b
c’PUStakaan SK FM

/ SOFTWARE BASED LOGIC ANALYZER AND \
SIGNAL GENERATOR

LEE YEAN KIAN
WEK 010133

WXES 3181: Projek Ilmiah Tahap Akhir I
Session 2003 /2004

Supervisor : Mr Mohd Yamani Idna bin Idris
Modulator : Prof Dato Dr Ir Maskhuri Hj Yaacob

\L v

/ SOFTWARE BASED LOGIC ANALYZER AND
SIGNAL GENERATOR

LEE YEAN KIAN
WEK 010133

Session 2003 / 2004

Supervisor : Mr Mohd Yamani Idna bin Idris
Modulator : Prof Dato Dr Ir Mashkuri Hj Yaacob

L

WXES 3181/3182: Projek Ilmiah Tahap Akhir I & II

D

5

ABSTRACT

The logic analyzer and signal generator application is a system where user can input and
output through the parallel port. For the logic analyzer application, certain pins of parallel
port are “on” by user. There will be a output display on computer. For signal generator
application, the parallel port pins will be activated by pressing buttons on a user interface.
The parallel port will be connected to a logic analyzer hardware. The output will be

display on interface of logic analyzer.

There will be additional function of the application. Software based logic analyzer and
signal generator have security feature where every user that uses to the software have to
login before using the software. If the user login the wrong user identification and
password, then an error message will be displayed. User have to re-login again until the

correct user identification and password is typed.

The main advantage of the application is that it can be used to test FPGA or other

electronic circuits.

ACKNOWLEDGEMENT
The success completion of this project is related to the contributions of many people. I

would like to take this opportunity to thank some of the those people here.

First of all, I would like to state my deepest appreciation to Mr Mohd Yamani Idna bin
Idris, my supervisor for giving me this opportunity to develop this project. Secondly, I
would like to thank him for his constructive advice, generous guidance, encouragement,
support, dedication and supervision along the progress of this project. His diligence and

kindness in helping me throughout the project is deeply appreciated.

[also would like to acknowledge Professor Dato Dr Ir Mashkuri Hj Yaacob, as the
project moderator who contributed comments, suggestions and ideas to further enhance

value of this project.
Not forgetting my course mates, friends and family that have been accompanying me all
the time in completing this final year project. Thanks for their unlimited support,

invaluable advice, guidance supervision and knowledge and experience sharing.

Last but not the least, I would like to take this opportunity to acknowledge the resource

support of the FSKTM which has greatly facilitated the process of the project.

TABLE OF CONTENT

LIST OF TABLE PAGE
ABSTRACT I
ACKNOWLEDGEMENT Il
TABLE OF CONTENT 111
LIST OF DIAGRAM X
LIST OF TABLE X111
CHAPTER 1: INTRODUCTION 1
1.1 PROJECT BACKGROUND]
1.1.1 LOGIC ANALYZER 2
1.1.1.1 OPERATION 3
1.1.1.2 ADVANTAGES 4
1.1.2 SIGNAL GENERATOR 4
1.1.2.1 OPERATION 5
1.1.22 ADVANTAGES 6
1.2 PROJECT OBJECTIVES 7
1.3 PROJECT SCOPE 8
1.4 PROJECT CONSTRAINT 9

1.5 REPORT LAYOUT 11
1.6 PROJECT SCHEDULE 13

1.7 SUMMARY 14

11

CHAPTER 2: LITERATURE REVIEW

2.1 PURPOSE OF LITERATURE REVIEW
2.2 INFORMATION GATHERING METHOD
2.2.1 FACT FINDING TECHNIQUES

2.2.2 SOFTWARE TESTING
2.2.3 OBSERVATION
2.3 LOGIC ANALYZER
2.3.1 DEFINITION
2.3.2 MODE
2.3.3 SAMPLING METHOD
2.3.4 FEATURES
2.3.5 OPERATION
2.3.6 COMPONENTS
2.3.6.1 MEMORY
2.3.6.2 TRIGGER FUNCTION
2.3.6.3 DATA ACQUISITION
2.3.7 SOFTWARE FAULTS
2.3.8 HARDWARE FAULTS
2.4 SIGNAL GENERATOR
2.4.1 DEFINATION
2.4.2 MODE
2.4.3 FEATURES

2.4.4 OPERATION

15

15
16
16
17
17
18
18
18
20
22
26
27
27
28
28
29
30
35
35
36
37

38

AY

2.5 PARALLEL PORT
2.5.1 PORT TYPES
2.5.1.1 ORIGINAL (SPP)
2.5.1.2 PS/2-TYPE (SIMPLE BI-DIRECTIONAL)
2.5.1.3 EPP
2.5.1.4 ECP
2.5.1.5 MULTI-MODE PORTS
2.5.2 PARALLEL PORT RESOURCE
2.5.2.1 ADDRESSING
2.5.2.2 INTERRUPTS
2.5.2.3 DMA CHANNELS
2.5.3 PORT HARDWARE
2.5.3.1 PC PARALLEL INTERFACE
2.5.3.2 CONNECTORS
2.5.3.3. CABLES
2.6 BUFFER
2.7 ANALOG TO DIGITAL CONVERTER
2.8 PLATFORM
2.8.1 LINUX
2.8.2 WINDOWS NT
2.8.3 WINDOWS 2000
2.9 PROGRAMMING LANGUAGE

2.9.1 VISUAL BASIC

41

41

42

42

43

43

43

44

44

45

45

46

46

49

49

50

51

52

53

56

59

60

60

2.9.2 JAVA
22 3 (C =

3.0 SUMMARY

CHAPTER 3: SYSTEM ANALYSIS

3.1 METHODOLOGY
3.1.1 INTRODUCTION
3.1.2 SYSTEM DEVELOPMENT LIFE CYCLE
3.1.3 DEVELOPMENT APPROACH
3.1.4 REASONS FOR THE SELECTED APPROACH
3.1.5 DESCRIPTION OF METHODOLOGY
DEVELOPMENT
3.1.6 THE ADVANTAGES OF THE PROTOTYPING
3.2 ANALYSIS PROCEDURES
3.2.1 PROBLEM IDENTIFICATION
3.2.2 EVALUATION AND SYNTHESIS
3.2.3 MODELING
3.2.4 SYSTEM AND USER REQUIREMENT
3.2.5 RUN TIME REQUIREMENTS
3.2.5.1 OPERATING SYSTEM
3.2.5.2 PROGRAMMING LANGUAGE
3.2.5.3 SOFTWARE TOOL

3.3 SUMARRY

62
65

67

68

68
68
69
69

70

72
76
77
77
78
78
79
83
86
88
89

89

VI

CHAPTER 4: SYSTEM DESIGN 90

4.1 SYSTEM ARCHITECTURE 90
4.2 BLOCK DIAGRAM DESIGN 92
4.3 PARALLEL PORT INTERFACE 95
4.4 OPERATION 97
4.4.1 READ ROUTINE 97
4.4.2 WRITE ROUTINE 08
4.5 FLOW CHART 100
4.6 SYSTEM FUNCTIONALITY DESIGN 102
4.7 SUMMARY 107

CHAPTER 5: SYSTEM IMPLEMENTATION

5.1 INTRODUCTION 108
5.2 DEVELOPMENT ENVIRONMENT 108
5.2.1 ACTUAL HARDWARE REQUIREMENT 109
5.2.2 ACTUAL SOFTWARE TOOLS REQUIREMENTS 109
5.3 HARDWARE DEVELOPMENT 110
5.4 SOFTWARE DEVELOPMENT 111
5.4.1 TIMER 111

5.4.1.1 TIMER CONTROL IN MICROSOFT
VISUAL C+H+ 112
5.4.2 SIGNAL GENERATOR 114

5.4.2.1 PARALLEL PORT WRITING

DATA CODING 114
5.4.3 LOGIC ANALYZER 118

5.4.3.1 PARALLEL PORT DATA RECEIVE
CODING 120

VII

5.4.4 SIGNAL GENERATOR AND LOGIC ANALYZER

TIMING BASED INTEGRATION 122
5.4.5 PARALLEL PORT CONTROL WITH MICROSOFT

VISUAL C++ 125

5.4.6 MORE ON INPOUT32.DLL 127

5.4.7 SUMMARY 128
CHAPTER 6: SYSTEM TEST 129
6.1 TEST CASE 130
6.2 UNIT TESTING 131

6.3 INTEGRATION TESTING 132
6.4 TESTING SYSTEM USING PARMON SOFTWARE 133
6.5 TESTING USING OSCILLOSCPE 134
6.6 SUMMARY 134
CHAPTER 7: SYSTEM EVALUATION 135
7.1 STRENGTH SYSTEM 135

7.2 SYSTEM CONSTRAINT 136

7.3 SUGGESTIONS AND IMPROVEMENTS 136

7.4 PROBLEMS FACED 137

7.5 CONCLUSION 138

7.6 SUMMARY 138

APPENDIX I: SIGNAL GENERATOR AND LOGIC
ANALYZER SCRIPT X1V

VIII

REFERENCE

XVI

IX

LIST OF DIAGRAM

LIST OF DIAGRAM

Diagram 1.6A: Project schedule

Diagram 2.3.2A: Logic analyzer timing mode

Diagram 2.3.3A: Input waveform

Diagram 2.3.3B: Sample point

Diagram 2.3.4A: Register

Diagram 2.3.5A: Data acquisition

Diagram 2.3.6.3A: Transmission of data through bus

Diagram 2.3.8A: Glitch generation

Diagram 2.3.8B: Spikes

Diagram 2.3.8C: Races

Diagram 2.3.8D: Timing error

Diagram 2.4.1A: Signal generator hardware

Diagram 2.5.3.1A: Parallel port interface

Diagram 2.6A: 74HC244 Buffer

PAGE

13

19

21

22

25

20

28

31

32

33

34

36

46

50

Diagram 3.1.5A: Prototyping model

Diagram 4.1A: Logic analyzer top level diagram

Diagram 4.1B: Signal generator top level diagram

Diagram 4.2A: ADC0809 analog-to-digital converter

Diagram 4.2B: D0-D7 port is connected to appliances to test the output

Diagram 4.3A: Parallel port types

Diagram 4.3B: DB-25 male parallel port connector

Diagram 4.4.1A: Read routine

Diagram 4.4.2A: Write routine

Diagram 4.5A: Logic analyzer flow chart

Diagram 4.5B: Signal generator flow chart

Diagram 4.6A: Logic analyzer expected output interface

Diagram 4.6B: Pins window

Diagram 4.6C: Stimulator window

Diagram 4.6D: Expected output

Diagram 5.3A: Male parallel port interface connection

72

90

91

92

94

95

96

98

99

100

100

102

104

105

107

110

XI

Diagram 5.3B: Connection of battery to status pin

Diagram 5.4.3A: Pin position

Diagram 5.4.3B: Output for status pin in normal mode

Diagram 5.4.3C: Output for status pin in cycle mode

Diagram 5.4.4A: Signal generator and logic analyzer screen shot

Diagram 5.4.5A: Error Message

Diagram 5.4.6A: Inpout32.dll process flow chart

Diagram 6.4A: Parallel Port Monitor

111

119

119

120

124

126

128

133

XII

LIST OF TABLE

LIST OF TABLE

Table 1.6A: Project schedule

Table 2.3B: Channel trigger conditions

Table 3.2.5A: Computer’s hardware requirement
Table 3.2.5B: Computer’s hardware requirement
Table 4.3C: Parallel port pin description

Table 5.4.2.1A: Command for data pins

Table 5.4.3.1A: Command of status pins

Table 5.4.4A: Software interface functions

PAGE

13

26

84

85

96

117

121

122

X111

CHAPTER 1: INTRODUCTION

1.1 PROJECT BACKGROUND

The title of this system is software based logic analyzer and signal generator. This
research is a preliminary research since there is only a few research doing on it. The
concept is quite new. This application is mainly how to transfer and acquire data from

or to Parallel Port.

The logic analyzer is a simple 4 channel PC parallel port logic analyzer with sample
rate 50 kHz. The software uses status ports as input, thus using SPP mode is enough.
Luckily most of PCs are equipped with such peripheral. The logic analyzer is built
using a switch, 2 buffers, a parallel port, an analog to digital converter (ADC) and a
computer. Data is input through parallel port by connecting the switch to the ADC pin.
The data will be transfer to an ADC. This is to convert the analog data into digital data.
One buffer is used as temporary storage of data that is connected between parallel port
and an ADC. Another buffer is to control the transmission of signal. The data will be
performed inside computer. There are 2 types of data performance, timing and binary

format,

The signal generator, on the other hand, is built using a testing device, parallel port and
a computer. Unlike logic analyzer, the data is input from internal computer. The signal
generator will be connected to a logic analyzer to display signal generated by signal
generator. There will be a user interface that let user to activate or deactivate the parallel

port pins. Due to the application is built using only 1 computer, the data that input from

internal of computer will only be tested using a logic analyzer, but not on another
computer interface. Each time the specific pin is activated through user interface, the

parallel port pin will shows high voltage of 5 volts. Otherwise, it will remains 0 volt.

The problems are how to write and read the data to or from parallel port in clock timing.
Normally, the topic include sampling rate and how the data acquisition system is

capable of accurately reproducing waveforms of the favorite frequency.

The sampling rate of the logic analyzer and signal generator is defined by the ratio of
the number of samples acquired to the duration of sampling. Acquiring 100 samples
over a duration of 1 second gives a sampling frequency of 100 Hz. Likewise, acquiring

10 samples over a duration of 100 ms is also a sampling frequency of 100 Hz.

1.1.1 LOGIC ANALYZER

Logic analyzer is a hardware or software that has the ability of analyze signal or
waveform. Normally this logic analyzer is connected to a signal generator or a source
which can generate signal. Logic analyzer generally have a number of channels and

limited timing resolution.

The logic analyzer can be configured as timing analyzer which give a waveform display
similar to that of an oscilloscope or as state analyzers which display signals in terms of

binary or hex numbers, or both at the same time.

o

There are 2 types of logic analyzer, software and hardware. The software logic analyzer
is a software that have ability of performing several types of waveform. A hardware
logic analyzer is a useful electronic circuit which is useful in development and
debugging, especially where fast logic circuits are involved with lots of signals whose

relations have to be verified or examined.

The data are stored in the memory, in the normal binary code; however, the display can
be formatted in various different ways. In most logic analyzers, the data displayed are

preceded by a line number (related to the trigger word) for the sake of convenience.

The possible display formats are [Simulink Reference, 1994]:

1. Timing format (Timing analysis)

2. Binary or Hex format (State analysis)

1.1.1.1 OPERATION

The operation of the logic analyzer is controlled by a clock signal (the clock together
with the data input is the data acquisition unit). A sample of the data present is taken

each time a clock pulse occurs, and transferred to the memory [Craig Maynard, 2000].

After the first clock pulse, one data word is stored in the first memory location. On
receipt of the next clock pulse this data word is shifted one place further, and the next
data word is transferred to the first memory location. Each subsequent clock pulse

causes the string of data words to be shifted one place further in this way.

1.1.1.2 ADVANTAGES

e A logic analyzer is useful in electronic development and debugging, especially
where fast logic circuits are involved with lots of signals whose relations have to
be verified or examined.

e The logic analyzer is used in order to make accurate timing measurements and

to investigate voltage vs time characteristics of signals.

1.1.2 SIGNAL GENERATOR

Signal generator, on the other hand, is reverse of logic analyzer. Unlike logic analyzer,
signal is generate by signal generator and is transmit out to a logic analyzer through
parallel port. The signal generator generate signal that may be used in testing, audio

analysis, or recording [Martin Clausen, 2002].

Generally, signal generator is divided into 2 types, hardware and software,

A software signal generator is a software that capable of sending a signal down a cable

so that it can be traced by a detector receiving signals on the same frequency.

A hardware signal generator is connect to some DAC (Digital Analog Converter). The
number of DAC that is intend to be connected is depends on the number of bits
supported by the signal generator. The DAC have the ability to convert digital data into

analog data.

There are 2 types of signal that can be generated by signal generator, digital and analog,

Digital signal is data in its original format, it is binary. However signal generator can

convert the binary format into hexadecimal as well. Analog signal capable to be

generated using the DAC device.

1.1.2.1 OPERATION

Signal generator generate data through 2 process, digital frequency generation and

analog processing of signal [Mautin, 2001].

Digital Frequency Generation

The digital part of the frequency generator consists of a shift register, an adder, a
latch and a 1M bit EPROM. The shift register reduces the need of port pins at
the MCU from 33 to 3. It also synchronizes the data input from the MCU with
the operation of the adder.

The adder output is feedback to itself via the latch. Therefore the value at the
output of the latch is increased by the value in the shift register at every clock
cycle. This value is also taken as an address for the EPROM. This EPROM
contains a table, which allows to convert the value from the latch into the
amplitude of the output signal. In principle any waveform can be stored and
generated.

The frequency and amplitude modulation is based on a DDS software in the
micro controller. Since the sinus is read from a 16K byte lookup table (LSB

first) starting at &HO01000, we can replace it by any other waveform.

Analog Processing of Signal

The final output signal is formed through DAC, filter, multiplier and an
amplifier. The digital output of the EPROM is converted to a analog signal by a
high speed, high precision DAC. Its current output is converted to a voltage by a
operational amplifier.

The MCU shifts the amplitude value into the DAC. The output of the DAC is
feed into the multiplier and allows the adjustment of the amplitude. The offset is
adjusted by another DAC. Its output is converted to a bipolar output by a dual

OP. In the final step the signal is amplified by a strong operational amplifier.

1.1.2.2 ADVANTAGES

e Used to generate multiple types of signals.

e The concept of signal generator can be used in Smart home. Smart home is a
new technology that is currently being accepted and adopted in the society
today. The similar concept between smart home and signal generator is the
automation of lights. This include turning on and off lights and appliances based

on the lifestyles of the homeowner.

6

12 PROJECT OBJECTIVES
o Isused to test FPGA.
e Provide user to input data from external of parallel port into computer.
e Provide user to input data from computer and output to parallel port.

e Verify the input and output of parallel port.

1.3 PROJECT SCOPE

There are 2 parts that will be developed, there are logic analyzer and signal generator

[Mautin, 2001].

Logic analyzer
e data acquisition
logic analyzer must has the capability of reading data from parallel port pins.
e output display
logic analyzer can displays 2 types of outputs, there are timing and binary.
Timing output is square waveform.
Signal generator
e output data
signal generator must has the capability of output data from parallel port pins.
The data output into parallel port can be test using a logic analyzer.
e Input feature
Signal generator has the feature of input data. Generally, a user interface will be

created to let user activates the parallel port pins.

1.4 PROJECT CONSTRAINT

There are a few constraints that need to be considered when implementing the system.

There are as below [Jan Axelson, 1999]:

Parallel port type

Parallel port consists of many types. The available types are SPP, PS/2 type
(simple bi-directional), EPP, ECP and multi-mode ports. The most suitable
mode for the application is SPP. The reason SPP port is chosen is because SPP
has 5 status inputs and 4 bi-directional control port. In newer ports, there are 8

data ports that can be used as inputs.

Parallel port pin
Every parallel port has three types of pins, data, status and control. The parallel
port pin that is selected to read is status pin and data pin is used to write. The

data pin consists of 8 status pins, D0-D7 and 4 status pins, S3, S4, S5 and S7.

Parallel port speed

The speed of parallel port is 200-400 kHz.

e Input for logic analyzer
The input for logic analyzer must consists voltage of 0-5 volt. This is because
the parallel port pin can not support power more than 5 volt. Otherwise, the

parallel port will break.

e Sampling rate
The sampling rate of logic analyzer and signal generator is 50-100 kHz. The
bigger the frequency, the more accurate the logic analyzer and signal generator

become.

e Output of logic analyzer and signal generator
Logic analyzer can display data in square waveform, bus and binary format.

Signal generator can generate square waveform.

1.5 REPORT LAYOUT

The purpose of this layout is to give an overview of the major phases involved during

development of the project. Below is the report layout:

Chapter 1: Introduction

This chapter gives an overview of the major phases of the project that includes the
objective, project overview, project scope, project development methodology and

project schedule.

Chapter 2: Literature Review

This chapter give brief explanation on topics researched and studies that are relevant to
this project. It is the combination between literature search and literature review.
Among the discuss topics are operating system and Web development technology.

Besides that, this chapter also makes a study on logic analyzer and signal generator.

Chapter 3: System Analysis
This chapter emphasizes on the analysis of the project’s requirements, functional
requirements, non-functional requirements and the methodology of system. It explains

how the requirements for this project were acquired and the results of the analysis.

Chapter 4: System Design
This chapter explains the conceptual and technical design of the system. It covers the

Structure chart, content design, block diagram, data flow diagram and user interface

design.

1.6 PROJECT SCHEDULE

A project schedule is needed to achieve the project objectives. It was planned to manage

the time and tasks needed to accomplish.

For this project, it was planned in a set of several milestones as below:

Table 1.6A: Project schedule

| JUN JULY AUGUST SEPTEMBER

N T [2[3[4[1[2[3[4 |1 [2[3 [4[1[2]3]4

| rojet

Definition

Literature

Review

System

Analysis

System Design

Documentation

13

1.7 SUMMARY

This chapter is basically the introduction of the software based logic analyzer and signal
generator application. This chapter has been clearly clarified the project background,
objectives, scope, constraint, report layout and schedule of this project as well as the

overview of the system. The next chapter will describe some research and analysis of

the project.

14

CHAPTER 2: LITERATURE REVIEW

This chapter will carry out some research and analysis of the project or generally known
as literature review. In the process of developing this system, researches have been done
to understand various concepts as background study, especially logic analyzer, signal
generator, parallel port and parallel port programming. Another important aspect of
literature review is to sufficiently equip the developers with the knowledge of the
strength and the limitations of several system architecture, system platform and also
programming tools before the final decision in selecting the most suitable and
appropriate development tools. In this chapter, some further understanding of the

project related terms, terminologies and technologies were discussed.

2.1 PURPOSE OF LITERATURE REVIEW

Review of literature is a background study about the knowledge and information gained
to develop this project. Its’ purpose is to get a better understanding on the development
tools that can be used to develop a project and also to get a better knowledge on the
development methodologies used while developing a project. Besides that, review of
literature also enables the developers to do comparison on the past-developed projects
and study the strength and weakness of it. It will also give an overview of how to

improve the weakness and fulfill the requirements needed.

2.2 INFORMATION GETHERING METHOD

In developing a system, it is important to identify the system requirement. In order to

identify them, a lot of information is needed. A few techniques have been used to find

out

what the system needs and users really want. The requirement elicitation takes quite a

long time. This is due to several techniques need to be applied in order to get a complete

requirement.

2.2.1

FACT FINDING TECHNIQUES

Fact-finding is needed in order to have a better understanding of the system’s
needs and requirements. There are many sources that provide information in my

research. The information gathering techniques involved are:

Internet Research

Internet is used as the main resource for referring any ambiguities that arise
during the entire development period. By analyzing in the similar system has
made a big help in giving ideas on the features, functionality as well as the
design of the web-based system. Besides that, online tutorials regarding

programming language can also be obtained through surfing the Internet.

Document Room

Previous seniors’ thesis have been read through in order to gain an overall
understanding on how a system was developed, what were the functional and

non-functional requirements, and other related data. The general structure of

2.2.2

2.2.3

each thesis has also been observed to find out the steps taken in carrying out a
thesis.

Library

Books, journals and magazines from the library have been read through and
valuable information has been noted down.

Bookstores

Several renowned bookstores, such as MPH and Popular, contain relevant

references about this project. Suitable references books have been purchased in

order to learn in detail about the technologies used in this project.

SOFTWARE TESTING

Relevant software and web development tools have been tested out to evaluate

their suitability for this project.

OBSERVATION

The current logic analyzer and signal generator application had been reviewed.
Through this technique, the related features of those application had been
observed and defined. Besides, the related system is found and tested to find out
the functionality. Review has been carried out to see whether it is economic to
apply the new system and whether there is enough equipment to develop the

new system.

17

2.3 LOGIC ANALYZER

2.3.1 DEFINITION

Logic analyzer is a hardware or software that has the ability of analyze signal or

waveform [Arian, 2003]. Normally this logic analyzer is connected to a signal generator

or a source. There are 2 types of logic analyzer, software and hardware.

The software logic analyzer creates virtual analyzer on the computer's screen and allows
easy manipulation with all controls by mouse. A software logic analyzer is basically
nothing more than a memory, which functions here as a multiple shift register for at
least 16 bits in parallel, where user store digital data, taken from a system under test.
A hardware logic analyzer is a like a recorder for digital signals. During a certain
(small) period of time, the state of a few digital lines can be recorded to a file. An event
can be specified to signal the start of the recording, i.e. line 1 toggeling from 0 to 1.
This recording can be viewed afterwards, allowing for zooming and scrolling in the

time domain.

A logic analyzer is useful in electronic development and debugging, especially where

fast logic circuits are involved with lots of signals whose relations have to be verified or

examined.

2.3.2 MODE

In fact, there are two modes of logic analyzers, timing and state [Agilent Technologies,

2000].

18

Timing analyzer

A timing analyzer is the part of a logic analyzer that is analogous to an
oscilloscope. Timing mode uses an internal user-defined clock for data capture.
As a matter of fact, they can be thought of as close cousins. The timing analyzer
displays information in the same general form as a scope, with the horizontal
axis representing time and the vertical axis as logic levels of high and low.
Because the waveforms on both instruments are time-dependent, the displays are

said to be in the "time domain". Timing mode displays more information than

state mode than is often necessary.

Diagram 2.3.2A: Logic analyzer timing mode [Agilent Technologies, 2000]

State analyzer

A state analyzer is analyzer that performs its data in binary or hexadecimal way.
The binary format takes the same binary coded data from the memory as for the
time mode, and represents them directly in ones and zeroes to give what is

known as a state table. The hexadecimal representation which is simply a

19

translation of the binary format into the hexadecimal notation (where the
numbers from O to 15 are represented by 0, 1,2, 3,4, 5,6, 7, 8,9, A, B, C, D, E,
and F, successively). For example, D7 in "hex" = binary 1101 0111 = 215 in

normal decimal notation.

State mode is generally clocked by the clock in the system that is being tested. It
can also be useful to connect the clock read or write pin or the address latch
enable pin. This allows data to be captured every time the read or write pin
changes, or whenever the address latch is enabled. The state analyzer only
captures data when the clock changes state. Depending on how it is configured,

the data may be captured on the rising or falling edge of the clock.

2.3.3 SAMPLING METHOD

A timing analyzer works by sampling the input waveforms to determine whether they
are high or low. It cares about only one user-defined voltage-threshold. If the signal is
above threshold when it samples, it will be displayed as a 1 or high by the analyzer. By
the same criterion, any signal sample that is below threshold is displayed as a 0 or low.
From these sample points, a list of ones and zeros is generated that represents a one-bit
picture of the input waveform. As far as the analyzer is concerned, the waveform is
either high or low no intermediate steps. This list is stored in memory and is also used

to reconstruct a one-bit picture of the input waveform, as shown below.

Rt R R R LR """""'THRESHOLD

8 A A A i

¢ 0 € & 1 1 ® i+ 1 SAMPLE RESULTS (0 REPRESENTS BELOW THRESHOLD)
SAMPLE RESULTS /1 REPRESENTS ABOVE THRESHOLD]
TIMING ANALYZER DISPLAY RECONSTRUCTED
FROM SAMPLE RESULTS

Diagram 2.3.3A: Input waveform [Agilent Technologies, 2000]

This tendency to square everything up would seem tc¢ limit the usefulness of a timing
analyzer. User should remembers, however, that it is not intended as a parametric
instrument. If user wants to check rise time of a signal with an analyzer, user are using
the wrong instrument. But if user needs to verify timing relationships among several
lines by seeing them all together, a timing analyzer is the logical (no pun intended)
choice. For example, imagine that user has dynamic RAM in a system that must be
refreshed every 2 ms. To ensure that everything in memory is refreshed within that 2
ms, a counter is used to count up sequentially through all rows of the RAMs and refresh
each. If user wants to make certain that the counter does indeed count up through all
rows before starting over, a timing analyzer can be set to trigger when the counter starts
and display all of the counts, Parametrics are not of great concern here user merely want

to check that the counter counts from 1 to N and then starts over.

When the timing analyzer samples an input line, it is either high or low. If the line is at
one state (high or low) on one sample and the opposite state on the next sample, the
analyzer "knows" that the input signal transitioned at sometime in between the two

samples. It doesn't know when, so it places the transition point at the next sample, as

shown below. This presents some ambiguity as to when the transition actually occurred

and when it is displayed by the analyzer. Worst case for this ambiguity is one sample

period, assuming that the transition occurred immediately after the previous sample

point.

w— TRANSITIONSOCCUR oy

: | BETWEENSAMPLE POINTS :

: - Y :

. 1] 1] L]
INPUT SIGNAL : : 4 —._——

: : g i

|]] L] L]
SAMPLE FOINTS ——ete I I l I I

Diagram 2.3.3B: Sample point [Agilent Technologies, 2000]

With this technique, however, there is a trade-off between resolution and total

acquisition time. Remember that every sampling point uses one memory location. Thus,

the higher the resolution (faster sampling rate), the shorter the acquisition window.

2.3.4 FEATURES

e Glitch capture

One headache of digital systems is the infamous "glitch". Glitches have a nasty
habit of showing up at the most inopportune times with the most disastrous
results [Craig Maynard, 2000]. How does user captures a glitch that occurs once
every 36 hours and sends system into the weeds? Once again the timing
analyzer comes to the rescue! Some timing logic analyzers have glitch trigger

capability that makes it easy to track down elusive glitch problems.

22

A glitch can be caused by capacitive coupling between traces, power supply
ripples, high instantaneous current demands by several devices, or any number
of other events. High performance DSO's provide a glitch trigger mode where
the user can specify a trigger on a pulse of less than or greater than a specified
pulse width. However, since a timing analyzer samples the incoming data and
can keep track of any transitions that occur between samples, it can readily

recognize a glitch. In the case of an analyzer, a glitch is defined as any transition

that crosses logic threshold more than once between samples.

The analyzer already keeps track of all single transitions that occur between

samples. To recognize a glitch, user "teaches" the analyzer to watch for multiple

transitions and trigger on them.

It's helpful to have the ability to trigger on a glitch and display data that
occurred before it. This can help user to determine what caused it. This
capability also enables the analyzer to capture data only when user wants it
when the glitch occurred. Think about the example mentioned in the beginning
paragraph of this section. User has a system that crashes periodically because a
glitch appears on one of the lines. User could set up a trigger condition that
captures the crash and then look at the control lines before the crash occurred.
Another alternative is to use an analyzer without glitch trigger capability and sit
in front of the machine waiting until user see the glitch. Unfortunately, neither
of the above are practical alternatives. If user can tell the analyzer to trigger on a

glitch, it can stop when it finds one, capturing all the data that happened before

23

it. User lets the analyzer be the baby-sitter and when the system crashes, user

has a record of what led up to the error.

Triggering

Another term that should be familiar to logic analyzers is triggering, often called
"trace point." A logic analyzer continuously captures data and stops the
acquisition after the trace point is found to display the data. Thus a logic
analyzer can show information prior to the trace point, which is known as

negative time, as well as information after the trace point.

a)Pattern Trigger
Setting trace specifications on a timing analyzer is a bit different from setting
trigger level and slope on an oscilloscope. Many analyzers trigger on a pattern

of highs and lows across input lines.

b)Edge Trigger

Edge triggering is a familiar concept to those accustomed to using an
oscilloscope. When adjusting the "trigger level" knob on a scope, user could
think of it as setting the level of a voltage comparator that tells the scope to
trigger when the input voltage crosses that level. A timing analyzer works
essentially the same on edge triggering except that the trigger level is preset to

logic threshold.

Why include edge triggering in a timing analyzer? While many logic devices are
level-dependent, clock and control signals of these devices are often edge-
sensitive. Edge triggering allows user to start capturing data as the device is
clocked. As a simple example, take the case of an edge-triggered shift register
that is not shifting data correctly. Is the problem with the data or the clock edge?
In order to check the device, user need to verify the data when it is clocked on
the clock edge. The analyzer can be told to capture data when the clock edge
occurs (rising or falling) and catch all of the outputs of the shift register. Of
course, in this case user would have to delay the trace point to take care of the

propagation delay through the shift register.

OUT 3 ouT? ouT I QuTo

DATA ___ Ip Ql_D Ql_D ol D Q_l—_

CLOCK

Diagram 2.3.4A: Register [Agilent Technologies, 2000]

Triggering Conditions

Trigger patterns can be defined to tell the logic analyzer when to start
capturing data. Any input signal channel can be set to a variety of trigger
conditions. Data capture begins when all of the trigger conditions in the
active trigger pattern are satisfied. Table 1 lists possible trigger

conditions for each channel.

25

Table 2.3.4B: Channel trigger conditions

Table 1. Channel Trigger Conditions
Trigger Condition Description
Don't Care Default trigger condition. Tha channel is not used to
determine tha trigger event.
Low The analyzer friggars when the channel is low.
High The analyzer friggers when the channel is high.
Falling The analyzer triggers when the channel is falling.
Rising The analyzer friggers when tha channel is rising.
Rising or Falling | The analyzer tripgars when the channel is rising or falling.
Edge
2.3.5 OPERATION

The operation of the logic analyzer is controlled by a clock signal (the clock together
with the data input is the data acquisition unit). A sample of the data present is taken

each time a clock pulse occurs, and transferred to the memory.

After the first clock pulse, one data word is stored in the first memory location. On
receipt of the next clock pulse this data word is shifted one place further, and the next
data word is transferred to the first memory location. Each subsequent clock pulse

causes the string of data words to be shifted one place further in this way.

Data Acquisition

- Trigger

L.ogic Analyzer
Memory

Diagram 2.3.5A: Data acquisition [Craig Maynard, 2000]
2.3.6 COMPONENTS

2.3.6.1 MEMORY

A prime consideration for defining the memory of a logic analyzer is the width of user
data word, in other words how many bits in parallel can be taken at every clock pulse.
The number of words user can store at a time is a second consideration. It may be e.g.

64; the memory will then have 64 locations for the data words — but any other size is

possible.

Now in order to visualize the data of interest, user need to be able to freeze the data

flow at a required spot. This is done with the aid of the trigger function - a very

important part of every logic analyzer.

27

2.3.6.2 TRIGGER FUNCTION

The trigger function tells the logic analyzer to stop data acquisition, and to freeze the
data present in the memory at that instant. At the appropriate moment user takes the
data stored, format them and transfer them to the display - the third main function of the

logic analyzer.
2.3.6.3 DATA ACQUISITION

The sampled data should, of course, be acquired correctly from the system under test.

That it is done via probes, color-coded leads being used to connect the probes to the

system under test.

Depending on the type of analyzer, user can also use individual probes for connecting
each data input to the circuit of interest, for example for sampling the data present on

the data bus and address bus of a microcomputer system as shown in diagram 2.3.6.3A.

Diagram 2.3.6.3A: Transmission of data through bus [Craig Maynard, 2000]

28

2.3.7 SOFTWARE FAULTS

Software errors are mainly program errors [Craig Maynard, 2000]. These can be

subdivided into 3 main groups:

Wrong Instructions

The first is an error caused by wrong instructions, so the program is not
executed in the way planned. This could also be due to missing instructions,

wrong addresses, etc.

Timing Faults

In some programs for communication between processor and peripherals, the
transmission rate is software, controlled. If the peripheral unit is too slow in
executing its function and the software is not programmed to wait for
completion of the operation in question, the program will continue, which means

that various faults can occur.

Memory Defects

Another type of error, sometimes wrongly regarded as a software fault is a
memory defect - due e.g. to an open circuit or a short-circuit in the memory
lines. Such a memory defect could also be the cause of the mix-up between the

unconditional jump and "jump-non-zero" instructions mentioned above.

29

2.3.8 HARDWARE FAULTS

The faults which can occur in digital circuitry may be due to the hardware, the software,

or both; software faults occur, of course, only if the application is controlled by a

software program [Craig Maynard, 2000]. The following hardware faults may be

distinguished:

e no data or wrong data

e glitches
e spikes
e races

e timing error
e ringing

e wrong level

These faults can also occur in analog circuits; however, the large number of Signal lines

in combinational circuits can greatly complicate the task of fault finding.

Software faults are mainly program errors from different sources, or memory defects.

Let us now look at each type of fault in turn.

e No data

No data or wrong data can be due to a broken line, short-circuit, or power failure

in some circuits.

30

Glitches

Diagram 2.3.8.2A shows one way in which a glitch can be generated. The circuit
is a 4-bit counter gated in such a way that it counts only up to 3. At count 3 both
outputs a and b are high; the AND gate is then enabled and both flip-flops are
reset to zero. This means that the "a" output is high only for a very short time
here before it is reset. The resulting short pulse (shown in the figure) is called a
"glitch". This type of unwanted signal will normally be found only in the design

stage. Correct design should eliminate all glitches.

Diagram 2.3.8A: Glitch generation [Craig Maynard, 2000]

Spikes

A spike is an unwanted signal very similar to a glitch. Diagram 2.3.8B shows an
example of spike generation, The sharp rising edge of a signal transition present
on one or more of the lines in a bus system can cause a parasitic signal to appear

on one or more bus lines owing to capacitive coupling.

31

Bus 'Linés,"<

. L - —

§ e

b

Diagram 2.3.8B: Spikes [Craig Maynard, 2000]

This parasitic signal is called a spike. It can create problems in a logic circuit connected

to the line involved as the circuit would receive the unwanted signal for a short time.

Races

Races are quite similar to glitches and spikes. They generally occur when
signals of different speed are combined in one logic circuit. See diagram 2.3.8C.
If both signals a and b have sharp edges as shown in the top half of the figure
there will be no signal at the output of the NOR gate. However heavy loading of
the "b" signal line can make the rising edge of the "b" signal somewhat slower
than the falling edge of the "a" signal. Consequently, it will take longer than
usual for b input to reach its switching threshold. For a short time, therefore,

both a and b will be within the range characterized as "low", giving a high

output.

As soon as the b signal reaches the threshold level, the output goes low which

results in a short unwanted output pulse.

32

b Y 8, ——1 % /
I i [D—x
1 /'y Slow rising
b’ ¥ 1 "brsignal R
A1
Unwanted
pulse
i

Diagram 2.3.8C: Races [Craig Maynard, 2000]

e Timing Errors
Another hardware fault condition can be caused by timing errors.

Diagram 2.3.8D shows data on a data bus together with the corresponding
sampling pulse. Let suppose the data is taken from the bus and sent to another
device at the falling edge of the sampling pulse. If, for some reason the data
sampling pulse is delayed and appears at the moment when the data are

changing (indicated by the crossing of the data lines), undefined data are

sampled and the result may be false.

33

Undefined
Area

oldData »¢{ New Data

N
‘ Undesired
Moment of Moment of
data sampling data sampling

Diagram 2.3.8D: Timing error [Craig Maynard, 2000]

e Wrong Level

Each family of logic circuits has its own defined range of switching levels.

A TTL output will deliver an output level of less than 400 mV when the signal is
logic 0, and of at least 2.4 V when the input signal is logic 1. At the input,
however, it will still recognize 800 mV as a O and signals from 2 V onwards as
1. If the input level is between 0.8 and 2.0 V, the logic condition is undefined.
The output signal can then be either a 1 or O, so a faulty condition can occur.
These wrong levels can be caused by excessive loading of the logic gates or by

interference.

34

2.4 SIGNAL GENERATOR

2.4.1 DEFINITION

Signal generator is a device or software which can generate signal by itself. Normally,
signal generator will be connected to a logic analyzer [Electronic I, 2003]. There are
two types of signal generator, software and hardware. A software signal generator is
software that capable of sending a signal down a cable so that it can be traced by a

detector receiving signals on the same frequency.

A hardware signal generator is connected to some DAC (Digital Analog Converter).
The number of DAC that is intends to be connected is depends on the number of bits
supported by the signal generator. The DAC have the ability to convert digital data into
analog data. As a result, the output will be in analog form. However, signal generator
can generate digital output as well. Sometimes the output can be generated in
combination of analog and digital. Each output is configured via its Setup menu. The
DAC outputs may be swapped with a single toggle, or the same signal may be fed to

both at once.

The signal generator has other type of source as well. It is may be connected to a sound

card that can generate sound signal. The general sources are as follow:

o White noise, uniform distribution
« Gaussian (normal) distribution white noise

(Adjustable Standard Deviation)

35

¢ Pink noise
¢ Band-limit noise

(Adjustable band/gap edge frequencies and shapes)

WAVESHAPE SELECT
(SINE /SQUARE / TRIANGLE)

AMPLITUDE
RANGE
(HVLO) FREQUENCY
MULTIPLIER

FREQUENCY
ADIJUST

AMPLITUDE
ADIJUST

DC OFFSET

Diagram 2.4.1A: Signal generator hardware [ELEC 2010, 2002]

2.4.2 MODE

¢ Dynamic mode

Signal generator consists of dynamic mode [Mautin, 2001]. The dynamic mode permits
continuous real-time signal generation. This dynamic mode not only allows extremely
fine frequency resolution, but it also allows extremely long tone bursts and frequency
sweeps (hours or days) and complex signal interactions. For example, two component
frequencies that are set to differ by

36

0.0001 Hz will only be in phase once every 2.78 hours. Modulation cycles can

be combined to get even longer cycles, many millions or even billions of years.

e Static mode
Static mode permits static signal generation [Mautin, 2001]. The data that is
stored in a static buffer is loaded out and display in a static mode. Normally the

signal generated is simple.

2.4.3 FEATURES

There are some example features that conclude in general signal generator, for example:
e Wave type and frequency modulators

Each DAC channel allows some different wave components to be generated,
each with its own separate submenu page system. Each component page has

submenu controls for wave type and frequency modulators.
o Complete signal configurations

Complete signal configurations may be saved to files for automatic load on start-

up, or may be saved or loaded at any time during operation.
o Output voltage

Output voltage adjustable from 0 to 12 volts,

37

e Power On presets

Power On presets, recall power on presets button

2.4.4 OPERATION

The signal generator works in synchrony with the data acquisition process. At each
sample time, an output sample is given from each active stimulus source in the order
DAC 0, DAC 1, DigOut before the analog input sample data is read. The stimulus
samples are pre-computed and stored, in the same sequence they will be used, in one
memory buffer. The size of buffer is varied depends on the number of output bits.
Whenever any stimulus parameter is changed, the entire stimulus buffer is recomputed.
However, the usage of this buffer changes between conventional static and the new

dynamic generation modes.

By controlling the timing of each component, the waveform components can be made to
occur sequentially or concurrently during a single data acquisition sweep. The signal

generate by signal generator may also be grouped for output on two separate alternating

sweeps or four sequential sweeps.

Generally, the signal generator generate signal through 2 process, digital frequency

generation and analog processing of signal [Mautin, 2001},

¢ Digital Frequency Generation

The digital part of the frequency generator consists of a shift register, an adder, a

latch and a 1M bit EPROM. The shift register reduces the need of port pins at

38

the MCU from 33 to 3. It also synchronizes the data input from the MCU with

the operation of the adder.

The adder output is feedback to itself via the latch. Therefore the value at the
output of the latch is increased by the value in the shift register at every clock
cycle. This value is also taken as an address for the EPROM. This EPROM
contains a table, which allows converting the value from the latch into the

amplitude of the output signal. In principle any waveform can be stored and

therefore generated.

The accuracy of the generated frequency is determined at low frequencies by the
precision of the oscillator and at high frequencies by the jitter, which is caused

by the discrete nature of adder and table.

The frequency and amplitude modulation is based on a DDS software in the
micro controller. Since the sinus is read from a 16K byte lookup table (LSB

first) starting at &H01000, we can replace it by any other waveform.
Analog Processing of the Signal

The final output signal is formed through DAC, filter, multiplier and an
amplifier. The digital output of the EPROM is converted to a analog signal by a
high speed, high precision DAC. Its current output is converted to a voltage by a

operational amplifier. To remove glitches and harmonics a Butterworth filter is

employed.

39

The MCU shifts the amplitude value into the DAC. The output of the DAC is
feed into the multiplier and allows the adjustment of the amplitude. The offset is
adjusted by another DAC. Its output is converted to a bipolar output by a dual

OP. In the final step the signal is amplified by a strong operational amplifier.

40

2.5 PARALLEL PORT

What is the “parallel port™? In the computer world, a port is a set of original lines that
the microprocessor, or CPU, uses to exchange data with other components [Jan
Axelson, 1999]. Typical uses for ports are communicating with printer, modems,
keyboards, and display, or just about any component or device except system memory.
Most computer ports are digital, where each signal, or bit, is 0 or 1. a parallel port
transfers multiple bits at once, while a serial port transfers a bit at time (though it may

transfer in both directions at once).

The original computer’s parallel port had 8 output, 5 inputs, and 4 bi-directional lines.
These are enough for communicating with many types of peripherals. On many newer
computers, the 8 outputs can also serve as inputs, for faster communication with

scanners, drivers, and other devices that send data to the computer.

The parallel port was designed as a printer port, and many of the original names for the
port’s signals (PaperEnd, AutoLineFeed) reflect that use. But these days, you can find
all kinds of things besides printers connected to the port. The term peripheral, or
peripheral device is a catch-all category that includes printers, scanners, modems and

other devices that connect to a computer.

2.5.1 PORT TYPES

As the design of computer evolved, several manufacturers introduced improved
versions of the parallel port. The new port types are compatible with the original design,

but add new abilities, mainly for increased speed.

2.5.1.1 ORIGINAL (SPP)

The parallel port in the original IBM PC, and any port that emulates the original port’s
design, is sometimes called the SPP, for standard parallel port, even though the original
port had no written standard beyond the schematic diagrams and documentation for the

IBM PC. Other names used are AT-type or ISA-compatible.

The port in the original PC was based on an existing Centronics printer interface.

However, the PC introduced a few differences, which other systems have continued.

SPP can transfer 8 bits at once to a peripheral, using a protocol similar to that used by
the original Centronics interface. The SPP doesn’t have a byte-wide input port, but for
PC-to-peripheral transfers, SPPs can use a Nibble mode that transfers each byte 4 bits at

a time. Nibble mode is slow, but has become popular as a way to use the parallel port

for input.

2.5.1.2 PS/2-TYPE (SIMPLE BI-DIRECTIONAL)

An early improvement to the parallel port was the bi-directional data port introduced on
IBM’s model PS/2. The bi-directional port enables a peripheral to transfer 8 bits at once
to a PC. The term PS/2-type has come to refer to any parallel port that has a bi-
directional data port but doesn’t support the EPP or ECP modes described below. Byte

mode is an 8-bit data transfer protocol that PS/2-type ports can use to transfer data from

the peripheral to the PC.

2.5.1.3 EPP

The EPP (enhanced parallel port) was originally developed by chip maker Intel, PC
manufacturer Zenith, and Xircom, a maker of parallel-port networking products. As on
the PS/2-type port, the data lines are bi-directional. An EPP can read or write a byte of
data in one cycle of the ISA expansion bus, or about 1 microsecond, including
handshaking, compared to four cycles for an SPP or PS/2-type port [Peacock, 2002]. An
EPP can switch directions quickly, so it’s very efficient when used with disk and tape
drives and other devices that transfer data in both directions. An EPP can also emulate

an SPP, and some EPPs can emulate a PS/2-type port.

2.5.1.4 ECP

The ECP (extended capabilities port) was first proposed by Hewlett Packard and
Microsoft. Like the EPP, the ECP is bi-directional and can transfer data at ISA-bus
speeds. ECPs have buffers and support for DMA (direct memory access) transfers and
data compression. ECP transfers are useful for printers, scanners and other peripherals
that transfer large blocks of data. An ECP can also emulate an SPP or PS/2-type port

and many ECPs can emulate an EPP as well.

2.5.1.5 MULTI-MODE PORTS

The parallel port uses a variety of the computer’s resources, Every port uses a range of a
address, though the number and location of addresses varies. Many ports have an

assigned IRQ (interrupt request) level and ECPs may have an assigned DMA channel,

43

The resources assigned to a port can’t conflict with those used by other system

components, including other parallel ports.

2.5.2 PARALLEL PORT RESOURCE

The parallel port uses a variety of the computer’s resources [Peacock, 2001]. Every port
uses a range of addresses, though the number and location of addresses varies. Many
ports have an assigned IRQ (interrupt request) level and ECPs may have an assigned
DMA channel. The resources assigned to a port can’t conflict with those used by other

system components, including other parallel ports.

2.5.2.1 ADDRESSING

Each printer port consists of three port addresses; data, status and control port. These
addresses are in sequential order. That is, if the data port is at address 0x0378, the

corresponding status port is at 0x0379 and the control port is at 0x037a.

The following is typical.

Printer Data Port Status Control
LPTI 0x03bc 0x03bd 0x03be
LPT2 0x0378 0x0379 0x037a

LPT3 0x0278 0x0279 0x027a

2.5.2.2 INTERRUPTS

Most parallel ports are capable of detecting interrupt signals from peripheral. The
peripheral may use an interrupt to announce that it’s ready to receive a byte, or that it

has a byte to send. To use interrupts, a parallel port must have an assigned interrupt-

request level (IRQ).

Conventionally, LPT1 uses IRQ7 and LPT2 uses IRQ5. But IRQS is used by many

sound cards and because free IRQ levels can be scarce on a system, even IRQ7 may be

reserved by another device. Some ports allow choosing other IRQ levels besides these

two.

Many printer drivers and many other applications and drivers that access the parallel
port don’t require parallel-port interrupts. If user selects no IRQ level for a port, the port

will still work in most cases, though sometimes not as efficiently and you can use the

IRQ level for something else.
2.5.2.3 DMA CHANNELS

ECPs can use direct memory access (DMA) for data transfers at the parallel port.
During the DMA transfers, the CPU is free to do other things, so DMA transfers can
result in faster performance overall. In order to use DMA, the port must have an

assigned DMA channel, in the range 0 to 3.

45

2.5.3 PORT HARDWARE

2.5.3.1 PC PARALLEL INTERFACE

o oooomoooooo::.»3 0 View is ooking at
000000000000, Comctor Sidﬂ Of
DBE-25 Male Connector.
Pin Description
1 Strobe PC Output
/. Data 0 PC Output Pin Agsi
3 Data 1 PC Output In fissignraents
g g:::g I;g 82&;3 Note: 8 Data Outputs
6 Data 4 PC Output 4 Misc Other Outputs
7 Data 5 PC Output
8 Data 6 PC Output 5 Data Inputs
9 Data 7 PC Output R
10 ECK PC Input Note: gms uﬁ-zs ae
11 Busy PC Input i
12 Paper Empty PC Input
13 Select PC Input
14 Kufo Feed PC Output
15 Enor PC Input
16 [nitialize Printer PC Output
17 Select Input PC Output
Diagram 2.5.3.1.A: Parallel port interface [Dage, 1999]

Many years ago, IBM designed the parallel port to drive printers. A standard 'D'
25 pin male connector was available on the back of the PC that connected to a
printer. Their sole purpose was 10 interface with the facto Centronics printer,
Instead of building a clean direct interface that relied on software to invert

signals, they used hardware inverters in a most unusual fashion. Here an

46

inverter, there an inverter, everywhere an inverter. But it's the standard,

everybody has one so lets use it.

DOS supports up to three parallel ports that are assigned the handles of LPT1,
LPT2, and LPT3. Each port requires three consecutive 10 addresses to select all

the possibilities. They will be referred to as Base, Base +1, and Base + 2.

Parallel port is a misnomer. Actually there are five ports, consisting of two

output ports and three input ports [NI, 2003].

At base address, eight bits are available as output on pins 2-9. They are hard
wired to an eight bit input at the same address. The output is latched in the usual
manner with the 10 write pulse and is always active. The original IBM card used
a 741.8374 tri-state device that has it output enable pin hardwired active. This
means the input can only read the output so it's not usable except to check that
the output is correct. The original IBM card could be reworked to control the
output enable pin that would then free up the input, but this is not recommended.
Resistor and capacitors suppress ringing but should not limit this ports speed.

When using CMOS devices driven from this output, it's recommended that pull-

up resistors be used.

At base + 1, there are five input bits from D3 to D7. They are gated on the bus
with 10 read. Note that bit D7 (pin 11) is inverted. Software can invert this bit if
necessary and will be demonstrated later. Bit D6 (pin 10) can also be used to

generate a hardware interrupt. Several conditions must be met before an

interrupt occurs. This pin can be used as a data input without concerns of

inadvertently causing an interrupt. If a hardware interrupt is desired, this is the

pin to use.

At base + 2 several options exist. This is a four bits output or a four bit input, or
can be configured as any mixture of input and output. This is possible because
the output is open collector. By sending data to this port to make an output pin
high, allows that pin to be driven as an input. The open collectors are pulled
high with 4.7 K resistors. Open collectors are not driven high but float high due
to the pull up resistor charging any capacitance in the circuit. The speed on this
port will not be as fast as on the base address particularly bit DO that has an

added external capacitor. Test any application that requires maximum output

speed from this port.

Interrupts are normally open collector activated with a device pulling the line
low. Any card in the ISA slot can pull an interrupt line low. This parallel port
card uses a different approach. Bit D4 at base + 2 controls a tri-state device.
When D4 is high, pin's 10 logic state is passed to the hardware interrupt number
7 (default) or number 5. Remember that all outputs are latched and remain
active. If bit D4 is set high, and input pin 10 is high, this could disable other
cards from using the selected interrupt. User software program should set bit D4

low when not controlling the interrupt.

48

To summarize: the parallel port is capable of eight to 12 output bits, and five to
nine input bits. One of the input lines can be used as a hardware interrupt. All

inputs and outputs will behave as 74LS devices.
2.5.3.2 CONNECTORS

The PC’s back panel has the connector for plugging in a cable to a printer or
other device with a parallel-port interface. Most parallel ports use the 25-contact
D-sub connector, the shell (the enclosure that surrounds the contacts) is roughly
in the shape of an upper-case D. Other names for this connector are the
subminiature D, DB25, D-shell or just D connector. The IEEE 1284 standard for

the parallel port calls it the IEEE 1284-A connector.

2.5.3.3 CABLES

Most printer cables have a 25-pin male D-sub connector on one end and a male 36-
contact on the other. Many refer to the 36-contact connector as the Centronics
connectors, because it’s the same type formerly used on Centronics printer. Other
names are parallel-interface connector or just printer connector. IEEE 1284 calls it the

1284-B connector.

Peripherals other than printers may use different connectors and require different cables,
Some use a 25-pin D-sub like the one on the PC. A device that uses only a few of the
port’s signals may use a telephone connector, either a 4-wire RJ11 or an 8-wire RJ45.

Newer peripherals may have the 36-contact 1284-C connector,

In any case, because the parallel-port’s outputs aren’t designed for transmitting over

long distances, it’s best to keep the cable short: 6 to 10 feet, or 33 feet for an IEEE-

1284-compliant cable.

2.6 BUFFER

The simplest form of digital input is shown in diagram 2.6A. The 74HC244 buffer sits

between the processor and the outside world. When the processor wants to read the

status of devices on the input port, the 74HC244’s ontput enable is asserted, and data

flows through the buffer and onto the data bus.

74HC244 Do
et AD YAO |
—— A1 A1 Rl
— VS YA2 b2
oy A3 YA3 _.gé_..\
8 digital | =
inputg } ~——{ BO YBO_'E?,'—\
—1B1 YB] ==t
T YB2f———]
—1iB3 YB3|—Rl |
|_OEA OEB_| _g‘..<%?::
i I READ(L) ,To Glue
' ; N Logic

Diagram 2.6A: 74HC244 buffer [Bob Perrin, 2003]

If the system must have many digital inputs, the 74HC244 scheme may add an
unacceptable level of capacitance to the microprocessor’s data bus. The tri-stated output

of the 74HC244 has a worst-case capacitance of 20 pF (see the 74HC244 datasheet). It

doesn’t take many 74HC244s on a bus to slow it down.

50

2.7 ANALOG TO DIGITAL CONVERTER (ADC)

The ADC0808/ADC0809 is an 8 bit ADC that also contains an 8 channel multipexer
[Shauna Rae, 1999]. The ADC0808/0809 was designed for simple interface with analog

inputs, especially transducers. There are a couple of limitations that follow:

The source resistance must be below 10kohms for operation below 640kHz and
below Skohms for operation around 1.2MHhz.

The source must remain stable while it is being sampled and should contain little
noise. This means it must remain stable for up to 72 clock cycles.

If Vee and ground are used as reference voltages, they should be isolated by

decoupling with a 1 microF capacitor.

51

2.8 PLATFORM

An operating system (sometimes abbreviated as "OS") is the program that, after being
initially loaded into the computer by a boot program, manages all the other programs in
a computer. The other programs are called applications or application programs. The
application programs make use of the operating system by making requests for services
through a defined application program interface (API). In addition, users can interact
directly with the operating system through a user interface such as a command language

or a graphical user interface (GUI).

An operating system performs these services for applications:

In a multitasking operating system where multiple programs can be running at

the same time, the operating system determines which applications should run in

what order and how much time should be allowed for each application before

giving another application a turn.

It manages the sharing of internal memory among multiple applications.

It handles input and output to and from attached hardware devices, such as hard
disks, printers, and dial-up ports.

It sends messages to each application or interactive user (or to a system
operator) about the status of operation and any errors that may have occurred.

o It can offload the management of what are called batch jobs (for example,

printing) so that the initiating application is freed from this work,

On computers that can provide parallel processing, an operating system can manage

how to divide the program so that it runs on more than one processor at a time.

2.8.1 LINUX

Linux, a clone of the UNIX operating system that written from scratch to avoid license

fees entirely, although the operation of the Linux operating system is based entirely on
UNIX. It shares UNIX's command set and look-and-feel, so if anyone know either

UNIX or Linux, they know the other [Tapcott, 1999].

Here are some of the important features of Linux that make it so unique [Bob Perrin,

2003]:

Full multitasking and 32-bit support

Linux is a real multitasking system that allows multiple users to run many
programs on the same system at once. Linux is also a full 32-bit operating
system that utilizes the special protected-mode features of Intel 80386 and later

processors and their work-alike.

The X Window System

The X Window System is a very powerful graphics interface, supporting many
applications. A complete version of the X Window System, known as XFree86,
is available for Linux. This means Linux is moving into the GUI world in the

future,

53

Built-in networking support
Linux uses standard TCP/IP protocols, including Network File System (NFS)
and Network Information Service (NIS, formerly known as YP). By connecting

the system with an Ethernet card or over a modem to another system, anyone

can access the Internet.

Shared libraries and Virtual memory

Linux implements shared libraries that allowing programs use standard
subroutines to find the code for these subroutines in the libraries at runtime. This
saves a large amount of space on the system where each application doesn't store
its own copy of these common routines.

GNU software support

Linux supports a wide range of free software written by the GNU Project,
including utilities such as the GNU C and C++ compiler, gawk, groff, and so on.

Many of the essential system utilities used by Linux are GNU software.

Portability
Linux is compatible with the IEEE POSIX.1 standard. Linux has been

developed with software portability in mind, thus supporting many important

features of other UNIX standards.

Linux is fault-tolerant

It is used to more than 31% of the world's web servers. With Apache as the
primary application for these servers, they have proven to be practically immune

to the recent explosion of viruses that have plagued e-mail and the Internet.

Nonproprietary source code

The Linux kernel uses no code from AT&T, nor any other proprietary source.
Other organizations, such as commercial companies, the GNU project, hackers,

and programmers from all over the world have developed software for Linux.

Security

Because of the available source code and the ability for users to modify, Linux
is not as secure as other system if an ever-expanding group of hackers who want

to get their hands dirty with others’ Linux-based system.
Lower cost than most other Windows NT systems and UNIX clones systems

Anyone who has the patience to access to the Internet, the only price that needs

to pay for Linux is the time. Linux is freely available on the Internet.

55

2.8.2 WINDOWS NT
Windows NT is by far one of the most self-sufficient operating systems. It is the
operating system developed by Microsoft. The most obvious part of Windows is the

graphical user interface.

Describe below are some of the features of Windows NT:

Preemptive multitasking and scalability

The internals of Windows NT were centered around a microkernel-style
architecture similar to UNIX. This microkernel gave Windows NT preemptive
multitasking. Additionally, Windows NT made use of process threads, an idea
popularized by Carnagie Mellon's MACH operating system to support
symmetric multiprocessing (SMP). The internal operations of Windows NT are

designed to take full advantage of SMP systems (scalability).

Flat, 32-bit Memory Model
Windows NT is a 32-bit operating system that uses 32-bit addresses to access

objects. This result in many advantages such as it enables NT to address

4,194,304KB (four gigabytes) of memory.

NT Virtual DOS Machine (NTVDM)
There is no DOS in Windows NT but yet it still able to run the vast majority of
DOS programs as long as they don't try to directly access the hardware or

require special device drivers. It does this by creating a virtual DOS

56

environment called the NT Virtual DOS Machine. The DOS program runs in

this emulated DOS. NT traps the DOS calls and converts them to standard

Win32 API calls.

Network Operating Systems
Windows NT is both an operating system and a network operating system. With
LAN Manager, OS/2 was the operating system and LAN Manager was the

network operating system. This integration of the OS and the NOS has proved to

be a formidable combination in Windows NT.

Reliability Through Protected Memory Model

In Windows NT's memory model all processes get their own 32-bit address
space. This 4GB space is divided in half, and the application can only really use
the lower 2GB of space. The upper 2GB is for interfacing with other parts of the
system. Every process effectively thinks it is the only thing running. There is no
way for a process to read or write outside of its own memory space, cither

accidentally, or intentionally. This can prevents the system crashes and it

provides security for each process.

Portability

It is this portability that enables Windows NT to run not only on Intel x86
microprocessors but also on RISC chips, such as the DEC Alpha AXP, the

MIPS R4400, and Motorola PowerPC. Part of the key to Windows NT's

57

portability is the hardware abstraction layer (HAL), which hides the difference
in actual hardware from the higher-level operating system software. The HAL

makes all hardware look essentially identical to the rest of Windows NT.

Personality/Compatibility

Windows NT was designed to support multiple simultaneous personalities. Its
interface became the primary personality. It also supports a POSIX personality,
an 0S/2 personality, and a DOS/Windows personality. Additional personalities,

such as a full UNIX personality can easily be added.

Security

Windows NT was created to meet the United States National Security Agency's
(2 level evaluation criteria. By creating Windows NT based on a defined
security model, Microsoft was able to guarantee that Windows N'T would meet

the most demanding corporate security needs.

Fault-Tolerance

Windows NT has many features that provide varying levels of fault-tolerance
for the system. Included in NT's list of fault-tolerant features are N'T's journal-
based, recoverable file system (NTFS), disk mirroring and disk stripping with

parity (RAID 1 and RAID 5), disk sector sparing, and support for an

uninterruptible power supply (UPS).

58

License fees

However, Windows NT is a copyrighted piece of software that demands license
fees when any part of its source code is used. Therefore, it required a sum of

monetary outlay to obtain it.

2.8.3 WINDOWS 2000

Windows 2000 is a fully Web-aware operating system, with a built-in Web server,
Internet Information Services 5.0. It also includes the critical application development

services needed to build integrated, component-based applications that take advantage

of the Internet.

The Microsoft Windows 2000 Server operating system provides the services user need
to put the Internet to work for their business. From publishing basic information about
company to creating a full-blown e-commerce application, starting with Windows 2000
is a great way to build the Internet into business. Using industry-standard hardware,
software, and skills, along with the services and features in Windows 2000, user can
readily share information and conduct transactions involving employees, customers, and

business partners—anywhere in the world—through the Web.

For many companies, the ultimate goal of Internet-enabling their businesses is to create
a dynamic Web-based storefront to serve customers online. With its application
services, scalability, reliability, manageability, and security, Windows 2000 serves as a
solid yet flexible foundation for securely integrate e-commerce sites. Using Windows

2000, developers have the ability to create virtually any type of shopping experience,

59

To provide maximum programming flexibility, Windows 2000 uses a component
object-based programming model that lets developers use a broad array of Microsoft
and third-party development tools to create applications and integrate them with
existing software. The model is also programming language-neutral, so developers can

use virtually any language they prefer.

2.9 PROGRAMMING LANGUAGE

2.9.1 VISUAL BASIC

The Visual refers to the method used to create the graphical user interface (GUI).
Rather than writing numerous lines of code to describe the appearance and location of

interface elements, you simply add pre-built objects into place on screen [Allen, 1998].

The Basic refers to the BASIC (Beginners All-Purpose Symbolic Instruction Code)

language, a language used by more programmers than any other language in the history

of computing.

Visual Basic contains several hundred statements, functions, and keywords, many of
which relate directly to the Windows GUI. Beginners can create useful applications by
learning just a few of the keywords, yet the power of the language allows professionals

to accomplish anything that can be accomplished using any other Windows

programming language.

The Visual Basic programming language is not unique to Visual Basic, The Visual

Basic programming system, Applications Edition included in Microsoft Excel,

60

Microsoft Access, and many other Windows applications uses the same language. The

Visual Basic Scripting Edition (VBScript) is a widely used scripting language and a

subset of the Visual Basic language. Listed below are the features of Visual Basic:

Data access features allow user to create databases, front-end applications, and
scalable server-side components for most popular database formats, including

Microsoft SQL Server and other enterprise-level databases.

ActiveX technologies allow you to use the functionality provided by other
applications, such as Microsoft Word word processor, Microsoft Excel
spreadsheet, and other Windows applications. User can even automate

applications and objects created using the Professional or Enterprise editions of
Visual Basic.

Internet capabilities make it easy to provide access to documents and

applications across the Internet or intranet from within user application, or to

create Internet server applications.

User’s finished application is a true .exe file that uses a Visual Basic Virtual

Machine that they can freely distribute.

61

2.9.2 JAVA

A simple, object-oriented, network-savvy, interpreted, robust, secure, architecture

neutral, portable, high-performance, multithreaded, dynamic language. Below are the

features of Java language.

Simple

Java omits many rarely used, poorly understood, confusing features of C++ that
in our experience bring more grief than benefit. These omitted features primarily
consist of operator overloading (although the Java language does have method

overloading), multiple inheritance, and extensive automatic coercions.

Automatic garbage collection, simplifies the task of Java programming but
making the system somewhat more complicated. By virtue of having automatic
garbage collection (periodic freeing of memory not being referenced) the Java

language not only makes the programming task easier, it also dramatically cuts

down on bugs.

Another aspect of being simple is being small. A small size is important for use

in embedded systems and so Java can be easily downloaded over the net.

Object-Oriented

Simply stated, object-oriented design is a technique that focuses design on the

data or objects. Object-oriented design is also the mechanism for defining how

modules "plug and play." The object-oriented facilities of Java are essentially

those of C++, with extensions from Objective C for more dynamic method

resolution.

Network-Savvy

Java has an extensive library of routines for coping easily with TCP/IP protocols
like HTTP and FTP. This makes creating network connections much easier than
in C or C++. Java applications can open and access objects across the net via

URLs with the same ease that programmers are used to when accessing a local

file system.

Robust

Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later

dynamic (runtime) checking, and eliminating situations that are error prone.

Java has a pointer model that eliminates the possibility of overwriting memory

and corrupting data. Instead of pointer arithmetic, Java has true arrays. This

allows subscript checking to be performed.

Java programmers can be relatively fearless about dealing with memory because
they don't have to worry about it getting corrupted. Because there are no pointers

in Java, programs can't accidentally overwrite the end of a memory buffer.

63

Secure

Java is intended for use in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction
of virus-free, tamper-free systems. The authentication techniques are based on

public-key encryption.

There is a strong interplay between "robust" and "secure." For example, the
changes to the semantics of pointers make it impossible for applications to forge
access to data structures or to access private data in objects that they do not have

access to. This closes the door on most activities of viruses.

Architecture Neutral

Java was designed to support applications on networks. In general, networks are
composed of a variety of systems with a variety of CPU and operating system
architectures. To enable a Java application to execute anywhere on the network,
the compiler generates an architecture-neutral object file format--the compiled
code is executable on many processors, given the presence of the Java runtime

system.

High Performance

While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can be
translated on the fly (at runtime) into machine code for the particular CPU the

application is running on. For those accustomed to the normal design of a

64

compiler and dynamic loader, this is somewhat like putting the final machine

code generator in the dynamic loader.

The bytecode format was designed with generating machine codes in mind, so
the actual process of generating machine code is generally simple. Efficient code
is produced: the compiler does automatic register allocation and some

optimization when it produces the bytecodes.

e Multithreaded

Multithreading is a way of building applications with multiple threads.
Unfortunately, writing programs that deal with many things happening at once
can be much more difficult than writing in the conventional single-threaded C

and C++ style.

Java has a sophisticated set of synchronization primitives that are based on the
widely used monitor and condition variable paradigm introduced by
C.A.R.Hoare. By integrating these concepts into the language (rather than only

in classes) they become much easier to use and are more robust.

Other benefits of multithreading are better interactive responsiveness and real-

time behavior,

293G+t

What is it?

65

Nearly all world-class software, from the leading Web browsers to mission-critical
corporate applications, is built using the Microsoft Visual C++ (VC++) development

system," gushes Microsoft's introduction to Visual C++ 6.0 Professional Edition.

However, this will certainly be news to the vast number of corporations whose core
systems are written in Cobol. And while, post-Cobol, C and C++ may be the languages
of choice, and VC++ the obvious choice for Windows developments, it is far from the

only C++ development tool.

Where did it originate?

C++ was initially designed and implemented by Bjarne Stroustrup at AT&T Labs (then
AT&T Bell Labs). It evolved from C, with the addition of object-oriented capabilities

from the Simula programming language.

The first commercial release was in 1985. The language gained widespread use in
industry and academia during the 1980s, and in 1990 the major computer and software
tools suppliers, Microsoft among them, started to provide C++ to their users as a major

implementation tool.

C+H+ is used by more than 1.5 million programmers worldwide. Apart from Microsoft
and AT&T, companies that have contributed to the C++ standard include Ericsson,

Borland, HP, IBM, Silicon Graphics and Sun.

60

What's it for?

C++ is a general-purpose programming language with a bias towards systems
programming. It supports low-level programming in traditional styles, data abstraction,

object-oriented programming, and generic programming,

Visual C++ is a C++ development environment for Windows and the Web, including

scripting, compiling and debugging tools and component libraries. User can develop

applications that make use of OLE (Object Linking and Embedding), ODBC (Open

Database Connectivity) and the Microsoft Foundation Class (MFC) library. VC++ can

be used to build ActiveX controls, and create multimedia-based, interactive, Dynamic

HTML (DHTML) pages.

3.0 SUMMARY

This chapter discusses the literature reviews regarding the system architecture,

system platform, database system, programming and also development tools that are

done. After doing those research, I will choose the most suitable one in developing my

proposed system. I will further explain about the software chosen and also the system

requirement in Chapter 3.

67

CHAPTER 3: SYSTEM ANALYSIS

As progress from the literature research and review stage, the next phase is to perform a
thorough and detailed analysis of the system development. Emphasis will be on the
functional and non-functional requirements of the system development needs. Thus
system analysis is a stage of gathering, analyzing and finalizing or determine the

problem scope and the objective of goals which the system will have to achieve,

3.1 METHODOLOGY

3.1.1 INTRODUCTION

To ensure the success, a good project planning must be done. With a good project
planning system can meet the requirement and the expectation of the users. Project
planning also must be constantly monitored throughout the project and periodically

updated based on the most recent information.

A methodology may be defined as a collection of procedures, techniques, tools and
documentation aids that can help to speed up and simplify the development process.
Methodology also will help to plan, manage, control and evaluate information system
project. The objectives of the methodology include the following;

1. record accurately the requirements for an information system

2. provide a systematic method of development so that progress can be monitored

3. provide an appropriate time limit and acceptable budget

4. produce a system that is well documented and easy to maintain

68

5. provide an indication of needed changes as early as possible in the development
system

6. provide a system that is user-friendly

3.1.2 SYSTEM DEVELOPMENT LIFE CYCLE (SDLC)

Every system m‘ust go through SDLC to meet the success of the project. Every system
must go through the same phase in their lifetime. The phases are:

1. feasibility study

2. analysis and requirement specification

3. design

4. implementation

5. maintenance

The process in the life cycle always consist of a set of steps: methods, tools and
procedures. The model is chosen based on the nature of the project and applications, the
methods and tools to be used and the controls deliverables that are required.

Using prototyping model will do the suitable model for this project.

3.1.3 DEVELOPMENT APPROACH

Software engineering process consists of a set of steps that encompass methods, tools
and procedures. These steps are often referred as software engineering model or

software life cycle model.

69

Rapid prototyping is a process that enables the developer to create a model of the
software to be built. It is a working model that is functionally equivalent to a subset of
the target software. The subset usually consists of data input screens (or forms), user
interface (menus, dialog) and reports.

System developer must first build a rapid prototype and then lets the user interact and
experiment with it. If the rapid prototype does what user wants and the user will happy
with it. This will draw up a specification with the assurance that the product meets the
user real needs. Then the software process can be continuing on the design and

implementation stages.

Two forms that are include in rapid prototyping:
1. a model that depicts human computer interaction in a form that enables the user
to understand how such interaction will occur
2. a working prototype (functional prototype), which implements some of the

functions, that is require of the desired software.

3.1.4 REASONS FOR THE SELECTED APPROACH

The methodology of prototyping has been chosen for this system development process.
The main purpose of the prototyping method is the development and maintenance of
complete information system, by means for the application of structured techniques to
the enterprise as a whole. This method also emphasizes on planning, modeling and

system design of the project.

70

Prototyping supports the entire software development process within the scope of a
phase concept with the following main phases: strategic information planning, user-
level system analysis, technical system design and implementation. Prototyping requires
a development of application in which all the results derived from the various methods
are counterchecked and consolidated so the development of application is comprised of

assessed and consistent information.

This approach also has obvious advantages, particularly for a project domain, activities
and entities that will serves as a basis of writing the specification for a production
quality system. Thus with this approach it will capture user’s requirements accurately
and completely is vitally important to successful information system development.

Prototype also can help users to express their requirements more precisely.

71

3.1.5 DESCRIPTION OF METHODOLOGY DEVELOPMENT

The sequence of events for the throw-Away prototyping model is illustrated in diagram

3.1.5A.
Establish outline Develop Establish Specify
specification prototype prototype ¥ system
A
bk
1 B Design &
Validate p implementation
the system the system
*

at this point the prototype
is thrown away

** the development of the
actual system begins

Diagram 3.1.5A: Prototyping model

The sequence of events consists:

13

2.

establish the outline specification
develop prototype

evaluate prototype

specify system

design and implement the system

validate the system

establish the outline specification

Like all approach to software development, prototyping begins with
requirements gathering. First of all, the overall objectives are defining for the
software, then identify the requirement that are known and outline arcas where
further definition is mandatory. In this activity is to help to understand the
content and the complexity of the project. The mains objective here is to identify
the resource requirements for each activity in the project development and
provide an estimate of resources required. Project schedule must be prepared,
this is to make sure that the project will complete in the time needed. Creating
the preliminary budget is important to determine the planned expenses and
revenues associated with the project. The baseline project plan is used to reflect
the best estimate of the project tasks and the resource requirements. This will

help to guide the next phase of the project development.

73

2. develop prototype
a quick design then occurs. The quick design focuses on representation of those
aspects of the software that will be visible to the user (for example inputs, user
interface and output). The quick design leads to the rapid construction of the
prototype. The important thing that to do are just concentrate about the software
that will use in this project and to know the enhancement of the software. The
reason why it need a quick design because it is easy to understand, delegate,

code test, document and maintain.

3. evaluate prototype
The prototype is evaluated by the user and is used to refine requirements for the
software to be developed. Besides functions and descriptions of the prototype
will be evaluate to see whether it can meet the aims and objective of the system.
Some changes may be needed, this is to ensure that the system will meet all the

requirements.

4, specify system
a process of iteration occurs as the prototype is turned to satisfy the needs of the
user while at the same time enabling the developer to better understand what
needs to be done. In this phase all the strength and weaknesses of the system
will be discuss. Some of the functions will be added in the system. The objective

are:

1. To help to capture user requirements more accurately.
2. It helps to clarify and define an ill-structured system more clearly.

3. Helps to explore the feasibility of the application.

The prototype is used as a tool for requirement analysis. After evaluation the

prototype is thrown away and the actual production of the operational system

begins.

Design and Implement the System

When the prototype enter the design phase for the second time this means the
prototype need some editing from the previous work. Thus, this will improve the
quality of the design. System implementation includes coding, testing and
documenting the system as well as training the end users and system
administrators. Design is coded with the suitable computer language such as
C-++, Visual Basic or Java. For the ease of the maintenance, the program module
must be properly structured. After that the system must be tested. The purpose
of testing is to uncover the software error. With the proper testing this will
minimize the number of error. In this phase documentation is important

documentation must also be provided in the form of user and operator manuals

as well as system documentation.

75

6. Validate the system

At last the complete system will be tested and no more prototyping is involve. In

this phase, keeping the system working in dynamically changing environment is

needed. The systems also need to be modified because of the changes in the

environment such as changing of the hardware and operating system.

3.1.6 THE ADVANTAGES OF THE PROTOTYPING

The benefits of developing a prototype in the software process are:

1.

Misunderstanding between software developers and users may be
identified as the system functions for the logic analyzer and signal
generator are demonstrated.

Missing user services may be detected to satisfy the user need such as to
add some logic analyzer and signal generator applications.

Any difficulty or confusing of user services may be identified and
refined every time user need some changes.

Easy to find incomplete or inconsistent requirement as the prototype is
developed, this will allow to a good modification and this would be
casier to do some changes in the logic analyzer and signal generator
project.

A working system is available quickly to demonstrate the feasibility and

the usefulness of operation to management.

76

3.2 ANALYSIS PROCEDURES

An analysis procedure is important in order to identify the various requirement and
objectives that need to be met by the user. The outcome of the analysis will serve as
guideline for the developer during the design on what and how the system has to

function in order to fulfill the user require. Listed below are the procedures for system

analysis:

i) Problem Identification
ii) Evaluation And Synthesis
iii) Modeling

iv) System Requirements And Specification

3.2.1 PROBLEM IDENTIFICATION

Essentially the first phase in the system analysis procedure, the problem identification
stage is being carried out in order to recognize and identify the objective of the system
and the goals that the system need to meet in order to satisfy the user needs. In logic
analyzer module the problem identification is that the system has to display input by
user from paralle]l port pins. User has to know how does the data can be display in
square waveform. The signal generator, on the other hand, meet difficulty of how to
create interface that let user generates the data and transfer it to parallel port pins.
Difficulties of how to write and read data to and from a parallel port are another

problems occur during developing this system. The main goal that needs to be met by

71

the system is to be able to function according to clock cycle as well as to provide the
user a reliable, user friendly and efficient functionality.

3.2.2 EVALUATION AND SYNTHESIS

In this stage, analyzing of problems has to be done by dividing the problem scope into
smaller parts so that the problem can be tackle one by one. By doing this, user can have

a better view and understanding on the problem scope and eventually easier to tackle

and solve.

The following are problems that needed to be considered for system requirement:

i) Consideration of programming language that will suite the development of
the system.

ii) Consideration of how to create certain functions of logic analyzer and signal
generator,

iiiy Consideration on how to read data from parallel port.

1v) Consideration of how to write data to parallel port.

V) Consideration of locating data in buffer.

vi) Consideration of how to processing data according to clock cycle.

vii) Consideration of how to display data in interface.

3.2.3 MODELING

By using a graphical representation on the system design, user can better understand

how the system actually works. There are many graphical models that can be use for

design purpose. The graphical model include:

78

e Top level architecture

Roughly display the architecture of the system. This can give a user the basic
concept of the system architecture.

e Block diagram

Show the internal connection of electronic circuit. Normally this require extra
know of the functionality of electronic hardware. The wrong connection of

electronic circuit will cause the failure of system.

e Flow chart

Divide the system into smaller scope and is shown in a hierarchy diagram. This
can give a brief concept to designer of what have to do during the system

development.

e Pre-representation of user interface

This is important especially for the system that involves creating a software that

include certain functions.

3.2.4 SYSTEM AND USER REQUIREMENT

System requirement of the project needs to be identified to serve as a guideline during
the development process. User can identify system requirement as of:

i) What tasks does the system needs to perform

ii) What are the objectives or goals does the system needs to achieve

iiiy What resources does the system need to fully function

79

There a 2 types of requirements which are :
1) Functional requirements

ii) Non-Functional requirements

Functional Requirement

A functional requirement refers to the interaction between the system and the
working environment the system resides in. It also describes how a system
should behave and perform their task given a set of input or stimuli. Stated

below are the components in functional requirement analysis:

A) Logic analyzer

e Clear Buffer: clears all sampled data that is in
buffer

e Timing: let user selects timing

e Duration: show the period between 2 timing

e Ruler; a dotted line that functions as ruler

e Display format: display data in flatten, bus or
binary format

e Close: close the interface

e User authentication: user login using his own

password and id

80

B) Signal generator

* Pins input: simulate the 8 data pins that let the user
to “on” or “off” the parallel port pins

 Input: let user to input data by typing H_I._ where
H indicates high, L indicate low and _ indicate
seconds

e Delete : delete data

e Close: close interface

* User authentication: user login using his own

password and id

Non-Functional Requirements
Non-Functional requirement can be described as constraint where the system must
operate to a certain degree of standard of operation. These constraints usually narrow
the selection of development tools such as programming language, platform and others.
Listed below are the non-functional requirements of the system:
i) Reliability
Reliability refers the extent of the system performance which are expected
or desired by the user which required criteria such as precision and

accuracy.

ii) User Friendliness

81

iii)

Designing of A Graphical User Interface will eventually enhance user
friendliness as well as easier for the user to understand and use the
system. A good consideration of User Interface design is that the interface
must fulfill the following criteria:
a) Consistent or standard — which mean every interface of different module
shall look similar in order not to confuse the
User.

b) High Degree Of Understandability — Enable easier use of the system.

integrated graphic and multimedia environment

This enable the system user to view the waveform input by the user.

Serviceability
The entire of the system data and the application should available at all the

time.

Security

The system should be equipped with sufficient security. Each access by the
user should be authenticated and validated by the system. The system should
not show any potential of leakage of information. The password should be

encrypted.

3.2.5 RUN TIME REQUIREMENTS

Run Time Requirement refers to the specification that the system needs to function. It
can be divided into 2 main categories which are:
i) Hardware Requirement

ii) Software Requirement

Hardware Requirements in Developing the System

Hardware requirement refer to the hardware support needed in order to run the system

smoothly.

The minimum computer requirements are:

a) logic analyzer

1. A personal computer
One compatible computer is needed to develop the logic analyzer application.
2. Parallel port (at least 200 kHz)
3. Transformer 0-5 volt
4, One ADC0809 (Analog to Digital Converter)

5. Two 741.8244 buffers

83

Table 3.2.5A: Computer’s hardware requirement

Hardware requirement

Capacity/type

Processor At least 2333 MHz
RAM At least 32MB
Hard drive At lest 400MB

Interface port

Parallel port

Other standard computer peripherals

b) signal generator

1.

A personal computer

One compatible computer is needed to develop the signal generator application.

2. Logic analyzer

3.

Parallel port (at least 200 kHz)

84

Table 3.2.5B: Computer’s hardware requirement

Hardware requirement Capacity/type
Processor At least 2333 MHz
RAM At least 32MB
Hard drive | Atlest 400MB
Interface port Parallel port

Other standard computer peripherals

Software Requirements in Developing the System
Software Requirement refers to the application or software tools needed in order to
develop and run the system at the server side.
o Windows 2000 server operating system and server platform
o Microsoft Visual C++ 6.0 to write coding of user interface and
input/output operation

0 Microsoft Office 2000 to write the documentations

85

3.2.5.1 OPERATING SYSTEM

Windows 2000

After the literature review phase, it was proposed that this system would be developed
using Windows as the platform. Windows 2000 includes fully integrated Internet-

enabled application development technologies.

Windows 2000 supports greatly improved reliability, reduced number of required
reboots, increased networking performance, increased security, and greatly improved

management services.

Besides that, Windows 2000 was chosen due to the following features :

* Reliability

Windows 2000 Web and Application services easier to restart services and it can
even automatically restart itself if a bad Web application does cause a crash. In
addition, 11S 5.0 supports an improved application protection model to help make

sure that bad applications can’t crash the Web server.

* Scalability

With Windows 2000, user can operate everything from a single-server Web site to
an enormous site running on a room full of Web servers with higher performance
and workload requirements by increasing computer’s scalability. User also can scale

up by adding processors and memory or by purchasing larger servers. User can use

86

clustering services to connect multiple servers together and network load balancing

to distribute the work across the servers.

* Manageability

Windows 2000 offers greatly simplified local and remote management, which
increases an administrator’s flexibility and helps reduce the amount of time spent
managing the system. In addition, it is easier to run multiple sites from a single
server, and user can delegate administration tasks so different people can manage

different Web sites on the entire server.

* Security

Windows 2000 security services provide an integrated, comprehensive, and
interoperable security solution for protecting your most sensitive applications and
data. With Windows 2000, application developers can centralized security services
for object naming and location, user authentication, single sign-on, and centralized

configuration and policy management.

* Software and data integration

Windows 2000 Server supports a full range of industry standards to allow user to
build applications that integrate with databases, mail servers, and other existing
systems. Windows 2000 is particularly important for integrating information from
different sources. Data format for structured document interchange on the Web

gives developers a standard way to use information regardless of how it was created.

87

Developers also have a number of options for working with applications running on
other operating systems. Windows 2000 also includes technologies that give user

easy access to virtually any type of data source.

* Hardware Support

Windows 2000 lets you take advantage of the latest hardware to make user site even
faster and more secure. Commerce accelerators are hardware cards that user plugs
into their servers to speed up the secure socket layer (SSL) processing. The
accelerator offloads the specialized encryption processing required for SSL

processing and frees up the processor to execute user business logic.

3.2.5.2 PROGRAMMING LANGUAGE

C++ fully support object-oriented programming, including the 4 pillars of object-
oriented development: encapsulation, data binding, inheritance and polymorphism.
These pillars emphasize the creation of reusable software component by “crafting
valuable classes”.

C++ improves on many of C’s features and provides object-oriented-programming
(OOP) capabilities that hold great promise for increasing software productivity, quality

and reusability.

88

3.2.5.3 SOFTWARE TOOL

Microsoft Visual C++ 6.0

What makes it special?

Microsoft says that by using VC++6, developers will spend less time building
applications and less time coding, compiling and debugging. They also benefit from

greater component reuse.

While competing IDEs (Integrated Drive Electronics), such as Borland's C++Builder
and IBM's Visual Age for C++, may offer the same or better capabilities, the ubiquity of

Microsoft technologies makes VC++ a good, safe, bread-and-butter skill [Nick, 2000]

3.3 SUMMARY

This chapter describes the planning process for the development of the software based
logic analyzer and signal generator, based upon the project methodology—Rapid
Prototyping model. It also explain in detail the requirements of the system, ranging
from functional, non-functional to hardware and software requirements. Besides that,
development tools are also has been elaborated. The next chapter will continue to give a
clearer picture of the system by showing the system structure and design, flow chart and

the user interface.

89

CHAPTER 4: SYSTEM DESIGN

4.1 SYSTEM ARCHITECTURE
A) LOGIC ANALYZER
The logic analyzer is built by connecting a switch to a personal computer
through parallel port. The diagram 4.1A shows the top level design of logic
analyzer. First, user input data by connecting the transformer to data pins on
parallel port. User can only activate pin DO through D7. The output will show on

a interface on the computer screen.

Computer

2 connectto a : I
sw'tCh ‘AJ o

o~

Parallel
Port Cable

Diagram 4.1A: Logic analyzer top level diagram

B) SIGNAL GENERATOR

The signal generator, on the other hand, is built by connecting a computer to a
logic analyzer through parallel port. Diagram 4.1B shows the top level design of
signal generator. From the computer, user can input data by pressing the button
on signal generator interface. The interface have the simulation feature of a

hardware signal generator. After input data on the interface, the signal will

90

transfer to parallel port. The parallel port will connect to a logic analyzer which

will displays the output.

x

3

Paraliel
Port Cable

Diagram 4.1B: Signal generator top level diagram

91

4.2 BLOCK DIAGRAM DESIGN

A) LOGIC ANALYZER

PARALLELPORT

WP MLE244 ADCOZ0
DLONMEL TOR aUFFER AMALOG-TODYITAL
COMVERT ER
sl 15 12l 4 2 1 rao P | L
ALL 1 al w2
s 14 [1 r@e w L2
s 12 _“* 2 0@ " == ANALOG
9 o Il 14 raq e |2 WOUTS
¥ s 12 14 as »
e ME—
A oy oa? B |
W ig —l

E=-9
=&
-

MLS244 W";_.f m
J4HETIA AUFFER = o
oL T 2
=t e
13
e AL
2 ;B 28| 4 7
s : F]
3 - |] S ts:mzr
03 % ace
1825 T CLOCK

(s
— 1| ’ ;
= e
T4HCTI4 ‘

1)

Diagram 4.2A : ADC0809 analog-to-digital converter [Jan Axelson, 1999]

ADC0809 can convert the voltage to digital value that a computer can store, display and
perform calculations on. ADC0809 has 8 analog inputs (INO-IN7), which may range
from 0 volt to 45 volts. Start and ALE will start the conversion. In this system design, a
clock signal is needed to control conversion of input from analog to digital.

The 74HCT14 is a Schmitt-trigger inverter. It offers a simple way to create the clock.
The frequency can range from 10 kilohertz to 1280 kilohertz. Conversion time for ADC

is 100 microseconds with a 640-kilohertz clock.

Vref- and Vrefit are references for analog inputs. When an analog input equals Vref-,

digital output is 0. When input equals Vref+, digital output is 255.

83-S5 and S7 on parallel port is used to read data. D0-D2 can be selected to read. S6 is

connects to EOC (end-of-convert). It is the parallel interrupt pin.

If the 2G is set to low, output DB4-DB7 are enabled and PC can read inputs IN4-IN7. If

1G is set to low, output DB0-DB3 are enabled and PC can read inputs INO-IN3,

93

B. SIGNAL GENERATOR

PARALLEL PORT

2594

DCOMNEE TOR
oo { appLvice) |
DI { appLwice? |
o |4 APPLWIMNC E
Da)s APPLWAMC E 4
o4 la APPLWINCE S
o5 |2 APPL AN E 6 |
ce |z [

{ appLuicE? |
o |a lr.awr.um:ss |
18-25
’ e

Diagram 4.2B: D0-D7 port is connected to appliances to test the outputs

Signal generator need only 1 74LS244 buffer. First, the DO until D7 in the
parallel port is connected to pin 2, 4, 6, 8, 11,13, 16 and 17. Then another 8 pins
of 7418244 buffer are connected to logic analyzer pins. The 741.S244 buffer is
used to store data temporarily from parallel port before transfer the data to logic

analyzer. The block diagram 4.2B shows the hardware connection of a signal

generator.

04

4.3 PARALLEL PORT INTERFACE

The parallel port is commonly used for interfacing project. The parallel port will allows
the input of up to 9 bits or the output of 12 bits at any given time. As a result, parallel
“ port requires minimal external circuitry to implement many simpler tasks. The parallel

port is composed of 4 control lines, 5 status lines and 8 data lines.

The parallel port is divided up into three 8-bit ports. The base address corresponds to
the Data port. This port can be used to provide an 8-bit output. The address base+1
corresponds to the Status port. The address base+2 corresponds to the Control Port. By
combining the Status and Control Port along with some minor bit manipulation it's
possible to obtain an 8-bit input from the parallel port. The diagram 4.3A, 4.3B and
4.3C show the layout of each of the ports, the DB-25 Male parallel port connector and

the pin description of the DB-25 connector.

Data Port Status Port Control Port
D7 +— Data 7 D7 (4— Buwsy D7 ——Reserved
D4 — Data 6 D6 44— ECK D6 f——Reserved
DS " Data) DS ¢—FPE DS p=——#=Direction
D4 — Data 4 D4 — Select D4 }—~IRQ Enable
D3 ——m Data3 D3 f¢— Frmor D3 |—pSekecl Tn
D }—= Data2 D2 j¢— IR D2 | INIT
DI — Datal DI = Restrved D! |—pAufofeed
DO f—— Data0 D0 j——— Reserved DO f——Strobe

Diagram 4.3A: Parallel port types [Kyle C., 1999]

A

0000000006 DO O/
00600 00000 S

\
!

Diagram 4.3B: DB-25 male parallel port connector [Kyle C., 1999]

Table 4.3C: Parallel port pin description [Mohammed Elzubeir, 2000]

Pin Description Notes

1 /strobe PC Output (OC)
2 Data O PC Output
3 Data 1 PC Output
4 Data 2 PC Output
5 Data 2 PC Output
6 Data_4 PC Output
7 Data 5 PC Output
8 Data 6 PC Output
5] Data 7 PC Output
10 fack PC Input
11 Busy PC Input
12 Paper Empty PC Input
13 Select PC Input
14 fautofeed PC Output
15 lerror PC Input
16 Init Printer PC Output
17 /select input PC Output
18 Ground

-25

Newer parallel port are standardized under the IEEE 1284 standard first released in

1994 [Jan Axelson, 1999]. The standard defines 5 modes of operation which are as

follow:
e Compatibility mode
e Nibble mode

¢ Byte mode

96

e EPP mode (Enhanced Parallel Port)

e ECP mode (Extended Capabilities Mode)
The aim was to design new drivers and devices which were compatible with each other
- and also backwards compatible with the Standard Parallel Port (SPP). Compatibility,
Nibble and Byte modes use just the standard hardware available on the original Parallel
port card while EPP and ECP modes require additional hardware which can run at faster

speeds, while still being downwards compatible with the Standard Parallel Port.

4.4 OPERATION

4.4.1 READ ROUTINE

On the original parallel port [Jan Axelson, 1999],

e data port was designed as an output-only port

e the status port has 5 input

e on some ports the control port’s 4 bits may be used as inputs
In the original PC’s parallel port, a 7418374 octal flip-flop drives the data outputs (DO-
D7). If there were a way to disable the data port’s outputs, external signals can be
connected to data pins. Then the sigmats can be read at data port’s input buffer. Some
741.8374 even has an output-enable (OE) pin. When OE is low, the thp—uts are enabled.
When OE is high, outputs are tri-stated. On the original parallel port, OE is wired

directly to ground, so the outputs are permanently enabled, Thus data ports have to be

configured to bi-directional state before reading,

97

To read a parallel port, first port register is specified. This can be done by passing a
base address to the port connector. The read routine will calculates the address to find
out which port is read. Then the port connector will returns a value. Finally CPU is

- instructed to read the data into the requested location.

» Pass base address

Not match

Calculate

Generates error message
base address g

match

port address

Ports return
values

Diagram 4.4.1A: Read routine

4.4.2 WRITE ROUTINE

Data ports allow output. As a result, configuration data ports to output is not necessary.
For the port-write subroutines, the base address of a port is passed to parallel port. The
routines automatically calculate the register address from the base address and invert the

appropriate bits. Finally, the value will be passed to the requested port [Jan Axelson,

1999].

98

Pass base address

A4

Calculate register
address from base
address

A

Pass value to
the requested

port

Diagram 4.4.2A: Write routine

99

4.5 FLOW CHART

A) LOGIC ANALYZER

User Menu

l

l

Input Data Display Dat
from Parallel on 8};5{ 5
Port Interface

Diagram 4.5A: Logic analyzer flow chart

User has to login first before using the logic analyzer software. If their user
identification and password is correct, they will be allow to use the logic analyzer
menus which are input data from parallel port and display data on user interface. If their
user identification and password is wrong, they have to re-login again.

B) SIGNAL GENERATOR

User Vlenu
Input Data Di Dat
from Parallel oxis 8?3; i
Port Interface

Diagram 4.58: Signal generator flow chart

100

Similar to logic analyzer system, user who use signal generator software has to login
themselves before using user menu. When their user identification and password is
correct, they will be allowed to use the software. The user menus consist of input data
from parallel port and display data on user interface. User has to re-login again when

the user identification and password is incorrect.

101

4.6 SYSTEM FUNCTIONALITY DESIGN

]
| |

]

A) LOGIC ANALYZER
E3
= i
Ruler 1=
. n a = m‘“; m m « wm "o T I @ @™ @ o m
g’;?__lm Xooow‘:oo X 10000000):(omwaooxm X w0 @aooeso) camacos mo P_.]
|
us : % I
e T e D s e YT g
; H

j

= ? N
] ? :
T | | Tt e
| —_
] | | T
| p—
1] ~ (2] > | L3 s

Diagram 4.6A: Logic analyzer expected output interface

Diagram 4.4A shows the expected output of logic analyzer. The user interface has 7
buttons that consist of certain functions. The purple fonts show where the buttons
function. The functions are as below:

a) Rl and R2

R1 and R2 is used to let user select 2 timing. When R1 and R2 is pressed, the

first

102

b)

d)

g)

h)

and second timing cursor will occur. The timing cursor can be moved using

mouse.

Duration

After selecting 2 timing using R1 and R2, user can see the duration between 2
timing by pressing Duration buttons. A value and a horizontal arrow will come
out between the 2 timing. The value indicates the duration between 2 timing.
Ruler

When pressing the Ruler button, a dotted line will come out. The dotted line can
be moved by using mouse. As the button name indicate, it is used as a ruler.
Flatten

The Flatten button is used to display the input in square waveform. There are 8
pins, Pin 0 until Pin 7. The parallel port pin which is “on” will displays high
waveform in 1 micro second. Otherwise, it will remains low waveform.

Bus

Bus button is used to display input in bus format.

Binary

Binary button is used to display input in binary format. It will display 8 bits data
in 1 second.

Close

When user presses the Close button, the interface will close.

Clear

Clear button is used to clear all the data inside the interface.

103

B) SIGNAL GENERATOR

1. Pins interface

Diagram 4.6B: Pins window

This interface shows 8 pins of parallel port which are shown on pins interface. The

buttons functions are as below:

a) PO until P7 buttons
e represent 8 data pins of parallel port
e when press on the button, the button will changes color

e its function is to let user selects a pin

b) Input button

e when press on Strobe button, another interface call Input interface will come

out

104

a) Exit button

e will close the Pins interface

2. Input interface

CLK

A o) S
H N&Jv‘a Input (11010 |
T o P L
AN T —
A .
] e P M
T o D)
A o I —

Cknel

Diagram 4.6C: Stimulator window

The Input interface is used to specify clock and pins status. The buttons functions are as

follow:
a) PO until P7

e represent data pins of parallel port

b) CLK
o will presents clock waveform

e color will changes when press on it

105

¢) NORM

e will presents normal waveform
e color will changes when press on it

d) Input

area that is used to input clock or normal formula

the input CH10L10 is the command that is used to generate clock waveform
C indicates clock, H indicates high, L indicates low and 10 is the number of
cycle
the input H10L10 is the command that is used to generate normal waveform
e Hindicates high, L indicates low and 10 is the number of cycle
e) Delete
o will delete all the data input by user
f) EN
e is used to refresh the pins.

e when press on En button, the parallel port pins will change its status

according to latest data input

g) DS

e isused to set all the pins status to 0

h) Close

o when press on Close button, the Input window will closes

Expected outputs is shown as follow:

106

CLK output 108

103 108

HORM output

10§

10§

108

10§

0§

L

0§

0§

Diagram 4.6D: Expected output

4.7 SUMMARY

This chapter describes all the process and design of the proposed system and also show

how data is transfer. Together with the interface design, this chapter aims to present a

better understanding of the system to be developed. The next chapter will future discuss

about the implementation of the system.

107

CHAPTER 5: SYSTEM IMPLEMENTATION

51 INTRODUCTION

* After the system designing phase on how the system should be functioning, the next
process will involves the implementation phase. System implementation is a process
that converts the system requirements and designs into program codes. In a software
project, the requirements analysis, system design and implementation phases do not
have a clear boundary. Each phase tends to overlap one another. This phase at times
involves some modifications to the previous design. The implementation phase is an
important element especially when it involves a project developed by a team of people

where integration of system, works by different people takes a huge effort.

The design phase earlier in the system life cycle is directed towards a final objective
which is to translate the concept of the system into a software representation that is
understood by the computer. The coding process involves transforming of the design
into a programming language. The effort spent in this phase will actually determines the
success of the system and ease the processes of modification, debugging, testing,

verification, system integration and for future enhancement.

52 DEVELOPMENT ENVIRONMENT

Development environment plays a major role in determining the speed of developing
the system. Using the suitable hardware and software will not only help to speed up the
system development but also determine the success of the project. After implementing
the system, the requirement of hardware and software that was stated in the previous
two chapter (Chapter 3 System Analysis) can be finalized. The final list of the

hardware and software tools is listed below.

108

5.2.1 ACTUAL HARDWARE REQUIREMENT

The hardware used to develop the system are as listed below:

200MHz Pentium Processor
¢ 128MB RAM
e 10 GB Hard Disk Drive

e Other standard desktop PC accessories such as keyboard, mouse and monitor

e Parallel port interface

The parallel port pins that is used in these system is 5 data pins and 5 status pins.
5.2.2 ACTUAL SOFTWARE TOOLS REQUIREMENTS

The actual software requirement for the system implementation is the same as listed in

the chapter 3: system analysis:
0 Windows 2000 server operating system and server platform

0 Microsoft Visual C++ 6.0 to write coding of user interface and

input/output operation

o Microsoft Office 2000 to write the documentations

The type of parallel port use in this system is in PS/2 mode. It was the bi-directional
data port introduced on IBM’s model PS/2, The bi-directional port enables a peripheral
to transfer 8 bits at once to a PC. The term PS/2-type has come to refer to any parallel

port that has a bi-directional data port. Byte mode is an 8-bit data transfer protocol that
PS/2-type ports can use to transfer data from the peripheral to the PC.

109

1.2 HARDWARE DEVELOPMENT

This section will explain the development of the hardware component of the system.

The hardware component acts as an interface between the parallel port from the
computer to the system.

The system integrated two systems into one system, there are signal generator and logic
analyzer. For signal generator, it needs to output data from the signal generator system
to parallel port. The pins that can be used for output is data pins. The parallel port
consists of 8 data pins. For logic analyzer, it need to receive data from parallel port to
logic analyzer system, thus it need parallel port interface that can input data. The input
pins are 5 status pins. To integrate these signal generator and logic analyzer system,
only 5 data pins and 5 status pins will be used. There are data pins D0, D1, D2, D3 and

D4 and status pins S3, S4, S5, S6 and S7. The connection of the pins is shown on the
diagram below:

00000000 0O® O
PO00OO ©O®®®O

Diagram 5.3A: Male parallel port interface connection

For the purpose of externally supply power to the status pins, an external battery power

supply is supplied to the status pins. The connection is shown on diagram below:

110

—7:

0POO0000OOODO O
20000000000 S

Diagram 5.3B: Connection of battery to status pin

1.3 SOFTWARE DEVELOPMENT

This section will explain the software development process.

5.4.1 TIMER

As described in the chapter 3 system analysis, the system that I build is in timer based.
Thus, before going any detail, let’s understand the window timer first.

Timer event are placed only in the system event queue if that queue is empty and the
system is idle. Windows does not place timer event message in the system event queue
if the system is already busy. If system has been busy and has missed several timer
event messages, Windows places only an single timer message in the event queue.
Windows does not send system all the timer event messages that occurred while system
was busy. It doesn’t matter how many timer messages system may have missed;
Windows still places only a single timer message in system queue. [Kris Simmons,
1998]

The available range that can be set for timer in system is around | milliseconds on the
short end to 2732 - 1 milliseconds, or around 49 Y days, on the long end. There are
limited number of timers available to all systems in the Windows operating system.
Although the number that is available should be more than sufficient for all running

systems using no more than a handful of timers, if an system goes overboard and begins

111

hogging the timers, the operating system may run out. It could be the system that is

denied the use of some timer, of it could be other systems that don’t have any to use.

The timer placed for the system is at least 5. It is more than enough to perform
triggering of 5 data pins and 5 status pins. The output through data pins and input to
status pins will be triggered according to the timer interval. In these system, the timer

interval is range from 1 milliseconds to 100000 milliseconds. Thus the maximum speed

for triggering the timer is 1000 Hz.

5.4.1.1 TIMER CONTROL IN MICROSOFT VISUAL C++

To create a timer in system, basically minimum of two timers is needed. The first timer
is to control the clock on the system dialog. Another timer is to let the user tune the
speed, start and stop the timer as desired [Kris Simmons, 1998].

Since at least two timers is needed, thus two timer ID needed to be added to the system,
Let’s says the timer ID are ID_CLOCK_TIMER and ID_COUNT_TIMER. Then create
the WM_TIMER function which is a build in timer function, The timer function name

is OnTimer(UINT nIDEvent). Then add some code to create the timer. The code is as

follow:

Ctime curTime = Ctime::GetCurrentTime();

Switch(nIDEvent)
{
case ID CLOCK_TIMER:
m_sTime.Format(*"%d%d%d", curTime.GetHour(),
curlime.GetMinute(),
curTime.GetSecond()),

break;

112

case ID COUNT TIMER:

m_iCount++;

m_sCount.Format(“%d", m_iCount);
break;

/

The CTime is a built in class. It is call out by using object curTime. The first case is to

display the timer. The second case is to create another counter base on the timer CTime.

There are some states that the timer can do. For example, user can start the timer, stop

the timer and set the timer speed. To start the timer, some code need to be added. The
code is shown as follow:

SetTimer(ID CLOCK_TIMER, 1000, NULL);

The first argument that passed to the SetTimer function is the ID for the clock timer,
The second argument is how often user want to trigger the event. In this case, the clock
timer event is triggered every 1000 milliseconds. The third argument is the address of
an optional callback function that user can specify to bypass the WM_TIMER event.

WM _TIMER is a built in timer function. The NULL argument will place the
WM _TIMER event in the system queue [Kris Simmons, 1998].

To specify the speed of the timer, a variable m_ilnterval is added. This variable is to let

the user specifies the interval of timer that user wants. The code of start the timer
according to the interval is shown as folow:

UpdateData(FALSE);
SetTimer(ID_COUNT TIMER, m_ilnterval, NULL);

The first line code is to update the data, m_ilnterval input by user. The second line code
is to start the timer according to the interval set by the user,

113

To stop the timer, the code is as follow:

KillTimer(ID COUNT TIMER);

5.4.2 SIGNAL GENERATOR

As described in the chapter 2 Literature review, the purpose of signal generator is to
generate signal. The signal generated by the signal generator system is voltage where
the system will activate the data pins by write a value 1 to the data pin. The value 1 will
activate the data pin. The parallel port consists of 8 data pins. But in this system, only 5

data pins is used.

There are 3 modes of this signal generator system. There are normal mode, cycle mode
and non-timing mode. The normal and cycle mode is timing based. The normal mode
will generate voltage to data pin in timing based, Let’s say the user generates signal for
2 seconds high and then 1 second low. The data pin will be activated for 2 seconds and
then low for the rest of the time. If the cycle mode is selected, the data pin will activates
the data pin to high for 2 seconds and low for 1 second. The same condition will be
repeated for the rest of the time. The non-timing mode will always activate or deactivate

the data pins without refer to the timing set by the user.

5.4.2.1 PARALLEL PORT WRITING DATA CODING

The following codes are written into the program to allow the user to have control over
the parallel port. The code utilizes the inpout32.dll device driver to have access into the

parallel port’s pins. The codes are as follows:
typedef UINT (CALLBACK* LPFNDLLFUNCI) (INT,INT);

typedef UINT (CALLBACK* LPF. NDLLFUNC2)(INT);
HINSTANCE hDLL; // Handle to DLL

114

LPENDLLFUNC1 Output; // Function pointer
LPFENDLLFUNC?2 Input; // Function pointer
hDLL = LoadLibrary("Inpout32");

if (hDLL != NULL)

{
Qutput = (LPFNDLLFUNCI)GetProcAddress(hDLL, "Out32");
Input = (LPFNDLLF UNC2)GetProcAddress(hDLL,"Inp32");
if (!Output || !Input)
{
// handle the error FreeLibrary(hDLL);
/
/

Qutput(int, int);

In order to write to the data pins at the parallel port, the command used is the

Output(int, int), where the first inf represents the address of the parallel port, and the

second int represents the value of the pins.

For each parallel port, there consist of three port addresses, namely the data port, status
port, and the control port. These addresses are in sequential order. For instance, if the
data port is at address 0x0378, the next status port will be at 0x0379 and the control port
will be at 0x037a. The addresses are in hexadecimal numbers. Thus, only the data port
address is needed to write into the data pins. Because a parallel port can have different
modes, namely LPT1, LPT2 or LPT3, the port address for each mode is different. In
order to make sure the mode of the parallel port, the user can check the modes in the
System Configuration, under the Resource Settings. But normally the parallel port will
be set to LPT1 in the BIOS, and the resources settings will be from 0378 to 037F,
Therefore, for the purpose of this system, the data port address will be 0x0378.

The value in Queput(int, int) will determine which pin to activate, Let’s look at the 8

data pins as binary numbers, Each data pin can only be either enable or disable. Thus

115

let’s assign the binary value of 1 for enable, and the binary value 0 for disable. Since
there are 8 data pins, in the status where all pins are disabled the binary number will
look like 00000000. Let’s assume that the left most bit is pin 8 and the right most bit is
pin 1. When the binary numbers are converted into decimal numbers, for 00000000 the
decimal value will be 0. And for all 8 pins to be enabled the binary number will be
11111111, and the decimal value will be 255. The following shows each pin being

enabled accompanied by the binary and decimal values:

e All pins disabled
Binary: 00000000
Decimal: 0

e Pin 0 enabled
Binary: 00000001
Decimal: 1

e Pin | enabled
Binary: 00000010
Decimal: 2

e Pin 2 enabled
Binary: 00000100

Decimal: 4
e Pin 3 enabled
Binary: 00001000

Decimal: 8
e Pin4 enabled

Binary: 00010000
Decimal: 16

e Pin 5 enabled

Binary: 00100000
Decimal: 32

e Pin 6 enabled

116

Binary: 01000000
Decimal: 64

e Pin 7 enabled

Binary: 10000000
Decimal: 128

e All pins enabled

Binary: 11111111
Decimal: 255

In this system, the are only 5 data pins been selected, there are data pin 0 to data pin 4.
The following table shows the function:

Table 5.4.2.1A: Command for data pins

Pin state Decimal values | Command in codes
All disabled | 0 Output(0x0378, 0);
Pin 0 1 Output(0x0378, 1);
Pin 1 2 Output(0x0378, 2);
Pin 2 4 Output(0x0378, 4);
Pin 3 8 Output(0x0378, 8);
Pin 4 16 Output(0x0378, 16);

The additional function of the system is it can generate report for the data input by the
user.

117

5.4.3 LOGIC ANALYZER

As stated in the chapter 2 Literature review, there are two type of logic analyzer, there

are timing analyzer and state analyzer. The type of logic analyzer that built here is
timing analyzer but the output displayed is in binary range.

There are two ways the status pins receiving data in this system. One source is come
from the signal generator system (these system integrates the signal generator and logic

analyzer into one system). Another source is by externally supply the battery power (6
volts) to the status pin.

The control function of the software is to control the parallel port at the computer. The
function of the program is to be able to enable and disable the status pins to receive
data. There are 5 status pins of the parallel port. Enabling the receiving data from status

pins is when there is a voltage present on the pins. The figure below shows the position
of the status pins. The connector shown is a male connector.,

118

55
=
2

ription

trove
Datal)
Data |
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
ACK
Busy
Paper Empty
Select
Kuto Feed
Eror
[ritialize Printer
17 SelectTnpuf

CO -~ ON W s W) B —

—_— . et e e s)
Ty o WD — O

PC Output
PC Output
PC Output
PC Output
PC Output
PC Output
PC Output
PC Output
PC Output
PC Input

PC Input

PC Input

PC Input

PC Output
PC Input

PC Output
PC Output

Pin Assigrments

Note: & Data Outputs
4 Misc Other Outputs

5 Data Inputs

Note: Pins 13-25 are
Ground

Diagram 5.4.3A: Pin position

There are 3 modes that the status pins will display its receiving data in the graphical
user interface. There are normal, cycle and non-timing based. The normal mode and
cycle mode are timing based. The normal mode receives data by showing the first state
of the data input to the status pins according to the timing, for the entire time, it will
display the status pin as low. Let says the user state the status pins will receives high for
2 seconds and low for 1 second, the status pins will activate the status pin to high for 2

seconds and then low for 1 second and low for the rest of the time. The output is as

below:

Timer 1 2

Output —[[{I[[{HHHIIHA0

Diagram 5.4.3B: Output for status pin in normal mode

119

The cycle mode, on the other hand, will display the data by repeating the data according
to timing. Let says the user state the status pin to low for | second and high for |
second. The status pins will set the status pin to low for 1 second, then high for 1
second. For the rest of the time, it will repeating the same data according to timing, The

output is shown as follow:

Timer 1 2 3 4 5 6

Output S 1011 e 11 T 1111

Diagram 5.4.3C: Output for status pin in cycle mode

The non-timing mode will always state the status pin to high or low only. User no need

to state the timing condition.

The additional function of the system is it can generate report for the data input by the

user.

5.4.3.1 PARALLEL PORT DATA RECEIVE CODING

The following codes are written into the program to allow the user to have control over
the parallel port. The code utilizes the inpout32.dll device driver to have access into the

parallel port’s pins. The codes are as follows:

typedef UINT (CALLBACK* LPENDLLFUNC])(INT,INT),
typedef UINT (CALLBACK* LPFNDLLFUNC2)(IN 1);
HINSTANCE hDLL; // Handle to DLI,

LPFNDLLFUNCI Output; // Function pointer
LPFNDLLFUNC2 Input; // Function pointer

hDLL = LoadLibrary("Inpout32");

if (WDLL != NULL)
{
Output = (LPFNDLLFUNC1)GetProcAddress(hDLL,"Out32");
Input = (LPEFNDLLFUNC2)GetProcAddress(hDLL,"Inp32");
if (!Output || Input)
{
// handle the error FreeLibrary(hDLL);
/

/
Input(int);

The command for reading data from the parallel port is the Input(int), where the int

represents the address of the parallel port.

The address of the status port is 0x039. Every time the status pins is activated, the value

received by it is 1. The value received by the status pins is listed in the following table.

Table 5.4.3.1A: Command of status pins

Pin state Decimal values | Binary values Command in codes
Pin 0 1 0000 1000 Input(0x0378);
Pin 1 2 0001 0000 Input(0x0378);
Pin 2 4 0010 0000 Input(0x0378);
Pin 3 8 0100 0000 Input(0x0378);
Pin 4 16 1000 0000 Input(0x0378);

5.4.4 SIGNAL GENERATOR AND LOGIC ANALYZER TIMING
BASED INTEGRATION

The system combines the signal generator and logic analyzer into one application. This
means that the system can generate signal and receive the signal at the time. First the
user set the interval value. It ranges from 1 until 100000 milliseconds. The enable
button on the right hand side of the interval edit box is to used to start the timer. There
are 5 areas that are display on the interface. User may selects any pin he want to input.
There are high and low value which is stated in the graphical interface as “H” and “L”.
The “H” and “L” is let the user specify how many second they want to activated or
deactivate the status pins. The data will write to data pins and send to status pins. The
output will be displayed on the “Binary” column. There are multiple states that system

can do. All the states are shown on the following table.

Table 5.4.4A: Software interface functions

Command button’s | Description

name

EnableH Enable the pin to high without timing

Enablel, Disable the pin to low without timing

EnableC Enable the pin to high or low based on timing in cycle mode (high
first)

EnableCL Enable the pin to high or low based on timing in cycle mode (low
first)

EnableN Enable the pin to high or low based on timing in normal mode
(high first)

EnableNL Enable the pin to high or low based on timing in normal mode
(low first)

EnableEx Allow the user to externally supply power to status pin

DisableH, Disable the pin and generate report for all the states

Disablel.,

DisableC,
DisableCL,
DisableN,
DisableNL,
DisableEx

123

<z timer1

Timer Interval

Current Time

(o START TMER| 107 11|
155715
Binary Output : 0 _Enabe |
Enablel |
Public Count : H:
L EnableC | DisabeC |
EnableCL | DisableC1 | Enablefx |
EncbleN | Disablel| ,
Sl EnableNL | DisableNL| Disablef x
Binary Output © _Enchle |
L EnableC | DisableC |
EnableCL| DisableCL] EnableEx |
EncbleN | DisableN| o
0 EnableNL | DisableNl| :
Binayy Ouiput : 0 _EnableH |
Public Count: H: Enablel. |
L EnableC | DisableC |
EnableCL | DisableCL | Enablefx |
Enableb | DisableN | s
0 _ EnableNL| DisableNL |
Binary Output : _EnabieH |
Public Count: H: Enablel |
L EnableC | DisableC |
EnableCL | DisableCL| EnableEx |
EnableN | DisableN | :
Disablef
IR I \ Enctihl | Disabiel ;
Decmal Vake : EnableH |
Publec Count: Enablel. |
L EnableC | DisableC |
ErobleCL | DisableCL| EnobleEx |
: EnableN | DisabeN |
0 Pt | ol | D] ot |

Diagram 5.4.4A: Signal generator and logic analyzer screen shot

5.4.5 PARALLEL PORT CONTROL WITH MICROSOFT VISUAL
C++

This sub-section will explain how does the software program control the parallel port.
From the previous section, the main goal is to allow the program to enable and disable

the data pins on the parallel port.

The software program used to control the parallel port will be written using Microsoft
Visual C++. There are several ways to access the parallel port. These ways include
direct input and output, custom developed device drivers and the Windows operating

system built in drivers.

Almost all programming languages allow programmers to access parallel port using
some library functions. For instances, Borland C is providing Inportb and Qutporth
functions to read and write IO mapped peripherals. In Microsoft Visual C++, there are 2
functions to access 10 mapped peripherals, _inp for reading and _outp for writing,

These functions are declared in “conio.h” [1].

By using Inporb and outporth or _inp() or _outp functions in our program, there should
be without any problem if running the program on Dos or Win95/98. But with the new
era of NT clone operating systems like Win NT4, Win2000, WinXP, all this simplicity
goes away. When trying to run a program which is written using the the conventional
software functions like Inporb, outportb, _inp() or _Outp on a NT or Win2000 system,
it will show an error message that "The exception privileged instruction occurred in the

system at location". The figure of such a messagebox is given below.

PARTEST1.EXE - Application Error

The exception Privileged instruction,
(0xc0000096) occurred in the application at location 0x0040bc27,

Click on OK to terminate the program
Click on CANCEL to debug the program

oK | Cancel

Diagram 5.4.5A: Error Message

The above error message only happens under the NT operating system, but the program
is running perfectly flawless under the Windows 98 operating system. This is because
being a very secure operating system, Windows NT assigns some privileges and
restrictions to different types of programs running on it. It classifies all the programs
into two categories, User mode and Kernel mode, for example running in ring3 and
ring0 modes. User mode programs are running in ring3 mode and Kernel mode
programs are running in ring0 mode. The program that will be written falls in the user
mode category. The user mode program is restricted to use certain instructions such as
IN, OUT. Whenever the operating system finds that a user mode program is trying to
execute such instructions, the operating system stops execution of that program and will
display an error message. Eventually the interfacing program stops executing IN or
OUT instructions to read or write data to parallel port. But in the same time Kernel

mode program are in no way restricted in executing such instructions.

Device drivers are capable of running in kernel mode. So the workaround for the above
stated problem is to write a kernel mode driver capable of reading and writing data to
parallel port and let the user mode program to communicate with it [2]. The device
driver is referring to the inpout32.dll for the Windows NT/2000/XP operating systems.
The inpout32.dll has the following features:

o It works seamless with all versions of Windows including 98/NT/2000/XP

e [t uses a kernel mode driver embedded in the dll

e No addition software or driver installation is required

e Driver will be automatically installed and configured automatically when the dll
is loaded

e No special APIs are required, only 2 functions inp32 and out32

e Can be easily used with Visual Basic and Visual C++

5.4.6 MORE ON INPOUT32.DLL

The feature of Inpout32.dll is it can work with all the Windows versions without any
modification in user code or the dll itself. The dil will check the operating system
version when functions are called, and if the operating system is Win9X, the d// will use
_inp() and _outp functions for reading and writing to the parallel port. If the operating
system is Windows NT, 2000 or XP, it will install a kernel mode driver and talk to
parallel port through that driver. The user code will not be aware of the OS version on
which it is running. The dII can be used in Windows NT clone operating systems as if it

is Win9X. The flow chart of the program is given below.

ser cals Inp32 o
Dut32 function,
Checking 0S version.
WINSX WINNT
Use _inp/_out tbcary Is hwirkerface.sys kemel
functions for data transles mode driver loaded 7
Yes No
] o
‘[Trytol ver,
Pass data/ request lo 'ysuc:::.qgm'
chiver , using v
DevicelOControl API No .

N

parallel port using HAL functions

fivet wiiles 1o of 1eads from) Install Driver

|

| .

Diagram 5.4.6A: Inpout32.dll process flow chart

5.4.7 SUMMARY

This chapter explains the development process of both the software and hardware
components. Besides this chapter describes the coding for both the signal generator and
logic analyzer system. It explains the real software environment as well. The next

chapter will further describe about the system testing use during system testing phase.

CHAPTER 6: SYSTEM TEST

A testing strategy is a general approach to the testing process rather than a method of
devising particular system or component test [Sommerville, 1995]. System testing is

one of the important steps in system development.

The main objective of testing is to uncover different types of errors that exist while
executing the system. System testing is a critical element of software quality assurance
and represents the ultimate review of specification, design and coding. However, testing
cannot show the absence of defects, it can only show that software defects are present

[Pressman, 2000].

Testing provides a method to uncover logical error and to test the system reliability.
Types of tests used are depend on what is being tested, components, group of

components, or the whole system.

In developing a system, system testing usually involves several stages. First, each
program component is tested on its own, isolated from the other components in the
system. Such testing is known as unit testing or component testing. This stage of testing
verifies that the component functions properly with the types of input and output
expected from studying the component’s design. After each component has been tested,
the interaction between these components must be tested again to ensure that the

components can be integrated.

When all components have been unit-tested, the next step is ensuring that the interfaces
among the components are defined and handled properly. This step is called integration
testing, also known as module testing, which verifies that the all the components work

together as described in the module or system design specifications.

TEST CASE

Different test cases are applied on the system developed so that the system will
be error free when the user is using it. The following are the categories of test

cases being applied on the system:

> Normal data test — test by using normal data to check whether the system
works properly under normal situation. For example, the number of
seconds for high and low is inserted, make sure that the output come out

on the binary column is correct according to the timing stated.

» Extreme data test — test with invalid data (includes input non-numerical
data into a numerical field) that is not supported by the input field. For
example, if 0 seconds is inserted into the interval column, make sure that

an error message will come out.

» Erroneous data test — to test the performance of the system and error
handling while erroneous data were input. For example, the developer
will put in a value 1000 to the interval column. 1000 is 1000
milliseconds or 1 second. The speed is 1 Hz. Thus I will check whether
the output is displayed in the 1 Hz speed, that is 1 seconds displays 1

value.

130

6.2 UNIT TESTING

Unit testing focuses on verification effort on the smallest unit of software design -
software component or module. Using the component-level design description as a
guide, important control paths are tested to uncover errors within the boundary of the
module. The relative complexity of tests and uncovers errors is limited by the
constrained scope established for unit testing. The unit test is white-box oriented, and

the step can be conducted in parallel for multiple components [Pressman, 2000].

In unit testing, the following aspects are considered:

» Interface — tested to ensure that information properly flows into and out
of the program unit under test. The developer has test the interface in the
signal generator and logic analyzer system to make sure that data can be

passed from the data pin to status pin.

» Local data structures — examined to ensure that data stored temporarily

maintains its integrity during all steps in the algorithm’s execution.

» Error handling path — to check whether the routines for all the error
handling works properly as directed or sets. For example, the developer
has added a function to ensure that field is set to character format. The
developer enter data in numeric format. The error message box will

prompt out and showed that the error handling works properly.

131

6.3 INTEGRATION TESTING

When we are satisfied that individual components are working correctly and
meet out objectives, we combine them into a working system. This integration is
planned and coordinated so that when a failure occurs, we have some idea of
what caused it. In addition, the order in which components are tested affects our
choice of test cases and tools. Some components may be in the coding phase,
other may be in the unit-testing phase, and still other collections of components

may be tested together.

The purpose of integration testing is to test the integration of overall

performance of the system. The criteria taken in accounts are:

» Interface integrity — internal and external interfaces are tested as each

modules to check if there is any lost of data across interfaces.

» Functional validity — tests designed to uncover functional errors are

conducted.

» Information content — tests designed to uncover errors associated with local

or global data structures are conducted.

» Performance — tests designed to verify performance bounds established

during software design are conducted.

6.1 TESTING SYSTEM USING PARMON SOFTWARE

In order to produce a good test result for the software component, it is important that the
process of writing the programs are planned correctly and carried out smoothly. During
the writing of the program, make sure that all the required functions and methods are
drafted out clearly. It is also important to frequently compiled and run the programs
after each and every functions are written correctly. This way, whenever an error is
found, at that moment the problem would be a small one and it should be easy to solve

the problem.

The most important function on the system is to make sure that the data is write to data
pin (signal generator) and is read from status pin (logic analyzer). In order to test if the
output is write to the data pin and received from status pin, a third party software is used
to test the parallel port’s pin status. The software used is the Parallel Port Monitor
written by Fred Bulback. This software is a freeware and can be download from the
Internet. The Parallel Port Monitor is a utility for viewing and manipulating the state of
a parallel port on a Windows operating system. The figure below shows the screen shot

of the software:

Parallel Port Monitor
{ Part Binary

378 (255 | FF 11111111 | No
379 127 | 7F 01111111 | No
37A |204 [CC 11001100 | No

0000000000000
000000000000 %

Diagram 6.4A: Parallel Port Monitor

As seen above, the coloured round dots represents the 25 pins of the parallel port. The
dark red colour shows the pins that are not active, while the yellow pins are the active

pins.

This software is ideally good for testing the software component of the system.,

133

6.5 TESTING USING OSCILLOSCPE

Another way to test the data whether the data is written to the data pin and read from the
status pin, a hardware oscilloscope is used. The oscilloscope is connected to the parallel
port interface’s pin. Every time, only 1 pin can be tested. The status of the pin will be

shown on the oscilloscope screen shot.

6.6 SUMMARY

This chapter mainly explain the testing method used during the system development.
The testing method are test case, unit testing, integration testing, testing system using
Parmon software and testing using oscilloscope. The next chapter is the last chapter

which will further evaluate the system problem, strength and so on.

134

CHAPTER 7: SYSTEM EVALUATION

In this chapter, the system evaluation will be discussed. After having gone through the

implementation and testing phase, the final phase of developing this system is the

evaluation stage.

7.1 STRENGTH SYSTEM

This system is a brand new system that integrates two applications into one system,
there are signal generator and logic analyzer. Presently, there are many signal generator
and logic analyzer hardware, but seldom in software. Thus this system proves to be
unique in the sense that it combines both signal generator and logic analyzer
application into one portable software. It can let the computer to become a signal

generator and logic analyzer on the same time.

Another strength of this system is that it can generate signal and receive the signal
according to timer. The output come out will displayed according to a build in timer.
Such timing based signal generator and logic analyzer software does not exist yet in the

previous project.

The third strength of the system is that the system can generate signal to data pins and
receive the signal from status pins simultaneously. There are at least 5 timer generated
in the system, Thus each pin can use its own timer to function separately. Thus at least
two pins can be activated at the same time without affecting the other pins.

The fourth strength of the system is it can generate report for the data that is input by
user. Every time the enable and disable function is activated, the system will write the
data pin by the user into a excel file. The report will show the counter and the pins
status according to the counter. Besides, if the user externally supplies a power to the
status pin or deactivate the status pin, the system will detect it, receive the data and

generate a report for it as well.

135

Besides, the system should be used for testing purpose. Hardware such as FPGA can
use the system to test the data from FPGA and the output will display on the system
output field.

Another strength of this system is that is can be used in smart home. Smart home is a
concept that use the computerized controls in a house. For example in the computers
control washing machines and microwaves, the house owner will turn the heating on
and off, and they have provided new ways to monitor the safety and security of their
home. Besides, the house owner can use this system to switch on or switch off their
housing electronic components for example fans, lamps and so on by setting a duration

into the system.

7.2 SYSTEM CONSTRAINT

There are some drawbacks of the system

e The system should have higher sampling rate to give smaller timing resolution.
The sampling rate of this system is range from 0.01 kHz to 1 kHz. The

maximum system speed in this system is 50 kHz.

7.3 SUGGESTIONS AND IMPROVEMENTS

e The system can be improved by creating a database. By having the database, the
user will be able to trace to previous records, display more than 1 input or output

data in one report.

e The system should be display in a real time graph (timing analyzer), not only in
binary format. A timing analyzer is the part of a logic analyzer that is analogous
to an oscilloscope. Timing mode uses an internal user-defined clock for data
capture, As a matter of fact, they can be thought of as close cousins, The timing

analyzer displays information in the same general form as a scope, with the

136

horizontal axis representing time and the vertical axis as logic levels of high and
low. Because the waveforms on both instruments are time-dependent, the
displays are said to be in the "time domain". Timing mode displays more

information than state mode than is often necessary.

An electronic circuit can be plug in into the parallel port to add an extra function
to the system. The function is the output in the system can be displayed in a saw

tooth format or sinusoidal format.

7.4 PROBLEMS FACED

Along the development process of this project, there are some problems faced:

Software unable to run on Windows XP

While writing the codes for the program, the platform used to compile the
source code was the Windows XP operating system. The readily available
functions for accessing the parallel port were unable to run correctly. This was
due to security reasons on the XP operating system. Further research was done
on the Internet, and a device driver was needed to overwrite the security
constraint on the Windows XP operating system. The device driver used was the
Inpout32.dll.

Connecting the parallel port pin

The connection of data pin to status pin in the parallel port interface is done by
soldering the pin on the parallel port. However, the wire is easily to move out
from the solder pin. Thus a parallel port socket is used. Every soldering will be
done on the socket. Soldering on the socket is much more easier than soldering
on the parallel port interface. Besides, it will not break parallel port interface

when soldering.

137

7.5 CONCLUSION

This project proves to be a challenging task. This is because the system comprises of
both signal generator and logic analyzer system. Apart from applying the knowledge in
computer programming, a certain degree of knowledge in the manufacture and structure
of parallel port is needed. This is where extra knowledge is gain and could be useful for

future purposes.

Due to the problems encountered during development, it is sad to mention that the
developer of the project was almost behind schedule. But with great dedication and

beliefs, the developer managed at the end to complete the project.

Along this project, the developer gained many experiences. With these experiences
gained, the developer hopes that all these will be put into practice when graduate from

university.

7.6 SUMMARY

This chapter explain the system evaluation which involves determining the problems or
difficulties, which arise during and after the program coding phase, recognizing the
system strengths and weaknesses, and finally draft out the system limitations and also

its future enhancements.

138

10.

APPENDIX I: USER MANUAL

First, user has to put in the value of interval into the timer interval field. The value
range from 1 until 100000 milliseconds.

User may click the “Start Timer” button to start the timer.

Next, user may select one pin from the five pins on the interface.

Key in the number of seconds for high and number of seconds for low into the
“H” and “L” fields.

The “H’ and “L” value will determine the timing representation on the output.
Now, user may click the six “Enable” buttons on the right hand side of user.

The “Enable” button consist of different function which is stated on chapter 5,
System Implementation. User can see the selected mode on the “Binary Output”
output field.

When user want to disable the output and timing, user may click the “Disable”
button.

Every time user click the “Enable” and “Disable” button, a report will be
generated on the excel file. If user want to read the report file, user may go the
directory that contain the “Exe” file. There are 3 files for each pin, there are
“RecordPin”, “RecordPinPL” and “RecordPinPH”. The file “RecordPin” is to
generate record for “EnableC”, “EnableCL”, “EnableN” and “EnableNL”. The
file “RecordPinPL” and “RecordPinPH” is to generate the record for “EnableEx”
and “DisableEx”, “RecordPinPL” is record for user when they clicking the
“DisableEx” button on the time the “L” value is counting. “RecordPH” is record
for user when they clicking the “DisableEx” button on the time the “H” value is
counting,.

The “EnableEx” button is used when user want to externally supply a power to
the status pin. Let say, user activates the status pin S3 by connecting the battery to
the status pin S3. When they click “EnableEx”, a counter “H” field (under
“Binary Output”) will start counting the duration of user activates the status pin.

[f the user only activate the pin for 4 seconds, the “H” will display until 4,

XIV

11. Now user has plug out the power supply. The state of the status pin is now on
low condition. Thus the status pin become low. A counter will start counting the
low state of status pin on the “L” field just under the “Binary Output” field. Let
say user only want the low value count until 5 seconds, thus user may click the
“DisableEx” button now.

12. To read the report that is just input, user may go to the “exe” file directory and
open the “RecordPinPL” file.

13. The five pins can be selected to display a output on the same time.

REFERENCE

[Agilent Technologies, 2000]: “What’s a logic analyzer?”, Agilent Technologies, 2000 .

[Allen, 1998]: “What is VB”, Allen L. Wyatt & Cavett Pease, International Info Server
4.0-Administrator’s Guide, Prima Publishing, pg.224, 1998.

[Arian, 2001]: “A logic analyzer using the PC’s parallel port”, Arian van Dorsten .

[Bob Perrin, 2003]: “Digital Inputs”, Bob Perrin, Circuit Cellar Online, ChipCenter
Questlink, 2003 .

[Craig Maynard, 2000]: “Logic Analyzer Operation”, Craig Maynard, 2000 .
[Dage, 1999]: “Using the Parallel Port”, Dage Scientific, 1999 .

[ELEC 2010, 2002]: “Experiment 2 Oscilloscope and Function Generator”, ELEC 2010,
Experiment 2 PRELAB, 2002,

[Jan Axelson, 1999]: “Parallel Port Complete, programming, interfacing & using the
PC’s parallel printer port”, Lakeview Research, Madison, Pg 1-11, 17-22, 129-148 &
149-164, 1999,

[John B, 2003]: “10.d11”, Geck Hideout,2003 http://www.geekhideout.com/iodll.shtml
[Kris Simmons, 1998]: “Sams Teach Yourself Visual C++ in 21 Days”, Second Edition,
Sams Publishing, pg 67-104, 1998.

[Kyle C, 1999]: “Building an 8-bit PC-Based Logic Analyzer”, Kyle C. Quinnell,

Department of Engineering Technology New Mexico State University, 1999 .

[Martin Clausen,2002]: “Digital Signal Generator”, Martin Clausen, 2002,

XVI

[Mautin, 2001]: “Dagqarta-Stim3a advanced stimulus signal generator”, Mautin,

Interstellar Research, 2001 .
[Mohammed Elzubeir, 2000]: “Parallel Port Programming”, Mohammed Elzubeir.

[NI, 2003]: “Using the Parallel Port as an Input/Output Channel”, National Instruments,
2003 .

[Nick, 2000]: “C++ programmers to benefit from studying the manuals”, Nick Langley,
Microsoft, Technology, 2000, Thursday 3 August 2000 .

[Peacock, 2001]: “Introduction to Parallel Ports”, Craig Peacock, 19" August 2001 .

[Peacock, 2003]: “Interfacing the Enhanced Parallel Port”, Craig Peacock, 2003
{http://www.beyondlogic.org}.

[Shauna Rae, 1999]: “Getting an ADC0809 Analog to Digital Converter to Work for

you”, Shauna Rae, National DataSheet, National Application Notes, Texas Instruments
Datasheet,1999.

[Tapcott, 1999]: “Creating Value in the Network Economy”, Tapscott, Don. (Ed.),
President and Fellows of Harvard College, 1999,

[Tomi, 1996]: “Simple circuit and program to show how to use PC parallel port output
capabilities”, Tomi Engdahl, 1996-2000

[Whitten, 2000]: “System analysis and design methods, Whitten, J.L., Bentley, L.D., &
Dittman, K.C. , McGraw-Hill, 2000,

XVII

