PATTERNS OF DISFLUENCIES
AND
THE PROCESS OF SELF-MONITORING
IN SPONTANEOUS SPEECH

STEFANIE SHAMILA PILLAI

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF LANGUAGES AND LINGUISTICS
UNIVERSITY OF MALAYA
KUALA LUMPUR

MAY 2004
Faculty of Languages and Linguistics
University of Malaya

Declaration of Academic Work

I, Stefanie Shamila Pillai, Registration No. THA99016, hereby declare that this Thesis entitled: *Patterns of Disfluencies and the Process of Self-Monitoring in Spontaneous Speech* is my own academic work with the exception of citations, which have been acknowledged.

Signature: ___________________________ Date: __31.5.04__
This thesis studies the patterns of non-pathological speech disfluencies, such as silent and filled pauses, prolongations, repeats, deletions, insertions and substitutions, in relation to the process of self-monitoring, a process that can lead to error-detection, the self-interruption of speech and repair-planning. Studies on the various aspects of speech disfluencies have shown that these disfluencies commonly occur in speech. Three time intervals related to these disfluencies, that is, error-to-cut off, cut off-to-repair and error-to-repair, have been previously examined to gain insights into the cognitive processes of self-monitoring.

Based on the speech production model put forward by Levelt (1983; 1989), and information derived from other related studies, this thesis set out to discover the patterns of disfluencies that occur in naturally-occurring spontaneous speech. This was done to better understand how speakers self-monitor, self-interrupt, and self-repair their speech, in order to contribute further to the understanding of how these processes function in speech production. In relation to this, speech disfluencies produced by 67 callers to a radio station were categorized and analyzed to determine patterns of occurrences and how these disfluencies fitted into the structure of self-repairs proposed in the literature. Further, the three time intervals associated with self-repairs were acoustically measured and then analyzed to determine the extent to which they corresponded to current understanding of the process of self-monitoring in speech production.

The results show that there are distinct patterns in the use of the different types of hesitation and self-repair. The results also indicate that there is a need to reevaluate the
categorization of disfluencies in relation to their occurrence in the structure of self-repairs, particularly in relation to repeats and prolongations. In addition, the results show that speakers often interrupted their speech, not immediately, but soon after the production of an error, supporting the possibility of prearticulatory monitoring and error-detection. Speakers also regularly produced repairs immediately, or very soon after, speech was interrupted, suggesting that repair-planning must have occurred before, and not after, speech was interrupted, as was previously suggested. Thus, explanations of the process of self-monitoring need to be reformulated to take into consideration the fact that both the processes of error-detection and repair-planning can take place prearticulatory.
ABSTRAK

Tesis ini mengkaji pola-pola ketidaklanjuran pertuturan (speech disfluencies) bukan patologikal, seperti jeda senyap dan jeda berbunyi (silent pauses and filled pauses), pemanjangan (prolongations), pengulangan (repeats), penambahan (insertions), pengguguran (deletions) dan penggantian (substitutions) sehubungan dengan proses pengawasan-kendiri (self-monitoring), sebuah proses yang boleh membawa kepada pengesanan kesilapan (error-detection), selain pertuturan sendiri (speech interruption) and perancangan-pembetulan (repair-planning). Kajian mengenai pelbagai aspek ketidaklanjuran pertuturan menunjukkan bahawa ketidaklanjuran pertuturan ini lazim berlaku dalam pertuturan. Tiga lat masa yang berkaitan dengan ketidaklanjuran pertuturan tersebut, iaitu, kesilapan-ke-selaan (error-to-cut off), selana-ke-pembetulan (cut off-to-repair), dan kesilapan-ke-pembetulan (error-to-repair), pernah dikaji untuk memahami proses kognitif pengawasan-kendiri.

Berdasarkan model pengwujudan bahasa (speech production) yang dikemukakan oleh Levelt (1983; 1989) serta maklumat yang diperolehi daripada kajian-kajian lain, tesis ini bertujuan untuk mengesan pola ketidaklanjuran pertuturan yang terdapat di dalam pertuturan spontan yang dihasilkan secara semulajadi. Ini dilakukan untuk memahami dengan lebih mendalam lagi bagaimana penutur mengawasi, mencelah dan membetulkan pertuturan mereka, dengan harapan ini dapat menyumbang kepada pemahaman mengenai proses pengawasan-kendiri dan pembetulan-kendiri dalam pengwujudan bahasa. Sehubungan dengan ini, ketidaklanjuran pertuturan yang dihasilkan oleh 67 pemanggil kepada sebuah stesen radio telah dikategorikan dan dianalisa untuk menentukan pola kewujudan dan bagaimana ketidaklanjuran pertuturan
tersebut dapat disesuaikan ke dalam struktur pembetulan-kendiri yang dikemukakan dalam literatur. Tambahan pula, tiga lat masa yang dikaitkan dengan pembetulan-kendiri telah diukur secara akustik dan dianalisa untuk memastikan setakat mana ukuran masa ini berhubungkait dengan pemahaman masakini mengenai proses pengawasan-kendiri dalam proses pengwujudan bahasa.

ACKNOWLEDGEMENTS

I am indebted to the following people, without whom the completion of this thesis would not have been possible.

I would, firstly, like to thank my Supervisor, Associate Professor Dr Kamila Ghazali, for her guidance, critical comments and useful suggestions about my study. I am also very grateful for her constant support and encouragement.

I would also like to thank Professor Dr Gerry Docherty, of the School of Education, Communication and Language Sciences, University of Newcastle upon Tyne, United Kingdom, for supervising me during my one-year’s postgraduate study at the University. Without his help and advice, I would not have been able to complete a large part of my analysis. I am also extremely grateful to the Department of Speech for providing me with computer facilities, as well as allowing me access to both the Language Analysis Laboratory and the Phonetics Laboratory during my tenure there.

I am indebted to the University of Malaya for nominating me for the one-year Commonwealth Split-Site PhD Scholarship, and to the Commonwealth Scholarship Commission, United Kingdom, for granting me the scholarship. Further, I would like to thank the University of Malaya for granting me one-year’s paid study leave to enable me to take up the Scholarship.

I also owe debts of gratitude to the former and present Heads of the English Language Department, as well as the former and current Deans of the Faculty of Languages and
Linguistics, University of Malaya for supporting and approving my study leave and short periods of research leave during my candidature.

I would also like to thank Associate Professor Dr Bernadine Renaldo Wong Cheng Kiat, from the Institute of Mathematical Sciences, University of Malaya and Leong Wen Yen, from the Faculty of Economics and Administration, University of Malaya, for helping me make sense of the statistical measures used in this study.

Further, I would like to extend my appreciation to all my colleagues at the Faculty of Languages and Linguistics for all their help. I am particularly grateful to my friends for their moral support.

My eternal gratitude goes to my family for their patience, and for physically and emotionally supporting me throughout my endeavor, especially my parents (Mr and Mrs John Pillai), Saras, my husband (Kuhendran) and my two daughters (Kirthana and Kishana). Without their help and understanding, it would not have been possible for me to complete my thesis.

Last but not least, praise God for giving me the inner strength to complete this part of my life.
CONTENTS

ABSTRACT (ENGLISH) i - ii
ABSTRACT (MALAY) iii – iv
ACKNOWLEDGEMENTS v- vi
CONTENTS vii - xii
LIST OF FIGURES xiii - xvi
LIST OF TABLES xvii -xviii

CHAPTER 1: INTRODUCTION 1 - 9

1.1 Chapter Overview 1
1.2 Disfluencies in Spontaneous Speech 1
1.3 The Relationship Between Self-Monitoring, Error Detection and Self-Repair 3
1.4 Motivation 5
1.5 Objectives 6
1.6 Justification and Significance of Study 7
1.7 Scope and Limitations of the Study 8
1.8 Overview of the Dissertation 8

CHAPTER 2: SPEECH DISFLUENCIES 10 - 75

2.1 Introduction 10
2.2 The Speech Plan 10
2.3 Slips of the Tongue 15
2.4 Speech Errors 17
2.5 Hesitation Phenomena 19
2.6 Disfluencies 21
2.7 The Relationship between Errors, Hesitations and Disfluencies 21
2.8 Self-Repairs

2.8.1 Structure of Self-Repairs

2.8.2 Covert Repairs

2.8.3 Classes of Repairs

2.9 Categories of Disfluencies

2.9.1 Types of Hesitation

2.9.1.1 Silent Pauses

2.9.1.1.1 Measurements of Silent Pauses

2.9.1.1.2 Location of Silent Pauses

2.9.1.2 Filled Pauses

2.9.1.2.1 Location of Filled Pauses

2.9.1.3 Prolongations

2.9.1.3.1 Categorization of Prolongations

2.9.2 Types of Self-Repairs

2.9.2.1 Repeats

2.9.2.1.1 Classification of Repeats

2.9.2.2 Insertions

2.9.2.3 Substitutions

2.9.2.4 Deletions

2.9.2.4.1 Deletions and False Starts

2.10 Speech Disfluencies and Self-Repair in Second Language Production

2.11 Chapter Summary

CHAPTER 3: THE PERCEPTUAL LOOP THEORY

3.1 Introduction

3.2 Self-Monitoring and Self-Repair

CHAPTER 3: THE PERCEPTUAL LOOP THEORY
4.3.2.2 Deletions 132
4.3.2.3 Substitutions 134
4.3.2.4 Insertions 134

4.4 Intervals in Self-Repairs 135
4.5 Statistical Analysis 139
4.6 Definition of Terms 140
4.7 Chapter Summary 143

CHAPTER 5: RESULTS AND DISCUSSION OF HESITATIONS 144 – 182

5.1 Introduction 144
5.2 Overview 145
5.3 Possible-Repairs 146

5.3.1 Hesitations in Possible-Repairs 148

5.3.1.1 Filled Pauses in Possible-Repairs 149

5.3.1.1.1 Location of Filled Pauses in Possible-Repairs 153

5.3.1.2 Silent Pauses in Possible-Repairs 155

5.3.1.2.1 Location of Silent Pauses in Possible-Repairs 158

5.3.1.3 Prolongations in Possible-Repairs 160

5.3.1.3.1 Locations of Prolongations in Possible Repairs 166

5.4 Hesitations in Self-Repairs 166

5.4.1 Filled Pauses in Self-Repairs 169

5.4.2 Silent Pauses in Self-Repairs 171

5.4.2.1 Silent Pauses After Fragments and Non-Fragments 175

5.4.3 Prolongations in Self-Repairs 178
5.4.3.1 Prolongations in the Structure of Repairs 180

5.5 Summary 182

CHAPTER 6: RESULTS AND DISCUSSION OF SELF-REPAIRS 183 – 211

6.1 Introduction 183

6.2 Types of Self-Repairs 183

6.2.1 Repeats 185

6.2.1.1 Types of Repeats 188

6.2.1.1.1 Retrospective Repeats 188

6.2.1.1.2 Stalling Repeats 192

6.2.1.1.3 Repeats as Covert Self-Repairs 197

6.2.1.2 Type of Repeated Words 200

6.2.2 Deletions 201

6.2.2.1 Fragment Deletions 203

6.2.3 Substitutions 204

6.2.4 Insertions 207

6.3 Unclassifiable Repairs 209

6.4 Summary 210

CHAPTER 7: RESULTS AND DISCUSSION OF REPAIR INTERVALS 212 – 237

7.1 Introduction 212

7.2 Error-to-Cut off Intervals 212

7.3 Cut off-to-Repair Intervals 220

7.4 Error-to-Repair Intervals 230

7.5 Summary 236
CHAPTER 8: SUMMARY AND CONCLUSION

8.1 Overview

8.2 Research Question 1: What patterns of disfluencies can be found in the data?
 8.2.1 Hesitations
 8.2.2 Self-repairs
 8.2.2.1 Repeats
 8.2.2.2 Deletions
 8.2.2.3 Substitutions
 8.2.2.4 Insertions

8.3 Research Question 2: What do the time intervals of error-to-cut off, cut off-to-repair and error-to-repair reveal about the process of self-monitoring and self-repair in the spontaneous production of speech?
 8.3.1 Error-to-Cut-off Intervals
 8.3.2 Cut off-to-Repair Intervals
 8.3.3 Error-to-Repair Intervals

8.4 Significance of the Findings and Future Directions

8.5 Conclusion

REFERENCES

APPENDIX
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Process of Error-detection, Hesitation and Self-Repair</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Simplified Model of Speech Plan</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Fragment of Lexical Network Underlying Lexical Access Levelt, Roelofs, & Meyer, 1999</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Hiieke's (1981) Taxonomy of Hesitation Phenomena</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationship between Speech Error and Hesitation</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>The Relationship Between Speech Error, Hesitation and Self-Repair in a Disfluent Utterance</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>The Structure of a Repair</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Covert and Overt Repairs</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Structure of a Repeat</td>
<td>57</td>
</tr>
<tr>
<td>2.9</td>
<td>Surface Patterns for Proposed Functions of Repeats</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>Sub-classification of Disfluent Repeats</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>A Blueprint for the Speaker</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Form-Processing Stages from Levelt (1998)</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>The Process of Speech Production and the Sources of Disfluency Phenomena from Menyhárt (2003, p.45)</td>
<td>84</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic Outline of Neurolinguistic Functions from Laver (1980, p. 290)</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>A Top-Down Hierarchy of Nodes</td>
<td>90</td>
</tr>
<tr>
<td>3.6</td>
<td>Time Intervals in Self-Repairs</td>
<td>94</td>
</tr>
<tr>
<td>3.7</td>
<td>Blueprint of Monitoring Model</td>
<td>100</td>
</tr>
<tr>
<td>3.8</td>
<td>The Parallel Processes of Speech-Interruption and Repair-Planning</td>
<td>101</td>
</tr>
<tr>
<td>3.9</td>
<td>The Serial Processes of Speech-Interruption and Repair-Planning</td>
<td>101</td>
</tr>
<tr>
<td>3.10</td>
<td>Phases in the Execution of Articulation in a Repeating and Random Session</td>
<td>104</td>
</tr>
<tr>
<td>4.1</td>
<td>Continuum of Malaysian English</td>
<td>110</td>
</tr>
</tbody>
</table>

xiii
Figure 4.2 Transcription Conventions 114
Figure 4.3 Spectrogram and Waveform of a Silent Pause Produced by Caller 11 120
Figure 4.4 Spectrogram and Waveform Showing Fluent a Produced by Caller 32 123
Figure 4.5 Spectrogram and Waveform Showing Prolonged a Produced by Caller 32 124
Figure 4.6 Spectrogram and Waveform of Prolonged to Produced by Caller 17 125
Figure 4.7 Structure of a Self-Repair 127
Figure 4.8 Intervals In Self-Repairs 136
Figure 4.9 Measurements for Self-Repair Intervals 138
Figure 5.1 Number of Possible-Repairs and Self-Repairs (With and Without Hesitation) 146
Figure 5.2 Structure of Possible-Repairs 147
Figure 5.3 Frequency Distribution of Pause Duration in Possible-Repairs 155
Figure 5.4 Boxplots Comparing the Durations of the Produced in Prolonged and Fluent Contexts 162
Figure 5.5 Boxplots Comparing the Durations of to Produced in Prolonged and Fluent Contexts 164
Figure 5.6 Frequency Distribution of Pause Duration in Self-Repairs 173
Figure 5.7 Boxplots Comparing the Durations of Silent Pauses in Self-Repairs and Possible-Repairs 174
Figure 5.8 Duration of Silent Pauses After Fragments in Self-Repairs 176
Figure 5.9 Duration of Silent Pauses After Non-Fragments in Self-Repairs 176
Figure 5.10 Boxplots Comparing the Durations of Silent Pauses after Fragments and after Non-Fragments in Self-Repairs 177
Figure 6.1 Types of Self-Repairs 184
Figure 6.2 Frequency Distribution of R1, in Repeats where R1 is Longer than R2 189

xiv
Figure 6.3 Frequency Distribution of R2, in Repeats where R1 is Longer than R2

Figure 6.4 Boxplots of the Distributions of the Durations of R1 and R2, in repeats where R1 is Longer than R2

Figure 6.5 Frequency Distribution of R1, where R2 is Longer than R1

Figure 6.6 Frequency Distribution of R2, where R2 is Longer than R1

Figure 6.7 Boxplots of the Distribution of the Durations R1 and R2, where R2 is Longer than R1

Figure 7.1 Frequency Distribution of Error-to-Cut off Intervals in Self-Repairs

Figure 7.2 Error-to-Cut off Intervals for Insertions

Figure 7.3 Error-to-Cut off Intervals for Substitutions

Figure 7.4 Error-to-Cut off Intervals for Repeats

Figure 7.5 Error-to-Cut off Intervals for Deletions

Figure 7.6 Boxplots of Error-to-Cut off Intervals for Each Self-Repair

Figure 7.7 Cut off-to-Repair Intervals For Self-Repairs and Possible-Repairs

Figure 7.8 Cut off-to-Repair Intervals For Possible-Repairs

Figure 7.9 Frequency Distribution of Cut Off-to-Repair Intervals for Self-Repairs

Figure 7.10 Cut off-to-Repair Intervals For Deletions

Figure 7.11 Cut off-to-Repair Intervals For Insertions

Figure 7.12 Cut off-to-Repair Intervals For Repeats

Figure 7.13 Cut off-to-Repair Intervals For Substitutions

Figure 7.14 Boxplots of Self-Repairs and Possible-Repairs

Figure 7.15 Frequency Distribution of Error-to-Repair Intervals for Self-Repairs

Figure 7.16 Error-to-Repair Intervals For Repeats

Figure 7.17 Error-to-Repair Intervals For Insertions

Figure 7.18 Error-to-Repair Intervals For Substitutions
Figure 7.19	Error-to-Repair Intervals For Deletions	235
Figure 7.20	Boxplots of Error-to-Repair Intervals for Each Self-Repair	235
Figure 8.1	Audible Permutations of Hesitations and Repairs	240
Figure 8.2	Permutations for Repeats	241
Figure 8.3	Structure of Repairs	242
Figure 8.4	Taxonomy of Disfluencies	246
Figure 8.5	Deletions in the Structure of Self-Repairs	248
Figure 8.6	Substitutions in the Structure of Self-Repairs	249
Figure 8.7	Insertions in the Structure of Self-Repairs	250
Figure 8.8	The Process of Error-Detection and Speech Interruption	251
Figure 8.9	The Process of Error-Detection, Speech Interruption and Repair Planning	253
LIST OF TABLES

Table 2.1 Types of Errors and Self-Repairs in Speech Production from Postma (2000) 18

Table 2.2 Categories of Disfluencies 23

Table 2.3 Sub-Categories of Covert-Repairs 33

Table 2.4 Duration of Silent Disfluency Intervals 43

Table 2.5 Type of Transitions of Fragments in Repeats 54

Table 2.6 Four Stages in Repeating a Word 62

Table 3.1 Summary of the Three Classes of Nodes in the Node Structure Theory 88

Table 5.1 Hesitations in Possible-Repairs 147

Table 5.2 Unlexicalized Filled Pauses Occurring as the Only Form of Hesitation in Possible-Repairs 148

Table 5.3 Combinations of Filled Pauses and Silent Pauses in Possible-Repairs 149

Table 5.4 Number of Filled Pauses before Lexical and Function Words 152

Table 5.5 Combinations of Silent Pauses in Possible-Repairs 155

Table 5.6 Frequency of Silent Pauses Before Lexical and Function Words in Possible-Repairs 156

Table 5.7 Statistical Description of the Duration of Silent Pauses before Lexical and Function Words in Possible-Repairs 157

Table 5.8 Durations (msec) of Prolonged and Fluent the in Possible-Repairs 159

Table 5.9 Durations (msec) of Prolonged and Fluent to in Possible-Repairs 161

Table 5.10 Durations (msec) of Prolonged and Fluent a in Possible-Repairs 163

Table 5.11 Durations (msec) of Prolonged Words Compared to Fluent Words in Possible-Repairs 163
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Hesitations in Self-Repairs</td>
<td>165</td>
</tr>
<tr>
<td>5.13</td>
<td>Unlexicalized Filled Pauses in Self-Repairs</td>
<td>167</td>
</tr>
<tr>
<td>5.14</td>
<td>Unlexicalized and Lexicalized Filled Pauses in Self-Repairs</td>
<td>169</td>
</tr>
<tr>
<td>5.15</td>
<td>Silent Pauses after Fragments and after Non-Fragments in Self-Repairs</td>
<td>173</td>
</tr>
<tr>
<td>5.16</td>
<td>Duration of Prolonged Tokens in Self-Repairs</td>
<td>177</td>
</tr>
<tr>
<td>5.17</td>
<td>Prolongations in the Structure of Self-Repairs</td>
<td>179</td>
</tr>
<tr>
<td>6.1</td>
<td>Descriptive Statistics for R1 and R2, where R1 is Longer than R2</td>
<td>186</td>
</tr>
<tr>
<td>6.2</td>
<td>Descriptive Statistics for R1 and R2, where R2 is Longer than R1</td>
<td>193</td>
</tr>
<tr>
<td>6.3</td>
<td>Summary of Findings on Types of Repeats</td>
<td>197</td>
</tr>
<tr>
<td>7.1</td>
<td>Error-to-Cut off Intervals in Self-Repairs</td>
<td>213</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison of Error-to-Cut off Intervals in Overt Repairs</td>
<td>215</td>
</tr>
<tr>
<td>7.3</td>
<td>Fragmented Cut Offs in Self-Repairs</td>
<td>216</td>
</tr>
<tr>
<td>7.4</td>
<td>Cut off-to Repair Intervals for Self-Repairs</td>
<td>222</td>
</tr>
<tr>
<td>7.5</td>
<td>Error-to-Repair Intervals for Self Repairs</td>
<td>232</td>
</tr>
</tbody>
</table>