4
3. System REQUITEMENLS.......ocovuurusriuiisnisiiiniiiisiiiiisbsisssi s 4
3] SETVET:.,. o s IO L oo ortriastebaisndsthte L EashE s heasi ot itentssnessrssetssitsses sssptas 4
T T eS BT T=01r150 0. s4¢ 010001 Ios 40 sbotshesens s feriTasieosterborsorssrsansonsisisesnie 5
3.3, N WOTK E VIO I i tatttassseessessssssssssisnsssssssasssnssbsontsosssssensbanssnssssssssassnsss 5
4. INStAllAtiON GUIAE........coceereercesennriresaessrssaesnssusssssssssnsssessassnsnssssssssssssassssssssssnssssnnss 6
4.1. DLLS Te@iStratiOn ..cceeeressiorisissssssssnasssrssssssasssnssssasssssssssssssssensssag@hassssasssscses 6
42, WAC VIrtUa]l QITeOIOTY SCUUD i, hsetsessresstssisserbestostrssssosssrsnsssssssiors foatocsssosss 7
43, WAC properties CONfIUIALION............ccocoomemmininisninicie s 10
4.4, WAC OPEIatioN.......coevreremiiiiiiiiiiiiiiisssesssssssssssbsesmmsssse st s 11
4.5. Accessing WAC from Pocket PC...........c.cooovvviiiniiiniinin, 12
4.6. Accessing WAC from a WAP device or WAP simulator........................ 12
5. TroubleShOOtINGccocserimnirinmmvinniiiniiniesisiiissnassssssiabassinesssssnsnssssssasssnssssssasnes 14
Table of Figures
Figure 1: Registering DLL.......cocovtviininimiiniiniiiinssssessnssnsssssssssssssssnsssssissississssassssssssnes 6
Figure 2: Internet Information SEIVICES.............ccoviiiiiiiiimiiiiiniinssns 7
Figure 3: Virtual DIFECLOTY......ccoeutiurimmsersniiiirisssisissississsisssisisss s 8
Figure 4: Virtual Directory AlIs........c.....coiviiiiiisne, 8
Figure 5: Web Site Content DIr€CIOTY..........ooviiiiiiimimmiisssn 9
Figure 6: ACCesS PEMMISSION. .. .cxveevervesiinieeiit et 9
FigUIE 7: PTOPEILIES........qouiiihesitesssssssssssssssssssssssusssssssssssssssnsssasesssssssssssssssssssssssssssssssanss 10
Figure 8: DOCUMENLS. .cu...iueuersessssssessistsessssinisissassassssssnss 10
Figure 9: Result of Internet EXplOTer.............ccooiviiiiiiii 11
Figure 10: POCKEETIE. . liu...c..cocuiiiinierinnininninninnninissssssssssssssssssssssissnssssassissisnssnsssssssnses 12
Figure 11: WAP INterface...........ccoooooiiiiiniiiiniississ e, 13
Figure 12: WAP OQULPUL...........coviiiiiiiinis s s sissines 13

1. Introduction

Wireless Application Converter (WAC) is a server-side application that enables
different mobile devices with different format to view the same web document. It
has the ability to convert the web document into different format supported by the
mobile devices, such as WML and Pocket IE. The conversion is done without

modifying the original document.

Before embark on the installation process, here is a brief explanation of the WAC
architecture. The architecture of WAC is as shown in Figure 1. By using a
centralized server, where WAC is installed, it will act as a “middle man”, where it
will retrieve information from the requested URL address, generate the output and

send it back to the clients.

The different of WAC with a proxy server is that it is not permanent and compulsory
to go through it, as the clients can use it whenever it is needed. It can be done
because WAC is web-based and it only response when the clients request for its

services.

1:1. Objectives

e To allow information sharing among different wireless devices with the

utilization of wireless network.

(8

e To provide cross platform that support different wireless device format,
where every devices will be able to view the same internet content without
the need to modify the original content.

e To optimize the output that will fit the screen resolution of the wireless

device.

1.2. System Features

WAC can only support text based document. The following elements are not

supported.
e Form
e Query
e Table

e Image (not supported by WAP only)
e Audio streaming
e Video streaming

e Hyperlink / redirection

LS

2. About the manual

This manual consists of three parts. The first part explains the hardware and
software requirements, follow by second part, which are the installation procedures.

The final part is about how to use or interact with WAC from different devices.

There are figures in this user manual as well. It helps to aid the user in the
installation process, as well as the operation / usage. Such visual aid can help the

user to understand the procedure clearly.

3. System Requirements

3.1. Server

e CPU: Intel Pentium II /AMD K611 166 MHz or above

e Memory: 128 MB (256 Recommended)

e Storage: 2 GB

e Operating System: Microsoft Windows (2000 Professional / Server Family /
XP Professional)

e Others: Internet Information Services 4.0 or above, Internet Explorer 4.0 or

above

3.2. Client

e PDA: Pocket PC with Wireless LAN Card

e Mobile Phone: WAP enabled

3.3. Network environment

e Wireless Network Access Point (802.11b, Wi-Fi)

e GPRS LAN Access Point (required for Mobile phone)

4. |Installation Guide

4.1. DLLs registration

1. Copy all the DLL extension files to the windows system 32 folder. Example
for Windows 2000: C:\WINNT\SYSTEM32\,
2. There are 3 DLL extension files. They are:
a. genuid.dll
b. WAC.II
c. WACTear.dll

3. The DLL need to be registered in order for WAC to access it.

Run @@

E] Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you,

Open: | regsvr32 WACTear.dl ™

Lo O] | cancel | Lefmj

Figure 1: Registering DLL

4. Goto Start=~Run. In the Run dialog box (Figure 1), type in regsvr32 [file

name] 10 register the DLLs. Example: regsvr32 genuid.dil. Perform this

procedure 10 register all DLLs,

4. Installation Guide

4.1. DLLs registration

1.~ Copy all the DLL extension files to the windows system 32 folder. Example
for Windows 2000: C:\WINNT\SYSTEM32\.
2. There are 3 DLL extension files. They are:
a. genuid.dll
b. WAC.II
¢. WACTear.dll

3. The DLL need to be registered in order for WAC to access it.

un 3

> Type the name of a program, folder, document, or
E? Internet resource, and Windows will open it for you.

Open: | regsvr32 WACTear.dl v

Lok J[coel | [Erowse... |

Figure 1: Registering DLL

4. Go to Start->Run. In the Run dialog box (Figure 1), type in regsvr32 [file
name] to register the DLLs. Example: regsvr32 genuid.dll. Perform this

procedure to register all DLLs.

4.2. WAC virtual directory setup

1. Copy the WAC folder from the source disc to directory C:\.
2. Go to Control Panel->Administrative Tools, double click on Internet Services

Manager icon to open the Internet Information Services console (Figure 2).

Flo Lt Vew Fovortes Tocs teb >
0-*' 2 ¥ s e T
Took yBe won B -

um
"""1 LR TSYRE A .
= g Cmmpurd Serve Comgries Mo cpmmen d
‘1 Tie and bolder Tasky 2 | @ s = B! viod
’ o, " thes N A ‘
‘ s thye 11 ff Veta Sorcms (000C) Lowrt Vewenr
y g 9 v
#erat Fromen SeeAce

;‘ Lol Sacaty ey

\-ﬂlﬂyhl-m-ﬁv W e s sl g, I

m hv' ll-w- Adwnl an

Figure 2: Internet Information Services

3. Expand the computer icon and then expand the web sites by click on the plus

sign beside.

" " r———

& AN FRB @

m o
[Internet Information Services # | Name lpsth TamA
= £ STAR (local computer) Bustep ciiwindowsthelpishelp
= |1 Web Sites _@tsweb CHAWINDOWS!webitsweb
-8 “ Explore Printers CAWINDOWS\web\printers

: : :: Open Scripts C:\Handisplay\Instpub\scripts

i :: p, Browse handisplay CiiHandisplay\Instpub\scriptsihdine., ..

. (a5 _vti_bin C:\Program Files\Common Flles\Micr, .,

+ é he o Mobile D:\Final Year Courseimobile\MobApp

4 hd

+ 4 -~

t é o Pause o

WA e] Vrtvaorecton.

{ »

+ j : e Server Extensions Web

+ (3 View ¥ Server Extensions Administrator

+J Rename vti_Jog

@ pefresh L _vtl_enf

GRS P ; .1 _privat

E List.., privace

@ L dhtml

+ L 1 Properties pdf

vidd L] aspnet_chent

+ (] p_ Heb PR v
< - W |4 >

Figure 3: Virtual Directory
4. Right click on Default Web Site, go to New->Virtual Directory (Figure 3).
Then, follow the on screen instruction to create the virtual directory.

a. Type in WAC in the Virtual Directory Alias dialog (Figure 4).

Virtual Directory Alias
Ywmugvo&wvitud&odotyuhatnm.adu,tawchdqm

Tmh“mwﬂbmbgmmhhhhbwtud&odw Use the
£ame naming conventions that you would for naming a diectory.

Alias:

s

Figure 4: Virtual Directory Alias
b. Type in or browse to the directory where WAC is stored (Figure §).

Example: C:\WAC.

Web Site Content Directory S
Where is the content you want to publish on the Web site? S
Enter the path to the directory that cortains the content,

Directory:
{D;\WAC Browse. .

Figure 5: Web Site Content Directory

Access Permissions
What access permissions do you want to set for this virtual drectory?

Allow the following:

v Read
¥ Run scripts [such as ASP)

[Execute [such as ISAPI applications or CGl)
I~ Wiite

I Browse

Click Next to complete the wizard.

Figure 6: Access Permission
¢. Inthe Access Permission, make sure Read and Run Script are ticked

(Figure 6).

4.3. WAC properties configuration

1. In the Internet Information Services console, right click on the WAC virtual

directory. Then, go to Properties (Figure 7).

j i]r?\a ow 2 images
i All Tasks » | Layouts
vt View » |_Themes
1 Y _derived
o Delete _ScriptLibrary
@R vt Rename htmi

] pr Refresh script
__Jdht ExportList... Wop
 pdf — global.asa
— asp A search.htm
—Jout Help index.asp

& m I §| Mobile.asp
L test 3] html.asp

Figure 7: Properties

2. In the Properties dialog box, tab on the Documents tab (Figure 8).

HTTP Headers Custom Enors - Server Extensions
Directory Documents Directory Security

Enable Default Document

|index. asp —_—
‘Defeulhtm I Add... l
Default.asp
1 | | index.htm
lisstart. asp

Figure 8: Documents
3. Under the Documents dialog box, make sure the Enable Default Documents
option is ticked.
4. If the index.asp is not in the list, we have to add it in order it to be accessed
automatically when we access WAC. Click the Add button. A dialog box
will appear.

5. In the dialog box, type in index.asp, then click OK.

10

6. The index.asp file is added into the list. Highlight the index.asp, click on the
Up Arrow key beside the dialog box to move index.asp to the highest
position. Figure 8 is the example of the result.

7. Click OK to save the changes and exit the Properties dialog.

4.4. WAC Operation

Accessing WAC from Internet Explorer

1. Open Internet Explorer, type in the URL of the machine where WAC is

installed. Example: http://192.168.168.103/wac.
2. A web based interface will be showed. Type in the URL of the required

WWW document, then click GO to retrieve the content.

' V/IRELESS
| A /APPLICATION
|/ | /CONVERTER

Ving Windows XP Profesnosal web 15 sataded. provades o persons snd deveoprnent operaig ryvoms St adows you o

*Eetup s porronsd Web setve
*Uhare whonnanon witen yow wan
A conn databaves
*Tieveiop e etrpoee oy @et
TDewalop apphe shens for the Weh

ih— Sl

Figure 9: Result of Internet Explorer

3. Figure 9 is an example of the output.

11

4.5. Accessing WAC from Pocket PC

1. Open Pocket Internet Explorer, type in the URL of the machine where WAC

is installed. Example: http://192.168.168.103/wac.

2. A web based interface will be showed. This interface (Figure 10) is specially
optimized for Pocket PC screen resolution.

ENTER URL

[Eetas. 1ot]

Figure 10: Pocket IE
3. In the address bar, type in the URL of the required WWW document, then

click GO to retrieve the content

4.6. Accessing WAC from a WAP device or WAP
simulator

1. Open any WAP browser, type in the URL of the machine where WAC is

installed. Example: http://192.168.168.103/wac.

2. A web based interface will be showed. This interface (Figure 11) is specially

optimized for WAP devices.

Figure 11: WAP interface
3. Go to Search, it will be redirected to the searching page.
4. From the searching page, type in the URL of the required WWW document,

then click GO to retrieve the content.

Figure 12: WAP Output

5. Figure 12 is an example of the output.

13

5. Troubleshooting

There might be problem encounter during the operation.
encountered, please do not hesitate to contact

husin_d@hotmail.com.

If there is any problem

our technical staff at

14

