Tutor on Software Design

Fariza binti Halim

WEK010074

WXES 3182: Tutor on Software Design
(Sequence Diagram)

Supervisor: Puan Nazean Jombhari

Moderator: Puan Siti Hafizah Ab Hamid

Faculty of Computer Science
And Information Technology

Tutor on Software Design

Abstract

Tutor on Software Design is a system that helps users design their own
software using the Unified Modeling Language (UML). The UML diagrams
involved are the use case diagram, Class diagram, and sequence diagram. It is a
stand-alone system that requires operating system Windows 98 or above. This report
especially focuses on designing software using sequence diagram. The system
receives requirements using step-by-step wizard-like method. The requirements
(called as elements) include actor, use case, association, class, object and sequence of
events in the exact order. After all elements are entered, the system produces a
professional looking sequence diagram. The produced diagram could be edited by
users and saved. This system provides a lot of information, tips, tutorial and help

regarding the system usage and sequence diagram that can be accessed any time.

Chapter 1

Chapter 2

Abstract

Tutor on Software Design

Contents

Acknowledgement

Contents

List of Figures
List of Tables

Introduction

1.1 Project Introduction

1.2 Project Objective

1.3 Project Motivation

1.4 Project Scope

1.5 Target User

1.6 System Capability and Constraints
1.7 Project Schedule

Literature Review
2.1 Introduction To Literature Review

2:15

1

Discussions with Supervisor

2.1.2 Document Room

L

oo

2.2 Introd

S -]
o M

-

9 o o
D ho b

N

3

4
.5 Discussions Among Colleagues
iction to Sequence Diagram

—

=

Internet
Internet Forum

Interaction Modeling

History of Sequence Diagram

Sequence Diagram Elements And Notations
Use Case Diagram

User Requirements

2.2.5.1 How to get user requirements

)

2.2.5.2 How to handle the ever changing
user requirement

2.3 Introduction To Existing UML Tools

2.3.1

2.3:2

233

234

SmartDraw
2.3.1.1 SmartDraw Interface
Event Studio
2.3.2.1 Feature Description Language
2.3.2.2 EventStudio Interface
2.3.2.3 Advantages and Disadvantages of
EventStudio
System Architect
2.3.3.1 System Architect Interface
2.3.3.2 Advantages and Disadvantages of
System Architect

Conclusion

i1
Vil
viil

0 O\ LN -

33
36
37

38

Tutor on Software Design

2.4 Application Development Software
2.4.1 Visual Basic
2.4.2 Visual Basic.Net
243 Conclusion
2.5 Database
2.5.1 Microsoft Access
252 ADO
253 OleDB
254 Conclusion

Chapter 3 Methodology
3.1 Introduction To Methodologies
3.2 Methodology Analysis and Consideration
3.2.1 Waterfall Model
3.2.1.1 Advantages and Disadvantages of
Waterfall Model
3.2.2 Prototyping Model
3.2.2.1 Advantages and Disadvantages of
Prototyping Model
3.2.2. How Does the Prototype Resolve
the Problem of Traditional
Waterfall Model?
3.2.3 Waterfall Model with Prototyping
3.3 Focus On Waterfall Model With Prototyping Stages
3.3.1 System Requirements Analysis
3.3.2 System Design
3.3.3 Implementation and Unit Testing
3.3.4 System Integration and Testing
3.3.5 Operation and Maintenance

Chapter 4 Analysis And Design
4.1 Introduction To Analysis And Design
4.2 System Requirements Specification
42.1 Functional Requirements
4.2.2 Non-functional Requirements
423 Hardware And Software Requirements
4.3 Application Architecture Design
43.1 System Development Structure Diagram
4.3.2 Data Flow Chart
43.2.1 Basic Flowcharting Shapes

4.3.2.2 Flow Chart for Tutor on Software Design
4.4 Graphical Interface Design

Chapter 5 System Implementation
5.1 Introduction to System Implementation
5.2 Development Environment
5.2.1 Hardware
5.2.2 Software
5.3 Coding Approach
5.3.1 Developing Graphical User Interface

39
40
41
43
44
44
46
48
48

49
49
50
51

51
a2

53

54
55
35
56
56
56
57

58
59
59
61
61
63
63
65
65
66
67

73
73
74
74
75
75

Chapter 6

Chapter 7

Tutor on Software Design

5.3.2 Putting Control to GUI Components
5.3.3 Writing Processes
5.3.3.1 Data Manipulation
5.3.3.2 Drawing
5.3.3.3 Save Diagram
5.3.4 Improvements
5.4 Coding Style
5.5 Description of System Modules and Functionality
5.5.1 Use Case
5.5.2 Class
5.5.3 Sequence
5.5.4 Drawing
5.6 Conclusion

System Testing
6.1 Introduction to System Testing
6.2 Fault
6.2.1 Types of Fault
6.3 Test Planning
6.4 Testing Technique
6.4.1 Erroneous Test Data
6.4.2 Normal Test Data
6.5 Testing Strategy
6.5.1 Unit Testing
6.5.1.1 Example Of Unit Testing
6.5.2 Module Testing
6.5.2.1 Example Of Module Testing
6.5.3 Integration Testing
6.5.4 System Testing
6.5.4.1 Function Testing
6.5.4.2 Performance Testing
6.6 Summary

System Evaluation
7.1 Introduction to System Evaluation
7.2 System Strengths
7.2.1 Different Approach From Existing Systems
7.2.2 Documented
7.2.3 Support Various Image Formats
7.3 System Limitations and Constraints
7.3.1 Static Image Size
7.3.2 Limited Domain
7.3.3 Limited Interaction Between System and
User
7.3.4 Unattractive Output
7.3.5 Insecure Database
74 Future Enhancement
7.4.1 Improve Output Appearance
7.4.2 Improve Data Management
7.4.3 Complete Help File

77
78
78
86
91
92
02
94
94
94
94
94
95

96

97

97

99
100
100
101
102
103
104
105
105
107
108
108
109
110

111
111
111
111
111
112
112
112
112

112
113
113
113
113
114

Tutor on Software Design

7.4.4 Allow User to Print Diagram

7.5 Problems and Solutions
7.5.1 Unfamiliar with Development Tools
7.5.2 Difficulties in Choosing Approaches
7.5.3 Repetition of Codes

7.6 Knowledge and Experience Gained
7.6.1 Programming Experience
7.6.2 First Hand Experience of SDLC
7.6.3 Sharing Opinions
7.6.4 Self Expression
7.6.5 Thesis Making
7.6.6 Experience of Working Under Pressure
7.6.7 Independence

7.7 Conclusion

Bibliography

Appendix A - Test Cases
Appendix B - User Manual

114
114
114
114
115
115
s
116
116
116
116
117
117
117

118

Vi

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 5.1

Tutor on Software Design

List of Figures

History of UML

Booch's class diagram

Diagrams and Charts Options in SmartDraw
An Example of Sequence Diagram in SmartDraw
Sequence Diagram Work Space in SmartDraw
Feature Description Language (FDL)
Example of sequence diagram produced by EventStudio
System Architect interface

Database elements

Waterfall model

Prototyping model

Waterfall model with prototyping

Structure Chart

Flow Chart

Main window with File menu

Main window with Help menu

Actors window

Association window

Diagram Options window

Class window

Object window

Sequence Diagram window

Page to enter and edit data

14

15

32

36

46

50

52

54

64

67

68

69

69

70

70

71

72

76

Vil

Tutor on Software Design

Figure 5.2 Picture box to display sequence diagram 76
Figure 6.1 Testing process 102
107

Figure 6.2 Qutput of Table 6.2

Vin

Table 1.1

Table 2.1

Table 2.2

Table 2.3

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 5.2

Table 6.1

Table 6.2

List of Tables

Project schedule

Booch diagrams correspondents in UML
Unique symbols employed by Jacobson
Sequence diagram elements and notations
Functional requirements

Hardware requirements

Software requirements

Flow Chart's symbols and shapes
Hardware used in system development
Software used in system development
Test Case FFor Adding Class

Test Case For Drawing Diagram

Tutor on Software Design

15

11

20

66

74

74

105

106

Chapter 1

Project Introduction

Project Introduction Tutor on Software Design

1.1 Project Introduction

The purpose of this project 1s to develop a system called Tutor on Software Design.
Tutor on Software Design is a stand-alone system developed to help design software
using the UML (Unified Modeling Language) diagrams. The software provides step
by step tutorials in drawing the diagrams. The diagrams included in this software are

the use-case diagram, the class diagrams and the sequence diagrams.

This system receives user’s requirements and translates them into the desired
diagrams. The requirements entry process will take a few steps. These steps are taken
to show users how the designing is done and also to ensure that the system gets the

requirements correctly.

Each step requires users to enter their requirements into textboxes, or choose
previously entered data from combo boxes and list boxes. The data entered are in the
form of names of use cases, classes and messages to be passed between objects. This
method of data entry is to help those who are not very familiar with drawing sequence
diagram. This way, they only have to determine the objects and the flow of control of
the system they are developing, and the system will show them what their diagram
will look like. This method 1s also used to limit the data entered by users so that errors

are minimized and the output would be reliable.

Based on requirements entered by users, this system produces a reliable and
professional looking sequence diagram. The produced diagrams can be edited, saved

and printed.

Project Introduction Tutor on Software Design

1.2 Project Objectives

Setting objectives to a project is very important as it helps to identify the system’s
requirements as well as it provides a guideline for the rest of the development process.
For this project, the development objectives will cover the following aspects:
1. To build a system that can help software designers, including students, to
design software using UML diagrams.
2. The system will be a tool and reference to software designers especially
students.
3. This system will reduce the problem of learning to design software
because users can learn as they design.
4, It will be an easy to use, easy to learn and user-friendly system.
ot This software will be useful for students who are developing software such
as their thesis.
6. Software developers that have little knowledge of UML can learn quickly

about using UML diagrams to design their software.

Project Introduction Tutor on Software Design

1.3 Project Motivations

UML is a very useful modeling language in designing software. It acts as an interface
between the natural language of user requirements and the programming language of

implementation. It is also the communication medium between software designers

with programmers.

Designing software solely based on the user requirements is hard and dangerous.
Points might be missed and concepts might be misunderstood. Representing user
requirements in graphical notations makes the reviewing and understanding of the
desired software easier. It will also minimize the risk of missed points and
misunderstood concepts. In design phase of every methodology, user requirements
should be translated into UML diagrams to increase efficiency during implementation

phase.

A lot of people are involved in designing software. Some organizations appoint a
certain specialized personnel to design the system and draw the UML diagrams. But
in most, systems analysts, programmers and etcetera will have to design and draw

themselves. By using this system, it would not be a problem.

In the case of students doing their thesis, that student is the system analyst, the system
designer, and the programmer, all in one. Therefore, they will have to design the
software and draw the diagrams by themselves. Designing a software and drawing

UML diagrams for it manually is a chore. Doing it using CASE tools requires them to

Project Introduction Tutor on Software Design

1.4 Project Scope

There are a lot of diagrams in UML. For instance, activity diagram, collaboration
diagram, state diagram, entity relationship diagram (ERD) and data flow diagram
(DFD). This system will only use three of the UML diagrams. The diagrams are the

use-case diagram, the class diagram and the sequence diagram.

The system produces a sequence diagram based on user requirements. These

requirements are entered step by step. Each step requires users to enter one element

such as use case, class and object.

Tutor on Software Design is a stand-alone system. One system runs on one computer.

It 1s not available on-line.

Project Introduction Tutor on Software Design

1.5 Target User

The target users for this system are system designers and system developers. Those
who are developing software can benefit a lot from this system. They may have
experience in designing software with UML manually or using the CASE tools, but

this system might be a better and faster new way of doing it.

Students can use this system to help them design their software. The system 1is
especially helpful if the students are developing a system such as their thesis. In most
cases. students doing their thesis have not learned much about UML. With that little
knowledge and experience, this software can save their time compared to having to
learn how to design with UML from books and having to learn how to use the

available CASE tools.
Teachers and lecturers may use this system to help them teach their students about

using UML to design software. This software is easier to understand and exciting

compared to books and boring lectures.

O

Project Introduction Tutor on Software Design

1.6 System Capability and Constraints

The Tutor on Software Design, as indicated by its name, tutors users to design
software using three of the UML diagrams- use-case diagram, class diagram and
sequence diagram. It is a private tutor for every user. Users will enter the
requirements for their software. Then, the system will use the elements in the
requirements to draw the diagrams. For example, actors, use-cases, objects, etcetera.

Users will be asked a few questions element by element. This is done to ensure that
the system gets the user’s requirements correctly. This is also done to let users see the

steps to be taken in designing software using the UML. The system will then draw the

required diagrams.

Every time users change any data that has been entered, the diagram will change

automatically according to the changes. The finished diagram can be saved in various

image formats such as .bmp, .tif and etcetera.

Project Introduction Tutor on Software Design

1.7 Project Schedule

Project scheduling is done to manage time and tasks systematically. It is also done to

avoid late delivery. The following Gantt chart represents schedule for this project:

T

' June | July i Aug | Sept | Oct- | Dec03 | Feb- | Apr-
| Nov | - Mar | May

!
2003 2003%2003 2003 | 2003 | Jan04 | 2004 | 2004

{ {

Phase o l,
|

Literature Review

Information Gathering

Requirements Analysis

System Design

System Development

System Testing

Documentatioi

Table 1.1 — Project schedule.

N
™
v
+
£
s
=
O

Literature Review

Literature Review Tutor on Software Design

2.1 Introduction to Literature Review

A system is a collection of objects and activities, plus a description of a relationship
that tie the objects and activities together. Typically, a system definition includes, for
each activity, a lot of inputs required, actions taken and output produced. A system
can be developed in different ways. Before developing a system, information about
the characteristics and purposes of the system to be developed, the procedures
involved, and the methodology used need to be gathered. There are many sources,
which this valuable information can be gathered. Each source will provide different

information and facts.

Literature review is the information gathering and research phase of this project.
Information is gathered thoroughly as it will be used as guidance in planning the
application development process. Information gathered in several ways, some of the
methods are discussion with supervisor, document room, and discussions among

colleagues, forums and Internet.

2.1.1 Discussion with Supervisor

Early discussion is more towards the requirements of the system, project scope
and the objective of this project. By having a goal in mind, the group members
start gathering information, planning and designing. All the while, reporting to
supervisor face to face or by e-mails. Then, discussions are more to correcting

whatever mistakes, errors and misunderstanding done.

9

Literature Review Tutor on Software Design

2.1.2 Document Room

Another source for gathering information is the document room in Faculty of
Computer Science and Information Technology, University of Malaya. This
room contains thesis reports of past year students. These documents are very
suitable as guidance for report writing. Basically, the format of most of the
reports is almost the same. Some of the thesises are on tutor software in
different topics such as C language. Others concerns UML such as Meta

Modeling via UML. These relevant reports are very useful for this project.

2.1.3 Internet

The internet has become the indispensable source for searching any
information. It has become one of the major sources for obtaining the latest

information. Information can be gathered in the most cost-effective and time-

efficient manner using the internet.

There are many virtual projects done by commercial companies or research
institutes. These projects are published on the intemet, providing very useful
information. Besides, several websites of software companies were visited to

gather further information about certain software for comparison.

Furthermore, journals, books and articles are now published electronically. A

lot of these e-journals, e-books and e-articles can be accessed free via the UM

library from inside the varsity.

10

Literature Review Tutor on Software Design

Three software relevant to this project are discussed and compared in this
report. The trial versions of these software were used for evaluation and first-

hand experience. These software are available on the internet.

2.1.4 Internet forum

The forums give more specific answers to questions relating to this software
that blindly searching in the internet. There are many people around the world
who can give their opinions on my problems. I tried using their opinions and
picked the best. Joining various forums on VB.Net also gives me more
knowledge, and 1 also give my opinions whenever | can. Some of the forums
that 1 joined are forums.devx.com, www.vbcity.com, www. vbforums.com,

www.vbwm.com, www.wimdows.net.

2.1.5 Discussions Among Colleagues

Because this is a group project of three members, we have the advantage of
discussing our problems and misunderstandings regarding the software
development. We also discuss to get full understanding of UML. Furthermore,
discussions must be held occasionally to avoid contradictions as we are

developing the same system.

Although a lot of information gathered, many things remain unclear. Therefore, some
researches need to be done to make them clear. Researches includes the conditions of

each of the sequence diagram elements and notations, how to draw sequence diagram

Literature Review Tutor on Software Design

from user requirements, from use case diagrams and from class diagrams, problems

getting the user requirements due to natural language, and handling the ever changing

user requirements.

l‘\

Literature Review Tutor on Software Design

2.2 Introduction to Sequence Diagram

There are a few modeling in UML, such as use-case modeling, activity modeling,

class modeling, interaction modeling and state chart modeling. Sequence diagram

falls under the category of interaction diagram.

2.2.1 Interaction Modeling

Interaction modeling captures interactions between objects needed to execute a use
case. Interaction models are used in more advanced stages of requirements analysis,
when a basic class model is known, so that the references to objects are backed by the

class model. The interaction modeling shows the sequencing of events (messages)

between collaborating objects.

There are two kinds of interaction diagrams — the sequence diagram and the
collaboration diagram. They can be used interchangeably and, indeed, many CASE
tools support an automatic conversion from one model to the other. The difference is

in emphasis. The sequence models concentrate on time sequences and the

collaboration models on object relationships.

13

Literature Review Tutor on Software Design

2.2.2 History of Sequence Diagram

The existence and evolution of sequence diagram is parallel with other diagrams in
UML. UML actually starts with Unified Method 0.8 from the combination of Booch

Method and James Rumbaugh's Object Modeling Technique (OMT).

UML History 3

{°0MG Accaptance, Bov 1887
| Fanal sutmsleston (o CNG, Sup ‘ST

pubiic in-n-u--muw

ugm,—us }l .0

{ da'm 09
OormLA W \u
Oter matods Booch method ot 008

Fgure 2.1 — History of UML.

Grady Booch's Object-Oriented Design (OOD), also known as Object-Oriented
Analysis and Design (OOAD), is a precursor to the Unified Modeling (UML). The
Booch method includes six types of diagrams: class, object, state transition,
interaction, module, and process. Booch's class and object diagrams (classified as
Booch's Static Diagrams) differentiate this methodology (at least in notation) from

similar object oriented systems.

14

Literature Review

Booch's Dynamic Diagrams use state transition and interaction diagrams to illustrate

the dynamic nature of an application. Below is a table that lists what each of the

Tutor on Software Design

dynamic Booch diagrams corresponds to in UML.

Booch (OOD)
State transition diagram
Interaction diagram

Unified Modeling Language (UML)

Statechart diagram
Sequence diagram

Table 2.1 — Booch diagrams correspondents in UML.

¢ N . N =
A
- name . K name
hms
, attributes __* ., dttributes
. }-
mstantiates uses
/ inhents
"' _ ' ‘\
5t name o o name
$—_— . '
‘.. attdbutes ',rl \ attributes ' T
\ v)) PrLTY B
o” name
' — .
N, attibutes

Figure 2.2

Booch's class diagram.

Literature Review Tutor on Software Design

Booch's Dynamic Diagram Notations

State oo ry State

adomment
States represent situations during the life of an object.

Name Draw a Booch state symbol using a rectangle with
rounded comers and two compartments. Use the oval-

Actions e N
shaped H symbol to indicate the most recently visited

\ 2 state.

James Rumbaugh's Object Modeling Technique (OMT) is one of the precursors to the
Unified Modeling Language (UML). There are three main diagrams in OMT: object,
dynamic, and functional. The OMT dynamic models resemble UML sequence and

UML statechart diagrams.

lvar Jacobson's Object-Oriented Software Engineering (OOSE) is one of the
precursors to the more modem Unified Modeling Language (UML). OOSE includes a
requirement, an analysis, a design, an implementation, and a testing model.
Jacobson's design model shows how the system behaves. There are two types of
diagrams under this model: interaction diagrams and state transition diagrams.
Interaction diagrams are similar to UML's sequence diagrams. State transition
diagrams are like UML statechart diagrams, but Jacobson also employs a number of

unique symbols listed below.

16

Literature Review Tutor on Software Design

Send Message

Receive Message

Return Message

Send Signal

Receive Signal

Perform Task

Decision

Label

Table 2.2 — Unique symbols employed by Jacobson.

The combination of Ivar Jacobson's Object-Oriented Software Engineering (OOSE)
with Unified Method 0.8 and other models produce Unified Modeling Language
(UML) 0.9. This is followed by the other versions, UML 1.0, UML 1.1, UML 1.3 and

finally UML 2.0.

Literature Review

Tutor on Software Design

2.2.3 Sequence Diagram Elements and Notations

The sequence diagram is a two dimensional graph with elements on horizontal and

vertical axis. The elements and notations used in sequence diagrams are:

Class roles

Class roles describe the way an object will
behave in context. Use the UML object
symbol to illustrate class roles, but don't list

object attributes.

Actor

Activation
Activation boxes represent the time an

object needs to complete a task.

Mcssag;_;:é “

Messages are arrows that represent
communication between objects. Use half-
arrowed lines to represent asynchronous
messages. Asynchronous messages are sent
from an object that will not wait for a
response from the receiver before continuing

its tasks.

I8

Literature Review

Tutor on Software Design

Various message types for Sequence and

Arrow Message type
Collaboration diagrams
—— Simple
—_ Synchronous
e —s Asynchronous
) Balking
@ Time out
s—
% . Lifelines
Actor | et - Qlass | | Objert ;. Class Lifelines are vertical dashed lines that

indicate the object's presence over time.

Lifelines
[f Destroying Objects
| l
B l

<<destroy>> i

Objects can be terminated early using an
arrow labeled "< < destroy > =" that points

to an X.

19

Literature Review Tutor on Software Design

% Loops

Object : Class Object : Class .. Vg
Actor A repetition or loop within a sequence

] ! l
i i

diagram is depicted as a rectangle. Place the
condition for exiting the loop at the bottom

left comer in square brackets [1.

Table 2.3 — Sequence diagram elements and notations.

2.2.4 Use Case Diagram

In most cases. a number of sequence diagrams are derived from one use case diagram.
In this case, designers must make sure that the use case is correct before moving to
design their software with sequence diagram. Otherwise, the whole design would be

wrong.

Tutor on Software Design has a way of reducing the risk of getting the wrong use case
diagram before proceeding to the next diagram. Every instance of elements entered by
users is checked for errors. Errors in this instance mean whether the elements fulfills
the condition for it to be that elements. For example, actor must be a noun and use
case must be a verb. If errors are detected, users will be prompted to correct the errors
or confirm the elements if they persist to proceed. This is to make them aware of error
or mistake occurrences and choose to correct them or not. The same principles

implemented for sequence diagram to avoid or reduce the risk of wrong designs.

20

Literature Review Tutor on Software Design

22.5 User Requirements

A requirement is a statement of a system service or constraint (Kotonya and
Sommerville, 1998). A service statement describes how the system should behave
with regard to an individual user or to the whole user community. Before designing a
system, user requirements should be clear. This can be done by many ways of

elicitation such as interview, questionnaire, observation, or others.

Elicited requirements are then documented into the requirements specification
document. This document is usually presented in a detailed and precise natural
language. Natural language is the language used in our day to day conversation. It can
be English, Malay, or others. Some documents are presented in the structured

language. This language is the structured version of natural language.

Tutor on Software Design is a system that helps users design their software. To do
that, users will have to tell the system their requirements, so the system can draw
three of the UML diagrams for them based on their requirements. However, this 1s not
as easy to implement as it sounds.

There are two problems about getting user requirements for this system. First, what 1s
the best way to get user requirements so it is possible for the system to translate them
into diagrams? Second, what happens if the users tend to change their requirements
ever so often? These problems are discussed in the following sections as how to get

user requirements and how to handle the ever changing user requirements.

21

Literature Review Tutor on Software Design

2.2.5.1 How to Get User Requirements

Due to the trouble of translating user requirements in the form of natural language
into sequence diagram, another way has been figured out and developed. This
problem can be solved by limiting and restricting the way users enter their

requirements. Two methods that can do exactly that have been identified. The

methods are structured language, and step-by-step requirements entry.

Structured Language

This method requires users to enter their requirements using a certain specified
language and the system will design their software based on it. Tutor on Software
Design would have to design a structured language that is easy for users to leamn and

use, and also easy to be translated into sequence diagrams.

An existing tool, EventStudio has already used this method. It uses a language called
Feature Description Language (FDL). The language and tool will be discussed further

later in this chapter.

Step By Step Requirements Entry

Another method is by providing specified boxes for users to enter their requirements.
For example, the system specifies a certain text box for users to fill it in with an
actor’s name and click add. Then they can choose to enter another actor or proceed to

enter use cases the same way they enter the actors. To enter object, users will have to

Literature Review Tutor on Software Design

choose which class the object belongs to using the combo box, give the object’s name
and click add. This is the method adopted by Tutor on Software Design. It will be

discussed later in chapter 4, Analysis and Design, in the Graphical User Interface

section.
2.2.5.2 How to Handle the Ever Changing User Requirements

User requirements are always changing. Therefore, Tutor on Software Design must
support these changes. The system handles this problem by allowing users to go back
to previous tasks to change what they have entered. For example, while the user is

entering objects, he decided to enter another class. He can click on the back button to

change, add or delete any classes.

Another feature of this system that support requirements changes is, users can still
edit the diagrams produced by the system. Therefore, users would not have to worry if
they realize they missed something, or suddenly would like to add something, after
the system produces the sequence diagrams. In any case, users can always go to

previous tasks for corrections or improvement. The system will produce a new

diagram after changes.

23

Literature Review Tutor on Software Design

2.3 Introduction to Existing UML Tools

Researches have to be conducted on existing UML tools to gather useful information
for the system development project. The information gathered will give a preview of
what the system will be. The tools studied do not have to be exactly the same with the
system to be developed in this project. Research can be done based on the interface,

system structure and etcetera. Basically, it is a way to identify possible requirements

for the system.

2.3.1 SmartDraw

SmartDraw is the easy-to-use software for creating business charts and diagrams such
as flow charts, organizational charts, networks, floor plans, timelines, software
designs, forms and more. The UML diagrams are included in the software designs
option SmartDraw can help illustrate a report, analyze a process, make a

presentation, persuade others, document procedures, communicate clearly and help

others "see what you mean".

SmartDraw helps users look like a graphic professional. No special skills are needed
to draw charts and diagrams as the software uses the drag and drop technique. There
are over 50 000 built in symbols and clip art images in this software for users to use in
their diagrams and charts. Aside from the built in components, they can also import

their own symbols and clip arts. This software also has stand-alone step-by-step

tutonals and in depth tutorials accessed on-line.

Literature Review Tutor on Software Design

Automatic alignments are provided for neat, crisp drawings. Users can use the
templates and examples as reference. Anything done with this software can be printed
or saved in GIF, JPG or HTML format. This software can easily convert drawings
made in other software. Furthermore, it works hand-in-hand with Microsoft Office
which means drawings done in SmartDraw can be copy-pasted into Microsoft Words,

Excel, PowerPoint, and etcetera.

2.3.1.1 SmartDraw Interface

First, users will have to choose whether to open existing diagrams or charts. If they
choose to draw a new diagram, they will then have to choose what kind of charts or
diagrams they want to draw. The options available are as shown below. To draw a

sequence diagram, users will have to choose the software design option.

~L10210 NOWD LAWI N oo

- Selact Drawing Type -~
| S * a
OO e | Networks Floos Pt &
— (EJ...}
|] I | %’ »\
e B vy

| If you don't see a button for the drawing you want, just pick the one most similar of press

i
| Helb. ;

Hep | Cancel | ViewExamples.. | [Cioate Blank Diawing]

Figure 2.3 - Diagrams and Charts Options in SmartDraw.

The screenshot shown below is what users will get when they choose to see an

example of a sequence diagram. The small window at the right hand side will bring

ro
e

Literature Review Tutor on Software Design

users to an in-depth tutorial on-line with one mouse click. The highlighted ‘UML

Sequence Diagram’ at the left hand side is an option for users to draw their own

sequence diagram.

ple|al SR|m] |nj@]<] o|-| /la)] x| Sl=D)] &) =]z|v]Al] Dle] B

HaEdtmstmestnsTﬂbTmmekmmmrub

s Al A7 l-rlfu mltl olojololelmiolo jpivialnicialoltisicl

nllllI)llhllllllllﬁ]ll“lll]z o o e R T Y

1) 0 g
Cick here for an i depth" tutorial .. |

UML Diagrams:

[This template has the proper settings for
Unified Modaling Langusage (UM.)
diagrams.

For a detailed tutorial on creating UML
diagrams, dlick on the button above.
This will launch your web browser and
open the UM. tutonal at the

| | SmartDraw com web site

..

< PRI y \ \) < S, AR)

Figure 2.4 — An Example of Sequence Diagram in SmartDraw.

The white space in Figure 2.5 is the space where users can draw their sequence
diagrams. They have to drag the symbols from the small window at the left hand side
to the white space to draw the diagram according to their design. SmartDraw does not
design the software; instead it is only a tool to draw the designs. Users will have to

make the design themselves and use this software to make their design look

professional.

26

Literature Review Tutor on Software Design

_f;’ SmartDraw Trial Fdition - [Untitled Software Design 2|
& Fle Edt View Shapes Lines Table Text Armange Tooks Lbraries Window Help :

nlzldl @RIR] s ml|le] ol alal v Blxi@] el s|zloalct] ol
& WA /17]cl-lh] 2] ololololelalolo el vidlnjolalo|Dlolo)

smaridrawexplorer i E]%g ?m]zm l"ul‘fllll?llll'l?l llﬁl .ll?uhful’.?nlﬂ. |lﬁulf|‘n lﬁ’ulﬁ. .l??ul'ff.
< EQue = :
= (33 Lbrer lhi‘::a-z m E
=2 e =
b || D o E e
«_‘!% ——— X 3 =
+ Flool iy l ::] —
(27 Lfe 4__} _g
=3
L@ (3 Mec % = |_ 3| 8 H
(20 Scief -- et | Mgt =
i sl) =
=& =
' RE
bE
LE
f‘ Eb- --- v
> ¢ i >

Figure 2.5 - Sequence Diagram Work Space in SmartDraw.

2.3.2 EventStudio

EventStudio is a CASE tool for distributed system design in object oriented as well as
structured development environments. EventStudio supports multiple scenario use
case and sequence diagram modeling. EventStudio is particularly suited for Message
Sequence Charts (MSCs), Real-time and embedded system design, use case
development, object sequence diagram development, protocol design and
documentation, process flow diagrams, distributed system design, and business

process workflows.

27

Literature Review Tutor on Software Design

Unlike SmartDraw or any other CASE tools, this software does not use the drag and
drop technique to draw the required diagrams. Instead, it designs the software and
draws the diagrams based on requirements entered by users. These requirements are
entered using the Feature Description Language (FDL). After inputting the
requirements in FDL, users can choose to make sequence diagrams, interface
sequence diagrams, interaction sequence diagrams, message filter sequence diagrams,
unit test procedure, summary and statistics, collaboration diagrams, interface
collaboration diagrams, interaction collaboration diagrams and message filter

collaboration diagrams documents for the intended software or system. The

documents are presented in .pdf format.

2.3.2.1 Feature Description Language

The software development involves the design state followed by coding. The output
of the design stage cannot be verified for correctness by tools. However, the output of

the coding stage can be verified by using compilers and linkers.

This represents a sort of impedance mismatch between the two development
processes. Design is largely informal while coding is completely formal. The Feature
Description Language (FDL) tries to bridge this gap by introducing a semi-formal

development system for design. It tries to incorporate features from both the stages:

* FDL documents allow the user to express the system even when all the details

of the system have not been defined.

Literature Review Tutor on Software Design

e FDL documents allow the user to review the correctness of the system design

by running an automated review process.

A very simple FDL program is shown below. It shows modules and processors

defined in the system. Message interactions between processors are shown enclosed in

the feature-endfeature block.
1. module : customer, exchange
2. processor : phone in customer

!\)

processor : frontend in exchange, core in exchange
3 feature "Call Setup”

4. offhook : phone -> frontend

dialtone : frontend -> phone

digits : phone -> frontend

setup_call : frontend -> core
setup_complete : core -> frontend
ringback : core -> phone

endfeature

1. This program defines the message exchanges between a customer and a
telephone exchange. The customer and the exchange have been declared with

the module declaration.

74 The processor statements in the next two lines define different entities within

the customer and the exchange. Here the customer contains a phone and the

29

Literature Review Tutor on Software Design

exchange contains a frontend and a core processor. This relationship is

specified using the in keyword.

31 The feature-endfeature block follows the declarations in FDL. A title for the
feature is included in the feature declaration. The feature...endfeature block

encloses all the feature interactions between the customer and the exchange.

Message interactions have been enclosed within the feature-endfeature block.
The first message interaction in the sequence sends an offhook message from
the phone to the frontend processor. This is followed by other message

interactions involved in call setup. Messages are represented as arrows from

the source to the destination.

FDL allows system partitioning into a three level hierarchy. At the highest level are
modules. The system consists of modules. Modules contain processors and processors

contain eternal and dynamic objects. The selection of modules, processors and object

is best explained with examples:

e Acme Inc. Recruiting:

© Modules are Recruiters, Acme_Inc, Media, Other Company etc.

o Processors contained in Acme_Inc are the various departments in the

company, e.g. Finance, HR, IT.

o Objects contained in the HR department are HR Secretary,

Recruitment_Specialist.
¢ Highway System:

o Modules are Highways, EntryRamp, TollBooth etc.

30

Literature Review Tutor on Software Design

o Processors contained in Highway are Cars, Trucks, Motorbikes and

etc.

o Object contained in a Car are steering, brakes, engine etc.

2.3.2.2 EventStudio Interface

The interface of EventStudio has some similarities with that of Visual C++. Users
enter their requirements in the white space at the right hand side. The left bar are the
list of files involved in the scenarios. Scenarios are all files and diagrams associated
with the set of requirements. After the requirements are entered, the document must

be reviewed. Reviewing is the same as compiling. This is done to check for errors.

If and when the requirements are free of errors, users can choose to produce the
diagrams stated earlier. Clicking the new document icon at the toolbar will bring them
to a wizard to create the diagrams. The diagrams will be produced in .pdf format and
viewed in Adobe Acrobat. The EventStudio interface and the sequence diagram

produced in .pdf format are as shown in Figure 2.6 and Figure 2.7.

3l

Literature Review Tutor on Software Design

5 Fvenitudio 2.0 -[entStudiol] :
}Y@Heﬁ&m&omﬂ e -
CemeeelocaRioe BES By DR EEB|T

=181

2| Enodule : customer, exchange 2
=- [EventStudiol processor : phone in customer
- eventstudiol processor : frontend in exchange, core in exchange
=G5 FDL Files feature "Call Setup"”
=3 Eventstudiot offhook : phone -> frontend
&1 Top dialtone : frontend -> phone
=473 Documents digits : phone -> frontend
B Eventstudiol Sequence Diagre setup_call : frontend -> core
setup_complete : core —> frontend
ringback : core -> phone =
) R endfeature -(:'J
& g RIR ;

X3 C:\Program Fles|EventHekx.com|EventStudiolExamplesieventstudio! |EventStudiol FDL
2™ @ STATUS: Review Completed

|

Fot Help, prese F1 s [tn1,Cait T foos | NUM[0208181124 /)

Figure 2.6 — Feature Description Language (FDL)

2 Acrobat Reader - [EventStudiol Sequence Diagram.pdf] :
%) Flle Edt Document View Window Help - &R

>R&A B[r]er[[OQ- B8
- DNNE|®-

| © f1so%

Call Setup (eventstudiol)
customer exchange
phone frontend core
phone frontend core
ofthook .4
diahone
M

\iigil.\ .{

setupcall »

setup_complete

e
ringhack

i o
e T qort »w esx1in O M M 4] | W[

Figure 2.7 — Example of sequence diagram produced by EventStudio.

Literature Review Tutor on Software Design

2.3.2.3 Advantages and Disadvantages of EventStudio

Using this software, users do not have to design their software thoroughly. As long as
they have some overview of the system, this software can design their system by
producing the diagrams required. All they have to do is type in their system

requirements in the accepted format to produce the desired diagrams.

However, users have to learn the format and syntax of FDL (Feature Description
Language) in order to type in their requirements. This gives users something else to

learn before using this software.

2.3.3 System Architect

System Architect is a comprehensive and powerful modeling solution designed to
provide all of the tools necessary for development of successful enterprise systems
from Popkin Software. It is a tool to integrate, in one multi-user product, industry-
leading support for all major areas of modeling, including business modeling, object-
oriented and component modeling with UML, relational data modeling, network
architecture design, and structured analysis and design. All functionality is harnessed
within System Architect’s extensible repository with native support for Microsoft

VBA.
System Architect provides extensive support for UML, the industry standard for
analysis and design of software systems and applications. UML may be used to

perform high-level analysis with Use Cases, model of the dynamics of the system

33

Literature Review Tutor on Software Design

with UML Activity, Sequence, Collaboration, and State diagrams, and analyze and
design the static structure of the system with UML Class, Component, and
Deployment diagrams. System Architect supports code implementation and redesign
through automatic generation and reversal of several languages, including Java,
Visual Basic, and C++. System Architect also provides unmatched capability to

extend its UML support through stereotypes, tagged values, and custom profiles.

System Architect also enables users to extend the UML using relational data modeling
techniques and more comprehensive business modeling techniques. System Architect
allows users to perform component-based and object-oriented analysis, design, and
implementation of the system using the Unified Modeling Language (UML).
System Architect is a repository-based visual modeling tool that supports the
following methodologies in a single product:-

e Enterprise Modeling (Strategy and Planning & Business Requirement

Capture),

e Data Modeling,

e SSADM,

e Business Enterprise Modeling (Catalyst),

e Business Process Modeling (IDEF), and

e Object and Component Based Design with UML.

Popkin software provides a powerful e-business definition toolset. These tools and
services integrate business, systems and data architecture into complete enterprise
architecture. It provides comprehensive support for Enterprise Architecture within the

ZachmanFramework

34

Literature Review Tutor on Software Design

Users can use this tool if they need to do the following things for their organization:-

Develop business goals

Identify and model current business processes

Align business processes with business goals

Evaluate business goals and identify process weaknesses
Generate new business processes using the criteria above
Simulate new business processes

Develop business and IT requirement specifications
Generate relational database schemas from models
Develop applications from models

Re-engineer legacy systems

35

Literature Review Tutor on Software Design

2.3.3.1 System Architect Interface

LA ML T DIASVSAMPLE S

e —————————————— e —

HAN S

Make Provisional Reservation

& UML Component
- UML Deployment
5 B UML Sequence

&8 Cancel unconfimed reservation create reservation
@[Checkin guest create(startDate, m:& mnw‘;ypa)
@ 8 Customer confirms resenvation thar = SHOWROOMIRABIOOM 1YPE)] [f
- Make provisional reservation = l
- [Reservation - confirm later
© W UML State 1
update status o provisional
int = makeProvsional i
allocate fo customer
in
— m
calc
char = cal
e update le rooms total {
hat = decreaseAvallablity(date, duration, roomType) {
display new roservat |
char = showf Number) L

Figure 2.8 - System Architect interface.

Like any other application, System Architect has the menu bar and toolbar.

Additionally, the toolbar contains the symbols to used fro diagram drawing. At the

lefi-hand side is the browser to view the various designs such UML, Structured, Data

Modeling, Business Direction, and etc.

36

Literature Review Tutor on Software Design

2.3.3.2 Advantages and Disadvantages of System Architect

Advantages of System Architect:

» Users can use this tool to design software using a lot of design methods. One
of them is UML.

» Users can produce a very detailed and complete design. Each UML element
can be assigned with behaviors, actions, triggers, child or parent, etc.

» This CASE tool is very suitable for large scale projects with experienced
designers.

» Codes can be automatically generated by System Architect in Java, C++,
Corba and VB.

> System Architect can generate a HTML report for the whole system design or
selected diagrams with just a few mouse click.

> It has built in encyclopedia that can be used as example, reference or starting
point.

> It provides an easy to use, easy to follow, and complete lessons and tutorials

on designing systems using System Architect.

Disadvantages of System Architect:
» It is a complex application to use. One would have to go through the tutorial
and do a lot of practices to gain experience or take a formal class to be able to
use this software.

> It is not suitable for beginners in designing as one would have to understand

software design fully before taking full advantage of this tool.

» The diagrams, codes, reports and documentations really look professional.

37

Literature Review Tutor on Software Design

2.3.4 Conclusion

Previously, three CASE tools have been introduced, namely, SmartDraw, EventStudio
and System Architect. All three tools have different approaches in designing software
using UML especially the sequence diagram. While SmartDraw is only a tool to draw
diagrams, System Architect is what peple called as the real designing tool. However,
EventStudio takes a totally different approach where it uses Feature Description

Language (FDL) to draw diagrams.

In a sense, Tutor on Software Design a little similarities with EventStudio. However,
this system simplifies the FDL by using step by step wizard to get the requirements.
Furthermore, it uses combo boxes, text boxes, and buttons to ease the way users enter

their requirements. Users would not have to leam any new language.
While diagrams produced by EventStudio are not editable, users of Tutor on Software

Design can still edit their diagrams using the drag and drop technique as used in

SmartDraw and System Architect.

38

Literature Review Tutor on Software Design

2.4 Application Development Software

There are many kinds of application development software that can be used to
develop Tutor on Software Design. Some of them are more suitable for it than others.
Therefore, it has to be picked out carefully to avoid late delivery or unfulfilled
requirements. Developers should take into consideration some aspects while choosing

and deciding on which software to be used, including:

» It should be a software which the developers can learn to use it easily and
quickly. For this project, time constraint is certainly the biggest problem and it
will be a bigger problem if too much time is spent to study the software to be
used. It will also be a problem if the developers does not fully understand the
software and only realize it in the middle of the project.

> The selected software should have the feature needed by the system to be
developed. For example, if the system requires database access, the selected
software should support this feature.

» The selected software should be able to produce output in the format required
by the system to be developed. For example, Tutor on Software Design
requires the sequence diagrams be saved in jpg format; does the application
development software support this feature?

> In terms of prototyping, the criteria for choosing the right software would be
efficiency, rapidity and ease of use.

» The selected software should be interactive.

39

Literature Review Tutor on Software Design

2.4.1 Visual Basic 6.0

Visual Basic (VB) has been around for a long time--since its early versions some 10
plus years ago. Many improvements over the years have raised VB to the level of a
real knock-out contender. Visual Basic 6.0(VB6) is bundled with Visual Studio 6.0,
which includes many fine tools for enhancing productivity, both with stand-alone and
Web apps. VB6 comes in three flavors: Learning Edition, Enterprise Edition and
Professional Edition. Visual Basic 6.0 will work with Win95/98/2000/NT. In the early
years of VB, one had to rely heavily on programming experience and it was very

code-intensive.

Feature Rich Means Ease of Use

VB6 is packed with new and enhanced features, allowing for quick deployment and
access to data using the Microsoft Data Engine (MSDE), freely redistributable as part
of the application, allowing full compatibility with large SQL Server databases. There
is a new Report Writer, which allows development of very sophisticated, hierarchical
reports with drag-and-drop ease. Data access is a snap with VBO because of the new
Data Environment. which automatically allows for data binding. Easily build
applications for mobile users and client/server applications on a LAN or Web. There

is also support for Microsoft universal data access using ActiveX Data Objects.

Another nice new feature is the enhanced FlexGrid control; this enhancement will
allow one to expands, collapse, hide or show various information sets. Many new
integrated visual database tools are included, enabling common database activities

without leaving the environment. View tables, modify data and create SQL quenes for

40

Literature Review Tutor on Software Design

any ODBC or OLE DB-compliant database. Visually design and modify live database
schemas and other objects for Microsoft SQL Server 6.5 and Oracle 7.3.3 databases.
Language performance has been sped up by as much as 20 times over Visual Basic
4.0. Another great new feature included with VB6 is the “retain-in-memory” option,

which keeps component structures cached in memory for server-distributed

applications.

2.4.2 Visual Basic.Net

Visual Basic is a hugely popular programming language that is suitable for students
and beginners as well as professional development. The NET version is significantly
different from older variants of Basic. Visual Basic .NET is the next version of Visual
Basic. Rather than simply adding some new features to Visual Basic 6.0, Microsoft
has reengineered the product to make it easier than ever before to write distributed
applications such as Web and enterprise n-tier systems. Visual Basic NET has two
new forms packages (Windows Forms and Web Forms); a new version of ADO for
accessing disconnected data sources; and streamlined language, removing legacy

keywords, improving type safety, and exposing low-level constructs that advanced

developers require.

Visual Basic .NET is fully integrated with the other Microsoft Visual Studio .NET
languages. Not only can application components be developed in different
programming languages, classes can now inherit from classes written in other
languages using cross-language inheritance. With the unified debugger, multiple

language applications can be debugged, irrespective of whether they are running

41

Literature Review Tutor on Software Design

locally or on remote computers. Whatever language used, the Microsoft .NET

Framework provides a rich set of APIs for Microsoft Windows and the Internet.

Two things make Visual Basic .NET Standard 2003 easy to learn and use. One is the
language itself, which is designed to be closer to natural English than others. The
other is the array of tools and wizards that Microsoft provides, including a visual form
designer for both Windows and Web projects. The web technology is called
ASP.NET, and enables easy creation of web page that query and update databases,
although note that a Windows web server running .NET is required. The
programming environment is slick, with convenient features like docking and tabbed
windows, project wizards, auto-completion and pop-up help in the code editor. The
NET version of Visual Basic benefits from full object-orientation and a rich class
library. It also supports advanced features like multi-threading, which is a way of

writing code to do background tasks.

Whereas Visual Basic 6.0 and earlier version needed a small runtime library, this
NET edition requires the .NET Framework, a runtime engine and class library that
manages memory and enforces security. Framework applications perform well, since
they are compiled to native code at runtime, but there is an overhead in terms of
memory usage and the Framework runtime must be installed. These factors, together
with less than perfect code compatibility, have made some Visual Basic developers
reluctant to switch. While that’s understandable, the NET technology is now
maturing. It is still important to note the heavy system requirements, and that .NET

applications do not run on Windows 95.

Visual Basic .NET provides the easiest, most productive language and tool for rapidly

building applications for Microsoft Windows and the Web. Ideal for existing Visual

42

Literature Review Tutor on Software Design

Basic developers as well as new developers in the Microsoft .NET development
environment, Visual Basic NET 2003 delivers enhanced visual designers, increased

application performance, and a powerful integrated development environment (IDE).

2.4.3 Conclusion

Discussed above are two choices of programming language that can be used as
application development software. Each one of them has advantages and
disadvantages. The Visual Basic.Net is chosen as the application development
software for developing Tutor on Software Design. Besides all the extra features
stated in the above section, Visual Basic.Net has a new and easier way of
implementing the drag and drop technique. This technique will be used for users to

edit the produced diagrams.

Literature Review Tutor on Software Design

2.5 Database

Tutor on Software Design receives data from users. Therefore, it should save the data

in an organized way. The best way to organize and keep track of information is using

the database.

Database is an organized collection of data. A database management system (DBMS)
such as Access, FileMaker Pro, Oracle or SQL Server provides the software tools to
organize that data in a flexible manner. It includes facilities to add, modify or delete

data from the database, ask questions (or queries) about the data stored in the database

and produce reports summarizing selected contents.

The DBMS to be used for this system is Microsoft Access. Other aspects of concern
are data provider and how to access the database file programmatically from VB.Net

(the selected development tool). Data provider could be SQL server or OLEDB,

meanwhile ADO can be used to access database.

2.5.1 Microsoft Access

Microsoft Access is a computer application used to create and manage computer-
based databases on desktop computers and/or on connected computers (a network).
Microsoft Access can be used for personal information management (PIM), in a small

business to organize and manage all data, or in an enterprise to communicate with

SErvers.

44

Literature Review Tutor on Software Design

Microsoft Access provides users with one of the simplest and most flexible DBMS
solutions on the market today. Regular users of Microsoft products will enjoy the
familiar Windows “look and feel” as well as the tight integration with other Microsoft
Office family products. An abundance of wizards lessen the complexity of

administrative tasks and the ever-present Microsoft Office Helper is available for

those who care to use it.

Microsoft generally likes to incorporate as many features as possible into its products.

For example, the Access package contains the following elements:
* a relational database system that supports two industry standard query
languages: Structured Query Language (SQL) and Query By Example (QBE);

a full-featured procedural programming language — essentially a subset of

Visual Basic,

a simplified procedural macro language unique to Access:

a rapid application development environment complete with visual form

and report development tools;

® a sprinkling of objected-oriented extensions; and,

* Various wizards and builders to make development easier.

There are several keywords that are commonly used when creating and maintaining a

database such as table, fields, value and datatype. The relationship between these

keywords can be illustrated as the following figure 2.9.

45

Literature Review

Tutor on Software Design

Database File

Datatype

Value

Database File: This is the main file that
encompasses the entire database and that is saved
to the hard-drive or floppy disk.

Example) StudentDatabase. mdb

Table: A table is a collection of data about a
specific topic. There can be multiple tables in a
database.

Example #1) Students

Example #2) Teachers

Field: Fields are the different categories within a
Table. Tables usually contain multiple fields.
Example #1) Student LastName

Example #2) Student FirstName

Datatypes: Datatypes are the properties of each
field. A field only has 1 datatype.

FieldName) Student LastName

Datatype) Text

Figure 2.9 Database elements

Other datatypes are number, autonumber, date, time, etc.

252 ADO

ADO is a set of ActiveX controls that provide programmatic access to Microsoft's

latest underlying data access technologies. ADO is based on OLEDB. This is a

defined set of interfaces that all data sources can implement through special drivers

(or providers).

In other words, ADO gives a standard way of managing data from all kinds of data

stores, not just relational databases. The ever-increasing role and importance of the

Internet in application development has also driven the design concepts of ADO. It

provides a range of ways that remote data access can be achieved over the Internet,

using a Web browser.

46

Literature Review Tutor on Software Design

In ADO the in-memory representation of data is the recordset. A recordset looks like
a single table. If a recordset is to contain data from multiple database tables, it must
use a JOIN query, which assembles the data from the various database tables into a
single result table. Rows are scanned sequentially using the ADO MoveNext method.
ADO is designed primarily for connected access. Any change of data made in the
system will be directly sent to the database. It can also provide disconnected access to
make it easier and faster to manipulate data from the system. Communication with the

database is made by making calls to an OLE DB provider.

In order to use ADO in VB.Net, a reference has to be added. After that, the controls

on the form in VB.Net need to be connected to the database. The code might look like
this:

Dim conn As String=“PROVIDER=SQLOLEDB; INITIAL CATALOG=Northwind;"”& _
“SERVER=localhost;UID=sa; PWD=; "
Dim cmd as String = “select Customerld from Customers”

Dim adoRS as New ADODB.Recordset ()

' Open the RecordSet and retrieve the Customer IDs
adoRS.Open (cmd, conn, ADODB.CursorTypeEnum.adOpenForwardOnly,
ADODB. LockTypeEnum.adLockReadOnly, 0)

' Loop through the RecordSet and add the IDs to the ComboBox
Do While Not adoRS.EOF
cboCustomerID. Items.Add (adoRS.Fields (“"CustomerID”) .Value)
adoRS .MoveNext ()

Loop

‘ Must close the Recordset

adoRS.Close ()

47

Literature Review Tutor on Software Design

253 OleDB

OLEDB is a COM-based data access object which provides access to all types of data,
and even provides access to disconnected data stores (for example, if you're on your
laptop, you can easily view a snapshot of the database from the last time you synced
up). It is a data provider which is the mechanism that connects us to the physical data

store while ADO is a data consumer because it uses data provided by OLEDB.

OLE DB interfaces provide applications with uniform access to data stored in diverse
information sources, or data stores. These interfaces support the amount of DBMS

functionality appropriate to the data store, enabling the data store to share its data.

2.5.4 Conclusion

The aspects of concern in managing data for Tutor on Software designed are DBMS,
data provider and method of manipulating data between the system and the DBMS.

The solutions have been discussed above.

The DBMS to be used is Microsoft Access while the data provider is OleDB. ADO

will be used to manipulate data in the database from the system.

48

(7]
.
M o
B
0
2 T
g O
5 £
O 9
=

Methodologies Tutor on Software Design

3.1 Introduction to Methodologies

Methodologies may be defined as a collection of procedures, techniques, tools and
documents aids. They help the developers to speed up and simplify the development

process (P. Sellapan, 2000). Thus, it is important to choose a suitable methodology

while developing the system.
3.2 Methodology Analysis and Consideration

Software development involves a lot of tasks. These tasks must be managed
systematically to ensure that the project is successful. A software project is said to be

successful if the system is delivered on time, within budget, and fulfills the

requirements.

Software development methodologies are used to get the right system requirements
and provide a systematic way of developing systems. Methodologies allow developers
to monitor the progress of development. Documentation can be produced and

maintained easily. Methodologies are important so that developers can detect changes

as early as possible along the system development lifecycle.

Three methodologies will be discussed and considered in this section. They are the

Waterfall Model, the Prototype Model, and the Waterfall with Prototyping Model. In

the end, the most suitable methodology will be chosen for this project.

49

Methodologies Tutor on Software Design

3.2.1 Waterfall Model

Waterfall model 1s one of the oldest model, most of the new ones are the modified

versions of this model. The waterfall model is shown in Figure 3.1.

According to this model, one process should be completed before the next one begins,
which means the developers should develop the system step by step by following the
sequence. Thus, when all of the requirements are elicited from customers, analyzed
for completeness and consistency, and documented in a requirements document, the
development team can go on to the system design activities. This model enables the

developers to view what is going on during the development process.

The waterfall model has been used to prescribe software development activities in
various contexts. For instance, it was the basis for software development deliverables

in U.S Department of Defense contracts for many years, defined in Department of

Defense Standard 2167-A (Pfleeger, 2000).

Requirements
definition

System and
software design

Implementation
and unittesting

Integration and
system testing

Operation and
mamitenance

Figure 3.1 — Waterfall model.

50

Methodologies Tutor on Software Design

3.2.1.1 Advantages and Disadvantages of Waterfall Model

Advantages of using the waterfall model:

It makes the explanation to the customer or a person who is not familiar with

software development easy and convenient.

This model can increase the confidence of the software developers during the

development process.

Most of the later models are built based on this model.

Disadvantages of using the waterfall model:

® It does not show how the basic coding is designed or created unless the

3.2.2

requirements are fully understood.

It does not have any reference when any sudden changes happen to the

products or activities.

Fails to perceive the software as a problem solving process because the

waterfall model is actually modified from hardware development process.

It does not support iteration or loops. One phase must be finished before the

next can begin,

Prototyping Model

Prototyping is another type of effective process model, which allows all or parts of the

system to be constructed quickly, to understand or clarify issues. Thus, it enables the

developers, users and customers to have a common understanding of what is needed

and what is proposed. One or more of the loops for prototyping requirements, design,

51

Methodologies Tutor on Software Design

or system may be eliminated, depending on the goals of the prototyping. However, the

overall goal is to reduce risks and uncertainty in development. The prototyping model

1s shown in Figure 3.2.

3.2.2.1 Advantages and Disadvantages of the Prototyping Model

The advantage of using the prototyping model:

Reduce risks and uncertainty in the system development.

The disadvantages of using the prototyping model:

The quality of the software may be ignored when the product is produced

within a limited time. Thus, more time will be needed for maintenance.

The developers may develop the system within unsuitable platform or

programs.

Prototype Review
Prototype Prototype Prototype
Requirements Design System
System .
. Delivery
Requirements System

List of
Revisions

List of
Revisions

List of
Revisions

Figure 3.2 — Prototyping model.

Methodologies Tutor on Software Design

3.2.2.2 How Does the Prototype Resolve the Problem of Traditional Waterfall

Model?

The uniqueness of this model is that it allows the developers to quickly create a
prototype to verify the needs and target of the particular process, thus enables revision
to be made at the requirements stage rather than the more costly testing stage. This is
because a software development process may involve a lot of iteration processes. The
developers sometimes have to use the ‘try and error’ method to get the best result and
if the result is not feasible or failed to hit the target, they will have to start all over

from the beginning of the process again and again.

Thus, the prototyping stage is used to examine some aspects of the proposed system
in the first few stages. This model offers a systematic way to manage the development
process and avoids the use of inappropriate method for the system development. By
verifying these stages, it will effectively reduce the possibilities of repeating any

process caused by the use of any inappropriate method.

Therefore, when the software development process reaches the System Testing stage,
it will automatically validate the requirements of the system and also verify the

system design as planned in the earlier stages.

Methodologies Tutor on Software Design

3.2.3 Waterfall Model with Prototyping

Both waterfall model and prototyping model have an extremely high potential to be
merged to obtain the best process model needed to meet this project’s needs. This is

because they can improve the quality of the development process management by

reducing the disadvantages of each other.

The model consists of several phases such as system requirements analysis, system
design, implementation and unit testing, system integration and testing, and operation
and maintenance. Each stage is well defined before the next stage begins. As shown in

Figure 3.3, each process has to be finished before the following process starts.

REQUIREMENTS [~ ny Validate
ANALYSIS Sy

L SYSTEM F ----------
r DESIEN. 3

';m‘)mwr.l.nc N “\

yaie S R 4 CRATION TESTING ;'
\< . SYSTEM
TESTING

ACCEFTANCE
TESTING

"OPERATION
R MAINTENANCE

Figure 3.3 — Waterfall model with prototyping.

Tutor on Software Design is a complex system as it contains different modules built

by different person. The prototyping is incorporated into the waterfall model because

54

Methodologies Tutor on Software Design

testing of the functionality of its modules before the development process gets to the
implementation stage is vital. The usage of prototype will also allow potential users to
test the system and necessary modifications can be made before it is implemented.

Another reason why the waterfall model with prototyping is used is it offers a mean of
making the development process more visible compared to other models. Through
this model, every detail about requirements and functions can be known in advance

before the system is developed and these details remain stable throughout the

development process.
3.3 Focus on Waterfall Model with Prototyping Stages

The five stages in waterfall model with prototyping are system requirements analysis,

system design, implementation and unit testing, system integration and testing, and

operation and maintenance.

3.3.1 System Requirements Analysis

In this stage, studies and researches of the system are carried out to understand the
issues concerning the system and the nature of the system. The main objective of this

stage is to establish the system’s services, constraints and goals. In this stage,

project’s requirements, needs and constraints have to be identified.

55

Methodologies Tutor on Software Design

3.3.2 System Design

At this stage, the overall system architecture is established. System modules are
determined from the architecture. Requirements determined in the previous stage are
partitioned into hardware and software requirements. System functions are also

depicted. In this stage, preparation of various diagrams of system modules that

logically represent the system to be developed is done.

3.3.3 Implementation and Unit Testing

In this stage, every module of the system has to be constructed using selected
programming language. Each function will then be tested to verify that it is working

according to its specifications. During this stage, various bugs shall be eliminated.

3.3.4 System Integration and Testing

Each module of the system developed separately will be integrated and tested as a
whole system. The main objective of testing is to make sure that the system meets the
user's requirements and therefore, ensures the usefulness of the system being
developed. During this stage, the bugs will be encountered and the problems

concerning the interface between modules may arise. Enhancement will also be made

to improve the quality of the system.

Methodologies Tutor on Software Design

3.3.5 Operation and Maintenance
The system will be developed and installed in this stage. Maintenance of the system

includes fixing bugs that are discovered, will have to be carried out. Maintenance is

crucial to ensure that the system remains useful.

57

<
bt
]
+
=¥
«
£
o

System Analysis and Design Tutor on Software Design

4.1 Introduction to Analysis and Design

System requirements analysis phase, as discussed in the previous chapter, is the
earliest phase in the system development lifecycle. The purpose of this phase is to get
knowledge and clarification regarding critical aspects to system development.
Analysis activities require thorough investigation of the system including from the
aspects of users, task analysis, and requirements specification. This analysis is vital to
ensure that the system do and support requirements and existing policies. To achieve

this, system requirements specification covers the functional, non-functional,

hardware and software requirements.

System design on the other hand, covers all tasks and functions that give priority to

detailed and in-depth specification based on computer-oriented problem solving, It

leads to data, interface component, and process oriented technical and implementation

aspects of the system. Amongst the popular approaches are structured and object-

oriented approaches.

58

System Analysis and Design Tutor on Software Design

4.2 System Requirements Specification

A requirement is a statement of a system service or constraint (Kotonya and
Sommerville, 1998). A service statement describes how the system should behave
with regard to an individual user or with regard to the whole user community. In the
latter case, a service statement really defines a business rule that must be obeyed at all
times. For example, fortnightly salaries are paid on Wednesdays. A service statement
may also be some computation that system must carry out. For example, calculate

salesperson’s commission based on the sales in the last fortnight using a particular

formula.

Getting the accurate requirements requires an iterative process and a lot of user
involvement. Accurate requirements are very important to determine system
capabilities. Meanwhile, design determines how those requirements should be

implemented. Requirements specification to be discussed here are the functional, non-

functional, hardware and software requirements.

4.2.1 Functional Requirements

A functional requirement describes interactions between the system and its
environment (Pfleeger, 2001). The functional requirements that I will develop involve

three modules, namely, Sequence Diagram, User Requirements, and Help.

59

System Analysis and Design

Tutor on Software Design

Module Functional Requirements
1. Requirements entered by users using drop-down buttons
(combo box) and text boxes.
2. Requirements captured element by element (actor — use
case — association — class — object — sequence).
User Requirements 3. Users can always return to previous tasks using the back
buttons.
4. Users can decide names for actors, use cases, classes and
objects.
5. Users prompted deleting any object or sequence.
L. Get elements needed from the User Requirements
modules.
2. Produce a sequence diagram based on those elements.
3. Diagrams produced should be editable by users. Users
Sequence Diagram
can change the diagram output by reentering their
requirements.
4. The final diagrams can be saved in various image format.
5. The system produces a professional looking diagram.
1. Contains information and instructions on using the
system.,
Help
2. Provide tutorials on sequence diagram.
<

Provide tips to get a good sequence diagram.

Table 4.1 — Functional requirements

60

System Analysis and Design Tutor on Software Design

4.2.2 Non-Functional Requirements

A non-functional requirement is a description of the features, characteristics, and
attributes of the system as well as any constraints that may limit the boundaries of the

proposed solution. The followings are the non-functional requirements identified in

developing Tutor on Software Design.

Reliability
The system to be developed must be able to perform required functions and tasks

correctly. The diagrams produced by the system must be accurate and drawn exactly

according to the requirements entered by users.

Interactivity
Tutor on Software Design requires a lot of inputs from users. Users can choose which
diagram to design their software with or all of them. They can go to previous tasks

easily. Users are prompted for error corrections or confirmations whenever needed.

Help and tutorial are available and can be accessed anytime,

4.2.3 Hardware and Software Requirements

Choosing the right hardware and sofiware to be used for system development is very
important to ensure the system succeeds. It is also vital as it can ensure that the

system fulfills the system objectives. The task of choosing hardware and software is

carefully done to make sure the system can fulfill the system requirements

61

System Analysis and Design

Tutor on Software Design

specification. The following tables shows the hardware and software requirements for

developing this system.
Hardware Requirements
Monitor Sunbosch 15”
Processor Intel Pentium IIT 434 MHz
Memory 128 MB
Hard disk 100 MB free space
Input device Keyboard and mouse
Printer Canon BJC-1000sp
Table 4.2 — Hardware requirements
{ Software Requirements
Operating system Windows 98/2000/Me/NT/XP

Database management system

Microsoft Access 2000

Programming language

Visual Basic.Net

Project documentation

Microsoft Word 2000

Table 4.3 — Sofiware requirements

62

System Analysis and Design Tutor on Software Design

4.3 Application Architecture Design

An application architecture defines the technologies to be used by (and used to build)

one, more or all information system in terms of its data, processes, interfaces and

network components. Thus designing the application architecture involves
considering network technologies and making decisions on how the systems’ DATA,

PROCESSES, and INTERFACES are to be distributed among the business locations.

4.3.1 System Development Structure Chart

Structure chart illustrates a top-down hierarchy of software modules that would
conform to accepted principles of good software design. A module is a group of

instructions — a paragraph, block, subprogram, and subroutine.

63

System Analysis and Design Tutor on Software Design

ToSd
User Help
Requirements

v
v v v

Use Case Class Diagram Sequence
Diagram Diagram
I l_Jser
Requirements

| Diagram j
| Tutorial ‘}

Figure 4.1 - Structure Chart

Tutor on Software Design are partitioned into five modules with User Requirements

and Help at the top hierarchy and the three diagrams under User Requirements. The
Sequence Diagram module has three submodules, namely, User Requirements,

Diagram and Tutorial.

64

System Analysis and Design Tutor on Software Design

4.3.2 Flow Chart

A flowchart illustrates the steps in a process. By visualizing the process, a flowchart
can quickly help identify bottlenecks or inefficiencies where the process can be
streamlined or improved. Flowcharting is a graphical representation of the sequence

of all operations, movements, inspections (ak.a. approvals), delays, decisions and

storage activities of a process.
4.3.2.1 Basic Flowcharting Shapes

Flowcharts use special shapes to represent different types of actions or steps in a

process. Lines and arrows show the sequence of the steps, and the relationships

among them,

The terminator symbol marks the starting or
@ ending point of the system. It usually contains

the word "Start" or "End."

A box can represent a single step ("add two
Action or

Process

cups of flour"), or and entire sub-process

("make bread") within a larger process.

M A printed document or report.

65

System Analysis and Design

|

A decision or branching point. Lines
representing different decisions emerge from

different points of the diamond.

Represents material or information entering or
leaving the system, such as customer order

(input) or a product (output).

Indicates that the flow continues on another
page, where a matching symbol (containing the

same letter) has been placed.

Flow
e

Lines indicate the sequence of steps and the

direction of flow.

Table 4.4 — Flow Chart's symbols and shapes

4.3.2.2 Flow Chart for Tutor on Software Design

Tutor on Software Design

As shown in Figure 4.2, the system starts by getting the general requirements which is

used by all three diagrams including actor, use case, and association. Next, user can

choose which diagram to draw. If the user chooses to design with sequence diagram,

user will have to input the sequence requirements including class, object and sequence

of events. Then, the user can save and print the diagrams. Users can choose to draw

another diagram based on the requirements already entered, or new requirements or

end the system.

06

System Analysis and Design

Diagram?

e / General user /
Requirements? A
Requirements
No | I
Use Case ClaSS Sequence
Requlrements Reqmrements Requirements
Use Case Class Sequence
Diagram Diagram Diagram
| Fdit
Yes Draw Another

Figure 4.2 — Flow Chart

Tutor on Software Design

67

System Analysis and Design Tutor on Software Design

4.4 Graphical Interface Design

User interface design is the specification of a dialogue or conversation between the
system user and the computer. This dialogue generally results in data input and
information output. There are several styles of graphical user interfaces. Some of the
styles t be used in this system are pull-down and cascading menu, iconic menu, help
system, and etc. traditionally, these styles were viewed as alternatives, but they are

increasingly blended. This section presents the graphical interface design for Tutor on

Software Design.

Figure 4.3 shows the main window. The main window is a blank window where user

can choose whether to draw a new diagram, open an existing diagram or go through

the help section (as shown in Figure 4 4).

= Tutor on Software Design

Figure 4.3 — Main window with File menu.

68

System Analysis and Design

= Tutor on Software Design

Figure 4.4 — Main window with Help menu.

Tutor on Software Design

Actors are specified by users in a window such as in Figure 4.5. Users can decide on

the name of actors to be used in their software.

Enter actors :

ll Add

Delete

.2

Back

Next

3

Figure 4.5 — Actors window.

69

System Analysis and Design Tutor on Software Design

Associations between actors and use cases along with the type of associations can be

specified in the window such as shown below.

w Association

Actor/Use-case Actor/Use-case Association

= Diagram Qptions

Class Sequence
Diagram Diagram

Back '

Figure 4.7 — Diagram Options window.

70

System Analysis and Design Tutor on Software Design

Users then have to choose which diagram to choose, whether the use case, class or
sequence diagram by clicking one of the buttons in the Diagram Options window
(Figure 4.7). The Class window (Figure 4.8) will appear if the user chooses to draw

the sequence diagram. In this window, the users can input classes involved in their

software.

Enter class :

P ad |

Delete

Back

Figure 4.8 - Class window.

After classes have been defined, objects of those classes should be initialized. This
can be done through the Object window (Figure 4.9). One class can have more than

one object. The initialized objects then will be displayed in the right-most box with

the syntax class: object.

Finally, the sequence diagram is produced based on the requirements entered

previously. The output window is shown in Figure 4.10.

71

System Analysis and Design Tutor on Software Design

R

Class Object name :

— >]

Figure 4.9 — Object window.

= Sequence Diagram

| I |
Dbiecﬂ Line J Box l Arrow]
Other

Save , Pirint , Back ' Diagiam | Exit

Figure 4.10 — Sequence Diagram window.

N
»
)
o
(=¥
«
<=
@

System Implementation Tutor on Software Design

5.1 Introduction to System Implementation

System implementation phase is a phase where the system designs are converted into
executable codes. In this case, designs for Tutor on Software Design as shown in
Chapter 4 are converted into a real program. This chapter discusses the hardware and

software used to code the system, coding approach and style, and a brief description

of system modules and functionality.

5.2 Development Environment

Development environment has certain impact on the development of a system. Using

the suitable hardware and software will not only help to speed up the system
development but also determine the success of the project. After implementing the

system, the requirement of hardware and software that was stated in the previous

chapter can be finalized.

73

System Implementation

5.2.1 Hardware

Tutor on Software Design

Hardware Requirements
Monitor Dell 17”
Processor Intel® Pentium® 1V 2.60 GHz
Memory 256 MB
Hard disk 80 GB
Input device Keyboard and mouse
Printer Canon BI200sp
Table 5.1

5.2.2 Software

Hardware used in system development

Software Requirements
Operating system Windows XP
Database management system Microsoft Access 2002

Programming language

Visual Basic.Net

Project documentation Microsoft Word 2002
Image Editing Adobe Photoshop
Table 5.2

Software used in system development

System Implementation Tutor on Software Design

3.3 Coding Approach

The coding process for Tutor on Software Design was done in different steps. Along
the way, a lot of try-and-error method was used as I along with the other team
members were inexperienced in programming. The steps involved are developing the
Graphical User Interface, putting controls to the GUI components, writing the

processes involved, making additions, and making improvements.
5.3.1 Developing Graphical User Interface

In chapter 4, the prototype for this system is shown. It uses the concept of parent-child
forms, in which buttons Nexs and Back will bring users to different forms. In the
actual system implementation, the concept of tabs was used. It allows a lot of different

pages in one form. Users can switch from one page to another easily by clicking the

desired tabs.

The tab control was easily put onto the form and managed as VB.Net provided a built
in tool for it. The tab just has to be dragged from the toolbox onto the form and
managed via the property windows. There are 7 tabs on the form and sequence

diagram uses 2 of them — Sequence and Sequence Diagram.

The Sequence tab as shown in Figure 5.1 has comboboxes, listboxes, textboxes and

buttons for data entry by users. The Sequence Diagram tab as shown in Figure 5.2

only has a picture box that fills the entire tab page. It is used to display the output

diagram.

75

System Implementation Tutor on Software Design

S — ——

chm&ml Rdehnn] Unl:uebwmml Classss | Ehcowam 5m|5mbw|
1. Salect : : sciipt
{ Hagslu - l g & S : _}Hunloémam&sgam" : 44
] : Se iy h sekcwhichusecasethatyou
mm I d . {want to draw tha sequence diagram for. This
! : . . S & i cmbadwnbabdmawamncm
s TR s ey + £ from the combo box o you can create a new
S ZSdadohedsrelatedlohmbewduwm mmiyaud:mddmﬁnwem
| From Exising Class: e
' } i AR e ST C orfemPage ‘Next, selact objscts that you think
{4 Stadent = DetailsForm ara associated with the chosen uss case.
! Or : HomePage can be done by selecting & class oractor
R b it e Student name from the combo bow. Oryou can create
| r&mﬂw | anew one the typing the name of the new
e e l ' " Finaly, determine the sequence of
wuhmhﬂm~wnh
1 !idudnn :
7 /v to and from carba datamminad
1’3 Determine sequance wmn;nwmmmm
SRR : Dbiert - marked "From object :*" ‘0 Object"
] From Obyect - Message : T ; & | The messags to be passed thoukl be putin
j‘ {Student o OK i : Tom%‘m‘dqén.
e
|| [Stadont Cick Register HomePage
| {HomePage Display DetaisF om
DetadsForm Student
Studerd Fl form Detadstom
Student Chick finish DetailsForm
‘ DddsFmeiayCuﬁnPaoe
I Confthage
| RN . . e y ; 2

Student Homel age Detaisf orm ConfwmPage
i Cick Rogaler | i i
! i Display i i
i it Fom :
i {Chck Finish
's ; Display ;
: Chek Confim i

Figure 5.2 Picture box to display sequence diagram

76

System Implementation Tutor on Software Design

5.3.2 Putting Control to GUI Components

The GUI components do nothing until given some control. The next step is to put

control to the components.

For example, when the Create New button is clicked, users will be brought to another

tab — Use Case & Actor Tab — and put the focus to the Use Case textbox. The codes

for this task are as follows:

Private Sub btnNewUseCase Click(ByVal sender As System.Object, ByVal
_ € As System.EventArgs) Handles btnNewUseCase.Click

'Bring users to use case page
TabControll.SelectedTab = TabPagel

'Set the focus to where the user should enter data
txtUseCase. Focus ()

End Sub

Another example is calling functions when a certain tab is clicked. TabPage7 contains

the picturebox that will display the sequence diagram and calcSD() is the function that

draws the diagram according to the user requirements.

Private Sub TabControll Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles TabControll.Click

If TabControll.SelectedTab Is TabPage5 Then
'Call function that draws the Use Case diagram
calcUD()

End If

If TabControll.SelectedTab Is TabPage7 Then
'Call function that draws
calcSD()

End If

the sequence diagram

End Sub

I

77

System Implementation Tutor on Software Design

5.3.3 Writing Processes

Processes refer to codes that are written to receive data from users and turn it into

diagrams. They are divided into three — data manipulation codes, drawing codes and

codes for saving.

5.3.3.1 Data Manipulation

Data entered by user as their system requirements has to be saved into the database.
Users are allowed to add, choose or delete data anytime they want. Therefore, codes

are assigned to do various tasks concernin g data.

a. Database connection.

' stores the connection to an Access database globally

Public myDB As New ADODB.Connection

connect to the Access database

myDB.Openl“Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" g >
Application.StartupPath & "/db2.mdb")

b. Create table.

When users choose which use case they would like to draw the sequence
diagram for, two tables are created - one to store classes involved, and the

other to store the sequence of events,

'Remove space, - and . from use case name and add
"sequence ‘at the end

'This will be the table name to store relevant classes

strNew = comSeque.Text.Replace(" QLogilt ity
strNew = strNew.Replace("-",)
StrNew = strNew.Replace("_",)

strNew = strNew + "Sequence"

'Initialize the SQL statement to Create table
________________________y____-~__~_m‘_~M%Nuhuw_

78

System Implementation Tutor on Software Design

mySQL = "Create table " & strNew & " (ObjSeqID number, " & |
_ strNew & " char)"

Try
' execute the SQL command
myDB.Execute (mySQL)

Catch ex As Exception

End Try

'Remove spaces, — and _ from use case name
'Add "SeqUse" in front of it

'This will be the name of the sequence table
strNew = comSeqUse.Text.Replace(" ", "")

strNew = strNew.Replace("-", "")
strNew = strNew.Replace("_ ", "")
strlew = "SeqUse" + strNew

'Initialize SQL statement to create table
mySQL = "Create table " & strNew & "(ID number, Objl
char, Obj2 char, Msg char, Type char)"

C. Fill combobox with data from database.

There are 4 comboboxes on the Sequence page — one for selecting use
case, one for selecting class to associate with the use case, and two for
users to detenﬁine sequence of events for their software. These
comboboxes are filled with data from relevant tables in the database, The

codes to fill the first combobox are as follows.

Dim myRS As New ADODB.Recordset

'Open the recordset

myRS.Open ("Select UseCase from UseCase", myDB)
' clear old results
comSeqUse.Items.Clear ()
' place results in the list
While Not myRS.EOF

' put data in actor table into combobox

comSeqUse.ltems.Add (myRS.Fields ("UseCase") .Value)

' go to next record in the results

myRS .MoveNext ()

9

System Implementation Tutor on Software Design

End While

'Close the recordset
nyRS.Close ()

d. Fill listbox with data from database.

Following are the codes to fill a listbox with data from database. The data
are classes associated with the selected use case. The codes are called as

soon as users select a use case.

' clear old results
1stOb]j.Items.Clear ()

' place results in the list
While Not myRS.EOF

'Put data from database to listbox
1stObj.Items.Add (myRS.Fields (strNew) .Value)

' go to next record in the results
myRS .MoveNext ()

End While

e. Fill listbox with data from three fields.

Another listbox at the bottom of the page is used to displays the sequence of
events of the users’ software entered. 1t is filled as soon as a use case is selected
and it changes everytime user add or remove a sequence. It is also affected when
the user removes a class that is involved in the sequence. Each line combines data
from 3 fields in the database that represent message sender, message and message

receiver of a particular sequence.

' clear old results

lstlLeft.Items.Clear ()
lstTop.Items.Clear ()
' place results in the list
While Not myRS.EOF
lstLeft.Items.Add (myRS.Fields ("Obj1") .Value)
strLstTop = Trim(myRS.Fields ("Obj1l").Value) & " " &

80

System Implementation Tutor on Software Design

_ Trim(myRS.Fields ("Msg").Value) & " " & _
Trim(myRS.Fields("Obj2") .Value)
1lstTop.Items.Add(strLstTop)
' go to next record in the results
myRS .MoveNext ()

End While

'Close recordset
myRS.Close ()

f Add new data into database.

When the user adds a sequence, the following codes are executed.

'‘Call function to create new record
currentlD = CreateNewRecordSeq()

'Call function to fill the new record with data
UpdateRecordSeq (currentID, comObjl.Text, comObj2.Text,
txtMsg.Text, comType.Text)

Private Function CreateNewRecord() As Integer
' create a new record in the database

'Initialization

Dim strNew As String

Dim myRS As New ADODB.Recordset
Dim icount As Integer

If comSeqUse.Text <> "" Then
'Get table name
strNew = comSeqUse.Text.Replace ("
strNew = strNew.Replace("-", "")
strNew = strNew.Replace("_", "")
strNew = strNew + "Sequence"

End If

", " ")

' open the record set and

'have it contain all records in the database table
myRS.Open (strNew, myDB, ADODB.CursorTypeEnum.adOpenKeyset,
ADODB. LockTypeEnum.adLockOptimistic)

If Not myRS.EOF Then

'Move to the last record

myRS.MoveLast ()

icount = myRS.Fields("ObjSeqID").Value + 1
Else

icount = 0
End If

' add a new empty record

81

System Implementation Tutor on Software Design

myRS .AddNew ("ObjSeqID", icount)

' update the recordset to include the new entry

myRS .Update ()
myRS.Requery ()

' go to the record we just created
myRS .MoveLast ()

' grab the record's ID value so we can edit it
‘return this from the function
CreateNewRecord = myRS.Fields ("ObjSegID").Value

' close the record set
myRS.Close ()

End Function

Public Function UpdateRecordSeq(ByVal currentid As Integer,
ByVal Objl As String, ByVal Obj2 As String, ByVal Msg As String,

ByVal Type As String)
' Edit a record in the database

Dim strNew As String
Dim myRS As New ADODB.Recordset

If comSeqUse.Text <> "" Then
'Get table name

strNew = comSeqUse.Text.Replace(" ", "")

strNew = strNew.Replace("-", "")
strNew = strNew.Replace("_ ", "")
strNew = "SeqUse" & strNew

End If

' open a recordset from the table named address
myRS.Open (strNew, myDB, ADODB.CursorTypeEnum.adOpenKeyset,
ADODB. LockTypeEnum.adLockOptimistic)

myRS.Find ("ID=" & currentid)

' change fields to update them
myRS.Fields ("Obj1") .Value = Objl
myRS.Fields ("Obj2").Value = Obj2
myRS.Fields ("Msg") .Value = Msg
myRS.Fields (“"Type") .Value = Type

' update and close the recordset
myRS.Update ()
myRS.Close ()

End Function

System Implementation

Tutor on Software Design

Remove selected data from database.

There are two Remove buttons on the page. Each for removing classes and
sequences. Removing classes will call two functions — one to delete the
selected class and one to delete the affected sequences. Removing

sequence will also call two functions — one to delete the selected sequence

and one to rearrange the ID of the remaining sequences.

The Renew function is used to reassign ID of sequences after one of the
records has been deleted. This is done to ensure that the sequence is

always correct. The idea is to set the first record to have 1 as ID, 2 for the

second record and so on.

' Button to remove class

'Set selected class name to a variable
Dim str As String = Trim(lstObj.SelectedIltem)

'Call function to delete the record of classes with current

ID
DeleteRecord (currentlD)

'Call function to delete the affected sequence
DeleteSeqClass (str) J

' Button tec remove Sequence

While Not myRS.EOF

If lstlLeft.SelectedIndex + 1 = myRS.Fields("ID").Value
Then

' Set the ID of record to be deleted
ID = lstlLeft.SelectedIndex + 1

' Display confirmation dialog
result = MessageBox.Show (message, caption,
MessageBoxButtons.OKCancel)
If result = DialogResult.OK Then
' Call function to delete selected sequence
' Send ID as parameter
DeleteRecordSeq(ID)
Else
. Bxit Sub

System Implementation

Tutor on Software Design

End If

Else
ID=20
End If

' go to next record in the results
myRS .MoveNext ()
End While

' Call function to rearrange ID
RenewSeqID (myRS)

Public Function DeleteRecord(ByVal currentID As Integer)
' delete a record from the database

‘Initialization
Dim strNew As String
Dim item As String = CStr(lstObj.SelectedItem)

If comSeqUse.Text <> "" Then
'Get table name
striew = comSeqUse.Text.Replace("

", "")

strNew = strNew.Replace("-", "")
strNew = strNew.Replace("_", "")
strNew = strNew + "Sequence"
End If
' create a string variable that will hold an SQL statement
mySQL = "Delete * from " & strNew & " where
_ & item & """

' execute the SQL command
nyDB. Execute (Trim (mySQL))

End Function J) " al ol

" & strNew &

Public Function DeleteSegClass (ByVal item As String)
' delete a record from the database

' Initialization

Dim strNew As String
Dim mySQL1 As String
Dim mySQL2 As String

If comSeqUse.Text <> "" Then
' Get table name
strNew = comSeqUse.Text.Replace ("

"' " ")

strNew = strNew.Replace("-", "")
strNew = strNew.Replace("_", "")
strNew = "SeqUse" & strNew

End If

' Set SQL statement to two variables

mySQL1 = "Delete * from " & strNew & " where Objl='" & item &

]

84

System Implementation Tutor on Software Design

mryn
_hySQLZ = "Delete * from " & strNew & " where Obj2='" & item &

nrw

' execute the SQL command

Try
myDB.Execute (mySQL1)

myDB.Execute (mySQL2)
Catch ex As Exception

End Try

End Function

Public Function RenewSegID(ByVal myRS As ADODB.Recordset)

'Initialization
Dim strNew As String
Dim count As Integer = 1

If comSeqUse.Text <> "" Then
'Get table name
strNew = comSeqUse.Text.Replace(" ",
strNew = strNew.Replace("-", "")

"")

strNew = strNew.Replace(" ", "")
strNew = "SeqUse" & strNew
End If

Try
If Not myRS.BOF Then
'Go to first record in the recordset
myRS.MoveFirst ()
End If
Catch ex As Exception

End Try

While Not myRS.EOF
'Call function to replace existing ID with new one
‘Parameters : existing ID and new ID (Sequential)
UpdateSeqlID (myRS.Fields ("ID").Value(), count)

'Increase count
count += 1

'Move to next record
myRS .MoveNext ()
End While

End Function A*J

Public Function UpdateSeqID(ByVal currentID As Integer,
ByVal newID As Integer)
' Edit a record from the database

' Variable initialization

85

System Implementation Tutor on Software Design

] Dim strNew As String

If comSeqUse.Text <> "" Then
' Get table name
strNew = comSeqUse.Text.Replace ("
strNew = strNew.Replace("-", "")
strNew = strNew.Replace("_ ",
strNew = "SeqUse" & strNew
End 1f

", " ")

L ")

' Set SQL statement to a variable
mySQL = "Update " & strNew & " set ID=" & newID & " where

& currentID

' execute the SQL command
myDB.Execute (mySQL)

End Function

5.3.3.2 Drawing

One of the functional requirements of Tutor on Software Design is, the system is able
to draw sequence diagram based on user requirements. The above section has shown
has user requirements can be manipulated. This section will show how those data can

be converted into relevant sequence diagram. It involves a lot of steps as shown

below.
a. Import namespace.
The namespace is necessary in order to use drawing functions to draw
various shapes such as rectangle, lines, circles, etc.
Imports System.Drawing.Imaging
b. Initialize bitmap and graphic objects.

Al

Initialize a bitmap object
' Set the size with the picturebox size

{ Dim newBitmap As Bitmap = New Bitmap (784, 544,
Imaging.PixelFormat.Format24bppRagb)

86

System Implementation

Tutor on Software Design

' Set the bitmap to a graphic object
Dim lbl As Graphics = Graphics.FromImage (newBitmap)

o Call function to draw.
If TabControll.SelectedTab Is TabPage7 Then
'Call function that draws the sequence diagram
calcSDh{)
End If
d. Run function to draw.

1.

The following tasks are done within Public Function calcSD() .

Draw a white rectangle on the bitmap object as the background.

Dim rect As Rectangle = New Rectangle(0, 0, 784, 544)
1bl.FillRectangle (New SolidBrush(Color.White), rect)

1.

Initialize and set coordinate values to points.

Dim pl, p2, p3, p4 As Point

plL.X = 98
pl.Y = 50
p2.X = 294
p2.Y =450
p3.X = 490
p3 Y= 50
pd.X = 686
p4.Y = 50

1.

Initialize and set values to objects representing data. Data taken from a

table in the database are set to 4 objects.

Dim drwObjl As String =
Dim drwObj2 As String =
Dim drwObj3 As String
Dim drwObi4 As String

"w

"

"

i

87

System Implementation Tutor on Software Design

While Not myRS.EOF
'"Fill drwObjl
If drwObjl = "” Then
1f myRS.Fields("Objl").Value <> drwObj2 And _

myRS.Fields ("Objl").Value <> drwObj3 And _
myRS.Fields ("Objl").Value <> drwObj4 Then
drwObjl = myRS.Fields("Objl").Value
End If
End I1f

If drwObil = "" Then
If myRS.Fields ("Obj2") .Value <> drwObj2 And _

myRS.Fields ("Obj2") .Value <> drwObj3 And _
myRS.Fields ("Obj2") .Value <> drwOb3j4 Then
drwObjl = myRS.Fields("Obj2").Value
End If
End If

'Fil1l drwObij2, drwObj3 and drwObj4 with the same way

End While

iv. Call function to draw objects.

If drwObjl <> "" Then
recseqpic (pl, drwObjl)

End If

If drwObj2 <> "" Then
recseqgpic (p2, drwObj2)

End If

If drwObj3 <> "" Then
recsegpic(p3, drwObi3)
End If

If drwObj4 <> "" Then
recseqpic (p4, drwObj4)

End If

Public Function recsegpic(ByVal ¢ As Point, ByVal str As String)

Dim rec As Rectangle
Dim dotstart, dotend, strlen As Point

Dim p As New Pen(Color.Black, 2)

Dim dot As New Pen(Color.Black)

Dim txt As SizeF, txtfont As Font = Me.Font
Dim dashValues As Single() = (3, 2, 3, 2}
Dim Mylen As Integer

MyLen = 10 'Len(str)
dot.DashPattern = dashValues

rec = New Rectangle(c.X - 50, c.Y - 25, 100, 50)

—

dotstart.X = c.X

88

!

System Implementation Tutor on Software Design

dotstart SYii="c.Y + 27 AW

dotend.X = c.X
dotend.Y = c¢.Y + 800

strlen.X
strlen.Y

c.X + (MyLen * 2) + 5
c.¥ 4+ 5

1bl.DrawString(str, txtfont, New SolidBrush{Color.Black),
CoX =257 fc LY =110)

lbl.DrawlLine (dot, dotstart, dotend)

1bl.DrawLine (New Pen(Color.Black), _

New Point(c.X - 25, c.Y + 5), strlen)

lbl.DrawRectangle (p, rec)

¥nd Function

v. Call function to draw arrows.

'Initialization

Dim templ, temp2, temp3, tempd4 As Point
Dim objl As String

Dim obj2 As String

Dim str As String

'Set coordinates to points

templ = pl
temp2 = p2
temp3 = p3
tempd = p4

While Not myRS.EOF
'Get data from table
objl = myRS.Fields ("Obiy1").Value
obj2 = myRS.Fields("Obj2").Value
str = myRS.Fields("Msg").Value

'Set points 50 units down
Lempl.Y += 50
temp2.Y += 50
temp3.Y += 50
tempd.Y += 50

Select Case objl 'From object
Case drwObijl
Select Case obij2 'To object

Case drwObjl
drawBackArrow(templ, Str)

Case drwObij2
drawArrow(templ, temp2, str)

Case drwObj3
drawArrow(templ, temp3, str)

Case drwObi4

drawArrow(templ, temp4, str)
End Select

'Continue through drwobj4 |

89

System lmplementation Tutor on Software Design

End Select
myRS .MoveNext ()
End While

Public Function drawArrow (ByVal pointl As Point,
ByVal point2 As Point, ByVal str As String)

' Create pen.

Dim blackPen As New Pen(Color.Black, 5)

' Initialize the arrow cap

blackPen.EndCap = Drawing2D.LineCap.ArrowAnchor

'Calculate position of string
Dim pos As Point

If pointl.X > point2.X Then

pos.X = ((pointl.X - point2.X) / 2) + point2.X
Else

pos.X = ((point2.X - pointl.X) / 2) + pointl.X
End If

'Draw line to screen with a string on it.

lbl.DrawString(str, Me.Font, New SolidBrush(Color.Black),

pos.X, pointl.Y - 20)
lbl.DrawlLine (blackPen, pointl, point2)

End Function

Public Function drawBackArrow (ByVal pl As Point,
'Create pen
Dim blackpen As New Pen(Color.Black, 5)
Dim p As New Pen(Color.Black, 5)
Dim p2, p3, pd4 As Point

Pl.Y = pl.Y - 8
p2.X

= pl.& ™26 : p2.¥ = pl.Y¥
P3.X = p2.X : p3.Y = p2.Y + 2
P4.X = pl.X : p4.Y = p3.Y

'"Initialize the arrow cap
blackpen.EndCap = Drawing2D.LineCap.ArrowAnchor

1bl.Drawline (p, pl, p2)
1bl.Drawline (p, p2, p3)
lbl.DrawLine(blackpen, p3, p4)

lbl.DrawString(str, Me.Font, New SolidBrush
pP2.X + 5, p2.Y + 13)

End Function

(Color.Black),

ByVal str As String)

90

System Implementation Tutor on Software Design

vi. Set bitmap to picturebox.

PictureBox2.Image = newBitmap

5.3.3.3 Save Diagram

The output of this system is the required sequence diagram. This diagram can be

saved in various image formats anywhere on the computer the user wants. Executing

the following codes does it.

Private Sub MnuSaveSeg Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MenuSaveSeq.Click

Dim extension As String = dlgSave.FileName

PictureBox2.Image = newBitmap

If dlgSave.ShowDialog() = DialogResult.OK Then

extension = extension.Substring(extension.LastIndexOf (".") B
1) .Tolowerxr

Select Case extension
Case "bmp"

PictureBox2.Image.Save (dlgSave.FileName,
ImageFormat .Bmp)

Case uqun’ "jpeg"
PictureBox2.lImage.Save (dlgSave.FileName,
ImageFormat.Jpeq)

Case "gif"
PictureBox2.Image.Save (dlgSave.FileName,
ImageFormat.Gif)

Case "ico"

PictureBox2.Image.Save (dlgSave.FileName, _
ImageFormat.Icon)
Case "emf"

PictureBox2.Image.Save (dlgSave.FileName,
ImageFormat.Emf)
Case "wmf"

PictureBox2.Image.Save (dlgSave.FileName,
ImageFormat.Wnf)
Case "png"

PictureBox2.Image.Save (dlgSave.FileName,

ImageFormat.Png) r
Case "M aReyETY

PictureBox2.Image.Save (dlgSave.FileName,

ImageFormat.Tiff) x
Case "exif"

PictureBox2.Image.Save (dlgSave.FileName,
ImageFormat.Exif) I
End Select
End If
End Sub

()‘

System Implementation Tutor on Software Design

5.3.4 Improvements.

In the beginning, all the codes were written carelessly. Then, same improvements
were made. For example, variables that were initialized in many functions were made

global.

Other than that, some error handling were also put into place. An example of error

handling is:

Ty
' execute the SQL command
myDB.Execute (mySQL)

Catch ex As Exception

End Try

Redundant codes were made into separate function. For example, the functions

RenewSeqlD() and UpdateSeqlD().

5.4 Coding Style

There are some styles in coding that were purposely followed to make the codes
maintainable and readable. One of the styles is using meaningful variable names. For
instance, a button to add a class is named binAddClass, a string variable to hold a new

name is called strNew, and the menu to save the sequence diagram is named

mnuSaveSeq, and so on.

To make the codes even more readable, certain lines were indented where necessary
and keyword (or reserved word) are coloured blue and non-keyword are black.

Comments were made in green. Fortunately, VB Net automatically applies this style.

An example is the following function:

9

em Implementation Tutor on Software Design

ic Function DeleteRecord (ByVal currentID As Integer)
' delete a record from the database

'Initialization
Dim strNew As String
Dim item As String = CStr(lstObj.SelectedItem)

If comSeqUse.Text <> "" Then

'Get table name

strNew = comSeqUse.Text.Replace(" ", "")

strNew = strNew.Replace("-", "")

strNew = strNew.Replace("_", "")

strNew = strNew + "Sequence"
End If
' create a string variable that will hold an SQL statement
mySQL = "Delete * from " & strNew & " where " & strNew & "='"
_ & item & "'"

' execute the SQL command
myDB . Execute (Trim (mySQL))

unction

, comments were added where necessary as internal documentation. This will make any
enhancement easier.

System Implementation Tutor on Software Design

5.5 Description of System Modules and Functionality.

In order to draw the sequence diagram, 4 modules are used, namely —use case, class,

sequence, and drawing module.
5.5.1 Use Case

The first thing that users have to go through in order to get the desired sequence
diagram is to select a use case, which the diagram is drawn for. They can choose from

the existing use case from the drop down list or they can add a new use case.

5.5.2 Class

Next, they will have to choose which class involved in the diagram. Like the use case,

users can choose existing classes or create new ones.

5.5.3 Sequence

The next module allows users to put in the sequence of events for their system. They

can add and remove any sequence using existing classes.

5.54 Drawing

This module simply takes data from database and executes a few functions to draw

the required sequence diagram.

94

System Implementation Tutor on Software Design

5.6 Conclusion

This chapter describes the implementation of Tutor on Software Design. It shows how
designs from the previous chapter are turned into executable program and how it

fulfils the functional requirements of this system as stated earlier in planning phase.

The next chapter documents the testing done on the system.

Chapter 6

o
=
op]
e |
7]
Y
=~
&
(<))
s
7]
<
/)]

Testing Tutor on Software Design

6.1 Introduction to System Testing

Many programmers view testing as a way to demonstrate how their program performs
properly. However, the idea of demonstrating correctness is really the reverse of that
testing 1s all about. We test a program to demonstrate the existence of a fault. Because
our objective is to find faults, we consider a test successful only when a fault is
discovered. This is achieved by using carefully planned test strategies and realistic

data so that the entire testing process can be methodically and rigorously carried out.

Software testing is a critical element of software quality assurance and represents the
ultimate review of specification, design, and code generation. In this chapter, software

testing fundamentals, testing strategies and software debugging methods will be

presented.
Following are some of the objectives of software testing;

Testing is a process if executing a program with the intent of finding an error.

A good test case is noted that has a high probability of finding an as-yet-

undiscovered error.

A successful test is one that uncovers as-yet undiscovered error.

6.2 Fault

96

Testing Tutor on Software Design

The objective of testing is to find error and fault. Fault identification is the process of
determining what fault or faults caused the failure, and fault correction or removal is

the process of making changes to the system so that the fault are removed.

6.2.1 Types of Fault

When no obvious fault exists, program is tested to isolate more faults by creating

conditions where the code does not react as planned. Therefore, it is important to

know kind of faults to seek.

Faults can be categorized as algorithmic faults, syntax faults and documentation faults

described as below:
1. Algorithmic faults
Algorithmic faults occur when a component's algorithm or logic does not
produce the proper output for given input because something is wrong with
the processing steps. These faults are easy to spot by reading through the
program (call desk checking) or by submitting input data from each of the

different classes of data that we expect the program to receive during its

regular working.
Typical algorithmic faults include:
1. Testing for the wrong condition.
il. Forgetting to initialize variables or set loop invariants.

iii. Forgetting to test for a particular condition (such as when division by

zero might occur).

2. Syntax faults

97

Testing Tutor on Software Design

Syntax faults can be checked while parsing for algorithmic faults. This will
ensure that the construct of programming language 1s used properly. Microsoft
Interdev does come with a compiler to catch syntax faults before a program is

executed. Therefore, syntax faults within the program can be traced before the

program is executed.

3. Documentation faults
When the documentation does not match what the application does, the
application has documentation faults. Usually, documentation is derived from
system design and provides a clear description of what the programmer would

like the program to do, but the implementation of these functions is faulty.

Such faults can lead to other faults later.

98

Testing Tutor on Software Design

6.3 Test Planning

The purpose of having test planning is to help in designing and organizing tests, so

that testing is carried out appropriately and thoroughly.

A test plan has the following steps:

1. Establishing test objectives
At the beginning, we have to know what we are going to test on. So we have to
establish our test objectives that tell us what kinds of test cases to generate.

2. Designing test cases
After establishing test objectives, we begin to design the test cases that are used to
test the system. If test cases are not representative and do not thoroughly exercise

the functions that demonstrate the correctness and validity of the system, then the

reminder of the testing process is useless.

3. Writing test cases

After designing, we have to start writing the test cases.
4. Testing test cases
At the same time, we also test the test cases.

5. Executing tests

After all testing have been done, we execute our tests on the system.

6. Evaluating test results

After executing tests, we evaluate the test results.

99

Testing Tutor on Software Design

6.4 Testing Technique

To test a component, a range of inputs and conditions are chosen. The component of
the software will be allowed to manipulate the data, and the output will be observed.
A particular input is chosen will demonstrate the behavior of the code behind the
entire GUIL. A test point or a test case is a particular choice of input data to be used in
testing program. However, the data are entered with the express intent of determining

whether the system will process them correctly.

Different test cases are needed on different type of testing strategies. There are four
categories of test cases that are created for testing purposes namely erroneous test

data, normal test data, extreme test data and condition test data. These categories are

further explained in the following section.

6.4.1 Erroneous Test Data

Using test data that are erroneous is a good way to determine how the system handles
such errors and how it behaves under such situation. For example, the drawing
module of this system can only set coordinates for 8 sequences. What happens if users

enter 9 sequences? Therefore, it is used as erroneous test data.

100

Testing Tutor on Software Design

6.4.2 Normal Test Data

The normal test case is use to check whether the system will work well under normal
condition. That is means to test whether a given correct data will produce the
expected results. For example, assume that there are four classes associated with a use
case called Register. So, if a user wants to generate a sequence diagram using these

four classes, the program will allow it. This type of test data serves as a preliminary

test of the system.

101

Testing

6.5 Testing Strategy

Tutor on Software Design

Testing is a process of exercising or evaluating a system by manual or automatic

means to verify that it has satisfied requirements or to identify differences expected

and actual results. Testing is probably the least understood part of a software

development project. A bug is any unexpected, questionable, or undesired aspect or

behavior displayed, facilitated or caused by the software being tested. Testing can

uncover different classes of errors in @ minimum amount of time and with a minimum

amount of effort. The strategies used for testing are unit testing, module testing,

integration testing and system testing.

Sub-module
testing

h

Module
testing !

System
testing

Acceptance
testing

Figure 6.1: Testing process

102

Testing Tutor on Software Design

6.5.1 Unit Testing

Historically, quality software is relied on testing each function or module. Unit testing
is sometimes referred to as function testing or component testing, which is extremely

time-consuming. For Tutor on Software Design, unit testing was done during the

coding phrase.

The first step is to examine the program code by reading through it, trying to spot
algorithm, data and syntax faults. Followed by comparing the code with specifications
and with the design to make sure that all relevant cases have been considered. Next,
the program is executed to view result and then eliminate remaining syntax faults if

necessary. Finally, test cases are developed to show that the input is properly

converted to the desired output.

Unit testing involves the tests on each function module independently. If error is
found, debugging of the codes will be carried out immediately. If the compilation of
the function module is completed successfully, another function module will be

coded. The following steps specify how unit testing is carried out for this system:

1. Examining The Code

The code of the program is examined by reading through it to spot for algorithmic

faults and syntax faults. This method is useful to identify faults that have been left

out by the programmer.

103

Testing Tutor on Software Design

2. Control Objects Testing
Command buttons are clicked to test their functionality and text boxes are tested

with different data types and also null value to make sure invalid data will not

cause any fault.

3. Different Data Type Testing

Different data types like numbers, characters or date is used to test certain
function because some control objects will only accept certain data type, invalid

data type can be traced by the system without causing any error.

4. Choosing Test Cases

Test cases are developed to ensure that the input is properly converted to the
desired output. So, to test a component, input data and condition are chosen. Then

the component is allowed to manipulate the data, and output is observed.

6.5.1.1 Example Of Unit Testing

There were too many unit test cases involved. Therefore, only a few will be shown as

example. The rest are attached as Appendix A.

Unit Test Case Example 1

The Add Class function in this system is used to add new record of class nto

database. Unit Testing was carried out to ensure that the record was added

104

Testing Tutor on Software Design

successfully. The table below shows the test case for unit testing on the function of

adding the record.
' Unit: Add New Class
| No. | Testing Procedure Expected Output Actual Qutput
1. Type a class name in the Create New The newly added g
(, textbox. class is listed in the 5\02::25;%?('g&sfgt
Class name: ConfirmPage listbox and drop 7 2 o e
2. Click Add down list. P :

Table 6.1 Test Case For Adding Class

6.5.2 Module Testing

A module is a collection of dependent components. A module encapsulates all of the
related components. Module testing enables each module to be tested independently.

This testing will ensure that the module calling sequence in this project is systematic.

In module testing, two or more units in which either unit that use output data from or
provide input data for another unit were tested in collection. These units have related

characteristics to perform a common goal or function such as the drawing functions

that uses data entered previously.

6.5.2.1 Example Of Module Testing

Module Test Case Example 1

The drawing function in this system is used to draw images, which are used to create

sequence diagram. Module Testing was carried out to ensure that the image was being

105

Testing

Tutor on Software Design

drawn successfully. Table below shows the test case for module testing on the

function of drawing diagram.
| No. | Testing Procedure | Expected Output Actual Output l
1. Click left drop down list in the third All added classes From Object :
section should be listed. _J_,
|| -
Student
HomePage
DetailsForm
) ConfirmPage
2. Choose a dass '
Class name: Student J
3. Type a message in the centre textbox ‘
Message: Click Register]
4. Click right drop down list | All added classes To Object:
should be listed. " __]
v
| Student
HomePage
DetailsForm
| ConfimPage
(5. Choose a class (Student Click
. The sequence .
) C\?ss name: HomePage ‘ should be listed. Beglster HomePage
| 6. Click Add to Sequence button is listed.
7. Repeat steps 1 to 6 with different .
) combination on input A pagedispiaying a Figure 6.2

8. Click Sequence Diagram tab

sequence diagram.

Table 6.2 Test Case For Drawing Diagram

106

Testing

Sl Tatoron Software Deswn

Tutor on Software Design

Student HomePage DetaisFom LonfimPage
Cick Regrstet
i Display
E'FI Form
i {Cick Finish
| :f Display
Chck Confim

Figure 6.2 Quiput of Table 6.2

6.5.3 Integration Testing

When the individual components are working correctly and meet the objectives, these
components are combined into a working system. In other words, integration testing is
the process of verifying that the system components work together as described in the

system and program design specifications. This integration is planned and coordinated

so that when a failure occurs, some idea of what caused it can be got.

Sandwich integration testing approach is used for this system. This approach

combines top-down integration with bottom-up integration. The testing starts from the

first section of the system and down to the lowest level form of functions and from the

107

Testing Tutor on Software Design

function up. This testing is repeated several times to make sure that all the control

objects work properly.

The motive behind this testing is to make certain that all modules can be executed as a
complete module. As mentioned earlier, an individual module calls other module to
perform certain tasks. Parameters will be passed among these modules and if not

tested, then parameter may be passed incorrectly.

6.5.4 System Testing

The last testing procedure done is system testing. Testing the system is very different
from unit testing, module testing and integration testing. The objective of unit testing,
module testing and integration testing is to ensure that the code has implemented the
design properly. In other words, the code is written to do what the design

specifications intended. In system testing, a very different objective is to be achieved,

that is to ensure that the system does what the users want it to do.

Tutor on Software Design involves two kinds of system testing. They are function

testing and performance testing.

6.5.4.1 Function Testing

Function testing is based on the system functional requirements, In other words, a
function test is used to check that whether the integrated system performs its functions

as specified in the requirements. The tests are carried out for data module and drawing

108

Testing Tutor on Software Design
module in this system. The module is tested individually to determine whether the

system performs as required.

6.5.4.2 Performance Testing

Performance testing addresses the nonfunctional requirements of the system. That
means once the functions are convinced work as specified, the performance test
compares the integrated components with the nonfunctional system requirements. The

types of performance tests are:

a) Compatibility Tests
This test was performed to find out that the interface functions perform according
to the requirements. The accuracy of data retrieval was high in this system.

Besides, the speed of data retrieval was acceptable too.

b) Human Factors Tests
This test was performed to investigate requirements dealing with the user interface
to the system. In this system, simple forms and related messages are displayed to
determine user friendliness. These tests are sometimes called usa bility tests.

¢) Timing Tests
This test was performed to evaluate the requirements dealing with the time to

respond to a user and time to perform a function. The response time of this system

is acceptable.

109

Testing Tutor on Software Design

6.6 Summary

Testing is one of the important steps in developing a system. Precision and accuracy
of output data is considered during this process. Unit, module, integration and system
testing has been carried out for the Tutor on Software Design. These testing
approaches lead to delivering a quality system to users. The objective of a system will
only be achieved after all the thorough testing done by different user with different

aspects.

110

=
(o}
op=
©
>~ 5
= sl
o ¢«
> P
& [
£ g
934
v
=
n

System Evaluation Tutor on Software Design

7.1 Introduction to System Evaluation

In this chapter, the system evaluation will be discussed. There were many techniques
that used to evaluate the final system. In this chapter, system’s features and strengths,
system’s limitation and constraints, the future enhancement, problems and solutions

and lastly knowledge and experience gained will be described.

7.2 System Strengths

Followings are the features and strengths that can be found in the Tutor on Software
Design:

7.2.1 Different Approach From Existing Systems

As described in Chapter 2 — Literature Review, Tutor on Software Design is
different from other existing systems that draw sequence diagrams. Instead
dragging and dropping shapes onto a canvas or using certain language, this
system uses drop down lists, textboxes and lists. This makes it a different and

easy 1o use system to draw a sequence diagram.

7.2.2 Documented
This system is documented internally and externally. Internal documentation

refers to the comments put in suitable places. This ensures the codes are

readable and it is maintainable as anyone can easily understand the codes and

make future enhancement. External documentation refers to this document

7.2.3 Support Various Image Formats

Users of this system can save their diagram in various formants namely

*.bmp, * jpg, *.gif, *ico, *.emf, * wmf, *.png, *.tif.

11

System Evaluation Tutor on Software Design

7.3 System Limitations and Constraints

Even though there are many features provided by the system, it is still not perfect.

Due to-the problem of time constraint and technologies, some of the feature cannot be

implemented. The limitation is as listed below:

73.1 Static Image Size

The size of the picture box that contains the diagram is predetermined and

fixed. The same goes with every object or line drawn. Coordinates of

everything on the picture box are also fixed.

7.3.2 Limited Domain

The picture box only displays four objects in the diagram produced. This is

caused by the fixed size of the picture box.

73.3 Limited Interaction Between System and User
Users can only enter data by typing in certain texboxes, or choosing from drop
down lists instead of typing away their requirements. This limitation is done

on purpose to avoid misunderstanding of users requirements by the System

With this limitation, erroneous output is minimized.

7.3.4 Unattractive Output

The shapes, lines and strings on the output diagram are drawn solely with VB
codes, instead of drawing it using any drawing applications and import it to

the system. However, this method ensures that the size of the image saved is
smaller.

System Evaluation Tutor on Software Design

7.3.5 Insecure Database
The data entered by users are stored in an unsecured database, which can be

edited from outside.

7.4 Future Enhancement

Due to the limitations found in the system, in the future, enhancement will be applied

to the system to improve the ability of the system.

7.4.1 Improve Output Appearance

The output should look more interesting. Instead of the rigid black and white
shapes, users should be given some choices regarding colors and sizes. This
can be done by making the drawing algorithm more dynamic. Right now, the
objects represented on the diagram are just rectangles. In the future, there

should be more. For example, the symbols of actor, entity, boundary and

various more objects.

7.4.2 Improve Data Management
More methods of storing data to be used by the system should be explored
instead of insecure Microsoft Access. The database should be design

thoroughly to ensure integrity of data, with relations between tables and etc

Users must not be allowed to change data in the database from outside the

system.

113

System Evaluation Tutor on Software Design

74.3 Complete Help File

This system should have a complete help file as it should teach users about

sequence diagram.

7.4.4 Allow User to Print Diagram

So far, the system can only allow users to save the diagram produced. Then
they will have to print it from other available software like Photoshop or

Words. In the future, this system should have a menu that users can choose to

print their diagram.

7.5 Problems and Solutions

During the process of development of the System, there are a few problem
encountered. Some of them could be overcome through certain solution while some of

them were not. The following are some of the problems that arose during the
development process.

7.5.1 Unfamiliar with Development Tools

This is the first time that | use VB.Net and first time of developing a system
bigger than any C++ lab exercises. Therefore, 1 need to learn from scratch
without a teacher. However, I have friends whom [could ask questions and

there are always forums on the Intemnet, Furthermore, there are a lot of sources

of books whether on paper or electronic.

7.5.2 Difficulties in Choosing Approaches

As already said before, the implementation of this system involved a lot of

try-and-error. Another cause for it is there are different approaches to

114

System Evaluation Tutor on Software Design

implement one task. For example, there are a lot of ways to store data. Among
them are ADO, ADO.Net, Struct, notepad, Microsoft Access, MySQL, and so
many more. I had to try some of them that 1 think 1 could use. 1 ended up
using Microsoft Access and ADO for various reasons.

Another example is the approaches to take in producing the drawings. VB.Net
allows drawing directly onto a picturebox, or a graphic surface, or a bitmap
object. Another way is storing the pictures in a database and import them
when needed. The method used for this system is drawing everything on a
bitmap object and transferring it to the picturebox to display it. The output is

better than drawing it directly onto the picturebox and more dynamic than

importing pictures from database.

7.5.3 Repetition of Codes

There are some redundant codes that 1 failed to separate into functions or

class. I tried but errors were encountered. Therefore, 1 left them as they are.

7.6 Knowledge and Experience Gained

During the development of the Tutor on Software Design, | gained a lot of knowledge
and experience. The following are some of the knowledge 1 gained after developing
this system:

7.6.1 Programming Experience

In order to implement this system, I had to start from scratch programming-
wise. Therefore, 1 got the experience of exploring the language that I never

knew. 1 had the experience of putting the language that | Just learned to use

Now I know about data manipulation and drawing using VB Net

113

System Evaluation Tutor on Software Design

7.6.2 First Hand Experience of SDLC

I am all too familiar with Software Development Lifecycle from various
subjects that I took, namely, Software Engineering, Project Management,
Software Requirements Engineering, and Software Quality. However, 1 have

never been involved in actually applying that knowledge, even when 1 was

doing my industrial training. Thanks to this project, 1 thoroughly understand

what] learned.

7.6.3 Sharing Opinions

Along the SDLC, opinions and ideas were given and taken. Opinions go back

and forth between team members, with lecturers, and among unknown friends

in the Internet forum.,

7.6.4 Self Expression

Developing Tutor on Software Design has really given me a great chance to

express myself in designing and coding. Finally, before | graduate, 1 have g

chance to build real application software myself. Now, I know more than just

theory. Doing this project has greatly improved my self-esteem and self-
confidence.

7.6.5 Thesis Making

that there is more to software development than programming, | understand

that research is essential to ensure the quality of the produced software

116

System Evaluation Tutor on Software Design

7.7

7.6.6 Experience of Working Under Pressure

The pressure comes from the deadline. It is stressful to finish the system and
report by a certain date. Though I feel I can do more for this system, I could
not because of the time constraint. 1 had to prioritize everything that I have to
do, and do it from the top down. I had to be satisfied with what 1 managed to

finish. However, this makes me realize the importance of time management.

7.6.7 Independence
I did not have a certain teacher to teach me VB.Net. Instead, 1 had to find my

own resources. 1 started with books, Internet sources, and then I asked around.

It really makes me feel independent.

Conclusion

This chapter describes about the system in terms of its strengths, its constraints and

limitations, and enhancement that could be done in the future. It also lists down the

problems encountered in developing this system and they are solved, and knowledge

and experience gained along the whole SDLC.

This system is able to help students learn about drawing a sequence diagram. It 1s

easier to use than existing tools to draw the diagram. Hopefully, enhancement will be

done to make this system better.

117

Bibliography Tutor on Software Desian

Bibliography

Whitten, J. L., Bentley, L. D. and Dittman, K. C (2002). System Analysis and Design

Methods, 5™ Ed., McGraw Hill.

Sommerville, I (2001). Software Engineering, 6" Ed., Addison Wesley.

Maciaszek, L. A (2001). Requirements Analysis and System Design : Developing

Information System with UML, Addison Wesley.

Olson, D. L (2001). Information System Project Management, McGraw Hill.

118

<
L
o
=
O
=¥
=4
<

Test Cases

Appendix A

Tutor on Software Design

Test Cases for Tutor on Software Design

Ditulis oleh: Fariza binti Halim

Tarikh: May 16, 2004

Module: Use Case

Unit: | Select Use Case

Assumption: | Database is blank (First time use)

No. | Testing Procedure Expected Output Actual Output

a7 Click the uppermost drop down list. Nothing is listed -1. Selectuse case: ——
| =i

|)

Assumption: | Use cases have been added with no class or sequence yet

2. Click the uppermost drop down list. All use cases are 1. Selectusecase: ——
listed
s Click 1 use case name. All controls on the All controls on the
Use case name: Register page are enabled page are enabled
displaying any class | and blank.
or sequence
associated with the
| use case previously. |
[Unit: | Add New Use Case IR ST e
| No. | Testing Procedure | Expected Output | Actual Output
1% Click Add New button Use Case page is Use Case page is
| displayed. displayed.
7L Type a use case name.
Use case name: Register Newly entered use
3. Click Add button N\ case names are Register, Log“-i:egnd
4, Repeat steps 2 and 3 twice. listed. SO UL R ERR
Use case names: Log-in and Log-out
5. Click Sequence tab Newly entered use Register, Log-in and
6. Click the uppermost drop down list case names are Log-out are listed.

| listed.

Appendix A

Tutor on Software Design

Module: Class
Unit: | Select Class
No. | Testing Procedure Expected Output Actual Output
1. Click the second drop down list Existing classes are From Existing Class:
listed
1 =
Administrat
.J Dete.lis!-'::(mof S
HomePage
Student
2 Choose 3 classes The selected classes | Student, HomePage
Classes names: Student, HomePage and | are listed in the and DetailForm are
DetailForm listbox. listed in the listbox.
Unit: | Add New Class
No. | Testing Procedure Expected Output Actual Output
1; Type a class name in the Create New The qew}y added ConfirmPage is listed
textbox. class is listed in the \rFallisthon Bk nok
Class name: ConfirmPage listbox and drop et ek
| 2. Click Add down list. Ly ;
[Unit: | Remove Class
| No. | Testing Procedure Expected Output Actual Output
1. Type a dummy class name in the Create
New textbox The newly added
Class name: Anything class Is listed. Anything Is listed.
74 Click Add
<} Click Anything in the listbox A confirmation dialog A confirmation
4. Click Remove box is displayed dialog box is
' displayed.
b Qlick Cancel Nothing happens. Nothing happens.
6. Click Ok The selected class is | Anything is no

| deleted.

| longer tisted,

o

Appendix A

Tutor on Software Design

Module: Sequence
Unit: | Add Sequence
No. | Testing Procedure Expected Output Actual Output
1. Click left drop down list in the third section | All added classes From Obect :
: should be listed.
% =
Student
HomePage }
DetailsForm
ConfirmPage
2. Choose a class
Class name: Student
3. Type a message in the centre textbox
Message: Click Register
4, Click right drop down list All added classes ToUbject:
should be listed. 0 =
Student
HomePage
DetailsForm }
ConfimPage
5. Choose a class Student Click
Class name: HomePage gilstsge%uence L Register HomePage
6. Click Add to Sequence button l ' | is tisted. B
Unit: | Delete Sequence
Assumption: | 8 sequences have been added o
No. | Testing Procedure Expected Output Actual Output
1. gqogesg ci: :seccgl:‘%rrlrcfpage EHident A confirmation dialog | A confirmation dialog
3 | CHaR Reniove box is diplayed. box is diplayed.
3. Click Cancel Nothing happens. Nothing happens.
4, Repeatsteps 1 and 2 A confirmation dialog | A confirmation dialog
box is diplayed. box is diplayed.
5. Click 0K The selected ConfirmPage Student
sequence is deleted. | is no longer listed.

Appendix A

Module: Drawing

Tutor on Software Design

[Unit: | View Sequence Diagram

| Assumption: | No sequence has been added

No. | Testing Procedure Expected Output Actual Output
1. Click Sequence Diagram tab A blank page Figure 1
[Unit: | View Sequence Diagram)

Assumption: | 8 sequences have been added l

No. | Testing Procedure Expected Output Actual Output

1. Click Sequence Diagram tab A page displaying a | Figure 2

sequence diagram. J

Unit: | View Sequence Diagram

Assumption: | 1 sequence and 1 object class more added

No. | Testing Procedure | Expected Output | Actual Output

1. Click Sequence Diagram tab A page displaying a | Figure 2 with no

sequence diagram. addition of new
sequence and object
class.

Unit: | Save Sequence Diagram N

No. | Testing Procedure Expected Output Actual Output

1. With Sequence Diagram tab selected, click | A standard save A standard save
File -> Save Sequence dialog is displayed. dialog is displayed.

2. Choose a folder
Folder: Pic Try on Desktop Diagram is saved in | A diagram named

3. Type a name for the diagram the selected format sequencel is saved
Name: sequencel with the chosen as sequencel.bmp in

4. Choose an image format name at the selected | Pic Try folder on
Format: BMP location. desktop.

5. Click Save -

6. Repeat steps 1 to 5, 8 times. Each time Diagram is saved in | A diagram named
with different image formats. the selected formats | sequencel is saved
Image formats: JPEG, GIF, Icon, EMF, with the chosen as sequencel.jpg,
WMF, PNG, TIFF and Exif. name at the selected | sequencel.gif,

location. sequencel.ico,
sequencel.emf,

sequencel.wmf,
sequencel..png and
sequencel.tif in Pic
Try folder on
desktop.
sequencel.exif
cannot be viewed.

Appendix A Tutor on Software Design

Figure] A blank page

Tutor on Software Design

Appendix A

A display of a complete sequence diagram

Figure 2

6

Appendix B

User Manual

Appendix B Tutor on Soitware Design

i.0 inmtroductien

Tutor on Software Design is a system that shows users how to draw a sequence diagram
for their own software and actually draw the diagram for them. Though there are many

systems that can do more than this system, this system applies a different approach.

Other software use drag and drop method where users have to decide the sequence of
events for their software and where each symbols should go. Tutor on Software Design
only requires users to enter their software requirements, and the system will show them

how their sequence diagram will look like.

This user manual document describes the requirements necessary to run the system and

how to use the system.

Appendix B Tutor on Software Design

2.0 System Specification

This section lists down hardware and software requirements necessary in order to use

Tutor on Software Design.

2.1 Hardware Specification

Intel Pentium 100 Mhz
Memory 64 MB RAM
Hard disk 100 MB space
Mouse

Keyboard

IO Rt e

2.2 Software Specification

o Windows 98/ME/XPoperating system

o Microsoft Access

Appendix B Tutor on Software Design

3.0 User Guide

This section will show you how to use Tutor on Software Design to learn to draw a
sequence diagram for your own system development.

1. Double click on the Tutor on Software Design’s icon.

2. You will get the use case page. To draw the sequence diagram, click on the

Sequence tab.@

Fle Heb
‘Use cass kActor | Relation | Use Case Diagram | Classes | Class Diagram | Sequence

; =
|

Hwb&u-mmdw? |

1. Fiest. identify actors from the system
tequiemnents. Put the actor name in the lefl
testhax and chck Add or Enter. To

Student Regster
Logout

olhet actors, ot batweon uts cates, alonyg
with the relationship type in the next tab.

T view the sample diagram, click
1 h‘“ntmb‘un"lbdm

Al | Remove | Al | Remowe |

|
i

Figure 1 Use case page

<f You will get a page like Figure 2.

Appendix B Tutor on Software Design

Fle Hop _ e
Use case kActr | Relaton| Use Caso Diagram | Classes | Closs Diagram - Sequence | Sequence Diagsam |
';1.-_Sdec&meuc:

Figure 2 Sequence page

4, Choose a use case, which you want to draw the sequence diagram for, @
a1 If your use case is not listed, click the Create New button . You will be
back to the first page you get when you started (Figure 1),

6. Choose classes to be associated with your selected use cas@

7} If your desired class is not listed, type the name of the class at @ and
click Add

8. To remove a class, click on the class name in the list@ and click
Remove button.@ This will affect any sequence involving the
removed class. Therefore, you Will be asked to confirm your deletion. Click

Ok to confirm or Cancel if not to confirm.

Appendix B Tutor on Software Design

 Are you sure you want to delete this class? Any sequence nvolving this class wl be deleted too.

oK Camel[

Figure 3 Conﬁrm‘ Class Delete dialog box

9. To add the sequence of events for your system, choose from which obj ect@

to which object o and type in the message . Click Add to

Sequence button.

10. To remove any sequence, click on the sequence in the lis@ and click

Remove button .

11, Confirm to delete.

12 To view the diagram, click Sequence Diagram wb.@ You will have a

page like shown in Figure 4.

Appendix B Tutor on Software Design

:,FIFm

i iCick Frish

Figure 4. Sequence Diagram .pugc
151 To save the produced diagram, click File -> Save Sequence. Choose a folder,

set a name, choose an image format and click save.

14. To exit, click cross at the top right corner or click File -> exit.

4.0 Summary

This user manual is actually not needed, as the system is very easy to understand.
However, this document is made for references. Hopefully, Tutor on Software Design has

been a great help.

6

