PERFORMANCE EVALUATION OF COMPRESSION
TECHNIQUES ON SCIENTIFIC DATASET

LAM WAI LEONG

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY UNIVERSITY OF MALAYA
KUALA LUMPUR

2006

PERFORMANCE EVALUATION OF COMPRESSION
TECHNIQUES ON SCIENTIFIC DATASET

LAM WAI LEONG

DISSERTATION SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER COMPUTER
SCIENCE

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY UNIVERSITY OF MALAYA
KUALA LUMPUR

2006

Abstract

Data communication is vital, as the world is getting smaller with the help of
Internet. The challenge to improve quality and responsiveness of communication
is in the network bandwidth bottleneck. However, with compression technologies,

the impact of transferring data can be optimized.

There are various compression technologies in the market from different origins
both available commercially and public domain. Performance in compression
technologies are measured according to required computation power and

compression ratios achieved.

However, not all data can be compressed effectively, where desired compression
rates are achieved. The reason is that most data are obtained from digitizing or
converted from analog signals. Examples: audio, photos, graphs plotted by input

Sensors.

An important characteristic of data compression lies in the compression ratio and
compression speed of a particular data compression tool. Though most
theoretical background of compression tool compresses datasets based on
Lempel-ziv’s algorithm, in reality, these tools varied when it comes to
compressing a binary file to a text file or a graphical one. This is evidence in the
statistically analysis of the file format. This project looks into various data

compression technigue and when to use them, with specifically focus on

evaluating the performance of existing data compression and extraction

algorithms that best suit scientific dataset.

This project applies various tests on selected range of scientific datasets to
ascertain the overall performance against a benchmarking compression
technique. The tests are based on a real time network transmission of
compression and extraction on a set of scientific datasets over a networked

environment.

This project proves that a generic compression algorithm fair better compare to a
more format specific compression algorithm when use on a scientific datasets.
The outcome and procedures used in this project use as a template for choosing
a suitable compression tool for any particular format of dataset. This template
shall minimise any doubt and confusion of choosing and using a compression

techniques.

ii

Acknowledgement

| would like to express my deepest gratitude to my supervisor, Dr. Rosli Salleh,
for his invaluable guidance, insight and encouragement throughout the entire
project.

Besides that, | would like to express my sincerest gratitude and utmost
appreciation to my lecturer Mr. Ang Tan Fong for their invaluable advice and
guidance throughout the whole development project. Their contributions are truly
appreciated.

| would also like to thank my family members for their unending support and
understanding. Last but not least, my utmost gratitude is conveyed to my beloved
course-mates and friends, especially Mr Davis Tan Kok Bing, Mr. Alvin Yew Wei
Han and Mr. Yoo Sang Nge for their support and sharing of their much-
appreciated knowledge with me. They have been very helpful and supportive.

Thank you very much!

iii

Table of Contents

AB S T R A C T .ttt ettt e e ettt e e e ae et e e e e nae e e e e e anbee e e e e anbeeeeeaanbeeeaeaannreeaeaan I
ACKNOWLEDGEMENT ...ttt ettt e s enne e e e 0l
TABLE OF CONTENTS ...ttt v
LIST OF FIGURES..... ..ttt e e s e e e e ennes VI
LIST OF TABLES ...ttt ettt e e e e e e e e e e e e VI
LIST OF TABLES ...ttt VI
ABBREVIATIONS ...ttt ettt e e e et e e e s e e e e e e nnte e e e eannneeens IX
CHAPTER 1: INTRODUGTION ..ottt iieie ettt e iee e e e e e e e abe e e e e ennees 1
1.1.1 Introduction to Data COmMPreSSION........cocuueeiiiiiiieee et 2
1.1.2 Introduction 10 SIMUIALIONeeiiiii e 4
11,3 SUMMATY e e e e e e e e nbb e e e e e e e e e aanns 5

1.2 PROBLEM STATEMENT AND OBUECTIVE......uttiiiiutieeeeiireeeessisieeessainneeesssineeeessnnneeee e 6
1.2.1 Problem Statement ... 6
1.2.2 Objectives Of the Project...........oo e 7
1.2.3 PrOJECT SCOPE -ttt e e e e 7

1.3 METHODOLOGY ...ttt iuitteee e ettt e e ettt ettt s sttt e e ettt e e et e e e st e e e e nne e e e e sanneeeeeean 8
1.3.1 Research Methodologyuueiiiiiiiiiiiiiic e 8
1.3.2 Sample Datasets Generation...........oooouiiiiieiiiii e 9
1.3.3 SimMuIator SEIECHON.........ceiiiiiie e 9
1.3.4 Method Of ANAIYSIS ...ccooiiiiiiiiee e 10
1.3.5 SUMMATY e e e e e e e 10

1.4 REPORT ORGANISATIONScuiiiieiiireeeeeeireeeesesnee e e s st e e e s e e e s smnne e e s ssnee e e s nennneeens 11
CHAPTER 2: LITERATURE REVIEWooiiiiiiiee e 13
2.1 AUDIO COMPRESSION ...c..uutteeeeeiireeeeeaineeeesssrneeessasreeeessesneeeessasnneeessannneeessanneeesaans 13
P2 I VO To [o =1 o1 o] 1T PP 15
2.1.2 VOC File COMPIESSION.......uiiiiiiiiiiii ettt 16
2.1.3 Linear Predictive Coding and Code Excited Linear Predictor........................ 16
2.1.4 Mu-law and A-1aw COMPIreSSIONuuiiiiiiiiiiiiiiiee e 17

2.2 VIDEO COMPRESSIONuutteeeeeiuiteeeesaiteeeesasseeeesssseeeesamneeeessasnee e e s sannneeessanneeeesaan 18
2.2.1 Video Compression StaNdardscc.eeeeiiiiiieeiiiieeee e 18
2.2.2 Video Compression Processing FUNCHIONS............ooeiiiiiiiiiiiieiee, 19
2.2.2.1 DCT & Zig-Zag SCANNINGuvereeeieaeeiiiiiiiieieee e e e e aieeeeee e e e e e e esisneeeeeeeeeas 19
2.2.2.2 QUANTISALION......eiiii i 21
2.2.2.3 ENLrOPY COAING -.evveeeiiiiiiiiiiiieeiee ettt a e 22
2.2.2.4 Motion EStMationoooiiiiiiii e 23

2.2.3 The H.261 Compression Alorithmcoocuiiiiiiiiiie e 24
2.2.4 The MPEG Compression AlGOrithm ..o 28

iv

2.3 IMAGE COMPRESSIONettttteeeisiuuteeeeeeraeessaaasnsseeeeeaesesaaannsseseeeaaesssannnssseeeeseeessannnns 32

2.4 TEXT COMPRESSION ...ctiiiutiteeeestteeeeeauteeeesassee e e s assee e e s asnee e e s sasnee e e s sanneeeeesannreeeeaan 36
P2 S A RSP RT 40
.42 LZT8 ... 40
2.4.3 LZ78 EXAMPIE ...coeeiiiiiieeee e 41
P2 3 T I =1 g oo o [4T R ERTTPPP 42
2.4.3.2 DECOAINGeeeeeeiieeeeeeet ettt a e 43

2.5 OTHER COMMERCIALISED AND NONCOMMERCIALISED COMPRESSION PROGRAMS45

2.8 SUMMARYettiieeieiittet ettt e e e e e e ettt et e e e e e e e e b b et e e e e e e e e e e aaabbeeeeeaeeeeaannbaseeeeaaeeseaannn 49

CHAPTER 3: DEVELOPMENT METHODS......cco ittt 50

3.1 LZW EXPLAINED ..ceeiiuetteee e ettt ettt ettt et e st e e st e e e e e e e anr e e e e e 58
3.1.1 COMPIESSION ...ttt e e e e e anee e e 58
K 2 B 1= ToTo)1 T o] (=111 (o] o TR U 61

3.2 PROGRAMMING APPROACHESuttttetieaaaeeaaittieteeeae e s s aaiiseeste e e e e s s aannnnseeeeeaeeeeaannns 63

3.3 EVALUATION APPROACHESeettiuteeeeeaiteteeeasteeeesasteeeesamseteesanneeessanneeessanneeeeaan 63

3.4 SUMMARYceeteiiee e ettt ettt ettt e e e e e oo e b et e e e e e e e e e a b ab e e et e e e e e e e annbabeeeeeaeeeeaaann 64

CHAPTER 4: SYSTEM ANALYSIS ...ttt e e 65

4.1 SIMULATION CONCEPT ...ctitiuittteeestteee e e sttt e e s asse e e ases e e e s et et e e s aanne e e e s anneeeenanreeeeaan 65

4.2 SIMULATION ARCHITECTURE ...ceitiutteeeeeatsteeesanseeeesaseseeesassseessamneeessanneeessanneeaeaans 65

4.3 SIMULATION REQUIREMENTcetitiutttaaaauieeeeeauteeaesaneseaesanseeassannseeessanseeaesannsseasanns 66

4.4 SIMULATION LIMITATION .. cuttteeeeeiteeeeeatte e e e asss e e s st e e s s et e e s amne e e e s anne e e s nanneeeeeaan 66

4.5 PLATFORM AND SYSTEM SPECIFICATIONceetiuttteeiittreeeesireeeesanneeessanneeessanneees e 67
4.5.1 System ReqUIremMeNtuiiiiiiiei et 68

4.5.1.1 Functional RequiremMentuueiiiiiiiiiiieeee e 68
4.5.1.2 Non-Functional Requirement ... 68

4.6 ANALYSIS. ... eteeeeeee e ettt e e e oo e ettt e a b b e e e et e e e e e e e annnareeeeaeeas 69
4.7 SUMMARY ...eetteeeeeee e e e ettt e e e e e oo e e et e e e e e e e e e e s e bbbt et e e e e e e e e e e anabee e e e e e e e e e e nnnraneeeaaeeas 71
CHAPTER 5: SYSTEM DESIGN AND IMPLEMENTATIONootiiiiiiieiiiiee e 72

5.1 FLOW DIAGRAM ...ttt eetie ettt ettt e et e e e s s e e e e e nnn e e e e naaneeeeeaaa 74

5.1.1 Client Program: General FIOW.............oeiiiiiiiiiieeeeeee e 74
5.1.1.1 Client Program INput/OUIPULcoiiiiiiiiiiiiiee e 74
5.1.1.2 Client Program FIOW:c.eoiiiiiiiiiieiiieie et 75
5.1.1.3 Client Read File FIOW:uuiiiiiieiie e 76

5.1.2 Server Program: General FIOWcoooiiiiiiiiiieeeee e 78
5.1.2.1 Server Program Input/OUPUL:cooiiiiiiiiiiiie e 78

5.2 SUMMARY ...ttt ettt e e e e e e ettt e e e e e e e e abbbe et e e e e e e e aannbaeeeeeeeeeeeaannn 81

CHAPTER 6: SYSTEM TESTING ..ot 82

6.1 SPEED OF COMPRESSION VS. SIZE OF DATASETS .. teitieeeeeeeaeeeeeeeeaeeeaeeeenaeeenaeeeens 83
6.2 SIZE AFTER COMPRESSION VS. SIZE OF DATASETS ..eevuiiieeeeeeaeeeeeeeeeaeeeaeeeeaeennaeeeens 87
6.3 DELAY TIME (AGAINST RAW DATA TRANSMISSION) VS. SIZE OF DATASETSccceeennnn. 91
5.4 COMPRESSION BATIO e tiite ettt et ettt et e e et e e et e e e e e e e eereeeeeeeeraneeeeens 95
8.7 AN ALY SIS ettt ettt et e et e et — e — e — e — e — i — et —————— 108
.8 SUMMARY ..t eeee ettt et e ettt e et 113
CHAPTER 7: CONGCLUSION ..o 114
7.1 OBJECTIVES AND GOALS ACHIEVED ... cuu i iieeeeee et e et e e e e e e eeieeeeeeeeeereeeeeeneeennaeees 114
7.2 ANALYSIS CONCLUSION ... ceeeee et e e e e e e et e e e e e e e e e e e e e e e e eenns 115
7.3 EVALUATION OUTCOME ...eeeeeee e ettt e e e et e e e e e e e e e e e e e e e 116
7.4 FUTURE ENHANCEMENT - eet ettt ettt e et e et e ee e e e e e e ee e e e e e e eee e e e e e eeereenneeeenerennaeees 117
TSR0 Y L 7 = A 2T 117
REFEREN CE S ettt 118
APPENDIX A : SIMULATOR GUIDELINE... ..o ot 124
STEP 1: VERIFYING THE LIBRARY FILE STORED IN BOTH SERVER AND CLIENT PC 124
STEP 2: STARTING SERVICES ON SERVER AND CLIENT PC WITH DATASET cevveveeeeeeeenn. 125
STEP 3: VIEW RESULT ON THE SERVER AND CLIENT CONSOLE ...c.uveueeeieeeeeeeeeeeeeeeeeeeeenns 130
STEP 4: REVIEW THE GENERATED RESULT ON SERVER ...evueeeuieeeneeeeaeeeeaeeeiaeeeeneeennaeees 132
APPENDIX B : PERFORMANCE ANALYSIS TABLE ON SCIENTIFIC DATASET....... 133

vi

List of Figures

Figure 2.1 : The DCT OPerationeeeiiiiiiiiiiiiiieee e 20
Figure 2.2 : Zig-Zag SCANNING «.cceeeiiiiiiieiieee ettt e e e e e e e e ee e e e e e e e e e aanes 21
Figure 2.3 : Motion EStIMatioNcccuiiiiiiiiei e 24
Figure 2.4 : H.261 ENCOTEY ...cooiiiiiieeeeeee e 25
Figure 2.5 : H.261 DECOAETcooiiiiiiiiiieeee ettt 27
Figure 2.6 : MPEG Motion Compensationcuuuiiiiiiiiiiiiiiiieeee e 29
Figure 3.1 The Compression AlGOrithmooiiiiiiiii e 59
Figure 3.2 The COmMPresSioN PrOCESSccouiiiiiiiiiiiiieiie et 60
Figure 3.3 The Decompression AIgOrithm ... 61
Figure 3.4 The DecompresSiON PrOCESS.cuiiuuiiiiiiieaeiieeeiiie e 62
Figure 5.1 Network Connectivity of the System Implementation...............cccccviiieninnnn. 73
Figure 5.2 Client Program INpUt/OULPULooiiiiiiiiiei e 74
Figure 5.3 Client Program FIOWoiiiiiii e 75
Figure 5.4 Client Read File FIOWcoooiiiiiiiiie e 76
Figure 5.5 Server Program INpUt/OULPUL........coooiiiiiiiiii e 78
Figure 5.6 Server Program FIOW.............ooiiiiiiiiiiice e 80
Figure 6.1 Compression Time - FDS dataset............cccvviiiiiiiiiiii e 83
Figure 6.2 Compression Time - NCBl datasetccooeeiiiiiiiiiii e 84
Figure 6.3 Compression Time — Water Quality datasetccccoooiiiiiiiiiniiene 85
Figure 6.4 Compressed Data Size - FDS dataset...........ccccooiiiiiiiiiiiicee 87
Figure 6.5 Compressed Data Size - NCBI dataset............cccocoeiiiiiiiniiiiiiee 88
Figure 6.6 Compressed Data Size — Water Quality dataset..........cccccooiviiiiiiiins 89
Figure 6.7 Total Transmission Time - FDS datasetccccceiiiiiiiiie e 91
Figure 6.8 Total Transmission Time - NCBI dataset............ccccceoiiiiiiiiiiiicne e 92
Figure 6.9 Total Transmission Time — Water Quality datasetccccocceeeiiicieeecnenee 93
Figure 6.10 Compression Ratio - FDS datasetccccceeviiieeiiiiieie e 95
Figure 6.11 Compression Ratio - NCBI dataset............c.coeeriiiiiiiiiii e 96
Figure 6.12 Compression Ratio — Water Quality datasetccoceeiriiieeiniciine e 97
Figure 6.13 Data Rate - FDS dataset ... 99
Figure 6.14 Data Rate - NCBI datasetc.cccocviiiiiiiiiiii e 101
Figure 6.15 Data Rate — Water Quality datasetcoceeriiiiiii i 102
Figure 6.16 Data Transmission Time - FDS datasetcccccoovviiiiiic e 104
Figure 6.17 Data Transmission Time - NCBIl datasetcccccoviiieiiiici e 106
Figure 6.18 Data Transmission Time — Water Quality datasetccccceeiviiiieninnnnn 107
Figure 6.19 Dataset Category bY TiIMe ... 110
Figure 6.20 Dataset Category by Compression Ratio...........cc.ueeeiiiiiiiiiiiiiiies 112
Figure A.1 Starting SErVer SEIVICES.couiuuiiii it 125
Figure A.2 Executing testing on Zlib algorithm............ccccoiis 126
Figure A.3 Executing testing on LZRW algorithm ... 126
Figure A.4 Executing testing on Bzip algorithm ... 127
Figure A.5 Executing the compression algorithm for different dataset size.................. 128
Figure A.6 Result on the Server CONSOIE..........ccuviiiiiiiiee e 130
Figure A.7 Result on the client CONSOIEoocviiiiiiiiie e 131
Figure A.8 Capturing generated result for dataset...........ccocueeviiiiiiiiie 132
Figure B.1 Performance Analysis Table on Scientific Datasetccccceviiieeeennnne 133

vii

List of Tables

Table 2.1 ENcoding TabIeooiiieiieiieee e 42
Table 2.2 Decoding TabIe ... 43
Table 2.3 Decoding EXamPIEuiiiiiiiiiiiii e 44
Table 2.4 Other Available Compression Programs In the Marketcccooviieeiiiiieenn. 46
Table 3.1 Datasets COMPAISONSccuiiiiiiiiiiiiiieee e 52
Table 3.2 Compression Algorithm CompariSONS..........coocuuuiiiiiiie e 57
Table 6.1 Compression Time - FDS dataset.........cccceviiiiiiiiiiiiie e 84
Table 6.2 Compression Time - NCBI datasetuuueuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeieeenenns 85
Table 6.3 Compression Time — Water Quality dataset...........ccccceeiiiiiiiiiiiiiiiee, 86
Table 6.4 Compressed Data Size - FDS dataset...........cccveiieeiieiiiiiiiiiieee e 88
Table 6.5 Compressed Data Size - NCBIl dataset...........ccccuvveeeiieeiiiiiiiiiiieieee e 89
Table 6.6 Compressed Data Size — Water Quality dataset..........ccooiiiiiiiniiiiiinen. 90
Table 6.7 Total Transmission Time - FDS dataset..........cccccuviieiiieiiiiiiiiiiieee e 92
Table 6.8 Total Transmission Time - NCBl datasetccceeeveeeiiiiiiiiiiiiieee e, 93
Table 6.9 Total Transmission Time — Water Quality dataset...........oocccuviiieeiiiiiiinen. 94
Table 6.10 Compression Ratio - FDS datasetuueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeiaenenns 96
Table 6.11 Compression Ratio - NCBI dataset.......cccccoooeeiiiiiiiiie e 97
Table 6.12 Compression Ratio — Water Quality datasetcccccoviiiiiiiiiiiiiee, 98
Table 6.13 Data Rate - FDS datasetocouueiiiiiiiiie e 100
Table 6.14 Data Rate - NCBI datasetcccuuiiieiieeiiiiiiieeieee e 101
Table 6.15 Data Rate — Water Quality datasetcoooviieiiiiiieiii e 102
Table 6.16 Data Transmission Time - FDS datasetcccccuvvvvieiiiieieiiiiiiiiiiiiiiieiinnns 105
Table 6.17 Data Transmission Time - NCBI dataset...........ccccceeeeiiiiiiiiiiiie e, 106
Table 6.18 Data Transmission Time — Water Quality dataset............cccccevvieeieiinnenn. 107
Table 6.19 Dataset category by Total Transmission Time/Compressed Size 109
Table 6.20 Dataset Category by Compression Ratio..............uuvvveremiieriiiiiiiiiiiiiiiiiniennns 111

viii

Abbreviations

AAC
AC
ARI
ASCII
AVC
BMP
BWT
CCITT

cD
CDDA
CELP
CIF
CM
CPU
CTW
DARPA
DB
DC
DCT
DM
DVD-R
FDS
FFT
FLAC
GIF
HTML
Huff
IBC
IP

ITU

Advanced Audio Coding

Associative Coding

Arithmetic Coding

American Standard Code for Information Interchange
Advanced Video Coding

bit-mapped graphics

Burrows-Wheeler Transform

Consultative Committee for International Telegraphy and
Telephony.

compact disc

Compact Disc Digital Audio

Code Excited Linear Predictor

Common Intermediate Format

Context Modeling

central processing unit

Context Tree Weighting

The Defense Advanced Research Projects Agency
Decibels

Distance Coding

Discrete Cosine Transform

Dynamic Markov Modeling
DVD-Recordable

Fire Dynamic Simulator

Fast Fourier transform

Free Lossless Audio Codec

Graphics Interchange Format

Hypertext Markup Language

Huffman

International Benchmarking Clearinghouse
Internet Protocol

International Telecommunication Union

ix

JPEG
JVT
LZ
LZRW
LZW
LPC
MB
MP3
MPEG
MS
NCBI
NIST
PNG
PPM
PSD
PSP
RAM
RLC
RLE
RM
SE

SF
TCP/IP
TIFF
TTA
VCEG
WAN
WMA

Joint Photographic Experts Group

Joint Video Team

Lempel-Ziv

Lempel-Ziv Ross Williams

Lempel-Zif-Welch

Linear Predictive Coding

Mega Byte

MPEG, audio layer 3

Moving Picture Experts Group

Millisecond

National Center for Biotechnology Information
National Institute of Standards and Technology
Portable Network Graphics

Prediction by Partial Match

Photoshop document

Paint Shop Pro document

Random Access Memory

Run-Length Coding

Run-Length Encoding

Real Media

Second Edition

Shannon-Fano

Transmission Control Protocol/Internet Protocol
Tagged Image File Format

The True Audio

Video Coding Experts Group

Wide Area Network

Windows Media Audio

CHAPTER 1: Introduction

With the rapid growth of the scientific research and the establishment of
compression algorithms as the fundamental layer of choice in most research
environments, the drawbacks of compression techniques have become more
obvious. Any form of communication, compressed data communication only
works when both the sender and receiver of the information understand the
encoding scheme.

On rapid development in demand of scientific research, compression is useful
because it helps to reduce the consumption of expensive resources, such as disk
space or transmission bandwidth. On the downside of it, compressed data must
be uncompressed to be viewed (or heard), and this extra processing may be
detrimental to some applications.

After decade with the time when a computer known as Apple Il and the monitor
was a monochrome and window was never heard of. That was the beginning of
the technology era; that was the time when Internet and networking was only

known to university and advanced research authority like DARPA.

It used to be that the data to be shared among peer can always fitted into a
single diskette of 1.4 MB. As the advancement in the technology area, with the
boom of internet, the size of the data to be shared among peer become the
bottleneck that were never thought of. The advancement in the electronic
industries also contributed into the mounting problem capturing large size of

digital data.

If the technology trends are as predicted by Moore’s law, in no time, the internet
and its backbone technology (TCP/IP) will halt and break down, the hard drive
will and RAM will not be able to keep up with the data rate. Without a proper
solution, the advancement in technology would simply slowdown gradually. This
is the price to pay for higher definition graphics, greater quality entertainment,
more realistic sight and sound. To be exact, there are more information
embedded into a dataset, the greater the size; the greater the data sizes,

eventually it will reach the physical limit, the limit of our silicon technology.

The only solution to the problem was data compression. The idea was to
compress the data into smaller size that can help in reducing storage problem for

the ever growing large sized data and increase the throughput over the network.

1.1.1 Introduction to Data Compression

Based on the Information Theory by Claude E. Shannon in the 50’s, scientist and
mathematician were able to come out with the algorithm that compresses the
data or message based on the statistical redundancy of that particular data or
message [17]. For example, the letter 'e' is much more common in English text
than the letter 'z', and the probability that the letter 'g" will be followed by the letter

'Z" is rather small.

In computer science studies, data compression is the process of encoding
information using fewer bits than a more obvious representation would use,
through use of specific encoding schemes. For example, this article could be
encoded with fewer bits if we accept the convention that the word "compression”
is encoded as "comp". From which compression technology spawns into various

shape and sizes.

Since the first introduction of the Information Theory, almost 30 years ago,
Abraham Lempel and Jacob Ziv introduced the first pointer-based encoding in
1977, followed by the work of Terry Welch, which form the LZRW algorithm [24].
The initial target of this algorithm is text (ASCII) contents. With the emergence of
the digital contents, more and more algorithms were developed, which could be
generally grouped into two major categories. One category is lossless
compression, and other one is lossy compression. As the word implies, lossless
compression will pertain the contents of the source, while lossy compression

allows lost in some portion of information.

These two major categories are to be further divide into various other variants
that are design to specifically target to tackle the different format coded of the

datasets.

1.1.2 Introduction to Simulation

A simulation is defined as an imitation of some real devices or state of affairs
[32]. Simulation attempts to represent certain features of the behavioral of a

physical or abstract system by the behavioral of another system.

Simulation is used in many contexts, including the modeling of natural systems,
and human systems to gain insight into the operation of those systems; and
simulation in technology and safety engineering where the goal is to test some
real-world practical scenario. Simulation, using a simulator or otherwise
experimenting with a fictitious situation can show the eventual real effects of

some possible conditions.

There is various type of simulation, but in this project we are only interested in
computer simulation. The main reason are mainly on the reliability and the trust
people put in computer simulations depends on the validity of the simulation
model, thus verification and validation are most crucial importance in the
development of computer simulations. Moreover, important aspect of computer
simulations is that of reproducibility of the results, meaning that a simulation
model should not provide a different answer for each execution. An exception to
reproducibility is human in the loop simulations such as flight simulations and
computer games. Here a human is part of the simulation and thus influences the

outcome in a way that is hard if not impossible to reproduce exactly.

Computer simulation is a useful part of modeling many natural systems in

physics, chemistry and biology, and human systems in economics as well as in

engineering to gain insight into the operation of those systems. A good example
of the usefulness of using computers to simulate can be found in the field of
network traffic simulation. Computer simulations are often considered to be

human out of the loop simulations [33].

Traditionally, the formal modeling of systems has been via a mathematical
model, which attempts to find analytical solutions to problems which enable the
prediction of the behavioral of the system from a set of parameters and initial
conditions. Computer simulation is often used as an adjunct to, or substitution
for, modeling systems for which simple closed form analytic solutions are not
possible. There are many different types of computer simulation, the common
feature are, they all share is the attempt to generate a sample of representative
scenarios for a model in which a complete enumeration of all possible states of

the model would be prohibitive or impossible.

1.1.3 Summary

We now know the motivation behind compression technology and generally how
compression technologies works. But in reality we are still far from understanding
how each and every compression algorithm treats different types of data sets. In
the next chapter, we will start to look at how the specialised algorithm tackle and

compress specific datasets.

1.2 Problem Statement and Objective

This chapter explains the motivation behind this study and the objective that wish

to accomplish.

1.2.1 Problem Statement

With the increasing data size in the digital world, due to new and more
sophisticated data capturing technology, it is just the matter of time when our
archive and storage technology reaches its physical limit. And the impending
problem will also cause our existing networking infrastructure to seized
functioning due to the heavy load of data transmission. All these in time will affect
all human communication activities. Yet, with the overwhelming number of
compression technologies available in the scientific community, ranging from the
most general type to highly specific and proprietary, it poses another question,

“Which one is more effective than the other, when to use and why?”

This study will try to answer the question on how compression technology
impacts the performance of human activities, especially in the scientific
community and how to evaluate which compression technology best suit in

scientific usage.

1.2.2 Objectives of the Project

The following are the objectives of the project:

* To analyse significance of compression algorithm over data transmission
network

» To evaluate the performance of the compression algorithms over the scientific
datasets

» To identify significance of compression towards extraction performance

» To identify the behaviours of a compression algorithms

1.2.3 Project Scope

The following are the goal of the project:

» To identify compression characteristic of the scientific datasets

» To develop a simulator program using C/C++ language for compressing and
decompressing datasets over TCP/IP network

» The simulator will include both client and server which evaluate on three
algorithm as zlib, LZRW and bzip

» Toinvestigate the significant of compression technology and different type of

compression techniques for scientific datasets

1.3 Methodology

The purpose of this study is to examine the compression and extraction
performance on a set of scientific dataset.

The four purposes of this chapter are to (1) describe the research methodology
of this study, (2) explain the sample dataset generation, (3) describe the
procedure used in selecting the appropriate simulator algorithm, and (4) provide

an explanation of the procedures used to analyse the data.

1.3.1 Research Methodology

A benchmarking comparison methodology was used for this study. A benchmark
is selected to compare with the compression and extraction result. The term
‘benchmarking’ is commonly applied to a research methodology designed to
compare and differentiate data from different sets of data that are supposed to

arrive at the same results.

Harrington & Harrington define benchmarking as “a systematic way to identify,
understand, and creatively evolve superior products, services, designs,
equipment, processes, and practices to improve one’s real performance” [2]. The
International Benchmarking Clearinghouse, or IBC, defines benchmarking as “the
process of continuously comparing and measuring an organisation with leaders
anywhere in the world to gain information that will help to take action to improve
the performance” [34]. According to Camp, “Benchmarking is the search for

industry best practices that lead to superior performance”[3].

For these reasons, the benchmarking comparison research methodology is
selected as the methodology used in this study to assess and analyse the

performance of various compression and extraction technology.

1.3.2 Sample Datasets Generation

The sample datasets uses in the evaluation must fulfill the following
characteristics:

J Random and different scales.

e Vary in large quantity, while some data might vary in decimal points value.
The scientific datasets chosen for this project which representing research area
are from biological dataset, water quality dataset and fire dynamic dataset. These

all dataset are real life sampling for actual research purposes.

1.3.3 Simulator Selection

One the simulator selected for this project, the “Fire Dynamic Simulator”, is
because of its ability to generate datasets on multiple aspects on fire breakout
scenario, which includes density, pressure, heat, chemical composition, and
velocity [8]. Each dataset is measured with high resolution that are taken on
hundred of thousands, to millions of grid cell in a given space, example, a room.

The time steps are from thousands to hundreds of thousand.

Therefore, these samples are suitable to use as the sample datasets in the
attempt to evaluate the performance on compression and extraction of scientific

datasets.

1.3.4 Method of Analysis

The data analysis consisted of examining the three major areas, the compression
ratio, compression time, and the throughput of the generated data sets through a
simulated data transmission. All three criteria are subject to comparison based
on a benchmarking algorithm over the dataset size. Tables are constructed form

comparison on different compression algorithm of the above criteria.

1.3.5 Summary

The purpose of this chapter was to describe the research methodology of this
study, explained the sample dataset generation, described the procedure used in
selecting the appropriate simulator algorithm, and provides an explanation of the

procedures used to analyse data.

1.4 Report Organisations
This report has a total of 7 chapters. It is organised as follows:

Chapter 1 is the introduction of the project. This chapter also defined the
objectives and goals of this project as well as describing the research methods

used.

Chapter 2 In this chapter, we look into details the various compression
algorithms that exist in the current market. Hence, it explore into the different
area of data compression. We will also look at what technology of compression

algorithms based on.

Chapter 3 In this chapter, we will discuss how this project is derived from, and
how it is being developed. We will also look at how specific algorithms and

datasets are selected for this project.

Chapter 4 This chapter describes and analyses the system used to simulate the

test in this project.

Chapter 5 This chapter covers the design aspects of the system. It also

describes the flow of the system accompanied by the system flow diagrams.

Chapter 6 This chapter covers the detailed implementation of the system and
discusses the simulations and the results. This chapter also summarises how the

performance of the compression algorithms being gauged.

Chapter 7 This chapter describes the overall findings and conclusion of this

project and summarises the research and the development of this system.

CHAPTER 2: Literature Review

Compression can be used and has been applied on variety of data types. Some
common data types are audio data, image, text file and video data. In this study

we will look at the 4 major types of data types: audio, image, video and text.

2.1 Audio Compression
Various popular audio compression format includes MP3, RM (Real Media), Ogg
and FLAC. Generally the two major groups of compressed audio file formats are

as follow:

e formats with lossless compression, such as Free Lossless Audio Codec
(FLAC), Monkey's Audio (filename extension APE), WavPack, Shorten,
TTA and lossless Windows Media Audio (WMA).

e formats with lossy compression, such as MP3, Ogg Vorbis (filename
extension OGG), lossy Windows Media Audio (WMA) and Advanced

Audio Coding (AAC).

Lossy file formats are based on psychoacoustic models that leave out sounds
that humans cannot or can hardly hear, e.g. a low volume sound after a big

volume sound. MP3 is such an example.

Lossless audio formats (such as TTA) provide compression about 2:1, but no
data/quality is lost in the compression - when uncompressed; the data will be
identical to the original. Lossless audio codecs are a good choice to keep the

music's original quality. For example, using the free The True Audio (TTA)

lossless audio codec you can store up to 20 audio CDs from your music

collection on one single DVD-R for playback.

One of the most popular audio file formats was MP3, which uses the MPEG-1
audio layer 3 codec to provide acceptable lossy compression for music files. The
compression is about 10:1 compared with uncompressed WAV files (in a
standard compression scheme), therefore a CD with MP3 files can store about
10 hours of music, compared to one hour of the standard Compact Disc Digital
Audio (CDDA), which uses WAV files. As mention in Jocelyn Dabeau article, An
Introduction to MP3, the MP3 compression “takes into account the perception of
sound waves by the human ear”, and then apply “traditional compression
technigues to achieve a high level of data reduction while retaining near-CD

quality sound” [35].

There are many newer audio formats and codecs claiming to achieve improved
compression and quality over MP3. Ogg Vorbis is an unpatented, open and free

codec [36]. Microsoft has its Windows Media Audio format.

Lossless compression of sound is not nearly as widely used outside of
professional applications, as lossy compression can provide a much greater data

compression ratio with nearly the same apparent quality [13].

Below we look at how analogue audio is sampled and various type of audio

compression technique.

2.1.1 Audio Sampling

The digital representation of audio data offers many advantages such as high
noise immunity, stability, and reproducibility [14]. Audio in digital form also allows
for efficient implementation and execution of many audio processing functions

through the computer.

The conversion of audio from analog to digital begins by sampling the audio input
at regular, discrete intervals of time and quantising the sampled values into a
discrete number of evenly spaced levels. According to the Nyquist theory, a
time-sampled signal can faithfully represent a signal up to half the sampling rate.
Above that threshold, the frequencies become blurred and signal noise becomes

readily apparent [37].

The usual sampling frequencies in today typically used range from 8 kHz for
basic speech to 48 kHz for commercial DAT machines. The number of quantiser
levels is typically a power of 2 to make full use of a fixed number of bits per audio
sample. The typical range for bits per sample is between 8 and 16 bits. This
allows for a range of 256 to 65,536 levels of quantisation per sample. With each
additional bit of quantiser spacing, the signal to noise ratio increases by roughly 6
decibels (dB). Thus, the dynamic range capability of these representations is

from 48 to 96 dB, respectively [38].

The data rates associated with uncompressed digital audio are substantial. For

audio data on a CD, for example, which is sampled at 44.1 kHz with 16 bits per

channel for two channels, about 1.4 megabits per second are processed. A clear
need exists for some form of compression to enable the more efficient storage

and transmission of digital audio data [30].

2.1.2 Voc File Compression

The simplest compression techniques simply removed any silence from the
entire sample. Creative Labs introduced this form of compression with their
introduction of the SoundBlaster line of sound cards [39]. This method analyses
the whole sample and then codes the silence into the sample using byte codes.

It is very similar to run-length coding.

2.1.3 Linear Predictive Coding and Code Excited Linear Predictor

This was an early development in audio compression that was used primarily for
speech. A Linear Predictive Coding (LPC) encoder compares speech to an
analytical model of the vocal tract, then throws away the speech and stores the
parameters of the best-fit model. The output quality was poor and was often

compared to computer speech and thus is not used much today [40]

Then a later development, Code Excited Linear Predictor (CELP), increased the
complexity of the speech model further, while allowing for greater compression
due to faster computers, and produced much better results [41]. Sound quality
improved, while the compression ratio increased. The algorithm compares

speech with an analytical model of the vocal tract and computes the errors

between the original speech and the model. It transmits both model parameters

and a very compressed representation of the errors.

2.1.4 Mu-law and A-law compression

Logarithmic compression is a good method because it matches the way the
human ear works [12]. It only loses information which the ear would not hear
anyway, and gives good quality results for both speech and music. Although the
compression ratio is not very high it requires very little processing power to
achieve. It is the international standard telephony encoding format, also known
as International Telecommunication Union - ITU (formerly Consultative
Committee for International Telegraphy and Telephony. - CCITT) standard. It is
commonly used in North America and Japan for ISDN 8 kHz sampled, voice

grade, digital telephone service.

It packs each 16-bit sample into 8 bits by using a logarithmic table to encode a
13-bit dynamic range, dropping the least significant 3 bits of precision. The
quantisation levels are dispersed unevenly instead of linearly to mimic the way
that the human ear perceives sound levels differently at different frequencies.
Unlike linear quantisation, the logarithmic step spacing’s represent low-amplitude
samples with greater accuracy than higher-amplitude samples. This method is
fast and compresses data into half the size of the original sample. This method

also is used quite widely due to the universal nature of its adoption.

2.2 Video Compression

The increasing demand to incorporate video data into telecommunications
services, the corporate environment, the entertainment industry, and even at
home has made digital video technology a necessity. A problem is that still image
and digital video data rates are very large, typically in the range of 150Mbits/sec
[12]. Data rates of this magnitude would consume a lot of the bandwidth, storage
and computing resources in the typical personal computer. For this reason, video
compression standards have been developed to eliminate picture redundancy,
allowing video information to be transmitted and stored in a compact and efficient

manner [10].

2.2.1 Video Compression Standards

During the '80s and '90s, Discrete Cosine Transform (DCT) based compression
algorithms and international standards were developed to alleviate storage and
bandwidth limitations imposed by digital still image and motion video applications

[22].

Today there are two DCT-based standards that are widely used and accepted
worldwide:

e H.261 (Video codec for audiovisual services)

e MPEG (Motion Picture Experts Group)
Each of these standards is well suited for particular applications: H.261 for video

conferencing, and MPEG for high-quality, multimedia systems.

2.2.2 Video Compression Processing Functions

As mentioned earlier, the JPEG, H.261, and MPEG video compression standards
are all based on the DCT. In addition to being DCT-based, many processing

functions and compression principles are common to these standards [22].

The basic compression scheme for all three standards can be summarised as
follows: divide the picture into 8x8 blocks, determine relevant picture information,
discard redundant or insignificant information, and encode relevant picture

information with the least number of bits.

Common functions to all three standards are:
e DCT
e Zig-Zag Scanning
e Quantisation
e Entropy Coding

e Motion Estimation

2.2.2.1 DCT & Zig-Zag Scanning

The Discrete Cosine Transform is closely related to the Discrete Fourier
Transform (FFT) and, as such, allows data to be represented in terms of its
frequency components. Similarly, in image processing applications the two
dimensional (2D) DCT maps a picture or a picture segment into its 2D frequency

components [16].

For video compression applications, since the variations in the block tend to be
low, the great majority of these transformations result in a more compact
representation of the block. The block energy is packed into the corresponding

lower frequency bins [16].

The DCT component at coordinates (0,0) is referred to as the DC bin. All other

components are referred to as AC bins.

Figure 2.1 : The DCT Operation

Since the mapping is from lower to higher frequencies in the horizontal and
vertical directions, zig-zag scanning of the resulting 2D frequency bins clusters
packets of picture information from low to high frequencies into a 1D stream of

bins.

20

Figure 2.2 : Zig-zag scanning

2.2.2.2 Quantisation

Quantisation is the primary source of data loss in DCT based image compression
algorithms. Quantisation reduces the amount of information required to represent
the frequency bins by converting amplitudes that fall in certain ranges to one in a
set of quantisation levels [22]. For simplicity, all the standard image compression
algorithms use linear quantisation where the step size quantisation levels are

constant.

Quantisation in the frequency domain has many advantages over directly
quantizing the pixel values. Quantisation of the pixel values results in a visual
artifact called "contour" distortion where small changes in amplitude in a gradient
area cause step-sized changes in the reconstructed amplitude. Except for the DC
bin, quantisation error for each of the frequency bins average out to zero over the

8 x 8 block.

21

2.2.2.3 Entropy Coding

Entropy coding is a loss-less compression scheme based on statistical properties
of the picture or the stream of information to be compressed [15]. Although
entropy coding is implemented slightly different in each of the standards, the
basic “entropy coding” scheme consists of encoding the most frequently
occurring patterns with the least number of bits. In, this manner, data can be
compressed by an additional factor of 3 or 4. Entropy coding for video
compression applications is a two step process: Zero Run-Length Coding (RLC)

and Huffman coding [15].

RLC data is an intermediate symbolic representation of the quantized bins which
utilizes a pair of numbers. The first number represents the number of consecutive
zeros while the second number represents the value between zero-run lengths.
For instance the RLC code (5,8) represents the sequence (0,0,0,0,0,8) of

numbers.

Huffman coding assigns a variable length code to the RLC data, producing
variable length bitstream data [16]. This requires Huffman tables which can be
pre-computed based on statistical properties of the image or can be pre-
determined if a default table is to be used (as it is in H.261 and MPEG). In either
case, the same table is used to decode the bitstream data. As mentioned above,
frequently occurring RLC patterns are coded with the least number of bits. At this

point the digital stream, which is a representation of the picture, has no specific

22

boundaries or fixed length. This information can now be stored or appropriately

prepared for transmission.

2.2.2.4 Motion Estimation

In general, successive pictures in a motion video sequence tend to be highly
correlated, that is, the pictures change slightly over a small period of time [42].
This implies that the arithmetic difference between these pictures is small. For
this reason, compression ratios for motion video sequences may be increased by

encoding the arithmetic difference between two or more successive frames.

In contrast, objects that are in motion increase the arithmetic difference between
frames which in turn implies that more bits are required to encode the sequence.
To address this issue, motion estimation is utilised to determine the displacement

of an object

Motion estimation is the process by which elements in a picture are best
correlated to elements in other pictures (ahead or behind) by the estimated
amount of motion. The amount of motion is encapsulated in the motion vector.
Forward motion vectors refer to correlation with previous pictures. Backward

motion vectors refer to correlation with future pictures.

23

Frames
,_,,.-”

\

Motion
Vector

Figure 2.3 : Motion Estimation

An efficient motion estimation algorithm increases frame correlation, which in turn
minimises pixel arithmetic difference. Resulting in not only higher compression
ratios but also in higher quality decoded video sequences. Motion estimation is
an extremely computationally intensive operation difficult to implement in real-
time. For this reason, varieties of motion estimation algorithms have been

implemented by the industry [42].

2.2.3 The H.261 Compression Algorithm

Video conferencing and video telephony are the intended applications for the
H.261 compression algorithm [12]. For these applications, representation of

limited motion video (taking heads) is a key component.

To allow for low-cost implementations, H.261 fixes many of the system

parameters. Only the YUV color component separation with the 4:2:0 sampling

24

ratio is allowed by the standard. In addition, H.261 allows for only two frame

sizes, CIF (352x288) and QCIF (176x144).

As with the JPEG standard, each color component picture is partitioned into 8x8
pixel blocks of picture samples. Instead of coding each block separately, H.261
groups 4 Y blocks, 1 U block, and 1 V block together into a unit called a

macroblock. The macroblock is the basic unit for compression [12].

CIF DCT | Q | Entropy | . H.261
Video Code Bit Stream

Filter H M.C.

Figure 2.4 : H.261 Encoder

To compress each macroblock, the H.261 standard allows the compressor to
select from several compression options [12]. The H.261 standard only specifies
the decoding of each of the compression options. The method used to select the
options is not standardised. This allows vendors to differentiate their products by
providing methods with different cost-quality tradeoffs. A typical method used to

compress H.261 is described below.

25

First, motion estimation is performed on each macroblock. Since objects in the
frame may be moving in different directions, each macroblock is allowed to have
a different motion vector. The motion vector is used as a displacement vector to
fetch a macroblock from the preceding frame to be used as a prediction. Motion
estimation in H.261 is only performed relative to the preceding frame, and on full-
pixel offsets up to a maximum of +/-15 in the horizontal and vertical directions. To
improve the prediction, H.261 allows for an optional loop-filter to be applied to the

prediction on a macroblock basis.

Next, a decision must be made to code either the arithmetic difference between
the offset prediction macroblock and the current macroblock or to code the
current macroblock from scratch. Since the arithmetic difference is usually small,

coding the arithmetic difference results in higher compression.

An 8x8 DCT is applied to each block in either the arithmetic difference
macroblock or the current macroblock. Instead of quantisation matrices, H.261
uses one quantisation scale for all frequency bins. Since the DC bin is the most
important, it is separately quantized to a fixed 8 bit scale. Adjustment of the
quantisation scale on a per macroblock basis is the primary method for

controlling the quality and compression ratio in H.261.

26

HI.2E51 —» Entropy |) 1Q Ly IDCT
Bit Stream Decode

CIF
Video

Filter g— M.C.

Figure 2.5 : H.261 Decoder

The final stage of compression is the zig-zag scanning, run-length encoding and

entropy coding. H.261 specifies fixed Huffman coding tables for entropy coding.

To decompress an H.261 frame inverse operations are performed in reverse
order. Motion estimation is not necessary since the motion vectors are
embedded in the compressed bitstream. The H.261 de-compressor simply

applies the motion vector offset to retrieve the prediction, if necessary.

ITU-T H.264 / MPEG-4 Advanced Video Coding (commonly referred as
H.264/AVC) is the newest entry in the series of international video coding
standards [45]. It is currently the most powerful and state-of-the-art standard, and
was developed by a Joint Video Team (JVT) consisting of experts from ITU-T’s
Video Coding Experts Group (VCEG) and ISO/IEC’s Moving Picture Experts

Group (MPEG).

27

In the process of creation, a standard was created that improved coding
efficiency by a factor of at least about two (on average) over MPEG-2, the most

widely used video coding standard [45].

With the wide breadth of applications in the market, the application focus for the
work was correspondingly broad ranging from video conferencing to
entertainment (broadcasting over cable, satellite, terrestrial, cable modem, DSL,;
storage on DVDs and hard disks; video on demand etc.) to streaming video,

surveillance and military applications, and digital cinema.

2.2.4 The MPEG Compression Algorithm

MPEG compression algorithms were developed to address the need for higher
quality pictures and increased system flexibility, which are required by multi-
media systems [12]. Since it was developed later, MPEG was able to leverage

the efforts behind the development of the H.261 algorithms.

As with H.261, only the YUV color component separation with the 4:2:0 sampling
ratio is allowed by the MPEG standard. Unlike H.261, the frame size is not fixed
although a 352x240 frame size is typically used. MPEG adopted the macroblock
of H.261 (4 Y blocks, 1 U block, and 1 V block) as the basic unit for compression.
To compress each macroblock, the MPEG standard allows the compressor to

select from several compression options [12].

28

I/P frame B frame I/P frame

/

. Backward

Forward _~ {\jlotiton
Motion ector
\ector

Figure 2.6 : MPEG Motion Compensation

There are many more options available under the MPEG standard than under
H.261 [12]. As with H.26l, the MPEG standard only specifies the decoding of
each of the compression options. The method used to select the options is not
standardised, allowing vendors to differentiate their products by providing
methods with different cost-quality trade-offs. A typical method used to compress

MPEG is described below.

First, motion estimation is performed on each macroblock. In addition to motion
estimation from just the preceding frame, MPEG allows for prediction from
frames in the past or future or a combination of a past and future frame (with

restrictions).

Since objects in the frame may not be moving steadily from frame to frame, each

macroblock is allowed to have up to two motion vectors (one relative to a past

29

frame and another relative to a future frame). Note that to allow for predictions
from future frames, the extra frames must be buffered and the sequence coded

out-of-order.

Motion estimation is also allowed over a greater range (up to +/- 1023) and with
half-pixel resolution. The loop-filter of H.261 is not included in MPEG because

the half-pixel resolution motion vectors serve the same purpose.

Next, a four-way decision must be made. MPEG allows the prediction formed
from the arithmetic difference between the current macroblock and an offset
macroblock from a past frame, future frame, an average between past and future
frame, to be coded; or to code the current macroblock from scratch. A different
decision can be made for each macroblock subject to the restrictions that follow.

Key frames (called Intra or | frames) which do not allow any predicted
macroblocks are coded periodically to allow for random access into the video
stream. Forward predicted frames (called P frames) allow macroblocks predicted
from past P frames or | frames or macroblocks coded from scratch. | frames and
P frames are used as past and future frames for Bi-directional predicted frames

(called B frames). B frames allow for all four types of macroblocks.

An 8x8 DCT is applied to each block in either the arithmetic difference or current
macroblock. MPEG uses both matrices (like JPEG) and a scale factor (like
H.261) for quantisation. Since the DC bin is the most important, it is quantized to

a fixed 8 bit scale.

30

Since the visual effects of frequency bin quantisation are different for predicted
and current blocks, MPEG allows for two matrices (one for each type). Typically,
the matrices are set once for a picture sequence and the quantisation scale is

adjusted to control the compression ratio.

The final stage of compression is the zig-zag scanning, run-length encoding and
entropy coding. Like H.261, MPEG specifies fixed Huffman coding tables for

entropy coding.

To decompress an MPEG frame each operation is performed in reverse except
for motion estimation. Since the motion vectors and the decision are embedded
in the compressed bit-stream, the MPEG de-compressor just needs to apply the
motion vector offsets to retrieve the prediction from the past and/or future frames

if necessary.

31

2.3 Image Compression
In image compression, there are numerous compressions available, for example,
JPG, GIF, TIFF, PNG, BMP. But what are they, and what makes them different

from the others?

TIFF is, in principle, a very flexible format that can be lossless or lossy. The
details of the image storage algorithm are included as part of the file. In practice,
TIFF is used almost exclusively as a lossless image storage format that uses no
compression at all. Most graphics programs that use TIFF do not compression.

Consequently, file sizes are quite big [29].

This is usually the best quality output from a digital camera. Digital cameras often
offer around three JPG quality settings plus TIFF. Since JPG always means at
least some loss of quality, TIFF means better quality. However, the file size is
huge compared to even the best JPG setting, and the advantages may not be

noticeable.

A more important use of TIFF is as the working storage format as you edit and
manipulate digital images. You do not want to go through several loads, edit,
save cycles with JPG storage, as the degradation accumulates with each new
save. One or two JPG saves at high quality may not be noticeable, but the tenth
certainly will be. TIFF is lossless, so there is no degradation associated with

saving a TIFF file.

32

PNG is also a lossless storage format [29]. However, in contrast with common
TIFF usage, it looks for patterns in the image that it can use to compress file size.
The compression is exactly reversible, so the image is recovered exactly.
GIF creates a table of up to 256 colors from a pool of 16 million. If the image has
fewer than 256 colors, GIF can render the image exactly. When the image
contains many colors, software that creates the GIF uses any of several
algorithms to approximate the colors in the image with the limited palette of 256
colors available. Better algorithms search the image to find an optimum set of
256 colors. Sometimes GIF uses the nearest color to represent each pixel, and
sometimes it uses "error diffusion" to adjust the color of nearby pixels to correct

for the error in each pixel.

PNG is of principal value in two applications:

1. If you have an image with large areas of exactly uniform color, but
contains more than 256 colors, PNG is your choice. Its strategy is similar

to that of GIF, but it supports 16 million colors, not just 256.

If you want to display a photograph exactly without loss on the web, PNG is your
choice. Later generation web browsers support PNG, and PNG is the only

lossless format that web browsers support.

GIF achieves compression in two ways. First, it reduces the number of colors of
color-rich images, thereby reducing the number of bits needed per pixel, as just
described. Second, it replaces commonly occurring patterns (especially large

areas of uniform color) with a short abbreviation: instead of storing "white, white,

33

white, white, white," it stores "5 white." Thus, GIF is "lossless" only for images
with 256 colors or less. For a rich, true color image, GIF may "lose" 99.998% of

the colors.

JPG is optimized for photographs and similar continuous tone images that
contain many, many colors. It can achieve astounding compression ratios even
while maintaining very high image quality. GIF compression is unkind to such
images. JPG works by analyzing images and discarding kinds of information that
the eye is least likely to notice. It stores information as 24 bit color. Important: the
degree of compression of JPG is adjustable. At moderate compression levels of
photographic images, it is very difficult for the eye to discern any difference from
the original, even at extreme magnification. Compression factors of more than 20
are often quite acceptable. Better graphics programs, such as Paint Shop Pro
and Photoshop, allow you to view the image quality and file size as a function of
compression level, so that you can conveniently choose the balance between

qualities and file size.

This is the format of choice for nearly all photographs on the web. You can
achieve excellent quality even at rather high compression settings. Digital
cameras save in a JPG format by default. Switching to TIFF or RAW improves

quality in principle, but the difference is difficult to see.

34

RAW is an image output option available on some digital cameras [29]. Though
lossless, it is a factor of three of four smaller than TIFF files of the same image.
The disadvantage is that there is a different RAW format for each manufacturer,
and so you may have to use the manufacturer's software to view the images.

(Some graphics applications can read some manufacturer's RAW formats.) [29]

PSD, PSP are proprietary formats used by graphics programs. Photoshop's files
have the PSD (Photoshop document) extension, while Paint Shop Pro files use
PSP [29]. These are the preferred working formats as you edit images in the
software, because only the proprietary formats retain all the editing power of the
programs. These packages use layers, for example, to build complex images,
and layer information may be lost in the nonproprietary formats such as TIFF and
JPG. However, be sure to save your end result, as a standard TIFF or JPG, or
you may not be able to view it in a few years when your software has changed

[43].

Currently, GIF and JPG are the formats used for nearly all web images. PNG is
supported by most of the latest generation browsers. TIFF is not widely
supported by web browsers and should be avoided for web use [43]. PNG does
everything GIF does, and better, so expect to see PNG replace GIF in the future.
PNG will not replace JPG, since JPG is capable of much greater compression of

photographic images, even when set for quite minimal loss of quality.

35

2.4 Text Compression

Text compression is typically used to save storage or communication costs. It is
cheaper ways to communicate compressed text files instead of original text files.

Moreover, compressed files are cheaper to store.

For this reasons, various text encoding algorithms have been developed, in
addition the corresponding decoding algorithms. Furthermore, a text encoding
algorithm takes a text file and generates a shorter compressed file from it. With
the compressed file contains all the information necessary to restore the original
file, which can be done by calling the corresponding decoding algorithm. The
most widely used text compression algorithms are based on Lempel-Ziv

techniques [4].

Whitespace compression — Generally, Whitespace compression can be
characterised as "removing what we are not interested in” [44]. This technique is
technically a lossy-compression technique; it is still useful for many types of data
representations we find in the real world. For example, even though HTML is far
more readable in a text editor if indentation and vertical spacing is added, none
of this "whitespace" should make any difference to the rendering of the HTML
document by a Web browser. If you happen to know that an HTML document is
destined only for a Web browser then it might be a good idea to take out all the
whitespace to make it transmit faster and occupy less space in storage. What we
remove in whitespace compression never really had any functional purpose to

start with.

36

Run-Length encoding. - The Run-Length Encoding (RLE) is the simplest widely
used lossless compression technique. Like whitespace compression, it is
"affordable" -- especially to decode [26]. From then, the idea behind it is that
many data representations consist largely of strings of repeated bytes. If
repeated bytes are predominant within the expected data representation, it might
be adequate and efficient to always have the algorithm specify one or more bytes
of iteration count, followed by one character. Moreover, if one-length character
strings occur, these strings will require two (or more) bytes to encode them, in
other words, 00000001 01011000 might be the output bitstream required for just
one ASCII "X" of the input stream. In addition, a hundred "X"s in a row would be

output as 01100100 01011000, which is quite good.

Huffman encoding. — The Huffman encoding looks at the symbol table of a
whole data set. The compression is achieved by finding the "weights" of each
symbol in the data set [16]. There are some symbols occur more frequently than
others do; so Huffman encoding suggests that the frequent symbols need not be
encoded using as many bits as the less frequent symbols. There are variations
on Huffman-style encoding, but the original (and frequent) variation involves
looking for the most common symbol, and encoding it using just one bit, say 1. If
you encounter a 0, you know you're on the way to encoding a longer variable

length symbol.

37

For instance, let's imagine that apply a Huffman encoding to our local phone-
book example (assuming that we have already whitespace-compressed the

report).

Huffman encoding is still fairly cheap to decode, cycle-wise. But it requires a
table lookup, so it cannot be quite as cheap as RLE, however. The encoding side
of Huffman is fairly expensive, though; the whole data set has to be scanned,
and a frequency table built up. In some cases a "shortcut" is appropriate with
Huffman coding. Standard Huffman coding applies to a particular data set being

encoded, with the set-specific symbol table prepended to the output datastream.

Then again, if not just the single data set -- but the whole type of data encoded --
has the same regularities; we can opt for a global Huffman table. However, if we
have such a global Huffman table, we can hardcode the lookups into our
executables, which makes both compression and decompression quite a bit
cheaper (except for the initial global sampling and hard-coding). For instance, if
we know our data set would be English-language prose, letter-frequency tables

are well known and quite consistent across data sets.

38

Lempel-Ziv compression. - The most significant lossless compression
technique is Lempel-Ziv [5]. What is explained here is LZ78, but LZ77 and other
variants work in a similar fashion. The behind idea in LZ78 is to encode a

streaming byte sequence using a dynamic table.

What LZ78 does is fill up one symbol table with (hopefully) helpful entries, then
write it, clear it, and start a new one. In this regard, a symbol table of 32 entries is
still probably too small, since that will get cleared before a lot of reuse of 772 and

the like is achieved. But the small symbol table is easy to illustrate.

In typical data sets, Lempel-Ziv variants achieve much better compression rates
than Huffman or RLE. On the other hand, Lempel-Ziv variants are very pricey
cycle-wise, and can use large tables in memory. Most real-life compression tools
and libraries use a combination of Lempel-Ziv and Huffman techniques. Below

are a more detailed explanation on LZ77 and LZ78

39

2.41 LZ77

The LZ77 algorithm works by keeping a history window of the most recently seen
data and comparing the current data being encoded with the data in the history
window. What are actually placed into the compressed stream are references to
the position in the history window, and the length of the match. If a match cannot
be found the character it is simply encoded into the stream after being flagged as
a literal. As of 2004, the most popular LZ77 based compression method is called

DEFLATE; it combines LZ77 with Huffman coding [26].

2.4.2 LZ78

While the LZ77 algorithm works on past data, the LZ78 algorithm attempts to
work on future data [4]. It does this by forward scanning the input buffer and
matching it against a dictionary it maintains. It will scan into the buffer until it
cannot find a match in the dictionary. At this point it will output the location of the
word in the dictionary, if one is available, the match length and the character that

caused a match failure. The resulting word is then added to the dictionary [4].

Though initially popular, the popularity of LZ78 later dampened, possibly because
for the first few decades after it was introduced, parts of LZ78 were patent
encumbered in the United States. The most popular form of LZ78 compression
was the LZRW algorithm, a modification of the LZ78 algorithm made by Terry

Welch [19].

40

2.4.3 LZ78 Example

This example shows the LZ78 algorithm in action, showing the status of the
output and the dictionary at every stage, both in encoding and decoding the
message [4]. In order to keep things clear, let us assume that we're dealing with
a simple alphabet - capital letters only, and no punctuation or spaces. This
example has been constructed to give reasonable compression on a very short
message; when used on real data, repetition is generally less pronounced, and
so the initial parts of a message will see little compression. As the message
grows, however, the compression ratio tends asymptotically to the maximum. A

message to be sent might then look like the following:
TOBEORNOTTOBEORTOBEORNOT#

The # is a marker used to show that the end of the message has been reached.
Clearly, then, we have 27 symbols in our alphabet. A computer will render these
as strings of bits; 5-bit strings are needed to give sufficient combinations to
encompass the entire dictionary. As the dictionary grows, the strings will need to
grow in length to accommodate the additional entries. A 5-bit string gives 2° = 32
possible combinations of bits, and so when the 33rd dictionary word is created,
the algorithm will have to start using 6-bit strings. Note that since the all-zero
string 00000 is used, and is labelled "0", the 33rd dictionary entry will be labelled

32. The initial dictionary, then, will consist of the following:

= 00000
A = 00001
B =00010

C=00011...cccevnnnnnn Z=11010

41

2.4.3.1 Encoding

If we weren't using LZ78, and just sent the message as it stands (25 symbols at 5

bits each), it would require 125 bits. We will be able to compare this figure to the

LZ78 output later. We are now in a position to apply LZ78 to the message.

Table 2.1 Encoding Table

Symbol: Bit Code: New Dictionary Entry:
(= output)
T 20 =10100 28: TO
O 15=01111 29: OB
B 2 =00010 30: BE
E 5 =00101 31: EO
O 15=01111 32: OR
(start using 6-bit strings)
R 18 =010010 33: RN
N 14 = 001110 34:NO
O 15 =001111 35: 0T
T 20 =010100 36:TT
TO 28 = 011100 37:TOB
BE 30 =011110 38: BEO
OR 32 = 100000 39: ORT
TOB 37 =100101 40: TOBE
EO 31 =011111 41: EOR
RN 33 = 100001 42: RNO
oT 35 =100011 43: OT#
0 = 000000

Total Length = 5*5 + 12*6 = 97 bits.

In using, LZ78 we have made a saving of 28 bits out of 125 -- we have reduced
the message by almost 22%. If the message were longer, then the dictionary
words would begin to represent longer and longer sections of text, allowing

repeated words to be sent very compacily.

42

2.4.3.2 Decoding

Imagine now that we have received the message produced above, and wish to
decode it. We need to know in advance the initial dictionary used, but we can
reconstruct the additional entries as we go, since they are always simply

concatenations of previous entries.

Table 2.2 Decoding Table

Bits: Output: New Entry:
Full: Partial:
10100 =20 | T 28:T?
01111 =15 | O 28: TO 29: O?
00010 =2 |B 29: OB 30: B?
00101 =5 |E 30: BE 31:E?
01111 =15 | O 31: EO 32: 0?
(start using 6-bit
strings)
010010 =18 | R 32: OR 33: R?
001110 =14 | N 33: RN 34: N?
001111 =15 | O 34: NO 35: 07
010100 =20 | T 35: 0T 36:T?
011100 =28 | TO 36:TT 37:TO?
(for 36, only add
1st element)
011110 =30 | BE 37: TOB 38: BE?
(of next dictionary
word)
100000 =32 |OR 38: BEO 39: OR?
100101 =37 | TOB 39: ORT 40: TOB?
011111 =31 | EO 40: TOBE 41: EQ?
100001 =33 | RN 41: EOR 42: RN?
100011 =35 | OT 42: RNO 43: OT?
000000 = #

43

The only slight complication comes if the newly-created dictionary word is sent
immediately. In the decoding example above, when the decoder receives the first
symbol, T, it knows that symbol 28 begins with a T, but what does it end with?

The problem is illustrated below. We are decoding part of a message that reads

ABABA:
Table 2.3 Decoding Example
Bits: Output: New Entry:
Full: Partial:
011101 =29 AB 46: (word) 47: AB?
101111 =47 EAB?

At first glance, this may appear to be asking the impossible of the decoder. We
know ahead of time that entry 47 should be ABA, but how can the decoder work
this out? The critical step is to note that 47 are built out of 29 plus whatever
comes next. 47, therefore, ends with "whatever comes next". But, since it was
sent immediately, it must also start with "whatever comes next", and so must end
with the same symbol it starts with, namely A. This trick allows the decoder to

see that 47 must be ABA.

More generally the situation occurs whenever the encoder encounters the input
of the form ¢ScSc, where c is a single character, Sis a string and ¢S is already in
the dictionary. The encoder outputs the symbol for ¢S putting new symbol for cSc
in the dictionary. Next it sees the ¢Sc in the input and sends the new symbol it

just inserted into the dictionary. By the reasoning presented in the above

44

example this is the only case were the newly-created symbol is send

immediately.

2.5 Other Commercialised and Noncommercialised Compression Programs

Today, data compression technology is still one of the most active researches in
the scientific community. Yet, because of the significant usefulness and
profitability in the marketing sense, most of the compression technologies are

commercialized.

Below are some of the examples of the existing commercial and non-commercial

compression programs in the market. The table shows the compression software

and the technologies behind its compression algorithm [6].

45

Table 2.4 Other Available Compression Programs In the Market

| Program | Author | Used Algorithms
7-Zip ligor Pavlov f + LZMA + PPMII + LZ77 + BWT
/ABC Jurgen Abel BWT

/ACB George Buyanovsky AC

/Archiver JaboSoft |

ARHANGEL |George Lyapko |

ARJ /ARJ Software LZSS + Huff

/ASH [Eugene Shelwien CM

BAR Frank Jennings BWT

BCArchiver |Jetico, Inc |

BEE /Andrew Filinsky CM

BioArc Merlin+ Ltd f

BJWFLATE |Ben Jos Walbeehm |

BMA /Alexander Cherenkov f+BWT

BMF IDmitry Shkarin |

'BOA lan Sutton PPM

BSSC Sergeo Sizikov f+BWT + DC

BZIP2 Julian Seward |

(Cabarc Microsoft f + LZX + Huff + SF
Compressia |Yaakov Gringeler f + BWT + ARI + PPMII
CTW Frans Willems CTW

CTXf Nikita Lesnikov f + PPMII

IDACT IRoy Keene |

DC [Edgar Binder f+BWT + DC + AR
DST ‘Tommaso Guglielmi LZ77 + PPM + Huff
Durilca 'Dmitry Shkarin f+ PPMII

DZIP Stefan Schwoon |

[Emilcont Berto Destasio ICM

Enc 'Serge Osnach f+ PPMII

[EPM 'Serge Osnach f + PPMII

ERI Alexander Ratushnyak |

\GRZip Grebnov llya |

\GRZipll Grebnov llya BWT,ST4 + MTF,WFC + ARI

GZip

Jean-loup Gailly

LZ77

46

HIPP

Bogatov Roman

PPM

ICEOWS IRaphaél Mounier |

JAR /ARJ Software f + LZSS + Huff
Jealgt Jeremy Collake LZSS

KZip Ken Silverman |

LHA Haruyasu Yoshizaki |

Lz2a Brendan G Bohannon LZ

LZOP Markus Oberhumer LZ

LZPX llia Muraviev LZP + ARI
M03 Mij4x |

M99 M. A. Maniscalco |

MAR Xann LZH BWT PPM
'MRP lchiro Matsuda |

‘Ocamyd [Frank Schwellinger DM

IPAC Gérard Meunier BWT + LZ77 + Huff
PAQ6 Matt Mahoney ICM

IPAQAR IM.Mahoney / A.Ratushnyak |CM

IPASQDA Przemyslaw Skibinski f + CM
PIMPLE llia Muraviev |

PKZIP IPKWARE Inc. LZ77

PPMd IDmitry Shkarin PPMII

PPMN Max Smirnov f + PPM
IPPMonstr IDmitry Shkarin PPMII

IPPMVC ID.Shkarin P.Skibinski PPMII

PPMY [Eugene Shelwien PPM

IPPMZ2 Charles Bloom PPM

PSA Serge Pachkovsky |

‘Quark Frederic Bautista LZ

RK Malcolm Taylor f+LZ + PPMZ
IRKC Malcolm Taylor f+LZ + PPMZ
Rzip /Andrew Tridgell |

'SBC 'Sami J. Makinen f+BWT + DC + AR
ShipInBottle |Alexander Turikov |

Slim Serge Voskoboynikov f + PPMII
'Squeez IR.Nausedat / S.Ritter |

'SRANK

Peter Fenwick

47

Stuffit

/Allume Systems

Szip Michael Schindler |

TC llia Muraviev LZRW

Transform Michael Bone BWT

UFA ligor Pavlov |

'UHARC 'Uwe Herklotz f + PPM + LZP + LZ77 + ARl
\UHBC 'Uwe Herklotz BWT + ARI

UPX IM.Oberhumer & L.Molnar |

'WinACE Marcel Lemke f + LZ77 + Huff

\WinHKI Hanspeter Imp |

'Winlmp Technelysium Pty Ltd f + LZ77 + BWT + Huff
'WinRAR [Eugene Roshal f + LZ77 + PPMII + Huff
'WinRK Malcolm Taylor f + PPMD+ PPMZ + ROLZ + CM
WinZip WinZip Computing L2+ QL WEF +Fut +
'WRT IPrzemyslaw Skibinski |

'YBS 'Vadim Yoockin f+BWT + DC + AR

zzIP 'Damien Debin f+BWT

f = Program uses filters, (external) dictionaries and/or file preprocessing.

AC = Associative Coding

ARI = Arithmetic Coding

BWT = Burrows-Wheeler Transform

CM = Context Modeling

CTW = Context Tree Weighting

DC = Distance Coding

DM = Dynamic Markov Modeling

Huff = Huffman

LZ = Lempel-Ziv compression

48

PPM = Prediction by Partial Match

SF= Shannon-Fano

2.6 Summary

This chapter shows the many existing type of compression algorithms that are
design to tackle or handle specific type of datasets. From text to audio and video,
each has its own type of compression technique and motivation. As different
technique will yield different results, the selection of compression techniques is

largely dependent on the user and purpose of the compressed data.

In summary, higher compression rates can be achieved by eliminating details in
data - referred to as lossy compression, data size at the expense of data

resolution or granularity (image, video or audio quality in laymen terms).

It would not be acceptable for lossy compression to be applied to scientific
datasets, as there will be loss of data, which may be the clue for scientific

discoveries and further analysis on higher details on data obtained.

Most codecs have compression features built-in as part of increasing user’s
acceptance by improving storage and transmission performance. Such codecs is
at the expense of computing or processing power, however due to high speed
computing power now is cheaply available such as Intel Pentiums and AMD

Athlons are the commodity processors available that runs on Ghz frequencies.

49

CHAPTER 3: Development Methods

Generally, scientific datasets are a group of data that gathered through

measurements in field of interested, or by simulation. The data has the following

characteristics:

Multiple observing objects. Scientific measurement normal will cover a few
objects of interest. For example, when measuring weather, cloud, wind,
landscape, and temperature will be observed.

Multiple dimension of measurement. When collecting data for scientific
analysis, different aspect of the object will be observed, in different units of
measurement. For example, the measurement taken on wind in weather
analysis includes the speed and the direction of the wind.

High resolution. A good resolution is important for scientific analysis. Poor
resolution will lead to inaccurate conclusion. In order to obtain a good
resolution on the data measure, larger datasets will be generated.

High precision. Generally, scientific dataset is measure with certain precision

of decimal points. Better precision will lead to more accurate result.

From the characteristic above, we could know that the scientific datasets are

random and of different scales. Some data will vary in large quantity, while some

data might vary in decimal points value. Different field of interests also could lead

to different datasets in similar phenomena.

Gathering datasets will be useful for the following:

50

® Scientific datasets always represent statistical measurement of a
phenomenon. With this datasets, the characteristic of the phenomenon could
be studied.

® Modeling of the phenomenon. With the characteristic of the phenomenon, its
physical or computer model could be formed. Forming the model could help
to simulate the phenomenon with different condition.

® Prediction and further analysis. Modeling of a phenomenon will allow us to
simulate a situation before we meet it. It is useful if the situation is
hazardous. It also allows us to gather datasets for phenomenon that we

could not observe at closer distance, for example, hurricane.

There are also other types of datasets available, such as text datasets, numerical
datasets, alphanumeric datasets and etc. But they are either too narrow in term
of data type variety or contain too many redundant data type or characteristic,
therefore the scientific datasets were the most suitable candidate due to its
random characteristic and size. The scientific dataset is the only dataset type that

covers all aspect of all the other dataset types.

Here, there are three different categories of scientific datasets chosen from
various area of aspect in this project. These three categories of scientific
datasets representing real life data used in the industry serve as analytical data

for research purposes.

51

The scientific datasets are obtaining from NCBI mapviewer [7], Fire Dynamic

Simulator (FDS) [8] and Water Quality Data (WQD) [9].

Table 3.1 : Datasets Comparisons

Datasets type NCBI mapviewer Fire Dynamic Water Quality
Simulator Data
What they use Combination of Combination of Combination of
graphical and binary data and numeric and
alphanumerical numeric alphabets
Where they use FASTA or Gen Research in fire Analytical data
Bank simulation processing
Why they use Covers a broad Looks good in Maximize
spectrum of data presentation memory
capturing management
How they use Specialised Specialised Specialised
software and software software
hardware
Disadvantages Small data size Large and Medium data size
usually random in data
size
Advantages Small data size Encapsulate More random in
more information nature than
and random in numerical
nature datasets

The first dataset chosen for this project are obtaining from National Center for

Biotechnology Information (NCBI) organisation. The organization was
established in 1988 as a national resource for molecular biology information,
NCBI purposes are to create public databases, conducts research in
computational biology, develops software tools for analyzing genome data, and
disseminates biomedical information — this serve as for the better understanding

of molecular processes affecting human health and disease [7].

52

There are 2 different formats for this scientific datasets on this category which is
FASTA and GenBank (GB). GenBank is the NIH database maintained and
distributed by NCBI that stores all known public DNA sequences. The sequence
data are submitted to GenBank from individual scientists from around the world,
as well as from the large centers especially involved in the Human Genome
Project. There are number of DNA sequences stored in the GenBank database,

from all organisms, potentially continues to grow at a rapid rate.

The Fire Dynamics Simulator has been under development for almost about 25
years. At National Institute of Standards and Technology (NIST), Howard Baum
and Ronald Rehm laid the theoretical groundwork for the model and devised the

basic numerical solvers [8].

The name of the program is known as NIST Fire Dynamics Simulator or FDS.
FDS is a Fortran 90 computer program that solves the governing equations of
fluid dynamics, and Smokeview is a companion program written in C/OpenGL
programming language that produces images and animations of the results. The
revision are from Version 1 of FDS was publicly released in February 2000,
version 2 in December 2001, and version 3 in November 2002. The present

version of FDS is 4, released in July 2004 [8].

53

The Fire Dynamic Simulator is a computational fluid dynamics (CFD) model of
fire-driven fluid flow. The software solves numerically a form of the Navier-Stokes
equations appropriate for low-speed, thermally-driven flow with an emphasis on

smoke and heat transport from fires.

Fire Dynamic Simulator is a simulator but the dataset generated is a real data for

scientific analysis. Therefore, the datasets produced is valid as scientific data.

The dataset from Fire Dynamic Simulator version 4 is chosen for numerical

scientific dataset. This simulator matches the above mentioned characteristics.

The following lists the consideration point:

® |t generates datasets on multiple aspects, which are density, pressure, heat,
chemical composition, and velocity.

® Each dataset is measured with high resolution. The measurement is taken
on hundred of thousands, to millions of grid cell in a given space, example, a

room. The time steps are from thousands to hundreds of thousand.

Additionally, as in most datasets, the data is recorded in binary format. This is a

compact format and normally does not work well with text compression algorithm.

54

The third category of the dataset is obtaining from U.S. Environmental Protection
Agency (EPA) on Water Quality Data. The U.S. Environmental Protection Agency
(EPA) maintains two data management systems, which contains water quality
information for the nation's waters: the Legacy Data Center (LDC), and STORET.
The LDC is a static, archived database and STORET is an operational system

actively being populated with water quality data [9].

The STORET (short for STOrage and RETrieval) is a repository for water quality,
biological, and physical data and is used by state environmental agencies, EPA

and other federal agencies, universities, private citizens, and many others.

Each datasets sampling result in the LDC and in STORET is accompanied by
information on where the sample was taken (latitude, longitude, state, county,
Hydrologic Unit Code and a brief site identification), when the sample was
gathered, the medium sampled (e.g., water, sediment, fish tissue), and the name
of the organization that sponsored the monitoring [9]. Besides that, STORET
contains information on why the data were gathered; sampling and analytical
methods used; the laboratory used to analyze the samples; the quality control
checks used when sampling, handling the samples, and analyzing the data; and

the personnel responsible for the data.

55

The datasets chosen for this project are supplied to EPA before 1999 were all
placed in Legacy STORET. This system, designed in the 1960s, was a pioneer in

the long term archival of field water monitoring results [9].

There is quite a number of compression and decompression algorithms exist
nowadays, since the first publish of Lempel-Ziv algorithm on 1977, the LZ77
algorithm [5]. The famous commercial software includes pkzip, winzip, and winrar
for windows platform, and compression algorithm famous on UNIX platform, the
gzip/zlib. The gzip/zlib algorithm is a variant of LZ77 algorithm, with
enhancement on its general purpose compression, i.e., on text file or on file with

random data, like binary file.

There are also a lot of algorithms that work on specific dataset, for example,
JPEG, GIF, PNG format that compress picture. These kinds of algorithms have
more efficiency than LZ77 or LZ78 algorithm on picture compression, but they
only work well on specific dataset, which is images for scientific dataset with
binary format as discuss previously, we would need to find a more generic

purpose algorithm.

The gzip/zlib algorithm is chosen for it is the variant of LZ algorithm, and also its
history in UNIX platform. Another algorithm, the bzip compression, also chosen
as it is also well known on UNIX platform [18]. The bzip algorithm using different

approach than the LZ77, therefore, it is suitable for comparing the efficiency of

56

compression among different approach. A benchmarking algorithm, LZRW

compression, is chosen, as it is also a variant of LZ77 compression.

The gzip/zlib and bzip algorithm are used for general compression on UNIX

system. This generally suite the purpose of this approach as the contents of the

dataset will also be random data.

Table 3. 2 Compression Algorithm Comparisons

Algorithm Zlib LZRW Bzip
Founder Jean-loup Gailly Dr. Ross N. Julian Seward
(compression) Williams

Mark Adler
(decompression)
Year Developed 2005 1990 1996

Characteristic Lossless data Lossless data Lossless data
compression compression compression
Usage Generic text Generic text Generic text
Key Deflation Statistical Burrows-Wheeler
attributes/properties technique modelling block-sorting text
(combination of technique Technique

LZ77 and

Huffman coding)

Based on the numerous compression algorithms, these three algorithms have

been chosen. The selection for these algorithms is based on the year of

development, availability and its open source for further development.

57

3.1 LZW Explained

The original Lempel Ziv approach to data compression was first published in
in1977 [5]. Terry Welch's refinements to the algorithm were published in 1984.
The algorithm is surprisingly simple [19]. In a nutshell, LZRW compression
replaces strings of characters with single codes. It does not do any analysis of
the incoming text. Instead, it just adds every new string of characters it sees to a
table of strings. Compression occurs when a single code is output instead of a

string of characters.

The code that the LZW algorithm outputs can be of any arbitrary length, but it
must have more bits in it than a single character [18]. The first 256 codes (when
using eight bit characters) are by default assigned to the standard character set.
The remaining codes are assigned to strings as the algorithm proceeds. The
sample program runs as shown with 12 bit codes. This means codes 0-255 refer

to individual bytes, while codes 256-4095 refers to substrings.

3.1.1 Compression

The LZW compression algorithm in its simplest form is shown in Figure 3.1. A
quick examination of the algorithm shows that LZW is always trying to output
codes for strings that are already known. And each time a new code is output, a

new string is added to the string table.

58

Routine LZW_COMPRESS

STRING = get input character
WHILE there are still input characters DO
CHARACTER = get input character
IF STRING+CHARACTER is in the string table then
STRING = STRING+character
ELSE
output the code for STRING
add STRING+CHARACTER to the string table
STRING = CHARACTER
END of IF
END of WHILE
output the code for STRING

Figure 3.1 The Compression Algorithm

A sample string used to demonstrate the algorithm is shown in Figure 3.2. The
input string is a short list of English words separated by the '/' character. Stepping
through the start of the algorithm for this string, you can see that the first pass
through the loop, a check is performed to see if the string "/W" is in the table.
Since it isn't, the code for '/ is output, and the string "/W" is added to the table.
Since we have 256 characters already defined for codes 0-255, the first string
definition can be assigned to code 256. After the third letter, 'E', has been read
in, the second string code, "WE" is added to the table, and the code for letter 'W'
is output. This continues until in the second word, the characters '/ and 'W' are
read in, matching string number 256. In this case, the code 256 is output, and a
three character string is added to the string table. The process continues until the

string is exhausted and all of the codes have been output.

59

Input String = /WED/WE/WEE/WEB/WET

Character Input | Code Output New code value | New String
/W / 256 /W

E W 257 WE
D E 258 ED

/ D 259 D/
WE 256 260 /WE

/ E 261 E/
WEE 260 262 /WEE
/W 261 263 E/W
EB 257 264 WEB
/ B 265 B/
WET 260 266 /WET
EOF T

The sample output for the string is shown in Figure 3.2 along with the resulting
string table. As can be seen, the string table fills up rapidly, since a new string is
added to the table each time a code is output. In this highly redundant input, 5
code substitutions were output, along with 7 characters. If we were using 9 bit
codes for output, the 19 character input string would be reduced to a 13.5 byte
output string. Of course, this example was carefully chosen to demonstrate code
substitution. In real world examples, compression usually doesn't begin until a

sizable table has been built, usually after at least one hundred or so bytes have

been read in.

Figure 3.2 The Compression Process

60

3.1.2 Decompression

The companion algorithm for compression is the decompression algorithm. It
needs to be able to take the stream of codes output from the compression
algorithm, and use them to exactly recreate the input stream. One reason for the
efficiency of the LZW algorithm is that it does not need to pass the string table to
the decompression code. The table can be built exactly as it was during
compression, using the input stream as data. This is possible because the
compression algorithm always outputs the STRING and CHARACTER
components of a code before it uses it in the output stream. This means that the

compressed data is not burdened with carrying a large string translation table.

Routine LZW_DECOMPRESS

Read OLD_CODE
output OLD_CODE
WHILE there are still input characters DO
Read NEW_CODE
STRING = get translation of NEW_CODE
output STRING
CHARACTER = first character in STRING
add OLD_CODE + CHARACTER to the translation table
OLD_CODE = NEW_CODE

END of WHILE

Figure 3.3 The Decompression Algorithm

The algorithm is shown in Figure 3.3. Just like the compression algorithm, it adds
a new string to the string table each time it reads in a new code. All it needs to do
in addition to that is translate each incoming code into a string and send it to the

output.

61

Figure 3.4 shows the output of the algorithm given the input created by the
compression earlier in the article. The important thing to note is that the string
table ends up looking exactly like the table built up during compression. The
output string is identical to the input string from the compression algorithm. Note
that the first 256 codes are already defined to translate to single character

strings, just like in the compression code.

Input Codes: /W E D 256 E 260 261 257 B 260 T

Input/ OLD_CODE | STRING/ | CHARACTER | New table entry
NEW_CODE Output

/ / /

w / W | 256 = /W

E W E E 257 = WE
D E D D 258 = ED
256 D /W / 259 = D/

E 256 E E 260 = /WE
260 E /WE / 261 =E/
261 260 E/ E 262 = /WEE
257 261 WE W 263 = E/W
B 257 B B 264 = WEB
260 B /WE / 265 = B/

T 260 T T 266 = /WET

Figure 3.4 The Decompression Process

62

3.2 Programming Approaches

There are several programming approaches such as C/C++, assembly language,
Java, Delphi and Visual Basic to develop a simulator. These include procedural
approach, structured approach and object-oriented approach that are widely
used in developing a simulator. For this project, object-oriented approach was
adapted for it facilitates a more usability features over other approaches. For
example, in object-oriented approach, the codes are more reusable, they can
also be overloaded with more than one method. It also features polymorphism

which other approaches cannot place on par.

There are also many programming tools that can be used for this project but C
programming language was chosen based on its fame in powerful low end

programming features and simplicity in usage.

3.3 Evaluation Approaches

In chapter 6, a list of graphs and tables will be shown and discussed for the
efficiency and effectiveness of each algorithm, in terms of compression ratio,

compression time consumed and data throughput.

The motivations behind evaluating these areas are due to the notion that, these
areas are the most important areas pertaining to the performance of a
compression technology. There might be other issue that may affect the

performance, but as in a general observation, these areas that we are testing on,

63

covers 95% of the performance issues.

Data throughputs were also evaluated to prove that by applying compression on
the subjected dataset, it would reduce the time delay and increases the total

throughput.

The dataset used will be one of the data file generated by the FDS program, in
binary data format. The sizes of the datasets used are approximate to 5 MB, 10

MB, 20 MB, and 30 MB. (1 MB = 1048576 bytes of data).

3.4 Summary

This chapter covers the detail of the simulation. It discussed the reason why
simulation is used to simulate the compression processes as well as the
approach used to develop a simulator. It also covers in details of the LZW

compression technology.

The compression simulator will be developed using the object-oriented approach
which is C/C++ programming language. The C/C++ programming language will
be used as the tools to develop the simulator. The next chapter will discuss the

analysis of the simulator architecture.

64

CHAPTER 4: System Analysis

This chapter provides an in depth analysis of the compression evaluation
simulator. The chapter begins with the overview of the simulation concept. The
aim is to provide an explanation of the simulator architecture.

The following section discusses the simulator architecture. It is followed by an
analysis of components as well as the requirement to develop the simulator.

The final section summarises the details of this chapter. It summarises the

analysis of simulator as well as the simulator.

4.1 Simulation Concept

The main concept of this research is to simulate the activity of transmitting a
compressed scientific dataset over a network environment as to evaluate the
performance of various compression algorithms.

The simulation test is conducted on a clean installed computer so that is no other

software or viruses that will afftect the performance of the result.

4.2 Simulation Architecture

Compression evaluation simulator is a flexible test bed for studying and
evaluating the performance of compression technology and algorithm. The
simulator is written in C Language whereby it is developed in object-Oriented
programming approach. The simulator architecture is based on a client-server

approach.

65

The client main program is the main component of the entire simulation, it
contain the testing compression algorithm that will be use for evaluation. It also
performs all the compression and decompression of the subjected datasets, and

also time logging for evaluation purposes.

4.3 Simulation Requirement

This research require a scientific dataset to be tested using various compression
algorithm. A scientific dataset are to be selected based on its characteristic as
describe in chapter 3. This simulation requires WAN connectivity such as
Internet.

The selections of compression algorithm are selected based on its historic
background and popularity. Thou all compression algorithm may derive from the

same theory, in specific; they are different in term of compression logic.

4.4 Simulation Limitation

This simulation evaluate only on three generic compression algorithm, it does not
cover other type-specific compression algorithm such as video, audio or
graphics. This simulation only test on one Internet link for WAN data transmission

test.

66

4.5 Platform and System Specification

Note that the measurements are done on personal computer with the following
specification:

Client PC:

® Pentium 4, 2.0 GHz processor

® 256 MB RAM

® Windows XP

Server PC:
® Pentium 4, 2.0 GHz processor
® 256 MB RAM

® Windows XP

LAN Connection: Ethernet 100 MB.

WAN Connection: 1 Mbps

The above mentioned on the system specification chosen because it fulfill the
memory and processing speed of the datasets. The testing machine CPU
specification can influence the result of the testing on datasets. The overall
performance of the testing machine to produce a significant result of output is

affected by hardware and network capability.

67

4.5.1 System Requirement

The system requirement to develop the compression performance evaluation
simulator is categorized into functional requirement and non-functional
requirement. The following section will discuss the functional requirement and

non-functional requirement of the compression performance evaluation simulator.

4.5.1.1 Functional Requirement

This section describes the functional requirement of the compression
performance evaluation simulator.

= The simulator will support different types of compression algorithm.

= Time used in all processes and tests will be displayed.

= The simulator allow user to configure the evaluation tests.

» The simulator allow user to add in more compression algorithm for evaluation

purposes.

4.5.1.2 Non-Functional Requirement

This section describes the non-functional requirement of the compression
performance evaluation simulator.
» Reliability
= The system should be reliable in performing its simulation functions and
network operations. For example, whenever a compression is executed,
the system should be able to perform some functionality or generate some

message to inform the user what is happening.

68

= Usability
= The system should be easy to operate.

= The test results should be easy to read and understand

» Flexibility
= The system should have the capabilities to take in new compression

algorithm into the system.

4.6 Analysis

In this project, the compression algorithm will be analyse based on these 6
categories which is specifically internally developed for scientific dataset:
1. Speed of compression vs. Size of data sets
e This test will tell us how the compression algorithm fair in term of
compression speed, when the size of the datasets increases.
2. Size after compression vs. Size of data sets
e This test will tell us the threshold of each compression algorithm.
3. Delay time (against Raw data transmission) vs. Size of data sets
e This test is to ascertain the total time taken from compression to data
transmission of each algorithm.
4. Compression Ratio
e This test shows the how much can a datasets be compressed by each

algorithm.

69

5. Data Rate
e This test is to show the rate of compression against the dataset size.
6. Data Transmission time
e This test will simulate the transmission time of a compressed datasets

across a networked environment.

These 6 sets of results will tell us how each algorithm fair in each testing

category, therefore given us a clear view of choosing suitable algorithm.

The choice of algorithm should base on both its compression ratio on the dataset,
and also the compression speed on this dataset. The concern of the project is not
only on the data rate for the transmission. It also seeks for a solution for better
storage on local system. The local system has limited storage available compare
to the server running on super computer. Therefore, the algorithm should have a

good compression ratio on the dataset.

70

4.7 Summary

This chapter covers the major analysis on the key features of the compression
performance evaluation simulation. The overall architecture of the simulation is
analysed in order to find out how can other compression algorithm can be
introduce into this simulator to further study and investigate the behaviors of a

compression technology.

The procedure of testing and evaluating the compression technologies also
covered in this chapter. It provides a good understanding of the simulation
architecture as well as the steps required to evaluate the technologies and

algorithm.

This chapter concludes by presenting the functional requirements and non-

functional requirements of the simulator. Details of system design will be

discussed in the following chapter.

71

CHAPTER 5: System Design and Implementation

The purpose of this project is to analyse and search for a solution in scientific
dataset analysis. The approach used in this project is to compress the data for
transfer and storage. Compression reduces the size of the total amount transfer,

and also occupies less storage space.

The Fire Dynamic Simulator (FDS) does not send data to any port. Instead, it will
write the output to local disk. Therefore, in this project, it is not able to simulate

the port forwarding. Instead, we will use a few files for demonstration.

To compare the performance result, we will use 2 types of compression algorithm
against a benchmarking compression algorithm to compress a binary file. These
results are then to be comparing with same compression over an ASCII file. With
this, it provides a frame of reference against the compression algorithm, which in
term yields a clearer picture on the compression performance.
The procedures of simulation are as below:-

1. Transfer without compression using ASCII file

2. Transfer with compression using ASCII file

3. Repeat step 1 using binary file

4. Repeat step 2 using binary file

5. Repeat step 1 using NCBI file

6. Repeat step 2 using NCBI file

7. Repeat step 1 using Water Quality text file

8. Repeat step 2 using Water Quality text file

72

Step 3 until 8 are to be repeated with the following arrangement.
[)

with zlib v.1.2.3 compression algorithm

e with bzip v1.0.3 compression algorithm

with LZRW3-A compression algorithm

The results are calculated to evaluate the performance for each one of the
algorithms.

The physical connectivity of the system design and implemention is shown on
Figure 5.1

Figure 5.1 Network Connectivity of the System Implementation

Server Station

Internet
Cloud

\
1
1
1
1
1
\
1
1

1

Client Station
1MB

d

Station using
Broadband Services

73

5.1 Flow diagram

5.1.1 Client Program: General Flow

This flow applicable is for all 3 algorithms.

5.1.1.1 Client Program Input/Output

Input Output
Server [P ———» Compressed
Input File =~ ——»{ Client Data Streamed to Server
Compression ——» Main > (None compressed with
Off Program “Compression Off”
(Optional) Option)

Figure 5.2 Client Program Input/Output

74

5.1.1.2 Client Program Flow:

Program
Start

A 4

Check
Compression
On/Off Option

Return raw data or
apply compression

A 4

Connect
to Server

A 4

Read Input
Data

Input
Available?

Send to
Server

Program
End

Figure 5.3 Client Program Flow

75

5.1.1.3 Client Read File Flow:

This is where the compression will apply, if selected. This flow only discusses the

Compression process.

Open file
(First time
Read)

'

Yes Return
Empty
Buffer

Reach
End of File?

The read size control Read Buffer

by Full of Data
“BUFSIZE_COMP”

A 4

Apply
Compression

A 4
Return
Compressed
Data

Figure 5.4 Client Read File Flow

76

Some Notes on the compression control:

Zlib: There is no control parameter available for Zlib compression algorithm.

Bzip: The following parameter is applied -

® blockSize100k = 5: Used for the buffer allocation for compression algorithm.
The size should be 4 times larger than the input buffer size.

® Verbosity = 0: Control the information displayed during compression. 0
indicates no information displayed.

® Work Factor = 30: Control parameter for algorithm to choose between slower
approach or fast but less efficient approach. This value is optimum after

tested, which also suggested by the author of the algorithm.

LZRW: There is no control parameter available for LZRW compression algorithm.

77

5.1.2 Server Program: General Flow

This flow is applicable for all 3 algorithms.

5.1.2.1 Server Program Input/Output:

Input Output:
Compressed Client > Compressed Size
Data Streamed from Main — > Uncompressed
Client —> —— Size
(None compressed with Program L 3 Transmission
“Compression Off” L, Time
Option) Compression Ratio
Data Rate

Figure 5.5 Server Program Input/Output

Note:
1. Compressed Size:

This number indicates the total number of data, in bytes, received from client.

2. Uncompressed Size:
a. For compressed data received from client, this is the total number of data,
in bytes, after decompression process.
b. For raw data received from client, this number will be the same as

Compressed Size, indicating no compression performed.

78

3. Transmission Time
This time, in milliseconds, is measured right before the first byte is received,
until the last byte is received. There is no decompression done in between.
This gives a more precise measurement on the compression and

transmission time.

4. Compression Ratio
The ratio is calculated with the formula:

Compression Ratio = [1 - (Compressed Size / Uncompressed Size)] * 100 %

5. Date Rate

The Data Rate is calculated with the formula:

Date Rate = Uncompressed Size / Transmission Times

79

5.1.2.2 Server Program Flow:

Program
Start

l

»

Wait for Client
Connection

A 4

Receive
Compression
On/Off Option
from Client

A 4
Return raw data or | Read Input

apply compression | From Client

Input

Available? Yes, Write to

Temporary File

Data
Compressed

Yes Apply
Decompression

Write
Statistic to
File

A

Figure 5.6 Server Program Flow

80

The decompression process uses the same parameter as the compression

process.

Zlib: There is no control parameter available for Zlib compression algorithm.

Bzip: The following parameter is applied -

® blockSize100k = 5: Used for the buffer allocation for compression algorithm.
The size should be 4 times larger than the input buffer size.

® Verbosity = 0: Control the information displayed during compression. 0
indicates no information displayed.

® Work Factor = 30: Control parameter for algorithm to choose between slower
approach or fast but less efficient approach. This value is optimum after

tested, which also suggested by the author of the algorithm.

LZRW: There is no control parameter available for LZRW compression algorithm.

5.2 Summary

This chapter covers the major design issues for the compression evaluation

simulator. This includes an overview of the system architecture, which focus on

the simulator design and implementation.

81

CHAPTER 6: System Testing

This chapter details the implementation and testing aspects of the scientific
dataset in the simulator. It first begins with the implementation of the component
classes.

The second section focuses on the testing of the different real life scientific
dataset on the simulator. This section will describe the testing for specific
scientific dataset according to the 3 category which is NCBI dataset, fire dynamic
dataset and water quality dataset.

The final section of this chapter summarises the details of this chapter.
The testing is done in 6 parts:
1. Speed of compression vs. Size of data sets
2. Size after compression vs. Size of data sets
3. Delay time (against Raw data transmission) vs. Size of data sets
4. Compression Ratio
5. Data Rate

6. Data Transmission time

82

6.1 Speed of compression vs. Size of datasets

These table and graph show the relationship betweens the Speed of

compression, in millisecond, for each algorithm, against the Data Size of the

input file, in number of Byte.

Compression Time (ms)

80000

70000

60000

50000

40000

30000

20000

10000

Compression Time Comparison - FDS dataset

= e ———

0 500000 100000 150000 200000 250000 300000 350000
0 00 00 00 00 00 00

Data Size (Byte)

——Zlib —=— LZRW Bzip

Figure 6.1 Compression Time - FDS dataset

83

Table 6.1 Compression Time - FDS dataset
Compression Time

Data Size Zlib LZRW Bzip

5275466 1764.98 486.37 11948.63
10546978 2750.68 825.17 23783.79
21023274 5685.29 1488.94 46937.58
31499570 9176.05 2850.35 70387.92

The Figure 6.1 and Table 6.1 show result on FDS dataset of the test perform on

three algorithms for compression time.

Figure 6.2 Compression Time - NCBI dataset

Compression Time Comparison - NCBI dataset

4000

3500
g 3000
()
£ 2500
|_
§ 2000
(]
(%)
2 1500
£
° 1000 i /
(&)

500 -

0 T . T = = T —
0 2000000 4000000 6000000 8000000
Data Size (Byte)
——zlib —=—lzw bzip|

84

The Figure 6.2 and Table 6.2 show result on NCBI dataset of the test perform on

Table 6.2 Compression Time - NCBI dataset

Compression Time

Data Size Zlib LZRW bzip

3365257 899.06 25.18 1962.67
4265064 949.2 27.05 2603.33
4933488 1087.4 29.78 2864.04
6360548 1435.41 43.19 3644.67

three algorithms for compression time.

Figure 6.3 Compression Time — Water Quality dataset

25000

5000

Compression Time (ms)

Compression Time Comparison - Water Quality

20000 -

15000 A

10000 A

dataset
T T ; 1 * 1
0 5000000 10000000 15000000 20000000 25000000 30000000
Data Size (Byte)

——zlb —=—lzw bzip|

85

Table 6.3 Compression Time — Water Quality dataset

Compression Time

Data Size zlib LZRW bzip

15148619 330.51 55.05 9720.67
21004413 360.4 92.33 14287.33
23609061 597.67 144.87 15802.67
27149542 615.25 140.81 19808.67

The Figure 6.3 and Table 6.3 show result on Water Quality dataset of the test

perform on three algorithms for compression time.

This test shows that, the compression time taken increased in almost
proportional when the size of the datasets increases. The LZRW algorithm
proves to perform better on a scientific datasets, whereas the bzip algorithm
shows the worst performance over a scientific datasets. This proves that the
algorithm logic plays a very important part in the compression process. As we all
know that compression is a process to reducing the redundant data from the
dataset, therefore the time taken to compress a dataset must also include the
time to read through the entire dataset to come out with the logic on which
character or pattern is to be reduced. So the bzip algorithm in this case, proves
that its logic is not suitable for the random characteristic data of the scientific

dataset.

86

6.2 Size after compression vs. Size of datasets
These table and graph show the relationship betweens the Data Size after
compression, in number of Byte, for each algorithm, against the Data Size of the

input file, in number of Byte.

Data Size Comparison - FDS dataset

35000000

30000000 /
»

25000000

20000000 -
15000000 - /
10000000

5000000 - /

O I I I
0 10000000 20000000 30000000 40000000

Raw Data Size (Byte)
—e—Zib —=— LZRW bzip

Compressed Data Size (Byte)

Figure 6.4 Compressed Data Size - FDS dataset

87

Table 6.4 Compressed Data Size - FDS dataset

Compression Size

Data Size

Zlib

LZRW

bzip

5275466

4318662.00

5267854.00

4473554.00

10546978

8612760.00

10530771.00

8922345.00

21023274

17133357.00

20986037.00

17737444.00

31499570

25634697.00

31435114.00

26533703.00

The Figure 6.4 and Table 6.4 show result on FDS dataset of the test perform on

three algorithms for compressed data size.

Figure 6.5 Compressed Data Size - NCBI dataset

Data Size Comparison - NCBI dataset

3500000
3000000
)]
; /
2 2500000
(]
N
N /
@ 2000000 .
©
2 1500000 ‘//////._—__.f
(7]
(]
e
& 1000000 -
£
3

500000
0 T T T T T T
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Raw Data Size (Byte)
——zib —=—lzw bzip

88

Compression Size

Table 6.5 Compressed Data Size - NCBI dataset

Data Size zlib LZRW bzip
3365257 999719 1569215 941548
4265064 1388489 2026173 1217808
4933488 1444812 2280488 1346137
6360548 2012552 2992561 1786697

The Figure 6.5 and Table 6.5 show result on NCBI dataset of the test perform on

three algorithms for compressed data size.

Figure 6.6 Compressed Data Size — Water Quality dataset

Data Size Comparison - Water Quality dataset

4500000

4000000
$ 3500000 /
s /
Q
o 3000000
N
‘s 2500000
©
g -
Y 2000000
(7]
o
£ 1500000
£
S 1000000

500000 e

0
0 5000000 10000000 15000000 20000000 25000000 30000000
Raw Data Size (Byte)
——Zlib —=—lzrw bzip ‘

89

Table 6.6 Compressed Data Size — Water Quality dataset

Compression Size
Data Size zlib LZRW bzip
15148619 344381 2259686 265023
21004413 406111 3096002 305508
23609061 475239 3441771 287646
27149542 361140 3857183 274213

The Figure 6.6 and Table 6.6 show result on Water Quality dataset of the test

perform on three algorithms for compressed data size.

This test shows the after compression size of the subjected datasets. Though the
LZRW fair took the least time to compress a dataset, but the outcome from its
compression shows that it is the least compressed. This result shows that, fast
may not be a good thing in a compression process. The LZRW algorithm may be
the fastest to compress the dataset, but it also proves that it is the least
compressed as compare to the other algorithm. This is due to its algorithm logic
that may have not able to reduce the redundancy from the dataset as much as

the other two algorithms can do.

90

6.3 Delay time (against raw data transmission) vs. Size of datasets

These table and graph show the comparison betweens the reference time, which
is the total time for transferring Raw data in different data size (measured in
number of Byte), towards the total time to completely transfer the whole zipped
data for each algorithm. The time measured for each algorithm includes the time
to compress the raw data to generate the zipped data, and the time to transfer
the zipped data to server side. This means, the time measurement is started

when the first chunk of data is read from file, and ended when the last data is

received.
Total Transmission Time Comparison - FDS
dataset

120000
& 100000
E
Q |
£ 80000
|
S 60000
@
5 40000 /
o /
= 20000 —

w/.
0 T T I I I I
0 500000 100000 150000 200000 250000 300000 350000
0 00 00 00 00 00 00
Data Size (Byte)
——Zlib —=—LZRW bzip Raw

Figure 6.7 Total Transmission Time - FDS dataset

91

Total Transmission Time

Table 6.7 Total Transmission Time - FDS dataset

Data Size Zlib LZRW bzip Raw
5275466 7668.90 7687.90 18064.30 7230.30
10546978 |14549.00 15250.90 36006.20 14448.70
21023274 |29413.60 30552.90 71502.50 29118.10
31499570 |44643.10 46342.60 107098.80 43582.10

The Figure 6.7 and Table 6.7 show result on FDS dataset of the test perform on

three algorithms for total transmission time.

Figure 6.8 Total Transmission Time - NCBI dataset

Total Transmission Time Comparison - NCBI
dataset

8000

7000
D |
£ 6000
Q
£ 5000
F /
S 4000
[’
2
E 3000 -
()
S
= 2000 -

1000 -

O T T T T T T
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Data Size (Byte)
—e—zib —=—lzw bzip - raw|

92

Table 6.8 Total Transmission Time - NCBI dataset

Total Transmission Time

Data Size zlib LZRW bzip raw
3365257 3866 421 2944 441
4265064 4746 471 3905 781
4933488 5437 541 4296 841
6360548 6890 691 5467 1062

The Figure 6.8 and Table 6.8 show result on NCBI dataset of the test perform on

three algorithms for total transmission time.

Figure 6.9 Total Transmission Time — Water Quality dataset

Total Transmission Time Comparison - Water
Quality dataset

35000

30000

25000

20000

15000 -

10000 *f

Transmission Time (ms)

5000

‘7,/':*2

0 T T T
0 5000000 10000000 15000000 20000000 25000000 30000000

Data Size (Byte)

——Zlib —=—Ilzrw bzip raw

93

Table 6.9 Total Transmission Time — Water Quality dataset

Total Transmission Time

Data Size Zlib LZRW bzip raw
15148619 1101 1650 14581 2273
21004413 1662 1802 21431 10375
23609061 2173 2570 23704 9584
27149542 2253 2952 29713 10976

The Figure 6.9 and Table 6.9 show result on Water Quality dataset of the test

perform on three algorithms for total transmission time.

This test relies very much on the first test; since it contributes most of the time
spend in the entire process. With the most time taken on the first test, the bzip
algorithm, again, proves to be the worst performed among the other compression
algorithm. With test done on a simulated networked environment, without the
delay and data lose, it is very obvious that with the least compressed dataset (the
larges in size after compression) will take up the most time for the entire process.
This test also shows that, it may not be always good to compress the dataset
before transmitting. As we can see from the results, the total time taken to

compress and transmit the data over the network are most of the times longer

than transmitting the raw dataset.

94

6.4 Compression Ratio

These table and graph compare the Compression Ratio of each algorithm, in

percentage, for each algorithm, against the Data Size of the input file, in number

of Byte. The formula for compression Ratio is:

Compression Ratio = (1 — ([Compressed Data Size (Byte)] / [Raw Data Size

(Byte)])) * 100 %

20
18
16
14
12
10

Compression Ratio (%)

o B~ O

Compression Ratio Comparison - FDS dataset

L J
®

F \. I \. I \.

5000000 1000000 1500000 2000000 2500000 3000000 3500000
0 0 0 0 0 0

Data Size (Byte)

——Zib —=— LZRW bzip

Figure 6.10 Compression Ratio - FDS dataset

95

Table 6.10 Compression Ratio - FDS dataset
Compression Ratio

Data Size Zlib LZRW bzip

5275466 18.14 0.14 15.20
10546978 18.34 0.15 15.40
21023274 18.50 0.18 15.63
31499570 18.62 0.20 15.76

The Figure 6.10 and Table 6.10 show result on FDS dataset of the test perform
on three algorithms for compression ratio. Based on FDS dataset, Zlib algorithm

shows an impressive result average 18% compression ratio.

Figure 6.11 Compression Ratio - NCBI dataset

Compression Ratio - NCBI dataset

80
9\/\
£ 60
.Q .\.’/—I\.
®
oc
S 40
(/)]
(/)]
o
Q.
E 20
(&)
0 T T T T T T

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Data Size (Byte)

——zib =—lzw bzip

96

Table 6.11 Compression Ratio - NCBI dataset
Compression ratio

Data Size zlib LZRW bzip
3365257 70.29 53.37 72.02
4265064 67.45 52.49 71.45
4933488 70.71 53.78 72.71
6360548 67.99 52.95 71.91

The Figure 6.11 and Table 6.11 show result on NCBI dataset of the test perform
on three algorithms for compression ratio. Based on NCBI dataset, bzip algorithm

shows an impressive result average 72% compression ratio.

Figure 6.12 Compression Ratio — Water Quality dataset

Compression Ratio - Water Quality dataset
100
>~ —
98 — *
< 96
2
T 94
o
S 92
(]
(7]
© 90
s |
£
G 88 -
(G]
86 —
84 T T T T T
0 5000000 10000000 15000000 20000000 25000000 30000000
Data Size (Byte)
——Zlib —=—lzrw bzip ‘

97

Table 6.12 Compression Ratio — Water Quality dataset
Compression ratio

Data Size zlib LZRW bzip
15148619 97.73 85.08 98.25
21004413 98.07 85.26 98.55
23609061 97.99 85.42 98.46
27149542 98.67 85.79 98.99

The Figure 6.12 and Table 6.12 show result on Water Quality dataset of the test
perform on three algorithms for compression ratio. Based on Water Quality
dataset, bzip algorithm shows an impressive result average 98% compression

ratio.

This test shows the compression ratio of each algorithm. This shows that even if
the dataset size increases, the performance are not degraded, in fact all 3
algorithms shows an improvement of performance over the increment of dataset
size. This is evidence in the logic of compression technology. Recall the idea of
compression is based on reducing the redundancy data or pattern in a dataset,
therefore with a larger size of dataset, statistically speaking; the reoccurrences of
a data pattern will be increased. So with much more redundancy occurrences,

the algorithm will be able to reduce even more data from the dataset.

98

6.5 Data Rate

These table and graph compare the Data Transmission Rate of each algorithm,
in Byte per second, for each algorithm, against the Data Size of the input file, in
number of Byte. The Raw Data transmission measurement is included as a
reference. The Data Rate is calculated using the following formula:

Data Rate = [Total Transmitted Zipped Data (Byte)] / [Total Transmission Time

(second)]
Data Rate Comparison - FDS dataset
800
700 - ——a— —— —e
__ 600
3
3 500
3 400
)
[y°]
@ 300
8
8 200
100
0 T T T T T T
0 5000000 1000000 1500000 2000000 2500000 3000000 3500000
0 0 0 0 0 0
Data Size (Byte)
—e—Zlib —=— LZRW bzip Raw

Figure 6.13 Data Rate - FDS dataset

99

Table 6.13 Data Rate - FDS dataset

Data Rate
Data Size Zlib LZRW bzip Raw
5275466 690.56 686.78 292.04 731.49
10546978 725.09 691.63 292.92 730.00
21023274 714.85 688.11 294.02 722.06
31499570 706.13 679.72 294.12 722.78

The Figure 6.13 and Table 6.13 show result on FDS dataset of the test perform

on three algorithms for data rate.

This test shows that although with dataset compressed and transmitted, the
performance is almost the same as transmitting a raw dataset without any
compression. This is because the time taken to compress the dataset is bringing

down the performance. This test also shows that for all 3 algorithms, they

perform at optimum with the 10Mb sized datasets size.

100

Figure 6.14 Data Rate - NCBI dataset

Data Rate Comparison - NCBI dataset

10000

9000 /’J—’—-

8000 :
g 7000
o
£ 6000 -
>
@
5 5000
I
@ 4000
s
8 3000

2000 -

1000 ’ X - .

0 T T T T T T
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Data Size (Byte)
——zib —=—lz7w bzip ~ raw]

Table 6.14 Data Rate - NCBI dataset

Data Rate

Data Size Zlib LZRW bzip raw
3365257 870.48 7993.48 1143.09 7630.97
4265064 898.66 9055.34 1092.21 5461.03
4933488 907.39 9119.2 1148.39 5866.22
6360548 912.59 9204.85 1163.44 5989.22

The Figure 6.14 and Table 6.14 show result on NCBI dataset of the test perform

on three algorithms for data rate.

101

Figure 6.15 Data Rate — Water Quality dataset

Data Rate Comparison - Water Quality dataset
16000
14000
T 12000 | -j\\/-
o
(4]
£ 10000 — \
3 8000
©
C 6000 -
S
a 4000
2000
0 T T T T T
0 5000000 10000000 15000000 20000000 25000000 30000000
Data Size (Byte)
——zib —=—lzw bzip - raw|

Table 6.15 Data Rate — Water Quality dataset

Data Rate
Data Size zlib LZRW bzip raw
15148619 9180.98 | 13758.96 | 1038.93 | 6664.59
21004413 11656.17 | 12638.03 | 980.09 2024.52
23609061 9186.41 10864.73 | 995.99 2463.38
27149542 9197 12050.4 | 913.73 2473.54

The Figure 6.15 and Table 6.15 show result on Water Quality dataset of the test
perform on three algorithms for data rate.

This test shows the data rate over transmission. This test very much relies on the
first test results. It measure the rate of data transmitted over a real time network

environment.

102

6.6 Total Data Transmission Time

These table and graph compare the Total Data Transmission Time of each
algorithm, in millisecond, for each algorithm, against the Zipped Data Size (the
transferred data size), in number of Byte. The Raw Data transmission
measurement is included as a reference. The Total Data Transmission Time is

calculated using the following formula:

Total Data Transmission Time = ([Zipped Data Size (Byte)] / [Data Rate

(Byte/second)]) * 1000 (ms)

The unit for Total Data Transmission Time is in millisecond to for ease of

comparison with other measurement made, i.e., the Total Transmission Time,

Compression Speed, and Delay Time.

103

Transmission Time (ms)

Data Transmission Time Comparison - FDS dataset

50000
45000
40000
35000
30000
25000
20000
15000
10000 ///////
5000 S

0

0 500000 100000 150000 200000 250000 300000 350000
0 00 00 00 00 00 00

Data Size (Byte)

——Zlib —=—LZRW bzip < Raw

Figure 6.16 Data Transmission Time - FDS dataset

104

Data Transmission Time

Table 6.16 Data Transmission Time - FDS dataset

Data Size Zlib LZRW bzip Raw
5275466 5903.92 7201.53 6115.67 7230.30
10546978 [11798.32 14425.73 12222.41 14448.70
21023274 23728.31 29063.96 24564.92 29118.10
31499570 |35467.05 43492.25 36710.88 43582.10

The Figure 6.16 and Table 6.16 show result on FDS dataset of the test perform

on three algorithms for data transmission time.

This test proves that with datasets compressed it shorten the time needed to
transferred the data over the real time network environment. With a comparison
of identical transmission using the raw data, the test shows an improvement of
time taken of about 18%. The test in Figure 6.7, we see that the entire time taken
to compress and transmitting are about the same by mere transmitting the raw
dataset. In this test, now we can see that if by just comparing the transmission
time of compressed dataset against the raw dataset, it proves that by
compressing the dataset, it will take lest time in transmission. This is because

with smaller dataset size, the throughput of the transmission will be increased.

105

Figure 6.17 Data Transmission Time - NCBI dataset

Data Transmission Time Comparison - NCBI
dataset

6000

5000 e

Transmission Time (ms)

4000 //
3000 *
2000
1000
l——’—'/"//.
O I I I I I I
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Data Size (Byte)
——Zlib —=—|zrw bzip

Table 6.17 Data Transmission Time - NCBI dataset

Data Transmission Time

Data Size zlib LZRW bzip

3365257 2966.94 395.82 981.33
4265064 3796.8 443.95 1301.67
4933488 4349.6 511.22 1431.96
6360548 5454.59 647.81 1822.33

The Figure 6.17 and Table 6.17 show result on NCBI dataset of the test perform

on three algorithms for data transmission time.

106

Figure 6.18 Data Transmission Time — Water Quality dataset

12000

10000

8000

6000

4000

Transmission Time (ms)

2000

Data Transmission Time Comparison - Water

Quality dataset

/./'

e

0 5000000

10000000 15000000 20000000 25000000 30000000
Data Size (Byte)

——Zlib —=—[zrw bzip ‘

Table 6.18 Data Transmission Time — Water Quality dataset

Data Transmission Time

Data Size zlib LZRW Bzip

15148619 770.49 1594.95 4860.33
21004413 1301.6 1709.67 7143.67
23609061 1575.33 | 2425.13 7901.33
27149542 | 1637.75 | 2811.19 9904.33

The Figure 6.18 and Table 6.18 show result on Water Quality dataset of the test

perform on three algorithms for data transmission time.

107

6.7 Analysis

As shown in the Figure 6.16, the zlib algorithm for FDS dataset is not always the
best among others. But it shows an optimal performance compare to other

compression algorithms.

The LZRW algorithm on FDS dataset shows the best compression time on all
data size. The compression time for LZRW algorithm is quite uniform and has
little effect on the data size. The zlib algorithm shows slight increment in
compression time in proportional to data size. The bzip algorithm shows dramatic

increment in the compression time as the data size grows.

For zlib algorithm on FDS dataset, the lost of the time in performing compression
is greatly recovered by its high compression ratio. Referring to Figure 6.10, the
zlib algorithm achieves an 18 % compression ratio, and slight increment in the
ratio as data size growth. This means it will need 82 % (and lesser) of the raw
data transmission time. This makes the zlib algorithm able to transmit at the data
rate closed to the data rate for raw data transmission, while saving the storage

space for about 18%.

The LZRW algorithm on FDS dataset has little compression ratio on this data set.

It only achieves less than 1 % of compression ratio, which means it is not

suitable to work on this kind of data set.

108

The bzip algorithm on FDS dataset could achieve quite high compression ratio,
which is about 15 %, and is increasing slightly as data size grows. However, due
to the high compression time needed, it is not able to achieve a data rate that is
close to the data rate for raw data transmission. It is only able to achieve about

40 % of the data rate for raw data transmission.

The large difference of the compression ratio between the zlib algorithm and the
LZRW algorithm shows that, with the same basic of compression, it is able to

achieve a higher compression ratio.

Zlib LZRW Bzip
Dataset -
Category Time (sec/Mb) | Time (sec/Mb) (sZ::TNTb)
FDS 1 1.7758 1.4594 4.0380
FDS 2 1.6892 1.4482 4.0355
FDS 3 1.7167 1.4559 4.0312
FDS 4 1.7415 1.4742 4.0363
NCBI 1 3.8671 0.2683 3.1268
NCBI 2 3.4181 0.2325 3.2066
NCBI 3 3.7631 0.2372 3.1914
NCBI 4 3.4235 0.2309 3.0598
WQD 1 3.1970 0.7302 55.0179
WQD 2 4.0925 0.5820 70.1487
WQD 3 45724 0.7467 82.4068
WQD 4 6.2386 0.7653 108.3574

Table 6.19 Dataset category by Total Transmission Time/Compressed Size

Legend:

FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)
NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format

109

Dataset Category by Time

120

100

80

60

Time (sec/Mb)

40

20

FDS1 FDS2 FDS 3 FDS 4 NCBI1 NCBI2 NCBI3 NCBI4 WQD 1 WQD 2 WQD 3 WQD 4
Dataset Category

@ Zlib m LZRW o Bzip

Figure 6.19 Dataset Category by Time

Legend :
FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)

NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format
Based on above analysis on Figure 6.19, for text file format, Bzip compression is
dependent on file size. The overall performance of Bzip compression drops

tremendously with increasingly bigger file size. From the evaluation, Zlib and

LZRW compression is not affected by file size or dataset type.

110

Zlib LZRW Bzip
Dataset - - -
Category Compre_ssmn Compre_sswn Compre_sswn
Ratio Ratio Ratio
FDS 1 18.14% 0.14% 15.20%
FDS 2 18.34% 0.15% 15.40%
FDS 3 18.50% 0.18% 15.63%
FDS 4 18.62% 0.20% 15.76%
NCBI 1 70.29% 53.37% 72.02%
NCBI 2 67.45% 52.49% 71.45%
NCBI 3 70.71% 53.78% 72.711%
NCBI 4 68.36% 52.95% 71.91%
WQD 1 97.73% 85.08% 98.25%
WQD 2 98.07% 85.26% 98.55%
WQD 3 97.99% 85.42% 98.46%
WQD 4 98.67% 85.79% 98.99%

Table 6.20 Dataset Category by Compression Ratio

Legend:

FDS = Fire Dynamic Simulator dataset

(binary format)

WQD = Water Quality Dataset (text format)

NCBI 1/3 = Fasta format
NCBI 2/4 = GenBank format

111

Dataset Category by Compression Ratio

Compression Ratio

FDS1 FDS2 FDS3 FDS4 NCBI1 NCBI2 NCBI3 NCBI4 WQD1 WQD2 WQD3 WaD4
Dataset Category

—o—Zlib —=— LZRW Bzip

Figure 6.20 Dataset Category by Compression Ratio

Legend :

FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)
NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format

From the analysis of the Figure 6.20, different algorithms able to achieve different
ratios for different data types or file format. Moreover, as for LZRW show as the

lowest performing ratios given by all three dataset types.

112

6.8 Summary

This chapter covers the idea on how the implementation process on the
compression evaluation simulator is carried out. This chapter also covers the
compression testing and evaluation.

For FDS dataset, zlib algorithm works best compare to LZRW and bzip algorithm.
Zlib algorithm achieve high compression ratio for FDS dataset with saving of
storage space

For NCBI dataset, the file size was not affected by LZRW and zlib algorithms.
Refering to Figure B.1, NCBI dataset works well on LZRW algorithm for best time
performance in transmission time and compression time.

For Water Quality dataset, the three algorithms are able to achieve different
compression ratio percentage. However, bzip algorithm performs best
compression ratio performance compare to other algorithms but the drawback is
its takes longer time for data transmission.

From the evaluation and the result obtained, the performance and behaviours of
compression algorithms are based on time which include compression time, data
transmission time and decompression time. The data transmission time is linear
to the file size. The compression algorithms are dependent or independent of the
file format or dataset types. With the effort of scientists and mathematicians,

there is space for the growth of compression algorithm.

113

CHAPTER 7: Conclusion

The development of the compression evaluation benchmarking components has
provided several valuable insights into the idea behind the compression
techniques and behaviours that affects their performance, as well as a journey of
research and development. This chapter will begin with the discussion of the

objective and goals achieved during the process of completing this project.

The third section will discuss the evaluation outcome. This section will detail the
knowledge gained from this compression evaluation benchmarking. It is then
followed by a discussion on future enhancement for the simulator. This section
will describe some of the new functionalities that can be implemented for future

purposes.

7.1 Objectives and Goals Achieved

From this project we are now able to identify and evaluate the unique
characteristic of a scientific dataset. A scientific dataset not just outstand the
other dataset types in strength, but it is also provide the opportunity to vigorously

test the compression algorithm.

Through the evaluation testing on the selected compression algorithm, we were
able to identify and obtain the algorithm that best suit the unique characteristic of
the scientific dataset. Also from the result analysis, we now understand how the
size of datasets will affects the speeds, the ratio and performance as a whole on

the compressed dataset.

114

By researching the current available compression techniques and the ongoing
research on compression techniques, we were now able to identify the
significance of compression performance and the various compression

techniques behind.

7.2 Analysis Conclusion

The analysis results prove that, although the compression algorithm test subject
derives from the same parent algorithm and theory, its performance varies when
it comes to implement on different sized datasets. Some has a uniform
performance through out the tests, while others either show superior

performance or a performance dropped over large datasets.

From this analysis, we could deduce that, the technique of reducing the data
redundancy in a datasets, play a very important role in its performance. How to
reduce the redundancy depends greatly on the developer and the intended
targeted datasets. Different developer may decide to work on the issue applying
different method. Therefore it is clear and wise that specific dataset should
targeted using different or specialised compression algorithm to maximize the

ratios and performance.

115

7.3 Evaluation Outcome

According to the benchmarks conducted, we learned that, with the wide range of
compression techniques and algorithms available, it is not easy to determine
which one is more superior to the other. In fact, there is not one that is the most
superior among the same category of algorithm and technique. A proper study of
the compression algorithm specification should be done before selecting it as the
subject compression algorithm or technique. And specific compression technique
should be performed on a specific type of data. By doing this, the performance of
the compression algorithm would be able to be maximized. In our case, the
scientific dataset were used due to its random characteristic, which truly tested
the compression algorithm, whereas if we were to choose a text datasets or
numerical datasets, the result would be too good to simulate actual world
scenario. These remind us of the background theory of the compression
technology based on, “the information theory” [24], which postulate that a

message contains redundancy.

As we can see, a compression algorithm takes advantages on the specific
pattern in a datasets, which according to statistic laws [24], the algorithm would
be able to take out redundant data and thus compressing the datasets.
Therefore, we should be able to see in the very near future, that the new
generation of compression technique and algorithm will be focusing even more in
detail on a specific dataset, thus enhancing the compression performance to a
greater height. And the more general type of compression algorithm and

technique would be phase out.

116

7.4 Future Enhancement

Currently, this project only involves test on 3 different scientific datasets of variety
file sizes and formats with 3 different types of algorithms. Therefore to obtain a
wider coverage of results of different types, all the tests performed should be
done in a lower specification test machine, to be able to truly evaluate the
performance of a compression algorithm and diverse source of datasets from

various applications.

Moving forward, the study should be able to test on streaming scientific datasets

to allow remote monitoring of experiments on real time.

7.5 Summary

This chapter concludes this project as a whole, and shows that how the
performance of compression algorithms can be evaluated and the importance of
choosing suitable compression techniques against the intended datasets. It also
shows how various properties of a datasets could affect the performance of the

compression algorithms.

117

References

[1]

(2]

(3]
(4]

(5]

(6]

[7]

[8]

Stephen Wolfram, 2002. A New Kind of Science, Wolfram Media, Place:
Champaign, IL.

Harringon, H. J., and James S. Harrington, 1996. High Performance
Benchmarking: 20 Steps To Success. McGraw-Hill Publication.

Camp, Robert C., 1989. Benchmarking. Milwaukee: Quality Press.

Ziv, J., and Lempel, A., 1978. Compression of Individual Sequences via
Variable-Rate Coding. IEEE Trans. Inform. Theory 24, 5 (Sept.), 530-536.

Ziv, J., and Lempel, A., 1977. A Universal Algorithm for Sequential Data
Compression. IEEE Trans. Inform. Theory 23, 3 (May), 337-343.

Werner Bergmans, 2003. The Compression Programs [online]. Available from:
http://www.maximumcompression.com/programs.php

[Accessed 4 November 2005].

National Center for Biotechnology Information, 2005. NCBI Map Viwer [online].
Available from:

http://www.ncbi.nlm.nih.gov/mapview/

[Accessed 27 August 2005].

National Institute of Standards and Technology, 2005. NIST Fire Dynamics
Simulator (FDS) and Smokeview [online]. Available from:

http:/fire.nist.gov/fds/

[Accessed 15 August 2005].

118

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

U.S. Environmental Protection Agency, 2005. STORET Database Access
[online]. Available from:

http://www.epa.gov/storet/dbtop.html

[Accessed 20 August 2005].

G. Shavit, M. F. Ringenburg, J. West, R. E. Ladner, and E. A. Riskin, 2005.
Group testing for video compression. In IEEE Data Compression Conference.
Mar 2004.

A.C. den Brinker and F. Riera-Palou., 2002. Quantisation and interpolation of
Laguerre prediction. Philips Research Eindhoven.

David Salomon, 2000. Data Compression: The Complete Reference. 2nd
Edition. Springer, Video compression: pp. 593-604, Mu-Law and A-Law
Computing: pp. 644-649, H.261: pp. 627-630, MPEG: pp. 605-626.

Stremler, F. G., 1990. Introduction to Communication Systems, 3° Ed.
Addison-Wesley Publishing Co., New York, pp.402-412, 541-547.

Hambley, A.R., 1990. An Introduction to Communication Systems. Computer
Science Press, New York, pp. 239-251.

David J.C. MacKay, 2003. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
2001. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill.

Section 16.3, pp.385-392, Section 30.2: The DFT and FFT, pp. 830-838.

119

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Paul E. Black, 2005. "Shannon-Fano coding", in Dictionary of Algorithms and
Data Structures [online]. U.S. National Institute of Standards and Technology.
Available from:

http://www.nist.gov/dads/HTML/shannonFano.html

[Accessed 15 July 2005]

Mark Nelson, 1989. LZW Data Compression. Dr. Dobb’s Journal.

Terry Welch, 1984. A Technique for High-Performance Data Compression. |IEEE
Computer, 17(6):8-19.

Mark Nelson, 1995. The Data Compression Book. 2nd ed., M&T Books.

Khalid Sayood, 1996. Introduction to Data Compression. Morgan Kaufmann.
Syed Ali Khayam, 2003. The Discrete Cosine Transform (DCT): Theory and
Application [online]. Department of Elecrical & Computer Engineering, Michigan
State University. Available from:
http://www.egr.msu.edu/waves/people/Ali_files/DCT_TR802.pdf

[Accessed 5 May 2005]

Raymond W. Yeung., 2002. A First Course in Information Theory. Kluwer
Academic/Plenum Publishers.

Stanford Goldman, 2005. Information Theory. New York: Dover.

Thomas M. Cover, Joy A. Thomas., 2006. Elements of information theory. 2nd
Edition. New York: Wiley-Interscience.

Arturo San Emeterio Campos, 1999. LZ77 the basics of compression (2nd ed.)
[online]. Available from:

http://www.arturocampos.com/ac_1z77.html

[Accessed 26 July 2005]

120

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Purat, T. Liebchen, P. Noll., 1997. Lossless Transform Coding of Audio
Signals. 102nd AES Convention, Munich.

CDP Digital Audio Working Group, 2005. Digital Audio Best Practices Version
2.0 [online]. Available from:
http://www.cdpheritage.org/digital/audio/documents/CDPDABP_1-2.pdf
[Accessed 4 December 2005]

Miano, John., 1999. Compressed Image File Formats: JPEG, PNG, GIF, XBM,
BMP. Boston: Addison-Wesley Professional.

Ifeachor, Emmanuel C., and Jervis, Barrie W., 2002. Digital Signal Processing: A
Practical Approac. Harlow, England: Pearson Education Limited.

Jonathan (Y) Stein, 2000. Digital Signal Processing, a Computer Science
Perspective. Wiley.

Roger D. Smith, 1999.Encyclopedia of Computer Science [online]. Nature
Publishing Group. Available from:
http://www.modelbenders.com/encyclopedia/encyclopedia.html

[Accessed 15 November 2005]

P. Humphreys, 2004. Extending Ourselves: Computational Science, Empiricism,

and Scientific Method. Oxford: Oxford University Press.

Common Steps in Benchmarking Models. International Benchmarking
Clearinghouse, Houston, TX., 1992.

Jocelyn Dabeau, 2000. An Inroduction to MP3 [online]. Available from:
http://www.law.harvard.edu/faculty/tfisher/music/MP3.html

[Accessed 20 Oct 2005]

121

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Xiph.org, 2000. Vorbis audio compression [online].Available from:
http://www.xiph.org/vorbis/

{Accessed 20 Oct 2005]

Matt Pharr and Greg Humphreys, 2004. Physically Based Rendering: From
Theory to Implementation [online]. Morgan Kaufmann. Available from:
http://graphics.stanford.edu/~mmp/chapters/pbrt_chapter7.pdf

[Accessed 20 Oct 2005]

Hans Dieter Like, 1999. The Origins of the Sampling Theorem. |EEE
Communications Magazine, pp.106—108, April 1999.

Creative Labs, 2000. History and Milestones [online]. Available from:
http://www.creative.com/corporate/about/

[Accessed 25 Oct 2005]

M. H. Johnson and A. Alwan, 2002. Speech Coding: Fundamentals and
Applications. Encyclopedia of Telecommunications, Wiley.

M. R. Schroeder and B. S. Atal, 1985. Code-excited linear prediction (CELP):
high-quality speech at very low bit rates. Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 10, pp.
937-940.

Sun Young Lee, Yong Ho Cho, Whoiyul Kim and Euee S. Jang, 2004.

Advances in Multimedia Information Processing .PCM 2004, Volume 3333/2004

Selective Motion Estimation for Fast Video Encoding: pp. 630-638

Murray, James D., and William van Ryper, 1996. Encyclopedia of Graphics File

Formats, Second Edition. Sebastopol, Calif.: O'Reilly.

122

[44]

[45]

Mertz, David, 2003. Text Processing in Python. Addison-Wesley Professional —
PEARSON.

Joint Video Team of ITU-T and ISO/IEC JTC 1, 2003 Draft ITU-T
Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), document JVT-
G050r1, May 2003; technical corrigendum 1 documents JVT-K050r1 (non-
integrated form) and JVT-K051r1 (integrated form), March 2004; and Fidelity
Range Extensions documents JVT-L047 (non-integrated form) and JVT-L050

(integrated form), July 2004.

123

