University of Malaya

Perpustakaan SKTM

Nutritional Advisory System
Using Case Based Approach

By
Chew Wei Liang
WEK 000 112

Under the supervision of
Assoc. Prof. Dr. Syed Malek

And moderated by
Mr. Woo Chaw Seng

Submitted to the
Faculty Computer Science and Information Technology
University of Malaya

In partial Fulfillment of the Requirement For
The Degree of
Bachelor of Computer Science
Session 2002/2003
Submission Date: 7 February 2003

DECLARATION

[declare that the work described in this dissertation is, except where otherwise stated,
entirely my own work and has not been submitted as an exercise for a degree at this or

any other university

February 2002

DISCLAIMER

The ownership of this report is reserved by University of Malaya and no part of this
assignment should be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording or otherwise without prior

written consent from University of Malaya.

ABSTRACT

In today world, people are getting more and more aware of the important toward
a healthy living. There is a need to cater this people with the knowledge of nutrition they
want. As today, the number of nutritionists and dieticians are still not very encouraging.
So to fill in the vacancies, a nutritionist advisory system should be developed to improve
the current lacking. To accomplish this task, case-based reasoning seems to be a better
approach.

Rule-based systems need a good definition of the system and are not able to learn
very well from the user choices. What is more, it is not able to handle missing
information or unexpected values. On the other hand, a nutritional advisory system build
with a case-based reasoning system should be able to solve these problems.

In order to show the benefits of a case-based reasoning system for a nutritional
advisory system, the system will follow all the guidelines and recommendation from
World Health Organization (WHO) and US RDA. The system involves a full case-based
reasoning cycle and will focus very much in the adaptation part of the cycle. It will then

be used to demonstrate the flexibility and adaptability of this kind of system.

ACKNOWLEDGEMENT

To finish an academic exercise, the effort that the people supporting is no doubt a
enormous task. Firstly I would like to express my utmost gratitude to my supervisor,

Assoc. Prof. Dr. Syed Malek for his guidance, advice and encouragement. I salute him

with a round of applause.

Special thank to Mr. Woo Chaw Seng, the project moderator for his valuable suggestion
and comments. And a big thanks to my expert domain, Mr. F.E Chong for his time and

suggestion and also to Dr. Lau Wah Keong for his patient in explaining the important of

nutrition to me.

Thanks to all my fellow course-mates for sharing their knowledge with me throughout
the whole project. And also to all my fellow seniors who had done a great jobs in

advising me on what to do during the system development stage.

Last but not least, I would like to thanks my family for their continued encouragement

and support. [also like to thank my mum again for allowing me to borrow all her health

books to me.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES

CHAPTER 1 : INTRODUCTION
1.1 PROJECT DEFINITION
1.2 OBJECTIVES
1.3 PROJECT SCOPE
1.4 SYSTEM LIMITATIONS

1.5 REPORT LAYOUT
1.6 PROJECT SCHEDULE

CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION TO CASE BASED REASONING
2.1.1 Case-based problem solving
2.1.2 Learning in Case-based Reasoning
2.1.3 Combining cases with other knowledge

2.2 Case-Based Reasoning Techniques

2.3 Problems in CBR

2.4 CBR and Other Reasoning Methods

2.4.1 Advantages of CBR
2.4.2 Disadvantages of CBR

CHAPTER 3: METHODOLOGY & SYSTEM ANALYSIS

3.1 Methodology
3.1.1 Prototyping solves the problems of

Traditional Waterfall Model

=B SN T I S

10
24
24

25
26

27
28

3.2 Cased Based versus Rule Based Reasoning 31

3.2.1 Advantages of Rule Based Reasoning 31
3.2.2 Disadvantages of Rule Based Reasoning 32
3.2.3 Advantages of Case Based Reasoning 32
3.2.4 Disadvantages of Case Based Reasoning 32
3.2.5 Conclusion 33

3.3 Analysis of the implementation of CBR in Nutritional Advisory System 34
3.3.1 Case Representation and indexing in Nutritional Advisory

System 36
3.3.1.1 The Contents of Problem Representation 36
3.3.1.2 The Content of Solutions 37
3.3.1.3 Methods for Index Selection in Nutritional Advisory

System 37

3.3.2 Case Retrieval in Nutritional Advisory System 38
3.3.2.1 Identify Features 38
3.3.2.2 Initially Match 38
3.3.2.3 Select 38

3.3.3 Case Reuse in Nutritional Advisory System 39
3.3.4 Case Retainment in Nutritional Advisory System 39
3.4 Development Environment 40
3.4.1 Operating System 40
3.4.2 Case Based Reasoning Shell and Programming Language 43
3.4.2.1 CBR engine 44

CHAPTER 4: SYSTEM DESIGN

4.1 System and User Requirement 45
4.1.1 Functional Requirements 45
4.1.2 Non-Functional Requirements 46
4.2 System Overview 48
4.3 Module Design 51
4.3.1 Identify Module 51
4.3.2 Matching Module 52
4.3.3 Similarity Module 53
4.3.4 Adaptation Module 55
4.3.5 Evaluation Module 56

4.3.6 Display Module 57

4.3.7 Retain Module
4.4 Case Design

4.5 System User Interface

CHAPTER 5: SYSTEM IMPLEMENTATION

5.1 Introduction

5.2 Development Environment

5.2.1 Hardware Requirements
5.2.2 Software Tools / CBR Shell Requirements

5.2.2.1 1 Description of Development Application / Tools
5.3 System Implementation
5.4 Interface
5.5 Nutritional Advisory System Framework Implementation
5.5.1 Attributes Weighting Implementation
5.5.2 Matching Implementation
5.5.3 Adaptation Implementation

5.5.4 Display Module [mplementation
5.5.5 Function Implementation

CHAPTER 6: SYSTEM TESTING
6.1 Introduction

6.2 Algorithm Testing
6.2.1 Testing the Accuracy of the Retrieval
6.3 Weighting Test

6.4 Testing the Causal Model

58

59

59

60

60

60
61

62
63
63
64
65
69
70

71
73

74

76

77

77

78

6.5 Integration Test

CHAPTER 7: SYSTEM EVALUATION & CONCLUSION

7.1 Introduction

7.2 Problem Encountered and Solutions

7.3 System Strengths
7.4 System Limitations
7.5 Future Enhancement

7.6 Conclusion

BIBLIOGRAPHY

APPENDICES

Source Code
Journal

78

80

81

83

84

85

86

89

91
104

LIST OF FIGURES

PAGE FIGURE

14 Figure 2.1: CBR Cycle

21 Figure 2.2: A Task method Decomposition of CBR

27 Figure 3.1: TheProject Process Model

41 Figure 3-3: Windows 2000 mean time to failure greatly exceeds that of
Windows NT Vorkstation 4.0 and Windows 98.

42 Figure 3-4: Wiadows 2000 Professional simply did not fail during the 90
days it was tested by ZD Labs.

50 Figure 4.1: Data Flow Diagram for Nutritional Advisory System

51 Figure 4.2: Data Flow Diagram of Identity Module

52 Figure 4.3: Data Flow Diagram of the matching module

54 Figure 4.4: Data Flow Diagram of the similarity module

55 Figure 4.5: Data Flow Diagram of the adaptation module.

56 Figure 4.6: Data Flow Diagram of the evaluation module.

57 Figure 4.7: Data Flow Diagram of the display module

58 Figure 4.8: Data Flow Diagram of the retain module

59 Figure 5.1: Nutritional Advisory System Framework

60 Figure 5.2: Causal Model

61 Figure 5.3: Command Interpreter

62 Figure 5.4: Command Interpreter

LIST OF TABLES

PAGE TABLE

6 Project Schedule

61 Workstation

65 Weighting ~Match Contribution
67 The Hierarchical Pyramid

68 Structure of Case Retrieval Net

VI

CHAPTER 1

INTRODUCTION

This introductory chapter gives a brief description or purpose of the project and
problems to be solved. The significance and rationale of the project will be discussed

here. Furthermore, the system functions, limitations and its assumptions will also be

dwelt into later in this chapter.
1.1 Project Definition

Not many people know about the truth about health —specifically about the roles of diet
and nutrition in our personality, behavior and sense of well-being. Nutrients provide the
foundation for a global look at the social sciences that shape the dietary patterns of
people throughout the world. Most of the people will just treat the symptoms of their
illness but not the reasons for the symptoms [1]. Of course, we still need a practitioner
and his diagnostic skills, but his therapy usually is limited to a certain extend of
relieving the pain and falls short of the mark. Until the medical profession has all the
answers, the patients still need to take some responsibility in his or her daily food intake.
But for the time being, the technology we have now is adequate to produce a system that
enable the patient to access to the information the patient needs to recuperate from a
particular illness using alternative medicine. This includes the nutrition and supplements

the patient needs to recover from the illness after treatment from medical practitioner.

This project will focus mainly on giving nutritional advises to patient but also have the
ability to give advises to healthy people. The whole project is mainly concentrated on
case-based reasoning techniques. During the process the system will try to simulate as

close as possible to a nutritionist in giving advises to their patients.

1.2 Objective

There are some reasons or objectives which this system has been proposed

1) As an alternative way to get advises in term of nutrition and diet
Most of the people in Malaysia is still uncomfortable of getting advises from
nutritionist or dietician after they get treatment from medical practitioner. In the
recuperating period, most of the people will just buy the vitamins of the shelves
in supermarkets or pharmacies without considering the side-effect of the
supplements with the medicine they were given by the doctor. To some extend
this may cost

2) Applying AI techniques and Utilizing Case-Based Reasoning in Medical sector
In this project the main objective is to develop a system that is intelligent enough
to output result that is reliable to the medical world. Not only the system is
intelligent in giving out result but also must be able to reason .This means that
whenever the user input any illness and their basic particular, the systems will
able to generate more questions to acquire knowledge about the illness from the
user. This is important to generate a reliable result that is nutritional advice in
this matter. In the process of generating the result the system will rely mainly on

case-based reasoning.

3) Preventive measurement of major illness
As for example, an inflamed appendix is a symptom of a low-roughage diet. It 1s
too late at this stage for a nutritional approach, but this must be initiated
postsurgically to avoid future difficulties with hemorrhoids, fissures,
diverticulitis and possible bowel cancer, all related to nutrition and diet.

4) To make nutritional advices accessible to all
Not many people in Malaysia know where to find a nutrition consultant and
dietician. It is very troublesome to seek advice from a nutritionist as in the
country on have about 500 of them. This statistic only includes those who
register under the Nutritional Association of Malaysia. Through this system,

people can access to nutritional advice more easily.

1.3 Project Scope

For the time being the system will only be a template for the real system. And this
system will function mainly on a set on past cases and a database that act as a dictionary
for all the supplements and all the food that are related to the supplement. The scope that
been covered are those people with a specific illness and those with multiple illness.
There will be a sub function to monitor the result and to store the new problem as a case
in the database. The cases will be input by the medical expert who uses this system and
the medical expert will initialize all the requirements. This system will also generate
precaution for the user regarding the medicine the user took and the food that is

recommended by the system. Example some medicine like Calcitriol cannot be taken

with vitamin D or magnesium and must avoid high phosphorous foods. If taken it will
cause anorexia.
1.4 System Limitation

The main idea is to have a system that can generate any result if the procedure is been
followed properly. But some major illness still cannot be prevented or cure using proper
food and supplement because some of these illnesses are cause by bacteria infection and
virus attack e.g. dengue, meningitis, encephalitis and etc. This kind of diseases is mainly
non-related to nutritional and diet.

This system also is not build for medical diagnosis. The system can not figure out what
kind of illness does the patient suffering by analyzing the symptoms. It is just for the

user to enter the name of illness and the system will generate a list of recommended
nutrition and supplement list.

1.5 Report Layout

The purpose of the report is to document essential information gathered during this
system development and implementation stage. This report is divided into 4 respective

chapters.
Chapter 1: Introduction
This chapter introduces the project in a general view and the rationale of the project. It

made an overview on the, definition, project objectives, project scopes, project limitation

and the project schedule.

with vitamin D or magnesium and must avoid high phosphorous foods. If taken it will

cause anorexia.
1.4 System Limitation

The main idea is to have a system that can generate any result if the procedure is been
followed properly. But some major illness still cannot be prevented or cure using proper
food and supplement because some of these illnesses are cause by bacteria infection and
virus attack e.g. dengue, meningitis, encephalitis and etc. This kind of diseases is mainly
non-related to nutritional and diet.

This system also is not build for medical diagnosis. The system can not figure out what
kind of illness does the patient suffering by analyzing the symptoms. It is just for the

user to enter the name of illness and the system will generate a list of recommended
nutrition and supplement list.

1.5 Report Layout

The purpose of the report is to document essential information gathered during this
system development and implementation stage. This report is divided into 4 respective

chapters.
Chapter 1: Introduction

This chapter introduces the project in a general view and the rationale of the project. It

made an overview on the, definition, project objectives, project scopes, project limitation

and the project schedule.

Chapter 2: Literature Review
For this chapter, it discusses the researches that are carried out during the analysis and
design phase at the project. This includes techniques and ideas used in the building of

the system.

Chapter 3: Methodology
For this chapter is mostly about the information and techniques that will be used in the
process of making this system. Types of software and prototyping will also be discussed

in details here.

Chapter 4: System Design
This chapter describes the design considerations including processing design, the user

interface design and also the database design of this project.

1.6 PROJECT SCHEDULE

R

PHASE I

10++ |

Getting briefing from lecturer and propose the topic.

Identifying objective of the proposed topic.

Estimate scope of the system

Searching information from various sources about case-based
reasoning from the Internet and books.

Analyzing and research the information.

Determine system module.

Design the recommended system.

Presentation of the proposal.

Documentation

PHASE 11

Develop system.

Documentation.

Testing and maintaining the designed system.

Implementation of the system.

Presentation.

Prepared by,

Chew Wei Liang

CHAPTER 2
LITERATURE REVIEW

Most of my researches were done during this period of time. My major source of
information comes from the internet and the Faculty of Medicine’s Library. Other
sources like books and journals also have been used in my research. Discussion with my
supervisor and my expert domain also helped me to gain more knowledge in this area.
This part of the project is the most demanding and must be done with caution —not to
cause unwanted errors and failure in the coming phase of the project. To reduce this
unwanted errors and failure, I take in consideration of what the user of the system wants

and the normal practice of a nutritionist in giving advice as one of my criteria in

designing the system.

2.1 Introduction to Case Based Reasoning(CBR)

Over the last few years, case-based reasoning (CBR) has grown from a rather specific
and isolated research area to a field of widespread interest. Activities are rapidly growing

- as seen by the increased rate of research papers, availability commercial products, and

also reports on applications in regular use.

Case-based reasoning is a problem solving paradigm that in many respects is
fundamentally different from other major Al approaches. Instead of relying solely on
general knowledge of a problem domain, or making associations along generalized
relationships between problem descriptors and conclusions, CBR is able to utilize the
specific knowledge of previously experienced, concrete problem situations (cases). A
new problem is solved by finding a similar past case, and reusing it in the new problem
situation. A second important difference is that CBR also is an approach to incre-mental,
sustained learning, since a new experience is retained each time a problem has been
solved, making it immediately available for future problems. [2]

So what is case-based reasoning anyway? Basically: To solve a new problem by
remembering a previous similar situation and by reusing information and knowledge of

that situation. Let me illustrate this by looking at some typical problem solving situations:

- A physician - after having examined a particular patient in his office - gets a reminding
to a patient that he treated two weeks ago. Assuming that the reminding was caused by
a similarity of important symptoms (and not the patient's hair-color, say), the physician
uses the diagnosis and treatment of the previous patient to determine the disease
and treatment for the patient in front of him.

- A drilling engineer, who have experienced two dramatic blow out situations, is quickly
reminded of one of these situations (or both) when the combination of critical
measurements matches those of a blow out case. In particular, he may get a reminding
to a mistake he made during a previous blow-out, and use this to avoid repeating the
erTor once again.

- A financial consultant working on a difficult credit decision task, uses a reminding to a
previous case, which involved a company in similar trouble as the current one, to
recommend that the loan application should be refused.

According to David B.Leake in [4], the CBR approach is based on two tenets about the
nature of the world. The first tenet is that the world is regular; similar prior problems are
useful starting point for a new problem solving. The second tenet is the types of problems
an agent encounters tend to recur. Consequently, future problems are likely to be similar
to current problem. When the two tenets hold, it is worthwhile to remember and reuse
current reasoning: case based reasoning is effective reasoning strategy.

Since the appearance of CBR, it has been applied in a wide range of domains such as [4]:

1) Diagnosis

2) Help Desk

3) Assessment

4) Decision Support
5) Design

2.1.1 Case-based problem solving.

As the above examples indicate, reasoning by reusing past cases is a powerful and
frequently applied way to solve problems for humans. This claim is also supported by
results from cognitive psychological research. Part of the foundation for the case-based
approach, is its psychological plausibility. Several studies have given empirical evidence
for the dominating role of specific, previously experienced situations (what we call cases)
in human problem solving. Schank [2] developed a theory of learning and reminding
based on retaining of experience in a dynamic, evolving memory structure. Case-based
reasoning and analogy are sometimes used as synonyms. Case-based reasoning can be
considered a form of intra-domain analogy. In CBR terminology, a case usually denotes a
problem situation. A previously experienced situation, which has been captured and
learned in such way that it can be reused in the solving of future problems, is referred to
as a past case, previous case, stored case, or retained case. Correspondingly, a new case
or unsolved case is the description of a new problem to be solved. Case-based reasoning
is - in effect - a cyclic and integrated process of solving a problem, learning from this
experience, solving a new problem, etc. Note that the term problem solving is used here
in a wide sense, coherent with common practice within the area of knowledge-based
systems in general. This means that problem solving is not necessarily the finding of a
concrete solution to an application problem, it may be any problem put forth by the user.
For example, to justify or criticize a solution proposed by the user, to interpret a problem

situation, to generate a set of possible solutions, or generate expectations in observable

data are also problem solving situations.

2.1.2 Learning in Case-based Reasoning.

A very important feature of case-based reasoning is its coupling to learning. The driving
force behind case-based methods has to a large extent come from the machine learning
community, and case-based reasoning is also regarded as a subfield of machine learning.
Thus, the notion of case-based reasoning does not only denote a particular reasoning
method, irrespective of how the cases are acquired, it also denotes a machine learning
paradigm that enables sustained learning by updating the case base after a problem has

been solved. Learning in CBR occurs as a natural by-product of problem solving. When a

9

problem is successfully solved, the experience is retained in order to solve similar
problems in the future. When an attempt to solve a problem fails, the reason for the

failure is identified and remembered in order to avoid the same mistake in the future.

Case-based reasoning favors learning from experience, since it 1s usually easier to learn
by retaining a concrete problem solving experience than to generalize from it. Still,
effective learning in CBR requires a well worked out set of methods in order to extract
relevant knowledge from the experience, integrate a case into an existing knowledge

structure, and index the case for later matching with similar cases.

2.1.3 Combining cases with other knowledge.

By examining theoretical and experimental results from cognitive psychology, it seems
clear that human problem solving and learning in general are processes that involve the
representation and utilization of several types of knowledge, and the combination of
several reasoning methods. If cognitive plausibility is a guiding principle, architecture for
intelligence where the reuse of cases is at the centre, should also incorporate other and

more general types of knowledge in one form or another.

2.2 Case-Based Reasoning Techniques

Central tasks that all case-based reasoning methods have to deal with are to identify the
current problem situation, find a past case similar to the new one, and use that case to
suggest a solution to the current problem, evaluate the proposed solution, and update the
system by learning from this experience. How this is done, what part of the process is
focused, what type of problems drives the methods, ete. varies considerably, however.

Below is an attempt to classify CBR methods into types with roughly similar properties

in this respect.

10

2.2.1 Main types of CBR methods

The CBR paradigm covers a range of different method: for organizing, retrieving,
utilizing and indexing the knowledge retained in past cases. Cases may be kept as
concrete experiences, or a set of similar cases may form a geaeralized case. Cases may be
stored as separate knowledge units or split up into subunits and distributed within the
knowledge structure. Cases may be indexed by a prefixed oropen vocabulary, and within
a flat or hierarchical index structure. The solution from a previous case may be directly
applied to the present problem, or modified according to differences between the two
cases. The matching of cases, adaptation of solutions, and learning from an experience
may be guided and supported by a deep model of general Jomain knowledge, by more
shallow and compiled knowledge, or be based on an apparent, syntactic similarity only.
CBR methods may be purely self-contained and automatic, or they may interact heavily
with the user for support and guidance of its choices. Some CBR method assume a rather
large amount of widely distributed cases in its case base, while others are based on a
more limited set of typical ones. Past cases may be retrieved and evaluated sequentially

or in parallel.

Actually, "case-based reasoning" is just one of a set of terms used to refer to systems of
this kind. This has lead to some confusions, particularly since case-based reasoning is a
term used both as a generic term for several types of more specific approaches, as well as
for one such approach. To some extent, this can also be said for analogy reasoning. An
attempt of a clarification, although not resolving the confusions, of the terms related to

case-based reasoning are given below.
* Exemplar-based reasoning.

The term is derived from a classification of different views to concept definition into "the
classical view", "the probabilistic view", and "the exemplar view". In the exemplar view,
a concept is defined extensionally, as the set of its exemplars. CBR methods that address
the learning of concept definitions (i.e. the problem addressed by most of the research in
machine learning), are sometimes referred to as exemplar-based. Examples are early

papers by Kibler and Aha, and Bareiss and Porter. In this approach, solving a problem is

a classification task, i.e. finding the right class for the unclassified exemplar. The class of
the most similar past case becomes the solution to the classification problem. The set of

classes constitutes the set of possible solutions. Modification of a solution found is

therefore outside the scope of this method.

* Instance-based reasoning.

This is a specialization of exemplar-based reasoning into a highly syntactic CBR-
approach. To compensate for lack of guidance from general background knowledge, a
relatively large number of instances are needed in order to close in on a concept
definition. The representation of the instances are usually simple (e.g. feature vectors),
since a major focus is to study automated learning with no user in the loop. Instance-
based reasoning labels recent work by Kibler and Aha and colleagues, and serves to
distinguish their methods from more knowledge-intensive exemplar-based approaches
(e.g. Protos' methods). Basically, this is a non-generalization approach to the concept

learning problem addressed by classical, inductive machine learning methods.

* Memory-based reasoning.

This approach emphasizes a collection of cases as a /arge memory, and reasoning as a
process of accessing and searching in this memory. Memory organization and access is a
focus of the case-based methods. The utilization of parallel processing techniques is a
characteristic of these methods, and distinguishes this approach from the others. The
access and storage methods may rely on purely syntactic criteria, as in the MBR-Talk

system, or they may attempt to utilize general domain knowledge, as in PARADYME

and the work done in Japan on massive parallel memories.
* Case-based reasoning.

Although case-based reasoning is used as a generic term in this paper, the fypical case-
based reasoning methods have some characteristics that distinguish them from the other
approaches listed here. First, a typical case is usually assumed to have a certain degree of

richness of information contained in it, and a certain complexity with respect to its

12

internal organization. That is, a feature vector holding some values and a corresponding
class is not what we would call a typical case description. What we refer to as typical
case-based methods also has another characteristic property: They are able to modify, or
adapt, a retrieved solution when applied in a different problem solving context.
Paradigmatic case-based methods also utilizes general background knowledge - although
its richness, degree of explicit representation, and role within the CBR processes varies.

Core methods of typical CBR systems borrow a lot from cognitive psychology theories.

* Analogy-based reasoning.

This term is sometimes used, as a synonym to case-based reasoning, to describe the
typical case-based approach just described. However, it is also often used to characterize
methods that solve new problems based on past cases from a different domain, while
typical case-based methods focus on indexing and matching strategies for single-domain
cases. Research on analogy reasoning is therefore a subfield concerned with mechanisms
for identification and utilization of cross-domain analogies. The major focus of study has
been on the reuse of a past case, what is called the mapping problem: Finding a way to

transfer, or map, the solution of an identified analogue (called source or base) to the

present problem (called target).

Throughout the paper we will continue to use the term case-based reasoning in the
generic sense, although our examples, elaborations, and discussions will lean towards
CBR in the more typical sense. The fact that a system is described as an example of some
other approach, does not exclude it from being a typical CBR system as well. To the
degree that more special examples of, e.g. instance-based, memory-based or analogy-

based methods will be discussed, this will be stated explicitly.

13

2.2.2 The CBR Cycle

The processes involved in CBR can be represented by a schematic cycle [2]. CBR

typically described as a cyclical process comprising t/e Jour RESs:

e RETRIEVE the most similar case(s);
« REUSE the case(s) to attempt to solve the problem;
« REVISE the proposed solution if necessary, and

e RETAIN the new solution as a part of a new case.

;. _=- ..:.:
¢ lPrevlous
5} Cases e

Confirmec Suggestec
Solution Solution
Figure 2.1: CBR Cycle

A new problem is matched against cases in the case base and one or more similar cases
are retrieved. A solution suggested by the matching cases is then reused and tested for

success. Unless the retrieved case is a close match the solution will probably have to be

revised producing a new case that can be retained.

14

This cycle currently rarely occurs without human intervention. For example many CBR
tools act primarily as case retrieval and reuse systems. Case revision (i.e., adaptation)
often being undertaken by managers of the case base. However, it should not be viewed
as weakness of CBR that it encourages human collaboration in decision support. The

following sections will outline how each process in the cycle can be handled.

Case Representation

A case is a contextualized piece of knowledge representing an experience. It contains the

past lesson that is the content of the case and the context in which the lesson can be

used . Typically a case comprises:

o the problem that describes the state of the world when the case occurred,
o the solution which states the derived solution to that problem, and/or

o the outcome which describes the state of the world after the case occurred.

Cases which comprise problems and their solutions can be used to derive solutions to
new problems, as in CASEY. Whereas cases comprising problems and outcomes can be
used to evaluate new situations. If, in addition, such cases contain solutions they can be
used to evaluate the outcome of proposed solutions and prevent potential problems as in
MEDIATOR. Cases can be represented in a variety of forms using the full range of Al
representational formalisms including frames, objects, predicates, semantic nets and rules

- the frame/object representation currently being used by the majority of CBR software.

There is a lack of consensus within the CBR community as to exactly what information
should be in a case. However, two pragmatic measures can be taken into account in

deciding what should be represented in cases: the functionality and the ease of acquisition

of the information represented in the case.

Indexing

Case indexing involves assigning indices to cases to facilitate their retrieval. Several

guidelines on indexing have been proposed by CBR researchers. Indices should:

be predictive,
address the purposes the case will be used for,

be abstract enough to allow for widening the future use of the case-base, and

be concrete enough to be recognized in future

Both manual and automated methods have been used to select indices. Choosing indices

manually involves deciding a case’s purpose with respect to the aims of the reasoner and

deciding under what circumstances the case will be useful.

There are an ever increasing number of automated indexing methods including:

Indexing cases by features and dimensions that tend to be predictive across the
entire domain i.e., descriptors of the case which are responsible for solving it or
which influence its outcome. In this method the domain is analyzed and the
dimensions that tend to be important are computed. These are put in a checklist
and all cases are indexed by their values along these dimensions. For example,
MEDIATOR uses this method by indexing on type and function of disputed
objects and relationship of disputants, whilst CHEF indexes on texture and taste.
This kind of technique is called checklist-based indexing.

Difference-based indexing selects indices that differentiate a case from other
cases as in CYRUS. During this process the system discovers which features of a
case differentiate it from other similar cases, choosing as indices those features
that differentiate cases best.

Similarity and explanation-based generalization methods, which produce an
appropriate set of indices for abstract cases created from cases that share some

common set of features, whilst the unshared features are used as indices to the

original cases.

16

« Inductive learning methods, which identify predictive features that are then used
as indices. These techniques are widely used (e.g., in Cognitive system’s ReMind)
and commonly use variants of the ID3 algorithm used for rule induction.

« Explanation-based techniques, which determine relevant features for each case.

This method analyses each case to find which of their features predictive ones are.

Cases are then indexed by those features.

« However, despite the success of many automated methods, Janet Kolodner
believes that people tend to do better at choosing indices than algorithms, and

therefore for practical applications indices should be chosen by hand.

Storage

Case storage is an important aspect in designing efficient CBR systems in that, it should
reflect the conceptual view of what is represented in the case and take into account the
indices that characterize the case. The case-base should be organized into a manageable
structure that supports efficient search and retrieval methods. A balance has to be found
between storing methods that preserve the semantic richness of cases and their indices
and methods that simplify the access and retrieval of relevant cases. These methods are
usually referred to as case memory models. The two most influential case memory

models are the dynamic memory model of Schank and Kolodner, and the caregory-

exemplar model of Porter and Bareiss.

The dynamic memory model

The case memory model in this method is comprised of memory organization packets or
MOPs. MOPs are a form of frame and are the basic unit in dynamic memory. They can

be used to represent knowledge about classes of events using two kinds of MOPs:

o instances representing cases, events or objects, and
o abstractions representing generalized versions of instances or of other

abstractions.

17

The case memory, in a dynamic memory model, is a hierarchical structure of episodic
memory organization packets (E-MOPs), also referred to as generalized episode (GEs)

developed from Shank’s more general MOP theory

The basic idea is to organize specific cases which share similar properties under a more
general structure (i.e., a generalized episode). A GE contains three different types of
objects: norms, cases and indices. Norms are features common to all cases indexed under
a GE. Indices are features which discriminate between a GE’s cases. An index may point

to a more specific generalized episode or to a case, and is composed of an index name

and an index value.

The case-memory is a discrimination network where nodes are either a GE, an index
name, index value or a case. Index name-value pairs point from a GE to another GE or
case. The primary role of a GE is as an indexing structure for storing, matching and
retrieval of cases. During case storage when a feature (i.e., index name and index value)
of a new case matches a feature of an existing case a new GE is created. The two cases
are then discriminated by indexing them under different indices below the new GE
(assuming the cases are not identical). Thus, the memory is dynamic in that similar parts

of two cases are dynamically generalized into a new GE, the cases being indexed under
the GE by their differences.

However, this process can lead to an explosive growth in the number of indices as case
numbers increase. So for practical purposes most CBR systems using this method limit

the number of permissible indices to a limited vocabulary.
The category-exemplar model

This model organizes cases based on the view that the real world should be defined
extensionally with cases being referred to as exemplars. The case memory is a network
structure of categories, semantic relations, cases and index pointers. Each case is
associated with a category. Different case features are assigned different importance in
describing a case's membership to a category. Three types of indices are provided, which

may point to a case or a category:

e feature links that point from problem descriptors (features) to a case or category,
o case links that point from categories to its associated cases, and
o difference links pointing from categories to the neighboring cases that only differ

in a small number of features.

A feature is described by a name-value pair. A category’s exemplars are stored according
to their degree of prototypically to the category. Within this memory organization, the
categories are inter-linked within a semantic network containing the features and
intermediate states referred to by other terms. This network represents a background of
general domain knowledge that enables explanatory support to some CBR tasks. A new
case is stored by searching for a matching case and by establishing the relevant feature

indices. If a case is found with only minor differences to the new case, the new case may

not be retained, or the two cases may be merged.

Retrieval

Given a description of a problem, a retrieval algorithm, using the indices in the case-
memory, should retrieve the most similar cases to the current problem or situation. The

retrieval algorithm relies on the indices and the organization of the memory to direct the

search to potentially useful cases.

The issue of choosing the best matching case has been addressed by research into analogy.
This approach involves using heuristics to constrain and direct the search. Several
algorithms have been implemented to retrieve appropriate cases, for example: serial

search, hierarchical search and simulated parallel search.

Case-based reasoning will be ready for large scale problems only when retrieval
algorithms are efficient at handling thousands of cases. Unlike database searches that
target a specific value in a record, retrieval of cases from the case-base must be equipped
with heuristics that perform partial matches, since in general there is no existing case that

exactly matches the new case.

19

Among well known methods for case retrieval are: nearest neighbor, induction,

knowledge guided induction and template retrieval. These methods can be used alone or

combined into hybrid retrieval strategies.

Nearest neighbor

This approach involves the assessment of similarity between stored cases and the new
input case, based on matching a weighted sum of features. The biggest problem here is to
determine the weights of the features. The limitation of this approach includes problems
in converging on the correct solution and retrieval times. In general the use of this
method leads to the retrieval time increasing linearly with the number of cases. Therefore
this approach is more effective when the case base is relatively small. Several CBR
implementations have used this method to retrieve matching cases, for example:
BROADWAY for selection of car models, the Compaq SMART System for a customer

product support help desk, and ANON for situation assessment in plan failure.

A typical algorithm for calculating nearest neighbor matching is the one used by
Cognitive Systems ReMind software reported in Kolodner where w is the importance
weighting of a feature (or slot), sim is the similarity function, and /7 and /R are the values

for feature 7 in the input and retrieved cases respectively.

20

prodie solung snd
lesming fomexeieoxe

e CHO-Destd rirsenng
PSR Lo
[el rotan
erract
esalugte ropmr e
sohyicn to;it ionche x s e
» 2 S S
LY 7 ~
Ay Ly g
\ “ /If/
t £5'p 5
, M .
' s. H
..i!“
P
nper
Ny ..
%
a9
n sl
rarun
prdiem

Figare 2. Atask-method decampodition of CBR

Figure 2.2 A Task-method Decomposition of CBR
21

Induction

Induction algorithms (e.g. ID3) determine which features do the best job in
discriminating cases, and generate a decision tree type structure to organize the cases in
memory. This approach is useful when a single case feature is required as a solution, and

where that case feature is dependent upon others.
Knowledge guided induction

This method applies knowledge to the induction process by manually identifying case
features that are known or thought to affect the primary case feature. This approach is

frequently used in conjunction with other techniques, because the explanatory knowledge

is not always readily available for large case bases.
Template retrieval

Similar to SQL-like queries, template retrieval returns all cases that fit within certain
parameters. This technique is often used before other techniques, such as nearest

neighbor, to limit the search space to a relevant section of the case-base.

Adaptation

Once a matching case is retrieved a CBR system should adapt the solution stored in the
retrieved case to the needs of the current case. Adaptation looks for prominent differences
between the retrieved case and the current case and then applies formulae or rules that
take those differences into account when suggesting a solution. In general, there are two

kinds of adaptation in CBR:

e Structural adaptation, in which adaptation rules are applied directly to the
solution stored in cases. This kind of adaptation is used in JUDGE and CHEF.

e Derivational adaptation that reuses the algorithms, methods or rules that
generated the original solution to produce a new solution to the current problem.
In this method the planning sequence that constructed that original solution must

be stored in memory along with the solution as in MEDIATOR. Derivational

22

adaptation, sometimes referred to a reinstantiation, can only be used for cases that

are well understood.

An ideal set of adaptation rules must be strong enough to generate complete solutions
from scratch, and an efficient CBR system may need both structural adaptation rules to

adapt poorly understood solutions and derivational mechanisms to adapt solutions of

cases that are well understood.

Several techniques, ranging from simple to complex, have been used in CBR for

adaptation. These include:

e Null adaptation, a direct simple technique that applies whatever solution is
retrieved to the current problem without adapting it. Null adaptation is useful for
problems involving complex reasoning but with a simple solution. For example,
when someone applies for a bank loan, after answering numerous questions the
final answer is very simple: grant the loan, reject the loan, or refer the application.

e Parameter adjustment, a structural adaptation technique that compares specified
parameters of the retrieved and current case to modify the solution in an
appropriate direction. This technique is used in JUDGE, which recommends a
shorter sentence for a criminal where the crime was less violent.

o Abstraction and respecialisation, a general structural adaptation technique that is
used in a basic way to achieve simple adaptations and in a complex way to
generate novel, creative solutions. The PLEXUS planning system uses this
technique.

e Critic-based adaptation, in which a critic looks for combinations of features that
can cause a problem in a solution. Importantly, the critic is aware of repairs for
these problems. PERSUADER is a system which uses all the techniques of
adaptation discussed above.

e Reinstantiation is used to instantiate features of an old solution with new features.
For example, CHEF cans reinstantiate chicken and snow peas in a Chinese recipe

with beef and broccoli thereby creating a new recipe.

23

o Derivational replay is the process of using the method of deriving an old solution
or solution piece to derive a solution in the new situation. For example, BOGART,
which replays stored design, plans to solve problems.

o Model-guided repair, uses a causal model to guide adaptation as in CELIA, which
is used for diagnosis and learning in auto mechanics, and KRITIK used in the
design of physical devices.

o Case-based substitution, uses cases to suggest solution adaptation as in ACBARR

a system for robot navigation

2.3 Problems in CBR
1) How cases should be represented?
2) How indices should be chosen for organizing memory efficiency?
3) How to structure relationship between cases and of different cases?
4) How to handle large case-bases?
5) How to develop general adaptation heuristic of analyzing past cases or the
solutions to fit the new cases.
6) How many criteria should be use to match a case with a past cases and can

the system handle variation of difference numbers of criteria.

2.4 CBR and Other Reasoning Methods
In the traditional perspective of reasoning, both in Artificial Intelligent and cognitive
psychology, is largely a process of remembering abstract operators and composing them
with each other. However, CBR views reasoning in a much different way. It views
reasoning as a process of remembering one or small set of concrete instances or cases and
generate new solution based on the comparison of past cases with the current case. The
CBR views imply 2 things:-
1) CBR emphasizes in the use of concrete instances over abstract operators. It
regards large chunks of composed knowledge as the starting point for reasoning.

The reason is that concrete instances provide operator knowledge that guide

24

problem solving than abstract operator. Smaller and more abstract chunks of
knowledge in memory are however secondary to CBR.

2) CBR emphasizes on the manipulation of cases over composition, decomposition

and recomposition process

MBR CBR

Domain Applicable when a causal | Applicable under the

Applicability | model exists. That is|same conditions as
when a domain is well | MBR but also domain
understood. that is not well
understood. The set of
cases plays the role of
the generalized model
when a domain is not

well understood.

Task Provide means to verify | Provide effective
Applicability | solutions but solutions | solution generation and
generated is unguided evolution that is based
on the best case

available.

These methodologies are rather complementary because MBR validations and

evaluation of solution is not provided in CBR as a full.

2.4.1 Advantages of CBR
Every Artificial Intelligence has its advantages and disadvantages. These approaches

usually provide acceptable solutions but not the optimal solutions. Domains that require

25

optimal answers are probably not appropriate for beuristic methods at all- case based or
other.[5]
1) CBR allows reasoners to provide solution o problem quickly, avoiding the time
needed to verify these problems from scratca.
2) CBR allows reasoners to propose solution that are not completely understood by
the reasoner.
3) CBR provides the means of evaluation solutions when no algorithmic method is
available for a evaluation
4) CBR is useful in warning potential problemthat have occurred in the past
5) Cases in CBR help reasoners to focus on important parts of problems by pointing

out what function of the problem are important.

2.4.2 Disadvantages of CBR

1) CBR might be tempted to use old cases blindly relying previous experience without
validating it in the new problem situation.

2) CBR might allow case bias to the expert domainin problem solving.

3) Often people, especially novices are not reminded of the most appropriate sets of cases
when they are reasoning,

4) CBR does not fully explore its solution space, resulting some optimal solutions might

not be found.

26

CHAPTER 3
METHODOLOGY & SYSTEM ANALYSIS

The ideas and technologies of developing a nutritional system had been discussed in
chapter 2. In this chapter, analysis on Case Based Reasoning will be done and how CBR

can be implemented in Nutritional Advisory System.

3.1 Methodology
The software process that will be used to develop the system is waterfall model with

prototyping. In term of a case base reasoning approach, there are not clear
methodologies in implementing it. So in this application development, waterfall model

with prototyping is chosen. Below is the figure showing the flow of waterfall model with
prototyping [6].

Prototype

.

—————
- R

Figure 3.1: The Project Process Model

Conventional development and prototyping may be combined. The Waterfall Model
with prototyping is chosen because the strengths of each can be achieved on a single
project. This model is originated from the Waterfall model but some modification had
been implemented to improve the flow of the software development process. This model

27

also sometimes combined with iteration so that any improvement and verification that
wanted to change can move back one phase up at a time to make adjustment. Sometimes

this type of model is called Waterfall Model with Iteration and Prototyping. Prototyping
is sub process; prototype is a partially developed product that enables customers and

developers to examine some aspect of the proposed system and decide if it suitable or
appropriate for the finished product. Often the user interface is built and tested as a
prototype, so the user understands what the new system will be like, and the designers
get a better sense of how the users like to interact with the system. Thus, major kinks in
the requirements are addressed and fixed well before the requirements are officially
validated during the system testing; validating ensures that the systems have
implemented all of the requirements in the specification. System testing also verifies the

requirement; verification ensures that each function work correctly.[7]

3.1.1 Prototyping solves the problems of traditional Waterfall Model

The ability of letting developers to quickly create a prototype to verify the needs
particular process has been one of the most powerful features this model has. Therefore,
the revisions are made at the requirements stage rather than the more costly testing stage,
as we understand that a software development process may involve a lot of iterations
process. A good example is when the developers have to use the ‘try and error’ method
to get the best result; and if the result is not feasible or failed to hit the target, they will
have to start all over from the beginning of the process again and again. Thus the
prototyping stage is used to examine some aspects of the proposed system for the first
few stages. The model will organize a systematical way to manage the development
process and beware of using an inappropriate method for the system development. By
validation of these stages, it will effectively reduce the possibility of repeating any
process caused by the using of any inappropriate methods. Therefore, when the software
development process come to the system testing stage, it will automatically validate the
requirements of the system and also verify the system design as planning in the earlier

stages.

28

Advantages

Prototyping Model Waterfall Model
= Reduce risk and It is easier for the explanation
uncertainty in to a customer who is not
development familiar with software

development. This model will
increase the confidence of a
software developer during the

developing process.

Most of the latest models are
built or modified according to

this model.

Disadvantages

Produce the product in
limited time will ignore
the quality the

software. Thus, more time

for

is needed to maintain the

system.
Developers may develop a

system within unsuitable

platforms or programs.

29

Not showing how the basic

coding is designed or created.

Do not have any reference to
refer to when any disaster or
changes is happening to the

product or activities

Failed to face the software as

the problems solving process,

which we notice that the
waterfall model is actually
modified from hardware

development process.

The waterfall model with prototyping approach that will be adapted in the proposed
project encompasses the activities at system analysis, system design, coding, testing and

implementation. Each of the stage is discussed below.

Analysis

The goal to the system analysis is to understand the proposed system and to establish
system requirements. The system analysis phase is concerned with data gathering and
data analysis. Data will be gathered from the sources like written materials, internet, as
well as observation and examination of others existing systems available. The iterative
process of prototyping-revision will be Data Flow Diagram (DFD) is chosen to analyze
the collected data because it enables the information domain and functional domain to be
modeled at the same time. It is to be used to graphically show the flow of the data

through the system. The most important outcome from this phase will be an accurate

system requirement specification.

Design

The system design phase is the phase in which requirements produced in the previous
phase are translated into a representation of the system. This phase will be concerned
with user interface design, database design and system design. The interactive process of
prototyping-revision will be used to revise the design of the user interface. Entity-
relational (E-R) modeling will be involved in the logical design of the Ms. Access
database. In system design, structure chart will be involved in structuring the system’s

modules and flow chart might be used to depict the design of procedural details,

Coding
This stage translates and implements the details design representation of the system into

programming realization, System coding will be done in this phase to develop working
modules and classes. Java is used to develop the whole +system; Microsoft Access will

be used to develop the database system.

30

Testing
Testing will be critical step in assuring the quality of the developed system and will

represent the ultimate review of specification, design, and coding. First, unit testing will

be performed to verify each program module. Next, integration testing is performed. It is

to integrate unit-tested program modules and conduct tests that uncover errors associated

with the interfacing of those modules. Validating test succeeds when the system

functions in the manner that is reasonably expected.

Operation and Maintenance
Maintenance process should be an ongoing activity in real development. Monitoring a

necessary adjustment continue so that the system produces the expected results.

However, system enhancements and maintenance will be carried out in the proposed

project if time constraint allowed.

3.2
3.2.1

Cased Based versus Rule Based Reasoning

Advantages of Rule Based Reasoning

The ability to use directly experimental knowledge acquired from human experts.
It is very easy to transform some knowledge into a set of rules

The modularity of rules cases construction and maintenance. In rule-based
reasoning, the link between the rules is weak. It is easy to change, add or delete a
rule.

Good performances in a limited domain. If the domain is limited and well
defined, it is easy to cover all the possibilities and foresee all the possible
situations. So, that is why a rule-based system can be very accurate and fast in a
limited domain.

Good explanation facilities. As it is possible in a rule-based system to obtain the
information that has led to a conclusion

Rules chaining are easy to trace and debug

31

3.2.2

3.2.3

3.2.4

Disadvantages of Rule Based Reasoning

Often, rules from human expert are heuristic and lack a deeper knowledge of the
domain. If the knowledge of the domain is not extremely precise there is always
a chance that an unexpected case occurs and breaks the rule-based system.
Heuristic rules cannot handle missing information or unexpected data values. If a
value is missing or a value is not expected, the rule-based system is not able to
fire its rules. So, it can’t give any result.

Rules are not able to adapt when there is a new problem

The knowledge is very task dependent. Often a set of rule is adapted to a

particular problem and it is not possible to adapt it to another problem.

Advantages of case-based reasoning

Extensive analysis of domain knowledge is not required. In case-based
reasoning, the most important thing is to know how to compare two cases. This
task in not directly dependant of the domain

It allows shortcuts in reasoning, If an appropriate case is found, a solution can be
found very fast(faster than it would be to generate a solution from scratch)

It enables systems to avoid past errors and exploit past success. In case-based

reasoning, the system keeps a record of each situation that occurred and uses it

for each new problem. That is why it ‘learns’.

Disadvantages of Case-based reasoning

There are no explanatory facilities. In case-based reasoning, there is no way to
explain why a solution is taken because it is just because it is just based on its
similarity with other cases. A solution is not a logical decision as in a rule-based

system.

32

e A large case can suffer problems of efficiency due to the storing and computing
of the past cases. In case-based reasoning, a lot of cases need to be retrieved in
order to compare them. That can be major drawback if there is a large number of
cases in the database

It is difficult to get good criteria for indexing and matching cases. The

vocabulary for the retrieving and similarity matching algorithm must be carefully

hand crafted. This can offset many of the advantages case-based reasoning offers

for knowledge acquisition.

3.2.5 Conclusion
Human experts are not systems of rules, they are libraries of experiences

Riesbeck and Schank (1989)
Ruled-based systems are often brittle because they can’t learn from experience and they
collapse dramatically when faced with a problem beyond their plateau of expertise. On
the other hand, case-based reasoning can deal with such situations by acquiring new
cases. The Nutritional Advisory System needs to adapt itself to the user’s behavior but,
because we don’t know his behavior in advance, it is not possible to create a set of rules
adapted each case. A case-based reasoning system does not need to know as much about
the domain as does a rule-based reasoning one.
Rule-based reasoning has some explanatory facilities that case-based reasoning does not
have. Nevertheless in the Nutritional Advisory System context, this is counter react by
having another method of explanatory through past case. The main characteristic it
should have is its adaptation to the user. And this can only be provided by a case-based

reasoning.
It seems that the advantages of rule-based reasoning are not very useful for an advisory

system like Nutritional Advisory System. What is more, its drawbacks are too important

to be overcome in this situation. Finally, the best solution for the Nutritional Advisory

System is a case-based reasoning,

33

3.3 Analysis of the implementation of CBR in Nutritional
Advisory System

Case Based Reasoning is based on two tenets about the nature of the world; similar
problems have similar solutions and same problems tend to occurs. The problems are
then stored so that it can be used in future of the same situation or similar situation
occur. CBR tasks are divided into two main categories that are interpretive CBR and
problem solving CBR. And for Nutritional Advisory System, it is a problem solving
CBR. This is due to the nature of the system as a solution provider. Problem solving

CBR involves situation assessment, case retrieval, and similarity assessment/evaluation.

To get to the solution for a problem involved two spaces, the problem description space
and the solution space. The problem descriptions space contains the entire problem’s
description. As for Nutritional Advisory System, the user’s personal data, sickness
symptoms and type of sickness are in the problem descriptions space. The solution space
for Nutritional Advisory System will be type of meals, supplement, do and don’t in daily
meals and medicine precaution. When a new case is inputted, the system will compare
the case with the previous case that had been solved. For the matched features, the

solution will be retrieved from the storage. The new solution will be generated and will

be stored in the storage.

Learning is important in Case-Based Reasoning, There are two type of learning process
in Case Based Reasoning: success-driven learning and failure-driven learning. The
Nutritional Advisory System will be using the both system as a hybrid. All the
successful case and solution will be retained in the system database for future use.

Each approach implemented must have it advantages and disadvantages on the system.
Here are some of the advantages and disadvantages found during the analysis phase.
Advantages of CBR in Nutritional Advisory System

Most of the time a diagnostic system will search through the whole database using
breath first search or depth first search to enable the system to get to the solution. This

method is very time consuming and the question and answer session will be very long

34

winded and sometimes irrelevant. But for Case Based Reasoning, derivation of solution
does not really start from scratch and this will actually save some computation time and
memory compare with the expert system ways.

1. Even tough the Nutritional Advisory System cannot completely elicit
information from user, it can still generate a solution to the problem using
past cases as reference

2 Cases is used to focus its reasoning on important parts of the problem by
pointing out what features of a problem are the important ones. In this case,
only the symptoms, type of sickness and personal particular.

Disadvantages of CBR in Nutritional Advisory System
1. Case-Based reasoning in Nutritional Advisory System might be tempted to
use old case blindly, relying on previous experience and generate unsuitable
solution for a problem.
2 Case-Based reasoning might allow cases to bias a specific person too much
in solving a new problem.
3. Some optimal solution might not be found as Case-Based Reasoning in
nutritional advisory does not fully explore its solution space.
The CBR can be dividing in to five types: exemplar-based reasoning, instance-based
reasoning, memory-based reasoning, case-based reasoning and analogy-based reasoning
All CBR methods include identify the current problem situation and find a past case

g
similar to the new one for solution. But still each method has different approach in

solving a problem.

The case-based reasoning method among the five methods will be use in the
development of the Nutritional Advisory System. A typical case in this method is
usually assumed to have a certain degree of richness of information contained in it, and a
certain complexity with the respect to its internal organization. This method is able to
modify, adapt, a retrieved solution when applied in a different problem solving context.
In the Nutritional advisory, a typical case will contain the basic information for a disease
and personal particular; these two components are the basic component for a case.

Beside that symptoms and medicine prescribed by medical practitioner will also be sub-

35

features in the case. If a match is found for a new problem, the solution will be applied

to the new problem, but most of the time it will not be identical then modification will

be done to generate the nearest solution to the problem.

3.3.1 Case Representation and Indexing in Nutritional Advisory System
A case is usually composed of three parts; problem/situation description, solution and

outcome. A well design case will definitely improve the quality and the outcome of the

system.

3.3.1.1 The Contents of Problem Representation

There are three major components of a problem representation:

1. Goals to be achieved in solving a problem
2 Constraints on the goals
3 Features of the problem situation and relationship between its part

The goals of this system are simple; generate the most appropriate nutrition for the user.
For example, the user is down with diabetic and is on the process of recuperating so the

system will generate the appropriate meals, supplements and do & don’t of foods during

the recuperating period.

Constraints are conditions put on goals. For this system, the constraint will be the type of
disease the user have and the personal particular. While generating the solution the
system will take into consideration these two constraints. This is to narrow down the

scope of the diseases and for the personal particular, this is for calculating the age and

the health status of the user.

Features of the problem situation are the catchall that holds any other descriptive
information about the situation relevant to achieving the situation’s goal. In this system,
a user symptoms and diseases must be tested by a medical practitioner first. For example
a user with high blood pressure must be examined by a medical practitioner so that the

user are qualitative proven to have high blood pressure.

36

3.3.1.2 The Content of Solutions

There are two components in the solution of a case; the complete result and the nearest
result. The complete result will contains all the meals and supplements and do and don’t
in food and medicine precaution. The nearest result will be an adaptation from the
previous result and it is acceptable in the sense it is still providing the appropriate result.
Example when a diabetic user is using the system and when the system examines
whether the result of an old solution will hold in the new situation. If the past cases is a
user with diabetic and high blood pressure than the system will try to serve meal that are
low in salt and low in sugar in the meal but in the new situation the user just have
diabetic. So the system will have to justify the situation on whether to serve the identical

meal or try to looks for alternative meals.

3.3.1:3 Methods for Index Selection in Nutritional Advisory System

There are three type of indexing in Case Based Reasoning; checklist-based indexing,
difference-based indexing and explanation-based indexing. The method of indexing the
system use is checklist-based indexing. Checklist-based indexing is a well defined
indexing method that is suitable for Nutritional Advisory System. This is due to the facts
that checklist-based indexing is well defined and fix in its dimension. When using a

checklist, process of indexing will be much easier.

For Nutritional Advisory System, user particular, diseases and medicine prescribed by
medical practitioner. All of these components will be used in indexing a case. With these
well defined checklists, retrieving and matching will be more accurate and definitely

faster.

37

3.3.2 Case Retrieval in Nutritional Advisory System
In the Nutritional Advisory System, retrieving tasks start with a problem description: the
input of the user and the best matching found in the previous cases. Three major tasks

are involved in the process of retrieval. Its subtasks are referred to as identify Features,

Initially match, and Select in that order.

3.3.2.1 Identify Features
As for Nutritional Advisory System, the inputs of the user are the features that used to

identify a problem.

3.3.2.2 Initially Match
The identify features are use as an index to find a match in the Nutritional Advisory

System’s Case Library. Case that matches all input features is good for matching and the

match case will be used as the solution for the new problem.

Usually in Nutritional Advisory System a 100% match is not always found. The system
will try to find a similar match among the cases store in the library. How is this done?
The system will look into a causal model for reference towards the identify features for a
similar disease e.g. asthma; the system will search for it in the causal model and try to
locate the nearest neighbor and something like breathing complication or respiratory

disease will be use as a substitute to the unmatched feature. The third task in case

retrieval will be use to select the best case.

3.3.2.1 Select
If only one case is found in the process of initially match, then there are no need of the

process of select. The found case will be used in solving the problem. But sometimes
similar cases will be found but the system will take in consideration each features in the
case as criteria in selection. These problem should not be a major problem to the system
as the system only stored cases that have a variation in the identify features as a different

case. And if no match was found then only the causal model came in view to replace the

38

unmatched feature and this will let the system continue to match the others features. The
replacement is only for the disease feature and all the other features are not replaced.
After the second matching, some adaptation will be made to the solution so that it will

be in the optimum solution for the user.

3.3.3 Case Reuse in Nutritional Advisory System

The system will retrieve the case when there is a match. The case retrieved may not be a
100% match so the system will make adaptation and modification before it can be use in
the new case. But if the case is a perfect match then there will not be any adaptation and
modification process and the case will not be stored as a new case. But some sort of

remarks will be made to the retrieved case.

3.3.4 Case Retainment in Nutritional Advisory System

Case Retainment in Nutritional Advisory System is to store the newly derived case in
problem solving. The stored case can be used in future problem’s solving. The new case
will be indexed before it is stored in the case library. This process will ease the search
for the case in the future. After the solution is being displayed to the user, the user can
choose to accept/reject or make some surface adaptation to the case. If the solution is
accepted by the user, the case will be retained in the case library. If the case is rejected
totally by the user, there will not be any adaptation. For the surface adaptation, it is
actually a kind of negotiable changes towards the solution provided. Example, when the
system generated a meal for the user with milk as a drink, the user can suggest for
changes to the meal as maybe the user alleged to milk and so the system will try to make

some changes towards the meal like suggesting soya bean milk as a replacement.

Integrated is the final step of updating the knowledge base with new case knowledge in
Nutritional Advisory System. By modifying the indexing of existing cases, the system
learns to become a better similarity assessor. Index strengths or importance for a
particular case or solution are adjusted to improve the reliability of future problem

solving. In this way, the index structure has a role of tuning and adapting the case

memory to its use.

39

3.4 Development Environment
Development environment is very important in providing a stable environment for the

system to be tested and run. Some of the criteria for selecting a development

environment are stability, platform dependence and timeliness.

3.4.1 Operating System
Windows 2000 Professional
Windows 2000 Professional is the Windows operating system for business desktop and

laptop systems. It is used to run software applications, connect to Internet and intranet

sites, and access files, printers, and network resources.

Windows 2000 Professional is built on Windows NT technology and the easy-to-use,
familiar Windows 98 user interface. It gives business users increased flexibility.
Microsoft had take full advantage of the new technologies in Windows 2000, delivering
products that are more manageable and reliable, thereby reducing the cost of computing.
Working in partnership with hundreds of Independent Software Vendors, (ISVs)
Microsoft has developed a directory of Windows 2000 compatible applications. This

directory lists products that have been tested on the Windows 2000 platform and are

ready for deployment [10].

Advantages of Windows 2000 Professional

a) PCs stand up and running

Windows 2000 includes a built-in safeguard called Windows File Protection.
This feature helps prevent critical operating system files from being deleted or

altered by users or applications.

If a system file should be changed or deleted, Windows File Protection can
detect the change, retrieve a correct version of the file from a cache, and restore
it to the system file folder. The end user never knows the repairs have been made

because Windows 2000 just keeps running.

40

b)

Protects Against User Error

Microsoft provides "self healing applications" to repair the mistake made by user
by incorrectly installed or removed an application, or accidentally changed one

of the application files, which could cause a system failure.

Fewer Reboots

Performing routine maintenance on your system requires significantly fewer
reboots, therefore less downtime, with Windows 2000. In addition, with its

support for Plug and Play, Windows 2000 automatically recognizes and adapts to
hardware changes.

Windows 2000 Professional is up to 30 percent faster and, according to Microsoft and Independent Hardware and Software
Testing (NTSL) test, 13 times more reliable than Windows 98. In short, Windows 2000 Professional is the most reliable

Windows ever,

Mean Time To Fallure
: o A
Winciows NI SO
Vierkstation 40 Jes |2
Profossonal o b L - ' 7
R e P P i
0 10 X0 2 40 D &0 0 &0
Waebwooks

Figure 3-3: Windows 2000 mean time to failure greatly exceeds that of
Windows NT Workstation 4.0 and Windows 98.

41

Windows 2000
Professional

Windows NT
Workstation 4.0 Jll*

i
|
.
|
B 8 R
‘! i
|

Windows 98SE f1e) |

el il
- B e T B S B e) S -$t
B 6 101520 26 30 28 40 45 50 85 4C 63 PO TS W M W
Workdays

Figure 3-4: Windows 2000 Professional simply did not fail during the 90

days
it was tested by ZD Labs.
d) Communicate, share information, and use the Internet quickly and easily
With integrated support for Internet-enabled applications, business software
developers incorporate the new ways to create and share information made
possible by the Internet.
e) Improved, Familiar Interface

Windows 2000 Professional improves the familiar Windows interface by, among
other things, simplifying the Start menu and reducing desktop clutter, making it
the easiest Windows to use, ever. Personalized Menus, a new "smart" feature that
adapts the Start menu to the way you work, only displays the applications you
use most often.

42

Y/ Most Secure Windows
Windows 2000 Professional incorporates the security system that is a part of
every Windows NT operating system. It allows users and administrators to select

the appropriate level of protection for their information and applications.

3.4.2 Case Based Reasoning Shell and Programming Language

ART*Enterprise

ART*Enterprise is the latest incarnation of Inference Corporation’s flagship
development product. In the 1980’s ART and then ART-IM were marketed as Al
development tools. Inference have dropped the AI label and now market
ART*Enterprise as "an integrated, object-oriented applications development tool.

Designed for MIS developers". ART*Enterprise offers a variety of representational

paradigms including:

« objects supporting multiple inheritance, encapsulation and polymorphism;
« rules; and

e (Cascs.

This is all packaged with a GUT builder, version control facilities, and the ability to link
to data repositories in most proprietary DBMS formats for developing client-server
applications. Moreover, ART*Enterprise offers cross-platform support for most

operating systems, windowing systems and hardware platforms.

The CBR component in ART*Enterprise is essentially the same as that in CBR-Express
(or rather vice-versa since CBR-Express uses code from ART to provide its CBR
functionality). Thus, ART*Znterprise offers nearest neighbor matching and the
impressive text handling mention above. However, the CBR functionality of
ART*snterprise is more controllable than in CBR-Express. Moreover, the integration

with other knowledge representational paradigms means that this offers an excellent

43

environment to integrate CBR with other techniques and to use MBR techniques for case

adaptation. However, although the package as a whole is very powerful the CBR

functionality of ART*Enterprise is less powerful than a tool such as ReMind.

ART*Enterprise is currently undergoing advanced beta-testing with selected sites and

will be available commercially shortly. At the time of publication the authors did not

have first hand experience of this product. This review is based on information supplied

by contacts within Inference, attendance at product seminars, and contacts with beta-

testers.[9]

3.4.2.1 CBR engine

The CBR engine provided by Art*Enterprise are as follows:

The CBR engines supports 32 bit addressing so that theoretically, it can support
up to approximately 4 billion case

The CBR engine provided by ART*Enterprise provides direct access to C++ and
a plug-in to ART-Script

In Art-Script, case can be define as object in ART*Enterprise or define directly
in CBR engine

Cases in the CBR engine are accessed by name rather than by an assigned key-
number. Thus this make ART*Enterprise only contain the relevant information
The types of matching provided by CBR engine is spell checker preprocessing.
Beside this new kind of matching, this engine also provide two types of matching;

Recursive Object Matching and Taxonomic or Object Proximity Matching

44

CHAPTER 4
SYSTEM DESIGN

This chapter will discuss about the design of the system. Each stage in the process has
been elaborated into a more details sub process. Data Flow Diagram (DFD) will be used
to describe the facets in the proposed system where each of the modules in the system has
been drawn out. The details represented in this chapter will serve as a reference and
important guidance for the system development phase as well as the system

implementation and maintenance phase.

4.1 SYSTEM AND USER REQUIREMENTS

The systems requirements need to be drawn out before develop a system. A requirement
is a feature of the system or a description of the system is capable of doing in order to
fulfill the system purpose [9]. There are two types of requirement, which is as followed:

e Functional requirement

e Non-functional requirement

4.1.1 Functional Requirements
A functional requirement describes an interaction between the system and its
environment. It also describes how the system should behave when given a certain

stimuli. The functional requirements for this system are stated below:

e Results generated by the system must be reliable and consistent- this is
due to the fact that each type of disease will have the same symptoms and
cause some similar malnourish problem. And the medicine the user taking will
also cause the same side-effect as other who took the medicine. The variation
of the result will only be the amount of supplements and minerals that a user
needs and the type of food the user prefer. As a whole, the component of the

nutrition will still be the same,

45

Able to provide alternative nutritional advice- the system must be able to
provide advises even though the system do not have the exact matching. And
the advice produce should not be mediocre to the exact matching case.

Able to provide explanation on the generated result- the system should be
intelligent enough to have explanation accompany the main result. The
explanation should be easy enough for the user to understand.

Have to guide user through the whole eliciting process- this is a type of
help provided by the system to ease the user while the system elicit the user
for information.

Nutritional Advise must follow the guideline provided by the World
Health Organization (WHO) & United States Recommended Dietary
Allowances (US RDA) - this is important because the amount of supplement
and minerals intake per person is limited. Over dose of vitamins and minerals
also will cause health problem. The system follows the US RDA standard
because the standard they provided is reliable and up to date. Whereas the
Malaysian RDA are very similar to the Australian RDA and British RDA. But
most of the RDA is the same. The health guidelines provided by the World

Health Organization should be followed so that no misleading and

controversial advice are dispense.

4.1.2 Non-functional Requirement

A non-functional requirement is a description of other features, characteristics and

constraints that define a satisfactory system [9]. Below are the non-functional

requirements of the system:

Maintainability

Maintainability is the degree to which the system can be cost-effectively made to
perform its functions in a possibly changing operating environment. The system are
easy to modify and test in updating process to meet the new request, correcting
errors, or move to a different computer system. Reusability is also one of the main

points for maintainability. This is due to the fact that function that is reusable can be

46

s
1L

iv.

vi.

replaced easily as all the system just call the same place for the function. Example
for output display template, whenever the system needs to display the result, it will
call the template file to retrieve the template. If any of template need amendment,

the administrator just needs to change the template file.

Reliability
The system operates in a user-acceptable and does not produce dangerous or costly

failure when it is applied in a reasonable manner.

Response Time and Performance
The time needed for matching the case should not be more than 2 minutes but most
of the time is dependent on the amount of cases in the database that needed to be

retrieve and match.

User friendliness

The graphic user interface should be simple and nice. The font size and color be
proportioned to the size of the page. Pop-up list and drop-down list is added to ease
user in filling the form. And additional help button is provided to facilitate the user.
Accurate and robust

Should be able to wind stand any type of errors caused by user or computer. If
multiple case searching is execute by the system; it should not crash as a CBR
engine could process more than 1 billion cases. For this, I assume the optimum
numbers of cases for the system would be around 400 million cases.

Security

Although it is not very important for this system but it still have some kind of
security functions like only the administrator of the system can change the solution

in the case library and the feature weight.

47

4.2 System Overview
Nutritional Advisory System basically divided into seven main modules. Below are the
modules in brief’-

¢ [dentify Module

e Matching Module

e Similarity Module

e Adaptation Module

e Display Module

e Evaluation Module

e Retain Module

Identify Module
This module is basically the input module for the user. This place is where the selected

features are extract from the data inputted by the user. Beside this, when there are
information needed for further confirmation there will be an extra window to let the user
to key in the relevant information. The identified features will be passed to the matching
module. For the personal particular e.g. name, address will be passed to the output
display for printing purpose. A proper indexing will be used to index a new case. The
personal particular given by the user will have to check with the weight and height chart

to calculate the status of the user as Overweight, Underweight and Normal.

Matching Module
The core of this module is to retrieve case from the case library and match the case in

library with the new case. If a match is found then the module will pass the result to the
display module. If no match was found then the new case will passed to the similarity

module for further matching. The threshold for matching is also being declared here.

48

Similarity Module
When no perfect matching is found the system will go to the causal model to retrieve

some similar feature that matches the new case’s features. For example, when there is no
match for asthma, the similarity module will search the causal model for similar category
disease like bronchitis, tuberculosis, pneumonia, and legionnaire. After replacing the
feature, the system will try to match the similar case with the case in the library. All the

similar cases will pass to the adaptation module for further modification and adaptation.

Adaptation Module
Cases found by the similarity module are the solution for other problem but are quite near

to the present case. These cases need some adaptation to the present case before it can be

use in the new situation. After the adaptation is done, the new case will be passed to the

evaluation module.

Evaluation Module
After all the case are adapted to the new problem. A threshold is set to evaluate which

case have the highest value will be fired and the second highest value case will be the

alternative case for the user. The best problem will be send to the user using the display
module.

Display Module
The display module is the interface for the Nutritional Advisory System. It is use to

output the result to the user and a decision point for whether the solution to the problem

should retain in the case library

Retain Module
After the decision to retain the new case the retain module will save the case in the case

library. Before the case is retained inside the case library, indexing will be made for the

ncew casc.

49

Data Flow Diagram for Nutritional Advisory System

Input Problem

User Biodata

User

Solution
Suitable?

Y

S

Yos

b s e o e e
1 2
Health Info
— Identify Module Hoalth Status Health Status Module
Features
Identified
3
Stored Case c Libre
Matching Module e At
Stored Case
Found match
Case?
‘k 4 Feature
v _nfo__
No - Matched
\ Similarity Module |« Foatures | e
Similar Cases
5
Yes
Adaptation Module
_Retain Case
Adapted|
Cases
7 6 8 i]
New A =
Case
Display Module Evaluation Module Retain Module
’ Derived New Solution I

Figure 4.1 Data Flow Diagram of Nutritional Advisory System

50

4.3 Module Design

Below is the design for each module using Data Flow Diagram Level One as diagram for

explanation.

4.3.1 Identify Module
This module will basically receive the problem from the user. Then the system will

extract the features that the system wanted. Some of the features cannot be obtained

directly so the module needs to send the feature to be process in other module before it

can proceed to the next module.

This are the few features needed by the system:-
e Health Status
e Diseases
e Disease particular

e Medicine currently taking
The main features for this system are diseases and health status. Even without the other

features the system still can generate a solution. The system must at least have one of the

two main features.

Identify Module

Health Info | Health
Status

i 14 |Health Status
Diseases
Disease
= Particular .
Selecting Features

Medicine

Prescribe .

User Inputted Problem

Figure 4.2: Data Flow Diagram of Identify Module

51

4.3.2 Matching Module

In this module, the matching process will be executed here. The previous cases will be
retrieved from the case library to match with the new case. Based on the weight and
indexes given by the identify module, the matching module will search an identical match
from the case library. If the case found is more than the threshold set in this module the
case will passed to the display module. If there is no match or all the matches are below

the threshold value than the new case will pass to the similarity module.

Matching Module

3.1

————————

New Case
o - -

Cases Retrieving

Retrieved Cases

3.2

Cases Matching

Cases Match
ST T

3.3

Cases Compare
(case<>threshold)

- Match Found

No Match
. Found

-

-

Figure 4.3: Data Flow diagram of the matching module

52

4.3.3 Similarity Module

[n this model, the system uses a causal model to deepen the search. The causal model

works as a table for the system to search for similar feature. For example, a example for

the causal model

Main Category | Disease A Disease B Disease C Disease D

Respiratory Asthma Bronchitis Tuberculosis Pneumonia

Cardiovascular | Hypertension Strokes Congestive Heart Attack
Heart Failure

Liver Hepatitis Cirrhosis Liver Fatty Liver
Transplant

During the process the similarity module will get the similar diseases from the causal

model to match with the case in the case library for the second time. This matching will

most probably generate a solution for the problem. This is due to the fact that most of the

diseases can be categories into a biological system. After the causal model matching, the

system will have to match again with the case in the case library to retrieve similar cases.

After all the similar cases are retrieved, all the cases will be passed to the adaptation

model for further modification.

53

Similarity Module

4.1
M
___NewCase | e—Map Info Causal Model
Causal Model Matching TR | ol
Cases
4.2
StoredCasel |
au
Similar Case Retrieving 2 Thoce

Similar Cases

Figure 4.4: Data Flow diagram of the similarity module

54

4.3.4 Adaptation Module

The adaptation module will receive all the similar cases for a problem from the similarity
module. These cases are the solutions for other similar problem. To apply the solution to
a new problem, the cases need to be adapted to the new problem situation.

The adaptation module will try to equalize the solution so that the solution provided will
be in the range of optimum result.

Adaptation Module

51

Similar Cases Map Info
—] . = Database
Adaptation

Adapted
Cases

Figure 4.5: Data Flow Diagram of the adaptation module

55

4.3.5 Evaluation Module

The evaluation module is used to rank all the derived case from the adaptation module.
The evaluation module will rate each case. The case with the highest global value will be

rank first and so fourth. The first and second rank case will be send to the display
module.

Evaluation Module

Adapted Cases

Calculating Case Value

Calculated
Cases
7.2
Selected
Case Rating _Cases

Figure 4.6: Data Flow diagram of the evaluation module

56

4.3.6 Display Module

This module is used to display results. This module will get the solution from the
evaluation module. Before the solution is been display the module will get the user
particular from the identify module. This is to let the user feel more secure about the
result, After the solution being display, the module will ask the user whether to accept the

solution, if the user accept the solution then the solution will be send to the retain module.

_| Display Module

User
Particular
(il
. Solution
User Solution Output P :
Display
Solutionl
7.2
Derived new
_ UserStatus __ solion
Solution Status

Figure 4.7: Data Flow diagram of the display module

57

4.3.7 Retain Module
When the user accepted the solution the new solution will be send to this module. This
module will store the newly derived case in the case library. This module will index the

new case for the ease of retrieval from the case library in the future.

Display Module

ond
User
Particular
7y
Solution Output Sonsen
User S SEEEE— —
Display
Solution l
7.2
Derived new
User Status solution
———————————— .—. e —— P
Solution Status

Figure 4.8: Data Flow diagram of the retain module

58

4.4 Case Design

All the cases in the system will be stored in a card format like the catalogue system. Each
case will have their own card with the features wanted pre-stated. This is very different
from database as these cards are stored inside the system whereas no DBMS is needed for
storing cases. But database is needed for my causal model as database is more rigid in
term of data storing.
The information stored inside my case library will be in card format and each card will
represent a case. Each card will have exactly the same features but with different values.
Below will be some of the information that will be stored in the card:

e User’s particular

e Diseases

e Sub Disease

e Medicine Prescribe

e The Solution

59

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 Introduction

In this phase, the system requirements and design model of a system will be
converted into a workable product. System implementation includes coding, testing and

documenting the system as well as training the end users and system administrators.

5.2 Development Environment

Development environment has certain impact on the development of a system.
Using the suitable hardware and software not only help to speed up the system
development but also determine the success of the project. The hardware and software

tools used to develop the entire system are as below:

5.2.1 Hardware Requirements

The hardware specification of the machine for development in this project is:

60

Workstations. - ..

* Running on Windows 98 or Windows 2000 Professional or Windows XP
= Consist of 128 MB RAM
= Alongside a Pentium processor 500 MHZ

= Other standard PC component

Table 5.1; Workstation

5.2.2 Software Tools / CBR Shell Requirements

In the development of Nutritional Advisory System, the software basically
consisted of CBR Shell and tools. The shell included all the technology used to support
the functionality of the system such as matching and adaptation. Whereas the tools

applied are those development applications used to design and develop.

61

5.2.2.1 Description of Development Application / Tools

Below is a listing of application / tools categories used for the Nutritional

Advisory System project development:

1. Application coding tools
= ArtScript 3.0.1
» Create CBR Classes
» Define Type of Matching Score to use
» Create application function
» Create Object proximity class
> To generate result
» Art*Enterprise Studio
» Creates and refines all CBR classes and objects for the system.
» Debug Application
» Monitor If any changes occur during the programming progress
» Command Interpreters

» To run the application.

2. Graphics / Interface Modeling Tools

» Art*Enterprise 3.0.1

» Fase the task of creating and editing the windows interface design.

62

5.3 System Implementation

Implementation comprises of the system design structure to a computer readable system.

The system will be evolved from scratch design to a run able application. There are

several implementations for this system.

5.4 Interface

Basically the system do not have a graphic interface because in ART*Enterprise the
development of software comprises of three distinct levels that is the user interface level,
the database integration level and application level. For my Nutritionist Advisory System

it is in the application level. Due to this, all our output and input are pass though the

Command Interpreter provided by Art*Enterprise.

The Command Interpreter is like a command based interface where the users have to key
in the command as they are keying in a DOS based system. So to overcome the
unfriendliness of the Command Interpreter, the NAS System was designed to

accommodate the need of the user by providing guidelines and help along the process of

using the system.

63

5.5 Nutritional Advisory System Framework Implementation

The system can be divided into a few major steps, first the system needs to be setup by
the expert domain, and then the system can be use by the end user to input their case. The
system will then match the presented case with the stored cases. The top ten cases with be
retrieved according to the matched values. Then the threshold will only allowed the those

cases that fulfill the system requirement to be retrieved by the user. After the user have
the final result, the system will save the result to a temporary case-base for the treatment
period advised by the expert domain. After the treatment period, the expert domain will

make the decision to save or not to save the case. If the expert domain wanted to save the

case, he will retrieve the case from the temporary case-base and move it to the permanent

case base.

Install NAS P Sectup Case
CBR

Input
presented
Case

Match Case

Result

Temporary > Save to
Case Base permanent Case

Figure 5.1

64

5.5.1 Attributes Weighting Implementation

The attribute score for a stored case is computed from a match contribution, mismatch
penalty, or absence penalty specified for the attribute as follows:

e Ifthe attribute values in the stored and presented cases match, the match

contribution 4is added to the score

e [fthe attribute values in the stored and presented cases do not match, the

mismatch penalty is subtracted from the score

o Ifthe attribute exists in the presented case but not in the stored case, the absence

penalty is subtracted from the score

The attributes in the system are defined as default by the system. The weight for each

attributes is as follow:-

Attributes Match Contribution | Mismatch Penalty Absence Penalty
Category 30 30 5
Disease 100 0 40
Sub-disease 30 0 0
Medication 10 0 0
Meal 0 0 0
Precaution 0 0 0
Supplements 0 0 0

Table 5.2

In this system the weight can be changed according to the user requirement if the user
does not change the values then the values as above will be used for matching. The
default weights are tested with familiar cases to get the best weighting values for all the

attributes. The weight can be set as follow:

65

(define-attribute category slot);;... 1y e r e A
(cbr:define-attribute nas-case-base categ,ory cbr word . e,
‘match-contribution 30 :mismatch-penalty 30 abscncc-penalty 5),,

'N’._.

The attribute name can be define as in line 1(shown in the box above) and 2" line is to
define the case base that the attribute is related to and what type of attribute type — for the

example above it is word. The 3" line is to define the weighting,

For the first attribute there is additional function build in it. This attribute have a pyramid
kind of tree built in it to facilitate the searching process like shown in table 5.3. This is
due to the fact that the system searching is based on index heap sorting and the case is
store in an object oriented programming way that each attribute are being linked to the
other attribute in the object and other objects. When the first attribute are matched against
the stored attribute, the stored attribute that matched the presented value will be retrieved
and eventually the whole object instance will also be retrieved together. To retrieve the
second matching will also be easier as the next nearest case are next to the first matching

because the case base records are stored in alphabetical order.

66

Disease

Gastrointestinal

Cardiovascular

Respiratory

Central Nervous
System

Infections

Musculoskeletal
and Joint

\

/

\

Table 5.3: The Hierarchical Pyramid

67

Category Value

Object Relation SR T
One Object to Other

Sub-Discase Value

Medication Value

Meal Value

Supplements Value

Precaution Value

Attribute to Attribute relation

Category Value > Category Value

Discase Value Discase Value

Sub-Discase Value » Sub-Discase Value

Medication Value Medication Value

Meal Value > Meal Value

Supplements Value » Supplements Value

Precaution Value > Precaution Value

Table 5.4 Structure of Case Retrieval Net

68

5.5.2 Matching Implementation

The matching algorithm for this system is score-with-stored-max and is a sub matching
algorithm of K Nearest-neighbor matching and ranking. The system has to define the
matching method before any new case can be presented to the system for matching.

Below is the command to initialize the score-with-stored-max matching algorithm.

(define-instance nas-case-base cbr:case-base

(cbr:index-file “nutri.cbi”)
(cbr:scoring-function cbr:score-with-both-max)

(cbr:match-threshold 40)
(cbr:max-matches 5))

This algorithm can be changed to cbr:score-with-presented-max or cbr:score-with-stored-
max to suite the situation. The matching threshold is set default to 40 /100 and the
maximum numbers of matches are minimizing to 5. The threshold are set to 60% because
the matching scores that dip below 60% are consider irrelevant to the presented case. The
maximum numbers of matches are minimized to 5 was due to the fact that only the best

and second best stored cases will be considered as finalize result so it is illogical to have

redundant cases matched.

69

5.5.3 Adaptation Implementation
The adaptation module is implemented with a causal model. This model is activated
when there is no match being found so the system will look for the similar attributes

values from the causal model. The causal model is place in the nutrifolder folder. This

causal model only implies to the second attribute and third attribute only. The causal

model is like the figure below:-

DS eD A LB B

#LID 1033 0 23

:::Cardiovascular Diseases
Heart attack:Arteriosclerosis:Hypertension:Congestive Heart Failure
Stroke:Congestive Heart Failure

Angina:l:tetiosclezoais

Heart Failure:Stroke
Symptomatic heart failure:Congestive Heart Failure

$::Respitory Diseases
Lung Infection:Bronchitis:Poneumonia:Asthma

Cough: Asthma

12:Gascrointeatinal
Gastric:Peptic Ulcer

Heartburn: Indigestion
Gastro-oesophageal reflux:Peptic Ulcer:Dyspepsia

gastroduodenal erosions:Peptic Ulcer:Dyspepsia

For Help, press F

Figure 5.2

The presented case will not be altered at the end of the matching but during the matching

it may replace the disease attribute with the value in the causal model to find the most
suitable case.

70

5.5.4 Display Module Implementation

The display module is very simple because it is just a command interpreter to show the
output and to input data. It is an interface for I/O stream between the user and the system.
It can only display textual document and for graphic image a pop-up windows is needed.

Below is the command interpreter example:-

v/

Figure 5.2
The Display module will get the relevant object instance from the CBR file stored in the
folder directly. And the system allows user to key in directly into the object instance. The

relevant case can be displayed in the command interpreter.

71

M S Dy ATty e i R b A ARG AR AR

ommand Interproter

Brook | Abot | Ean [EEERRCEAGE

ey ket e A & N N S R ALY
ST S e A LRI A RS U ARIN e PR TR AR S R G SN S -

as® insert the type of Sub-diraselil anyk
Please insert the type of Medication:
“Nitro-glpserin®
Choose Type of Match View

l.;l‘n\rmhlmc‘n
2. IthMScauwﬂl!hm

—

Figure 5.3

72

5.5.5 Function Implementation
In this system, there are a few main functions that are essential for the whole system to
behavior and execute properly. These functions actually powered the whole system as

Artscript do not have a main function to run all the coding and compile them.

5.5.5.1 Match Function

The match function is to compare the presented case with the stored cases. The function

will call out all the properties that have pre-defined by the expert domain.

(define-function match-case ()
(cbr:match-case nas-case-base present-case)
(cbr:matches-found nas-case-base)

(menu))

Lo —

The 1* line in the above function is the function name. In the above case is match-case.
For the second line and third line is for calling the CBR matching code. For the 2™ line,
the function will call the base class that is CBR to match the presented case with the

stored case. The 3™ line list out all the matches found that matches the presented case.

73

5.5.5.2 Result Display Function

In this system, it has two kind of display function. The first one is to show the top cases

that exit the system limit threshold and the second function is to display the system

recommended case.

(define-function print-matches (?case-base)
(for 2m from 1 to (cbr:matches-found ?case-base) do
(printout t “Match “ ?m *: Case “ (cbr:get-match-case ?case-base ?m)
“ matched with a score of
(cbr:get-match-score ?case-base 7m) t)))

The above source code is for the top cases that match the presented case.

(define-function print-recommendation (?case-base)

(printout t “This is the meal and supplements the system recommended” t)
(bind ?case (cbr:get-match-case ?case-base 1))

(bind ?attr (cbr:first-case-attribute ?case-base ?case))

(while ?attr do
(bind ?value (cbr:first-attribute-value ?case-base ?case ?attr))

(while ?value do
(printout t " " Zattr ": " ?value t)
(bind ?value (cbr:next-attribute-value ?case-base ?case ?attr ?value))

)
(bind ?attr (cbr:next-case-attribute ?case-base ?case 7attr))

)

The above source code is for the system recommended case.

74

5.5.5.3 Menu Function

The menu function is to facilitate user to navigate through the whole process of

presenting the case till retrieving the result. Without this function retrieving will be more

to using command and more trivial in presenting and obtaining the result.

(define-function menu ()

(printout t “Choose Type of Match View” t)

(printout t “**********t*************" t)

(printout t “1.) To View the Best Case” t)

(printout t “2.) To show the top 5 cases with the score” t)

(bind 7m (read))
(if (= 7m 1) then (print-recommendation nas-case-base)

else
(if (= 7m 2) then (print-matches nas-case-base)

else
(printout t * Invalid Insertion” t))))

The function above is to facilitate user in selecting which type of result display that the

user wanted.

(define-function start-nas 0
(printout t "Welcome to Nutritional Advisory System " t)
(printout t “
(printout t “Menu ‘\t)
(printout t snensugiy 1)
(printout t “1) Setup” t)
(printout t “2) Present Case “t)
(printout t “3) Exit System” t)
(bind ?m (read))
(if (= ?m 1) then (printout t*
else
(if (= 7m 2) then (input-case))
else (exit)))

t)

¢ §till Under Construction™ t)

The above is the startup menu for the system. The user needs only to key in the selection

number to get through to the user destination.

75

CHAPTER 6
SYSTEM TESTING

6.1 INTRODUCTION

Software testing is one of the main phases in the Waterfall Life Cycle model. In this
phase, the process of testing and debugging are done to detect defects and bugs of a

system. These processes are usually done incrementally with system development.

This phase is also often referred to as Verification and Validation (V & V). Verification
refers to the set of activities that ensure the software correctly implements a specific
function. Validation refers to a different set of activities that ensure the software has been
built is traceable to user requirements. A successful test is one in which no errors are

found.

The objectives to test this system are:

a) To reveal inaccuracy and error by the matching algorithm of the CBR
system.
b) To compare the expected outcome with the actual outcome. Eventually,

debug it to enhance it functionality and capability.

c) To ensure stability and performance at the best.

The testing method used in this system is by [12].

CASE LIBRARY SUBSET TEST METHODOLOGY

This section describes the proposed validation technique for CaBR systems called the
Case Library Subset Test (CLST) technique. The main concept underlying this validation
method is the selection of a subset of cases from the case library and using this subset as
a test set to evaluate the effectiveness of the system's retrieval and adaptation features.

The comparison standards of the test set are considered to be correct because they are

76

part of the case library. But first, the validation criteria has to be selected, as it affects the

final correctness of the systems. This process is described below.

Determination of Validation Criteria
The first task is to develop a validation criteria. This consists of determining two basic

parameters, the Result Acceptability Criteria (RAC), and the System Validity Criteria
(SVC) The RAC serves to determine whether an individual test case has been solved
correctly by the CaBR system. It mandates that the distance between the system solution
to a test case, and the benchmark standard to which it is compared be calculated. If the
solution is provided in numerical terms, theln the Relative Error (RE) can be the percent
difference between the two quantities. If, on the other hand, the output of the CaBR
system is symbolic or Boolean, then optimal, acceptable and unacceptable solutions may
be defined as the benchmark standard may allow. The SVC serves to determine whether,
in light of the executed and evaluated suite of test cases, the system can be considered
valid. The SVC requires that upon completion of all testing, the percent of all acceptable
test cases be greater than its value before the CaBR system can be considered valid. The
RAC and the SVC are typically obtained from either experts or users, and it may be

defined in the requirements specification. Upon selection of the above validation

criteria, the CLST technique begins as described below.

Description of the Case Library Subset Test
These are described in more detail below.

e CaBR Retrieval Test.
Case indexing and case classification issues are intended to improve the

effectiveness and efficiency of case retrieval and to reduce the complexity of
similarity calculations. The correctness of the retrieval process is, therefore, one
of major concerns in CaBR systems. The CaBR Retrieval Test is designed to
evaluate the correctness of the retrieval function. The indexing system used,
although not evaluated independently, is clearly part of the retrieval evaluation

test, and deficiencies in indexing will show up as poor retrieval performance. The

77

comparison function is also likewise validated. Briefly, the Retrieval Test requires
that each historical case in the case library "spawn" a test case identical to itself in
all ways. A pointer to the historical case is maintained for the purpose of
comparison later. This process generates a set of test cases, not only for the
retrieval test, but also for the adaptation test as will be seen later. As part of the
retrieval test, each test case is, in turn, presented to the CaBR system as the
current case. The CaBR system goes through the comparison and retrieval
processes, arriving at an internal list of library cases ranked in decreasing order of
similarity. In order for any test case to be marked as successfully executed, the
historical case which spawned the current test case should be found as the top-
ranked historical case in this internal list, and the similarity distance should be the
minimum allowed in the chosen measuring scheme (or very close to it).
e CaBR Adaptation Test
The Retrieval Test ensures that the comparison and retrieval functions are correctly
carried out. It is the purpose of this test to ensure that adaptations are properly made
from valid retrieved cases. Therefore, the Adaptation Test should only be done after a
successful Retrieval Test. The test case set used here is the same as that of the
retrieval test (e.g., spawned from each historical case in the case library). The
significant difference is that in the Adaptation Test, the historical case corresponding
to the test case being presented to the CaBR system is removed from the case library.
Thus, if a case library has N cases in it, the modified case library will only contain N-
1 cases at all times. The outputs of this test include retrieved cases, the final solution,
and its RE. Although the test case is not longer in the case library, the CaBR system
retrieves the most similar case from the case library and adjusts the closest matching
case(s) with the adaptation strategies to obtain the final solution to this test case.

Since the retrieval process has already been validated, this test isolates and evaluates

the adaptation process of the CaBR system

6.2 Algorithm Testing
The algorithm in the system needs some testing before the real system can be used by the

public. Basically the testing of algorithm is in the searching sector. The searching method

78

testing is based on [10]. The testing of the speed of retrieval of relevant case from the
stored database is basically divided into two main types. The first one is based on the
simple heap sort technique that come with the ART*Enterprise CBR shell. The second
technique is still using heap sort technique retrieval but have some modification to the
behaviors of the retrieving method. Firstly it has an added pyramid tree as mention in
chapter 5. This tree helps the retrieval process by having the first attribute acts as a cue to

what the system to know which stored cases to retrieve.

The testing is done to test the accuracy of the retrieving process and secondly the speed.

6.2.1 Testing the Accuracy of the Retrieval
The testing is based on the most familiar case and sees if the retrieval is correct or not.

This is done based on the result that we already know and try to input the problem into
the system then we try to determine if the answer is correct or not. If the answer is
incorrect then try to find out that the error is from the retrieving algorithm or the

weighting differences (weighting testing will be discussed in details after this).

There retrieving algorithm errors can be amended by correcting the path of the pyramid.

And test the system again to see if the system behave as what we wanted it to be.

6.3 Weighting Test

The weighting test can be divided into two basic parts the testing of local weights and the
testing of global weight. The global weight is generally derived from the sum of the local
weights. Since Nutritional Advisory System is based on K Nearest Neighbor model, the
weight is in numerical from. But for every attribute the weighting is different. To set the
optimum weighting, we need to first define the local weight according to the ordering of
important of each attribute. After assigning value for each attribute respectively, we test
the weighting by presenting to the system a known case. If the system behaves as we
wanted it to be then we can start fine tuning each weight. If the systems don’t behave as

what we wanted it to be then we have to review the weighting from the scratch starting

79

from testing each local attribute’s weight to the sum of global value. As a matter of fact
we can mathematically calculate the weighting for each attribute and then calculate the

sum as the global value before going into real time testing.

6.4 Testing the Causal Model

As we all know the system have a causal model to assist the matching of stored cases
against the causal. To test the validity of the maiching assisted by the causal model we
have to present a case that the system do not have the prototype case stored in the
database. Then we check the result to see if it is correct of not. If the result is in the range
we want then no more amendment should be made to the causal model. If the result is

way out of our expectation then we have to rectify the problem and try to correct it.

6.5 Integration Test
After performing all the testing above, the modules are integrated or combined into a
working system. During the integration, the testing was carried out in order to identified

the fault and failure caused by the integration.

The integration testing includes structure tests and functional tests. Structure tests
emphasis is on exercising all input and output parameters of each module, and exercising
all modules and all calls, including calls to utility routines. For example, the code blocks
for menu bar on each module are integrated into only one procedure that can be called by

all the modules. This will eliminate redundant codes and make the coding simpler.

For functional tests, the goal is to demonstrate that all functions specified for the

system in the requirements and specification documents are operational.

During the integration, all the modules were combined and tested in a testing
environment. The testing environment was consistent for all the modules in terms of
interface and function calling procedures. The program flow of the modules were
reviewed and identified. Finally the program flow for the entire program were reviewed

and tested with some test cases.

80

CHAPTER 7

SYSTEM EVALUATION & CONCLUSION

7.1 Introduction

System evaluation is implemented by more that simply comparing the information
obtained with the information which is expected. It is also related to the user

environment, attitudes, information principles and several other matters which must be

given consideration before the actually efficacy can be concluded.

At all phases of the system approaches, evaluation is a process that occurs

continuously, drawing on a variety of sources and information.

The role of this evaluation phase was to determine:
> The extent to which the expected outcomes have been realized,

» The prescriptive value of the process where extraneous factors were taken

consideration.

81

7.2 Problem Encountered and Solutions

Although this project is completed on time, but within the development of the

system, there are a few problems that had encountered and need to be solved to continue

the progress. The problems and solutions for each problem are:

™~

)

Unfamiliar with the Development Environment
This is the first time for me fo create a system using ART*Enterprise Studio and
using ArtScript 3.1 technology. Never encounter before this kind of programming

that similar with LISP so familiarization and experiment with the ART*Enterprise

Studio is time consuming.

Lack experience In Programming Language

[have not been using ARTScript technology before, so having a lot of glitches
here and there throughout the entire development process. Referencing books is
my main source of knowledge about the language.

Unfamiliar with Case-Based Reasoning

[never use case-based reasoning techniques before in my application
development so it is very new to me. The problems come from what kind of
matching technique to use and how to implement adaptation technique. Is the
technique I chosen suitable with the CBR shell provided by Brightware. I manage
to go around it by reading a lot of journals paper provided by my supervisor and

the Kolodner Case-Based Reasoning’s book.

Limited Knowledge About Nutritional and Diseases

82

The knowledge I have in the medical fields is very limited. [have to do a lot of
reading and research in the medical field. 1 use the University of Malaya’s
medical library as my main resource of information. But from time to time I will
talk to my expert domain, Mr F.E Chong to narrow down the scope of my

searching and advised from him on the development of the system from the view

of a nutritionist.

No Graphic User Interface

This is the biggest headache I faced during the entire development of the system
as the CBR system is not linked to the GUI layer via variables setting like those in
Visual Basic or Java 2. It has a standard GTK commands to link each form to the
application level but not to the internal matching function of the CBR. So the GUI
only can link to the application level of the system but not the CBR level as I
wanted it to be. I haven found the solution to the problem yet due to the lack of

online support as the company- Brightware Inc had been bought over by Firepond

Inc and the new company discontinued this product.

83

7.3 System Strengths

>

v

Fast Retrieval of Cases from the Stored Case Base
The system has a very comprehensive retieving algorithm based on the
pyramid/hierarchical model. The retrieval is faster than normal heap sort retrieval

process. So the system able to manage large stored case base based on the

retrieving ability.

Comprehensive Attributes based on Real World

The matching attributes that I use is based on the real world situation and the
weighting percentage is being tested by the expert domain. The attributes are

taken from the standard medical form of WHO.

Realistic Matching

All the matching is based on the AHP matching algorithm [11]. It is a more
precise match than normal K nearest neighbor match. All the attributes have

different weighted that contribute different percentage to the matching.

Causal Model Implementation

This system have a causal model to refer to if no matches where found to be
matches more than the score of 60. The system will automatically refer to the

causal model for the relational of the disease.

84

7.4 System Limitations

» No Graphic User Interface

The system does not have a proper end-user interface. Cannot bring out the user-

friendliness of the system.

> No temporary storage system

The system do not allowed a temporary storage of case that has not being certified

by the general practitioner or nutritionist. This is because the integration of

subsystem is not allowed in this development software.

85

7.5 Future Enhancement

» Integrate with DBMS

This system allowed to connect to most major database but is not feasible to do so

now due to fact that the number of cases in the case-base storage is still

manageable.

» Graphic User Interface

The ability to have GUI is a major influent of the application to the end-user

market. Some research needs to be done to enable the system to integrate with

web languages

» Web-enable

It can be web-enabled to a certain extent such as presenting cases through the web

or setup the case through the web.

86

7.6 Conclusion

The project is considered a success in term of the implementation and
research of the matching and searching algorithms but for a real application is still lacked

in graphic user interface and help module.

The system was implemented using a rare programming language called
ARTScript. This programming language supports object oriented, rule-base and case base
programming. ArtScript is a multipurpose scripting language that based on LISP. The
major set back of this programming language is that they do not have online support and
any technical online communities to facilitate the usage of this software. Also the model
of development of this programming language is totally different from the norm e.g. the
GUI is totally separated from the repositories and deployment layer and don’t support

visual programming. Due to this, much of the time is spend on experimenting with the

programming tools.

The expert domain plays an important part in development and growing of
the system. The expert domain provides medical and nutrition information that are vital

to the content of the software. They also played their part in testing and feedback of the

system.

The implementation of Case Based Reasoning in nutritional advisory
system can be considered a stepping stone of the nutritional world into the Artificial
Intelligence community. The attractions of CBR to the nutritionist are warmly supported
but much research still has to be done before major rollout of commercial CBR in
nutritional advisory. Some of the research areas pinpointed are (my point of views):

1. Categorization of supplements

[

Reaction of drugs toward the effectiveness of nutrition absorption
3. The optimum type of matching algorithm in Nutritional Advisory.
4

Implementation of dynamic case base reasoning in Nutritional advisory.

87

To end my conclusion Nutritional Advisory System can be implemented in CBR and the

prospect of the system is big.

88

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

E.N Whitney, C.B Cataldo, S.R Rofles, “Understanding Normal and Clinical
Nutrition, West Publishing Co. 1994

A. Aamodt, E. Plaza (1994); AICom - Artificial Intelligence Communications,

10S Press, Vol. 7: 1, pp. 39-59.

Marir, F., & Watson, 1.D. (1994). Case-Based Reasoning: A Categorized
Bibliography. The Knowledge Engineering Review, Vol. 9 No. 4: pp.355-381.

D.B Leake (1996). Case-Based Reasoning: Experiences, Lessons and Future
Directions. Menlo Park: AAA1 Press/MIT Press, 1996

J Kolodner, Case-Based Reasoning, Morgan Kaufmann Publisher, 1993

Pressman, S. Roger, Software Engineering: A Practitioner’s Approach, 4" Edition

McGraw-Hill International Edition, 1997

S.L. Pfleeger, Software Engineering: Theory and Practice, 2™ Edition Prentice

Hall, 2001

http://www.microsoft.com, Date Referred: January 2002,

ART*Enterprise: ARTScript Programming Guide 2: Rule & CBR; February 1999
Edition, Brightware Inc, 1999

[10] Rainer Schmidt, Lothar Gierl. Case-based reasoning for antibiotics therapy advice:

an investigation of retrieval algorithms and prototypes. Artificial Intelligence in

Medicine 23 (2001) Page 171186

89

[11]

[12]

[13]

[14]

[15]

Cheoal-Soo Park, Ingoo Han(2002). A case-based reasoning with the feature
weights derived by analytic hierarchy process for bankruptcy prediction.

Pergamon Elsevier Science.
Avelino J. Gonzalez / Lingli Xu / Uma M. Gupta. Validation Techniques For
Case-Based Reasoning Systems. IWK 1997 VCBR

Margaret T. Shannon, Billie Ann Wilson, Carolynn L. Stang, Drugs and Nursing
Implications, 8" Edition Appleton & Lange Pub

Robert S. Goodhart, Maurice E. Shils, Modern Nutrition in Health and Disease
Dietotherapy, 5™ Edition Lea & Febiger Pub

http://wWww. nhslothian,scot.nhs.uk/lothianformulary/

United Kingdom’s Site for hospital based nutritional concoction advisory.

90

Appendices

Source Code

The following code is to load the case base reasoning class to the application. The second
line is to add the NutriSys as a sub system to the application.

(rep:load “case-based-reasoning”)
(rep:add-subsystem “NutriSys” “case-based-reasoning”)

The variables are as below. The variables are global and the values are default as some-
value. These variables are for the user to insert values into the system.

(define-global ?*inputcategory™ = some-value)
(define-global ?*inputdisease™® = some-value)
(define-global ? *inputsubdisease® = some-value)
(define-global ?*inputmedication™ = some-value)

The follows are the definition of the CBR instances with the name nas-case-base. The
scoring function is pre-define as score-with-both-max. The threshold is being defined as

40 upon 1000 and the maximum match is 5.

(define-instance nas-case-base chr:case-base
(cbr:scoring-function cbr:score-with-both-max)
(cbr:match-threshold 40)

(cbr:max-matches 5))

Below are the individual attribute that contained in an object. Most of the attributes are
from the word type for easy manipulation.

(define-attribute category slot)
(cbr:define-attribute nas-case-base category cbr:word
-match-contribution 30 :mismatch-penalty 30 :absence-penalty 5)

(define-attribute disease slot)
(cbr:define-attribute nas-case-base disease cbr:word
-match-contribution 100 :mismatch-penalty 0 :absence-penalty 40)

(define-attribute subdisease slot)
(chr:define-attribute nas-case-base subdisease cbr:word
smatch-contribution 30 :mismatch-penalty 0 :absence-penalty 0)

(define-attribute medication slot)

91

(cbr:define-attribute nas-case-base medication cbr:word
:match-contribution 10 :mismatch-penalty 0 :absence-penalty 5)

(define-attribute meal slot)
(cbr:define-attribute nas-case-base meal cbr:word
:match-contribution 0 :mismatch-penalty 0 :absence-penalty 0)

(define-attribute supplement slot)
(chbr:define-attribute nas-case-base supplement cbr:word
:match-contribution 0 :mismatch-penalty 0 :absence-penalty 0)

(define-attribute precaution slot)
(cbr:define-attribute nas-case-base precaution cbr:word
:match-contribution 0 :mismatch-penalty 0 :absence-penalty ()

The attributes above are put together to form an object or class. The class/object is a
children node of be:core.

(define-class nutricase bc:core
(category)

(disease)

(subdisease)

(medication)

(meal)

(supplement)

(precaution))

The below coding is to add new cases to the case base system.

(for ?c in-instances-of nutricase do
(cbr:add-case nas-case-base ?c :ignore-undefined-attributes? 1))

The below coding is use to let user to present case to the system. The global variables are
use here to get data from the user for matching.

(define-instance present-case nutricase
(category ?*inputcategory™)

(disease ?*inputdisease®)

(subdisease ?*inputsubdisease*)
(medication ?*inputmedication®))

92

The function below is to assist user to input the presented case. And the set-attribute-
values is to set the user’s input values to the attribute defined in the presented case.

(define-function input-case()
(printout t “Please insert the type of Disease Category:" 1)
(bind ?*inputcategory™® (read))
(printout t “Please insert the type of Disease: " 1)
(bind ?*inputdisease*® (read))
(printout t “Please insert the type of Sub-disease(if any):" 1)
(bind ?*inputsubdisease* (read))
(printout t “ Please insert the type of Medication: "1)
(bind ?*inputmedication* (read))
(set-attribute-values present-case
category ?*inputcategory*
disease ?*inputdisease*
subdisease ?*inputsubdisease*
medication ?*inputmedication™)
(match-case)

)

The case below is to test the system basic function.

(define-instance presented-case-2 nulricase

(category “Renal’’)

(disease “Acute Renal Failure”)
(subdisease “no”)

(medication “magnesium hydroxide”))

Below functions are used to assist user in terms of the navigation of the application.

(define-function start-nas ()
(printout t "Welcome to Nutritional Advisory System " 1)
(printout t
(printout t “Menu * 1)
(printout t “¥***¥¥*E")
(printout t *1) Setup™ 1)
(printout t “2) Present Case “1)
(printout t “3) Exit System" 1)
(bind ?m (read))
(if (~ ?m 1) then (printout t " Still { Inder Construction” t)
else
(if (~ ?m 2) then (input-case)
else (exir))))

“)

Match Case Function

(define-function match-case ()
(cbr:match-case nas-case-base present-case)
(chr:matches-found nas-case-base)

(menuy))

(define-function print-matches (?case-base)
(for ?m from I to (cbr:matches-found ?case-base) do
(printout t “Match ** ?m *: Case “ (cbr:get-match-case ?case-base ?m)
“ matched with a score of *
(cbr:get-match-score ?case-base ?m) t)
(query-recommendation))

(print-matches nas-case-base)

Display the best case
(define-function print-recommendation (?case-base)
(printout t “This is the meal and supplements the system recommended” 1)

(bind ?case (cbr:get-match-case ?case-base 1))
(bind ?attr (cbr:first-case-attribute ?case-base ?case))

(while ?attr do
(bind ?value (chr:first-attribute-value ?case-base ?case ?attr))

(while ?value do
(printout t " " Zattr ": " ?value t)
hind ?value (cbr:next-attribute-value ?case-base ?case ?attr ?value
e))

)

(bind ?attr (cbr:next-case-attribute ?case-base ?case ?attr))

(query-matches))

(define-function print-recommendation2 (?case-base)

(printout t “This is the meal and supplements the system recommended” t)
(bind ?case (cbr:get-maich-case ?case-base 2))

(bind ?attr (chr:first-case-attribute ?case-base ?case))

(while ?attr do
(bind ?value (cbr:first-attribute-value ?case-base ?case ?allr))

(while ?value do
(printout t " " 2attr ": " ?value 1)
(bind ?value (cbr:next-attribute-value ?case-base ?case ?attr ?value))

)

(bind ?attr (chr:next-case-attribute ?case-base ?case ?atlr))

)

(query-recommendation?))

94

(define-function menu ()

(printout t “Choose Type of Match View” 1)

([)rin’()u’ { “***************#********” t)

(printout t “1.) To View the Best Case" 1)

(printout t “2.) To show the lop cases with the score” t)
(printout t “3.) To View the Second System Recommendation” t)
(bind ?m (read))

(if (= 7m 1) then (print-recommendation nas-case-base)
else

(if (= 7m 2) then (print-matches nas-case-base)
else

(print-recommendation2 nas-case-base))))

(define-function menul ()

(printout t “Choose Type of Match View" t)

(prin’()u’ ! 635 b ok dde 2k ok ok ok o ol b 3k e ke ok ok ok ok o ok o ok ok ok 7 ’)

(printout t “1.) To View the Best Case” t)

(printout t “2.) To show the top cases with the score” 1)
(printout t “3.) To View the Second System Recommendation” t)
(printout t “4.) Return to Main Menu" 1)

(bind ?m (read))

(if (= ?m 1) then (print-recommendation nas-case-base)
else

(if (= ?7m 2) then (print-matches nas-case-base)

else

(if(= ?m 3) then (print-recommendation2 nas-case-base)
else

(start-nas)))))

(define-function Query-recommendation ()

(pr,‘m()u’ t e s s s === == === ”[)
(printout t “1.) Display the System Recommendation Case" t)

(printout t “2.) Display the System Second Recommendation” t)
(printout t “3.) Return to Main Menu" 1)

(bind ?m (read))

(if (= ?m 1) then (print-recommendation nas-case-base)

else

(if(= ?m 2) then (print-recommendation2 nas-case-base)

else

(start-nas))))

95

(define /unctmn Query—matches ()

(printout (* mm=m==============="))
(printout t “1.) Display the top matches wzth the score’ l)

(printout t “2.) Display the Second System Recommendation™ t)
(printout t “3.) Return to Main Menu" t)

(bind ?m (read))

(if (= ?m 1) then (print-matches nas-case-base)

else

(if (= ?m 2) then (print-recommendation2 nas-case-base)

else

(start-nas))))

(define- functzon Query-recommendatwnZ ()

(printout t “=============== == - = =="1)
(printout t “1.) Display the System Reu)mmendall()n Case t)

(printout t “2.) Display top matches with the score” t)

(printout t ““3) Return to Main Menu" t)

(bind ?m (read))

(if (= ?m 1) then (print-recommendation nas-case-base)

else

(if (= ?m 2) then (print-matches nas-case-base)

else

(start-nas))))

96

The below are the source code for the hierarchical model.

(define-class main-disease be:core)

(define-class cardiovascular main-disease
(cbr:common-parent cardiovascular))

(define-class respiratory main-disease
(cbr:common-parent respiratory))

(define-class gastrointestinal main-disease
(cbr:common-parent gastrointestinal))

(define-class renal main-disease
(cbr:common-parent renal))

(define-class infection main-disease
(cbr:common-parent infection))

(define-class gynaecology main-disease
(cbr:common-parent gynaecology))

(define-class malignant main-disease
(cbr:common-parent malignant))

(define-class ENT main-disease
(cbr:common-parent ENT))

(define-class endocrine main-disease
(cbr:common-parent endocrine))

97

The below source code are some of the part that being modified to suit my application.

(define-instance cbr:word cbr:word-type
(cbr:name "word"))

(define-instance cbr:direct-word cbr:word-type
(chr:name "direct word")
(chr:generated-lexicon nil))

(define-class cbr:number-type cbr:attribute-type
(cbr:name "range")
(cbr:value-type :float)
(cbr:storage-type :integer)
(cbr:raw-attribute-value-saved nil))

(define-instance cbr:range cbr:number-type)

(define-class cbr:unscored-type cbr:attribute-type
(cbr:raw-attribute-value-saved t))

(define-class cbr:unscored-float cbr:unscored-type
(cbr:name "unscored float")
(cbr:value-type :float)
(cbr:storage-type :integer))

(define-class cbr:unscored-string cbr:unscored-type
(cbr:name "unscored _string")
(cbr:value-type :string)
(cbr:storage-type :string))

(define-class cbr:unscored-symbol chr:unscored-type
(cbr:name "unscored_symbol”)
(cbr:value-type :string)
(cbr:storage-type :string))

(define-class cbr:user-attribute-type chr:attribute-type

(cbr:name)

(cbr:value-type :string) ; Set to determine type.
(cbr:storage-type :string) + Set according to input. Must match.
(cbr:raw-attribute-value-saved t)) : Currently must be t! -da.

(define-method initialize-instance ((cbr:user-attribute-type ?self) (Ppairs :keylist))
(call-next-method ?self S?pairs)
(if (not (get-attribute-value ?self cbr:name)) then

(set-attribute-value ?self chr:name
(symbol-to-string (gentemp (symbol-to-siring ?self)))))

(chr::define-attribute-type ?self)

98

(add-attribute-value cbr:case-base cbr:attribute-types ?self)

7self)

;v Default method will not work for floats!
(define-method chbr:condition-feature ((cbr:user-attribute-type ?type) ?case-
base ?case ?attribute ?value)

?value)

(define-method cbr:score-value ((cbr:user-attribute-type ?type) ?case-

base ?case ?attribute
?value ?presented-value ?match ?mismaitch)

(if (eq ?value ?presented-value)
then ?match
else ?mismatch))

(define-class cbr:case-base bc:core
(cbr:index nil)
(cbr:index-file)
(cbr:scoring-function cbr:score-with-presented-max)
(cbr:naming-attribute :object-name)
(cbr::invert-name nil)
(cbr:match-threshold 0)

(cbr:max-matches 10)
(cbr:attribute-types cbr:string cbr:word cbr:range)

(cbr:raw-attribute-values-saved 1)
(cbr:ignored-attributes (is-a instance-0f)))

(define-method initialize-instance ((cbr:case-base ?self) (?pairs :keylist))

(call-next-method ?self 8?pairs)
::: Ideally this should cause make-instance to fail.
(cbr::open-index ?self)

?self)

(define-method destroy-instance ((cbr:case-base ?self)
(cbr::close-index ?self)
(call-next-method ?self))

(define-method cbr:is-dirty ((cbr:case-base ?self))
(cbr::is-dirty (get-attribute-value ?self cbr:index)))

(define-method cbr:save ((cbr:case-base ?case-base) (?file-name :key))

(if ?file-name then
(modify-schema-value ?case-base cbr:index-file ?file-name
(and (bind ?index (get-schema-value ?case-base cbr:index))
(he:is-reset-state-value ?case-base cbr:index 2index))))

(cbr::save-index (get-attribute-value ?case-base chr:index)

99

(get-attribute-value ?case-base cbr:index-file)))

(define-method cbr:set-raw-attribute-values-saved ((cbr:case-base ?case-base) ?value)
(set-attribute-value ?case-base cbr:raw-attribute-values-saved ?value)
(chr::set-raw-attribute-values-saved (get-atiribute-value ?case-base cbr:index) ?value))

(define-method cbr:set-final-score-smoothed ((cbr:case-base ?case-base) ?value)
(chr::set-final-score-smoothed (get-attribute-value ?case-base cbr:index) ?value))

(define-method cbr:get-final-score-smoothed ((cbr:case-base ?case-base))
(chr::get-final-score-smoothed (get-attribute-value ?case-base cbr:index)))

(define-method cbr:define-attribute ((cbr:case-base ?case-base)
?name ?type
(?match-contribution
:key (get-attribute-value ?type cbr:default-match-contribution))
(?mismatch-penalty
:key (get-attribute-value ?type cbr:default-mismatch-penalty))
(?absence-penalty
:key (get-attribute-value ?type cbr:default-absence-penalty))
(?lowest-attribute-value :key 0)
(?highest-attribute-value :key 0)
(?match-interval :key 0))
(if (eq ?match-contribution :perfect) then
(bind ?match-contribution ?cbr: *perfect™))
(if (eq ?mismatch-penalty :perfect) then
(bind ?mismatch-penalty ?cbr: *perfect*))
(cbr::define-attribute (get-attribute-value ?case-base chr:index)
?name (get-attribute-value ?type cbr:name)
?match-contribution ?mismatch-penalty
?absence-penalty ?lowest-attribute-value ?highest-attribute-value

?match-interval))

(define-method cbr:get-attribute-type ((cbr:case-base ?case-base) ?name)
(chr::get-attribute-type (get-attribute-value ?case-base cbr:index) ?name))

(define-method chr:get-attribute-match-contribution ((cbr:case-base ?case-base) ?name)
(cbr::get-attribute-match-contribution (get-attribute-value ?case-base

chr:index) ?name))

(define-method chr:get-attribute-mismatch-penalty ((cbr:case-base ?case-base) ?name)
(cbr::get-attribute-mismatch-penally (get-attribute-value ?case-base cbr:index) ?name))

(define-method cbr:get-attribute-absence-penalty ((chr:case-base ?case-base) ?name)
(chr::get-attribute-absence-penally (get-attribute-value ?case-base cbr:index) ?name))

(define-method chr:get-attribute-lowest-value ((cbr:case-base ?case-base) ?name)
(chr::get-attribute-lowest-value (get-attribute-value ?case-base cbr:index) ?name))

(define-method cbr:get-attribute-highest-value ((chr:case-base ?case-base) ?name)

100

(cbr::get-attribute-highest-value (get-attribute-value ?case-base cbr:index) ?name))
(define-method cbr:get-attribute-match-interval ((cbr:case-base ?case-base) ?name)
(cbr::get-attribute-match-interval (get-attribute-value ?case-base cbr:index) ?name))

(define-method cbr:undefine-attribute ((cbr:case-base ?case-base) ?name)
(cbr: :undefine-attribute (get-attribute-value ?case-base cbr:index) ?name))

.+ I am not sure how to this correctly.
;:v I need to be able to invert the case-id for all of the accessors.
::; This is linear with the number of case objects, assuming they all exist
;:; in memory, which is not required.
(define-method cbr:get-case-id ((cbr:case-base ?case-base) ?case)
(bind ?name-attribute (get-attribute-value ?case-base cbr:naming-atiribute))
(if (eq ?name-attribute :object-name) then
?case else
(get-attribute-value ?case ?name-attribute)))

(define-method cbr:define-case ((cbr:case-base ?case-base) ?case-name)
(cbr::define-case (get-attribute-value ?case-base cbr:index) ?case-name))

(define-method cbr:undefine-case ((cbr:case-base ?case-base) ?case-name)
(cbr::undefine-case (get-attribute-value ?case-base cbr:index) ?case-name))

(define-method cbr:add-attribute-value ((cbr:case-base ?case-base)
2case ?attribute ?value
(?match-contribution :key ?cbr: *default-weight*)
(?mismatch-penalty :key ?cbr:*default-weight*))
(if (eq ?match-contribution :perfect) then
(bind ?match-contribution ?cbr: *perfect*))
(if (eq ?mismatch-penalty :perfect) then
(bind ?mismatch-penalty ?cbr:*perfect*))
(cbr::add-attribute-value (get-attribute-value ?case-base cbr:index) ?case
?attribute ?value ?match-contribution ?mismatch-penalty))

(define-method cbr:remove-attribute-value ((cbr:case-base ?case-base)
?case ?attribute ?value)
(chr::remove-attribute-value (get-attribute-value ?case-base cbr:index) ?case
2attribute ?value))

(define-method cbr:remove-attribute-values ((chr:case-base ?case-base)
2case ?attribute)
(chr::remove-attribute-values (get-attribute-value ?case-base cbr:index)
2case ?attribute))

(define-method cbr:modify-attribute-value ((cbr:case-base ?case-base)
2case ?attribute ?value

101

(?match-contribution :key ?cbr:*default-weight*)
(?mismatch-penalty :key ?cbr:*default-weight*))
(if (eq ?match-contribution :perfect) then
(bind ?match-contribution ?cbr:*perfect®))
(if (eq ?mismatch-penalty :perfect) then
(bind ?mismatch-penalty ?cbr:*perfect®))
(chr::modify-attribute-value (get-attribute-value ?case-base cbr:index) ?case
2atiribute ?value ?match-contribution ?mismatch-penalty))

(define-method cbr:add-case ((cbr:case-base ?case-base) ?object
(?ignore-undefined-attributes? :key nil))
(bind ?case (cbr:get-case-id ?case-base ?0bject))
(cbr:define-case ?case-base ?case)
(lf?ignore-undeﬁned—attributes? then
(for ?attr in-attributes-of ?object do
(if (cbr:is-attribute ?case-base ?attr) then
(for ?value in-attribute-values-of ?object ?attr do
(cbr:add-attribute-value ?case-base ?case ?attr ?value))))
else
(bind ?ignored (get-attribute-value ?case-base cbr:ignored-attributes))
(for ?attr in-attributes-of ?object do
(if (not (member$?attr ?ignored)) then
(for ?value in-attribute-values-of ?object ?altr do
(cbr:add-attribute-value ?case-base ?case 2attr ?value))))))

(define-method chr:add-presented-attribute-value ((cbr:case-base ?case-base)
?attribute ?value
(?match-contribution :key ?cbr: *default-weight*)
(?mismatch-penalty :key ?cbr:*default-weight*))
(cbr.':add-presented—attribute-value (get-attribute-value ?case-base cbr:index)
2attribute ?value ?match-contribution ?mismatch-penalty))

(define-method chr:remove-presented-attribute-value ({cbr:case-base ?case-base)
2attribute ?value)
(cbr:.'remove-presented—attribute—value (get-attribute-value ?case-base cbr:index)
2attribute ?value))
(define-method chr:remove-presented-attribute-values ((cbr:case-base ?case-base)
2attribute)
-presented-attribute-values (get-attribute-value ?case-base cbr:index)

(cbr::remove
2attribute))
thod cbr:modify-presented-attribute-value ((cbr:case-base ?case-base)
Zattribute ?value
(?match-contribution :key ?cbr: *default-weight*)
(?mismatch-penalty :key ?cbr: *default-weight*))

(define-me

102

(chr::modify-presented-attribute-value (get-attribute-value ?case-base cbr:index)
?attribute ?value ?match-contribution ?mismatch-penalty))

(define-method cbr:clear-presented-attribute-values ((cbr:case-base ?case-base))
(cbr::clear-presented-attribute-values (get-attribute-value ?case-base cbr:index)))

(define-method cbr:expand-quanta ((cbr:case-base ?case-base) ?value ?expanded)
(chr::expand-quanta (get-attribute-value ?case-base cbr:index) ?value ?expanded))

(define-method cbr:match ({cbr:case-base ?case-base)
(?threshold :key (get-attribute-value ?case-base cbr:match-threshold))

(?max-matches :key (get-attribute-value ?case-base cbr:max-matches)))
(cbr::match (get-attribute-value ?case-base cbr:index)
?threshold ?max-matches))

(define-method cbr:match-case ((cbr:case-base ?case-base) ?case

(?keys :keylist)
(?ignore-undefined-attributes? :key nil))

(cbr:clear-presented-attribute-values ?case-base)

(if 2ignore-undefined-attributes? then

(for ?attr in-attributes-of ?case do
(if (cbr:is-attribute ?case-base ?attr) then
(for ?value in-attribute-values-of ?case ?attr do
(cbr:add-presented—attribule-value ?case-base ?attr ?value))))

else
(bind ?ignored-attributes (get-attribute-value ?case-base cbr:ignored-attributes))

(for 2attr in-attributes-of ?case do
(if (not (member$?attr ?ignored-attributes)) then
(for ?value in-attribute-values-of ?case ?attr do
(cbr:add-presented-altribute-value ?case-base ?attr ?value)))))

(chr:match ?case-base $?keys))

103

Y | it VIR o r%“ﬂla’

e
LInpide: Ateth
, SR PO v
S

s i sl o deurn Rogsids o,

Journal

hihg .mmmq*ﬂinlr“ w h;

% a ol B s,
L"ME 4 N " s R ' 3
P ot '

70 ~ ‘rbl\-.mh‘ﬁlllr
) P hm
A AT i

oo .f;nﬂh‘ﬂ :

A PR ﬁ " '- __,‘Il‘l__l I R y "T-'-‘v. Il ik :l‘l Int. tyee dinhoiss
% ’ ""“M‘H , __“ 0 2 ' jm‘ 3 jw il HrTen
bl s o 0t w g '. - '__ = 4 ‘ﬂi Woe I'Uﬂﬂl'lF R ey
(5" it i i, AR L “-‘. iﬁwt.‘lllﬂ iy nlt
| “‘"?’ q--ﬂ L B o
i i), wiiialiss :‘l:‘:r. 'f’l" . ﬁ\ef it ittt ‘- ¥ Dl W hun vmflltrl.,. s
rrucediog (1), 00 5t : A= Ut tadnl el st
o iyt llw* [-ﬂ!-. Jﬂ:h-iin Whmg. (e
g e of the l_qh-l-ﬂﬂm ﬂl_,l : b, Bk
| i’ Puvin. T ~‘m:-wfvﬂ’1' R o .Tﬂwwlh’ HABA
pvewy ¢l SR tl? M. L ‘.ﬂ_ .\.- ri"‘lu-. I

poitel by AR

Alier the pabigation N Y B . I A ' N W Moo 0. .
abve - kil ks begoigs B et Botnoe
: ¥ nec-
fias b o 51 JE TN ,ml-ll. PUAEY 3 Hght
y b Dpadan MMM g = i
LAV R To vy MM#‘.

mm“ ru-'m!

i . .
l.u‘l.a ROt) m

L5 el e e A 1|W|.ﬂ

| || m-: 4:_;1mmlqﬁ

il s
WL 16
L ES

v‘ P "'4
F‘LSEVI ‘R Computer Mcthods and Programs in Biomedicine 62 (2000) 205-218
www.chevier.com/Jocate/cmpb

Diabetic patients management exploiting case-based
~ reasoning techniques

v

Stefania Montani ®, Riccardo Bellazzi ** | Luigi Portinale ",
Giuseppe d’Annunzio ¢, Stefano Fiocchi ¢, Mario Stefanelli ®
* Dipartimento di Informatica ¢ Sistemistica, Universita di Pavia, via Fervata 1, 1-27100 Pavia, Taly

® Dipartimento di Informatica, Universita di Torino, corso Svizzera 185, I-10149 Turino, Italy
S ILR.C.C.S. Policlinico S. Matteo, P.le. Golgi 2, 1-27100 Pavia, Italy

Received 8 December 1998: receivad in revised form 5 May 1999 accepted 12 May 1999

Abstract

[n (his paper we propose a case-based decision support tool. designed o help physicians in Ist type diabeles
therapy revision through the intelligent retrieval of data related (0 past situations (or ‘cases”) similar to (he current
one. A case is defined as a set of variable values (or features) collected during a visit. We defined taxonomy ol
prototypical patients’ conditions. or classes. to which each case should belong. For each input case. the system allows
the physician (o find similar past cases. both from the same patient and from dilferent ones. We have implemented
a Lwo-steps procedure: (1) it finds the classes o which the input case could belong: (2) it lists the most similar cases
from these classes. through a nearest neighbor (echnigue. and provides some statistics uselul for decision taking. The
performance of the system has been (ested on a data-base of 147 real cases. collected at the Policlinico S. Maltleo
Hospital of Pavia. The tool is fully integrated in the web-based architecture of the U funded Telematic management
of Insulin Dependent Diabetes Mellitus (T-IDDM) project. © 2000 Clsevier Science Ireland Lid. All rights reserved.

Keywords: Case-bascd rensoning; Dinbetes munagement; Decision supporty Telemedicine

1. Introduction level (BGL) measurements, and the reporting of
insulin injection amounts and other information

After the publication of the DCCT study ([1]), on p;}ticuls’ diet and life-style. Moreover, the
intensive insulin therapy (IIT) has become quantity and quality of the interactions between
mandatory for patients suffering from 1st type the patients and the health care providers is nec-

diabetes wellitus (DM-1). [LT, consisting in three essarily ‘incrcascd. in order to nminlguin a (nghl

' metabolic control and, at the same time, (0 Im-
prove the patient’s self-consciousness and educa-
tion on the disease. A natural goal of infor-
mation technologies (IT) is, hence, to provide a
» Corresponding suthor, Tel: + 39-0182.508511, valuable support to this disease management
Eomail addresy: necnimoanipy it (Ro Bellizs) process [2].

to four nsulin injections per day or the wse of
msulin pumps, 18 a data and knowledge mtensive
process, since it requires frequent blood glucose

0169 2607 008 see Tront mwtter € 2000 Fhwes or Scence Treland L, AN nghis resenved
PIESOLTOY dYa07(00)y00068 7

104

206

Nowadays, the data collection is highly facili-
tated by the capability of commercial reflectome-
ters of data storage and downloading, as well as
by the increasing use of telemedicine sys‘tcms [3).
It can also help diabetologists by providing them
with a collection of tools for improving the qual-
ity of patient’s care [4], from data-bases to simula-
tion and education packages, and fmn_lly to
decision-support systems. Anyway, managing all
the data piling in the physicians’ eIcc?romc de‘sk,
~and extracting from them reliable |}1fon11at1011
about the patients’ status, often remains a prob-
lem difficult to be satisfactorily solved.

For these reasons, it is of mterest to'study
methods that enable physicians in pe.rfonnmg an
intelligent consultation of the avqn!nblc dz\.ta-
bases, either for supporting their decisions during
therapy revision, or for extracting useful ml_'orma-
tion from the accumulated experience. It is «:\IS(?
interesting to keep track of the ‘problgmjsoluhon
pattems that occurred in the past, order 'to
manage and disseminate the cxpcr.tlsc'of the dia-
betologists. In the context of chronic dl_scascs (and
hence in particular in diabetes monitoring), nl! the
aspects related to the management and mainte-
nance of knowledge play a crucial role, at least tjor
two different reasons: first, it is ncccssnry.lo main-
tain the knowledge about a specific patient over
time, so that, even in presence of chz.mgL:s in lh.c
physicians staff, the quality of the pi.ll.IL‘ll(s care |s'
not decreasing due to the lack of information;
second, it is useful to manage the '9peml1vc
knowledge of experts, in order to bring in .S:lll‘fflcc
their expertise and to kl.‘cp.ll in the institution
even when they move or retire.

To cope with the above mentioned problems,
we have designed a new tool for data-base re-
trieval and knowledge management, based on the
case-based reasoning (CBR) ‘L‘Fhll()l()g)’ [.?-:7].
CBR is a problcm-solving pzqu(llgm lhat'u_uh?z‘:::
the specific knowledge of prcwousl_y cxpmcm;.f
situations, called cases. Each case 18 usun‘!ly (:.-
scribed by a set of variable vaylucs, cnllc(_l !latu'n.s,
and it is associated to a solution (or‘(lcc!smn) .'nul
(0 an outcome. CBR basically consists i retriev-
ing past cases that are similar to the cm“rcnl ()'n‘L"
and in reusing (by, il necessary, adapting) D«l‘h
successful solutions; the current Case can be re-

105

S Montani et al. / Computer Methods and Programys in Biomedicine 62 (2000) 205-218

tained and put into the base of cases. CBR can,
hence, be viewed as a methodology able to com-
bine retrieval, reasoning and learning steps and to
produce solutions to problems by taking nto
account past experience.

In current medical practice, CBR techniques
can be limited to provide diabetologists with a
tool to perform an mtelligent retrieval of the
data-base of past cases, in order to detect, during
a periodical control visit, if the same metabolic
behavior has already occurred to the same patient
or to a similar one, and, in that case, in seeing
what decision was taken in the past and what was
the resulting outcome. Supporting physicians in
this activity may be particularly mteresting, con-
sidering that they may visit more than 100 pa-
tients every month. A crucial capability of the
tool will be the possibility of analyzing the overall
history related with the retrieved cases, showing
the sequence of decision steps that precede and
follow the retrieved situation. In addition, it will
be possible to calculate from the selected sub-pop-
ulation some statistics that may be interesting for
taking decisions, as well as for assessing the qual-
ity achieved in the treatment of the sub-popula-
tion at hand [4].

The CBR tool, we have realized is fully inte-
grated within the architecture of the EU funded
Telematic management of Insulin Dependent Dia-
betes Mellitus (T-IDDM) project, devoted to the
implementation of a web-based telemedicine sys-
tem. In this project, physicians can exploit a med-
ical workstation, that comprises a number of IT
services useful for managing this kind of chronic
patients, an information system for data handling,
a data analysis and visualization system, a deci-
sion support system and a communication tool
for data exchange with the patients' house; all of
this sub-systems are integrated in a web-based
service. Details on the T-IDDM project can be
found in [8,9].

In this paper, we will describe the fundamental
components of the CBR system, with examples
and an evaluation of the retrieval tool performed
on a set of 147 cases collected at the Department
of Pediatrics of the Policlinico S. Matteo Hospital
of Pavia, Italy.

S. Montani ¢t al. / Computer Mehods and Programs in Biomedicine 62 (2000) 205-218 207

2. The case-based reasoning paradigm

CBR is a reasoning paradigm that instead of
relying on general rules or models, utilizes the
specific knowledge contained into already solved
instances of problems [6,7]. In the CBR model,
problem-solving experience is explicitly taken into
account by storing past solved problems and by
suitably ‘remembering’ them when a new problem
has to be tackled. A case is then a structured
representation of past problems suitable for re-
use.

Generally, a case consists of the following three
basic information,

e the problem description, typically a set of
{feature, value) pairs n terms of which the
problem corresponding to the case may be
characterized;

e the case solution representing the solution
adopted for solving the corresponding
problem;

e the case outcome representing the outcome of
the applied solution.

For instance, in a medical domain the problem
description may be the set of symptoms of the
patient under examination, and of pathophysio-
logical entities providing a compact description of
the clinical time course; the solution may be the
possible treatment, and the outcome may be the
result of the treatment.

The use of CBR plays a significant role in many
relevant tasks like diagnostic problem solving [10]
or planning [11], smce it can mimic (at some
extent) the capability of human experts in solving
a new case by retrieving similar cases solved in the
past and by suitably adapting them to the situa-
tion at hand.

The suitability of CBR to solve complex prob-
lems has been widely discussed in the last few
years and two basic possibilities emerged:

e Precedent CBR, where previous solutions to
cases similar to the current one are used as a
justification for the solution of the current case
with almost no adaptation (e.g. legal
reasoning).

e Case-based problem solving, where retrieved
solutions to previous similar cases need to be
adapted to fit the current situation (e.g. plan-
ning, design, dingnosis, efe)

Case-based problem solving is, of course, the
most general approach and can be summarized by
the following four basic step known as the CBR
cycle or the four ‘Res' [7):

I. RETRIEVE the most similar case(s) from the

case library.

REUSE the case knowledge (typically the soh-

tion) to solve the new problem.

3. REVISE the proposed new solution.

4. RETAIN the relevant parts of this experience
(typically the current case) for future problem
solving.

The above CBR cycle puts emphasis on several
aspects each CBR system has to deal with, namely
how to represent cases, how to organize the case
library, which kind of algorithm to use for re-
trieval, how to adapt a retrieved solution and
when to add new cases or forget old ones.

In the whole cycle, some steps may be missing
or they may be collapsed. For example, it is quite
common to view the REUSE and REVISE steps as
a single one or to avoid the RETAIN step if the
current case is in some sense ‘covered' by other
cases already stored in the library.

Moreover, very often CBR systems are built
essentially as tools for flexible retrieval, leaving to
the user all the decisions concerning adaptation
and re-use of retrieved solutions. Indeed, even if
no capability for automated adaptation is pro-
vided by the CBR system, in many applications
concerning decision support it is very useful to
extract the knowledge concerning relevant past
cases for further analysis. This is also the view
taken by most commercial CBR tools [12]. As a
consequence, devising an efficient retrieval process
is fundamental for dealing with large case hi-
braries, as can be the case in a medical setting.

[

3. Case-based retrieval for DM-1 management

As previously noticed, in the context of a peri-
odical visit, CBR may have an important role in
decision making, the retrieval of the therapy
schemes adopted in the past, and of some indica-
tors of the outcomes obtained on those occasions,
could provide a first guideline on how to cope
with the current problems. Since. we are mter-

106

208

ested in providing useful information to physi-
cians, the data-base of past cases (called case
memory) was structured by resorting to a taxon-
omy of prototypical classes, that express typical
problems that may occur to patients. The retrieval
process implemented in our tool is, hence, com-
posed by two steps, a classification step, that
proposes to the physician the class of cases to
which the current case could belong, and a re-
trieval step, that effectively retrieves the ‘closer’
past cases. In the following, we will describe in
detail the case memory structure and each one of
the retrieval steps.

3.1. The case memory

3.1.1. Features
As shown in Section 2, a case is generally
defined as a collection of features summarizing
 the problem, together with a solution and with the
) outcome obtained by applying the solution itself.
‘More formally, a case C can be viewed as a triple

C= {<Ff>’<Ss>v<00>}

where / being the vector of values for the set of

descriptive features F, s the solution schemata

selected from the solution space S and o the
outcome of the solution selection in the space of

the possible outcomes O.

In our application a case just coincides with a
periodical visit, whose data, after having been
collected and, when needed, discretized, represent
the case features of set F. In more detail, we have
defined 27 variables (see Table 1), of which 21 are
nominal (discrete) and six are linear (continuous),
extracted from three sources of information:

e General characterization, 11 features able to
generically describe the patient, such as, sex,
age, distance from diabetes onset.

® Mid-term information, 13 features actually col-
lected during the visits, like weight and gly-
cated hemoglobin (HbAlc) values.

e Short term (day-by-day) information, three fea-
tures collected during home monitoring activ-
ity, i.e. the number of hypoglycemic episodes,
the metabolic control and the physical activity.
Some features may be automatically obtained

as abstractions of the raw data collected during

107

S. Montani et al. / Computer Methods and Programs in Biomedicine 62 (2000) 205-218

the visit. For example, control trend and require-
ment trend of Table 1 are calculated as the varia-
tion of HbAlc and requirement, respectively,
since the previous visit; metabolic control and
hypoglycemias discretize and summarize the in-
formation coming from the day-by-day BGL data
collection. By now, the day-by-day features of the
cases stored in the data-base have been extracted
from the patients’ log-books, as we were working
on retrospective data. A routinely use of the
T-IDDM service, permitting the telematic trans-
mission of the monitoring data from the patient’s
house to the medical workstation, will enable an
automatic collection and elaboration of the
metabolic control and life style information.

The solution s is represented by an array con-
taining insulin types and doses, decided by the
physician from an analysis of the data in the set
F. The outcome o of the therapeutic decision is
summarized by HbAlc and by the number of

hypoglycemic events collected at the following
visit.

3.1.2. Classes

As previously mentioned, the case memory was
structured through the partitioning induced by a
set of mutually exclusive classes. Such classes
express the medical knowledge on the prototypi-
cal situation that may occur to DM-] pediatric
patients.

More precisely, we have defined a taxonomy,
where the roots class (patient’s problems) repre-
sents the most general class describing all the
possible cases we may store into the case memory.
Each remaining class in the hierarchy is a proto-
typical description of the set of situations it sum-
marizes; the class/sub-class link represents the
relation of further specialization (see Fig. 2).
More precisely, leal nodes represent the most
detailed description of pathologies, or clinical
course conditions taken into consideration; an
inner node represents a class with certain proper-
ties that all the classes of its descending sub-tree
have in common. For example, the inner node
behavioral - puberal problems has four descen-
dants: change life style; falsifier; no motivation;
typical puberal problems.

The first three leaves are possible situations
deriving from the patient’s behavior, from prob-
lems related with a non-reported change in life-
style to other psychological problems related with
young patients, like data falsification or loss of

S. Montani et al. /| Computer Methods and Programs in Biomedicine 62 (2000) 205-218

diabetic patients in puberty.

209

motivation in following ITT. The fourth class
identifies the typical alterations experienced by

The prior knowledge associated to the inner
node indicates a normal weight and a metabolic

Table |
The features defining a case
Feature name Type Values
Characterization
Sex Nominal [Male, female]
Height Linear
(continuous)
Age . Linear
(continuous)
Neuropathies Nominal [Yes, noj
Other chronic Nominal [Unrelated, related to hyperglycemia, related to hypoglycemia, absent)
diseases
Puberal stage Nominal [Infant, beginning puberal, puberal, adult]
Job Nominal [Not-sedentary-worker, sedentary-worker, not-sedentary-student, sedentary-student|]
Retinopathies Nominal [Yes, noj
Anti insulin Nominal [Yes, no|
antibodies
Nephropathies Nominal [Yes, noj
Distance from Nominal [Short, long|
onset
Mid-term Sfeatures
Weight Linear
(continuous)
Weight excess Nominal |Overweight, underweight, normal|
HbAlc Lincar
(continuous)
Other hormonal Nominal [Yes, no|
disorders
Requirement Nominal [Increase, decrease, stationarity)
trend
Control trend Nominal [Increase, decrease, stationarity)
Regular insulin Nominal [Regular, actrapid]
NPH insulin Nominal [Monotard, protaphane, intermediate]
ixed insulin ~ Nominal [1sophace, actraphane]
ixed ratio Nominal [90/10, 80/20, 73,30, 60/40, 50/50)
Number of Lincar
injections (continuos)
Diet Nominal |Free, preseribed, controlled)
Requirement Linear

Short-term Jeatures
Metabolic

control
Hypoglycemias
Physical activity

(continuous)

Nominal

Nominal
Nominal

[Good, hypoglycemias, hyperglycemias, instable)

[None, some, many|

[None, intensive-continuous, medium-continuous light-continuous, intensive-occasional

medium-occasional, light-occasional|

108

210

GENERIC CASR

|

Macroclass 1

/AN

Basic Class 1

= Macroclanss i

i

Basic Class j

Basic Class 2

Co3o_00)

Fig. 1. Case memory organization,

control characterized by hyperglycemia. Each of
the leaves is a specialization of the inner node,
where additional feature values are specified. For
example, for typical puberal problems, the feature

S. Montani et al. / Computer Methods and Programs in Biomedicine 62 (2000) 205-218

puberal stage has to be puberal or beginning
puberal, while this condition is not mandatory for
the other three classes.

Leaves in the taxonomy are called basic classes,
each case in the case memory is an instance of a
unique basic class and can be retrieved through
such a class. Classes at the upper level are denoted
as macroclasses (see Fig. 1).

Of course, a revision of the taxonomy would be
required for representing adult patients’ problems,
note for example, the presence of the puberal
stage class and the absence of cardiovascular com-
plications, that are frequent in adults.

3.2. Classification

Situation assessment and case search are
strongly influenced by the organizational struc-

Change Life Style
Behavioural No Motivation
Puberal
Problems Falsifier
Typical Puberal Problems
Celiac Discase
H lycemia .
Pr)z)%(l)glr{s Clinical Remission
Hormones
Bulimia
Overweight < .
problems Pubert_y with
Patient’s &ssocmcd
problems seascs
Anorexia
Stabilized
Metabolism

Fig. 2. Taxonomy of classes of prototypical situations that may happen during monitoring of pediatric DM-1 patients.

109

S. Montani et al. | Computer Methods and Programs in Biomedicine 62 (2000) 205-218

211

Table 2

Features chosen for the classification step

Sex Job Puberal Other chronic Distance Weight
stage discases from onsct excess

Diet

Control
trend

Required Metabolic
trend control

Hypos Physical
activity

tures on which the case memory is based on. In
our application, the definition of a taxonomy of
prototypical situations has allowed us to
implement a method to make case retrieval more
flexible, The first step of the method is
classification, the search space for similar cases is
limited by identifying what is the context in which
the current case should be interpreted, ie. by
finding what are the classes in the hierarchical
Structure that better represent the case itself.
Classification may be performed on the leaves of
the taxonomy tree, to find the most probable
classes to which the input case could belong;
but when several features in the case are miss-
‘ing, or when a less specific identification of the
situation at hand is required, the classification
step may be conducted just at the upper level
of the tree, working on the more general
Mmacroclasses.

Classification is performed on a sub-set of the
features, and in particular on the ones that
Physicians have considered more useful to
discriminate the classes. Table 2 shows the
features that have been chosen for this task.

Although, a high number of approacl_lcs were
available for coping with the classification u}sk
(13, we found that a Bayesian classification
method was the more suitable for our purpose.
In fact, we were operating on a reduced training
data set (147 cases), and the Bayesian approaph
let us explicitly consider the available prior
knowledge. More precisely, we have impl.emcnlcd
a4 Naive Bayes strategy [l4], making the
hypothesis of conditional independence among
the features given a certain class. Although this
assumption is quite strong, the method it is
known to be robust in a variety of situations
(14,15), even in presence of conditional dcp'cn-
dencies among features. Some recent interesting
research results on the Naive Bayes classifier may
be found in [16].

110

For applying Naive Bayes, we calculate the
probability that a case belongs to class ¢, given
that the set of its features f={f,..., fi,} is /.
through the following formula.

P(c|f=/) ocl[lip(c,)p(f, =file)

The method classifies a case as belonging to the
class that maximizes P(c,|[f= /). The conditional
probabilities p(f; = f)|c,) are obtained through the
Bayesian update formula for discrete distributions
[17,18]; in particular, we use a re-parameterized
version of the update formula known as
m-estimate of probability [13], that modifies the
prior knowledge with the information coming
from the cases of the case memory as follows.

mpy, + 19,,

U =f’|c') e m+ D,

where N, is the number of cases in the case
memory of class i whose feature f; assumes the
value fj, while D, is the total number of cases in
class i. The medical knowledge is synthesized by
the prior probability distribution (Py), whose
reliability is expressed by the implicit number of
samples m. In other words, the larger is m, the
larger is the confidence of the expert on the prior,

In our application, the prior probability value
(py) was derived from expert’s opinion through a
technique described in [19).

3.3. Retrieval

When classification has been completed, the
physician may want to retrieve only past cases
belonging to the most probable class found by the
Naive Bayes classifier (intra-class retrieval), or
may choose a whole set of classes to be considered
(inter-class retrieval).

212

3.3.1. Intra-class retrieval

Looking into the portion of the case memory
that store the most probable class, we can apply a
nearest neighbor technique for retrieving cases, so
that only the closest cases are shown to physi-
cians, The distances of the cases from the current
one is calculated by using a distance metric called
Euclidean-overlap metric (HEOM) [20]

HEOM = [Yd/(x,y)’
V2

where d(x,y)=1, if x or y are missing; d,(x,y) =
overlap (x,y), if fis a symbolic feature, (i.e. 0 .1['
X =y, | otherwise); |x — y|/range,; if fis a numeric
and continuous feature.

3.3.2. Inter-class retrieval

For inter-class retrieval, we have implemented
another nearest neighbor technique, again able to
cope with missing data, and to take into account
- both numeric and symbolic features. Such tech-
nique is based on the heterogeneous value differ-
ence metric (HVDM) [20].

HYDM = /5d/(x,y)’
/

Where d(x,p) = 1, if x or y is missing; d(x,y) =
norm(x,) if fis a symbolic variable; [x—y|/4 x a;,
if is a numeric and continuous variable.

In more detail

N'rc N"r
norm,(x,y) =y, _A—I’;— ~3 ‘1‘\,’7"
x y

Where N, , is the number of cases in which f =x
in class ¢, and N, is the number of cases in which
J=xin all the considered classes; the same applies
to value y.

This nearest neighbor technique may be compu-
lationally inefficient when working with large
data-bases. In fact, the complexity of HVDM is
known to be O(FnC) [20], where F is the number
of features, n the number of cases and C is the
Number of classes (proportional to the number of
Cases),

For this reason, we have adapted also a non-ex-
haustive search procedure, implementing a pivot-
ing strategy (see [21] for details).

S. Montani et al. / Computer Methods and Programs in Biomedicine 62 (2000) 205-218

The mechanism consists in:

e Finding the median case, i.e. the case with the
minimum distance from all the other cases at
hand, and computing the distance between the
median case and all the other cases.
Computing the distance between the median
case and the input case

Estimating the distance between the input case
and all the remaining cases by using triangle
inequality, thus finding a lower and an upper
bound for the distance value.

Applying an iterative procedure that progres-
sively eliminates cases whose interval lower
bound is higher than the minimum of all the
upper bounds.

At the end of the retrieval step, all the cases
belonging to the selected classes are ordered on
the basis of their distance from the current case.
The interface shows the first ten cases in the list,
expected to be the most reliable; anyway, the user
is allowed to inspect the remaining ones, and to
have a general view of the information stored in
the classes he is working on.

In the current implementation, it is also possi-
ble to retrieve all past patient’s history, so verify-
ing the outcomes of the therapeutic choice on the
metabolic control, in both short and long periods.
In fact, each case belonging to a certain patient is
connected to the previous and to the following
one by two chains of pointers. An intra-patient,
upper-level retrieval can thus be performed, in
order to learn strategies that, starting from a
certain condition, led the patient to a target status
(for example stabilized metabolism), through a
series of class transitions (see Fig. 3). If a similar

! '
' '
clinical | anorexia ! stabilized
remission ¢ : fom
| :
' '
) '
! 1
X +w . - o>
a - f > i Time
Retrieved case

Fig. 3. An example of patient's history with class transitions.

S. Montani et al. / Computer Methods and Programs in Biomedicine 62 (2000) 205-218

background exists for the current patient, we may
assume that therapeutic choices similar to the
retrieved ones could lead to similar class transi-
tions, and therefore to a similar conclusion after a
certain time.

After the retrieval step, our tool makes some
statistics on the basic decisional features of the
retrieved cases; for example, it calculates the aver-
age variations in the injection number, and the
proportion of cases in which the requirement
trend has increased, limited to the cases with a
positive outcome (i.e. with a reduced number of
hypoglycemic episodes, and with a decreasing
trend of HbA 1c). This information is presented to
the physician, who may then decide whether to
rely on it, and to apply to the current protocol
changes oriented in the average direction of the
retrieved ones.

4. Results

Through the collaboration of the endocrinology
unit of the Pediatric Clinic of Policlinico S. Mat-
teo Hospital in Pavia, we collected 147 cases,
coming from the clinical records of 29 pediatric

Table 3
Cross-validation and validation error rates expressed in terms
of ratio of incorrect classified cases and related pereentages

Class Error rate Error rate
cross-validation validation on
on real data generated data

Stabilized 2/20 (10%) 69/1014 (7%)

metabolism

Insulin resistant 0 0

Clinical remission 0 63/1011 (6%)

No motivation 0 0

Falsifier 4/18 (22%) 147/1009 (14%)

Change life style 12/15 (8%) 89/1011 (9%)

Celiac discase 0 72/1014 (1%)

Hormones 2/9 (22%) 0

Bulimia 0 0

Anorexia 0 0

Puberty with 0 29/1003 (3%)

associated
discases

Typical puberal 0 98/1005 (10%)

problems

213

patients. On such data, we have tested the system
performances. We are aware that these results are
very preliminary, due to the relatively small num-
ber of data collected; nevertheless, we believe it is
interesting to present this information, as a start
point for a future validation on a larger data-
base.

The classification step has been tested through
a leave-one-patient out cross-validation technique,
both on the basic classes and on the macroclasses.

To classify a case ¢, belonging to a certain
subject s, first all cases of patient 5; were removed
from the case base; then the case ¢; was reinserted
and classified. The posterior distributions of the
class were calculated with the m-estimate formula
applied to the cases belonging to the other pa-
tients. In this way, the cross-validation was per-
formed only on cases independent from c;.

When working on basic classes, a correct clas-
sification was obtained for the 83% of the whole
case base, while in the 98% the correct class was
one of the two most probable classes. A poor
outcome was obtained for class falsifier, this is not
surprising, since falsifiers are usually young pa-
tients that report wrong data on their diaries, to
avoid complaints by parents and physicians about
their nutritional and life habits. It is therefore,
quite difficult, even for physicians themselves, to
identify a falsifier, or to list a set of peculiar traits
sufficient to describe him or her. Detailed results
obtained performing the classification step are
presented in the second column of Table 3.

The outcome was slightly improved when work-
ing on macroclasses, the correct class was ob-
tained in 84% of the cases, and in 100% of the
cases it was in the list of the most probable ones.

As a second step, we automatically generated
more then 10000 simulated cases, starting from
the probability distribution derived from the fea-
ture occurrence in the case memory. On this ex-
panded data-base, we performed a validation
strategy, that resulted quite encouraging again, an
error of less than 10% occurred in each class,
excluding the class falsifier where the error rate
reached 14%. Detailed results of validation exper-
iment are shown in the third column of Table 3.

As a future verification step, we would like to
conduct a prospective validation on real patients’

214 S. Montani et al. / Computer Methods

T y

Fig. 4. The retrieval performances (in s) as a function of the
number of classes.

cases, to compare the Bayesian classifier sugges-
tions with a physician’s opinion.

We tested the computational efficiency of the
‘ retrieval step on a Sun Sparc 10 machine; the
classification time was of the order of millisec-
onds, while retrieval with the HEOM formula
took 2 s in the 147 cases data-base, and up to 23
s in the 10 000 cases data-base.

Retrieval time with the HVDM algorithm
ranged from 5 (on about 20 cases), to more than
500 s on the whole 10000 cases data-base. The
computation time with the pivoting algorithm
grew linearly with the number of cases in 'thc
search space. In this situation retrieval time
ranged from 3 (on about ten cases) to 170 s on the
entire 10000 cases data-base (see Fig. 4). Hence,
by resorting to the most suitable algorithm, the
system has a good performance (with respect to
the application requirements) even in the presence
of large data-bases.

S. Implementation

5.1. Details and integration in the T-IDDM
architecture

The case-based retrieval tool described in the
previous sections is one of the decision support
t0ols of the medical workstation developed within

113

and Programs in Biomedicine 62 (2000) 205-218

the T-IDDM project. From an implementation
point of view, it is fully integrated in a distributed,
web-based environment, managed by lispweb, an
extended, special-purpose web server, written in
common lisp, that makes it possible to create
more ‘intelligent’ and ‘secure’ applications while
remaining in the context of web-based systems [9].

The components of the medical workstation
application are:

e a knowledge base, composed of a structured
description of the ontology of the domain un-
der consideration;

a relational data-base that collects all data as
instances of the concepts defined at the ontolog-
ical level;

a data analysis tool, able to extract the patients’
status from the collected data;

a set of decision support tools (among which
the CBR tool), that work on the objects con-
tained in the knowledge base and on the analy-
sis made on the data residing in the data-base;
a user interface, providing data visualization
and knowledge acquisition functionality;

a telecommunication system, able to connect
the medical workstation to the patients’ houses.
In particular, the interaction between the CBR
reasoning tool and the user (definition of a new
case, classification and retrieval) takes place
through a set of HTML pages, containing dynam-
ically generated information, such as multicolumn
tables and forms. All the cases are stored in an
Oracle™ data-base, whose table structure mirrors
the classes taxonomy; each leaf of the taxonomy
tree matches a table, whose columns corresponds
to the case features, and whose rows are instances
of the class at hand.

The CBR tool does not require any additional
effort from the user. Then, when the tool is
invoked, it exploits all the knowledge saved in the
information system, and provides the physician
with a set of retrieved cases and with some statis-
tics on their main features.

5.2. The system at work: an example of decision
support

The CBR tool described in this paper is accessi-
ble through the T-IDDM user interface (an on-

S. Montani et al. /| Computer Methods and Programs in Biomedicine 62 (2000) 205-218

line demo of the system can be found at http://
aim.unipv.it/projects/tiddm). As a first step, the
physician is allowed to get a summary of the
previously stored patient’s cases, to automatically
generate a case from a periodical visit data set, or
to edit a new case. .

As an example, let us suppose that the physi-
cian decides to analyze a patient’s visit data col-
lected on May 21 1998 (we are using dummy
Names, but real patients’ data). The physician is
allowed to complete missing data, and to verify
the correctness of the overall information; then he
Can start the classification procedure.

As shown in Fig. 5, as a first choice the system
Suggests Jane Doe to be a patient with some
hormonal disorders (hypothyroidism); other prob-
able alternatives are puberty with additional re-
lated diseases and data falsification.

By performing inter-class retrieval on the three
most probable classes (hormones, puberty with

215

associated diseases and falsifier), the system can
rely on 30 cases. Nine of them are positive cases
(due to the reduction of HbAlc at the following
visit), and they are taken from the history of five
different patients. Table 4 provides some statisti-
cal analysis on such cases.

If the physician concentrates only on the cases
from the most probable class (i.e. hormones), he
gets the list displayed in Fig. 6.

Table 5 shows the results of the statistical anal-
ysis performed on these nine retrieved cases, be-
longing to three different patients (patient 21,
patient 40 and patient 44). Due to missing data
about the outcome of cases number 6, 8 and 9,
the system can just work on six cases, in three of
which the selected therapy was not effective, be-
cause HbAlc did not decrease.

Cases number 2, 4 and 5 show a positive out-
come (decreasing value of HbAlc after the appli-
cation of the solution therapy, without an increase

Fig. 5. Output of the classification step on the basic classes.

114

216 S. Montani et al. / Computer Methods and Programs in Biomedicine 62 (2000) 205-218
Table 4
Statistical analysis on the positive cases retrieved from classes hormones, puberty with associated discases, and falsifier
Class Positive case Number of Required trend HbAlc Hypos Metabolic
patients control
Hormones 3 1 2 Inc.,| dec. 3 Inc. 3 Some 3 Instable
Puberty with 1 1 1 Inc. 1 Inc. 1 Lots | Instable
A.D.
Falsifier 5 3 3 Inc., | stat, | 1 Inc., 2 stat,, 1 4 Some, | none 4 Instabel, |
dec. dec. hyper
| AR MRS RS DIPTSR TR
o s {eaE v
Lecattam: 2 ey ‘
evd g g ? Wals Cani 2 Dealiel ane ot Sevieh Rasgle | Solwaon
PIOBRA Lt
The following Cises where retieved
el Patient] Dace [HhAle] Previoug Pratacet [Onteomse (HEAT) | Selusion (Pratocol)
1 21 DA 1991 1.2 View 32 View
2 a0 ORO41991 KD Vi)7 e
A | TA View ™ View
) 144 l t 1
212 \
) 1 1 View)
8 8] 190X/1998 B Vi | '

Table 5

i 055621998 13

Fatiens cases Patient s 5

Fig. 6. Output of the intra-retrieval step.

Detailed statistics on the cases retrieved from class hormones

Patient id Sex Age Positive outcome cascs Negative outcome cases Unreliable cases
2] Female 17 3 2 i
40 Female 16 0 i)
44 Female 19 0 0 1

115

S. Montani et al. /| Computer Methods and Programs in Biomedicine 62 (2000) 205-218

in the number of hypoglycemias). Table 6 summa-
rizes some statistics on the three cases’ features.
From them the physician can observe a progres-
sive increase in the value of insulin requirement,
and may examine the current case to decide if a
similar action could be suitable as well.

6. Conclusions and future research directions

In this paper, we proposed a case-based re-
trieval tool, able to support physicians during the
revision of DM-1 patients therapy, by retrieving
Past cases similar to the current one from the
available data-base. This system is fully inte-
grated.with the web-based hospital information
System defined in the T-IDDM project. Rather
interestingly, CBR can be viewed as a system_for
knowledge management and behavioral learning,
that does not require efforts to the health care
Providers other than collecting data during the
‘periodical control visits. As a matter of fact, CBR
is a ‘lazy learning’ paradigm, when new informa-
tion (ie. a new case) is collected, it is simply
Stored in the case memory, only at retrieval time
learning takes place, as the system output is en-
riched by the presence of additional examples.
This kind of paradigm is perfectly suitable for our
application, as the physician, when using the sys-
tem, just has to store in the data-base the infor-
Mation collected during a visit (but this wqu !s
foutinely done, with a different purpose, whlct} is
the one of saving the visit data into the hospital
information system). Moreover, the progressive
Collection of cases will automatically store data
and results on new therapeutic solutions (e.g. the
Use of new insulin types, such as lispro), thus
enriching the health care organization expertise,

217

without requiring an explicit revision of the
knowledge base.

We expect to obtain the first results about the
clinical utility of the above presented tool through
the evaluation studies that are currently carried
on within the T-IDDM project. In particular the
T-IDDM verification phase is taking place at the
Policlinico S. Matteo, involving ten pediatric pa-
tients and three physicians, who will be using the
system prototype during the next months. Patients
and physicians from the other European medical
centers of T-IDDM consortium will soon start
with the demonstration phase as well, providing
us with additional cases or patients.

From a methodological point of view, the pro-
posed CBR system is the result of the integration
of different intelligent data analysis techniques for
decision support. Classification, nearest neighbor
retrieval, qualitative and temporal abstractions
are merged for the purpose of coping with the
complex problem of DM-1 patients management.
We plan to extend the work herein presented in
several research directions. We do not believe that
a classical CBR adaptation technique will be suit-
able in our application domain, automatically
computing the insulin doses for the patient at
hand starting from the therapies assigned to other
retrieved subjects does not take into account the
patient’s characteristics and peculiar needs. Our
tool currently calculates some statistics on the
basic decisional features of the retrieved positive
cases; as a future research direction, we plan to
use our tool as a data mining tool, by extending
its statistical analysis functionality, looking for
significant correlation among patient’s status
parameters (HbAlc value and trend, hypo-
glycemias, weight excess, metabolic control) and
insulin therapy descriptors (number of injections,

Table 6

Statistics on the reliable cases in class hormones*

Patient Date HbAlc HbAlc Required Required Metabolic " Injection
trend trend control number

21 08/04/1991 82 Increase 1.09 Decrease Instable Some 3

21 14/06/1998 1.7 Increase 1.1 Increase Instable Some 2

21 15/10/1998 141 Increase 1.11 Increase Instable Some 2

————— B ——————————————————— - ——

* Trends are calculated with respect to the previous visit,

116

218 S. Montani et al. | Computer Methods and Programs in Biomedicine 62 (2000) 205-218

requirement value and trend, single dose values
and dose distributions over the day). The results
will be analyzed to discover if it is possible to learn
general strategies, typical of the different macro-
classes or basic classes. In this case, classification
would already provide an indication on the ther-
apy adjustment directions to be applied in the
current case. Moreover, additional strategies could
be dynamically inferred from the retrieved cases,
even if they do not belong to a single class. In this
situation, instead of relying on precompiled indica-
tions, we would exploit the similarities between the
current case and the retrieved ones; the presence in
the case memory of additional cases would en-
hance the reliability of the results provided at this
step. Finally, the most ambitious goal will be to
integrate the CBR tool with other existing decision
support tools, and in particular with a rule-based
system, already implemented in the T-IDDM med-
ical workstation. The search for general strategies
provided by the CBR classification and retrieval
would define a context in which the current pa-
tient’s data should be interpreted, and would
therefore reduce the search space of the rule-based
system through the definition of a set of context-
based meta-rules. The rule-based system would
then provide a proper solution for the case at
hand, by generating a personalized protocol, in-
stead of just listing a series of different protocols,
generically suitable for coping the patient’s prob-
lems, as it currently does.

Acknowledgements

This paper is part of the EU TAP project
T-IDDM HC 1047.

References

[1] The Diabetes Control and Complication Trial Research
Group, The effect of intensive treatment of diabetes on the
development and progression of long-term complications
in insulin-dependent diabetes mellitus, New Engl. J. Med.
329 (1993) 977 986.

(2] E.D. Lehmann, Application of computers in clinical dia-
betes care, Diab, Nutr, Mctab. 10 (1997) 45 59

117

13] A.M. Albisser, R.1. Harris, S. Sakkal, E. Pemberton, A.
Rieflin, J.L. Nealon, Diabetes intervention in the informa-
tion age, Med. Inform. 21 (1996) 297-316.

14] K.R. Piwernetz, ct al., Monitoring the targets of the Saint
Vincent declaration and the implementation of quality
management in diabetes care: the Diabcare initiative,
Diabetic Med. 10 (1993) 371-377.

[5] D.B. Leake, J.L. Kolodner, A tutorial introduction to
CBR, in: Case Based Reasoning: Experiences, Lessons and
Future Directions, AAAI Press, 1996, pp. 31-65.

16] J.L. Kolodner, Case-Based Reasoning, Morgan Kaufi-
nann, Los Altos, CA, 1993.

[7] A. Aamodt, E. Plaza, Case-based reasoning: foundational
issues, methodological variations and systems approaches,
Al. Commun. 7 (1994) 39-59.

18] R. Bellazzi, C. Cobelli, E. Gomez, M. Stefanelli, The
T-1DDM Project: Telematic management of insulin depen-
dent diabetes mellitus, in: M. Bracale, F. Denoth (Eds.),
Health Telematics'95, 1995, pp. 271-276.

[9] A. Riva, R. Bellazzi, M. Stefanelli, A web-based system for
the intelligent management of diabetic patients, MD.
Computing 14 (1997) 360-364.

[10] J. Kolodner, R. Kolodner, Using experience in clinical
problem solving: introduction and framework, IEEE
Trans. Syst. Man Cybernetics 17 (1987) 420-431.

[11] K.J. Hammond, Case-Based Planning: Viewing Planning
as a Memory Task, Academic Press, New York, 1989.

[12] 1. Watson, Applying Case-Based Reasoning: Techniques
for Enterprise Systems, Morgan Kaufinann, Los Altos, CA,
1997.

[13] T. Mitchell, Machine Learning, Mc Graw Hill, New York,
1997.

[14] 1. Kononenko, Inductive and Bayesian learning in medical
diagnosis, Appl. Artif, Intell. 7 (1993) 317-337,

[15] 1. Zelic, 1. Kononenko, N. Lavrag, V. Vuga, Induction of
decision trees and Bayesian classification applied to diagno-
sis of sport injurics, in: Proceedings of IDAMAP 97
workshop, JCAI 97, Nagoya, Japan, 1997, pp. 61-67.

[16) S. Monti, G. Cooper, The impact of modeling the depen-
dencies among patient findings on classification accuracy
and calibration, JAMIA, Symp. Suppl. 1998, 592-596.

(17) D. Spicgelhalter, A. Dawid, S. Lauritzen, R. Cowell,
Bayesian analysis in expert systems, Stat. Sci. 8 (1993)
219-283,

(18] A. Riva, R. Bellazzi, Learning temporal probabilistic
causal models from longitudinal data, Artif. Intell. Med. 8
(1996) 217-234,

(19] S. Montani, R. Bellazzi, L. Portinale, S. Fiocchi, M.
Stefanelli, A case-based retrieval system for diabetic pa-
tients therapy, In: Proceedings of IDAMAP 98 workshop,
ECA1 98, Brighton, UK, 1998, pp. 64-70.

[20] D.R. Wilson, T.R. Martinez, Improved heterogencous
distance functions, J. Artif. Intell. Res. 6 (1997) 1-34.

[21] L. Portinale, P. Torasso, D. Magro, Selecting most adapt-
able diagnostic solutions through pivoting-based retrieval,
in: Lecture Notes in Artificial Intelligence, vol. 1266,
Springer, Berlin, 1997, pp. 277-288.

ABSTRACT

Risk Analysis for
Electronic Commerce
Using Case-Based
Reasoning

Changduk Jung, Ingoo Han* and Bomil Suh

Korea Advanced Institute of Science and Technology, Seoul, Korea

Electronic commerce (EC) appears to be essential for an organization’s survival
and growth. Then the security of the EC systems, which ensures authorized
and correct transaction processing, becomes one of the most critical issues in
implementing the systems. The analysis of risk that a system fac.es is the core
part of security management since risk analysis can identify the principal assets,
the threats and the vulnerabilities of those assets, and the risks confronting the
assets. This study intends to develop a risk analysis system in an EC environ-
ment using the case-based reasoning (CBR) technique. The process of the
proposed system is composed of four steps: initial data collection, asset evalu-
ation, threat and vulnerability evaluation, and result generation of risk analysis.
This process follows the traditional risk analysis process. This system employs
the casebase of past analyses and security accidents. Although some studies
introduced several case-based systems for risk analysis of traditional infor-
mation system, none of them is under an EC environment. The proposed
system is the first to apply the CBR technique for risk analysis of an EC
system. Copyright © 1999 John Wiley & Sons, Ltd.

INTRODUCTION

Electronic commerce (EC) appears to be essen-
tial for an organization’s survival and growth.
In an EC environment, the internal systems
and processes of an organization are no longer
Operated in isolation from one another. Linked
together, the organization exchanges infor-
Mation and transactions in such ways as unan-
ticipated in the traditional environment. As a
result, the security of EC systems, which
€nsures that the systems do not allow unautho-
rized transactions and that trading partners

el S

'Corrcspondence to: Professor Ingoo Han, Graduate
School of Mana rement, Korea Advanced Institute qf
Science and Technology, 207-43 Chcongryangr!-
Dong, Dongdaemun-Gu, Seoul, 130-012, Korea. E-
mailingoohan@msd kaist.ac.kr

CCC 1055-615X/99/010061-13%17.50
Copyright © 1999 John Wiley & Sons, Ltd.

have received and processed transactions cor-
rectly, becomes one of the most critical issues
in implementing the systems.

The traditional approach to information Sys-
tem security was based on the assumption that
the security be applied to mainframe com-
puters. However, the new approach to security
is strongly required in the fast-changing
environment with different needs for the con-
nectivity to the network.

Risk analysis is the process to examine the
threats facing the information technology (IT)
assets and the vulnerabilities of these assets
and to show the likelihood of the threat to be
realized. Based on this examination, inspection
of the risk related to those recorded assets is
performed. Risk analysis enables an organiza-
tion to appreciate the importance of the value
of IT assets to be secured and to find the
security holes in a cost-effective manner.

Received June 1997
Revised January 1998

—————

International Journal of Intelligent Systermns In Accounting, Finance & Management

Int, J. Intell, Sys. Ace. Fin, Mgmt, 8, 6173 (1999)

However, the tasks of risk analysis for IT
require ‘deep knowledge’ and include various
decision problems. This is the reason that has
caused risk analysis to be viewed negatively.
The case-based reasoning (CBR) technique is
good for the risk analysis process because it is
useful for tasks that are experience-intensive,
that lead to inconsistent outcomes, that have
incomplete rules to apply, and that are hard to
acquire domain experience.

This study intends to develop a risk analysis
system in an EC environment using the CBR
technique. The next section introduces the basic
concepts of risk analysis in an EC environment
and the following section describes the appli-
cation of the CBR technique to risk analysis.
The architecture and the implementation details
of the proposed system are shown in the fourth
and fifth sections. The final section explains
the pros and cons of this study and further
research directions.

RISK ANALYSIS OF EC

Risk Analysis

Kailay and Jarratt (1995) stated that the risk is
the potential for damage to a system or associa-
ted assets that exists as the result of the combi-
nation of a security threat and a vulnerability.
The risk is the combination of threats, vulner-
ability and asset value. The risk model is
presented in Figure 1. The term vulnerability is
a weakness in the security system that might
be exploited to cause loss or harm (Pfleeger,

Security
Threat Service Asset
Safeguar
T i S | LIRS
Attack
T2 P! §2 » A2 |—>
Loss
T3 » S3 A3
Exposure
T4 ol » A4 |[—>
Vulnerability

n— =
Figure 1 Risk model
Copyright © 1999 John Wiley & Sons, Ltd.

1989). Threats are defined as the sources or
circumstances that have the potential to cause
loss or harm (Kailay and Jarratt, 1995; Pfleeger,
1989). Risk analysis is a systematic process to
examine the threats facing the IT assets and
the vulnerabilities of these assets and to show
the likelihood that these threats will be realized.
Generally, the risk analysis process is composed
of three steps (Cerullo and Shelton, 1981; Loch
et al., 1992; Rainer et al., 1991).

Risk analysis begins with the identification
of IT assets. However, not all the assets require
protection, therefore the boundary of the
review should be established during asset
identification. After the boundary is specified,
the overall worth of the identified assets should
be assessed.

The next step is to identify all possible threats
to the identified assets and to note vulner-
abilities. As with the IT assets, all the threats
will not necessarily be realized for each ident-
ified asset. Only those threats that are likely
to occur in any given organization need be
identified. The identified threats are assessed
as the likelihood of occurrences in accordance
with the related vulnerabilities. The final step
is the analysis of the risk in the current IT. The
impact of the threats is analyzed in this step.
This assessment should take into account the
asset value within the review boundary and
the identified threats and vulnerabilities. The
assessed impact leads to risk measures.

Various risk analysis methodologies used
currently are categorized into quantitative and
qualitative. The quantitative methodologies
usually calculate the impact and frequency of
threats mathematically. Most quantitative risk
analysis methodologies regard the loss
exposure as a function of the vulnerability of an
asset to a threat multiplied by the probability of
the threat becoming a reality. These method-
ologies include Annualized Loss Expectancy
(ALE), the Courtney method, the Livermore
Risk Analysis Methodology (LRAM), the sto-
chastic dominance method, ALE using PERT,
the simulation technique, etc. (Cerullo and Shel-
ton, 1981; Rainer et al.,, 1991).

The qualitative methodologies are, on the
other hand, based on the assumption that a
certain threat or loss cannot be appropriately

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

62

C. JUNG ET AL.

119

expressed in dollar amounts or discrete events
$0 precise information may be unobtainable.
The qualitative methodologies, therefore,
attempt to express the risk in terms of descrip-
tive variables rather than in precise dollar
terms. These methodologies include the Delphi
technique, the scenario analysis method, the
fuzzy metrics approach, the comparison risk
ranking method, and the questionnaire
approach (Rainer et al., 1991).

One set of methodologies stated above can-
not completely dominate the other. Table 1
summarizes the advantages and the disadvan-
tages of each set of methodologies.

Risk Analysis in EC

EC based mainly on Internet technology is
changing the way that people access and pur-
chase information, communicate with each
other, and acquire and pay for goods. Internet
provides a new way to establish the computer-
based resources that can be accessed by con-
sumers as well as business partners around
the world.

To facilitate and encourage EC, it will be

Table1 Advantages and disadvantages of two sets
of methodologies (Suh and Han, 1997)

Quantitative Qualitative
methodologies methodologies
Advantages @ Applicability @ Simple risk
to all assets calculation
® Mathematical @ Usability to the
foundation irrelevant or
® Support to unknowable
cost-benefit asset value
decision ® Less time
consuming
Disadvantages @ Inappropri- ® Coarse
ateness of granularity
monetary @ Inability of
asset value cost-benefit
@ Inappropri- decision
ateness of ® Subjective
general result
statistics
® Time
consuming

Copyright ® 1999 John Wiley & Sons, Ltd,

necessary to assure that the information on the
network is safe and can be accessed only by
an authorized recipient. To meet these needs,
the Secure Electronic Transaction (SET)
addresses seven major business requirements
(Yang, 1996):

e Provide confidentiality of payment infor-
mation and enable confidentiality of order
information that is transmitted along with
the payment information

e Ensure the integrity of all transmitted data

e Provide authentication that a cardholder is a
legitimate user of a branded payment card
account

e Provide authentication that a merchant can
accept branded payment card transactions
through its relationship with an acquiring
financial institution

e Ensure the use of the best security practices
and system design techniques to protect all
legitimate parties in an EC transaction

e Create a protocol that neither depends on
transport security mechanisms nor prevents
their use

e Facilitate and encourage interoperability
among software and network providers.

The important assets to be secured in EC
include hardware, software, network and data
assets. The major hardware assets include FC
servers, EC client systems, point of sale (POS)
equipment and other specialized equipment
that enable the implementation of EC. The
major software assets are EC-enabled ‘core pro-
cess” applications, EDI translation software,
mail interface software, operating systems and
smartbots, etc. The major elements of network
assets are router, firewall and protocols such
as TCP/IP and HTTP. The sensitive data assets
include user names, passwords, and credit card
numbers, etc.

The critical threats to the security in EC such
as network failure, internet viruses, and net-
work wiretapping are composed of external
and internal attackers against an organization.
External attackers exploit the vulnerabilities to
the components of EC. According to the 1997
Computer Crime and Security Survey of the Com-
puter Security Institute, more than 80% of
respondents perceive disgruntled employees as

Int. J. Intell. Sys. Acc. Fin. Mgmit. 8, 61-73 (1999)

RISK ANALYSIS FOR ELECTRONIC COMMERCE

63

120

a likely source of attack and more than 50%
also consider corporate competitors a likely
source.

CASE-BASED REASONING (CBR)

Basic Concepts of CBR

A case is a prior experience and, therefore,
is situation-specific and domain-dependent. A
casebase is the collection of cases (Brown and
Gupta, 1994). A casebase is to a CBR system
as a knowledge base is to a rule-based system.
The CBR technique is one of the major artificial
intelligence (AI) methodologies and is mostly
applied to the problem-solving and learning
area.

The fundamental principle of the CBR tech-
nique is similar to that of the human reasoning
process. Humans use analogical reasoning in
complex situations, which employs solutions
to past problems to solve current ones. While
humans use analogical reasoning, the limitation
of the human brain does not take all past cases
into consideration. As the number of cases
increases, humans seem to use cases most
recently solved or that seem most important.
However, the CBR system can overcome this
limitation and use all past cases in its reason-
ing, potentially making more effective decision.
It can use successful cases to solve current
problems or failed cases to adjust solutions
to them.

The CBR process is generally composed of
three stages: remembering, applying, and learn-
ing (Brown and Gupta, 1994). Remembering is
the case-retrieval process, which locates and
retrieves relevant and useful past cases. Apply-
ing is the process of case usage. In this stage,
the CBR system applies the cases that have
been retrieved to find an effective solution to
the current problem. Learning is the process
of casebase enhancement. At the end of each
problem-solving session, incorporating new
case and problem-solving experiences increases
the casebase. The CBR process applied to risk
analysis is shown in Figure 2.

When the CBR system is presented with a
new problem, it selects past cases that are simi-

Copyright © 1999 John Wiley & Sons, Ltd.

lar to the current problem and proposes a sol-
ution based on solutions to the selected past
cases. Once the system solution is evaluated,
the evaluation results are reported to the sys-
tem. The system updates its casebase by captur-
ing and storing important lessons learned dur-
ing the problem-solving process.

CBR Approach in Risk Analysis

Despite the significance of performing risk
analysis, there are several factors that cause
this process to be viewed negatively. Most risk
analysis processes use questionnaires for gath-
ering asset, threat, and vulnerability data. These
questionnaires are often very long and difficult
to answer, making risk analysis time consum-
ing and very costly. Moreover, the traditional
process of risk analysis is not able to handle
the contingency of organization, such as organi-
zational culture, characteristics of IS, and
characteristics of organization. Generally, the
tasks of risk analysis for an information system
require ‘deep knowledge’ and include various
difficult problems.

Risk analyzers have been found to reason by
analogy using prior experiences rather than by
[F-THEN rules. This propensity of risk analy-
zers is same as the reasoning process of case-
based reasoning. The CBR system solves new
problems by recalling and adapting previous
solutions. So, CBR is useful for tasks using
predicates that are ill defined, that lead to
inconsistent outcomes, and which have incom-
plete rules to apply (Morris, 1994). Moreover,
CBR is good for the tasks that are experience-
intensive and hard to acquire domain experi-
ence such as risk analysis.

This study proposes a CBR system designed
to evaluate the risk of an organization in an
EC environment. The system integrates the
structured procedures of risk analysis and
reasoning capability of CBR, and, it is hoped,
will aid the decisions of risk analyzers.

Morris (1994) was the first to apply the CBR
technique in the IT audit area. He developed
a SCAN system using the CBR technique to
evaluate IT controls as a part of the internal
auditing process. The evaluation of internal
controls is a context-sensitive, subjective, and

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

64

121

C. JUNG ET AL.

Current Problem N
ﬁkisk Analysi%—) Remember [<€
Similar Case
of Risk Analysis

Current Problem
of Risk Analysis

Apply

y

/Currcnl Problem ;

of Risk Analysis

Casebase of
Risk Analysis

v

Learn

T

Figure2 CBR process applied to risk analysis

non-deterministic task that requires consider-
able professional judgment. These character-
istics make the CBR technique suitable for
internal control evaluation.

The SCAN system was based on the previous
control failure cases to construct the casebase,
This system made an auditor recall the pre-
vious control failure and provided the auditor
with a pattern of successful controls compared
with the current controls. The SCAN system
took what inexperienced auditors collected as
input data and produced a report similar to
that of the practicing auditors. Because of this
feature, the users of this system were not
required to interpret or preprocess the input
data or to provide reliability or probability esti-
mates. That is, the SCAN system was helpful
to inexperienced auditors by providing a set of
control alternatives.

Copyright @ 1999 John Wiley & Sons, Ltd.

SYSTEM ARCHITECTURE

Process of the System

The proposed system in this study has three
sub-goals, which are asset analysis, threat
analysis and vulnerability analysis. The process
is composed of four steps as shown in Figure 3.
First, the system collects data about the busi-
ness and IT environment of an organization by
asking questions. As the data are collected, the
first sub-goal, ‘asset analysis’, is posted to the
task scheduler, which keeps track of the current
sub-goals of the system. If the memory pro-
vides a relevant case at this point, the system
focuses on the analysis of assets of the previous
cases to see whether anything can be adopted
from it.

When the first sub-goal is achieved, it may

Int. J. Intell. Sys. Acc. Fin. Mgmit. 8, 61-73 (1999)

RISK ANALYSIS FOR ELECTRONIC COMMERCE

122

o

Task Scheduler CBR Process
Step 1: Initial data collection assign indices ®
- get data about the business and IT
environment
- determine the scope of analysis ’
* retrieve similar past analysis
<€ cases
Step 2: Asset evaluation
- CBR process
- user feedback "
Y ada:(the result modification
e and suggest a
Step 3: Threat & vulnerability D rules
evaluation
- get data about the security control AT
of the organization v ?;cacacif!:m
- CBR process <3
- user feedback receive
¥ feedback
Step 4: Risk analysis result £
generation repair
- generate initial risk level of each asset the solution
- user feedback

Figure 3 Process of the system

use the same case to reach the remaining sub-
goals. During this process, the system may ask
additional questions about the environment of
the organization. If a case of a past security
accident is recalled, the system attempts to find
out whether it is possible for the accident to
occur in the current case. Then the system
produces initial results from the recall and
adaptation process.

Then it receives feedback from risk analysis
experts and users. This feedback tends to
change the index structure and to augment
knowledge regarding the cause of the failure
and an explanation of whether and how it

could have been prevented,

Copyright © 1999 John Wiley & Sons, Ltd.

Case Representation

The cases of this system are stored in two types
of casebase. One is the casebase of past analysis
inputted from the experiences of risk analysis.
The other is the casebase of past accidents that
is composed of the actual cases of the security
accident. The cases are represented in the form
of a frame, which is the most widely used
knowledge representation method. The frame
is a complex unit that represents situation or
object in a domain (Luger and Stubblefield,
1993). The attributes of a frame are represented
in the slots of the frame. The slot values may
be values, pointers to other frames, or even

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

66

123

C. JUNG ET AL.

q art :
c I Business P N Business
Lk environment 1 process
EC has
» e > Industry > Supplier
“1 environment A g PP
> Product »| Customer
part
»{ Location »| Competitor
Y
part has
EC asset > Impact
has »| Vulnerability
enerate
> Threat > 8
generate
N Security -
>
control
y
Ri
l* ¢ < Asset value
probability
L generale l
y
Analysis
result
AL

Figure 4 Internal structure of the casebase

attached procedures for performing some func-
tion. Figure4 shows the internal structure of
the frames for previous cases. An instance
frame of a past security accident is shown in
the Figure 5.

Copyright © 1999 John Wiley & Sons, Ltd,

Case Indexing

The indexes of cases used in this system are
the business process, industry type, data asset
and the EC network environment of the organi-

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

RISK ANALYSIS FOR ELECTRONIC COMMERCE

67

24

T T O T T T S T T

1 {David LaMacchia Indictment
1S-A: accident case
industry: software
process: product distribution
threat-type: (deliberate, hacking)

threat-source: (outsider, hacker)

loss: (loss of sales)

impact: (disclosure of EC asset, distribution of copyrighted software without payment)

vulnerability: EC network control procedure

L

Figure 5 An instance of the accident case

zations. These indexing features are selected
referencing the following index selection guide-
lines suggested by Kolodner (1993).

e Predictiveness: the combination of features of
a case that were responsible for solving the
problem and those combinations that influ-
enced its outcome.

e Abstractness: although cases are specific,
indexes to cases need to be chosen so that the
case can be used in as broad a collection of
situations as appropriates. This criterion indi-
cates the range of applicability of the case and
makes the case generally applicable.

e Concreteness: the danger of abstract indexes
is that they can be so abstract that only through
extensive inference would the reasoner ever
realize that a new situation has those descrip-
tors. Thus, while indexes need to be generally
applicable, they need to be concrete enough so
that they can be recognized with little inference.

e Usefulness: indexes should be chosen to
make the kinds of predictions that will be use-
ful in later reasoning. Thus useful indexes are
those that label a case as being able to give

Copyright © 1999 John Wiley & Sons, Ltd.

guidance about the decisions that a reasoner
deals with.

The business process and the industry frames
have an abstract hierarchical structure. These
hierarchies are used for the partial matching
process described in the following section.
Users can adjust the structure.

Identifying Similar Cases

In order to identify similar past cases, the sys-
tem uses a two-step approach. In the first step,
the system identifies similar cases using index
matching. This is the partial matching process.
In this matching process, the system considers
the abstract hierarchical structure of the busi-
ness process and the industry type frames.
When the value of a specific business process
and the industry type in the new case is differ-
ent from the value of matching cases and their
parent frames are identical to that of the new
case, they can be selected as candidates. How-
ever, this inheritance mechanism is allowed
only through one level.

Those partially matched cases are ranked
using easy numeric matching and ranking
algorithm called nearest-neighbor matching

Int. J. Intell. Sys. Acc. Fin. Mgmi. 8, 61-73 (1999)

68

125

C. JUNG ET AL

(Kolodner, 1993). For each feature in the input
case, the system:

e Finds the corresponding feature in the
stored case

e Compares the two values with each other
and computes the degree of match

e Multiplies a coefficient representing the
importance of the feature to the match.

The system adopted the REMIND algorithm
as follows:

n
>, w; x sim(fl, ff)
=1

n

2 W,

=1

where w, is the importance of feature i, sim is
the similarity function for primitives. f and ff
are the values for feature f; in the input and
retrieved cases, respectively.

In the REMIND system, both the importance
and the dimensional degree of match are rep-
resented as numerical values between 0 and 1.
Closer matches have values closer to 1: poorer
matches closer to 0. Similarly, an importance
ranking of 1 is higher than a lower importance
ranking., The aggregate match score is com-
puted by summing the products of the impor-

Table 2 Method of computing degree of similarity
#

Method Feature

® Business process

Comparison based on
® Industry

placement in an
abstraction hierarchy

Computation of distance ® Size of the IT
on a quantitative scale organization
® Type of H/W and S/W
asset
® Sales revenue
® Number of customers

Computation of distance ® Level of security
on a qualitative scale control
® Degree of competition

Copyright © 1999 John Wiley & Sons, Lid,

tance of each field multiplied by the degree of
match of values in the field. To normalize the
scores, they are divided by the sum of the
importance ranking.

The proposed system adopted three different
methods for computing the degree of similarity
of two values based on the characteristics of
each feature. These methods are represented
in Table2. These methods are represented in
similarity functions sim in the above formula.
Finally, the best-match case is modified and
adapted using past security accident cases and
modification rules. As stated above, the degree
of similarity for business process and industry
type is computed with a partial matching pro-
cess. This is the method of comparison based
on placement in an abstraction hierarchy. The
comparison of distance on a quantitative scale
is to compute the differences between the quan-
tities and then assign the difference to a simi-
larity. The comparison of distance on a qualitat-
ive scale quantifies the features and then
computes the differences between the quan-
tities.

IMPLEMENTATION OF THE SYSTEM

Initial Data Collection

The process for a new case begins when the
user inputs the data about business and the
IT environment of an organization. The major
business data for case indexing includes the
industry type and related processes of the
organization.

They are represented in a hierarchical struc-
ture of frames. Each of these frames has the
pointer of child frame. The users, as needed,
can add new hierarchies. For example, when
the user enters a new business process name,
the system will ask the user to make the
adjusted hierarchies of the business process
type. In most EC cases, the processes to be
inputted are likely to be related to the market-
ing and financial processes. The required data
about the IT environment under EC for case
indexing includes network, network operating
system (NOS), file and DBMS. The sample

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

RISK ANALYSIS FOR ELECTRONIC COMMERCE

69

126

Figure 6 Initial data collection

screen for the initial data collection is shown
in Figure 6.

Asset Evaluation

The goal of this step is to determine the
resources or assets to be secured. This step
identifies which data is critical, and thus which
applications and servers need protection and
monitoring. This step enables an organization
to focus their budget and resources on the
critical and sensitive properties of the organiza-
tion and to establish a priority and required
level of protection. When the user completes
entering the initial data, the system identifies
a set of similar cases, which contains the similar
values in the features inputted from the system.
Figure 7 shows an instance of the result gener-
ated by the system. The user can modify the
value or examine the more detailed process of
the retrieval.

Threat and Vulnerability Evaluation

If the process of asset evaluation has been com-
pleted, the system prompts the user with ques-

Copyright © 1999 John Wiley & Sons, Lid.

tions to determine the expected frequency of
threats and the current control level against
threat and vulnerability.

In particular, the security control in an EC
environment must be more rigorous than that
in a traditional environment. A robust security
solution consists of three types of measure:
protection, monitoring and validation.

e Protective measures: There are three categor-
ies of protective measures that are passive
mechanisms to ‘lock the door’. They are pre-
vention, detection, and recovery. A security
prevention mechanism enforces security during
the system’s operation by preventing a security
violation from occurring. A detection mech-
anism detects attempts to violate security and
successful security violations when or after they
have occurred. A recovery mechanism is used
after a security violation has been detected,
restoring the system to a pre-violation state.

e Validation measures: Validation measures are
proactive, that is, ‘the lock is checked before”.
Examples are active network path probing,
compliance testing and audit review.

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

70

127

C. JUNG ET AL.

el fram Asaset Analvas

e ey el

'8

o MRPRIEAAUSERT OGRS PSS

Figure 7 Evaluation of asset value

e Monitoring measures: Monitoring measures
are reactive, that is, ‘the security camera detects
an intruder’. Examples include audit trails,
activity monitoring; and policy breach detec-
tion.

The security control frame in the casebase
contains slots for asking questions on these
control measures. An example question of the
validation measures is ‘What's the primary
method of encryption for the transmitted mess-
ages?’

When the user finishes answering the ques-
tions, the system identifies a set of similar cases
which have the same values in the major attri-
butes such as the industry, business process,
asset type, network, NOS, file/DBMS, fre-
quency of the threat, vulnerability and current
control level. Based on the probability of the
impact of the event on the asset value in the
most similar case, the system generates the
probability of the impact on unavailability,
destruction, disclosure and modification, which
are the major categories of threats to the secur-
ity of an information system.

The system retrieves past security accident
cases in order to adjust the probability gener-
ated in the above process. If the system find
these cases similar to the current case, the prob-
ability or level of the related threat or vulner-

Copyright © 1999 John Wiley & Sons, Lid.

ability may be higher. An example case of a
retrieved result from the threat and vulner-
ability analysis is shown in Figure 8.

Generation of Risk Analysis Result

Finally, the system generates the risk level for
unavailability, modification, disclosure and
destruction, which are popularly accepted risk
classes (Pfleeger, 1989). The risk level is calcu-
lated by simply multiplying the severity of
impact and the level of threat and vulnerability.
The amount of annual loss expectancy (ALE)
is estimated by multiplying the loss amount of
the impact by the possibility of threat and
vulnerability. Figure 9 shows an example of the
result of risk analysis generated by the system.

CONCLUSION

The strong demand for the Internet and EC is
emerging from the fast-changing environment
of IT. Data integrity and confidentiality are
more indispensable for the Internet and EC
than for traditional systems due to open net-
works. However, the level of risk analysis and
security control for the Internet and EC lags
far behind demand. This study intends to

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 61-73 (1999)

RISK ANALYSIS FOR ELECTRONIC COMMERCE

7"

128

Figure 9 The initial result of risk analysis

Copyright © 1999 John Wiley & Sons, Lid Int. J. Intell. Sys . ;
(' ys. Acc. Fin. Mgmt. 8, 61 73 (
- 8, 1999)

72
C. JUNG ET AL,

129

develop a system that aids risk analysis in an
EC environment.

Risk analysis for EC requires considerable
professional judgment and knowledge of IT.
Nonetheless, the immaturity of risk analysis for
an EC system makes it difficult to afford expert-
ise and knowledge. This is why this study takes
advantage of the CBR technique. The benefits
of this technique correspond to the above
characteristics of risk analysis for EC and comp-
lement its immaturity. As the major casebase
of CBR, this system uses the casebase of past
risk analyses and security accidents.

This study is the first to apply the CBR
technique for risk analysis of an EC system.
The proposed system in this study provides a
fast and cost-effective analysis using the reason-
ing ability of CBR, which comes from analogi-
cal reasoning of the past cases. Therefore it will
become a useful instrument of risk analysis for
novices in this area. In addition, the learning
ability to update the casebase dynamically
makes the system valuable in the fast-changing
EC environment. Consequently, the perform-
ance of this system is expected to improve
gradually as the casebase is updated.

However, the system that is proposed in this
study is only a prototype. This prototype sys-
tem has not been validated, nor applied to any
organization or assessed for its superiority to
traditional risk analysis methods. Morris (1994)
showed the superiority of the CBR technique
for risk analysis and this study only presents
the possibility of CBR application to risk analy-
sis in an EC environment. As a prototype, this
system acts as a guiding light of risk analysis
in an EC environment. In future, this prototype
system will be advanced toward a system that
can be applied to the real world.

References

Benesko, G.G., ‘Electronic commerce in the 21st century’,
available at http://www.rtd.com/cent 21.htm, 1994,
Benesko, G.G., ‘Electronic commerce the next generation’,
available at http://www.rtd.com/ece.htm, 1995.
Brown, CE and Gupta, UG, ‘Applying case-based
reasoning to the accounting domain’, Intelligent Systems
in Accounting, Finance and Management, 3, 1994, 205-221.
Cerullo, M.J. and Shelton, F.A,, ‘Analyzing the cost-

Copyright © 1999 John Wiley & Sons, Lid.

effectiveness of computer controls and security’.
The Internal Auditor, October 1981, 30-37.

Ellsworth, J.H. and Ellsworth, M.V., The Internet Busi-
ness Book, John Wiley, New York, 1994.

Garfinkel, S. and Spafford, G., Practical Unix & Inter-
net Security, 2nd edition. O’Reilly, New York, 1996.

Icove, D. et al, Computer Crime, O'Reilly, New
York, 1995.

Kailay, M.P. and Jarratt P, ‘RAMeX: a prototype
expert system for computer security analysis and
management’, Computers & Security, 14, 1995,
449-463.

Kalakota, R. and Whinston, A., Frontiers of Electronic
Commerce, Addison-Wesley, Reading, MA, 1995.
Kolodner, J.L., “An introduction to case-based reason-
ing’, Artificial Intelligence Review, 6, 1992, 3-34.
Kolodner,].L., Case-Based Reasoning, Morgan Kauf-

mann, Palo Alto, CA, 1993.

Loch, K.D., Carr, H.H. and Warkentin, M.E., “Threats
to information systems: todays’s reality, yester-
day’s understanding’, MIS Quarterly, June 1992,
173-186.

Luger, F. George and Stubblefield, A. William, Arti-
[;,ahl Infi’llligvng): Structures and Strategies for Com-

ex Problem Solving, Benjamin/Cummings,
York, 1993. L A Ve

Morris, B.W., 'SCAN: a case-based reasoning model
for generating information system control rec-
ommendations’, Intelligent Systems in Accounting
Finance and Management, 3, 1994, 47-63. o

Moses, R.H. and Glover, 1., “The CCTA risk analysis
and management methodology (CRAMM) Risk
management Model’, Working Paper, 1988,

Norman, ‘Norman risk analysis: the buddy system’
available at http//www.nonmn.wm/mddyl.hnnl, :

NSL 'Sufun{\g lme_rm-t information servers’, available at
http://nsi.org/library /compsec/ secuinte.html., 1994,

NSl;l. 'Se}("aunty issuesla:)xl\ the use of Electronic Data
nterchange’, available at http: i i
comm/secured.txt, 1991, SR (eLg/ by

Pfleeger, C.P., Security in Computi i
E?g] e g]’ 1 puting, Prentice Hall,
Rainer, f_{.K. Ir, .Synder, C.A. and Carr, H.H,, ‘Risk
mlysls fo'r' l;:)fom'\gtiog technology’, Journal ‘of
nay nrormatio N S S
1991,m e n Systems, 8, No. 1, Summer
Solms, R\V. et al, ‘A framework for information
security evaluation’. In ton &
g ?43_153. formation & Management, 26
Suh, B. and Han, 1, ‘Design of the co
work of Korean risk magrr:agement :;sipat:a l‘df:‘rtrl\g
cation 95 information system threats’ Korea
Accounting Association. Conference on A'IS 1997
Trio, N.R., ‘Internet security’, availabie .
http:/ /www.zurich.ibm/ white-paper.html
Yang, C.Y,, Secure Electronic Transaction (SET) Specifcation
"f"* 1: Business Description, Available at httpe/ /www
 vitedutw/~cyyang/set/bus/SETBUS htm, 1996,
ZA:luznlnk,'M.l’.. Security design in distributed computi
applications, PhD thesis. The University of Utah]9‘;15&{

Int. J. Intell. Sys. Ace. Fin Mgmt. 8, 61 73 (1999)

at

RISK ANALYSIS FOR ELECTRONIC COMMERCE

130

73

2 a R, -
I a‘u”}t—n‘u .
" s P . T,
L Sl Artificial
e Bl | titedigence

Slcpvian canlocsymiecs

1) “ ﬂ 4
g oo piios 2. P Meficae

[lﬁtﬂtypeb
. L-Ui-hﬂ Glf-l
l-m-a Rt Fomignd

p-Shlled JOUNS For posiews 49 a
fBani ol $ines o iew fou

ﬂ Mgﬂﬂ.ﬁra sl Iy W S0 bl e
'!""t mhdmm&u& Pacirossdl ot bnlgs
D O !l!lﬂll gl the fpasteass deonafion e
> & wp the of Iniey dlakly sy
, ey (OBRG deglosguar du all tagmired
amifica pe rmge, srx ol dgld be
¢ iigtnd 2608 Dvwulkd B uyetecd of goased R
#nm'a-hoﬂmu-a bous showd he
ot Aol qﬁm-lqummcllmndwx.im
:-;'*n‘ . ol ey ihoneed Bt e i s page

w

'7.‘ =i IP

131

Artificial
Intelligence

in ici
Artificial Intelligence in Medicine 23 (2001) 171186 Med 2l
www.elsevier.com/locate/artmed

Case-based reasoning for antibiotics therapy advice:
an investigation of retrieval algorithms
and prototypes

Rainer Schmidt’, Lothar Gierl

Institute for Medical Informatics and Biometry, University of Rostock, Rembrandtstrasse 16/17, D-18055
Rostock, Germany

Received 22 May 2000; received in revised form 7 December 2000; accepted 2 May 2001

Abstract

We have developed an antibiotics therapy advice system called ICONS for patients in an
intensive care unit (ICU) who have caught an infection as additional complication. Since advice for
such critically ill patients is needed very quickly and as the actual pathogen still has to be identified
by the laboratory, we use an expected pathogen spectrum based on medical background knowledge
and known resistances. The expected pathogen spectra and the resistance information are
periodically updated from laboratory results. To speed up the process of finding suitable therapy
recommendations, we have applied case-based reasoning (CBR) techniques. As all required
information should always be up to date in medical expert systems, new cases should be
incrementally incorporated into the case base and outdated ones should be updated or erased. For
reasons of space limitations and of retrieval time an indefinite growth of the case base should be
avoided. To fulfill these requirements we propose that specific single cases should be generalised to
more general prototypical ones and that subsequent redundant cases should be erased. In this paper,
we present evaluation results of different generation strategies for generalised cases (prototypes).
Additionally, we compare measured retrieval times for two indexing retrieval algorithms: simple
indexing, which is appropriate for small and medium case bases, and tree-hash retrieval, which is
advantageous for large case bases, © 2001 Elsevier Science B.V. All rights reserved.

Keywonds: Antibiotics; Decision support; Artificial intelligence; Case-based reasoning; Retrieval

1. Introduction

Severe bacterial infections are still a life-threatening complication in intensive care
medicine, correlating with a high mortality [1]. Identification of bacterial pathogens is

* Corresponding author. Tel.: +49-381-394-7307; fax: +49-381-394-7203.
E-mail address: schmidt@medizin uni-rostock de (R. Schmidt).

0933-3657/01/% ~ see front matter © 2001 Elsevier Science B.V. All rights reserved.
PIL50933.3657(01)00083-5

131

R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 173

C 13 ihie Knowledge Base e)
A

v A
Group of Patients + | Retrieval of a Similar Case |
Affected Organ *
[Expecied Pathogen Spectrum | [Adaptation |

[Sensivity Relation |

[First List of Antibiotics | Constraints:
v<___ Sphere of Activity
Contraindications

[Second List of Antibiotics |
*4—_‘ Combination Rules|

and Resistences

[Third List of Antibintics |

[Therapy Advice &

[Dosge |

the Pathogens

g -

Fig. 2. Overview of ICONS.

complication. Since, for such critical patients, physicians cannot wait for the laboratory
results, we use an expected pathogen spectrum based on medical background knowledge.
Each recommended antibiotics therapy should completely cover this spectrum. Further-
more, as advice is needed very quickly we speed up the process of computing recom-
mended antibiotic therapies by using CBR methods (the right path in Fig. 2). This means
that we search for a previous similar patient and transfer the therapies suggested for his
situation to the current patient. These previous therapies are then adapted to take account of
any differences between the situations of the previous and current patients.

Within the ICONS project the adviser was originally developed for an ICU in Munich
[2). We evaluated the quality of the antibiotic therapy recommendations and the user
friendliness of the system within this unit. Recently, we have converted ICONS to fit the
environment in an ICU in Rostock. The change of ICU means that some other antibiotics
are available, and some local information is partly different (frequently observed patho-
gens, slightly different resistances). So, now we are evaluating the therapy recommenda-
tions again.

132

172 R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

often difficult. It usually requires at least 24 h to identify the pathogen that is responsible
for an infection and at least another 24 h to find out which antibiotics have therapeutic
effects against the identified pathogen. In order not to endanger the patient, physicians
sometimes have to start an antimicrobial therapy before the responsible pathogen and its
sensitivities are determined. This sort of antibiotic therapy is called “calculated”, in
contrast to a “selective” therapy, which is used when microbiological results are already
available. For an adequate calculated antibiotic therapy, it is essential to access information
about the expected pathogen spectrum and its expected susceptibility, existing contra-
indications, and the side effects of antibiotics.

To support medical decision making in the complex task of calculated antibiotic therapy
in intensive care medicine, we have developed a computer-based therapy adviser, called
ICONS. It uses a form of artificial intelligence called case-based reasoning (CBR). In CBR,
previously documented cases are used to solve a similar current problem. Fig. 1 shows the
CBR cycle developed by Aamodt and Plaza [3]. Medical experience in form of cases is auto-
matically retained as the system is used in the daily routine of the intensive care unit (ICU).

The main task of our adviser is to present suitable calculated antibiotics therapy advice
(Fig. 3) for intensive care patients who have caught a bacterial infection as an additional

Problem

Retrieve

Retain

Revise

v

Confirmed ss:flﬂ“d
Solution ution

Fig. 1. Case-based reasoning cycle.

174 R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

Furthermore, we have recently evaluated the CBR method within the ICONS system.
Here we present results concerning retrieval algorithms and the storage architecture, which
generates prototypical cases automatically.

2. Materials and methods
2.1. Strategy for selecting recommended antibiotic therapies

As ICONS is not a diagnostic system, we do not attempt to deduce evidence for
diagnoses based on symptoms, frequencies or probabilities, but instead pursue a strategy
that can be characterised as follows: find all possible solutions, and subsequently reduce
them using the patient’s contraindications and the requirement to completely cover the
calculated pathogen spectrum (establish-refine strategy).

Firstly, we distinguish between different groups of patients (infection acquired in or
outside the ward, respectively the hospital; immuncompromised patients). An initial list of
antibiotics is generated by a susceptibility relation, which for each group of pathogens
provides all antibiotics that usually have therapeutic effects. This list contains all
antibiotics that cover at least a part of the potential pathogen spectrum. We obtain a
second list of antibiotics by reducing the first one through applying two constraints: the
patient’s contraindications and the desired sphere of activity. Using the antibiotics on
this second list, we try to find antibiotics that cover the whole pathogen spectrum
individually. ,

Except for some community-acquired infections, monotherapies have to be combined
with antibiotics that have synergistic or additive effects. If no adequate single therapy can
be found, we use combination rules to generate combinations of antibiotics. Each possible
combination must be tested for the ability to cover the expected spectrum completely.

2.2. Case-based reasoning

In this application, the main argument for using CBR methods is to speed up the
process of finding adequate therapies. We shorten the strategy described above for
selecting recommended antibiotic therapies by scarching for a similar case, retrieving
its suggested therapies, and by adapting them according to the contraindications of the
current patient.

Other advantages of CBR are partially automatic knowledge acquisition, partially
automatic update and integration of environmental information (e.g. resistance develop-
ments) and its applicability in domains with weak domain theories.

2.2.1. Retrieval

The retrieval consists of three steps. Firstly, we select the part of the case base in which
all cases share the following two attributes with the current patient: the group of patients,
and the infected organ system. This means a selection of the appropriate prototype tree (see
Section 2.2.3). Subsequently, we apply the tree-hash retrieval algorithm of Stottler et al. [4]
for nominal valued contraindications and the similarity measure of Tversky [5] for the few

133

R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 175

integer valued contraindications. Furthermore, we use an adaptability criterion, because
not every case is adaptable [6]). The attributes used for the retrieval are the contra-
indications, which work as constraints on the set of possible antibiotics. It is, therefore,
obvious that we should use only former cases whose contraindications are shared by the
current patient. To guarantee this condition the adaptability criterion has to be checked
during retrieval. This can be considered as an example which supports the belief of Smyth
and Keane that the similarity assumption alone is often inappropriate and that retrieval
should also take adaptability into account [7].

2.2.2. Adaptations

In ICONS three different sorts of adaptations occur: a CBR adaptation to obtain sets of
calculated advisable therapies for current patients (Fig. 3 shows the presentation of such a
set), an adaptation of chosen therapies according to laboratory findings and a periodical
update of laboratory information (resistance situation, frequently observed pathogens).

2.2.2.1. Case-based reasoning adaptation. Each contraindication restricts the set of
advisable therapies. During the retrieval we require that the retrieved case does not
have any additional contraindications besides those of the current case. Otherwise the
solution set for the current case would be inadmissibly reduced by the additional
contraindications of a previous case.

Because of this criterion, the adaptation of a previous similar case is rather simple. It is
simply a matter of transferring the set of advisable therapies and if necessary of reducing
this set according to the additional contraindications of the current case.

2.2.2.2. Adaptations of chosen therapies to laboratory findings. Adaptations of laboratory
findings do not really belong to the CBR paradigm. However, they are based on case
information. The goal of the main part of ICONS is to present advisable therapies before
the laboratory results are known. When these results become available later on, the initial
therapy has to be adapted to them.

< Restrictions Pathogen Spectrum Additional Theraples Own Creation 52 Y
ADVYISABLE THERAPIES: Price (0M/0ay
LINCOSAMIDE + GYRRSEHEMMER
[[] CLINDAMYCIN « CIPROFLOKACIN 92 20
PENICILLINE + AMINDGLYKOSIDE :
[PIPERACILLIN + GENTAMICIN 8 v 11t
] PIPERACILLIN + TDORAMYCIN 65 b &
PIPERACILLIN v AMIKACIN 166 2%
AUGMENTAN + TDBRAMYCIN 6 b 120
[() AUGMENTAN v AMIKACIN 168 b 20
[] TAZOBAC + GENTAMICIN 11 b 1S
() TAZOBAC v TOBRAMYCIN 28 b 42
() TAZOBAC + AIKACIN 129
() HEZLOCILUIN + TOBRAMYCIN s b 14
[[) MezLociu v AMIEACIN 177 v 22

Fig. 3. Part of an advisable antibiotics therapy presentation.

134

176 R. Schmids, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 1 71-186

There are two sorts of findings. After about 24 h the pathogen that is responsible for the
infection is identified. If the identified pathogen does not belong to the calculated pathogen
spectrum and if this pathogen is not sensitive to the initial therapy — according to the
systems sensitivity information, then new specific advisable therapies against this pathogen
have to be computed.

After about another 24 h the sensitivity test results (antibiogram) of this pathogen
against the various antibiotics become available. If the laboratory sensitivity test results
show that the identified pathogen is, in contrast to the system’s sensitivity information, not
sensitive to the initial therapy, it leads to the same task: new “selective” advisable
therapies, which have therapeutic effects against the identified pathogen, have to be
computed.

When new cases are incorporated into the system, their laboratory findings must be taken
into account and consequently the sensitivity information has to be updated. Additionally,
the expected pathogen spectra might change over time. For both laboratory information
sources used by the system (sensitivity information, and expected pathogen spectra) we
have implemented a periodical update. This can be seen as another form of adaptation that
is not based on single cases, but on statistical evaluation of specific information from a
number of cases.

2.2.2.3. Resistance information. It might seem to be a contradiction that, in contrast to the
system’s current sensitivity information, laboratory tests can show that a pathogen is not
sensitive to an antibiotic. However, as pathogens are never exactly alike, but always slight
mutations, the sensitivity information is based on a percentage value. For example,
nowadays for many problematic pathogens only 80 or 90% sensitivity can be observed
to the strongest antibiotics. So an observed sensitivity higher than 66% is usually already
considered as “‘sensitive”.

To make information about the current local resistances available, we have implemented
an Intranet information program based on JAVA. The laboratory database, which contains
the antibiograms (the results of the sensitivity tests of the various antibiotics applied to the
identified pathogen), is evaluated monthly. The results are presented in two forms: a table
shows the current resistance situation in percent and in absolute numbers (Fig. 4) and

Pgoudomonas 04/96 - 03/97
Antibiotics Sensiive Resistant Not tested

percont absokte percont absohte percent absolute
Tobramycin 94,98 625 502 kY] 281 19
Amikacin 91,22 613 8.78 53 074 5
Ciprofloxacin 81,66 552 18.34 124 015 1
(G entamicin 77.99 520 20 143 0.00 0
|mipenem 71,20 482 2880 195 0,00 0
Ofloxacin 69.13 468 3087 209 0.00 0
Celtazidim 60.69 465 N 210 0,30 2

Fig. 4. Top part of the tabular presentation of the resistance situation (the antibiotics are sorted according to
their percentage values),

135

M\'

m

N

D

‘R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 177

graphs show courses of resistance developments. The user can switch between the two
presentations. In the graphical menu, the physician can select the pathogen (only one for
each presentation), the time period to be considered, and the antibiotics. Up to eight
antibiotics can be graphically presented simultaneously.

2.2.3. Prototypes

Since in an incrementally working system the number of cases increases continuously,
storing each case would slow down the retrieval time and exceed any space limitations. We,
therefore, decided to structure the case base by prototypes and to store only those cases that
differ significantly from their prototype. Though the general use of prototypes was
introduced early in the CBR field [8,9], it is still mainly applied in the medical domain
(e.g. [10-13]). Our prototype architecture is chiefly based on experience with a diagnostic
application [14], where we create prototypes that include the most frequent features of the
corresponding cases. In other words, the features of a prototype are those shared by most of
their cases. This idea is based on empirical research [15], which indicates that people
consider cases to be more “typical’” when the number of features shared between the
presented case and the “normal™ case increases.

In diagnostic applications, prototypes correspond to typical diseases or diagnoses. So,
for antibiotic therapies, prototypes are expected to correspond to typical antibiotic
treatments associated with typical clinical features of patients [16). However, as the
attributes are contraindications that are responsible not for the generation, but for the
restriction of the solution set, this is only partly true. We have investigated the growth of a
hierarchical prototype structure built up from a randomly ordered stream of cases.

@. election of a prototype tree. In ICONS there is not just one prototype tree, but a

o

orest of trees, which are all independent from each other. A specific tree can be generated
for each affected organ system combined with each group of patients. So, for nearly 20
organ systems and five patient groups there are nearly 100 possible prototype trees. We
generate them dynamically only when required. For example a tree for “‘community-
acquired kidney infections™ will be generated as soon as the first data input occurs from a
patient who has a kidney infection which he has acquired outside the hospital.

Since all cases within the same prototype tree belong to the same group of patients, and
the same organ system is affected, it follows that the same expected pathogen spectrum
deduced from background knowledge has to be covered. Cases within the same prototype
tree are only discriminated from each other by their contraindications. These are allergies
against specific antibiotics, reduced organ functions (kidney and liver), specific diagnoses
(e.g. CNS disease), special blood diseases, pregnancy and the patient’s age.

2.2.3.2. Generating prototypes. The aim of our concept of prototypical cases is to structure
the case base, to keep the prototypes always up to date and to erase redundant cases. As the
prototypes are generated incrementally and as they should always contain the typical
features of their cases, we use two threshold parameters:

1. The parameter “minimum frequency” determines how (relatively) often a contra-
indication has to occur in the set of cases to be incorporated into the prototype.

136

178 R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

2. The parameter “number of cases’ determines the required number of cases that are
necessary to fill a prototype or to create an alternative prototype. The lower this
threshold the more prototypes are created and the fewer cases are stored.

First, all cases are stored below the prototype they belong to. If the threshold “number of
cases’ is reached after storing a new case below a prototype, the prototype will be “filled™.
At this point, every contraindication that occurs in the prototype’s cases at least as often as
the “minimum frequency” threshold will be included into the prototype. Subsequently, the
“filled” prototype can be treated like a case. The same holds for prototypes as for cases:
each contraindication restricts the set of advisable therapies. The contraindications of a
prototype are those that occur most often within its cases. So from the viewpoint of
frequency they are the typical ones. Those cases that have no additional contraindications
in comparison with their prototypes are erased.

When new cases are added later on to an already filled prototype, the observed
frequencies may change and consequently the contraindications of the prototype may
have to be recomputed. If the contraindications of a prototype change, the suggested
antibiotic therapies have to be recomputed, too. In addition, all cases must be inspected
again to determine whether they need to be stored.

We create an *‘alternative’ prototype below an already existing prototype if for the latter
enough cases exist (which means the threshold “number of cases™ is reached) that have at
least one contraindication in common, which the already existing prototype does not
include. We generate the alternative prototype using those cases that share at least one
contraindication not included in the existing prototype. We place this new prototype in the
hierarchy directly below the already existing prototype. Alternative prototypes differ from
their superior prototypes by their contraindications and, therefore, also by their sets of
advisable antibiotic therapies.

3. Results
3.1. Comparison of two indexing retrieval algorithms

The case attributes are the possible contraindications (e.g. penicillin-allergy or preg-
nancy). As these are unordered nominal values, we did not consider retrieval algorithms
like CBR retrieval nets [17), which are appropriate for ordered nominal values, nor nearest
neighbor algorithms [18], which are appropriate for metric values, but only indexing
algorithms.

Originally, we applied the tree-hash retrieval algorithm developed by Stottler et al. [4],
which is advantageous for large case bases. Recently we compared it with a simple
indexing algorithm. The results show that the answer to the question: which algorithm
works faster? depends on the definition of large.

As we are going to present retrieval times, we now give details of the hardware and
software we used:

e Computer: Power Macintosh;
e Operating system: Mac OS DI-8.1;

137

R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 179

Memory size: 64MB;

Virtual memory size: 74. 8MB;

Programming language: Macintosh Common Lisp (MCL), Version 3.0;
Memory size reserved for MCL 3.0: desired size, 4.1MB; minimal size: 3.6MB.

3.1.1. Tree-hash retrieval

The tree-hash retrieval algorithm was designed for the retrieval of cases whose attributes
have qualitative values. In the following, we use the terms of the authors of the tree-hash
retrieval algorithm. From a rather spatial point of view, they see attributes as dimensions.

In a pre-processing step, a tree is constructed. For each possible combination of
dimensions a node is set up. For example, in the two-dimensional case with dimensions
d1 and d2, the possible dimension combinations are {d1, d2, d1d2}. The algorithm attempts
a retrieval based on each of these combinations and computes a similarity measure. In our
example, a first retrieval is performed based on d1, meaning that d1 is the only dimension
that must produce an exact match. The same is done for d2. Retrieval based on d1d2
indicates that both dimensions must match the dimensions of a case in the case base.

If a hashing scheme is used, the retrieval time does not increase with the number of cases,
but increases with the number of dimensions. When this number is rather low (up to 10, at
most 15), the algorithm is very fast.

The tree-hash pre-processing step generates all possible combinations of dimensions and
represents them as nodes in a tree. If the dimensions are given in decreasing order of
importance in a dimension list, the dimensions are placed accordingly in the tree. The
following algorithm generates the tree structure displayed in Fig. 5, when the number of
dimensions, D, equals three.

Root = dl

call tree (Root, 1)

function tree (t, n)

if n = D then return t

else

leftson (t) = call tree (dn + 1 concatenated to back of t, n + 1)

rightson (t) = call tree (dn + 1 concatenated to back of t without its last dimension,
n+4 1)

To provide efficient lookup, a unique pointer is created for each case and placed in a hash
table 2° — 1 times, once for each possible combination of attribute values, ignoring order.

RN
\ YN

did2d3 did3 d2d3 d3

did2

Fig. 5. Example of hash-tree.

138

180 R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

This results in a large hash table, which encompasses all cases, organised by every possible
ordering of dimensions. When a node is visited, the case can be hashed using the
dimensions represented by the node. Retrieval simply consists of visiting the nodes of
the tree and performing a hash look-up based on the dimensions of the node.

Instead of visiting every node in the tree, it is more efficient to search the tree in a
specified order, because some nodes do not have to be visited. Traversal of the tree begins at
the root. At each node, an attempt is made to hash retrieve a case based on the dimensions
of that node. If the retrieval is successful, it continues down the left branch. If unsuccessful,
it continues down the right branch, because in the left branch no success is possible and it
would be a waste of time to visit such a left branch. This process is continued until a leaf
node is reached. At this point, the similarity value of the node of the last successful retrieval
is stored. Then the algorithm backtracks to the last successful node, and continues to its
right son. This process is repeated until there are no successful nodes left to backtrack to.
The stored similarity values are compared and the best one is selected.

This process can be shortened. During the pre-processing, the highest possible score of
each node is stored. Since the highest possible score at any node is the maximum of the
possible scores of its subnodes, nodes and their subnodes which have a lower highest
possible score than the similarity value already reached do not have to be visited.

3.1.2. Comparison with a simple indexing algorithm

Simple indexing does not construct a hash-tree, but hashes directly. We use a table to
store attribute values with pointers to lists of those cases that contain the values. At runtime,
we set up a second table. During the retrieval it contains information like “‘caseno. — sum
of (so far) indexed weights". The cases with the same values as the query case are looked
up in the first table and their weights are increased in the second one. At the end, the cases
with highest weights are retrieved. For both algorithms, we have used a test set of 100
cases, which were incrementally incorporated into the system (Table 1).

The results can be summarised as follows: simple indexing works much faster than the
tree-hash algorithm. However, for simple indexing the retrieval time increases with the
number of stored cases, by approximately 0.001 s per 15 cases. As tree-hash does not

Table 1

Retrieval times for tree-hash and simple indexing retrieval algorithms

Case nos. Average retrieval ' Average retrieval time

time for tree-hash for simple indexing

2-15 0.233 0.043

16-30 0.231 0.044

31-45 0.234 0.045

46-60 0.233 0.046

61-75 0.232 0.047

76-80 0.233 0.047

81-85 0.231 0.048

86-90 0233 0.048

91-95 0.231 0.049

96-100 0.232 0.049

139

R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 181

depend on the number of stored cases, both algorithms should have equal retrieval times
when the case base contains roughly about 3000 cases. However, this result depends on our
concrete implementation in Macintosh Common Lisp (MCL 3.0). As Lisp does not support
pointers, which are useful for operations on trees, graphs, etc. an implementation in other
programming languages like C or PASCAL might come up with better results for the tree-
hash algorithm.

Consequently, the initial overhead for tree-hashing in comparison to simple indexing is
outweighed by faster retrieval times for huge case bases. In our implementation, “huge”
refers to case bases with a few thousands of items.

3.2. Prototype generation strategies

The general idea of our concept is to keep the prototypes always up to date. They should
contain the typical features of their cases. We have tested two contrasting policies for
deleting redundant cases and a strategy of keeping all cases. Our evaluation had two aims.
First, we wished to find a strategy that best fits the two contrasting aims of finding many
adaptable cases or prototypes and requiring little memory. Secondly, we wished to find
good settings for the threshold parameters.

Normally, cases without additional features in comparison to their prototype are
redundant, because they do not contain any additional information [19]. However, in
our application the attributes are contraindications, which are not used to generate a
solution, but to restrict a solution set. This means they are applied as constraints. A case
with fewer contraindications than its prototype has a greater chance of being adaptable to a
query case, because only a case without additional contraindications in comparison to the
query case is adaptable.

We have, therefore, tested two opposing strategies: firstly, deleting cases without
additional attributes and secondly, deleting only cases with additional attributes. Addi-
tionally, we have tested a strategy without deleting any cases at all.

The memory size without any stored cases is about 2.248MB for all three strategies, The
argument about the memory might seem to be unreasonable, because the differences
between the strategies are only about 40KB for 75 test cases. However, we performed our
tests in just one of about 100 possible parallel sets. A total of 75 cases in each set might lead
to differences of up to 4MB. This leads to the question of whether our system should
require about 12 or about 16MB memory. Certainly, problems should not occur until the
number of cases per set exceeds 75.

Without generating any prototypes at all, for 51 of the 75 test cases a similar adaptable
case can be found. As prototypes are treated like cases, this number can be exceeded.

3.2.1. Strategy A: deleting cases without additional attributes

We have tested the strategies with 75 cases, which were incrementally incorporated
into the system. For strategy A, we varied the threshold parameter “number of cases”,
which indicates how many cases are necessary to generate a prototype. The second
threshold parameter “relative frequency™ was set to 33%, which means that a contra-
indication is incorporated into a prototype if at least a third of its cases have this
contraindication.

140

182 R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

Table 2
Test results for strategy A

Setting number Setting number Setting number Setting number

of cases = 2 of cases = 3 of cases = 4 of cases = §
Memory size (MB): after 75 cases 2.392 2.390 2.401 2402
Number of prototypes 9 7 8 8
Number of stored cases 53 57 62 63
Number of deleted cases 22 18 13 12
Number of adaptations 12 26 31 31

The results (Table 2) can be summarised as follows: the more cases necessary to generate
a prototype (this is achieved by increasing the value “number of cases”) the higher the
number of stored cases and the higher the number of retrieved adaptable cases. After a
while there is only little to be gained by increasing this threshold parameter any further (4th
setting). A surprise is the big increase in the number of retrieved adaptable cases in the
second setting compared with the first one. This cannot be simply explained by the four
additionally stored cases, but by the following two phenomena. Firstly, those cases that
have no additional information (contraindications) in comparison to their prototype are
deleted. This means that the deleted cases would be more likely to be adaptable to future
queries. Secondly, under the second setting the prototypes are generated later and
consequently cases are deleted later as well.

One aim of using prototypes is the hope of reducing the memory size. For strategy A, this
benefit does not occur, because the storage requirement for prototypes is bigger than for
cases. This is because prototypes contain some additional information: the intersection of
advisable therapies for their cases (cases only contain additional specific therapy sugges-
tions), observed frequencies of contraindications of their cases, etc.

3.2.2. Strategy B: deleting cases with additional attributes

Our aim with strategy B, was to keep in the case base those cases that have a higher
chance to be adaptable. These are cases with few contraindications. We, therefore, adapted
a strategy opposite to strategy A, namely, deleting cases with additional information
(contraindications) to their prototype. As many cases are deleted, we set the threshold
parameter “number of cases™ to the value two. Here, we varied the second parameter
“relative frequency™, which determines the frequency with which contraindications have
to be observed among the cases to be incorporated into a prototype.

The difference between the results for the two settings for strategy B, is rather small
(Table 3). With a smaller relative frequency (2nd Setting) more contraindications are
incorporated into the prototypes. So, fewer stored cases have additional contraindications
in comparison to their prototypes and consequently fewer cases are deleted. Furthermore,
fewer prototypes are generated, because the prototypes cover more cases. The memory size
is nearly the same and the number of retrieved adaptable cases is exactly the same for both
settings.

In comparison to strategy A, it is noticeable that about the same number of prototypes
have been generated, but much more cases have been deleted. Though those cases which

141

R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 183

Table 3
Test results for strategy B
Parameter setting: Parameter setting
relative frequency = 33% relative frequency = 25%
Memory size (MB): after 75 cases 2.373 2368
Number of generated prototypes 9 6
Number of stored cases 20 25
Number of deleted cases 55 50
Number of adaptations 14 14

have a bigger chance to be adaptable remain in the case base, the number of retrieved
adaptable cases slightly increases in comparison to the first setting of strategy A, but the
number is not as high as in the other settings of strategy A.

So, the strategy of keeping those cases that are easily adaptable results in such a small
case base that only few adaptable cases can be retrieved.

3.2.3. Strategy C: all cases remain in the case base

For strategy C, no cases are deleted at all. We have evaluated the same threshold
parameter settings as for strategy A. It can be seen that many more adaptable cases can be
retrieved in comparison to the corresponding settings of strategy C, while the memory
requirement increases only slightly (Table 4).

Since two cases are sufficient to generate a prototype in the first setting, many
prototypes are created and the memory requirement increases correspondingly. It is a
little surprising that fewer adaptable cases are retrieved, but this is because a hierarchy
with three levels of prototypes has been generated, and since the prototypes are treated
as cases, the right prototype on each level has to be determined to be the most similar
case.

Really surprising is the big increase of retrieved adaptable cases in the third setting.
There are two possible explanations. Firstly, as the number of generated prototypes
decreases, the prototype hierarchy is simpler and it is easier to find the appropriate case.
Secondly, and probably the main reason, the number of cases which are necessary to
generate a prototype is higher (four), so that more cases are considered when a generated
prototype is filled, and consequently fewer contraindications are incorporated into the

Table 4
Test results for strategy C

Setting number Setting number Setting number Setting number

of cases = 2 of cases = 3 of cases = 4 of cases = 4
Memory size (MB): after 75 cases 2439 2426 2421 2419
Number of prototypes 19 10 8 7
Number of stored cases 75 75 75 75
Number of deleted cases 0 0 0 0
Number of adaptations 29 32 52 51

142

184 R. Schmids, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

prototype. This means the prototypes themselves become more adaptable. However, when
the number of generated prototypes decreases, there are fewer cases available to be used for
adaptation (4th Setting).

3.2.4. Summary of the evaluation results for the prototype strategies

Keeping all cases in the case base increases the memory requirement, but increases the
number of retrieved adaptable cases dramatically. Considering the number of retrieved
adaptable cases, strategy A provides results that are nearly as good as for strategy C, but the
achieved reduction is rather small. Keeping more adaptable cases (strategy B) results in a
small case base, but only few adaptable cases can be found.

Too many prototypes should be avoided, because a complex hierarchy results in
difficulties in finding the desired case. This means the threshold parameter ‘“‘number of
cases” should not be set too low.

The most preferable setting is the third one of strategy C. Only if the memory
limitations become a real problem should strategies that delete redundant cases be
considered.

4. Discussion

In this paper, we have briefly presented the application of CBR in our antibiotic therapy
adviser ICONS; we have compared two retrieval algorithms, and have presented results for
different prototype strategies and different settings.

Simple indexing works much faster than the tree-hash algorithm. However, since under
simple indexing the retrieval time increases with the number of stored cases and the tree-
hash algorithm does not depend on the number of stored cases, both algorithms should have
equal retrieval times when few thousands of cases are stored.

As physicians reason with prototypical and exceptional cases anyway and as medical
knowledge based systems should take the reasoning of physicians into account [20], the
creation of prototypes seems to be an appropriate learning technique for medical domains.
So far only few CBR approaches to therapeutic tasks are known. Some of them also use
prototypes (e.g. [12,13,21]), some apply schemata (e.g. [16]).

However, the uniqueness of our prototype architecture results from the fact that the
attributes, which are used to determine similarity, are not responsible for the generation,
but the restriction of solutions.

The aim of our concept of prototypical cases is to structure the case base, to keep the
prototypes always up to date and to erase redundant cases. The best strategy to find many
adaptable cases is obviously to keep all cases in the case base. However, every stored case
increases the memory requirement of our system by approximately 1.7KB. This might lead
to performance problems for much bigger case bases, keeping in mind that our test set of 75
cases covers just one out of a set of more than 80 medical areas.

The best settings, whether all cases are retained (strategy C) or cases without
additional information (strategy A) are deleted, are those where for the threshold
parameter “number of cases™ is set sufficiently high. This results in more retrieved
adaptable cases.

143

R. Schmids, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186 185

Acknowledgements

We thank Robin Boswell at the School of Computer and Mathematical Sciences, The
Robert Gordon University, Aberdeen, Scotland, for helping with the English language. The
German Ministry for Research and Technology funded the earlier part of this research. It
was part of the MEDWIS project of the MEDIS Institute of GSF, Neuherberg, for research
on medical knowledge bases. The current part of this research is funded by the German
Research Society (DFG).

References

[1] Bueno-Cavanillas A, et al. Influence of nosocomial infection on mortality rate in an intensive care unit. Crit
Care Med 1994;22:55-60.

(2] Heindl B, et al. A case-based consiliarius for therapy recommendation (ICONS): computer-based advice
for calculated antibiotic therapy in intensive care medicine. Comput Methods Prog Biomed 1997;52:117~
21.

[3] Aamodt A, Plaza E. Case-based reasoning: foundational issues, methodological variations, and system
approaches. Artif Intel Commun 1994;7(1):39-59.

[4] Stottler RH, Henke AL, King JA. Rapid retrieval algorithms for case-based reasoning. In: Proceedings of
the International Joint Conference on Artificial Intelligence. ICAI-89, Detroit, Michigan, 1989. p. 233-37,

(5] Tversky A. Features of similarity. Psychol Rev 1977,84:327-52.

(6] Smyth B, Keane MT. Retrieving adaptable cases: the role of adaptation knowledge in case retrieval. In:
Richter MM, et al., editors, Proceedings of the 1st European Workshop on Case-Based Reasoning.
University of Kaiserslautern, Kaiserslautern, 1993. p. 76-81.

(7] Smyth B, Keane MT. Adaptation-guided retrieval: questioning the similarity assumption in reasoning. Artif
Intel 1998;102:249-93.

(8] Schank RC. Dynamic memory: a theory of leamning in computer and people. New York: Cambridge
University Press, 1982,

[9] Bareiss R. Exemplar-based knowledge acquisition. San Diego: Academic Press, 1989,

(10) Evans CD. A case-based assistant for diagnosis and analysis of dysmorphic syndromes. Med Inform
1995;20:121-31.

(11) Tumer R. Organizing and using schematic knowledge for medical diagnosis. In: Proceedings of Case-
Based Reasoning Workshop. San Mateo; Morgan Kaufmann, 1988, p. 435-46,

(12) Bichindaritz I. From cases to classes: focusing on abstraction in case-based reasoning. In: Burkhardt H-D,
Lenz M, editors. Proceedings of the 4th German Workshop on Case-Based Reasoning, University of
Berlin, Berlin, 1996. p. 62-9.

(13) Bellazzi R, Montani S, Portinale L, Retrieval in a prototype-based case library: a case study in diabetes
therapy revision. In: Smyth B, Cunningham P, editors. Proceedings of 4th European Workshop on Case-
Based Reasoning. Berlin: Springer, 1998, p. 64-75.

(14] Gierl L, Stengel-Rutkowski S. Integrating consultation and semi-automatic knowledge acquisition in a
prototype-based architecture: experiences with dysmorphic syndromes. Artif Intel Med 1994,6:29-49,

(15] Rosch E, Mervis CB. Family resemblances: studies in the structure of categories. Cognitive Psychol
1975,7:573-605.

(16) Schmidt R, Pollwein B, Gierl L. Experiences with case-based reasoning methods and prototypes for
medical knowledge-based systems. In: Horn W, et al,, editors. Proceedings of Artificial Intelligence in
Medicine. Berlin: Springer, 1999. p. 124-32.

[17] Lenz M, Auriol E, Manago M. Diagnosis and decision support. In: Lenz M, et al., editors. Case-based
reasoning technology, from foundations to applications. Berlin: Springer, 1998. p. 51-90.

[18) Wess S, Althoff K-D, Derwald G. Improving the retrieval step in case-based reasoning. In: Richter MM,
et al, editors. Proceedings of 1st Furopean Workshop on Case-Based Reasoning. University of
Kaiserslautern, Kaiserslautern, 1993, p. 83-8.

144

186 R. Schmidt, L. Gierl/Artificial Intelligence in Medicine 23 (2001) 171-186

[19] Kolodner J. Case-based reasoning. San Mateo: Morgan Kaufmann, 1993.

(20] Strube G, Janetzko D. Episodisches Wissen und fallbasiertes SchlieBen: Aufgaben fiir die Wissensdiag-
nostik und die Wissenspsychologie. Schweizerische Zeitschrift fiir Psychologie 1990:49:211-21.

(21) Camargo KG, et al. Designing nutritional programs with case-based reasoning. In: Gierl L, et al., editors.
Proceedings of 6th German Workshop on Case-Based Reasoning. University of Rostock, Rostock, 1998.
p. 141-7,

145

Avelino J. Gonzalez / Lingli Xu / Uma M. Gupta

VALIDATION TECHNIQUES FOR CASE-BASED
REASONING SYSTEMS

Abstract

Casc-Based Reasoning (CaBR) systems, by their nature, have a built-in set of test cases in
their case library. Effective use of this unusual feature can facilitate the validation process by
minimizing the involvement of domain experts in the process. This can reduce the cost of the
validation process, and eliminate the subjective component introduced by experts. This article
proposes a validation technique which makes use of the case library to validate the CaBR system.
Called the Case Library Subset Test Technique (CLST), it evaluates the correctness of the
retrieval and adaptation functions of the CaBR engine with respect to the domain as represented
by the case library. It is composed of two phases, 1) the Retrieval Test, and 2) the Adaptation
Test. A complete description of the technique, as well as an application of the technique to
validate an existing CaBR system are discussed in this paper.

1.0 INTRODUCTION

Validation of knowledge-based system has received great attention from researchers in
the last several years.[Gupta, 1992] The importance of ensuring that fielded knowledge-based
systems operate correctly and as intended has been recognized by developers as well as users.
However, the majority of the reported validation work to date has centered around rule-based
systems. This may be because in comparison to other artificial intelligence techniques, rule-based
expert systems are the most mature as well as the most commercially available. In fact, the
majority of the ficlded systems in existence today are of this type.

Published literature that deals with validation of Case-Based Reasoning (CaBR) systems
is indeed scarce. O'Leary addresses the problem of CaBR validation in his 1993 article [O'Leary,
1993], and provides a valuable insight into the problem by discussing the issues involved. We
skip such discussions and refer the interested reader to that source for an in-depth analysis of
these issues. However, O'Leary stops short of actually proposing and testing a detailed
evaluation technique. This paper describes a technique that can be used to validate a Case-based
Reasoning system with little need for involvement of an expert.

In addition to the work by O'Leary cited above, Simoudis [1990] combined simple
retrieval with domain specific validation of retrieved cases to produce a tool for CaBR systems.
The validation, however, was not considered as an independent phase in the system development.
It is designed into the retrieval phase, and is called a validated retrieval model in CaBR.

Ram [1993] investigated systematic evaluation of the design decision in a CaBR system.
He emphasized the complexity of the domain choice for a case-based system and system behavior
criteria

The above methods described required the derivation of a complex mathematical model
to serve as the validation criteria. Additionally, other published validation efforts for case-based
systems, Protos, HYPO, and Clavier, (as discussed in [O'Leary, 1993]) made extensive use of
experts. None of these systems take advantage of the unique characteristic of CaBR, which is
that the expertise is built-in from explicit historical cases.

147

Taking advantage of this feature of CaBR systems, Yi [1995] developed a sct ‘of
algorithms in her work to build and validate a case-based rcasoning. system to }?clp predict
software development cost. The retrieval and adjustment algorithms in the casc library were
implemented to meet a specified Minimum Relative Error (MRE). The MRE is the percentage
difference of the system estimation to real software cost. However, her work came short of
actually developing a full validation technique for general use.

The developers of Battle Planner (as discussed in [O'Leary, 1993]) also make use of th.c
case library as a source of expertise by using some of the cases for testing. We expand upon this
idea in our work.

The gold standard in most knowledge-based system validation efforts is considered to be
the expert's knowledge. Some problems with this criteria, however, is that it is typically quite
costly to involve experts due to their general unavailability and high salaries. The research
presented in this paper, however, minimizes the need for intensive domain expert involvement in
the validation process. The gold standard chosen for validation will be the case library itself, as it
represents the explicit collection of historical results. The technique, called the Case Library
Subset Test, (CLST) uses Yi's Relative Error (RE) as the comparison medium. It does, however,
use experts to a small degree in determining the validation criteria to be employed. However, as
this is typically within the purview of the user/purchaser, and not of the development team, we
can safely state that expert involvement is not necessary for this procedure. This novel technique
is evaluated in the re-validation of the Case-Based Appraiser (CBA) [Gonzalez, 1992; Laureano-
Ortiz, 1990], a CaBR system used to appraise real estate property.

2.0 CASE LIBRARY SUBSET TEST METHODOLOGY

This section describes the proposed validation technique for CaBR systems called the
Case Library Subset Test (CLST) technique.

The main concept underlying this validation method is the selection of a subset of cases
from the case library and using this subset as a test set to evaluate the effectiveness of the
system's retrieval and adaptation features. The comparison standards of the test set are
considered to be correct because they are part of the case library. But first, the validation criteria
has to be selected, as it affects the final correctness of the systems. This process is described
below.

2.1 Determination of Validation Criteria

The first task is to develop a validation criteria. This consists of determining two basic
parameters, the Result Acceptability Criteria (RAC), and the System Validity Criteria (SVC) The
RAC serves to determine whether an individual test case has been solved correctly by the CaBR
system. It mandates that the distance between the system solution to a test case, and the
benchmark standard to which it is compared be calculated. If the solution is provided in
numerical terms, then the Relative Error (RE) can be the percent difference between the two
quantitics. If, on the other hand, the output of the CaBR system is symbolic or Boolean, then
optimal, acceptable and unacceptable solutions may be defined as the benchmark standard may
allow. The SVC serves to determine whether, in light of the executed and evaluated suite of test
cases, the system can be considered valid. The SVC requires that upon completion of all testing,
the percent of all acceptable test cases be greater than its value before the CaBR system can be
considered valid. The RAC and the SVC are typically obtained from either experts or users, and
it may be defined in the requirements specification. Upon selection of the above validation
criteria, the CLST technique begins as described below.

148

2.2 Description of the Case Library Subset Test
These are described in more detail below.

2.2.1 CaBR Retrieval Test.

Case indexing and case classification issues are intended to improve the effectiveness and
cfficiency of case retrieval and to reduce the complexity of similarity calculations. The
correctness of the retrieval process is, therefore, one of major concerns in CaBR systems. The
CaBR Retrieval Test is designed to evaluate the correctness of the retrieval function. The
indexing system used, although not evaluated independently, is clearly part of the retrieval
cvaluation test, and deficiencies in indexing will show up as poor retrieval performance. The
comparison function is also likewise validated.

Briefly, the Retrieval Test requires that each historical case in the case library "spawn" a
test case identical to itself in all ways. A pointer to the historical case is maintained for the
purpose of comparison later. This process generates a set of test cases, not only for the retrieval
test, but also for the adaptation test as will be seen later. As part of the retrieval test, each test
case is, in turn, presented to the CaBR system as the current case. The CaBR system goes
through the comparison and retrieval processes, arriving at an internal list of library cases ranked
in decreasing order of similarity. In order for any test case to be marked as successfully executed,
the historical case which spawned the current test case should be found as the top-ranked
historical case in this internal list, and the similarity distance should be the minimum allowed in
the chosen measuring scheme (or very close to it).

2.2.2 CaBR Adaptation Test

The Retrieval Test ensures that the comparison and retrieval functions are correctly
carried out. It is the purpose of this test to ensure that adaptations are properly made from valid
retrieved cases. Therefore, the Adaptation Test should only be done after a successful Retrieval
Test.

The test case set used here is the same as that of the retrieval test (e.g., spawned from
cach historical case in the case library). The significant difference is that in the Adaptation Test,
the historical case corresponding to the test case being presented to the CaBR system is removed
from the case library. Thus, if a case library has N cases in it, the modified case library will only
contain N-1 cases at all times. The outputs of this test include retrieved cases, the final solution,
and its RE. Although the test case is not longer in the case library, the CaBR system retrieves the
most similar case from the case library and adjusts the closest matching case(s) with the
adaptation strategies to obtain the final solution to this test case. Since the retrieval process has
already been validated, this test isolates and evaluates the adaptation process of the CaBR system

3.0 IMPLEMENTATION AND EVALUATION OF THE CASE LIBRARY SUBSET
TEST TECHNIQUE

It is important that any new concept in science and engineering be evaluated to determine
its effectiveness in solving the problem it addresses. An evaluation technique should be no
exception. In this section we briefly describe the steps taken to evaluate the CLST technique
described in the previous section. The testbed chosen to carry out this evaluation is a CaBR
prototype system for residential property appraisal called the Cased-Based Appraiser (CBA)
[Gonzalez, 1992; Laurcano-Ortiz, 1990]

3.1 The Case-Based Appraiser System
An prototype that automates property appraisal using a CaBR

149

approach therefore was developed by Laureano-Ortiz [1990]. Several attributes in the cases are
used to calculate the price of the property. Some of these are the living area, number of
bedrooms, number of bathrooms as well as others.

The CBA System works by determining the most similar cases to the current property,
adjusting these cases to account for any remaining similarities, and then obtaining the appraised
value using one of two widely accepted methods in property appraisal. Refer to [Laureano-Ortiz
1990] and to [Gonzalez, 1992]for more details on this system.

3.2 Determination of Validation Criteria

The task of determining the validation criteria was the first undertaken. A questionnaire
was sent to individuals knowledgeable in the field of appraisal with the following questions:

Question 1: "What is the maximum acceptable Relative Error of a CBA system?" The
maximum acceptable error range refers to the percent difference between appraised price and the
actual real sold price. This corresponds to the Result Acceptability Criteria (RAC) defined in
Section 2 above

Question 2: "What percentage of the correct appraised cases in a CBA system is
considered reasonable"? This question asks for the Correctness Ratio (CR) in all appraised cases.
This criteria corresponds to the System Validity Criteria (SVC) seen in section 2 above

In regards to the RE, the majority of the responders felt that 20% was appropriate, based
on the limited set of attributes considered. Human bargaining, the seller's economic situation, and
the various marketing factors are not considered in the CBA analysis. Yet, the actual price is
strongly affected by those factors. Therefore, it was decided that 20% RE would be set as the
RAC (the threshold between acceptable and unacceptable results from the CBA).

Likewise, the total CR was determined to be a minimum of 80% SVC for a valid system.
That is, 80% of the subject properties to be appraised were valued at a price less than 20%
different than the actual sale price. It is necessary to note here, however, that the CBA system
sometimes displays a dummy "-1" as the result when the subject case does not have any similar
cases in the case library (e.g., little similarity between the most similar historical case and the
current case). This can be quite a normal occurrence in CaBR systems, and these subject
properties should not be considered when determining the CR.

4.0 EVALUATION OF RESULTS FOR THE CASE LIBRARY SUBSET TEST
TECHNIQUE

This section evaluates a rewritten version of the CBA prototype (in C/C++) with the Case
Library Subset Test validation model. Since the new C/C++ prototype used exactly the same
algorithms and data types as the original lisp-based version by Laurcano-Ortiz, we shall assume
that they functionally identical. The CLST validation model is designed to empirically
demonstrate that the CBA system works correctly for property appraisal. However, the true
purpose of this section is to evaluate the validity and usefulness of the Case Library Subset Test
Technique itself, as its effectiveness in validating the CBA will be compared with Laureano-
Ortiz's [1990] original expert-based validation of the lisp-based CBA. We refer the reader to
[Xu, 1995] for all the raw data pertaining to the results shown in this section.

4.1 Retrieval Test
The results of the Retrieval test on the CBA casc library showed that in

150

100% of the test cases, the case in the case library corresponding to the test case was chosen as
the closest match. This indicates that retrieval was done properly. Furthermore, the average RE
for the Retrieval Test was 8.239%. The reader should note that the appraisal value is computed
by averaging the several most similar cases in the library, rather than exclusively using the most
similar one, even if it is identical. Thus, the RE for this test with the appraisal testbed should not
be expected to be 0%.

4.2 Adaptation Test
In the Adaptation test, the retrieval technique is also inherently evaluated, as the RE is
also calculated. However, the emphasis here is on the adaptation aspect. The average RE for the
Adaptation test was computed to be 13.2057%. A higher RE than for the Retrieval Test is to be
expected, as the case base is somewhat less similar to the test cases by virtue of removing the
case corresponding to the test case.

4.3 Original, Expert-based Validation of CBA

Laureano-Ortiz [1990] evaluated his original CBA system according to the traditional
method of comparing the CBA's output to the domain expert's appraisal results for the same set
of test cases. In his validation exercise, seventy (70) test cases were presented to the domain
experts, and their appraised values for those test cases were recorded. The same test cases were
presented to the original CBA, and its results were recorded. Using the original data, the RE for
cach of the 70 test cases was computed as part of the present investigation.

The relative error (RE) was computed for the results obtained in the original CBA
validation. We found that 11.4% of the test cases had a computed RE of more than 20%. This
calculation excluded cases that resulted in a "-1" as indicated above. We also calculated the
average RE of the original CBA validation test (excluding the "-1" answers) to be 9.91123%.

The average RE of the Test Case set used by Laureano-Ortiz (computed to be 9.9%) was
deemed to be acceptable by the experts that were involved in the original validation process, The
case library (107 cases) and the test case set (70 cases) used in that evaluation did not have any
cases in common. However, they were obtained from real-world data, and thus realistic in their
makeup. Laureano-Ortiz [1990] concluded his CBA system test by stating that the "CBA does a
good job given the limitations it has in its condition of prototype in its carly stage: small case
base, small number of represented figures and lack of better sources of cases."

In the CLST, the same case library used in the original evaluation (107 cases) was
employed. However, the test case set was the case library itself. Since the case library is real-
world data, it can be said that these test case sets were generally of equivalent makeup as the 70
case test sct used in the original evaluation. Thus, the use of the case library itself as the source
of test cases can be considered to be equally realistic as the original (70 case) test case set, and
thus acceptable. The average RE was computed to be 8.2% for the Retrieval Test, and 13.2%
for the Adaptation Test. Since the Adaptation Test is more similar to the original test run by
Laurcano-Ortiz than the Retrieval Test, that is the number to which we compared the
performance of the CLST technique. However, it should be noted that the Adaptation Test
always removes the most similar of cases in the case library, thus introducing a slight
disadvantage. Nevertheless, regardless of which number is used for comparison, the numbers are
quite close to cach other, suggesting strongly that the CLST technique is an effective way of
validating CaBR systems.

50 SUMMARY AND CONCLUSION

151

In this investigation, a new method called Case Library Subsect Test is presented for the
purposes of validating Case-Based Reasoning Systems without the need for involving a domain
cxpert. A prototype system which carries out the CLST testing technique automatically was
designed, built and successfully demonstrated on a testbed CaBR system, the Case-Based
Appraiser (CBA) for appraising single family residential property.

The implementation of Case Library Subset Test techniques presented here is a realization
of a new validation idea. We believe that the methodology presented here is not only applicable
to small CaBR system like the CBA, but also to validation of more complex systems.

6.0 REFERENCES

[Gonzalez, 1992] Gonzalez, A. J. and Laureano-Ortiz, R., (1992) "A Case-Based
Reasoning Approach to Real Estate Property Appraisal”, Expert Systems with Applications, Vol.
4, No. 2, pp. 229-246.

[Gupta, 1992] Gupta, U. G. (ed), (1992) Validating and verifying knowledge-based
systems, Las Alamedas, CA: IEEE Computer Society Press.

[Laureano-Ortiz, 1990] Laureano-Ortiz, R., (1990) "Application of case-based reasoning
techniques to the automation of single-family residential property appraisals”, Master's Thesis,
Department of Electrical and Computer Engineering, University of Central Florida, December.

[O'Leary, 1993] O'Leary, D. E., (1993) "Verification and validation of case-based
systems" Expert Systems with Applications, Vol. 6, pp. 57-66.

[Ram, 1993] Ram, A., "Indexing, Elaboration and Refinement: Incremental Learning of
Explanatory Cases", Machine Learning, 1993, pp. 7-54.

[Simoudis, 1990] Simoudis, E. and Miller, J., (1990) "Validated retrieval in case-based
reasoning", Proceedings of the 1990 National Conference on Artificial Intelligence, AAAI
Press, pp. 310-317.

[Xu, 1995] Xu, L., (1995) "Validation techniques for case-based reasoning systems",
Master's Thesis, Department of Electrical and Computer Engineering, University of Central
Florida, Orlando, FL, Fall Term.

[Yi, 1995] Yi, Y., (1995) "CASHEEW", Master's thesis, University of Central Florida of
Department of Electrical and Computer Engineering, Spring Term.

Avelino J. Gonzalez / Lingli Xu
Electrical and Computer Engineering Dept.
University of Central Florida

Orlando, FL 32816-2450

Uma M. Gupta

Decision Sciences Department
East Carolina University
Greenville, NC 27858-4353

