

PERFORMANCE EVALUATION OF COMPRESSION

TECHNIQUES ON SCIENTIFIC DATASET

LAM WAI LEONG

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY UNIVERSITY OF MALAYA

KUALA LUMPUR

2006

Univ
ers

ity
 of

 M
ala

ya

PERFORMANCE EVALUATION OF COMPRESSION

TECHNIQUES ON SCIENTIFIC DATASET

LAM WAI LEONG

DISSERTATION SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER COMPUTER

SCIENCE

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY UNIVERSITY OF MALAYA

KUALA LUMPUR

2006

Univ
ers

ity
 of

 M
ala

ya

 i

Abstract

Data communication is vital, as the world is getting smaller with the help of

Internet. The challenge to improve quality and responsiveness of communication

is in the network bandwidth bottleneck. However, with compression technologies,

the impact of transferring data can be optimized.

There are various compression technologies in the market from different origins

both available commercially and public domain. Performance in compression

technologies are measured according to required computation power and

compression ratios achieved.

However, not all data can be compressed effectively, where desired compression

rates are achieved. The reason is that most data are obtained from digitizing or

converted from analog signals. Examples: audio, photos, graphs plotted by input

sensors.

An important characteristic of data compression lies in the compression ratio and

compression speed of a particular data compression tool. Though most

theoretical background of compression tool compresses datasets based on

Lempel-ziv’s algorithm, in reality, these tools varied when it comes to

compressing a binary file to a text file or a graphical one. This is evidence in the

statistically analysis of the file format. This project looks into various data

compression technique and when to use them, with specifically focus on

Univ
ers

ity
 of

 M
ala

ya

 ii

evaluating the performance of existing data compression and extraction

algorithms that best suit scientific dataset.

This project applies various tests on selected range of scientific datasets to

ascertain the overall performance against a benchmarking compression

technique. The tests are based on a real time network transmission of

compression and extraction on a set of scientific datasets over a networked

environment.

This project proves that a generic compression algorithm fair better compare to a

more format specific compression algorithm when use on a scientific datasets.

The outcome and procedures used in this project use as a template for choosing

a suitable compression tool for any particular format of dataset. This template

shall minimise any doubt and confusion of choosing and using a compression

techniques.

Univ
ers

ity
 of

 M
ala

ya

 iii

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Dr. Rosli Salleh,

for his invaluable guidance, insight and encouragement throughout the entire

project.

Besides that, I would like to express my sincerest gratitude and utmost

appreciation to my lecturer Mr. Ang Tan Fong for their invaluable advice and

guidance throughout the whole development project. Their contributions are truly

appreciated.

I would also like to thank my family members for their unending support and

understanding. Last but not least, my utmost gratitude is conveyed to my beloved

course-mates and friends, especially Mr Davis Tan Kok Bing, Mr. Alvin Yew Wei

Han and Mr. Yoo Sang Nge for their support and sharing of their much-

appreciated knowledge with me. They have been very helpful and supportive.

Thank you very much!

Univ
ers

ity
 of

 M
ala

ya

 iv

Table of Contents

ABSTRACT..I

ACKNOWLEDGEMENT...III

TABLE OF CONTENTS .. IV

LIST OF FIGURES... VII

LIST OF TABLES.. VIII

LIST OF TABLES.. VIII

ABBREVIATIONS ... IX

CHAPTER 1: INTRODUCTION...1

1.1.1 Introduction to Data Compression...2
1.1.2 Introduction to Simulation ...4
1.1.3 Summary ..5

1.2 PROBLEM STATEMENT AND OBJECTIVE...6
1.2.1 Problem Statement ...6
1.2.2 Objectives of the Project ...7
1.2.3 Project Scope ...7

1.3 METHODOLOGY ...8
1.3.1 Research Methodology...8
1.3.2 Sample Datasets Generation..9
1.3.3 Simulator Selection...9
1.3.4 Method of Analysis ...10
1.3.5 Summary ..10

1.4 REPORT ORGANISATIONS ..11

CHAPTER 2: LITERATURE REVIEW ...13

2.1 AUDIO COMPRESSION..13
2.1.1 Audio Sampling ..15
2.1.2 Voc File Compression...16
2.1.3 Linear Predictive Coding and Code Excited Linear Predictor16
2.1.4 Mu-law and A-law compression ..17

2.2 VIDEO COMPRESSION ..18
2.2.1 Video Compression Standards ...18
2.2.2 Video Compression Processing Functions..19

2.2.2.1 DCT & Zig-Zag Scanning ...19
2.2.2.2 Quantisation...21
2.2.2.3 Entropy Coding ..22
2.2.2.4 Motion Estimation ..23

2.2.3 The H.261 Compression Algorithm ...24
2.2.4 The MPEG Compression Algorithm ..28

Univ
ers

ity
 of

 M
ala

ya

 v

2.3 IMAGE COMPRESSION..32
2.4 TEXT COMPRESSION ...36

2.4.1 LZ77 ...40
2.4.2 LZ78 ...40
2.4.3 LZ78 Example ..41
2.4.3.1 Encoding..42
2.4.3.2 Decoding ...43

2.5 OTHER COMMERCIALISED AND NONCOMMERCIALISED COMPRESSION PROGRAMS45
2.6 SUMMARY ...49

CHAPTER 3: DEVELOPMENT METHODS...50

3.1 LZW EXPLAINED ...58
3.1.1 Compression ..58
3.1.2 Decompression...61

3.2 PROGRAMMING APPROACHES ..63
3.3 EVALUATION APPROACHES ..63
3.4 SUMMARY ...64

CHAPTER 4: SYSTEM ANALYSIS..65

4.1 SIMULATION CONCEPT...65
4.2 SIMULATION ARCHITECTURE ..65
4.3 SIMULATION REQUIREMENT..66
4.4 SIMULATION LIMITATION...66
4.5 PLATFORM AND SYSTEM SPECIFICATION...67

4.5.1 System Requirement ..68
4.5.1.1 Functional Requirement ...68
4.5.1.2 Non-Functional Requirement ...68

4.6 ANALYSIS..69
4.7 SUMMARY ...71

CHAPTER 5: SYSTEM DESIGN AND IMPLEMENTATION...72

5.1 FLOW DIAGRAM ...74
5.1.1 Client Program: General Flow...74

5.1.1.1 Client Program Input/Output ..74
5.1.1.2 Client Program Flow: ...75
5.1.1.3 Client Read File Flow: ..76

5.1.2 Server Program: General Flow ...78
5.1.2.1 Server Program Input/Output: ..78

5.2 SUMMARY ...81

Univ
ers

ity
 of

 M
ala

ya

 vi

CHAPTER 6: SYSTEM TESTING ...82

6.1 SPEED OF COMPRESSION VS. SIZE OF DATASETS...83
6.2 SIZE AFTER COMPRESSION VS. SIZE OF DATASETS ..87
6.3 DELAY TIME (AGAINST RAW DATA TRANSMISSION) VS. SIZE OF DATASETS91
6.4 COMPRESSION RATIO ..95
6.7 ANALYSIS..108
6.8 SUMMARY ...113

CHAPTER 7: CONCLUSION ..114

7.1 OBJECTIVES AND GOALS ACHIEVED..114
7.2 ANALYSIS CONCLUSION ...115
7.3 EVALUATION OUTCOME ...116
7.4 FUTURE ENHANCEMENT...117
7.5 SUMMARY ...117

REFERENCES..118

APPENDIX A : SIMULATOR GUIDELINE..124

STEP 1: VERIFYING THE LIBRARY FILE STORED IN BOTH SERVER AND CLIENT PC124
STEP 2: STARTING SERVICES ON SERVER AND CLIENT PC WITH DATASET125
STEP 3: VIEW RESULT ON THE SERVER AND CLIENT CONSOLE130
STEP 4: REVIEW THE GENERATED RESULT ON SERVER ..132

APPENDIX B : PERFORMANCE ANALYSIS TABLE ON SCIENTIFIC DATASET133

Univ
ers

ity
 of

 M
ala

ya

 vii

List of Figures

Figure 2.1 : The DCT Operation ..20

Figure 2.2 : Zig-zag scanning ..21

Figure 2.3 : Motion Estimation...24

Figure 2.4 : H.261 Encoder ...25

Figure 2.5 : H.261 Decoder ...27

Figure 2.6 : MPEG Motion Compensation ...29
Figure 3.1 The Compression Algorithm ...59

Figure 3.2 The Compression Process ..60

Figure 3.3 The Decompression Algorithm ...61

Figure 3.4 The Decompression Process..62

Figure 5.1 Network Connectivity of the System Implementation73

Figure 5.2 Client Program Input/Output ...74

Figure 5.3 Client Program Flow...75

Figure 5.4 Client Read File Flow ...76

Figure 5.5 Server Program Input/Output..78

Figure 5.6 Server Program Flow..80

Figure 6.1 Compression Time - FDS dataset...83

Figure 6.2 Compression Time - NCBI dataset ...84

Figure 6.3 Compression Time – Water Quality dataset ...85

Figure 6.4 Compressed Data Size - FDS dataset ..87

Figure 6.5 Compressed Data Size - NCBI dataset...88

Figure 6.6 Compressed Data Size – Water Quality dataset ...89

Figure 6.7 Total Transmission Time - FDS dataset ..91

Figure 6.8 Total Transmission Time - NCBI dataset ...92

Figure 6.9 Total Transmission Time – Water Quality dataset ...93

Figure 6.10 Compression Ratio - FDS dataset ..95

Figure 6.11 Compression Ratio - NCBI dataset...96

Figure 6.12 Compression Ratio – Water Quality dataset ...97

Figure 6.13 Data Rate - FDS dataset ..99

Figure 6.14 Data Rate - NCBI dataset ...101

Figure 6.15 Data Rate – Water Quality dataset ...102

Figure 6.16 Data Transmission Time - FDS dataset ..104

Figure 6.17 Data Transmission Time - NCBI dataset ...106

Figure 6.18 Data Transmission Time – Water Quality dataset107

Figure 6.19 Dataset Category by Time ..110

Figure 6.20 Dataset Category by Compression Ratio..112
Figure A.1 Starting server services..125

Figure A.2 Executing testing on Zlib algorithm...126

Figure A.3 Executing testing on LZRW algorithm ..126

Figure A.4 Executing testing on Bzip algorithm ...127

Figure A.5 Executing the compression algorithm for different dataset size128

Figure A.6 Result on the server console..130

Figure A.7 Result on the client console ...131

Figure A.8 Capturing generated result for dataset ...132
Figure B.1 Performance Analysis Table on Scientific Dataset133

Univ
ers

ity
 of

 M
ala

ya

 viii

List of Tables

Table 2.1 Encoding Table ...42
Table 2.2 Decoding Table ...43
Table 2.3 Decoding Example ..44
Table 2.4 Other Available Compression Programs In the Market46
Table 3.1 Datasets Comparisons ..52
Table 3.2 Compression Algorithm Comparisons..57
Table 6.1 Compression Time - FDS dataset ..84

Table 6.2 Compression Time - NCBI dataset ..85

Table 6.3 Compression Time – Water Quality dataset...86

Table 6.4 Compressed Data Size - FDS dataset ...88

Table 6.5 Compressed Data Size - NCBI dataset..89

Table 6.6 Compressed Data Size – Water Quality dataset ..90

Table 6.7 Total Transmission Time - FDS dataset..92

Table 6.8 Total Transmission Time - NCBI dataset ...93

Table 6.9 Total Transmission Time – Water Quality dataset..94

Table 6.10 Compression Ratio - FDS dataset ...96

Table 6.11 Compression Ratio - NCBI dataset ..97

Table 6.12 Compression Ratio – Water Quality dataset ..98

Table 6.13 Data Rate - FDS dataset ...100

Table 6.14 Data Rate - NCBI dataset ..101

Table 6.15 Data Rate – Water Quality dataset ..102

Table 6.16 Data Transmission Time - FDS dataset ...105

Table 6.17 Data Transmission Time - NCBI dataset..106

Table 6.18 Data Transmission Time – Water Quality dataset107

Table 6.19 Dataset category by Total Transmission Time/Compressed Size109

Table 6.20 Dataset Category by Compression Ratio ...111

Univ
ers

ity
 of

 M
ala

ya

 ix

Abbreviations

AAC Advanced Audio Coding
AC Associative Coding
ARI Arithmetic Coding
ASCII American Standard Code for Information Interchange
AVC Advanced Video Coding
BMP bit-mapped graphics
BWT Burrows-Wheeler Transform
CCITT Consultative Committee for International Telegraphy and

Telephony.
CD compact disc
CDDA Compact Disc Digital Audio
CELP Code Excited Linear Predictor
CIF Common Intermediate Format
CM Context Modeling
CPU central processing unit
CTW Context Tree Weighting
DARPA The Defense Advanced Research Projects Agency
DB Decibels
DC Distance Coding
DCT Discrete Cosine Transform
DM Dynamic Markov Modeling
DVD-R DVD-Recordable
FDS Fire Dynamic Simulator
FFT Fast Fourier transform
FLAC Free Lossless Audio Codec
GIF Graphics Interchange Format
HTML Hypertext Markup Language
Huff Huffman
IBC International Benchmarking Clearinghouse
IP Internet Protocol
ITU International Telecommunication Union

Univ
ers

ity
 of

 M
ala

ya

 x

JPEG

Joint Photographic Experts Group

JVT Joint Video Team
LZ Lempel-Ziv
LZRW Lempel-Ziv Ross Williams
LZW Lempel-Zif-Welch
LPC Linear Predictive Coding
MB Mega Byte
MP3 MPEG, audio layer 3
MPEG Moving Picture Experts Group
MS Millisecond
NCBI National Center for Biotechnology Information
NIST National Institute of Standards and Technology
PNG Portable Network Graphics
PPM Prediction by Partial Match
PSD Photoshop document
PSP Paint Shop Pro document
RAM Random Access Memory
RLC Run-Length Coding
RLE Run-Length Encoding
RM Real Media
SE Second Edition
SF Shannon-Fano
TCP/IP Transmission Control Protocol/Internet Protocol
TIFF Tagged Image File Format
TTA The True Audio
VCEG Video Coding Experts Group
WAN Wide Area Network
WMA Windows Media Audio

Univ
ers

ity
 of

 M
ala

ya

 1

CHAPTER 1: Introduction

With the rapid growth of the scientific research and the establishment of

compression algorithms as the fundamental layer of choice in most research

environments, the drawbacks of compression techniques have become more

obvious. Any form of communication, compressed data communication only

works when both the sender and receiver of the information understand the

encoding scheme.

On rapid development in demand of scientific research, compression is useful

because it helps to reduce the consumption of expensive resources, such as disk

space or transmission bandwidth. On the downside of it, compressed data must

be uncompressed to be viewed (or heard), and this extra processing may be

detrimental to some applications.

After decade with the time when a computer known as Apple II and the monitor

was a monochrome and window was never heard of. That was the beginning of

the technology era; that was the time when Internet and networking was only

known to university and advanced research authority like DARPA.

It used to be that the data to be shared among peer can always fitted into a

single diskette of 1.4 MB. As the advancement in the technology area, with the

boom of internet, the size of the data to be shared among peer become the

bottleneck that were never thought of. The advancement in the electronic

industries also contributed into the mounting problem capturing large size of

digital data.

Univ
ers

ity
 of

 M
ala

ya

 2

If the technology trends are as predicted by Moore’s law, in no time, the internet

and its backbone technology (TCP/IP) will halt and break down, the hard drive

will and RAM will not be able to keep up with the data rate. Without a proper

solution, the advancement in technology would simply slowdown gradually. This

is the price to pay for higher definition graphics, greater quality entertainment,

more realistic sight and sound. To be exact, there are more information

embedded into a dataset, the greater the size; the greater the data sizes,

eventually it will reach the physical limit, the limit of our silicon technology.

The only solution to the problem was data compression. The idea was to

compress the data into smaller size that can help in reducing storage problem for

the ever growing large sized data and increase the throughput over the network.

1.1.1 Introduction to Data Compression

Based on the Information Theory by Claude E. Shannon in the 50’s, scientist and

mathematician were able to come out with the algorithm that compresses the

data or message based on the statistical redundancy of that particular data or

message [17]. For example, the letter 'e' is much more common in English text

than the letter 'z', and the probability that the letter 'q' will be followed by the letter

'z' is rather small.

Univ
ers

ity
 of

 M
ala

ya

 3

In computer science studies, data compression is the process of encoding

information using fewer bits than a more obvious representation would use,

through use of specific encoding schemes. For example, this article could be

encoded with fewer bits if we accept the convention that the word "compression"

is encoded as "comp". From which compression technology spawns into various

shape and sizes.

Since the first introduction of the Information Theory, almost 30 years ago,

Abraham Lempel and Jacob Ziv introduced the first pointer-based encoding in

1977, followed by the work of Terry Welch, which form the LZRW algorithm [24].

The initial target of this algorithm is text (ASCII) contents. With the emergence of

the digital contents, more and more algorithms were developed, which could be

generally grouped into two major categories. One category is lossless

compression, and other one is lossy compression. As the word implies, lossless

compression will pertain the contents of the source, while lossy compression

allows lost in some portion of information.

These two major categories are to be further divide into various other variants

that are design to specifically target to tackle the different format coded of the

datasets.

Univ

ers
ity

 of
 M

ala
ya

 4

1.1.2 Introduction to Simulation

A simulation is defined as an imitation of some real devices or state of affairs

[32]. Simulation attempts to represent certain features of the behavioral of a

physical or abstract system by the behavioral of another system.

Simulation is used in many contexts, including the modeling of natural systems,

and human systems to gain insight into the operation of those systems; and

simulation in technology and safety engineering where the goal is to test some

real-world practical scenario. Simulation, using a simulator or otherwise

experimenting with a fictitious situation can show the eventual real effects of

some possible conditions.

There is various type of simulation, but in this project we are only interested in

computer simulation. The main reason are mainly on the reliability and the trust

people put in computer simulations depends on the validity of the simulation

model, thus verification and validation are most crucial importance in the

development of computer simulations. Moreover, important aspect of computer

simulations is that of reproducibility of the results, meaning that a simulation

model should not provide a different answer for each execution. An exception to

reproducibility is human in the loop simulations such as flight simulations and

computer games. Here a human is part of the simulation and thus influences the

outcome in a way that is hard if not impossible to reproduce exactly.

Computer simulation is a useful part of modeling many natural systems in

physics, chemistry and biology, and human systems in economics as well as in

Univ
ers

ity
 of

 M
ala

ya

 5

engineering to gain insight into the operation of those systems. A good example

of the usefulness of using computers to simulate can be found in the field of

network traffic simulation. Computer simulations are often considered to be

human out of the loop simulations [33].

Traditionally, the formal modeling of systems has been via a mathematical

model, which attempts to find analytical solutions to problems which enable the

prediction of the behavioral of the system from a set of parameters and initial

conditions. Computer simulation is often used as an adjunct to, or substitution

for, modeling systems for which simple closed form analytic solutions are not

possible. There are many different types of computer simulation, the common

feature are, they all share is the attempt to generate a sample of representative

scenarios for a model in which a complete enumeration of all possible states of

the model would be prohibitive or impossible.

1.1.3 Summary

We now know the motivation behind compression technology and generally how

compression technologies works. But in reality we are still far from understanding

how each and every compression algorithm treats different types of data sets. In

the next chapter, we will start to look at how the specialised algorithm tackle and

compress specific datasets.

Univ
ers

ity
 of

 M
ala

ya

 6

1.2 Problem Statement and Objective

This chapter explains the motivation behind this study and the objective that wish

to accomplish.

1.2.1 Problem Statement

With the increasing data size in the digital world, due to new and more

sophisticated data capturing technology, it is just the matter of time when our

archive and storage technology reaches its physical limit. And the impending

problem will also cause our existing networking infrastructure to seized

functioning due to the heavy load of data transmission. All these in time will affect

all human communication activities. Yet, with the overwhelming number of

compression technologies available in the scientific community, ranging from the

most general type to highly specific and proprietary, it poses another question,

“Which one is more effective than the other, when to use and why?”

This study will try to answer the question on how compression technology

impacts the performance of human activities, especially in the scientific

community and how to evaluate which compression technology best suit in

scientific usage. Univ
ers

ity
 of

 M
ala

ya

 7

1.2.2 Objectives of the Project

The following are the objectives of the project:

• To analyse significance of compression algorithm over data transmission

network

• To evaluate the performance of the compression algorithms over the scientific

datasets

• To identify significance of compression towards extraction performance

• To identify the behaviours of a compression algorithms

1.2.3 Project Scope

The following are the goal of the project:

• To identify compression characteristic of the scientific datasets

• To develop a simulator program using C/C++ language for compressing and

decompressing datasets over TCP/IP network

• The simulator will include both client and server which evaluate on three

algorithm as zlib, LZRW and bzip

• To investigate the significant of compression technology and different type of

compression techniques for scientific datasets

Univ
ers

ity
 of

 M
ala

ya

 8

1.3 Methodology

The purpose of this study is to examine the compression and extraction

performance on a set of scientific dataset.

The four purposes of this chapter are to (1) describe the research methodology

of this study, (2) explain the sample dataset generation, (3) describe the

procedure used in selecting the appropriate simulator algorithm, and (4) provide

an explanation of the procedures used to analyse the data.

1.3.1 Research Methodology

A benchmarking comparison methodology was used for this study. A benchmark

is selected to compare with the compression and extraction result. The term

‘benchmarking’ is commonly applied to a research methodology designed to

compare and differentiate data from different sets of data that are supposed to

arrive at the same results.

Harrington & Harrington define benchmarking as “a systematic way to identify,

understand, and creatively evolve superior products, services, designs,

equipment, processes, and practices to improve one’s real performance” [2]. The

International Benchmarking Clearinghouse, or IBC, defines benchmarking as “the

process of continuously comparing and measuring an organisation with leaders

anywhere in the world to gain information that will help to take action to improve

the performance” [34]. According to Camp, “Benchmarking is the search for

industry best practices that lead to superior performance”[3].

Univ
ers

ity
 of

 M
ala

ya

 9

For these reasons, the benchmarking comparison research methodology is

selected as the methodology used in this study to assess and analyse the

performance of various compression and extraction technology.

1.3.2 Sample Datasets Generation

The sample datasets uses in the evaluation must fulfill the following

characteristics:

• Random and different scales.

• Vary in large quantity, while some data might vary in decimal points value.

The scientific datasets chosen for this project which representing research area

are from biological dataset, water quality dataset and fire dynamic dataset. These

all dataset are real life sampling for actual research purposes.

1.3.3 Simulator Selection

One the simulator selected for this project, the “Fire Dynamic Simulator”, is

because of its ability to generate datasets on multiple aspects on fire breakout

scenario, which includes density, pressure, heat, chemical composition, and

velocity [8]. Each dataset is measured with high resolution that are taken on

hundred of thousands, to millions of grid cell in a given space, example, a room.

The time steps are from thousands to hundreds of thousand.

Therefore, these samples are suitable to use as the sample datasets in the

attempt to evaluate the performance on compression and extraction of scientific

datasets.

Univ
ers

ity
 of

 M
ala

ya

 10

1.3.4 Method of Analysis

The data analysis consisted of examining the three major areas, the compression

ratio, compression time, and the throughput of the generated data sets through a

simulated data transmission. All three criteria are subject to comparison based

on a benchmarking algorithm over the dataset size. Tables are constructed form

comparison on different compression algorithm of the above criteria.

1.3.5 Summary

The purpose of this chapter was to describe the research methodology of this

study, explained the sample dataset generation, described the procedure used in

selecting the appropriate simulator algorithm, and provides an explanation of the

procedures used to analyse data.

Univ
ers

ity
 of

 M
ala

ya

 11

1.4 Report Organisations

This report has a total of 7 chapters. It is organised as follows:

Chapter 1 is the introduction of the project. This chapter also defined the

objectives and goals of this project as well as describing the research methods

used.

Chapter 2 In this chapter, we look into details the various compression

algorithms that exist in the current market. Hence, it explore into the different

area of data compression. We will also look at what technology of compression

algorithms based on.

Chapter 3 In this chapter, we will discuss how this project is derived from, and

how it is being developed. We will also look at how specific algorithms and

datasets are selected for this project.

Chapter 4 This chapter describes and analyses the system used to simulate the

test in this project.

Chapter 5 This chapter covers the design aspects of the system. It also

describes the flow of the system accompanied by the system flow diagrams.

Univ
ers

ity
 of

 M
ala

ya

 12

Chapter 6 This chapter covers the detailed implementation of the system and

discusses the simulations and the results. This chapter also summarises how the

performance of the compression algorithms being gauged.

Chapter 7 This chapter describes the overall findings and conclusion of this

project and summarises the research and the development of this system.

Univ
ers

ity
 of

 M
ala

ya

 13

CHAPTER 2: Literature Review

Compression can be used and has been applied on variety of data types. Some

common data types are audio data, image, text file and video data. In this study

we will look at the 4 major types of data types: audio, image, video and text.

2.1 Audio Compression

Various popular audio compression format includes MP3, RM (Real Media), Ogg

and FLAC. Generally the two major groups of compressed audio file formats are

as follow:

• formats with lossless compression, such as Free Lossless Audio Codec

(FLAC), Monkey's Audio (filename extension APE), WavPack, Shorten,

TTA and lossless Windows Media Audio (WMA).

• formats with lossy compression, such as MP3, Ogg Vorbis (filename

extension OGG), lossy Windows Media Audio (WMA) and Advanced

Audio Coding (AAC).

Lossy file formats are based on psychoacoustic models that leave out sounds

that humans cannot or can hardly hear, e.g. a low volume sound after a big

volume sound. MP3 is such an example.

Lossless audio formats (such as TTA) provide compression about 2:1, but no

data/quality is lost in the compression - when uncompressed; the data will be

identical to the original. Lossless audio codecs are a good choice to keep the

music's original quality. For example, using the free The True Audio (TTA)

Univ
ers

ity
 of

 M
ala

ya

 14

lossless audio codec you can store up to 20 audio CDs from your music

collection on one single DVD-R for playback.

One of the most popular audio file formats was MP3, which uses the MPEG-1

audio layer 3 codec to provide acceptable lossy compression for music files. The

compression is about 10:1 compared with uncompressed WAV files (in a

standard compression scheme), therefore a CD with MP3 files can store about

10 hours of music, compared to one hour of the standard Compact Disc Digital

Audio (CDDA), which uses WAV files. As mention in Jocelyn Dabeau article, An

Introduction to MP3, the MP3 compression “takes into account the perception of

sound waves by the human ear”, and then apply “traditional compression

techniques to achieve a high level of data reduction while retaining near-CD

quality sound” [35].

There are many newer audio formats and codecs claiming to achieve improved

compression and quality over MP3. Ogg Vorbis is an unpatented, open and free

codec [36]. Microsoft has its Windows Media Audio format.

Lossless compression of sound is not nearly as widely used outside of

professional applications, as lossy compression can provide a much greater data

compression ratio with nearly the same apparent quality [13].

Below we look at how analogue audio is sampled and various type of audio

compression technique.

Univ
ers

ity
 of

 M
ala

ya

 15

2.1.1 Audio Sampling

The digital representation of audio data offers many advantages such as high

noise immunity, stability, and reproducibility [14]. Audio in digital form also allows

for efficient implementation and execution of many audio processing functions

through the computer.

The conversion of audio from analog to digital begins by sampling the audio input

at regular, discrete intervals of time and quantising the sampled values into a

discrete number of evenly spaced levels. According to the Nyquist theory, a

time-sampled signal can faithfully represent a signal up to half the sampling rate.

Above that threshold, the frequencies become blurred and signal noise becomes

readily apparent [37].

The usual sampling frequencies in today typically used range from 8 kHz for

basic speech to 48 kHz for commercial DAT machines. The number of quantiser

levels is typically a power of 2 to make full use of a fixed number of bits per audio

sample. The typical range for bits per sample is between 8 and 16 bits. This

allows for a range of 256 to 65,536 levels of quantisation per sample. With each

additional bit of quantiser spacing, the signal to noise ratio increases by roughly 6

decibels (dB). Thus, the dynamic range capability of these representations is

from 48 to 96 dB, respectively [38].

The data rates associated with uncompressed digital audio are substantial. For

audio data on a CD, for example, which is sampled at 44.1 kHz with 16 bits per

Univ
ers

ity
 of

 M
ala

ya

 16

channel for two channels, about 1.4 megabits per second are processed. A clear

need exists for some form of compression to enable the more efficient storage

and transmission of digital audio data [30].

2.1.2 Voc File Compression

The simplest compression techniques simply removed any silence from the

entire sample. Creative Labs introduced this form of compression with their

introduction of the SoundBlaster line of sound cards [39]. This method analyses

the whole sample and then codes the silence into the sample using byte codes.

It is very similar to run-length coding.

2.1.3 Linear Predictive Coding and Code Excited Linear Predictor

This was an early development in audio compression that was used primarily for

speech. A Linear Predictive Coding (LPC) encoder compares speech to an

analytical model of the vocal tract, then throws away the speech and stores the

parameters of the best-fit model. The output quality was poor and was often

compared to computer speech and thus is not used much today [40]

Then a later development, Code Excited Linear Predictor (CELP), increased the

complexity of the speech model further, while allowing for greater compression

due to faster computers, and produced much better results [41]. Sound quality

improved, while the compression ratio increased. The algorithm compares

speech with an analytical model of the vocal tract and computes the errors

Univ
ers

ity
 of

 M
ala

ya

 17

between the original speech and the model. It transmits both model parameters

and a very compressed representation of the errors.

2.1.4 Mu-law and A-law compression

Logarithmic compression is a good method because it matches the way the

human ear works [12]. It only loses information which the ear would not hear

anyway, and gives good quality results for both speech and music. Although the

compression ratio is not very high it requires very little processing power to

achieve. It is the international standard telephony encoding format, also known

as International Telecommunication Union - ITU (formerly Consultative

Committee for International Telegraphy and Telephony. - CCITT) standard. It is

commonly used in North America and Japan for ISDN 8 kHz sampled, voice

grade, digital telephone service.

It packs each 16-bit sample into 8 bits by using a logarithmic table to encode a

13-bit dynamic range, dropping the least significant 3 bits of precision. The

quantisation levels are dispersed unevenly instead of linearly to mimic the way

that the human ear perceives sound levels differently at different frequencies.

Unlike linear quantisation, the logarithmic step spacing’s represent low-amplitude

samples with greater accuracy than higher-amplitude samples. This method is

fast and compresses data into half the size of the original sample. This method

also is used quite widely due to the universal nature of its adoption.

Univ
ers

ity
 of

 M
ala

ya

 18

2.2 Video Compression

The increasing demand to incorporate video data into telecommunications

services, the corporate environment, the entertainment industry, and even at

home has made digital video technology a necessity. A problem is that still image

and digital video data rates are very large, typically in the range of 150Mbits/sec

[12]. Data rates of this magnitude would consume a lot of the bandwidth, storage

and computing resources in the typical personal computer. For this reason, video

compression standards have been developed to eliminate picture redundancy,

allowing video information to be transmitted and stored in a compact and efficient

manner [10].

2.2.1 Video Compression Standards

During the '80s and '90s, Discrete Cosine Transform (DCT) based compression

algorithms and international standards were developed to alleviate storage and

bandwidth limitations imposed by digital still image and motion video applications

[22].

Today there are two DCT-based standards that are widely used and accepted

worldwide:

• H.261 (Video codec for audiovisual services)

• MPEG (Motion Picture Experts Group)

Each of these standards is well suited for particular applications: H.261 for video

conferencing, and MPEG for high-quality, multimedia systems.

Univ
ers

ity
 of

 M
ala

ya

 19

2.2.2 Video Compression Processing Functions

As mentioned earlier, the JPEG, H.261, and MPEG video compression standards

are all based on the DCT. In addition to being DCT-based, many processing

functions and compression principles are common to these standards [22].

The basic compression scheme for all three standards can be summarised as

follows: divide the picture into 8x8 blocks, determine relevant picture information,

discard redundant or insignificant information, and encode relevant picture

information with the least number of bits.

Common functions to all three standards are:

• DCT

• Zig-Zag Scanning

• Quantisation

• Entropy Coding

• Motion Estimation

2.2.2.1 DCT & Zig-Zag Scanning

The Discrete Cosine Transform is closely related to the Discrete Fourier

Transform (FFT) and, as such, allows data to be represented in terms of its

frequency components. Similarly, in image processing applications the two

dimensional (2D) DCT maps a picture or a picture segment into its 2D frequency

components [16].

Univ
ers

ity
 of

 M
ala

ya

 20

For video compression applications, since the variations in the block tend to be

low, the great majority of these transformations result in a more compact

representation of the block. The block energy is packed into the corresponding

lower frequency bins [16].

The DCT component at coordinates (0,0) is referred to as the DC bin. All other

components are referred to as AC bins.

Figure 2.1 : The DCT Operation

Since the mapping is from lower to higher frequencies in the horizontal and

vertical directions, zig-zag scanning of the resulting 2D frequency bins clusters

packets of picture information from low to high frequencies into a 1D stream of

bins. Univ
ers

ity
 of

 M
ala

ya

 21

Figure 2.2 : Zig-zag scanning

2.2.2.2 Quantisation

Quantisation is the primary source of data loss in DCT based image compression

algorithms. Quantisation reduces the amount of information required to represent

the frequency bins by converting amplitudes that fall in certain ranges to one in a

set of quantisation levels [22]. For simplicity, all the standard image compression

algorithms use linear quantisation where the step size quantisation levels are

constant.

Quantisation in the frequency domain has many advantages over directly

quantizing the pixel values. Quantisation of the pixel values results in a visual

artifact called "contour" distortion where small changes in amplitude in a gradient

area cause step-sized changes in the reconstructed amplitude. Except for the DC

bin, quantisation error for each of the frequency bins average out to zero over the

8 x 8 block.

Univ
ers

ity
 of

 M
ala

ya

 22

2.2.2.3 Entropy Coding

Entropy coding is a loss-less compression scheme based on statistical properties

of the picture or the stream of information to be compressed [15]. Although

entropy coding is implemented slightly different in each of the standards, the

basic “entropy coding” scheme consists of encoding the most frequently

occurring patterns with the least number of bits. In, this manner, data can be

compressed by an additional factor of 3 or 4. Entropy coding for video

compression applications is a two step process: Zero Run-Length Coding (RLC)

and Huffman coding [15].

RLC data is an intermediate symbolic representation of the quantized bins which

utilizes a pair of numbers. The first number represents the number of consecutive

zeros while the second number represents the value between zero-run lengths.

For instance the RLC code (5,8) represents the sequence (0,0,0,0,0,8) of

numbers.

Huffman coding assigns a variable length code to the RLC data, producing

variable length bitstream data [16]. This requires Huffman tables which can be

pre-computed based on statistical properties of the image or can be pre-

determined if a default table is to be used (as it is in H.261 and MPEG). In either

case, the same table is used to decode the bitstream data. As mentioned above,

frequently occurring RLC patterns are coded with the least number of bits. At this

point the digital stream, which is a representation of the picture, has no specific

Univ
ers

ity
 of

 M
ala

ya

 23

boundaries or fixed length. This information can now be stored or appropriately

prepared for transmission.

2.2.2.4 Motion Estimation

In general, successive pictures in a motion video sequence tend to be highly

correlated, that is, the pictures change slightly over a small period of time [42].

This implies that the arithmetic difference between these pictures is small. For

this reason, compression ratios for motion video sequences may be increased by

encoding the arithmetic difference between two or more successive frames.

In contrast, objects that are in motion increase the arithmetic difference between

frames which in turn implies that more bits are required to encode the sequence.

To address this issue, motion estimation is utilised to determine the displacement

of an object

Motion estimation is the process by which elements in a picture are best

correlated to elements in other pictures (ahead or behind) by the estimated

amount of motion. The amount of motion is encapsulated in the motion vector.

Forward motion vectors refer to correlation with previous pictures. Backward

motion vectors refer to correlation with future pictures. Univ
ers

ity
 of

 M
ala

ya

 24

Figure 2.3 : Motion Estimation

An efficient motion estimation algorithm increases frame correlation, which in turn

minimises pixel arithmetic difference. Resulting in not only higher compression

ratios but also in higher quality decoded video sequences. Motion estimation is

an extremely computationally intensive operation difficult to implement in real-

time. For this reason, varieties of motion estimation algorithms have been

implemented by the industry [42].

2.2.3 The H.261 Compression Algorithm

Video conferencing and video telephony are the intended applications for the

H.261 compression algorithm [12]. For these applications, representation of

limited motion video (taking heads) is a key component.

To allow for low-cost implementations, H.261 fixes many of the system

parameters. Only the YUV color component separation with the 4:2:0 sampling

Univ
ers

ity
 of

 M
ala

ya

 25

ratio is allowed by the standard. In addition, H.261 allows for only two frame

sizes, CIF (352x288) and QCIF (176x144).

As with the JPEG standard, each color component picture is partitioned into 8x8

pixel blocks of picture samples. Instead of coding each block separately, H.261

groups 4 Y blocks, 1 U block, and 1 V block together into a unit called a

macroblock. The macroblock is the basic unit for compression [12].

Figure 2.4 : H.261 Encoder

To compress each macroblock, the H.261 standard allows the compressor to

select from several compression options [12]. The H.261 standard only specifies

the decoding of each of the compression options. The method used to select the

options is not standardised. This allows vendors to differentiate their products by

providing methods with different cost-quality tradeoffs. A typical method used to

compress H.261 is described below.

Univ
ers

ity
 of

 M
ala

ya

 26

First, motion estimation is performed on each macroblock. Since objects in the

frame may be moving in different directions, each macroblock is allowed to have

a different motion vector. The motion vector is used as a displacement vector to

fetch a macroblock from the preceding frame to be used as a prediction. Motion

estimation in H.261 is only performed relative to the preceding frame, and on full-

pixel offsets up to a maximum of +/-15 in the horizontal and vertical directions. To

improve the prediction, H.261 allows for an optional loop-filter to be applied to the

prediction on a macroblock basis.

Next, a decision must be made to code either the arithmetic difference between

the offset prediction macroblock and the current macroblock or to code the

current macroblock from scratch. Since the arithmetic difference is usually small,

coding the arithmetic difference results in higher compression.

An 8x8 DCT is applied to each block in either the arithmetic difference

macroblock or the current macroblock. Instead of quantisation matrices, H.261

uses one quantisation scale for all frequency bins. Since the DC bin is the most

important, it is separately quantized to a fixed 8 bit scale. Adjustment of the

quantisation scale on a per macroblock basis is the primary method for

controlling the quality and compression ratio in H.261. Univ
ers

ity
 of

 M
ala

ya

 27

Figure 2.5 : H.261 Decoder

The final stage of compression is the zig-zag scanning, run-length encoding and

entropy coding. H.261 specifies fixed Huffman coding tables for entropy coding.

To decompress an H.261 frame inverse operations are performed in reverse

order. Motion estimation is not necessary since the motion vectors are

embedded in the compressed bitstream. The H.261 de-compressor simply

applies the motion vector offset to retrieve the prediction, if necessary.

ITU-T H.264 / MPEG-4 Advanced Video Coding (commonly referred as

H.264/AVC) is the newest entry in the series of international video coding

standards [45]. It is currently the most powerful and state-of-the-art standard, and

was developed by a Joint Video Team (JVT) consisting of experts from ITU-T’s

Video Coding Experts Group (VCEG) and ISO/IEC’s Moving Picture Experts

Group (MPEG).

Univ
ers

ity
 of

 M
ala

ya

 28

In the process of creation, a standard was created that improved coding

efficiency by a factor of at least about two (on average) over MPEG-2, the most

widely used video coding standard [45].

With the wide breadth of applications in the market, the application focus for the

work was correspondingly broad ranging from video conferencing to

entertainment (broadcasting over cable, satellite, terrestrial, cable modem, DSL;

storage on DVDs and hard disks; video on demand etc.) to streaming video,

surveillance and military applications, and digital cinema.

2.2.4 The MPEG Compression Algorithm

MPEG compression algorithms were developed to address the need for higher

quality pictures and increased system flexibility, which are required by multi-

media systems [12]. Since it was developed later, MPEG was able to leverage

the efforts behind the development of the H.261 algorithms.

As with H.261, only the YUV color component separation with the 4:2:0 sampling

ratio is allowed by the MPEG standard. Unlike H.261, the frame size is not fixed

although a 352x240 frame size is typically used. MPEG adopted the macroblock

of H.261 (4 Y blocks, 1 U block, and 1 V block) as the basic unit for compression.

To compress each macroblock, the MPEG standard allows the compressor to

select from several compression options [12].

Univ
ers

ity
 of

 M
ala

ya

 29

Figure 2.6 : MPEG Motion Compensation

There are many more options available under the MPEG standard than under

H.261 [12]. As with H.26l, the MPEG standard only specifies the decoding of

each of the compression options. The method used to select the options is not

standardised, allowing vendors to differentiate their products by providing

methods with different cost-quality trade-offs. A typical method used to compress

MPEG is described below.

First, motion estimation is performed on each macroblock. In addition to motion

estimation from just the preceding frame, MPEG allows for prediction from

frames in the past or future or a combination of a past and future frame (with

restrictions).

Since objects in the frame may not be moving steadily from frame to frame, each

macroblock is allowed to have up to two motion vectors (one relative to a past

Univ
ers

ity
 of

 M
ala

ya

 30

frame and another relative to a future frame). Note that to allow for predictions

from future frames, the extra frames must be buffered and the sequence coded

out-of-order.

Motion estimation is also allowed over a greater range (up to +/- 1023) and with

half-pixel resolution. The loop-filter of H.261 is not included in MPEG because

the half-pixel resolution motion vectors serve the same purpose.

Next, a four-way decision must be made. MPEG allows the prediction formed

from the arithmetic difference between the current macroblock and an offset

macroblock from a past frame, future frame, an average between past and future

frame, to be coded; or to code the current macroblock from scratch. A different

decision can be made for each macroblock subject to the restrictions that follow.

Key frames (called Intra or I frames) which do not allow any predicted

macroblocks are coded periodically to allow for random access into the video

stream. Forward predicted frames (called P frames) allow macroblocks predicted

from past P frames or I frames or macroblocks coded from scratch. I frames and

P frames are used as past and future frames for Bi-directional predicted frames

(called B frames). B frames allow for all four types of macroblocks.

An 8x8 DCT is applied to each block in either the arithmetic difference or current

macroblock. MPEG uses both matrices (like JPEG) and a scale factor (like

H.261) for quantisation. Since the DC bin is the most important, it is quantized to

a fixed 8 bit scale.

Univ
ers

ity
 of

 M
ala

ya

 31

Since the visual effects of frequency bin quantisation are different for predicted

and current blocks, MPEG allows for two matrices (one for each type). Typically,

the matrices are set once for a picture sequence and the quantisation scale is

adjusted to control the compression ratio.

The final stage of compression is the zig-zag scanning, run-length encoding and

entropy coding. Like H.261, MPEG specifies fixed Huffman coding tables for

entropy coding.

To decompress an MPEG frame each operation is performed in reverse except

for motion estimation. Since the motion vectors and the decision are embedded

in the compressed bit-stream, the MPEG de-compressor just needs to apply the

motion vector offsets to retrieve the prediction from the past and/or future frames

if necessary.

Univ
ers

ity
 of

 M
ala

ya

 32

2.3 Image Compression

In image compression, there are numerous compressions available, for example,

JPG, GIF, TIFF, PNG, BMP. But what are they, and what makes them different

from the others?

TIFF is, in principle, a very flexible format that can be lossless or lossy. The

details of the image storage algorithm are included as part of the file. In practice,

TIFF is used almost exclusively as a lossless image storage format that uses no

compression at all. Most graphics programs that use TIFF do not compression.

Consequently, file sizes are quite big [29].

This is usually the best quality output from a digital camera. Digital cameras often

offer around three JPG quality settings plus TIFF. Since JPG always means at

least some loss of quality, TIFF means better quality. However, the file size is

huge compared to even the best JPG setting, and the advantages may not be

noticeable.

A more important use of TIFF is as the working storage format as you edit and

manipulate digital images. You do not want to go through several loads, edit,

save cycles with JPG storage, as the degradation accumulates with each new

save. One or two JPG saves at high quality may not be noticeable, but the tenth

certainly will be. TIFF is lossless, so there is no degradation associated with

saving a TIFF file.

Univ
ers

ity
 of

 M
ala

ya

 33

PNG is also a lossless storage format [29]. However, in contrast with common

TIFF usage, it looks for patterns in the image that it can use to compress file size.

The compression is exactly reversible, so the image is recovered exactly.

GIF creates a table of up to 256 colors from a pool of 16 million. If the image has

fewer than 256 colors, GIF can render the image exactly. When the image

contains many colors, software that creates the GIF uses any of several

algorithms to approximate the colors in the image with the limited palette of 256

colors available. Better algorithms search the image to find an optimum set of

256 colors. Sometimes GIF uses the nearest color to represent each pixel, and

sometimes it uses "error diffusion" to adjust the color of nearby pixels to correct

for the error in each pixel.

PNG is of principal value in two applications:

1. If you have an image with large areas of exactly uniform color, but

contains more than 256 colors, PNG is your choice. Its strategy is similar

to that of GIF, but it supports 16 million colors, not just 256.

If you want to display a photograph exactly without loss on the web, PNG is your

choice. Later generation web browsers support PNG, and PNG is the only

lossless format that web browsers support.

GIF achieves compression in two ways. First, it reduces the number of colors of

color-rich images, thereby reducing the number of bits needed per pixel, as just

described. Second, it replaces commonly occurring patterns (especially large

areas of uniform color) with a short abbreviation: instead of storing "white, white,

Univ
ers

ity
 of

 M
ala

ya

 34

white, white, white," it stores "5 white." Thus, GIF is "lossless" only for images

with 256 colors or less. For a rich, true color image, GIF may "lose" 99.998% of

the colors.

JPG is optimized for photographs and similar continuous tone images that

contain many, many colors. It can achieve astounding compression ratios even

while maintaining very high image quality. GIF compression is unkind to such

images. JPG works by analyzing images and discarding kinds of information that

the eye is least likely to notice. It stores information as 24 bit color. Important: the

degree of compression of JPG is adjustable. At moderate compression levels of

photographic images, it is very difficult for the eye to discern any difference from

the original, even at extreme magnification. Compression factors of more than 20

are often quite acceptable. Better graphics programs, such as Paint Shop Pro

and Photoshop, allow you to view the image quality and file size as a function of

compression level, so that you can conveniently choose the balance between

qualities and file size.

This is the format of choice for nearly all photographs on the web. You can

achieve excellent quality even at rather high compression settings. Digital

cameras save in a JPG format by default. Switching to TIFF or RAW improves

quality in principle, but the difference is difficult to see.

Univ
ers

ity
 of

 M
ala

ya

 35

RAW is an image output option available on some digital cameras [29]. Though

lossless, it is a factor of three of four smaller than TIFF files of the same image.

The disadvantage is that there is a different RAW format for each manufacturer,

and so you may have to use the manufacturer's software to view the images.

(Some graphics applications can read some manufacturer's RAW formats.) [29]

PSD, PSP are proprietary formats used by graphics programs. Photoshop's files

have the PSD (Photoshop document) extension, while Paint Shop Pro files use

PSP [29]. These are the preferred working formats as you edit images in the

software, because only the proprietary formats retain all the editing power of the

programs. These packages use layers, for example, to build complex images,

and layer information may be lost in the nonproprietary formats such as TIFF and

JPG. However, be sure to save your end result, as a standard TIFF or JPG, or

you may not be able to view it in a few years when your software has changed

[43].

Currently, GIF and JPG are the formats used for nearly all web images. PNG is

supported by most of the latest generation browsers. TIFF is not widely

supported by web browsers and should be avoided for web use [43]. PNG does

everything GIF does, and better, so expect to see PNG replace GIF in the future.

PNG will not replace JPG, since JPG is capable of much greater compression of

photographic images, even when set for quite minimal loss of quality.

Univ
ers

ity
 of

 M
ala

ya

 36

2.4 Text Compression

Text compression is typically used to save storage or communication costs. It is

cheaper ways to communicate compressed text files instead of original text files.

Moreover, compressed files are cheaper to store.

For this reasons, various text encoding algorithms have been developed, in

addition the corresponding decoding algorithms. Furthermore, a text encoding

algorithm takes a text file and generates a shorter compressed file from it. With

the compressed file contains all the information necessary to restore the original

file, which can be done by calling the corresponding decoding algorithm. The

most widely used text compression algorithms are based on Lempel-Ziv

techniques [4].

Whitespace compression – Generally, Whitespace compression can be

characterised as "removing what we are not interested in” [44]. This technique is

technically a lossy-compression technique; it is still useful for many types of data

representations we find in the real world. For example, even though HTML is far

more readable in a text editor if indentation and vertical spacing is added, none

of this "whitespace" should make any difference to the rendering of the HTML

document by a Web browser. If you happen to know that an HTML document is

destined only for a Web browser then it might be a good idea to take out all the

whitespace to make it transmit faster and occupy less space in storage. What we

remove in whitespace compression never really had any functional purpose to

start with.

Univ
ers

ity
 of

 M
ala

ya

 37

Run-Length encoding. - The Run-Length Encoding (RLE) is the simplest widely

used lossless compression technique. Like whitespace compression, it is

"affordable" -- especially to decode [26]. From then, the idea behind it is that

many data representations consist largely of strings of repeated bytes. If

repeated bytes are predominant within the expected data representation, it might

be adequate and efficient to always have the algorithm specify one or more bytes

of iteration count, followed by one character. Moreover, if one-length character

strings occur, these strings will require two (or more) bytes to encode them, in

other words, 00000001 01011000 might be the output bitstream required for just

one ASCII "X" of the input stream. In addition, a hundred "X"s in a row would be

output as 01100100 01011000, which is quite good.

Huffman encoding. – The Huffman encoding looks at the symbol table of a

whole data set. The compression is achieved by finding the "weights" of each

symbol in the data set [16]. There are some symbols occur more frequently than

others do; so Huffman encoding suggests that the frequent symbols need not be

encoded using as many bits as the less frequent symbols. There are variations

on Huffman-style encoding, but the original (and frequent) variation involves

looking for the most common symbol, and encoding it using just one bit, say 1. If

you encounter a 0, you know you're on the way to encoding a longer variable

length symbol.

Univ
ers

ity
 of

 M
ala

ya

 38

For instance, let's imagine that apply a Huffman encoding to our local phone-

book example (assuming that we have already whitespace-compressed the

report).

Huffman encoding is still fairly cheap to decode, cycle-wise. But it requires a

table lookup, so it cannot be quite as cheap as RLE, however. The encoding side

of Huffman is fairly expensive, though; the whole data set has to be scanned,

and a frequency table built up. In some cases a "shortcut" is appropriate with

Huffman coding. Standard Huffman coding applies to a particular data set being

encoded, with the set-specific symbol table prepended to the output datastream.

Then again, if not just the single data set -- but the whole type of data encoded --

has the same regularities; we can opt for a global Huffman table. However, if we

have such a global Huffman table, we can hardcode the lookups into our

executables, which makes both compression and decompression quite a bit

cheaper (except for the initial global sampling and hard-coding). For instance, if

we know our data set would be English-language prose, letter-frequency tables

are well known and quite consistent across data sets.

Univ
ers

ity
 of

 M
ala

ya

 39

Lempel-Ziv compression. - The most significant lossless compression

technique is Lempel-Ziv [5]. What is explained here is LZ78, but LZ77 and other

variants work in a similar fashion. The behind idea in LZ78 is to encode a

streaming byte sequence using a dynamic table.

What LZ78 does is fill up one symbol table with (hopefully) helpful entries, then

write it, clear it, and start a new one. In this regard, a symbol table of 32 entries is

still probably too small, since that will get cleared before a lot of reuse of 772 and

the like is achieved. But the small symbol table is easy to illustrate.

In typical data sets, Lempel-Ziv variants achieve much better compression rates

than Huffman or RLE. On the other hand, Lempel-Ziv variants are very pricey

cycle-wise, and can use large tables in memory. Most real-life compression tools

and libraries use a combination of Lempel-Ziv and Huffman techniques. Below

are a more detailed explanation on LZ77 and LZ78

Univ
ers

ity
 of

 M
ala

ya

 40

2.4.1 LZ77

The LZ77 algorithm works by keeping a history window of the most recently seen

data and comparing the current data being encoded with the data in the history

window. What are actually placed into the compressed stream are references to

the position in the history window, and the length of the match. If a match cannot

be found the character it is simply encoded into the stream after being flagged as

a literal. As of 2004, the most popular LZ77 based compression method is called

DEFLATE; it combines LZ77 with Huffman coding [26].

2.4.2 LZ78

While the LZ77 algorithm works on past data, the LZ78 algorithm attempts to

work on future data [4]. It does this by forward scanning the input buffer and

matching it against a dictionary it maintains. It will scan into the buffer until it

cannot find a match in the dictionary. At this point it will output the location of the

word in the dictionary, if one is available, the match length and the character that

caused a match failure. The resulting word is then added to the dictionary [4].

Though initially popular, the popularity of LZ78 later dampened, possibly because

for the first few decades after it was introduced, parts of LZ78 were patent

encumbered in the United States. The most popular form of LZ78 compression

was the LZRW algorithm, a modification of the LZ78 algorithm made by Terry

Welch [19].

Univ
ers

ity
 of

 M
ala

ya

 41

2.4.3 LZ78 Example

This example shows the LZ78 algorithm in action, showing the status of the

output and the dictionary at every stage, both in encoding and decoding the

message [4]. In order to keep things clear, let us assume that we're dealing with

a simple alphabet - capital letters only, and no punctuation or spaces. This

example has been constructed to give reasonable compression on a very short

message; when used on real data, repetition is generally less pronounced, and

so the initial parts of a message will see little compression. As the message

grows, however, the compression ratio tends asymptotically to the maximum. A

message to be sent might then look like the following:

TOBEORNOTTOBEORTOBEORNOT#

The # is a marker used to show that the end of the message has been reached.

Clearly, then, we have 27 symbols in our alphabet. A computer will render these

as strings of bits; 5-bit strings are needed to give sufficient combinations to

encompass the entire dictionary. As the dictionary grows, the strings will need to

grow in length to accommodate the additional entries. A 5-bit string gives 25 = 32

possible combinations of bits, and so when the 33rd dictionary word is created,

the algorithm will have to start using 6-bit strings. Note that since the all-zero

string 00000 is used, and is labelled "0", the 33rd dictionary entry will be labelled

32. The initial dictionary, then, will consist of the following:

= 00000
A = 00001
B = 00010
C = 00011…………….. Z = 11010

Univ
ers

ity
 of

 M
ala

ya

 42

2.4.3.1 Encoding

If we weren't using LZ78, and just sent the message as it stands (25 symbols at 5

bits each), it would require 125 bits. We will be able to compare this figure to the

LZ78 output later. We are now in a position to apply LZ78 to the message.

Table 2.1 Encoding Table

Symbol: Bit Code:

(= output)

New Dictionary Entry:

T 20 = 10100 28: TO
O 15 = 01111 29: OB
B 2 = 00010 30: BE
E 5 = 00101 31: EO
O 15 = 01111 32: OR

(start using 6-bit strings)

R 18 = 010010 33: RN
N 14 = 001110 34: NO
O 15 = 001111 35: OT
T 20 = 010100 36: TT
TO 28 = 011100 37: TOB
BE 30 = 011110 38: BEO
OR 32 = 100000 39: ORT

TOB 37 = 100101 40: TOBE
EO 31 = 011111 41: EOR
RN 33 = 100001 42: RNO
OT 35 = 100011 43: OT#
0 = 000000

Total Length = 5*5 + 12*6 = 97 bits.

In using, LZ78 we have made a saving of 28 bits out of 125 -- we have reduced

the message by almost 22%. If the message were longer, then the dictionary

words would begin to represent longer and longer sections of text, allowing

repeated words to be sent very compactly.

Univ
ers

ity
 of

 M
ala

ya

 43

2.4.3.2 Decoding

Imagine now that we have received the message produced above, and wish to

decode it. We need to know in advance the initial dictionary used, but we can

reconstruct the additional entries as we go, since they are always simply

concatenations of previous entries.

Table 2.2 Decoding Table

New Entry: Bits: Output:
Full: Partial:

10100 = 20 T 28: T?
01111 = 15 O 28: TO 29: O?

00010 = 2 B 29: OB 30: B?
00101 = 5 E 30: BE 31: E?
01111 = 15 O 31: EO 32: O?

(start using 6-bit
strings)

010010 = 18 R 32: OR 33: R?
001110 = 14 N 33: RN 34: N?
001111 = 15 O 34: NO 35: O?
010100 = 20 T 35: OT 36: T?

011100 = 28 TO 36: TT 37: TO?
(for 36, only add
1st element)

011110 = 30 BE 37: TOB 38: BE?
(of next dictionary
word)

100000 = 32 OR 38: BEO 39: OR?
100101 = 37 TOB 39: ORT 40: TOB?
011111 = 31 EO 40: TOBE 41: EO?
100001 = 33 RN 41: EOR 42: RN?

100011 = 35 OT 42: RNO 43: OT?
000000 = 0 #

Univ
ers

ity
 of

 M
ala

ya

 44

The only slight complication comes if the newly-created dictionary word is sent

immediately. In the decoding example above, when the decoder receives the first

symbol, T, it knows that symbol 28 begins with a T, but what does it end with?

The problem is illustrated below. We are decoding part of a message that reads

ABABA:

Table 2.3 Decoding Example

New Entry: Bits: Output:

Full: Partial:
.
.
.
011101 = 29 AB 46: (word) 47: AB?
101111 = 47 EAB?

At first glance, this may appear to be asking the impossible of the decoder. We

know ahead of time that entry 47 should be ABA, but how can the decoder work

this out? The critical step is to note that 47 are built out of 29 plus whatever

comes next. 47, therefore, ends with "whatever comes next". But, since it was

sent immediately, it must also start with "whatever comes next", and so must end

with the same symbol it starts with, namely A. This trick allows the decoder to

see that 47 must be ABA.

More generally the situation occurs whenever the encoder encounters the input

of the form cScSc, where c is a single character, S is a string and cS is already in

the dictionary. The encoder outputs the symbol for cS putting new symbol for cSc

in the dictionary. Next it sees the cSc in the input and sends the new symbol it

just inserted into the dictionary. By the reasoning presented in the above

Univ
ers

ity
 of

 M
ala

ya

 45

example this is the only case were the newly-created symbol is send

immediately.

2.5 Other Commercialised and Noncommercialised Compression Programs

Today, data compression technology is still one of the most active researches in

the scientific community. Yet, because of the significant usefulness and

profitability in the marketing sense, most of the compression technologies are

commercialized.

Below are some of the examples of the existing commercial and non-commercial

compression programs in the market. The table shows the compression software

and the technologies behind its compression algorithm [6].

Univ
ers

ity
 of

 M
ala

ya

 46

Table 2.4 Other Available Compression Programs In the Market

Program Author Used Algorithms

7-Zip Igor Pavlov f + LZMA + PPMII + LZ77 + BWT

ABC Jürgen Abel BWT

ACB George Buyanovsky AC

Archiver JaboSoft

ARHANGEL George Lyapko

ARJ ARJ Software LZSS + Huff

ASH Eugene Shelwien CM

BAR Frank Jennings BWT

BCArchiver Jetico, Inc

BEE Andrew Filinsky CM

BioArc Merlin+ Ltd f

BJWFLATE Ben Jos Walbeehm

BMA Alexander Cherenkov f + BWT

BMF Dmitry Shkarin

BOA Ian Sutton PPM

BSSC Sergeo Sizikov f + BWT + DC

BZIP2 Julian Seward

Cabarc Microsoft f + LZX + Huff + SF

Compressia Yaakov Gringeler f + BWT + ARI + PPMII

CTW Frans Willems CTW

CTXf Nikita Lesnikov f + PPMII

DACT Roy Keene

DC Edgar Binder f + BWT + DC + ARI

DST Tommaso Guglielmi LZ77 + PPM + Huff

Durilca Dmitry Shkarin f + PPMII

DZIP Stefan Schwoon

Emilcont Berto Destasio CM

Enc Serge Osnach f + PPMII

EPM Serge Osnach f + PPMII

ERI Alexander Ratushnyak

GRZip Grebnov Ilya

GRZipII Grebnov Ilya BWT,ST4 + MTF,WFC + ARI

GZip Jean-loup Gailly LZ77

Univ
ers

ity
 of

 M
ala

ya

 47

HIPP Bogatov Roman PPM

ICEOWS Raphaël Mounier

JAR ARJ Software f + LZSS + Huff

Jcalg1 Jeremy Collake LZSS

KZip Ken Silverman

LHA Haruyasu Yoshizaki

Lz2a Brendan G Bohannon LZ

LZOP Markus Oberhumer LZ

LZPX Ilia Muraviev LZP + ARI

M03 Mij4x

M99 M. A. Maniscalco

MAR Xann LZH BWT PPM

MRP Ichiro Matsuda

Ocamyd Frank Schwellinger DM

PAC Gérard Meunier BWT + LZ77 + Huff

PAQ6 Matt Mahoney CM

PAQAR M.Mahoney / A.Ratushnyak CM

PASQDA Przemyslaw Skibinski f + CM

PIMPLE Ilia Muraviev

PKZIP PKWARE Inc. LZ77

PPMd Dmitry Shkarin PPMII

PPMN Max Smirnov f + PPM

PPMonstr Dmitry Shkarin PPMII

PPMVC D.Shkarin P.Skibinski PPMII

PPMY Eugene Shelwien PPM

PPMZ2 Charles Bloom PPM

PSA Serge Pachkovsky

Quark Frederic Bautista LZ

RK Malcolm Taylor f + LZ + PPMZ

RKC Malcolm Taylor f + LZ + PPMZ

Rzip Andrew Tridgell

SBC Sami J. Makinen f + BWT + DC + ARI

ShipInBottle Alexander Turikov

Slim Serge Voskoboynikov f + PPMII

Squeez R.Nausedat / S.Ritter

SRANK Peter Fenwick

Univ
ers

ity
 of

 M
ala

ya

 48

Stuffit Allume Systems

Szip Michael Schindler

TC Ilia Muraviev LZRW

Transform Michael Bone BWT

UFA Igor Pavlov

UHARC Uwe Herklotz f + PPM + LZP + LZ77 + ARI

UHBC Uwe Herklotz BWT + ARI

UPX M.Oberhumer & L.Molnár

WinACE Marcel Lemke f + LZ77 + Huff

WinHKI Hanspeter Imp

WinImp Technelysium Pty Ltd f + LZ77 + BWT + Huff

WinRAR Eugene Roshal f + LZ77 + PPMII + Huff

WinRK Malcolm Taylor f + PPMD+ PPMZ + ROLZ + CM

WinZip WinZip Computing
LZH + LZRW + SF + Huff +
PPMd

WRT Przemyslaw Skibinski

YBS Vadim Yoockin f + BWT + DC + ARI

ZZIP Damien Debin f + BWT

f = Program uses filters, (external) dictionaries and/or file preprocessing.

AC = Associative Coding

ARI = Arithmetic Coding

BWT = Burrows-Wheeler Transform

CM = Context Modeling

CTW = Context Tree Weighting

DC = Distance Coding

DM = Dynamic Markov Modeling

Huff = Huffman

LZ = Lempel-Ziv compression

Univ
ers

ity
 of

 M
ala

ya

 49

PPM = Prediction by Partial Match

SF= Shannon-Fano

2.6 Summary

This chapter shows the many existing type of compression algorithms that are

design to tackle or handle specific type of datasets. From text to audio and video,

each has its own type of compression technique and motivation. As different

technique will yield different results, the selection of compression techniques is

largely dependent on the user and purpose of the compressed data.

In summary, higher compression rates can be achieved by eliminating details in

data - referred to as lossy compression, data size at the expense of data

resolution or granularity (image, video or audio quality in laymen terms).

It would not be acceptable for lossy compression to be applied to scientific

datasets, as there will be loss of data, which may be the clue for scientific

discoveries and further analysis on higher details on data obtained.

Most codecs have compression features built-in as part of increasing user’s

acceptance by improving storage and transmission performance. Such codecs is

at the expense of computing or processing power, however due to high speed

computing power now is cheaply available such as Intel Pentiums and AMD

Athlons are the commodity processors available that runs on Ghz frequencies.

Univ
ers

ity
 of

 M
ala

ya

 50

CHAPTER 3: Development Methods

Generally, scientific datasets are a group of data that gathered through

measurements in field of interested, or by simulation. The data has the following

characteristics:

� Multiple observing objects. Scientific measurement normal will cover a few

objects of interest. For example, when measuring weather, cloud, wind,

landscape, and temperature will be observed.

� Multiple dimension of measurement. When collecting data for scientific

analysis, different aspect of the object will be observed, in different units of

measurement. For example, the measurement taken on wind in weather

analysis includes the speed and the direction of the wind.

� High resolution. A good resolution is important for scientific analysis. Poor

resolution will lead to inaccurate conclusion. In order to obtain a good

resolution on the data measure, larger datasets will be generated.

� High precision. Generally, scientific dataset is measure with certain precision

of decimal points. Better precision will lead to more accurate result.

From the characteristic above, we could know that the scientific datasets are

random and of different scales. Some data will vary in large quantity, while some

data might vary in decimal points value. Different field of interests also could lead

to different datasets in similar phenomena.

Gathering datasets will be useful for the following:

Univ
ers

ity
 of

 M
ala

ya

 51

� Scientific datasets always represent statistical measurement of a

phenomenon. With this datasets, the characteristic of the phenomenon could

be studied.

� Modeling of the phenomenon. With the characteristic of the phenomenon, its

physical or computer model could be formed. Forming the model could help

to simulate the phenomenon with different condition.

� Prediction and further analysis. Modeling of a phenomenon will allow us to

simulate a situation before we meet it. It is useful if the situation is

hazardous. It also allows us to gather datasets for phenomenon that we

could not observe at closer distance, for example, hurricane.

There are also other types of datasets available, such as text datasets, numerical

datasets, alphanumeric datasets and etc. But they are either too narrow in term

of data type variety or contain too many redundant data type or characteristic,

therefore the scientific datasets were the most suitable candidate due to its

random characteristic and size. The scientific dataset is the only dataset type that

covers all aspect of all the other dataset types.

Here, there are three different categories of scientific datasets chosen from

various area of aspect in this project. These three categories of scientific

datasets representing real life data used in the industry serve as analytical data

for research purposes.

Univ
ers

ity
 of

 M
ala

ya

 52

The scientific datasets are obtaining from NCBI mapviewer [7], Fire Dynamic

Simulator (FDS) [8] and Water Quality Data (WQD) [9].

Table 3.1 : Datasets Comparisons

Datasets type NCBI mapviewer Fire Dynamic
Simulator

Water Quality
Data

What they use Combination of
graphical and

alphanumerical

Combination of
binary data and

numeric

Combination of
numeric and

alphabets
Where they use FASTA or Gen

Bank
Research in fire

simulation
Analytical data

processing
Why they use Covers a broad

spectrum of data
capturing

Looks good in
presentation

Maximize
memory

management
How they use Specialised

software and
hardware

Specialised
software

Specialised
software

Disadvantages Small data size
usually

Large and
random in data

size

Medium data size

Advantages Small data size Encapsulate
more information

and random in
nature

More random in
nature than
numerical
datasets

The first dataset chosen for this project are obtaining from National Center for

Biotechnology Information (NCBI) organisation. The organization was

established in 1988 as a national resource for molecular biology information,

NCBI purposes are to create public databases, conducts research in

computational biology, develops software tools for analyzing genome data, and

disseminates biomedical information – this serve as for the better understanding

of molecular processes affecting human health and disease [7].

Univ
ers

ity
 of

 M
ala

ya

 53

There are 2 different formats for this scientific datasets on this category which is

FASTA and GenBank (GB). GenBank is the NIH database maintained and

distributed by NCBI that stores all known public DNA sequences. The sequence

data are submitted to GenBank from individual scientists from around the world,

as well as from the large centers especially involved in the Human Genome

Project. There are number of DNA sequences stored in the GenBank database,

from all organisms, potentially continues to grow at a rapid rate.

The Fire Dynamics Simulator has been under development for almost about 25

years. At National Institute of Standards and Technology (NIST), Howard Baum

and Ronald Rehm laid the theoretical groundwork for the model and devised the

basic numerical solvers [8].

The name of the program is known as NIST Fire Dynamics Simulator or FDS.

FDS is a Fortran 90 computer program that solves the governing equations of

fluid dynamics, and Smokeview is a companion program written in C/OpenGL

programming language that produces images and animations of the results. The

revision are from Version 1 of FDS was publicly released in February 2000,

version 2 in December 2001, and version 3 in November 2002. The present

version of FDS is 4, released in July 2004 [8].

Univ
ers

ity
 of

 M
ala

ya

 54

The Fire Dynamic Simulator is a computational fluid dynamics (CFD) model of

fire-driven fluid flow. The software solves numerically a form of the Navier-Stokes

equations appropriate for low-speed, thermally-driven flow with an emphasis on

smoke and heat transport from fires.

Fire Dynamic Simulator is a simulator but the dataset generated is a real data for

scientific analysis. Therefore, the datasets produced is valid as scientific data.

The dataset from Fire Dynamic Simulator version 4 is chosen for numerical

scientific dataset. This simulator matches the above mentioned characteristics.

The following lists the consideration point:

� It generates datasets on multiple aspects, which are density, pressure, heat,

chemical composition, and velocity.

� Each dataset is measured with high resolution. The measurement is taken

on hundred of thousands, to millions of grid cell in a given space, example, a

room. The time steps are from thousands to hundreds of thousand.

Additionally, as in most datasets, the data is recorded in binary format. This is a

compact format and normally does not work well with text compression algorithm.

Univ
ers

ity
 of

 M
ala

ya

 55

The third category of the dataset is obtaining from U.S. Environmental Protection

Agency (EPA) on Water Quality Data. The U.S. Environmental Protection Agency

(EPA) maintains two data management systems, which contains water quality

information for the nation's waters: the Legacy Data Center (LDC), and STORET.

The LDC is a static, archived database and STORET is an operational system

actively being populated with water quality data [9].

The STORET (short for STOrage and RETrieval) is a repository for water quality,

biological, and physical data and is used by state environmental agencies, EPA

and other federal agencies, universities, private citizens, and many others.

Each datasets sampling result in the LDC and in STORET is accompanied by

information on where the sample was taken (latitude, longitude, state, county,

Hydrologic Unit Code and a brief site identification), when the sample was

gathered, the medium sampled (e.g., water, sediment, fish tissue), and the name

of the organization that sponsored the monitoring [9]. Besides that, STORET

contains information on why the data were gathered; sampling and analytical

methods used; the laboratory used to analyze the samples; the quality control

checks used when sampling, handling the samples, and analyzing the data; and

the personnel responsible for the data.

Univ
ers

ity
 of

 M
ala

ya

 56

The datasets chosen for this project are supplied to EPA before 1999 were all

placed in Legacy STORET. This system, designed in the 1960s, was a pioneer in

the long term archival of field water monitoring results [9].

There is quite a number of compression and decompression algorithms exist

nowadays, since the first publish of Lempel-Ziv algorithm on 1977, the LZ77

algorithm [5]. The famous commercial software includes pkzip, winzip, and winrar

for windows platform, and compression algorithm famous on UNIX platform, the

gzip/zlib. The gzip/zlib algorithm is a variant of LZ77 algorithm, with

enhancement on its general purpose compression, i.e., on text file or on file with

random data, like binary file.

There are also a lot of algorithms that work on specific dataset, for example,

JPEG, GIF, PNG format that compress picture. These kinds of algorithms have

more efficiency than LZ77 or LZ78 algorithm on picture compression, but they

only work well on specific dataset, which is images for scientific dataset with

binary format as discuss previously, we would need to find a more generic

purpose algorithm.

The gzip/zlib algorithm is chosen for it is the variant of LZ algorithm, and also its

history in UNIX platform. Another algorithm, the bzip compression, also chosen

as it is also well known on UNIX platform [18]. The bzip algorithm using different

approach than the LZ77, therefore, it is suitable for comparing the efficiency of

Univ
ers

ity
 of

 M
ala

ya

 57

compression among different approach. A benchmarking algorithm, LZRW

compression, is chosen, as it is also a variant of LZ77 compression.

The gzip/zlib and bzip algorithm are used for general compression on UNIX

system. This generally suite the purpose of this approach as the contents of the

dataset will also be random data.

Table 3. 2 Compression Algorithm Comparisons

Algorithm Zlib LZRW Bzip
Founder Jean-loup Gailly

(compression)
Mark Adler

(decompression)

Dr. Ross N.
Williams

Julian Seward

Year Developed 2005 1990 1996
Characteristic Lossless data

compression
Lossless data
compression

Lossless data
compression

Usage Generic text Generic text Generic text
Key
attributes/properties

Deflation
technique

(combination of
LZ77 and

Huffman coding)

Statistical
modelling
technique

Burrows-Wheeler
block-sorting text

Technique

Based on the numerous compression algorithms, these three algorithms have

been chosen. The selection for these algorithms is based on the year of

development, availability and its open source for further development.

Univ
ers

ity
 of

 M
ala

ya

 58

3.1 LZW Explained

The original Lempel Ziv approach to data compression was first published in

in1977 [5]. Terry Welch's refinements to the algorithm were published in 1984.

The algorithm is surprisingly simple [19]. In a nutshell, LZRW compression

replaces strings of characters with single codes. It does not do any analysis of

the incoming text. Instead, it just adds every new string of characters it sees to a

table of strings. Compression occurs when a single code is output instead of a

string of characters.

The code that the LZW algorithm outputs can be of any arbitrary length, but it

must have more bits in it than a single character [18]. The first 256 codes (when

using eight bit characters) are by default assigned to the standard character set.

The remaining codes are assigned to strings as the algorithm proceeds. The

sample program runs as shown with 12 bit codes. This means codes 0-255 refer

to individual bytes, while codes 256-4095 refers to substrings.

3.1.1 Compression

The LZW compression algorithm in its simplest form is shown in Figure 3.1. A

quick examination of the algorithm shows that LZW is always trying to output

codes for strings that are already known. And each time a new code is output, a

new string is added to the string table.

Univ
ers

ity
 of

 M
ala

ya

 59

Routine LZW_COMPRESS

 STRING = get input character
 WHILE there are still input characters DO
 CHARACTER = get input character
 IF STRING+CHARACTER is in the string table then
 STRING = STRING+character
 ELSE
 output the code for STRING
 add STRING+CHARACTER to the string table
 STRING = CHARACTER
 END of IF
 END of WHILE
 output the code for STRING

Figure 3.1 The Compression Algorithm

A sample string used to demonstrate the algorithm is shown in Figure 3.2. The

input string is a short list of English words separated by the '/' character. Stepping

through the start of the algorithm for this string, you can see that the first pass

through the loop, a check is performed to see if the string "/W" is in the table.

Since it isn't, the code for '/' is output, and the string "/W" is added to the table.

Since we have 256 characters already defined for codes 0-255, the first string

definition can be assigned to code 256. After the third letter, 'E', has been read

in, the second string code, "WE" is added to the table, and the code for letter 'W'

is output. This continues until in the second word, the characters '/' and 'W' are

read in, matching string number 256. In this case, the code 256 is output, and a

three character string is added to the string table. The process continues until the

string is exhausted and all of the codes have been output.

Univ
ers

ity
 of

 M
ala

ya

 60

Input String = /WED/WE/WEE/WEB/WET

Character Input Code Output New code value New String

/W / 256 /W

E W 257 WE

D E 258 ED

/ D 259 D/

WE 256 260 /WE

/ E 261 E/

WEE 260 262 /WEE

/W 261 263 E/W

EB 257 264 WEB

/ B 265 B/

WET 260 266 /WET

EOF T

Figure 3.2 The Compression Process

The sample output for the string is shown in Figure 3.2 along with the resulting

string table. As can be seen, the string table fills up rapidly, since a new string is

added to the table each time a code is output. In this highly redundant input, 5

code substitutions were output, along with 7 characters. If we were using 9 bit

codes for output, the 19 character input string would be reduced to a 13.5 byte

output string. Of course, this example was carefully chosen to demonstrate code

substitution. In real world examples, compression usually doesn't begin until a

sizable table has been built, usually after at least one hundred or so bytes have

been read in.

 Univ
ers

ity
 of

 M
ala

ya

 61

3.1.2 Decompression

The companion algorithm for compression is the decompression algorithm. It

needs to be able to take the stream of codes output from the compression

algorithm, and use them to exactly recreate the input stream. One reason for the

efficiency of the LZW algorithm is that it does not need to pass the string table to

the decompression code. The table can be built exactly as it was during

compression, using the input stream as data. This is possible because the

compression algorithm always outputs the STRING and CHARACTER

components of a code before it uses it in the output stream. This means that the

compressed data is not burdened with carrying a large string translation table.

Routine LZW_DECOMPRESS

 Read OLD_CODE
 output OLD_CODE
 WHILE there are still input characters DO
 Read NEW_CODE
 STRING = get translation of NEW_CODE
 output STRING
 CHARACTER = first character in STRING
 add OLD_CODE + CHARACTER to the translation table
 OLD_CODE = NEW_CODE

 END of WHILE

Figure 3.3 The Decompression Algorithm

The algorithm is shown in Figure 3.3. Just like the compression algorithm, it adds

a new string to the string table each time it reads in a new code. All it needs to do

in addition to that is translate each incoming code into a string and send it to the

output.

Univ
ers

ity
 of

 M
ala

ya

 62

Figure 3.4 shows the output of the algorithm given the input created by the

compression earlier in the article. The important thing to note is that the string

table ends up looking exactly like the table built up during compression. The

output string is identical to the input string from the compression algorithm. Note

that the first 256 codes are already defined to translate to single character

strings, just like in the compression code.

Input Codes: / W E D 256 E 260 261 257 B 260 T
Input/
NEW_CODE

OLD_CODE STRING/
Output

CHARACTER New table entry

/ / /

W / W W 256 = /W

E W E E 257 = WE

D E D D 258 = ED

256 D /W / 259 = D/

E 256 E E 260 = /WE

260 E /WE / 261 = E/

261 260 E/ E 262 = /WEE

257 261 WE W 263 = E/W

B 257 B B 264 = WEB

260 B /WE / 265 = B/

T 260 T T 266 = /WET

Figure 3.4 The Decompression Process

Univ
ers

ity
 of

 M
ala

ya

 63

3.2 Programming Approaches

There are several programming approaches such as C/C++, assembly language,

Java, Delphi and Visual Basic to develop a simulator. These include procedural

approach, structured approach and object-oriented approach that are widely

used in developing a simulator. For this project, object-oriented approach was

adapted for it facilitates a more usability features over other approaches. For

example, in object-oriented approach, the codes are more reusable, they can

also be overloaded with more than one method. It also features polymorphism

which other approaches cannot place on par.

There are also many programming tools that can be used for this project but C

programming language was chosen based on its fame in powerful low end

programming features and simplicity in usage.

3.3 Evaluation Approaches

In chapter 6, a list of graphs and tables will be shown and discussed for the

efficiency and effectiveness of each algorithm, in terms of compression ratio,

compression time consumed and data throughput.

The motivations behind evaluating these areas are due to the notion that, these

areas are the most important areas pertaining to the performance of a

compression technology. There might be other issue that may affect the

performance, but as in a general observation, these areas that we are testing on,

Univ
ers

ity
 of

 M
ala

ya

 64

covers 95% of the performance issues.

Data throughputs were also evaluated to prove that by applying compression on

the subjected dataset, it would reduce the time delay and increases the total

throughput.

The dataset used will be one of the data file generated by the FDS program, in

binary data format. The sizes of the datasets used are approximate to 5 MB, 10

MB, 20 MB, and 30 MB. (1 MB = 1048576 bytes of data).

3.4 Summary

This chapter covers the detail of the simulation. It discussed the reason why

simulation is used to simulate the compression processes as well as the

approach used to develop a simulator. It also covers in details of the LZW

compression technology.

The compression simulator will be developed using the object-oriented approach

which is C/C++ programming language. The C/C++ programming language will

be used as the tools to develop the simulator. The next chapter will discuss the

analysis of the simulator architecture.
Univ

ers
ity

 of
 M

ala
ya

 65

CHAPTER 4: System Analysis

This chapter provides an in depth analysis of the compression evaluation

simulator. The chapter begins with the overview of the simulation concept. The

aim is to provide an explanation of the simulator architecture.

The following section discusses the simulator architecture. It is followed by an

analysis of components as well as the requirement to develop the simulator.

The final section summarises the details of this chapter. It summarises the

analysis of simulator as well as the simulator.

4.1 Simulation Concept

The main concept of this research is to simulate the activity of transmitting a

compressed scientific dataset over a network environment as to evaluate the

performance of various compression algorithms.

The simulation test is conducted on a clean installed computer so that is no other

software or viruses that will afftect the performance of the result.

4.2 Simulation Architecture

Compression evaluation simulator is a flexible test bed for studying and

evaluating the performance of compression technology and algorithm. The

simulator is written in C Language whereby it is developed in object-Oriented

programming approach. The simulator architecture is based on a client-server

approach.

Univ
ers

ity
 of

 M
ala

ya

 66

The client main program is the main component of the entire simulation, it

contain the testing compression algorithm that will be use for evaluation. It also

performs all the compression and decompression of the subjected datasets, and

also time logging for evaluation purposes.

4.3 Simulation Requirement

This research require a scientific dataset to be tested using various compression

algorithm. A scientific dataset are to be selected based on its characteristic as

describe in chapter 3. This simulation requires WAN connectivity such as

Internet.

The selections of compression algorithm are selected based on its historic

background and popularity. Thou all compression algorithm may derive from the

same theory, in specific; they are different in term of compression logic.

4.4 Simulation Limitation

This simulation evaluate only on three generic compression algorithm, it does not

cover other type-specific compression algorithm such as video, audio or

graphics. This simulation only test on one Internet link for WAN data transmission

test.

Univ
ers

ity
 of

 M
ala

ya

 67

4.5 Platform and System Specification

Note that the measurements are done on personal computer with the following

specification:

Client PC:

� Pentium 4, 2.0 GHz processor

� 256 MB RAM

� Windows XP

Server PC:

� Pentium 4, 2.0 GHz processor

� 256 MB RAM

� Windows XP

LAN Connection: Ethernet 100 MB.

WAN Connection: 1 Mbps

The above mentioned on the system specification chosen because it fulfill the

memory and processing speed of the datasets. The testing machine CPU

specification can influence the result of the testing on datasets. The overall

performance of the testing machine to produce a significant result of output is

affected by hardware and network capability.

Univ
ers

ity
 of

 M
ala

ya

 68

4.5.1 System Requirement

The system requirement to develop the compression performance evaluation

simulator is categorized into functional requirement and non-functional

requirement. The following section will discuss the functional requirement and

non-functional requirement of the compression performance evaluation simulator.

4.5.1.1 Functional Requirement

This section describes the functional requirement of the compression

performance evaluation simulator.

� The simulator will support different types of compression algorithm.

� Time used in all processes and tests will be displayed.

� The simulator allow user to configure the evaluation tests.

� The simulator allow user to add in more compression algorithm for evaluation

purposes.

4.5.1.2 Non-Functional Requirement

This section describes the non-functional requirement of the compression

performance evaluation simulator.

� Reliability

� The system should be reliable in performing its simulation functions and

network operations. For example, whenever a compression is executed,

the system should be able to perform some functionality or generate some

message to inform the user what is happening.

Univ
ers

ity
 of

 M
ala

ya

 69

� Usability

� The system should be easy to operate.

� The test results should be easy to read and understand

.

� Flexibility

� The system should have the capabilities to take in new compression

algorithm into the system.

4.6 Analysis

In this project, the compression algorithm will be analyse based on these 6

categories which is specifically internally developed for scientific dataset:

1. Speed of compression vs. Size of data sets

• This test will tell us how the compression algorithm fair in term of

compression speed, when the size of the datasets increases.

2. Size after compression vs. Size of data sets

• This test will tell us the threshold of each compression algorithm.

3. Delay time (against Raw data transmission) vs. Size of data sets

• This test is to ascertain the total time taken from compression to data

transmission of each algorithm.

4. Compression Ratio

• This test shows the how much can a datasets be compressed by each

algorithm.

Univ
ers

ity
 of

 M
ala

ya

 70

5. Data Rate

• This test is to show the rate of compression against the dataset size.

6. Data Transmission time

• This test will simulate the transmission time of a compressed datasets

across a networked environment.

These 6 sets of results will tell us how each algorithm fair in each testing

category, therefore given us a clear view of choosing suitable algorithm.

The choice of algorithm should base on both its compression ratio on the dataset,

and also the compression speed on this dataset. The concern of the project is not

only on the data rate for the transmission. It also seeks for a solution for better

storage on local system. The local system has limited storage available compare

to the server running on super computer. Therefore, the algorithm should have a

good compression ratio on the dataset.

Univ
ers

ity
 of

 M
ala

ya

 71

4.7 Summary

This chapter covers the major analysis on the key features of the compression

performance evaluation simulation. The overall architecture of the simulation is

analysed in order to find out how can other compression algorithm can be

introduce into this simulator to further study and investigate the behaviors of a

compression technology.

The procedure of testing and evaluating the compression technologies also

covered in this chapter. It provides a good understanding of the simulation

architecture as well as the steps required to evaluate the technologies and

algorithm.

This chapter concludes by presenting the functional requirements and non-

functional requirements of the simulator. Details of system design will be

discussed in the following chapter.

Univ
ers

ity
 of

 M
ala

ya

 72

CHAPTER 5: System Design and Implementation

The purpose of this project is to analyse and search for a solution in scientific

dataset analysis. The approach used in this project is to compress the data for

transfer and storage. Compression reduces the size of the total amount transfer,

and also occupies less storage space.

The Fire Dynamic Simulator (FDS) does not send data to any port. Instead, it will

write the output to local disk. Therefore, in this project, it is not able to simulate

the port forwarding. Instead, we will use a few files for demonstration.

To compare the performance result, we will use 2 types of compression algorithm

against a benchmarking compression algorithm to compress a binary file. These

results are then to be comparing with same compression over an ASCII file. With

this, it provides a frame of reference against the compression algorithm, which in

term yields a clearer picture on the compression performance.

The procedures of simulation are as below:-

1. Transfer without compression using ASCII file

2. Transfer with compression using ASCII file

3. Repeat step 1 using binary file

4. Repeat step 2 using binary file

5. Repeat step 1 using NCBI file

6. Repeat step 2 using NCBI file

7. Repeat step 1 using Water Quality text file

8. Repeat step 2 using Water Quality text file

Univ
ers

ity
 of

 M
ala

ya

 73

Step 3 until 8 are to be repeated with the following arrangement.

• with zlib v.1.2.3 compression algorithm

• with bzip v1.0.3 compression algorithm

• with LZRW3-A compression algorithm

The results are calculated to evaluate the performance for each one of the

algorithms.

The physical connectivity of the system design and implemention is shown on

Figure 5.1

Figure 5.1 Network Connectivity of the System Implementation

Internet

Cloud

Server Station

Station using

Broadband Services

22MMBB

CClliieenntt SSttaattiioonn
11MMBB Univ

ers
ity

 of
 M

ala
ya

 74

5.1 Flow diagram

5.1.1 Client Program: General Flow

This flow applicable is for all 3 algorithms.

5.1.1.1 Client Program Input/Output

Figure 5.2 Client Program Input/Output

Client

Main

Program

Server IP

Input

Input File

Name Compression

Off

(Optional)

Output

ut

Compressed

Data Streamed to Server

(None compressed with

“Compression Off”

Option)

Univ
ers

ity
 of

 M
ala

ya

 75

5.1.1.2 Client Program Flow:

Figure 5.3 Client Program Flow

Program

Start

Connect

to Server

Check

Compression

On/Off Option

Input

Available?

Read Input

Data

Send to

Server

Program

End

Return raw data or

apply compression

Yes

No

Univ
ers

ity
 of

 M
ala

ya

 76

5.1.1.3 Client Read File Flow:

This is where the compression will apply, if selected. This flow only discusses the

Compression process.

Figure 5.4 Client Read File Flow

Reach

End of File?

Open file

(First time

Read)

Read Buffer

Full of Data

The read size control

by

“BUFSIZE_COMP”

Apply

Compression

Return

Compressed

Data

Return

Empty

Buffer

Yes

No

Univ
ers

ity
 of

 M
ala

ya

 77

Some Notes on the compression control:

Zlib: There is no control parameter available for Zlib compression algorithm.

Bzip: The following parameter is applied -

� blockSize100k = 5: Used for the buffer allocation for compression algorithm.

The size should be 4 times larger than the input buffer size.

� Verbosity = 0: Control the information displayed during compression. 0

indicates no information displayed.

� Work Factor = 30: Control parameter for algorithm to choose between slower

approach or fast but less efficient approach. This value is optimum after

tested, which also suggested by the author of the algorithm.

LZRW: There is no control parameter available for LZRW compression algorithm.

Univ
ers

ity
 of

 M
ala

ya

 78

5.1.2 Server Program: General Flow

This flow is applicable for all 3 algorithms.

5.1.2.1 Server Program Input/Output:

Figure 5.5 Server Program Input/Output

Note:

1. Compressed Size:

This number indicates the total number of data, in bytes, received from client.

2. Uncompressed Size:

a. For compressed data received from client, this is the total number of data,

in bytes, after decompression process.

b. For raw data received from client, this number will be the same as

Compressed Size, indicating no compression performed.

Client

Main

Program

Input

Compressed Size

Uncompressed

Size

Transmission

Time

Compression Ratio

Data Rate

Output:

File

Compressed

Data Streamed from

Client

(None compressed with

“Compression Off”

Option)

Univ
ers

ity
 of

 M
ala

ya

 79

3. Transmission Time

This time, in milliseconds, is measured right before the first byte is received,

until the last byte is received. There is no decompression done in between.

This gives a more precise measurement on the compression and

transmission time.

4. Compression Ratio

The ratio is calculated with the formula:

Compression Ratio = [1 - (Compressed Size / Uncompressed Size)] * 100 %

5. Date Rate

The Data Rate is calculated with the formula:

Date Rate = Uncompressed Size / Transmission Times

Univ
ers

ity
 of

 M
ala

ya

 80

5.1.2.2 Server Program Flow:

Figure 5.6 Server Program Flow

Program

Start

Receive

Compression

On/Off Option

from Client

Input

Available?

Read Input

From Client

Write to

Temporary File

Apply

Decompression

Return raw data or

apply compression

Yes

No

Wait for Client

Connection

Data

Compressed

?

Yes

No

Write

Statistic to

File Univ
ers

ity
 of

 M
ala

ya

 81

The decompression process uses the same parameter as the compression

process:

Zlib: There is no control parameter available for Zlib compression algorithm.

Bzip: The following parameter is applied -

� blockSize100k = 5: Used for the buffer allocation for compression algorithm.

The size should be 4 times larger than the input buffer size.

� Verbosity = 0: Control the information displayed during compression. 0

indicates no information displayed.

� Work Factor = 30: Control parameter for algorithm to choose between slower

approach or fast but less efficient approach. This value is optimum after

tested, which also suggested by the author of the algorithm.

LZRW: There is no control parameter available for LZRW compression algorithm.

5.2 Summary

This chapter covers the major design issues for the compression evaluation

simulator. This includes an overview of the system architecture, which focus on

the simulator design and implementation.

Univ
ers

ity
 of

 M
ala

ya

 82

CHAPTER 6: System Testing

This chapter details the implementation and testing aspects of the scientific

dataset in the simulator. It first begins with the implementation of the component

classes.

The second section focuses on the testing of the different real life scientific

dataset on the simulator. This section will describe the testing for specific

scientific dataset according to the 3 category which is NCBI dataset, fire dynamic

dataset and water quality dataset.

The final section of this chapter summarises the details of this chapter.

The testing is done in 6 parts:

1. Speed of compression vs. Size of data sets

2. Size after compression vs. Size of data sets

3. Delay time (against Raw data transmission) vs. Size of data sets

4. Compression Ratio

5. Data Rate

6. Data Transmission time

Univ
ers

ity
 of

 M
ala

ya

 83

6.1 Speed of compression vs. Size of datasets

These table and graph show the relationship betweens the Speed of

compression, in millisecond, for each algorithm, against the Data Size of the

input file, in number of Byte.

Compression Time Comparison - FDS dataset

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500000

0

100000

00

150000

00

200000

00

250000

00

300000

00

350000

00

Data Size (Byte)

C
o

m
p

re
s
s
io

n
 T

im
e
 (

m
s
)

Zlib LZRW Bzip

Figure 6.1 Compression Time - FDS dataset Univ
ers

ity
 of

 M
ala

ya

 84

Table 6.1 Compression Time - FDS dataset

Compression Time
Data Size Zlib LZRW Bzip
5275466 1764.98 486.37 11948.63
10546978 2750.68 825.17 23783.79
21023274 5685.29 1488.94 46937.58
31499570 9176.05 2850.35 70387.92

The Figure 6.1 and Table 6.1 show result on FDS dataset of the test perform on

three algorithms for compression time.

Figure 6.2 Compression Time - NCBI dataset

Compression Time Comparison - NCBI dataset

0

500

1000

1500

2000

2500

3000

3500

4000

0 2000000 4000000 6000000 8000000

Data Size (Byte)

C
o

m
p

re
s

s
io

n
 T

im
e
 (

m
s
)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 85

Table 6.2 Compression Time - NCBI dataset

Compression Time

Data Size Zlib LZRW bzip

3365257 899.06 25.18 1962.67

4265064 949.2 27.05 2603.33

4933488 1087.4 29.78 2864.04

6360548 1435.41 43.19 3644.67

The Figure 6.2 and Table 6.2 show result on NCBI dataset of the test perform on

three algorithms for compression time.

Figure 6.3 Compression Time – Water Quality dataset

Compression Time Comparison - Water Quality

dataset

0

5000

10000

15000

20000

25000

0 5000000 10000000 15000000 20000000 25000000 30000000

Data Size (Byte)

C
o

m
p

re
s

s
io

n
 T

im
e

 (
m

s
)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 86

Table 6.3 Compression Time – Water Quality dataset

Compression Time
Data Size zlib LZRW bzip
15148619 330.51 55.05 9720.67
21004413 360.4 92.33 14287.33
23609061 597.67 144.87 15802.67
27149542 615.25 140.81 19808.67

The Figure 6.3 and Table 6.3 show result on Water Quality dataset of the test

perform on three algorithms for compression time.

This test shows that, the compression time taken increased in almost

proportional when the size of the datasets increases. The LZRW algorithm

proves to perform better on a scientific datasets, whereas the bzip algorithm

shows the worst performance over a scientific datasets. This proves that the

algorithm logic plays a very important part in the compression process. As we all

know that compression is a process to reducing the redundant data from the

dataset, therefore the time taken to compress a dataset must also include the

time to read through the entire dataset to come out with the logic on which

character or pattern is to be reduced. So the bzip algorithm in this case, proves

that its logic is not suitable for the random characteristic data of the scientific

dataset. Univ
ers

ity
 of

 M
ala

ya

 87

6.2 Size after compression vs. Size of datasets

These table and graph show the relationship betweens the Data Size after

compression, in number of Byte, for each algorithm, against the Data Size of the

input file, in number of Byte.

Data Size Comparison - FDS dataset

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 10000000 20000000 30000000 40000000

Raw Data Size (Byte)

C
o

m
p

re
s
s
e
d

 D
a
ta

 S
iz

e
 (

B
y
te

)

Zlib LZRW bzip

Figure 6.4 Compressed Data Size - FDS dataset Univ
ers

ity
 of

 M
ala

ya

 88

Table 6.4 Compressed Data Size - FDS dataset

Compression Size

Data Size Zlib LZRW bzip

5275466 4318662.00 5267854.00 4473554.00

10546978 8612760.00 10530771.00 8922345.00

21023274 17133357.00 20986037.00 17737444.00

31499570 25634697.00 31435114.00 26533703.00

The Figure 6.4 and Table 6.4 show result on FDS dataset of the test perform on

three algorithms for compressed data size.

Figure 6.5 Compressed Data Size - NCBI dataset

Data Size Comparison - NCBI dataset

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Raw Data Size (Byte)

C
o

m
p

re
s

s
e

d
 D

a
ta

 S
iz

e
 (

B
y

te
)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 89

Table 6.5 Compressed Data Size - NCBI dataset

Compression Size

Data Size zlib LZRW bzip
3365257 999719 1569215 941548
4265064 1388489 2026173 1217808
4933488 1444812 2280488 1346137
6360548 2012552 2992561 1786697

The Figure 6.5 and Table 6.5 show result on NCBI dataset of the test perform on

three algorithms for compressed data size.

Figure 6.6 Compressed Data Size – Water Quality dataset

Data Size Comparison - Water Quality dataset

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 5000000 10000000 15000000 20000000 25000000 30000000

Raw Data Size (Byte)

C
o

m
p

re
s

s
e

d
 D

a
ta

 S
iz

e
 (
B

y
te

)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 90

Table 6.6 Compressed Data Size – Water Quality dataset

Compression Size
Data Size zlib LZRW bzip

15148619 344381 2259686 265023
21004413 406111 3096002 305508
23609061 475239 3441771 287646
27149542 361140 3857183 274213

The Figure 6.6 and Table 6.6 show result on Water Quality dataset of the test

perform on three algorithms for compressed data size.

This test shows the after compression size of the subjected datasets. Though the

LZRW fair took the least time to compress a dataset, but the outcome from its

compression shows that it is the least compressed. This result shows that, fast

may not be a good thing in a compression process. The LZRW algorithm may be

the fastest to compress the dataset, but it also proves that it is the least

compressed as compare to the other algorithm. This is due to its algorithm logic

that may have not able to reduce the redundancy from the dataset as much as

the other two algorithms can do.

Univ
ers

ity
 of

 M
ala

ya

 91

6.3 Delay time (against raw data transmission) vs. Size of datasets

These table and graph show the comparison betweens the reference time, which

is the total time for transferring Raw data in different data size (measured in

number of Byte), towards the total time to completely transfer the whole zipped

data for each algorithm. The time measured for each algorithm includes the time

to compress the raw data to generate the zipped data, and the time to transfer

the zipped data to server side. This means, the time measurement is started

when the first chunk of data is read from file, and ended when the last data is

received.

Total Transmission Time Comparison - FDS

dataset

0

20000

40000

60000

80000

100000

120000

0 500000

0

100000

00

150000

00

200000

00

250000

00

300000

00

350000

00

Data Size (Byte)

T
ra

n
s

m
is

s
io

n
 T

im
e

 (
m

s
)

Zlib LZRW bzip Raw

Figure 6.7 Total Transmission Time - FDS dataset

Univ
ers

ity
 of

 M
ala

ya

 92

Table 6.7 Total Transmission Time - FDS dataset

Total Transmission Time

Data Size Zlib LZRW bzip Raw

5275466 7668.90 7687.90 18064.30 7230.30

10546978 14549.00 15250.90 36006.20 14448.70

21023274 29413.60 30552.90 71502.50 29118.10

31499570 44643.10 46342.60 107098.80 43582.10

The Figure 6.7 and Table 6.7 show result on FDS dataset of the test perform on

three algorithms for total transmission time.

Figure 6.8 Total Transmission Time - NCBI dataset

Total Transmission Time Comparison - NCBI

dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Data Size (Byte)

T
ra

n
s

m
is

s
io

n
 T

im
e

 (
m

s
)

zlib lzrw bzip raw

Univ
ers

ity
 of

 M
ala

ya

 93

Table 6.8 Total Transmission Time - NCBI dataset

Total Transmission Time
Data Size zlib LZRW bzip raw
3365257 3866 421 2944 441
4265064 4746 471 3905 781
4933488 5437 541 4296 841
6360548 6890 691 5467 1062

The Figure 6.8 and Table 6.8 show result on NCBI dataset of the test perform on

three algorithms for total transmission time.

Figure 6.9 Total Transmission Time – Water Quality dataset

Total Transmission Time Comparison - Water

Quality dataset

0

5000

10000

15000

20000

25000

30000

35000

0 5000000 10000000 15000000 20000000 25000000 30000000

Data Size (Byte)

T
ra

n
s

m
is

s
io

n
 T

im
e
 (

m
s

)

zlib lzrw bzip raw

Univ
ers

ity
 of

 M
ala

ya

 94

Table 6.9 Total Transmission Time – Water Quality dataset

Total Transmission Time
Data Size Zlib LZRW bzip raw
15148619 1101 1650 14581 2273
21004413 1662 1802 21431 10375
23609061 2173 2570 23704 9584
27149542 2253 2952 29713 10976

The Figure 6.9 and Table 6.9 show result on Water Quality dataset of the test

perform on three algorithms for total transmission time.

This test relies very much on the first test; since it contributes most of the time

spend in the entire process. With the most time taken on the first test, the bzip

algorithm, again, proves to be the worst performed among the other compression

algorithm. With test done on a simulated networked environment, without the

delay and data lose, it is very obvious that with the least compressed dataset (the

larges in size after compression) will take up the most time for the entire process.

This test also shows that, it may not be always good to compress the dataset

before transmitting. As we can see from the results, the total time taken to

compress and transmit the data over the network are most of the times longer

than transmitting the raw dataset.

Univ
ers

ity
 of

 M
ala

ya

 95

6.4 Compression Ratio

These table and graph compare the Compression Ratio of each algorithm, in

percentage, for each algorithm, against the Data Size of the input file, in number

of Byte. The formula for compression Ratio is:

Compression Ratio = (1 – ([Compressed Data Size (Byte)] / [Raw Data Size

(Byte)])) * 100 %

Compression Ratio Comparison - FDS dataset

0

2

4

6

8

10

12

14

16

18

20

0 5000000 1000000

0

1500000

0

2000000

0

2500000

0

3000000

0

3500000

0

Data Size (Byte)

C
o

m
p

re
s
s
io

n
 R

a
ti

o
 (

%
)

Zlib LZRW bzip

Figure 6.10 Compression Ratio - FDS dataset Univ
ers

ity
 of

 M
ala

ya

 96

Table 6.10 Compression Ratio - FDS dataset

Compression Ratio

Data Size Zlib LZRW bzip

5275466 18.14 0.14 15.20

10546978 18.34 0.15 15.40

21023274 18.50 0.18 15.63

31499570 18.62 0.20 15.76

The Figure 6.10 and Table 6.10 show result on FDS dataset of the test perform

on three algorithms for compression ratio. Based on FDS dataset, Zlib algorithm

shows an impressive result average 18% compression ratio.

Figure 6.11 Compression Ratio - NCBI dataset

Compression Ratio - NCBI dataset

0

20

40

60

80

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Data Size (Byte)

C
o

m
p

re
s

s
io

n
 R

a
ti

o
 (

%
)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 97

Table 6.11 Compression Ratio - NCBI dataset

Compression ratio
Data Size zlib LZRW bzip
3365257 70.29 53.37 72.02
4265064 67.45 52.49 71.45
4933488 70.71 53.78 72.71
6360548 67.99 52.95 71.91

The Figure 6.11 and Table 6.11 show result on NCBI dataset of the test perform

on three algorithms for compression ratio. Based on NCBI dataset, bzip algorithm

shows an impressive result average 72% compression ratio.

Figure 6.12 Compression Ratio – Water Quality dataset

Compression Ratio - Water Quality dataset

84

86

88

90

92

94

96

98

100

0 5000000 10000000 15000000 20000000 25000000 30000000

Data Size (Byte)

C
o

m
p

re
s

s
io

n
 R

a
ti

o
 (

%
)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 98

Table 6.12 Compression Ratio – Water Quality dataset

Compression ratio
Data Size zlib LZRW bzip
15148619 97.73 85.08 98.25
21004413 98.07 85.26 98.55
23609061 97.99 85.42 98.46
27149542 98.67 85.79 98.99

The Figure 6.12 and Table 6.12 show result on Water Quality dataset of the test

perform on three algorithms for compression ratio. Based on Water Quality

dataset, bzip algorithm shows an impressive result average 98% compression

ratio.

This test shows the compression ratio of each algorithm. This shows that even if

the dataset size increases, the performance are not degraded, in fact all 3

algorithms shows an improvement of performance over the increment of dataset

size. This is evidence in the logic of compression technology. Recall the idea of

compression is based on reducing the redundancy data or pattern in a dataset,

therefore with a larger size of dataset, statistically speaking; the reoccurrences of

a data pattern will be increased. So with much more redundancy occurrences,

the algorithm will be able to reduce even more data from the dataset.

Univ
ers

ity
 of

 M
ala

ya

 99

6.5 Data Rate

These table and graph compare the Data Transmission Rate of each algorithm,

in Byte per second, for each algorithm, against the Data Size of the input file, in

number of Byte. The Raw Data transmission measurement is included as a

reference. The Data Rate is calculated using the following formula:

Data Rate = [Total Transmitted Zipped Data (Byte)] / [Total Transmission Time

(second)]

Data Rate Comparison - FDS dataset

0

100

200

300

400

500

600

700

800

0 5000000 1000000

0

1500000

0

2000000

0

2500000

0

3000000

0

3500000

0

Data Size (Byte)

D
a
ta

 R
a
te

 (
B

y
te

/s
e
c
)

Zlib LZRW bzip Raw

Figure 6.13 Data Rate - FDS dataset

Univ
ers

ity
 of

 M
ala

ya

 100

Table 6.13 Data Rate - FDS dataset

Data Rate

Data Size Zlib LZRW bzip Raw

5275466 690.56 686.78 292.04 731.49

10546978 725.09 691.63 292.92 730.00

21023274 714.85 688.11 294.02 722.06

31499570 706.13 679.72 294.12 722.78

The Figure 6.13 and Table 6.13 show result on FDS dataset of the test perform

on three algorithms for data rate.

This test shows that although with dataset compressed and transmitted, the

performance is almost the same as transmitting a raw dataset without any

compression. This is because the time taken to compress the dataset is bringing

down the performance. This test also shows that for all 3 algorithms, they

perform at optimum with the 10Mb sized datasets size.

Univ
ers

ity
 of

 M
ala

ya

 101

Figure 6.14 Data Rate - NCBI dataset

Data Rate Comparison - NCBI dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Data Size (Byte)

D
a

ta
 R

a
te

 (
B

y
te

/s
e

c
)

zlib lzrw bzip raw

Table 6.14 Data Rate - NCBI dataset

Data Rate
Data Size Zlib LZRW bzip raw
3365257 870.48 7993.48 1143.09 7630.97
4265064 898.66 9055.34 1092.21 5461.03

4933488 907.39 9119.2 1148.39 5866.22
6360548 912.59 9204.85 1163.44 5989.22

The Figure 6.14 and Table 6.14 show result on NCBI dataset of the test perform

on three algorithms for data rate.

Univ
ers

ity
 of

 M
ala

ya

 102

Figure 6.15 Data Rate – Water Quality dataset

Data Rate Comparison - Water Quality dataset

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5000000 10000000 15000000 20000000 25000000 30000000

Data Size (Byte)

D
a

ta
 R

a
te

 (
B

y
te

/s
e

c
)

zlib lzrw bzip raw

Table 6.15 Data Rate – Water Quality dataset

Data Rate
Data Size zlib LZRW bzip raw

15148619 9180.98 13758.96 1038.93 6664.59
21004413 11656.17 12638.03 980.09 2024.52
23609061 9186.41 10864.73 995.99 2463.38
27149542 9197 12050.4 913.73 2473.54

The Figure 6.15 and Table 6.15 show result on Water Quality dataset of the test

perform on three algorithms for data rate.

This test shows the data rate over transmission. This test very much relies on the

first test results. It measure the rate of data transmitted over a real time network

environment.

Univ
ers

ity
 of

 M
ala

ya

 103

6.6 Total Data Transmission Time

These table and graph compare the Total Data Transmission Time of each

algorithm, in millisecond, for each algorithm, against the Zipped Data Size (the

transferred data size), in number of Byte. The Raw Data transmission

measurement is included as a reference. The Total Data Transmission Time is

calculated using the following formula:

Total Data Transmission Time = ([Zipped Data Size (Byte)] / [Data Rate

(Byte/second)]) * 1000 (ms)

The unit for Total Data Transmission Time is in millisecond to for ease of

comparison with other measurement made, i.e., the Total Transmission Time,

Compression Speed, and Delay Time.

Univ
ers

ity
 of

 M
ala

ya

 104

Data Transmission Time Comparison - FDS dataset

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 500000

0

100000

00

150000

00

200000

00

250000

00

300000

00

350000

00

Data Size (Byte)

T
ra

n
s
m

is
s
io

n
 T

im
e
 (

m
s
)

Zlib LZRW bzip Raw

Figure 6.16 Data Transmission Time - FDS dataset

Univ
ers

ity
 of

 M
ala

ya

 105

Table 6.16 Data Transmission Time - FDS dataset

Data Transmission Time

Data Size Zlib LZRW bzip Raw

5275466 5903.92 7201.53 6115.67 7230.30

10546978 11798.32 14425.73 12222.41 14448.70

21023274 23728.31 29063.96 24564.92 29118.10

31499570 35467.05 43492.25 36710.88 43582.10

The Figure 6.16 and Table 6.16 show result on FDS dataset of the test perform

on three algorithms for data transmission time.

This test proves that with datasets compressed it shorten the time needed to

transferred the data over the real time network environment. With a comparison

of identical transmission using the raw data, the test shows an improvement of

time taken of about 18%. The test in Figure 6.7, we see that the entire time taken

to compress and transmitting are about the same by mere transmitting the raw

dataset. In this test, now we can see that if by just comparing the transmission

time of compressed dataset against the raw dataset, it proves that by

compressing the dataset, it will take lest time in transmission. This is because

with smaller dataset size, the throughput of the transmission will be increased.

Univ
ers

ity
 of

 M
ala

ya

 106

Figure 6.17 Data Transmission Time - NCBI dataset

Table 6.17 Data Transmission Time - NCBI dataset

Data Transmission Time
Data Size zlib LZRW bzip
3365257 2966.94 395.82 981.33
4265064 3796.8 443.95 1301.67
4933488 4349.6 511.22 1431.96

6360548 5454.59 647.81 1822.33

The Figure 6.17 and Table 6.17 show result on NCBI dataset of the test perform

on three algorithms for data transmission time.

Data Transmission Time Comparison - NCBI

dataset

0

1000

2000

3000

4000

5000

6000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Data Size (Byte)

T
ra

n
s

m
is

s
io

n
 T

im
e

 (
m

s
)

zlib lzrw bzip

Univ
ers

ity
 of

 M
ala

ya

 107

Figure 6.18 Data Transmission Time – Water Quality dataset

Data Transmission Time Comparison - Water

Quality dataset

0

2000

4000

6000

8000

10000

12000

0 5000000 10000000 15000000 20000000 25000000 30000000

Data Size (Byte)

T
ra

n
s

m
is

s
io

n
 T

im
e

 (
m

s
)

zlib lzrw bzip

Table 6.18 Data Transmission Time – Water Quality dataset

Data Transmission Time
Data Size zlib LZRW Bzip

15148619 770.49 1594.95 4860.33
21004413 1301.6 1709.67 7143.67
23609061 1575.33 2425.13 7901.33
27149542 1637.75 2811.19 9904.33

The Figure 6.18 and Table 6.18 show result on Water Quality dataset of the test

perform on three algorithms for data transmission time.

Univ
ers

ity
 of

 M
ala

ya

 108

6.7 Analysis

As shown in the Figure 6.16, the zlib algorithm for FDS dataset is not always the

best among others. But it shows an optimal performance compare to other

compression algorithms.

The LZRW algorithm on FDS dataset shows the best compression time on all

data size. The compression time for LZRW algorithm is quite uniform and has

little effect on the data size. The zlib algorithm shows slight increment in

compression time in proportional to data size. The bzip algorithm shows dramatic

increment in the compression time as the data size grows.

For zlib algorithm on FDS dataset, the lost of the time in performing compression

is greatly recovered by its high compression ratio. Referring to Figure 6.10, the

zlib algorithm achieves an 18 % compression ratio, and slight increment in the

ratio as data size growth. This means it will need 82 % (and lesser) of the raw

data transmission time. This makes the zlib algorithm able to transmit at the data

rate closed to the data rate for raw data transmission, while saving the storage

space for about 18%.

The LZRW algorithm on FDS dataset has little compression ratio on this data set.

It only achieves less than 1 % of compression ratio, which means it is not

suitable to work on this kind of data set.

Univ
ers

ity
 of

 M
ala

ya

 109

The bzip algorithm on FDS dataset could achieve quite high compression ratio,

which is about 15 %, and is increasing slightly as data size grows. However, due

to the high compression time needed, it is not able to achieve a data rate that is

close to the data rate for raw data transmission. It is only able to achieve about

40 % of the data rate for raw data transmission.

The large difference of the compression ratio between the zlib algorithm and the

LZRW algorithm shows that, with the same basic of compression, it is able to

achieve a higher compression ratio.

Zlib LZRW Bzip
Dataset

Category Time (sec/Mb) Time (sec/Mb)
Time

(sec/Mb)

FDS 1 1.7758 1.4594 4.0380

FDS 2 1.6892 1.4482 4.0355

FDS 3 1.7167 1.4559 4.0312

FDS 4 1.7415 1.4742 4.0363

NCBI 1 3.8671 0.2683 3.1268

NCBI 2 3.4181 0.2325 3.2066

NCBI 3 3.7631 0.2372 3.1914

NCBI 4 3.4235 0.2309 3.0598

WQD 1 3.1970 0.7302 55.0179

WQD 2 4.0925 0.5820 70.1487

WQD 3 4.5724 0.7467 82.4068

WQD 4 6.2386 0.7653 108.3574

Table 6.19 Dataset category by Total Transmission Time/Compressed Size

Legend :
FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)

NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format

Univ
ers

ity
 of

 M
ala

ya

 110

Dataset Category by Time

0

20

40

60

80

100

120

FDS 1 FDS 2 FDS 3 FDS 4 NCBI 1 NCBI 2 NCBI 3 NCBI 4 WQD 1 WQD 2 WQD 3 WQD 4

Dataset Category

T
im

e
 (

s
e
c
/M

b
)

Zlib LZRW Bzip

Figure 6.19 Dataset Category by Time

Legend :
FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)

NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format

Based on above analysis on Figure 6.19, for text file format, Bzip compression is

dependent on file size. The overall performance of Bzip compression drops

tremendously with increasingly bigger file size. From the evaluation, Zlib and

LZRW compression is not affected by file size or dataset type.

Univ
ers

ity
 of

 M
ala

ya

 111

Zlib LZRW Bzip
Dataset

Category Compression
Ratio

Compression
Ratio

Compression
Ratio

FDS 1 18.14% 0.14% 15.20%

FDS 2 18.34% 0.15% 15.40%

FDS 3 18.50% 0.18% 15.63%

FDS 4 18.62% 0.20% 15.76%

NCBI 1 70.29% 53.37% 72.02%

NCBI 2 67.45% 52.49% 71.45%

NCBI 3 70.71% 53.78% 72.71%

NCBI 4 68.36% 52.95% 71.91%

WQD 1 97.73% 85.08% 98.25%

WQD 2 98.07% 85.26% 98.55%

WQD 3 97.99% 85.42% 98.46%

WQD 4 98.67% 85.79% 98.99%

Table 6.20 Dataset Category by Compression Ratio

Legend :
FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)

NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format

Univ
ers

ity
 of

 M
ala

ya

 112

Dataset Category by Compression Ratio

0

0.2

0.4

0.6

0.8

1

1.2

FDS 1 FDS 2 FDS 3 FDS 4 NCBI 1 NCBI 2 NCBI 3 NCBI 4 WQD 1 WQD 2 WQD 3 WQD 4

Dataset Category

C
o

m
p

re
s
s
io

n
 R

a
ti

o

Zlib LZRW Bzip

Figure 6.20 Dataset Category by Compression Ratio

Legend :
FDS = Fire Dynamic Simulator dataset
(binary format)

WQD = Water Quality Dataset (text format)

NCBI 1/3 = Fasta format

NCBI 2/4 = GenBank format

From the analysis of the Figure 6.20, different algorithms able to achieve different

ratios for different data types or file format. Moreover, as for LZRW show as the

lowest performing ratios given by all three dataset types.

Univ
ers

ity
 of

 M
ala

ya

 113

6.8 Summary

This chapter covers the idea on how the implementation process on the

compression evaluation simulator is carried out. This chapter also covers the

compression testing and evaluation.

For FDS dataset, zlib algorithm works best compare to LZRW and bzip algorithm.

Zlib algorithm achieve high compression ratio for FDS dataset with saving of

storage space

For NCBI dataset, the file size was not affected by LZRW and zlib algorithms.

Refering to Figure B.1, NCBI dataset works well on LZRW algorithm for best time

performance in transmission time and compression time.

For Water Quality dataset, the three algorithms are able to achieve different

compression ratio percentage. However, bzip algorithm performs best

compression ratio performance compare to other algorithms but the drawback is

its takes longer time for data transmission.

From the evaluation and the result obtained, the performance and behaviours of

compression algorithms are based on time which include compression time, data

transmission time and decompression time. The data transmission time is linear

to the file size. The compression algorithms are dependent or independent of the

file format or dataset types. With the effort of scientists and mathematicians,

there is space for the growth of compression algorithm.

Univ
ers

ity
 of

 M
ala

ya

 114

CHAPTER 7: Conclusion

The development of the compression evaluation benchmarking components has

provided several valuable insights into the idea behind the compression

techniques and behaviours that affects their performance, as well as a journey of

research and development. This chapter will begin with the discussion of the

objective and goals achieved during the process of completing this project.

The third section will discuss the evaluation outcome. This section will detail the

knowledge gained from this compression evaluation benchmarking. It is then

followed by a discussion on future enhancement for the simulator. This section

will describe some of the new functionalities that can be implemented for future

purposes.

7.1 Objectives and Goals Achieved

From this project we are now able to identify and evaluate the unique

characteristic of a scientific dataset. A scientific dataset not just outstand the

other dataset types in strength, but it is also provide the opportunity to vigorously

test the compression algorithm.

Through the evaluation testing on the selected compression algorithm, we were

able to identify and obtain the algorithm that best suit the unique characteristic of

the scientific dataset. Also from the result analysis, we now understand how the

size of datasets will affects the speeds, the ratio and performance as a whole on

the compressed dataset.

Univ
ers

ity
 of

 M
ala

ya

 115

By researching the current available compression techniques and the ongoing

research on compression techniques, we were now able to identify the

significance of compression performance and the various compression

techniques behind.

7.2 Analysis Conclusion

The analysis results prove that, although the compression algorithm test subject

derives from the same parent algorithm and theory, its performance varies when

it comes to implement on different sized datasets. Some has a uniform

performance through out the tests, while others either show superior

performance or a performance dropped over large datasets.

From this analysis, we could deduce that, the technique of reducing the data

redundancy in a datasets, play a very important role in its performance. How to

reduce the redundancy depends greatly on the developer and the intended

targeted datasets. Different developer may decide to work on the issue applying

different method. Therefore it is clear and wise that specific dataset should

targeted using different or specialised compression algorithm to maximize the

ratios and performance.

Univ
ers

ity
 of

 M
ala

ya

 116

7.3 Evaluation Outcome

According to the benchmarks conducted, we learned that, with the wide range of

compression techniques and algorithms available, it is not easy to determine

which one is more superior to the other. In fact, there is not one that is the most

superior among the same category of algorithm and technique. A proper study of

the compression algorithm specification should be done before selecting it as the

subject compression algorithm or technique. And specific compression technique

should be performed on a specific type of data. By doing this, the performance of

the compression algorithm would be able to be maximized. In our case, the

scientific dataset were used due to its random characteristic, which truly tested

the compression algorithm, whereas if we were to choose a text datasets or

numerical datasets, the result would be too good to simulate actual world

scenario. These remind us of the background theory of the compression

technology based on, “the information theory” [24], which postulate that a

message contains redundancy.

As we can see, a compression algorithm takes advantages on the specific

pattern in a datasets, which according to statistic laws [24], the algorithm would

be able to take out redundant data and thus compressing the datasets.

Therefore, we should be able to see in the very near future, that the new

generation of compression technique and algorithm will be focusing even more in

detail on a specific dataset, thus enhancing the compression performance to a

greater height. And the more general type of compression algorithm and

technique would be phase out.

Univ
ers

ity
 of

 M
ala

ya

 117

7.4 Future Enhancement

Currently, this project only involves test on 3 different scientific datasets of variety

file sizes and formats with 3 different types of algorithms. Therefore to obtain a

wider coverage of results of different types, all the tests performed should be

done in a lower specification test machine, to be able to truly evaluate the

performance of a compression algorithm and diverse source of datasets from

various applications.

Moving forward, the study should be able to test on streaming scientific datasets

to allow remote monitoring of experiments on real time.

7.5 Summary

This chapter concludes this project as a whole, and shows that how the

performance of compression algorithms can be evaluated and the importance of

choosing suitable compression techniques against the intended datasets. It also

shows how various properties of a datasets could affect the performance of the

compression algorithms. Univ
ers

ity
 of

 M
ala

ya

 118

References

[1] Stephen Wolfram, 2002. A New Kind of Science, Wolfram Media, Place:

Champaign, IL.

[2] Harringon, H. J., and James S. Harrington, 1996. High Performance

Benchmarking: 20 Steps To Success. McGraw-Hill Publication.

[3] Camp, Robert C., 1989. Benchmarking. Milwaukee: Quality Press.

[4] Ziv, J., and Lempel, A., 1978. Compression of Individual Sequences via

Variable-Rate Coding. IEEE Trans. Inform. Theory 24, 5 (Sept.), 530-536.

[5] Ziv, J., and Lempel, A., 1977. A Universal Algorithm for Sequential Data

Compression. IEEE Trans. Inform. Theory 23, 3 (May), 337-343.

[6] Werner Bergmans, 2003. The Compression Programs [online]. Available from:

http://www.maximumcompression.com/programs.php

[Accessed 4 November 2005].

[7] National Center for Biotechnology Information, 2005. NCBI Map Viwer [online].

Available from:

http://www.ncbi.nlm.nih.gov/mapview/

[Accessed 27 August 2005].

[8] National Institute of Standards and Technology, 2005. NIST Fire Dynamics

Simulator (FDS) and Smokeview [online]. Available from:

http://fire.nist.gov/fds/

[Accessed 15 August 2005].

Univ
ers

ity
 of

 M
ala

ya

 119

[9] U.S. Environmental Protection Agency, 2005. STORET Database Access

[online]. Available from:

http://www.epa.gov/storet/dbtop.html

[Accessed 20 August 2005].

[10] G. Shavit, M. F. Ringenburg, J. West, R. E. Ladner, and E. A. Riskin, 2005.

Group testing for video compression. In IEEE Data Compression Conference.

Mar 2004.

[11] A.C. den Brinker and F. Riera-Palou., 2002. Quantisation and interpolation of

Laguerre prediction. Philips Research Eindhoven.

[12] David Salomon, 2000. Data Compression: The Complete Reference. 2nd

Edition. Springer, Video compression: pp. 593-604, Mu-Law and A-Law

Computing: pp. 644-649, H.261: pp. 627-630, MPEG: pp. 605-626.

[13] Stremler, F. G., 1990. Introduction to Communication Systems, 3rd Ed.

Addison-Wesley Publishing Co., New York, pp.402-412, 541-547.

[14] Hambley, A.R., 1990. An Introduction to Communication Systems. Computer

Science Press, New York, pp. 239-251.

[15] David J.C. MacKay, 2003. Information Theory, Inference, and Learning

Algorithms. Cambridge University Press.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,

2001. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill.

Section 16.3, pp.385–392, Section 30.2: The DFT and FFT, pp. 830-838.

Univ
ers

ity
 of

 M
ala

ya

 120

[17] Paul E. Black, 2005. "Shannon-Fano coding", in Dictionary of Algorithms and

Data Structures [online]. U.S. National Institute of Standards and Technology.

Available from:

http://www.nist.gov/dads/HTML/shannonFano.html

[Accessed 15 July 2005]

[18] Mark Nelson, 1989. LZW Data Compression. Dr. Dobb’s Journal.

[19] Terry Welch, 1984. A Technique for High-Performance Data Compression. IEEE

Computer, 17(6):8-19.

[20] Mark Nelson, 1995. The Data Compression Book. 2nd ed., M&T Books.

[21] Khalid Sayood, 1996. Introduction to Data Compression. Morgan Kaufmann.

[22] Syed Ali Khayam, 2003. The Discrete Cosine Transform (DCT): Theory and

Application [online]. Department of Elecrical & Computer Engineering, Michigan

State University. Available from:

http://www.egr.msu.edu/waves/people/Ali_files/DCT_TR802.pdf

[Accessed 5 May 2005]

[23] Raymond W. Yeung., 2002. A First Course in Information Theory. Kluwer

Academic/Plenum Publishers.

[24] Stanford Goldman, 2005. Information Theory. New York: Dover.

[25] Thomas M. Cover, Joy A. Thomas., 2006. Elements of information theory. 2nd

Edition. New York: Wiley-Interscience.

[26] Arturo San Emeterio Campos, 1999. LZ77 the basics of compression (2nd ed.)

[online]. Available from:

http://www.arturocampos.com/ac_lz77.html

[Accessed 26 July 2005]

Univ
ers

ity
 of

 M
ala

ya

 121

[27] M. Purat, T. Liebchen, P. Noll., 1997. Lossless Transform Coding of Audio

Signals. 102nd AES Convention, Munich.

[28] CDP Digital Audio Working Group, 2005. Digital Audio Best Practices Version

2.0 [online]. Available from:

http://www.cdpheritage.org/digital/audio/documents/CDPDABP_1-2.pdf

[Accessed 4 December 2005]

[29] Miano, John., 1999. Compressed Image File Formats: JPEG, PNG, GIF, XBM,

BMP. Boston: Addison-Wesley Professional.

[30] Ifeachor, Emmanuel C., and Jervis, Barrie W., 2002. Digital Signal Processing: A

Practical Approac. Harlow, England: Pearson Education Limited.

[31] Jonathan (Y) Stein, 2000. Digital Signal Processing, a Computer Science

Perspective. Wiley.

[32] Roger D. Smith, 1999.Encyclopedia of Computer Science [online]. Nature

Publishing Group. Available from:

http://www.modelbenders.com/encyclopedia/encyclopedia.html

[Accessed 15 November 2005]

[33] P. Humphreys, 2004. Extending Ourselves: Computational Science, Empiricism,

and Scientific Method. Oxford: Oxford University Press.

[34] Common Steps in Benchmarking Models. International Benchmarking

Clearinghouse, Houston, TX., 1992.

[35] Jocelyn Dabeau, 2000. An Inroduction to MP3 [online]. Available from:

http://www.law.harvard.edu/faculty/tfisher/music/MP3.html

[Accessed 20 Oct 2005]

Univ
ers

ity
 of

 M
ala

ya

 122

[36] Xiph.org, 2000. Vorbis audio compression [online].Available from:

http://www.xiph.org/vorbis/

{Accessed 20 Oct 2005]

[37] Matt Pharr and Greg Humphreys, 2004. Physically Based Rendering: From

Theory to Implementation [online]. Morgan Kaufmann. Available from:

http://graphics.stanford.edu/~mmp/chapters/pbrt_chapter7.pdf

[Accessed 20 Oct 2005]

[38] Hans Dieter Lüke, 1999. The Origins of the Sampling Theorem. IEEE

Communications Magazine, pp.106–108, April 1999.

[39] Creative Labs, 2000. History and Milestones [online]. Available from:

http://www.creative.com/corporate/about/

[Accessed 25 Oct 2005]

[40] M. H. Johnson and A. Alwan, 2002. Speech Coding: Fundamentals and

Applications. Encyclopedia of Telecommunications, Wiley.

[41] M. R. Schroeder and B. S. Atal, 1985. Code-excited linear prediction (CELP):

high-quality speech at very low bit rates. Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 10, pp.

937-940.

[42] Sun Young Lee, Yong Ho Cho, Whoiyul Kim and Euee S. Jang, 2004.

Advances in Multimedia Information Processing .PCM 2004, Volume 3333/2004

Selective Motion Estimation for Fast Video Encoding: pp. 630-638

[43] Murray, James D., and William van Ryper, 1996. Encyclopedia of Graphics File

Formats, Second Edition. Sebastopol, Calif.: O'Reilly.

Univ
ers

ity
 of

 M
ala

ya

 123

[44] Mertz, David, 2003. Text Processing in Python. Addison-Wesley Professional –

PEARSON.

[45] Joint Video Team of ITU-T and ISO/IEC JTC 1, 2003 Draft ITU-T

Recommendation and Final Draft International Standard of Joint Video

Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), document JVT-

G050r1, May 2003; technical corrigendum 1 documents JVT-K050r1 (non-

integrated form) and JVT-K051r1 (integrated form), March 2004; and Fidelity

Range Extensions documents JVT-L047 (non-integrated form) and JVT-L050

(integrated form), July 2004.

Univ
ers

ity
 of

 M
ala

ya

