SMART HOME APPLICATION:
Controlling A
Portable Headphone Amplifier’s Potentiometer
Through Parallel Port Via Internet

Perpustakaan SKTM

DANIEL LEONARD HENRY
WEKO000359
WXES 3182

Supervisor: En. YAMANI IDNA
Moderator: En ZAIDI RAZAK

The submission of this thesis is to fulfill the requirements needed for
acquiring the Bachelor Degree in Computer Science.

Faculty Of Computer Science
And Information Technology
University Of Malaya
2003/2004

ABSTRACT

Smart Homes are being build now at present, and there are no doubts that they
are having direct impacts on our life, even on the lifestyles of people living in these
Smart Homes.

The project uses parallel port programming to implement the Smart Home
concept. This project comprises of two components, a software and hardware
component.

The software component consists of a client program and a server program. Both
of these programs are connected remotely via the Internet or through a network
environment. The client program allows the end user to control the application. The
server program is connected to the hardware component using the parallel cable. The
client program and server program will be written using Microsoft Visual C++.

The hardware component acts as a volume control device. Here the hardware will
control the volume of an audio amplifier. To do this, the hardware will resemble like a
stepped attenuator. Electronic devices such as transistors and relays will be used.

The integration of both software and hardware will show that the end user is able
to control a remotely situated parallel port, where the server program is controlling the
data pins. By enabling and disabling the data pins on the parallel port, it is possible to

control the volume of an audio amplifier by acting as a volume control switch.

ACKNOWLEDGEMENTS

First and foremost, 1 would like to thank God for guiding me and giving me the
patience and energy in completing this project. In the process of doing this project, 1
faced many challenges that sometimes seem to be difficult at first, but with perseverance
and focus, I was able to complete this thesis on time.

I would like to take this opportunity to thank a few people, Mr. Yamani Idna as
my supervisor and lecturer who helped me enormously and guide me through the
process of doing this project. Without your knowledge and consultation, there is no way
this project will work.

I would like to thank also to Mr. Zaidi Razak, my moderator for this project, who
had given me constructive advise so that this project will be even more challenging and
produce better results.

Also not forgetting my family at home, my parents who always pray for my
success in whatever things I do. This will always be the driving force behind me.

Finally, I would like to dedicate this project to my friends: Asiah, Albert, Zuffi,

PoG, Barai, Tawau, Mat, Amal and Kobis.

TABLE OF CONTENT

CHAPTER I ONE S TN TR O D U T N e et ettt T LT e LT I 1
1.1 IntroduCHON .. it el Ty LT e e SR el By 2
12 What!1s Smart H oM e et re e e T T L T s S it 3
1.3 How Smart HOmes WY OrK o ey et I e T T T T el 4
1 S At H O S T A P O 00 LS e R 5
1.5 What Can Be Control Y e i ettt e et Tl P ol D NN R o, et 6
1.6/ Objective of ProjeChin . it s it T T T e L I R] 7
1.7 Scope Of Projocti ittt it e i e Il TN T L e T e i/
1.8 Project Planning and Development.............c.ccooviiiieiiniiiiee oo ieseeesesssens 9

CHAPTER TWO: LITERATION RESEARCH ... 1. 0100 Msscteenssessssensstorsatanssssesesssenssnsssn 10
2.1 Purposes of Literation RESEAICIH.. ...t B cvwsssississssiassosssssssnissessissrossenssasssanstas 11

2.2 How Potentiometers WOTK? ... it sees s e es e et e et 11
2.3 How Stepped Attenuators WOTK? ..o oo oo 15
2.4 How Paralle]l POrts WOIK?c.couiriiiiinritessissesssesssssessesesssssessesssessessssnsesens 19
2.5 How AMplifiens: WOIKT . 5 ittt erets sttt R i Bttt oo te e 25
CHAPTER THREE: METHODOLOGY.........ccooueusinameseserssarssessessserensasasssssseesssssencessensens 32
3.1 Purposes of Project MethOdologycciiiiiviiieiieeisienisiesieeeseseeseese e, 33
3.2 Project Development Life CyCle........oviiiiiriiieiiiiiessesseresssseesssess e e e enns 33
3.3 MothOGS APPIOABI i siisti G e I T st Rt e e 35
3.3.1 First Approach: Direct CONNCCtIONcoooviviviiiiiiiiinieiiorooseoo oo, 37
3.3.2 Second Approach: Using LOGIC GAtecoooviriimiiniiiiieesisinisosssssessins 38
3.3.3 Third Apnroach: Using R Y o o o e e b e T 41
3.4 Project Requinemion s ittt LT et LT et e I e R ast i eet sens s snld 44

3.4.1 Hardware SpecifiCation i it i i o (e i T oy it kel 44

3.4.2 Software. SPeotfICatiON .; i itrsersrs et sl itiasres SATT It LT I T L TS cxts L L rraesbanses 47
CHAPTER FOUR PR OJE G D E S LGN e St S S f o 48
4.1 ITOQUCIION v i i iriiseiseteiatisTe L R O LI E T ITE L T T r T T T e s St s 49
4.2 Designs For Controlling Stepped AHEnuatorc.ocoivviverieiereeiiesrersinseensns 50
4.3 Portable Headphone Amplifier Designcccouovuiiiiiiiiiiiiie e eeee e, 54
4.4 Software. Design sl fia B e Bk i i i i s o el ks e i R 57

63

CHAPTER FIVE: SYSTEM DEVELOPMENT AND IMPLEMENTATION................ 61

5.1 Introduction. i b b D T vl 62
5.2 Software Development., . iriirriis it i i e i 63
5.2.1 Parallel Port Control With Microsoft Visual C++ ..o, 65
5.2.2 Coding For Parallel Port CommuniCationccooovviviiinssrerisssserssesssssenns 68

5.2.3 Socket Programming For Client And Server Program...........c.cccoooovivvveinnnn. 72

5.3 Hardware DeveloDment i . iiwintitnitsnisnmanssisntyssiaestisiosisrsns By sissessisonsssin 78
5.3.1 Hardware Interface As A POteNtiOMELer...............oievviveiiinnsersisnssnnssessssesesnnes 80

5.4 More on Inpou3d2.dlli . it insivessniteiosssessres ReMasTUIEL 1 ob18b1bao fost oo ressitiesosed 82
CHAPTER SDC SYSTEM TES T /i it e it (R G T et s 83
6.1 System T est IntroaUCHOn & T s At TRkt T LAt i ar et et s e 84
0.2 SOEWATE T8 iiiisisietisresiaiestionss s UMM eI FOEI IICTIONE S 04 Ioelttbeosbins trivd estsusrbestransess 84
6.3 HATAWREE TORE 1. oiisiersrnirsirninngfRsis i (as1ssissribbasbustossvors i tiresssasrsnstibirsassssssssreassassesssonts 86
6.4 Initegration T esty il e N (Tt Tttt T T L L T it e s et tatid 87
CHAPTER SEVEN:DISCUSSION ettt iaristrtasetsitoberssthosirpqesssssbbto issis sassnbonstisiea 88
7.1 DS CUBSIONL: M cie 5100001510 010r41 (e 1 rRIe1 s H R LA DARRRE LIRSS Lh et PLLIEERe T IREF RER S bonstsLiaRsEnsatiotns 89
7.2 ProblentuBBOed viiiicitudsisnmisssitsressilels IS eethis st Fhe5Eiksesressestvishssatesss Fhachntiss 89
7.3 Strength OF PrOjOOIE ittt et T i eas e ot T T aressiher ToTibieEirrat Eare et es 90
7.4 System ConBIRINE.(citviseive i st I e U Ao botsodtsa i eodobedaerestostt 91
7.5 Suggestions and IMPrOVEMENS ..o 91
7.6 COMOIUBION 11t ioiihsnsasinsinensionsenssssssanenssssnsonessssssbasssssissihssusssssssssshsshsssensensssssssnsssssossssssns 92
BIBLIOGRAPHY ...ouiuiinsusasnssesssnninsssssssnossesssssssssssssssssosesssssssssssssssssssssnsssssssssasssssssssassssssssss 93

APPENDIX 1: Server Scripts
94

APPENDIX 2: Client Scripts

APPENDIX 3: User Manual

95

LIST OF TABLES AND FIGURES

Table 1.1; SUMMATY OF PIOJECEcviiiriiiiiiriisisiesitstsisesessssssssssssasssssesssasesssssesssessssssnsssasasenss 8
Table 112! GanttChart P ase L i et ittt el ot T T T T 9
Table:1:3: Gantt CHart Phase s S R T I /0 10r e s ressibeatsind st rtanstoraetchertiiet 9
Figure 2.1: Schematic 0f 8 P otent oMo o s it hesststbsertasessisssneshsensnnssossossen 12
Figure 2.2; Slider P oten tiom e tem gt e el eess ctar s s TR Pt re DAL LIS seaties 13
Figure 2.3: Rotary BotentiDmeter it hliim. il iiisissisisttssnimintircsss i Massstssessios 14
Figure 2.4: Schematic 0f Stepped AHENUAIOTLLL . .iiviiiimiinmecminisimssrossases Finghessapssssssssssrsss 16
Pigure 2.5: Voltage Dt erbhi i i it i s ispaasy N I e e et et st retsies 16
Figure2.6: Schematic of Stepped Attenuator 2., 17
Table 2:1s SPRMOAONL. ... vireisrisdalibnssit i iarsicere Rt 61T sisses iis bt etisasinl iviscissarot s irioaels 20
Table 2:2) CentronticsIMOdE mu. i i n il o B sl AT s et 20
Table 2:3: EERMOA@ It i i A IR st sttt et s T T Tha s a4 sroaat et IkG 21
Table 2.4 ECP MoG0:...cumiiinl v R i iy s i i B ey 22
Table 2.5 LPT Port AdGrGREEE 00 41015 (xiss it riast) aateresttrtrissstrsasatiiiet rsstoriess esss tissassooriiss 23
Figure2.7; DB-25 MaICONMOCION . 1111 ieieibissmsisreasasiantissssissisatssiasossisippassisssssnisssatssssssirssess 24
Figure 2.8: OFAZEIA,X...0ccoimissasnssiassorstpsess it HAB It bloraesoretsbiinssintssssotratiasssssssetes 31
Figure 3.1: WRtefTall MOdeL. .iruiccosaidantiiii aissisematsreritatisbiasei e tisisssestbetisnstorsssssaseesstsdstess 34
Figure 3.2; 12 Stepped AteNUALOL.ccoiuimimusmsmsmsmisssssssssssssssssssssissssissasssssssensssassssssssassas 36
Figure 3.3: First Approach DIagram...........coooiimmm i, 37
Figure 3.4: AND Gcviuuiviisssssninnisissesnsssssmsssssssnssasssssssssrsssssssssssssssssassnsssssssssssssssssssssass 38
Table 3,1: AND Truth TaDIO! i iviiuivexisrsredtssmisiistmsitl e aribss ssstsspsetissbes eriotiiasyesssrassescantiess 38
Figure 3.5: Second Approach DIagram..........coocuvmmmimmimmisinimissismimmssssssinns 40
Figure 3.6: Relay CONStIUCHIONcocuumumimmsimsssurmmssmsssmmssssinsssssssssssssssssassssmsssssssnsssssmssssssss 42

Table 3.2: Minimum Requirement for &8 COMPULETo.v.ivievreeisersioeseoreesesssesosessesnes 44

Table 3.3: List for Building APc.ccoviiiiiiiiiieiniosinssineseses s essssesessesseseess 45
Figure 4.1: Highest Level of DeSignccooviiiiiiiiiiiieisiessnsess s ssesessesesens 49
Figure 4.2: Design For Controlling Stepped Atenuator............c.ocoooveireeereisrerersses oo 51
Figure 4.3: Controlling and Dimming a Light Bulb...............c..ocoooiiiniiiie e 53
Figtite'4/4: Bastc Amp e D es e e eI R e Lot e Tl s eI asts 54
Figure 4.5: Schematic for Power Supply Unit.........c.cooooiiiiiiiiiiiii oo ser oo 55
Figure 4.6: Complete Design of Headphone Ampcccooooovviiiiiieiiinieisseeneeinns 55
Figure 4.7: Administrator MOde ... i ssssessessesesasens 58
Figure 4.8 UserModes . (R istiiit i inio erismniosimniss MR W sesss fesriitissosserortirsssisansites 59
Rigure 4.9 Login Menu i, aiiitiiis it ivendiu oM sss stsssstssstiassessobassosssrgmostetsoss 59
Figure 4.10: AdminiStrator FUNCHONSccccoviiiiiiiiniinisieseses s esseesees 60
Figure 4.11: Control Menu i sisoi. A TRt srirsissistsittsisssas s tbosisecsisstossostadssiboss 60

65

Riguire 5,1 L PORIEi0NS Of PN o Tt 1y I Rt TR e P e PR T N PR S PR 64

Figure 5.2 Female Connect O Sr it et T Tt i T TR ITITTS COR DU ap e e 65
Figure 5.3 BrrOr IVIBSSABE. ... 1suustseresnsassassesatsarssrssarsbesssinesnssnrtnsassstssssessesassassnssssssssssensess 66
Table 5.1; Commani FOFPINS & /it tiseiarretsts ot il s et aks 1ot st T A TAti T ATy a e d el s s bstes 71
Figure 5.4: Socket Connection P00 ass e et s At AL IN F s s s heTasnest tnsbens 72
Figure 5.5 At Intial Zing i in e G BT A e AT YL VLTIt P T A ok L d v Laas SETE T 74
Figure 5.6: Running on Server Mode ... 75
Figure 5.7: Running on Client Mode s i it it s s (s esre st fitssts 76
Figure 5.8: Server’s sliderichanges, i i b i Lt L LN st insseniie 77
Figure 5.9: One part Of the CIrCUIt i iiitiiii i eveneiss N g et ersrhshensharsnnsessasserossssnns 78
Figure 5.10: 12 Stepped AteNUALOT.coiiiiiiiii i 80
Figure 5.11: Inpout32.dll process flow chart...............c.oiiiiiiniin, 82
Figure 6.1: Parallel Port MONItOr, M i isittissssesissnsessnsnssssasnssessstsssosssanentarseasssnssss 85
Figure 62! GXSPOIt . .ividvisiy G itaities iovs e i8eits v iarsscesritidasssas dheinesessssitonsssssassassess 86

93

CHAPTER ONE: INTRODUCTION

1.1 Introduction

Smart homes are no longer a design concepts of the future. They are being built
now, and they are having a direct impact on the lifestyles of people living in them.

Smart homes is all about taking advantage of the present and upcoming gee-whiz
things that can make your home a 21st century castle. It is also about the automatic
operation or control of equipment, a process, or a system build in the house.

Smart homes has many benefits. Smart homes save energy and help the
environment through intelligent control of lighting, heating and cooling. Smart homes
can protect your family and possessions from an increasingly violent and crime-ridden
society through sophisticated security and surveillance systems. Whole house audio and
video systems allow you to enjoy music and video from anywhere in your house. The
elderly and disabled can have full control of the home from their fingertips.

In the future smart homes will become more intelligent and be able to respond to
the individual actions, the individual pre-guessing their actions and providing the

appropriate responses. The future is Smart Homes and it is the present.

1.2 What is Smart Homes?

It has many names; smart homes, automated homes, domotics, home networks,

intelligent homes etc. It is a home that has many devices that can be monitored and
controlled either by telephone or by a computer connected to the Internet. For example,
you’re driving home from work and would like your house to be warm when you arrive.
You can call your house and tell the thermostat to warm it up while you drive.

The difference between a normal house and a smart house is that a
communication infrastructure is installed that allows the various systems and devices in
the house to communicate with each other. The modem home contains a variety of
systems, such as central heating, fire and security alarms, and devices, such as
televisions and lights. All these usually exist in total isolation from each other. In the
smart house, these systems and devices are able to pass information and commands
between them so that, for example, the security alarm can turn the lights on or off.

Smart homes are not just merely for the rich and famous people who live in it,
but it is more towards suiting the lifestyle of people. For example, Smart homes can be
used for older people and those with disabilities, providing safe and secure
environments. Simple everyday tasks such as opening windows, drawing curtains or
even opening doors, might appear to be common but for many individuals these
functions are almost impossible due to their impairments. Also, intelligently designed
and operated buildings yield dramatic increase in worker productivity and energy cost

savings, and administrative savings within work environments.

1.3 How Smart Homes Work?

Computerized controls have become more and more common in our homes.
Computers control our washing machines and microwaves, they tum our heating on and
off, and they have provided new ways to monitor the safety and security of our homes.
The smart home looks at expanding the use of these computers into other parts of the
home, creating a single network that can be easily and conveniently controlled. The use
of computer controls removes the need to actually flick a switch or turn a knob to make
something work and allows elements of the home to be controlled remotely by, or to
respond automatically to, the people living in it.

The smart home relies on a number of small computers distributed around the
house that are either used to tum devices and appliances on and off or to send and
receive information. These computers are linked together using either a dedicated cable

or by sending a special signal through the mains electricity cables.

1.4 Smart Homes Has Protocols?

Smart homes has a variety of communications protocols for operation. These
protocols are the rules for all the smart devices to be able to communicate with each
other and being control.

LonWorks or the American Echelon Corporation's LonWorks protocol was
originally developed for commercial buildings and industrial processes. LonWorks is
capable of being used over all communications mediums but is most commonly installed
as a dedicated bus or power line system. Echelon licenses its technologies to a large

number of manufacturers giving a wide product base for home installations.

Konnex is the result of the convergence of a number of previously separate
European standards for communication. It consolidates the protocols of the European
Installation Bus Association (EIBA), BatiBus Club International (BCI), and the
European Home Systems Association (EHSA). Again Konnex is suitable for use over all
mediums and by the nature of the merger of previous consortia has a wide
manufacturing and product base.

X-10, developed in the US in 1977, is a simple, low cost protocol for power line
communication. Compared with LonWorks and Konnex it is limited in terms of scope
with a maximum of 256 devices available to be connected to a network. X10 consists of
signals sent over the existing electrical wiring in your house allowing compatible
devices throughout the home to communicate with each other. Using X10 it is possible

to control virtually any electrical device from anywhere in the house and remote

locations with no additional wiring,

1.5 What Can Be Control?

The interface between the smart home and the user is important to ensure that the
home is easy to understand and operate. The smart home is made up of five basic ~
components, which can be integrated to work together and be controlled from other
sources. The five basic components are:

e Lightings and window treatments

e Security and access control

e Voice and data communication

e Environmental control and energy management

¢ Audio/video entertainment

Lighting And Window Treatments: Touch a button on your home theater system and
the lights will dim. Set front door and driveway lights to turn on at about the time you
arrive home from work. Rugs and furniture fades as they are exposed to the sun. You
can use timers to open and close shades according to your schedule (or the sun's
schedule).

Security And Access Control: With an integrated system, arming your alarm on your
way out the door means not just setting the traditional alarm, but also closing all the
windows, locking the doors, setting the thermostat, and closing the shades. If a window
i5 left open, the system will take notice and shut off the heat register in that room. Or, as
motion sensors detect people entering a room, your system could be programmed to

automatically turn on lights or music.

6

Voice And Data Communication: An integrated system lets you watch your
baby's room or see who's at the front door from your computer monitor or television
screen,

Environmental Control And Energy Management: A bedtime directive could arm
the alarm system, turn off the water heater and lights. Your system can also manage your
water. For instance, your water heater can be turned on only when needed.

Audio And Video: Automatically shut off the television or hi-fi system when
leaving the house, or when there is no one at the entertainment room. Remotely

controlling the television and audio level of sound from a monitor,

6 Obiective of Pro;
This project of mine will demonstrate the concept of Smart Home application by
applying the knowledge of computer science. With the knowledge and understanding

that I have in computer science, I will integrate the concept of parallel ports and cabling

that is found in every computer to demonstrate Smart Home application.

1.7 Scope of Project

The scope of smart home application is wide. Therefore, for the scope of this
project, 1 will narrow the scope down to only demonstrate and focus on audio
application. By using the parallel port that is part of a computer peripheral, it is possible
to automate or control an audio device. In this project, I will use the parallel port to

control an amplifier remotely or via Internet,

Due to the size and the complication of a real amplifier, 1 will build a model or a
prototype of a portable headphone amplifier as a substitute to the real amplifier. The
medium of control would be the parallel cable.

The summary of my project is shown in Table 1.1 below:

Table 1.1: Summary of project

Title Description

Objective | Smart Home application: Controlling a portable headphone amp’s

potentiometer through parallel port via Intemet

Controlling | A client and a server computer in a network. The client computer

Device (parallel port) serves as the controlling end, while the server computer

acts as the user interface

Medium A parallel cable
for

controlling

End A portable headphone amplifier

Device

Output A headphone

testing

1.8 Proj in D

| n

Here 1 will include 2 Gantt charts for the first and second phase of this project.

The first phase will be during the period March-May 2003, and the second phase will be

June-October 2003,

Table 1.2: Gantt Chart Phase 1

Activities/Month

March 03

April 03

May 03

Title Selection/Discussion with e

lecturer

Research/Reading/Consulting _—

Final Discussion/Analysis

Final Proposal and Viva

Writing Report/Submission

Table 1.3: Gantt Chart Phase 2

Activities/Month

June 03 July 03

August 03

Sep03 | Oct03

Software Development

*

Device Development

Testing/Simulating

S
e

Viva/Documentation

)

Writing Report/Finalizing

cr

CHAPTER TWO: LITERATION RESEARCH

10

2.1 Purposes of Literation Research

This chapter will explain the outcome of a variety of literature researching,
analyzing of topics and concept related to doing this project. All the researches are based
on references from books, articles, journals and the Internet.

This process of literation research is important, as a wide scope of research must
be carried out before determining and narrowing the scope of this project. Also, a
thorough research and reading on the components of this project will allow me to have

more knowledge on solving the problems of this project.

2.2 How P I ?

There are many cases where only a portion of an output voltage from a signal
source is required. If we allowed the full output voltage from a CD player to be driven
into the input of an amplifier, the amplifier would play at or near full power at all times.
This would become quite annoying in a very short period of time. Also, that would go
against the purpose of an amplifier. To reduce the overall volume, we need to allow only
a fraction of the full signal through to the amplifier. To control the level of the signal, we
use a potentiometer.

A potentiometer, also know as a 'pot' is a modified resistor. It is a manually
adjustable, variable, electrical resistor. Potentiometers can be used to allow a change in
the resistance in a circuit or as a variable voltage divider, and in the case of a volume
control. It has a resistance element that is attached to the circuit by three contacts, or
terminals. The ends of the resistance element are attached to two input voltage
conductors of the circuit, and the third contact, attached to the output of the circuit, is

usually a movable terminal that slides across the resistance element, effectively dividing

it into two resistors. Since the position of the movable terminal determines what
percentage of the input voltage will actually be applied to the circuit, the potentiometer
can be used to vary the magnitude of the voltage; for this reason it is sometimes called a
voltage divider. Typical uses of potentiometers are in radio volume controls and
television brightness controls.

A potentiometer generally has 3 terminals. 2 of the terminals are connected to the
opposite ends of a resistive element. The 3rd terminal (usually, is physically in-between
the other 2 terminals) is called the wiper. The wiper is a contact (actually, generally

many very small contacts) that slides along the resistive element. The diagram below

shows the schematic symbol for a pot.

Terminal A

4 Wiper

Terminal B

Figure 2.1: Schematic of a Potentiometer

12

In the diagram below, you can see that the linear taper potentiometer is in the
middle of its range of travel. You can also see that 12 volts is applied to terminals 'A'
and 'B' are connected to the 12-volt battery. This means that the output from the slider

will be 6 volts,

Slider type pot

Resistive
element

Terminal B

Sliding
terminal

Terminal A

Tarminal
connected to
sliding terminal

Figure 2.2: Slider Potentiometer
This means that the resistance of the resistive element increases in direct
proportion to the distance traveled along the resistive element. In the middle of travel,
the resistance from the sliding terminal to either of the other terminals is half of the total
resistance. The output is simply the voltage at the point where the wiper contacts the

resistive element,

The following diagram shows a rotary potentiometer at 50% and roughly 63% of
its range of travel. These positions would correspond to the positions of the slider pot in
the previous diagram. This is a single turn potentiometer which means that it can travel
its entire range within 1 complete revolution if its shaft (knob). Actually, a single turn
pot will only travel through about 270° of a complete revolution. There are other
potentiometers that have some sort of mechanism to increase the number of times the
shaft must be tuned to travel through its entire range of motion. This is generally done
with gears but I've seen it done in a planetary gear configuration using ball bearings. The

multi-turn potentiometers are used to make it easier to precisely set the output level.

-

i g

PN .

A |

i v

i ! o]

~ 1} | \
¥ N

) ~ "

-
Rl "~ =

Terminal B Wor vT'ermlnelA Terminal B Wer ‘TermlnalA

Figure 2.3; Rotary Potentiometer

14

2.3 How Stepped Attenuators Work?

Stepped attenuators offer distinct sonic advantages over common potentiometers.
This is due to their use of discrete resistors and the purest method of signal attenuation
that is resistor voltage dividers. Discrete resistors typically have better low noise
characteristics than the carbon or cermet resistor elements used in potentiometers.

The total measured resistance for each position of a stepped attenuator remains
constant throughout years of use. This is because the wearing (rubbing) parts in stepped
attenuators are low resistance switch contacts, not resistive elements with wipers sliding
on them as in potentiometers. Potentiometers used as volume controls can become
"scratchy" sounding due to wear.

Stereo potentiometer used as volume controls often produce different volume
levels for each channel, and the amount of mismatch can vary as the potentiometer is
turned up or down. The channel - to - channel tracking specification for stereo pots, even
very expensive ones, is typically 5% to 20%. With stepped attenuators you can easily
achieve stereo signal levels matched to within 1% or 2%. With stepped attenuators, each

switch position is for a precisely calculated voltage divider, so front panel calibration

markings can represent actual signal levels.

15

Basically, a stepped attenuator works the same as a potentiometer. The only

differences are that a stepped attenuator has many precise resistors attached to it. Unlike

a potentiometer, it has a resistive element commonly carbon element in it. We can also

say that a pot is more to analog and the attenuator is not analog. Each of the resistor’s

value is different in order to produce the desired attenuation.

Switch

Position: 24 23 22 3 2 1

J

Figure 2.4: Schematic of Stepped Attenuator

Stepped attenuators are essentially simple voltage dividers, and can all be

represented by the following circuit:

Voltage Divider

" Ground

Figure 2.5: Voltage Divider

16

The amount of attenuation at the output is:

[(Rin+ Rg)/Rg]x log x 20

If M is the overall attenuator value or impedance, and D is the amount of attenuation that
is desired, the individual resistor values can be calculated.
Rin =M x inv.log x (D/20)

Rg =M ~Rin

The total signal (voltage) is spread across Rin (the Input resistor) and Rg (the Ground
resistor). The Output is a portion of the total signal. [Example: Per the formula above, if
both Rin and Rg are the same value, the Output is -6 decibels down from the total signal

level.]

Another way to look at it is the diagram below.

Slgoel I«

°!

- 5
Oocdaoaﬂu_i

H T e e Yo o e e e
a2

Hotary Hwitoh

To mmp Input

2,92 2 R 12

-
x
Ed

=2
©

-

-
==

i B

2
S

Figure2.6: Schematic of Stepped Attenuator 2

17

What is most desirable about series type stepped attenuators is that they most
closely resemble the operation of a regular variable potentiometer, and so are reliable
and will work well almost anywhere. And as the total of Rin + Rg (all 23 resistors) is

always the same amount, the Input impedance remains constant throughout all 24 switch

positions.

18

2.4 How Parallel Ports Work?

Parallel ports were originally developed by IBM as a way to connect a printer to
the computer. When IBM was in the process of designing the personal computer, the
company wanted the computer to work with printers offered by Centronics, a top printer
manufacturer at the time. IBM decided not to use the same port interface on the
computer that Centronics used on the printer.

Instead, IBM engineers coupled a 25-pin connector, DB-25, with a 36-pin
Centronics connector to create a special cable to connect the printer to the computer.
Other printer manufacturers ended up adopting the Centronics interface, making this
strange hybrid cable an unlikely de facto standard.

When a computer sends data to a printer or other device using a parallel port, it
sends 8 bits of data or 1 byte at a time. These 8 bits are transmitted parallel to each other,
as opposed to the same eight bits being transmitted serially all in a single row through a
serial port. The standard parallel port is capable of sending 50 to 100 kilobytes of data
per second.

The earliest parallel ports were unidirectional, meaning that data only traveled in
one direction for each pin. With the introduction of the PS/2 in 1987, IBM offered a new
bi-directional parallel port design. This mode is known as Standard Parallel Port (SPP)
and has completely replaced the older design. Bi-directional communication allows each
device to receive data as well as transmit it. Many devices use the eight pins (2 through
9) originally designated for data. Using the same eight pins limits communication to
only half-duplex communication, meaning that information can only travel in one

direction at a time. But pins 18 through 25, originally just used as grounds, can be used

19

as data pins also. This allows for full-duplex communication or both directions at the

same time.
Table 2.1: SPP Mode

Pin | SPP Signal | Pin | SPP Signal Pin | SPP Signal

1 | Strobe 10 | Acknowledge 19 | Ground

2 |Data0 11 | Busy 20 | Ground

3 |Datal 12 | Paper End 21 | Ground

4 | Data?2 13 | Select 22 | Ground

5 | Data3 14 | Auto Feed 23 | Ground

6 Data 4 15 | Error 24 | Ground

7 | Data5 16 | Initialize 25 | Ground

8 |Data6 17 | Select In

9 | Data7 18 | Ground

Table 2.2: Centronics Mode
Pin | Centronics | Pin | Centronics Pin | Centronics | Pin | Centronics
Signal Signal Signal Signal

1 Strobe 10 Acknowledge | 19 Ground 28 | Ground
2 Data 0 11 Busy 20 Ground 29 | Ground
3 Data 1 12 Paper End 21 Ground 30 | Ground
4 Data 2 13 Select 22 Ground 31 | Imitialize
5 Data 3 14 Auto Feed 23 Ground 32 | Error
6 Data 4 15 Error 24 Ground 33 | Ground
7 Data 5 16 Initialize 25 Ground 34 | NC
8 Data 6 17 Select In 26 Ground 35 | NC
9 Data 7 18 Ground 27 Ground 36 | SelectIn

20

Then later, Enhanced Parallel Port (EPP) was created by Intel, Xircom and
Zenith in 1991, EPP mode allows for much more data, 500 kilobytes to 2 megabytes, to
be transferred each second. It was targeted specifically for non-printer devices that

would attach to the parallel port, particularly storage devices that needed the highest

possible transfer rate.
Table 2.3: EPP Mode

Pin | EPP Signal | Pin | EPP Signal Pin | EPP Signal
1 Write 10 | Interrupt 19 | Ground
2 |Data0 11 | Wait 20 | Ground
3 |[Datal 12 | Spare 21 | Ground
4 |Data2 13 | Spare 22 | Ground
5 | Data3 14 | Data Strobe 23 | Ground
6 |Data4d 15 | Spare 24 | Ground
7 | Data 5 16 | Reset 25 | Ground
8 |[Data6 17 | Address Strobe
9 | Data7 18 | Ground

Microsoft and Hewlett Packard jointly announced a specification called Extended
Capabilities Port (ECP) in 1992, While EPP was geared toward other devices, ECP was
designed to provide improved speed and functionality for printers. In 1994, the IEEE
1284 standard was released. It included the two specifications for parallel port devices,
EPP and ECP. In order for them to work, both the operating system and the device must
support the required specification. This is seldom a problem today since most computers

support SPP, ECP and EPP and will detect which mode needs to be used, depending on

21

the attached device. If you need to manually select a mode, you can do so through the

BIOS on most computers.

Table 2.4;: ECP Mode

Pin | ECP Signal | Pin | ECP Signal Pin | ECP Signal
1 | HostCLK 10 | PeriphCLK 19 | Ground

2 |Data0 11 | PeriphAck 20 | Ground

3 |Datal 12 | NAckReverse 21 | Ground

4 |Data2 13 | X-Flag 22 | Ground

5 |Data3 14 | Host Ack 23 | Ground

6 |Data4 15 | PeriphRequest 24 | Ground

7 | Data5 16 | nReverseRequest | 25 | Ground

8 |[Data6 17 | 1284 Active

9 | Data?7 18 | Ground

Each pin from the parallel port is associated with an address. The Parallel Port

has three commonly used base addresses. The 3BCh base address was originally

introduced used for Parallel Ports on early Video Cards. This address then disappeared

for a while, when Parallel Ports were later removed from Video Cards. They now

reappeared as an option for Parallel Ports integrated onto motherboards, upon which

their configuration can be changed using BIOS.

22

LPT1 is normally assigned base address 378h, while LPT2 is assigned 278h.
However this may not always be the case. 378h & 278h have always been commonly
used for Parallel Ports. The lower case h denotes that it is in hexadecimal. These

addresses may change from machine to machine.

Table 2.5: LPT Port Addresses

Printer | Data Port | Status Control

LPT1 | 0x03bc 0x03bd | 0x03be

LPT2 | 0x0378 0x0379 | 0x037a

LPT3 | 0x0278 0x0279 | 0x027a

When the computer is first tumed on, BIOS (Basic Input/Output System) will
determine the number of ports you have and assign device labels LPT1, LPT2 & LPT3
to them. The BIOS first looks at address 3BCh. If a Parallel Port is found here, it is
assigned as LPT1. Then it searches at location 378h. If a Parallel card is found there, it is
assigned the next free device label. This would be LPT1 if a card wasn't found at 3BCh
or LPT2 if a card was found at 3BCh. The last port of call, is 278h and follows the same
procedure than the other two ports. Therefore it is possible to have a LPT2 that is at
378h and not at the expected address 278h.

What can make this even confusing is that some manufacturers of Parallel Port
Cards have jumpers that allow you to set your Port to LPT1, LPT2, LPT3. Now what
address is LPT1? - On the majority of cards LPT1 is 378h, and LPT2, 278h, but some

will use 3BCh as LPT1, 378h as LPT1 and 278h as LPT2.

23

The assigned devices LPT1, LPT2 & LPT3 should not be a worry to people
wishing to interface devices to their computer. Most of the time the base address is used
to interface the port rather than LPT1 etc. However should you want to find the address
of LPT1 or any of the Line Printer Devices, you can use a lookup table provided by
BIOS. When BIOS assigns addresses to your printer devices, it stores the address at
specific locations in memory, so we can find them.

The following shows an example of the male connector and its description.

View is looking at
Connector side of
DB-25 Male Connactor.
Pin Description
1 Strobe PC Output
2 Data 0 PC Output Pin Assi
3 Data 1 PC Output n Assignments
4 Data 2 PC Output '
5 Data 3 PC Output Note: 8 Data Outputs
6 Data d PC Output 4 Misc Other Outputs
7 Data 5 PC OQutput
8 Data 6 PC Output 5 Data Inputs
9 Data 7 PC Output -
10 ACK PC Input Note: gma 18-25 are
11 Busy PC Input T
12 Paper Empty PC Input
13 Select PC Input
14 Aufo Feed PC Output
15 Enor PC Input
16 Initialize Printer PC Output
17 Select Tnput PC Output

Figure 2.7: DB-25 Male Connector

By enabling either one of the data pins, the enabled pin will produced a voltage
while the disabled pins will not have any voltage. With this feature, it is possible to

make the parallel port to act as a controlling device,

24

2.5 How Amplifiers Work?

The term "amplifier" has become generic, and is often thought by some to mean
a power amplifier for driving loudspeakers. This is not the case. Well, it is, but it is not
the only case.

When it comes to volts and amperes, we have altemating current and direct
current, AC and DC respectively. The power from a wall outlet is AC, and so is the
output from a CD or cassette player. The mains from the wall outlet are at a high
voltage and are capable of high current, and are used to power the amplifying circuits.
The signal from your audio source is at a low voltage and can supply only a small
current, and must be amplified so that it can drive a loudspeaker.

Before I continue, I must also explain what is impedance. Impedance is a derived
unit of resistance, capacitance and inductance, although it is not a requirement that all
three be included. Impedance is also measured in Ohms, but is a very complex figure,
and often fails completely to give you any useful information. The impedance of a
speaker is a case in point. Although the brochure may state that a speaker has an
impedance of 8 Ohms, in reality it will vary depending on frequency, the type of
enclosure, and even nearby walls or furnishings.

Some audio amplifiers provide several different outputs, each characterized by
the impedance of its expected load, for example the impedance of the speaker that you
should attach to that output. This impedance measures the relationship between voltage
and current that the load needs to function optimally. The higher the impedance, the
more voltage the amplifier must provide to propel a particular electric current through

the speaker. If the speaker that you attach to the amplifier has the wrong impedance, the

25

amplifier won't be able to deliver its maximum audio power to the speaker and you may
damage the amplifier, speaker, or both.

Since a typical household speaker has an impedance of 8 ohms, you should
connect it to an amplifier's 8 ohm output. However, if you connect more than one
speaker to the same output, you should be careful to determine the combined impedance.
For example, two 8-ohm speakers in series have a combined impedance of 16 ohms
while two 8-ohm speakers in parallel have a combined impedance of 4 ohms. Many
amplifiers are designed to accommodate these arrangements.

When a distribution amplifier must send current long distances through thin
wires, it will often use higher voltages and lower currents to minimize power losses in
the wires. Such an amplifier expects its load to have unusually large impedance. In this
situation, the speaker that is used must either have large impedance, so that it can use
this high voltage/low current power directly, or there must be an impedance matching
transformer between the amplifier and the speaker.

The term "amplify" basically means to make stronger. The strength of a signal in
terms of voltage is referred to as amplitude. To understand how any amplifier works,
you need to understand the following.

o Voltage Amplifier — an amp that boosts the voltage of an input signal
e Current Amplifier — an amp that boosts the current of a signal

o Power Amplifier — the combination of the above two amplifiers

26

In the case of a voltage amplifier, a small input voltage will be increased, so that for
example a 20mV or 0.02V input signal could be amplified to the output of 2 Volt. This

represents a gain of 100. The output voltage is 100 times as great as the input voltage.

This is called the voltage gain of the amplifier.

In the case of a current amplifier, an input current of 20mA 0r0.02A could be

amplified to give an output of 2A. Again, this is a gain of 100, and is the current gain of

the amplifier.

If now lets combine the two amplifiers, then calculate the input power and the output

power, we will measure the power gain:

P=VxlI , where I is current.

The input and output power can be calculated:

Pin = 0.02V x 0.02A
= 400uW
Pout =2V x 2A

= 4W

The power gain is therefore 10,000, which is the voltage gain multiplied by the
current gain. Somewhat surprisingly perhaps, we are not interested in power gain with
audio amplifiers. There are good reasons for this. Having said this, in reality all
amplifiers are power amplifiers, since a voltage cannot exist without power unless the
impedance is infinite. This is never achieved, so some power is always present, but it is

convenient to classify amplifiers as above.

27

Amplifiers will be quoted as having specific input impedance. This only tells us
the sort of load it will place on preceding equipment, such as a preamplifier. The load is
that resistance or impedance placed on the output of an amplifier. In the case of a power
amplifier, the load is most commonly a loudspeaker. Any load will require that the
source or the preceding amplifier is capable of providing it with sufficient voltage and
current to be able to perform its task. In the case of a speaker, the power amplifier must
be capable of providing a voltage and current sufficient to cause the speaker cones to
move. This movement is converted to sound by the speaker.

Even though an amplifier might be able to make the voltage great enough to
drive a speaker cone, it will be unable to do so if it cannot provide enough current. This
has nothing to do with its output impedance. An amplifier can have very low output
impedance, but only be capable of a small current, for example an operational amplifier,
or opamp is a case in point.

The output impedance of an amplifier is a measure of the impedance or
resistance looking back into the amplifier. It has nothing to do with the actual loading
that may be placed at the output. For example, an amplifier has an output impedance of
10 Ohms. This is verified by placing a load of 10 Ohms across the output, and the
voltage can be seen to decrease by 1/2. However, unless this amplifier is capable of
substantial output current, we might have to make this measurement at a very low output
voltage indeed, or the amplifier will be unable to drive the load. Another amplifier might
have an output impedance of 100 Ohms, but be capable of driving 10A into the load.

Impedance and current are completely separate, and must not be seen to be in any way

equivalent,

28

Feedback in its broadest sense means that a certain amount of the output signal is
fed back into the input. An amplifier or an element of an amplifying device is presented
with the input signal, and compares it to a small-scale replica of the output signal. If
there is any difference, the amp corrects this, and ideally ensures that the output is an
exact replica of the input, but with greater amplitude. Feedback may be as a voltage or
current, and has a similar effect in either case.

In many designs, one part of the complete amplifier circuit usually the input
stage acts as an error amplifier, and supplies exactly the right amount of signal to the rest
of the amp to ensure that there is no difference between the input and output signals,
other than amplitude. This is of course an ideal state, and 1s never achieved in practice.
There will always be some difference, however slight.

Some of the electronic formulae are essential in understanding the concept of
amplification. The first of these is Ohm's Law, which states that a voltage of 1V across a
resistance of 1 Ohm will cause a current of 1 Amp to flow. The formula is as follow:

R=V/1 , R is resistance, V is voltage, I is current.

Then there is impedance or reactance of a capacitor, which varies inversely with
frequency as frequency is increased, the reactance falls and vice versa,

Xe=1/2*n*f*C) , where Xc is capacitive reactance, f is

frequency, C is capacitance.

Inductance reactance, being the reactance of an inductor is proportional to frequency.

Xi=2%g*f*L , where Xi is inductive reactance, L is inductance.

29

No discussion of amplification would be complete without a discussion of
opamps. Although not a single device, the opamp is considered to be a building block,
just like a valve or any transistor.

The operational amplifier or opamp was originally used for analogue computers,
although at that time they were made using discrete components. Modern opamps are so
good, that it is difficult or impossible to achieve results even close with discrete
transistors or FETs. However, there are still some instances where opamps are just not
suitable, such as when high supply voltages are needed for large voltage swings.

The majority of power amplifiers whether bipolar or MOSFET are in fact
discrete opamps, with a +ve input and a -ve input. Unlike the other devices, opamps are
primarily designed as voltage amplifiers, and their versatility comes from their input
circuitry. Opamps have two inputs, designated as the non-inverting and inverting or
simply +and -.

Modem opamps are as close as anyone has ever got to the ideal amplifier. The
bandwidth is very wide indeed, with very low distortion, 0.00003% for one of the Burr
Brown devices, and low noise. Although it is quite possible to obtain an output
impedance of far less than 10 Ohms, the current output is usually limited to about +/-
20mA or s0. Supply voltage of most opamps is limited to a maximum of about +/-18V.
although there are some that will take more, and others less.

Depending on the opamp used, gains of 100 with a frequency response up to
100kHz are easily achieved, with noise levels being only very marginally worse that a
dedicated discrete design using all the noise reducing tricks known The circuits shown
below have frequency response down to DC, with the upper frequency limit determined

by device type and pain.

30

For the purpose of this project, I will explain the portable headphone amplifier.
The headphone amp basically works the same as the normal amplifier found at hi-fi
system. The only difference is that the headphone amp drives a headphone and not a
speaker.

Basically a headphone amp consists of 2 departments, the power supply unit and
the amplifier circuit. The power supply unit (PSU) will either be powered by a power
adaptor or batteries. The PSU job is to supply the appropriate power or voltage to the
amp circuit. This is important because the amp will not function if the voltage supplied
is insufficient.

The main component of the amp circuit is the operational amplifier IC chip. The
op-amp will act as the heart of the entire amp to amplify the input signal.

Below shows a diagram for the Burr Brown OPA2134 opamp that will be used in

this project.

of

DA &

+in B

8-Pin DIP, 50-8
Figure 2.8: OPA2134
OPA2134 is a dual channel opamp. This is an ideal example opamp because we
need 2 channels to produce stereo output. The voltage supply range is as low as 2.5V

and as high as 18V,

31

CHAPTER THREE: METHODOLOGY

32

3.1 Purposes of Project Methodology

This chapter will explain the methodology used in developing this project, as
well as solutions to the problem faced while planning for the project. Methodology 1s
defined as a collection of procedures, techniques, tools and documentation aids that can
help to speed up the development process smoothly.

Here I will explain some of the approaches earlier decided to do this project. The
first and second approaches are not feasible because of certain difficulties and
uncertainties found during the earlier planning. The 3™ approach as the one chosen and 1

personally think is best to do this project.

3.2 Project Development Life Cycle

For this project, planning is as important as making sure the final product work.
Therefore, a development life cycle is essential to make sure that the process of
developing this project runs smoothly and accordance to the time period given.

Here 1 adapted the System Development Life Cycle based on software
engineering. Although my project is not fully a software project, but it is possible to
adapt the development life cycle concept into this project because the processes involved
in making this project is just the same as developing software.

In this project, the model chosen to do this project is the Waterfall Model. I've
chosen this model because of its simplicity and easy to implement to my project. Also,

this model is straightforward and easy to follow,

33

Requirements

Analysis

Project

Design

Program

Design

Coding

b

Unit Testing

e

Project

Testing

Viva

>

al

Figure 3.1: Waterfall Model

Fmal Report

34

3.3 Methods Approach

The idea of this project is to integrate the parallel cable and the potentiometer.

But in this project of course, I will be using the stepped attenuator to replace the

potentiometer.

The main idea is to be able to integrate the parallel cable to the attenuator so that
it is possible to control the attenuator by disabling and enabling the parallel port’s data
pins. In order to do so, we have to look at how the stepped attenuator works.

The stepped attenuator diagram shows that the rotary switch will act only as a
switch to each resistor. Whenever the rotary switch is switch on a resistor, the rotary

switch is actually shorting the circuit, or acts as a close circuit. Therefore we need to

integrate the parallel cable so that it will act as a switch to the attenuator.

35

Series Type Stepped Attenuator

RO

R8

R7

RO

R1

GND ©

Rasistor Switch
Dasignator Position

Figure 3.2: 12 Stepped Attenuator

36

3.3.1 First Approach; Direct Connection

This is the earliest discussions and research that I had in order to come to this
approach. Based on the design, it shows that the amount of time spent on understanding

the way that the attenuator works is not enough. This is because the first approach is a

failure and will not work.

This approach was to connect all the resistors to the parallel cable’s data pin. The

diagram is shown below.

In (From Source)

/ —————
L e i N |
U

Parallel =i § — Out(To amp)

__ o 7 ST,

Figure 3.3: First Approach Diagram

This design will not produce an amplified signal at the output. This layout will
not work because even though the data pins of the parallel port is disabled, the signal

from the source will still be able to flow thru to the amp.

37

3.3.2 Second Approach: Using Logic Gate

After more researching and seeking consultations from lecturers from other

faculty, a second plan was formed. The second plan was almost feasible. This involves

the usage of a logic gate IC. The logic gate here is the AND logic.
Logic AND has 2 inputs and produces 1 output, or the results from the AND
operation. With this gate, a combination of outputs can be achieved. The AND gate

performs a logical “and” operation on two inputs A and B, as shown below:

Figure 3.4: AND Gate

The idea behind an AND gate is if A AND B are both a 1, then Q should be 1.

This behavior can be shown in the truth table below:

Table 3.1: AND Truth Table

A | B | 0O
0 | 0 0
0 1 0
1 0 0
1 ! 1

38

The design of the second approach is shown below:

Parallel Cable

——— ToAmp

74LS TTL Logic

T (AND Gate)

(From source)

ADC?

Figure 3.5: Second Approach Diagram

This design too has problem. It seems that the idea behind this design is correct,
but can a signal be AND with a voltage or current from the parallel cable? The signal
from the source seems to be an analog signal, should use analog to digital converter?
This idea seems to produce more questions of uncertainties. Therefore, a third approach

1s needed in order to find a better solution.

40

3.3.3 Third Approach; Using Relay

The third approach, or I would put it as the final approach is the solution to this
project. I get to know this method after a discusion with a lecturer from the Engineering
Faculty.

As mentioned earlier, in order to integrate the parallel cable with the stepped
attenuator, the parallel cable must act as a switch to control the stepped attenuator. After
doing some research on electronics component, the most suitable component will be the
relay.

First lets look at what is a relay and how it really works. A relay is a simple
electromechanical switch made up of an electromagnet and some set of contacts. Relay
are simple devices and are widely used in electrical devices. There are four components
in a relay:

e An electromagnet

¢ Armature that can be attracted by the electromagnet

o A spring to pull back the armature to its original place

e And a set of electrical contacts

As in the figure below, you can see that a relay consists of two separate and
independent circuits. The lower circuit will drive the electromagnet. A switch is
controlling the power to the electromagnet. When the switch is turn on, the
electromagnet will act as a magnet and will pull the armature towards it. The armature
will thus close on the inner circuit in the relay, The armature can be seen as a switch to
the second circuit, When this happen, there will be readings in the voltmeter because the

41

armature completes the upper circuit. When the electromagnet is not energized or the
switch is off, the spring attached to the armature will pull the armature away and the

inner circuit is not complete. In this case, no reading on the voltmeter.

Batt

)w
Armature ——'®

cledtromagn:

Switcm

11/4/77[

—_

Batt

N[

Figure 3.6: Relay Construction

With a replay, it is possible to control several variables. A relay has different
voltage and current that is needed to activate the armature. A relay has different
maximum voltage and current that can run through the armature and the armature
contacts. Relays comes in different kinds of shape and sizes, with different numbers of
armatures, generally one or two. Also, the numbers of contacts for the armature too are
different. Generally there are one or two, in which sometimes one is not used. And
relays come in whether the contact is normally open or normally closed.

Relays are quite common in home appliances where there is an electronic control
turning on something like a motor or a light. They are also common in cars, where the

12V supply voltage means that just about everything needs a large amount of current. In
42

later model cars, manufacturers have started combining relay panels into the fuse box to
make maintenance easier.

In places where a large amount of power needs to be switched, relays are often
cascaded. In this case, a small relay switches the power needed to drive a much larger
relay, and that second relay switches the power to drive the load. Relays can also be used
to implement Boolean logic.

The usage of relays in the Project will be shown in chapter 4 under Project

Design. The relay will play the role as a switch to the attenuator.

43

3.4 Project Requirements

Project requirements include the tools and devices needed to develop this project.

Here I’ve put the requirements under two categories, which is hardware and software.

3.4.1 Hardware Specification

1. Personal Computer

A personal computer is needed to develop the software for the project. Also the

computer will be the simulation platform for testing out the system. The table below

shows the minimum requirements for a computer.

Table 3.2: Minimum Requirement for a Computer

Components Requirements
Processor Pentium 2 550 MHz
Memory 128 MB
Hard Disk 10 Giga
Network Interface Card 10/100 Mbps

44

2. Electronic components

In this project, a few of the electronic components will be needed to build the parallel

cable interface and also the headphone amp. The components include some resistors,

capacitors, stereo socket, operational amplifier, buffer, rail-splitter and so on. The table

below shows the list needed to build the amplifier:

Table 3.3: List for Building Amp

RS
Components Description Qty| 1ID
Power Supply
315.0726 (220 uF 35V Electrolytic Cap, 105 degC, Panasonic 2 | c1e2
365-4133 220 uF 25V Electrolytic Cap, 105 degC, Panasonic 2
365-4060 [330uF, 16V, 105 degC, Panasonic 2
148-736 10K ohm 1/4W metal film resistor 1 R1
148-663 Resistor, metal film, 0.25W, 4.7K/4.75K ohm(4K7) 2| R2R3
588-386 LED, indicator, low current, 3mm dia, red 1] D1
Amp
115-023 Cap, min, encapsulated, polyster film, 63Vdc, 0.1uF 2 C1
~ 312-1469 (Cap, metallised polyster, 63V, 0.1uF 2
148-972 Resistor, metal film, 0.25W, 100K 2 R2
148-506 Resistor, metal film, 0.25W, 1K 2 R3
148-736 1/4W metal film resistor, 10K ohm 2 R4
218-8281 IC, Op Amp, Voltage Feedback, dual, OPA2132PA 1 OPA
285-8069 |IC, Op Amp, Voltage Feedback, dual, OPA2134PA 1 OPA
813-115 IC, socket, low profile, DIL, turned pin, solder, 8 way 1
148-174/269 [Resistor, metal film, 0.25W, 47R, 1% (47 Ohm) 2 R5
148-269 Resistor, metal film, 0.25W, 100R, 1% (100 Ohm) 2
PCB & Stuff
330-840 Switch. Toggle, ultra min, silver contacts, SPCO, on-on 1 Swi
| 206-5841 _|PCB, single sided 1
449-348 Connector, audio, 0.25in, PCB mount socket 3 way 2

45

173-849 Potentiometer, Cermet, 12mm, 1W 10K
Panasonic EVJ Y10 Series 10K
- 173-631 Potentiometer, panel mount, plastic, 10K, 0.5W
259-6941 Knob, control, collect, plastic, 16.2mm, 1/4in shaft, black cab

46

3.4.2 Software Specification

1. Microsoft Visual Studio 6 / Visual C++ 6.0

This will be the programming language used to code the system software.

2. Pspice

This will be the software used to simulate the schematic of the amplifier.
3. Microsoft Windows XP

This will be the operating system platform used to run the above software. It will be the

main platform.

47

CHAPTER FOUR: PROJECT DESIGN

48

4.1 Introduction

This phase is important. Designing a project will determine the outcome of the
project. Producing a good design will ensure that the final product will not only work
properly, but the process of developing it will be easy and smoothly.

In this chapter, I will include the design for the entire project, as well as the

design of the portable headphone amplifier. Below shows the highest level of design for

the project:

Parallel Interface

(A

Amplifier

Client PC

Figure 4.1: Highest Level of Design

49

4.2 Designs For Controlling Stepped Attenuator

Based on the three approaches mentioned in chapter 3, the verdict will be the
third approach that is by using the Relay. As mentioned also in chapter 3, the relay will
play the role as a switch on the stepped attenuator. This is due to the concept on how a
stepped attenuator works.

On the actual attenuator, the rotary switch act as a switch, whereby when we
rotate the switch, it will short on the terminals to allow the signal flows through into the
output. By installing relays and shorting the entire terminal with relays, it is possible to
determine which switch to close and allow the signal to flow through. In order to control
the relays, we supply the operating voltage to the relays from the parallel cable, and thus

from the parallel port. To understand clearly, the diagram below will show:

50

Series Type Stepped Attenuator

(From Source) |y

Connect to

parallel cable

Amp

RG -

3
R2

2
Ri L\Nv‘{ ;
i .

GND O
Resistor Switch
Designator Position

Figure 4.2: Design For Controlling Stepped Attenuator

The Blue bold lines represent relays connected from the stepped attenuator to the

amp. The relays power supplies are from the parallel cable. Whenever the data pins are

enabled, it will supply power to the relays.

51

For example, if relay at position 12 is enable and the rest of the relays are
disabled, the signal from the source will flow through straight into node 12 without
going into any of the resistors. In this case, the volume is at maximum.

If the relay at position 6 is enable and the rest of the relays are disabled, then the
signal from the source will flow through resistor R11, R10, R9, R8, R7 and R6. Then the
signal will enter node 6 and into the output. At this case, the volume should be at half,
depending on the value of the resistors.

If the relay at position 1 is enable and the rest of the relays are disabled, the
signal from the source will flow through all the resistors from R11 down to R1. Then the
signal will enter node 1 and to the output. At this case, the volume should be at
minimum.

By enabling and disabling the relays, it is possible to control the volume of the
source. Not only will this concept work on an amplifier, but this will also work on
dimming lights. In order to dim lights, just substitute the amplifier with a lamb light.

The figure below will show the amp being substitute for a lamb light.

52

Series Type Stepped Attenuator

(From Source) N

-
R11 L\/ij
11 Connect

parallel cable

to

RO

RB8
8
i '"‘b
R6 :
Y
RS)
: &
e .
R4 Light Bulb
4
o
R8
3
R2
2
R1 1
GND
+ +
Resistor Switch
Designator Position

Figure 4.3: Controlling and Dimming a Light Bulb

But in the case of this project, the LED will be used instead of a light bulb.

53

4.3 Portable Headphone Amplifier Design

The fact is that headphones are actually miniature speakers and require a
miniature power amplifier to drive them with fidelity. Headphones provide a complex

electro-mechanical load but they still need a power amp with excellent stability and low

output impedance to bring out their potential.

Opamps are most commonly used as a voltage gain stages. The following shows
the diagram for the portable headphone amp. The below diagram shows the opamp

circuit diagram. This is only a single channel circuit.

R3 R4
Input -E=
Oy 2
Output
Cy b
3 [
P1
vol.
R2
J?_

Figure 4.4: Basic Amplifier Design

The input impedance is the value of the input resistor. The output impedance Zo depends
on the particular opamp, but will decreases with decrease in gain. The gain of the amp is
shown in the equation below;

G=(R3 + R4)/R3

P1 will be substitute for the stepped attenuator.

54

In order the make to amplifier or opamp work, they must be a supply of voltage
to the opamp. The below diagram shows the power supply unit (PSU) for the above

opamp.

SW dT0F 47T00F 4. 7uf
+ —a o—¢ L 4 L 4 + 9.0 YOC

o | 10K 1 8 B0.
N e
5 [= 97N Al Ié S 7

Figure 4.5: Schematic for Power Supply Unit

The TLE2426 is a rail-splitter whereby it function as to split the virtual ground
and also the output voltage so that it will have a balance +ve and —ve to supply to the
opamp. The EL2001 is a buffer whereby it will boost the virtual ground current. The rest
of the capacitors act as a power reservoir from the input voltage. The input voltages will
be batteries powered. D1 or 1N5822 is a diode and act as a precautious for reserved
power. This will prevent the damage to the semiconductors.

The overall design for the portable amp will be as follow:

‘o—c“"""; v = A0F A AM l’:om
PRI], i!l] -5~‘6lnw lnout
it g @ }Ltz‘ﬁ:-4—+uooi,::,L ___H_ =]
-, »] 4 8T8 4 i Pl
— L A

Figure 4.6: Complete Design of Headphone Amp

55

Over the stages of building the amp, they might be some changes to the amp as
they are still rooms for improvement. For example, we could add a buffer at the output
of the amp to boost the current. This boost of current could drive the headphone better
and produce richer sounds.

The used of high quality capacitors can also do some good changes to the sound
output. Good quality capacitors such as Solen Capacitors, Elna Cerafine Capacitors,
Elna Arod Audio Grade Capacitors, BlackGates, Auricaps, all these are audio grades
high quality capacitors.

Also, they can be varieties of opamps to use to0. Instead of using the Burr Brown

OPA2134, we can also use the Burr Brown OPA2132.

For the buffer, we can also opt for the BUF634 which is cheaper than the

EL2001.

56

4.4 Software Design

In order to control the stepped attenuator through the parallel port, it is actually
the software that is playing with the parallel ports data pins. The software role is to
provide a graphical user interface or GUI to the user to control the volume of the audio
system.

The software will be written in 2 programs, one for the client, and another for the
controlling end. Therefore, in writing the codes, some network programming 1s needed,
for example socket programming. The controlling end will control the parallel port by
allowing the user to select which data pin to disable and enable.

The software will be fully written in Visual C++. The next section will show the
data flow diagram for the software. The software will be named Administrator Mode and
User Mode. The Administrator Mode will only allow the administrator or whoever has
the admin password to enter this mode. The features in this mode include the
administrator features such as adding users, deleting users and log file updates.

The User Mode is the most basic mode where there are only basic functions

available. Basic functions such as controlling the volume and activating the amp.

The data flow diagrams are as follows:

57

a) Administrator Mode

Admin

Y

Login Menu

—

<

!

yes

Main Menu

|

no

Control

Maintenance

Switch On

Volume Control

Add User

Delete User

Log

Figure 4.7: Administrator Mode

58

b) User Mode

User

:

Login Menu

l yes

Main Menu

Volume Control

no

Figure 4.8: User Mode

¢) Login Menu
Login: []
Password: [|
Ok Cancel

Figure 4.9: Login Menu

59

d) Administrator Functions

Control Add User
Maintenance
Delete User
Log
Main

Figure 4.10: Administrator Functions

e) Controlling Menu (Same for Administrator Mode and User Mode)

On

Off F

Volume

Control Menu

Figure 4.11: Control Menu

60

CHAPTER FIVE: SYSTEM DEVELOPMENT AND IMPLEMENTATION

5.1 Introduction

This chapter will explain the development of the system or model, which is based
on the transition of modules and algorithms derived from the system design phase, into
feasible instructions by coding it into software and hardware programs.

This system consists of 2 components, the software component and the hardware
component. The software component allows the end user to have access and control into
the system. The software also controls the hardware and will further control the
application desired by the end user. The hardware functions as a controlling device,
triggered by the software. The hardware component enables the end user to control the
application based on the functions of the software.

The following sections of this chapter will explain the development process of

both the software and hardware components, Then later will show how both software

and hardware combines and implement it on the application.

62

5.2 Software Development

This section will explain the software development process. But before going
into the details, let’s first look into what does the software component do.

The software component consists of two programs running simultaneously. One
part of the software is the client program, which is running remotely on a personal
computer. And the second part of the software is the server program, which is also
running remotely on a personal computer. The software is running across a network,
meaning that both client and server programs on 2 separate personal computers are
connected via the Internet or a local area network.

The client program communicates with the server program through a network
environment. The client program, which resides remotely, will be able to communicate
with the server program. The system is designed to allow the end user to have control
over the client program and communicate with the server program to control the
application.

Basically the client and server program are the same. Both of these programs
have options to allow the user to select if the program should be running under the client
mode or the server mode. This is to allow easy software development so that only one
program is written, Also this allows the flexibility of the single program to run under
multiple modes set by the user. During the coding process, both client and server

functions must be written into the program. Therefore, the coding process should be

longer and tedious.

63

Apart from the mode selection function, the program also allows text messaging
and control functions on the hardware. The client and server program are able to
communicate using text message. This is to enable both parties to exchange simple
information such as text.

The control function of the software is to control the parallel port at the server
computer. The function of the program is to be able to enable and disable the data pins
of the parallel port. There are 8 data pins out of the 25 pins of the parallel port. Enabling
the data pins is when there is a voltage present at the pins, where disabling the pins is
when there is no voltage presence on the pins. The figure below shows the position of

the data pins, The connector shown is a male connector.

- — View is looking at

° o Connector side of
DB-25 Male Connector.

Pin Description
1 Strobe PC Output
2 Data 0 PC Output : ;
3 Datal PCOutput [Assignment
¢ Y e Qupe Note: 8 Data Cutputs
5 Data 3 PC Output 4 Misc Baietd
6 Datad PC Output Other Qutputs
7 Data 5 PC Output
g Datab PC Output 3 Data Inputs
9 Data 7 PC Output T
10 ACE PC Input Note: gux:u:ils are
11 Busy PC Input
12 Paper Empty PC Input
13 Select PC Input
14 KufoFeed PC Output
15 Emor PC Input
16 Imtialize Printer PC Output
17 Select Inpuf PC Output

Figure 5.1: Positions of Pin

Based on the above figure, pin 2, 3, 4, 5, 6, 7, 8, and 9 are the data pins. There are a total
of 8 data pins. This system will only deal with these 8 pins, and omitting the rest of the
pins.

The figure below shows the female connector for the 25 pins parallel port.

Status Register Data Register
[sé 81/s2 tilu]g; S8 i_‘!] (m 06 |05|04 |03 {02 D1 no)
L

; A -8
e e e

| aTE

el

Control Register

A
- 3

oy
W\
R vty ey

Figure 5.2: Femsle Connector

5.2.1 Parallel Port Control With Microsoft Visual C++

This sub-section will explain how does the software program control the parallel
port. From the previous section, the main goal is to allow the program to enable and
disable the data pins on the parallel port.

The software program used to control the parallel port will be written using
Microsoft Visual C++, There are several ways to access the parallel port. These ways
include direct input and output, custom developed device drivers and the Windows
operating system built in drivers.

Almost all programming languages allow programmers to access parallel port
using some library functions. For instances, Borland C is providing Inporth and

Outporth functions to read and write 10 mapped peripherals. In Microsoft Visual C++,

65

there are 2 functions to access 10 mapped peripherals, _inp for reading and _outp for
writing. These functions are declared in “conio.h” [1].

By using Inporb and outportb or _inp() or _outp functions in our program, there
should be without any problem if running the program on Dos or Win95/98. But with the
new era of NT clone operating systems like Win NT4, Win2000, WinXP, all this
simplicity goes away. When trying to run a program which is written using the the
conventional software functions like Inporb, outportb, _inp() or _Outp on a NT or
Win2000 system, it will show an error message that "The exception privileged

instruction occurred in the application at location". The figure of such a messagebox

is given below.

PARTE 911 [Xl Appllcatlon Error

° (W)mdhhmpk&nn&bcmw

 Cick on OK to terminate the program
Mmmmm&nmm

-cm'

Figure 5.3: Error Message

The above error message only happens under the NT operating system, but the
program is running perfectly flawless under the Windows 98 operating system. This 1s
because being a very secure operating system, Windows NT assigns some privileges and
restrictions to different types of programs running on it. It classifies all the programs into
two categories, User mode and Kernel mode, for example running in ring3 and ring0
modes. User mode programs are running in ring3 mode and Kemel mode programs are

running in ring0 mode. The program that will be written falls in the user mode category.

66

The user mode program is restricted to use certain instructions such as IN, OUT.
Whenever the operating system finds that a user mode program is trying to execute such
instructions, the operating system stops execution of that program and will display an
error message. Eventually the interfacing program stops executing IN or OUT
instructions to read or write data to parallel port. But in the same time Kemel mode
program are in no way restricted in executing such instructions.

Device drivers are capable of running in kernel mode. So the workaround for the
above stated problem is to write a kemnel mode dnver capable of reading and writing
data to parallel port and let the user mode program to communicate with it [2]. The
device driver is referring to the inpout32.4ll for the Windows NT/2000/XP operating
systems. The inpout32.dll has the following features:

o It works seamless with all versions of Windows including 98/NT/2000/XP

e It uses a kemel mode driver embedded in the dll

e No addition software or driver installation is required

e Driver will be automatically installed and configured automatically when the dll
i1s loaded

e No special APIs are required, only 2 functions inp32 and out32

e (Can be easily used with Visual Basic and Visual C++

67

5.2.2 Coding For Parallel Port Communication

The following codes are written into the server program to allow the user to have
control over the parallel port. The code utilizes the inpout32.dll device driver to have

access into the parallel port’s pins. The codes are as follows:

typedef UINT (CALLBACK* LPFNDLLFUNC1)(INT,INT);

typedef UINT (CALLBACK* LPENDLLFUNC2)(INT);

HINSTANCE hDLL; // Handle to DLI,

LPENDLLFUNCI Output; // Function pointer

LPENDLLFUNC?2 Input; // Function pointer

hDLL — LoadLibrary("Inpout32");

if (hDLL != NULL)

{
Output = (LPFNDLLFUNCI)GetProcAddress(hDLL,"Out32");
Input — (LPFNDLLFUNC2)Getl rocAddress(hDLL,"Inp32");
if (1Output || !Input)

{
// handle the error I'reeLibrary(hDLL);

/

Quiput(int, int);

68

In order to write to the data pins at the parallel port, the command used is the
Output(int, int), where the first int represents the address of the parallel port, and the
second int represents the value of the pins. The command for reading data from the
parallel port is the Input(int), where the int represents the address of the paralle!l port.
However, for the purpose of this system, the Imput(inf) command will not be used
because the program only has the writing function to the parallel port.

For each parallel port, there consist of three port addresses, namely the data port,
status port, and the control port. These addresses are in sequential order. For instance, if
the data port is at address 0x0378, the next status port will be at 0x0379 and the control
port will be at 0x037a. The addresses are in hexadecimal numbers. Thus, only the data
port address is needed to write into the data pins. Because a parallel port can have
different modes, namely LPT1, LPT2 or LPT3, the port address for each mode is
different. In order to make sure the mode of the parallel port, the user can check the
modes in the System Configuration, under the Resource Settings. But normally the
parallel port will be set to LPT1 in the BIOS, and the resources settings will be from
0378 to 037F. Therefore, for the purpose of this system, the data port address will be
0x0378.

The value in Quiput(int, int) will determine which pin to activate. Let’s look at
the 8 data pins as binary numbers. Each data pin can only be either enable or disable.
Thus let’s assign the binary value of 1 for enable, and the binary value O for disable.
Since there are 8 data pins, in the state where all pins are disabled the binary number will
look like 00000000, Let’s assume that the left most bit is pin 8 and the right most bit is

pin 1. When the binary numbers are converted into decimal numbers, for 00000000 the
69

decimal value will be 0. And for all 8 pins to be enabled the binary number will be

11111111, and the decimal value will be 255. The following shows each pin being

enabled accompanied by the binary and decimal values:

All pins disabled
Binary: 00000000
Decimal: 0

Pin 1 enabled
Binary: 00000001
Decimal: 1

Pin 2 enabled
Binary: 00000010
Decimal: 2

Pin 3 enabled
Binary: 00000100
Decimal: 4

Pin 4 enabled
Binary: 00001000
Decimal: 8

Pin 5 enabled
Bipary: 00010000
Decimal: 16

Pin 6 enabled

Binary; 00100000

70

Decimal: 32

Pin 7 enabled
Binary: 01000000
Decimal: 64

Pin 8 enabled
Binary: 10000000
Decimal: 128

All pins enabled
Binary: 11111111

Decimal: 255

This system only has functions to enable each pin at a time. The system does not

require 2 or more pins to be enabled. The following table shows the function:

Command in codes

Pin State Decimal Values
All disabled 0 Output(0x0378, 0);
Pin 1 1 Output(0x0378, 1),
Pin 2 2 Qutput(0x0378, 2);
Pin 3 4 Output(0x0378, 4),
Pin4 8 Output(0x0378, 8),
Pin 5 16 Output(0x0378, 16);
Pin 6 32 Output(0x0378, 32),
T T ~— Guinui0X0378. 64,
Pin 8 128 Output(0x0378, 128),

Table 5.1: Command for Pins

71

5.2.3 Socket Programming For Client And Server Program

The program will utilize socket programming in order to have communication
between the client program and the server program. Socket programming allows more
applications to have the ability to communicate with each other applications over a
network, including the Internet.

Socket programming uses the same principles and functionality to perform
communication. One program will sit on a computer, waiting for another program to
open a communication connection. This program is in /istening mode. Another program
most likely on another computer will try to connect to the remote listening program. The
connecting program has to know the network location, or network address of the remote
program. Once the connection has been made, messages can pass back and forth

between the two programs. This connection is a two-way communication channel, where

both sides can send information.

Tries to open connection
Accepts connecton rei
- e e
' < Messages sent both directions

Figure 5.4: Socket Connection Process
The basic object used by applications to perform most network communications

is called a socket. Sockets were first developed on UNIX at the University of California

at Berkley. Sockets were designed so that most network communications between

72

applications could be performed in the same way that these same applications would

read and write files.

When a file is to be read or written, a file object must be used to point to the file,
A socket is similar; it is an object used to read and write messages that travel between
applications.

In socket programming, only one application may be listening on any specific
port on a single computer. Although numerous applications may listen for connection
requests on a single computer at the same time, each of these applications must listen on
a different port.

This program will be developed using Visual C++, and by using the MFC
Winsock classes to add network communications capabilities. The base class,
CAsyncSocket, provides complete, event-driven socket communications.

For the development of the socket program, a simple dialog application will be
created that can function as either the client or server in a Winsock connection. This will
allow two copies of the sample application to run at the same time, one for each end of
the connection, on the same computer or to copy the application to another computer so
that two copies can run on separate computers and see messages can be pass across a
network. Once the client program has established a connection with the server program,
text messages can be enter and send to the other program. When the message has been
sent, it will be added to a list of messages sent. Each message that is received will be
copied into another list of all messages received. This will allow the user to see the
complete list of what is sent and received.

The few functions present on the program is to allow the user to set if the

program is to be run as the client or server. Another important function is the slider
73

function, which allows the user to increase the slider and decrease the slider. Whenever
the user changes the slider on the client side, the slider on the server side will changes
too. The slider will integrate with the changes on the data pins of the parallel port. The
slider will have 8 positions. Each position of the slider represents the data pins of the

parallel port.
The figures below show a screen shot of both the client program and the server

program at development time:

Figure 5.5: At initializing

74

:‘:_'_‘alnm tHome Prototype

| ServenName: Hoop
i R T

a EIYEN 0

Figure 5.6: Running on Server Mode

75

SefyErNarme |

Jerver = ort

Figure 5.7: Running on Client Mode

76

martHome Prototype

Figure 5.8: Server’s slider changes

When the slider is at position 0, all the data pins are disabled. When the slider is
increased to 1, pin 1 will be enabled. When the slider changes to position 2, pin 2 will be
enabled and the rest of the pins will be disabled. When the slider changes to position 3,
pin 3 will be enabled and so on until the maximum position of 8, and then pin 8 will be
enabled.

77

5.3 Hardware Development
This section will explain the development of the hardware component of the
system. The hardware component acts as an interface between the parallel port from the
server computer to the application.
The hardware component comprises of the following hardware devices:
e A female 25 Pin socket
e 8 Relays
e 8 Multi-purpose 2N3903 NPN Transistors
* Combination of resistors

¢ DC power source

The figure below shows one part of the circuit from the parallel port interface:

DC Power Suppl

From Pin

Ground

Figure 5.9: One part of the circuit

78

Based on the above figure, this is only one circuit connection for one pin. Therefore,
there are 8 pins and there should be 8 circuit connections similar to the above figure.

The 2N3904 NPN multi-purpose transistor acts as a switch to enable the relay.
When the pin at the parallel port is enabled, there is a small voltage present at the pin.
The value of the voltage is around 5V. When this 5V is present at the Base of the
transistor, this will allow current to flow from the Emitter of the transistor to the
Collector of the transistor. Thus, the Base of the transistor acts as a switch to enable a
close circuit for the Emitter and the Collector of the transistor. The direction of the
current is from the Emitter down across the Base, to the Collector of the transistor.

When the pin is enabled at the parallel port, a voltage present at Base will
complete the circuit at the Relay and the DC power source will power up the relay,

causing the switch in the relay to close.

79

5.3.1 Hardware Interface As A Potentiometer

The application here is to allow the end user to control a remotely situated audio

amplifier. In order to control the audio amplifier, the hardware interface will have to act

like a potentiometer, or a volume control device.

Before going into the details of the interface development, lets look at the figure

D OUT

below.
Series Type Stepped Attenuator
IN ©
12
R11
L 11
R10
L 10
RO
i "‘
- 12
m
4 : r
RS .
R4
4
R3
3
R2
2
R 1
GND O Q
+ 4
Resistor Switch
Dasignator Position

Figure 5.10: 12 Stepped Attenuator

80

The above figure shows a 12-stepped attenuator. Although for the purpose of this
system, instead of developing a 12 stepped attenuator, an 8-stepped attenuator will be
developed. This is because there are only 8 data pins used from the parallel port.

The blue coloured lines represent the relays. Each time the relay is enabled, it
will act as a switch to short the circuit from the input source to the output. When all the
data pins are disables, none of the 8 relays will enable. Thus, the source signal will not
be able to flow to the output. This is when the volume is at the lowest level. When pin 1
is enabled, relay at position 1 will close the circuit and the signal from the source will
.travel across resistor R11 to R2, and to the output. Here, the total resistance is
R2+R3+R4+R5+R6+R7+R8+R9+R10+R11. When the slider increases its position, the
pins will enable from pin 1 up to pin 8. When the slider is at full, pin 8 will enable. This
time the volume is at full because the signal from the source will travel straight into the

output without going through any of the resistors. This is when the volume is at full

blast.
The values of the resistors are as follow:
e Rl =82 Ohm R2 = 82 Ohm
e R3 =240 Ohm R4 = 560 Ohm
e R5=1K Ohm R6 = 3K Ohm
e R7= 5K Ohm R8 = 15K Ohm

The total resistance 1s 24964 Ohm, approximately 25K Ohm.

81

5.4 More on Inpou32.dll

The feature of Inpout32.dil is it can work with all the Windows versions without
any modification in user code or the d// itself. The dll will check the operating system
version when functions are called, and if the operating system is Win9X, the d/I will use
_inp() and outp functions for reading and writing to the parallel port. If the operating
system is Windows NT, 2000 or XP, it will install a kemel mode driver and talk to
parallel port through that driver. The user code will not be aware of the OS version on
which it is running. The dll can be used in Windows NT clone operating systems as if it

is Win9X. The flow chart of the program is given below.

ser calls Inp32 o
Qut32 function.

Checking 0S version.
WINSX WIN NT

Use _inp/_out library Is hwinterface.sys kemel
functions for data transfer mode driver loaded ?
Yes No
i | o —
T :
Pass data/ request to 'ysm%m
driver , using N v
Devicel0Control AP| 0 :"
fiver wiites to of reads from Install Driver
parallel port using HAL functions
|

Figure 5.11: Inpout32.dIl process flow chart

82

CHAPTER SIX:SYSTEM TEST

83

6.1 System Test Introduction
This chapter explains the test method carried out to test the final product of the
system. The system contains 2 components, the software component and the hardware

component. Therefore there should be at least two test method to check the

performances of the system.

6.2 Software Test

In order to produce a good test result for the software component, it is important
that the process of writing the programs are planned correctly and carried out smoothly.
During the writing of the program, make sure that all the required functions and methods
are drafted out clearly. It is also important to frequently compiled and run the programs
after each and every functions are written correctly. This way, whenever an error is
found, at that moment the problem would be a small one and it should be easy to solve
the problem.

To test the completed program, at first the client and server program must be
executed. It is better to run both client and server program on the same computer
initially, After testing the programs successfully, then proceed with running both
programs remotely on different computer across a network.

To test the programs is to make sure that all the functions and features on the
program works accordingly with the requirements. In this case, it is important that the

client program is able to connect to the server program, Next is to ensure that both the

84

client and server program are able to send text messages across the network, and
received by the opposite program,

Before sending the text messages, it is important to test if the single program can
be run either in the client mode or the server mode. This is because the same program is
written to be able to run as the server or the client. The way to test this is to run up 2
programs and select the different mode on each program, and then connect from the
client side.

The most important function on the system is the slider control. In order to test if

.the slider is working on the parallel port’s pins, a third party software is used to test the
parallel port’s pin status. The software used is the Parallel Port Monitor written by Fred
Bulback. This software is a freeware and can be download from the Internet. The
Parallel Port Monitor is a utility for viewing and manipulating the state of a parallel port
on a Windows operating system. The figure below shows the screen shot of the software:

Parallel Port Monitor " ¥

Port § Dec § Hex § Binary § Beep

[678 (32 [20 [o100000 [Ves

[378 [120 [78 [61111000 [Ves

[37A [12 | 0C |00001100 | Yes

CeReesOeR0000
ooo:a’_ bp'juu? >

Figure 6.1: Parallel Port Monitor

As seen above, the coloured round dots represents the 25 pins of the parallel port. The
dark red colour shows the pins that are not active, while the yellow pins are the active
pins.

This software is ideally good for testing the software component of the system.

85

6.3 Hardware Test

The best way to test the hardware component is by using a multitester meter. The
multitester meter used is the Sunwa YX-360TRn.

It is important to always probe any connection points after any process of
soldering iron on the printed breadboard. This is a vital step because a slight shorted area
will cause the hardware to malfunction.

After the completion of the hardware, it is possible to use a third party software
to test on the circuit. The third party software used is the GXSPort by the XSTools.
CXSPort is a graphical user interface command line utilities that sends up to 8 logic
signals through the computer’s parallel port. By using GXSPort, it is possible to test the

hardware by enabling the data pins and enabling the relays. Below shows a screen shot

of the software:

= bzm [mn

Figure 6.2: GXSPort

To use GXSPort, simple just click on the 8 buttons and the value will change from 0 to
1. This indicates that a high and a low value is assign to the parallel port. After selecting

the button, click Strobe to send the signal to the pins,

86

6.4 Integration Test

Integration test meaning to test the entire system, combining the software and the
hardware. In order to run this test, firstly run a copy of the software program on 2
network computers. One computer will act as the server program, and another will act as
the client program. On the server computer, by using a male-to-male parallel cable,
connect the cable to the parallel port, and then connect the other end into the hardware
interface component. Then connect the power supply for the hardware interface
component and connect the hardware component to the audio amplifier. Next play an
audio source and try changing the slider control on the client program. If the test work,

the output from the speaker should change in audio volume.

87

CHAPTER SEVEN: DISCUSSION

88

7.1 Discussion
This chapter will explain the problems faced during the development of the
system. Also will discuss the strength of the system, and not forgetting the constraint and

weaknesses. Finally this chapter will include suggestions and improvements for this

project.
7.2 Probl F

Along the development process of this project, there are a few problem faced:

1) To find the right device for a switch

During the first phase of this project, the idea was to build a hardware device that could
act as a volume control. Then came along the idea of the stepped attenuator. But the
problem was to search for the right device to act as a switch whenever there is a small
amount of voltage present. This proved to be a difficult task because a lot of extra

readings on electrical components need to be done. Finally, a relay solved the problem.

ii) Software unable to run on Windows XP

While writing the codes for the program, the platform used to compile the source code
was the Windows XP operating system. The readily available functions for accessing the
parallel port were unable to run correctly. This was due to security reasons on the XP
Operating system. Further research was done on the Internet, and a device driver was

needed to overwrite the security constraint on the Windows XP operating system. The

device driver used was the Inpout32.dil.

89

iii) Finding the right resistors values
This was quite a difficult task too because 8 different values of resistors need to be
calculated to produced the right attenuation. A series of try and error process finally

came down very close to the right value of resistors.

iv) Insufficient Funding

This system utilizes a great amount of hardware devices. Therefore a large sum of

money is used to purchase these electrical devices. Some of the devices are quite costly,

and needed to get in a large amount of quantities.

1.3 Strength Of Project

Although they have been some previous projects similar to this one, where it
involves the usage of the parallel port. But the previous projects are quite
straightforward in the sense of the applications. This project proves to be unique in the

Sense that it combines both hardware knowledge and software programming.

The hardware utilizes a number of different electronic devices, each with
different functionalities, combined together to produce a unique solution for different
application. For example, the main purpose of this project is to control an audio

amplifier. But the same function can be applied on a light bulb.

The software uses the slider control to allow for smooth transition of control on

the parallel port. This proves to be creative and different from the traditional button
controls,

90

74 System Constraint

A few drawbacks of the system are that a delay in information transfers across
the network. The software performance for running on the same computer and running
remotely differs in the sense that information needs to be broadcast across the network.
Therefore there is a delay when the server program receives the information.

Another drawback of the system is that, the system is actually running in a local
area network environment. The algorithm for the software to communicate across the
Internet should prove to be more complicated than to communicate across a network
Computer.

Finally, this project is only a model design to show that a parallel port could

actually act as a volume control and to control an audio amplifier.

7.5 Suggestions and Improvements

1. The system can be improved by using more pins to control

2. More pins to allow much more attenuation, thus a smoother volume change.
3. The make the software able to run across the Internet.

4. The Faculty should provide with some funding,

5. Using other medium of control, for instance wireless control.

91

7.6 Conclusion

This project proves to be a challenging task. This is because the system
comprises of both hardware and software. Apart from applying the knowledge in
computer programming, a certain degree of knowledge in hardware and electronics are
needed to complete this project. This is where extra knowledge is gain and could be
useful for future purposes.

Due to the problems encountered during development, it is sad to mention that
the developer of the project was almost behind schedule. But with great dedication and
beliefs, the developer managed at the end to complete the project.

Along this project, the developer gained many experiences. With these
experiences gained, the developer hopes that all these will be put into practice when

graduate from university.

92

LI H
1. Jan Axelson, “Parallel Port Complete. Programming, interfacing & Using PC’s

Parallel Printer Port”, Lakeview Research, 1999,

2. Jan Axelson, “Serial Port Complete. Programming and Circuits for RS-232 and RS-

485 Links and Networks”, Lakeview Research, 1998,

3. Thomas L Floyd, “ Digital Fundamentals”, 6 Edition, Prentice Hall, 1997.

4. www.smarthome.com

93

APPENDIX 1: CLIENT SCRIPT

II'SockDlg.cpp : implementation file
Il

finclude "stdafx h"
#@nclude "Sock.h"
#include "SockDlg. h"

#ifdef DEBUG

#efine new DEBUG NEW

fundef THIS FILE

Static char THIS FILE[]= FILE ;
#endif

I T
I CAboutDlg dialog used for App About

?lass CAboutDlg : public CDialog

public:
CAboutDIg(),

/I Dialog Data
IH{{AFX DATA(CAboutDlg)
enum { IDD =1DD_ABOUTBOX };
/1Y }AFX_DATA

// ClassWizard generated virtual function overrides
I{{AFX_VIRTUAL(CAboutDIg)

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

//}}AFX_VIRTUAL

I Implementation

Protected:
H{{AFX MSG(CAboutDlg)
//}}AFX_MSG

| DECL/\RE_MESS/\GE_M/\P()

{CAbOULDIg::CAboutDlg() - CDialog(CAboutDlg:: IDD)

//{{AFX DATA INIT(CAboutDlg)
/I}YAFX DATA INIT

}’Oid CAboutDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
II{{AEX DATA MAP(CAboutDlg)
//}}AFX_DATA MAP

BEGIN MESSAGE MAP(CAboutDlg, CDialog)
J/I{{AFX_MSG MAP(CAboutDlg)
// No message handlers
I/} YAFX MSG MAP
END MESSAGE MAP()

U LT
/1 CSockDlg dialog

CSockDlg::CSockDIg(CWnd* pParent /*<NULL*/)
: CDialog(CSockDlg::IDD, pParent)

IH{{AFX DATA INIT(CSockDlg)

m_strMessage = T(""),

m_strName = _T(""),

m iPort = 0,

m_iType = -1,

I} YAFX DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()->Loadlcon(IDR MAINFRAME);,

}
‘{’Oid CSockDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);

IH{{AFX DATA MAP(CSockDlIg)

DDX Control(pDX, IDC SLIDER, m_ctlSlider),
DDX Control(pDX, IDC_LSENT, m_ctlSent),

DDX Control(pDX, IDC_LRECVD, m_ctIRecvd),
DDX Control(pDX, IDC BCONNECT, m_ctlConnect),
DDX Text(pDX, IDC_ EMSG, m_strMessage),
DDX Text(pDX, IDC_ESERVNAME, m_strName),
DDX Text(pDX, IDC_ESERVPORT, m_iPort),
DDX Radio(pDX, IDC RCLIENT, m_iType),
I1Y}AFX DATA MAP

BEGIN MESSAGE MAP(CSockDlg, CDialog)
II{{AFX MSG MAP(CSockDlg)
ON WM SYSCOMMAND()
ON WM PAINT()
ON WM QUERYDRAGICON()
ON BN CLICKED(IDC RCLIENT, OnRType)
ON BN CLICKED(IDC BCONNECT, OnBconnect)
ON BN CLICKED(IDC BSEND, OnBsend)
ON_BN_CLICKED(IDC_RSERVER, OnRType)
ON BN CLICKED(IDC_BCLOSE, OnBclose)
ON WM HSCROLL()
/}YAFX MSG MAP

END MESSAGE MAP()

T T
// CSockDlg message handlers

?OOL CSockDlg::OnlnitDialog()
CDialog::OnlnitDialog();
// Add "About..." menu item to system menu.
// IDM ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX),
ASSERT(IDM_ABOUTBOX < 0xF000),

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

{

CString strAboutMenu;

strAboutMenu.LoadString(IDS ABOUTBOX),

if (!strAboutMenu.IsEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR),
pSysMenu->AppendMenu(MF_STRING, IDM ABOUTBOX,

StrAboutMenu);

J
}

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
Setlcon(m_hlcon, TRUE), // Set big icon
Setlcon(m hlcon, FALSE), // Set small icon

// TODO: Add extra initialization here
// Initialize the control variables
m_iType = 0,

m_strName = "loopback";

m_iPort = 4000,

// Update the controls
UpdateData(FALSE),
//GetDlgltem(IDC SLIDER)->EnableWindow(TRUE),
// Set the socket dialog pointers
m_sConnectSocket. SetParent(this);
m_sListenSocket. SetParent(this);

return TRUE; // return TRUE unless you set the focus to a control

j
‘{’Oid CSockDlg::0nSysCommand(UINT nlD, LPARAM [Param)

if (nID & 0xFFF0) == IDM_ABOUTBOX)

{

: CAboutDlg dlgAbout;
dlgAbout.DoModal(),

1

J

else

{
CDialog::OnSysCommand(nlD, IParam);

}

/£ you add a minimize button to your dialog, you will need the code below
! to draw the icon. For MFC applications using the document/view model,
/I this i automatically done for you by the framework.

‘{’Oid CSockDlg::OnPaint()
if (IsIconic())
{
CPaintDC de(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)
de. GetSafel 1dc(), 0),

// Center icon in client rectangle

int cxlcon = GetSystemMetrics(SM_CXICON),
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect,

GetClientRect(&rect),

int x = (rect. Width() - cxlcon + 1) / 2;
int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
de.Drawlcon(x, y, m_hlcon),

CDialog::OnPaint(),

/ The system calls this to obtain the cursor to display while the user drags

Il the minimized window.
I{{CURSOR CSockDlg::OnQueryDraglcon()

return (HCURSOR) m_hlcon;

\{foid CSockDlg::OnRType()

// TODO: Add your control notification handler code here

// Sync the controls with the variables

UpdateData(TRUE),

// Which mode are we in?

if (m_iType == 0){ // Set the appropriate text on the button
m_ctlConnect. SetWindowText("C&onnect"),

!
S

else{
m_ctlConnect.SetWindowText("&Listen");

}
zfoid CSockDlg::OnBconnect()

// TODO: Add your control notification handler code here

// Sync the variables with the controls

UpdateData(TRUE),

// Disable the connection and type controls
GetDlgltem(IDC_BCONNECT)->EnableWindow(FALSE),
GetDlgltem(IDC_ESERVNAME)->EnableWindow(FALSE),
GetDlgltem(IDC_ESERVPORT)->EnableWindow(FALSE);
GetDlgltem(1DC_STATICNAME)->EnableWindow(FALSE);
GetDIgltem(IDC_STATICPORT)->EnableWindow(FALSE),

*

GetDlgltem(IDC RCLIENT)->EnableWindow(FALSE);
GetDlgltem(IDC_RSERVER)->EnableWindow(FALSE);
GetDlgltem(IDC_STATICTYPE)->EnableWindow(FALSE);

// Are we running as client or server?

if (m_iType == 0){
GetDlgltem(IDC_SLIDER)->EnableWindow(TRUE);
GetDlgltem(IDC_LABELMODE)->EnableWindow(TRUE);
GetDlgltem(IDC LABELMODE)->SetWindowText("Client Mode"),
// Client, create a default socket
m_sConnectSocket.Create();
// Open the connection to the server
m_sConnectSocket.Connect(m_strName, m_iPort),

m_ctlSlider.SetRange(0, 10),

else{
GetDlgltem(IDC_SLIDER)->EnableWindow(TRUE);

GetDlgltem(IDC_LABELMODE)->EnableWindow(TRUE);
GetDlgltem(IDC_LABELMODE)->SetWindowText("Server Mode"),
// Server, create a socket bound to the port specified
m_sListenSocket.Create(m_iPort);

// Listen for connection requests

m sListenSocket.Listen(),

m_ctlSlider.SetRange(0, 8);

//**#*********

typedef UINT (CALLBACK* LPFNDLLFUNCI)(INT,INT);
typedef UINT (CALLBACK* LPFNDLLFUNC2)(INT),
HINSTANCE hDLL; // Handle to DLL

LPFNDLLFUNC! Output; / Function pointer
LPFNDLLFUNC2 Input; // Function pointer

INT Addr,

INT Addrln;

INT Value;

hDLL = LoadLibrary("Inpout32");

if (hDLL != NULL)

{
Output = (LPENDLLFUNC1)GetProcAddress(hDLL,"Out32"):

Input (I,I’FNI)LI,FUNC?.)GctProcAddrcss(hDLL,"Inp32");‘
if (1Output || Input)

// handle the error FreeLibrary(hDLL);

J
Addr = 0x378;

Addrln = 0x379,

Value = 0;

Output(Addr, Value);

INT somenum = Input(Addr),

//**

g/
j

;'oid CSockDlg::OnAccept()

1
5

// Accept the connection request

m_sListenSocket. Accept(m_sConnectSocket),

// Enable the text and message controls
GetDlgltem(IDC_EMSG)->EnableWindow(TRUE);
GetDIgltem(IDC_BSEND)->EnableWindow(TRUE),
GetDlgltem(IDC STATICMSG)->EnableWindow(TRUE),

J
\{foid CSockDlg::OnConnect()

// Enable the text and message controls

GetDlgltem(IDC_EMSG)->EnableWindow(TRUE);

GetDlgltem(IDC_BSEND)->EnableWindow(TRUE);

GetDlgltem(IDC_STATICMSG)->EnableWindow(TRUE);
\ GetDlgltem(IDC_BCLOSE)->EnableWindow(TRUE),

\{/oid CSockDlg::OnSend()

}

\{/oid CSockDlg::OnReceive()

char *pBuf = new char[1025];
int iBufSize = 1024,

int iRevd;

CString strRecvd,

// From client site controlling

typedef UINT (CALLBACK* LPFNDLLFUNCI)(INT,INT);
typedef UINT (CALLBACK* LPFNDLLFUNC2)(INT);
HINSTANCE hDLL; // Handle to DLL
LPFNDLLFUNC]1 Output; // Function pointer
LPFNDLLFUNC2 Input; // Function pointer
INT Addr;
INT Addrln;
INT Value;
hDLL = LoadLibrary("Inpout32");
if (hDLL != NULL)
{
Output = (LPFNDLLFUNC1)GetProcAddress(hDLL,"Out32");
Input = (LPF NDLLFUNC2)GetProcAddress(hDLL,"Inp32"),

if (!Output || Input)

{
// handle the error FreeLibrary(hDLL);

1
s

)

Addr = 0x378;

Addrln = 0x379;

Value =0,

//Output(Addr, Value),

INT somenum = Input(Addr),

/] Receive the message

iRcvd = m_sConnectSocket.Receive(pBuf, iBufSize);
// Did we receive anything?

if (iRcvd == SOCKET ERROR){

H

elsef
pBuf[iRcvd] = NULL;
//if (pBuf==int){
/ GetDlgltem(IDC_VALUE)->SetWindowText(pBuf),
I}
//elsef

// Copy the message to a CString

strRecvd = pBuf;

//1=0;

if{strRecvd =="000" || strRecvd =="000000"){
GetDlgltem(IDC_VALUE)->SetWindowText("0"),
/=1,
//m ctIRecvd. AddString(strRecvd),
m_ctlSlider. SetPos(0),

Output(0x378,0),

1

s

else if{strRecvd =="001" || strRecvd =="001001"){
//m_ctIRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("1"),
//i=1,
m_ctlSlider.SetPos(1),
Output(0x378,1),

1

’

else if{strRecvd =="002" || strRecvd =="002002"){
//m_ctlRecvd. AddString(strRecvd);
GetDlgltem(IDC_VALUE)->SetWindowText("2");
/=1,
m_ctlSlider.SetPos(2);
Output(0x378,2);

}

else if{strRecvd =="003" || strRecvd =="003003"){
//m_ctlRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("3");
/i=1;
m_ctlSlider.SetPos(3),
Output(0x378,4);

1

)

else if{strRecvd =="004" || strRecvd =="004004"){
//m ctlRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("4");
i=1,
m_ctlSlider.SetPos(4),
Output(0x378,8),

]

f

else iftstrRecvd =="005" || strRecvd =="005005"){
//m_ctIRecvd. AddString(strRecvd);
GetDlgltem(IDC_VALUE)->SetWindowText("5"),
Ii=1;
m_ctlSlider.SetPos(5);
Output(0x378,16),

}

else if{strRecvd =="006" || strRecvd =="006006"){
//m_ctIRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("6"),
/=1,
m_ctlSlider.SetPos(6),
Output(0x378,32),

1

)

else if{strRecvd =="007" || strRecvd =="007007"){
//m_ctiRecvd. AddString(strRecvd),

GetDlgltem(IDC_VALUE)->SetWindowText("7");
/=1
m_ctlSlider.SetPos(7),
Output(0x378,64),

[

§

else if(strRecvd =="008" || strRecvd =="008008"){
//m_ctlRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("8");
/=1,
m_ctlSlider.SetPos(8),
Output(0x378,128),

}

else iffstrRecvd =="009" || strRecvd =="009009"){
//m_ctlRecvd. AddString(strRecvd),
GetDIgltem(IDC_VALUE)->SetWindowText("9"),
=1,
m_ctlSlider.SetPos(9),
Output(0x378,128);

}
else iftstrRecvd =="010" || strRecvd =="010010"){
//m ctlRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("10");
/=1,
m_ctlSlider.SetPos(10);
Output(0x378,128),
}
else if{strRecvd =="6623"){
//MessageBox("Client Disconnected");
m ctlRecvd. AddString("*** Client Disconnected ***");

}

elsef

// Add the message to the received list box
m_ctlRecvd. AddString(strRecvd);
//GetDIgltem(IDC_VALUE)->SetWindowText(strRecvd);
// Sync the variables with the controls

1}

}

UpdateData(TRUE),

\
I
;'Oid CSockDlg::OnClose()

// Close the connected socket
m_sConnectSocket.Close();

//Disable the message sending controls
GetDlgltem(IDC_EMSG)->EnableWindow(FALSE),
GetDlgltem(IDC_BSEND)->EnableWindow(FALSE);
GetDlgltem(IDC STATICMSG)->EnableWindow(FALSE);
GetDlgltem(IDC BCLOSE)->EnableWindow(FALSE),

// Are we running in Client mode?

if (m iType == 0){
// Yes, so enable the connection configuration controls
GetDlgltem(IDC_BCONNECT)->EnableWindow(TRUE),
GetDlgltem(IDC_ESERVNAME)->EnableWindow(TRUE),
GetDlgltem(IDC_ESERVPORT)->EnableWindow(TRUE);
GetDlgltem(IDC_STATICNAME)->EnableWindow(TRUE);
GetDlgltem(IDC_STATICPORT)->EnableWindow(TRUE);
GetDlgltem(IDC_RCLIENT)->EnableWindow(TRUE);
GetDlgltem(IDC_RSERVER)->EnableWindow(TRUE);
GetDlgltem(IDC_STATICTYPE)->EnableWindow(TRUE),
GetDlgltem(IDC_LABELMODE)->EnableWindow(FALSE);
GetDIgltem(IDC_LABELMODE)->SetWindowText(""),

J

\{/0id CSockDlg::OnBsend()

// TODO: Add your control notification handler code here
int iLen;
int iSent;

// Sync the controls with the variables
UpdateData(TRUE),
// 1s there a message to be sent?
ifilm_strMessage != ""){
// Get the length of the message
iLen = m_strMessage.GetLength(),

// Send the message

iSent =m_sConnectSocket. Send(LPCTSTR(m_strMessage), iLen);

// Were we able to send it?

if(iSent == SOCKET_ERROR){

}

else|
// Add the message to the list box.
m_ctlSent. AddString(m_strMessage),
GetDlgltem(IDC_EMSG)->SetWindowText(""),
// Sync the variables with the controls
UpdateData(TRUE),

J
}'oid CSockDlg::OnBclose()

// TODO: Add your control notification handler code here
m_sConnectSocket. Send(LPCTSTR("6623"), 4);

// Call the OnClose function
OnClose();

!
\{IOid CSockDlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

CString pos,;
pos.Format("%d",m_ctlSlider. GetPos());
GetDlgltem(IDC_VALUE)->SetWindowText(pos),

/if (m iType == 0){
if{pos == "0")
m_sConnectSocket. Send(LPCTSTR("000"),3);

ifipos =="1")
m_sConnectSocket.Send(LPCTSTR("001"),3);

iﬂpos fa— |02u)
m_sConnectSocket. Send(LPCTSTR("002"),3);

if(pos == "3")
m_sConnectSocket. Send(LPCTSTR("003"),3);

i“pos [r— u4||)
m_sConnectSocket.Send(LPCTSTR("004"),3);

iflpos == "5")
m_sConnectSocket. Send(LPCTSTR("005"),3),

i“pos p— "6“)
m_sConnectSocket. Send(LPCTSTR("006"),3),

if{pos =="7")
m_sConnectSocket. Send(LPCTSTR("007"),3),

lf(pOS e "8")
m_sConnectSocket. Send(LPCTSTR("008"),3);

if(pOS = ugn)
m_sConnectSocket.Send(LPCTSTR("009"),3);

iﬂpos. . "]0“)
m_sConnectSocket. Send(LPCTSTR("010"),3),

I}

if (m_iType == I){

// For server site controlling

typedef UINT (CALLBACK* LPFNDLLFUNCI1)INT,INT);
typedef UINT (CALLBACK* LPFNDLLFUNC2)(INT),
HINSTANCE hDLL; // Handle to DLL

LPFNDLLFUNC! Output; / Function pointer
LPFNDLLFUNC?2 Input; // Function pointer

INT Addr;

INT Addrln,

INT Value;

hDLL = LoadLibrary("Inpout32");

if (hDLL != NULL)

{
Output = (LPFNDLLFUNC1)GetProcAddress(hDLL,"Out32");
Input = (LPFNDLLFUNC2)GetProcAddress(hDLL,"Inp32");
if (!Output || Input)
{

// handle the error FreeLibrary(hDLL),

}

}

Addr = 0x378,

Addrln = 0x379,

Value = 0;

//Output(Addr, Value);

INT somenum = Input(Addr),

Output(0x378,0);
|

//*************#**** PIN 1
B oo o o ok o o o o o o s oo o o oK o KK K RORRR KK KORORROR ROKOk kR ke k)

iftm_ctlSlider.GetPos()>0 && m_ctlSlider.GetPos()<=1){
Output(0x378,1),

j

//*******#********** plN 2
oo s ok o oo o oo ok oo o o o o o ko Ko kR ko o ok ok ok Kok //

iffm_ctlSlider.GetPos()>1 && m_ctlSlider.GetPos()<=2){
Output(0x378,2),
}

//******#**#*#**#*** PIN 3
****t****t**#****t#*********#***********t**t//

iftm_ctISlider. GetPos()>2 && m_ctiSlider, GetPos()<=3){
Output(0x378,4),

J

//**#**#*#*##******* P[N 4
FH Ao o 0 koo ook ook o ok o o ok ke sk sk ok ok ok ok ok ke sk sl sk ook ok //
iflm_ctlSlider.GetPos()>3 && m_ctlSlider. GetPos()<=4){
Output(0x378,8),
}

//*********##******* PIN 5
####**###*###*#*#***###*##**##***#***#//
iftm_ctlSlider.GetPos()>4 && m_ctlSlider. GetPos()<=5){
Output(0x378,16),
}

[xExxRxxkxRkkkkR %k PIN 6
Kk 3o sk s ke s s s o ok e s sk s sk ook okl stk ok ok ok ok kok sk ok kokok ok //
iflm_ctlSlider.GetPos()>5 && m ctlSlider.GetPos()<=6){

Output(0x378,32),
}
J

//****************** PIN 7
********************t*******************t*tt//

ifim_ctlSlider.GetPos()>6 && m_ctlSlider.GetPos()<=7){
Output(0x378,64),
}

//***********#**#*** PIN 8
*****#*****!ll*********#**#****#**#****#******//

iftm_ctlSlider.GetPos()>7){
Output(0x378,128);
}

}

APPENDIX 2: SERVER SCRIPT

/I SockDlg.cpp : implementation file
1/

#include "stdafx.h"
#include "Sock.h"
#include "SockDlg.h"

#ifdef DEBUG

#define new DEBUG NEW

fundef THIS FILE

Static char THIS FILE[]= _FILE_;
#endif

T
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
(:
public:

CAboutDlg();

/l Dialog Data
//{ {AFX DATA(CAboutDlg)
enum { IDD = IDD ABOUTBOX };

//AVAFX DATA

// ClassWizard generated virtual function overrides
//{{AFX VIRTUAL(CAboutDIg)

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

//}YAFX VIRTUAL

/ Tmplementation

Protected:
I{{AFX MSG(CAboutDIg)
JINYAFX MSG

| DECLARE MESSAGE_MAP()

CAboutDlg::CAboutDIg() : CDialog(CAboutDIg::IDD)
{
/I{{AFX DATA INIT(CAboutDlg)
/[}}AFX_DATA_INIT

z/oid CAboutDlg::DoDataExchange(CDataExchange* pDX)
CDialog::DoDataExchange(pDX),
//{{AFX DATA MAP(CAboutDlg)
I/} }AEX_DATA_MAP

1
s

BEGIN MESSAGE MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
/N YAFX MSG MAP
END MESSAGE MAP()

RN IIT T ITHHEREEETETTHTH TTH TT
/I CSockDlg dialog

CSockDlg::CSockDIg(CWnd* pParent /*<NULL*/)
: CDialog(CSockDIg::IDD, pParent)
{ *

/1{{AFX_DATA_INIT(CSockDlg)

m_strMessage = _T("");

m_strName = _T(""),

m_iPort =0,

m_iType = -1;

//}}AFX_DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()-~Loadlcon(IDR_MAINFRAME),

J

?t)id CSockDlg::DoDataExchange(CDataExchange* pDX)
CDialog::DoDataExchange(pDX);
II{{AFX DATA_MAP(CSockDlg)
DDX Control(pDX, IDC SLIDER, m_ctISlider),
DDX_Control(pDX, IDC_LSENT, m_ctlSent),
DDX_Control(pDX, IDC_ "LRECVD, m_ctlRecvd);
DDX Control(pDX, IDC_ “BCONNECT, m_ctlConnect),
DDX Text(pDX, IDC EMSG, m strMessage),;
DDX_Text(pDX, IDC_ESERVNAME, m_strName),
DDX Tcxl(pD‘(IDC . ESERVPORT, m_iPort),
DDX Radio(pDX, IDC RCLIENT, m_iType);
//}}AFX DATA MAP

BEGIN MESSAGE MAP(CSockDlg, CDialog)
I/{{AFX_MSG_MAP(CSockDlg)
ON WM SYSCOMMAND()
ON WM PAINT()
ON_ WM QUERYDRAGICON()
ON BN CLICKED(IDC_RCLIENT, OnRType)
ON BN CLICKED(IDC_BCONNECT, OnBconnect)
ON BN CLICKED(IDC_BSEND, OnBsend)
ON_BN_CLICKED(IDC_RSERVER, OnRType)
ON BN CLICKED(IDC_BCLOSE, OnBclose)
ON_WM HSCROLL()
I/} }AFX MSG_MAP

END MESSAGE MAP()

U LT
!l CSockDlg message handlers

BOOL CSockDlg::OnlnitDialog()
{ ‘
CDialog::OnlnitDialog(),

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX),

ASSERT(IDM_ABOUTBOX < 0xF000),

CMenu* pSysMenu = GetSystemMenu(F ALSE);
if (pSysMenu != NULL)

{
CString strAboutMenu;

strAboutMenu. LoadString(IDS_ABOUTBOX);,
if (!strAboutMenu.IsEmpty())

pSysMenu->AppendMenu(MF_SEPARATOR),
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,
strAboutMenu),

j
}

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog

Setlcon(m hlcon, TRUE), // Set big icon
Setlcon(m hlcon, FALSE), // Set small icon

// TODO: Add extra initialization here
// Initialize the control variables
m_iType = 0,

m strName = "loopback";

m iPort = 4000;

// Update the controls
UpdateData(FALSE),
//GetDlgltem(IDC SLIDER)->EnableWindow(TRUE),
// Set the socket dialog pointers
m_sConnectSocket. SetParent(this);
m_sListenSocket. SetParent(this),

return TRUE; // return TRUE unless you set the focus to a control

}

void CSockDlg::OnSysCommand(UINT nlD, LPARAM [Param)

{
if (nID & OxFFF0) == IDM_ABOUTBOX)

{
' CAboutDlg digAbout;
digAbout. DoModal();
\
|
else
{

CDialog::OnSysCommand(nlD, IParam),

—

J

// If you add a minimize button to your dialog, you will need the code below
/I to draw the icon. For MEC applications using the document/view model,

/| this is automatically done for you by the framework.

void CSockDlg::OnPaint()
{
if (Islconic())

{

CPaintDC de(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)
de.GetSafeHde(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON),
int cylcon = GetSystemMetrics(SM_CYICON),
CRect rect;

GetClientRect(&rect),

int x = (rect. Width() - cxIcon + 1) / 2;
int y = (rect. Height() - cylcon + 1) / 2;

// Draw the icon
de.Drawlcon(x, y, m hlcon),

CDialog::OnPaint(),

/ The system calls this to obtain the cursor to display while the user drags

/! the minimized window.
HCURSOR CSockDlg::OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;
}
void CSockDlg::OnRType()
{
// TODO: Add your control notification handler code here
// Sync the controls with the variables
UpdateData(TRUE),
// Which mode are we in?
if (m iType == 0){ // Set the appropriate text on the button
m_ctlConnect.SetWindowText("C&onnect");
J
else{
m_ctlConnect.SetWindowText("&Listen");
}
J
void CSockDlg::OnBconnect()
{

// TODO: Add your control notification handler code here

// Sync the variables with the controls

UpdateData(TRUE),

// Disable the connection and type controls
GetDlgltem(IDC_BCONNECT)->EnableWindow(FALSE),
GetDlgltem(IDC_ESERVNAME)->EnableWindow(FALSE);
GetDlgltem(IDC _ESERVPORT)->EnableWindow(FALSE);,
GetDlgltem(IDC_STATICNAME)->EnableWindow(FALSE);
GetDlgltem(IDC_STATICPORT)->EnableWindow(FALSE),

~ GetDlgltem(IDC_RCLIENT)->EnableWindow(FALSE);
GetDlgltem(IDC_RSERVER)->EnableWindow(FALSE);
GetDlgltem(IDC_STATICTYPE)->EnableWindow(FALSE);

// Are we running as client or server?

if (m_iType == 0){
GetDlgltem(IDC_SLIDER)->EnableWindow(TRUE),
GetDlgltem(IDC_LABELMODE)->EnableWindow(TRUE);
GetDlgltem(IDC_LABELMODE)->SetWindowText("Client Mode");
// Client, create a default socket
m_sConnectSocket.Create(),
// Open the connection to the server
m_sConnectSocket.Connect(m_strName, m_iPort),

m_ctlSlider.SetRange(0, 10);

elsef
GetDlgltem(IDC_SLIDER)->EnableWindow(TRUE);

GetDlgltem(IDC_LABELMODE)->EnableWindow(TRUE);
GetDlgltem(IDC_LABELMODE)->SetWindowText("Server Mode"),
// Server, create a socket bound to the port specified
m_sListenSocket.Create(m_iPort);

// Listen for connection requests

m sListenSocket.Listen(),

m ctiSlider.SetRange(0, 8),

//**

¥

typedef UINT (CALLBACK* LPFNDLLFUNCI)(INT,INT),

typedef UINT (CALLBACK* LPFNDLLFUNC2)(INT),

HINSTANCE hDLL; // Handle to DLL

LPFNDLLFUNC]1 Output; // Function pointer

LPFNDLLFUNC2 Input; // Function pointer

INT Addr;

INT Addrln;

INT Value,

hDLL = LoadLibrary("Inpout32"),

if (ADLL 1= NULL)

{
Output = (LPFNDLLFUNC1)GetProcAddress(hDLL,"Out32"),
Input = (LPENDLLFUNC2)GetProcAddress(hDLL,"Inp32"),
if (Output || Input)
!

\
)

// handle the error FreeLibrary(hDLL),

]

§

Addr = 0x378,

Addrln = 0x379;

Value = 0;

Output(Addr, Value),

INT somenum = Input(Addr),

//***********#**

E//
1
§
i
void CSockDlg::OnAccept()
{
// Accept the connection request
m_sListenSocket. Accept(m_sConnectSocket);
// Enable the text and message controls
GetDlgltem(IDC_EMSG)->EnableWindow(TRUE);
GetDlgltem(IDC_BSEND)->EnableWindow(TRUE),
GetDlgltem(IDC_STATICMSG)->EnableWindow(TRUE);
}

void CSockDlg::OnConnect()
{

// Enable the text and message controls
GetDlgltem(IDC_EMSG)->EnableWindow(TRUE);
GetDlgltem(IDC_BSEND)->EnableWindow(TRUE);
GetDlgltem(IDC_STATICMSG)->EnableWindow(TRUE);
GetDlgltem(IDC_BCLOSE)->EnableWindow(TRUE);

}

void CSockDlg::OnSend()
{

\
]

void CSockDlg::OnReceive()
{
char *pBuf = new char[1025];
int iBufSize = 1024,
int iRevd,
CString strRecvd,

// From client site controlling

typedef UINT (CALLBACK* LPFNDLLFUNCI1)(INT,INT),
typedef UINT (CALLBACK* LPFNDLLFUNC2)(INT),
HINSTANCE hDLL; // Handle to DLL
LPFNDLLFUNC] Output; // Function pointer
LPFNDLLFUNC2 Input; // Function pointer
INT Addr;
INT Addrln;
INT Value;
hDLL = LoadLibrary("Inpout32"),
if (hDLL !=NULL)
{
Output = (LPFNDLLFUNC1)GetProcAddress(hDLL,"Out32");
Input = (LPFNDLLFUNC2)GetProcAddress(hDLL,"Inp32");
if (!Output || Input)
{

// handle the error FreeLibrary(hDLL),
1
)

i

Addr = 0x378;

Addrln = 0x379;

Value = 0,

//Output(Addr, Value),

INT somenum = Input(Addr),

// Receive the message
iRcvd = m_sConnectSocket.Receive(pBuf, iBufSize),
// Did we receive anything?
if (iRevd == SOCKET ERROR){
H
else{
pBufl[iRcvd] = NULL;
//if (pBuf==int){
/! GetDlgltem(IDC_VALUE)->SetWindowText(pBuf);
I/}
/lelsef

// Copy the message to a CString

strRecvd = pBuf,

//i=0;

if{strRecvd =="000" || strRecvd =="000000"){
GetDlgltem(IDC_VALUE)->SetWindowText("0"),
/=1,
//m ctlRecvd. AddString(strRecvd);
m_ctlSlider.SetPos(0),

\

Output(0x378,0),

s
else if{strRecvd =="001" || strRecvd =="001001"){

1

//m ctlRecvd. AddString(strRecvd),
GetDlgltem(IDC VALUE)->SetWindowText("1"),
/=1,

m_ctlSlider.SetPos(1),

Output(0x378,1),

5
else if{strRecvd =="002" || strRecvd =="002002"){

!

//m_ctlRecvd. AddString(strRecvd);
GetDlgltem(IDC_VALUE)->SetWindowText("2"),
/i=1;

m_ctlSlider.SetPos(2);

Output(0x378,2);

]
else if{strRecvd =="003" || strRecvd =="003003"){

!

//m_ctlRecvd. AddString(strRecvd);
GetDIgltem(IDC_VALUE)->SetWindowText("3");
Ii=1;

m_ctlSlider.SetPos(3);

Output(0x378,4),

|
else if{strRecvd =="004" || strRecvd =="004004"){

)

//m ctiRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("4");
=1,

m_ctiSlider.SetPos(4),

Output(0x378,8),

else if{strRecvd =="005" || strRecvd =="005005"){

//m ctlRecvd. AddString(strRecvd),
GetDlgltem(IDC_VALUE)->SetWindowText("5"),
//i=1,

m_ctISlider.SetPos(5);

Output(0x378,16),

}
else if{strRecvd =="006" || strRecvd =="006006"){

}

//m_ctIRecvd. AddString(strRecvd),
GetDlgltem(IDC VALUE)->SetWindowText("6"),
=1,

m_ctlSlider.SetPos(6);

Output(0x378,32),

else if{strRecvd =="007" || strRecvd =="007007"){

//m_ctlRecvd. AddString(strRecvd),

GetDlgltem(IDC VALUE)->SetWindowText("7");
=1,

m_ctlSlider.SetPos(7);

Output(0x378,64),

J

else if{strRecvd =="008" || strRecvd =="008008"){
//m_ctlRecvd. AddString(strRecvd);
GetDlgltem(IDC VALUE)->SetWindowText("8");
Ii=1;
m_ctlSlider.SetPos(8);
Output(0x378,128),

1

§

else if{strRecvd =="009" || strRecvd =="009009"){
//m_ctlRecvd. AddString(strRecvd),
GetDIlgltem(IDC_VALUE)->SetWindowText("9"),
=1,
m_ctlSlider.SetPos(9),
Output(0x378,128),

——

else if{strRecvd =="010" || strRecvd =="010010"){
//m ctlRecvd. AddString(strRecvd);
GetDlgltem(IDC_VALUE)->SetWindowText("10");
Ih=1;
m ctlSlider.SetPos(10),
Output(0x378,128);
}
else if{strRecvd =="6623"){
//MessageBox("Client Disconnected");
m_ctlRecvd. AddString("*** Client Disconnected ***");

else{

// Add the message to the received list box

m_ctlRecvd. AddString(strRecvd);
//GetDlgltem(IDC_VALUE)->SetWindowText(strRecvd);
// Sync the variables with the controls

)

}
UpdateData(TRUE),

}

void CSockDlg::OnClose()

{
// Close the connected socket
m_sConnectSocket.Close(),

}

//Disable the message sending controls
GetDlgltem(IDC_EMSG)->EnableWindow(FALSE),
GetDlgltem(IDC _BSEND)->EnableWindow(FALSE);
GetDlgltem(IDC_STATICMSG)->EnableWindow(FALSE),
GetDlgltem(IDC BCLOSE)->EnableWindow(FALSE),

// Are we running in Client mode?

if (m iType == 0){
// Yes, so enable the connection configuration controls
GetDlgltem(IDC_BCONNECT)->EnableWindow(TRUE),
GetDlgltem(IDC_ESERVNAME)->EnableWindow(TRUE);
GetDlgltem(IDC ESERVPORT)->EnableWindow(TRUE),
GetDlgltem(IDC_STATICNAME)->EnableWindow(TRUE),
GetDIgltem(IDC_STATICPORT)->EnableWindow(TRUE),
GetDlgltem(IDC_RCLIENT)->EnableWindow(TRUE),
GetDlgltem(IDC RSERVER)->EnableWindow(TRUE),
GetDlgltem(IDC_STATICTYPE)->EnableWindow(TRUE);
GetDlgltem(IDC_LABELMODE)->EnableWindow(FALSE),
GetDlgltem(IDC_LABELMODE)->SetWindowText("");

void CSockDlg::OnBsend()

!

// TODO: Add your control notification handler code here
int iLen,;
int iSent;

// Sync the controls with the variables
UpdateData(TRUE),
// 1s there a message to be sent?
if{m_strMessage != ""){
/I Get the length of the message
iLen = m_strMessage.GetLength(),

// Send the message

iSent =m_sConnectSocket.Send(LPCTSTR(m_strMessage), iLen);

// Were we able to send it?

if{iSent == SOCKET ERROR){

}

elsef
// Add the message to the list box.
m_ctlSent. AddString(m_strMessage),
GetDlgltem(IDC_EMSG)->SetWindowText(""),
// Sync the variables with the controls
UpdateData(TRUE),

N
N’

j

void CSockDlg::OnBclose()

{
// ' TODO: Add your control notification handler code here

m_sConnectSocket. Send(LPCTSTR("6623"), 4),

// Call the OnClose function
OnClose(),

1
§

void CSockDlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
CString pos;
pos.Format("%d",m_ctlSlider.GetPos());
GetDlgltem(IDC_VALUE)->SetWindowText(pos),

/if (m_iType == 0){
if{pos == "0")
m_sConnectSocket.Send(LPCTSTR("000"),3);

iflpos == "1")
m_sConnectSocket. Send(LPCTSTR("001"),3);

if(pos == "2")
m_sConnectSocket.Send(LPCTSTR("002"),3);
if{pos == "3")
m_sConnectSocket.Send(LPCTSTR("003"),3);
if(pos == "4")
m_sConnectSocket.Send(LPCTSTR("004"),3);
if{(pos =="5")
m sConnectSocket. Send(LPCTSTR("005"),3);

if(pos == "6")

m_sConnectSocket. Send(LPCTSTR("006"),3);
if{(pos =="7")

m sConnectSocket. Send(LPCTSTR("007"),3);
if(pos == "8")

m_sConnectSocket. Send(LPCTSTR("008"),3);
if{pos == "9")

m_sConnectSocket. Send(LPCTSTR("009"),3);
if{[pos == "10")

m_sConnectSocket. Send(LPCTSTR("010"),3),
/)
if (m iType == I){
// For server site controlling

typedef UINT (CALLBACK* LPENDLLFUNCI1)(INT,INT);

typedef UINT (CALLBACK* LPENDLLFUNC2)YINT),

HINSTANCE hDLL; // Handle to DLL

LPFNDLLFUNCI Output; // Function pointer

LPFNDLLFUNC2 Input; // Function pointer

INT Addr;

INT Addrln;

INT Value;

hDLL = LoadLibrary("Inpout32"),

if (hDLL !=NULL)

{
Output = (LPFNDLLFUNCI1)GetProcAddress(hDLL,"Out32"),
Input = (LPENDLLFUNC2)GetProcAddress(hDLL,"Inp32");
if ('Output || Input)
{

// handle the error FreeLibrary(hDLL),

1
s

}

Addr = 0x378;

Addrln = 0x379;

Value = 0;

//Output(Addr, Value),

INT somenum = Input(Addr),

if{m_ctlSlider.GetPos()==0){
Output(0x378,0),

J

//****************** PIN 1
**//
iflm_ctlSlider. GetPos()>0 && m_ctISlider. GetPos()<=1){
Output(0x378,1),
H
//***t**t**t***#**#*])]N 2
**************************************##****//

ifitm_ctlSlider.GetPos()>1 && m_ctlSlider. GetPos()<-2){
Output(0x378,2),

}

//****#**#****#***** I)IN 3
AR KKK KRR KRN ORRK R OR KRN/
ifim ctlSlider.GetPos()>2 && m_ctlSlider. GetPos()<-3){
Output(0x378,4),

1
i

//#**##***##***###** plN 4
******#*************************************//

ifftm_ctlSlider.GetPos()>3 && m_ctlSlider. GetPos()<=4){
Output(0x378,8),

\

]

JJEFRFFFFAAAE KRR AKX DIN] §
EEEEEEEEEEEEREAEERERRR R EE R R R R Rk /]

ifim_ctlSlider.GetPos()>4 && m_ctlSlider. GetPos()<=5){

Output(0x378,16),
)
i

//***********t**t*t* PIN 6
********#*****************#**************#**//

if{lm_ctlSlider.GetPos()>5 && m_ctlSlider. GetPos()<=6){
Output(0x378,32),

v

)

//;***************#* PIN 7
********#*#t**#t*#*#*#*#*#*****#t*********##”

ifim_ctlSlider.GetPos()>6 && m_ctlSlider. GetPos()<=7){
Output(0x378,64),
}

J/EERRRR Rk KRk Rk kkkkk DIN 8
Ao o koo o K oo K S o R Ko K

iffm ctlSlider.GetPos()>7){
Output(0x378,128),

)

J

APPENDIX 3: USER MANUAL

This user manual will explain on how to set up the Smart Home Prototype

System. Before going into the installation details, let’s look at the checklist for the

component of the system. This system contains:

CD containing the software program
Hardware Interface Package

Audio Amplifier

Setting Up The Software

13

2

The following steps show how to install and run the software programs:

Insert the CD into the CD-Rom. Open the folder named DLL and copy all files
into the Windows System32 directory.

Open folder SmartHome Prototype and copy the SmartHome.exe file into your
desktop. If you wish to run the programs remotely, repeat step 1 and 2 on another
computer,

Double click the SmartHome.exe and the program should run properly.

If running on Server Mode, enter the port number. Default is set to 4000. Click
Listen to run the program,

If running on Client Mode, make sure to enter either the destination computer’s
ID or the IP address. Next, enter the port address. Default is set to 4000, Click

Connect to run the program.,

6. Now you are ready to communicate between the Server program and the Client

program. Enter any text messages on the textbox and click Send to send to the

remote program. Text messages received will be displayed on the receive listbox.

Setting Up The Hardware

The following steps explain how to set up the hardware:

1.

Connect the hardware interface port to the server computer’s parallel port by
using a male-to male parallel port cable.

Plug in a DC power supply into the DC jack. No setting on polarity is needed.

. The recommended DC power source is 18V. Switch on the DC power supply.

Connect the volume socket from the hardware interface package to the audio
amplifier volume socket.

Next connect from an audio source to the amplifier by connecting into the
RCA socket.

Finally, connect a headphone or a multimedia speaker into the headphone
socket on the amplifier.

Turn on the switch on the audio amplifier.

Now the hardware interface and the audio amplifier are ready to run.

Controlling The Volume Using the Client Program

From the client program, control the volume on the audio amplifier by sliding the
slider on the client program. The level of the volume can be seen on the value changes on
the program. The server program also has the slider build in for locally controlling the

volume of the audio amplifier.

Closing the Program

To close the Client Program, simply click Close to disconnect from the Server
Program. Then click OK to close down the Client Program.

To close the Server Program, simply click OK to close down the program.

