

CONJUNCTIONS IN BIOLOGICAL NEURAL ARCHITECTURES

FOR VISUAL POSE ESTIMATION

TOM´AS MAUL

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY UNIVERSITY OF MALAYA

KUALA LUMPUR

2006

Univ
ers

ity
 of

 M
ala

ya

CONJUNCTIONS IN BIOLOGICAL NEURAL ARCHITECTURES

FOR VISUAL POSE ESTIMATION

TOM´AS MAUL

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY UNIVERSITY OF MALAYA

KUALA LUMPUR

2006

Univ
ers

ity
 of

 M
ala

ya

Abstract

The current thesis is concerned with how biological systems solve the compu-
tational problem of visual pose estimation. Four levels of analysis are traversed
in order of decreasing abstraction: computational, algorithmic, implementational
and formational. As each level is traversed, a biological plausibility argument is
gradually strengthened. At the algorithmic level, several approaches for solving the
pose estimation problem are compared in terms of their neural implementability. A
highly parallel approach based on simple inter-map conjunctions, or correspondence
distributions, is chosen and tested on synthetic and real patterns. The accuracy
and robustness of the approach are demonstrated in relation to various critical en-
vironmental factors. At the implementational level, the algorithm is translated into
various artificial neural architectures. Several maximum value networks are inves-
tigated and compared in this context. Combinatorial issues regarding the numbers
of nodes and connections are analyzed. The analyses suggest that the architectures
can satisfy biological constraints. The spatial arrangement of nodes in different ar-
chitectures is optimized via an elastic network, with the goal of minimizing the total
wiring length between nodes, revealing novel and interesting design principles, some
of which correlate with several aspects of biological neural maps. Other revealing
links to biological findings are discussed, such as the computation of conjunctions
at the level of dendritic branches. Following this, at the formational level, various
local mechanisms are investigated in the context of the biological development of
the proposed neural architectures. It is shown that simple local rules, together with
visual experience, such as that provided by dynamic images, are sufficient for the
development of the neural architectures. The generalization of inter-map conjunc-
tions is discussed in the context of other visual functions and sensory modalities.
Some pointers towards methodologies for uncovering direct evidence of inter-map
conjunctions are also provided. The general hypothesis supported by the thesis
states that at least some biological neural systems are likely to be using inter and
intra-map conjunctions for efficiently solving computational problems such as visual
pose estimation.

ii

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)

Registration/Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study:

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing
and for permitted purposes and any excerpt or extract from, or reference to
or reproduction of any copyright work has been disclosed expressly and suffi-
ciently and the title of the Work and its authorship have been acknowledged
in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the Uni-
versity of Malaya (“UM”), who henceforth shall be owner of the copyright in
this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

iii

Univ
ers

ity
 of

 M
ala

ya

Acknowledgments

I would like to thank my supervisor Assoc. Prof. Dr. Mohd. Sapiyan Baba for his
guidance, ideas and open-mindedness. He created the perfect research atmosphere
by allowing certain risks whilst keeping clear track of the work’s direction. I am
very grateful for the environment he created. He was also crucial in clarifying the
thesis and revealing several hidden assumptions.

I would also like to thank several colleagues. In particular, Yeong Pong Meau,
for his mathematical expertise and the many discussions he participated in, and in
general, all other colleagues of the Artificial Intelligence Laboratory, who contributed
to a friendly and inspiring work atmosphere.

This work has significantly benefited from advice and hints from a long string of
researchers, via various informal communications. Specifically, I would like to thank:
David Arathorn, Dave Casasent, Tansu Celikel, Peter Földiák, Geoffrey Hinton,
Guosong Liu, Bartlett Mel, Yoichi Miyawaki, Mike Mozer, Riadh Mtibaa, Bruno
Olshausen, Alexandre Pouget, James Reggia, Reiner Schulz, Terrence Sejnowski,
Patrice Simard, Steve Skiena, Javier Traver and Laurenz Wiskott.

Most importantly I would like to express my deepest gratitude to my family,
who have always supported all my endeavors and without which this work would
be meaningless if not impossible. I would like to thank my father for his endless
support, for his liberal attitude and trust regarding my choices, for providing an
example of perfectionism and logical clarity, and for having the wisdom to advise
me to never close any doors. I hope that I can make all your efforts worthwhile. I
am also grateful to my mother for her support and creativity. My sister’s character
and career have often reminded me of what should be the main guiding principle
behind any endeavor: to help others. I would also like to thank my grandparents
for the archetypal inspiration and wisdom they continuously provide. Thank you
also to my mother and father in law for painstakingly helping us at this crucial
transition phase: babysitting is probably the toughest job in the world. Lastly and
most fundamentally, I would like to say thank you to my wife, who has supported
me in all possible ways, and who has brought a meaning and happiness to life which
I hardly deserve. Your warmth, intelligence and humor inspire me everyday. Thank
you for putting up with my stubborn obsession with time and for making all of this
possible.

All shortcomings to be found within these pages are my sole responsibility. Any
useful insights, on the other hand, would not be possible without the direct or
indirect influence of those acknowledged above, or those that have been inadvertently
omitted.

iv

Univ
ers

ity
 of

 M
ala

ya

Contents

Abstract v

Acknowledgments v

1 Introduction 1
1.1 Computational Neuroscience of Vision 1
1.2 Levels of Abstraction . 2
1.3 Objectives . 3
1.4 Main Argument . 4
1.5 Research Methodology . 5
1.6 Main Contributions . 6
1.7 Thesis Structure . 7

1.7.1 The Chapters . 7
1.7.2 A Short-Cut . 8

2 Thesis Overview: Four Levels of Abstraction 9
2.1 The Framework . 9
2.2 Computation . 11

2.2.1 Pose Estimation . 11
2.2.2 Importance . 12
2.2.3 Difficulty . 13

2.3 Algorithm . 13
2.3.1 Types of Algorithms . 14
2.3.2 Correspondence Distributions 15

2.4 Implementation . 15
2.4.1 Computational Devices . 15
2.4.2 Artificial Neural Networks . 16
2.4.3 Artificial Neural Correspondence Distributions 17
2.4.4 Biological Neural Networks . 20
2.4.5 Biological Neural Correspondence Distributions 22

2.5 Formation . 23
2.5.1 Types of Formation . 23
2.5.2 Development of Correspondence Distributions 24

3 Algorithms for Pose Estimation 26
3.1 Introduction . 26
3.2 Template based approaches . 27

3.2.1 Deformable Models . 27
3.2.2 Map-Seeking Circuits . 28
3.2.3 Dynamic Routing Circuits . 30
3.2.4 What-and-Where Filter . 32

v

Univ
ers

ity
 of

 M
ala

ya

3.3 Correspondence based approaches . 33
3.3.1 Search-based . 33
3.3.2 Vote-based . 36

3.4 Global Properties . 42
3.4.1 Center of Mass . 42
3.4.2 Symmetry Axes . 43

3.5 Conclusion . 44

4 Single Correspondence Analysis 46
4.1 Basic Concepts . 46

4.1.1 Inputs . 46
4.1.2 Correspondences . 48
4.1.3 Local Invariant Features . 50
4.1.4 Problem Definition . 52

4.2 Pose Estimation Algorithms . 53
4.2.1 Transformations . 53
4.2.2 Constrained Estimation . 60
4.2.3 Unconstrained Estimation . 63

Abbreviations 46

5 Estimation Accuracy 67
5.1 Synthetic Patterns . 67

5.1.1 Introduction . 67
5.1.2 Feature Repeatability . 68
5.1.3 Spurious and Missing Features 71

5.2 Real Patterns . 72
5.2.1 Pre-processing . 73
5.2.2 The PTC of Real Patterns . 75
5.2.3 Real Pattern Accuracy . 76

6 Artificial Neural Architectures 79
6.1 Artificial Components . 79
6.2 Feature Maps and Columns . 81
6.3 Correspondence Detectors . 82
6.4 Transformation Voting Structures . 83
6.5 Maximum Value Networks . 85

6.5.1 Lateral Inhibition . 86
6.5.2 Mean Based . 92
6.5.3 Paired Comparisons . 93
6.5.4 Advantages and Disadvantages 94

6.6 Correspondence Vote Normalization 97
6.7 Constrained Estimation . 97
6.8 Unconstrained Estimation . 98

7 Architectural Analysis 101
7.1 Combinatorial Explosions . 101

7.1.1 Nodes . 102
7.1.2 Connections . 104
7.1.3 Constraints . 105
7.1.4 Containing Explosions . 108

vi

Univ
ers

ity
 of

 M
ala

ya

7.2 Structural Optimization . 113
7.2.1 Introduction . 113
7.2.2 Assumptions and Simplifications 114
7.2.3 Optimization Methods . 115
7.2.4 Examples . 118
7.2.5 Conclusions . 126

8 Biological Neural Architectures 129
8.1 Biological Support . 129

8.1.1 Topographic Maps . 129
8.1.2 Features . 133
8.1.3 Neuronal Variety . 135
8.1.4 Dendritic Conjunctions . 137
8.1.5 Example Constrained Architecture 138
8.1.6 Example Unconstrained Architecture 140

8.2 Biological Constraints . 141

9 Development of Connection-Patterns 145
9.1 Introduction . 145
9.2 Main Elements . 147

9.2.1 Neural Trace . 148
9.2.2 Random Rewiring . 148
9.2.3 Fixation Levels . 149

9.3 Algorithm . 150
9.4 Experiments . 158

9.4.1 Time vs. Fixation . 159
9.4.2 Feature Sparsity . 160
9.4.3 False Correspondences . 165
9.4.4 Natural Images . 167

9.5 Rigid Transformations . 168
9.5.1 Algorithm . 169
9.5.2 Rotation . 169
9.5.3 Translation and Rotation . 170

9.6 Probabilistic considerations . 173
9.7 Structurally Optimal Development 175

10 Discussion 178
10.1 Summary . 178
10.2 Strengths and Weaknesses of Correspondence Distributions 179
10.3 Direct Evidence . 180

10.3.1 Multicolored Labeling . 180
10.3.2 Birds and Humans . 182

10.4 Expensiveness . 183
10.5 Artificial and Biological Synergy . 184
10.6 Generalizations . 187

10.6.1 Visual Applications . 187
10.6.2 Modalities . 190
10.6.3 Inter-Map Computations . 191

10.7 Future Work . 191
10.8 Conclusion . 194

vii

Univ
ers

ity
 of

 M
ala

ya

A Image Processing 196
A.1 Salience . 196

B Proofs 199
B.1 Total Connection Length for Maximum Networks 199

B.1.1 Lateral Inhibition I and II . 199
B.2 Average Error for Random Guessers 200
B.3 Developmental Probabilities . 201

B.3.1 Matching Synaptic Pairs . 201

C Input-Clouds 203
C.1 Introduction . 203
C.2 Types of Clouds . 205
C.3 Cloud Behaviour . 207
C.4 Applications . 210
C.5 Conclusion . 212

Bibliography 213

viii

Univ
ers

ity
 of

 M
ala

ya

List of Figures

2.1 A hierarchy of problems. 10
2.2 Some image transformations. 12
2.3 A Higher Order Neural Network (b) and a specialization (a). 18
2.4 Biological neural networks implementing an exclusive OR. 21

3.1 Simplified diagram of a map-seeking circuit. 30

4.1 An input-cloud, an input-vision and some correspondences. 47
4.2 Various distributions of correspondence properties. 49
4.3 Example salience filtering. 51
4.4 Constrained transformations applied to a single point. 58
4.5 An input-cloud and a set of correspondences and votes. 61
4.6 Two voting surfaces. 64
4.7 The intersection of Tx estimation surfaces. 65

5.1 Two examples of synthetic patterns. 68
5.2 Three accuracy critical factors. 68
5.3 PTC as a function of feature repeatability. 71
5.4 The effect of spurious and missing features on accuracy. 74
5.5 Example salience-filtering and thinning. 74
5.6 COIL objects and their PTCs. 76
5.7 Examples of transformations, resulting input-visions and estimations. 77

6.1 Artificial Neural Components. 80
6.2 Feature richness and feature map columns. 82
6.3 Correspondence detection. 83
6.4 Correspondences voting for translations. 84
6.5 A lateral inhibition network. 86
6.6 Node competition with rate conditioned weights. 88
6.7 W− depends on the sum of node activities. 90
6.8 Hierarchical competitive network. 91
6.9 Mean based networks. 92
6.10 Paired comparisons. 93
6.11 ANA for constrained pose estimation. 98
6.12 ANA for unconstrained pose estimation. 99
6.13 Correspondences excite/vote-for Tx and Ty surfaces. 100

7.1 Example equation derivation. 103
7.2 Dealing with excessive vote-cell inputs. 107
7.3 Two 3D voting structures. 110
7.4 The results of two structural optimization methods. 118
7.5 A sequence of elastic network steps. 119

ix

Univ
ers

ity
 of

 M
ala

ya

7.6 The (Tx, Ty) case with a single feature type. 120
7.7 The (Tx, Ty) case with ten distinct feature types. 122
7.8 Elastic optimization for both the scale and rotation cases. 123
7.9 The (Tx, Ty, θ) case with ten feature types, optimized in 3D space. . . 125
7.10 The (Tx, Ty, θ) case with two feature types, optimized in 2D space. . . 126

8.1 The preservation of position and orientation relationships. 130
8.2 Biological neural architecture for a simple (Tx, Ty) estimator. 139
8.3 A SCAPE BNA for a simplified unconstrained estimation case. 141
8.4 Dendrites with terminal conjunctions and inner summations. 143

9.1 Three stages of SCAPE development. 157
9.2 Changes in fixation levels. 158
9.3 Time versus overall fixation level. 160
9.4 The effect of feature sparsity on convergence time. 162
9.5 The effect of feature sparsity on development. 164
9.6 Larger speed-change intervals do not help the sparse features case. . . 164
9.7 The effect of different probabilities of true correspondences. 166
9.8 A natural image and its PTC-filtered version. 167
9.9 SCAPED performance on a natural image. 168
9.10 The development of rotation estimators. 170
9.11 The development of estimators for rigid transformations. 172
9.12 At least one match probabilities. 174
9.13 The development of SCAPE networks with a degree of topography. . 176

10.1 Visualizing inter-map conjunctions without positional information. . . 181
10.2 Visualizing inter-map conjunctions with positional information. . . . 182
10.3 A very cheap translation estimator. 185
10.4 A possible correspondence-based architecture for stereopsis. 189
10.5 Artificial neural architecture for a shape distribution. 189
10.6 A neural architecture for finding the centroid of a shape. 190
10.7 A simple architecture for sound localization. 191

A.1 Mean deviation filtering. 197
A.2 BRP filtered images. 197

C.1 Simplified illustration of a local-motion cloud. 205
C.2 Simplified illustration of a global-motion cloud. 206
C.3 Some of the forces that may underlie cloud behavior. 207
C.4 Some possible cloud behaviours. 208
C.5 Multiple cloud and object spatial relationships. 209
C.6 Part of the segmentation process using multiple clouds. 211
C.7 Applicability of input-clouds to multiple object tracking. 211

x

Univ
ers

ity
 of

 M
ala

ya

List of Tables

3.1 A qualitative comparison of pose estimation approaches. 44

4.1 Transformation groups and their invariants. 54

5.1 The effect of feature repeatability on error. 70
5.2 The average error of a random guesser. 70
5.3 Mean chance and algorithmic estimation errors. 77

6.1 Comparing maximum-value networks. 96

7.1 Comparison of estimation errors between 4D and 3D architectures. . 113

8.1 Various human cortical constraints. 141

9.1 Standard SCAPED parameters. 159

xi

Univ
ers

ity
 of

 M
ala

ya

Abbreviations

AHT Adaptive Hough Transform
AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate
ANA Artificial Neural Architecture
ANN Artificial Neural Network
BNA Biological Neural Architecture
C-Coverage Representational coverage of correspondences
CDA Correspondence Distribution Analysis
COIL Columbia Object Image Library
C-SCAPE Constrained SCAPE
DRC Dynamic Routing Circuits
EPSP Excitatory Post-Synaptic Potential
GHT Generalized Hough Transform
HONN Higher Order Neural Network
IU Image Understanding
L2/3 Cortical Layers 2 and 3
MOR Multiple Object Recognition
MOT Multiple Object Tracking
MLP Multilayered Perceptron
NR Number of Non-Repeating Features
PFC Probability of a False Correspondence
PTC Probability of a True Correspondence
PTD Probability of a True Doublet
PTS Probability of a True Singlet
R Number of Repeating Features
RANSAC Random Sample Consensus
RAST Recognition by Adaptive Subdivisions of Transformation Space
RUDR Recognition Using Decomposition and Randomization
SCAPE Single Correspondence Analysis for Pose Estimation
SCAPED SCAPE Development
T-Coverage Representational coverage of transformations
TWL Total Wiring Length
U-SCAPE Unconstrained SCAPE
VSA Visual Scene Analysis

xii

Univ
ers

ity
 of

 M
ala

ya

Chapter 1

Introduction

Truth in science can be defined as the working hypothesis best suited to
open the way to the next better one.

– Konrad Lorenz

1.1 Computational Neuroscience of Vision

Vision consists of many different but interrelated capabilities, e.g: object clas-

sification, facial expression interpretation, motion analysis, depth perception, 3D

volume perception and others. The ease with which we humans perform these func-

tions obscures us to the incredible complexity of the mechanisms underlying them.

It has taken evolution hundreds of millions of years, to go from the simple visual

capabilities of trilobites in the Cambrian Period, to those observed for example, in

primates today. It is worthwhile to recall the often cited, possibly fictitious, yet

illustrative anecdote, where a famed professor sometime around 1966, requested one

of his students to solve the problem of computer vision as a summer project. Many

years and brains later, the problem remains largely unsolved, except for highly-

specialized applications and cases with controlled environmental parameters.

The upside to vision’s complexity and apparent intractability, is that it provides

us with a rich set of problems within which to conduct research on Neural Com-

putation. Object recognition is possibly one of the problems currently attracting

the greatest deal of attention. Being a highly complex and resource demanding

1

Univ
ers

ity
 of

 M
ala

ya

problem it has been investigated mostly in the context of several specializations,

e.g: faces, fingerprints, handwritten characters, vehicles, histological elements, and

others. One of the greatest difficulties faced by object recognition systems stems

from the fact that every object has a virtually endless set of appearances. It has long

been known that if such appearances can be compensated for (i.e. normalized), the

recognition process can be greatly simplified. Geometric transformations constitute

an important source of such appearances and provide objects with varied poses in

terms of position, size, rotation and other transformations. The poses of objects

are not only as useful in their own right as their identities (i.e. recognition), but

as already argued can facilitate in the determination of the latter. Being a some-

what forsaken yet crucial ability, we decided that pose estimation would be a great

candidate for investigating how it might be solved in biological neural systems.

Questions pertaining to the nature, location and raison d’être of specialized and

general computations in biological neural systems are mainly the domain of Com-

putational Neuroscience. Being by definition an interdisciplinary field it combines

a host of methodologies, levels of abstraction and underlying motivations. For ex-

ample, some researchers will prefer to focus on aspects such as spike dynamics and

coding strategies, while others choose to focus on architectonic and developmental

aspects. Our thesis belongs to the latter category. The computational problem of

visual pose estimation will be investigated in the context of Computational Neuro-

science, with special emphasis on representational, architectonic and developmental

issues.

1.2 Levels of Abstraction

The problems faced by the current thesis are best understood when contextu-

alized by a framework consisting of four levels of abstraction, i.e: computational,

algorithmic, implementational and formational. Here we will briefly introduce the

framework, which will be explained in greater detail in Chapter 2.

The first level is essentially concerned with formulating the computational prob-

lem that needs to be addressed, which in this case refers to pose estimation. The

2

Univ
ers

ity
 of

 M
ala

ya

pose estimation problem can be defined as follows: given two patterns, which are

equivalent to each other except for a geometric transformation1, estimate the trans-

formation that relates them. The geometric transformations considered in the thesis

belong to the similarity group which consists of: 2D translation, scaling and rotation.

At the algorithmic level we are concerned with formulating information process-

ing steps which are capable of solving the pose estimation problem. The best can-

didate from a neural implementability perspective was deemed to be an approach

based on distributions of correspondences between local features: correspondence

distributions. The chosen approach was shown to be significantly accurate and

robust to environmental factors.

The implementational level is concerned with the embodiment of algorithms in

particular computational devices. In this context, we translated our chosen algo-

rithm into artificial and biological neural architectures. Structural optimization

experiments were conducted, revealing useful design principles and biological pre-

dictions. Relevant and recent biological findings were discussed in support of the

architectures.

The formational level is concerned with how particular computational devices

implementing particular algorithms can be formed. In our particular context, this

involved modeling developmental mechanisms based on Hebbian-like local mecha-

nisms (that mediate synaptic maturation and elimination), random axonic wiring

and visual stimulation.

1.3 Objectives

Two general objectives, with several semi-independent sub-goals, guided the cur-

rent thesis:

1. To propose a simple, accurate and robust approach for neural pose estimation.

(a) Search theoretical, applied and biological domains for the best candidate

approach.

1Other possible exceptions include: noise, clutter, occlusions, illumination variations, among
others.

3

Univ
ers

ity
 of

 M
ala

ya

(b) Test various performance characteristics of the approach.

(c) Translate the approach’s algorithms into artificial neural architectures.

2. To strengthen the hypothesis that some biological systems might be imple-

menting the proposed approach.

(a) Perform biologically relevant architectural analyses and optimizations.

(b) Form connections with recent biological findings.

(c) Investigate developmental algorithms capable of generating the architec-

tures.

Note that our two main objectives can be combined into a single goal: to find

a biologically plausible neural solution for pose estimation. The final section of the

thesis’ final chapter (section 10.8) will verify that our objectives have been met with

reference to this single all-encompassing goal.

It should also be noted here that temporal/dynamic issues (e.g. spike timing,

rate coding and others) are serious absentees from our objectives list. Clearly they

are highly relevant and important to consider. However, we chose to focus heavily

on architectural and developmental considerations, partly because this permitted

stronger bridges between the artificial proposals and recent biological findings.

1.4 Main Argument

The overall argument running through the thesis is essentially one of accumulat-

ing consistency. A hypothesis is put forth, which states that some biological systems

are likely to be using correspondence distributions for solving the pose estimation

problem. First the approach is demonstrated to perform accurately and robustly.

This is consistent with the behaviour of many complex animals. Then the approach

is shown to have simple and feasible artificial neural architectures embodying it.

Without artificial neural implementability, biological plausibility is automatically

invalidated. Subsequently the architectures are shown to have elegant and compact

configurations, which satisfy certain structural goals found in biological systems.

4

Univ
ers

ity
 of

 M
ala

ya

The structural optimization of artificial architectures provides a bridge leading to

biological topographic maps. After that, several biological findings are discussed,

which allow for and partially attest to the existence of the approach in biological

neural systems. Having shown that the approach is implementable in biological

neural systems is only part of the consistency story: if the architectures are too

complex to be created (i.e. developed) then the whole case is lost. So the final piece

of consistency shows that developmental algorithms do exist, which demonstrate

how architectures can emerge as a result of simple physiological mechanisms and

visual experience.

An even more compact form of the argument might be stated as follows. Corre-

spondence distributions are biologically plausible because they: 1) are accurate, 2)

are neurally implementable, 3) have structurally optimal forms that correlate with

biological maps, 4) have biological machinery for their representation, and 5) can

develop.

1.5 Research Methodology

Being an interdisciplinary thesis, the research methodology did not follow any of

the familiar formats from Computer Science on one side of the spectrum, or Neuro-

science on the other. Instead, several methodological stages were recurrently visited

as required by the thesis’ argument. The stages included: problem refinement, back-

ground research, conceptual proofs, incremental simulation prototyping, modeling

with MatLab, biological hypothesizing, and others. Having said this, one can prob-

ably simplify the recursive methodology into four main sequential stages, defined

according to their central concerns: 1) problems, 2) solutions, 3) artificial neural

networks and 4) biological neural networks. The first stage includes problem defi-

nition and gradual refinement. The second stage includes reviewing the literature,

comparing approaches, and testing algorithm performance. The third stage includes

the design, simulation, analysis and optimization of artificial neural architectures.

Finally, the fourth stage includes the search for biological parallels and the design,

simulation and analysis of developmental algorithms.

5

Univ
ers

ity
 of

 M
ala

ya

1.6 Main Contributions

Some of the main contributions originating from the current work may be sum-

marized as follows:

1. Theoretical, applied and biological domains were reviewed in the search for

explicit, general and neurally implementable pose estimation approaches.

2. New limits and factors regarding the performance of correspondence distribu-

tions were investigated.

3. Artificial neural architectures were designed for the representation and analysis

of correspondence distributions.

4. Structurally optimal configurations for neural pose estimators were found and

general design principles were revealed.

5. A biologically plausible neural pose estimator, based on correspondence dis-

tributions, was proposed.

6. Evidence was reviewed supporting the implementability and existence of cor-

respondence distributions in biological systems.

7. A case was made for the generality of inter-map conjunctions in biological

systems.

8. Developmental mechanisms were found for the formation of pose estimating

neural architectures.2

9. The generalization of correspondence distributions to different application do-

mains and modalities was discussed.

10. An experimental methodology was proposed for uncovering direct evidence of

correspondence distributions in biological systems.

11. A new form of illumination normalization was proposed.

2To the best of the author’s knowledge, there are no existing models of the development of
biological neural architectures for explicit and general pose estimation.

6

Univ
ers

ity
 of

 M
ala

ya

1.7 Thesis Structure

1.7.1 The Chapters

In the introduction, the thesis’ main problems and solutions are first presented,

followed by an outline of the objectives, the main argument and hypothesis, and the

research methodology. A summary of the main contributions is also provided.

Following this, Chapter 2 is dedicated to providing an overview of the thesis

in terms of the four levels of abstraction that it traverses, i.e: computational, al-

gorithmic, implementational and formational. Sufficient background information is

provided for understanding the various solutions adopted throughout the thesis, and

the various assumptions and motives underlying it.

Chapter 3 reviews several pose estimation approaches, some of which derive

from theoretical domains (e.g. point pattern matching), while others originate from

applied domains (e.g. Computer Vision) or more biological domains (e.g. Compu-

tational Neuroscience). A comparison between the approaches is made in order to

find the best candidate for a biological neural pose estimator.

Subsequently, in Chapter 4, pose estimating algorithms using correspondence

distributions are explained in detail. Basic concepts are clarified, including: corre-

spondences, local invariant features, transformations and constrained/unconstrained

estimation.

Following this, in Chapter 5, the accuracy of the approach is investigated in some

depth, using both synthetic and natural patterns.

Chapter 6 translates the algorithmic approach into artificial neural architectures.

In Chapter 7, the artificial neural networks of the previous chapter are first

architecturally analyzed and then structurally optimized according to a wiring length

minimization goal.

Subsequently, Chapter 8 is dedicated to finding evidence for the existence of

correspondence distributions in biological systems.

The penultimate chapter, Chapter 9, is concerned with exploring developmental

algorithms for the formation of the pose estimation architectures discussed in the

7

Univ
ers

ity
 of

 M
ala

ya

previous chapters.

Finally, Chapter 10 summarizes the findings, discusses several issues such as

direct evidence and the generality of correspondence distributions, and proposes

several directions for future work.

1.7.2 A Short-Cut

For the sake of those readers who have limited time, and that would like to get

the essence of the thesis without having to go through the whole document, we

present here a selection of chapters/sections, which encompasses approximately half

of the material, and which represents the so called heart of the thesis:

i) Chapter 1.

ii) Chapter 4.

iii) Chapter 6 excluding sections 6.5 and 6.6.

iv) Section 7.2 in Chapter 7.

v) Subsections 8.1.4 to 8.1.6 in Chapter 8.

vi) Chapter 9.

vii) Chapter 10.

In this chapter, we have introduced our main hypothesis and argument, briefly

described our problems and solutions, outlined the levels of abstraction addressed,

listed our main objectives and contributions and outlined the structure running

through the thesis. In the following chapter we will overview the thesis in greater

detail with reference to the four abstraction levels that it traverses.

8

Univ
ers

ity
 of

 M
ala

ya

Chapter 2

Thesis Overview: Four Levels of

Abstraction

The aim of this chapter is to provide an explanatory overview of the thesis. Brief

but sufficient background information will be given and related to the work’s main

findings. Since the thesis traverses several levels of abstraction, each with its own

set of problems and hidden motives, it should be easier to understand the resulting

structure, if this framework is made explicit.

2.1 The Framework

Figure 2.1 offers a global perspective of the problems being tackled in the thesis

and how they fit into the broader framework defined by general intelligence. The

problem of intelligence, as is well known, can be sub-divided into a vast number of

sub-components: vision is one of these. In its turn, the problem of vision consists

of another vast array of sub-problems. One of these is our chosen research area,

i.e: pose estimation. Finally, the problem of pose estimation can be sub-divided

into computational, algorithmic, implementational and formational sub-problems,

presented in order of decreasing abstraction.

The computational problem is defined by the information that is being used by

some system (i.e. input), and what is being done to it (i.e. output). In the case of

pose estimation the input is a pair of patterns, and the output is the transformation

9

Univ
ers

ity
 of

 M
ala

ya

Intelligence

Audition
 Vision
 Planning
 Etc.

Object

Recognition

Pose

Estimation

Motion

Analysis

Etc.

Etc.
 Etc.

Etc.
 Etc.

Computation
 Implementation
Algorithm
 Formation

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Lower Levels Of Abstraction

Figure 2.1: A hierarchy of problems.

that relates them. This level of abstraction specifies what is being computed without

being concerned about how it is computed (see Palmer 1999).

The algorithmic problem is concerned with how to solve the computational prob-

lem in terms of information processing operations. In other words, it is concerned

with specifying the information processing steps required for establishing the in-

put/output relations defined at the computational level. In general, the same com-

putational problem can be solved by many different algorithms.

The implementational problem is concerned with how to embody the algorithmic

solution in some physical computational device, e.g: sequential computer, parallel

computer, multilayered perceptron, avian brain, primate brain, and many others.

Issues regarding representation, physical constraints, packaging, dynamics, and so

on, are characteristic of this level of abstraction.

It is important to note that the above three problems or levels of abstraction (i.e.

computational, algorithmic and implementational) are part of Marr’s metatheory

regarding the study of vision (see Marr 1982). In this context, we have added one

10

Univ
ers

ity
 of

 M
ala

ya

more problem or level, i.e: formational.

The formational problem is concerned with how a computational device im-

plementing a certain algorithm, which in turn solves a particular computational

problem, is formed or constructed. In the context of conventional computers this

level refers to the engineering problems involved in the manufacture and assembly

of circuit boards and other components. In the context of biological neural systems,

the formational problem attempts to answer questions regarding how particular ar-

chitectures can develop.

The bottom part of Fig. 2.1 gives a rough indication of where each abstraction

level can be found relative to the thesis’ chapters. The subsequent sections will take

a deeper look at each one of the abstraction levels, providing background information

wherever necessary and forming connections to the contents of the thesis.

2.2 Computation

This level of abstraction attempts to answer several questions including: 1) what

is the computation, 2) why is the computation needed, 3) how difficult or complex

is it and 4) where is the computation known to be carried out (e.g. in what artificial

and/or biological systems). Here we will focus on the first three sub-problems. The

fourth question is partially answered in the context of the second one.

2.2.1 Pose Estimation

The problem of pose estimation is essentially the problem of determining the

pose of an object, i.e: it’s position, size, orientation, depth inclination, articulated

configuration, and so on. Seeing that pose is relative, one might say, it is the

problem of determining the transformation that relates two patterns (e.g. a source

and a target pattern). Thus, the inputs to the computation are two patterns, while

the output consists of the transformation that relates them. Refer to Fig. 2.2 for

some examples of transformations.

In order to better focus limited resources, the thesis will concentrate on similarity

transformations, i.e: translation, scaling and rotation.

11

Univ
ers

ity
 of

 M
ala

ya

�������

��	�	���

���	���

��
�

Figure 2.2: Some image transformations.

2.2.2 Importance

One of the reasons why pose estimation is important is that it permits organisms

to interact flexibly with the environment. Object manipulation for example requires

precise estimations of orientation, depth, articulation and so on. It is hard to imagine

how complex object grasping and manipulation can happen without the ability to

estimate the poses of target objects. Pose estimation also lies at the basis of many

navigational abilities, whether it be through a cluttered room, a jungle or over a

city from an aerial perspective.

Pose estimation also facilitates object recognition. Once the pose of an object has

been estimated, this information can be used to normalize the object’s view in order

to facilitate a comparison with a stored canonical representation of it. Mounting

evidence suggests that in certain instances humans do perform some sort of mental

normalization (e.g. mental rotation) in order to facilitate object recognition. This

can be experienced, for example, by attempting to read an upside-down newspaper.

From the perspective of the Neurosciences, and regarding the primate brain in

particular, there is another reason why pose estimation is important: it may shed

light on the interactions between the dorsal and ventral visual processing streams

(see Ungerleider & Haxby 1994). A clearer understanding of neural pose estima-

tion, should provide a new framework within which to investigate the interactions

12

Univ
ers

ity
 of

 M
ala

ya

between invariant object recognition (e.g. Lueschow et al. 1994) and the estimation

of transformations (e.g. see Rao & Ballard 1997). It might even be possible to

uncover the brain’s global representational and computational strategies regarding

invariant recognition and the estimation of variations in general.

2.2.3 Difficulty

One of the reasons for the difficulty of pose estimation lies in the combinatorial

explosion of the transformations involved. For example, considering similarity trans-

formations and assuming that the range of horizontal and vertical shifts encompasses

100 positions and that the range of scales and rotations includes 36 possibilities each,

this means that 12 million and 960 thousand different transformation combinations

are possible. If one were to exhaustively search for the transformation relating a

source to a target pattern, by applying each transformation combination to the tar-

get and then comparing the result to the source, and assuming that each comparison

requires 0.1 seconds, the estimation would take approximately 15 days to complete.

Increasing the size of the transformation group (e.g. shearing, 3D depth) obviously

aggravates the combinatorial explosion even further.

If the pose estimation algorithm requires local image information, then it stum-

bles on another heavy obstacle, i.e: invariances. How can the algorithm extract

useful local information, if the transformation being estimated causes the local in-

formation to change? In other words, how can local image information be found

that is discriminating and yet invariant to the relevant transformations?

2.3 Algorithm

Now that we have defined our target computation, we must specify how we want

it to be carried out in terms of information processing operations. In other words,

what algorithm is going to implement the input/output mapping mentioned in the

previous section?

The algorithmic level of abstraction consists of several aspects including: 1)

algorithm specification, 2) algorithm comparison, 3) performance evaluation (e.g.

13

Univ
ers

ity
 of

 M
ala

ya

accuracy, robustness, graceful degradation, temporal efficiency, among others), 4)

elegance and 5) modularity. The thesis focuses on the first three problems.

2.3.1 Types of Algorithms

Algorithms for solving the computational problem of pose estimation can be

categorized in different ways. We have chosen a simple taxonomy which categorizes

algorithms based on the type of information they use: 1) templates, 2) correspon-

dences or 3) global characteristics.

In general, template based approaches rely on search, that is, on iterative trans-

formations and comparisons of the patterns involved (e.g. Olshausen et al. 1993).

Each iteration usually involves a transformation of the target pattern and then a

comparison with the template. The iterations continue until both patterns are suf-

ficiently similar, thus indicating that a true pose has been found that relates the

template to the original (untransformed) pattern.

Correspondence based approaches rely on local feature information (e.g. Ullman

1996). A correspondence is simply a vector defined by two points with matching

features, one in the source pattern, the other in the target pattern. In order to allow

for matches, local features must be invariant to the transformations found in the

patterns. In most cases, each correspondence votes for a particular pose. When the

totality of correspondences are allowed to vote, the correct poses tend to be those

that receive the most votes and are thus “democratically elected”.

Global characteristics can be used for the estimation of some transformations

(e.g. Hong & Tan 1988). A pattern’s center of mass is a useful example in this

context. A simple center of mass algorithm averages the positions of a pattern’s

constituent points. If two patterns are equivalent except for a translation, then

subtracting their centers of mass recovers the correct pose estimate. Other global

characteristics (e.g. symmetry axes) can be used to estimate other poses (e.g. rota-

tion).

14

Univ
ers

ity
 of

 M
ala

ya

2.3.2 Correspondence Distributions

In view of the fact that our underlying motivation was neural implementabil-

ity in general and biological neural plausibility in particular, our chosen algorithm

needed to, among other things, rely on as simple and parallelizable computations as

possible. Correspondence based approaches turned out to be the best candidates. In

particular, we chose an approach based on the total distribution of correspondences

between two patterns and where each correspondence votes for a specific pose, i.e:

correspondence distributions.

Several experiments were conducted on synthetic and real patterns in order to

confirm (and further analyze) the adequacy of correspondence distributions at the

algorithmic level. Several factors were tested, e.g: feature repeatability, proportion

of spurious features and proportion of missing features. It was found that corre-

spondence distributions do indeed exhibit sufficient accuracy and robustness.

2.4 Implementation

Now that we have defined our target computation (or problem), indicated how

to solve it algorithmically, we must discuss the next lower level of abstraction, i.e:

how to implement the algorithm in a physical/computing device.

This level consists of several aspects including: 1) device selection, 2) adaptation

of the algorithm to the computing device, 3) spatial optimization of the physical

components and connections, 4) modeling and prototyping, 5) minimization of other

costs such as energy and the cost of materials and 6) robustness. The current thesis

focuses on the first four aspects of the above list.

2.4.1 Computational Devices

Computation is essentially the processing of information via a finite set of rules.

A computational device, on the other hand, is a physical system which is capable

of changing states also by a finite set of rules, and in a manner which reflects some

computation. Many physical systems fit the above general definitions and are thus

15

Univ
ers

ity
 of

 M
ala

ya

computational devices, e.g: 1) classical serial computers, 2) parallel computers, 3)

quantum computers, 4) artificial neural networks and 5) biological neural networks.

These and other devices differ along several dimensions, e.g: 1) materials, 2) com-

putational components (logical operations, memory, and others), 3) architectures,

4) scale, 5) efficiency, 6) generality, 7) cost, 8) feasibility and 9) origination (e.g.

evolution or human invention).

From the very beginning it was the thesis’ aim to use artificial neural networks

in general, and focus on biological neural networks in particular. Note however, that

we are not dealing with actual physical devices, but instead with models of those

devices.

2.4.2 Artificial Neural Networks

Put briefly, artificial neural networks consist of a multiplicity of simple com-

putational units, interconnected to each other in a highly parallel manner. They

draw their main inspiration from biological neural systems, which they neverthe-

less greatly simplify, in order to increase mathematical tractability, learnability and

feasibility, among other reasons. They are used mainly to establish complex input-

output mappings, achieved almost invariably through a process of learning.

Artificial neural networks come in many varieties, a brief listing of which might

include: Multilayered Perceptrons, Self-Organyzing Maps, Hopfield Networks, As-

sociation Networks, Radial Basis Functions, Adaptive Structure Neural Networks,

Higher Order Neural Networks, Helmholtz Machines, Cellular Neural Networks and

Hybrid Networks, to cite just a few (see Haykin 1999 for a good reference).

Learning is probably the most central theme in most artificial neural network

research. It is also probably one of the main factors attracting scientists and en-

gineers to the investigation of artificial neural networks. Sub-topics in this area

include: learning algorithms, speed of convergence, proof of convergence, gener-

alization, pre-processing of input data, and re-learnability. Other artificial neural

concerns include: the simplicity and elegance of architectures, the ability to scale-

up, spatial optimization, temporal efficiency, stability, hardware implementability

16

Univ
ers

ity
 of

 M
ala

ya

and graceful degradation.

2.4.3 Artificial Neural Correspondence Distributions

How can our chosen algorithm (i.e. correspondence distributions) be embodied

in an artificial neural network (ANN)? First recall that the fundamental element

of our solution is a correspondence, i.e: a vector defined by two points (one at the

source and the other at the target pattern) with matching features. Second, note

that we are considering all possible correspondences between a pair of patterns.

Therefore, every point in one pattern must be represented in relation to every point

in the other pattern. This second order structure can be represented in Higher

Order Neural Networks1 (see Bishop 1995). Note also that a match between two

features, and thus a correspondence, can be represented or computed by a logical

conjunction. Seeing that the second order nodes in Higher Order Neural Networks

compute products, this further strengthens their suitability, assuming that input

patterns are binary. Other necessary components include: summation nodes (for

the counting of votes), excitatory connections and possibly inhibitory connections.

All these components are available in Higher Order Neural Networks (HONNs).

Seeing that invariant pattern recognition is known to be one of the major ad-

vantages of HONNs (see Giles & Maxwell 1987 and Wood 1996), it is interesting

to discover, in this context, that these networks are also useful for pose estimation,

since the latter capability can be seen as the converse of the former capability, in

the sense that pose estimation is concerned with extracting the same information

(i.e. transformations) that the invariance property aims to throw away.

Having justified the general suitability of HONNs, it is also necessary to point

that our final architecture is actually a special case: 1) only second order structure

is represented, 2) two input maps rather than one are used, 3) inter-map (between

the two maps) rather than intra-map second order structure is represented, 4) con-

nections between second order and summation nodes are restricted to a weight of

1, 5) the connectivity between second order and summation nodes is one-to-one or

1Note that other terms have been used in the literature to refer to HONNs, e.g.: “Sigma-Pi
Networks” and “Product Unit Neural Networks”.

17

Univ
ers

ity
 of

 M
ala

ya

���������

�����
���������

������
������� !" �#�$� ! ���

�

� !

��������

���%%%

& '

(

)

*

+,-

(

)

*

./0./0+,-

Figure 2.3: A Higher Order Neural Network (b) and a specialization (a).

one-to-many rather than one-to-all, 6) summation nodes are not biased, and 7) the

connections between the second order nodes and the summation nodes are math-

ematically defined rather than learnt. Refer to Fig. 2.3 for a visual comparison

between a HONN in (b) and a relevant second order specialization for pose esti-

mation in (a). Input maps are denoted by (c), while multiplicative and summation

nodes are denoted by (d) and (e) respectively.

One might be tempted to ask, at this point, why we do not consider neural

networks with no explicit higher-order representations. To take Multilayered Per-

ceptrons (MLPs) as an example, one might recall that they are universal approxi-

mators, and that they can thus establish any set of input-output mappings given a

sufficiently large number of hidden-units. Since pose estimation consists essentially

of a set of input-output mappings, then the question of the suitability of MLPs is

pertinent indeed. There are probably four main reasons, why in our context, they

are unsuitable: 1) an excessive amount of data is required for training (e.g. 22nt bi-

nary pattern pairs are possible, where n represents map resolution and t represents

the number of feature types), 2) there is no certainty that the trained network will

generalize adequately for new cases, 3) training is likely to be quite slow and cum-

bersome and 4) the back-propagation and related supervised learning algorithms

18

Univ
ers

ity
 of

 M
ala

ya

used for training MLPs are biologically implausible.

How does our chosen architecture fair in relation to the various concerns outlined

in the previous subsection on artificial neural networks? The following paragraphs

provide a brief answer to this question.

As already mentioned, the architecture does not require learning in order to es-

tablish the desired input-output mappings since the architecture is mathematically

predefined. Recall that correspondence votes (regarding a pose) are represented

by connections between second order nodes and vote/pose nodes. Since the poses

correspondences vote for are mathematically defined, so are the connections be-

tween second order nodes and vote/pose nodes. Issues regarding speed and proof of

convergence are unsurprisingly also mute in this context.

Generality is an intrinsic part of the architecture. The fact that all possible

correspondences between two patterns are being represented should allow poses to

be accurately estimated regardless of the types of patterns and transformations

involved. Pattern generality is achieved seeing that in spite of no patterns being

taught to the network the latter is still capable of performing regardless of the

inputted patterns. Transformation generality is achieved by virtue of the fact that

the “consistency set of poses” of correspondences can be extended through simple

mathematical expressions leading to an automatic redefinition of the connectivity

between second order and summation nodes.

The only preprocessing required involves the extraction of invariant features from

patterns. The invariances must in the very least encompass those transformations

which the patterns are subjected to.

In view of the fact that the architecture consists of a few simple computational

units, two processing layers, does not require recurrent connectivity, and is defined

by simple mathematical equations, one may conclude, albeit with some subjectivity,

that the architecture is simple and elegant.

Networks that rely on learning often encounter scaling-up issues, e.g: larger prob-

lems and/or larger networks often lead to excessively slow convergence. The fact

that node inter-connectivity is mathematically defined precludes this possibility. In

19

Univ
ers

ity
 of

 M
ala

ya

this sense, scaling-up is not an issue. However, seeing that second-order structure

is represented, scaling-up might be an issue in the context of hardware implemen-

tations: the number of connections and conjunctions scale with the square of the

resolution of the input patterns.

The structural or spatial efficiency of components is an issue commonly found at

the implementational level (e.g. packaging). In our work we explored the structural

optimization of several variants of the architecture and found that interesting design

principles emerged, which are useful from an engineering perspective, and which

correlate with certain biological findings.

In view of the fact that the architecture is highly parallel, strictly feedforward

and consists of merely two layers, it should not be difficult to appreciate its temporal

efficiency. Lack of recurrence also precludes any instability issues.

The question of its hardware implementability is open to debate. The question

is tied to the future of neural hardware in general and seems to hinge more on cost

and perceived benefit, rather than on feasibility.

The architecture is also likely to exhibit graceful degradation, although explicit

testing is required in order to uncover empirical limits. Since most pairs of patterns

are likely to have multiple matching features, the elimination of a moderately small

proportion of correspondence nodes, is likely to still allow, on average, for the de-

tection of a sufficient number of matching features. This issue should be clearer in

subsequent chapters.

2.4.4 Biological Neural Networks

There are significant differences between the neural networks found in biological

systems (e.g. insects, birds and mammals) and those found in simplified mathemat-

ical models. Unsurprisingly the complexity of biological neural networks is vastly

superior, be it in size, forward connectivity patterns, recurrence, non-linearities,

dynamics and others. Furthermore, when we are considering models of biological

neural networks, unlike the ideal context of most artificial neural networks, it is

necessary to be aware of some fundamental constraints, e.g: 1) neurons exhibit up-

20

Univ
ers

ity
 of

 M
ala

ya

1234

5678 5679
:; <=>

?:;
5678

@ABC

DEFGHIJEK

LMAFK

NFOPJK

123412341234

1234

12Q4

RSTUVWXYZ[\][Ẑ[[_̀[YaV_b RSTUVWXYZ[\cdZed_f̀[YaV_

?:;

:ghijklmnogpgqlrs

1234
1234

DEFGHIJEK

LMAF

Figure 2.4: Biological neural networks implementing an exclusive OR.

per bounds to the numbers of inputs and outputs that they can receive and project

respectively and 2) neurons are in the great majority of cases either excitatory or

inhibitory.

A crucial question within Computational Neuroscience, which clarifies some as-

pects of the current thesis, asks: what is the fundamental computational unit in

biological neural systems? Classically, the neuron is the fundamental unit. In this

view, computation is borne out of the interconnectedness of these fundamental units,

or neurons (see London & Häusser 2005). The left-hand side of Fig. 2.4 illustrates

how biological neural networks, in this classical view, might implement an exclusive

OR (i.e. XOR). Inputs are assumed to be binary, “B” stands for bias, “w” stands

for weight, and computation is performed as in the McCulloch-Pitts model (see Mc-

Culloch & Pitts 1943). Note how several neurons are required for the computation.

In view of the fact that dendritic trees are large enough to receive hundreds or thou-

sands of synapses on average, one can conclude that this configuration ignores and

thus wastes a large proportion of potential synapses.

Relatively recent research has begun to uncover certain facts which bring the

classical view into question. It seems that complex computations can be carried

out within neurons themselves, rather than just between neurons. Complex non-

21

Univ
ers

ity
 of

 M
ala

ya

linearities within dendritic arborizations in single neurons, capable of mediating

rich computations, are increasingly being reported in the literature (see London &

Häusser 2005 for an excellent review). The right-hand side of Fig. 2.4 illustrates

how a single terminal dendritic branch may compute an XOR via a particular non-

linearity. Not only is this configuration cheap in terms of the number of neurons

required, it also avoids wasting other potential synaptic sites. The rest of the den-

dritic tree is free to implement other computations, since these will not interfere with

the original XOR. In the “classical” configuration (on the left-hand side of Fig. 2.4),

other potential computations (at other dendritic sites: not depicted) will interfere

with the target computation since the XOR is borne out of the whole network.

2.4.5 Biological Neural Correspondence Distributions

How does this emerging view regarding the computational richness of single

neurons relate to our approach? It turns out that the fact that dendrites exhibit

complex non-linearities and thus computations is very advantageous. Recall that

our approach relies on a large set of correspondences, and thus that we need to

represent a large number of second order terms (or conjunctions). Clearly it would

be very wasteful for biological systems to assign a single neuron to each conjunc-

tion. Fortunately, mounting evidence suggests that in many cases dendrites exhibit

sigmoidal non-linearities (e.g. see Polsky et al. 2004), which in turn can be used

for computing conjunctions. This signifies a huge saving of resources since a sin-

gle neuron can be used for representing hundreds or thousands of correspondences,

rather than just one as would be required by the classical view. It is interesting to

note that the two main computations in our approach (conjunctions for correspon-

dences and summation for vote counting) can be implemented in a single neuron,

e.g: conjunctions can be computed by dendritic branches, the results of which can

be summed linearly at proximal parts (relative to the soma) of the dendritic tree.

Note that the modeling of biological neural systems can be done at many different

levels, e.g: molecules, synapses, cellular compartments, neurons, networks, dynam-

ics, maps and systems (see Churchland & Sejnowski 1992). The choice of what to

22

Univ
ers

ity
 of

 M
ala

ya

consider essential, and thus keep, and what to consider inessential, and thus leave

out, depends very much on the type of argument that is being put forth. We are

concerned here mostly with patterns of connections and logical operations, rather

than molecular, electrophysiological or even compartmental issues. This serves our

purposes best, since our argument is essentially an algorithmic one, i.e: what types

of algorithms (and thus what types of computations) are biological neural systems

using for estimating poses?

2.5 Formation

Now that we have dealt with the computational, algorithmic and implementa-

tional levels, we are ready to introduce the formational level. Examples of concerns

characteristic of this level include: 1) the nature of formational mechanisms, 2) the

robustness of the formational process to environmental factors, 3) the quality of

resulting devices, 4) temporal efficiency and 5) the ability to scale-up. In this thesis,

we focus mainly on the first three issues.

2.5.1 Types of Formation

As already mentioned, formation pertains to the processes by which particular

computational devices, implementing particular algorithms, which in turn establish

particular computations, come to be.

Artificial Domain

A possibly interesting example from the artificial domain pertains to nanotech-

nology. It is an interesting example in the sense that in many cases, the compu-

tational devices are already theoretically defined and the necessary materials al-

ready exist, and yet problems remain in terms of the assembly of those materials,

e.g: supramolecular chemistry for self-assembly. Although with less severity, forma-

tional problems are also encountered in the manufacture of compact circuit boards

and other components for modern personal computers and other devices.

23

Univ
ers

ity
 of

 M
ala

ya

Biological Domain

In the biological domain, formation pertains to development. Since our context

is computational, we are here concerned with biological neural development. Topics

in this area include: the growth, differentiation, placement and selective death of

neurons, the guidance of axons and dendrites, and the formation, maturation and

elimination of synapses. In our thesis, we will be concerned mainly with axonic

guidance and synaptic formation, maturation and elimination.

The development of biological neural systems is extremely complex. Hundreds of

different types of cells must grow, differentiate and migrate to their correct locations.

To makes things even harder, neurons also have to be interconnected in extremely

complex and highly unique ways. For example, axons must grow not only towards

particular brain regions, but also to particular sub-regions, layers, networks, cells

and even to specific parts of cells (e.g. a sub-region in a dendritic tree). The resulting

architectures are so complex that it is impossible for DNA to explicitly code for all

of it (see Churchland & Sejnowski 1992).

Clearly indirect genetic guidance through molecular gradients and other sig-

nalling mechanisms is a fundamental driving force behind the formation of biologi-

cal neural systems. However, interacting with this biochemical guidance, is another

force: activity dependent development. Neuronal firing dynamics can be harnessed

in useful ways for the establishment of different patterns of connectivity (e.g. see

Wong 1999 for an example of how spontaneous retinal firing patterns can guide the

development of visual pathways even before the onset of vision). A crucial sub-type

of activity dependent development is that based on environmental stimulation of

sensory organs, i.e: experience dependent development (e.g. see Miller 1994). Our

thesis provides an example of how experience dependent development can lead to

complex and useful pose estimation neural architectures.

2.5.2 Development of Correspondence Distributions

How can neural architectures embodying correspondence distributions capable

of estimating accurate poses develop? Not only must map neurons project to the

24

Univ
ers

ity
 of

 M
ala

ya

correct vote/pose neurons but particular synapses must pair up (in small dendritic

sub-regions such as terminal branches) with their correct counterparts to form con-

junctions. It turns out that “dumb” (random) axonic guidance is sufficient for

generating the correct connectivity providing that certain Hebbian-like mechanisms

are in place, and visual stimulation is available. We hypothesize a variable describ-

ing the stability of pairs of synapses which, in general, is increased by correlated

activity (between synaptic pairs and target cells) and decreased by decorrelated ac-

tivity. Synaptic pairs with a low stability are eventually eliminated and substituted

by a new random pair. Gradually, the process of strengthening, weakening and

substituting synaptic pairs, leads to the emergence of architectures that reflect, and

which can thus estimate, the transformations being “experienced” by the network.

This chapter has overviewed the four levels of abstraction spanned by the the-

sis: computational, algorithmic, implementational and formational. It has provided

some background information and made brief but relevant connections with the the-

sis in order to better clarify its contents, motives and structure. In the following

chapter we will survey several algorithmic approaches for solving the problem of

pose estimation and justify our chosen approach.

25

Univ
ers

ity
 of

 M
ala

ya

Chapter 3

Algorithms for Pose Estimation

3.1 Introduction

In general, computational problems can be solved by more than one type of

algorithm. The problem of pose estimation is no exception. In this chapter, we

aim to cover a broad spectrum of approaches applicable to pose estimation. Since,

our underlying motivation is to investigate an efficient, neurally implementable and

biologically plausible approach, our most likely source of algorithms lies in Com-

putational Neuroscience and related disciplines. Surprisingly, and a few exceptions

aside, the literature is scant in explicit and general models of pose estimation. For

example, although the literature abounds in models of attentive visual search (see for

example Chelazzi 1998, Chelazzi et al. 1993 and the review by Müller & Krummen-

acher 2006), these are only implicitly and non-generally performing pose estimation,

i.e: the identification of the location of an object is indirectly producing a transla-

tion estimate, which however ignores other pose attributes such as orientation and

scale.

This scantness of pose estimation models forced us to search wider. Most of

the algorithms presented in this chapter, originate from theoretical and/or applied

domains, such as Computer Vision. One of the challenges in this context, is to

compare algorithms in terms of how they might fare in a particular implementational

domain (i.e. biological neural networks) that is completely different to the one they

were originally designed for (e.g. serial computers).

26

Univ
ers

ity
 of

 M
ala

ya

Pose estimation algorithms can be categorized along different dimensions, e.g:

1) how estimates are computed, 2) whether local, regional or global information is

used and 3) the transformations which are addressed (e.g. rigid, similarity, affine

and projective). We have decided to classify algorithms according to whether they

use templates, correspondences or global information for computing estimates. This

classification, in our view, encompasses the vast majority of approaches, exhibits lim-

ited overlap and facilitates making evaluations regarding neural-implementability.

The rest of the chapter is organized as follows: first template based approaches

are discussed, followed by correspondence-based approaches and then global ap-

proaches. In the conclusion section we summarise the algorithm evaluations and

select an approach for further investigation in a neural context.

3.2 Template based approaches

In general, template based approaches involve an iterative process, whereby a

template (or a target pattern) is continuously transformed and compared to a target

pattern (or a template), until a sufficient level of correlation has been achieved.

Combining the transformations up to the final match provides the transformation

(or pose) that relates the template and the target pattern.

3.2.1 Deformable Models

Deformable models are a very interesting approach applicable to segmentation,

shape matching, motion tracking, pose estimation and other domains (e.g. Jain et

al. 1998, Cheung et al. 2002 and Yena & Smith 2005). One area that is greatly

benefiting from this research is the segmentation of medical images (see McInerney

& Terzopoulos 1996). Anatomical structures vary greatly in location and shape

and thus call for models which can deform whilst maintaining their intrinsic shape.

By deforming within certain limitations, the models can latch onto these struc-

tures thus providing adequate segmentation and identification. Apart from their

flexibility (they can deal with shape variations) and generality (they are applicable

to several domains), deformable models have the added advantages that they are

27

Univ
ers

ity
 of

 M
ala

ya

significantly accurate and allow for the interaction of bottom-up constraints and

top-down knowledge.

Although deformable models are interesting in their own right, we are here con-

cerned not so much with the fact that models can deform, but instead on what

guides the deformation process. The implicit pose estimation algorithm of de-

formable models lies in what guides the deformation, since it is the deformation

process that compensates for the transformations that distinguish the model (in its

prototypical state) and an actual instance of the structure which the model repre-

sents. In other words, the guiding force behind the deformation, seeks to apply the

transformation that relates the model to the instantiation of the model. Although

one might envision different types of guiding forces underlying model deformation,

according to (McInerney & Terzopoulos, 1996) the most popular method comes from

Approximation Theory. In this approach to deformation, the goal is to minimize

an energy function consisting of a term representing internal forces (tension and

rigidity) for maintaining the model’s intrinsic shape, and another term representing

external forces which attract models to salient features. The minimization of the

energy function is most usually performed through numerical algorithms.

The main advantages of the approach include generality (e.g. it is extensible to

any combination of transformations), and robustness (e.g. it can deal with distor-

tions and noise1). On the downside, the approach is relatively inefficient in the sense

that it depends on an iterative process for convergence and is likely to require an

excessively convoluted architecture to be neurally implemented.

3.2.2 Map-Seeking Circuits

The map-seeking circuits approach is another interesting template-based ap-

proach. It was developed by an independent researcher, David W. Arathorn, and

is documented in some detail in (Arathorn, 2002). In the author’s view, its main

advantage lies in its ability to eliminate the transformational combinatorial explo-

1Distortion robustness is made possible due to the fact that models are by definition deformable
and noise robustness is derived from the fact that the approach, in general, maximizes the goal of
maintaining the internal structure of models.

28

Univ
ers

ity
 of

 M
ala

ya

sion which is commonly faced by template-based approaches. Instead of having to

deal with
∏

i n(Ti) transformations it only needs to deal with
∑

i n(Ti) where Ti

stands for different types of transformations (e.g. scaling and rotation) and n(Ti)

stands for the number of possible configurations within transformation Ti (e.g. if

10 scaling factors are allowed n(Scaling) = 10). The combinatorial explosion is

essentially eliminated by “pattern superpositions” and a recurrent/iterative process

that manages to discover/recognize the patterns being presented and/or their poses.

By pattern superposition is meant the actual summation of patterns. It is quite

interesting to see how, through the recurrent/iterative map-seeking process, an ap-

parently homogeneous amalgam of patterns can be resolved into a very precise pat-

tern. Refer to Fig. 3.1 for a simplified depiction of a map-seeking circuit in the

context of rigid transformations. Notice the translation and rotation superpositions

and notice how the competitive process recovers both the identity of the pattern

and its transformations. Unfortunately, in the approach’s main strength (pattern

superpositions) probably lies its main weakness, since there is a limit to how many

patterns can be superposed, which depends on their nature, and which if exceeded,

can lead to errors termed collusions. Furthermore, at this point, there seems to

be little direct evidence for pattern superpositioning as a coding strategy used in

biological neural systems (D.W. Arathorn, personal communication, 1 July 2005),

although one must be reminded that “absence of evidence is not evidence of ab-

sence”.

For lack of space, the recurrent/iterative process can not be explained here in

great detail. There are however some general principles that seem to cover its main

functionality. First of all, transformations are segregated into different layers/stages.

The memory layer/stage is, as might be expected, the last one of the forward pro-

cessing chain. Secondly, the main computations being performed between adjacent

layers are the summing (superpositions) and matching of patterns. Patterns are su-

perimposed in order to break the transformational combinatorial explosion and pat-

terns/poses are gradually extracted/discovered by matching. Patterns that match

more than others are given stronger coefficients in their superpositions and gradually

29

Univ
ers

ity
 of

 M
ala

ya

tuvwxyz{|}

~}zu��zx��uyz{|}

��xzx��uyz{|}

�|��}{yz{|}

���v|x�x��u��u��

���v|x�x��u��u��

���v|x�x��u��u��

���|�����

���|���wz}|�

���|�~������~������

Figure 3.1: Simplified diagram of a map-seeking circuit.

get extracted.

Apart from eliminating transformational combinatorial explosions, the approach

has other strong points: 1) generality (map-seeking circuits can be applied to differ-

ent areas of vision and even to entirely different modalities and/or computational

problems), 2) biological relevance (in Arathorn 2002 the author has gone to some

length to show how the pure algorithmic side of the approach can be implemented

by neural-like circuits) and 3) robustness (see Arathorn 2004). Probably the main

downside of the approach, from our perspective, is its iterative nature.

3.2.3 Dynamic Routing Circuits

The Dynamic Routing Circuits (DRC) solution (see Olshausen et al. 1993 and

Anderson et al. 2004) to the problem of information routing and visual invariance is

30

Univ
ers

ity
 of

 M
ala

ya

highly relevant to our discussion. It is a well known fact that brains utilize attention

bottle-necks in order to filter out the majority of sensory information and to focus

limited processing resources on interesting/useful regions of the input space. In the

visual system, there is the additional problem of recognizing objects regardless of

their particular transformations (e.g. position and size). The DRC model solves

both problems (attention and visual invariance) in one swoop, e.g: by changing the

position and size of an attention window in order to focus on a shifted/scaled object,

both problems are being solved. Although the model was originally developed to

deal with only translation and scale, it can be generalized to other transformations

(Olshausen et al. 1993).

One of the most interesting aspects of DRC is how information routing is imple-

mented. Briefly, this is achieved via a set of control neurons which synapse multi-

plicatively onto the connections that emerge from the inputs and which ultimately

converge onto output units where the focused processing (e.g. object recognition)

is to be performed. By enabling some connections and disabling others, the control

units effectively route (shift or scale) information from a limited region of interest in

the input space (e.g. retina) onto the output nodes. Although the actual mechanism

of routing information by enabling/disabling connections is of great interest, what

we are here interested in is “what controls the control units”. Since the control units

shift attention to shifted and/or scaled objects, and since we are interested in pose

estimation, we need to know what guides the control units into enabling/disabling

connections.

In (Olshausen et al., 1993) the authors describe an autonomous control mecha-

nism whereby attention is guided by Gaussian salience blobs. Essentially, each con-

trol unit represents a different transformation (i.e. each control unit, if activated,

implements a particular routing of information, which corresponds to a particular

transformation) and competes with every other control-unit for its particular routing

to be effected. The competition is essentially an optimization process, whereby the

goal is to maximize the correlation between the routed information and a template

Gaussian blob. Thus, the control unit whose routing leads to the maximal corre-

31

Univ
ers

ity
 of

 M
ala

ya

lation between the template and the routed information is the winning node, and

the one that ultimately performs the routing. Thus one might say that the essential

algorithm being implemented is a form of template matching with a search through

transformation space. Although optimization (or search) processes are by no means

biologically implausible, in this case, they bring with them a temporal disadvantage

which we wish to avoid. In spite of this, the majority of insights provided by the

DRC research (e.g. information routing mechanisms) remain highly relevant and

compatible with our chosen approach for the estimation of transformations. The

strengths of the approach include: parallelizability, generality and robustness (see

Olshausen et al. 1993).

3.2.4 What-and-Where Filter

The What-and-Where filter (see Carpenter et al. 1998) is an interesting approach

originating from a biologically motivated context. The What-and-Where filter im-

plements object recognition (i.e. “what”) and pose estimation (i.e. “where” refers

not only to position, but also to size and orientation) in parallel and interactively.

In this particular context, we are more interested in the “where” aspect of the

approach, i.e: how are poses estimated? The approach relies on a multitude of

oblong excitatory regions (or oval blobs), at different positions, and with different

sizes and orientations, each one of which is convolved with a particular region of the

target image. A competitive process serves to isolate the particular filter which is

maximally activated (and thus correlated) by the image, and thus which indicates

the presence of a particular object with a particular position, size and orientation.

In spite of the discriminatory poorness of the “templates” (i.e. oblong excitatory

regions), the approach is nevertheless quite successful at locating target objects.

Seeing that the filters are globally matched to image regions, a critical disadvantage

of the approach lies in its lack of robustness in terms of cluttered environments

(occlusions and distractors).

32

Univ
ers

ity
 of

 M
ala

ya

3.3 Correspondence based approaches

Correspondence based approaches have here been divided into two main cate-

gories, i.e: search-based and vote-based approaches. In a search-based approach a

pose estimate is generally formed after an iterative search for a transformation that

can bring a sufficient number of model points into close proximity to a sufficient

number of image/data points. In a vote-based approach a pose estimate is formed

on the basis of a one-shot view of the evidence at hand, where each correspondence

(or subset of correspondences) represents a vote of some kind, usually in favor of a

particular transformation (or subset of transformations).

3.3.1 Search-based

Generate-and-Test

Random sample consensus (RANSAC) is probably one of the most popular

generate-and-test approaches. The technique is quite general being intended for

the robust fitting of models (see Fischler & Bolles 1981). It can be applied to do-

mains as varied as: shape recognition, pose estimation, feature matching and others.

When RANSAC is applied to pose estimation problems, it appears almost undistin-

guishable from Ullman’s alignment method (see Ullman 1996). Note that Ullman’s

alignment method allows for the incorporation of feature labeling, which reduces

the amount of search required.

When RANSAC is given a set of data points, it selects a random sample as small

as possible but large enough to constrain a model hypothesis (e.g. a circle can be

constrained by three points). It then verifies this model against the data set by

for example counting the number of points that lie on the positions defined by the

model. If the number of inliers is below some threshold, RANSAC choses another

random sample of points to form a model hypothesis and performs verification again,

and so on, until several or no models have been confirmed to be present in the data.

As already mentioned, in the case of circle detection, three points are sufficient

to form model hypotheses. In the case of estimating a similarity transformation

33

Univ
ers

ity
 of

 M
ala

ya

between two sets of points, a sample of two points (each one a correspondence) is

required. As in the alignment method, the verification step of a pose estimating

RANSAC algorithm, involves applying the model hypothesis to the source points

and then verifying how many of the target points coincide with the transformed

points. If there is a sufficiently large number of coincident points, then the model

hypothesis (a particular similarity transformation) is deemed to be correct.

The main strengths of RANSAC-based approaches are probably their robustness

to outliers (e.g. spurious points), their permissibility of noise in the characterization

of data points (e.g. positional noise of image points) and their generality. Their main

disadvantages include difficult parallelization and the fact that they are iterative in

nature (see Fischler & Bolles 1981).

RAST

Thomas M. Breuel developed the Recognition by Adaptive Subdivisions of Trans-

formation Space (RAST) algorithm which is a very interesting approach that com-

bines ideas from the following approaches: Hough transform, multi-resolution match-

ing, search-based recognition and bounded-error recognition.

Breuel’s main concern in (Breuel, 1992b) is object recognition and defines his

problem in the following terms: “Find a transformation (e.g. among all transla-

tions) that will map as many points of the model to within error bounds of image

points.”. Two observations should be made regarding this definition. First, there

is no mention of the actual/true transformation between image and model points:

the quality of the transformation is indirectly measured by how well model points

are matched to image points. Secondly, one of the main advantages of the approach

is included in the problem definition: error bounds around image points (note that

Baird in (Baird, 1985) was one of the first authors to explore bounded error tech-

niques in the context of pose estimation).

A correspondence between a model and an image point actually spurns a set of

transformations corresponding to all the transformations that will map the model

point to all the points within the error bounds of the image point. More importantly,

34

Univ
ers

ity
 of

 M
ala

ya

in certain conditions, if the error bounds around the image point are defined by a

convex polygon, then as Breuel and others before him have proven (Baird, 1985),

the corresponding set of transformations in transformation space defines a convex

polyhedron of “feasible transformations”: constraint polyhedron.

The way evidence for transformations is then derived is not very different from

most Hough-based approaches, about which more will be said in the following sub-

sections. The main idea is that correspondences that are compatible (i.e. that

have been generated from the same transformation), will create convex polyhedra

in transformation space that intersect each other. Intuitively, a transformation that

matches more model points to image points, leads to more intersecting polyhedra

in a particular region of transformation space and thus one is more confident that

that region corresponds to the transformation we are seeking.

One of the main ideas that sets RAST apart from most other Hough-based al-

gorithms is that it does not represent the whole transformation space in one large

fixed-resolution data-structure. What it does instead is rely on a query-box (see

Breuel 1992a) that adaptively changes size and location in the transformation space

in order to find the configuration with the most intersections with constraint polyhe-

dra.2 The main idea on which the approach hinges is that the number of intersections

between the query-box and the constraint polyhedra defines an upper-bound on the

number of intersections between the polyhedra themselves. Therefore if the upper-

bound of some query-box is too small, we can automatically reject the region of

transformation space it corresponds to, since the number of intersecting constraint

polyhedra can never exceed that bound. Furthermore, if the region of transforma-

tion space encompassed by the query-box is significantly small then one’s confidence

that the number of intersecting constraint polyhedra is equivalent to the the number

of polyhedra intersecting the query-box increases.

So the algorithm is broadly defined as follows. First a query-box is generated that

encompasses the region of transformation space that we want to consider. Then the

number of constraint polyhedra intersecting the box is computed3. If the number of

2Cass in (Cass, 1993) provides another example of a correspondence-based approach that in-
volves a search through transformation-space.

3Note that finding a set of “constraint polyhedra” is equivalent to finding a set of correspon-

35

Univ
ers

ity
 of

 M
ala

ya

intersections (the upper-bound) is below a certain minimum level, then this region

of transformation space is abandoned and the search is resumed in a different region.

If, on the other hand, the upper-bound is larger than the minimum level, then the

query-box is recursively sub-divided into smaller query-boxes within the original one,

until a certain minimum box size (or maximum search depth) has been reached.

The main advantages of RAST include: small memory demands, adaptive res-

olutions, bounded-errors, flexibility regarding evaluation functions, generality and

robustness. Its main disadvantages pertain to neural implementability: the search

procedure embodied in the adaptive query box is unlikely to have an elegant and

fully parallel neural implementation. RAST’s iterative nature is also considered a

disadvantage in this context.

3.3.2 Vote-based

Although vote-based approaches do exhibit certain weaknesses in comparison

to some of the sophisticated search-based approaches (e.g. Breuel 1992b) such

as memory-requirements and resolution issues, their advantages regarding neuro-

biological implementability far outweigh their disadvantages. Furthermore, many

search-based methods, such as those found in the Point Pattern Matching literature,

assume unlabeled points, which in most cases makes the problem of pose-estimation

harder than it really has to be. If one assumes that local invariant features with

some saliency and discriminatory power are available (there seems to be ample evi-

dence that such features are abundant in biological neural systems), then vote-based

approaches become quite accurate and useful. Vote-based approaches combine the

largest number of strengths from the perspectives of neural implementability and

performance.

Standard Hough Transform

The Standard Hough Transform, is probably one of the earliest vote-based meth-

ods for shape detection and pose estimation. It was originally developed for the

dences.

36

Univ
ers

ity
 of

 M
ala

ya

detection of lines and curves (see Hough 1962). Pose estimation is implicit to shape

detection, e.g: during detection of a circle the algorithm simultaneously obtains its

position and scale.

Probably the three main elements of any Hough transform are: 1) parameter

space, 2) votes, 3) accumulator array (voting data structure) and 4) the analysis of

peaks in the accumulator array. Problems are usually defined in terms of parameter

spaces. The problem of circle detection, for example, can be defined in terms of three

parameters: horizontal and vertical position and radius. Conversely, a solution

consists of one or more small regions in that parameter space. Votes are usually

provided by local aspects of the data (e.g. local image features), which in turn

increase the probability that the seeked-for solution is contained in a particular sub-

region of the parameter space. The accumulator array provides a representation

of the parameter space, which is discretized due to computational and memory

limitations. Peaks in the accumulator array represent regions of the parameter

space for which the data has significantly voted, and which are likely to contain

valid solutions (e.g. shape detections).

Assuming we want to detect circles of variable radii in some image, the Standard

Hough Transform might be implemented in the following manner: 1) create (and

initialize to zeros) a 3D accumulator array where 2D positions and circle radii are

represented, 2) extract salient image features, 3) for each salient feature, compute

consistent circle-center positions and radii, 4) increment the accumulator cells cor-

responding to each computed circle-center and radius, 5) after going through all

points analyze the accumulator array for peaks. Peaks identify the likely locations

and scales of circles.

Some of the main problems of the Standard Hough Transform and other de-

rived/related approaches include: 1) memory demands, 2) computational expense,

3) fixed resolutions and 4) false positives. Excessive memory and computational

demands stem mostly from the use of accumulator arrays to represent large pa-

rameter spaces. When a single accumulator array is used, the resolution of the

parameter space is fixed, which can lead to problems if finer-grained estimates are

37

Univ
ers

ity
 of

 M
ala

ya

required. The analysis of peaks in the accumulator array is not always a straight-

forward process leading occasionally to the detection of accidental peaks (i.e. false

positives). Many of these problems have since been addressed (refer to the following

subsections). Some of the great advantages of Hough-based approaches include their

robustness to noise, spurious features and occlusions, and their ability to deal with

multiple solutions simultaneously. Furthermore, the notion of a vote is extremely

simple, easily represented and amenable to parallel implementations, which makes

Hough-based approaches quite promising from a neural perspective.

Generalized Hough Transform

The Generalized Hough Transform (GHT) grew out of the Hough Transform (see

Hough 1959) in order to deal with arbitrary shapes (see Ballard 1981).

Following the example of (Hecker & Bolle, 1994), and for the sake of clarity, we

will first describe how the GHT can be used to detect arbitrary shapes regardless of

translation, and then we will describe how scale and rotation can be incorporated.

The algorithm essentially consists of an off-line stage for model preprocessing and a

subsequent on-line stage for shape and pose detection.

During the off-line stage, each model generates an R-table. The R-table is gen-

erated by selecting an arbitrary point p0 inside the model boundary, and then going

through prominent points (i.e. pn) in the model boundary, where each point gen-

erates an index to the table (θ(pn) → (p0 − pn)), where θ(pn) is the angle of the

tangent to the boundary at point pn and (p0 − pn) is the vector formed between the

boundary point and the center point p0.
4

During the online-stage, an accumulator (or voting) array is first generated to

represent estimated p0 positions. Subsequently each point in the scene (i.e. kn) is

used for estimating p0 positions. The orientation at each point is computed and used

for indexing the R-table, which returns a ~r = (p0 − pn) vector which is added to the

position of the current scene-point in order to obtain a p0 estimate (i.e. p0 = kn +~r),

which determines the accumulator cell to increment. At the end, the accumulator

4Note that each θ(pn) can have more than one (p0 − pn) vector since, in most cases, shapes
have multiple instantiations of a particular tangent angle.

38

Univ
ers

ity
 of

 M
ala

ya

array is analyzed for peaks, which should correspond to positions in the scene where

the model is present.

In order to allow for rotated and scaled instantiations of models, the above algo-

rithm needs to be extended at the online-stage by first generating a 4D accumulator

array representing position, rotation and scale (i.e. [p0, α, s]). At each scene point

(i.e. kn), the algorithm now loops through the allowed rotations (i.e. α) and scales

(i.e. s). The R-table is indexed with θ(kn)−α, which returns a vector ~b0 which needs

to be re-scaled by s and rotated by α, before it can be added to kn in order to form

an estimate of [p0, α, s] (i.e. p0 = kn + ~r where |~r| = s ·
∣∣∣~b0

∣∣∣ and θ(~r) = θ(~b0) + α).

Note that, although the GHT was devised with shape detection in mind, it is

intertwined with and automatically generates pose estimates.

Adaptive Hough Transform

The Adaptive Hough Transform (AHT) attenuates the memory, computational

and resolution problems of the Standard Hough Transform (e.g. see Illingworth

& Kittler 1987 and Tian & Shah 1997). It accomplishes this by using smaller ac-

cumulator arrays, and multiple processing stages, where earlier stages use coarser

representations of parameter space and later stages use finer representations of pa-

rameter space. The results of each stage feed into the subsequent stage, e.g: if

at stage one the coarse region R3 receives a significant number of votes, then at

stage two the algorithm adaptively focuses on R3 by creating a finer parameter

space within the confines of R3. The process continues until all significant peaks

have been investigated up to an acceptable degree of precision/resolution. Other re-

lated approaches, which use coarse-to-fine parameter resolutions, include: the Fast

Hough Transform (Li et al., 1986) and the Hierarchical Hough Transform (Espinosa

& Perkowski, 1991).

Hough Transform Network

The Hough Transform Network (see Basak & Pal 1999) is an interesting approach

with special relevance to the current thesis.

39

Univ
ers

ity
 of

 M
ala

ya

The basic idea in Hough Transform Networks is to represent the transform pa-

rameters in the connection weights of an artificial neural network. The parameter

values are gradually learnt so there is no need to represent the whole space of pa-

rameters (as in a conventional fully-defined voting structure). This leads to two

significant advantages: firstly storage requirements are smaller than in traditional

Hough Transforms and secondly the resolution of parameters is not fixed thus al-

lowing for, in principle, results of any precision.

In the context of this thesis, the architecture presented in (Basak & Pal, 1999)

does however present us with a crucial weakness, regarding biological plausibility.

The concept of Hough Transform Networks is illustrated in (Basak & Pal, 1999) using

a line detection problem. In order for the network to learn the parameters defining

several lines in an image, it has to be presented with the points comprising those

lines, in a sequential manner. This sequential presentation of points is unlikely to be

realistic in biological systems, which have the resources and the need to maximally

exploit parallelness.

Geometric Hashing

Just as with the Generalized Hough Transform, the class of algorithms referred to

as Geometric Hashing (e.g. see Lamdan & Wolfson 1988), involves an off-line stage

for model pre-processing and an on-line stage for recognition. Furthermore, models

and their instantiations in scenes are represented by local features or interest-points.

Early but representative Geometric Hashing algorithms were designed for the

recognition of 3D rigid objects in cluttered scenes under affine transformations. Two

important theoretical points on which the algorithm rests are: 1) a unique affine

transformation maps a set of three non-collinear points onto another set of three non-

collinear points and 2) three non-collinear points define two linearly-independent

vectors which in turn define a 2D coordinate system in which any remaining points

can be represented.

Assuming multiple models, the off-line stage of the basic algorithm goes as fol-

lows: 1) for each model extract all n interest points, 2) for each set of 3 non-collinear

40

Univ
ers

ity
 of

 M
ala

ya

points, define a coordinate-system in which all other n − 3 points are re-defined, 3)

use each re-defined coordinate to index a hash table and record the model and triplet

which originated the coordinate.

In the on-line stage the algorithm works as follows: 1) extract the scene’s n

interest points, 2) select an arbitrary set of 3 non-collinear points, 3) redefine the

coordinates of the remaining n − 3 points according to the triplet’s coordinate-

system, 4) use each re-defined coordinate to index the hash-table, and vote for the

model-triplet pairs there recorded. In the end, if there is a model-triplet pair with

a sufficient number of votes, then this is evidence for a model instantiation at the

position defined by the intial/scene triplet. Furthermore, the affine relationship that

relates the initial/scene triplet and the winning triplet, defines the transformation

between the model and its instantiation.

One of the more significant advantages of Geometric Hashing lies in its efficiency

(specially in the context of serial computers), however, its utilization of multiple

correspondences (in the above example, triplets were used) is most probably too

expensive for most neural implementations.

RUDR

Recognition using Decomposition and Randomization (RUDR) is an interesting

approach that combines search and voting, in an attempt to avoid the weaknesses

of both (e.g. see Olson 2001).

In brief, RUDR decomposes a problem into multiple sub-problems each one of

which is randomly selected (this is the search part) for further analysis using a

Hough-based method (this is the voting part). The meaning of sub-problem will be

clarified next by using the estimation of a similarity transformation as an example.

If a match is defined as a sub-set of model to image point correspondences and the

cardinality of a match is defined as the number of correspondences involved (see

Olson 2001), then one can say that the constraining match-cardinality of a simi-

larity transformation is 2, since two correspondences provide four equations which

can constrain the four unknowns of a similarity transformation (i.e. 2D position,

41

Univ
ers

ity
 of

 M
ala

ya

scale and rotation). If the constraining cardinality is k (in this case k = 2) then a

sub-problem in this context corresponds to a match with cardinality g < k (in this

case g = 1). Any single correspondence partially constrains the parameter-space

and thus represents a sub-problem in the sense that it partially (but incompletely)

solves the problem. After a random correspondence (subproblem) has been selected,

voting is performed by combining the selected correspondence with remaining cor-

respondences in order to form constrained estimates. If the initial correspondence

(sub-problem) is false, then the voting stage is unlikely to form significant peaks.

Conversely, if the initial correspondence is true, the voting stage should produce a

significant peak with the correct estimate. Note that in general g and k − g can

both be larger than one.

In spite of RUDR’s advantages (i.e. generality, accuracy and computational/storage

efficiency), sub-problems (and implicit cardinalities larger than one) and randomized

search, are likely to be representationally unfeasible in a neural context. Regarding

the first impracticality, parallel computation in general calls for a complete repre-

sentation of all sub-problems which by definition contradicts the solution. If on the

other hand sub-problems are represented serially, then some very complex and un-

feasible machinery is required in order to change the underlying representation for

each serially tested sub-problem. Regarding the second impracticality, that is, ran-

domized search, again unfeasible machinery is required for random selection, serial

testing, and dynamic termination of sub-problems.

3.4 Global Properties

The following approaches use neither template matching nor correspondences,

instead they rely on objects’ global characteristics for generating pose estimates.

3.4.1 Center of Mass

The center of mass approach uses global information for computing an object’s

“center”. In one of its simplest forms the technique averages the positions of an

object’s constituent points. Variations might perform an averaging which is weighted

42

Univ
ers

ity
 of

 M
ala

ya

by point characteristics such as brightness or entropy. Regardless of variations,

the core idea of the technique is a normalization relative to the object’s “center”,

which essentially constitutes a translation estimate. One of the advantages of the

approach is that it can be used as a fast preliminary stage for a more complex

pose estimate (see Hong & Tan 1988 for an example of where this is done). In

the case of a similarity transformation, an initial center of mass normalization can

provide the translation estimate, allowing the subsequent computational stage to

concentrate only on the target’s scale and orientation. The main disadvantages of the

approach include lack of robustness (i.e. it exhibits sensitivity to noise, occlusions

and spurious points) and lack of generality (i.e. it is not easily extended to more

complex transformations). The main strength of the approach lies in its neural

implementability (refer to the thesis’ Discussion chapter for a brief explanation and

illustration of the neural implementability of the approach).

3.4.2 Symmetry Axes

Another global approach related to the center of mass technique involves detect-

ing an object’s symmetry axis. Obviously the technique is not general in that it is

applicable only to symmetric objects (e.g. human body). By finding the symmetry

axis of an object and computing its angle, a rotation estimate is generated which

relates the object in a canonical configuration and its image instantiation. As in the

center of mass case, the main weaknesses of the symmetry-axis approach include lack

of generality and robustness. Neural implementability is one of the strong points of

the approach.

If the center-of-mass and symmetry-axes techniques are combined with an ac-

curate human-head detector, the result is a similarity transformation estimator for

human bodies consisting mostly of global methods: 1) the center of mass technique

provides the translation estimation, 2) the symmetry-axis technique provides the ro-

tation estimate and 3) the distance between the center of mass and the head (from

the head detector) provides the scale estimate.

43

Univ
ers

ity
 of

 M
ala

ya

Table 3.1: A qualitative comparison of pose estimation approaches.

Approach Algorithm P A G E R Score

Template
Deformable 1 0 1 0 1 3
Map-Seeking 1 1 1 0 1 4
DRC 1 1 1 0 1 4
What-and-Where 1 1 1 1 0 4

Correspondence
Search 0 0 1 0 1 2
Vote 1 1 1 1 1 5
Search & Vote 0 0 1 0 1 2

Global 1 1 0 1 0 3

3.5 Conclusion

Table 3.1 summarises how we have evaluated the main approaches in the liter-

ature. Note that the evaluations must be seen in the context of our main objec-

tives: neural implementability and performance. How these objectives are defined

moreover, can vary from author to author. We have chosen to focus neural imple-

mentability on parallelizability and architectural simplicity. Regarding performance,

we have chosen to focus on generalization, efficiency and robustness (overall accu-

racy is assumed). Furthermore, for the sake of simplicity and combining evaluations,

we have adopted a qualitative approach which reduces each evaluation to a binary

variable (one for “sufficient” and zero for “insufficient”). Note also that only dif-

ferentiable categories have been represented (e.g. the vast number of Hough-based

approaches have been grouped into the single “vote” category since the former are

mostly indistinguishable in terms of the main evaluation factors being used).

The following abbreviations have been used in Table 3.1: P (parallelizability), A

(architectural simplicity), G (generalization), E (efficiency) and R (robustness). It

is important to note that evaluations are relative. For example, both map-seeking

and DRC approaches have been evaluated as “insufficiently” efficient. This does not

mean that they are inefficient, instead this reflects the fact that they require several

recurrent iterations before finding a solution, whereas other approaches such as the

voting ones can find a solution in one step (assuming parallel implementations).

According to the taxonomy, objectives, and evaluations embodied in Table 3.1,

the most promising approach (with a total score of 5) for a neural investigation

44

Univ
ers

ity
 of

 M
ala

ya

involves correspondences and votes. Since correspondences are easy to represent us-

ing conjunctions, and vote-accumulation can be computed by one feed-forward layer,

the approach is parallelizable, efficient and architecturally simple. It is also general

(i.e. it can be extended to many complex transformations and other domains) and

robust. Additionally, accuracy can always be further improved by simply increasing

the discriminatory power of local invariant features.

Note that the map-seeking and DRC approaches are close behind, differing only

in terms of efficiency, which some authors might choose to ignore, contrary to our

present decision. The What-and-Where approach, on the other hand, falls short of

the maximum score mainly due to its lack of robustness in cluttered environments.

Note also that the global approaches, although still further behind on account of

their lack of generalization and robustness, nevertheless exhibit maximum scoring

in terms of neural implementability, i.e: they can be implemented in simple, fully-

parallel and efficient neural architectures. Regarding vote-based approaches, we

will be focusing on the simplest (and still accurate) forms, since this will permit

us to fully explore the broader argument which includes an analysis of biological

implementability, structural optimization and developmental algorithms.

In this algorithmic chapter (see Fig. 2.1) we have described and discussed some

of the main pose estimation approaches based on templates, correspondences and

global properties. Several criteria, such as neural implementability, were used for

selecting the best candidate for further investigation, i.e: approaches based on cor-

respondence votes. In the following chapter we will describe the chosen approach in

sufficient detail for its applicability to real problems.

45

Univ
ers

ity
 of

 M
ala

ya

Chapter 4

Single Correspondence Analysis

4.1 Basic Concepts

As a useful reference for the rest of the thesis, and for the sake of a rapid

contextualization, we will start by briefly explaining some of the most fundamental

concepts.

4.1.1 Inputs

Input-Clouds. The current thesis assumes that, in most cases, the amount of

visual information received by a sensor exceeds processing resources, thus calling for

an attentional bottleneck, i.e: a window which captures a sub-set of the available

visual information (see Ullman & Koch 1999). Our attentional window consists of

a finite set of semi-independent inputs, each holding a specific image position, and

altogether forming what is here termed an input-cloud. The function of an input is to

convey image information that is local to its position: in the simplest case each input

transmits the brightness value underlying its position (see Fig. 4.1). Input-clouds

can exhibit global dynamics, where the positions of inputs are changed according

to a global rule (e.g. right-shift all inputs by 4 pixels), or local dynamics, where

each input changes position semi-independently of all other inputs. The existence

of multiple, parallel and interacting clouds poses many interesting questions, which

unfortunately lie outside the scope of the current thesis. Refer to Appendix C for

a more detailed discussion on input-clouds (or dynamic-inputs) and their general

46

Univ
ers

ity
 of

 M
ala

ya

Figure 4.1: An input-cloud, an input-vision and some correspondences.

practicality.

Input-Vision. An input-vision consists of the totality of the information (e.g.

brightness values) gathered, in a topographic fashion, by all inputs. In most cases,

this information is gathered in a regular array format, which is easier to interpret

(see the right-hand side of Fig. 4.1).

Constraining input-clouds to having a pre-determined (user-defined) fixed num-

ber of inputs, simplifies matters, e.g: there is no need to process information for sub-

sequent stages and sampling is performed automatically. However, the scheme fails

when clouds are significantly scaled-up and test-images consist of thin line-drawings.

For these cases, more sophisticated schemes such as those found in (Olshausen et

al., 1993) are recommended. For our purposes however (refer to the accuracy tests

in Chapter 5), the simplicity and flexibility of fixed numbers of inputs, outweigh any

disadvantages.

Model and Image. The fundamental pose-estimation problem to which this

thesis is dedicated, involves two patterns, and more fundamentally, the transforma-

tion that relates one pattern to the other. We will follow the common usage found

in most of the point pattern matching literature (e.g. Gold et al. 1998), and denote

these two patterns by model (or source) and image (or target). In the case where

the pose estimation involves a pattern retrieved from memory via some process of

recognition, the model is assumed to be the stored form of the pattern (stored-

pattern), while the image is assumed to be the input-vision. In the case of pose

estimation for motion analysis, the model is assumed to be the input-vision of the

47

Univ
ers

ity
 of

 M
ala

ya

previous time-step while the image is assumed to be the input-vision of the current

time step.

Cyclops and Attractors. A model point/input will occasionally be referred to

as a cyclop, while an image point/input will at times be referred to as an attractor.

4.1.2 Correspondences

Correspondence. A correspondence is essentially the vector formed between

two matching (sufficiently similar) features, one in the model and the other in the

image. In order for this vector to validly reflect the transformation that relates the

model to the image (or vice-versa), both patterns must be superimposed on each

other. A singlet refers to a single pair of matching points (one image point and one

model point). A doublet refers to two pairs of matching points (two image points

matching with two model points). Although doublets contain more information they

are also more expensive1. The fact that doublets are expensive, which is specially

evident when considering neural implementations, and the fact that singlets still

provide sufficient information for our pose estimation purposes, both explain why

we here focus primarily on singlets. Moreover, singlets are also general2 and have

clear and relatively cheap parallel implementations3. From this point onwards, the

terms “correspondence” and “singlet” will be used interchangeably.

Correspondence Distributions. In most cases, two patterns will have more

than one match, and thus more than one correspondence. The set of all corre-

spondences between two patterns provide a rich source of visual information, be it

about pose, shape, motion, or other aspects of the environment. Correspondence

distributions are thus sets of correspondences, each with their individual proper-

ties (e.g. angle and length), which if analyzed adequately can give us important

clues about the external environment. See Fig. 4.2 for several examples of scat-

tergrams/distributions of correspondence properties resulting from an input-cloud

1If there are n model nodes (and n image nodes), then there are n2 singlets and
[

n(n−1)
2

]2

doublets.
2Within vision, they are applicable to at least pose, motion, shape and stereopsis (refer to

Chapter 10 for a more detailed exposition).
3Refer to Chapter 6 for an elucidation of parallel architectures representing singlets.

48

Univ
ers

ity
 of

 M
ala

ya

4
 3
 2
 1
 0
 1
 2
 3
 4

0

10

20

30

40

50

60

70

80

90

100

CA angles

C
A

 l
e
n
g
th

s

(a) (CAθ, CAL)

0
 1
 2
 3
 4
 5
 6
 7

0

10

20

30

40

50

60

70

80

90

100

OCA angles

C
A

 l
e
n
g
th

s

(b) (OCAθ, CAL)

0
 1
 2
 3
 4
 5
 6
 7

0

0.5

1

1.5

2

2.5

3

OCA angles

O
A

/O
C

 r
a
ti
o
s

(c) (OCAθ, OA/OC)

4
 3
 2
 1
 0
 1
 2
 3
 4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

CA angles

O
C

A
 a

n
g
le

s

(d) (CAθ, OCAθ)

Figure 4.2: Various distributions of correspondence properties.

shifted to the left by 12 pixels, scaled by a factor of 1.5 and rotated by π radians,

relative to a pattern replete with unique features. The following list summarizes the

various properties used to produce the depicted distributions:

1. ~CA. The vector obtained from subtracting cyclop coordinates from corre-

sponding attractor coordinates, i.e: an actual correspondence vector.

2. CAθ and CAL. The angle and length of a correspondence.

3. OCAθ. The angle between vectors ~OC and ~OA where ~OC is the vector formed

by subtracting the origin coordinates from a cyclop, and ~OA is the vector

formed by subtracting the origin from the corresponding attractor.

4. OA and OC. The lengths of ~OA and ~OC respectively.

Our approach can be generalized into what we term Correspondence Distribu-

tion Analysis (CDA) which consists of two main aspects: 1) representation and 2)

computation. Representation encompasses aspects such as the cardinality of cor-

respondences (e.g. singlets or doublets) and the properties that define them (e.g.

angle and length). Computation on the other hand refers to what ones does to the

distributions, e.g: filtering, sharpening, accumulation/counting of properties, and

others. In terms of representation, we will be focusing on singlets and the positions

of the features involved, while in terms of computation, we will be concentrating

mainly on the accumulation/counting of properties.

Probability of a True Correspondence (PTC). The converse of PTC is

what we term the probability of a false correspondence (PFC), where PFC = 1 −

49

Univ
ers

ity
 of

 M
ala

ya

PTC. Recall that the definition of a correspondence states that it involves two

matching features. The fact that two features match, or are sufficiently similar,

does not imply that they are caused by the same physical entity, e.g: if our feature

is “green” then one must accept the possibility of a point belonging to a green leaf

matching with a point belonging to a green door. If a correspondence matches the

same physical entity it is denoted a “true correspondence”, otherwise it is referred

to as a “false correspondence”. The less discriminating a feature-type is, the more

likely it is to cause false correspondences, and thus we can say that for that particular

feature type the PTC is smaller (or the PFC is larger). Image properties also affect

the PTC, e.g.: a pattern with many rare and variable features tends to produce cases

with larger PTCs.

4.1.3 Local Invariant Features

As was made clear in the previous subsection, in order to detect a correspon-

dence one needs a match between two features. Furthermore, the probability of

a correspondence being true depends heavily on the quality of the type of feature

being used. Thus, some attention must be given to the issue of what feature-types

to use.

Locality. A local feature is one that describes the visual content derived from a

relatively small receptive-field centered at a particular image point. A global feature

on the other hand describes the content of a receptive-field that encompasses the

whole pattern. The fact that we are searching for multiple distinct correspondences

amongst two patterns precludes the use of global features.

Discriminatory Power. The discriminatory power of a feature is related to

how many distinctions it can make (see Swiniarski & Skowron 2003). A feature-

type that consists of only two possibilities/values is likely to discriminate far fewer

patterns than one with a range of 100 values.4 The more discriminating a feature-

type is the lower the probability of a false correspondence.

4Note however that two different feature-types with the same expressive range can have very
different powers of discrimination.

50

Univ
ers

ity
 of

 M
ala

ya

������������ ¡��� �¢ £��¤ � ¥����

Figure 4.3: Example salience filtering.

Invariance. Invariant features are features that remain constant regardless of

the transformations applied to the input, e.g: illumination, noise, translation, ro-

tation and others (e.g. Tuytelaars 1999). It is fundamental that our local features

be invariant to the transformations that we are trying to estimate, otherwise the

same physical entity both in the model and in the image may not match after a

transformation. Though it might seem at first that invariance and discriminatory

power are opposing forces, in fact it is possible to have features that maximize both

simultaneously. It is this type of feature (i.e. that maximizes discriminatory power

and invariance) that we need, since it increases PTC whilst remaining robust to

the transformations (i.e. correspondences can be found regardless of the transfor-

mation).

Salience. Salience-filtering pertains to the highlighting of salient/interesting

features and the ignoring of common/uninteresting features (e.g. Jurie & Schmid

2004). This is very useful because it increases the PTC: common features produce

many false correspondences, hence their removal increases the proportion of true cor-

respondences. Another advantage is that it decreases the number of features that

need to be considered (this is advantageous in the case of a sequential implemen-

tation). A simple example of a salience-filter might be a variance-filter, i.e: accept

those features whose brightness variances supersede some threshold, and ignore the

rest. Figure 4.3 provides an example of an image which has been salience-filtered.

Appendix A briefly explains one possible algorithm for variance-based filtering.

51

Univ
ers

ity
 of

 M
ala

ya

4.1.4 Problem Definition

The way we define a problem deeply affects the types of solutions we come up

with, therefore some diligence is required in this regards. Three problem definitions

are presented next, the last one of which underlies most of this thesis:

1. Find the optimal transformation that maps the largest number of unlabeled

model points to unlabeled image points.

2. Find the optimal transformation that maps the largest number of labeled

model points to labeled image points, whilst satisfying the label-matching

constraint.

3. Find the actual transformation that maps the model to the image.

The first definition is a common one in the point pattern matching literature

(e.g. Gold et al. 1998). One important aspect about it is that it mentions an “op-

timal” rather than the “actual” transformation between model and image points,

where optimality can be defined by different criteria. This type of definition usually

implies that pose-estimation is not the main concern, but both the means and a

possibly useful side effect for some other function such as object recognition. Since

in our thesis we are mainly concerned with features that have some discriminatory

power, we are thus interested in point labeling, and thus in the second definition

we provide for this extension. In some cases, this definition might be useful, how-

ever, pose-estimation is still a secondary/indirect function. Therefore, the third

definition, greatly simplifies our problem, but carries the heavy assumption that an

“actual transformation” exists against which solutions can be verified. Information

regarding the “actual transformation” can come in several forms, e.g: 1) after trans-

forming the model (or the image) by the estimate, the degree of match between

the patterns serves as a measure of the accuracy of the estimate (or the degree to

which the actual transformation was found), 2) in an ecological context, the quality

of an estimator can be verified by its survival value (safely assuming that a faulty

estimator can have disastrous consequences) and 3) in an artificial/experimental

52

Univ
ers

ity
 of

 M
ala

ya

context an experimenter can manipulate the transformations and thus information

regarding the “actual transformation” is always available.

If not stated to the contrary, all patterns used in this chapter have a PTC = 1.

4.2 Pose Estimation Algorithms

4.2.1 Transformations

Transformation groups

Determining the pose of a target pattern is essentially equivalent to determining

the set of geometric transformations that relates a source pattern in some canonical

configuration to the target pattern.

Table 4.1 presents several groups of transformations in increasing order of gen-

erality and distinguishes them in terms of the properties they preserve (i.e. their in-

variants) between source and transformed patterns (see Hartley & Zisserman 2004).

The “lines” (collinearity) property refers to the fact that lines in the source pattern

remain as lines in the transformed pattern. The “parallelness” property means that

parallel lines in the source pattern remain as parallel lines in the transformed pat-

tern. The “angles” property refers to the relative angles between lines and finally, the

“lengths” property refers to the lengths of lines. The group of rigid transformations,

which is the least general of all, preserves all the geometric properties presented

in the table. Transformed patterns are translated and/or rotated. The similarity

group of transformations, preserves all properties except the length of lines: patterns

can be translated and/or rotated and/or scaled (isotropically5). The affine group of

transformations preserves collinearity and parallelness but does not necessarily pre-

serve line lengths and relative angles: transformed patterns can exhibit translation,

rotation, scaling and shearing. The projective group of transformations is the most

general of all the groups presented in Table 4.1 and the only property it preserves

is collinearity.

We have chosen to focus on similarity transformations because they encapsulate

5A single factor for all coordinates, e.g.: no horizontal vs. vertical scaling.

53

Univ
ers

ity
 of

 M
ala

ya

Table 4.1: Transformation groups and their invariants.

Lines Parallelness Angles Lengths Example

Rigid
√ √ √ √

Similarity
√ √ √ ⊗

Affine
√ √ ⊗ ⊗

Projective
√ ⊗ ⊗ ⊗

the largest differences between source and target patterns. Affine, projective and

other groups of transformations are fundamental, and need to be dealt with, but

the differences (beyond the similarity transformations that they already embody)

between source and target patterns that they represent are more subtle6, and there-

fore, one might argue that for a first rapid approximation, most organisms only need

to estimate a similarity transformation. Subsequent stages or more general compu-

tations can then provide the organism with more refined estimates. Regardless of

the validity of this argument, the approaches being discussed in this thesis can be

naturally extended to other more general groups of transformations. By restricting

ourselves to the similarity group we also simplify the analysis and presentation of

the algorithms and architectures.

Transformation ordering

Narrowing our scope to similarity transformations allows us to be very precise

about our aim. Our hardest7 aim is thus to estimate four unknowns: horizontal

shift, vertical shift, rotation and scaling. At this point it is useful to recall that the

order in which transformations are applied to patterns or points (to simplify our

discussion) can lead to different results. Intuitively one can accept that translating

a point first and then rotating it leads to a completely different position than if the

point is rotated first and then translated. At this stage we will introduce some simple

notation for expressing transformations and their relative orderings: Tx and Ty stand

6If Dτ = |Img − Transformτ (Img)| then
∂DTx

∂Tx
=

∂DTy

∂Ty
≈ ∂Ds

∂s
≈ ∂Dθ

∂θ
À ∂DP roject

∂Project
.

7We will also be looking at easier component problems such as pure translation estimation.

54

Univ
ers

ity
 of

 M
ala

ya

for horizontal and vertical translations respectively, S refers to scaling, R refers to

rotation, (X1 → X2) means that transformation X1 precedes transformation X2,

(X1 ­ X2) means that transformations X1 and X2 can be placed in any order,

(X1 → X2) ≡ (X2 → X1) means that placing X1 and X2 in different orders leads

to the same result (so (X1 ­ X2) ⇔ (X1 → X2) ≡ (X2 → X1)), (X1 → X2) 6≡

(X2 → X1) means that placing X1 and X2 in different orders leads to different

results, B = Rθ(A) represents the fact that B results from rotating A by θ and s ·A

represents the scaling of vector ~OA by a factor s, where O represents the origin.

One result which will be useful in subsequent sections proves that scaling and

rotation can be placed in any order (i.e. (S ­ R)). Let A be a point defined by

(x1, y1), A′ be a point defined by (x′
1, y

′
1) and B be a point defined by (x2, y2).

Considering that (S → R) implies that B = Rθ(s · A) and

if A′ = s · A then B = Rθ(A
′) so

x2 = x′
1cosθ − y′

1sinθ and y2 = x′
1sinθ + y′

1cosθ and because

A′ = (x′
1, y

′
1) = (s · x1, s · y1) we finally get





x2 = (s · x1)cosθ − (s · y1)sinθ

y2 = (s · x1)sinθ + (s · y1)cosθ

≡





x2 = s · (x1cosθ − y1sinθ)

y2 = s · (x1sinθ + y1cosθ)

(4.1)

On the other hand, (R → S) implies that B = s · Rθ(A) and

if A′ = Rθ(A) then B = s · A′ and

x′
1 = x1cosθ − y1sinθ and y′

1 = x1sinθ + y1cosθ then

B = s · A′ leads to





x2 = s · (x1cosθ − y1sinθ)

y2 = s · (x1sinθ + y1cosθ)

(4.2)

which is equivalent to the results in Eq. 4.1 which proves that (S ­ R) is indeed

correct.

Having shown how the relative ordering of scaling and rotation is inconsequential,

55

Univ
ers

ity
 of

 M
ala

ya

it should be useful to provide a simple demonstration of how different orderings can

lead to different results. For example, in the case of horizontal translation and

scaling, order is crucial, i.e: (S → Tx) 6≡ (Tx → S).

If (S → Tx) then B = s · A + Tx or

x2 = s · x1 + Tx (4.3)

On the other hand, if (Tx → S) then B = s · (A + Tx) or

x2 = s · (x1 + Tx) = s · x1 + s · Tx (4.4)

which is not equivalent to Eq. 4.3 thus proving that the order in this case is not

inconsequential.

Having shown that the relative order in which transformations are applied cannot

be ignored, it is now important to determine what type of ordering is exhibited by

a cloud of inputs when it changes configuration according to the group of similarity

transformations.

Cloud vs. attractor transformations

When a cloud changes configuration (i.e. when it is translated and/or rotated

and/or scaled) it does so relative to itself. Therefore the relative order in which

transformations are applied is inconsequential: no matter how we apply the trans-

formations the final cloud configuration will be the same.

The question we are asking however is not about the order of cloud transfor-

mations, but its consequence on attractors. This is so, because we want to use the

displacements of attractors relative to cyclops to infer transformations. Since we

know that, when talking about changing the configuration of a cloud, transforma-

tions can be applied in any order, it is sufficient to look at one particular order, say

(S → R → T). Brief introspection will show that this cloud sequence corresponds

to the attractor sequence of transformations (S → R → T), which can further be

generalized to [(S ­ R) → T] since the relative order of rotation and scaling have

56

Univ
ers

ity
 of

 M
ala

ya

already been shown to be inconsequential8.

Constrained and unconstrained cases

A single correspondence (or a singlet), involves two points (a cyclop and an

attractor), and thus provides us with two equations. Similarly, a pair of correspon-

dences (or a doublet), involves four points and thus provides us with four equations.

This is crucial because, since two equations can give exact solutions only when two

unknowns are involved, singlets can provide constrained solutions only when the

transformation space is defined by two dimensions, e.g: (Tx, Ty), (s, θ), (Tx, s), etc.

Similarity transformations, as already mentioned, consist of horizontal and ver-

tical shifts, isotropic scaling and rotation, and therefore result in four unknowns.

Hence, they are constrained only by doublets. This is where the challenge lies:

how can one estimate the four unknowns using singlets, that is, in severely un-

constrained conditions? There are various reasons for insisting on single corre-

spondences. Firstly, they are simpler/cheaper to represent in neural architectures

(doublets involve a more severe combinatorial explosion and it is probably im-

possible to pack sufficient wiring to represent them in a small enough amount

of space). Secondly, the probability of a true singlet (PTS) is larger than the

probability of a true doublet (PTD), assuming the same features are being used

(P (TS) > P (TS)2 = P (TD)).

The following subsection derives all necessary transformation equations, starting

from the simpler constrained cases and working its way up to the the unconstrained

ones. Note that the constrained cases are still interesting to investigate mainly

because of two facts: 1) in most cases the probability of a true correspondence is

significantly smaller than one (PTC ¿ 1) and hence many if not most of the cor-

respondences are misleading and 2) the similarity transformation problem can be

broken into two stages, the first one, for example, performing a translation estima-

tion with center of mass or other methods, the second one solving the rotation and

scale estimation problem, which is a constrained case.

8Note that a cloud transformation sequence of (T → S → R) does not correspond to the same
(T → S → R) sequence at the attractor level.

57

Univ
ers

ity
 of

 M
ala

ya

¦
§̈©ª«ª¬
­̈©®«̄¬

°±²³́µ²¶·
°̧²·́µ²¶µ

¹º»¼½¾»¿ÀÁ¼ ÂÁ¿»¿ÀÁ¼ ÃÄ»¾À¼ÅÆÂÁ¿»¿ÀÁ¼ÃÄ»¾À¼Å

¦

­

§ÇÈ²µÇÉ²·
ÊËÌÍÎÌÏËÐ

¦

§

­
ÑÒÓÔÕÖÒ×ØÕ

ÙÚÛÜÝÞÜßàá

¦

§ââ

­
ÑÒÓÔÕÖÒ×ØÕ

§

ÙÚÛÜÝÞÜßàá
ÊËÌÍÎÌÏËÐ

ãäå ãæå ãçå ãèå

§âéêëì
íîï
ð

Figure 4.4: Constrained transformations applied to a single point.

The application of single correspondences to the problem of pose estimation

will from this point onwards be abbreviated to SCAPE, i.e: single correspondence

analysis for pose estimation. When SCAPE is applied to constrained problems it is

abbreviated to C-SCAPE. Conversely, when it is applied to unconstrained problems

it is abbreviated to U-SCAPE.

Equations

The following cases will be derived in this section, the first four of which are

constrained: 1) translation, 2) scaling, 3) rotation, 4) scaling and rotation , 5)

translation and scaling, 6) translation and rotation and 6) translation, scaling and

rotation.

The following conventions are used in this subsection. O corresponds to the origin

of a cartesian coordinate system. A is a source point with coordinates (x1, y1) which

is transformed into a point B with coordinates (x2, y2). Sometimes an intermediary

point A′ with coordinates (x′
1, y

′
1) will be used. The expression Rθ(A) represents the

rotation of point A by the angle θ.

When point B results from transforming point A by only a translation (refer to

Fig. 4.4(a)), estimation of this transformation is quite intuitive





Tx = x2 − x1

Ty = y2 − y1

(4.5)

If point B results from scaling point A (refer to Fig. 4.4(b)) then the scaling can

be estimated by

58

Univ
ers

ity
 of

 M
ala

ya

s = OB/OA (4.6)

If a rotation is applied to A resulting in point B (refer to Fig. 4.4(c)), the

transformation can be estimated by θ = tan−1(y2/x2)−tan−1(y1/x1) or more simply

θ = β − α (4.7)

where β stands for the angle between the ~OB vector and the x-axis and α

represents the angle between the ~OA vector and the x-axis.

Regarding the last constrained case involving both rotation and scaling (refer to

Fig. 4.4(d)), as was previously shown, the order of the transformations is inconse-

quential, therefore it is sufficient to consider one particular ordering, say (R → S).

It is not difficult to see that, rotation needs to transform point A to a point A′ that

lies on the line containing the vector ~OB. From this, one can conclude that rotation

estimation consists of θ = β −α where β refers to angle between ~OB and the x-axis

and α corresponds to the angle between ~OA and the x-axis. Then, considering the

fact that the length of ~OA′ is the same as the length of ~OA, the scaling factor can

easily be computed by s = OB/OA. So, to summarise, (s, θ) estimation can be

performed by the following pair of equations





θ = β − α

s = OB/OA

(4.8)

Now for the first unconstrained case: translation and scaling. As has already

been shown, the relative ordering of attractor transformations resulting from cloud

transformations is [(S ­ R) → T], and therefore in this particular case we need to

consider (S → T). Since scaling precedes translation, (Tx, Ty) = B − s ·A and since

we choose to leave s unconstrained, the transformation can be expressed as





Tx = x2 − s · x1

Ty = y2 − s · y1

(4.9)

59

Univ
ers

ity
 of

 M
ala

ya

For the case of translation and rotation, and following the same argument used for

the previous case, we need to consider (R → T). Since rotation precedes translation

(Tx, Ty) = B − Rθ(A). If A′ = Rθ(A) = (x′
1, y

′
1) and x′

1 = x1cosθ − y1sinθ and

y′
1 = x1sinθ + y1cosθ then (Tx, Ty) = B − A′ and thus





Tx = x2 − (x1cosθ − y1sinθ)

Ty = y2 − (x1sinθ + y1cosθ)

(4.10)

Finally for the full similarity transformation case, we can consider (S → R → T)

or (R → S → T) since they lead to the same result. Let us consider the first ordering

(S → R → T) and leave both s and θ unconstrained. If A′ = (x′
1, y

′
1) = s · Rθ(A)

then (Tx, Ty) = B − A′. Since x′
1 = s(x1cosθ − y1sinθ) and y′

1 = s(x1sinθ + y1cosθ)

the final estimation equations are





Tx = x2 − s(x1cosθ − y1sinθ)

Ty = y2 − s(x1sinθ + y1cosθ)

(4.11)

Having derived some fundamental equations for estimating poses involving trans-

lations and/or scalings and/or rotations we will now demonstrate some of the ways

in which they can be used.

4.2.2 Constrained Estimation

As already discussed, when using single correspondences, it is possible to con-

strain at the most two unknowns. These two unknowns might be, for example, Tx

and Ty in a translation-estimation problem or s and θ in a scale and rotation esti-

mation problem. By themselves these constrained cases are already useful, but one

might also find them in conjunction/interaction with other modules that solve other

transformations.

Translation

Recall that our approach involves extracting information from correspondence

distributions. In this particular example we are interested in the horizontal and

60

Univ
ers

ity
 of

 M
ala

ya

ñòóôõö÷øù
ñ
ò
ó
ô
õ
ö
÷

úûüýþ ÿ���������û�
�
	

�
�

��������������� �����

������� �!"# $ %��$ %����������$ %��

&'(')�#�%��*+,#- &'(')&'(.)&'(.)&'(/)&'(0)

&0(.)1""� �"��*+,#- &0(/)&0(.)&0(/)&0(0)&0(0)

02'34.�+5�"!6 "� 02'34.02'34.02'34.02'34.02'34.

.2'347�#5�"!6 "� /2'34'.2.38/2.34702/347020348

9999999999999999

:;<=:;
<=

9999999>99999999

:;<=:;
<=

9999999>999>9999

:;<=:;
<=

999>999>999>9999

:;<=:;
<=

999>999?999>9999

:;<=:;
<=

999>999@999>9999

:;<=:;
<=

999?999@999>9999

:;<=:;
<=

AB

AC

DEFGHIJFKLMFLKN OGHHNKPQRSTQUSV

Figure 4.5: An input-cloud and a set of correspondences and votes.

vertical vector-components of each correspondence: see Equation 4.5. In the case of

translation estimation, the horizontal component of a correspondence is equivalent

to the Tx estimate, while the vertical component of a correspondence is equivalent

to the Ty estimate.

A 2D voting structure is used where each cell represents a different (Tx, Ty)

combination. Each correspondence votes for a particular cell (each vote increments

a particular cell’s counter by one). After all (or a sub-set of all) correspondences

have voted, the translation estimate corresponds to the cell with the largest number

of votes: refer to Fig. 4.5 for a simple example.

If PTC = 1 then one correspondence is sufficient for the estimate. However, if

PTC < 1, more correspondences are required to build a more robust estimate, due

to the ambiguating effect of false-correspondences. Note that even if PTC ¿ 0.5,

estimates tend to be accurate because false-correspondences vote for many different

61

Univ
ers

ity
 of

 M
ala

ya

cells while true-correspondences always vote for the same cell.

Algorithm 1 summarizes the approach. Note that r(Tx) refers to the resolution

of Tx. A simple approach for constructing a set of correspondences is presented in

Algo. 2. This is a somewhat naive yet explanatory algorithm in the sense that

it falls prey to a basic combinatorial explosion: all model points are compared to

all input-vision points. One practical alternative entails constructing feature lists

for models and input-visions, where each feature is referenced to a list of points

(with coordinates) that instantiate it. This naturally permits correspondences to

be found automatically, without the need to search through an extensive list of

potential candidates (where the majority are non-matches).

Algorithm 1 TxTy Estimation

procedure EstimTxTy(C) . Input a set of correspondences (C)
V otes ← 0 . Initialize vote structure: [r(Tx)) r(Ty)]
for all c ∈ C do . Scan correspondences

(x1, y1) ← getCyclop(c) . Coordinates of cyclop
(x2, y2) ← getAttractor(c) . Coordinates of attractor
aTx ← x2 − x1 . Compute a horizontal estimate
aTy ← y2 − y1 . Compute a vertical estimate
V otes(aTx, aTy) ← V otes(aTx, aTy) + 1 . Increment vote

end for
(Tx, Ty) ← maxCell(V otes) . Estimates from the strongest cell

end procedure

Algorithm 2 Collecting Correspondences

1: procedure CollectCorresp(I,M) . Input-cloud and model
2: C ← 0 . Initialize correspondence set
3: z ← 0 . Initialize correspondence counter
4: for all m ∈ M do . Scan model points
5: (mx,my) ← getPosition(m) . Canonical point position
6: (m̃x, m̃y) ← imgCoord(mx,my, I) . Convert to image frame
7: mf ← getFeature(m) . Model point feature
8: for all i ∈ I do . Scan cloud inputs
9: (ix, iy) ← getPosition(i) . Input position

10: if ← getFeature(i) . Input feature
11: if mf ≡ if then . Match implies correspondence
12: C(z) ← [m̃x m̃y ix iy] . Store correspondence
13: z ← z + 1 . Increment correspondence counter
14: end if
15: end for
16: end for
17: end procedure

62

Univ
ers

ity
 of

 M
ala

ya

Scaling and Rotation

This constrained case works much in the same way as the previous case. The

voting structure is still two-dimensional, but now represents scale (s) along one di-

mension and rotation (θ) along the other. The information that is extracted from

each correspondence is also different now. In this case, the model/image origin needs

to be taken into consideration. More specifically, the vectors ~OA and ~OC provide

the necessary information, where ~OA represents the vector defined by subtracting

the origin from a correspondence’s attractor and ~OC represents the vector defined

by subtracting the origin from a correspondence’s cyclop. Scaling information is

obtained by dividing the lengths of the ~OA and ~OC vectors, while rotational infor-

mation is obtained by subtracting their angles (see Equation 4.8). The approach

taken here is summarized in Algo. 3.

Algorithm 3 Scale and Rotation Estimation

procedure EstimScalRot(C) . Input a set of correspondences
V otes ← 0 . Initialize vote structure: [r(s)) r(θ)]
for all c ∈ C do . Scan correspondences

(~OA, ~OC) ← getOrigV ecs(c) . Origin vectors
s ← OA/OC . Scale estimate
θ ← α(OA) − β(OC) . Rotation estimate
V otes(s, θ) ← V otes(s, θ) + 1 . Increment vote

end for
(Scale, Rotation) ← maxCell(V otes) . Final estimates

end procedure

4.2.3 Unconstrained Estimation

As we have already mentioned, single correspondences provide information suffi-

cient only for constraining two unknowns. The similarity transformation group, with

its four unknowns (Tx, Ty, s, θ) is thus severely underconstrained. So how can we

estimate transformations under these conditions (i.e. using single correspondences)?

In Equations 4.11, we have left s and θ undefined, and we have defined Tx and

Ty. It is not difficult to see that each one of these equations defines a surface. Refer

to Fig. 4.6 for an example pair of surfaces, resulting from a single correspondence

comprised of a cyclop at coordinates (x=5, y=5) and an attractor at coordinates

63

Univ
ers

ity
 of

 M
ala

ya

0.5

1

1.5

2 0
1

2
3

4
5

6

-5

0

5

10

15

20

25

Angles

Tx surface

Scale factors
0

5

10

15

20

(a) (Tx) surface

0.5

1

1.5

2

0

1

2

3

4

5

6

-5

0

5

10

15

20

25

Angles

Ty surface

Scale factors
 0

5

10

15

20

(b) (Ty) surface

Figure 4.6: Two voting surfaces.

(x=10, y=10). The question is then, how might such surfaces be used to estimate

the parameters behind a transformation?

One possibility is based on the notion that the surfaces resulting from a set

of correspondences will tend to intersect more around the region corresponding to

the actual transformation. Figure 4.7 illustrates how the approach works. For the

preparation of this figure three distinct cyclops were used, each one of which was

subjected to the same transformation (a horizontal shift of 8 units, a vertical shift

of 5 units, a scaling factor of 1.5 and a rotation of π radians), thus leading to three

distinct attractors. Sub-figure 4.7(a) on the left depicts the Tx estimation surface

corresponding to one of the cyclop-attractor pairs (i.e. one of the correspondences).

Sub-figure 4.7(b), in the middle, illustrates the intersection of the previous surface

and another one resulting from a different correspondence. The sub-figure on the

right, illustrates the intersection of all three surfaces. As one can see, the more

surfaces that are added, the narrower the resulting intersection is. Furthermore, if

one looks closely, one can see that the intersection corresponds approximately to the

transformation parameters originally applied to the cyclops. One of the attractions

of this approach, which is crucial to one of the fundamental motives underlying this

work, is its simplicity, which in turn translates into a greater neural implementability

and thus in greater biological plausibility, as will be soon demonstrated.

64

Univ
ers

ity
 of

 M
ala

ya

0.5

1

1.5

2

0

1

2

3

4

5

6

-40

-30

-20

-10

0

10

20

Angles
Scale factors

-30

-20

-10

0

10

20

1

0

WXYZ[Z\\]̂_̀abcdef_gghcdb_ih_fb_jklb̂_̀abcdehminof_oi_cdfi_p_db_jklqroggab̂_if_gghi_pocdohst

(a) Tx1 surface

0.5

1

1.5

2

0123456

-10

-5

0

5

10

15

Angles

-10

-5

0

5

10

Scale factors

2

0

2

0

(b) Tx1 ∩ Tx2

0.5

1

1.5

2
0

1
2

3
4

5
6

0

1

2

3

4

5

6

7

8

9

AnglesScale factors

1

2

3

4

5

6

7

8

9

3

0

3

0

(c) Tx1 ∩ Tx2 ∩ Tx3

Figure 4.7: The intersection of Tx estimation surfaces.

The approach presented here, in its simplest form, essentially equates a cor-

respondence to a “voting surface”. As new correspondences are considered, more

“voting surfaces” pile up on each other, until eventually, a peak9 should form, cor-

responding to the correct estimate. Since a single-correspondence and a particular

(s, θ) pair determine both a Tx and a Ty value, the voting structure is actually

four-dimensional (i.e. [s θ Tx Ty]), rather than three-dimensional as in Fig. 4.7.

Algorithm 4 condenses the main aspects of the approach.

Algorithm 4 U-SCAPE algorithm

procedure U-SCAPE(C)
V otes ← 0 . Vote structure: [r(s) r(θ) r(Tx) r(Ty)]
for all c ∈ C do . Correspondences

(x1, y1) ← getCyclop(c) . Coordinates of cyclop
(x2, y2) ← getAttractor(c) . Coordinates of attractor
for all s do . Scales

for all r do . Rotations
Tx ← x2 + s(y1sinθ − x1cosθ)
Ty ← y2 − s(x1sinθ + y1cosθ)
V otes(s, r, Tx, Ty) ← V otes(s, r, Tx, Ty) + 1

end for
end for

end for
(Tx, Ty, s, θ) ← maxBin(V otes) . Estimates from the strongest bin

end procedure

Essentially, in Fig. 4, a four-dimensional data structure is used for voting (or

piling surfaces). The voting structure is initially filled with zeros. The notation

r(x) denotes the resolution of the variable x. The algorithm loops through all of the

9The largest peak corresponds to the location with the most intersections and thus with the
most votes.

65

Univ
ers

ity
 of

 M
ala

ya

correspondences, each one of which is used to generate (Tx, Ty) voting surfaces (using

the equations in 4.11), which increment the cells/buckets that they intersect in the

voting data structure. Once all correspondences have been considered, the largest

(most voted for) cell is chosen as the estimate of the transformation parameters.

In this algorithmic chapter (see Fig. 2.1) we have defined core concepts such as

correspondences and local invariant features, discussed several issues surrounding

transformations in general and described how single correspondences can be used

for estimating poses in constrained and unconstrained contexts. In the next chapter

we will investigate how the approach performs in terms of estimation accuracy and

robustness.

66

Univ
ers

ity
 of

 M
ala

ya

Chapter 5

Estimation Accuracy

The current chapter aims to demonstrate the accuracy and robustness of cor-

respondence/vote based algorithms. In order to accomplish this, it is divided into

two main sections, the first one dealing with synthetic patterns and the second one

dealing with real patterns. By using synthetic patterns, it is possible to manipulate

accuracy critical factors, and thus obtain a very concrete idea of the performance of

the algorithms.

5.1 Synthetic Patterns

5.1.1 Introduction

In its simplest form, the pattern-generator creates patterns consisting of a set

of points randomly distributed in a 2D space. Apart from a pair of coordinates,

each point also possesses a value representing its feature. The pattern-generator

accepts three input parameters: NR (the number of non-repeating features), R (the

number of repeating features) and maxPos (maximum coordinate modulus). Figure

5.1 depicts two examples of synthetic patterns. In both cases maxPos = 5. The

left pattern consists of ten non-repeating features (circles with blue edges and faces

with multiple colors) and three repeating features (squares with red edges and a

single face color). The right pattern consists of ten non-repeating features and ten

repeating features.

67

Univ
ers

ity
 of

 M
ala

ya

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

11

11

11

NonRep = 10 Rep = 3

(a) (NR-10, R-3)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1

2

3

4
5

6

7

8

9

10

11

11

11

11

11

11
11

11

11

11

NonRep = 10 Rep = 10

(b) (NR-10, R-10)

Figure 5.1: Two examples of synthetic patterns.

uvwxyz{|x}z~

u����z�|�z

uvwxyz{|x}z~

������}�z|~wxz�

uvwxyz{|x}z~

�z�z|~��}�z|~wxz�

uvwxyz{|x}z~

u�wx�vw��z|~wxz�� � � �
�

�

�

�

��

�

�
�

�������� �������� �������� ��������

Figure 5.2: Three accuracy critical factors.

Probably the three most accuracy-critical factors for correspondence based ap-

proaches are: feature repeatability and the number of spurious and missing points

in the target. Refer to Fig. 5.2 for an illustration of why these factors are critical

to the accuracy of estimates. When patterns contain repeating features (note the

star features (f) in case (b)) this leads to false correspondences (e) which in turn

can create ambiguity. Observe also how spurious features (g) in the target pattern

(case (c)) can also lead to false correspondences. Finally, missing features (h) in the

target pattern (case (d)) are critical because they lead to a reduction in the number

of true correspondences available.

5.1.2 Feature Repeatability

True correspondences are informative while false correspondences are misguiding.

The problem with repeating features lies exactly here: repeating features produce

false correspondences and thus increase the probability of error. The question then

is: how robust is a basic correspondence-based algorithm such as Algo. 4 (see

68

Univ
ers

ity
 of

 M
ala

ya

Chapter 4) to different proportions of non-repeating and repeating features? It

turns out that it is significantly robust, as will be demonstrated below.

The general testing approach taken consisted of generating a pattern (source

points), applying a similarity transformation to it (resulting in target points), and

then using these two sets of points to estimate the relevant transformation. The

estimation error was defined as the modulus of the difference between the actual

transformation (known to the experimenter and/or test program) and the resulting

estimate, e.g: if the actual Tx is 4 and the estimated Tx is 2 then the error is

|2 − 4| = 2.

For each parameter setting (number of non-repeating features - NR - and number

of repeating features - R) five tests were run in order to reduce the possible effect

of extraneous factors (e.g. shape). For each test, a new pattern was generated

(where points acquired new random positions) and a new random transformation

was applied. A maxPos = 5 was chosen for all patterns. Transformations were

randomly selected from the following sub-sets of transformations:

Tx ∈ [−5 −4 ... +4 +5]

Ty ∈ [−5 −4 ... +4 +5]

s ∈ [0.5 0.6 ... 2.0]

θ ∈ [0 π/8 ... (15π)/8]

The voting data-structure used, mirrored the above sets of transformations, ex-

cept for the translation dimensions which were extended to ±8.

Table 5.1 provides a very concrete image of how feature repeatability affects the

algorithm’s accuracy while Table 5.2 summarizes the accuracy of a random guesser1,

under the same circumstances. Table 5.1 depicts the mean errors for each trans-

formation dimension (i.e. Tx, Ty, s and θ), for different parameter combinations.

1The accuracy of the random-guesser was determined by 100, 000 Monte Carlo simulations
and confirmed analytically via the expression Err = d

∑r
n=1

2n
r2 (r − n), where d represents the

transformation’s resolution and r represents the number of positions available. See section B.2 in
Appendix B for a proof/explanation.

69

Univ
ers

ity
 of

 M
ala

ya

Table 5.1: The effect of feature repeatability on error.

NR=0 NR=5 NR=10 NR=15
Tx 0 0 0 0

R=5 Ty 0 0 0 0
s 0.04 0.06 0.06 0.02
θ 0 0 0 0
Tx 0 0 0 0

R=10 Ty 0 0 0 0
s 0 0 0.02 0.02
θ 0 0 0 0
Tx 0 0 0 0

R=15 Ty 0 0 0 0
s 0 0.04 0.04 0.02
θ 0 0 0 0

Table 5.2: The average error of a random guesser.

Tx Ty s θ

Mean 3.6 3.6 0.5 2.1
Std. Dev. 2.6 2.6 0.4 1.5

As one can see, the algorithm is significantly robust to all parameter combinations.

The scale dimension was the only one to manifest some inaccuracy, which was prac-

tically negligible (smaller than the scale resolution), and thus most probably caused

by factors relating to the resolution of the voting structure, rather than the truth

or falsehood of the correspondences.

As already mentioned, feature repeatability is critical because of how it affects

the resulting numbers of true and false correspondences. Related to this is the

probability of a true correspondence (i.e. PTC). Given the complete set of corre-

spondences between a source and a target pattern, the PTC defines the probability

of the first randomly selected correspondence being true. Figure 5.3 depicts how

PTC varies as a function of the number of repeating and non-repeating features.2

Comparing Fig. 5.3 with Table 5.1 one can see that even low PTCs lead to ac-

curate results. The main cause for this lies in the fact that true correspondences

are consistent and thus intersect their votes continuously on the same correct es-

2If nT = NR+R is the number of true correspondences and nC = NR+R2 is the total number
of correspondences, then PTC = nT/nC.

70

Univ
ers

ity
 of

 M
ala

ya

2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

PTC and Feature Repetition

Num Repeaters

N
um

 N
on

−
R

ep
ea

te
rs

0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.1

0.7 0.3 0.2 0.2 0.1 0.1 0.1 0.1

0.8 0.4 0.3 0.2 0.1 0.1 0.1 0.1

0.8 0.5 0.3 0.2 0.2 0.1 0.1 0.1

0.8 0.5 0.3 0.2 0.2 0.1 0.1 0.1

0.9 0.5 0.3 0.2 0.2 0.1 0.1 0.1

0.9 0.6 0.4 0.3 0.2 0.2 0.1 0.1

0.9 0.6 0.4 0.3 0.2 0.2 0.1 0.1

0.9 0.6 0.4 0.3 0.2 0.2 0.1 0.1

P
T

C

0

1

Figure 5.3: PTC as a function of feature repeatability.

timate, while false correspondences dilute their votes across multiple contradictory

estimates. Furthermore, we are using complete sets of correspondences, which is

an acceptable assumption in the fixed/parallel context of neural implementations.

When random (relatively small) sub-sets of correspondences are used, PTC becomes

a critical factor to consider.

5.1.3 Spurious and Missing Features

Because correspondence-based approaches depend on the matching of features,

they are likely to be affected by spurious and/or missing features, both of which

can result from the ubiquitous condition of clutter, e.g: when a distracting object is

partially placed in front of a target object, the occlusion leads to the loss of target

features and the addition of distracting features.

Similarly to the feature repeatability experiments, multiple tests were run for

different combinations of parameters, i.e: the number of spurious features and the

number of missing features. For each test a new set of source points was generated.

In order to generate the target points, the following operations were applied to the

source points: points were randomly selected for removal (i.e. missing points), then

several new and randomly positioned points were added and finally a random trans-

formation was applied to all of the resulting points. In order to make the estimation

problem more difficult the spurious points were given a feature label from one of the

71

Univ
ers

ity
 of

 M
ala

ya

source points, thus increasing the proportion of false correspondences.3 To make the

estimation problem even more difficult, and the algorithm’s performance boundaries

more evident, the number of repeating features in the original pattern was made rel-

atively high and the number of non-repeating features was made relatively low or

zero.

Figure 5.4 summarizes the results. The figure consists of two columns of four

graphs, each graph of which represents a different transformation dimension. The

column on the left represents simulations run with R = 11 and NR = 0 while

the column on the right represents simulations run with R = 11 and NR = 5.

Concerning the graphs, the y-axis represents the number of spurious features while

the x-axis represents the number of missing features. Mean errors are represented

by the brightness of circles (refer to the vertical “colorbar”) while the standard

deviations of the errors are represented by the brightness of squares (refer to the

horizontal “colorbar”).

One conclusion to be drawn from Fig. 5.4 is that the algorithms are significantly

robust to many combinations of spurious and missing points. Predictably, estimation

error is directly proportional to both the number of missing points and the number

of spurious points. The right-hand column in Fig. 5.4 shows how the inclusion of

even a small number of non-repeating features (i.e. NR = 5) can have quite a strong

effect on estimation accuracy. Notice how, contrariwise to the results in the left-

hand column, the largest errors in the right-hand column are significantly smaller

than those defined by chance-level (see Table 5.2), e.g: notice how the maximum Tx

and Ty errors in the NR = 5 case are both 0.6 while those defined by chance are

both 3.6.

5.2 Real Patterns

Now that the robustness of the algorithms has been demonstrated in the context

of synthetic patterns and several accuracy-critical factors, it is necessary to ask

3Note that the spurious features in real patterns are likely to have a certain proportion of
non-matching unique features, thus creating less ambiguity.

72

Univ
ers

ity
 of

 M
ala

ya

whether this still holds true for real patterns?

5.2.1 Pre-processing

Before correspondences can be usefully extracted from real patterns some pre-

processing is required. The first preprocessing step involves the detection of inter-

esting/salient features. This eliminates a vast proportion of indistinct features and

thus leads to a significant reduction in the resulting number of false correspondences.

This also leads to an overall reduction in the number of correspondences in general,

which is critical in the context of sequential computers and real-time processing.

The second pre-processing step involves the characterization (or differentiation) of

the salient features in order that discriminating matches, and thus correspondences,

may be found between them.

Salience

Many different types of salience measures can be found in the literature: see for

example (Mikolajczyk & Schmid, 2004) and (Sebe et al., 2003). We found that a

simple brightness-variance measure was sufficient for our purposes. Briefly, our filter

scans an input image with a small window, and defines the salience of the central

point as the mean deviation of the brightness values in the window. A threshold is

subsequently applied, whereby only features whose mean deviations are large enough

are considered salient. To reduce the resulting number of features even further, the

salience-filtered images are then processed with a “naive thinner”, which eliminates

salient points with an excessive number of salient neighbors. See Fig. 5.5 for an

example of salience filtering and thinning. For the results presented below a window

radius of 1 (i.e. dimensions 3 × 3) and a threshold of 10 were used.

Features

As with salience measures, the literature abounds in local invariant features: see

for example (Jurie & Schmid, 2004) and (Schmid et al., 2005). Again, for the sake of

simplicity and sufficiency we chose a simple feature with considerable robustness to

73

Univ
ers

ity
 of

 M
ala

ya

M
e
a
n
 E

rr
o
r

0

3.4

Std Dev Error0 3.03

0 2 4 8 10

0

5

10

15

20

Num missing

Tx Errors

M
e
a
n
 E

rr
o
r

0

0.6

Std Dev Error0 1.58

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Tx Errors

M
e
a
n
 E

rr
o
r

0

3.3

Std Dev Error0 2.49

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Ty Errors

M
e
a
n
 E

rr
o
r

0

0.6

Std Dev Error0 1.35

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Ty Errors

M
e
a
n
 E

rr
o
r

0.01

0.87

Std Dev Error0.03 0.55

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Scale Errors

M
e
a
n
 E

rr
o
r

0

0.21

Std Dev Error0 0.4

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Scale Errors

M
e
a
n
 E

rr
o
r

0

2.47

Std Dev Error0 1.79

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Rotation Errors
M

e
a
n
 E

rr
o
r

0

1.02

Std Dev Error0 1.93

0 2 4 8 10

0

5

10

15

20

Num missing

N
u
m

 s
p
u
ri

o
u
s

Rotation Errors

N
u
m

 S
p
u
ri

o
u
s

NR=0 NR=5

Figure 5.4: The effect of spurious and missing features on accuracy.

Original Salient Thinned

Figure 5.5: Example salience-filtering and thinning.

74

Univ
ers

ity
 of

 M
ala

ya

affine transformations, i.e: brightness histograms (see for example Brunelli & Mich

1999). The feature of a salient point was defined to be the brightness histogram

of the data captured by a window centered on that point. All our tests involved a

window of radius 3 (i.e. dimensions 7×7). Note that an assumption of illumination

constancy is required in the context of brightness-histograms, which can obviously

be relaxed for features that incorporate illumination invariance.

The distance measure between two brightness histograms was defined to be the

minimum overlap between them, i.e: if the minimum overlap of brightness values

between two salient points was above a certain threshold (here defined as 0.4·(2r+1)2

where r is the window-radius4), the points were deemed to have matching features.

5.2.2 The PTC of Real Patterns

An exercise which should allow us to predict and understand the performance

of SCAPE in the context of real patterns, involves processing the latter with the

above mentioned saliency measure and local descriptor, and observing the numbers

of true and false correspondences that the patterns exhibit relative to themselves.

Figure 5.6 illustrates ten objects used in our experiment, the numbers of true and

false correspondences that they exhibit (abbreviated to T and F respectively), and

their resulting PTCs (abbreviated to P).5 Note that the average is approximately

0.08, which although low, is not an impediment to accurate estimates, as was shown

in the section on synthetic patterns (see Fig. 5.3 and Table 5.1). In that section it

was also shown how even a very small number of true correspondences was enough

to counteract the deleterious effects of spurious and missing points: note the large

numbers of true correspondences in Fig. 5.6. In summary, a preliminary analysis of

real patterns in regards to correspondence veracity suggests that accurate estimates

are very likely.

4An overlap level of 40% allows for a degree of discriminability whilst retaining a sufficient
amount of robustness regarding illumination and geometric variations.

5The objects represent a subset from the Columbia Object Image Library (COIL-100): see
(Nene et al., 1996).

75

Univ
ers

ity
 of

 M
ala

ya

�����
������
 �¡¢¡��£

���¤¥
������
 �¡¢¡¤¡�

���¤¦
��¥¥��
 �¡¢¡¦�§

�����
������
 �¡¢¡�£�

����¦
����§¥
 �¡¢�¥�§

���£¦
����¡��
 �¡¢¡�£¥

���¤�
��¦�¥�
 �¡¢¡¥�§

���¡�
��¦�¦�
 �¡¢¡¦¥�

�����
��££§
 �¡¢¡¥�¥

���§£
��£¤§
 �¡¢�¥¤§

Figure 5.6: COIL objects and their PTCs.

5.2.3 Real Pattern Accuracy

In order to increase the realism of our tests, target objects were placed over heavy

clutter consisting of multiple instances of non-target objects. The clutter provided a

significant amount of spurious points and the limited-view of input-clouds often led

to a significant number of missing points. Up to 960 separate tests were conducted,

where for each test, a new random target object was selected, a new cluttered test

image was generated and a new random transformation was applied to the input-

cloud.6 Figure 5.7 provides an intuitive feel for the clutter, the transformations

applied and the resulting estimation accuracy.

Table 5.3 provides a global view of estimation accuracy: both the means and the

standard deviations of the errors for a random guesser and SCAPE are presented.

As can be concluded from the table, the algorithm is significantly accurate for real

patterns. Note that many of the errors produced were artifacts of the data structure

used for voting, i.e: a data structure with a higher resolution should reduce the

number and size of errors further. It was also observed that the largest errors were

6The transformations applied exhibited the following ranges: Tx = −50|5|50, Ty = −50|5|50,
s = 0.5|0.1|2 and θ = 0|π/4|7π/4, where x|i|y denotes a set of values starting at x, and increasing in
increments of i up to y. The voting data structure exhibited the same ranges as the transformations
with the exception of the rotational dimension which used θ = 0|π/8|15π/8. The model patterns
exhibited dimensions 101 × 101.

76

Univ
ers

ity
 of

 M
ala

ya

©̈ª«ª¬­®̈̄°±²³́ µ¬¶·³̧ª́ª¹¬́

º©­¬́»¹©¼­³ª¹¬́
½©©¹©́

º¾º¿́©

ÀÁÂÃÁÄÁÅÁÂÂÂÂ

º©­¬́»¹©¼­³ª¹¬́
½©©¹©́

º¾º¿́©

ÀÆÂÀÆÂÇÅÁÇÅÈÂÂÂÅÂÉÂ

º©­¬́»¹©¼­³ª¹¬́
½©©¹©́

º¾º¿́©
ÃÁÁÂÅÈÂÂÂÂÅÇÉÂ

Figure 5.7: Examples of transformations, resulting input-visions and estimations.

Table 5.3: Mean chance and algorithmic estimation errors.

Tx Ty s θ

Mean Chance 34.9 34.9 0.5 2.06
SCAPE 2.1 2.1 0.1 0.03

StdDev Chance 24.8 24.8 0.38 1.49
SCAPE 6.26 6.47 0.17 0.3

produced when all the dimensions of the cloud transformation were simultaneously

at their largest magnitude (e.g. Tx = −50, Ty = +50, s = 0.5 and θ = π). This

situation is less common, and leads to a significant reduction of useful information,

which understandably reduces accuracy, even likely so for human estimators.

In this algorithmic chapter (see Fig. 2.1), SCAPE’s accuracy was demonstrated

in the context of synthetic and real patterns. Several accuracy critical factors were

isolated and studied, e.g: feature repeatability, spurious and missing points and

PTC. The importance of preprocessing was also demonstrated. The demonstra-

tion of the robustness of correspondence distributions constitutes a first step in the

77

Univ
ers

ity
 of

 M
ala

ya

argument regarding their plausible existence in biological neural systems. In the

following implementational chapter the algorithmic solution will be translated into

an artificial neural architecture.

78

Univ
ers

ity
 of

 M
ala

ya

Chapter 6

Artificial Neural Architectures

This chapter is concerned with embodying the algorithms of the previous chap-

ter in artificial neural architectures (ANA). Aside from strengthening our general

hypothesis, there are several other reasons why this might be interesting, e.g: 1)

ANAs are parallel computing devices and thus can converge onto solutions much

faster than their sequential counterparts, and 2) ANA implementations of general

algorithms are often not exactly equivalent to the latter and can thus bring forth

some extra advantages such as graceful degradation.

6.1 Artificial Components

Before moving on, and for the benefit of clarity, all of the artificial neural com-

ponents required by some or all of the artificial neural architectures in this chapter,

are here depicted and explained in Fig. 6.1. The selection of artificial neural compo-

nents was based on the rough maximization of the following factors: computational

flexibility, structural organization and biological plausibility.

Most of the components depicted are quite common to the artificial neural net-

work literature (refer to Haykin 1999 for a good introduction). The only ones which

probably appear less frequently and require some clarification are the “Rythmic”

and “Dyn-Connect” components. The first one of these, is a component that fires

at regular intervals, which is controlled by a frequency component, and whose main

purpose is to synchronize computations (e.g. some computations must “wait” for the

79

Univ
ers

ity
 of

 M
ala

ya

ÊËÌÍÎËÏËÌÍÐÍÏÑÒÓÔÕÖ×ÐØÙÖ

ÚÛÜÝÞ ß àáÜâáãáÛÞãäåÞåæâçèÞéááÛêëâçÛèáÛÞ

àáãáÞìÝèíëåãàáãáÞãÞçîáâçåÛäÞéáÛãÝèãëÛÜÝÞãåÛä
ïëåãΣ

ð

ñáèÜçâåòìÝèíëåãìÝèãëÛÜÝÞãóïëåãåÛäÜâáêëçÝããÞåÞá
Σ

ô

õëÛáåâ íëåãöçÜëáãÞéáëÛÜÝÞ

ìáèëßõëÛáåâ íëåã÷ÝÞÜÝÞãÞéáëÛÜÝÞëæÞéáòåÞÞáâëãøâáåÞáâÞéåÛùóçÞéáâúëãáçÝÞÜÝÞãù

ñéâáãéçòä íëåã÷ÝÞÜÝÞãûëæëÛÜÝÞ ëãøâáåÞáâçâáüÝåòÞçùóçÞéáâúëãáçÝÞÜÝÞãù

ìëøèçëäìÞááÜÛáããóíëåãìüÝåãéëÛøæÝÛýÞëçÛ

àþÞéèëý ÿâáüÝáÛýþÿëâáãåÞåÜåâÞëýÝòåâæâáüÝáÛýþ

�åëâßöçèÜ ß ÷ÝÞÜÝÞãûëæÞéáòáæÞëÛÜÝÞëãøâáåÞáâÞéåÛçâáüÝåòÞçÞéáâëøéÞëÛÜÝÞ�çÞéáâúëãáù�

�çãßöçÛÛáýÞ �áëøéÞ ÚÛÜÝÞèÝòÞëÜòëáäïþåÜçãëÞëêáúáëøéÞåÛä
ÜåããáäçÛ

�áøßöçÛÛáýÞ �áëøéÞ ÚÛÜÝÞèÝòÞëÜòëáäïþåÛáøåÞëêáúáëøéÞåÛä
ÜåããáäçÛ

�þÛßöçÛÛáýÞ ß ñéáýçÛÛáýÞëçÛúáëøéÞëããáÞïþåÛçÞéáâ
Ûçäá

Figure 6.1: Artificial Neural Components.

results of other stages/areas if incongruent outputs are to be avoided). The second

component, short for “dynamic connection”, is defined by a weight which is dynam-

ically determined by the output of some other component (e.g. a sigmoid node).

This type of connection, as will be seen, is useful for certain types of maximum-value

networks, among other computations (e.g. neuronal models of attention). It might

also be useful to clarify at this point the meaning of the steepness parameter of the

sigmoid unit. If the steepness parameter is s then the sigmoid is defined as:

f(x) =
1

1 + e−sx
(6.1)

As can be seen in Equation 6.1, as s increases, so does the steepness of the

sigmoid function. When the actual value of the sigmoid steepness parameter is not

specified in the descriptions below, it is assumed to be 3.

80

Univ
ers

ity
 of

 M
ala

ya

6.2 Feature Maps and Columns

The first question to ask when considering ANAs of pose estimation algorithms

based on correspondence distributions is: how should visual patterns be represented?

It is a well known fact that the primate visual system exhibits an abundance of topo-

graphic maps (e.g: Allman 1999). Topographic maps refer to neural representations

that preserve the relationships (spatial or other) of features found in earlier, for ex-

ample sensory, areas (see for example Goodhill et al. 1995). Although topographic

relationships can be quite abstract (e.g. edge orientation) we are here concerned

with spatial/neighborhood relationships. If these neighborhood preservation maps

are relative to the retina then the maps are denoted as “retinotopic maps”: neigh-

boring features in the retina, are represented by neighboring nodes at higher-level

representations.

This abundance of maps in biological neural systems must not be without rea-

son. It is likely that the usage of maps that preserve topographical (in this case,

positional) relationships amongst features, confers certain structural and functional

advantages, which would be unwise to forsake in the artificial domain. Therefore,

objects are here represented as 2D topographical maps of features.

Most objects manifest a large variety of visual features. These features can

be classified along different dimensions (e.g. color, shape, texture, among others),

and each dimension can exhibit a vast range of sub-dimensions and gradations (e.g.

different shades and combinations of red, green and blue wavelengths). Refer to Fig.

6.2(a) for an example of an object manifesting a multitude of features. How can

this feature richness be incorporated into 2D map representations? One possibility

is to have feature variations represented within feature columns. This being so,

patterns can be represented by columnar maps, where feature position varies along

the x and y axes, while other feature characteristics (e.g. colour) vary along the z

axis. Figure 6.2(b) summarizes the representation just described. Note that this

solution deviates from what current evidence suggests is happening in most biological

systems: the response properties of cells vary parallel to the cortex whilst remaining

mostly invariable in the perpendicular direction (e.g: Goodhill & Carreira-Perpinan

81

Univ
ers

ity
 of

 M
ala

ya

����	
�

�
����

����	
�

(a) Feature Richness

�������

���

���

��
�
!"�
#

$%&'()%*&+,-.(/0

12345678923456

(b) Feature Map Column

Figure 6.2: Feature richness and feature map columns.

2002).

6.3 Correspondence Detectors

Having described a simple representation that encompasses both feature type and

feature position, the basis for correspondence detection has been set. Recapitulating,

a correspondence refers to a match between a feature at the model (memory) side

and a feature at the image (environment) side, and the pose (or other) information

that the features imply from their relative positions.

So, using the feature representation depicted in Fig. 6.2(b), how can correspon-

dences be represented? The simplest way is through conjunctions (logical-AND).

In this scheme, each possible correspondence has a conjunction-unit dedicated to

it. Each correspondence detector (conjunction node) has two inputs: one from a

feature node at the model side (cyclop) and one from a feature node at the image

side (attractor). If both feature-nodes of that correspondence detector are firing

then so will the correspondence detector, otherwise it will remain silent. Figure

6.3 summarises this representation for the case of a single feature-type. Note that,

due to space limitations, only the most relevant correspondence detectors have been

depicted.

It is evident from the above scheme, that we are dealing with a representation

that manifests a moderate combinatorial-explosion, e.g.: if both image and model

82

Univ
ers

ity
 of

 M
ala

ya

A1

A2
 A3

A4
 A5
 A6

A7
 A8
 A9

C8

C1
 C2
 C3

C4
 C5
 C6

C7
 C8
 C9

:;<=>?@A@>;BCD

A1
 A2
 A3

A4
 A5
 A6

A7
 A8
 A9

EFGH=?GIIJG@I;JCD

A1

A2
 A3

A4
 A5
 A6

A7
 A8
 A9

C3

KLMMNOPLQRNQSNTNUNSULMO

VVV VVV VVV

Figure 6.3: Correspondence detection.

patterns consist of t feature-types and each feature can be found in n different

positions, then tn2 correspondence detectors are required. For now, however, we

will just contain the explosion, by somewhat restricting the resolution of patterns.

Later, in Chapter 7 we will pursue this issue further.1

6.4 Transformation Voting Structures

Having described a representation for feature types, feature positions and corre-

spondence detectors, the final step in the sequence refers to the question on how to

compute and represent pose estimates. As has been demonstrated in Chapter 4, the

core of our approach consists in each correspondence voting for poses/transformations

that are consistent with it. Each correspondence has one (constrained case) or more

(unconstrained case) poses with which it is consistent. These poses are determined

by the various equations discussed in Section 4.2.1 and therefore are known a-priori.

The fact that they are known a-priori means that we can embody them in the pat-

tern of connections between correspondence detectors and some voting structure

where each node represents a different transformation. In short, each node in the

1Note that this combinatorial explosion, is one of the reasons why singlets were chosen over
doublets for pose-estimation within the similarity transformation group. If models/images consist

of t feature-types and n different positions, t
[

n(n−1)
2

]2

doublet-detectors are required. The struc-

tural demands (number of nodes and connections) that this combinatorial explosion entails are
most probably too prohibitive for any practical applications or biological systems.

83

Univ
ers

ity
 of

 M
ala

ya

C1 C2 C3

C4 C5 C6

C7 C8 C9

WXYZ[\]̂][X_̀a

A1 A2 A3

A4 A5 A6

A7 A8 A9

bcdeZ\dffgd]fXg̀a

-2 -1 0 +1 +2

hXgijXkfd[lgdk̀[dfiXk

-2 -1 0 +1 +2

mZgfi]d[lgdk̀[dfiXk

nXggZ̀_XkYZk]ZoZfZ]fXg̀

mXfikepfgq]fqgZmXfikepfgq]fqgZ

rrr rrr

Σ

s sssss

Σ Σ ΣΣ Σ Σ Σ Σ Σ

Figure 6.4: Correspondences voting for translations.

voting structure sums up all its incoming activity, and the node which accumulates

the most input represents the winning pose.

Figure 6.4 summarizes this representation. The diagram illustrates the sim-

ple case where we have one feature type and 9 possible feature positions. The

constrained translation case was chosen for sake of simplicity. For further sake of

clarity, we divided the 2D voting structure (TxTy) into two separate 1D structures

(Tx and Ty), one for horizontal translations and the other for vertical translations

(in spite of the resulting accuracy reduction). Since there are two active features

on the model side, and two active features on the image side, this means that four

correspondences can be detected. Each one of these correspondences is connected to

a specific node in both voting structures. As can be seen, there is a single node both

in the horizontal translation and the vertical translation voting structures, which

receives a majority of input, and thus represents the transformation between the

model and image patterns (in this case: Tx = −1 and Ty = −2).

Recall that the architecture described so far, which includes input maps, corre-

spondence detectors and summation voting nodes, can be seen as a special case of

Higher Order Neural Networks. In Chapter 2 we outlined the main specializations,

which we repeat here for convenience: 1) the higher order information represented at

the first layer (after the input maps) is limited to second order structure, 2) two in-

84

Univ
ers

ity
 of

 M
ala

ya

put maps rather than one are used, 3) inter-map (between the two maps) rather than

intra-map second order structure is represented and 4) the connections between the

second order nodes and the summation or voting nodes are mathematically defined

rather than learnt.

6.5 Maximum Value Networks

Even the simple example in Fig. 6.4 demonstrates the potential problem of

nodes which represent incorrect transformations exhibiting some activation: the

nodes representing horizontal translations of −2 and 0 both exhibit non-zero ac-

tivity. In general, transformation-nodes can be “falsely activated” by false corre-

spondences and/or by voting-manifolds (in the unconstrained case). Because of this

phenomenon, at least in the neuronal case, it is advantageous to “sharpen” the vot-

ing results. The ideal “sharpening” is one that maximizes the activity of the node

with the highest activity, and completely suppresses the activities of all other nodes

(e.g. [0.9 0.4 0.8] → [1 0 0]). The literature on neural architectures for such sharp-

ening is quite vast, and various approaches are possible (e.g. Koutroumbas 2004).

We have investigated several of these approaches which we have categorized into the

following three groups: 1) lateral inhibition networks, 2) mean based networks and

3) paired-comparison networks. We have chosen to consider all of these networks,

because each one offers certain unique advantages in particular situations.2

Before continuing, it is important to mention an important assumption. All input

data to the maximum-value networks is assumed to contain one only maximum-value

(e.g. [0.9 0.5 0.6] is a valid input-vector while [0.9 0.6 0.9] is an invalid input-

vector). Most of the networks discussed below can be easily adapted to deal with

this situation (e.g. a random fluctuation can be injected at a particular stage of

processing so that a single random decision is made among the several maximum-

values), however, for the sake of simplicity, and assuming that voting structures will

2The computation of a maximum-value is a common necessity in most problem domains, and
therefore it is reasonable to assume that biological neural systems employ it in several processing
areas/stages, and so it is an interesting hypothesis (possibly daring) to suggest that biological
systems (even within the same organism) do not always compute it in the same way.

85

Univ
ers

ity
 of

 M
ala

ya

Σ

t

Σ

t

Σ

t

B
 B
 B

1
 1
 1

1
 1
 1

1
 1
 1

w+
 w+
 w+

w-

w-

w-
 w-

w-

w-

Figure 6.5: A lateral inhibition network.

in the great majority of cases produce data with a single maximum-value, we will

keep to the above mentioned assumption.

6.5.1 Lateral Inhibition

Lateral inhibition networks, usually referred to as competitive networks, are

probably the most common approach to neural maximum-value networks (see Ma-

jani et al. 1989 for an early example). The general idea is that each node inhibits

its neighbors whilst auto-exciting itself. After several iterations, it is expected that

the node with the maximum-value has completely suppressed all other nodes, whilst

attaining a maximum activation level. Figure 6.5 summarizes the general architec-

ture.

Within this scheme, we have investigated three possibilities. The first one uses

fixed values for the excitatory and inhibitory connection weights. The second one

allows the inhibitory and excitatory weights to vary, but the way they vary is prede-

termined by several rate parameters. The third one again allows the excitatory and

inhibitory weights to vary, but this variation is primarily conditioned by the nodes’

activation levels.

86

Univ
ers

ity
 of

 M
ala

ya

Fixed Weights

This solution is completely described by the architecture in Fig. 6.5. Both the

auto-excitatory weight w+ and the inhibitory weight w− are shared by all competing

nodes. So the main question follows: what values should be given to these weights?

As should be expected from such a simple architecture, there is no single set of

values which can satisfy all situations. The choice of weights depends primarily on

the following four factors: 1) the number of nodes, 2) the statistics of the input

data, 3) how fast one wants the network to converge and 4) how precisely one wants

the network to distinguish the largest values.

Unfortunately, the simplicity of the network comes at a cost. The network ex-

hibits a pronounced inability to converge onto a single maximum-value, i.e: the net-

work tends to not distinguish between several large values, exciting them equally,

and thus converging onto a solution consisting of several maximum-values (e.g.

[0.9 0.8 0.5 0.2] → [1 1 0 0]). For situations when this behavior is not

critical, or when it might even be desirable, this simple network is beneficial.

Rate Conditioned Weights

The main difference between this solution and the previous one, is the addition

of two new parameters which control the way the excitatory and inhibitory weights

change at each new iteration. Since the bias that feeds into the summation node is

assumed to be zero, the set of parameters that characterizes this solution is: w+,

δ+, w− and δ−. At each new iteration, the weights are updated in the following

manner:





w+
new = δ+ · w+

old

w−
new = δ− · w−

old

(6.2)

The main advantage of this solution is that it is much more successful in con-

verging onto a single maximum-value than the previous solution. Figure 6.6 depicts

an example simulation, using 100 nodes, with random inputs lying within the range

[+2.4, +2.8], with a sigmoid steepness of 1, where w+ and w− were initially set to 1

87

Univ
ers

ity
 of

 M
ala

ya

It
e
ra

ti
o
n
s

Nodes

Maximum

i=0

i=100

Figure 6.6: Node competition with rate conditioned weights.

and −1/n (where n refers to the number of nodes), and the δ+ and δ− parameters

were set to 1.046 and 1.096 respectively.

It is interesting to note that, in some cases, all node activities eventually be-

come extinguished (i.e. become zero), but in spite of this, it is still possible to

know the maximum-value by simply observing which was the last node to become

extinguished.

In all these solutions that depend on one or more parameters (e.g. δ+ and

δ−) there is the fundamental problem of how to find adequate values for them. As

mentioned before these values depend on various factors such as input-statistics (e.g.

mean and variance), so when these factors change, this forces us to search for new

parameter settings. As always there are many ways to do this, ranging from more

sophisticated optimization techniques all the way down to trial-and-error. Some

cases might even lend themselves to a rigorous analysis that can lead to well defined

expressions for generating the adequate parameter settings. The approach taken

here, resulted from observing the behavior of the network in different situations

and with different parameter settings. It was observed that setting w+ and w− to

1 and 1/n respectively, and then searching for adequate δ+ and δ− values yielded

effective solutions. Experimentation revealed the following two crucial observations:

1) increasing δ− tends to increase the resolution with which the network is capable of

separating large values but with the added risk of instability, 2) increasing δ+ tends

to stabilize the network. From these two observations, a simple search algorithm

was devised.

88

Univ
ers

ity
 of

 M
ala

ya

Algorithm 5 Search-algorithm for δ+ and δ−

procedure Search(searchIncr, maxNumMax, maxRecover)
δ+ ← 1 . Initialize δ+

δ− ← 1 − searchIncr . Initialize δ−

recoveries ← 0 . Recoveries from instability
stable ← true . Initially, stability is assumed
while recoveries ≤ maxRecover do

while stable do
δ− ← δ− + searchIncr . Increment δ−

[stable, numMax] ← simulNet(δ+, δ−) . Simulate
if (stable) & (numMax ≤ maxNumMax) then

store(δ+, δ−)
end if

end while
while ¬stable do

δ+ ← δ+ + searchIncr . Increment δ+

[stable, numMax] ← simulNet(δ+, δ−) . Simulate
if (stable) & (numMax ≤ maxNumMax) then

store(δ+, δ−)
end if

end while
recoveries ← recoveries + 1

end while
end procedure

Essentially, what Algo. 5 is doing is to continuously increment δ− until the net-

work exhibits unstable/oscillatory behaviour, at which point it starts to increment

δ+ until the network is stable again, and then continues incrementing δ−, and so on.

If at any time, a pair of δ+ and δ− leads to an acceptable convergence (if the number

of active nodes at the final iteration is smaller than or equal to some user-defined

limit: maxNumMaxV al), then that pair is stored.

Activity Conditioned Weights

One of the main problems with the previous solutions is that they take too

long to converge. The main reason for this lies in the fact that the connection

weights (excitatory and inhibitory), and/or their rates of change, are not sensitive

to the statistics of the node activities. In the current solution, we have implemented

this dependence solely in the inhibitory weight, which we recompute at every new

iteration using the following formula:

89

Univ
ers

ity
 of

 M
ala

ya

Σ

u

Σ

u

B
 B

1
 1

1
 1

1
 1

w+
 w+

Σ

u

1
 1

Nodes
 Ite
ra

tio
n
s

Iteration 6

Figure 6.7: W− depends on the sum of node activities.

w− =
c−

sum(Activities)
(6.3)

where c− is a constant which depends primarily on the number of nodes and

sum(Activities) represents the sum of node activities. One effect of making w−

inversely proportional to sum(Activivites) is that as the activity of non-winners

gradually decreases, w− increases, thus keeping the inhibitory influence strong and

accelerating convergence. So, the current solution depends on two parameters: w+

(an auto-excitatory connection weight, which remains constant throughout the com-

petition) and c−. The left-hand side of Fig. 6.7 illustrates a simple network that

embodies the above mentioned dependence.

An example of the pronounced improvement this solution offers in terms of con-

vergence speed is provided on the right-hand side of Fig. 6.7: the maximum-value

is fully isolated by the sixth iteration. The network consists of 100 nodes and the

following settings are used: w+ = 4, c− = 7, a sigmoid-steepness of 3 and random

inputs within the range [−3, +3].

Hierarchical Solution

One inconvenience with networks that isolate maximum-values by lateral inhi-

bition is that they require significant amounts of wiring. If a network consists of n

nodes then n(n − 1) inhibitory connections are required. For large values of n (e.g.

large voting structures) this will often be impractical. One way around this problem

is to implement the competitive solution in multiple layers. A two-layered solution

90

Univ
ers

ity
 of

 M
ala

ya

Σ

v

1
 w+

w-

Σ

v

1
 w+

w-

B

B

Σ

v

Σ

v

1
 w+

w-

Σ

v

1
 w+

w-

B
 B

Σ

v

1
 w+
 1
 w+

- -

w-
 w-

1
 1

Figure 6.8: Hierarchical competitive network.

might divide the n nodes into g groups at the first layer. At the first layer then,

there will be g different competitive processes3 taking place in parallel. After each

group of nodes has isolated its maximum, the results are passed on to the second

layer (of g nodes), where a final competition takes place in order to isolate the ab-

solute maximum. A simplified4 network that implements this idea is demonstrated

in Fig. 6.8. Note how the activations of the first layer set the weights of the con-

nections from the input-nodes to the second layer: in this way, when the activation

of a first-layer node is zero, the relevant input is effectively not passed, the converse

being true when a first-layer node is fully active. Note also how the results of the

second layer influence the first layer: the winning node of the second layer inhibits

all the first-layer groups corresponding to the losing nodes.

3These processes can be implemented by any of the lateral inhibition networks described above.
4The first layer consists of four nodes only and synchronization information is omitted (it

might be useful to delay the second layer’s computation until the first layer has almost reached
convergence).

91

Univ
ers

ity
 of

 M
ala

ya

Σ

w

Σ

w
Σ

w
Σ

w

Σ

w

xy
xy

xy

(a) Mean Supression

Σ

z

Σ

{

|}

|}|}

}~�}~�}~�

(b) Mean Accumulation

Figure 6.9: Mean based networks.

6.5.2 Mean Based

Lateral-inhibition is not the only way to isolate maximum-values in neural net-

works. An entirely different approach is based on the mean of node activations (see

Huang et al. 1995 for a related approach).

One mean-based approach, which might be entitled mean-suppression, finds the

mean activation, suppresses those nodes whose activations are below the mean, finds

the mean of the surviving (non-suppressed) activations, and so on. After several

iterations, the network converges onto the maximum-value. The diagram in Fig.

6.9(a) illustrates a network which implements this idea. The summation node on

the right effectively counts the number of threshold units which are firing (i.e. counts

the number of nodes whose activations are superior to the mean), and uses this value

for setting the weight of the connection leaving the summation unit on the left, so

that the mean is calculated (e.g. if three nodes are non-suppressed, then the weight

should be 1/3).

Another mean-based approach, which we wish to propose and which cannot

identify the particular node with the maximum-value, but can identify what that

maximum-value5 is might be denoted as mean-accumulation. The idea here is to

compute the mean activation, add this result to some accumulating sum, suppress

the activations that fall below the accumulating mean, calculate a new mean, add

5This might be useful for normalization purposes.

92

Univ
ers

ity
 of

 M
ala

ya

Σ

�
Σ

�
Σ

�

���������������

���

Figure 6.10: Paired comparisons.

this to the accumulator, and so on. After several iterations, the accumulator should

converge to the maximum-value. Figure 6.9(b) depicts a network that implements

this concept. The downward arrow at the 1/n averaging weight indicates that n is

decayable. In this context, an extension of the network can be envisaged where the

averaging weight is considered to be 1/c, where c represents the number of active

units at the first layer (i.e. semi-linear nodes), which in turn can be computed from

the sum of thresholded (i.e. 1/0) semi-linear inputs.

6.5.3 Paired Comparisons

We end our brief discussion of maximum-value networks with possibly the sim-

plest approach of all: paired comparisons (see Huang et al. 1995 for a particular

version). In this type of solution, each activation is compared to every other ac-

tivation, and for each one that is found to be smaller, a count for the node under

consideration is incremented. The node that exhibits the most increments, and

therefore that has the largest number of nodes with smaller activations compared to

it, will be the only node matching the negative bias (determined by the size of the

network) and will thus fire, indicating the maximum-value. Figure 6.10 illustrates a

simple and fast (single iteration) architecture implementing this idea.

93

Univ
ers

ity
 of

 M
ala

ya

6.5.4 Advantages and Disadvantages

All of the maximum-value networks presented above have advantages and dis-

advantages. They were all presented based on the notion that each one of them

has at least one context in which it supersedes the others. Table 6.1 compares the

networks along various dimensions, namely: 1) number of nodes required, 2) num-

ber of connections, 3) convergence speed, 4) parameters, 5) stability and 6) usage

of dynamic weights.

A brief look at Table 6.1 will probably reveal to us that, overall, the “Mean

Suppression” network seems to the most advantageous since it is relatively cheap

regarding nodes and connections, it converges in a small number of iterations, re-

quires no parameters, is not sensitive to input-range and has no instability issues.

One possible down-side is that it requires dynamic weights. On the other hand, if

we are looking for the fastest network, then we would have to choose the “Paired

Comparisons” network since it invariably converges in one iteration. The downside

of this network is that it is the most expensive of all in terms of nodes and con-

nections. It might be argued by some, that the mean-based and paired-comparison

networks are unrealistic from a biological perspective, and that if biological plau-

sibility is what is being seeked, then the lateral inhibition networks are the most

suitable. The mean accumulation network has a special place in this discussion see-

ing that it does not isolate the node that represents the maximum, but rather just

computes the maximum value itself. In its naive form it converges quite slowly, but

when the averaging weight is allowed to decay, convergence is greatly accelerated.

This network is particularly useful for normalization purposes and shares many of

the strengths of the “Mean Suppression” network, i.e.: it is cheap in terms of nodes

and connections, requires no parameters, is not sensitive to input-range and has no

instability issues. It also has the extra advantage that it does not require dynamic

weights.

Considering the various lateral-inhibition networks alone, one might observe that

the third network (weights dependent on activity nodes) is the overall winner, e.g.:

it is the fastest and most stable network. However, the second network has the

94

Univ
ers

ity
 of

 M
ala

ya

advantages that it requires fewer connections, and its dynamic weights are not de-

pendent on inputs, but instead depend on intrinsic factors (δ+ and δ−), which from

a biological perspective, might be the product of evolution. These two different

types of dynamic-weights (on one side, weights that change according to external

input and on the other side, weights that change due to internal/intrinsic dynamics)

may have profound effects on their implementability, whether in artificial hardware

or in biological networks. Finally, the first lateral-inhibition network (no dynamic

weights) has simplicity as its main advantage.

95

Univ
ers

ity
 of

 M
ala

ya

Table 6.1: Comparing maximum-value networks.

Networka Num. Nodesb Num. Connectionsc Converged Parameters Instability RSe Dyn. Weights
Lat. Inhib. I 2n n2 + n ≈ 5f 2 High Yes No
Lat. Inhib. II 2n n2 + n ≈ 25 4 Medium Yes Yes
Lat. Inhib. III 2n + 1 2n2 + n ≈ 6 2 Low Yes Yes
Mean Suppress. 3n + 3 6n + 2 ≈ 6 None None No Yes
Mean Accumul. n + 2 2n + 1 ≈ 270g None None No No
Paired Comp. n2 + 2n 3n2 − 2n 1 None None No No

aLateral Inhibition Networks: I) constant weights, II) constant weight change factors and III) weights dependent on the sum of
activations.

bThis column refers to the total number of nodes in the network, excluding the input nodes. The letter n refers to the number of input
nodes.

cConsidering Lat. Inhib. networks I and II, and assuming that nodes are regularly spaced out, where d corresponds to the hori-
zontal/vertical distance between the centers of two neighboring nodes, the total wiring length used by this architecture can be neatly
expressed by L = 2dn + d

∑n
z=1

∑n
i=1

√
1 + |z − i|. Refer to Appendix B for an explanation.

dFor nodes = 100, uniformly distributed random inputs within the range [−3,+3] and good parameter choices. The values in this
column refer to the iteration at which convergence takes place.

eRange sensitivity. Range refers here to the minimum and maximum input values. A network with range sensitivity is one that
performs well for some ranges and poorly for other ranges.

fAlthough convergence is fast here, the network is incapable, in most cases, to isolate a single maximum-value.
gIf the averaging weight is allowed to decay (e.g. w ← 3w/4) convergence can occur much earlier (e.g. iteration ≈ 17)

96

Univ
ers

ity
 of

 M
ala

ya

6.6 Correspondence Vote Normalization

Before presenting the full neural architectures for pose estimation, there is one

last detail that needs to be addressed: normalization. When models and images are

being put “side by side” in order to determine the transformation that relates them,

the ensuing number of detected correspondences can vary significantly. In some

cases, maybe only a handful of correspondences are detected, while in other cases,

maybe thousands or more are detected. This is an important issue for the lateral-

inhibition networks discussed above, since they are not completely independent of

input-statistics. More specifically, as indicated in Table 6.1 the lateral-inhibition

networks are sensitive to input-range. If the data which a network is processing

lies outside its preferred range the result might for example be oscillatory instabil-

ity. An obvious solution to this is to modulate the transformation specific nodes

that sum correspondences, according to the maximum number of correspondences

in any one of the nodes. This is one of the situations where the “Mean Accumula-

tion” network is useful. An alternative to using a lateral-inhibition network with a

pre-normalization step, is to simply use either a “Mean Suppression” or a “Paired

Comparisons” network.

Having described our neural representations for images/models, correspondences,

voting structures and vote “sharpening”, we can finally proceed with the complete

architectures.

6.7 Constrained Estimation

To recapitulate, constrained estimation consists of those cases where single corre-

spondences provide sufficient information to vote for one particular transformation

consisting of two unknowns. So if we are dealing with objects which only translate,

then each correspondence votes for one particular (Tx, Ty) pair. Likewise, if objects

only scale and/or rotate, then a single correspondence votes for one particular (s, θ)

pair. Figure 6.11 depicts a simplified but general6 network for the constrained case

6Recall that what makes a particular network specific to a particular group of transformations
(e.g. (Tx, Ty) or (s, θ)) is the specific pattern of connections between correspondence detectors and

97

Univ
ers

ity
 of

 M
ala

ya

Σ

�

Σ

�

Σ

�
Σ

�

Σ

�

..
.

Σ

�

..
.

1/n

1/n

-1

-1

Normalization

Im
a
g
e

M
o
d
e
l

Σ

�

Transformations

Transformations

T1 T2

T1

T2

Figure 6.11: ANA for constrained pose estimation.

(notice how each correspondence detector outputs to only one transformation) which

makes use of Lateral-Inhibition (activity-sum dependent) and Mean Accumulation

networks. The Mean Accumulation network normalizes the output of the nodes

that sum correspondences by dividing this output by the accumulative mean. Even

when non-decaying averaging weights are used in the Mean Accumulation network,

which results in a slow convergence towards the real maximum-value, the lateral-

inhibition network can function virtually insensitive to input-range. Experiments

were performed with parameters w+ = 4 and c− = 5, which function adequately for

a range of [0, +1]. It was observed that even for ranges as low as [0, +10−200] the

network still finds the maximum value in a small number of iterations and without

any signs of instability.7

6.8 Unconstrained Estimation

As already mentioned, the unconstrained case originates because similarity trans-

formations consist of four unknown parameters, while single correspondences pro-

voting-nodes.
7Note that the largest range that needs to be considered is [0,+1] seeing that one can assume

that the weights from correspondence detectors to summation nodes reflect the largest number of
correspondences a summation-node can receive (1/maxCorresp).

98

Univ
ers

ity
 of

 M
ala

ya

Σ

�

Σ

�

Σ

�

Σ

�

Σ

�

��

��

��

Σ

�

Σ

�

Σ

�

...

.......

.....

Model Image

Correspondences

Transformations

Transformations

T1
 T2
 Tn

T1
 T2
 Tn

Figure 6.12: ANA for unconstrained pose estimation.

vide sufficient information to constrain only two unknowns. Figure 6.12 provides a

simplified illustration of an ANA that is applicable to this case. Notice how each

correspondence detector can vote for more than one transformation node (the so

called “voting manifolds”). The vote sharpening is implemented through a Mean

Suppression network.

Figure 6.13 depicts voting-manifolds more realistically, for the similarity trans-

formation case, when two voting structures (one for Tx and the other for Ty) are used.

A single correspondence detector is shown, which activates two voting manifolds,

one in the Tx structure and the other in the Ty structure. The shape of the manifolds

is determined by Eq. 4.11. The voting-structure cells consist of summation nodes

and the maximum-value network for vote sharpening is not depicted.

In this implementational chapter (see Fig. 2.1) the pure algorithmic approaches

of the previous chapter were translated into artificial neural architectures, which in-

cluded: feature columns, logical conjunctions, summation nodes, competitive layers

and other components. Various architectures for vote sharpening (maximum value

99

Univ
ers

ity
 of

 M
ala

ya

0.5

1

1.5

2 0
1

2
3

4
5

6

40

30

20

10

0

10

20

Scale

Angle

Tx

0.5

1

1.5

2 0
1

2
3

4
5

6

40

30

20

10

0

10

20

Scale

Angle

Ty

Tx Surface Ty Surface

Surface Excitation

Surface Excitation

...

Model Image

Figure 6.13: Correspondences excite/vote-for Tx and Ty surfaces.

networks) were tested and compared. Different neural architectures were designed

for constrained and unconstrained estimation. Since in this chapter, we have demon-

strated the neural implementability of the correspondence distribution approach, the

biological plausibility argument has been somewhat strengthened. In the following

chapter, several architectural (spatial and combinatorial) issues regarding the archi-

tectures will be investigated in greater depth.

100

Univ
ers

ity
 of

 M
ala

ya

Chapter 7

Architectural Analysis

Having described our algorithmic approach to pose-estimation, having studied

its estimation accuracy, and having considered its embodiment in artificial neural

architectures, we are in a good position to analyze several architectural issues sur-

rounding these neural implementations. The investigations will be centered on the

various combinatorial explosions that affect the feasibility of the architectures and

on optimizing architectural layouts for minimizing relevant cost functions.

7.1 Combinatorial Explosions

The term combinatorial explosion denotes the fact that small increases in one

factor (e.g. map resolution) lead to disproportionately large increases in another

factor (e.g. number of outputs from map-nodes). The types of combinatorial explo-

sions considered here are critical because of how they affect the feasibility/usefulness

of solutions. This can take two forms, depending on whether sequential or parallel

computers are being used. In the case of sequential machines, the combinatorial ex-

plosions have a critical effect on the time it takes for a pose to be computed: in most

cases, solutions are of little or no practical value, if poses are computed in anything

but real-time. For parallel machines, the combinatorial explosions have a critical

effect on the amount of space that is required for the hardware that implements the

algorithms.1

1Parallel machines do not solve the combinatorial problems of their sequential counterparts,
instead they convert these problems from temporal to spatial domains.

101

Univ
ers

ity
 of

 M
ala

ya

7.1.1 Nodes

The only nodes whose total numbers may raise combinatorial issues are corre-

spondence detectors. The number of outputs that a correspondence detector can

possess influences the number of detectors that are required. For simplicity we will

consider two cases: 1) detectors that can have any number of outputs and 2) detec-

tors with one only output. Another influential factor is whether we are dealing with

constrained or unconstrained estimation. The following three equations summarize

the main cases:

Multiple Outputs Constrained/Unconstrained c = tn2 (7.1)

Single Outputs Constrained c = tn2v (7.2)

Single Outputs Unconstrained c = tn2v

z∏

i=1

r(ui) (7.3)

where t refers to the number of feature-types, n refers to the number of nodes

in any map (for one feature-type), v represents the number of voting structures

(assumed to be of equal dimensions). In Equation 7.3, voting-manifolds are con-

sidered, where z refers to the number of unconstrained variables, ui refers to the

unconstrained-variable i and r(x) refers to the resolution of variable x.

Figure 7.1 illustrates how Equation 7.1 is intuitively derived from the correspond-

ing architecture. For the sake of clarity, only some nodes and connections have been

depicted. Notice how some of the correspondence detectors have multiple outputs

(e.g. those labeled by ii and iii) and how this explains why single-output detectors

lead to a situation where more nodes are required. A multiple-output correspon-

dence detector with x outputs in one case, calls for x single-output correspondence

detectors in the other case. All other equations concerning the combinatorial issues

of nodes and connections were derived in a similar manner to what is illustrated in

Fig. 7.1.

It is interesting to note that, when dealing with similarity transformations and

their four unknowns, the worst-case scenario expressed in Equation 7.3 leads to the

102

Univ
ers

ity
 of

 M
ala

ya

�

�

��������� ���������

���

�
��
�
¡
¢
�
£
¤
£¥

¦
§
¥§
��
¡

©̈�ª«¬¬­®̄ ©̈�ª«¬¬­®°

± ±±

±±±

±²³±�́µª¶·�̧·��©
³±�́µª̈©�ª«¬¬­®

±±²¹·µ�±̧µª¶·�̧·�º�©
³±�́µª̈©�ª«¬¬­®

±±±²¹·µ�±̧µª¶·�̧·�º�©
¹·µ�±̧µª̈©�ª«¬¬­®º

�

�

�

�»

¼½½½¾�¿À
Á��������ÂÃ�Ã�¼Â

�½½½¾�¿À
Á�������Ä��Â

Figure 7.1: Example equation derivation.

same combinatorial problems suffered by solutions that use doublet-correspondences

(when correspondence detectors can have single outputs only). If we are using dou-

blets for estimating similarity transformations, there are no unconstrained variables,

thus the number of detectors required is:

d = t

[
n(n − 1)

2

]2

v (7.4)

which is smaller than what results from Equation 7.3 if z = 2 and r(u1) =

r(u2) = n (i.e. tn4v). From this we can conclude that, for cases involving un-

constrained variables, it is quite crucial that correspondence detectors be able to

have multiple outputs. This leads to an interesting hypothesis regarding biological

implementations as we shall see in Chapter 8, or more specifically in Section 8.1.6.

As can be seen by the equations above, various factors (t, n, v and the num-

ber and resolution of unconstrained variables) can conspire towards making the

103

Univ
ers

ity
 of

 M
ala

ya

number of required correspondence detectors prohibitive. If so, the correspondence-

distribution approach is called into question. Fortunately, these factors can be kept

within acceptable bounds without sacrificing estimation accuracy.

Though, as we have seen here, there are certain implementability issues concern-

ing correspondence detectors, the connections between nodes also provide a rich set

of combinatorial problems.

7.1.2 Connections

Node connections can essentially be seen from two perspectives: outputs from

nodes and inputs to nodes. It is important to consider these two cases, rather than

just discuss the total number of connections between “layers” because there are phys-

ical constraints regarding the number of outputs/inputs a node can send/receive.

The discussion will include all connections starting from map outputs and ending at

vote inputs. The connections involved in sharpening networks (e.g. lateral-inhibition

networks) can be treated independently and so will not be discussed in this section.

Outputs

Regarding map-node outputs there are three cases to consider: 1) correspondence

detectors with multiple outputs, 2) constrained estimation using correspondence

detectors with single-outputs and 3) unconstrained estimation using detectors with

single-outputs. These three cases are expressed in the following equations:

Multiple Outputs Constrained/Unconstrained o = n (7.5)

Single Outputs Constrained o = nv (7.6)

Single Outputs Unconstrained o = nv
z∏

i=1

r(ui) (7.7)

where n,v,z,ui and r(x) are as in Equations 7.1, 7.2 and 7.3.

When considering the outputs of correspondence detectors, by default it is only

of interest to consider detectors with multiple outputs. If so, there are two conditions

104

Univ
ers

ity
 of

 M
ala

ya

to consider: 1) constrained estimation and 2) unconstrained estimation. In the first

case the number of outputs is determined by o = v. In the second case the number

of outputs is

o = v
z∏

i=1

r(ui) (7.8)

where v, z, ui and r(x) are as before.

Inputs

The inputs of correspondence detectors are by definition limited to 2. The num-

ber of inputs that vote-nodes receive is a slightly more complex issue since not every

node receives the same number. This is mainly due to border effects, e.g: in the

case of constrained (Tx, Ty) estimation, the larger Tx and Ty are, the fewer corre-

spondences exist that represent them because they tend to require features that lie

beyond the image map boundaries. Having said this, it is possible to compromise on

an average which can be expressed by a quotient between the total number of votes

that can be cast and the total number of voting cells. For the constrained case, this

is expressed by

p ≈ tn2

∏d
i=1 r(yi)

(7.9)

where t, n and r(x) are as before, d refers to the number of dimensions in the

voting structure and yi refers to a particular voting dimension i (e.g. Tx). For the

unconstrained case, this is expressed by a generalization of Equation 7.9:

p ≈ tn2
∏z

i=1 r(ui)∏d
i=1 r(yi)

(7.10)

7.1.3 Constraints

As already mentioned, the main reason for considering combinatorial explosions

is that they affect the feasibility of solutions. Various factors can be included in the

105

Univ
ers

ity
 of

 M
ala

ya

notion of feasibility, e.g.: volume of space, number of inputs/outputs per node, num-

ber of layers, and so on. In this subsection, we are solely concerned with feasibility

from the point of view of a node’s inputs and outputs.

Vote Inputs

At a first glance of Equation 7.10, one might think that the number of vote-

cell2 inputs is problematic. However, a closer look shows that the resolutions of

unconstrained variables in the numerator are canceled out by denominator factors.

Furthermore, some of the quadratic n term is canceled by the resolutions of voting-

structure constrained variables. Using the similarity transformation group as an

example, the average number of inputs for a vote node is:

p ≈ tn2r(s)Ár(θ)Á

r(s)Ár(θ)Ár(Tx)r(Ty)

p ≈ tn2

r(Tx)r(Ty)
and if r(Tx) = r(Ty) = 2

√
n

p ≈ tn2

2
√

n2
√

n

p ≈ tn2

4n
=

tn

4
(7.11)

since a reasonable choice for r(Tx) and r(Ty) is 2
√

n (to approximately allow

the range [−√
n, +

√
n]). Though it might appear that the problem has vanished,

p ≈ (tn)/4 is actually excessive in many instances, and so we are back to our initial

suspicion. If physical constraints dictate that the maximum number of inputs any

node can receive is 104, and if n = 104 and t = 102 then p = 106/4, which greatly

exceeds the constraints. How can these constraints and parameters be reconciled?

One simple, albeit somewhat expensive solution, is to have multiple nodes for each

vote cell, so that the total number of correspondences belonging to each cell can

be divided/distributed among the multiple nodes. The activities of these nodes can

then be summed at a subsequent “layer” in order to give the final vote. Using

2It is important for this discussion to keep in mind the difference between “vote cell” and “vote
node”. A vote cell refers to a particular transformation (e.g. Tx = +5 and Ty = −8) regardless of
whether it is represented by one or more neural nodes.

106

Univ
ers

ity
 of

 M
ala

ya

Σ

Å

ÆÆÆ

ÇÇÇ

ÇÇÇ

Final Vote Cells
Preliminary Vote Cells

Multiple Nodes per Cell
 One Node per Cell

C
o
rr

e
s
p
o
n
d
e
n
c
e
 D

e
te

c
to

rs

Figure 7.2: Dealing with excessive vote-cell inputs.

the above example where the maximum number of node-inputs is 104, and where

p = 106/4 = 25 · 104, one can see that the average number of vote-inputs is 25 times

larger than the constraint. Therefore, on average, in order to satisfy the constraint

and the choice of n and t, each voting-cell requires about 25 nodes. Figure 7.2

depicts this two-layered solution to the problem of excessive vote-node inputs.

In this “multiple nodes per vote-cell” solution, and assuming unconstrained es-

timation, an approximation of the total number of voting nodes required can be

calculated by:

Nodes ≈ ceil

(
avrgIn

maxIn

) d∏

i=1

r(yi)

Nodes ≈ ceil

(
tn2

maxIn

∏z
i=1 r(ui)∏d
i=1 r(yi)

)
d∏

i=1

r(yi) (7.12)

where avrgIn refers to the average number of inputs per voting-cell, maxIn

refers to the constraint regarding the maximum number of inputs a node can have,

ceil(x) refers to the ceiling function (e.g. if x = 1.2 then ceil(x) = 2), and the other

terms are as in previous equations. For the constrained case, substitute
∏z

i=1 r(ui)

for 1 in Equation 7.12.

Map-Node Outputs

The same problem can occur in the context of map-node outputs. For the case

where correspondence detectors are restricted to single-outputs and when we are con-

cerned with unconstrained estimation, the number of map-node outputs (out) is de-

107

Univ
ers

ity
 of

 M
ala

ya

termined by Equation 7.7. If the physical constraint maxOut is such that maxOut <

out then there is a clash between the requirements and the constraints. Similarly

to the previous adaptation, this conflict can be overcome by having multiple nodes

per map-coordinate, which can be determined by nodes = ceil(out/maxOut). If so,

the total number of nodes required for representing both model and image maps is:

Nodes = 2 ceil

(
nv

∏z
i=1 r(ui)

maxOut

)
tn (7.13)

Having shown how certain physical constraints can clash with the number of

required nodes and connections, and how architectural adaptations can be devised

to deal with them, it is time to consider another approach: containment. If we reduce

the number of nodes and connections that are required, then maybe we can satisfy

the physical constraints without having to resort to multiple nodes per vote-cell or

other adaptations.

7.1.4 Containing Explosions

Fortunately, some containment of the combinatorial problem can be achieved by

simply using a degree of moderation in regards to the resolutions of feature maps

(n and t) and voting structures (r(ui) and r(yi)). Resolutions can be kept within

feasible bounds whilst maintaining a satisfactory level of estimation accuracy.

A stronger approach to reducing (or modifying the impact of) combinatorial

issues, involves segregating the constrained variables (e.g. Tx and Ty). If the con-

strained variables are Tx and Ty then a single correspondence defines a value for Tx

and another one for Ty. This boundedness of Tx and Ty can be represented in a 2D

data structure. In the stronger approach to containing (or modifying) combinato-

rial problems, we propose collapsing this 2D structure into two 1D structures, one

for representing the first constrained variable (e.g. Tx) and the other for represent-

ing the second constrained variable (e.g. Ty). Clearly this reflects a loss of voting

resolution and thus tends to lead to a reduction in estimation accuracy. However,

as will be shown, this reduction is not significant, and the resulting combinatorial

containments compensate for it in most cases.

108

Univ
ers

ity
 of

 M
ala

ya

In order to demonstrate the approach, we will make use of the problem of un-

constrained estimation of similarity transformations (i.e. estimating Tx, Ty, s and

θ). The implementation in Chapter 4 keeps s and θ unconstrained, and constrains

Tx and Ty using the information provided by single correspondences. Because the

constrained variables are bound, a single four dimensional voting structure is used.

Since the solution proposed here involves unbinding the constrained variables, the

4D voting structure collapses into two 3D structures: [Tx, s, θ] and [Ty, s, θ].
3

The above mentioned collapse has repercussions that go beyond the voting struc-

tures themselves. It affects the whole architecture, including the feature maps and

the correspondence detectors. Recall Equation 4.11 for estimating horizontal trans-

lations: Tx = x2 − s(x1cosθ − y1sinθ). Notice that the y2 coordinate (y coordinate

of the image map feature) is not present/required. This means that, for the case

of Tx estimation, the 2D image map can be collapsed into a 1D map representing

only the x-coordinates of features. The collapse is performed by summing, for each

x-coordinate, the activities of all y-coordinates (e.g. if x = 2 has three active fea-

tures at (x = 2, y = 1), (x = 2, y = 5) and (x = 2, y = 6) then the second node in

the 1D Tx structure will be active with a value of 3). A similar reasoning applies

to the collapse of the 2D image map into a 1D Ty representation4. This summation

of activities is important so that it preserves information regarding the number of

correspondences that contribute to a particular coordinate of the 1D structure.

The image map collapse and the summation of activities along a particular co-

ordinate, entail an important modification in order for the information to be ade-

quately propagated to voting structures. Correspondence detectors require a crucial

“enhancement”: they need to be multipliers rather than simple conjunctions (e.g.

2× 3 = 6). Figure 7.3 summarizes the main architectural modifications proposed so

far.

In order to get a better grasp of the advantages/disadvantages of these modifi-

cations, it is important to see how they affect the numbers of nodes and connections

3Architectures that use a 4D voting-structure will from this point onwards be abbreviated
to “4D architectures” and those that use two 3D voting structures will be abbreviated to “3D
architectures”.

4Recall that the Ty = y2 − s(x1sinθ + y1cosθ) expression does not include x2.

109

Univ
ers

ity
 of

 M
ala

ya

Tx
Ty

Tx

Ty

Image

Model

Σ
Ty

x
 x

0.5

1

1.5

2
 0

1

2

3

4

5

6

40

30

20

10

0

10

20

Scale

Angle

Tx

Tx

0.5

1

1.5

2
 0

1

2

3

4

5

6

40

30

20

10

0

10

20

Scale

Angle

Ty

Ty

Ty

Tx

ÈÈÈ ÈÈÈx
 x

Figure 7.3: Two 3D voting structures.

that are required. The following equations summarize the various cases that stem

from the architecture illustrated in Fig. 7.3:

Map Nodes 2t(n +
√

n) (7.14)

Model Map Outputs 2
√

nr(s)r(θ) (7.15)

Image Map Outputs nr(s)r(θ) (7.16)

Correspondence Detectors 2tn
√

nr(s)r(θ) (7.17)

Vote Nodes 2r(T)r(s)r(θ) (7.18)

Vote Inputs
tn
√

n

r(T)
(7.19)

where t refers to the number of feature-types, n refers to the number of map

features for any one feature-type, r(x) refers to the resolution of variable x and r(T)

110

Univ
ers

ity
 of

 M
ala

ya

refers to the resolution of both Tx and Ty (i.e. r(T) = r(Tx) = r(Ty)).

Starting with the number of map nodes (Equation 7.14) and comparing this to

the requirements of a solution that uses a 4D voting structure (m = 2tn) one can

see that our situation has worsened somewhat5:

4D

3D
=

2tn

2t(n +
√

n)
=

n

n +
√

n
< 1 (7.20)

Equation 7.20 shows us that the 4D architecture always requires fewer map nodes

than the 3D architecture and that the ratio of nodes is independent of the number of

feature types. Since the limit (as n → ∞) of the sequence defined by equation 7.20

is 1, it is clear that the ratio of nodes becomes increasingly less significant for larger

values of n. However, since practicality demands relatively modest values for n, the

ratio might have to be taken into account when considering which architecture to

employ.

In the 4D architecture, the number of outputs per map node is m = nr(s)r(θ).

This is identical to the outputs of image map nodes in the 3D architecture. There is

however a critical improvement regarding the outputs of model map nodes (Equation

7.15):

4D

3D
=

nr(s)r(θ)

2
√

nr(s)r(θ)
=

n

2
√

n
=

√
n

2
(7.21)

Since 4D/3D diverges as n increases, the improvement can be very pronounced,

even for modest n. However, one must admit that overall, this is still not a signif-

icant advantage since the architecture does not free the 1D image maps from the

requirement of nr(s)r(θ) outputs.

Regarding correspondence detectors, 4D architectures require tn2r(s)r(θ) nodes,

which if divided by the number required by 3D architectures leads to the following

ratio:

4D

3D
=

tn2r(s)r(θ)

2tn
√

nr(s)r(θ)
=

n

2
√

n
=

n
√

n

2n
=

√
n

2
(7.22)

54D/3D represents the quotient between the relevant expressions for architectures that use 4D
voting structures and architectures that use two collapsed 3D structures respectively.

111

Univ
ers

ity
 of

 M
ala

ya

Equation 7.22 demonstrates one of the main strengths of the 3D architecture

being proposed: it leads to significant savings in regards to correspondence detector

nodes. The savings become increasingly pronounced as n increases, seeing that the

equation represents a divergent sequence (as n → ∞ so does 4D/3D → ∞).

The 3D architecture leads to similar savings in regards to vote-nodes as demon-

strated by the ratio

4D

3D
=

[r(T)]2r(s)r(θ)

2r(T)r(s)r(θ)
=

r(T)

2
(7.23)

which as the previous equation represents a divergent sequence, but this time as

a function of r(T).

The final factor to consider concerns the average number of inputs that vote-

nodes receive, where the ratio between 4D and 3D architectures is defined by:

4D

3D
=

tn2

[r(T)]2

tn
√

n
r(T)

=
n

r(T)
√

n
=

√
n

r(T)
(7.24)

If r(T) is substituted by 2
√

n, which, as already mentioned, is a natural choice,

then Equation 7.24 can be further simplified to

4D

3D
=

√
n

r(T)
=

√
n

2
√

n
=

1

2
(7.25)

which indicates that 3D architectures require, on average, twice the number of

vote-node inputs compared to 4D architectures.

To summarize, although the 3D architectures proposed here do have some extra-

costs, there are two fundamental elements that make them worthwhile in many in-

stances: critical savings in regards to correspondence detectors (see Equation 7.22)

and significant savings in regards to vote-nodes (see Equation 7.23). Since these ele-

ments and the combinatorial issues that they pose can raise serious questions about

feasibility, the savings provided by 3D architectures tend not to be inconsequential.

There is still one aspect of 3D architectures that requires further attention:

estimation accuracy. Because these architectures discard some information (i.e. the

boundedness of particular Tx and Ty estimates) and parallel to this, because the

112

Univ
ers

ity
 of

 M
ala

ya

Table 7.1: Comparison of estimation errors between 4D and 3D architectures.

Architecture Tx Ty s θ

4D 0.033 0 0.028 0.027
3D 0.067 0 0.034 0.033

discrimination power of voting structures is reduced, it is valid to expect some

reduction of estimation accuracy. Is this reduction large enough to justify forsaking

3D architectures? It turns out that it is not, i.e: the reduction of accuracy is

not significant. Table 7.1 depicts the mean errors (out of 30 tests) that resulted

from applying both 3D and 4D architectures to synthetic patterns (with a PTC

≈ 0.5) under various random transformations. As one can see, there is a slight

(expected) decrease in accuracy for 3D architectures, which is however, for most

practical purposes negligeable, since the errors are far below the resolution of each

transformation (e.g. 3Derr(Tx) → 0.067 ¿ 1 pixel).

It is important to note that the principle of collapsing the bounded variables Tx

and Ty in order to achieve certain savings (e.g. a reduction of the number of corre-

spondence detectors), which was presented here in the context of estimation within

the similarity transformation group, is applicable to other transformation groups,

e.g: constrained (Tx, Ty) estimation, constrained (s, θ) estimation, and others. In

the latter case of (s, θ) estimation it is advantageous to convert model/image maps

into polar representations (i.e. instead of representing features by their 2D positions

they should be represented by the lengths and angles of the vectors formed between

the map origins and the features).

7.2 Structural Optimization

7.2.1 Introduction

In this context, structural optimization refers to the process through which a

particular spatial configuration of nodes is found that maximizes/minimizes some

structural function of the neural architecture: optimality is defined relative to a

specific function. Usually cost functions are used, which means that optimization

113

Univ
ers

ity
 of

 M
ala

ya

attempts to find the neural architecture that minimizes the function. An example

of a cost function might be the distance between related nodes (e.g. the distance

between model nodes). Clearly, the type of architecture that minimizes this cost

function is one that clusters related nodes as closely as possible. Any number of

cost functions can be thought of, each one with its own uses in different contexts.

We are going to be dealing with the total wiring length (TWL) cost function. Sav-

ing wiring length has important practical (artificial/hardware) consequences, e.g:

saving space and energy and increasing computational speed. Furthermore, there

is strong evidence that biological neural systems use this cost function in many of

their architectural designs, and for the same reasons as those stated above. Refer

to (Chklovskii et al., 2002) for evidence that biological neural systems use this cost

function and see (Allman, 1999) for an interesting discussion regarding the brain’s

necessity to be energy efficient.

It might be important to stress here that although structural optimization has no

direct effect on the functionality of the system (in the sense of estimation accuracy),

the converse is not true, i.e: the types of transformations that are being estimated

(e.g. (Tx, Ty), (s, θ) and others) and their accuracies have a direct effect on the

resulting optimal architectures, as will be seen.

7.2.2 Assumptions and Simplifications

In order to implement realistic optimization processes (in terms of convergence

time) certain simplifications are required. Recall that the architectures involve map

nodes (model and image), vote nodes, correspondence detectors, and the connections

between these elements. Four main simplifications were used in our optimization

experiments: 1) nodes were modeled as points, 2) connections were defined as im-

material (i.e. they could cut through nodes and other connections), 3) connections

always took the shortest path (straight lines connecting nodes) and 4) correspon-

dence detectors were collapsed into their corresponding vote nodes. Apart from

simplifying the optimization process, these abstractions can be further justified by

arguing that they are not as unrealistic as they might first appear. Regarding the

114

Univ
ers

ity
 of

 M
ala

ya

fourth abstraction, for example, if one recalls that correspondence detectors are sim-

ple conjunctions of two inputs, and that they are thus likely to be small components

compared to vote nodes, and that resources are saved by keeping them close to their

corresponding vote nodes, then one can conclude that this is not too different from

collapsing them into their corresponding vote nodes. The narrowness and flexibility

of biological connections (i.e. neurites) might in some ways equate to the “immate-

rial” and ”straight-line” simplifications used here. And finally, representing nodes

as points can easily be given an extra degree of realism by simply adding a minimum

inter-node distance constraint.

7.2.3 Optimization Methods

The problem of finding the configuration of nodes that minimizes TWL for a par-

ticular architecture is not an easy problem. To get a feel for the difficulty, consider

doing an “exhaustive search” through the space of all possible node configurations.

Even a simple problem consisting of 5 model nodes, 5 image nodes and 9 vote nodes

in a space of 25 cells6, and assuming that it takes one second to evaluate each

configuration, will take more than 30, 000 times the age of the Universe (according

to recent estimates). Furthermore, the complexity of the problem increases expo-

nentially (rather than polynomially) with n (where n is the number of nodes in

the architecture). Therefore, it is fundamental that we find a useful optimization

process, one that is fast and that can deliver useful answers (good local minima).

For initial experiments we devised a hybrid evolutionary algorithm which apart

from the usual mutation and cross-over operators also employed what we call “subset

optimization”. In subset optimization random subsets of nodes are selected an

optimized by a fast exhaustive search. Algorithm 6 summarizes the approach.

Although the above approach does succeed in finding useful architectures con-

vergence can be slow if the problems are too large and complex. Because of this,

we experimented with a simpler more geometric solution: an elastic network (refer

to Algo. 7). Refer to (Durbin & Willshaw, 1987) and (Goodhill & Willshaw, 1990)

6Each node can be placed in any unoccupied cell. The cells are organized in a 5 × 5 array.

115

Univ
ers

ity
 of

 M
ala

ya

Algorithm 6 Hybrid Evolutionary Optimization

procedure Lamarwin(maxIterat)
Initialize Population
iterat ← 0
while iterat ≤ maxIterat do

Generate Offspring . Mutate and Cross-Over
Optimize Parents and Children . Subset Optimization
Select the x% best for the Next Generation
iterat ← iterat + 1

end while
end procedure

for other examples of elastic networks applied to combinatorial optimization prob-

lems. In our solution, nodes which are interconnected attract each other along their

connections. Furthermore, in order to avoid nodes collapsing into each other, and

to spread out the layouts (indirectly implementing the solidity/impenetrability of

nodes up to a degree), a general repulsion force is applied to all nodes (each node

repulses all others) which is inversely proportional to the square of the distance of

the nodes being considered (refer to Fruchterman & Reingold 1991 for an example

from the literature on graph layout optimization). It is important to point out that

although this solution is not explicitly minimizing TWL it is doing so indirectly by

attracting interconnected nodes: if two nodes are connected, they will be attracted

to each other, bringing them closer together and consequently decreasing the length

of the connection between them. Further evidence for the functional equivalence (or

similarity) of these approaches comes from observing their outcomes when applied

to the same problem (see Fig. 7.4).

Consider the problem of estimating shifts along a single dimension (e.g. Tx). In

this case we have one-dimensional model and image maps of n nodes, and a one

dimensional vote representation of 2n − 1 nodes ([−(n − 1), +(n − 1)]). Model and

image nodes are connected to vote nodes in a way that reflects shift estimation: e.g.

model node 2 and image node 5 are connected to vote node +3 because 5 − 2 = 3

represents a right shift of three positions. The left hand side of Fig. 7.4 shows an

optimal architecture found by the Hybrid Evolutionary algorithm while the right

hand side shows an optimal architecture found by the elastic net. As one can see

both architectures share the same fundamental design principles:

116

Univ
ers

ity
 of

 M
ala

ya

Algorithm 7 Elastic Structural Optimization

1: procedure ElasticNet(net, α, β) . In most cases α = β = 0.1
2: while ¬stable do . Loop while the elastic net is unstable
3: a ← compAttract(net, α) . Compute attraction forces
4: r ← compRepulse(net, β) . Compute repulsion forces
5: net ← updateNet(net, a, r) . Apply the forces
6: end while
7: end procedure

8: procedure CompAttract(net, α)
9: for all n ∈ net do . Scan all nodes

10: n.force ← [0 0] . Initialize force
11: [nx ny] ← getPos(n) . Node position
12: for all c ∈ n do . Scan the node’s connections
13: v ← getV ote(net, n, c) . Get a connected vote-node
14: [vx vy] ← getPos(v) . Vote-node position
15: f ← α [(vx − nx) (vy − ny)] . Compute a force
16: n.force ← n.force + f . Add force
17: end for
18: end for
19: end procedure

20: procedure CompRepulse(net, β)
21: nodes ← getNodes(net)
22: nodes.repulse ← 0 . Initialize repulsive forces
23: numNodes ← countNodes(nodes)
24: for na ← 1, numNodes − 1 do . Scan nodes
25: for nb ← na, numNodes do . Scan nodes
26: [x1 y1] ← getPos(nodes(na)) . First node position
27: [x2 y2] ← getPos(nodes(nb)) . Second node position
28: f ← [(x1 − x2) (y1 − y2)] . Preliminary force
29: d ←

√
f(1)2 + f(2)2 . Inter-node distance

30: force ← β (f/d2) . Repulsive force
31: nodes(na).repulse = nodes(na).repulse + force
32: nodes(nb).repulse = nodes(nb).repulse − force
33: end for
34: end for
35: end procedure

117

Univ
ers

ity
 of

 M
ala

ya

1
2

3

4

5

1

2

3

4

5

-4

-3
-2

-1

0

1
2

3

4

1

23

45

1

2

3

4

5

-4 -3

-2

-1 0 1

2

3 4

1 5
ÉÉÉÊËÌÍÎÊÏÐÑËÌÍÒ

1 5
ÉÉÉÓÔÏÕÍÊÏÐÑËÌÍÒ

4-4
ÉÉÉÖË×ÍÑËÌÍÒ

ØÙÚÛÜÝÞßàáâãäÜáåæÛÙçèäÜéÜêæäÜáå ßâæëäÜìÞíîäçèäÜéÜêæäÜáå

Figure 7.4: The results of two structural optimization methods.

1. Vote, model and image nodes are organized topographically.7

2. The zero-shift vote node is at the center of the architecture.

3. Vote nodes are sandwiched in between map nodes.

4. Model and image nodes wind around the central vote nodes in a helicoidal

fashion.

5. Model and image nodes run in opposite directions.

Because the elastic network approach implicitly implements TWL minimization,

and finds architectures with the same design principles as the Hybrid Evolutionary

algorithm (see Fig. 7.4), and considering that it is simpler and thus faster to run,

we chose to apply it to the remaining cases. Refer to Fig. 7.5 for a sequence of steps

in the elastic optimization of a one-dimensional shift estimator.

7.2.4 Examples

(Tx, Ty) with a Single Feature Type

This case takes the problem depicted in Fig. 7.4 one step further by including

another dimension into the estimation, i.e: estimate Tx and Ty. Figure 7.6 depicts

the optimal architectures that were found.

7Note that this topography emerges spontaneously from the pattern of connections between
map and vote nodes, seeing that the architectures are randomly initialized before the optimization
processes.

118

Univ
ers

ity
 of

 M
ala

ya

1

2
3

4

5

1

2

3

4

5

4

3
2

1

0

1

2

3

4

(a) i = 0

1

2

3

4

5

1

2

3

4

5

4

3
2

1

0

1

2

3

4

(b) i = 20

1

2

3

4

5

1

2

3

4

5

4

3

2

1

0

1

2

3

4

(c) i = 40

1

2

3

4

5

1

2

3

4

5

4

3

2

1

0

1

2

3

4

(d) i = 60

1

2

3

4

5

1

2

3

4

5

4

3

2

1

0

1

2

3

4

(e) i = 80

1

2

3

4

5

1

2

3

4

5

4

3

2

1

0

1

2

3

4

(f) i = 120

1

2

3

4

5

1

2

3

4

5

4

3

2

1
 0

1

2

3

4

(g) i = 180

1

2

3

4

5

1
 2

3

4

5

4
 3

2

1

0

1

2

3
 4

(h) i = 580

Figure 7.5: A sequence of elastic network steps.

The top-left architecture depicts an optimized architecture for 2D space, while

the top-right architecture depicts an optimized architecture for 3D space. The

bottom-left architecture is the result of a side-view of the same architecture which

is viewed from above in the top-right illustration. Maps consist of 3 × 3 = 9 arrays

of nodes. The nodes are numbered from 1 to 9, counting from left to right and

bottom to top, e.g. node 2 corresponds to (x = 2, y = 1) while node 7 corresponds

to (x = 1, y = 3). Model nodes are identified by their red boundaries while image

nodes are identified by their yellow boundaries. Vote nodes, on the other hand, are

drawn with black boundaries. Vote nodes represent all possibilities comprehended

between (Tx = −2, Ty = −2) and (Tx = +2, Ty = +2) inclusive. Vote nodes are

numbered from 1 to 25, counted, like map nodes, from left to right and bottom to

top, e.g: vote node 2 represents the vote (Tx = −1, Ty = −2) while vote node 24

represents the vote (Tx = +1, Ty = +2).

Several design principles emerged for the optimization case in 2D space (top-left

architecture of Fig. 7.6):

119

Univ
ers

ity
 of

 M
ala

ya

ïðïñòóôõö÷øùúòõûôóö

ïðïñòóôõö÷øüúòõûôóöýþÿ��ø�ô��÷ö��

ïðïñòóôõö÷øüúòõûôóöýõ÷�ö�÷ö��

2

ýïñ�òù	ïð�òù�

ýïñ�òù	ïð�ò
�

1

���ö���öõ

2

1

ýïñ�
	ïð�
�

ýïñ�
	ïð�ù�

��ö����öõ

1

ýïñ�
	ïð�
�

ýïñ�
	ïð�ù�

��ô�ö���öõ

2

1

2

3

4

5

6

7

8

9 1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

1
9

6

3

8

7

4

2

6

8

11

4

5

3

9

12

5

7

5

16

10

17

13

14

3

4

7

18

6

21

15

19

8

22

2

20

23

9
1

24

25

1

6
12

9

76

11

4

16
8

12

3

2

5

17

8

3

217

5

4

9
22

13

18

3

8

14

7
5

2

19
4

23

10
6

24

15

9

1

20

25

Figure 7.6: The (Tx, Ty) case with a single feature type.

120

Univ
ers

ity
 of

 M
ala

ya

1. Vote, model and image nodes are organized topographically in two dimensions.

2. Image nodes run in the same direction as vote nodes.

3. Model nodes run in the opposite direction of vote and image nodes.

4. Model and image nodes representing opposite positions, are clustered in pairs.

5. Model/image pairs are evenly distributed across the 2D topography of vote

nodes.

6. Vote map origins are centered in the optimized architectures.

When the same type of architecture is optimized in 3D space (top-right and

bottom-left architectures of Fig. 7.6), the same design principles emerge, with an

additional subtle detail: there is some meandering of map nodes along the vote-

node plane, which is somewhat similar to the helicoidal meandering of the simpler

“one-dimensional shift estimation” problem depicted in Fig. 7.4.

(Tx, Ty) with Multiple Feature Types

This architecture is essentially equivalent to the previous one except for the

addition of multiple feature types for each map position. Figure 7.7 depicts on the

top-left an optimization of the architecture in 2D space, on the bottom-left a top-

view of an optimization in 3D space and on the bottom-right a side-view of the

same 3D architecture.

The numbering conventions of the map and vote nodes are exactly the same as

those employed in the previous case. The main difference pertains to the boundary

colors of different feature-types. Feature-types are distinguished by the brightness

of their boundaries.

The design principles that emerged for the single feature-type case can also be

found in this case, with the additional design principles that feature-types for the

same position (and same type of map: model or image) cluster together and that,

for the 3D case, map nodes make more use of vertical space (relative to the vote

node plane) as can be seen in the side-view on the bottom-right of Fig. 7.7. This

121

Univ
ers

ity
 of

 M
ala

ya

Side-view

perspective

���������������������

��������������������� ���!"��#$

��������������������� ��%�!"��#$

1 14 25... ... Vote Nodes

99 9... ... Image nodes for different

feature-types at position 9

9 9 9... ... Model nodes for different

feature-types at position 9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1
 2

3

4

5

6

7

8

9

1

2

3

4

5
 6

7
 8

9

1
 2

3

4

5

6

7

8
 9

1

2

3

4

5

6

7

8
 9

1
 2

3
4

5

6

7

8

9

1
2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6
 7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

9

7

3
5
3
7
7

7
7

7
 3
3
3
 3
4
 3
 7

2
 2
 7
8

2

3

8
 2
 2
2
8
 8

3

2

8
 10

2
8
8

8

2

9

4

4

6

9
1
 9

4

9

6
 4
1
 1

9
 15
8
1
1

4
 6
6

1

1
 4
9

6

4

9
9
1
 6
6
1
 6

9
 7

4

5
 14

5

5
5
13

5
 5
 20

5
6
 5
 5

5
 5
5

5

5

12
 5

5

19
 1

6
6

9

9

4
6
 9
9
1

6
6
 11
4
 1

6

9

6
 1
18
 9
1

4

25

4

4

1
 9
9

4

4
4
 1
1

6

17

24

2
8

8
16
 2
23

2

8

2

8
8

8
7

2

7
3

8
3
 3

3

2
2
22
7
 8
7
 7
 2
7

3
21
7
 3

3
 3
7

1

7

1

7

3

5
3

7

7

7

7

7

3

3
 3

3

4

3

7

2

2

7

8

2

3

8
2

2

2

8

8
3

2

8

10

2

8

8
8

2

9

4

4
 6

9

1
9

4

9

6

4

1

1

9

15

8

1

1

4

6

6

1

1

4

9

6

4

9

9

1

6

6

1

6

9

7

4

5

14

5

5
 5

13

5

5

20

5

6

5

5
5

5

5

5

5

12

5

5

19

1

6

6

9
9

4

6

9

9

1

6
 6

11

4

1

6

9

6

1

18

9

1

4

25

4

4

1
9

9

4

4
 4

1
 1

6

17

24

2

8

8

16

2

23
 2

8

2

8

8

8

7

2

7

3

8

3

3

3

2

2

22

7

8

7

7

2

7
3

21
 7

3

3
3

7

Figure 7.7: The (Tx, Ty) case with ten distinct feature types.

additional use of vertical space exhibits interesting symmetries: notice how different

feature-types for the same position (and type of map) can be found (symmetrically)

on both sides of the vote node plane.

Scaling and Rotation with a Single Feature Type

The current problem illustrates very clearly what is meant by the functionality

(e.g. type of transformation being estimated) of the network affecting the appear-

ance of the optimal architecture. The transformation being estimated determines

the pattern of connections between map and vote nodes and thus affects what archi-

tecture minimizes TWL. The left-hand side of Fig. 7.8 depicts an optimized scale-

estimation architecture, while the right-hand side illustrates an optimized rotation-

122

Univ
ers

ity
 of

 M
ala

ya

1
1

2

2

3

3

4

4

5

5

6

6

7

7

88

9
9

10

10

1
1

2

2

3

34

4

5

5

6

6

7

7

88

9
9

10

10

0.1

0.11

0.13

0.14

0.17

0.2

0.22

0.25
0.29

0.3

0.33

0.38

0.4

0.43

0.44

0.5

0.56

0.57

0.6

0.63

0.67

0.7

0.71

0.75

0.78

0.8

0.83

0.86

0.88

0.89

0.9

1

1.11

1.13

1.14

1.17

1.2

1.25

1.29

1.33

1.4

1.43

1.5

1.6

1.67

1.75

1.8

2

2.25

2.33

2.5

2.67

3

3.33

3.5
4

4.5

5

6

7

8

9

10

9

7

3 &'()*'+)

36 ,-./)*'+)

22 0'+)1*'+)

0.4 &'()*'+)

2345678 9:;<;=:>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

Figure 7.8: Elastic optimization for both the scale and rotation cases.

estimation architecture.

The boundary-color conventions for map-nodes are equivalent to the previous

cases. However, the maps used in the scale estimation architecture are one di-

mensional and so the numbering representation is somewhat different. Maps are

assumed to have an origin and to extend in two opposite directions for 10 nodes.

Both directions are functionally equivalent and are thus not expected to have a

great impact on the resulting architecture. Likewise, the numbering scheme for the

rotational architecture is somewhat different: there are 24 map nodes representing

positions (x = −2, y = −2) to (x = +2, y = +2) (from left to right and bottom to

top), ignoring the origin (i.e. (x = 0, y = 0)). In the scale-estimation architecture

vote-nodes are represented by squares whose colors vary from blue (down-scaling)

to green (up-scaling). In the rotation-estimation architecture vote-nodes are rep-

resented by blue/green circles with black boundaries which vary from −π radians

(vote number 1) to +π radians (vote number 9) in π/4 radian increments.

For the scale-estimation architecture the following design principles are apparent:

1. Global topography of vote nodes: general transition from blue (scale-down)

nodes on one side to green nodes on the other (scale-up). Notice however, that

there are minor local exceptions/variations.

2. Symmetry of scaling-up and scaling-down down nodes, e.g: the second largest

scaling-up node (i.e. 9) at the top right corner of the architecture is symmet-

rical to the second smallest scaling-down node (i.e. 0.11) at the bottom left

123

Univ
ers

ity
 of

 M
ala

ya

corner.

3. Global topography of map nodes with some local exceptions/distortions.

4. Model and image nodes run in opposite directions and meander symmetrically.

5. Each model/image node is paired with its positional equivalent (at the opposite

map side).

6. Vote and map nodes are evenly interleaved.

The design principles that emerge from optimizing the rotation-estimation ar-

chitecture are fundamentally different from the previous case, again highlighting

the fact that functionality and thus the pattern of connections between map and

vote nodes are critical to the resulting optimal architectures. The following design

principles are apparent:

1. Vote nodes are clustered in the center. This is the opposite of the even inter-

leaving of the scaled-estimation architecture.

2. Vote nodes are somewhat topographically organized: the left half (see Fig.

7.8) of the vote-node cluster contains nodes representing angles smaller than

π radians, while the right half contains nodes representing angles larger than

π radians.

3. Map nodes are spherically and evenly distributed around vote nodes.

(Tx, Ty, θ) with Multiple Feature Types

The last case illustrates how some of the design principles that emerge in sim-

pler architectures are general and powerful enough to apply to more complex cases

(including unconstrained estimation). This case pertains to the estimation of rigid

transformations (translation and rotation) using single correspondences. See Fig.

7.9 for an illustration of the optimal three-dimensional configuration for a particular

instance of the problem: the left-hand side depicts a top-view of the architecture

while the right-hand side illustrates a side-view.

124

Univ
ers

ity
 of

 M
ala

ya

40

30

20

10

0

0

10

20

30

40

40

30

20

10

0

10

20

30

40

50

11 11

11

11 16

16

11

6
11

11

16

6

16

1

16

6

16

6

1 1

11

6
11

16

1
1

11

16

1

1
6

6

16

6

16

1

6

1

11

1

1 11

6

16

1 6

11

1

21

11

21

11

16

6

6

1

1

16

1

21

11

6

21

1

11

1

16

1

21

21

16

21

1

16

6

11

16

6

6

16

16

21

11

21

6 6 11

21

21

6

16

21

21

21
21

21 21

21

21

21

12

17

7
7

17

12

7

7

12

17

17

7

17

7

2
2

17

12

12

2

17

2

7

7

12
12

2

12

12

7

17

2

17

7

7
2

2

7

2

17

2

2

7

17

12

2 7

2

12

2

7

2

2

12

7

2

7

22
2

17

22

227

12

12

7

2

12

7

17

2

17

12

17

17

22 22

12

12

17

17
22

12

22

13

12

22

22

17

22

22

22

17

22

13

22

22

22

3

22

13

3

22

13

3

22

3 3

22

3

3

13

8
8

8

3

18

8

3

3

3

3

3

8

3

8

3

18

3

18

13

3

8

3

18

18

3

13

3

18

18

13

13

8

8

13

8

18

13

13

8

8

18

18

8

18

18

8

8

13

13

8

18

18

8

8

8

18

23

8

9

13

13

23

23

18

9

18

13

13

13

23

23

23

23

23

13

18

9

23

9 18

9

23

23

23

4

9

4

9

23

4

23

9

23

14

4

14

4

4

4
4

23

9

9

9

24

23

4

24

4

24

18

4

24

14

19
23

23

24

4

23

9

4

4

9

24

4

4

24

24

24

9

4

14

4

4

9

4

9

19

24

9

9

24

24

9

24

19

24

14

19

14
9

19

19

24

24

24

19

19

24

24

24

14

14

19

14

14

14

19

14

14

25
25

19

19

25

25

14

14

25

14

25

25

25

14

5

5

19

5

14

19

20

25

5

20

5

19

25

25

5
5

5

14

25

14

5

5

25

20

5

19

19

20

25

5

20

5

20

25

5

20

19

5

5

25

25

5

19

5

25

5

10

19

25
25

5

10

20

15

15

20

10

20

10

15

20

10

10

15

10

15
10

20

10

10

10

20

20

20

10

15

15

10

15

15

20

20

10

20

10

10

10 10

15

10

20

10

20

15

15

15

15

15

15

15

15

15

15

?@ABCDE FCGDBCDE

40302010010203040

20

0

20

40

40

30

20

10

0

10

20

30

40

50

111111
11

16
16

11

6

11 11

16

6

16

1

16

6

16

6

11

11

6

11

16

11

11

16

1 1

66

16

6

16

1

6

1

11

11

11
6

16

1

6

11

1

21

11

21

11

16

6
6

11

16

1

21

11

6

21

1

11

1

16

1

21 21

16

21

1

16

6

11

16

6
6

16
16

21

11

21

66

11

2121

6

16

21
2121

21 21

21
21

2121

12

17

77

17 12

7
7

12

1717

7

17
7

22

17

12

12

2

17

2

7712
12

2

12

12

7

17

2

17

7
7

227
2

17

2
2

7

17
12

2

7

2

12

2

7
22

12

7
2

7

22

2

17

22
22

7
1212

7

2

12 7

17

2

17

12
17

17

22
22

1212

17
17

22

12

22
13

12

22 22

17

22

2222

17

22

13

22
22

22

3

22

13

3

22

13

3

22

33

22

3
3

13
8

8
8

3

18

8

333
3 3

8

3

8

3

18

3

18

13

3

8

3

18

18

3

13

3

18
18 13

13

8

8

13

8

18

13

13

8
8

18

18

8

18

18

8

8

1313
8

18

18
8

8

8

18

23

8

9

13

13

23

23

18

9

18

13

13

13

23

23

2323

23

1318

9

23

9

18

923

23

23

4

9

4

9
23

4

23 9

23
14

4

14

4 4

4
4

23

9

9924

23

4

24

4

24

18

4

24
14

19

23
23

24

4

23

9
4

49

24

44

24

24

24

9

4

14

4
4

9

49

19

24

9

9
2424

9

24

19

24

14

19

14

9

19

19

24

24

24

19

19

2424
24

14

14

19 14

14

14

19

14

14

2525

19

19

25 25 14
14

25

14

25
25 25

14
5 5

19

5

14
19

2025

5
20

5

19

25
25

5 5

5

14

25

14

5 5

25

20 5

19

19

20
25

520
5

2025

5

20

19

5

5
25

25

5

19

525
5

1019

25 25

5
10

20
15
15

20

10

20

10

15

20
10
10

15

10

15

10

20

1010
10

20

2020

10

15
15

10

15
15

20
20

10
20

10

10
10

10

15

10

20

10
20

15

15

1515
151515

15

15
15

ANA TxTyRot (10 feature types

166

B@HDI@GDJ@GDKI@GDLMNODI@GD

Figure 7.9: The (Tx, Ty, θ) case with ten feature types, optimized in 3D space.

As before, model nodes are red, image nodes are yellow, feature types are rep-

resented by edges with varying brightness levels, and the numbers on map nodes

represent their 2D positions. More importantly vote nodes, which now represent

a complex three-dimensional structure (Tx, Ty and θ), are represented by squares

whose color reflects their position in the (Tx, Ty, θ) voting structure: a larger degree

of red in the color composition represents a larger θ, while more green represents a

larger Tx and more blue corresponds to a larger Ty.

Although the complexity of the architecture makes it harder for the identification

of design principles, some crucial ones are still easily observed, e.g:

1. Both vote and map nodes have spontaneously emerged topographical organi-

zations.

2. Although one might expect vote nodes to be organized in a cuboid structure,

in fact, they seem to be forming a moderately flat pyramidal structure.

3. Model and image nodes representing the same position cluster together, as do

the various feature-types for the same position.

4. Interesting uses of 3D space seem to be taking place: some helicoidal mean-

dering and other structures.

125

Univ
ers

ity
 of

 M
ala

ya

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

PQRSTUVW
PXRSTUVW
YZ[R\]T̂̂

PQR_Ẁab]
PXR\]T̂̂
YZ[RSTUVW

PQR\]T̂̂
PXR_Ẁab]
YZ[R_Ẁab]

PQR\]T̂̂
PXR_Ẁab]
YZ[R_Ẁab]

Figure 7.10: The (Tx, Ty, θ) case with two feature types, optimized in 2D space.

In order to visualize some of the principles more clearly, the same (Tx, Ty, θ) ar-

chitecture (except for the number of feature types) was optimized in two-dimensional

space: see Fig. 7.10. Notice how extreme map positions (e.g. 1 and 25) coincide

with extreme vote positions (e.g. large θ). Notice also how Ty and θ increase in

opposite directions: Ty increases from top to bottom while θ increases from bottom

to top. The configuration of Tx positions is somewhat more elusive: there seems to

be a vague Gaussian variation from left to right. This is likely to be a consequence

of the fact that the optimization process is aligning a 3D map to a 2D map.

7.2.5 Conclusions

Probably one of the greatest lessons from the above optimizations, is that optimal

architectures (at least relative to TWL) can be counter-intuitive and unexpected.

Several of these unexpected principles keep recurring in different architectures, e.g:

model and image nodes meandering in opposite directions. The fact that many of

the identified principles keep recurring, is an indication that they are quite general,

126

Univ
ers

ity
 of

 M
ala

ya

and most probably apply to more complex/realistic cases. They provide us with sug-

gestions for hardware implementations and hypotheses for biological8 investigations.

The following list condenses the main lessons provided by the above optimization

experiments:

1. Topographical organizations (whether of map or vote nodes) are not only nat-

ural (a reflection of earlier inputs), they are also efficient in terms of TWL,

i.e: they emerge (from initial random configurations) as a consequence of the

patterns of connections between map and vote nodes.

2. Vote nodes tend to be sandwiched in between model and image nodes.

3. An even distribution of vote and map nodes seems to be the favored configu-

ration. Although rotation-estimation prefers vote-nodes in the center (see the

right-hand side of Fig. 7.8) when it is combined with translation estimation

(i.e. the rigid transformation case), the favored architecture reverts more to

an even distribution (see Fig. 7.9).

4. Model and image nodes tend to run in opposite directions.

5. Model and image nodes tend to meander somewhat symmetrically to each

other (see the triple helix in Fig. 7.4).

6. Feature types for the same position (and type of map) tend to cluster in the

same region. The clustering seems to favor a spherical rather than a columnar

(or other) structure.

In the first half of this chapter we investigated various combinatorial issues re-

garding neural architectures that embody correspondence distributions for pose esti-

mation, e.g: number of correspondence detectors. In the second half we structurally

optimized the architectures according the the total wiring minimization goal and

8Regarding biological hypothesizing, although TWL minimization seems to be a strong force
determining neural architectures, one must not forget that other important constraints/goals might
also be playing a part. Developmental constraints are an important example. Even if there is an
obvious architecture that greatly reduces TWL, a developmental mechanism that can put neurons
in that configuration might not exist.

127

Univ
ers

ity
 of

 M
ala

ya

extracted several general design principles. Referring to the problem framework

delineated in Fig. 2.1 one can say that the current chapter belongs to the imple-

mentational level of abstraction. In the following chapter we will attempt to form

bridges between the architectures in the current and previous chapters on one side,

and biological findings on the other.

128

Univ
ers

ity
 of

 M
ala

ya

Chapter 8

Biological Neural Architectures

This chapter is concerned with further advancing the argument in favor of the

biological plausibility of the artificial neural architectures discussed in the previous

chapter. First, certain elements of biological nervous systems which provide evi-

dence or implementational support for the ANAs will be presented. Following this,

important biological constraints which affect the plausibility of different biological

neural architectures (BNAs) will be discussed. Finally, the information gathered

from the “support” and “constraints” sections will be combined in order to hypoth-

esize biologically plausible neural architectures for pose estimation.

8.1 Biological Support

8.1.1 Topographic Maps

Topographic maps (e.g. Gierer & Muller 1995) in a neural context define archi-

tectures where neighboring nodes represent neighboring regions of some aspect of

the external world. Examples of aspects range from muscular (relevant to motor

representations) to visual, auditory or other types of stimuli. Within visual stimuli,

sub-aspects might for example include: feature position, colour, edge orientation,

motion direction, depth and others. Using feature position as an illustration, a to-

pographic map in this context implies that neighboring nodes in the map represent

neighboring feature positions as represented in the retina. The nomenclature for

129

Univ
ers

ity
 of

 M
ala

ya

c

d

e

f

g

h

ijddjfgjhkjlijccdjcegjcgkj

c
d
e
f
g
hmno

pqrqsturvwxyurz{|}~�����}|}�~

���{��}{~|�|}�~

�o�w�u

m��wtq��o��

Figure 8.1: The preservation of position and orientation relationships.

topographic maps is further refined according to what neighborhood relationships

are being preserved. If a map preserves retinal position relationships, then it is re-

ferred to as a retinotopic map. Other examples are: tonotopic maps (preserve sound

frequency relationships), somatotopic maps (preserve positional relationships of the

body surface) and others (see Gazzaniga et al. 2002). Refer to Fig. 8.1 for an illus-

tration of a neural map that preserves positional and, more abstractly, orientational

relationships.

This subsection consists essentially of two arguments, one weak and the other

strong. The weak argument states that since the structurally optimized architectures

of Chapter 7 consistently exhibit topographic organizations, then if biological neural

systems also exhibit these organizations then one should be more confident that the

pose estimation architectures are biologically plausible. The strong argument states

that if the types of topographic organizations found in the structurally optimized

architectures of Chapter 7 are also found in biological neural systems, then one

should be more confident that not only they are biologically plausible, but that they

actually exist in biological systems. The weak argument argues for they can exist1

while the strong argument argues for they do exist.

Considering the weak argument first. It turns out that topographic maps are

ubiquitous in biological systems (see Allman 1999). From reptiles, to birds, to

1Even if they are not found in any known biological system, they can exist in some hypothetical
or unknown biological system.

130

Univ
ers

ity
 of

 M
ala

ya

mammals, and others, topographic maps are repeatedly found, whether in visual,

auditory, olfactory, somatosensory, motor or other areas. One particular retinotopic

map that is so ancient that it is shared by all vertebrates lies in the optic tectum. In

fish, amphibians and reptiles the optic tectum is the main visual processing center

and thus is involved in a broad range of functions (including the integration of

visual, auditory and somatosensory information represented in the tectum), while in

primates, it is involved in the specialized process of shifting gaze towards interesting

stimuli (see Allman 1999). Some topographic maps are evolutionarily more recent,

such as those found in the neocortex of mammals. The neocortex of primates,

for example, is replete with topographic maps. The visual cortex, for example,

consists of many distinct areas, which are anatomically, chemically, physiologically,

or otherwise, defined, e.g: V1, V2, MT and others (see Zeki 1993)2. Each one of

these areas consists of multiple topographic maps. Area V1 for example can be seen

to contain topographic maps for color, edge orientation, spatial frequency, disparity

and motion direction. Thus, evidence seems to abound that satisfies at least the

weak argument.

Now for the strong argument. Interestingly, there are various aspects of the struc-

turally optimized architectures in Chapter 7 which do seem to appear in biological

systems:

1. Mirror symmetric topographic maps. Refer back to Figures 7.4, 7.6, 7.7 and

7.8 (in Chapter 7), where structural optimization led to, among other things,

interesting mirror symmetries between model, image and vote nodes. Simi-

lar types of symmetry have been found in the sensory neocortexes of many

different species (refer to Schulz & Reggia 2005)3.

2V1, also known as the primary visual cortex, or the striate cortex, is the first cortical area
processing visual information. Neurons in V1 have been found that are tuned to edge orientation,
spatial frequency, depth, colour and motion direction (refer to Olshausen & Field 2005 for a
very interesting review of the current state of knowledge regarding V1 and what remains to be
discovered). Area V2 is V1’s major projection area. The tuning properties of V2 neurons are
similar to those of V1 (refer to Levitt et al. 1994 for an overview of the functional properties of
V2 neurons in the macaque) except for a greater degree of invariance (e.g. larger receptive fields),
complexity and abstraction (e.g. illusory contours). Area MT, or V5, is well known for its neurons
specialized for motion analysis (e.g. Mikami et al. 1986).

3One caveat to this piece of evidence however is that the mirror symmetric maps discussed in
(Schulz & Reggia, 2005) are adjacent to each other, rather than overlapping, as what emerged from
our structural optimization experiments

131

Univ
ers

ity
 of

 M
ala

ya

2. Variables tangential to the cortical surface. One interesting feature of the

structurally optimized architectures is that they do not explore three-dimensional

space as much as one might expect, i.e: variables (e.g. model positions, im-

age positions and vote indeces) tend to spread out two-dimensionally. The

same seems to occur in the neocortex, where the tuning properties of neurons

tend to vary tangentially to the cortical surface whilst remaining significantly

invariable in the dimension perpendicular to the surface (see Mountcastle

1997). In fact, the neocortex seems to have an abundance of vertical structures

where neurons are characterized by their tuning similarities, i.e: minicolumns,

columns and macrocolumns (see Buxhoeveden & Casanova 2002).

3. Complex feature overlapping. Seeing that the neocortex seems to represent

variables tangentially to the cortical surface (only two dimensions are avail-

able), how can three or more variables be represented? To use an example

(although the whole picture has not emerged yet), it is already clear that

area V1 exhibits interesting patterns of semi-overlapping orientation4, ocular

dominance, spatial frequency and disparity features (see Mountcastle 1997).

Note that the phenomenon of feature5 overlapping emerged from the structural

optimization experiments of the previous chapter.

4. Clusters of feature types at the same position. Structurally optimizing ar-

chitectures where each map position is represented by multiple feature types

reveals a design principle stating that multiple features cluster around their

corresponding positions, rather than disperse. This principle is reflected in

cortical maps, where for example, there is evidence for negative correlations

between a retinal position gradient and the gradients of other feature repre-

sentations such as orientation preference (see Yu et al. 2005).

5. Inter-map connections. It is clear that the neural pose estimation approach

advocated in this thesis depends on the relationships/connections between two

maps. Inter-map connections are also found in the neocortex, e.g: reciprocal

4Orientation variations have been shown to be linear and non-linear. Examples of non-linear
variations are: singularities, fractures and saddles.

5Model feature positions, image feature positions and transformation votes.

132

Univ
ers

ity
 of

 M
ala

ya

connections between V1 and V2 exist that even seem to play a part in cortical

folding (see Allman 1999).

Although the case for the strong argument is not as heavy as that for the weak

argument, it is clear that there is considerable support and that it should be worth-

while to investigate other aspects of biological neural systems.

8.1.2 Features

Local features are indispensable elements of SCAPE (see Chapter 4). Without

them, there can be no correspondences, and thus no information on which to base

pose estimates. Therefore, it is crucial that biological neural systems show evidence

of local features, for without this evidence, the case of SCAPE’s biological plausibil-

ity is quite weak. It turns out that the visual cortices of many vertebrates are rich

with local features. The fact that individual neurons respond to particular aspects of

different stimuli (e.g. edge orientation and patch colour) attests to their featurness

(and discrimination power), while the fact that they are responsive to stimuli within

a limited (spatially constrained) receptive field attests to their locality. Furthermore,

and to great advantage, several known local features in biological systems exhibit

invariance to affine transformations (e.g. colour, corners and junctions). Although

other feature-types exist in biological systems, we will here briefly describe edge

orientation, colour, corners/junctions and depth.

Orientation

Single neurons tuned6 to different edge-orientations were originally discovered by

Hubel and Wiesel in 1958 (refer for example to Hubel & Wiesel 1968). Since then, the

literature on edge-tuned neurons, their properties, the neural processes underlying

them, their functions, their interactions with other features and their topographic

organizations, has greatly expanded (refer, for example, to the introductory review

in Troyer et al. 1998), and so, one can conclude that there is no lack of evidence

6A neuron “tuned” to aspect X of the environment means that, in most cases, when X is placed
in the neuron’s receptive field, the neuron fires with a significantly higher rate than when all other
types of stimuli are presented.

133

Univ
ers

ity
 of

 M
ala

ya

for this type of local feature. An interesting property of this type of cell, which

provides some geometric invariance, shows that halving a line within a relevant

neuron’s receptive field halves the intensity of the neuron’s response (see Zeki 1993).

Colour

Many neurons in the macaque visual cortex (e.g. area V1) have small receptive

fields which respond to light of a particular wavelength (see Zeki 1993). Furthermore,

in area V4, neurons have been found which are sensitive to the actual colour of

objects, discounting the effect of ambient illumination and other variations and thus

demonstrating the property of colour constancy (see Rolls & Deco 2001). Note that

colour is invariant to geometric transformations such as rotation and scaling.

Corners and Junctions

Corners and junctions are local features with a significant amount of robustness

to affine transformations, and discrimination power. Regarding the latter, Bieder-

man in (Biederman, 1985) has shown how human object recognition is impaired

by removing corners with high curvature, but not so by removing corners with low

curvature. Cells in the monkey visual cortex have been found which are sensitive

to corners and ends of lines (see for example Hubel & Wiesel 1968). Area V4 has

recently been shown to contain neurons that are tuned to curves and angles (see

Pasupathy & Connor 2001). Refer to (Hansen & Neumann, 2004) for an interesting

proposal for the neural mechanisms that might be underlying the neural detection

of junctions.

Depth

Depth might also be considered a useful local feature. Since as far back as 1968,

cells tuned to binocular disparity have been known to exist (see Barlow et al. 1967).

Neurons in other areas, which are also tuned to binocular disparity have been found

in V3, MT and MST (see Rolls & Deco 2001).

134

Univ
ers

ity
 of

 M
ala

ya

8.1.3 Neuronal Variety

The argument underlying this subsection is quite simple and conservative but

not without its uses. As Chapter 6 showed, neural implementations of SCAPE

require several neural components. Future extensions (or hypotheses) might even

require other unforeseen components. Therefore it is essential that biological systems

exhibit a rich variety of neural components if they are to be capable of accomodating

SCAPE. A variety of neural components in this context, implies a variety of cortical7

neurons, since different types of neurons have different computational properties.

It turns out that there is an incredible variety of cortical neuron types. So much

so that there is still no definitive taxonomy of cortical neurons (see Hevner et al.

2003), in contrast to retinal or spinal-cord neurons. But there are various dimensions

(not necessarily independent) along which cortical neurons can be classified.

One obvious dimension along which one can classify cortical neurons refers to

whether they are excitatory or inhibitory. When an action potential arrives at an

axonal bouton of an excitatory neuron, this increases the probability of the post-

synaptic neuron firing. Conversely, when an action potential arrives at an axonal

bouton of an inhibitory neuron, this decreases the probability of the post-synaptic

neuron firing. Although there are exceptions8, most neurons in biological systems are

either excitatory or inhibitory. The existence of excitatory neurons is clearly relevant

to computations behind vote accumulation and inhibitory neurons are important for

some types vote sharpening networks.

Another dimension based on the projection properties of neurons creates the

following categorization: 1) projection neurons and 2) interneurons. Projection

neurons have long axons to other cortical or subcortical areas and tend to be spiny

and excitatory, whereas interneurons have short axons that synapse with nearby

neurons in local circuits and tend to be smooth and inhibitory. Interestingly, there

is a significantly larger morphological variety of inhibitory interneurons as compared

to excitatory neurons in general.

7We are assuming here that the neocortex is one of the most plausible locations for SCAPE.
8During early development, for example, some terminals in auditory synapses can release both

excitatory and inhibitory neurotransmitters simultaneously (Guosong Liu, personal communica-
tion, November 5, 2004).

135

Univ
ers

ity
 of

 M
ala

ya

Another dimension along which cortical neurons can be classified is based on the

presence/absence of spines on dendrites. Spines are small processes that protrude

from dendrites with a thin neck and somewhat bulbous head and upon which at

least one synapse is formed (e.g. see Coss & Perkel 1985, Yuste et al. 1999 and

Kandel et al. 2000). This property allows neurons to be classified into two main cat-

egories: 1) those whose dendrites exhibit spines (spiny neurons) and 2) those whose

dendrites are devoid of spines (smooth neurons). A much smaller sub-class of corti-

cal neurons has also been identified which might be referred to as “sparsely spiny”

(see Shepherd 2003). Examples of spiny neurons are pyramidal and spiny stellate

cells and examples of smooth neurons are basket and chandelier cells. Examples

within each category (spiny or smooth) can be further distinguished according to

other morphological properties. Basket cells, for example, get their name from the

fact that multiple basket-cell axons form basket-like structures around the soma of

target cells. On the other hand, chandelier cells, get their name from the fact that

their axonal boutons form vertical candle-like structures which on a whole, make

the axonic arborization resemble a chandelier.

The morphological variations mentioned above, only begin to scratch the surface

of what biological systems actual exhibit. This flexibility is likely to be very useful for

SCAPE, when one considers the various (sometimes counter-intuitive) architectures

that are suggested by structural optimization (refer to Chapter 7 for examples).

Neurons can also be classified according to their electrophysiological properties.

Different types of neurons can be distinguished from each other based on their firing

patterns. Some excitatory neurons, for example, exhibit regular spiking while others

exhibit mainly intrinsic bursting and others mostly manifest a chattering pattern

(see Contreras 2004 for more details).

As one can conclude from this very brief foray into neuronal variety, the number

of types that can be defined along neurochemical, morphological, electrophysiological

and other dimensions, is very significant, and thus one should be more confident that

the neural components required by SCAPE do indeed exist in biological systems.

136

Univ
ers

ity
 of

 M
ala

ya

8.1.4 Dendritic Conjunctions

SCAPE is an approach to pose estimation that depends on the analysis of feature

correspondences, therefore correspondence detectors are indispensable to any archi-

tecture that aims to implement SCAPE. As Chapter 6 showed, neural correspon-

dence detectors essentially compute a logical-AND between two inputs. Neurons

have significantly more synapses than what is required by a simple conjunction of

two inputs, therefore it would be extremely wasteful and unrealistic to use neurons

as correspondence detectors. Do biological systems have smaller/cheaper neural

components that can do the job? Fortunately, as hinted by previous modeling re-

search (see Poirazi et al. 2003), and as indicated by recent empirical research (see

Polsky et al. 2004), smaller neural components for computing the logical-ANDs of

correspondence detectors do indeed exist.

In (Polsky et al., 2004), the authors showed that dendritic branches are capable

of complex non-linear computations, which can implement a logical-AND between

two inputs. More specifically, the experiments were conducted on layer-5 pyramidal

cells in the rat cortex and demonstrated non-linear integration of inputs in basal

and apical-oblique dendritic branches. If two excitatory post-synaptic potentials

(EPSPs) were applied to the same dendritic branch, close enough to each other

(spatially and temporally), and if their sum exceeded some threshold, then the out-

put was superlinear (i.e. stronger than the linear sum). In the same context, if the

sum of EPSPs was below the threshold then the output was linear. Furthermore, if

the sum greatly exceeded the threshold the output was sublinear (i.e. weaker than

the linear sum). This combination of linear, superlinear and sublinear integrations,

essentially draws out the familiar sigmoid function, which to our advantage can be

used to compute a logical-AND. It should be added, that the experiments reported

in (Polsky et al., 2004) also found that if, instead of placing the EPSPs on the

same dendritic branch, they were placed on separate branches, the resulting inte-

gration was mostly linear. In conclusion, dendritic branches, function as somewhat

independent computational units with sigmoid activations functions.

This is extremely advantageous from our point of view because it means that

137

Univ
ers

ity
 of

 M
ala

ya

correspondence detectors can be implemented at the level of dendritic branches,

thus saving a great deal of neuronal resources. Placing correspondence detectors

at the level of dendritic branches also makes questions regarding the unsupervised

learning of SCAPE’s connection patterns more approachable since it opens the door

to considerations regarding axonal and dendritic developmental/learning dynamics.

Furthermore, the fact that dendritic branches can compute conjunctions, and that

the results of these conjunctions can still be summed/integrated by the same neuron,

means that SCAPE’s two main computations can be implemented by a single neuron,

i.e: correspondence detection and vote summation (see Fig. 8.4).

In the following subsections, we will make use of some of the insights gained

from SCAPE’s biological support and some of the design principles that emerged

from our structural optimization experiments to propose biologically plausible ar-

chitectures for SCAPE, both for the constrained (C-SCAPE) and unconstrained

cases (U-SCAPE). The question of where exactly biological SCAPE implementa-

tions might be found (e.g. in what cortical layer(s) and/or in what visual area(s))

is not addressed, since it is felt that the general architecture (essentially a non-

linear transformation/integration of two maps into a third map using conjunctions)

is simple and general enough to be implementable in different regions (e.g. posterior

parietal cortex, superior colliculus, cerebellum, etc).

8.1.5 Example Constrained Architecture

Because of the amount of wiring that SCAPE architectures require, and the visu-

alization problems that this entails, we have chosen to illustrate a (Tx, Ty) estimator

using maps that contain 2 × 2 = 4 nodes (see Fig. 8.2).

Figure 8.2 consists of model nodes (in red), image nodes (in yellow), vote nodes

(in blue) and the connections between them: axons from model and image nodes

synapse onto the dendrites of vote nodes. Each map neuron represents a different

map-coordinate and each vote node represents a different translation-estimate.

Several design principles that minimize the total-wiring-length (TWL) are evi-

dent in Fig. 8.2: 1) map and vote nodes are laid out in a topographical organization,

138

Univ
ers

ity
 of

 M
ala

ya

����� ���� �����

���� ��� ����

����� ���� �����

������������

������ ������

����� ����������� �¡¢�������£¤� �����£¤�

Figure 8.2: Biological neural architecture for a simple (Tx, Ty) estimator.

2) map and vote nodes are evenly spaced out in an interleaving fashion, 3) image

nodes run in parallel to vote nodes and 4) model nodes run in the opposite direction

to image and vote nodes. Refer to Fig. 7.6 in Chapter 7 for the relevant structural

optimization experiment.

The following biological facts were incorporated into the diagram in Fig. 8.2: 1)

all neurons are excitatory, 2) vote node dendrites have a stellate structure (e.g. spiny

stellated cells) and 3) correspondence detectors are implemented as conjunctions at

the dendrites of vote cells (the relevant inputs must be close enough in order to

implement the logical-AND computational unit).

139

Univ
ers

ity
 of

 M
ala

ya

8.1.6 Example Unconstrained Architecture

The unconstrained case creates an additional problem regarding the implemen-

tation of voting-manifolds. How should voting-manifolds be implemented? One

possibility, of course, is through the use of extra dendritic-conjunctions, but as

Chapter 7 demonstrated, a U-SCAPE solution based on correspondence detectors

with single-outputs is usually too expensive. Another solution is by incorporating

intermediary nodes as correspondence detectors and which can project particular

manifolds through their axonic arborizations. Ideally, we would like to find neurons

with a single dendrite and a large number of axonal boutons9. Do such neurons exist

in biological systems? Biological nervous systems exhibit such tremendous morpho-

logical (neuronal, dendritic and axonal), electrochemical and dynamic variety, that

one might imagine that almost any type of neuron that one can conceive of is plausi-

ble. However, plausibility does not prove existence, therefore we have to look at what

real nervous systems exhibit. Several neuron-types seem to apply as reasonable can-

didates for implementing correspondence-detection and vote-manifold projection:

1) LGN single-input cells (see Mastronarde 1987), 2) cortical bipolar neurons, 3)

unipolar brush neurons (see Kalinichenko & Okhotin 2005) and 4) amacrine related

cells.

Figure 8.3 contains a simple diagram of a hypothetical biological U-SCAPE ar-

chitecture. The axons of model and image nodes synapse (as conjunctions which rep-

resent particular correspondences) onto manifold-neurons, each one of which sends

its axons to multiple vote-nodes. One problem with this solution is that the burden

of representing correspondences falls on individual neurons, rather than particular

locations of some dendritic tree (as for the C-SAPE case). If each map consists

of 104 nodes, then 108 manifold-neurons are required, which for example approxi-

mately encompasses the whole of human area V1. One solution is to use smaller

maps with more abstract features: maps with 102 positions lead to the requirement

of 104 manifold-neurons which is more acceptable (i.e. 0.01% of V1). Other solu-

9Although adendritic neurons are also good candidates, if one assumes that a dendritic con-
junction can be implemented on the cell body.

140

Univ
ers

ity
 of

 M
ala

ya

¥¦§̈©̈ª«¦¬­

®̄°©̈ª«¦¬­
±²³́µ ±²³́µ¶·̧¹́ ¶·̧¹́

®̄¬º»¦¼½©̈ª«¦¬­
¾¿²ÀÀ́ÁÂ²Ã³́ÃÄ́ÁÅÆÆÆÆ

Ç
ÇÇÇ

Figure 8.3: A SCAPE BNA for a simplified unconstrained estimation case.

Table 8.1: Various human cortical constraints.

Constraint Value Reference

Num. Cortical Neurons ∼ 2.1 × 1010 (De Haan & Johnson, 2003)

Num. V1 Neurons ∼ 108 (Wandell, 1995)

Num. Synapses per Neuron ∼ 104 (Johansson & Lansner, 2004)

Syn. per L2/3 Pyramidal Neuron ∼ 6 · 103 (Binzegger et al., 2004)

Syn. per Purkinje Neuron > 2 × 105 (Gazzaniga et al., 2002)

Bout. per L2/3 Pyramidal Neuron ∼ 6 · 103 (Binzegger et al., 2004)

Neuronal Density ∼ (5 × 104)/mm3 (Shepherd, 2003)

Dendritic/Axonal Density 3/5 of Total Volume (Chklovskii et al., 2002)

Synaptic Density ∼ (1.6 × 109)/mm3 (DeFelipe et al., 1999)

tions involve clustering similar manifolds into the same manifold-neuron10, which

however, has the disadvantage of some loss of accuracy.

8.2 Biological Constraints

Although it is important to consider temporal constraints (e.g. firing patterns,

coding strategies and reaction times), we will here focus primarily on morphological

and spatial constraints. Table 8.1 lists down a subset of relevant constraints for

biologically plausible models of SCAPE. Note that the “Syn.” abbreviation stands

for “number of synapses” while the “Bout.” abbreviation stands for “number of

axonal boutons”.

10The manifold-neuron, in this case, should contain a dendritic tree where several correspon-
dences are represented, and should project a superposition of the corresponding manifolds.

141

Univ
ers

ity
 of

 M
ala

ya

In this brief discussion, we will focus mainly on whether biological systems (in

this case the human nervous system) have sufficient neurons and synapses for imple-

menting SCAPE. Regarding neuron numbers, we will look at area V1 (although we

could have used other regions), and in particular what percentage of V1 neuronal

resources SCAPE requires. Regarding synapses, we will use the average number

listed in Table 8.1, i.e: 104.

We will exemplify the constrained case first, by computing the requirements of a

translation estimator (i.e. Tx, Ty). Assuming the number of nodes in each map is 104

(resolution 100×100), and the number of vote nodes is 4·104 (an overestimate based

on the estimation range [−100... + 100]) then the total number of nodes required

is 2 · 104 + 4 · 104 = 6 · 104. From Table 8.1 we see that the number of neurons in

V1 is approximately 108, therefore the percentage of V1 resources required by our

translation estimator is:

P =
6 · 104

108
102 = 0.06% (8.1)

which does not seem over-demanding.

Regarding the number of synapses, since the average number of synapses (S) per

vote node is equal to 2C/V where C is the number of correspondences and V is the

number of vote nodes, then:

S =
2 · 108

4 · 104
= 5 · 103 (8.2)

which is within the acceptable average bound of 104 synapses per neuron, if

one assumes that dendritic conjunctions can be established anywhere along the

dendritic tree. If on the other hand, we assume that dendritic conjunctions can

occur only at terminal dendritic branches, as depicted in Fig. 8.4, and if we assume

that each dendritic segment contains on average two synapses and that each segment

bifurcates, then the number of available correspondence detectors is just sufficient for

the number of required synapses (i.e. 5 · 103). Based on the above assumptions (i.e.

bifurcation and two synapses per segment) note that the total number of synapses

is
∑x

i=1 2i where x refers to the number of “dendritic layers” (n bifurcations lead

142

Univ
ers

ity
 of

 M
ala

ya

Σ

Σ Σ

ÈÉÊËÌÊÍÎÏÉÊÐ

ÑÌÒÒÓÎÏÉÊÐ

ÑÌÒÒÓÎÏÉÊ

ÑÌÒÒÓÎÏÉÊ
Σ Σ

..
.

..
.

...

ÔÕÖ×ØÙÚÕÛ

ÜÝÞÖ

ßÞàá

âÕØàÙÖáãäØáÖåæÕÛ
çççç

Figure 8.4: Dendrites with terminal conjunctions and inner summations.

to n + 1 layers). Note also that the number of synapses at each layer is equal to

p + 2 where p represents the total number of synapses in all lower layers. Thus,

the number of synapses at the terminal dendritic branches of any such neuron is

approximately half of the total number of synapses. Since, (104)/2 = 5 · 103, and

this is the required number of synapses from Equation 8.2, the solution is still feasible

within the constraints.

If we consider next a U-SCAPE architecture, then we most probably have to

increase the abstraction of the features and reduce the map resolution to, for ex-

ample, 102 nodes. If we consider the case of estimating similarity transformations

(i.e. Tx, Ty, s and θ) and assume that r(s) = 10 and r(θ) = 32 (where r as be-

fore stands for resolution) then the total number of nodes required is m + f + v =

2 · 102 + 104 + 32 · 10 · 4 · 102 = 2 · 102 + 13.8 · 104 where m represents the number of

map nodes, f represents the number of manifold nodes and v refers to the number

of vote nodes. The percentage of V1 resources required is thus

P =
2 · 102 + 13.8 · 104

108
102 ≈ 0.14% (8.3)

which is still within acceptable bounds. Furthermore the average number of

synapses per vote neuron (computed as the fraction between the total number of

votes and the total number of vote nodes) is

143

Univ
ers

ity
 of

 M
ala

ya

S =
32 · 10 · 104

32 · 10 · 4 · 102
=

102

4
= 25 (8.4)

which is well below upper bounds.

In conclusion, it seems that the demands imposed by average C-SCAPE or U-

SCAPE architectures, do not exceed typical empirical bounds, thus making the case

for their plausible existence in biological systems stronger.

In the present chapter we discussed several lines of biological support for SCAPE

architectures, namely: topographic maps, local features, neuronal variety and den-

dritic conjunctions. Biologically plausible architectures for constrained and uncon-

strained SCAPE were provided. Additionally, SCAPE was shown to satisfy some

relevant biological constraints. In the following chapter developmental algorithms

capable of generating SCAPE architectures will be investigated.

144

Univ
ers

ity
 of

 M
ala

ya

Chapter 9

Development of

Connection-Patterns

9.1 Introduction

Now that we have discussed an algorithmic approach to pose estimation, have an-

alyzed its performance, have found artificial neural architectures that can implement

it, have analyzed some of the combinatorial and spatial issues that these architec-

tures raise and finally have found evidence for its plausible existence in biological

systems, we are left with the fundamental question: how can biological systems de-

velop such architectures? Even if a biological neural system has the machinery for

implementing a neural architecture that embodies a particular algorithm, there is

still the question of whether such an architecture can develop. If it is impossible

to find plausible mechanisms through which such architectures can develop, then

one has to conclude that, after all, and in spite of the theoretical possibility, the

algorithm in question is unlikely to be implemented in biological systems. If on the

other hand, plausible developmental mechanisms can be found, then this increases

one’s confidence in the biological plausibility of the approach. Furthermore, if this

is the case, a new door is opened for a dialogue between artificial (e.g. Machine

Learning) and biological (e.g. Developmental Cognitive Neuroscience) domains.

Computational systems such as brains undergo structural/functional changes,

in response to the environment, and in order to increase an organism’s chances

145

Univ
ers

ity
 of

 M
ala

ya

of survival. These changes can happen within different timescales, e.g: thousands

or millions of years (evolution), months or years (development), seconds or minutes

(learning) and miliseconds (adaptation). Although development, learning and adap-

tation are distinct processes1, some structural changes might be difficult to classify,

lying somewhere between two categories, or might involve mechanisms from two or

more processes. The formational processes discussed in this chapter fall more eas-

ily into the category of development, although they may borrow some machinery

from learning. For this reason, the terms development and learning will be used

interchangeably.

How difficult is the problem of developing/learning a SCAPE architecture? From

an artificial perspective, and assuming that we maximally simplify the problem, the

learning of connection patterns between map nodes and vote nodes is not difficult.

If one assumes that each transformation encountered in a training set is unique, and

that all possible correspondences are detected for each transformation, then learning

can be as simple as assigning each new set of detected correspondences to a new

vote node. The problem in the artificial domain becomes more complex when one

considers images that are sparsely populated with salient features and/or that con-

tain many repeated features (leading to a large proportion of false correspondences)

and one starts to consider issues such as efficient coding (e.g. undercomplete vote

representations2 with broadly tuned vote nodes) and feedback from other processing

areas (e.g. motor and somatosensory feedback). In the biological domain the prob-

lem becomes even more difficult, and thus all the more interesting, e.g: 1) the axonal

terminations of model nodes have to pair up with the axonal boutons of image nodes,

whose precise origin (i.e. map coordinates) they are ignorant of, 2) vote nodes can

accept only a limited number of synapses (e.g. ≈ 10, 000) and are thus unlikely to

start off with all required synaptic-pairs. In biological systems, there is no global

intelligence that can guide which axonal bouton another one should be paired with,

1Each one of the processes has its own set of mechanisms (e.g. development is more genetically
determined although in many cases it is stimuli dependent).

2Undercomplete vote representation: when the number of vote nodes is smaller than the number
of transformations to be represented. Complete vote representation: when the number of vote nodes
is equal to the number of transformations to be represented. Overcomplete vote representation:
when the number of vote nodes is larger than the number of transformations to be represented.

146

Univ
ers

ity
 of

 M
ala

ya

contrary to the artificial domain. In biological systems, development/learning must

progress, in most cases, through local “blind” mechanisms.

As already hinted at, the job of learning connection patterns between map and

vote nodes can be facilitated by various feedback connections. For example, if a vote-

node “tells” an organism that food can be found to its left, and then if subsequent

to a motor compensation the organism gets contradictory somatosensory feedback

(the hand “tells” the organism that there is no food), then the vote node can be

signaled to unlearn the connections that led to the erroneous judgment3. This type

of supervised learning unfortunately exhibits a circularity which we wish to avoid: it

depends on the motor areas being able to compensate for the transformation which

the system is trying to learn in the first place. How do the motor areas learn the

compensatory transformations? In order to avoid any form of circularity, we chose

an unsupervised approach which does not depend on any feedback signals. For this

reason the approach might be called: unsupervised clustering of correspondences.

9.2 Main Elements

For our initial experiments regarding the modeling of SCAPE development, we

called upon three main elements, partly chosen for their compatibility with crucial

biological constraints and partly chosen for their effectiveness regarding learning

transformations: 1) neural traces, 2) random axonal-growth and synapsing and 3)

synaptic-pair fixation levels. Models of biological systems often attract unresolvable

debates, mainly regarding what levels of abstraction should be represented (e.g.

proteins, membrane potentials, firing rates, and so on) and which ones need not be

represented. Therefore, and following our understanding of the advice of Church-

land and Sejnowski in (Churchland & Sejnowski, 1992), we have followed the rule

of thumb whereby the model is made as simple as possible without jeapordizing

performance, and rich enough to support our hypotheses.

3Note that the problem could lie elsewhere, e.g: the connections between vote-nodes and mo-
tor processing areas, the connections between motor processing areas and motor-effectors, the
connections between tactile sensors and somatosensory areas, and so on.

147

Univ
ers

ity
 of

 M
ala

ya

9.2.1 Neural Trace

It is a well known fact that neural activity affects the strengths of synapses. This

can be observed in the context of learning, and more specifically, for example, in a

Hebbian synapse where correlated activity between pre and post-synaptic neurons,

increases the relevant connection strengths (see Haykin 1999). A neural trace is es-

sentially the prolonging of this effect throughout time. A modified Hebbian rule for

example (see Földiák 1991) might state that changes in synaptic strength are pro-

portional to pre-synaptic activity and a temporal average of post-synaptic activity.

As demonstrated in (Földiák, 1991), neural traces are very useful for capturing in-

variant properties of the environment. Interestingly, and maybe unsurprisingly, the

same mechanism that throws away transformation information for the implemen-

tation of invariant feature-detectors, is useful for the development of architectures

that can detect/estimate those same transformations. The idea is based on the no-

tion that transformations are somewhat stable through time. If transformation X

occurs between time t1 and time t4, and node n1 is activated at t1, then propagating

some of n1’s activity to the following time-step (neural trace), makes it more likely

that n1 will be activated again for the same transformation X, thus accelerating the

learning of “n1 represents transformation X”.

9.2.2 Random Rewiring

SCAPE depends in a fundamental way on the detection of correspondences. As

was discussed in Chapter 8, a plausible implementation of correspondence detec-

tors in biological systems relies on pairs of synapses at dendritic branches whose

non-linear interactions compute logical-AND operations. But how are the synapses

formed? How does each axonal bouton “know” which other bouton it should pair

with? It is difficult to imagine how the complex connection patterns demanded

by the estimation of transformations can be completely determined by the genetic

code4. We hypothesize here that most of the “guidance” is provided by the environ-

4Although recent evidence of experience-independent dendritic development in motion sensitive
neurons in the Drosophila visual system - see (Scott et al., 2003) - might bee seen to argue against
this point.

148

Univ
ers

ity
 of

 M
ala

ya

ment: activity-dependent (more specifically, experience-dependent) development.

We hypothesize further that environmental stimuli provide indirect guidance by

influencing the structural stability of synaptic-pairs which are continuously gener-

ated/eliminated through a process of random rewiring. In other words, if rewiring

is here assumed to be implemented by axonal growth/retraction5, then the molding

of the correct connection patterns is established by axons connecting to random6

neurons and dendritic branches (see Chklovskii et al. 2004 and Poirazi & Mel 2001),

and the environment providing feedback on the relative validity of such connections.

Note that biological neurons have an added disadvantage in that they place limits

on the number of synapses that they can receive. Thus, if the number of possible

correspondences is larger than this limit then it is impossible to have a situation

whereby all correspondence detectors are available at any time for each node, thus

precluding a type of development which simply places every possible synaptic-pair

on each node and develops by changing the weights of each pair.

9.2.3 Fixation Levels

A fundamental ingredient to the process of random rewiring as already hinted

at is the notion of the stability of synaptic pairs. Stable synaptic pairs are less

likely to be eliminated. Through the guidance of environmental stimuli, synaptic

pairs, which form randomly, can increase or decrease in terms of stability. We have

termed the measure for synaptic pair stability “fixation level”. No synaptic pair can

be assumed to be right or wrong from one environmental instance. Put crudely, fixa-

tion levels provide synaptic-pairs with an opportunity to prove themselves. In other

words, fixation levels provide the medium in which learning takes place, whereby an

organism can adapt to the statistics of the transformations it encounters. The most

basic rule that determines how fixation levels change echoes the Hebbian synapse: 1)

if a neuron is active and one of its synaptic-pairs is active7 then the fixation level of

5It can also be implemented by structural modifications at the level of dendritic trees and/or
dendritic spines.

6Random within a relatively local set of neurons.
7An active synaptic-pair denotes the detection of a correspondence.

149

Univ
ers

ity
 of

 M
ala

ya

the latter increases, 2) if a neuron is active and one of its synaptic-pairs is inactive8

then the fixation level decreases. Two differences relative to a conventional Hebbian

synapse must however be pointed out: 1) two synapses rather than one are involved

in the process9 and 2) the changes caused by the learning rule do not affect the effi-

cacy (see Hebb 1949) of the presynaptic neuron causing the postsynaptic neuron to

fire (as in the notion of connection weights) but rather, affect the probability of the

synaptic-pair being eliminated10. Although the mechanisms underlying synaptogen-

esis and synapse elimination are still undergoing intense research and debate, several

non-mutually exclusive candidates for how fixation levels might be implemented in

biological systems include: 1) relative concentrations of AMPA receptors (see Lynch

& Baudry 1984), 2) postsynaptic density protein 95 at glutamatergic synapses (see

Cohen-Cory 2002) and 3) the gradual removal or addition of presynaptic structures

such as vesicles and associated proteins (see Hopf et al. 2002).

9.3 Algorithm

In order to test our ideas on how SCAPE connection-patterns might develop,

using the elements discussed in the previous section, we designed an algorithm con-

sisting of two main parts. The first part models organism/environment interactions,

whereby the data for learning (or the experience-dependent side) is obtained. The

second part models the developmental process itself. Both aspects occur simultane-

ously, as would be expected in a realistic scenario.

Seeing that the development of a SCAPE architecture (SCAPED) is likely to

require large amounts of data, we decided to place the problem of pose estimation

in the context of motion analysis. The pose estimation problem is embodied in the

8An inactive synaptic-pair denotes that the correspondence that it represents has not been
detected.

9The biological existence of this process is open to discussion and provides an interesting hy-
pothesis to test.

10In reality, questions on whether “firing weight” and “structural stability” elements are mediated
by overlapping mechanisms, leading to functional overlap (e.g. a synapse with more stability
might be more effective in causing postsynaptic neurons to fire and a synapse with a small weight
might increase the chances of it being eliminated) are still completely open to debate. Answers
to these questions are likely to have a great impact on Neural Computation and Computational
Neuroscience and related fields and subfields.

150

Univ
ers

ity
 of

 M
ala

ya

problem of estimating the transformations that relate image data from two time-

steps, namely the current and previous time-steps, where the image data is obtained

from a small window placed on a larger test image. Three situations are possible:

1) a dynamic window on a static image, 2) a static window on a dynamic image

(video) or 3) a dynamic window on a dynamic image. All three situations are useful

since transformations are relative. However, we chose to explore the first case (i.e.

a dynamic window on a static image) since this provided us with the possibility

of controlling which transformations occur. Furthermore, it is easier to control

the statistical properties of static images, thus allowing a deeper understanding of

the limits of the developmental processes under investigation. Various parameters

were chosen to control the generation of synthetic images, the most important of

which determine the sparsity of features and the probability of true correspondences.

Algorithm 8 summarises the environment/organism model for the (Tx, Ty) case and

its relationship to SCAPE development.

Algorithm 8 SCAPED Environment

1: procedure SCAPED(p) . p encapsulates several parameters
2: net ← initSCAPENET . Network Initialization
3: img ← initImage . Image Initialization
4: [winY , winX] ← initWindow . Initial Window Coordinates
5: IVold ← getData(img, winY , winX , p.winRad) . Old Input-Vision
6: [∆y, ∆x] ← getRandSpeeds . Initial Random Window Speeds

7: iteration ← 0 . Iteration Counter
8: stillDeveloping ← true . Boolean for Development Loop
9: while stillDeveloping do

10: winY ← winY + ∆y . Update the Window’s Y Position
11: winX ← winX + ∆x . Update the Window’s X Position
12: IVnew ← getData(img, winY , winX , p.winRad) . New Input-Vision

13: net ← updateF ixations(net, IVold, IVnew, p)

14: IVold ← IVnew

15: if rem(iteration, p.iterSpeedChange) ≡ 0 then . Change speed?
16: [∆y, ∆x] ← getRandSpeeds . If remainder zero: new speeds

17: end if
18: if rem(iteration, p.iterRewire) ≡ 0 then . Rewire?
19: net ← rewire(net, p) . Substitute weak synaptic-pairs

20: end if
21: iteration ← iteration + 1 . Next Iteration
22: stillDeveloping ← checkStopConditions . Stop developing?

23: end while
24: end procedure

One relevant parameter in Algo. 8 is iterSpeedChange. This parameter de-

151

Univ
ers

ity
 of

 M
ala

ya

termines how frequently the window speed (intensity and direction) changes. The

main loop essentially revolves around updating the window position, remembering

the current and previous time-step input-visions and updating fixation levels based

on those input-visions and the existing synaptic-pairs. Every iterRewire iteration,

the network fixation levels will be checked: the synaptic pairs whose fixation levels

are smaller or equal to some minimum level are eliminated and replaced with new

random synaptic-pairs. This is accomplished via the rewire function11. Note that

certain elements have been omitted from Algo. 8 for economy of space, e.g: window

boundary checks and boundary-to-origin saccades.

As has already been mentioned, fixation levels provide the main “space for learn-

ing”. Therefore the updateF ixations function is our main concern here (see Algo. 9).

It contains the rules through which fixation levels change thus indirectly determin-

ing which synaptic pairs are preserved and which eventually get eliminated. Before

continuing it might be useful to briefly mention the contents of the SCAPENET

data-structure (in Algo. 8 SCAPENET is abbreviated to net). The SCAPENET

data-structure essentially consists of a fixed number of vote-nodes, each one of which

contains a fixed number of synaptic-pairs, each one of which in turn, consists of a

cyclop, an attractor, an activation (1/0) and a fixation level.12 Each cyclop and/or

attractor is defined by a pair of (y, x) coordinates that refer to an input-vision fea-

ture position. Initialization of the SCAPENET data-structure involves generating

random synaptic-pairs and setting all activation and fixation levels to zero.

The first step undertaken by updateF ixations (Algo. 9) is to compute the activa-

tions of synaptic-pairs and thus of their respective vote-nodes. This is accomplished

by compActivations in Algo. 10. Essentially, compActivations is doing correspon-

dence detection and accumulation. If both features represented by a synaptic-pair

11In the current version there is an important assumption: new random synaptic-pairs always
contain one random axonal-bouton from the model map and one random axonal-bouton from
the image map. This assumption seems to violate the locality (non-global guidance) principle of
rewiring. However, one might counter-argue that simple chemical markers can distinguish between
model and image axons, and thus mediate a process which disallows model-model or image-image
synaptic-pairs. If this chemical-marker hypothesis is unfounded, it should not be difficult to extend
the algorithm to include computational mechanisms that can filter out model-model and image-
image synaptic-pairs.

12Future extensions should exploit the added flexibility (with arguably no loss of realism) entailed
by dynamic numbers of nodes and maybe even synaptic-pairs.

152

Univ
ers

ity
 of

 M
ala

ya

Algorithm 9 SCAPED Update Fixations

1: procedure updateFixations(net, IVold, IVnew, p)
2: net ← compActivations(net, IVold, IVnew, p) . Synpair and vote activations

3: V otes ← getV otes(net)
4: [winner, winActiv] ← getWinner(Votes) . Strongest node and activation
5: net ← resetLosers(net,winner) . Activity of losers ← 0
6: net ← makeTraces(net,winner,p.maxTrace) . Traces for next iter

7: for all v ∈ V otes do . Scan votes
8: for all s ∈ getSynpairs(v) do . Scan synaptic pairs
9: if v 6= winner AND s.activ ≡ 0 AND s.fixat ≤ 0 then . R1

10: s.fixat = s.fixat − 0.5
11: else if v 6= winner AND s.activ ≡ 1 then . R2
12: if s.fixat ≤ 1 then
13: s.fixat ← s.fixat − 1
14: else
15: s.fixat ← s.fixat − α/s.fixat
16: end if
17: else if v ≡ winner AND s.activ ≡ 1 then . R3
18: s.fixat ← s.fixat + 1
19: else if v ≡ winner AND s.activ ≡ 0 then . R4
20: if s.fixat ≤ 1 then
21: s.fixat ← s.fixat − 1
22: else
23: decr = (α/s.fixat) + β(winActiv/numSynpairs)
24: s.fixat ← s.fixat − decr
25: end if
26: end if
27: if s.fixat < p.minFix then . Fixation boundaries
28: s.fixat = p.minFix
29: else if s.fixat > p.maxFix then
30: s.fixat = p.maxFix
31: end if
32: end for
33: end for
34: end procedure

(a correspondence detector) are matched (see line 9 in Algo. 10), this leads to the

synaptic-pair being active, and to the total activity of its vote-node being incre-

mented.

Subsequent to the computation of activations, Algo. 9 finds the node with the

largest activation. The existence of winner and loser nodes is essential for the

dynamics of fixation changes, as will be seen shortly. After finding the winning node,

the algorithm proceeds to the computation of neural traces, which will be used in

the subsequent iteration. We chose a very simplified/abstract implementation of

a neural trace: all non-winner nodes are given a trace of zero, while the winning

153

Univ
ers

ity
 of

 M
ala

ya

Algorithm 10 SCAPED Compute Activations

1: procedure compActivations(net, IVold, IVnew, p)
2: V otes ← getV otes(net)
3: for all v ∈ V otes do . Scan vote nodes
4: v.activ ← v.trace . Copy trace from previous iteration
5: for all s ∈ getSynPairs(v) do . Scan synaptic pairs
6: [C,A] ← eachSynapse(s) . Get cyclop (C) and attractor (A)

7: FC ← IVold(Cy, Cx) . Cyclop feature
8: FA ← IVnew(Ay, Ax) . Attractor feature
9: if FC ≡ FA then

10: s.activ ← 1 . Correspondence detected → synpair active

11: v.activ ← v.activ + 1 . Increment vote-node activity
12: else
13: s.activ ← 0 . Corresp. ¬detected → synpair inactive

14: end if
15: end for
16: end for
17: end procedure

node’s trace consists of its activity level (a maxTrace parameter bounds the trace).

After this, the algorithm scans all vote nodes and their respective synaptic-pairs in

order to update fixation levels.

Four main rules (R1, R2, R3 and R4) determine how fixation levels are modified.

The first two rules (R1 and R2) are concerned with synaptic-pairs in non-winner

nodes while the last two rules (R3 and R4) are concerned with synaptic-pairs in the

winner node. Following is a brief list of the four rules and their functions:

1. R1. If a synaptic-pair in a non-winner node is inactive (i.e. it does not detect a

correspondence) and its fixation level is zero or negative (i.e. fixat ≤ 0) then

decrement the synaptic-pair’s fixation by 0.5. Note that inactive synaptic-pairs

in non-winner nodes with positive fixation levels are unmodified.

2. R2. If a synaptic-pair in a non-winner node is active (i.e. it detects a corre-

spondence) then two outcomes are possible depending on the current fixation-

level. If the fixation is smaller or equal to one then decrement it by one.

Otherwise, if the fixation is larger than one, make the decrement inversely

proportional to the fixation level, i.e: decr = α/fixation. This inverse pro-

portionality provides positive fixation-levels with added stability without sac-

rificing flexibility (e.g. ability to re-learn).

154

Univ
ers

ity
 of

 M
ala

ya

3. R3. If a synaptic-pair in the winning node is active then increment its fixation

level.

4. R4. If a synaptic-pair in the winning node is inactive then two outcomes are

possible. If the fixation level is smaller or equal to one, decrement the fixation

by one. Otherwise, decrement the fixation by a quantity that is inversely pro-

portional to the fixation level and directly proportional to the node’s activity.

As already mentioned, the general form of the above rules is quite Hebbian

in nature and so should not raise many eyebrows. Arguably the least intuitive

rule is the second part of R4 which states that the decrement should be decr =

(α/s.fixat) + β(winActiv/numSynpairs). The first half of the term, as was al-

ready mentioned in R2, provides positive fixations with stability without sacrificing

flexibility. Thanks to the second half of the term the stronger the activity of a

winning node, the more strongly the fixation levels of inactive synaptic-pairs are

decremented. The biological existence of such a rule is open to question and thus

serves as an interesting hypothesis to test. It is useful, for example, in cases where

two or more transformations compete for the same node, i.e: it makes it easier for

one transformation to “kick out” the other. As will be seen, this is not allways

desirable, e.g: some efficient-coding schemes, such as broadly tuned nodes, require

the co-existence of multiple transformations in the same node. The notion of trans-

formations competing for the same vote node will become clearer in subsequent

subsections after discussing several examples.

At this point it might be useful to summarise three important simplifying as-

sumptions of our model: 1) eliminated synaptic-pairs are substituted without any

delay and through a random selection based on a uniform probability distribution,

2) the neural trace is highly simplified and 3) vote nodes generate a single winner

which is computed within one iteration. The fact that the learning rules depend on

finding the node with the largest activity is somewhat of an exception to the locality

of the model (i.e. synaptic-pairs are generated, modified and eliminated through lo-

cal interactions). However, it should be possible to implement this non-local aspect

through a simple competitive process, which can be implemented in networks such

155

Univ
ers

ity
 of

 M
ala

ya

as the ones discussed in Chapter 6 in the context of vote sharpening. This consis-

tency adds to the plausibility of the algorithm, i.e: the same competitive network

used for developing a SCAPE network can subsequently be used for vote-sharpening

during pose estimation.

Figure 9.1 demonstrates a sequence of SCAPE developmental stages based on

Algos. 8, 9 and 10. The state of the network is depicted at three iterations (i.e. 6,

787 and 5241). The network consists of nine vote nodes each one of which contains

27 synaptic-pairs. Each synaptic-pair detects a particular correspondence, which in

turn estimates one particular transformation (seeing that we are dealing with the

constrained TxTy case). In Fig. 9.1 vote nodes are represented by subplots whose

axes are numbered from 0 to 4 and synaptic-pairs are represented by lines. The

origins of lines are represented by blue circles and the targets are represented by

green squares. The coordinates of the origin for a particular line are derived from

it’s cyclop (the synapse in the synaptic-pair which originates from the previous time-

step map). The coordinates of the target for a particular line are derived from it’s

attractor. If for example, a cyclop is at coordinate [y = 0, x = −1] and an attractor

is at coordinate [y = 0, x = 0] this supports the transformation [Ty = 0, Tx = +1],

which is eventually represented by vote node V 3 (top-right sub-plot of the bottom

set of nine sub-plots).

As we can see from Fig. 9.1, “vote node transformations” (short for “the trans-

formations represented by the various synaptic-pairs in a vote node”) are randomly

organized at the early stages of development (i.e. iteration 6). As development pro-

gresses (e.g. iteration 787), each vote-node starts to specialize in particular transfor-

mations, although many incorrect/random synaptic-pairs still abound. At the last

stage of development, after the network has converged, each vote-node represents a

single transformation, and all13 transformations are represented by a distinct node.

Figure 9.2 illustrates SCAPE development from the perspective of fixation-level

dynamics. Fixation states are depicted at six different iterations. Each iteration

is represented by a rectangular matrix where each row represents a different vote-

13In this case, the environment presented the network with 9 different transformations consisting
of different combinations of Tx and Ty both ranging between −1 and +1.

156

Univ
ers

ity
 of

 M
ala

ya

0 1 2 3 4
0

1

2

3

4
V1 (100%) [2, 0]

0 1 2 3 4
0

1

2

3

4
V2 (33%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V3 (100%) [1, 1]

0 1 2 3 4
0

1

2

3

4
V4 (33%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V5 (67%) [0, 1]

0 1 2 3 4
0

1

2

3

4
V6 (56%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V7 (44%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V8 (56%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V9 (75%) [1, 1]

0 1 2 3 4
0

1

2

3

4
V1 (100%) [1, 1]

0 1 2 3 4
0

1

2

3

4
V2 (78%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V3 (100%) [0, 1]

0 1 2 3 4
0

1

2

3

4
V4 (100%) [1, 1]

0 1 2 3 4
0

1

2

3

4
V5 (83%) [0, 1]

0 1 2 3 4
0

1

2

3

4
V6 (100%) [1, 1]

0 1 2 3 4
0

1

2

3

4
V7 (100%) [1, 1]

0 1 2 3 4
0

1

2

3

4
V8 (100%) [1, 0]

0 1 2 3 4
0

1

2

3

4
V9 (83%) [1, 0]

0 1 2 3 4
0

1

2

3

4
V1 (100%) [-1, -1]

0 1 2 3 4
0

1

2

3

4
V2 (100%) [0, 0]

0 1 2 3 4
0

1

2

3

4
V3 (100%) [0, +1]

0 1 2 3 4
0

1

2

3

4
V4 (100%) [+1, -1]

0 1 2 3 4
0

1

2

3

4
V5 (100%) [0, -1]

0 1 2 3 4
0

1

2

3

4
V6 (100%) [-1, +1]

0 1 2 3 4
0

1

2

3

4
V7 (100%) [+1, +1]

0 1 2 3 4
0

1

2

3

4
V8 (100%) [+1, 0]

0 1 2 3 4
0

1

2

3

4
V9 (100%) [-1, 0]

Iteration = 6

Iteration = 787

Iteration = 5241

Attractor

Cyclop

Negative Fixation

Null Fixation

Positive Fixation

Figure 9.1: Three stages of SCAPE development.

157

Univ
ers

ity
 of

 M
ala

ya

èéêëìéíîïðñ

èéêëìéíîïðòóò

èéêëìéíîïðñôô

èéêëìéíîïðõö÷÷

èéêëìéíîïðôøñù

èéêëìéíîïðòúôô

ûüýþ
ÿü�
þ�

�������	
����

���������
�������
��������������

Figure 9.2: Changes in fixation levels.

node and each cell (or square) represents a different synaptic-pair. The fixation-

level of a synaptic-pair is represented by colour: reddness is proportional to the

magnitude of negative fixations while greenness is proportional to the magnitude

of positive fixations. Figure 9.2 shows how the totality of fixation-levels gradually

change from red to green and how, due to probabilistic reasons that will become

clearer in subsequent subsections, this progression slows down significantly towards

the later stages of development.

9.4 Experiments

In order to get a better feel for the performance strengths and limitations of the

ideas introduced above, this section discusses the effects of several parameters. Un-

fortunately the number of free parameters is not small enough to enable a complete

study of all parameters and their combinations, hence it is necessary to focus on the

most critical ones individually. To further facilitate the investigation, a small-scale

problem was used, i.e: window motion was restricted to nine possible translations

consisting of Tx and Ty combinations, each within the range [−1, +1].

Table 9.1 summarises the main parameters used in Algo. 9 with their standard

settings. The Speed Change Interval parameter as already mentioned determines

the number of iterations that need to pass before the window’s speed changes. The

MaxTxSpeed and MaxTySpeed parameters determine the maximum magnitudes of

158

Univ
ers

ity
 of

 M
ala

ya

Table 9.1: Standard SCAPED parameters.

Parameter Setting

Speed Change Interval 3
MaxTxSpeed 1
MaxTySpeed 1
Number of Votes (V) 9
Max Fixation 20
Min Fixation -1
Elimination Fixation -1
Elimination Interval 10
α 0.3
β 1
Correspondences per Node (CpN) 3 · (C/V)
Max Trace CpN/10
Window Radius 1

the window’s speed for both the x and y axes. The Number of Votes parameter

determines that number of votes comprising the network. The Max and Min Fixation

parameters determine the maximum and minimum fixation levels synaptic-pairs are

allowed to express. If a synaptic-pair possesses a fixation level which is equal or

inferior to the level defined by the Elimination Fixation parameter it is eligible

for elimination and substitution by a new random synaptic-pair. The Elimination

Interval parameter determines the frequency with which synaptic-pairs go through

rewiring (i.e. elimination and substitution of weak synaptic-pairs). The α parameter

can be found in rules R2 and R4 of Algo. 9 and the β parameter can be found in rule

R4 also of Algo. 9. The Correspondences per Node parameter determines the number

of synaptic-pairs that each vote node can contain. The Max Trace parameter defines

an upper bound on the neural trace. The Window Radius parameter determines the

window’s dimensions, e.g: a radius of two, defines a side of five and a total of 25

inputs.

9.4.1 Time vs. Fixation

This first experiment gives us a feel for how development converges by observing

fixation percentage relative to the progression of time (measured in iterations): see

Fig. 9.3. Fixation percentage refers to the percentage of synaptic pairs whose

159

Univ
ers

ity
 of

 M
ala

ya

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100
Time vs. Overall−Fixation

Iteration

P
er

ce
nt

 F
ix

ed

Figure 9.3: Time versus overall fixation level.

fixation levels are larger than or equal to half of the maximum fixation. Figure 9.3

was obtained by using the standard parameter settings in Table 9.1. The “percent

fixed” value for each iteration was averaged from five separate runs. The shape of

the curve is related to the gradually decreasing probability of getting the correct

synaptic-pair at the right time.

9.4.2 Feature Sparsity

Earlier we mentioned that one of the advantages of using synthetic images for

the environment was that we could control certain statistical characteristics about

them. One such characteristic is feature sparsity. The feature sparsity of an image

defines the proportion of space that is occupied by features. Maximum sparsity

characterizes an image without features, while minimum sparsity characterizes an

image where every location that can be sensed contains a feature. The simulations

behind Figs. 9.1, 9.2 and 9.3 all used images with a large proportion of features

(i.e. low sparsity). The parameter used for controlling feature sparsity is “feature

percentage”. If an image is square and its side is n, it contains n2 pixels. If the

“feature percentage” parameter is set at 50% then the number of features to be

randomly placed around the image is 0.5 × n2. Those pixels that do not receive a

feature are considered transparent.

Feature sparsity is an extremely important variable which greatly affects the

difficulty with which SCAPE networks can develop. The smaller the proportion of

160

Univ
ers

ity
 of

 M
ala

ya

features in an image (i.e. the greater the sparsity) the harder it is for SCAPE to

develop. There are various reasons for this increased difficulty: 1) the probability of

a correspondence being detected decreases14, 2) the probability of the formation of

“vote unions” increases and 3) the probability of the formation of “greedy amalgams”

increases. The term “vote unions” refers to the case when two or more vote-nodes

represent the same transformation. The term “greedy amalgams” refers to the case

when the same vote-node represents two or more transformations. Although vote

unions and greedy amalgams can be useful in certain circumstances, here they are

disadvantageous because, in the case of unions, some transformations might not

have a vote node to represent them (due to “node stealing” by unions), while in the

greedy amalgam case, the two or more transformations which co-exist in the same

node are ambiguously represented. Furthermore, in the case when the number of

vote nodes is fixed and equal to the number of transformations in the environment,

the occurrence of greedy amalgams usually leads to another phenomenon which

we denote as “deprived votes”. The fixation levels in deprived votes resist being

increased mainly because greedy amalgams steal their transformations and thus

activity levels.

Why does feature sparsity tend to lead to the formation of vote unions? A sim-

ple example might help explain this phenomenon. Consider a vote node va which

has just increased the fixation level of synaptic-pair sa1 as a consequence of the

occurrence of transformation t1. Consider next, two scenarios, one where there is

no feature sparsity and one where there is considerable feature sparsity. In the first

scenario, if at a later stage, transformation t1 occurs again, then because the envi-

ronment is saturated with features, the correspondence represented by sa1 is likely

to occur again, and thus va is likely to be the node with the highest activation (i.e.

is more likely to be the winning vote node) and any new synaptic-pairs representing

transformation t1 in va will have their fixations increased. In the second scenario,

because the environment is sparsely populated with features, then when transfor-

mation t1 occurs again at a later stage, the probability that the correspondence

14In the non-sparse case: the right synaptic pair at the right time is required. In the sparse case:
the right feature and the right synaptic pair are required at the right time.

161

Univ
ers

ity
 of

 M
ala

ya

40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400
Feature Sparsity vs. Convergence Speed

Percentage of features

Ite
ra

tio
ns

 to
 c

on
ve

rg
e

Figure 9.4: The effect of feature sparsity on convergence time.

represented by sa1 will occur and thus the probability that sa1 will fire is much

lower, therefore greatly increasing the probability of other vote nodes becoming

winners, and thus stealing activation, and finally forming unions.

Why does feature sparsity tend to lead to the formation of greedy amalgams?

Probably the main reason for this lies in the fact that feature sparsity leads to low

average activations which in turn makes it harder for the second part of rule R4 to

kick out invading transformations. This can probably be compensated by extending

the network with a sparsity analyzer which sends a measure of the environment’s

feature sparsity back to the main network.

Figure 9.4 illustrates the effect of sparsity on the speed of SCAPE development.

The speed of development is here measured as the number of iterations the network

takes before 15% of its synaptic-pairs are fixed, where a synaptic-pair is defined as

fixed if its fixation ≥ 10. Feature percentages (that determine sparsity) vary along

the x-axis, in increments of 10, starting at 50 and ending at 150. At each feature

percentage, 5 simulations were run so that the means and standard deviations of

the number of iterations could be computed. Unsurprisingly, as feature percentage

increases (i.e. sparsity decreases) the mean and standard deviation of the number

of iterations required for “convergence” greatly decrease.

The crucial question is: can sparsity still lead to proper development? The notion

of proper development can be measured in three non mutually-exclusive ways. One

measure is the percentage of synaptic-pairs which are fixed. Obviously, if a network

162

Univ
ers

ity
 of

 M
ala

ya

is incapable of developing beyond the point where it has a 60% level of fixation

one can safely conclude that its development is unsuccesful. However, the contrary

is not necessarily true, i.e: a network where all synaptic-pairs have reached near-

maximum levels of fixation is not necessarily correct. In order for it to be correct

it needs to be capable of estimating the transformations that it experienced during

development. Therefore the two remaining measures are “transformation coverage”

(or T-Coverage) and “correspondence coverage” (or C-coverage). If the environment

manifests 10 different transformations, and vote nodes represent only 4 of these

transformations, then the network’s T-Coverage is 40%. Correspondence coverage,

on the other hand, is concerned with the innards of each vote-node. If vote-node v1

represents transformation t1 and transformation t1 has a maximum of 10 different

correspondences which represent it, and the synaptic-pairs in v1 only represent 8 of

these correspondences, then v1’s C-Coverage is 80%. The most succesful network,

in this context, is therefore one that exhibits 100% fixation, 100% T-Coverage and

where all nodes exhibit 100% C-Coverage.

Figure 9.5 shows how SCAPE networks can still develop in spite of sparsity, albeit

with some deterioration in terms of C-Coverage15. Standard parameter settings (see

Table 9.1) were chosen for running the simulations. The graph on the left of Fig.

9.5 depicts the case where the feature percentage parameter was set to 150% (i.e.

low sparsity) while the graph on the right depicts the case where the parameter

was set to 50% (i.e. high sparsity). Each figure averages the curves obtained from

20 separate simulations. The fixation goal for the graph on the left was set at

95%, while the fixation goal for the graph on the right was set to 75% due to the

slow convergence caused by feature sparsity. Surprisingly, T-coverage is still quite

strong for the sparse case. Future extensions should look into ways of improving

and accelerating C-Coverage for the sparse case.

What happens if we increase sparsity further, e.g: a feature percentage of 20%?

One might be tempted to think that increasing the speed-change interval might help

by allowing the neural trace more time to attract synaptic-pairs to the same vote-

15Note that the C-Coverage curves in Figs. 9.5(a) and 9.5(b) represent the averages of all
vote-node C-Coverages for each case.

163

Univ
ers

ity
 of

 M
ala

ya

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100
150% Feature Representation

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

(a) 150% Feature Representation

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100
50% Feature Representation

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

(b) 50% Feature Representation

Figure 9.5: The effect of feature sparsity on development.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80
NudgeInt = 1 Beta = 0

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

(a) (SC Interval = 1, β = 0)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70
NudgeInt = 10 Beta = 0

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

(b) (SC Interval = 10, β = 0)

Figure 9.6: Larger speed-change intervals do not help the sparse features case.

node. Unfortunately, as Fig. 9.6 suggests, this expectation seems to be unfounded.

Standard parameter settings were used in both simulations (run up to iteration

4500) with the exception of β = 0 and the fact that on the left-hand side the speed-

change interval was 1 while on the right it was 10. As the figure indicates, increasing

the speed-change interval does not seem to lead to any significant change regarding

performance curves.

The difficulties faced by the development of SCAPE networks in environments

with sparse features is not really a disappointing result, if one remembers that

natural images are actually replete with features of different hues and levels of

saturation and brightness. Therefore one might say that sparse environments are

unrealistic and are only of theoretical interest. Furthermore it is a well known fact

164

Univ
ers

ity
 of

 M
ala

ya

that many cognitive systems in biological organisms can not develop to their full

potential in impoverished environments. Although the link between impoverished

and sparse environments is to some degree indirect, it is strong enough to further

support the conclusion that sparse environments are somewhat unrealistic.

9.4.3 False Correspondences

Another important characteristic of an image which can have a great impact on

the development of SCAPE networks is the repeatability of features. The problem

with repeating features16 is that they produce false correspondences and the prob-

lem with false correspondences is that they mislead the developmental process by

allowing false synaptic-pairs to be learnt along with true synaptic-pairs, thus leading

to greedy amalgams.

The synthetic image generator uses the “percent repeating” parameter to control

the proportion of repeating features in generated images. If feature-percentage is

50% and if percent-repeating is 20% and if the total number of pixels in the image

is p, then the number of features is 0.5 · p, the total number of repeating features

is 0.2(0.5 · p) and the total number of non-repeating features is 0.8(0.5 · p). The

repeating features (with a single brightness value) are randomly layed out as with

the non-repeating features.

When the window radius is one (i.e. a window with 9 inputs), feature percentage

is 150% and the percent repeating parameter is set to 20% the average probability

of a true correspondence (PTC) is approximately 0.7. If on the other, for the same

window radius and feature sparsity, the percent repeating parameter is set to 30%

then the average PTC is approximately 0.53.

Figure 9.7 shows how a relatively large proportion of false correspondences can

still lead to acceptable development. The fixation, T-Coverage and C-Coverage

curves in both figures represent averages from 20 simluation runs. Standard param-

eter settings (Table 9.1) were used with the exception of the speed-change interval

which was set to 5, β which was set to 2 and, of course, the percent-repeating param-

16An image consisting of a single hue, saturation and brightness, has the largest number of
repeating features amongst images with the same dimensions.

165

Univ
ers

ity
 of

 M
ala

ya

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100
PTC ≈ 0.7

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

(a) PTC ≈ 0.7

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

70

80

90

100
PTC ≈ 0.53

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

(b) PTC ≈ 0.53

Figure 9.7: The effect of different probabilities of true correspondences.

eter. In both cases, the simulations were programmed to stop at a fixation percent-

age of 90%. Unsurprisingly, the left-hand case (i.e. larger PTC) converged faster

than the right-hand case. In both cases, T-Coverage reached the 100% level. The

main victim of low PTCs, as in the sparsity experiments, seems to be C-Coverage

as illustrated in the right-hand side graph.

One interesting problem that is evident in the low PTC case is that if vote-nodes

develop at different rates, the faster nodes, eventually start to steal activity from

the slower, eventually impeding further progress from the latter and thus ultimately

leading to the formation of deprived nodes. Faster nodes are capable of stealing ac-

tivity mainly because of false correspondences. A transformation might be new (i.e.

it might not yet be represented by any vote-node) thus increasing the probability

of a new vote node being recruited, but if many nodes are already developed, then

the false correspondences that come with the new transformation (due to repeating

features), will tend to activate one of the older/faster nodes.

Again, as in the case of sparsity, the issue of false correspondences is not as

critical as one might initially suspect, since natural images in most circumstances,

specially when analyzed at local scales, tend to have quite high levels of PTC.

166

Univ
ers

ity
 of

 M
ala

ya

�� ! "#$%&#!' ()*+, $-'�'.%&#!'/0#. 12345
0 1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

M
e
a
n
 P

T
C

Window Radius vs. Mean PTC

Figure 9.8: A natural image and its PTC-filtered version.

9.4.4 Natural Images

In the previous two sections it was argued that SCAPE development in sparse

and/or low-PTC environments was more of a theoretical question and that in prac-

tice, natural images were densely packed with features that rarely repeated at local

scales. In the current subsection this argument will be verified.

The middle image of Fig. 9.8 depicts a PTC-filtered version of the image on

the left. A PTC-filtered image is obtained essentially by moving a window over a

source image, and for each location computing the PTC of the image-patch relative

to itself. A window of radius one was used in Fig. 9.8 where the maximum PTC

obtained was 1 (represented as white) and the minimum was 0.1 (represented as

black). Intermediate PTCs are represented by intermediates greyscale values. Upon

immediate inspection of the PTC-filtered image one can conclude that on average

the PTC level is significantly close to 1. The graph on the right of Fig. 9.8 illustrates

the mean PTCs and standard deviations for the same source image but with different

window radii. As one can see, the larger the window radius the smaller the mean

PTC and standard deviation become.

The crucial question is then: can SCAPE networks develop adequately using

natural images such as the one in Fig. 9.8? Figure 9.9 illustrates performance

curves averaged from 20 runs, using the standard parameters in Table 9.1 with

the exception of β = 2. The simulations were allowed to run up to a fixation

percentage of 95%. Not only does the network seem capable of developing properly,

this development appears to be better than what results from using non-sparse

and large-PTC synthetic images (compare with the left-hand side of Fig. 9.5),

167

Univ
ers

ity
 of

 M
ala

ya

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

100
SCAPED Performance

Iteration

P
er

ce
nt

ag
e

Fixation
T−Coverage
C−Coverage

Figure 9.9: SCAPED performance on a natural image.

i.e: convergence is faster, and C-Coverage seems to be closer to 100%. This is

most probably due to the fact that synthetic images with 150% features can still

have some transparent pixels, and are therefore not completely non-sparse, due to

the fact that features are placed randomly and blindly (i.e. without checking the

contents of new random positions).

9.5 Rigid Transformations

Up to now we have dealt with SCAPE development in the context of translation

estimation. As has been mentioned before, the problem of estimating translations

from single correspondences is constrained. How does SCAPE development fare

when confronted with an unconstrained problem? One significant difference about

trying to learn unconstrained transformations is that any one correspondence needs

to be represented in more than one vote node (vote manifolds). This creates cer-

tain difficulties that were not present in the translation estimation case, and thus

calls for some modifications of the basic algorithm. For simplicity sake we chose

rigid transformations for the unconstrained problem, i.e: translation and rotation

combinations.

168

Univ
ers

ity
 of

 M
ala

ya

9.5.1 Algorithm

As already mentioned, unconstrained problems require the learning of manifolds,

which in turn calls for some modifications to our main algorithm. Three modifica-

tions were applied to Algo. 9:

1. A dynamic-threshold was introduced thus enabling the existence of multiple

winners: nodes whose activities are larger than or equal to the threshold are

considered winners. The threshold is computed at each iteration by multiply-

ing a threshold factor (e.g. 0.5) by the strongest activity.

2. Rule R2 in Algo. 9 was dropped since it conflicts with the formation of vote

manifolds, i.e: it conflicts with the representation of the same correspondence

in different nodes. So, in this case, rule R1 of Algo. 9 is applied to non-winners

while rules R3 and R4 of Algo. 9 are applied to winners (as computed from

the dynamic threshold).

3. The neural trace was eliminated since, one might argue that, the more complex

a transformation is the less likely it is to persist in time, thus calling for the

need to experiment with extreme conditions, e.g: no neural trace and/or a

speed-change interval of 1.

9.5.2 Rotation

Before proceeding with rigid transformations per se, it might be useful to verify

the behavior of our modified algorithm (from this point onwards referred to as

Algo. 9–Dyn) when confronted with the problem of learning rotations (a constrained

problem). To simplify matters further we have sampled four rotation angles, i.e: 0◦,

+90◦, −90◦ and 180◦.

Figure 9.10 illustrates four vote nodes progressing through four developmental

stages. Each stage depicts the four vote nodes and the correspondences represented

by their synaptic-pairs. Initially correspondences are random, but gradually, and

culminating in iteration 4396, correspondences start to cluster in nodes in such a way

that each node represents a different rotation. The environment for this experiment

169

Univ
ers

ity
 of

 M
ala

ya

6789:7;<=>?

6789:7;<=@AB 6789:7;<=>ACB

6789:7;<=D@EB

V1
 V2

V3
 V4

V1 (-90o) V2 (+90o)

V3 (0o) V4 (+180o)

V1 (-90o) V2 (+90o)

V3 (0o) V4 (+180o)

V1 (-90o) V2 (+90o)

V3 (0o) V4 (+180o)

Figure 9.10: The development of rotation estimators.

consisted of the image in Fig. 9.8 and the parameters were set as follows: window

radius = 3, speed-change interval = 3, number of votes = 3, maximum fixation =

5, minimum fixation = -1, elimination fixation = -1, α = 0.3, β = 3, elimination

interval = 10, number of correspondences per node = 60 and threshold-factor = 0.9.

9.5.3 Translation and Rotation

To test Algo. 9–Dyn on a simplified unconstrained problem we chose the follow-

ing transformation sets: Tx ∈ [−1, 0, +1], Ty ∈ [−1, 0, +1] and θ ∈ [0◦, 180◦], which

total 32 × 2 = 18 different transformation combinations. Although we have simpli-

fied the problem by greatly sub-sampling the ranges of translations and rotations

used, the nature of the problem is the same, i.e: a complex “manifold” has to be

learnt.

Figure 9.11 illustrates the 18 vote nodes at two different developmental stages.

By iteration 10329 the network has learnt all of the transformation combinations.

170

Univ
ers

ity
 of

 M
ala

ya

Notice that a title has been given to each vote-node which includes a reference to

its transformation in the format (Ty, Tx, θ), where theta is given in radians. The

environment for this experiment, as before, consisted of the image in Fig. 9.8 and

the parameters were set as follows: window radius = 2, speed-change interval = 3,

number of votes = 18, maximum fixation = 5, minimum fixation = -1, elimination

fixation = -1, α = 0.1, β = 1, elimination interval = 10, number of correspondences

per node = 30 and threshold-factor = 0.9999.

Although Fig. 9.11 depicts a successful development it is important to point out

that Algo. 9–Dyn represents merely the beginning of the effort to find biologically

plausible mechanisms for the development of SCAPE networks in the context of

unconstrained problems. The main problem encountered by the algorithm, specially

when confronted with more complex transformations, consists of differential rates

of development. If some nodes develop faster than others, then the former are quite

likely to steal activation from the remaining slower nodes (due to vote manifolds)

thus impeding further development of the latter and eventually turning them into

deprived nodes. One might think that decreasing the threshold-factor would counter-

act this effect by allowing a broader range of winners: this increases the probability

of slow nodes retaining activation and thus of increasing relevant fixation levels.

However, this is a double-edged sword since decreasing the threshold-factor increases

the probability of the formation of vote unions, which in this context, is undesirable.

One might argue that we have proved that it is possible, in principle, to develop

SCAPE networks that can solve unconstrained problems using biological constraints.

However, obstacles remain (probably mainly due to differential rates of development)

that need to be addressed in order to scale the algorithms to larger and more realistic

problems.

Preliminary experiments designed to overcome some of the problems posed by

unconstrained transformations have shown that one of the main causes behind dif-

ferential rates of development and incomplete SCAPE development is the existence

of repeated synaptic-pairs (i.e. nodes that exhibit multiple copies of the same cor-

respondence detector). Several simulations were run, wherein synaptic-pairs were

171

Univ
ers

ity
 of

 M
ala

ya

FGHIJGKLMNOPQ

FGHIJGKLMRSTNQ

V1 V2 V3 V4 V5

V6 V7 V8 V9 V10

V11 V12 V13 V14 V15

V16 V17 V18

V1 (0,+1,π) V2 (+1,0,0) V3 (0,0,0) V4 (-1,+1,π) V5 (-1,0,π)

V6 (+1,-1,0) V7 (-1,0,0) V8 (+1,+1,π) V9 (0,+1,0) V10 (-1,-1,π)

V11 (0,-1,π) V12 (+1,0,π) V13 (0,0,π) V14 (-1,-1,0) V15 (+1,-1,π)

V16 (+1,+1,0) V17 (0,-1,0) V18 (-1,+1,0)

Figure 9.11: The development of estimators for rigid transformations.

172

Univ
ers

ity
 of

 M
ala

ya

forced to be unrepeating in the same node, and which demonstrated significant im-

provements of SCAPE development in the unconstrained case. Note that in this

chapter, we have unfairly assumed a somewhat “dumb” developmental process in

the sense that axons grow in random directions, whilst the role of guidance is rele-

gated almost exclusively to visual experience. In reality, the developmental processes

that form biological neural systems are extremely complex and rich. For example,

there is ample evidence that the positional specificity of axons underlying many

topographic maps is a result of rich chemospecific mechanisms where source and

target neurons are labeled to a considerable degree (see Brown et al. 2001). One

axon guidance mechanism, which is useful in our context, is repulsion. If axons can

specifically repulse other axons originating from the same source node (and thus

the same feature position), then there is a biological developmental mechanism by

which correspondence detectors can be forced to not repeat in the same node. Fu-

ture work will clarify the computational limits of this advantage and should expand

the biological evidence supporting non-repeatability of correspondence detectors in

the same node. Recent findings, for example, have shown that activity-dependent

competition amongst axons can regulate (and thus indirectly guide) the growth of

axons even before the formation of synapses (see Hua et al. 2005).

9.6 Probabilistic considerations

Since transformations occur randomly and synaptic pairs are formed randomly,

and since SCAPE development depends crucially on the right synaptic-pair exist-

ing at the right time, we are dealing with a probabilistic problem. One question

one might ask, which provides some understanding of the general shape of the fix-

ation percentage curve (see for example Fig. 9.3) is: given a certain number of

synaptic-pairs (regardless of the number of vote nodes) and given a particular range

of transformations, what is the probability that at least one of the random synaptic-

pairs matches the random transformation? Assuming constrained problems, in the

case where there is no sparsity the probability is defined by:

173

Univ
ers

ity
 of

 M
ala

ya

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of At Least One Match

Number of Synaptic Pairs

P
ro

ba
bi

lit
y

T = 10
T = 20
T = 30
T = 40
T = 50
T = 60
T = 70

Figure 9.12: At least one match probabilities.

P (match) = 1 −
(

t − 1

t

)s

(9.1)

where t represents the range of transformations that can occur and s represents

the number of synaptic-pairs available (refer to section B.3.1 in Appendix B for a

proof/explanation). Figure 9.12 depicts various curves representing different ranges

of transformations for numbers of synaptic-pairs varying between 1 and 150.

In the case where there is the added factor of sparse features, the probability is

defined by:

P (match) = 1 −
(

t − f

t

)s

(9.2)

where t and s are as in Eq. 9.1 and f refers to the probability of a feature

occurring (refer to section B.3.1 in Appendix B for a proof/explanation).

Note that these equations cannot fully explain the dynamics of SCAPE devel-

opment since there are other factors such as fixation levels, elimination intervals

and so on, which play crucial roles. However, the equations do give an idea of how

the numbers of synaptic-pairs and transformations affect the speed of convergence.

For example, it should not be surprising that the closer a network gets to conver-

gence (larger fixation percentages), the slower it proceeds since it has fewer free

synaptic-pairs to work with.

174

Univ
ers

ity
 of

 M
ala

ya

9.7 Structurally Optimal Development

Although it has been demonstrated that SCAPE networks can develop obeying

core biological constraints, nothing has been said about the structural organization

of the resulting networks. We have argued that, proving that SCAPE networks

can develop, provides further support for their biological plausibility. We have also

argued that since biological architectures tend to be structurally optimal in that they

minimize wiring-length, SCAPE networks in biological systems are also likely to be

structurally optimized. Therefore, to make the developmental argument that much

stronger we should be capable of answering the following question affirmatively: can

networks develop not only the functionality of SCAPE but also, and simultaneously,

a structurally optimal architecture? This is a big question, one to which a lot of

time could be dedicated, therefore, we will aim to tackle it as briefly and essentially

as possible, much like a proof of concept.

One of the design principles of structurally optimal SCAPE networks, that

emerged again and again in our experiments (see Chapter 7), was that of topo-

graphical organization. Therefore, the question of the previous paragraph will be

henceforth simplified to: can networks develop SCAPE functionality and simulta-

neously organize topographically? The answer, as will be shown, is affirmative.

A simple way in which this can be implemented to some degree is by using what

might be termed a “trace neighborhood”. In a trace neighborhood, the winning

neuron “generates” a neural trace for itself and for its neighboring neurons. This

might be achieved for instance by having excitatory connections to neighboring

neurons. Apart from the trace neighborhood, we also modified Algos. 9 and 10 to

include a dynamic threshold as in Section 9.5. Furthermore, the window motion was

changed so that it reflected a gradually varying force, which parallels most types

of motions which can be observed in natural conditions. Both the gradual speed

changes and the trace neighborhood conspire to making neighboring nodes repre-

sent neighboring transformations. Of course this is not a perfect solution, since the

neighbor of a neighbor might be twice removed from the the first node, whilst it’s

transformation can be one step removed from the first node’s transformation. Nev-

175

Univ
ers

ity
 of

 M
ala

ya

UVWXYZ[V\]̂UVWXYZ[V\]_UVWXYZ[V\]̀UVWXYZ[V\]a

UVWXYZ[V\]̂UVWXYZ[V\]_UVWXYZ[V\]̀UVWXYZ[V\]a
bcdefcgchijgklm

nop
lefcgchijgklm

Figure 9.13: The development of SCAPE networks with a degree of topography.

ertheless, a considerable degree of topography emerges, specially when compared to

a non-topographical development (without a trace neighborhood). The four network

configurations on the top half of Fig. 9.13 represent non-topographical development,

whilst the four configurations on the bottom half represent topographical develop-

ment. The emergent topography is evident in the following facts: 1) functional

nodes tend to clump together rather than be scattered (the white nodes are not

representing any transformation), 2) there is a vague clustering of nodes based on

colour (e.g. greener nodes to one side and redder nodes to the other side), where

colour represents a transformation (the greenness of a node is proportional to the

non-negativeness of its Tx representation while the redness of a node is proportional

to the non-negativeness of its Ty representation).

The following parameters were used in the development of the networks in the

top-half of Fig. 9.13: window radius = 1, maximum fixation = 10, minimum fixation

= -1, elimination fixation = -1, elimination interval = 10, number of votes = 25,

α = 0.5, β = 4, synaptic-pairs per node = 30, dynamic-threshold factor = 0.999999,

maximum trace = 6 and trace neighborhood radius = 0. All parameters for the

bottom-half networks were the same except for the trace neighborhood radius, which

was set to one.

Clearly, much work remains to be done in order to allow the development of

SCAPE networks that fully exploit structural optimization, but hopefully, some

useful first steps have been made here.

In this chapter developmental (or formational) algorithms for the generation of

SCAPE architectures were investigated. Certain plausible physiological elements

176

Univ
ers

ity
 of

 M
ala

ya

were proposed, e.g: fixation levels. The effects of feature sparsity and false corre-

spondences were investigated through the use of synthetic patterns. Development in

the context of real patterns was also demonstrated. Initial experiments attempting

to combine developmental and structural optimization goals were conducted. In the

following chapter we conclude the thesis by, among other topics, discussing several

issues such as direct evidence and generalizations of SCAPE.

177

Univ
ers

ity
 of

 M
ala

ya

Chapter 10

Discussion

False facts are highly injurious to the progress of science, for they often
endure long; but false views, if supported by some evidence, do little
harm, for every one takes a salutary pleasure in proving their falseness.

– Charles Darwin

10.1 Summary

This thesis began with the question of pose estimation. More specifically, it

chose to investigate how biological neural systems (e.g. the human brain) might

solve the problem of pose estimation. In a possibly unconventional way, it chose to

do this by investigating not only biological (e.g. Computational Neuroscience) but

also artificial (e.g. Computer Vision) and theoretical (e.g. Point Pattern Matching)

domains, in search of the most neurally plausible approach, which turned out to be

based on correspondences and voting, and gradually building an argument towards

the biological domain. The thesis’ structure followed an argument of accumulative

consistency and functional refinement. Four levels of abstraction were followed in

a gradual, stepwise fashion, i.e: computational, algorithmic, implementational and

formational.

After fleshing out the correspondence and vote-based approach, certain accuracy

issues were investigated, which confirmed the robustness and suitability of the al-

gorithms for pose estimation in real environments. Subsequently, the embodiment

of the algorithms in artificial neural architectures was investigated. The straight-

178

Univ
ers

ity
 of

 M
ala

ya

forward translation of the algorithms into neural architectures confirmed our initial

prediction of their neural implementability. The resulting architectures were further

analyzed and in particular structurally optimal configurations were found for them.

The resemblance of some of the resulting architectures to topographic organizations

found in biological neural systems, produced further consistency evidence for our

main argument. Additional biological parallels were subsequently discussed, apart

from recent Neuroscientific findings, which suggest that the fundamental computa-

tional element supporting the approach (i.e. conjunctions) is implemented at the

level of dendrites, greatly strengthening the biological plausibility of the approach.

Although the accuracy, efficiency, structural optimality and implementability of the

architectures helped our argument, it was still necessary to ask whether such ar-

chitectures could actually be “made” by biological systems (i.e. whether neural

development could generate the architectures). The final element of our argument

investigated this question and found that indeed, experience-dependent development

can lead to the emergence of accurate and structurally-efficient pose-estimating ar-

chitectures based on correspondence-voting.

In so far that multiple separate consistencies increase the probability of the

veracity of some hypothesized fact, our main objective was achieved, i.e: suggesting,

arguing for and refining a biologically plausible approach for pose estimation.

10.2 Strengths and Weaknesses of Correspondence

Distributions

Probably one of the main advantages of using correspondence distributions for

pose estimation, apart from their accuracy and robustness (e.g. clutter and occlu-

sions), is their computational efficiency in parallel architectures. If one excludes the

stages of feature extraction and vote sharpening, the actual estimation process takes

a single computational step. The resulting architectures also exhibit the property

of graceful degradation.1 Another great advantage is the simplicity of the approach,

1If several correspondence detectors are destroyed, SCAPE should still estimate transformations
quite accurately, much in the same way as when there are missing features.

179

Univ
ers

ity
 of

 M
ala

ya

which facilitates its analysis and extension. Moreover, and critically to the motiva-

tion underlying this thesis, is the neural implementability and biological plausibility

of correspondence distributions. Part of the biological plausibility is derived from

the fact that the architectures have the ability to autonomously emerge from the

interaction between local Hebbian-like mechanisms and dynamic visual information.

Another great advantage of the approach pertains to its modularity, e.g: new salient

measures and local invariant features can be “plugged in” independently of the sub-

sequent pose estimation step. Lastly, correspondence distributions are not restricted

to the problem of pose estimation: the approach is quite general and applicable to

other domains, as will be explored in some detail below.

One of the main disadvantages of correspondence distributions, in the context

of pose estimation, stems from the usual resolution issues of classical Hough-based

methods. Having said this, given a certain target level of accuracy, it is not hard

to find a voting resolution which is not too expensive and satisfies the desired accu-

racy.2 Probably the main disadvantage of the approach lies in its expensiveness: in

serial computers it is temporally expensive, while in parallel computers (e.g. neural

networks) it is spatially expensive. We will discuss the issue of expensiveness in

greater length in section 10.4.

10.3 Direct Evidence

10.3.1 Multicolored Labeling

Recent neurohistological methods (see Gan et al. 2000 and Grutzendler et al.

2003) might provide the means to prove/disprove the hypothesis that some biologi-

cal neural systems use correspondence distributions for solving the pose estimation

problem. In these methods, multiply colored dyes3 are applied to neural tissue via

particle-mediated ballistic delivery, fully staining neurons in a Golgi-like manner.

The fact that multiple neurons can be simultaneously labeled with different colors,

2Note that relatively recent extensions to the classical Hough Transform, such as the Hierarchical
or Adaptive Hough Transforms, deal with the resolution problem quite effectively.

3Lipophilic dyes such as long chain dialkyl carbocyanines, e.g: DiO, DiI, and DiD.

180

Univ
ers

ity
 of

 M
ala

ya

Map A

Inter-map conjunction

Map B

Yellow
 D

ye

R
ed

 D
ye

Figure 10.1: Visualizing inter-map conjunctions without positional information.

provides the opportunity to observe different aspects of neural interconnectedness,

e.g: if one neuron is stained green and another one is stained red, one might find else-

where, a green synapse adjacent to a red synapse, which by itself, starts to provide

valuable structural and functional information regarding underlying circuits.

If it is possible to identify and target two neuronal maps, and apply differently

colored labels to them, then it should be possible to deduce some of the computa-

tions taking place between them by observing the colors and placements of synapses

at their target locations. If many adjacent synapses exhibit different colors, this

strengthens one’s confidence that correspondences are being represented. See Fig.

10.1 for a simplified illustration of the method.

Although the setup depicted in Fig. 10.1 is already useful for proving/disproving

the fact that two maps interact at a higher computational stage, it is not sufficient

to prove/disprove the fact that correspondences are being represented for the sake of

computing poses. In order to do this it is necessary to label each map “position” (a

neuron or a set of neurons) with a different color and then observe the color patterns

of target synaptic-pairs. Figure 10.2 presents a simplified diagram of the method,

applied to 1D maps. By observing the color combinations at synaptic-pairs it is

possible to deduce what types of correspondences are being represented and thus

what poses are being computed, e.g: all synaptic-pairs at the zero translation node

exhibit same-color combinations. Note also the simplified depiction of a gene-gun

delivering dye coated particles to map nodes.

The setup in Fig. 10.2 is quite attractive, and should not only prove/disprove

181

Univ
ers

ity
 of

 M
ala

ya

-1 0 +1 -1 0 +1

-2 -1 0 +2+1

qrst qrsu

vwrxyzr{|}x~y{|�r{|}x�x|{y

�������

������������������

Figure 10.2: Visualizing inter-map conjunctions with positional information.

the use of correspondence distributions by biological neural systems, but should

also elucidate other interesting inter-map computations. Unfortunately, there are

still some practical obstacles that must be overcome before this is possible: 1) so

far only about 7 distinct colors have been applied unambiguously4 and 2) although

labeling of dendritic structures is very good, labeling of axonal arbors at great

distances has been less successful. Although, the task of investigating inter-map

computations will be greatly facilitated by the time multicolor labeling techniques

have reached full maturity, it is already possible to gain useful insights with the

current techniques. Multiple slices, stained with different (carefully chosen) patterns

of dyes, with subsequent analysis, should provide the required insight5.

10.3.2 Birds and Humans

Several experiments (see Hollard & Delius 1982 for example) have suggested that

humans do not possess full rotational invariance when it comes to object recognition.

More specifically, the speed of recognition seems to depend linearly on the amount

of rotation applied to a target object. This implies that humans use some form of

time-consuming (and iterative) mental-rotation in order to recognize rotated objects.

This conflicts with approaches based on correspondence distributions, since their

4This is mainly due to the fact that color intensity decreases as the dye spreads away from the
point of particle contact.

5For example, staining maps in one slice with horizontal dye bands, and maps in another
slice with vertical dye bands, should provide some 2D combinatorial insight, in spite of the one-
dimensional dye application.

182

Univ
ers

ity
 of

 M
ala

ya

estimates are computed in one-step, regardless of the amount of rotation. Thus,

cognitive psychological evidence seems to speak against correspondence distributions

for pose estimation in humans. This is not the end of the story however, seeing

that many other biological neural systems remain to be investigated. The avian

visual system, for example, seems to be a good candidate for having correspondence

distributions implementing pose estimation. In (Hollard & Delius, 1982) it was

shown that pigeons seem to exhibit pure rotational invariance: their recognition

reaction times were independent of the degree of object rotation. Although the

problem might be solved via invariant features alone, the fact that the behavior is

consistent with the one-step computation of correspondence distributions, should

prompt us to look further.

Why should birds and humans solve the rotational problem differently? A great

part of a bird’s visual experience is based on the horizontal plane (bird’s eye view),

while humans perceive mostly in the vertical plane. Thus patterns in different

orientations are a common feature of avian visual experience, thus placing ecological

pressure on the selection of systems which exhibit efficient processing in this regards.

The fact that birds need to orient themselves in response to their interpretations of

the underlying landscape indicates that the same pressure might have been applied

to pose estimation. Interestingly, recent findings (see Kohler et al. 2005) indicate

that Rhesus monkeys, whose environment exhibits a combination of vertical and

horizontal perspectives (arboreal and terrestrial), can manifest both mental-rotation

and rotation-invariance strategies.

10.4 Expensiveness

The expensiveness of correspondence distributions might explain why some species

(possibly humans) might not use them for computing poses. Special requirements

(e.g. rapid flight maneuvers) might justify the costs in the avian case. Significant

cost is probably one of the main disadvantages of correspondence distributions, and

maybe the reason why they seem to be absent from the neuroscientific literature.

Before proceeding, it might be useful to note that while cost is a difficulty,

183

Univ
ers

ity
 of

 M
ala

ya

it most certainly does not represent an impediment. In the business world, it is

a well known adage, that you need to spend money to make money. In nature,

many innovations involve significant increases in energy requirements, e.g.: warm-

bloodedness, complex brains, and others. While for humans maybe the benefits

of correspondence distributions do not outweigh the costs (thus allowing them to

survive with an iterative mental-rotation approach), it is possible that for birds, the

opposite is true.

For species that require some sort of compromise6 between cost on one side, and

speed and accuracy on the other, various solutions involving correspondence distri-

butions are still possible, some of which were discussed in Chapter 7. For a more

extreme solution, and using translation estimation as an example, the number of

votes can be decreased so dramatically, that the only information preserved deter-

mines directionality alone (i.e. left, right, up, down and stationary). To push things

further, the number of correspondence detectors can also be decreased, e.g: only

horizontal and vertical correspondences might be represented.7 See Fig. 10.3 for

a diagrammatic representation of this solution: note that only the correspondences

of the center source-map node have been depicted for the sake of clarity. Apart

from the reduction in the number of vote-nodes (in this solution only 6 nodes are

required), there are significant savings in regards to the number of correspondence

detectors: instead of the usual n2 detectors, where n represents the number of map

nodes (for one feature-type), only 2n
√

n correspondence detectors are required. Al-

though, these measures clearly compromise accuracy, input-clouds are still provided

with useful information, which permit them to gradually approach and eventually

latch onto objects significantly faster than a random guesser or an exhaustive search.

10.5 Artificial and Biological Synergy

Although this thesis emanates from an interdisciplinary effort, lying probably

somewhere in between Neural Computation (more artificial) and Computational

6In general, as the cost decreases, so does the accuracy. The speed decreases as a consequence
of accuracy loss, since several iterations are required to compensate for estimation errors.

7Salient features with no discriminatory labels should be more useful in this context.

184

Univ
ers

ity
 of

 M
ala

ya

���

���

������ ��� �¡

¢£

¢¤

Figure 10.3: A very cheap translation estimator.

Neuroscience (more biological), there has been a distinct directionality in the ar-

gument and the motivation. The argument, motivation and end-results have been

more biological, whereas the foundation has included artificial elements. In order to

complete the cycle, it is necessary to point the arrow back to the artificial domain,

i.e: what can the biological findings contribute towards artificial pose estimators?8

The following list condenses some of the main elements of retribution to the artificial

domain:

1. Economical architectural designs. One possible contribution to the artificial

domain comes directly from the structural optimization experiments in Chap-

ter 7. By trying to predict the configurations of SCAPE architectures in

biological systems, several design principles emerged, which can be applied to

the design of artificial circuits, seeing that they (the principles) lead to more

economical configurations.

2. Neurocomputing hardware. Another possible contribution to the artificial do-

main comes from the observation that the evolution of technology (i.e. hard-

ware) follows perceived needs. Hopefully, this thesis will have shown the ad-

vantages of a fully parallel pose estimating architecture (i.e. maximal speed),

and will usher the development of novel neural computers that may implement

correspondence distributions.

8Note that chapters 5 and 6 provided some direct contributions to the artificial domain in the
form of novel accuracy analyses and artificial neural architectures.

185

Univ
ers

ity
 of

 M
ala

ya

3. Learning, development and manufacture. Other contributions come from the

experiments on developmental algorithms in Chapter 9. The development

of pose-estimators is useful in the artificial domain for various reasons: 1)

more efficient codes/representations can be learnt, 2) new undefined transfor-

mations can be learnt prior to analysis and 3) estimators can adapt to new

environments exhibiting new transformation statistics. Furthermore, and tak-

ing a speculative/futuristic stance, the experiments might impinge directly on

neural nanotechnology (see Silva 2006 for an interesting review on the appli-

cations of nanotechnology to neuroscience), or more specifically on experience

dependent self-assembly of nano-components.

4. Cognitive Neuroscience. One contribution which stems directly from Cognitive

Neuroscience, concerns the use of parallel processing streams in primate vi-

sual systems (see for example Van Essen & Anderson 1990). Two such streams

which are relevant to the current thesis, and which provide useful insights for

artificial systems, are the dorsal and ventral streams. Both streams originate

in the primary visual cortex (area V1), while the dorsal stream terminates

in the inferior temporal cortex (area IT) and the ventral stream terminates

in the posterior parietal cortex (area PP) (see Ungerleider & Mishkin 1982).

The ventral stream is more concerned with invariant object recognition, while

information regarding coordinates and transformations seems to be more pre-

served and computed in the dorsal stream. Both streams are likely to exhibit

significant amounts of interaction, e.g: pose estimation allows for normaliza-

tion which allows for recognition, while invariant recognition allows for rele-

vant patterns to be brought forth for matching/comparison purposes and thus

pose estimation. This approach of concurrently and interactively computing

invariances and variant properties is likely to be useful in the artificial domain.

5. Visual functions. If the neural correspondence-distribution hypothesis is con-

firmed, that is, if some biological neural systems do indeed use correspondence

distributions for computing poses, then further research into how they use

them, might bring valuable suggestions for artificial applications. For exam-

186

Univ
ers

ity
 of

 M
ala

ya

ple, it might be found that correspondence detectors are actually more complex

than a simple conjunction between two adjacent excitatory synapses. Some

detectors might incorporate inhibitory synapses for implementing vote weights

(e.g. the votes of rarer features should be heavier since they generate fewer false

correspondences), or other strategies for greater robustness. Since the greatest

disadvantage of correspondence distributions lies in their cost, it is possible

that evolution has discovered more efficient correspondence-based solutions

which nevertheless preserve accuracy and speed: this would be invaluable for

artificial applications.

10.6 Generalizations

As already mentioned, one of the strengths of correspondence based approaches

lies in their generality: correspondence distributions can solve different visual prob-

lems (e.g. pose estimation and shape representation) and they can be applied to

different modalities (e.g. vision and audition). This generality is subsumed under

the abbreviation CDA (correspondence distribution analysis), which distinguishes

solutions along a representational dimension (e.g. cardinality and properties of cor-

respondences, number of maps involved, connectivity patterns, and others) and a

computational dimension (e.g. vote accumulation, sharpening, and others). Further-

more, computations involving correspondences constitute a particular instance of the

more general class of “inter-map computations”, and thus provide a stepping-stone

into this wider area, which we believe forms a significant part of the computations

carried out by biological neural systems. In the following sub-sections we provide

several examples that support the generality of correspondence distributions.

10.6.1 Visual Applications

This thesis was dedicated to a single visual problem: pose estimation. Hopefully,

it was clearly demonstrated how correspondence distributions can elegantly solve the

problem.

Motion analysis is another crucial problem where correspondence distributions

187

Univ
ers

ity
 of

 M
ala

ya

can be useful. One plausible implementation requires almost no modifications rel-

ative to the original pose estimation solution. Since a source and a target pattern

are required for the detection of correspondences, all that is required in this context,

is two patterns from two time-steps: current and previous. The transformation re-

lating patterns from two nearby time steps provides useful motion information, e.g:

“something is moving to the right and getting closer”.

Correspondence distributions should also be applicable to stereopsis, or depth

perception. Human depth perception involves the integration of multiple cues, e.g:

object size, shadows, motion and others. Disparity is another powerful cue, which is

directly relevant to our argument. Because our eyes are at a certain distance from

each other, objects project onto their retinas with some displacement relative to each

other. This displacement is called disparity. One useful aspect of this phenomenon,

is that disparity is inversely proportional to the distance of an object. Thus, if the

disparity of object A is greater than that of object B, this means object A is nearer.

In order to be able to compute disparity however, the brain needs to known which

features of one retina match (or correspond) to which features on the other retina.

This has been termed the correspondence problem, and is where correspondence

distributions should be useful. Figure 10.4 depicts a simplified and plausible solution

for the one-dimensional case. For the sake of clarity, only the correspondences of

one map node have been represented. Note that the map features can be of any

complexity level. The competition amongst depth nodes should be driven by the

goal to maximize the number of neighboring positions with the same depth.

Shape representation is another domain where correspondence distributions can

be useful. This application has been investigated to some depth in (Osada et al.,

2002) for example, and has been referred to as “shape distributions”. In this context,

shapes are characterized initially by undiscriminated but salient features. A shape

distribution is generated by collecting all the correspondences of a shape relative

to itself, and histogramming one or more statistics of the resulting distribution.

One simple/effective statistic consists of the length of the correspondences, which if

normalized, provides a scale and rotation invariant shape representation, useful for

188

Univ
ers

ity
 of

 M
ala

ya

¥¦§̈©ª«

¬­®̈̄©ª«

°±²
³́

µ¶·­̈­¶̧

¹º»¼

¹º»¼

½¾¿ÀÁÂÃÂÃ¾Ä

Å¦«̈̄Æ¶Ç¦·

©ª«Æ¶Ç¦·

Figure 10.4: A possible correspondence-based architecture for stereopsis.

AND AND

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

L=3

L=
7

z1 z2 Èzi
i

Lengths

Distribution of Lengths

S
al

ie
nc

y
M

ap

Salient/Active Feature

Figure 10.5: Artificial neural architecture for a shape distribution.

classification. Refer to Fig. 10.5 for a simple demonstration of the approach.

Correspondence distributions can also be applied to the computation of cen-

troids and symmetry-axes. Assuming that shapes are defined by a sufficient number

of features/points, a simple neural implementation of the approach could involve

correspondences9 and voting: see Fig. 10.6 for two 1D examples. Each pair of ac-

tive features forms a conjunction at a second map, at a position representing the

centroid of that pair. The centroid which receives the most votes represents the

actual centroid of the shape and can be isolated by a fast competitive process. Note

that, for the sake of clarity, only those conjunctions and connections involved in

9Note that we are dealing here with intra-map rather than inter-map correspondences.

189

Univ
ers

ity
 of

 M
ala

ya

ÉÉÉÉÉ

ÊËÊ

ÉÉÉ

ÊÊÌ

ÉÉ

Ê

ÍÎÏÐÑÒÓÔÕÖ×

ØÏ×ÙÐÕÖ×

ÚÛÜÝÞÜßàáÛÜ

ÍÎÏÐÑÒÓÔÕÖ×

ØÏ×ÙÐÕÖ×

Figure 10.6: A neural architecture for finding the centroid of a shape.

the computation are represented.10 A correspondence and voting strategy similar

to the one used in Fig. 10.6 can be used for the computation of symmetry axes,

where instead of each correspondence voting for a centroid it casts a vote in a 2D

parametric space representing lines11 (or symmetry axes).

Other visual functions to which correspondence distributions can be applied

include: salience detection, edge detection, corner/junction detection and texture

analysis.

10.6.2 Modalities

Not only can correspondence distributions be applied to different visual prob-

lems, but they should also be capable of solving problems in other sensory modali-

ties, e.g: auditory, somatosensory, olfactory, and others. Consider for example the

problem of sound localization. In one simplified solution/architecture (see Jeffress

1948 and Fig. 10.7), axons from both ears project with different lengths to target

localization neurons, forming conjunctions. The different axonal lengths, lead to

different signal arrival times, which lead to different conjunctions (or localization

nodes) firing for different positions of the sound-source (due to different ear arrival

times), e.g: sound C in Fig. 10.7 will activate a node towards the left, while sound

A will activate a node towards the right. Although this model is most probably

over-simplified (see Campbell & King 2004), it demonstrates a plausible underly-

10Note that for the case where features are sparse, a recurrent solution, where the results of each
iteration are fed back into the centroid network via multiplicative conjunctions, should eventually
converge onto the centroid.

11Each candidate symmetry axis is perpendicular to the line defined by the pair of points under
consideration and intersects this line at the midpoint between the defining points.

190

Univ
ers

ity
 of

 M
ala

ya

âãä

âãä

åæçèéåæçêëìí

îæëïðñòïóñæèôæéìí

õö÷øùúû üýþÿøùúû

�ö��ûýøý��������øý��

Figure 10.7: A simple architecture for sound localization.

ing mechanism for sound-localization, based on conjunctions, which are much like

feature correspondences.

10.6.3 Inter-Map Computations

Computations involving correspondence distributions are part of the larger class

of inter-map computations. A whole discipline can probably be dedicated to this

class of computations. Sub-classes can be differentiated along several dimensions: 1)

the number of maps involved, 2) the types of dendritic computations being performed

(e.g. conjunctions, disjunctions, negations, and others), 3) connectivity patterns, 4)

temporal dynamics, and others.

10.7 Future Work

Infinite questions can be asked, hypotheses proposed, experiments conducted,

but time is limited, so we will focus here on those directions which we believe are

the most fruitful:

1. Interaction between invariant object recognition and pose estimation. For

the case when pose estimation is performed in reference to a static object

suddenly impinging on the retina, object recognition is hypothesized to be

a critical process interacting with the pose estimation process. A simplified

191

Univ
ers

ity
 of

 M
ala

ya

view might break down the process into the following steps: 1) perform invari-

ant object recognition, 2) activate/generate a canonical representation to be

compared with an abstract representation of the external object12, 3) find cor-

respondences and estimate the pose.13 Currently, the process through which

the stored and the external patterns are activated/generated and “placed side

by side” is somewhat of a mystery and deserves serious consideration.

2. Invariant local features. Clearly, the quality of the local invariant feature be-

ing used can influence the accuracy of the resulting pose estimation. It should

be useful to explore more complex hierarchical feature architectures, and in-

vestigate how the different levels may interact with correspondence detection

and pose estimation. It should also be worthwhile to investigate more efficient

feature coding strategies. For example, how might correspondence detection

be implemented among colour features represented by broadly tuned neuron

triplets (e.g. reg, green and blue wavelength neurons). These considerations

prompt the following questions, among others: 1) can biological neural systems

compute conjunctions in relation to graded potentials (e.g. 0.4⊗ 0.4 → 1 and

0.4⊗ 0.7 → 0) and 2) can dendritic branches efficiently compute conjunctions

with more than two arguments (e.g. 1 ⊗ 1 ⊗ 0 → 0).

3. Direct evidence. An obvious choice for future research involves the search for

direct evidence for/against correspondence distributions (for pose estimation

or other functions) in biological neural systems. New neurohistological tech-

niques, such as multicolored labeling, seem to offer the best chances of finding

the necessary direct evidence. We suggest that the neurohistological search

for correspondence distributions should proceed in three stages, based on the

relative locations of the maps involved and presented here in increasing order

of difficulty: 1) inter-modal distributions (e.g. between visual and auditory

maps), 2) intra-modal but inter-functional distributions (e.g. between visual

12The process of invariant recognition is likely to produce an abstract/simplified description
of the external object, which is compatible with the stored representation. In other words, the
recognition process intrinsically simplifies/normalizes the representation of the perceived object so
that correspondences can be found.

13These steps are likely to be more parallel and interactive than here implied.

192

Univ
ers

ity
 of

 M
ala

ya

form and visual depth maps) and 3) intra-modal and intra-functional distri-

butions (e.g. between different visual form maps). Cognitive Neuroscience

experiments and Comparative Neuroscience research should also provide a

better understanding of the pose estimation abilities/limitations of different

species.

4. Structural optimization. The structural optimization experiments in Chapter

7 all shared the common goal of minimizing the total wiring length. Differ-

ent goals and new constraints should result in different structures, some of

which might concur more with biological observations. Research into new

goals and constraints is useful, not only from the perspective of the resulting

architectures, but also because biological neural systems might be using other

structural optimization goals apart from wiring length minimization. It should

also be interesting to investigate a reverse-optimization procedure, by which

an architectural configuration is first given (e.g. orientation pinwheels), and

then inter-map connection patterns (involving two or more maps) are searched

for those that can lead to (by structural optimization) the architecture.

5. Developmental algorithms. Another area which deserves further research in-

volves developmental algorithms which simultaneously satisfy structural opti-

mization goals. Ideally, developmental algorithms should be capable of gen-

erating architectures which not only estimate poses accurately, but also use

efficient codes and structurally optimal configurations. Regarding pure devel-

opmental algorithms, it should also be interesting to experiment with different

degrees of experiential input on one side, and genetic influence on the other.

In order to more easily experiment with coding-efficiency issues (e.g. popu-

lations of broadly-tuned transformation voting nodes), it should be useful to

relax the constraint regarding the number of correspondence detectors avail-

able (by allowing each neuron to represent every possible correspondence) and

adopt some of the learning principles used in artificial self-organizing maps

(see Kohonen 1982).

193

Univ
ers

ity
 of

 M
ala

ya

6. Temporal factors. A crucial element, deliberately omitted from this thesis, per-

tains to dynamics. It should be interesting to investigate how correspondence

distribution architectures behave, when embodying temporal factors such as

spike timings, refractory periods, differential firing rates, and others.

7. Generalizations. Finally, it should be very advantageous to explore several

generalizations of the approach, i.e: the various modalities and applications of

correspondence distributions. One such example would be the investigation of

the development of “shape” distribution architectures in the auditory domain.

10.8 Conclusion

Our original objectives outlined in Chapter 1 can be encapsulated in a single

goal: to find a biologically plausible neural solution for pose estimation. Through-

out the thesis’ chapters, we have gradually built an argument supporting the fact

that correspondence distributions satisfy this goal. We showed that the approach

was accurate and robust. Simple neural architectures were demonstrated that could

embody the approach. These architectures were shown to satisfy several biologi-

cal constraints, and were structurally optimized revealing certain design principles

commonly observed in biological neural systems. Recent biological findings support-

ing the computation of conjunctions at the level of dendritic branches lent further

support to the argument. Furthermore, it was shown that a developmental model,

based on simple local rules and visual experience, was sufficient for generating the

architectures in an unsupervised manner. All these threads of consistency were

woven, by gradually traversing four levels of abstraction: computational, algorith-

mic, implementational and formational. Based on these threads, we conclude that,

pose estimation neural architectures based on distributions of correspondences are

biologically plausible and thus warrant further investigation.

It is our hope that direct evidence of correspondence distributions will eventually

be uncovered, confirming the thesis’ hypothesis, and possibly revealing unexpected

variations of the approach. We hope that the ubiquitousness and generality (or

194

Univ
ers

ity
 of

 M
ala

ya

applicability) of conjunctions, in the context of inter and intra-map computations,

will be confirmed. These discoveries might shed further light on the complexity

of computations occurring within dendritic trees and other neural components (e.g.

axonic structures). We also hope that by expanding our knowledge on how biological

systems solve visual problems such as pose estimation, we will be in a better position

to contribute further to the artificial domain thus, for example, allowing better

robots and automatic video surveillance systems to be built.

195

Univ
ers

ity
 of

 M
ala

ya

Bibliography

Allman, J. (1999), Evolving Brains, W.H. Freeman & Company.

Anderson, C., Van Essen, D. & Olshausen, B. (2004), Encylopedia of Attention,
MIT Press, chapter Directed visual attention and the dynamic control of infor-
mation flow.

Arathorn, D. (2002), Map-Seeking Circuits in Visual Cognition. A Computational
Mechanism for Biological and Machine Vision, Standford University Press.

Arathorn, D. (2004), Computation in the higher visual cortices: Map-seeking
circuit theory and application to machine vision, in ‘Proceedings of the 33rd
Applied Imagery Pattern Recognition Workshop’.

Baird, H. (1985), Model-Based Image Matching Using Location, MIT Press, Cam-
bridge, MA.

Ballard, D. (1981), ‘Generalizing the hough transform to detect arbitrary shapes’,
Pattern Recognition 13(2), 111–122.

Barlow, H., Blakemore, C. & Pettigrew, J. (1967), ‘The neural mechanism of
binocular depth discrimination’, Journal of Physiology 193, 327342.

Basak, J. & Pal, S. (1999), ‘Hough transform network’, Electronics Letters - IEE.

Biederman, I. (1985), ‘Human image understanding: Recent research and a the-
ory’, Computer Vision, Graphics, Image Proc. 32(1), 2973.

Binzegger, T., Douglas, R. & Martin, K. (2004), ‘A quantitative map of the circuit
of cat primary visual cortex’, The Journal of Neuroscience 24(39), 8441 8453.

Bishop, C. (1995), Neural Networks for Pattern Recognition, Oxford University
Press.

Breuel, T. (1992a), Fast recognition using adaptive subdivisions of transformation
space, in ‘Proceedings. 1992 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No.92CH3168-2)’, pp. 445–51.

Breuel, T. (1992b), Geometric Aspects of Visual Object Recognition, PhD thesis,
Massachusetts Institute of Technology.

Brown, M., Keynes, R. & Lumsden, A. (2001), The Developing Brain, Oxford
University Press.

Brunelli, R. & Mich, O. (1999), On the use of histograms for image retrieval, in
‘International Conference on Multimedia Computing and Systems’.

213

Univ
ers

ity
 of

 M
ala

ya

Buxhoeveden, D. & Casanova, M. (2002), ‘The minicolumn hypothesis in neuro-
science’, Brain 125, 935–951.

Campbell, R. & King, A. (2004), ‘Auditory neuroscience: A time for coincidence?’,
Current Biology 14, 886–888.

Carpenter, G., Grossberg, S. & Lesher, G. (1998), ‘The what-and-where filter: A
spatial mapping neural network for object recognition and image understanding’,
Computer Vision and Image Understanding 69(1), 1–22.

Cass, T. (1993), Polynomial-time geometric matching for object recognition, PhD
thesis, Massachusetts Institute of Technology.

Chelazzi, L. (1998), ‘Serial attention mechanisms in visual search: A critical look
at the evidence’, Psychological Research 62, 195–219.

Chelazzi, L., Miller, E., Duncan, J. & Desimone, R. (1993), ‘A neural basis for
visual search in inferior temporal cortex’, Nature (London) 363, 345–347.

Cheung, K., Yeung, D. & Chin, R. (2002), ‘On deformable models for visual
pattern recognition’, Pattern Recognition 35, 15071526.

Chklovskii, D., Mel, B. & Svoboda, K. (2004), ‘Cortical rewiring and information
storage’, Nature 431, 782–788.

Chklovskii, D., Schikorski, T. & Stevens, C. (2002), ‘Wiring optimization in cor-
tical circuits’, Neuron 34, 341–347.

Churchland, P. & Sejnowski, T. (1992), The Computational Brain, MIT Press.

Cohen-Cory, S. (2002), ‘The developing synapse: Construction and modulation
of synaptic structures and circuits’, Science 298, 770–776.

Contreras, D. (2004), ‘Electrophysiological classes of neocortical neurons’, Neural
Networks 17, 633–46.

Coss, R. & Perkel, D. (1985), ‘The function of dendritic spines: a review of
theoretical issues’, Behavioral and Neural Biology 44(2), 151–185.

De Haan, M. & Johnson, M. (2003), Encyclopedia of Cognitive Science, Macmillan
Publishers, chapter Neuropsychological development, pp. 347–353.

DeFelipe, J., Marco, P., Busturia, I. & Merchn-Prez, A. (1999), ‘Estimation of
the number of synapses in the cerebral cortex: Methodological considerations’,
Cerebral Cortex 9, 722–732.

Durbin, R. & Willshaw, D. (1987), ‘An analogue approach to the travelling sales-
man problem using an elastic net method’, Nature 326, 689–691.

Egmont-Peterson, M., de Ridder, D. & Handels, H. (2002), ‘Image processing
with neural networks – a review’, Pattern Recognition 35(10), 2279–2301.

Espinosa, C. & Perkowski, M. (1991), Hierarchical hough transform based on
pyramidal architecture, in ‘Northcon ’91’.

214

Univ
ers

ity
 of

 M
ala

ya

Fischler, A. & Bolles, R. (1981), ‘Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography’,
Commun. ACM 24(6), 381–395.

Földiák, P. (1991), ‘Learning invariance from transformation sequences’, Neural
Computation 3(2), 194–200.

Fruchterman, T. & Reingold, E. (1991), ‘Graph drawing by force-directed place-
ment’, Software – Practice and Experience 21(1 1), 1129–1164.

Gan, W., Grutzendler, J., Wong, W., Wong, R. & Lichtman, J. (2000), ‘Multi-
color “diolistic” labeling of the nervous system using lipophilic dye combinations’,
Neuron 27, 219–225.

Gazzaniga, M., Ivry, R. & Mangun, G. (2002), Cognitive Neuroscience, Second
Edition, W. W. Norton & Company.

Gierer, A. & Muller, C. (1995), ‘Development of layers, maps and modules’, Cur-
rent Opinion in Neurobiology 5, 91–97.

Giles, C. & Maxwell, T. (1987), ‘Learning, invariance, and generalization in high-
order neural networks’, Applied Optics 26(23), 4972–4978.

Gold, S., Rangarajan, A., Lu, C., Pappu, S. & Mjolsness, E. (1998), ‘New al-
gorithms for 2d and 3d point matching: Pose estimation and correspondence’,
Pattern Recognition 31(8), 1019–1031.

Goodhill, G. & Carreira-Perpinan, M. (2002), Encyclopedia Of Cognitive Science,
Macmillan, chapter Cortical Columns, pp. 845–851.

Goodhill, G. & Willshaw, D. (1990), ‘Application of the elastic net algorithm to
the formation of ocular dominance’, Network: Computation in Neural Systems
1(1), 41–59.

Goodhill, G., Finch, S. & Sejnowski, T. (1995), Optimizing cortical mappings, in
‘NIPS’.

Grutzendler, J., Tsai, J. & Gan, W. (2003), ‘Rapid labeling of neuronal popula-
tions by ballistic delivery of fluorescent dyes’, Methods 30(1), 79–85.

Hansen, T. & Neumann, H. (2004), ‘Neural mechanisms for the robust represen-
tation of junctions’, Neural Computation 16(5), 1013 – 1037.

Hartley, R. & Zisserman, A. (2004), Multiple View Geometry in Computer Vision,
second edn, Cambridge University Press.

Haykin, S. (1999), Neural Networks: a Comprehensive Foundation, Prentice Hall
International.

Hebb, D. (1949), The organization of behavior: A neuropsychological theory, New
York: Wiley.

Hecker, Y. & Bolle, R. (1994), ‘On geometric hashing and the generalized hough
transform’, IEEE Transactions on Systems, Man, and Cybernetics 24(9), 1328–
1338.

215

Univ
ers

ity
 of

 M
ala

ya

Hevner, R., Daza, R., Rubenstein, J., Stunnenberg, H., Olavarria, J. & Englund,
C. (2003), ‘Beyond laminar fate: Toward a molecular classification of cortical
projection/pyramidal neurons’, Developmental Neuroscience 25, 139151.

Hollard, V. & Delius, J. (1982), ‘Rotational invariance in visual pattern recogni-
tion by pigeons and humans’, Science 218, 804–806.

Hong, J. & Tan, X. (1988), A new approach to point pattern matching, in ‘Proc.
9th International Conference on Pattern Recognition’.

Hopf, F., Waters, J., Mehta, S. & Smith, S. (2002), ‘Stability and plasticity of
developing synapses in hippocampal neuronal cultures’, The Journal of Neuro-
science 22(3), 775781.

Hough, P. (1959), Machine analysis of bubble chamber pictures, in ‘Proc. Inter-
national Conference on High Energy Accelerators and Instrumentation’.

Hough, P. (1962), A method and means for recognizing complex patterns, Tech-
nical report, US Patent 3,069,654.

Hua, J., Smear, M., Baier, H. & Smith, S. (2005), ‘Regulation of axon growth in
vivo by activity-based competition’, Nature 434, 1022–1026.

Huang, J., Chen, C., Wang, W. & Lee, J. (1995), ‘A general mean-based iterative
winner-take-all neural network’, IEEE Transactions on Neural Networks 6(1), 14–
24.

Hubel, D. & Wiesel, T. (1968), ‘Receptive fields and functional architecture of
monkey striate cortex’, J. Physiol. (Lond.) 195, 215–243.

Illingworth, J. & Kittler, J. (1987), ‘The adaptive hough transform’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 9(5), 690 – 698.

Jain, A., Y., Z. & Dubuisson-Jolly, M. (1998), ‘Deformable template models: A
review’, Signal Processing 71, 109129.

Jeffress, L. (1948), ‘A place theory of sound localization’, J. Comp. Physiol. Psy-
chol. 41, 35–39.

Johansson, C. & Lansner, A. (2004), Towards cortex sized artificial nervous sys-
tems, in ‘Knowledge-Based Intelligent Information & Engineering Systems’.

Jurie, F. & Schmid, C. (2004), Scale-invariant shape features for recognition of
object categories, in ‘International Conference on Computer Vision & Pattern
Recognition’.

Kalinichenko, S. & Okhotin, V. (2005), ‘Unipolar brush cells a new type of exci-
tatory interneuron in the cerebellar cortex and cochlear nuclei of the brainstem’,
Neuroscience and Behavioral Physiology 35(1), 21–36.

Kandel, E., Schwartz, J. & Jessell, T. (2000), Principles of Neural Science,
McGraw-Hill Medical.

Kohler, C., Hoffmann, K., Dehnhardt, G. & Mauck, B. (2005), ‘Mental rota-
tion and rotational invariance in the rhesus monkey (macaca mulatta)’, Brain,
Behaviour and Evolution 66(3), 158–166.

216

Univ
ers

ity
 of

 M
ala

ya

Kohonen, T. (1982), ‘Self-organized formation of topologically correct feature
maps’, Biological Cybernetics 43, 59–69.

Koutroumbas, K. (2004), ‘Recurrent algorithms for selecting the maximum input’,
Neural Processing Letters 20(3), 179–197.

Lamdan, Y. & Wolfson, H. (1988), Geometric hashing: A general and efficient
model-based recognition scheme, in ‘Proc. International Conference of Computer
Vision’.

Levitt, J., Kiper, D. & Movshon, J. (1994), ‘Receptive fields and functional ar-
chitecture of macaque v2’, Journal of Neurophysiology 71, 2517–2542.

Li, H., Lavin, M. & Master, R. (1986), ‘Fast hough transform: A hierarchical
approach’, Computer Vision, Graphics, and Image Processing 36(2-3), 139–161.

London, M. & Häusser, M. (2005), ‘Dendritic computation’, Annu. Rev. Neurosci.
28, 503–532.

Lueschow, A., Miller, E. & Desimone, R. (1994), ‘Inferior temporal mechanisms
for invariant object recognition’, Cerebral Cortex 4, 523–531.

Lynch, G. & Baudry, M. (1984), ‘The biochemistry of memory: A new and specific
hypothesis’, Science 224, 1057–1063.

Majani, E., Erlanson, R. & Abu-Mostafa, Y. (1989), On the K-winners-take-all-
network, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Marr, D. (1982), Vision: A computational investigation into the human represen-
tation and processing of visual information, San Francisco: W.H. Freeman.

Mastronarde, D. (1987), ‘Two classes of single-input x-cells in cat lateral genic-
ulate nucleus. i. receptive-field properties and classification of cells’, Journal of
Neurophysiology 57(2), 357–380.

McCulloch, W. & Pitts, W. (1943), ‘A logical calculus of ideas immanent in
nervous activity’, Bulletin of Mathematical Biophysics 5, 115–133.

McInerney, T. & Terzopoulos, D. (1996), ‘Deformable models in medical image
analysis: A survey’, Medical Image Analysis 1(2), 91–108.

Mikami, A., Newsome, W. & Wurtz, R. (1986), ‘Motion selectivity in macaque
visual cortex. i. mechanisms of direction and speed selectivity in extrastriate area
mt’, Journal of Neurophysiology 55, 1308–1327.

Mikolajczyk, K. & Schmid, C. (2004), ‘Scale and affine invariant interest point
detectors’, International Journal of Computer Vision 60(1), 63–86.

Miller, K. (1994), ‘Models of activity-dependent neural development’, Prog. Brain
Res. 102, 303–18.

Mountcastle, V. (1997), ‘The columnar organization of the neocortex’, Brain
120, 701–722.

Müller, H. & Krummenacher, J. (2006), ‘Visual search and selective attention’,
Visual Cognition 14(4-8), 389–410.

217

Univ
ers

ity
 of

 M
ala

ya

Nene, S., Nayar, S. & Murase, H. (1996), Columbia object image library: Coil-100.
technical report cucs-006-96, Technical report, Department of Computer Science,
Columbia University.

Olshausen, B. & Field, D. (2005), ‘How close are we to understanding v1?’, Neural
Computation 17, 1665–1699.

Olshausen, B., Anderson, C. & Van Essen, D. (1993), ‘A neurobiological model
of visual attention and invariant pattern recognition based on dynamic routing of
information’, The Journal of Neuroscience 13(11), 4700–4719.

Olson, C. (2001), ‘A general method for geometric feature matching and model
extraction’, International Journal of Computer Vision 45(1), 39–53.

Osada, R., Funkhouser, T., Chazelle, B. & Dobkin, D. (2002), ‘Shape distribu-
tions’, ACM Transactions on Graphics 21(4), 807–832.

Palmer, S. (1999), Vision Science, Photons to Phenomenology, MIT Press.

Pasupathy, A. & Connor, C. (2001), ‘Shape representation in area v4: Position
specific tuning for boundary conformation’, J. Neurophysiol. 86(5), 25052519.

Poirazi, P. & Mel, B. (2001), ‘Impact of active dendrites and structural plasticity
on the memory capacity of neural tissue’, Neuron 29, 779–796.

Poirazi, P., Brannon, T. & Mel, B. (2003), ‘Pyramidal neuron as two-layer neural
network’, Neuron 37, 989999.

Polsky, A., Mel, B. & Schiller, J. (2004), ‘Computational subunits in thin dendrites
of pyramidal cells’, Nature Neuroscience.

Rao, R. & Ballard, D. (1997), Localized receptive fields may mediate
transformation-invariant recognition in the visual cortex, Technical Report 97.2,
National Resource Laboratory for the Study of Brain and Behavior, Department
of Computer Science, University of Rochester.

Rolls, E. & Deco, G. (2001), Computational Neuroscience of Vision, Oxford Uni-
versity Press.

Schmid, C., Dorko, G., Lazebnik, S., Mikolajczyk, K. & Ponce, J. (2005), Hand-
book of Pattern Recognition and Computer Vision, 3rd edition, World Scientific
Publishing, chapter Pattern Recognition with Local Invariant Features.

Schulz, R. & Reggia, J. (2005), ‘Mirror symmetric topographic maps can arise
from activity-dependent synaptic changes’, Neural Computation 17, 1059–1083.

Scott, E., Reuter, J. & Luo, L. (2003), ‘Dendritic development of drosophila
high order visual system neurons is independent of sensory experience’, BMC
Neuroscience.

Sebe, N., Tian, Q., Loupias, E., Lew, M. & Huang, T. (2003), ‘Evaluation of
salient point techniques’, Image and Vision Computing 21(13-14), 1087–1095.

Shepherd, G. (2003), The Synaptic Organization of the Brain, Oxford University
Press.

218

Univ
ers

ity
 of

 M
ala

ya

Silva, G. (2006), ‘Neuroscience nanotechnology: Progress, opportunities, and chal-
lenges’, Nature Reviews Neuroscience 7, 65–74.

Swiniarski, R. & Skowron, A. (2003), ‘Rough set methods in feature selection and
recognition’, Pattern Recognition Letters 24(6), 833–849.

Tian, T. & Shah, M. (1997), ‘Recovering 3d motion of multiple objects using
adaptive hough transform’, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19(10), 1178–1183.

Troyer, T., Krukowski, A., Priebe, N. & Miller, K. (1998), ‘Contrast-
invariant orientation tuning in cat visual cortex: Thalamocortical input tun-
ing and correlation-based intracortical connectivity’, The Journal of Neuroscience
18(15), 59085927.

Tuytelaars, T. andVan Gool, L. (1999), Content-based image retrieval based on
local affinely invariant regions., in ‘Third International Conference on Visual In-
formation Systems’, pp. 493–500.

Ullman, S. (1996), High-level Vision: Object Recognition and Visual Cognition,
MIT Press.

Ullman, S. & Koch, C. (1999), Encyclopedia of Neuroscience (2nd Ed.), Elsevier
Science, chapter Selective visual attention, pp. 149–151.

Ungerleider, L. & Haxby, J. (1994), ‘What and where in the human brain’, Current
Opinion in Neurobiology 4, 157–165.

Ungerleider, L. & Mishkin, M. (1982), Analysis of visual behavior, Cambridge,
MA: MIT Press, chapter Two cortical visual systems, pp. 549–586.

Van Essen, D. & Anderson, C. (1990), An introduction to neural and elec-
tronic networks, Academic Press Professional, Inc., chapter Information process-
ing strategies and pathways in the primate retina and visual cortex, pp. 43–72.

Wandell, B. (1995), Foundations of Vision, Sunderland, Massachusetts: Sinauer
Associates, Inc.

Wong, R. (1999), ‘Retinal waves and visual system development’, Annual Review
of Neuroscience 22, 29–47.

Wood, J. (1996), ‘Invariant pattern recognition: a review’, Pattern Recoonition,
29(1), 1–17.

Yena, E. & Smith, A. (2005), ‘Image recognition via deformable templates’, Sta-
tistical Methodology 2, 213225.

Yu, H., Farley, B., Jin, D. & Sur, M. (2005), ‘The coordinated mapping of visual
space and response features in visual cortex’, Neuron 47, 267280.

Yuste, R., Majewska, A., Cash, S. & Denk, W. (1999), ‘Mechanisms of calcium in-
flux into hippocampal spines: Heterogeneity among spines, coincidence detection
by nmda receptors, and optical quantal analysis’, The Journal of Neuroscience
19(6), 1976–1987.

Zeki, S. (1993), A Vision of the Brain, Blackwell Scientific Publications.

219

Univ
ers

ity
 of

 M
ala

ya

