
Tutor on Software Design

t> ..:. .. - {" .. 1... -::--- •• ~~
, 1 • .. ! .J. ~

Fariza binti Halim

WEK010074

WXES 3182: Tutor on Software Design
(Sequence Diagram)

Supervisor: Puan Nazean Jomhari

Modcrat r: Puan iti Hafizah Ab Hamid

Faculty of Computer Science
And Information Technology

Univ
ers

ity
 of

 M
ala

ya

Tutor on Software Design

Abstract

Tutor on Software Design is a system that helps users design their own

software using the Unified Modeling Language (UML). The UML diagrams

involved are the use case diagram, Class diagram, and sequence diagram. It is a

stand-alone system that requires operating system Windows 98 or above. This report

especially focuses on designing software using sequence diagram. The system

receives requirements using step-by-step wizard-like method. The requirements

(caUed as elements) include actor, use case, association, class, object and sequence of

events in the exact order. After all elements are entered, the system produces a

professional looking equence diagram. The produced diagram could be edited by

users and saved. This system provides a lot of information, tips, tutorial and help

regarding the ysrcm 11 a re and sequence dia rram that can be accessed any time.

Univ
ers

ity
 of

 M
ala

ya

Tutor on Software Design

Contents

Abstract
Acknowledgement 11

Contents Ill

List of Figures VII

List of Tables V111

Chapter 1 Introduction
1.] Project Introduction 1
1.2 Project Objective 2
1.3 Project Motivation 3
l.4 Project Scope 5
1.5 Target User 6
l.6 System Capability and Constraints 7
1.7 Project Schedule 8

Chapter 2 Literature Review
2. J Introduction To Literature Review 9

2. 1. 1 Discussions with upervisor 9
2.1.2 Document Room I 0
2.1. Internet 10
-.1.4 Internet Fortun 11
2. I. 5 Di cussi n Am n 1 lleague I I

2.2 lntroducri n t equence Diagram I 3
-.2. I lnteracti 11 Modeling

Histor of Sequence Diagram 14
2.2. Sequence iagram ~lernent And Notation 18
-.2.4 e ase ragram 20
-.2. r Requirements 21

. I J Im lo 'el u er requirement 22
2.-. ·- How t handle the ever changing 23

u er requirement
Introduction T xisting UML Tool 24
-· . I SmartDraw 24

2.3 .1.1 SmartDraw Interface 25
_.3.2 Event Studio 27

2.3.2.1 Feature Description Language 28
2.3 .2.2 EventStudio Interface 31
2.3.2.3 Advantages and Disadvantages of 33

EventStudio
2.3.3 System Architect 33

2.3.3.1 System Architect Interface 36
2.3.3.2 Advantages and Disadvantages of 37

System Architect
2.3.4 Conclusion 38

11 l

Univ
ers

ity
 of

 M
ala

ya

Tutor on Software Design

2.4 Application Development Software
2.4. l Visual Basic
2.4.2 Visual Basic.Net
2.4.3 Conclusion

2.5 Database
2.5 .1 Microsoft Access
2.5.2 ADO
2.5.3 OleDB
2.5.4 Conclusion

39
40
41
43
44
44
46
48
48

Chapter 3 Methodology
3.1 Introduction To Methodologies 49
3.2 Methodology Analysis and Consideration 49

3.2.1 Waterfall Model 50
3.2.1. l Advantages and Disadvantages of 51

Waterfall Model
3.2.2 Prototyping Model 51

3.2.2. l Advantages and Disadvantages of 52
Prototyping Model

3.2.2. How Does the Prototype Resolve 53
the Problem of Traditional
Waterfall Model?

.3
Waterfall Model with Prototyping
n Waterfall Model With Prototyping Stages
ysrem Requirements Anal si:
stem e ign

lmplementati n and nit Te ting
y tem lniegrati n and Te ting
peration and Maintenance

54
55
55
56
56
56
57

Chapter 4 Analysis And Design
4. 1 Introduction T Anal si And est m 58
4.- stem Requirements Specificati n 5

4.-. 1 'unct: nal Requircm ·nts 5
4.2.... N u-fun tioual Requirement 61
4. . Hardwar • And Soll ware Requirement 61

4.3 Applicari n rchitecture e ign 63
4 .. 1 ystem Development tructure iagram 63
4. ·- Data Flow hart 65
4.3.2.1 Basic Flowcharting Shapes 65
4.3.2.2 Flow Chart for Tutor on Software Design 66

4.4 Graphical Interface Design 67

Chapter 5 System Implementation
5 .1 Introduction to System Implementation 73
5.2 Development Environment 73

5.2.1 Hardware 74
5.2.2 Software 74

5.3 Coding Approach 7
5 .3 .1 Developing raphical scr Interface 7

Univ
ers

ity
 of

 M
ala

ya

Tutor on Software Design

5.3.2 Putting Control to GUI Components
5.3.3 Writing Processes

5.3.3.1 Data Manipulation
5.3.3.2 Dra\Ving
5.3.3.3 Save Diagram

5 .3 .4 Improvements
5.4 Coding Style
5.5 Description of System Modules and Functionality

5.5.1 Use Case
5.5.2 Class
5.5.3 Sequence
5.5.4 Drawing

5 .6 Conclusion

77
78
78
86
91
92
92
94
94
94
94
94
95

Chapter 6 System Testing
6.1 Introduction to System Testing 96
6.2 Fault 97

6.2.1 Types of Fault 97
6.3 Test Planning 99
6.4 Testing Technique 100

6.4.J ErroneousTestData 100
6.4.2 Nonna] Test Data l 0 I

6.5 Testing Strategy l 02
6.5.1 nit Testing 103

6.5 .1.1 ~xample f nit Test in l 04
6 .. 2 M dule Test inu 105

6.5.2.1 · uunple f M dule Test in 1 I 05
.3 Integration Tc tinu I 07

6.5.4 ystern Testing 108
6 . .4.1 Function Tc tin' l 08

.5.4.- Performance Testing I 09
.6 ununar I I 0

Chapter 7 System Evaluation
7.1 lntr ducti n to .srem Evaluati u 111
7.- stem rren nhs 1 l l

7 .-. l ifferent Approach from xistin 1 ysiems 111
7 .- . Documented 111
7.2.3 Support Various Image Formats 111

7 .3 S stem Limitations and onstraints 1 12
7.3.1 Static Image Size 112
7.3.2 Limited Domain 112
7.3 .3 Limited Interaction Between System and 112

User
7.3.4 Unattractive Output 112
7.3.5 InsecureDatabase 113

7. Future Enhancement 113
7.4.1 Improve Output Appearance 11
7.4 .2 Improve Data Management I I
7.4.3 omplete Help File 114

Univ
ers

ity
 of

 M
ala

ya

Tutor on Software Design

7.4.4 Allow User to Print Diagram
7.5 Problems and Solutions

7.5.1 Unfamiliar with Development Tools
7.5.2 Difficulties in Choosing Approaches
7.5.3 Repetition of Codes

7 .6 Knowledge and Experience Gained
7.6.1 Programming Experience
7.6.2 First Hand Experience of SDLC
7.6.3 Sharing Opinions
7 .6.4 Self Expression
7. 6. 5 Thesis Making
7.6.6 Experience of Working Under Pressure
7.6.7 independence

7. 7 Conclusion

114
114
114
114
115
115
115
116
116
116
116
117
117
117

Bibliography 118

Appendix A - Test Cases
Appendix B - User Manual

\II

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 5.1

List of Figures

Tutor on Software Design

History of UML

Booch 's class diagram

Diagrams and Charts Options in SmartDraw

An Example of Sequence Diagram in SmartDraw

Sequence Diagram Work Space in SmartDraw

Feature Description Language (FDL)

Example of sequence diagram produced by Eventstudio

System Architect interface

Database elements

Waterfall model

Protot pin model

Wat srfal! model with protot ping

tru turc ,hart

Flow hart

Main window u ith File m nu

Main window with H It 111 11u

A tor. window

A o iation window

Diagram Options window

Class window

Object window

Sequence Diagram window

Page to enter and edit data

14

15

25

26

27

32

32

36

46

50

52

54

4

67

68

69

69

70

70

71

72

72

76

ii

Univ
ers

ity
 of

 M
ala

ya

Figure 5.2 Picture box to display sequence diagram

Figure 6.1 Testing process

Figure 6.2 Output of Table 6.2

Tutor on Software Design

76

102

107

v 11 l

Univ
ers

ity
 of

 M
ala

ya

Tutor on Software Design

List of Tables

Table 1.1 Project schedule 8

Table 2.1 Booch diagrams correspondents in UML 15

Table 2.2 Unique symbols employed by Jacobson 17

Table 2.3 Sequence diagram elements and notations 20

Table 4.1 Functional requirements 60

Table 4.2 Hardware requirements 62

Table 4.3 Software requirements 62

Table 4.4 Flow hart's symbols and shapes 66

Table 5.1 Hardware used in system development 74

Table 5.2 Software used in system development 74

Table 6.1 Test ase For Adding Class 105

Table 6.2 Tes. .ase For I rowing I iagram 106

IX

Univ
ers

ity
 of

 M
ala

ya

Chapter 1

Project Introduction

Univ
ers

ity
 of

 M
ala

ya

Project Introduction Tutor on Software Design

1.1 Project Introduction

The purpose of this project is to develop a system called Tutor on Software Design.

Tutor on Software Design is a stand-alone system developed to help design software

using the UML (Unified Modeling Language) diagrams. The software provides step

by step tutorials in drawing the diagrams. The diagrams included in this software are

the use-case diagram, the class diagrams and the sequence diagrams.

TIJ.is system receives user's requirements and translates them into the desired

diagrams. The requirements entry process will take a few steps. These steps are taken

to show users how the designing is done and also to ensure that the system gets the

requirements correctJy.

ach step requires user to enter their requirements into textboxe , or choose

previously entered data from comb b xe and list boxe . The data entered are in the

form of names of u e cases etas e and messa res to be passed between objects. This

method of data entry is to help those who are not very familiar with drnwin • sequence

diagram. This wa , the r nly ha et d tenninc the objects and the flow f control of

the system the are developin , and the system will show them what their diagram

will look like. TI1i method is also used to limit the data entered by users so that errors

are minimized and the output would be reliable.

Based on requirements entered by users, this system produces a reliable and

professional looking sequence diagram. The produced diagrams can be edited, saved

and printed.

Univ
ers

ity
 of

 M
ala

ya

Project Introduction

1.2 Project Objectives

Tutor on Software Design

Setting objectives to a project is very important as it helps to identify the system's

requirements as well as it provides a guideline for the rest of the development process.

For this project, the development objectives will cover the following aspects:

1. To build a system that can help software designers, including students, to

design software using UML diagrams.

2. The system will be a tool and reference to software designers especially

students.

3. This system will reduce the problem of learning to design software

because users can learn as they design.

4. It will be an easy to use easy to learn and user-friendly system.

5. TI1is software will be u eful for students who are developing software such

a their thesis.

6. Software developers that have .little knowledge of M can learn quickly

about using UML diagrams to desi zn their software.

Univ
ers

ity
 of

 M
ala

ya

Project Introduction Tutor on Software Design

1.3 Project Motivations

UML is a very useful modeling language in designing software. It acts as an interface

between the natural language of user requirements and the programming language of

implementation. It is also the communication medium between software designers

with programmers.

Designing software solely based on the user requirements is hard and dangerous.

Points might be missed and concepts might be misunderstood. Representing user

requirements in graphical notations makes the reviewing and understanding of the

desired software easier. It will also minimize the risk of missed points and

misunderstood concepts. ln de ign phase of every methodology, user requirements

should be translated into UML diagrams to increase efficiency during implementation

phase.

A lot of people are involved in desi ming software. orne organizations appoint a

certain specialized personnel to desi m the s stem and draw the UML dia trams. But

in most, system anal ts, programmer and et eteru will have to de ign and draw

themselves. By using this system it would not be a problem.

ln the case of students doing their thesis, that student is the system analyst, the system

designer, and the programmer, all in one. Therefore, they will have to design the

oftware and draw the diagrams by themselves. Designing a software and drawing

UML diagrams fo it manually is a chore. Doing it using CASE tools requires them to

Univ
ers

ity
 of

 M
ala

ya

Project Introduction Tutor on Software Design

1.4 Project Scope

There are a lot of diagrams in UML. For instance, activity diagram, collaboration

diagram, state diagram, entity relationship diagram (ERD) and data flow diagram

(DFD). This system will only use three of the UML diagrams. The diagrams are the

use-case diagram, the class diagram and the sequence diagram.

The system produces a sequence diagram based on user requirements. These

requirements are entered step by step. Each step requires users to enter one element

such as use case, class and object.

Tutor on Software Design is a stand-alone system. ne system runs on one computer.

1t is not available on-line.

Univ
ers

ity
 of

 M
ala

ya

Project Introduction Tutor on Software Design

1.5 Target User

The target users for this system are system designers and system developers. Those

who are developing software can benefit a lot from this system. They may have

experience in designing software with UML manually or using the CASE tools, but

this system might be a better and faster new way of doing it.

Students can use this system to help them design their software. The system is

especially helpful if the students are developing a system such as their thesis. In most

cases students doing their thesis have not learned much about UML. With that little

knowledge and experience, this software can save their time compared to having to

learn how to design with UML from books and having to learn how to use the

available CASE tools.

Teachers and lecturers ma use this system to help them teach their students about

using UML to design software. This s frware is easier to understand and excitin •

compared to books and bating lecture .

Univ
ers

ity
 of

 M
ala

ya

Project Introduction Tutor on Software Design

1.6 System Capability and Constraints

The Tutor on Software Design, as indicated by its name, tutors users to design

software using three of the UML diagrams- use-case diagram, class diagram and

sequence diagram. It is a private tutor for every user. Users will enter the

requirements for their software. Then, the system will use the elements in the

requirements to draw the diagrams. For example, actors, use-cases, objects, etcetera.

Users will be asked a few questions element by element. This is done to ensure that

the system gets the user's requirements correctly. This is also done to let users see the

steps to be taken in designing software using the UML. The system will then draw the

required diagrams.

Every time users change any data that. has been entered the diagram will change

automatically according to the chart re . The finished diagram can be saved in various

image formats such as . bmp . ti f and etcetera.

7

Univ
ers

ity
 of

 M
ala

ya

Project Introduction Tutor on Software Design

1. 7 Project Schedule

Project scheduling is done to manage time and tasks systematically. It is also done to

avoid late delivery. The following Gantt chart represents schedule fur this project:

Month
June July Aug Sept Oct - Dec03 Feb - Apr -

Nov - Mar May
2003 2003 2003 2003 2003 Jan04 2004 2004

Literature Review

Information Gathering

Requirements Analysis

System Design

System Development

System Testing

Docurnentati •

Table I. I - Project schedule.

8

Univ
ers

ity
 of

 M
ala

ya

Chapter 2

Literature Review

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.1 Introduction to Literature Review

A system is a collection of objects and activities, plus a description of a relationship

that tie the objects and activities together. Typically, a system definition includes, for

each activity, a lot of inputs required, actions taken and output produced. A system

can be developed in different ways. Before developing a system, information about

the characteristics and purposes of the system to be developed, the procedures

involved, and the methodology used need to be gathered. There are many sources,

which this valuable information can be gathered. Each source will provide different

information and facts.

Literature review is the information gathering and research phase of this project.

Information is gathered thoroughly as it will be used as guidance in planning the

application development proce , . Information gathered in several ways, some of the

methods are discussion with supervisor, document room, and discussions among

colleagues, forums and Internet.

2.1.1 Discussion with Supervisor

Early di cussion is more towards the requirements of the ystem, project scope

and the objective of this project. By having a goal in mind, the group members

start gathering information, planning and designing. All the while, reporting to

supervisor face to face or by e-mails. Then, discussions are more to correcting

whatever mistakes, errors and misunderstanding done.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.1.2 Document Room

Another source for gathering information is the document room in Faculty of

Computer Science and Information Technology, University of Malaya. This

room contains thesis reports of past year students. These documents are very

suitable as guidance for report writing. Basically, the format of most of the

reports is almost the same. Some of the thesises are on tutor software in

different topics such as C language. Others concerns UML such as Meta

Modeling via UML. These relevant reports are very useful for this project.

2.1.3 Internet

The internet has become the indispensable source for searching any

information. It has become one of the major sources for obtaining the latest

information. lnfonnation can be gathered in the most co t-effective and time­

efficient manner using the internet.

There are man virtual projects done b 1 commercial companies or research

institutes. The e projects are published on the internet providing very useful

information. Besides several websites of software companies were visited to

gather further information about certain software for comparison.

Furthermore, journals, books and articles are now published electronically. A

lot of these e-journals, e-books and e-articles can be accessed free via the UM

library from inside the varsity.

10

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Three software relevant to this project are discussed and compared in this

report. The trial versions of these software were used for evaluation and first­

hand experience. These software are available on the internet.

2.1.4 Internet forum

The forums give more specific answers to questions relating to this software

that blindly searching in the internet. There are many people around the world

who can give their opinions on my problems. l tried using their opinions and

picked the best. Joining various forums on VB.Net also gives me more

knowledge, and l also give my opinions whenever l can. Some of the forums

that I joined are forums.devx.com, www.vbcity.com, www.vbforums.com,

www.vbwm.com, www.wimdows.net.

2.1.5 Discussions Among olleagues

Because this is a group project of three member we have the ad vanta re of

discussing our problems and misunderstandings regardin • the software

development. We al o discuss lo get full understanding of UML. Furthermore,

discussions must be held occasionally lo avoid contradictions as we are

developing the same system.

Although a lot of information gathered, many things remain unclear. Therefore, some

researches need to be done to make them clear. Researches includes the conditions of

each of the sequence diagram elements and notations, how to draw sequence diagram

11

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

from user requirements, from use case diagrams and from class diagrams, problems

getting the user requirements due to natural language, and handling the ever changing

user requirements.

I.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.2 Introduction to Sequence Diagram

There are a few modeling in UML, such as use-case modeling, activity modeling,

class modeling, interaction modeling and state chart modeling. Sequence diagram

falls under the category of interaction diagram.

2.2.1 Interaction Modeling

Interaction modeling captures interactions between objects needed to execute a use

case. Interaction models are used in more advanced stages of requirements analysis,

when a basic class model is known, so that the references to objects are backed by the

class model. The interaction modeling shows the sequencing of events (messages)

between collaborating objects.

There are two kinds of interaction diagrams - the sequence diagram and the

collaboration diagram. They can be used interchangeably and, indeed, many AS

tools support an automatic conversion from one model to the other. The difference is

in emphasis. The equence models c ncentrate on time sequence and the

collaboration models on object relationships.

I.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.2.2 History of Sequence Diagram

The existence and evolution of sequence diagram is parallel with other diagrams in

UML. UML actually starts with Unified Method 0.8 from the combination of Booch

Method and James Rumbaugh's Object Modeling Technique (OMT).

UML History

...............
~ CJll .. 'IT

.... Rlll.....__...,w

Figure 2.1 - History ofUML

Grady Booch's Object-Oriented Design (0 D), also known as Object- riented

Analysis and Design (OOAD), i a precursor ro the Unified Modeling (UML . The

Booch method includes six types of diagrams: class, object, state transition,

interaction module, and process. Booch's class and object diagrams (classified as

Booch's Static Diagrams) differentiate this methodology (at least in notation) from

similar object oriented systems.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Booch's Dynamic Diagrams use state transition and interaction diagrams to illustrate

the dynamic nature of an application. Below is a table that lists what each of the

dynamic Booch diagrams corresponds to in UML.

Booch (OOD) Unified Modeling Language (UML)

State transition diagram Statechart diagram

Interaction diagram Sequence diagram
Table 2.1 - Booch diagrams correspondents in UML.

' .,
' : ,.__has-,

.ttributes
''\ ', f ' ··· , ·--

inherits

.. , I __ , , ± '
uses

\ --, , ' '

' ' name nlWTIO - ' ' ' ' .l'ttrlbulH
'"I

', •ttrlbutu :
"... I ..

... , ' , - - - ..
name

•ltrlbulu
''\

'

Figure 2.2 - Booch 's class diagram.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Hooch's Dynamic Diagram Notations

State History State
adornment States represent situations during the life of an object.

Draw a Boocb state symbol using a rectangle with

rounded corners and two compartments. Use the oval-

Actions
shaped H symbol to indicate the most recently visited

state.

James Rumbaugh's Object Modeling Technique (OMT) is one of the precursors to the

Unified Modeling Language (UML). There are three main diagrams in OMT: object,

dynamic, and functional. The OMT dynamic models resemble UML sequence and

UML statechart diagrams.

Ivar Jacobson's bject- riented oftware sngmecnng (S) ts one of the

precursors to the more modem nified Modeling Langua re (UML). S ~ includes a

requirement, an analysis, a design, an implementation and a testin ' model.

Jacobson's design model shows how the system behaves. There are two types of

diagrams under this model: interaction diagrams and state transition diagrams.

Interaction diagrams are similar to UML's sequence diagrams. State transition

diagrams are like UML statechart diagrams, but Jacobson also employs a number of

unique symbols listed below.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

I) Send Message

~ I Receive Message

~ Return Message

L=> Send Signal

> l Receive Signal

D Perform Task

<> Decision

0 Label

Table 2.2 - Unique symbols employed by Jo obson.

The combination of Ivar Jacobson's bject- riented Software Engineering (OOSE)

with Unified Method 0.8 and other models produce Unified Modeling Language

(UML) 0.9. This is followed by the other versions, UML 1.0, UML 1.1, UML 1.3 and

finally UML 2.0.

17

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.2.3 Sequence Diagram Elements and Notations

The sequence diagram is a two dimensional graph with elements on horizontal and

vertical axis. The elements and notations used in sequence diagrams are:

Class roles
Qldert; Cbn

Class roles describe the way an object will

behave in context. Use the UML object

symbol to illustrate class roles, but don't list

object attributes.

Activations

Activation

Activation boxes represent the time an

object needs to complete a task.

Messa res x Ai' I !!!1"'1""" 11 ™"\ p ... j
t----ti..;_I I

Messages are arrows that represent

communication between objects. Use half-

arrowed lines to represent asynchronous

messages. Asynchronous messages are sent

from an object that will not wait for a

response from the receiver before continuing

its tasks.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Arrow Message type

> Simple

• Synchronous

...... Asynchronous

j Balking

(9 Time out •

Various message types for Sequence and

Collaboration diagrams

-

Actor
I

I •M•\ Ill>• I
J

bject can be terminated early u mg an

Lifelines

Lifelines are vertical dashed lines that

indicate the object's presence over time.

Destroying Objects

arrow labeled " dcstro " that points

to an

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

. I I
~ I

(codman., exit) I

I ,,.. T

\ \
Loop

Loops

A repetition or loop within a sequence

diagram is depicted as a rectangle. Place the

condition for exiting the loop at the bottom

left comer in square brackets [[.

Table 2.3 - Sequence diagram elements and notations.

2.2.4 Use Case Diagram

In most cases, a number of sequence diagrams are derived from one use case diagram.

In this case, designers must make sure that the use case is correct before moving to

design their software with sequence diagram. therwi e, the whole design would be

wrong.

Tutor on Software Design has a wa of reducing the ti k of tett in ' the wron ' use case

diagram before proceeding to the next diagram. , very instance or elements entered by

users is checked for errors. Error in this instance mean whet.her the elements fulfills

the condition for it to be that elements. For example, actor must be a noun and use

case must be a verb. If errors are detected, users will be prompted to correct the errors

or confirm the elements if they persist to proceed. This is to make them aware of error

or mistake occurrences and choose to correct them or not. The same principles

implemented for sequence diagram to avoid or reduce the risk of wrong designs.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.2.5 User Requirements

A requirement is a statement of a system service or constraint (Kotonya and

Sommerville, 1998). A service statement describes how the system should behave

with regard to an individual user or to the whole user community. Before designing a

system, user requirements should be clear. This can be done by many ways of

elicitation such as interview, questionnaire, observation, or others.

Elicited requirements are then documented into the requirements specification

document. This document is usually presented in a detailed and precise natural

language. Natural language is the language used in our day to day conversation. lt can

be English, Malay or others. Some documents are presented in the structured

language. TI1is language is the structured version of natural language.

Tutor on Software Design is a system that helps users design their software. To do

that, users will have to tell the system their requirements, so the system can draw

three of the UML diagrams for them based on their requirements. However this is not

as easy to implement as it sounds.

There are two problems about getting user requirements for this system. First, what is

the best way to get user requirements so it is possible for the system to translate them

into diagrams? Second, what happens if the users tend to change their requirements

ever so often? These problems are discussed in the following sections as how to get

user requirements and how to handle the ever changing user requirements.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.2.5.1 How to Get User Requirements

Due to the trouble of translating user requirements in the form of natural language

into sequence diagram, another way has been figured out and developed. This

problem can be solved by limiting and restricting the way users enter their

requirements. Two methods that can do exactly that have been identified. The

methods are structured language, and step-by-step requirements entry.

Structured Language

This method requires users to enter their requirements usmg a certain specified

language and the system will design their software based on it. Tutor on Software

Design would have to design a structured language that is easy for users to team and

use, and also easy to be translated into sequence diagrams.

An existing tool, EventStudio has already used this method. It uses a language called

Feature Description Language (FDL). The language and tool will be discussed further

later in this chapter.

Step By Step Requirements Entry

Another method is by providing specified boxes for users to enter their requirements.

For example, the system specifies a certain text box for users to fill it in with an

actor's name and click add. Then they can choose to enter another actor or proceed to

enter use cases the same way they enter the actors. To enter object, users will have to

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

choose which class the object belongs to using the combo box, give the object's name

and click add. This is the method adopted by Tutor on Software Design. It will be

discussed later in chapter 4, Analysis and Design, in the Graphical User Interface

section.

2.2.5.2 How to Handle the Ever Changing User Requirements

User requirements are always changing. Therefore, Tutor on Software Design must

support these changes. The system handles this problem by allowing users to go back

to previous tasks to change what they bave entered. For example while the user is

entering objects, he decided to enter another class. He can click on the back button to

change, add or delete any classes.

Another feature of this system that support requirements changes is, users can still

edit the diagrams produced by the system. Therefore users would not have to worry if

they realize they missed something, or suddenly would like to add something, after

the system produces the sequence diagrams. In an case, users can always go to

previous tasks for corrections or improvement. The system will produce a new

diagram after changes. Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.3 Introduction to Existing UML Tools

Researches have to be conducted on existing UML tools to gather useful information

for the system development project. The information gathered will give a preview of

what the system will be. The tools studied do not have to be exactly the same with the

system to be developed in this project. Research can be done based on the interface,

system structure and etcetera. Basically, it is a way to identify possible requirements

for the system.

2.3.1 SmartDraw

SmartDraw is the easy-to-use software for creating business charts and diagrams such

as flow charts, organizational charts, networks, floor plans, timelines, software

designs, forms and more. The UML diagram are included in the software designs

option SmartDraw can help illustrate a report, analyze a process, make a

presentation, persuade others, document procedures, communicate clearly and help

others "see what you mean".

SmartDraw helps users look like a graphic professional. No special skills are needed

to draw charts and diagrams as the software uses the drag and drop technique. There

are over 50 000 built in symbols and clip art images in this software for users to use in

their diagrams and charts. Aside from the built in components, they can also import

their own symbols and clip arts. This software also has stand-alone step-by-step

tutorials and in depth tutorials accessed on-line.

·I

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Automatic alignments are provided for neat, cnsp drawings. Users can use the

templates and examples as reference. Anything done with this software can be printed

or saved in GIF, JPG or HTML format. This software can easily convert drawings

made in other software. Furthermore, it works hand-in-hand with Microsoft Office

which means drawings done in SmartDraw can be copy-pasted into Microsoft Words,

Excel, PowerPoint, and etcetera.

2.3.1.l SmartDraw Interface

First, users will have to choose whether to open existing diagrams or charts. If they

choose to draw a new diagram, they will then have to choose what kind of charts or

diagrams they want to draw. The options available are as shown below. To draw a

sequence diagram, users will have to choose the software design option.

View Exampl&. .. 11 Ci~ Blank Drawingf

Hrit~~----~--~--~------~----~--------~-----.
II you don' see a button foe the d!awin1J.YOU want. just pick the one most similar()(pien
H~.

Hslp

Figure 2.3 - Diagrams and Charts Options in SmartDraw.

The screenshot shown below is what users will get when they choose to see an

example of a sequence diagram. The small window at the right hand side will bring

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

users to an in-depth tutorial on-line with one mouse click. The highlighted 'UML

Sequence Diagram' at the left hand side is an option for users to draw their own

sequence diagram.

I I ;.~.

I
I
I ,.

/ ...
!
r-

' UMl Diagr lllTIS:
is tam plate has the proper settings for

Uni!ied Mldeling Language (UM.}
diagrams.

For a dellliled tutorial on creating UM..
diagrams. dick on the button above.
This will launch)Our wob brows or and
open the UM.. Moria I at the

-~....,. SmsrtDraw.c::om wob sun
! I •-· I 0 R ::.

I

....... x ..

51 _::;.... r-=:i

1 $::....,. _) .s,
·O - - Ex~Booch

~~Booch.__~~~~~~~
f.xnnvlo· llooch Stote Oill\1ll< • - • • • • • • • • • • • • - • •• • • • • • • • • • • • • • • • - • • • • • • • • • •

x: ;x~- ~:~.;.e DloQrOl'i"
Jll. I) I

: v
)I <

Figure 2..1-An Example ofSequen e I iagram in Smart/ raw.

The white space in Figure 2.5 is the space where user can draw their sequence

diagrams. They have to drag the s mbols from the small window at the left hand side

to the white space to draw the diagram according to their design. SmartDraw does not

design the software· instead it is only a tool to draw the designs. Users will have to

make the design themselves and use this software to make their design look

professional.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

LMl
• WebDesql

-~ Sottwn Qlao'ams
-.~~·) •. ': ·-1 ' >'

Figure 2.5 - Sequence Diagram Work Space in Smartl. raw.

2.3.2 EventStudio

EventStudio is a CASE tool for distributed system design in object oriented as well as

structured development environments. · ventStudio supports multiple scenario use

case and sequence diagram modeling. EventStudio is particularly suited for Message

Sequence Charts (MSCs), Real-time and embedded system design, use case

development, object sequence diagram development, protocol design and

documentation, process flow diagrams, distributed system design, and business

process workflows.

7

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Unlike SmartDraw or any other CASE tools, this software does not use the drag and

drop technique to draw the required diagrams. Instead, it designs the software and

draws the diagrams based on requirements entered by users. These requirements are

entered using the Feature Description Language (FDL). After inputting the

requirements in FDL, users can choose to make sequence diagrams, interface

sequence diagrams, interaction sequence diagrams, message filter sequence diagrams,

unit test procedure, summary and statistics, collaboration diagrams, interface

collaboration diagrams, interaction collaboration diagrams and message filter

collaboration diagrams documents for the intended software or system. The

documents are presented in .pdf format.

2.3.2. l Feature Description Language

The software development involves the design state followed by coding. The output

of the design stage cannot be verified for correctness by tools. However, the output of

the coding stage can be verified by using compilers and linkers.

This represents a sort of impedance mismatch between the two development

processes. Design is largel informal while coding is completely formal. The Feature

Description Language (FOL) tries to bridge this gap by introducing a semi-formal

development system for design. It tries to incorporate features from both the stages:

• FDL documents allow the user to express the system even when all the details

of the system have not been defined.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

• FDL documents allow the user to review the correctness of the system design

by running an automated review process.

A very simple FDL program is shown below. It shows modules and processors

defined in the system. Message interactions between processors are shown enclosed in

the feature-endfeature block.

1. module : customer, exchange

2. processor : phone in customer

2. processor: frontend in exchange, core in exchange

3. feature "Call Setup"

4. otlhook: phone-> frontend

dialtone : frontend -> phone

digits : phone -> frontend

setup call : frontend ->core

setup , complete : core -> frontend

ringback : core -> phone

end feature

I. TI1is program defines the message exchanges between a customer and a

telephone exchange. The customer and the exchange have been declared with

the module declaration.

2. The processor statements in the next two lines define different entities within

the customer and the exchange. Here the customer contains a phone and the

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

exchange contains a frontend and a core processor. This relationship ts

specified using the in keyword.

3. The feature-endfeature block follows the declarations in FDL. A title for the

feature is included in the feature declaration. The feature ... endfeature block

encloses all the feature interactions between the customer and the ex.change.

4. Message interactions have been enclosed within the feature-endfeature block.

The first message interaction in the sequence sends an oflhook message from

the phone to the frontend processor. This is followed by other message

interactions involved in call setup. Messages are represented as arrows from

the source to the destination.

FOL allows system partitioning into a three level hierarchy. At the highest level are

modules. The system consists of modules. Module contain processors and processors

contain eternal and dynamic objects. The selection of modules processors and object

is best explained with examples:

• Acme Inc. Recruitin :

o Modules are Recruiters, Acme Inc, Media, Other , ompany etc.

o Processors contained in Acme_lnc are the various departments in the

company, e.g. Finance, HR, IT.

o Objects contained in the HR department are HR_ Secretary,

Recruitment_ Specialist.

• Highway System:

o Modules are Highways, EntryRamp, TollBooth etc.

30

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

o Processors contained in Highway are Cars, Trucks, Motorbikes and

etc.

o Object contained in a Car are steering, brakes, engine etc.

2.3.2.2 EventStudio Interface

The interface of EventStudio has some similarities with that of Visual C++. Users

enter their requirements in the white space at the right hand side. The left bar are the

list of files involved in the scenarios. Scenarios are all files and diagrams associated

with the set of requirements. After the requirements are entered, the document must

be reviewed. Reviewing is the same as compiling. This is done to check for errors.

If and when the requirements are free of errors, users can choose to produce the

diagrams stated earlier. licking the new document icon at the toolbar will bring them

to a wizard to create the diagrams. The diagrams will be produced in .pdf format and

viewed in Adobe Acrobat. The EventStudio interface and the sequence diagram

produced in .pdffonnat are as shown in Figure 2.6 and Figure 2.7.

. I

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

~ EventStudio 7.0 · [[ventStudio1] ----~~l -=---.
jpve g_dil: ~ . e_roject Reviliw !aenerate lools Ylildow ·~ .-fm~
)l'DL~:litO \ ~ ~:~ \ !C? .. r.:. l•,~ 1 ~x~ ·\ ~ m~ ~ l ·~~I~ ~ ·l~m.·a \· t \

,~ .•,\

-~.L~J· -. ~odule : cu:!!tomer, exchange - ...
EH~Ev~l proce::isor : phone in customer -
: ··GJ eventstuOOI ·processor : frontend in exchange, core in exchange

B~ FDLFiles , feature "Call Setup"

i i3 §.i E ventStudio I offhook : phone -> frontend

: ~f Top dial tone : frontend -> phone

8 ~ 1>ocumesn digits : phone -> frontend
· .. lfil EventStudiol ~e OlaQI'~ :!letup_ call : frontend -> core

:!letup_ complete : core -> front end -
ring be.ck : core -> phone

end feature =.I
·r.~(~ r·:~lJ.~·.i;·~~mt~ .. J; ~,;ti:Ii~~~.,,d~1l .) \d ..lJ :
.2!J gJ C:\~am Fles\Event:Heix.com\EventStudo\Ex~\eventstucio l \EventStudo l .FOL

.

J..l q;) STP.'\'US·.Re'lie'HC~
JI

£;<11H~.p1~f1 ~Ln.1.Uil 1 l\\oos \\NUM r-\OLCl'l. 19:'1:2~ ~

Figure 2.6-Feature Description Language (FDL)

je>Be!l1t/111!1• ~ ~
0 \150% • @ l3 ~ [!j

~1 lJ • • IJ~ <i.. ·I T:i • ~1 I
1~~ .-\

Call Seru (cnntstudlul)

rontouc
core

dinh nc

~d11p_1.:umplck

Figure 2. 7 - Example of sequence diagram produced by Even/Studio.

> >1 e.5x111n Cl H KH •I

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.3.2.3 Advantages and Disadvantages of EventStudio

Using this software, users do not have to design their software thoroughly. As long as

they have some overview of the system, this software can design their system by

producing the diagrams required. All they have to do is type in their system

requirements in the accepted format to produce the desired diagrams.

However, users have to learn the format and syntax of FDL (Feature Description

Language) in order to type in their requirements. This gives users something else to

learn before using this software.

2.3.3 System Architect

System Architect is a comprehensive and powerful modeling solution designed to

provide all of the tools necessary for development of successful enterprise systems

from Popkin Software. It is a tool to integrate, in one multi-user product, industry­

leading support for all major areas of modeling, includin 1 busines modeling, object­

oriented and component modelin 1 with ML, relational data modelin •, network

architecture design, and structured analysis and design. All functionality is harnessed

within System Architect's extensible repository with native support for Microsoft

VBA.

System Architect provides extensive support for UML, the industry standard for

analysis and design of software systems and applications. UML may be used to

perform high-level analysis with Use Cases, model of the dynamics of the system

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

with UML Activity, Sequence, Collaboration, and State diagrams, and analyze and

design the static structure of the system with UML Class, Component, and

Deployment diagrams. System Architect supports code implementation and redesign

through automatic generation and reversal of several languages, including Java,

Visual Basic, and C++. System Architect also provides unmatched capability to

extend its UML support through stereotypes, tagged values, and custom profiles.

System Architect also enables users to extend the UML using relational data modeling

techniques and more comprehensive business modeling techniques. System Architect

allows users to perform component-based and object-oriented analysis, design, and

implementation of the system using the Unified Modeling Language (UML).

System Architect is a repository-based visual modeling tool that supports the

following methodologies in a single product'-

• Enterprise Modeling (Strategy and Planning & Business Requirement

Capture),

• Data Modeling,

• SSADM,

• Business Enterprise Modeling (atalyst),

• Business Process Modeling (ID F), and

• Object and Component Based Design with U ML.

Popkin software provides a powerful e-business definition toolset. These tools and

services integrate business, systems and data architecture into complete enterprise

architecture. It provides comprehensive support for Enterprise Architecture within the

Zachmanframework

. I

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Users can use this tool if they need to do the following things for their organization:-

• Develop business goals

• Identify and model current business processes

• Align business processes with business goals

• Evaluate business goals and identify process weaknesses

• Generate new business processes using the criteria above

• Simulate new business processes

• Develop business and IT requirement specifications

• Generate relational database schemas from models

• Develop applications from models

• Re-engineer legacy systems

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.3.3.l System Architect Interface

El·fl! UM\,. Chw~ ?m-m•••• m II UML Collnbomtion
8 It UWL Component
~ E UML O..ploymeat

~ IJ UML Sequence
' &~ Cancel uncontirmad rasarvenon

ffi-m Oleck in guesl
~!II Cu-< a::m{mM «!.e<Velion
ifH'!I Moke provisionel reservation
e-8) Rasarvetion- confirm later

8 8 UMLStatn

Make Provisional Reserv.tlon

create f'9s9mUon
crealll(S11lrtD8ta. dUra1ion. roomType)

1no1ca1e price

tblt

d 08W' resarvauon

u data aV1Uable rooma lOtat
har ~ oecreauAvallabftlt)'(Oata, cursuon, roomTypo)

char• s~eservat!Ol'(rosorva~onNumber)

Figure 2.8 System Architect interface.

Like any other application, System Architect has the menu bar and toolbar.

Additionally, the toolbar contains the symbols to used fro dia tram drawing. AL the

left-hand side is the browser to view the various desi ms such ML, Structured, Data

Modeling, Business Direction and etc.

.6

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.3.3.2 Advantages and Disadvantages of System Architect

Advantages of System Architect:

)ii;- Users can use this tool to design software using a lot of design methods. One

of them is UML.

)ii;- Users can produce a very detailed and complete design. Each UML element

can be assigned with behaviors, actions, triggers, child or parent, etc.

)ii;- This CASE tool is very suitable for large scale projects with experienced

designers.

)ii;- Codes can be automatically generated by System Architect in Java, C++,

Corba and VB.

)ii;- System Architect can generate a HTML report for the whole system design or

selected diagrams with just a few mouse click.

)ii;- It has built in encyclopedia that can be used as example, reference or starting

point.

)ii;- It provides an easy to use, easy to follow, and complete lessons and tutorials

on designing systems using System Architect.

Disadvantages of System Architect:

)ii;- It is a complex application to use. One would have to go through the tutorial

and do a lot of practices to gain experience or take a formal class to be able to

use this software.

~ It is not suitable for beginners in designing as one would have to understand

software design fully before taking full advantage of this tool.

,. The diagrams, codes, reports and documentations really look professional.

. 7

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.3.4 Conclusion

Previously, three CASE tools have been introduced, namely, SmartDraw, EventStudio

and System Architect All three tools have different approaches in designing software

using UML especially the sequence diagram. While SmartDraw is only a tool to draw

diagrams, System Architect is what peple called as the real designing tool. However,

EventStudio takes a totally different approach where it uses Feature Description

Language (FDL) to draw diagrams.

In a sense, Tutor on Software Design a little similarities with EventStudio. However,

this system simplifies the FDL by using step by step wizard to get the requirements.

Furthermore, it uses combo boxes, text boxes, and buttons to ease the way users enter

their requirements. Users would not have to learn any new language.

While diagrams produced by EventStudio are not editable, users of Tutor on So fl ware

Design can still edit their diagrams using the drag and drop technique as used in

SmartDraw and System Architect.

. 8

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.4 Application Development Software

There are many kinds of application development software that can be used to

develop Tutor on Software Design. Some of them are more suitable for it than others.

Therefore, it has to be picked out carefully to avoid late delivery or unfulfilled

requirements. Developers should take into consideration some aspects while choosing

and deciding on which software to be used, including:

~ It should be a software which the developers can learn to use it easily and

quickly. For this project, time constraint is certainly the biggest problem and it

will be a bigger problem if too much time is spent to study the software to be

used. It will also be a problem if the developers does not fully understand the

software and only realize it in the middle of the project.

~ The selected software should have the feature needed by the system to be

developed. For example, if the system requires database access the selected

software should support this feature.

~ The selected software should be able to produce output in the format required

by the system to be developed. For example, Tutor on Software Design

requires the sequence diagrams be saved in .jpg format; does the application

development software support this feature?

~ In terms of prototyping, the criteria for choosing the right software would be

efficiency, rapidity and ease of use.

~ The selected software should be interactive.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.4.1 Visual Basic 6.0

Visual Basic (VB) has been around for a long time--since its early versions some IO

plus years ago. Many improvements over the years have raised VB to the level of a

real knock-out contender. Visual Basic 6.0(VB6) is bundled with Visual Studio 6.0,

which includes many fine tools for enhancing productivity, both with stand-alone and

Web apps. VB6 comes in three flavors: Learning Edition, Enterprise Edition and

Professional Edition. Visual Basic 6.0 will work with Win95/98/2000/NT. In the early

years of VB, one had to rely heavily on programming experience and it was very

code-intensive.

Feature Rich Means Ease of Use

VB6 is packed with new and enhanced features, allowing for quick deployment and

access to data using the Microsoft Data -ngine (MSO) freely redistributable as part

of the application allowing full compatibility with large SQL Server databases. There

is a new Report Writer, which allows development of very sophisticated, hierarchical

reports with drag-and-drop ease. Data access is a snap with VB6 because of the new

Data Environment which automatically allows for data binding. Jasily build

applications for mobile users and client!server applications on a LAN or Web. There

is also support for Microsoft universal data access using ActiveX Data Objects.

Another nice new feature is the enhanced FlexGrid control; this enhancement will

allow one to expands, collapse, hide or show various information sets. Many new

integrated visual database tools are included, enabling common database activities

without leaving the environment. View tables, modify data and create SQL queries f r

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

any ODBC or OLE DB-compliant database. Visually design and modify live database

schemas and other objects for Microsoft SQL Server 6.5 and Oracle 7.3.3 databases.

Language performance has been sped up by as much as 20 times over Visual Basic

4.0. Another great new feature included with VB6 is the "retain-in-memory" option,

which keeps component structures cached in memory for server-distributed

applications.

2.4.2 Visual Basic.Net

Visual Basic is a hugely popular programming language that is suitable for students

and beginners as well as professional development. The .NET version is significantly

different from older variants of Basic. Visual Basic .NET is the next version of Visual

Basic. Rather than simply adding some new features to Visual Basic 6.0, Microsoft

has reengineered the product to make it easier than ever before to write distributed

applications such as Web and enterprise n-tier systems. Visual Basic .NET has two

new forms packages (Windows Forms and Web Forms); a new version of AD for

accessing disconnected data sources; and streamlined language, removing legacy

keywords, improving type safety, and exposing low-level constructs that advanced

developers require.

Visual Basic .NET is fully integrated with the other Microsoft Visual Studio .NET

languages. Not only can application components be developed in different

programming languages, classes can now inherit from classes written in other

languages using cross-language inheritance. With the unified debugger, multiple

language applications can be debugged, irrespective of whether they are running

'11

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

locally or on remote computers. Whatever language used, the Microsoft .NET

Framework provides a rich set of APls for Microsoft Windows and the Internet.

Two things make Visual Basic .NET Standard 2003 easy to learn and use. One is the

language itself, which is designed to be closer to natural English than others. The

other is the array of tools and wizards that Microsoft provides, including a visual form

designer for both Windows and Web projects. The web technology is called

ASP.NET, and enables easy creation of web page that query and update databases,

although note that a Windows web server running .NET is required. The

programming environment is slick, with convenient features like docking and tabbed

windows, project wizards, auto-completion and pop-up help in the code editor. The

.NET version of Visual Basic benefits from full object-orientation and a rich class

library. It also supports advanced features like multi-threading, which is a way of

writing code to do background tasks.

Whereas Visual Basic 6.0 and earlier version needed a small runtime library, this

.NET edition requires the .NET Framework, a runtime engine and class library that

manages memory and enforces security. Framework applications perform well, since

they are compiled to native code at runtime, but there is an overhead in terms of

memory usage and the Framework runtime must be installed. These factors, together

with less than perfect code compatibility, have made some Visual Basic developers

reluctant to switch. While that's understandable, the .NET technology is now

maturing. It is still important to note the heavy system requirements, and that .NET

applications do not run on Windows 95.

Visual Basic .NET provides the easiest, most productive language and tool for rapidly

building applications for Microsoft Windows and the Web. Ideal for exi ting Vi ual

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Basic developers as well as new developers in the Microsoft .NET development

environment, Visual Basic .NET 2003 delivers enhanced visual designers, increased

application performance, and a powerful integrated development environment (IDE).

2.4.3 Conclusion

Discussed above are two choices of programming language that can be used as

application development software. Each one of them has advantages and

disadvantages. The Visual Basic.Net is chosen as the application development

software for developing Tutor on Software Design. Besides all the extra features

stated in the above section, Visual Basic.Net has a new and easier way of

implementing the drag and drop technique. This technique will be used for users to

edit the produced diagrams.

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.5 Database

Tutor on Software Design receives data from users. Therefore, it should save the data

in an organized way. The best way to organize and keep track of information is using

the database.

Database is an organized collection of data. A database management system (DBMS)

such as Access, FileMaker Pro, Oracle or SQL Server provides the software tools to

organize that data in a flexible manner. It includes facilities to add, modify or delete

data from the database, ask questions (or queries) about the data stored in the database

and produce reports summarizing selected contents.

The DBMS to be used for this system is Microsoft Access. Other aspects of concern

are data provider and how to access the database file programrnarically from VB.Net

(the selected development tool). Data provider could be SQL server or OLEDB,

meanwhile ADO can be used to acces database.

2.5.1 Microsoft Access

Microsoft Access is a computer application used to create and manage computer­

based databases on desktop computers and/or on connected computers (a network).

Microsoft Access can be used for personal information management (PIM), in a small

business to organize and manage all data, or in an enterprise to communicate with

servers.

·l·I

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

Microsoft Access provides users with one of the simplest and most flexible DBMS

solutions on the market today. Regular users of Microsoft products will enjoy the

familiar Windows "look and feel" as well as the tight integration with other Microsoft

Office family products. An abundance of wizards lessen the complexity of

administrative tasks and the ever-present Microsoft Office Helper is available for

those who care to use it.

Microsoft generally likes to incorporate as many features as possible into its products.

For example, the Access package contains the following elements:

• a relational database system that supports two industry standard query

languages: Structured Query Language (SQL) and Query By Example (QBE);

• a full-featured procedural programming language- essentially a subset of

Visual Basic,

• a simplified procedural macro language unique to Access;

• a rapid application development environment complete with visual form

and report development tools;

• a sprinkling of objected-oriented extensions; and,

• Various wizards and builders to make development easier.

There are several keywords that are commonly used when creating and maintaining a

database such as table, fields, value and datatype. The relationship between these

keywords can be illustrated as the following figure 2.9.

·L

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

I Database File

Table

Field

value

Database File: This is the main file that
encompasses the entire database and that is saved
to the bard-drive or floppy disk.
Example) StudentDatabase.mdb

Table: A table is a collection of data about a
specific topic. There can be multiple tables in a
database.
Example #1) Students
Example #2) Teachers

Field: Fields are the different categories within a
Table. Tables usually contain multiple fields.
Example #1) Student LastName
Example #2) Student Firstblame

Datatyoes: Datatypes are the properties of each
field. A field onJy has 1 datatype.
FieldName) Student LastName
Data type) Text

Figure 2.9 Database elements

Other datatypes are number, autonumber, date, time, etc.

2.5.2 ADO

ADO is a set of ActiveX controls that provide programmatic access to Microsoft's

latest underlying data access technologies. AD is based on L ~DB. 1 his is a

defined set of interfaces that all data sources can implement through special drivers

(or providers).

In other words, ADO gives a standard way of managing data from all kinds of data

stores, not just relational databases. The ever-increasing role and importance of the

Internet in application development has also driven the design concepts of ADO. lt

provides a range of ways that remote data access can be achieved over the Internet,

using a Web browser.

.1 (i

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

In ADO the in-memory representation of data is the recordset. A recordset looks like

a single table. If a recordset is to contain data from multiple database tables, it must

use a JOIN query, which assembles the data from the various database tables into a

single result table. Rows are scanned sequentially using the ADO MoveNext method.

ADO is designed primarily for connected access. Any change of data made in the

system will be directly sent to the database. It can also provide disconnected access to

make it easier and faster to manipulate data from the system. Communication with the

database is made by making calls to an OLE DB provider.

In order to use ADO in VB.Net, a reference has to be added. After that, the controls

on the form in VB.Net need to be connected to the database. The code might look like

this:

Dim conn As String="PROVIDER=SQLOLEDB;INITIAL CATALOG=Northwind;"&

"SERVERalocalho0t; OID21s ; PWD=;"

Dim cmd as S ing • "s l c Cu tom Id f om Custom rs"

Dim adoRS as New ADODB.R cords t()

'Open the RecordSet and r riv th Custom r IDs

adoRS.Open(cmd, conn, ADODB.CursorTyp Enum. dOp nFo.rw dOnly,

ADODB.LockTypeEnum. dL ckR Only, 0)

'Loop through th R cordS t nd dd th

Do While Not adoR .EOF

cboCustomerID. Items .Add (adoRS. Eiclds ("Custom ID") . Value)

s to h ComboBox

ado RS. Move Next ()

Loop

'Must close the Recordset

adoRS. Close ()

Univ
ers

ity
 of

 M
ala

ya

Literature Review Tutor on Software Design

2.5.3 OleDB

OLEDB is a COM-based data access object which provides access to all types of data,

and even provides access to disconnected data stores (for example, if you're on your

laptop, you can easily view a snapshot of the database from the last time you synced

up). It is a data provider which is the mechanism that connects us to the physical data

store while ADO is a data consumer because it uses data provided by OLEDB.

OLE DB interfaces provide applications with uniform access to data stored in diverse

information sources, or data stores. These interfaces support the amount of DBMS

functionality appropriate to the data store, enabling the data store to share its data.

2.5.4 Conclusion

The aspects of concern in managing data for Tutor on Software designed are DBMS

data provider and method of manipulating data between the system and the DBMS.

The solutions have been discussed above.

The DBMS to be used is Microsoft Access while the data provider is leDB. ADO

will be used to manipulate data in the database from the system. Univ
ers

ity
 of

 M
ala

ya

Chapter 3

Methodologies

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.1 Introduction to Methodologies

Methodologies may be defined as a collection of procedures, techniques, tools and

documents aids. They help the developers to speed up and simplify the development

process (P. Sellapan, 2000). Thus, it is important to choose a suitable methodology

while developing the system.

3.2 Methodology Analysis and Consideration

Software development involves a lot of tasks. These tasks must be managed

systematically to ensure that the project is successful. A software project is said to be

successful if the system is delivered on time, within budget, and fulfills the

requirements.

Software development methodologies are used to get the right system requirements

and provide a systematic way of developing systems. Methodologies allow developers

to monitor the progress of development, Documentation can be produced and

maintained easily. Methodologies are important so that developers can detect changes

as early as possible along the system development lifecycle.

Three methodologies will be discussed and considered in this section. They are the

Waterfall Model, the Prototype Model, and the Waterfall with Prototyping Model. In

the end, the most suitable methodology will be chosen for this project.

·19

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.2.1 Waterfall Model

Waterfall model is one of the oldest model, most of the new ones are the modified

versions of this model. The waterfall model is shown in Figure 3 .1.

According to this model, one process should be completed before the next one begins,

which means the developers should develop the system step by step by following the

sequence. Thus, when all of the requirements are elicited from customers, analyzed

for completeness and consistency, and documented in a requirements document, the

development team can go on to the system design activities. This model enables the

developers to view what is going on during the development process.

The waterfall model has been used to prescribe software development activities in

various contexts. For instance, it was the basis for software development deliverables

in U.S Department of Defense contracts for many years, defined in Department of

Defense Standard 2167-A (Pfleeger 2000).

Requirements '- definition • ,,
' ' Sy stem am\ • software design , I

H
j ' Implementation , •

arid unittesting · I
' ' v

Integration and \..
system testing I

T
, ,

Operation and
maintenance

Figure 3. I - Waterfall mod 1/.

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.2.1.1 Advantages and Disadvantages of Waterfall Model

Advantages of using the waterfall model:

• It makes the explanation to the customer or a person who is not familiar with

software development easy and convenient.

• This model can increase the confidence of the software developers during the

development process.

• Most of the later models are built based on this model.

Disadvantages of using the waterfall model:

• It does not show how the basic coding is designed or created unless the

requirements are fully understood.

• It does not have any reference when any sudden changes happen to the

products or activities.

• Fails to perceive the software as a problem solving process because the

waterfall model is actually modified from hardware development process.

• 1t does not support iteration or loops. One phase must be finished before the

next can begin.

3.2.2 Prototyping Model

Prototyping is another type of effective process model, which allows alJ or parts of the

system to be constructed quickly, to understand or clarify issues. Thus, it enables the

developers, users and customers to have a common understanding of what is needed

and what is proposed. One or more of the loops for prototyping requirements, design,

. l

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

or system may be eliminated, depending on the goals of the prototyping. However, the

overall goal is to reduce risks and uncertainty in development. The prototyping model

is shown in Figure 3.2.

3.2.2.1 Advantages and Disadvantages of the Prototyping Model

The advantage of using the prototyping model:

• Reduce risks and uncertainty in the system development.

The disadvantages of using the prototyping model:

• The quality of the software may be ignored when the product is produced

within a limited time. Thus, more time will be needed for maintenance.

• The developers may develop the system within unsuitable platform or

programs.

List f
Revisions

List of
Revisions

List of
Revisions

Prototype Review

Prototype
Requirements

Prototype
Design

Prototype
System

Figure 3.2 - Prototyping model.

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.2.2.2 How Does the Prototype Resolve the Problem of Traditional Waterfall

Model?

The uniqueness of this model is that it allows the developers to quickly create a

prototype to verify the needs and target of the particular process, thus enables revision

to be made at the requirements stage rather than the more costly testing stage. This is

because a software development process may involve a lot of iteration processes. The

developers sometimes have to use the 'try and error' method to get the best result and

if the result is not feasible or failed to hit the target, they will have to start all over

from the beginning of the process again and again.

Thus, the prototyping stage is used to examine some aspects of the proposed system

in the first few stages. This model offers a systematic way to manage the development

process and avoids the use of inappropriate method for the system development. By

verifying these stages, it will effectively reduce the possibilities of repeating any

process caused by the use of any inappropriate method.

Therefore, when the software development process reaches the System Testing stage,

it will automatically validate the requirements of the system and also verify the

system design as planned in the earlier stages. Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.2.3 Waterfall Model with Prototyping

Both waterfall model and prototyping model have an extremely high potential to be

merged to obtain the best process model needed to meet this project's needs. This is

because they can improve the quality of the development process management by

reducing the disadvantages of each other.

The model consists of several phases such as system requirements analysis, system

design, implementation and unit testing, system integration and testing, and operation

and maintenance. Each stage is weU defined before the next stage begins. As shown in

Figure 3.3, each process bas to be finished before the following process starts.

··-····- ... 'i'1lldat• ···- .•. ,
! i .. .:
~ ~
i !
i ! . I
! I
I , ••
I : ! f ! ~ . . . '' ! tlrl l.t.L. .l,.; ,:.,

' . . I
f PROIDT'i'fl"C i
. I ~--·-·-·--··-·-·~

· ...

· ~cc,rr~Ne~ . , ·.,~u,.,.a.
Ot£RATION

1L ·M~lM1EM~Cl-

Figure 3.3 - Waterfall model with prototyping.

Tutor on Software Design is a complex system as it contains different modules built

by different person. The prototyping is incorporated into the waterfall model because

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

testing of the functionality of its modules before the development process gets to the

implementation stage is vital. The usage of prototype will also allow potential users to

test the system and necessary modifications can be made before it is implemented.

Another reason why the waterfall model with prototyping is used is it offers a mean of

making the development process more visible compared to other models. Through

this model, every detail about requirements and functions can be known in advance

before the system is developed and these details remain stable throughout the

development process.

3.3 Focus on Waterfall Model with Prototyping Stages

The five stages in waterfall model with prototyping are system requirements analysis,

system design, implementation and unit testing, system integration and testing, and

operation and maintenance.

3.3.1 System Requirements Analysis

ln this stage, studies and researches of the system are carried out to understand the

issues concerning the system and the nature of the system. The main objective of this

stage is to establish the system's services, constraints and goals. In this stage,

project's requirements, needs and constraints have to be identified.

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.3.2 System Design

At this stage, the overall system architecture is established. System modules are

determined from the architecture. Requirements determined in the previous stage are

partitioned into hardware and software requirements. System functions are also

depicted. In this stage, preparation of various diagrams of system modules that

logically represent the system to be developed is done.

3.3.3 Implementation and Unit Testing

In this stage, every module of the system has to be constructed using selected

programming language. Each function will then be tested to verify that it is working

according to its specifications. During this stage, various bugs shall be eliminated.

3.3.4 System Integration and Testing

Each module of the system developed separately will he integrated and tested as a

whole system. The main objective of testing is to make sure that the system meets the

user's requirements and therefore, ensures the usefulness of the system being

developed. During this stage, the bugs will be encountered and the problems

concerning the interface between modules may arise. Enhancement will also be made

to improve the quality of the system.

Univ
ers

ity
 of

 M
ala

ya

Methodologies Tutor on Software Design

3.3.5 Operation and Maintenance

The system will be developed and installed in this stage. Maintenance of the system

includes fixing bugs that are discovered, will have to be carried out. Maintenance is

crucial to ensure that the system remains useful.

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 4

Analysis and Design

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

4.1 Introduction to Analysis and Design

System requirements analysis phase, as discussed in the previous chapter, is the

earliest phase in the system development lifecycle. The purpose of this phase is to get

knowledge and clarification regarding critical aspects to system development.

Analysis activities require thorough investigation of the system including from the

aspects of users, task analysis, and requirements specification. This analysis is vital to

ensure that the system do and support requirements and existing policies. To achieve

this, system requirements specification covers the functional, non-functional,

hardware and software requirements.

System design on the other hand, covers all tasks and functions that give priority to

detailed and in-depth specification based on computer-oriented problem solving. It

leads to data, interface component, and process oriented technical and implementation

aspects of the system. Amongst the popular approaches are structured and object­

oriented approaches.

R

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

4.2 System Requirements Specification

A requirement is a statement of a system service or constraint (Kotonya and

Sommerville, 1998). A service statement describes how the system should behave

with regard to an individual user or with regard to the whole user community. In the

latter case, a service statement really defines a business rule that must be obeyed at all

times. For example, fortnightly salaries are paid on Wednesdays. A service statement

may also be some computation that system must carry out. For example, calculate

salesperson's commission based on the sales in the last fortnight using a particular

formula.

Getting the accurate requirements requires an iterative process and a lot of user

involvement. Accurate requirements are very important to determine system

capabilities. Meanwhile, design determines how those requirements should be

implemented. Requirements specification to be discussed here are the functional, non­

functional, hardware and software requirements.

4.2.1 Functional Requirements

A functional requirement describes interactions between the system and its

environment (Pfleeger, 200 I). The functional requirements that I will develop involve

three modules, namely, Sequence Diagram, User Requirements, and Help.

9

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

Module Functional Requirements

User Requirements

Sequence Diagram

Help

1. Requirements entered by users using drop-down buttons

(combo box) and text boxes.

2. Requirements captured element by element (actor._ use

case .- association ._ class ._ object ._ sequence).

3. Users can always return to previous tasks using the back

buttons.

4. Users can decide names for actors, use cases, classes and

objects.

5. Users prompted deleting any object or sequence.

l. Get elements needed from the User Requirements

modules.

2. Produce a sequence diagram based on those elements.

3. Diagrams produced should be editable by users. Users

can change the diagram output by reentering their

requirements.

4. The final diagrams can be saved in various image format.

5. The system produces a professional looking diagram.

1. Contains information and instructions on using tne

system.

2. Provide tutorials on sequence diagram.

3. Provide tips to get a good sequence diagram.

Table 4.1 - Functional requirements

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

4.2.2 Non-Functional Requirements

A non-functional requirement is a description of the features, characteristics, and

attributes of the system as well as any constraints that may limit the boundaries of the

proposed solution. The followings are the non-functional requirements identified in

developing Tutor on Software Design.

Reliability

The system to be developed must be able to perform required functions and tasks

correctly. The diagrams produced by the system must be accurate and drawn exactly

according to the requirements entered by users .

. Interactivity

Tutor on Software Design requires a lot of inputs from users. Users can choose which

diagram to design their software with or all of them. They can go to previous tasks

easily. Users are prompted for error corrections or confirmations whenever needed.

Help and tutorial are available and can be accessed anytime.

4.2.3 Hardware and Software Requirements

Choosing the right hardware and software to be used for system development is very

important to ensure the system succeeds. lt is also vital as it can ensure that the

system fulfills the system objectives. The task of choosing hardware and software is

carefully done tu make sure the system can fulfill the system requirements

61

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

specification. The following tables shows the hardware and software requirements for

developing this system.

Hardware Requirements

Monitor Sunbosch 15"

Processor Intel Pentium III 434 MHz

Memory 128MB

Hard disk I 00 MB free space

Input device Keyboard and mouse

Printer Canon BJC- 1 OOOsp

Table 4.2 - Hardware requirements

Software Requirements

Operating system Windows 98/2000/Me/NT IXP

Database management system Microsoft Access 2000

Programming language Visual Basic.Net

Project documentation Microsoft Word 2000

Table 4.3 - So tware re uirements

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

4.3 Application Architecture Design

An application architecture defines the technologies to be used by (and used to build)

one, more or all information system in terms of its data, processes, interfaces and

network components. Thus designing the application architecture involves

considering network technologies and making decisions on how the systems' DAT A,

PROCESSES, and INTERFACES are to be distributed among the business locations.

4.3.1 System Development Structure Chart

Structure chart illustrates a top-down hierarchy of software modules that would

conform to accepted principles of good software design. A module is a group of

instructions - a paragraph, block, subprogram, and subroutine.

).

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

ToSd

User
Requirements

Use Case
Diagram

Class Diagram

Help

Sequence
Diagram

Fi rure ./.I Structure Chart

User
Requirements

Tutor on Software Design are partitioned into five modules with User Requirements

Diagram

Tutorial

and Help at the top hierarchy and the three diagrams under User Requirements. The

Sequence Diagram module has three submodules, namely, User Requirements,

Diagram and Tutorial.

('4

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

4.3.2 Flow Chart

A flowchart illustrates the steps in a process. By visualizing the process, a flowchart

can quickly help identify bottlenecks or inefficiencies where the process can be

streamlined or improved. Flowcharting is a graphical representation of the sequence

of all operations, movements, inspections (a.k.a. approvals), delays, decisions and

storage activities of a process.

4.3.2.1 Basic Flowcharting Shapes

Flowcharts use special shapes to represent different types of actions or steps in a

process. Lines and arrows show the sequence of the steps, and the relationships

among them.

8 The terminator symbol marks the starting or

ending point of the system. It usually contains

the word "Start" or "End."

A box can represent a single step ("add two Action or
Process cups of flour"), or and entire sub-process

("make bread") within a larger process.

[ooc~ent J A printed document or report.

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

A decision or branching point. Lines

representing different decisions emerge from

different points of the diamond.

;-;;;;;;-;
~

Represents material or information entering or

leaving the system, such as customer order

(input) or a product (output).

Indicates that the flow continues on another

page, where a matching symbol (containing the

same letter) has been placed.

Flow Lines indicate the sequence of steps and the

direction of flow.

Table 4.4 - Flow Chari 's symbols and shapes

4.3.2.2 Flow Chart for Tutor on Software Design

As shown in Figure 4.2, the system starts by getting the general requirements which is

used by all three diagrams including actor, use case, and association. Next, user can

choose which diagram to draw. lf the user chooses to design with sequence diagram,

user will have to input the sequence requirements including class, object and sequence

of events. Then, the user can save and print the diagrams, Users can choose to draw

another diagram based on the requirements already entered, or new requirements or

end the system.

66

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

Yes

Requirements

Sequence
Requirements Requirements Requirements

Use Case Class Sequence
Diagram Diagram Diagram

Yes

Figure 4.2 - Flow ..,hart

67

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

4.4 Graphical Interface Design

User interface design is the specification of a dialogue or conversation between the

system user and the computer. This dialogue generally results in data input and

information output. There are several styles of graphical user interfaces. Some of the

styles t be used in this system are pull-down and cascading menu, iconic menu, help

system, and etc. traditionally, these styles were viewed as alternatives, but they are

increasingly blended. This section presents the graphical interface design for Tutor on

Software Design.

Figure 4.3 shows the main window. The main window is a blank window where user

can choose whether to draw a new diagram, open an existing diagram or go through

the help section (as shown in Figure 4.4).

Open ctrl+O
Sa1,·e ctrl+S
Pmt
Exit Ctrl+Q

Figure 4.3 <Main window with File menu.

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

;f;Jfu ;' .. ·~··1-···· ' About

Figure 4.4 -Main window with Help menu.

Actors are specified by users in a window such as in Figure 4.5. Users can decide on

the name of actors to be used in their software.

"' Actor!'. ~JLQ.\IR\

·Enter actors :

.. Add

. Delete

. i1~k· , J · Next

Figure 4.5 =Actors window.

69

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

Associations between actors and use cases along with the type of associations can be

specified in the window such as shown below .

._ Association C-!§~[

:I zJ .k ::> I :±L '· (EKtends ~·.

:'11 ..=J,, ·~·. > ·1 i.l 'jEnterxis :21 --

I 3 . , > . I :=]; :1E>«ends =i··
"'·

I .::!;} ' > ·1 d /Extends ~J
., .±.! \' > I ~ jE><tends ..=.I

I 3'.] ;:;;;.: :1 ~ · jEi.tend$ ~ _..,,

· .. J ZJ. ,·, > I 3.· jEl<lends 3
=.I ~· > .::J .·IE>ctends ~

:::] ::> ·1 3 jE>ctends 3
Back NeHt I

Figure 4.6-Association window.

r·--------- ·1 _::J _::J
, Use Cose Ciers Sequence

I 0.. · · o·· · · · · Di · · tag am ~ram iagram

..J

Back , ..

Figure 4. 7 - Diagram Options window.

70

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

Users then have to choose which diagram to choose, whether the use case, class or

sequence diagram by clicking one of the buttons in the Diagram Options window

(Figure 4.7). The Class window (Figure 4.8) will appear if the user chooses to draw

the sequence diagram. In this window, the users can input classes involved in their

software.

• Class · [J[§~
· ,. Enter class :

Add !

Figure 4.8 - Class window.

After classes have been defined, objects of those classes should be initialized. This

can be done through the Object window (Figure 4.9). One class can have more than

one object. The initialized objects then will be displayed in the right-most box with

the syntax class: object.

Finally, the sequence diagram is produced based on the requirements entered

previously. The output window is shown in Figure 4.10.

71

Univ
ers

ity
 of

 M
ala

ya

System Analysis and Design Tutor on Software Design

.., Sequence Diacrnm 1:-i[gJL8]

" / .\ ~ IMUl"'i.'"''•'•~

.:::J··

·'Back N t · j . ex .

Figure 4.9 - Object window .

Save
.·

Prr.t I Other
Dia!Jam Back ' I·

Figure 4.10 - Sequence Diagram window.

Univ
ers

ity
 of

 M
ala

ya

Chapter 5

System Implementation

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.1 Introduction to System Implementation

System implementation phase is a phase where the system designs are converted into

executable codes. In this case, designs for Tutor on Software Design as shown in

Chapter 4 are converted into a real program. This chapter discusses the hardware and

software used to code the system, coding approach and style, and a brief description

of system modules and functionality.

5.2 Development Environment

Development environment has certain impact on the development of a system. Using

the suitable hardware and software will not only help to speed up the system

development but also determine the success of the project. After implementing the

system, the requirement of hardware and software that was stated in the previous

chapter can be finalized.

7.

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.2.1 Hardware

Hardware Requirements

Monitor Dell 17"

Processor Intel® Pentium® IV 2.60 GHz

Memory 256MB

Hard disk 80GB

Input device Keyboard and mouse

Printer Canon BJ200sp

Table 5.1 Hardware used in system development

5.2.2 Software

Software Requirements

Operating system Windows XP

Database management system Microsoft Access 2002

Programming language Visual Basic.Net

Project documentation Microsoft Word 2002

Image Editing Adobe Photoshop

Table 5.2 Software used in system development

74

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.3 Coding Approach

The coding process for Tutor on Software Design was done in different steps. Along

the way, a lot of try-and-error method was used as I; along with the other team

members were inexperienced in programming. The steps involved are developing the

Graphical User Interface, putting controls to the GUI components, writing the

processes involved, making additions, and making improvements.

5.3.1 Developing Graphical User Interface

In chapter 4, the prototype for this system is shown. It uses the concept of parent-child

forms, in which buttons Next and Back will bring users to different forms. In the

actual system implementation, the concept of tabs was used. It allows a lot of different

pages in one form. Users can switch from one page to another easily by clicking the

desired tabs.

TI1e tab control was easily put onto the form and managed as VB.Net provided a built

in tool for it. The tab just has to be dragged from the toolbox onto the form and

managed via the property windows. There are 7 tabs on the form and sequence

diagram uses 2 of them +Sequence and Sequence 1 iagram.

The Sequence tab as shown in Figure 5.1 has comboboxes, listboxes, textboxes and

buttons for data entry by users. The Sequence Diagram tab as shown in Figure 5.2

only has a picture box that fills the entire tab page. It is used to display the output

diagram.

7.

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

Meisage:·· .

. ,Clck OK
':'' •'\•

·· Jconr.rrP- ?:r
... , · .. Aiif;t;"s-~ j:

Figure 5. I Page to enter and edit data

I Conf~~~ I
l
!
I
I
j

I

I Oet~sFoon I
I

f
0111)1~1 I

jFJFoon

Disp~

''

I,

.. /.,

Picture box to display sequence diagram Figure 5.2

7

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.3.2 Putting Control to GUI Components

The GUI components do nothing until given some control. The next step is to put

control to the components.

For example, when the Create New button is clicked, users will be brought to another

tab - Use Case & Actor Tab - and put the focus to the Use Case textbox. The codes

for this task are as follows:

Private Sub btnNewUseCase_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnNewUseCase.Click

'Bring users to use case page
TabControll.SelectedTab = TabPagel

'Set the focus to where the user should enter data
txtUseCase.Focus()

End Sub

Another example is calling functions when a certain tab is clicked. TabPage7 contains

the picturebox that will display the sequence diagram and calcSD() is the function that

draws the diagram according to the user requirements.

Private Sub TabControll Click(ByVal s nd As Ob' ct, ByVal As
System.EventArgs) Handl-s T bCon rol .Cl ck

If TabControll.S l c dT b Is
'Call function that draws
calcUD ()

End If

5 Th n
Case diagram

If TabControll.SelectedTab Is TabPage7 Th n
'Call function that draws the sequence diagram
calcSD ()

End If

End Sub

77

Univ
ers

ity
 of

 M
ala

ya

System Implementation
Tutor on Software Design

5.3.3 Writing Processes

Processes refer to codes that are written to receive data from users and turn it into

diagrams. They are divided into three - data manipulation codes, drawing codes and

codes for saving.

5.3.3.1 Data Manipulation

Data entered by user as their system requirements has to be saved into the database.

Users are aJlowed to add, choose or delete data anytime they want. Therefore, codes

are assigned to do various tasks concerning data.

a. Database connection.

' stores the connection to an Access database globally
Public myDB As New ADODB.Connection

' connect to the Access databas
myDB.Open("Provider-=Microsoft.Jet.OLEDB.4.0;Data Sourc "'" &
Application.Startupf?ath & "/db2.mdb")

b. Create table.

When users choose which use case they would like to draw the sequence

diagram for, two tables are created - one to store classes involved, and the

other to store the sequence of events.

'Initialize the SQL statement to create table

'Remove space, - and from use case name and add
"sequence 'at the end

'This will be the table name to store relevant classes
strNew comSeqUse. Text. Replace (" ", "")
strNew strNew.Replace("-", "")
strNew strNew.Replace(" ", '"')
strNew strNew +"Sequence"

7R

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

mySQL = "Create table " & strNew & "(ObjSeqID number, " & I
strNew & "char)"

Try
' execute the SQL command
myDB.Execute(mySQL)

Catch ex As Exception

End Try

'Remove spaces, - and_ from use case name
'Add "SeqUse11 in front of it
'This will be the name of the sequence table
strNew comSeqUse. Text. Replace (11 ", "11)

strNew strNew.Replace("-", "")
strNew strNew.Replace(" ", "")
strNew "SeqUse" +- strNew

'Initialize SQL statement to create table
mySQL ="Create table" & strNew & "(ID number, Objl
char, Obj2 char, Msg char, Type char)"

c. Fill combobox with data from database.

There are 4 comboboxes on the Sequence page - one for selecting use

case, one for selecting class to associate with the use case, and two for

users to determine sequence of events for their software. These

comboboxes are filled with data from relevant tables in the database. The

codes to fill the first combobox are as follows.

Dim myRS As New ADODB.R cod

'Open the records t
myRS.Open("Select Os C se fr:om \ls Case", myDB)

' clear old r:esults
comSeqUse.Items.Clear()

'place results in the list
While Not myRS.EOF

'put data in actor table into combobox
comSeqUse. Items .Add (myRS. Fi lds ("UseCase") .Value)

' go to next r:ecor:d in the results
myRS. MoveNext ()

79

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

'Close the recordset
my RS. Close\ i

End While

d. Fill listbox with data from database.

Following are the codes to fill a listbox with data from database. The data

are classes associated with the selected use case. The codes are called as

soon as users select a use case.

'Put data from database to listbox
lstObj.Items.Add(myRS.Fields(strNew) .Value)

' clear old results
lstObj.Items.Cleart)

'place results in the list
While Not myRS.EOF

' go to next record in the results
myRS .MoveNext ()

End While

e. Fill listbox with data from three fields.

Another listbox at the bottom of the page is used to displays the sequence of

events of the users' software entered. lt is filled as soon as a use case is selected

and it changes everytime user add or remove a sequence. l l is also affected when

the user removes a class that: is involved in the sequence. Each line combines data

from 3 fields in the database that represent message sender, message and message

receiver of a particular sequence.

'place results in the list
While Not myRS.EOF

lstLeft. Items. Add (my RS. Fields ("Obj l") . Value)
strLstTop = Trim (my RS. E'ields ("Obj l ") . Value) & " " &

' clear old results
lstLeft.ltems.Cleart)
lstTop.Items.Clear()

80

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

Trim (myRS. Fields ("Msg") . Value) & " " &
Trim (myRS. Fields ("Obj 2 ") . Value)
lstTop.Items.Add(strLstTop)
'go to next record in the results
myRS. MoveNext ()

End While

'Close recordset
myRS. Close ()

f. Add new data into database.

When the user adds a sequence, the following codes are executed.

'Call function to create new record
currentID = CreateNewRecordSeq()

'Call function to fill the new record with data
UpdateRecordSeq(currentID, comObjl.Text, com0bj2.Text,
txtMsg.Text, comType.Text)

Private Function CreateNewRecord() As Integ r
'create a new record in the database

'Initialization
Dim strNcw As String
Dim myRS As N w ADODB.R cords t
Dim icount As Integer

If comSeqUse.T xt <>""Then
'Get table name
strNew comSeqUse.Text.Replace(" " "")
strNew
strNew
strNew

E.nd If

strNew. Replace ("-", "")
strNew. Replace (" ", "")
strNew + "S qu nc "

' open the records nd
'have it contain all records ln th databas table
myRS.Open(strNew, myDB, 1->DODB.Cu sorTyp Enum. dOp nKeyset,
ADODB.LockTypeEnum.adLockOptimistic)

If Not myRS.EOF Then

'Move to the last record
myRS. MoveLast ()
icount myRS.Fields("ObjSeqID") .Value+ 1

Else
icount 0

End If

' add a new em t record

81

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

myRS.AddNew("ObjSeqID", icount)

'update the recordset to include the new entry
myRS. Update ()
myRS. Requery (J

' go to the record we just created
myRS .MoveLast ()

'grab the record's ID value so we can edit it
'return this from the function
CreateNewRecord = myRS.Fields("ObjSeqID") .Value

' close the record set
myRS. Close ()

End Function

Public Function UpdateRecordSeq(ByVal currentid As Integer,
ByVal Objl As String, ByVal Obj2 As String, ByVal Msg As String,
ByVal Type As String)

'Edit a record in the database

Dim strNew As String
Dim myRS As New ADODB.Recordset

If comSeqUse.Text <>""Then
'Get table name
strNew comSeqUse.Text.Replace(" " "")
strNew strNew. Replace ("-", '"')
strNew strNew.Replace("_", "")
strNew "SeqUse" & strNew

End If

' open a recordset from the table named address
myRS.Open(strNew, myDB, ADODB.CursorTyp Enum.adOpenKeys t,
ADODB.LockTypeEnum.adLockOp imistic)

myRS.Find("ID~" & currentid)

them
"' Obj 1
• Obj2

• Msg
• Typ

' change fields to update
myRS.Fields("Objl") .Valu
myRS.Fields ("Obj2") .Valu
myRS.Fields("Msg") .V lu
myRS. Fields ("Typ ") . V lu

' update and close the r cords t
myRS. Update ()
myRS. Close ()

End Function

8

Univ
ers

ity
 of

 M
ala

ya

Sy2tem Implementation Tutor on Software Design

g. Remove selected data from database.

There are two Remove buttons on the page. Each for removing classes and

sequences. Removing classes will call two functions - one to delete the

selected class and one to delete the affected sequences. Removing

sequence will also call two functions - one to delete the selected sequence

and one to rearrange the ID of the remaining sequences.

The Renew function is used to reassign ID of sequences after one of the

records has been deleted. This is done to ensure that the sequence is

always correct. The idea is to set the first record to have 1 as ID, 2 for the

second record and so on.

' Button to remove class

'Set selected class name to a variable
Dim str As String Trim(lstObj.Sel c editem)

'Call function to delete the record of classes with current
ID
D let Record(currentID)

'Call function to delete th aff ct d segu nc
DeleteSeqClass(str)

' Button to remove Sequenc

While Not myRS.EOF

If lstLeft.Selectedlndex + J ... myRS.Fields("ID") .Va Lue
Then

' Set the ID of record ob
ID= lstLeft.Selectedind x

d

' Display confirmation dialog
result= MessageBox.Show(message, caption,
MessageBoxButtons.OKCancel)

If result= DialogResult.OK Then
' Call function to delete selected sequence
' Send ID as parameter

DeleteRecordSeq (ID)
Else

Exit Sub

8

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

End If
Else

ID 0
End If

'go to next record in the results
myRS .MoveNext ()

End While

'Call function to rearrange ID
RenewSeqID(myRS)

'Initialization
Dim strNew As String
Dim item As String= CStr(lstObj.Selecteditem)

Public Function DeleteRecord(ByVal currentID As Integer)
'delete a record from the database

If comSeqUse.Text <>""Then
'Get table name
strNew
strNew
strNew
strNew

End If

comSeqUse.Text.Replace("" "")
strNew. Replace ("- ", "")
strNew.Replace("_", "")
strNew +"Sequence"

' create a string variable that will hold an SQL statement
mySQL ="Delete* from" & strNew & "where" & strNew & "='"

& item & "'"

' execut the SQL command
myDB.Execute(Trim(mySQL))

E'.nd Function

' Initialization
Dim strNew As String
Dim mySQLl As String
Dim mySQL2 As String

Public Function DeleteSeqClass(ByVal i· m As S in)
'delete a record from th da abs

If comSeqUse.Text <>""Then
' Get table name
strNew comSeqUse.Text.Replace(" " "") ,
strNew strNew.Replace("-", "")
strNew strNew.Replace(" " "") - ,
strNew "SeqUse" & strNew

End If

' Set SQL statement to two variables
m SQLl ="Delete* from" & strNew & "where Ob'l-='" & item &

84

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

End Function

"'"
mySQL2 "Delete* from" & strNew & "where Obj2='" & item &

,,, "

'execute the SOL command
Try

myDB.Execute(mySQLl)
myDB.Execute(mySQL2)

Catch ex As Exception

End Try

'Initialization
Dim strNew As String
Dim count As Integer= 1

Public Function RenewSeqID(ByVal myRS As ADODB.Recordset)

End Function

If comSeqUse.Text <>""Then
'Get table name
st rNe'ri comSeqUse.Text.Replace(" " "")
strNew strNew.Replace("-", "")
strNew strNew.Replace(" " "") ,
strNew = "SeqUse" & strNew

End If

Try
If Not myRS.BOF Then

'Go to first record in the recordset
myRS.MoveFirst()

End If
Catch ex As Exception

End Try

While Not myRS.EOF
'Call function to replace existing ID with n .won
'Parameters : existing ID and now ID (qu n·ial)
UpdateSeqID(rnyRS.E'i lds("ID").Valu (), coun)

'Increase count
count+= 1

'Move to next record
my RS. MoveNext ()

End While

'Variable initialization

Public Function UpdateSeqID(ByVal currentID As Integer,
ByVal newID As Integer)

' Edit a record from the database

85

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

If comSeqUse.Text <>""Then
' Get table name
strNew comSeqUse. Text. Replace (" ", "")

Dim strNew As String

strNew
strNew
strNew

End If

strNew.Replace("-", "")
strNew.Replace("_", "")
"SeqUse" & strNew

' Set SQL statement to a variable
mySQL ="Update" & strNew & "set ID=" & newID & "where

ID="
& currentID

' execute the SQL command
myDB.Execute(mySQL)

End Function

5.3.3.2 Drawing

One of the functional requirements of Tutor on Software Design is, the system is able

to draw sequence diagram based on user requirements. The above section has shown

has user requirements can be manipulated. This section will show how those data can

be converted into relevant sequence diagram. It involves a lot of steps as shown

below.

a. Import namespace.

The namespace is necessary i11 order to use drnwing functions to draw

various shapes such as rectangle, lines, circles, etc.

Imports System.Drawing.Imaging

b. initialize bitmap and graphic objects.

' Initialize a bitmap object
' Set the size with the picturebox size
Dim newBitmap As Bitmap= New Bitmap(784, 544,
Imaging.PixelFormat.Format24bppRgb)

86

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

' Set the bitmap to a graphic object
Dim lbl As Graphics Graphics.Fromimage(newBitmap)

c. Call function to draw.

If TabControll.SelectedTab Is TabPage7 Then
'Call function that draws the sequence diagram
calcSD\)

End If

d. Run function to draw.

The following tasks are done within Public Function calcSD (J •

i, Draw a white rectangle on the bitmap object as the background.

Dim rect As Rectangle= New Rectangle(O, 0, 784, 544)
lbl.FillRectangle(New SolidBrush(Color.White), rect)

11. lnitialize and set coordinate values to points.

Dim pl, p2, p3, p4 As Point

pl.X 96
pl.Y = 50

p2.X 294
p2.Y 50

p3.X 490
p3.Y 50

p4.X 686
p4.Y 50

111. Initialize and set values to objects representing data. Data taken from a

table in the database are set to 4 objects.

Dim drwObjl As String ""
Dim drw0bj2 As String 'H'H

Dim drw0bj3 As String ""
Dim drw0bj4 As String ""

87

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

While Not myRS.EOF
' Fill drwObj 1
If drwObjl =""Then

If myP.S.Fields("Objl") .Value<> drw0bj2 A.nd
myRS.Fields("Objl") .Value<> drw0bj3 And_
myRS.Fields("Objl") .Value<> drw0bj4 Then

drwObjl = myRS.Fields("Objl") .Value
End If

End If

If drwObjl =""Then
If myRS.Fields("Obj2") .Value<> drw0bj2 And
myRS.Fields("Obj2") .Value<> drw0bj3 And_
myRS.Fields("Obj2") .Value<> drw0bj4 Then

drwObjl = myRS.Fields("Obj2") .Value
End If

End If

'Fill drw0bj2, drwObj3 and drw0bj4 with the same way

End While

rv. Call function to draw objects.

If drwObjl <>""Then
recseqpic(pl, drwObjl)

End If

If drw0bj2 <>""Then
recseqpic(p2, drw0bj2)

End If

If drwObjJ <>""Then
recseqpic(p3, drw0bj3)

End If

If drw0bj4 <>""Then
recseqpic(p4, drw0bj4)

End If

Public Function recseqpic(ByV l c As Poin, ByVal s r As S ring)

Dim rec As Rectangle
Dim dotstart, dotend, strlen As Point
Dim p As New Pen(Color.Black, 2)
Dim dot As New Pen(Color.Black)
Dim txt As SizeF, txtfont As Font Me.Font
Dim dashValues As Single() = {3, 2, 3, 2)
Dim MyLen As Integer

MyLen = 10 'Len(str)
dot.DashPattern = dashValues

rec= New Rectangle(c.X - 50, c.Y - 25, 100, SO)

I dotstart.X = c.X

88

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

dotstart.Y = c.Y + 27

dotend.X
dotend.Y

c.X
c.Y + 800

strlen.X
strlen.Y

c.X + (MyLen * 2) + 5
c.Y + 5

lbl.DrawString(str, txtfont, New SolidBrush(Color.Black),
c.X - 25, c.Y - 10)
lbl.DrawLine(dot, dotstart, dotendl
lbl.DrawLine(New Pen(Color.Black),
New Point(c.X - 25, c.Y + 5), strlen)
lbl.DrawRectangle(p, rec)

End Function

v. Call function to draw arrows.

'Initialization
Dim templ, temp2, temp3, temp4 As Point
Dim objl As String
Dim obj2 As String
Dim str As String

'Set coordinates to points
templ pl
temp2 p2
temp3 "" p3
temp4 p4

While Not myRS.EOF
'Get data from tabl
objl = myRS.Fi lds("Objl") .Valu
obj2 = myRS.Fields ("Obj2") .Value
s t r = rnyRS.Fi lds("Msg").Valu

'Set points 50 units down
templ.Y +==SO
temp2.Y += 50
temp3.Y += 50
temp4.Y += 50

Select Case objl 'From obj ct
Case drwObjl

Select Case obj2 'To obj ct
Case drwObjl

drawBackArrow(templ, str)
Case drw0bj2

drawArrow (temp 1, temp2, str)
Case drwObj3

drawArrow(templ, temp3, str)
Case drwObj4

drawArrow(templ, ternp4, str)
End Select

'Continue throuqh drwObj4

89

Univ
ers

ity
 of

 M
ala

ya

System lmplementation Tutor on Software Design

End SeLeet;
myRS .MoveNext ()

End While

' Initialize the arrow cap
blackPen.EndCap = Drawing2D.LineCap.ArrowAnchor

Public Function drawArrow(ByVal pointl As Point,
ByVal point2 As Point, ByVal str As String)

' Create: pen.
Dim blackPen As New Pen(Color.Black, 5)

End Function

'Calculate position of string
Dim pas As Point

If pointl.X > point2.X Then
pos.X ((pointl.X - point2. X) I 2) + point2.X

Else
pos.X ((point2 .X - pointl.X) I 2) + pointl.X

End If

'Draw line to screen with a string on it.
lbl.DrawString(str, Me.Font, New SolidBrush(Color.Black),
pos.X, pointl.Y - 2D)

lbl.DrawLine(blackPen, pointl, point2J

pl. y pl. y 8
p2.X pl.X + 25 p2. 'i = pl. 'i
pJ.X p2.X pJ.Y p2.Y + 26
p4.X pl.X p4.Y = p3.Y

Public Function drawBackArrow(ByV 1 pl As Point, ByVal str Ass ring)
'Create pen
Dim blackpen As Nevi Pen(Color.Black, 5)
Dim p As New Pen(Color.Black, 5)
Dim p2, p3, p4 As Point

End Function

'Initialize the arrow c p
blackpen.EndCap = Drawing2D.Lin C p.Ar owAnchor

lbl.Dra"'Line(p, pl, p2)
lbl.DrawLine(p, p2, p3)
lbl.DrawLine(blackpen, p3, p4)
lbl.DrawString(str, Me.Font, New SolidBrush(Color.Black),
p2.X + 5, p2.Y + 13)

90

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

vi. Set bitmap to picturebox.

PictureBox2.Image newBitmap

5.3.3.3 Save Diagram

The output of this system is the required sequence diagram. This diagram can be

saved in various image formats anywhere on the computer the user wants. Executing

the following codes does it.

Private Sub MnuSaveSeq_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MenuSaveSeq.Click

Dim extension As String= dlgSave.FileName

PictureBox2.Image = newBitmap

If dlgSave.ShowDialog() = DialogResult.OK Then
extension= extension.Substring(extension.LastindexOf(''.") +
l\ .ToLowex

Select Case extension
Case "bmp"

PictureBox2.Image.Save(dlgSave.FileName,
lmageFormat.Bmp)

Case "jpg", "jpeg"
PictureBox2.Imag .Save(dlgSave.FileName,
ImageFormat.Jpeg)

Case "gif"
PictureBox2.Image.Save(dlgSave.FileNarn,
Irnag Format.Gif)

Case "ico"
PictureBox2.Image.Save(dlgSave.FileNarne,
ImageFormat.Icon)

Case "emf"
PictureBox2.Imag .Sav (dl Sav .FiloN m,
lrnageFormat.Emf)

Case "wmf"
PictureBox2.Image. 'av (dlgSave.FileNam,
ImageFormat.Wmf)

Case "png"
PictureBox2.Image.Save(dlgSav .Fil Name,
ImageFormat.Png)

Case "tif", "tiff"
PictureBox2.Image.Save(dlgSave.FileName,
ImageFormat.Tiff)

Case "exif"
PictureBox2.Image.Save(dlgSave.FileNarne,
lrnageFormat.Exif)

End Select
End If

End Sub

91

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.3.4 Improvements.

In the beginning, all the codes were written carelessly. Then, same improvements

were made. For example, variables that were initialized in many functions were made

global.

Other than that, some error handling were also put into place. An example of error

handling is:

End Try

Try
' execute the SQL command
myDB.Execute(mySQL)

Catch ex As Exception

Redundant codes were made into separate function. For example, the functions

RenewSeqlDO and Updateseqllit).

5.4 Coding Style

There are some styles in coding that were purposely followed to make the codes

maintainable and readable. One of the styles is using meaningful variable names. For

instance, a button to add a class is named btn.AddC/ass, a string variable to hold a new

name is called strNew, and the menu to save the sequence diagram is named

mnuSaveSeq, and so on.

To make the codes even more readable, certain lines were indented where necessary

and keyword (or reserved word) are coloured blue and non-keyword are black.

Comments were made in green. Fortunately, VB.Net automaticalJy applies this style.

An example is the following function:

9_

Univ
ers

ity
 of

 M
ala

ya

em Implementation Tutor on Software Design

strNew
strNew
strNew
strNew

End If

comSeqUse.Text.Replace(" "
strNew. Replace (" - ", 11 11)

strNew.Replace("_", "")
strNew + "Sequence"

II 11)

ic Function DeleteRecord(ByVal currentID As Integer)
' delete a record from the database

'Initialization
Dim strNew As String
Dim item As String= CStr(lstObj.Selecteditem)

If comSeqUse.Text <> ""Then
'Get table name

' create a string variable that will hold an SQL statement
mySQL = "Delete* from" & strNew & "where " & strNew & "='"

& item & "'"

' execute the SQL command
myDB.Execute(Trim(mySQL))

unction

1, comments were added where necessary as internal documentation. This will make any
enhancement easier.

t)

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.5 Description of System Modules and Functionality.

In order to draw the sequence diagram, 4 modules are used, namely -use case, class,

sequence, and drawing module.

5.5.1 Use Case

The first thing that users have to go through in order to get the desired sequence

diagram is to select a use case, which the diagram is drawn for. They can choose from

the existing use case from the drop down list or they can add a new use case.

5.5.2 Class

Next, they will have to choose which class involved in the diagram. Like the use case,

users can choose existing classes or create new ones.

5.5.3 Sequence

The next module allows users to put in the sequence of events for their system. They

can add and remove any sequence using existing classes.

5.5.4 Drawing

This module simply takes data from database and executes a few functions to draw

the required sequence diagram.

Univ
ers

ity
 of

 M
ala

ya

System Implementation Tutor on Software Design

5.6 Conclusion

This chapter describes the implementation of Tutor on Software Design. It shows how

designs from the previous chapter are turned into executable program and how it

. fulfils the functional requirements of this system as stated earlier in planning phase.

The next chapter documents the testing done on the system.

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 6

System Testing

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.1 Introduction to System Testing

Many programmers view testing as a way to demonstrate how their program performs

properly. However, the idea of demonstrating correctness is really the reverse of that

testing is all about. We test a program to demonstrate the existence of a fault. Because

our objective is to find faults, we consider a test successful only when a fault is

discovered. This is achieved by using carefully planned test strategies and realistic

data so that the entire testing process can be methodically and rigorously carried out.

Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design, and code generation. 1n this chapter, software

testing fundamentals, testing strategies and software debugging methods will be

presented.

Following are some of the objectives of software testing:

• Testing is a process if executing a program with the intent of finding an error .

A good test case is noted that has a high probability of finding an as-yet­

undiscovered error.

A successful test is one that uncovers as-yet undiscovered error . •

6.2 Fault

6

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

The objective of testing is to find error and fault. Fault identification is the process of

determining what fault or faults caused the failure, and fault correction or removal is

the process of making changes to the system so that the fault are removed.

6.2.1 Types of Fault

When no obvious fault exists, program is tested to isolate more faults by creating

conditions where the code does not react as planned. Therefore, it is important to

know kind of faults to seek.

Faults can be categorized as algorithmic faults, syntax faults and documentation faults

described as below:

1. Algorithmic faults

Algorithmic faults occur when a component's algorithm or logic does not

produce the proper output for given input because something is wrong with

the processing steps. These faults are easy to spot by reading through the

program (call desk checking) or by submitting input data from each of the

different classes of data that we expect the program to receive during its

regular working.

Typical algorithmic faults include:

i. Testing for the wrong condition.

ii. Forgetting to initialize variables or set loop invariants.

iii. Forgetting to test for a particular condition (such as when division by

zero might occur).

2. Syntax faults

7

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

Syntax faults can be checked while parsing for algorithmic faults. This will

ensure that the construct of programming language is used properly. Microsoft

lnterdev does come with a compiler to catch syntax faults before a program is

executed. Therefore, syntax faults within the program can be traced before the

program is executed.

3. Documentation faults

When the documentation does not match what the application does, the

application has documentation faults. Usually, documentation is derived from

system design and provides a clear description of what the programmer would

like the program to do, but the implementation of these functions is faulty.

Such faults can lead to other faults later.

8

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.3 Test Planning

The purpose of having test planning is to help in designing and organizing tests, so

that testing is carried out appropriately and thoroughly.

A test plan has the following steps:

1. Establishing test objectives

At the beginning, we have to know what we are going to test on. So we have to

establish our test objectives that tell us what kinds oftest cases to generate.

2. Designing test cases

After establishing test objectives, we begin to design the test cases that are used to

test the system. If test cases are not representative and do not thoroughly exercise

the functions that demonstrate the correctness and validity of the system, then the

reminder of the testing process is useless.

3. Writing test cases

After designing, we have to start writing the test cases.

4. Testing test cases

At the same time, we also test the test cases.

5. Executing tests

After all testing have been done, we execute our tests on the system.

6. Evaluating test results

After executing tests, we evaluate the test results.

9

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.4 Testing Technique

To test a component, a range of inputs and conditions are chosen. The component of

the software will be allowed to manipulate the data, and the output will be observed.

A particular input is chosen will demonstrate the behavior of the code behind the

entire GUI. A test point or a test case is a particular choice of input data to be used in

testing program. However, the data are entered with the express intent of determining

whether the system will process them correctly.

Different test cases are needed on different type of testing strategies. There are four

categories of test cases that are created for testing purposes namely erroneous test

data, normal test data, extreme test data and condition test data. These categories are

further explained in the following section.

6.4.1 Erroneous Test Data

Using test data that are erroneous is a good way to determine how the system handles

such errors and how it behaves wider such situation. For example, the drawing

module of this system can only set coordinates for 8 sequences. What happens ff users

enter 9 sequences? Therefore, it is used as erroneous test data.

100

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.4.2 Normal Test Data

The normal test case is use to check whether the system will work well under normal

condition. That is means to test whether a given correct data will produce the

expected results. For example, assume that there are four classes associated with a use

case called Register. So, if a user wants to generate a sequence diagram using these

four classes, the program will allow it. This type of test data serves as a preliminary

test of the system.

101

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.5 Testing Strategy

Tes ting is a process of exercising or evaluating a system by manual or automatic

means to verify that it has satisfied requirements or to identify differences expected

and actual results. Testing is probably the least understood part of a software

development project. A bug is any unexpected, questionable, or undesired aspect or

behavior displayed, facilitated or caused by the software being tested. Testing can

uncover different classes of errors in a minimum amount of time and with a minimum

amount of effort. The strategies used for testing are unit testing, module testing,

integration testing and system testing.

Unit
testing

L-----,,
Sub-module

testing l
L....--- 1\11 odule

testing l
System
testing

....__

L ·~
Acceptance

testing

Figure 6.1: Testing process

102

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.5.1 Unit Testing

Historically, quality software is relied on testing each function or module. Unit testing

is sometimes referred to as function testing or component testing, which is extremely

time-consuming. For Tutor on Software Design, unit testing was done during the

coding phrase.

The first step is to examine the program code by reading through it, trying to spot

algorithm, data and syntax faults. Followed by comparing the code with specifications

and with the design to make sure that all relevant cases have been considered. Next,

the program is executed to view result and then eliminate remaining syntax faults if

necessary. Finally, test cases are developed to show that the input is properly

converted to the desired output.

Unit testing involves the tests on each function module independently. If error is

found, debugging of the codes will be carried out immediately. If the compilation of
'

the function module is completed successfully, another function module will be

coded. The following steps specif)' how unit testing is carried out for this system:

1. Examining The Code

The code of the program is examined by reading through it to spot for algorithmic

faults and syntax faults. This method is useful to identify faults that have been left

out by the programmer.

103

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

2. Control Objects Testing

Command buttons are clicked to test their functionality and text boxes are tested

with different data types and also null value to make sure invalid data will not

cause any fault.

3. Different Data Type Testing

Different data types like numbers, characters or date is used to test certain

function because some control objects will only accept certain data type, invalid

data type can be traced by the system without causing any error.

4. Choosing Test Cases

Test cases are developed to ensure that the input is properly converted to the

desired output. So, to test a component, input data and condition are chosen. Then

the component is allowed to manipulate the data, and output is observed.

6.5.1.1 Example Of Unit Testing

There were too many unit test cases involved. ·1 herefore only a few will be shown as

example. The rest are attached as Appendix A

Unit Test Case Example 1

The Add Class function in this system is used to add new record of class into

database. Unit Testing was carried out to ensure that the record was added

104

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

successfully. The table below shows the test case for unit testing on tile function of

adding the record.

Unit: / Add New Class

\\lo. I Testil'\Q Procedure ExnP.rted Cutout l\ctual Cutout
1. Type a dass name in the Create New The newly added ConfirmPage is listed textbox. class is listed in the in the \istbox but not Class name: ConfirmPage listbox and drop in drop down list. 2. Click Add down list.

Table 6.1 Test Case For Adding Class

6.5.2 Module Testing

A module is a collection of dependent components. A module encapsulates all of the

related components. Module testing enables each module to be tested independently.

This testing will ensure that the module calling sequence in this project is systematic.

In module testing, two or more units in which either unit that use output: data from or

provide input data for another unit were tested in collection. These units have related

characteristics to perform a common goal or function such as the drawing functions

that uses data entered previously.

6.5.2.1 Example Of Module Testing

Module Test Case Example 1

The drawing function in this system is used to draw images, which are used to create

sequence diagram. Module Testing was carried out to ensure that the image was being

105

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

drawn successfully. Table below shows the test case for module testing on the

function of drawing diagram.

No. l Testina Procedure Exoected Outout Actual Outout
1. Click left drop down list in the third All added classes <:fromuo1ect':'

"'.' .· ,' . . ,.
section should be listed. ·~ . ·.· ' .. ' r ~.

Student
. HomePage
· DetailsForm
ConfirmPanF!

2. Choose a class
Class name: Student

3. Type a message in the centre t.extbox
Messaae: Click RPnister

4. Click right drop down list All added classes --- -1 _o p~ect : .-
should be listed. ,,

~
Stuclent
HomePage
DetailsForm
Confamf';w,e

5. Choose a class
The sequence Student Click

Class name: HomePage
should be listed. Register HomePage

6. Click Add to seaaeoce button is listed.

17. Repeat steps 1 to 6 with different
A page displaying a combination on input Figure 6.2

8. Click seouence Diaoram tab sequence diagram.
,-, Table 6.2 1 est Case For Drawing Diagram

106

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

Ditplay

jFiFOllll

Click Conrim

II
Figure 6.2 Output of Table 6.2

6.5.3 Integration Testing

When the individual components are working correctly and meet the objectives, these

components are combined into a working system. ln other words, integration testing is

the process of verifying that the system components work together as described in the

system and program design specifications. This integration is planned and coordinated

so that when a failure occurs, some idea of what caused it can be got.

Sandwich integration testing approach is used for this system. TI1is approach

combines top-down integration with bottom-up integration. The testing starts from the

first section of the system and down to the lowest level form of functions and from the

107

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

function up. This testing is repeated several times to make sure that all the control

objects work properly.

The motive behind this testing is to make certain that all modules can be executed as a

complete module. As mentioned earlier, an individual module calls other module to

perform certain tasks. Parameters will be passed among these modules and if not

tested, then parameter may be passed incorrectly.

6.5.4 System Testing

The last testing procedure done is system testing. Testing the system is very different

from unit testing, module testing and integration testing. The objective of unit testing,

module testing and integration testing is to ensure that the code has implemented the

design properly. Jn other words, the code is written to do what the design

specifications intended. In system testing, a very different objective is to be achieved,

that is to ensure that the system does what the users want it to do.

Tutor on Software Design involves two kinds of system testing. They are function

testing and performance testing.

6.5.4.1 Function Testing

Function testing is based on the system functional requirements. In other words, a

function test is used to check that whether the integrated system performs its functions

as specified in the requirements. The tests are carried out for data module and drawing

108

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

module in this system. The module is tested individually to determine whether the

system performs as required.

6.5.4.2 Performance Testing

Performance testing addresses the nonfunctional requirements of the system. That

means once the functions are convinced work as specified, the performance test

compares the integrated components with the nonfunctional system requirements. The

types of performance tests are:

a) Compatibility Tests

This test was performed to find out that the interface functions perform according

to the requirements. The accuracy of data retrieval was high in this system.

Besides, the speed of data retrieval was acceptable too.

b) Human Factors Tests

This test was performed to investigate requirements dealing with the user interface

to the system. In this system, simple forms and related messages are displayed to

determine user friendliness. These tests are sometimes en lied usability tests.

c) Timing Tests

This test was performed to evaluate the requirements dealing with the time to

respond to a user and time to perform a function. The response time of this system

is acceptable.

109

Univ
ers

ity
 of

 M
ala

ya

Testing Tutor on Software Design

6.6 Summary

Testing is one of the important steps in developing a system. Precision and accuracy

of output data is considered during this process. Unit, module, integration and system

testing has been carried out for the Tutor on Software Design. These testing

approaches lead to delivering a quality system to users. The objective of a system will

only be achieved after all the thorough testing done by different user with different

aspects.

110

Univ
ers

ity
 of

 M
ala

ya

Chapter 7

System Evaluation

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

7.1 Introduction to System Evaluation

In this chapter, the system evaluation will be discussed. There were many techniques

that used to evaluate the final system. In this chapter, system's features and strengths,

system's limitation and constraints, the future enhancement, problems and solutions

and lastly knowledge and experience gained will be described.

7.2 System Strengths

Followings are the features and strengths that can be found in the Tutor on Software
Design:

7.2.1 Different Approach From Existing Systems

As described in Chapter 2 - Literature Review, Tutor on Software Design is

different from other existing systems that draw sequence diagrams. lnstead

dragging and dropping shapes onto a canvas or using certain language, this

system uses drop down lists, textboxes and lists. This makes it a different and

easy to use system to draw a sequence diagram.

7.2.2 Documented

This system is documented internally and externally. Internal docwnentation

refers to the comments put in suitable places. This ensures the codes are

readable and it is maintainable as anyone can easily understand the codes and

make future enhancement. External docwnent:ation refers to this document.

7.2.3 Support Various Image Formats

Users of this system can save their diagram in various formants, namely,

* b * · * ·r * · * . mp, .Jpg, .gu, .ico, .emf, *.wmf, *.png, *.tif.

11 I

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

7.3 System Limitations and Constraints

Even though there are many features provided by the system, it is still not perfect.

Due to the problem of time constraint and technologies, some of the feature cannot be

implemented. The limitation is as listed below:

7 .3.1 Static Image Size

The size of the picture box that contains the diagram is predetermined and

fixed. The same goes with every object or line drawn. Coordinates of

everything on the picture box are also fixed.

7.3.2 Limited Domain

The picture box only displays four objects in the diagram produced. This is

caused by the fixed size of the picture box.

7.3.3 Limited Interaction Between System and User

Users can only enter data by typing in certain texboxes, or choosing from drop

down lists instead of typing away their requirements. This limitation is done

on purpose to avoid misunderstanding of users requirements by the system.

With this limitation, erroneous output is minimized.

7.3.4 Unattractive Output

The shapes, lines and strings on the output diagram are drawn solely with VB

codes, instead of drawing it using any drawing applications and import it to

the system. However, this method ensures that the size of the image saved is

smaller.

11

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

7.3.5 Insecure Database

The data entered by users are stored in an unsecured database, which can be

edited from outside.

7.4 Future Enhancement

Due to the limitations found in the system, in the future, enhancement will be applied

to the system to improve the ability of the system.

7.4.1 Improve Output Appearance

The output should look more interesting. Instead of the rigid black and white

shapes, users should be given some choices regarding colors and sizes. This

can be done by making the drawing algorithm more dynamic. Right now, the

objects represented on the diagram are just rectangles. In the future, there

should be more. For example, the symbols of actor, entity, boundary and

various more objects.

7.4.2 Improve Data Management

More methods of storing data to be used by the system should be explored,

instead of insecure Microsoft Access. The database hould be design

thoroughly to ensure integrity of data, with relations between tables and etc.

Users must not be allowed to change data in the database from outside the

system.

11.

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

7.4.3 Complete Help File

This system should have a complete help file as it should teach users about

sequence diagram.

7.4.4 Allow User to Print Diagram

So far, the system can only allow users to save the diagram produced. Then

they will have to print it from other available software like Photoshop or

Words. In the future, this system should have a menu that users can choose to

print their diagram.

7.5 Problems and Solutions

During the process of development of the system, there are a few problem

encountered. Some of them could be overcome through certain solution while some of

them were not. The following are some of the problems that arose during the
development process.

7.5.1 Unfamiliar with Development Tools

This is the first time that I use VB.Net and first time of developing a system

bigger than any C++ lab exercises. Therefore, l need to learn from scratch

without a teacher. However, I have friends whom l could ask questions and

there are always forums on the Internet. Furthermore there a:re a lot of sources

of books whether on paper or electronic.

7 .5.2 Difficulties in Choosing Approaches

As already said before, the implementation of this system involved a lot of

try-and-error. Another cause for it is there are different approaches to

1 I '1

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

implement one task. For example, there are a lot of ways to store data. Among

them are ADO, ADO.Net, Struct, notepad, Microsoft Access, MySQL, and so

many more. I had to try some of them that I think I could use. I ended up

using Microsoft Access and ADO for various reasons.

Another example is the approaches to take in producing the drawings. VB.Net

allows drawing directly onto a picturebox, or a graphic surface, or a bitmap

object. Another way is storing the pictures in a database and import them

when needed. The method used for this system is drawing everything on a

bitmap object and transferring it to the picturebox to display it. The output is

better than drawing it directly onto the picturebox and more dynamic than

importing pictures from database.

7 .5.3 Repetition of Codes

There are some redundant codes that l failed to separate into functions or

class. I tried but errors were encountered. Therefore, I left them as they are.

7.6 Knowledge and Experience Gained

During the development of the Tutor on Software Design, 1 gained a lot of knowledge

and experience. The following are some of the knowledge I gained after developing
this system:

7.6.1 Programming Experience

In order to implement this system, I had to start from scratch, programming~

wise. Therefore, I got the experience of exploring the language that I never

knew. I had the experience of putting the language that I J. ust learned to
use.

Now I know about data manipulation and drawing using VB.Net.

II

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

7.6.2 First Hand Experience of SDLC

I am all too familiar with Software Development Lifecycle from vanous

subjects that I took, namely, Software Engineering, Project Management,

Software Requirements Engineering, and Software Quality. However, I have

never been involved in actually applying that knowledge, even when I was

doing my industrial training. Thanks to this project, I thoroughly understand

what I learned.

7 .6.3 Sharing Opinions

Along the SDLC, opinions and ideas were given and taken. Opinions go back

and forth between team members, with lecturers, and among unknown friends

in the Internet forum.

7 .6.4 Self Expression

Developing Tutor on Software Design has really given me a great chance to

express myself in designing and coding. Finally, before I graduate, I have a

chance to build real application software myself. Now 1 know more than just

theory. Doing this project has greatly improved my self:..esteem and self-

confidence.

7.6.5 Thesis Making

Through this project, l understand the process of completing a thesis. 1 realize

that there is more to software development than programming. I understand

that research is essential to ensure the quality of the produced softwa
. ere.

116

Univ
ers

ity
 of

 M
ala

ya

System Evaluation Tutor on Software Design

7.6.6 Experience of Working Under Pressure

The pressure comes from the deadline. It is stressful to finish the system and

report by a certain date. Though I feel I can do more for this system, I could

not because of the time constraint. I had to prioritize everything that I have to

do, and do it from the top down. I had to be satisfied with what I managed to

finish. However, this makes me realize the importance of time management.

7.6.7 Independence

I did not have a certain teacher to teach me VB.Net. Instead, I bad to find my

own resources. 1 started with books, Internet sources, and then 1 asked around.

1t really makes me feel independent.

7. 7 Conclusion

This chapter describes about the system in terms of its stren rth , it con traints and

limitations, and enhancement that could be done in the future. It also lists down the

problems encountered in developing thi s 1 rem and the are solved, and knowled re

and experience gained along the whole

This system is able to help students learn about drawing a sequence diagram. It is

easier to use than existing tools to draw the diagram. Hopefully, enhancement will be

done to make this system better.

117

Univ
ers

ity
 of

 M
ala

ya

Bibliography Tutor on Sottware Design

Bibliography

Whitten, .I. L., Bentley, L. D. and Dittman, K. C (2002). System Analysis and Design

Methods, 5111 Ed., McGraw Hill.

Sommerville, l (2001). Software Engineering 6111 Ed., Addison Wesley.

Maciaszek, L. A (200 l). Requirements Analysis and System Design : Developing

Information System with UML, Addison Wesley.

Olson, D. L (2001). Information y .tem Project Management Mc raw Hill.

11 R

Univ
ers

ity
 of

 M
ala

ya

Appendix A

Test Cases

Univ
ers

ity
 of

 M
ala

ya

Appendix A Tutor on Software Design

Test cases for Tutor on Software Design

Ditulis oleh: Fariza binti Halim Tarikh: May 16, 2004

Module: Use case

Unit: I Select use case
Assumotion: I Database is blank (First time use}
No. I Testino Procedure Expected Outout Actual Output
1. Click the uppermost drop down list. Nothing is listed -1. Select use case: -

I 3
Assumotion: I Use cases have been added with no class or seauence yet
2. Click the uppermost drop down list. All use cases are -1. Select use case: -

listed \(3 ' . , ..
Log-11
Loa-out

3. Click 1 use case name. All controls on the All controls on the
Use case name: Register page are enabled page are enabled

displaying any class and blank.
or sequence
associated with the
use case previouslv.

Unit: I Add New Use case
No. I Testino Procedure Ex _ , ... d Ou!l)~t Actual Output -
1. Click Add New button Use case page Is Use case page Is

displayed. displayed.
2. Type a use case name.

Use case name: Register Newly entered use Register, log-In and
3. Olck Add button case names are
4. Repeat steps 2 and 3 twice. listed. Log-out re listed.

Use case names: too-in and Loa-out
5. Oick Sequence tab Newly entered use Register, Log-in and
6. Click the uppermost drop down list case names are Log-out are fisted.

llsted. Univ
ers

ity
 of

 M
ala

ya

Appendix A Tutor on Software Design

Module: Class

Unit: I Select Class
No. I Testino Procedure ~y ed Cutout Actual Output
1. Click the second drop down list Existing classes are From Existing Class:

listed
~ ~
Actrinistr ator

_ DetaisForm
HomePage
Student

2. Choose 3 classes The selected classes Student, HomePage
Classes names: Student, HomePage and are listed in the and DetailForm are
Detail Form listbox. listed in the listbox.

Unit: I Add New Class
No. I Testmo Procedure Expected Outnut Actual Cutout
1. Type a class name in the Create New Tue newly added ConftrmPoge is listeO

textbox. class is listed in the
Class name: ConfirmPage listbox and drop In the list.box but not

2. Ciiek Add down list. in drop down list.

Unit: I Remove Class
No. I Testina Procedure Exoected Cutout Actual Cutout
1. Type a dummy class name In the Create

Newtextbox The newly added Anything Is listed.
Class name: Anything class Is listed.

2. Click Add
3. Ciiek Anything In the llstbox A confirmation dialog A confirmation
4. Ciiek Remove box Is displayed. dialog box Is

disolaved.
5. Oick Csncet Nothlna naooens, Nothlna neooens.
6. Click OK Tue selected dass Is Anything Is no

deleted. longer listed.

Univ
ers

ity
 of

 M
ala

ya

Appendix A Tutor on Software Design

Module: Sequence

Unit: I Add Seouence
No. I Testmo Procedure Exoected Outout Actual Output
1. Click left drop down list in the third section All added classes From Object ; ~

should be listed. \ ..'!.\
Student
HomePage
DetailsForm
ConfirmPaae

2. Choose a class
Oass name: Student

3. Type a message in the centre textbox
Message: Click Reoister

4. Click right drop down list All added classes ToDb"tecl:

sho1,.110 be ustec. {l .:.!
Student
HomePege
DetailsForm
CorfonPaae

5. Choose a class The sequence should Student 0"1ck
Class name: HomePage Register HomePage

6. Click Add to seouence button be listed. ls listed.

The selected
uence is deleted.

ConflrmPage Student
Is no Ion er listed.

1. Choose 1 sequence
Sequence: ConfirmPage Student

2. Click Remove
ns.

Actual Out ut

5. Click OK

A confirmation dialog A confirmation dialog
box Is dlpla~. box Is dlp\ayed.

3. Olck Cancel
4. Repeat steps 1 and 2 A confirmation dialog

box Is di la
A confirmation dialog
box Is di la d.

Univ
ers

ity
 of

 M
ala

ya

Appendix A Tutor on Software Design

Module: Drawing

uences have been added
uence Dia ram

Actual Ou ut
Figure 2

Actual Ou ut
Figure 2 with no
addition of new
sequence and object
class.

Unit: I Save Seauence Diagram
No. I TestlnQ Procedure Expected Outnut Actual Outout
1. With Sequence Diagram tab selected, click A standard save A standard save

File - > Save Seouence dialOQ Is displayed. dlaloo Is disolaved.
2. Choose a folder

Folder: Pie Try on Desktop Diagram Is saved In A diagram named
3. Type a name for the diagram the selected format sequencel Is saved

Name: sequence! with the chosen as sequencel.bmp in
4. Choose an image format name at the selected Pie Try folder on

Format: BMP location. desktop.
5. Oick Save
6. Repeat steps 1 to 5, 8 times. Each time Diagram is saved In A diagram named

with different image formats. the selected formats sequence1 is saved
Image formats: JPEG, GIF, Icon, EMF, with the chosen as sequencel.jpg,
WMf, PNG, Tiff and Ex\f. name at the selected sequence 1.glf,

location. sequencel.lco,
sequence 1.emf,
sequence 1. wmf,
sequencel..png and
sequencel.tif in Pie
Try folder on
desktop.
sequence 1.exif
cannot be viewed.

Univ
ers

ity
 of

 M
ala

ya

Appendix A Tutor on Software Design

Figure J A blank r- ag

Univ
ers

ity
 of

 M
ala

ya

Appendix A Tutor on Software Design

Figure 2 A displa 1 of a .ompl t • s '(JU nee diagram

Univ
ers

ity
 of

 M
ala

ya

Appendix B

User Manual

Univ
ers

ity
 of

 M
ala

ya

Appendix B Tu~or on Sof~ware Design

1.0 Introduction

Tutor on Software Design is a system that shows users how to draw a sequence diagram

for their own software and actually draw the diagram for them. Though there are many

systems that can do more than this system, this system applies a different approach.

Other software use drag and drop method where users have to decide the sequence of

events for their software and where each symbols shouJd go. Tutor on Software Design

onJy requires users to enter their software requirements, and the system will show them

how their sequence diagram will look like.

This user manual document describes the requirements necessury to run the system and

how to use the system.

Univ
ers

ity
 of

 M
ala

ya

Appendix B Tutor on Software Design

2.0 System Specification

This section lists down hardware and software requirements necessary in order to use

Tutor on Software Design.

2.1 Hardware Specification

a Intel Pentium I 00 Mhz

a Memory 64 MB RAM

a Hard disk 100 MB space

o Mouse

o Keyboard

2.2 Software Specification

o Windows 98/M Popcrating s tcm

o Microsoft Access

Univ
ers

ity
 of

 M
ala

ya

Appendix B Tutor on Software Design

3.0 User Guide

This section will show you how to use Tutor on Software Design to learn to draw a

sequence diagram for your own system development.

l. Double click on the Tutor on Software Design's icon.

2. You will get the use case page. To draw the sequence diagram, click on the

Sequence tab.()

Pkl ~
Llfl!ciaa&i.Acicir"jRellllionl UieC-Diaglamj O.Ssesl OanDMllJaml S~~

lrActO.- ~ Ute'Case · ------i,...-\.:._}i;::l:::;._ _
How to.<*-11 use case diagram?

I 1. Fret ldentiy .aors from the ~
1~. PIA the «:IOI name ii tlw 1t!!l
t.n- end dic:k Add 111 \l'NS Emf. To

I
Student Aegostcr rel!l<M! en llClor. llllect the Idol from the lilt
AMW>islralOI Lao-in andclclr. R.rnove.

L~

I
2.. C:.lllXnl ~\R9 - end r-1
them i't the lillt tlltdboK. To add. click Add or

I
. Pf*• ni.. To"""11Ml,Mledltieu.c•e

fr11111 IM hi and clck Rl!l'hO'ie biAton
:t Third, ii.termine the~
~ ectou end utt CllMll, O! ect0t• With
<Jlhtw.ctoit,l)l~Ola-.~

11 :.:;;;,;:M

Add Remo~ /

Figure I U'Je case page

3. You will get a page like Figure 2.

Univ
ers

ity
 of

 M
ala

ya

Appendix B

4.

5.

6.

7.

8.

Tutor on Software Design

I
"i 0 ~'Dteol:

,aJJ 111 Sc.'(l,LllC"

, l 0

Select wt1ch use case thatJl(lU
aawthe ~~am fol. Tm

.__..., daneb~ il~C6'e IW1'tll
from the eotrtJo bOK °' you can C1Sate" ,_
use caoe l you.skC:iped drawi-Q the use case
before.

2. Nm«, select objecis that you.tmk
Ille .oatoci5ecl Mil the c:hosen USC case,
T!Wcan be dona by~ a de= Of aclOI
name from the canbo boK tlr you c!!l'l «&ale
a,_ one the ~.the name of the,_
object n lhe teldbox and eick Add New
WUn

3. Fll'\albl1 detemWie the~ d
~ tobe sstt~ ~siithe
11-irll section

The to end horn l*1 be del....red

I by ~the object nirre from the con-ho
lxlll Ullllted ''ftmt «iiect : " Md "To Object''.

I
The message to be peta.ed mdl be p.c ii
the nidcle '9otlx»c.
4. To view lhe '*IU8fice di~a111.
dic\o. on In& ~ \lib.

Choose a use case, which you want to draw the equence diagram for. 8
If your use case is not listed, click the Create New button 8 . You will be
back to the first page you get when ou tarted (Figure l).

Choose classes to be associated with your selected u e cu ()

If your desired class is not listed type the name of the class at 8 and

clickAdd8

To remove a class click on the class name in the listC) and click

Remove button.0 This wil\ affect any sequence involving the

removed class. Therefore, you will be asked to confirm your deletion. Click

k t confirm or Cancel if not to confirm.

Univ
ers

ity
 of

 M
ala

ya

Appendix B Tutor on Software Design

l . OK l Cancel

Figure 3 Confirm Class Delete dialog box

10.

To add the sequence of events for your system, choose from which object~

to which object ~1 and type in the message 0. Click Add to

12 Sequence button.

To remove any sequence, click on the sequence in the i0 and
(,:;-\

Remove button.~

click

9.

11 . Confirm to delete.

12. To view the diagram, click Sequence Diagram tab.® You will have a

page like shown in Figure 4.

Univ
ers

ity
 of

 M
ala

ya

Appendix B Tutor on Software Design

Fi ure ../ S quenc iagram pag

13. To save the produced diagram, click File-> Save equence. hoose a folder,

set a name, choose an image format and click save.

14. To exit, click cross at the top right comer or lick File - exit.

4.0 Summary

This user manual is actually not needed, as the system is very easy to understand.

However, this document is made for references. Hopefully, Tutor on Software Design has

been a great help.

6

Univ
ers

ity
 of

 M
ala

ya

