
PC-BASED ATM
NETWORK SIMULATOR

Submitted by

LAI WEEI SHAN

WET 97035

Submission Date

25th January 2000

F acuity of Computer Science and
Information Technology,

University of Malaya
1999/2000

Univ
ers

ity
 of

 M
ala

ya

PC-BASED ATM

NETWORK SIMULATOR

LAI WEEI SHAN

WET 97035

Under The Supervision of

MR. LING TECK CHAW

Dissertation submitted in partial fulfillment of the requirements for the
Degree of Bachelor of Information Technology

Faculty of Computer Science And
Information Technology

University of Malaya
1999/2000

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

ABSTRACT

Asynchronous Transfer Mode (A TM) has emerged as a very high-speed transmission

technology. The barrage of technological advancements has continuously enhanced

the network performance. There is an increasing dependence on the network. Thus,

there is a need to accurately predict the impact of network and applications changes

in the dynamic network environment.

The project is divided into two parts:

Part one:

Study the concept of ATM and the important issues regarding it. Various existing

simulators and applications on A TM are studied to plan for an up to date simulator.

Part two:

Develop a PC Based simulator. This is motivated by the importance of an ATM

network simulator and the changing environment in computer world. The simulator

is developed to provide a simulated network management environment of unlimited

scale at a fraction of cost, compared to the expense of testing it out in a real network

environment. With this simulator, further research on ATM can be carried out

smoothly.

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

My utmost gratitude to Mr. Ling Teck Chaw, supervisor of this project. His patience,

guidance and advice throughout the whole development of the project is deeply

appreciated. Special thanks to Mr. Phang Keat Keong for being a considerate and

kind moderator.

I would like to thank my project partners, Ms. Looa Lee Shin and Ms. Toh Kue Chin

for their dedicated work and corporation. They have been a great help and have

shown their generosity in sharing their knowledge.

Last but not least, my deepest appreciation to my family and friends for their

continuous support to complete this project.

II

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

TABLE OF CONTENT

ABSTRACT i
ACKNOWLEDGEMENT ii
TABLE OF CONTENT .. iii
LIST OF TABLES .. vi
LIST OF FIGURES .. X

Chapter 1 INTRODUCTION ... 1
1.I Background I
I.2 Asynchronous Transfer Mode (ATM) 2

I.2.I Information Transfer 2
I.2.2 A TM Cell Identifiers 3
I.2.3 Routing 4
I.2.4 A TM Resources .. 4
I.2.5 Usage Parameter Control (UPC) 4
I.2.6 Flow Control .. 5

I.3 A TM Service Categories ... 5
1.3 .I Constant Bit Rate (CBR) .. 5
1.3 .2 Real-Time Variable Bit Rate (VBRrt) 6
1.3.3 Nonreal-Time Variable Bit Rate (VBRnrt) 7
1.3.4 Specified Bit Rate (UBR) ... 8
1.3.5 Available Bit Rate (ABR) 8

1.4 Quality of Service (QoS) Parameters 9
1.4.1 Cell Loss Ratio (CLR) .. 10
1.4.2 Cell Transfer Delay (CTD) 10
1.4.3 Cell Delay Variation (CDV) 10

1.5 Simulation of ATM Network 12
1.6 Project Motivation 12
1.7 Project Scope 13
1.8 Project Schedule .. 14

Chapter 2 LITERATURE REVIEW 16
2.1 Introduction 16
2.2 Existing Simulators 16

2.2.I Network Simulator (NETSIM) 16
2.2.2 OPNET Simulator 17
2.2.3 Objective Modular Network Testbed in C++ (OMNeT++) 18
2.2.4 Private Network-Network Interface (PNNI) Simulator I8
2.2.5 Data Link Protocol Simulator (DLPsim) .. I9
2.2.6 NIST ATM/HFC Network Simulator. .. 20

2.3 Simulation of A TM Applications .. 2I
2.4 Unix Based Versus Windows Based Platform .. 23

2.4.1 Why Unix Based Simulator. .. . 23
2.4.2 X Window System .. 23
2.4.3 The Changing Environment ... 23
2.4.4 Feasibility of Transformation of Unix Base Simulator to PC Based Simulator24

2.5 Conclusion 25

iii

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

Chapter 3 SYSTEM ANALYSIS AND REQUIREMENTS 26
3.1 Introduction 26
3.2 Analysis of Simulator Program 26

3.2.1 ATM Cell 27
3.2.2 ATM Applications 27
3.2.3 Broadband Terminal Equipment (B-TE) .. 28
3.2.4 Hybrid Fiber Coax (HFC) Network 28
3.2.5 ATM Switch 28
3.2.6 Link 29
3.2.7 Routing 30
3.2.8 Simulation 30

3.3 Flow of Events In The Simulation Program 31
3.3 .1 Main program flow 31
File reading 32
3.3.3 Create a component 33
3.3 .4 Make two components neighbor 34
Create route 35
3.3.6 Reset simulation ... 36
3.3.7 Start simulation 37
3.3.8 Transmission of cells .. 38
3.3.9 File writing (snap file) 39
3.3 .1 0 Data logging- log file 40

3.4 Requirements 41
3.4.1 Inputofsimulation 41
3.4.2 Simulation 41
3.4.3 Output of simulation ... 42
3.4.4 Support inter platform simulation 43
3.4.5 Programming language 43

Chapter 4 SYSTEM DESIGN 45
4.1 Introduction 45
4.2 Techniques Used 45

4.2.1 Modular decomposition 45
4.2.2 Event-oriented decomposition 45

4.3 Overall System Design 46
4.4 Input Design 46
4.5 System Functionality Design ... 48

4.3.1 Cell 48
4.3.2 Route 50
4.3.3 Components .. 50
4.3.4 Parameters 51
4.3.5 Neighbors ... 52
4.3.6 Action routine 53
4.3.7 Events 54
4.3.8 List and queue 58
4.4.1 Log File 59
4.4.2 Snap file 60

Chapter 5 ROGRAM CODING 64

iv

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

Chapter 6 SYSTEM IMPLEMENTATION AND TESTING ... 72
6.1 Introduction ... 72
6.2 Programming ... 72

6.2.1 Main 72
6.2.2 Components .. 73
6.2.3 Program structure and Events ... 73
6.2.4 Miscellaneous 74

6.3 Integration .. 75
6.3 .1 Module integration 75
6.3.2 System integration 75

6.4 Testing ... 76
6.4.1 Unit testing ... 76
6.4.2 Module testing .. 78
6.4.3 Integration testing 79
6.4.4 System testing 80
6.4.5 Performance testing .. 81

Chapter 7 SYSTEM EVALUATION AND CONCLUSION .. 82
7.1 Review Of Goals ... 82
7.2 System Strengths ... 82

7.2.1 Support Multi-platform 82
7.2.2 Designed for ATM Network .. 83
7.2.3 Adding new component or application .. . 83
7.2.4 User friendly GUI ... 84

7.3 Drawbacks And Limitations .. 84
7.3.1 Data analysis tool 84
7.3 .2 Meters ... 84
7.3.3 Unable to simulate identical results .. 85

7.4 Problems Encountered 85
7 .4.1 Integration of project .. 85
7.4.2 Out of virtual memory 85

7.5 Future Enhancements .. 86
7.5.1 Integrate with data analysis tool ... 86
7.5.2 Display meter during simulation .. 86
7.5.3 Identical simulation result .. 86
7.5.4 Parallel simulation 86

7.6 Conclusion 87

REFERENCE 89
APPENDIX A SNAP FILE
APPENDIX B LOG FILE
GLOSSARY .. .

v

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

LIST OF TABLES

Table 1 QoS and usage parameters for A TM Service Categories 11

Table 2 Function of main code files 72

Table 3 Function of component files 73

Table 4 Function of basic files 73

Table 5 Function of miscellaneous files 74

VI

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Fig 1 ATM Cell Structure at NNI (network-network interface)

Fig.2 ATM Cell Structure at UNI (user-network interface)

Fig. 3 CBR

Fig. 4 VBRrt AND VBRnrt

Fig.5 ABR AND UBR

Fig. 6 Flow diagram of Main event

Fig. 7 Flow diagram of file reading

Fig. 8 Flow diagram of create a component

Fig. 9 Flow diagram of make two component neighbor

Fig. 10 Flow diagram of create route

Fig. 11 Flow diagram of reset simulation

Fig. 12 Flow diagram of start simulation

Fig. 13 Flow diagram of cell transmission

Fig. 14 Flow diagram of file writing

Fig. 15 Flow diagram of data logging

Fig. 16 Input design

Fig. 17 Sample sim_log file

Fig. 18 Sample snap file

Fig. 19 Cell structure

Fig. 20 Route creation function

vii

LIST OF FIGURES

3

3

6

7

9

31

32

33

34

35

36

37

38

39

40

47

59

63

64

65

Univ
ers

ity
 of

 M
ala

ya

Fig. 21 Component structure

Fig. 22 Parameter structure

Fig. 23 Neighbour structure

Fig. 24 Create neighbor function (eg. BTE):

Fig. 25 Function of add _neighbor

Fig. 26 Generic action routine and commands for each component

Fig. 27 Switch function in action routine

Fig. 28 Enqueue events function

Fig. 29 List structure

viii

LIST OF FIGURES

65

66

67

68

68

69

70

71

71

Univ
ers

ity
 of

 M
ala

ya

CHAPTER!

INTRODUCTION

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

Chapter 1 INTRODUCTION

Asynchronous Transfer mode (ATM) is emergmg as the pnmary networking

technology for next-generation, multi-media communications. It is designed to

permit telephony, video, and data communications on the same network using

statistical multiplexing to provide bandwidth on demand. ATM protocols are

designed to handle time critical data and more conventional inter-computer data

communications. One most important point in A TM is that it supports quality of

service (QoS) requirements.

This chapter provides a brief concept on ATM, such as the information transfer,

A TM cell identifiers, routing concepts, A TM resources, usage parameter control and

flow control. Next, five service categories and various QoS parameters are looked

into with more detail. Finally, the need of simulation on ATM network is discussed

in short.

1.1 Background

There has been much progress in the transfer of data over networks for the past

decades. At first, data were sent over phone lines using modems. Modifications were

made to allow quicker transfer of limited data to multiple destinations using the

established telephone networks. Then, X.25 evolved with the idea of packet switched

data that could be routed to any location. Speed of data transfer and data file size

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

continues to increase and transfer media changed. Thus, Frame Relay was

introduced. The fiber optic transmission medium such as SONET/SDH was then

used to provide large bandwidth capacity. To overcome the lack of switching

capability, (ATM) was proposed as the switching structure of B-ISDN but has taken

on its own role outside ofB-ISDN [1].

1.2 Asynchronous Transfer Mode (ATM)

1.2.1 Information Transfer

ATM is a fast packet oriented transfer mode based on asynchronous time division

multiplexing and it uses fixed length (53 bytes) cells. Each ATM cell consists of 48

bytes for information field and 5 bytes for header. The header is used to identify cells

belonging to the same virtual channel and thus used in appropriate routing. Cell

sequence integrity is preserved per virtual channel. The information field of ATM

cells is carried transparently through the network. No processing like error control is

performed on it inside the network [2]. ATM Adaptation layers (AAL) are used to

support various services and provide service specific functions . This AAL specific

information is contained in the information field of the A TM cell [3].

2

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I

Fig 1 ATM Cell Structure at NNI (network-network interface)

I
Header:

5 Bytes 1

Data
48Bytes

' I •
······ ····· .. ···

GFC I VPI
I

4bits I 8 bits
I

VCI
16 blls

.... ·····
I PT :cLP: HEC I I I
1Jbils I 1bit I 8bits
I

Fig.2 ATM Cell Structure at UN! (user-network interface)

•

•

•

•

•

•

/. l~=r~
... ···

VPI
12 bits

VPI : Virtual Path Identifier

VCI
16blts

VCI : Virtual Channel Identifier

PTI : Payload Type Identifier

CLP : Cell Loss Priority

HEC : Header Error Control

GFC: Generic Flow Control

1.2.2 ATM Cell Identifiers

Data
48Bytes

·· ····
I I

I PT 1 CLPI HEC I I I
I Jbfls I 1 bft 1 8bfls
I 1

INTRODUCTION

ATM cell identifiers, which are the Virtual Path Identifier, Virtual Channel Identifier

and Payload Type Identifier (PTI), are used to recognize an A TM cell on a physical

transmission medium. VPI and VCI are same for cells belonging to the same virtual

connection on a shared transmission medium.

3

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

1.2.3 Routing

A TM is a connection-oriented mode where the cell header values are assigned during

the connection set up phase and translated when switched from one section to

another. Signaling information and user information are carried on separate virtual

channels. There are two types of connections in routing, the Virtual channel

connection (Vee) and Virtual path connection (VPe). A VPe is an aggregate of

vees. Switching on cells is first done on the VPe and then on the vee.

1.2.4 ATM Resources

A TM is connection-oriented and the establishment of the connections includes the

allocation of a Vel and/or VPI. It also includes the allocation of the required

resources on the user access and inside the network. These resources, expressed in

terms of throughput and quality of service, can be negotiated between user and

network either before the call-set up or during the call.

1.2.5 Usage Parameter Control (UPC)

Excessive reservation of resources by one user may affect traffic for other users.

Thus throughput must be policed at the UNI by UPe function in the network to

ensure that each user maintains the negotiated connection parameters per vee or

VPe between network and subscriber. Traffic parameters that describe the desired

throughput and QOS in the contract have to be monitored in real time at the arrival of

each cell. To enforce the conformance of QoS established, one of this is done at the

arrival of cell across the UNI on each connection:

4

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

1. pass the cell into the network without changing the CLP bit in the cell header

2. change the CLP bit in the cell header to 1 (tagging)

3. discard the cell [4]

1.2. 6 Flow Control

A Generic Flow Control (GFC) mechanism is proposed by CCITT at the User to

Network Interface (UNI) in order to control the flow of traffic on ATM connections

from a terminal to the network. It is supported by GFC field in the ATM cell header.

Two sets of procedures are associated with the GFC field, which are the

Uncontrolled Transmission in point-to-point configurations and Controlled

Transmission in both point-to-point and shared medium configurations.

1.3 ATM Service Categories

ATM service categories are defined to allow flexible access to network resources and

provide the ability to find satisfactory compromise between performance and cost.

Without defining the traffic in A TM into service categories, managing and providing

desired QoS for different applications will be very complex because of the different

delay or loss sensitiveness. Therefor, the ATM Forum Traffic Management

Specification 4.0 has defined five service categories:

1.3.1 Constant Bit Rate (CBR)

Defined as Class A traffic.

5

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

This service category is used for connections needing a continuous static amount of

bandwidth throughout the connection. CBR is characterized by Peak Cell Rate

(PCR).

Quality requirements: constant cell rate, CTD and CDV tightly constrained; low

CLR.

Typical applications: voice and video, including videoconferencing and audio/video

distribution and retrieval (television, distance learning, pay

per-view, video-on-demand, and audio library).

Fig. 3 CBR

CBR uses a static amount of bandwidth continuously throughout the connection.

1.3.2 Real-Time Variable Bit Rate (VBRrt)

Defined as Class B traffic.

This service category supplies tightly constrained delay and delay variation, but not

necessarily a fixed transmission rate. It is characterized by PCR, Sustained Cell Rate

(SCR), and Maximum Burst Size (MBS).

6

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

Quality requirements: variable cell rate, with CTD and CDV are tightly constrained;

a small nonzero random cell loss is possible.

Typical applications: native A TM voice with bandwidth compression and silence

suppressiOn, interactive compressed video, multimedia

communications.

1.3.3 Nonreal-Time Variable Bit Rate (VBRnrt)

Defined as Class C traffic.

This service category is for nonreal-time bursty traffic that reqmres service

guarantees. It is also characterized in terms ofPCR, SCR and MBS.

Quality requirements: variable cell rate, with only CTD are tightly constrained; a

small nonzero random cell loss is possible

Typical applications: critical-response-time transaction processing, (e.g. airline

reservations, banking transactions) and frame relay.

Fig. 4 VBRrt AND VBRnrt

Time

VBRrt and VBRnrt traffic define an SCR (the upper bound ofthe average cell rate), a

PC R, and an MBS.

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1

1.3.4 Specified Bit Rate (UBR)

Defined as Class D traffic.

INTRODUCTION

This service category is also referred to as a best-effort service. It is for nonreal-time and bursty

applications which are tolerant to delay and loss with no QoS gurantees.

Quality requirements: using left-over capacity, no CTD or CDV or CLR constrained.

Typical applications: text, data, and image transfer, email, distributed file services,

and computer process swapping and paging, applications such

as LAN interconnecting and intemetworking which run over

router-based protocols like TCP/IP.

1.3.5 Available Bit Rate (ABR)

Defined as Class D traffic.

This service category provides a Minimum Cell Rate (MCR) with any available

bandwidth. ABR connections are characterized by both a PCR and an MCR, and are

used by applications that can adapt to network feedback. A flow-control mechanism

fairly allocates the available bandwidth among ABR connections.

Quality requirements: using the available capacity of the network and control the

source rate by feedback to minimize CTD, CDV and CLR.

Typical applications: critical data transfer, remote procedure call, distributed file

service.

8

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

Fig. 5 ABR AND UBR

Cells/second

CBR. VBRrr. VBRnrt

Time

ABR traffic is supplied an MCR and any available bandwidth, but UBR traffic does

not define a per-connection negotiated bandwidth.

1.4 Quality of Service (QoS) Parameters

QoS parameters are used to describe the level of service for each connection. It is

first used to characterize the performance of data transmission in terms of reliability,

delay and throughput. QoS requirements are specified by the application while the

QoS guarantee is provided by the system. Six QoS parameters are identified in the

ATM Forum's User-to-Network (UNI) 4.0 specification, for which one or more

performance objectives may be supported by the network. Through the use of

network signaling, three of these describe characteristics of the network and are

measured at the receiver.

9

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

1.4.1 Cell Loss Ratio (CLR)

CLR is the ratio of lost cells to total transmitted cells. It measures the fraction of the

transmitted cells that are not delivered at all or are delivered so late that became

useless as for real-time traffic.

1.4.2 Cell Transfer Delay (CTD)

CTD is the delay time between a cell's first bit transmission at the source and its last

bit entry at the destination. CTD accounts for both node processing and internode

transmission time. Maximum Cell Transfer Delay (Max CTD) and Mean Cell

Transfer Delay (Mean CTD) are used.

1.4.3 Cell Delay Variation (CDV)

CDV, sometimes called cell jitter, is a measure of the inter-cell departure of a given

connection with respect to its inter-cell arrival. While cells may be sent into the

network evenly spaced, a variety of factors may contribute to cell clumping or gaps

in the cell stream. If the network cannot properly control CDV, distortion can occur

for some real-time services such as voice, video, and multimedia applications.

The QoS and Usage parameters for the five service categories are summarized in

Table 1:

10

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

Table 1: QoS and usage parameters for ATM Service Categories

Parameters CBR i rt-VBR nrt-VBR UBR ABR
: '

IPCR and !

Specified specified :specified specified(3) ·specified(4) .
CDVT(5) ! !

:

SCR, MBS, :

~a
I
specified 'specified .~a :In! a

CDVT(5,6) '
:

'

.IMCR(5) n/a ; ~a :~a lv'a specified
I i

··--

!Peak-to-
!unspecified : Specified

'

specified [unspecified unspecified
i

peakCDV
I

- -······

MeanCTD ·unspecified : !Unspecified Specified ~nspecified [unspecified i
I

i
'

i

!Max CTD Specified specified !unspecified unspecified unspecified :
i

CLR(5) Specified(I) ~specified(I) : Specified(1) [unspecified specified(2)

Notes:

1. The CLR may be unspecified for CLP= 1.

2. Minimized for sources that adjust cell flow in response to control information.

3. May not be subject to CAC and UPC procedures.

4. Represents the maximum rate at which the source can send as controlled by the

control information.

5. These parameters are either explicitly or implicitly specified for PVCs or SVCs.

6. Different values of CDVT may be specified for SCR and PCR. [2]

II

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

1.5 Simulation of ATM Network

With the rapid development of high-speed networks, such as ATM, there is a need to

study some of the issues confronting the design of the networks. The performance of

these networks needs to be analyzed. Research has been done for traffic management

and congestion control but the traffic patterns that may prevail in the future networks

are yet to be studied. Besides, even though many A TM switches are offered by

different vendors, little is known about the performance of these switches in real

networking environments. The throughput of different network topologies has to be

tested and analyzed in order to maximize the utilization of resources.

A Network simulator can be used as a tool for ATM network planning or as a tool for

A TM protocol performance analysis. It is useful for modeling network behavior

under different conditions and with different settings for the various network

components. With the use of a simulator, researchers and network planners are able

to analyze networks without the expense of building a real network.

1.6 Project Motivation

This project is to build a PC Based simulator to simulate the ATM networks. The

need to simulate and analyze the ATM network is getting more important as the

evolution is towards high-speed networks. Since very little is known about the

performance of the available A TM switches, they need to be tested to provide

12

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

maximum usage. Simulation is needed to study the queuing delays, throughput and

buffer occupancies at various nodes in the network.

Although there are several simulators available, not all are for the A TM network.

Furthermore, PC Based simulator can hardly be found. Regarding this, a PC Based

simulator is aimed to provide a more interactive environment with graphical user

interface (GUI) which is more user friendly to operate.

1.7 Project Scope

The project starts with the research and study on ATM. The way of information

transfer in A TM is studied to obtain the idea of how the information can be

transferred from one endpoint to the other endpoint through the network. The routing

protocols, bandwidth allocation, usage parameter control and flow control are also

studied to understand the basic concept of A TM networking. Detailed study is done

on the five service categories and QoS so that they can be implemented in the

simulator.

Various available simulators are determined and compared. The advantages and

disadvantages of each simulator are analyzed. This is to determine the basic

requirements of developing a practical simulator. The simulator components needed

for an ATM network, such as the ATM switches, terminal equipment, ATM

13

Univ
ers

ity
 of

 M
ala

ya

CHAPTER l INTRODUCTION

applications and physical links are studied to acquire the idea of how the A TM

simulator is to be built.

The proposed simulator will have the features of:

• Running under Windows platform

• A user friendly graphical user interface (GUI)

• Button click command of simulation functions

• Default parameters for simulator components

• Several predefined networks

• Discrete event schedule

• Integrated data analysis tool

1.8 Project Schedule

Porject schedule is attatched next page

14

Univ
ers

ity
 of

 M
ala

ya

Literature 13-6-99

Review To
14-8-99

System Analysis 15-8-99
To

11-9-99

System Design 12-9-99
To

VI 16-10-99

System 17-10-99

Implementation To
18-12-99

Testing 19-11-99
To

30-1-00

Documentation 19-6-99
To

6-2-00

Jun Jul Aug Sep Oct Nov

I I

D
D

I

I

Dec Jan Feb

I

I

.

n
~
'"0
-l
tTl
:::0

z
~
0
c: n
-l

~

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2

LITERATURE REVIEW

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

Chapter 2 LITERATURE REVIEW

2.1 Introduction

A network simulator is used to study various issues regarding the design of networks,

especially high-speed networks. Performance of these networks can be analyzed.

Furthermore, there is no need to build a real network for research purposes.

A few existing simulators are reviewed to study the usage of each simulator. This is

because different simulator focuses on different issue of simulation and different

field of applications. Applications in an A TM network are determined so that they

can be used to generate all possible traffic. Besides the standard applications, which

are the CBR, VBRrt, VBRnrt, ABR and UBR, there are several other applications

that will be reviewed in this chapter. Survey is also done on Unix and Windows to

study the need and feasibility of developing a PC Based simulator.

2.2 Existing Simulators

2.2.1 Network Simulator (NETSIM)

NETSIM is a discrete event simulation language. It is designed to simulate large

networks that use modem routing techniques, such as worm-hole and

virtual-cut-through routing, networks that use store-and-forward routing can also be

simulated. NETSIM is capable of simulating a full parallel system that is driven by

the execution of real programs. Besides, it can be used in a stand-alone mode where

16

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

packets are generated randomly and sent through the network. It is implemented with

a set of data structures and subroutines in the C programming language [5].

Advantages and Disadvantages

./ Support parallel simulation

./ Modular characteristic to allow specification of different network structures by

connecting network building blocks

x No graphical user interface (GUI) to provide an interactive modeling

environment

x The traffic management function and QoS is not available

2.2.2 OPNET Simulator

OPNET is a very well designed and built commercial simulation software, which

was developed from MIL3 Inc. OPNET is designed to enable full-detail modeling

where every tool is given to implement nonstandard protocols or behavior. It

provides graphical object-oriented editors for defining topologies and architectures.

This simulator operates at three hierarchical levels to describe and control the

network. These are network levels where network nodes can be connected by means

of unidirectional or bi-directional communication links and bus link, the node level

and the process level that operates on the packets as they go through the processor

and queue modules of the higher node level [3] , [7].

Advantages and Disadvantages

./ Able to simulate large networks that use modem routing techniques

17

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2

../ Graphical model editor to create different topologies easily

x It does not support parallel execution

LITERATURE REVIEW

x Only fixed (unparametrized) topologies can be created and it lacks efficient

support for building large, regular topologies

x No graphical user interface (GUI) for an interactive modeling environment

2.2.3 Objective Modular Network Testbed in C++ (OMNeT++)

OMNeT ++ is a discrete event simulation tool developed on Linux but is usable on

most Unix systems, on Windows NT and even DOS. It is primarily designed to

simulate computer networks, multi-processors and other distributed systems [8] .

Advantages and Disadvantages

../ Support parallel simulation

../ Interactive (GUI) execution environment, and provides more open interfaces

../ Written in full flexibility of C++ and built-in object-oriented mechanisms

x Command based simulator

x Lack of model library for standard protocols, applications and devices

2.2.4 Private Network-Network Interface (PNNI) Simulator

This was developed at the National Institute of Standards and Technology (NIST)

to study the performance of the PNNI routing protocols in a multi-node network

environment. It provides an interactive modeling environment with a user interface.

User can enter various physical network topologies and PNNI parameters. It is

18

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

written m C language. The codes are the user interface and the PNNI routing

protocols [9].

Advantages and Disadvantages

./ Interactive modeling environment

./ Support various physical network topologies and PNNI parameters

x The user interface is only in text form and not a graphical user interface (GUI)

x Only PNNI routing protocols can be studied

x The messages can only be sent between the A TM switch and Physical Links

2.2.5 Data Link Protocol Simulator (DLPsim)

This simulator allows data link protocols to be coded and tested. It allows a single

protocol implementation to be 'plugged' in at each end of a simulated

communications channel. DLPsim checks for common protocol errors such as

delivering packets out of order, or losing packets. With a Motif library, it provides a

graphical front end that allows some visualization of the activity on the simulated

channel. The protocol implementation can be exercised by the simulator, with

simulated communications traffic, transmission errors, and time outs. The simulator

checks that the protocol does not lose or duplicate any packets, and gives an

indication of the throughput of the protocol. It is running under X windows or a

traditional ' glass teletype' terminal [1 0].

19

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

Advantages and Disadvantages

../ User interface with a pull down menu bar at the top of the main window with

buttons

x The protocol is written in a slightly restricted C.

x The simulator does not recognize the full generality of the C language. The

preprocessor is purely lexical in its operation and the full complexities of C

declarations are beyond the scope of the preprocessor

2.2.6 NIST ATMIHFC Network Simulator

The ATMIHFC Network Simulator was developed at the NIST. It is based on a

network simulator that supports discrete event simulation techniques with graphical

user interface (GUI) representation capabilities, which was developed at MIT1. It

provides a flexible testbed for studying and evaluating the performance of A TM and

HFC networks. User is allowed to create different network topologies, set the

parameters of component operation, and save/load the different simulated

configurations. While the simulation is running, various instantaneous performance

measures can be displayed in graphical/text form on the screen or saved to files for

subsequent analysis. Besides, the simulator also has an event manager, I/0 routines

and various tools that can be used to build components. It is developed in both C

language and the X Window System running on a UNIX platform [11].

Advantages and Disadvantages

../ Support discrete event simulation techniques

../ Performance measures can be displayed instantaneously

20

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

../ Various ATM network component available for sending messages to one another

../ Graphic user interface (GUI) representation capabilities

x Too many parameters are needed

x Specific steps have to be followed when building a network topology

2.3 Simulation of ATM Applications

ATM application, as a component required in the simulator, is used to emulate the

behavior of an application at the end-point of a link. It can be considered as a traffic

generator where the traffic types may be a Constant Bit Rate (CBR), Variable Bit

Rate (VBR), Available Bit Rate (ABR) or Unspecified Bit Rate (UBR). Traffic

source is generated at one of the three priority levels:

1. CBRIVBR level - which is the highest priority traffic

2. ABR level

3. UBR level

- cells are sent on the transmission bandwidth that is available

after the higher level traffic has been sent

- which is the lowest priority traffic

For CCBRIVBR and ABR classes, there are three types of traffic generators:

1. Constant - where the user specifies the bit rate and cells will be generated at the

specified rate.

2. Poisson -this type of traffic will have an ON-OFF source. Both the burst

21

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2

3. Batch

LITERATURE REVIEW

period (ON) and the silence period (OFF) are drawn from an

exponential distribution. Mean burst length, mean interval between

bursts and the bit rate are specified.

- mean number of cells generated during a burst and the mean interval

between bursts are specified.

Other ATM Applications include the TCP/IP application, which can be used with

either the ABR or UBR services. A statistic shows that more than 85% of networks

are running TCP/IP, Transmission Control Protocol and Internet Protocol [12]. This

is a higher layer application that can run over A TM through LAN Emulation

(LANE).

Motion Picture Experts Group, (MPEG) traffic application on VBR service 1s

another application that have to be taken care of. It is different from video

transmission that has to use CBR. Due to compression and systems where only

changes to a video scan picture are sent, it is now a low-delay, variable bit rate

service [4].

There is also self-similar traffic application on VBR service. Self-similar traffic is the

data type that displays structural similarities across a wide range of time scales. Any

traffic data that is bursty on many or all time scales is considered to be self-similar

[13] . By modeling the networks with self-similar traffic sources, the network

designer can determine the optimal buffer size of the designed network.

22

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

2.4 Unix Based Versus Windows Based Platform

2.4.1 Why Unix Based Simulator

Most simulators were built and used in Unix platform previously. The main reason is

the performance of Unix that surpasses the performance of Windows. Unix operating

system has been the host operating system developed 25 years ago by Bell Labs [14].

Unix has an Open Systems operating system, which is portable, scalable and

powerful. This has provided a superb development environment in Unix. At one

time, Unix was the only powerful system that could met user's demand on a 3-D

model that can rotate faster and a simulation that can move faster [15]. Applications

that are focused on the floating point/Unix equation, such as simulation used to be

done on Unix due to the insufficiency of Windows operating system.

2.4.2 X Window System

The X Window System is a technology used in Unix, developed out of a project at

MIT in the 1980's. It is a set of tools and standards that allow developers to build

applications and write programs that can draw on a bitmapped screen. It can receive

input from a keyboard and respond to the movement of a pointing device [14].

2.4.3 The Changing Environment

With the rapid development on Windows system, the gap of performance is closing

up. Moreover, Unix was designed by programmers for programmers, where it is

complex, hard to use and difficult to administer [14]. It is not suitable for current

situation where people tend to find the easiest way out.
23

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

Next is the issue of X Windows technology. As Windows is becoming the dominant

desktop platform, more user demand a Windows environment. Since X is not

Windows, and the need of user is changing towards a better and more interactive

graphics in PC, the development of a PC Based simulator cannot be neglected.

2.4.4 Feasibility of Transformation of Unix Base Simulator to PC Based

Simulator

Unix operating system is written in high level language, which is the C language.

This enables its applications to be easily portable to other operating system [14].

Moreover, the codes are usually very modular. Thus, simulator that is Unix based

can be ported to Windows based without much trouble.

X applications are developed using program libraries, where these libraries

implement a large number of program structures called "widgets". A widget is a

graphical object, which defines a screen object and its behavior. The codes can be

rewritten to provide a windows environment.

The price/performance of Windows has increased and is able to compete with Unix.

Today, Windows not only provides similar functionality like Unix, its performance is

fast enough to support applications that needed Unix previously. A lower initial price

and lower cost of ownership [16] has encouraged more and more applications, which

used to be strictly for Unix, such as simulations being ported to Windows.

24

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

2.5 Conclusion

From the review on Unix and Windows, and the changing environment of computer

world, it is feasible to change the platform of current simulator, which is from Unix

Based to PC Based. There is also a need to develop a PC Based simulator due to

some constraints and shortfalls of simulators in Unix. Some enhancements will be

made and some new features will be added in to provide a more interactive and user

friendly way of simulation. The simulator will be written in Visual C++ with

modular source code. This will allow new functions and applications to be added in

easily.

Features:

• Running under Windows platform

• An interactive and user friendly graphical user interface (GUI)

• Ability to emulate real characteristic of A TM network

• Button click command of simulation functions Default parameters for simulator

components

• Display and edit parameters during simulation, log data to file

• Several predefined networks

• Discrete event schedule of the simulation

• Integrated data analysis tool to filter the parameters and plot graphs

25

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

SYSTEM ANALYSIS
AND REQUIREMENTS

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

Chapter 3 SYSTEM ANALYSIS AND REQUIREMENTS

3.1 Introduction

System analysis is carried out to determine the current system available and to

determine what is best for the system to be developed. The simulator should take as

input a scenario, which is a description of network topology and control parameters.

It should produce as output statistics such as the number of cells received by

components, the number of cells dropped, average throughput, and retransmission

percentage and other similar information.

3.2 Analysis of Simulator Program

System analysis includes analyzing the A TM features that are necessary to simulate

in order to study the performance of a network configuration. In this project,

NIST/HFC simulator is used as the ground for analysis of an A TM simulator.

There are two major levels of operation in an ATM network. The first one is at the

cell level which is the basic level of operation of the A TM switch. The second one is
'

at the connection level.

At the cell level, data is packeted into cells and transmitted to the UNI. Cells are

queued up at the input or output ports of the switch. Cells are routed based on the

VCI in its header. During congestion, cells are preferentially dropped according to

26

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

the cell loss priority bits in the header. Congestion control is implemented using a

leaky bucket method, suggested by the CCITT and some other mechanisms.

At the connection level, connection parameters like peak rate and average rate are

determined. Decisions regarding the routing mechanisms are done at this level.

However, the main focus of simulation in this project is on the cell level.

3.2.1 ATM Cell

ATM cell is an important unit in this simulator, which is designed to simulate ATM

networks. A cell constitutes a very important data type in the simulator because it

contains the route number needed for routing by A TM switches.

ATM cell identifiers, Virtual Path Identifier, Virtual Channel Identifier and Payload

Type Identifier (PTI) are used to recognize an A TM cell on a physical transmission

medium. VPI and VCI are same for cells belonging to the same virtual connection on

a shared transmission medium.

3.2.2 ATM Applications

The A TM application serves as a traffic generator at the end-point of a link. The

traffic source emulated by this component may be a constant bit rate (CBR) source or

a variable bit rate (VBR) source. Either source type may generate at one of three

priority levels: CBRIVBR level (highest priority), ABR level where cells are sent on

the transmission bandwidth that is available after the higher level traffic has been

sent or UBR level (lowest priority).

27

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.2.3 Broadband Terminal Equipment (B-TE)

Broadband Terminal Equipment (B-TE) simulates a Broadband ISDN node like a

host computer or workstation. A B-TE has one or more A TM Applications at the

user side and a physical link on the network side. Cells received from the Application

side are forwarded to the physical link. The cell will be queued in one of the three

queues if no slot is available for immediate transmission. When either queue exceeds

the specified the maximum output, queue size cells will be dropped. The BTE

implements rate-based flow control algorithm for ABR connections.

3.2.4 Hybrid Fiber Coax (HFC) Network

Hybrid Fiber Coax (HFC) simulates a broadband residential Hybrid Fiber Coax

network with a single trunk topology. Each source attached to the HFC module

represents one station on the HFC network. However, since it shares some functions

used in the B-TE, it can be categorized as the B-TE component.

3.2.5 ATM Switch

In a network, switch is the component that switches or routes cells over several

virtual channel links. A local routing table is provided for each switch. This table

contains a route number that is read from incoming cell structure and is the

equivalent of the cell's virtual channel identifier, a next link entry, and a next

switch/next B-TE entry.

Consider a cell arriving at the switch from a physical link. At the next switching slot

time, after some delay (set by user), the switch looks in its local routing table to

28

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

determine which outgoing link it should redirect the cell to. At this point, if the link

has an empty slot available, the switch puts the cell on the link. If a link slot is not

available, the cell awaits transmission in one of the priority queues, namely, the

CBR/VBR queue, the ABR queue or the UBR queue, depending on the type of

service provided by this virtual channel.

Cells in the CBRIVBR queue have priority over cells in the ABR queue. This means

that the ABR traffic is sent only when the CBRIVBR queue is empty. Similarly, cells

in the ABR queue have priority over cells in the UBR queue. If either queue exceeds

a High Threshold value, a congestion flag for that port is set to True. The three

queues must be below a Low Threshold value for the congestion flag to be reset to

False. The Output Queue Size will determine the available buffer space for each type

of queue. Cells will be dropped if any queue exceeds the limit.

VPI and VCI translation is performed at the ATM switching and/or cross-connect

nodes. At the VP switch, the value of the VPI field of each incoming cell is

translated into a new VPI value of the outgoing cell. The values of VPI and VCI are

translated into new values at a VC switch.

3.2.6 Link

A Link simulates the physical medium, either copper wire or optical fiber on which

cells are transmitted. The information specified with a link are its speed and length.

For ATM network, the normal speed of a link is defined as 155Mbits/s.

29

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.2. 7 Routing

ATM is connection-oriented. The header values of a cell (VCI and VPI) are assigned

during the connection set up phase and translated when switched from one section to

other. Signaling information is carried on a separate virtual channel than the user

information. In routing, there are two types of connections, Virtual channel

connection (VCC) and Virtual path connection (VPC). A VPC is an aggregate of

VCCs. Switching on cells is first done on the VPC and then on the VCC.

3.2.8 Simulation

The simulator is event driven. Components send each other events in order to

communicate and send cells through the network. There is an event manager to

provide a general facility to schedule and send or "fire" an event. An event queue is

maintained in which events are kept sorted by time. To fire an event, the first event

in the queue is removed, the global time is set to the time of that event and any action

scheduled to take place is undertaken. Events can be scheduled at the current time or

at any time in the future. Events scheduled at the same time are not guaranteed to fire

in any particular order. Simulator time is maintained by the event manager in units of

ticks.

30

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.3 Flow of Events In The Simulation Program

3.3.1 Main program flow

Generate seed for simulation

Get snap file

No

Read file

No

Yes .+
Reset and start simulation

No

Yes .+
Reset simulation

Fig. 6 Flow diagram of Main event

31

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.3.2 File reading c __ -------rsta_rt _)

No

Read lines while not reach EOF

No

No

No

No

Reset simulation

Stop

Fig. 7 Flow diagram of file reading

32

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

3.3.3 Create a component

c= ______ s~ta_rt _____ ~

+
Component list and

parameter queue
created?

Yes +
Add component to component list,

Create new list ofparam_info
and add to parameter queue

Initialize component's parameter and flags

Yes +
Free list and queue

Stop

Fig. 8 Flow diagram of create a component

33

SYSTEM ANALYSIS AND REQUIREMENTS

No

No

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.3.4 Make two components neighbor

(___ st_art _)

+
Find component from component list

No

Yes +
Add component

as neighbor of each other
Debug and log

Stop

Fig. 9 Flow diagram of make two component neighbor

34

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

3.3.5

Fig. 10

Create route

c Start)
~

Find component from component list

Yes .+

Is neighbor of
previous component?

Add component to route list

Add route list to route table

Free all list

Add component to route list

(______ s_to_p _____ :> ~

Flow diagram of create route

35

SYSTEM ANALYSIS AND REQUIREMENTS

No

No

No

Debug and log

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.3.6 Reset simulation

Start

Clear out any pending events

Free all packets

Free all cells

Reset all components and set VPI to -1

Fig. 11 Flow diagram of reset simulation

36

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

3.3. 7 Start simulation

Send start command to all components

Initialize VPI, PTI and Credit value of cell

Yes

Queue event of receiving cell

Schedule and queue event of
sending another cell

Fig. 12 Flow diagram of start simulation

37

SYSTEM ANALYSIS AND REQUIREMENTS

No

Do

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

3.3.8 Transmission of cells

(~_Sta_rt ~)

Transmitting component enqueue
EV RECEIVE command

Yes +
Call action routine of

destination component

Stop

SYSTEM ANALYSIS AND REQUIREMENTS

No

Do nothing

Fig. 13 Flow diagram of cell transmission

38

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.3.9 File writing (snap file)

(__ sta_rt __)

No

Yes +
Write all components and its parameters

Write all neighbors

Write all routes

Append new line to file

Close file

Fig. 14 Flow diagram of file writing

39

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.3.1 0 Data logging -log file

Create file for writing

Yes

Open file Append 'a' to file name

No

Yes ~
Log information of parameters and cells

Close file Debug and log

Stop

Fig. 15 Flow diagram of data logging

40

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

3.4 Requirements

3.4.1 Input of simulation

This simulation module requires input for it to simulate. The input should take the

form of a text file. Format of the text file should comply with the snap file format in

NIST/HFC ATM simulator. It should contain information of the network

configuration to be simulated. The file should ends with a new line to indicate the

termination of file.

The file should consist of:

• information about the components, which are component name, component type

and screen position

• values of input and output parameters of each component

• the interconnection with neighboring components

• the established routes

3.4.2 Simulation

Simulation process is the core requirement in this project. It should be developed so

that user can use it to study about A TM network without the expense of building a

real one. The simulation should be designed to meet the conventions of the real A TM

network as defined in CCITT.

This module should be able to:

•

•

read network configuration from a text file as input to the simulation module

create a virtual network configuration with parameters and other needed values as

specified in the input file
41

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

•

•

•

•

•

•

generate cells according to ATM conventions and send cells across the route

created

allow queuing and switching of cells with congestion control function using

mechanisms suggested by the CCITT

"fire" events and allows messages to be sent from one component to another

simulate various types of network configurations with different applications

c:> abrconnection c:> ggbarconnection

c:> cbrconnetion c:> mpegconnection

c:> atcpconnection c:> ssconnection

c:> batchconnection c:> tcpconnection

c:> cbatchconnection c:> vbrconnection

produce an output of the simulation result, in the form of a text file

produce another output of text file with the simulated network configuration and

the seed used

3.4.3 Output of simulation

There should be two outputs at the end of the simulation:

Log file

Log file is needed because it should contain data of the simulation. Users should be

able to study the performance and throughput of the network they created using the

information in log file. However, the log file has to be processed or filtered before

any analysis can be done. Graphs or charts can be plotted using the filtered file for

analyzing purpose.

42

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

The log file should consist of:

• name of the component and the parameter logged

• a unique ID number for every parameter logged so that it can be identified

throughout the file

• actual data recorded during the simulation, which are the time (in ticks) and the

value of parameter at that time

Snap file

This output is used to identify the network configuration that has been simulated. It

contains information about the seed (time in ticks that is used to seed the random

number generator) that is used in the simulation. The rest of the format of this snap

file should be the same as the input file used in the simulation.

3.4.4 Support inter platform simulation

This module should be able to support inter platform simulation. It should be able to

simulate various network configurations in Windows environment as well as in Unix

environment. Thus, the simulation module should be developed as a Dos-based

program.

3.4.5 Programming language

c is used as the programming language for the simulation program. This is to make

use of the data structure in C language. Structure is widely used in the program.

Every basic component and module in the program has its own structure. Since lists

and queues are extensively used in the program, Cis the programming language that

43

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 SYSTEM ANALYSIS AND REQUIREMENTS

able to support it. Microsoft Visual C++ 6.0 provides an integrated development

environment for C and C++ applications, supporting multi-platform and cross

platform development. The debugging tool in Microsoft Visual C++ 6.0 is also better

and user-friendlier compared to Turbo C. Thus, the simulation module is developed

using C language in the Microsoft Visual C++ 6.0.

44

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

SYSTEM DESIGN

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

Chapter 4 SYSTEM DESIGN

4.1 Introduction

During system design, the information collected during the system analysis and

requirements phase is used to design the network simulation system. The simulation

part of the system is designed to allow various network topologies being simulated. It

is designed to simulate the network topologies created in the user interface part. The

output of the simulation is also designed allow the integration of system.

4.2 Techniques Used

4.2.1 Modular decomposition

In this technique, the construction of the system is based on assigning functions to

components. The design of this system begins with a high-level description of the

functions to be implemented. Then, lower-level explanation of how each component

will be organized and related to each component is produced.

4.2.2 Event-oriented decomposition

This technique allows the system to be designed base on events that the system must

handle. Several events are identified and analyzed during the system analysis. Thus,

design is based on the analysis done.

45

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

4.3 Overall System Design

The system is designed to simulate various network configurations. It should produce

some useful results for the user to analyze and study the network. The simulator

should consist of several basic components in a network. These include A TM

Switches, Broadband Terminal Equipment (B-TE), Hybrid Fiber Coax (HFC)

network, A TM Applications and Physical Link that interconnects Switches and B

TE.

The A TM Applications are logical entities that run on B-TE (hosts). The

Applications may be considered as traffic generators that are capable of emulating

variable or constant bit rate traffic sources. A TM Applications are connected to each

other over a route that uses a selected list of adjacent components to form an end-to

end virtual connection.

4.4 Input Design

Input design is done according to requirement. The input is a text file. The file

consists of information about the components, including values of input and output

parameters of each component. There should be lists of neighboring components and

lists of routes in the file. The input file should ends with a new line. Any information

that is not needed for the simulation, which is meant for user's understanding, should

starts with a # sign. This is because anything after # will be ignored when the file is

read.

46

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

Fig. 16 Input design

component 'switch1' SWITCH 417 341
param 0 12 0 # Delay to process a cell (uSee): 0
param 155 12 0 #Switching Slot time (Mbit/s): 155
param 10000 12 0 #Output q_size (cells, -1=inf): 10000
param 550 12 0 # High Threshold for Q Congestion Flag: 550
param 450 12 0 # Low Threshold for Q Congestion Flag: 450
param 1 12 0 #Logging every (ticks) (e.g. 1, 100): 1
pflags 2a 4 #Cells Received: 0
pflags 2a 4 #Cell Drop %: 0
pflags 2a 4 #Cells in VBR Q to link1 : 0
pflags 2a 4 #Cells dropped in VBR Q to link1: 0

component 'host2' BTE 562 460
param 'host2' 32 0 # host2
param 50 12 0 #Max Output Queue Size(-1=inf): 50
param 1 12 0 #Logging every (ticks) (e.g. 1, 1 00): 1
pflags 2b 4 562 424 159 93 #Cells Received: 0
pflags 2a 4 #Cells in VBR Q to link2: 0

neighbor1 'switch1' 'link1'
neighbor1 'switch 1' 'link2'
neighbor1 'host1' 'tcp1'

route1 'tcp1' 'host1' 'link1' 'switch1' 'link2' 'host2' 'tcp2'

47

SYSTEM DESIGN

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

4.5 System Functionality Design

4.3.1 Cell

SYSTEM DESIGN

The generic structure of a cell contains the route number. During switching

or routing, an ATM switch reads off the route number found in the cell. The

switch then looks up its routing table to forward the cell via the next link to

the next switch. If it is at the end of a connection, it will be forwarded to the

next B-TE.

The cell structure should conform to the basic A TM cell structure. It will

consist of:

• Header information, to recognize an ATM cell on a physical transmission

medium

~ VPI

~ PTI

~ CREDIT

-Virtual Path Identifier, which is the route number

-Payload Type Identifier

-For credit based applications

• Cell payload information

~ Packet or -for TCP /IP connection

~ AALS trailer or

~ RM

~ QFC

-for interconnect schemes like LAN emulation

and TCP / IP over ATM

-Resource Management cell, for ABR service

-for QFC (Quantum Flow Control) connection

48

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

¢ MPEG for MPEG application

¢ CREDIT_AMT for credit based connection

Cells are transmitted from one component to another. When a component

wants to transmit a cell, that is, it passes an EV _RECEIVE event to another

component. The transmitting component calls ev_enqueue (EV_RECEIVE,

src, dest, time, rtn, ce, arg) which has as one of its parameters a pointer to

the cell, ce. When the resulting event, after being queued in the event list, gets

"fired," the action routine of the destination component is called and the pointer to

the cell structure is passed as an argument in that call. The destination action routine

executes the portion of the code that describes the behavior of the destination

component when it receives a cell. The receiving component must be able to

process the event in order to receive the cell.

In convention, all components must dispose of all cells that they receive in

one way or another. Thus, a component that receives a cell must either call

cell_free() on the cell or send the cell to someone else. There is a module to

handle the allocation and deallocation of cells, where cell_alloc() returns a

new cell, cell_free() frees a cell, and cell_free_all() frees all cells.

49

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

4.3.2 Route

The simulator implements static connections. An ATM channel begins and

ends with a component of the type ATM APPLICATION. A particular

Application can have a route to only one other Application. The routing table

at each ATM Switch is updated and information about the next link and next

ATM Switch found on the path is stored during the creation of route.

Route is created before the actual simulation starts. This is done by calling

the EV _MAKE_ROUTE in each component. The function is defined in each

component.c file. There should also be a function to determine where to

route a cell next.

4.3.3 Components

The simulator is designed to simulate anything that can be modeled by a network of

components that send messages to one another.

The basic components in a simulator are:

• ATM Switches

• Broadband Terminal Equipment (B-TE)

• Hybrid Fiber Coax (HFC) network

• A TM Applications

• Physical Link

50

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

Each instance of a component has its own data structure. This data structure is used

to store information that characterizes the component with some standard

information required for every component. The structure of each type of component

is defined in the header (.h) file of that type.

The components schedule events for one another to cause things to happen. The

model being simulated and the action of the components are determined by the code

controlling the components. Every component consists of an action routine and a

data structure. Components of the same type share the same action routine, which is

called for each event that happens to the component. Component can have its own

action routine.

4.3.4 Parameters

Parameter is a data structure that holds information about a component that needs

to be displayed on the screen, logged to disk, or saved in a configuration file.

The information stored includes pointers to functions to convert the

parameter to and from a string, the name of the parameter, and flags

describing how to save and/ or display the parameter. The Parameter

structure is defined in component. h.

The Parameter structure should include:

•

•

Pointer to previous and next parameter so that it can be put in a queue

Structure describing parameter value

51

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

• Structure for storing data

• A variable to keep track of time parameter

There can be more than one parameter for a component, where the parameters will be

stored in a doubly linked list pointed to by co _params. The parameters can be

displayed by the I/0 routines iterating through the list of parameters by using a

named variable by the action routine. The actual value of a parameter is stored in

a structure at the end of the Param structure. A parameter is initialized by

calling param_init() with arguments containing values for various fields in

the parameter structure.

4.3.5 Neighbors

Neighbors are stored as a list of Neighbor structures, pointed to from component

structures. Each neighbor structure contains a pointer to the neighboring component,

a queue in which to store cells, a busy flag, and a pointer to a parameter to display

anything that might be associated with the neighbor. The Neighbor structure can be

found in component.h.

The structure of neighbor should include:

•

•

•

Pointer to previous and next data

Pointer to the neighboring component

An instance of queue structure for queuing the packets to be sent

• An instance of parameter structure to store parameter information

52

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

• An instance of list structure for list of parameters related to vpi number of the

different routes

Neighbor must be created and put in a list before a route can be made and before the

actual simulation starts. This is done by calling EV _NEIGHBOR in each

component. The function is defined in each component.c file. The X_neighbor()

function for each component has to determine if the next component can be a

neighbor of it. For example, an ATM Application cannot be a neighbor of a Switch.

4.3. 6 Action routine

Every component in the simulator (ATM Switches, Broadband Terminal Equipment

(B-TE), Hybrid Fiber Coax (HFC), ATM Applications and Physical Link) contains

an action routine. This routine is called for each event that happens to a component.

The action routine is called to execute a set of commands that will give the

component its unique behavior. Components can send any type of events to one

another.

The action routine contains a large switch statement with a "case" for every

type of event to which the component or the connection type is expected to

respond. The events for component creation, routing, and initialization, as

well as the basic function of giving the component the ability to pass cells.

53

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

4.3. 7 Events

There are three classes of events: commands, regular events, and private

events. Commands and regular events are defined in eventdefs.h.

Commands are those events which perform some action such as reset, start

and create. Regular events are those directly involved in the actual running

of the simulation such as receive, ready and busy. Regular events have to be

understood by all components in order to facilitate global communication

within the simulator. Private events are events that components send to

themselves, therefore they are defined in the source files of the components

and not in eventdefs.h.

The event queue is a queue of events kept sorted by time. To fire an event,

the first event in the queue is removed, the global time is set to the time of

that event, and the action routine pointed to in the event structure is called.

Since the simulator is event driven, when the simulation starts, each

component is sent a reset command, EV _RESET, followed by a start

command, EV _START. All the events have to be queued before they are

fired. This is done by the ev _enqueue() defined in event. c.

54

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

Command Set (EV_ CLASS_ CMD)

EV_CREATE Create a new instance of a component. The comp

EV_DEL

variable must be NULL, arg points to the name of

the new component, and the action routine

returns either a pointer to a new data structure or

NULL for error. The action routine must allocate

the correct amount of memory for the new

component's data structure, create its (empty)

neighbor list, create the queue of parameters,

create any cell queues, etc. This command must

also initialize all the private data in the

component as necessary. The only information

that need not be initialized are any parameters

with the lnputMask flag set. They will be

initialized by the simulator as specified in the

Parameters section of this document.

Delete an instance of component. This command

will detach the component from any neighbors it

has, free any storage associated with the

component, including its data structure, and

perform any other necessary clean-up.

55

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

EV_RESET

EV_START

EV _NEIGHBOR

EV _UNEIGHBOR

SYSTEM DESIGN

Reset the state of the component and clear out any

cell queues, forget about any cells being

processed, etc. When the START button of the

simulator is hit, EV _RESET is called first for all

components and then EV _START.

Start operations for example, start a cell generator

sending cells. For many components, this will be a

no-op.

Attach another component as a new neighbor.

The component to be made a neighbor is pointed

to by arg. A component should only allow legal

neighbors. For example, an ATM Application will

not allow an ATM Switch to be attached as a

neighbor the ATM Application can only be

connected to a B-TE or a HFC.

Remove the neighbor pointed to by arg from the

list of neighbors, and free any memory used to

keep track of the neighbor (such as a cell queue

56

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

EV _MAKE ROUTE

SYSTEM DESIGN

and the neighbor structure itself). If there is a

parameter associated with this neighbor, it must

be removed from the queue of parameters and

freed. This is a no-op if the component is not a

neighbor.

This command is a no-op for some components

like physical links. ATM Applications and B-TEs

use it to store the route number in the VCI field of

their component structures. The ATM Switch

component creates a local routing table and stores

the previous and next component and the VCI

number of the route.

Regular Events (EV_ CLASS _EVENT)

EV _RECEIVE Receive a cell event.

EV _READY Component ready signal.

EV _BUSY Component busy signal.

57

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

Private Events

Private events are events that have only local significance. They are defined within

action routine for use by that routine only. Private events are the means by which an

action routine can send events to itself.

4.3.8 List and queue

In this simulation module, various lists and queues have to be created throughout the

simulation. Since they will be used at vast, there is a need to create a structure for list

and queue. The structure should be able to store the current, maximum and minimum

length of the list or queue. It should have pointer to the first element and the last

element in the list or queue. The list and queue should have functions to:

• create a new and empty list/queue

• add an element to the head/tail of list/queue

•

•

•

•

•

remove an element from the head of list/queue and return it

delete an element from the list/queue

search for an element in the list/queue

free the list (and the elements)

remove element after the previous element in queue

The lists and queues that will be used in the simulation module includes:

•

•

•

Component list

Param info list

Neighbor list

list of all the components in the network configuration

list of parameters in each component

list of neighbors, each component (except Application)

should have 2 neighbors (used during file reading only)

58

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

• Route list list of components in the route. The components in the

list should be neighbor of each other

• Parameter queue queue of the param_info list

•

•

Event queue

Cell queue

queue of the events to be fired during the simulation

queue of cells at the component, there will be an input

queue and an output queue

4.4.1 Log File

The simulator includes data logging, a function that is used to record the values of a

parameter while the simulation is running. When a parameter is to be logged during

the simulation, every new value of the parameter with a corresponding time stamp

will be saved in a log file. Every entry of the log data will consist of parameter

number, time tick and parameter value at that tick. The parameter number will be

identified by its name in the file header. The log file will be named sim _log.xxxx

where xxxx is the process ID of the simulator.

Fig. 17 Sample sim _log file

1 'switch3' 'Name'

2 'switch2' 'Cells in VBR Q to link22'

3 'switch2' 'Cells dropped in VBR Q to link22'

2 3003 1

2 3003 2

2 3043 3

1 3277 switch3 link22 4

2 4095 3

3 4175 1

59

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

Lines at the head of the file starting with pound sign(#) are a listing of all of

the parameters that were marked for data logging when the simulator was

running. The number immediately following the # is the ID number that will

be used in the remainder of the file to identify the parameter. The rest of the

line gives the component name and parameter name respectively.

Lines after the ones marked with# are the actual data recorded during the simulation.

The first column is the parameter ID, the second column is the time (in ticks), and

the third column is the value of the parameter at that time. A slightly different format

is used for the case where the data logged represents cell arrival at a switch or 8-TE

component. (This is the logging enabled with the box on the component's name line.)

In this case the third column is the name of the component on which the data is

collected (switch3 in the example). The fourth column is the name of the link from

where the cell arrived (link 22), and the fifth column is the route number.

4.4.2 Snap file

The snap file contains information of the network configurations. There are three

distinct types of information, which are component descriptions, linkages and route

definitions. The file begins with two lines starting with the pound sign (#). The first

line records the seed used for that particular simulation run. The second line records

the time (in ticks) when the snapshot was taken.

60

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM DESIGN

Component descriptions

The group of lines after the two lines is listing of the components and other

information. The first line of each group begins with the keyword

component, followed by the component's name in single quotes, then the

component type in capital letters, and finally the x and y coordinates of the

screen position of the component. If component had an open information

window when the snapshot was taken, the keyword infowindow appears

immediately after the line with the component keyword.

The lines immediately following are a listing of the input parameters, output

parameters and their values. Any text on a line after a pound sign (#) is a

comment, which identifies the parameter. Each line of input parameters

begins with the word param and followed immediately with a number

indicating the parameter's value. Following the value are two other numbers.

The first number indicates whether the log box is active (0- 41 =inactive, 42

-77 =active). The final number on these lines is unused and is always a zero.

Each line of output parameters begins with the keyword pflags. Following

the pflags keyword is the number 2 with the letter 'a' or 'b' appended. This is

a code that reveals whether the output parameter has its data logging box in

the active mode.

61

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

2a = the log box is not active

2b =the log box is active

SYSTEM DESIGN

Keyword '6e' is also used to indicate that the parameter is to be logged to the

log file.

Linkages

Next group of lines is the linkages. Each line of this group begins with the

keyword neighbor1, followed by a component's name in single quotes and

either a physical link name or another component name in single quotes. In

the example, 'switchl' has two physical links attached, while the B-TE named

'hostl' is connected to the ATM Application named 'tcpl'.

Route definitions

The last group of lines is the route listing. Each line begins with the keyword

route1, which is followed by the names of all components in the route. Each

component name is in quotes. The component list always begins and ends

with an ATM Application component.

62

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

Fig. 18 Sample snap file

Seed 776093072
#Time of snapshot (ticks) 0
component 'switch1' SWITCH 417 341
infowindowparam 'switch1' 32 0 # switch1
param 0 12 0 # Delay to process a cell (uSee): 0
param 155 12 0 #Switching Slot time (MbiUs): 155
param 10000 12 0 #Output q_size (cells, -1=inf) : 10000
param 550 12 0 # High Threshold for Q Congestion Flag: 550

component 'host2' BTE 562 460
param 'host2' 32 0 # host2
param 50 12 0 #Max Output Queue Size(-1=inf): 50
param 112 0 #Logging every (ticks) (e.g. 1, 100): 1
pflags 2b 4 562 424 159 93 #Cells Received: 0
pflags 2a 4 #Cells in VBR Q to link2: 0

neighbor1 'switch1' 'link1'
neighbor1 'switch 1' 'link2'
neighbor1 'host1' 'tcp1'

route1 'tcp1' 'host1' 'link1' 'switch1' 'link2' 'host2' 'tcp2'

63

SYSTEM DESIGN

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

PROGRAM CODING

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS PROGRAM CODING

Chapter 5 ROGRAM CODING

Fig. 19 Cell structure

typedef struct Cell{

struct Cell *cell_next;

VPI vpi ;

PTI pti ;

CREDIT cr;

unsigned int scfq ;

tick_t stamp1 ;

int station ;

int priority;

int traffic_ class;

int size;

struct cell_payload{

Packet *tcp_ip_info;

AAL5_ Trailer len;

RMrm;

QFC qfc;

MPEG mpeg;

/* Pointer for use by the queue the cells will

be stored*/

I* Route number (virtual path identifier) */

/* Payload type identifier*/

/*OE added for fair queueing tag *I

/* Time stamps are used for data

collection *I

/* Used by the new HFC component */

/* Used by the new HFC component */

/* Used by the new HFC component */

/*Used by the new HFC component*/

/*Structure for the payload portion*/

CREDIT _AMT cr_amt;

} u;

64

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

Fig. 20Route creation/unction

static caddr_t

cn_route(en, route _list, vpi)

register Componentype *en ;

list *route_list;

VPI vpi ;

{

PROGRAM CODING

I* function of creating route for the ComponenType

}

Fig. 21 Component structure

typedef struct _Component {

struct _Component *co_next, *co_prev; I* Links to other

short co_class;

short co_type;

char co_name[40]

PFP co_action

event */

list *co_neighbors;

this component*/

components in list */

I* Class of component *I

I* Type of component *I

I* Name to appear on screen*/

I* Main function, called with each

/* Points to a list of neighbors of

/* Parameters-- data that will be displayed on the screen*/

short co_menu_up;

queue *co_params;

parameters */

I* If true, then text window is up*/

/* Variable-length queue of

/* Any other info that a component needs to keep will vary*/

} Component;

65

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS PROGRAM CODING

Fig. 22 Parameter structure

typedef struct _Param {

struct _Param *p_next, *p_prev; I* So that these can be put in a queue *I

char p_name[40]; I* Name of this parameter for display *I

PFD p_calc_val; I* Computes a value to be displayed in a meter *I

PFP p_make_text; I* Makes a string containing the current value *I

PFP p_make_short_text; I* As above, but only the value, no text *I

PFI p_input;

int p_log ;

double p_scale;

struct {

inti;

int vpi;

doubled;

caddr_t p;

struct {

} pi ;

caddr_t p;

int vpi ;

inti;

tick_t sample;

I* Routine to input this parameter *I

I* Integer associated with this param for logging *I

I* Scale to use for meters *I

I* Structure to store data in *I

I* Commonly used value types *I

I* Only need to use one of these types*/

I* Structure describing parameter value *I

/* Keeps track of time parameter *I

} u; /* This structure is used and maintained by the simulator *I

} Param

66

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

Fig. 23 Neighbour structure

typedef struct_Neighbor {

struct_Neighbor

*n_next, *n_prev;

Component *n_c;

component *I

PROGRAM CODING

I* Links for the list *I

I* Pointer to the neighboring

I* The next values will vary from network to network, and from

component to component. For example, only switches and hosts

have queues in the current application. *I

queue *n_pq; I* Queue of packets to be sent *I

short n_busy; I* True if neighbor is busy *I

double n_prev_sample; I* Previous sample time used for utilization

calculation in links *I

Param *n_p;

Param *n_pp;

Param *n_ppp;

list *n_vpi ;

caddr_t n_data;

} Neighbor;

I* Index of parameter to display whatever *I

I* Index of parameter to display whatever *I

I* List of parameters related to vpi number

of the different routes *I

I* If a component wants to store arbitrary

data for each neighbor, put it here. *I

67

Univ
ers

ity
 of

 M
ala

ya

CHAPTER S PROGRAM CODING

Fig. 24 Create neighbor function (eg. BTE):

static caddr_t

b_neighbor(b,c)

{

}

register STet *b;

register Component *c;

/* function for determining if the next component can be a neighbor

and add it as neighbour *I

The b_neighbor() function will eventually call the add_neighbor() function

defined in subr.c.

Fig. 25Function ofadd_neighbor

Neighbor*

add_neighbor(c, neighc, max_num_neighbors, num_classes, va_alist)

{

}

register Component *c; I* Comp to add neighbor to *I

register Component *neighc;

int max_num_neighbors;

int num_classes;

va_dcl

/* function to add neighbor */

I* New neighbor *I

/* Max number neighbors allowed

O=infinite)*I

/*How many classes follow *I

68

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS PROGRAM CODING

Fig. 26 Generic action routine and commands for each component

caddr_t

action(src, comp, type, cell, vpi, arg)

Component *src;

Component *comp;

int type;

Cell *cell;

VPI *vpi;

caddr_t arg ;

{

/*Component that sent this event. Null for cmds. *I

/*Component which this evenUcmd applies. */

I* Type of event or cmd that is happening. */

I* A cell . *I

I* VPI number of data cell wherever it is

applicable. */

I* Whatever*/

/* Usually a large switch statement on the event type*/

}

69

Univ
ers

ity
 of

 M
ala

ya

CHAPTER S PROGRAM CODING

Fig. 2 7 Switch function in action routine

switch (type) {

case EV _RESET: /* Case for receiving the command EV _RESET*/
result= cn_reset(cn); /*Call the routine "cn_reset" */
break;

case EV_CREATE: I* Case for receiving the command
EV_CREATE */

result= cn_create((char*)arg); I* Call the routine
"en_ create" *I

break;

case EV _DEL:
comp_delete((Component *)en); I* Delete the componet *I
result= (caddr_t)cn;
break; /*case of an event received continues for all *I

case EV NEIGHBOR:
result= cn_neighbor(cn, (Component *)arg);
break; /*called, the portion of the code that defines*/

case EV_UNEIGHBOR:
result = cn_uneighbor(b, (Component *)arg);
break;

case EV MAKE ROUTE:
result= cn_route(cn , (list *)arg , vpi) ;
break;

case EV START:
result= en send(cn);
break;

case MY SENDCELL:
result= cn_send(cn) ;
break;

case EV RECEIVE:
result= cn_receive(cn, cell) ;
break;

default:
break;

} /* end switch statement *I

70

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS PROGRAM CODING

Fig. 28 Enqueue events function

Event*

ev_enqueue(type, src, dest, time, rtn, ce, vpi, arg)

int type; /*Type of event-- e.g EV RECEIVE,EV CREATE - -

Component *src;

Component *dest;

tick_t time;

PFP rtn;

Cell *ce;

VPI vpi;

caddr_t arg;

Fig. 29 List structure

typedef struct list {

l_elt *l_head;

l_elt *l_tail;

int l_len;

int l_max;

int l_min;

} list;

etc *I

/*Component which issues this command *I

I* Component on which command applies */

I* Time at which the event should be scheduled*/

I* The action routine of the destination component *I

/* Pointer to a cell*/

I* Route number if a cell is passed*/

I* Can be anything*/

I* list header *I

I* first element in list*/

I* last element in list*/

I* number of elements in queue*/

/* maximum length */

/* minimum length */

Queue structure will be the same as list structure.

71

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6

SYSTEM
IMPLEMENTATION

AND TESTING

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

Chapter 6 SYSTEM IMPLEMENTATION AND TESTING

6.1 Introduction

The implementation of this system includes programming, testing and debugging of

the system. Since the whole project is divided into two main modules, which are the

interface module and the simulation module, implementation of this system also

includes integration ofthese two modules.

6.2 Programming

Basically, the codes can be divided into a few categories:

6.2.1 Main

Table 2 Function of main code files

FILE I FUNCTION

Sim.h ¢ Define things for all simulator routines

¢ Contains the main routine of the simulator, including starting
Main.c

and resetting the simulation

¢ Disk VO routines, including read & write world file (network
file.c

configuration file)

72

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

6.2.2 Components

Table 3 Function of component files

FILE I FUNCTION I
¢ Define the genenc structure of component, parameter

component.h
structure and neighbor structure

¢ Define the different types of components

Comptypes.h ¢ Keep the component types into array to map the strings

Comptypes.c contained in the world file to component types (constant) and

to the action routines used by each component

¢ Define own action routine (with private event of that
Every component

component)

6.2.3 Program structure and Events

Table 4 Function of basic files

FILE FUNCTION

cell.c ¢ Routines for allocating and freeing cells

cell.h ¢ Define cell structure

eventdefs.h ¢ Define types of events

¢ Define event structure

event.h ¢ Queue the events

event.c ¢ Fire the events

¢ Return the simulator's clock value

list.h ¢ Define list/queue structure

list.c ¢ General-purpose list/queue manipulation routines

q.h ¢ Create list/queue, add element, delete element, find element,

q.c free storage

log.h ¢ Describe structures used in the log cluster

73

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

log.c ¢ Contain 'Cluster' to write happenings to a log file

¢ Contain functions for debugging log and parameter log

route.h ¢ Create, initialize and destroy the routing table

route.c ¢ Insert, delete or find the route

6.2.4 Miscellaneous

Table 5 Function of miscellaneous files

FILE FUNCTION

¢ For Gamma-Based connection, called by gbar.c

gamma_ dist.c ¢ Generate Random Variates in (O,INFINITY) from a gamma

distribution with density

hash.h ¢ Make and destroy the table

hash.c ¢ Insert, delete and find a record

¢ Create, free a heap
heap.h

¢ Insert/delete an element in a heap
heap.c

¢ Return (and delete) minimum element of heap

ifft.h ¢ In-place radix 2 decimation in time inverse FFT

ifft.c

mempool.h ¢ Storage manager for large quantities of objects that are going

mempool.c to be allocated and freed many times

random.c ¢ Random number generation with a special state info interface

subr.c ¢ Contains random functions that don't belong anywhere else

ssgen.h ¢ Sscore, self-similar traffic generator

ssgen.c

74

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

6.3 Integration

6.3.1 Module integration

In the simulation module, components of the system are developed separately. Thus,

these components have to be integrated so that message can be sent to each other

during the simulation. The basic functions in the project, for example, creating lists

and queues of components and events have to be integrated. This is because they are

extensively used throughout the simulation. Module integration also includes the

integration of data logging function with the component codes.

6.3.2 System integration

The project is into two main modules. System integration of these two modules

needs to be done so that a complete simulator is developed. This integration is done

after each module is tested to work correctly.

System integration of this project is to integrate the output of interface module with

the simulation module. The interface module will generate a savefile (or snapfile) of

the network configuration created by the user. This output will contain the

information of components and its parameters, neighbors and the routes, which are

needed for the simulation module to start simulation. The simulation module cannot

be executed successfully without correct output for the interface module. Thus, both

the format of creating (interface module) and reading (simulation module) of the file

must be integrated.

75

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

6.4 Testing

Modules are coded separately for the interface and the simulation part. First, unit

testing is carried out. Then, module testing is done for the modules separately. After

the modules are integrated, integration testing is done. System testing for the entire

network simulation system is carried out at the end of the testing process. Some test

cases are used to test whether the input is properly converted to the desired output.

6.4.1 Unit testing

Unit testing is done to find faults in the components of program since it is developed

using modular decomposition technique. Process of unit testing is divided into two

parts: manually test the codes and test using the compile and debug tool in Microsoft

Visual C++ 6.0.

Manually test

During this testing process, the codes are examined by reading through them. The

faults of algorithm, data and syntax are checked manually. Some tests like statement

testing, branch testing and path testing are done to test the thoroughness of the codes.

Statements are read through to check for syntax error. Manual test is done before the

codes are compiled and when debugging cannot be done with the debug tool.

Compile using program

Testing with debug tool is more emphasized during unit testing of this project. The

codes are compiled to eliminate the remaining syntax faults that are missed during

the manual testing. During this testing process, the debugging tool of the compiler is

76

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

made full use of. This includes inserting break points to break at certain functions or

statements for debugging purpose, using the step into to step into the function, using

watch to check the output and variables.

Test cases:

• fprintf statement

this test case is most widely used in this testing. Basically, there are usage of this

statement.

c> To test whether the function block is entered. For example, putting inside if

statement

if (!strcmp(l->l_head->le_data, "COMPONENT")) {

fprintf(stderr, "got herefile.c if(!strcmp .. COMPONENT)\n");

I* function */

}

If the condition of the if statement is correct, the function block will be

entered and the message of getting there will be printed out.

c> To test and check the input or output of a function call. This is to make

sure that the correctness of the input or output.

c1 = find_comp(clist, le->le_data);

fprintf(stderr, "got herefile.c .. route route_c1: %s\n",

c1->co_name);

In this case, name of component found by the function call will be printed.

77

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

• manually assign data

¢ Instead of using current time as seed, a value is assigned to seed to test if the

random number generator is functioning.

6.4.2 Module testing

The testing of the module is carried out together with the system development.

Module testing is done to test the integration between tested units to form a module.

Testing is also done to test if the simulation produces the desired output.

Test cases:

• manually assigned data

¢ Enter different values of stop time to check if the statement

if (ev_now() > stoptime)

can be executed properly to stop the simulation

• condition statement

¢ Statement of condition is inserted before certain function call to test the

conditions needed to execute the function. For example, if(routel) is added

before this function call,

1 addt(route_table,(list *)routel);

to make sure that there is a route list to be inserted to the route table. This is

done because there is always an access violation error when executing this

function call.

78

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENTATION AND TESTING

• comment out certain function

¢ Functions call error that cannot be debugged during the module testing is

commented out temporarily to test if the module can continue without the

function call. For example,

l_addt(route_table,(list *)routel);

¢ This function is commented out during the module testing because an item

can only be placed in a list at a time. Without executing the whole module,

there will be an error.

• simple snapfile

•

¢ Some basic network configuration files is created to test the format of

snapfile needed for this simulation module.

Faulty input

¢ Change the sequence of components in route list of the snapfile created. This

is to test if the function of route creation is according done to the design. The

creation of route should fail is the component is not neighbor of each other.

6.4.3 Integration testing

This testing is done after each module is successfully tested to work properly and

correctly. Integration testing tests whether the two separate modules can be

integrated into a complete system. The approach used in this testing is the bottom-up

integration.

79

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 SYSTEM IMPLEMENT AT! ON AND TESTING

6.4.4 System testing

System testing is carried out to validate that the system is conformed to the

requirements. It is also tested to ensure that the integration is correctly and

successfully done.

In system testing, some test cases are generated to be implemented on the system. It

is designed to provide a thorough test on the use of network simulator. A few people

are invited to test out the simulator.

The test cases for system testing are mainly created to test whether the system can

simulate different network configurations and produce desired output, which is the

correct and useful logged data. Test cases are also used to check if the same output is

obtained for certain input.

Test cases:

• different components

¢ Various components are tested to test whether network configuration with

that component can be simulated.

• faulty input

¢ Wrong file name (input) is given to test how the system responds to the error.

¢ The input (which is the save file of network configuration) is modified to test

whether the simulator can respond to the fault. For example,

• Change the COMPONENT_ TYPE, which is not defined in comptypes

80

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6 SYSTEM IMPLEMENTATION AND TESTING

• Add a different component to the neighbor list in the file, which is not a

component in the same file.

• Add a different component to the route list in the file, which is not a

component in the same file.

6.4.5 Performance testing

Reliability of the system is tested. This test is done to ensure that the developed

system is reliable, which means that the system can operate without failure under

given conditions for a given time interval. The reliability test is measured over the

execution time. During performance testing, test cases that contain bugs or errors are

used to test whether the system can handle the exceptions properly.

Test cases:

• exclude stop time

c> This is done to test if the system can respond to infinite simulation. The

simulation must be stopped after a certain period if stop time is not specified.

81

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7

SYSTEM EVALUATION
AND CONCLUSION

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

Chapter 7 SYSTEM EVALUATION AND CONCLUSION

7.1 Review Of Goals

The major goal of this project is to develop a PC Based simulator to simulate the

A TM networks. The proposed simulator is to provide a ground for studying the

queuing delays, throughput and buffer occupancies at various nodes in the network.

The simulator should be able to run under Windows platform with a use friendly

graphical user interface (GUI). Besides, it should be able to support the Unix

platform. It is also proposed that the simulator should have discrete event schedule.

Finally, the simulator should have an integrated analysis tool to analyze the output of

the simulation.

7.2 System Strengths

There are several strengths in this simulator as compared to other existing simulators.

7.2.1 Support Multi-platform

Most network simulators available currently have to be run under Unix platform. The

simulator developed in this project is able to run under Windows NT 4.0, Windows

95 or Windows 98. Since Windows platform is more common among normal users,

this encourages more users to use the simulator as a tool to study the network. This is

because users do not have to change to Unix platform when they want to use a

simulator. However, this simulation module is developed as a Dos-based program.

The design of this module not only allows simulation to run under Windows, it can
82

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

also be run under Unix environment. Users ofNIST/HFC ATM simulator can easily

use this simulation module to either simulate their network configurations in

Windows or in Unix. This is because the features of this simulation module follow

the convention ofNIST/HFC ATM simulator.

7.2.2 Designed for ATM Network

As A TM is the trend in networking world, there is a need to study about the A TM

network without the expense to develop a real one. This simulator is specially

developed to simulate A TM networks. Conventions of the A TM network design are

used in this simulator. For example, the ATM cell, the routing protocols and the flow

control. Besides, TCP/IP connections can also be simulated using this simulator.

7.2.3 Adding new component or application

New component or application can be easily added to the simulation module. This is

because the codes are very modular. The addition requires the user to create new

component structure with the common structure that every component must have.

The component should have its own component.c and component.h files. Reuse of

the existing code is highly recommended when creating the new component. The

new component should contain an action routine with various commands that must

be performed in the simulation. However, the new component can have its own extra

events, which is called private events. An important step when creating new

component is to modify the comptypes.c and comptypes.h files. The modification

includes:

83

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

•

•

•

Adding a new constant for the new type of component in comptypes.c

Adding a new entry in the component_ types[] array in comptypes.c

Adding a declaration of the action routine in comptypes.h

7.2.4 User friendly GUI

The simulator is developed with a user friendly Graphical User Interface (GUI) in

another module, which is the interface module. Users can create network topologies

and configurations with button-click commands.

7.3 Drawbacks And Limitations

7.3.1 Data analysis tool

The simulator is not integrated with an analysis tool to analyze the logged data. For

the time being, the logged data in the sim_log file has to be filtered with another

module of program. The filtered data can then be plotted using Windows-based

GNUPlot. Only filtered data can be analyzed and studied.

7.3.2 Meters

Meter to display information about a parameter during the simulation is unavailable

now. Users are unable to view and study the changing value of parameters in a

graphical form.

84

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

7.3.3 Unable to simulate identical results

This simulator uses a seed (random number generator) to starts the simulation. The

seed of the simulator is the current time in ticks. The user is not prompted to input

any seed number, thus each simulation may generate different results for the same

network configuration.

7.4 Problems Encountered

7.4.1 Integration ofproject

The main problem encountered during the project development is to integrate the

interface module with the simulation module. The integration must be done so as the

network configuration created by the user in the interface part can successfully

simulated using the simulation module. For integration propose of this project, a

savefile (or snapfile of the network configuration) must be produced in the interface

module. The format of snap file to be read in the simulation module must conform to

the format defined in the simulation module.

7.4.2 Out of virtual memory

The computer may run out of virtual memory if the simulation is carried out for a

certain period of time. Thus, the stoptime of the simulation has to be set so that the

simulation will not be infinite and it will stop after the specified time.

85

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

7.5 Future Enhancements

7.5.1 Integrate with data analysis tool

The simulator can be enhanced by integrating it with a data analysis tool. With the

tool, data logged can be filtered automatically and plotted with a program. After

integration, users should be able to obtain analyzed data at the end of simulation. The

enhancement will make the simulator more useful and hassle free to study the

outcome of simulation result.

7.5.2 Display meter during simulation

Meters are useful when the user wants to view the changing data of a parameter

during the simulation. The simulator can be enhanced by adding meters to display

the information in a graphical form. There are several types of meter for displaying

the information. For example, Binary meter, Bar Graph, Time History meter and

Histogram meter.

7.5.3 Identical simulation result

Enhancement on this is important to allow user obtain identical simulation results for

a certain network configurations. This can be done by allowing the user to set the

seed for the simulation.

7.5.4 Parallel simulation

Further enhancement of the simulator can be done to allow parallel simulation. For

the time being, only a single network configuration can be simulated using this

86

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

simulator. The simulator can be enhanced to let the user simulate a few network

configurations at the same time.

7.6 Conclusion

This project has provided a great learning opportunity for ATM network. Basic

concept about A TM has to be acquired before the simulator can be developed. A

simulator with prime features has been developed according to the design. This

simulator is able to simulate various network configurations. User is able to study the

performance of the network with logged data after the simulation. However, there are

certain constrains that still cannot be solved at the end of the project. Further

enhancements can be done in these fields as proposed above.

87

Univ
ers

ity
 of

 M
ala

ya

REFERENCE

Univ
ers

ity
 of

 M
ala

ya

REFERENCE

[I] "ATM Development", May. 1995,

http: //ece.wpi .edu/courses/ee535/hwkllcd95/bkh/devel.html

[2] L. Fang, "ATM Congestion Control", Survey Paper, Oct. 1995,

http://cclab.chungnam.ac.kr/~ylee/congestion/index.html

REFERENCE

[3] William Stallings, "High-Speed Networks TCP/IP ATM Design Principles",

Prentice-Hall, Inc., 1998.

[4] Walter J. Goralski, "Introduction to ATM Networking", McGraw-Hill, Inc.,

1995.

[5] http://tebbit.eng. umd.edu/Classes/ENEE728/Simulation/

[6] I.Y. Chong, A. Makowski, P. Narayan, J. Kim, T. Christofili, G. Charleston, S.

Rao, R. Gupta. "OPNET Simulation Model of the ALAX" Technical Research

Report, Dec. 1995,

http://www.isr.umd.edu/TechReports/CSHCN/1995/CSHCN TR 95-

16/CSHCN TR 95-16.phtml

[7] "OPNET and OMNeT ++",

http :I /www. hit. bme.hu/phd/vargaa/ opnet. htm

[8] "OMNeT ++",

http:/ /www.hit. bme.hu/phd/vargaa/whatis.htm

[9] Y. Song, D. Cypher, D. Su, "Manual: The NIST ATM PNNI Routing Protocol

Simulator (APRoPS), Operation and Programming Guide, Version 1.0," Jan.

1999,

http://www.hsnt.nist.gov/misc/hsnt/

89

Univ
ers

ity
 of

 M
ala

ya

[1 0] K. Peter, "dlpsim: A Data Link Protocol Simulator", Feb. 1998,

http://www.cee.hw.ac.uk/~pjbk/dlpsirnluser.html

REFERENCE

[11]N. Golmie, F. Mouveaux, L. Hester, Y. Saintillan, A. Koenig, D. Su, "Manual:

The NIST ATM/HFC Network Simulator, Operation and Programming Guide,

Version 4.0," Dec. 1998.

[12]X.Cai, "The Performance of TCP Over ATM ABR and UBR Services", Jul.

1999,

http://www.netlab.ohio-state.edu/~jain/cis788-97/tcp over atrn!index.htm

[13] Mark Wiman, "Optimizing Buffer Sizes In A Simulated A TM Multicast

Network Using A Self-Similar Traffic Generator", 1999,

http: //www.cs.fsu.edu/~wiman/project/index.html

[14]Windows, Unix and X,

http://www.worldserver.pipex.com/home/bill/mvweb/writing/pcnetwk/unix.html

[15] Brian Robinson, "Competition between Unix and Windows NT reshapes the

technical workstation market", Tech Briefing, Jul. 1998,

http:/ /www.fcw.com/pubs/fcw/ I 1998/0706/fcw-feature-7 -6-1998 .html

[16]Deloitte, Touche, "Technical Workstsations Running Microsoft Windows NT

Workstation 37% Less Expensive to Own than Traditional UNIX Offerings",

Market Bulletin, Oct. 1997,

http :1 /www.microsoft.com/windows/platforrnlinfo/nt-unix teo study .htm

90

Univ
ers

ity
 of

 M
ala

ya

APPENDIX

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A

APPENDIX A SNAP FILE

Seed 10
Time of snapshot (ticks) 0

component ' cbr1 ' CBRCONNECTION 0 0
param ' cbr1 ' 32 0 # cbr1
param 100 12 0 # Bit Rate (Mbits/s): 100
param 0 12 0 # Start time (usecs) : 0
param 50000 12 0 # Number of MBits to be sent : 50000

pflags 22 0

ABRCONNECTION1 0 0
0 # abr1

Bit Rate 1 (Mbits/s): 500
Intia1 Start time (usecs): 0
Bit Rate 2 (Mbits /s) : 200
Start time of Bit Rate 2 (usecs) : 0

param 100000 12 0 # Number of MBits to be sent: 100000

pflags 22 0

component ' abr1 '
param ' abr1 ' 32
param 500 12 0
param 0 12 0
param 200 12 0
param 0 12 0

component ' bte1 ' BTE 0 0
param ' bte1 ' 32 0 # bte1
param 50 12 0 #Max Output Queue Size(-1=inf): 50
param 100 12 0 # Max Input Queue Size(-1 =inf): 10 0
pflags 2e 4 #Cells Received: 0
param 10 12 0 # Logging every (ticks) (e . g. 1, 100): 10
param 0 12 0 # Stop sending at (usecs) : 0
param 149 . 76 12 0 #Peak Cell Rate of abr1: 149 . 76
param 32 12 0 # Nrm abr1: 32
param 7 . 49 12 0 # ICR of abr 1: 7. 49
param 1.49 12 0 # MCR of abr1 : 1.49
param 0 .0625 12 0 # RIF of abr1 : 0 . 0625
param 0.0625 12 0 # RDF of abr1: 0 . 0625
param 32 12 0 # CRM (Cells) of abr1 : 32
param 0.0625 12 0 # CDF of abr1 : 0 . 0625
param 2 12 0 # MRM of abr1 : 2
param 100000 12 0 # TRM (in us) of abr1: 100000
param 0 . 00424 12 0 # TCR (in Mbit/s) of abr1 : 0 . 00424
param 500000 12 0 # ADTF (in usecs) of abr1 : 500000
pflags 2e 4 #ACR (in Mbit/s) for ABR abr1 : 7 . 49
pflags 2a 4 #Received count (in cells) for ABR abr1 : 0
pflags 6e 4 #Cells Dropped ABR Input Q from abr1 : 811
pflags 2e 4 #Cells in ABR Input Q from abrl: 100
pflags 2e 4 #Cells in VBR Q to ln1: 0
pflags 2e 4 #Cells dropped in VBR Q toln1 : 0
pflags 2e 4 #Cells in ABR Q to ln1: 34
pflags 6e 4 #Cells Dropped in ABR Q to ln1 : 0
pflags 2e 4 #Cells in UBR Q to ln1 : 0
pflags 2e 4 #Cells Dropped in UBR Q to ln1 : 0

component ' bte2 ' BTE 0 0
param 'bte2 ' 32 0 # bte2
param 30 12 0 #Max Output Queue Size(-l=inf) : 30
param 100 12 0 # Max Input Queue Size(-1=inf) : 100

SNAP FILE

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A SNAP FILE

pflags 2e 4 #Cells Received : 0

param 10 12 0 # Logging every (ticks) (e . g . 1 , 100) : 10

param 0 12 0 # Stop sending at (usecs) : 0

pflags 2e 4 #Cells in VBR Q to 1n2 : 30

pflags 6e 4 #Cells dropped in VBR Q to1n2 : 443

pflags 2e 4 #Cells in ABR Q to ln2 : 0

pflags 2e 4 #Cells Dropped in ABR Q to ln2: 0

pflags 2e 4 #Cells in UBR Q to ln2 : 0

pflags 2e 4 #Cells Dropped in UBR Q to ln2 : 0

component ' sw1 ' SWITCH 0 0

infowindow

2e 4 #Cells

2e 4 #Cells

2e 4 #Cells

2e 4 #Cells

2e 4 #Cell s

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A

pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2 e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2a 4
pflags 2a 4
pflags 2a 4
pflags 2e 4
pflags 2e 4
pflags 2a 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2e 4
pflags 2a 4
pflags 2a 4
pflags 2a 4
pflags 2e 4
pflags 2e 4
pflags 2a 4

#Cells Dropped in ABR Q toln1: 0
#ERS for Q toln1 : 155
#MACR rate for Q toln1: 155
#Phantom MACR rate for Q toln1 : 15.5
#Delta for Q toln1: 155
#Alpha Inc for Q toln1 : 0
#Alpha Dec for Q toln1: 0
#Fast MACR rate for Q toln1 : 15 . 5
#ABR Traffic for Q toln1: 0
#ABRVBR Traffic for Q toln1 : 0
#VBR Traffic for Q toln1: 0
#ERR for Q toln1 : 0
#Sigma Neg for Q toln1 : 0
#Sigma Pos for Q toln1: 0
#Ratio for Q toln1 : 0
#Cells in VBR Q to ln2: 0
#Cells dropped in VBR Q toln2 : 0
#Cells in UBR Q to ln2: 0
#Cells dropped in UBR Q toln2: 0
#Cells in ABR Q toln2 : 0
#Cells Dropped in ABR Q toln2 : 0
#ERS for Q toln2 : 155
#MACR rate for Q toln2 : 155
#Phantom MACR rate for Q toln2 : 15.5
#Delta for Q toln2 : 155
#Alpha Inc for Q toln2 : 0
#Alpha Dec for Q toln2 : 0
#Fast MACR rate for Q toln2 : 15 . 5
#ABR Traffic for Q toln2: 0
#ABRVBR Traffic for Q toln2 : 0
#VBR Traffic for Q toln2 : 0
#ERR for Q toln2 : 0
#Sigma Neg for Q toln2 : 0
#Sigma Pos for Q toln2 : 0
#Ratio for Q toln2 : 0

c omponent 'ln1 ' LINK 0 0
param ' ln1' 32 0 # ln1
param 155 12 0 # Link Speed (MBits/sec) : 155

pflags 2 0
pflags 2 0
pflags 2 0
p flag s 2 0
p fla gs 2 0
pflags 2 0
param 10 12 0 # Distance (Km) : 10
pflags 2e 4 #Link rate (Mbit/s) to bte1 : 0
pf l a g s 2e 4 #Link rate (Mbit/s) to sw1: 0

component ' l n 2 ' LINK 0 0
param 'ln2 ' 32 0 # ln2
param 155 12 0 # Link Speed (MBits / s ec) : 155

pflags 2 0
p fl a gs 2 0
pflags 2 0
pflags 2 0
pflags 2 0
p fl ags 2 0

SNAP FILE

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A

Distance (Km) : 8 param 8 12 0
pflags 2e 4
pflags 2e 4

#Link rate (Mbit/s) to swl : 0
#Link rate (Mbit/s) to bte2 : 0

neighborl ' cbrl' ' bte2 '
neighborl ' abrl ' ' btel '
neighborl ' btel ' ' abrl '
neighborl ' btel ' ' lnl '
neighborl ' bte2 ' ' ln2 '
neighborl ' bte2' ' cbrl '
neighborl ' swl ' ' lnl '
neighborl ' swl ' ' ln2 '
neighborl ' lnl' ' btel '
neighborl ' lnl ' ' swl '
neighborl ' ln2 ' ' swl '
neighborl ' ln2 ' ' bte2 '

routel ' abrl ' ' btel ' ' lnl ' ' swl ' ' ln2 ' ' bte2 ' ' cbr l'

SNAP FILE

Univ
ers

ity
 of

 M
ala

ya

APPENDIX B LOG FILE

APPENDIX 8 LOG FILE

1 'btel ' 'Cells Dropped ABR Input Q from abrl '
2 ' btel' ' Cells Dropped in ABR Q to lnl '
3 ' bte2 ' 'Cells dropped in VBR Q toln2 '
3 12720 1
3 13144 2
3 13568 3
3 13992 4
3 14416 5
3 14840 6
3 15264 7
3 15688 8
3 16112 9
3 16536 10
3 16960 11
3 17384 12
3 17808 13
1 21836 1
3 22048 23
1 22048 2
1 22260 3
3 22472 24
1 22472 4
3 22896 25
1 22896 5
1 23108 6
3 23320 26
1 23320 7
1 23532 8
1 23744 9
3 23744 27
1 23956 10
3 24168 28
1 24168 11
1 24380 12
1 24592 13
3 24592 29
1 24804 14
3 25016 30
1 25016 15
1 25228 16

Univ
ers

ity
 of

 M
ala

ya

GLOSSARY

Univ
ers

ity
 of

 M
ala

ya

GLOSSARY

GLOSSARY

AAL

A TM Adapation Layer: The standards layer that allows multiple applications to have data
converted to and from the A TM cell. A protocol used that translates higher layer services into
the size and format of an A TM cell.

ABR

Available Bit Rate: ABR is an A TM layer service category for which the limiting A TM layer
transfer characteristics provided by the network may change subsequent to connection
establishment. A flow control mechanism is specified which supports several types of feedback
to control the source rate in response to changing A TM layer transfer characteristics. It is
expected that an end-system that adapts its traffic in accordance with the feedback will
experience a low cell loss ratio and obtain a fair share of the available bandwidth according to a
network specific allocation policy. Cell delay variation is not controlled in this service, although
admitted cells are not delayed unnecessarily.

ATM

Asynchronous Transfer Mode: A transfer mode in which the information is organized into cells.
It is asynchronous in the sense that the recurrence of cells containing information from an
individual user is not necessarily periodic.

BTE

Broadband Terminal Equipment: An equipment category for B-ISON, which includes terminal
adapters and terminals.

CBR

Cell

Constant Bit Rate: An ATM service category which supports a constant or guaranteed rate to
transport services such as video or voice as well as circuit emulation which requires rigorous
timing control and performance parameters.

A unit of transmission in ATM. A fixed-size frame consisting of a 5-octet header and a 48-octet

payload.

Univ
ers

ity
 of

 M
ala

ya

GLOSSARY

CRC

Cyclic Redundancy Check: A mathematical algorithm that computes a numerical value based on
the bits in a block of data. This number is transmitted with the data and the receiver uses this
information and the same algorithm to insure the accurate delivery of data by comparing the
results of algorithm and the number received. If a mismatch occurs, an error in transmission is
presumed.

GFC

Generic Flow Control: GFC is a field in the ATM header which can be used to provide local
functions (e.g., flow control). It has local significance only and the value encoded in the field is
not carried end-to-end.

Link

An entity that defines a topological relationship (including available transport capacity) between
two nodes in different subnetworks. Multiple links may exist between a pair of subnetworks.
Synonymous with logical link

MPOA

Multiprotocol over A TM: An effort taking place in the A TM Forum to standardize protocols for
the purpose of running multiple network layer protocols over A TM

Physical Link

A real link which attaches two switching systems

RM
Resource Management cell, used in ABR service

QoS

Quality of Service : Quali ty of Service is defined on an end-to-e~d basis in terms of the following
attri butes of the end-to-end A TM connection: - Cell Loss Ratio, Cell Transfer Delay, and Cell

Delay Var iation

UBR

Univ
ers

ity
 of

 M
ala

ya

GLOSSARY

Unspecified Bit Rate: UBR is an A TM service category, which does not specify traffic related
service guarantees. Specifically, UBR does not include the notion of a per-connection negotiated
bandwidth. No numerical commitments are made with respect to the cell loss ratio experienced
by a UBR connection, or as to the cell transfer delay experienced by cells on the connection.

VBR

Variable Bit Rate: An ATM Forum defined service category which supports variable bit rate data
traffic with average and peak traffic parameters.

VCI

VPI

Virtual Channel Identifier: A unique numerical tag as defined by a 16 bit field in the ATM cell
header that identifies a virtual channel, over which the cell is to travel.

Virtual Path Identifier: An eight-bit field in the ATM cell header, which indicates the virtual path
over which the cell should be routed.

Univ
ers

ity
 of

 M
ala

ya

