
SOAP PERFORMANCE ENHANCEMENT FOR HIGH VOLUME
MESSAGING

ALI BABA DAUDA

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2018

Univ
ers

ity
 of

 M
ala

ya

SOAP PERFORMANCE ENHANCEMENT FOR HIGH VOLUME

MESSAGING

ALI BABA DAUDA

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF SOFTWARE

ENGINEERING

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2018
Univ

ers
ity

 of
 M

ala
ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ali Baba Dauda

Matric No: WGC130023

Name of Degree: Master of Software Engineering

Title of Thesis: SOAP Performance Enhancement for High Volume

Messaging

Field of Study: Web Services

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;

(6) I am fully aware that if in the course of making this Work, I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature 12.11.2018

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

The emergence of high-volume data exchange like business-to-business and

computational sciences that are mission critical and always persist over time have

exacted distributed systems and applications to be fast. SOAP is one of the best

protocols using XML to exchange message but the XML is too verbose and slows the

communication process. To this end, message exchange accumulates overhead and high

response time resulting to slow communication and message lost during the

transmission. Therefore, reducing the response time and overhead will enhance the

communication process. To achieve this aim, LZ77 compression algorithm is modified

to encode more symbols. The algorithm is then integrated into two Web services with

HTTP and JMS bindings. The HTTP Web service as the benchmark and the JMS as the

prototype Web service. For both Web services, the server holds provider, compressor

and controller classes and the client contain consumer and decompressor classes. The

client invokes the server to establish WSDL contract and communicate via the relevant

protocol. Two messages formats, normal and compressed (modified algorithm) with the

size ranging 1MB - 22 MB were generated and executed 50 times in both web services.

The performance effects of the message formats for the Web services were recorded.

The metrics of the Web services used are the payload overhead, server response time,

client response time and compression/decompression overhead. The payload overhead,

server response time and compression overhead were analyzed at the server side. While

client response time and decompression overhead were analyzed at the client side.

Average values of the metrics were calculated and the transaction response time is

obtained as the sum of response times and the overheads at both endpoints. The metrics

were plotted against the message sizes and the effects were analyzed. The findings

demonstrated that the compressed JMS binding on SOAP messages recorded low

response time and low overhead compared to the compressed HTTP binding. In the

Univ
ers

ity
 of

 M
ala

ya

iv

compressed HTTP binding, the internal process at the client side regularly claims

memory while creating available space for incoming messages resulted in producing of

spikes leading to high overhead. Out of the 50 executions for 12 transactions,

compressed HTTP binding delivery failed 6 times, and compressed JMS binding failed

2 times. While for the normal HTTP binding delivery failed 5 times, and normal JMS

binding failed 2 times. The overall findings observed that with the modified LZ77

algorithm, SOAP over JMS has proven to be better than the SOAP over HTTP. The

SOAP (with the modified compression algorithm) over JMS is a good technique for

exchanging high volume messages when low response time and guarantee of delivery

are needed in the communication.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Kemunculan pertukaran data jumlah tinggi seperti perniagaan ke perniagaan dan

sains pengkomputeran yang misi kritikal dan sentiasa berterusan dari masa ke masa

telah mendesak sistem dan aplikasi teragih supaya sentiasa bertindak dengan pantas.

SOAP adalah salah satu protokol terbaik yang menggunakan XML untuk pertukaran

mesej tetapi XML terlalu meleret dan melambatkan proses komunikasi. Akibatnya,

overhead pertukaran mesej berkumpul dan masa tindak balas yang tinggi melambatkan

komunikasi dan mesej hilang semasa penghantaran. Oleh itu, mengurangkan masa

tindak balas dan overhead akan memperbaiki proses komunikasi. Untuk mencapai

matlamat ini, algoritma pemampatan LZ77 diubahsuai untuk mengekodkan lebih

banyak simbol. Algoritma ini kemudian diintegrasikan ke dalam dua perkhidmatan Web

dengan pengikatan HTTP dan JMS masing-masing. Perkhidmatan Web HTTP

digunakan sebagai penanda aras dan JMS sebagai perkhidmatan Web prototaip. Untuk

kedua-dua perkhidmatan Web, pelayan memegang kelas pembekal, pemampat dan

pengawal manakala pelanggan mengandungi kelas pengguna dan penyahmampatan.

Pelanggan memanggil pelayan untuk menubuhkan kontrak WSDL dan berkomunikasi

melalui protokol yang berkaitan. Dua format mesej, biasa dan termampat dengan

(algoritma diubah suai) bersaiz antara 1MB - 22 MB dihasilkan dan dilaksanakan 50

kali dalam kedua-dua perkhidmatan Web. Kesan format mesej terhadap prestasi

perkhidmatan Web direkodkan. Metrik perkhidmatan Web yang digunakan adalah

overhead payload, masa tindak balas pelayan, masa tindak balas pelanggan dan

overhead mampatan / penyahmampatan. Overhead payload, masa tindak balas pelayan

dan overhead mampatan dianalisis di sisi pelayan, manakala masa tindak balas

pelanggan dan overhead penyahmampatan dianalisis di sisi pelanggan. Nilai purata

metrik dikira dan masa tindak balas transaksi diperolehi sebagai jumlah masa tindak

balas dan overhed pada kedua-dua titik hujung. Metrik telah diplot terhadap saiz mesej

Univ
ers

ity
 of

 M
ala

ya

vi

dan kesannya dianalisis. Hasil penemuan menunjukkan bahawa pengikat JMS yang

termampat pada mesej SOAP mencatatkan masa tindak balas yang rendah dan overhed

rendah berbanding dengan pengikatan HTTP termampat. Dalam pengikatan HTTP yang

termampat, proses dalaman di sisi pelanggan selalu menuntut ingatan semasa

menyediakan ruang untuk mesej yang masuk mengakibatkan terhasilnya pancang yang

membawa kepada overhead yang tinggi. Daripada 50 pelaksanaan dengan 12 transaksi,

penghantaran ikatan HTTP termampat gagal 6 kali, dan penghantaran ikatan JMS yang

termampat gagal 2 kali. Sementara itu, penghantaran ikatan HTTP biasa gagal 5 kali,

dan ikatan JMS biasa gagal 2 kali. Penemuan keseluruhan mendapati bahawa dengan

algoritma LZ77 yang diubahsuai, SOAP dengan JMS telah terbukti lebih baik daripada

SOAP dengan HTTP. SOAP (dengan algoritma LZ77 yang diubah suai) dengan JMS

adalah teknik yang baik untuk pertukaran mesej jumlah tinggi apabila masa tindak balas

yang rendah dan jaminan penghantaran diperlukan dalam komunikasi.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

First and foremost, I thank Almighty Allah for the respite to breath to this moment.

Alhamdulillah!

A worthy of thanks to my able Supervisor Associate Professor Dr. Chiew Thiam

Kian. For which, without his ardent interest, dedication and unceasing and precise

comments and suggestions, this dissertation might not have produced the achieved

goals. I must declare my appreciation.

I acknowledge the help of the faculty staff, especially Dr. Chiam Yin Kia, Professor

Dr. Lee Sei Peck and Dr. Mumtaz Begum Mustapha for their guidance and assistance in

the course of this research.

My brothers and sisters, thank you for your immense effort for bringing to this level.

You have contributed a lot on this study and throughout my life by providing with all

necessities despite I am parent-less. No! With you I understand I have them.

I appreciate the University of Maiduguri for sending me to study and upgrade my

knowledge in both theory and practice.

Finally, I thank my friends for cheering me through their well-wishing, prayer and

support at the course of this research.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

ABSTRACT ... iii

ABSTRAK .. v

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. xii

LIST OF TABLES ... xiv

LIST OF ABBREVIATIONS ... xv

LIST OF APPENDICES .. xvi

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction.. 1

1.2 Background of Study ... 3

1.3 Problem Statement ... 5

1.4 Research Questions .. 6

1.5 Research Objectives... 6

1.6 Research Methodology .. 7

1.7 Significance of Study ... 7

1.8 Thesis Outline .. 8

CHAPTER 2: LITERATURE REVIEW .. 9

2.1 Introduction.. 9

2.2 Web Services ... 9

2.3 Service-oriented Architecture .. 10

2.4 Web Service Layers ... 12

2.4.1 SOAP (Simple Object Access Protocol) .. 12

Univ
ers

ity
 of

 M
ala

ya

ix

2.4.2 WSDL (Web Services Description Language)... 12

2.4.3 UDDI (Universal Description, Discovery, and Integration) 13

2.4.4 HTTP (Hypertext Transfer Protocol) ... 13

2.5 Overview of SOAP .. 13

2.5.1 SOAP Message Binding ... 15

2.5.2 SOAP Message Binding Style .. 15

2.6 SOAP Performance Approaches.. 16

2.6.1 client-side Approach ... 17

2.6.2 Differential Serialization .. 19

2.6.3 Server-side Approach ... 20

2.6.4 Server-side Caching ... 20

2.6.5 Differential Deserialization .. 21

2.6.6 Message Encoding/Compression Approach ... 23

2.7 Message Streaming .. 26

2.8 Limitations of the Approaches in the Literature .. 28

2.9 Data Compression .. 30

2.9.1 Types of Data Compression ... 30

2.9.2 Text Compression ... 31

2.9.3 Statistical Text Compression .. 31

2.9.4 Dictionary Text Compression .. 32

2.10 Summary .. 36

CHAPTER 3: RESEARCH METHODOLOGY .. 37

3.1 Introduction.. 37

3.2 Research Conception ... 37

3.3 Review of Related Literature ... 37

3.4 Identification of Research Gap .. 38

Univ
ers

ity
 of

 M
ala

ya

x

3.5 System Requirement Analysis and Design .. 39

3.6 Experiment Setup... 39

3.6.1 Hardware Setup .. 40

3.6.2 Software Setup ... 40

3.6.2.1 Benchmark System Setup .. 41

3.6.2.2 Prototype System Setup .. 42

3.7 Data Compression Algorithm Modification .. 44

3.7.1 The LZ77 Compression Algorithm .. 44

3.7.2 Modified LZ77 Compression Algorithm.. 49

3.8 System Implementation and Execution ... 53

3.9 Summary .. 54

CHAPTER 4: SYSTEM REQUIREMENT ANALYSIS, DESIGN AND

IMPLEMENTATION ... 56

4.1 System Analysis .. 56

4.1.1 Use Case ... 56

4.1.2 Activity Diagram .. 58

4.1.3 Sequence Diagram .. 58

4.2 System Design ... 60

4.2.1 Class Diagram .. 60

4.2.2 System Components ... 62

4.3 System Implementation ... 63

4.3.1 Web Services Implementation .. 63

4.3.2 System Execution and Evaluation .. 65

4.3.2.1 The Web Services calculation for the response time and the

overhead .. 67

4.4 Summary .. 70

Univ
ers

ity
 of

 M
ala

ya

xi

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 71

5.1 Introduction.. 71

5.2 SOAP over HTTP Protocol ... 71

5.2.1 Normal Payload Response Time .. 71

5.2.2 Compressed Payload Response Time ... 74

5.3 SOAP over JMS Protocol .. 77

5.3.1 Normal Payload Response Time .. 77

5.3.2 Compressed Payload Response Time ... 81

5.4 Comparison between SOAP over HTTP and SOAP over JMS 84

5.4.1 Normal Payload for SOAP over HTTP vs SOAP over JMS 84

5.4.2 Compressed Payload for SOAP over HTTP vs SOAP over JMS 88

5.5 Messaging Communication Delivery Analysis ... 90

5.6 Summary .. 94

CHAPTER 6: CONCLUSION .. 95

6.1 Introduction.. 95

6.2 Research Aims and Objectives .. 95

6.2.1 Research Objective 1 .. 95

6.2.2 Research Objective 2 .. 95

6.2.3 Research Objective 3 .. 97

6.3 Contributions ... 98

6.4 Limitations ... 99

6.5 Future Work ... 99

References ... 101

Appendices .. 109

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF FIGURES

Figure 1.1: SOAP request/response web services .. 2

Figure 1.2: XML Web services .. 3

Figure 1.3: Research questions and objectives mapping .. 7

Figure 2.1: Service-oriented Architecture .. 11

Figure 2.2: Web services layers .. 12

Figure 2.3: SOAP messaging structure ... 14

Figure 3.1: Literature review process for the SOAP performance enhancement for large
volume messaging ... 39

Figure 3.2: Web services request/response. Services are provided by the server based on
corresponding client request ... 41

Figure 3.4: The flow of the research methodology process for the SOAP performance
enhancement for large volume messaging .. 54

Figure 4.1: Use case diagram for the SOAP performance Web services enhancement
showing the detailed use cases and the actors of the Web services 57

Figure 4.2: Activity diagram for the SOAP performance Web services enhancement
showing the dynamic flow of activities of the Web services. ... 58

Figure 4.3: Sequence diagram for the SOAP performance Web services enhancement
showing the objects involved in the request-response implementation 59

Figure 4.4: Class diagram for the SOAP performance Web services enhancement
showing the classes involved in the HTTP web services implementation...................... 61

Figure 4.5: Class diagram for the SOAP performance Web services enhancement
showing the classes involved in the JMS web services implementation 61

Figure 4.6: Component diagram for the SOAP performance Web services enhancement
showing the major components for achieving the functionalities of the implementation
of HTTP web services ... 62

Figure 4.7: Component diagram for the SOAP performance Web services enhancement
showing the major components for achieving the functionalities of the implementation
of JMS web services.. 62

Figure 4.8: SOAP messaging architecture for large volume with modified LZ77
compression algorithm .. 64

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 4.9: Flowchart for the implementation of SOAP/HTTP and SOAP/JMS 65

Figure 4.10: Workflow for the Web services showing how the endpoints interact and
how the metrics for the services were captured for the analysis 66

Figure 5.1: SOAP over HTTP response time for normal payload transaction 73

Figure 5.2: SOAP over HTTP server, client, compression, decompression and payload
overhead for compressed payload transaction response times .. 75

Figure 5.3: SOAP over JMS response time for normal payload transaction comprising
payload generation overhead time, server, client and overall transaction response times
 ... 79

Figure 5.4: SOAP over JMS response time for compressed payload transaction
comprising payload generation overhead time, server, client, compressed, decompress
and overvall transaction response times ... 82

Figure 5.5: SOAP over HTTP vs SOAP over JMS response time for normal payload
transactions response times ... 86

Figure 5.6: Compressed payload transactions response times for 89

Figure 5.7: Normal payload successful delivery for SOAP over HTTP and SOAP over
JMS ... 91

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF TABLES

Table 2.1: Some worthy works on SOAP performance improvement approaches....... 299

Table 3.1: Hardware requirements .. 40

Table 3.2: Software system specifications used in the study .. 41

Table 3.3: Benchmark client-server SOAP web services with HTTP protocol 42

Table 3.4: Prototype client-server SOAP Web services with JMS protocol................... 44

Table 3.5: LZ77 Data compression technique showing the search buffer of size 8, look-
ahead buffer of size 9 and window size of 17. .. 46

Table 3.6: LZ77 process of symbol encoding for the input ‘aataaaattatatat’ 47

Table 3.7: LZ77 process of symbol decoding for the encoded input ‘aataaaattatatat’ ... 48

Table 3.8: Modified LZ77 process of symbol encoding for the input ‘aataaaattatatat’ .. 50

Table 3.9: Modified LZ77 process of symbol decoding for the encoded input
‘aataaaattatatat’ ... 51

Table 3.10: Pseudocode of modified LZ77 compression algorithm 53

Table 4.1: Performance metrics calculations .. 67

Table 5.1: Response time for normal payload (SOAP over HTTP) 72

Table 5.2: Response time for compressed payload (SOAP over HTTP) 75

Table 5.3: Response time for normal payload (SOAP over JMS) 78

Table 5.4: Response time for compressed payload (SOAP over JMS)........................... 81

Table 5.5: Normal payload transaction response times for SOAP over HTTP vs SOAP
over JMS. .. 85

Table 5.6: Compressed payload transaction response times for SOAP over HTTP and
SOAP over JMS .. 88

Table 5.7: Normal and compressed payloads success rate for SOAP/HTTP and
SOAP/JMS .. 91

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF ABBREVIATIONS

API: Application Programming Interface

BXSA: Binary XML for Scientific Applications

CORBA Common Object Request Broker Architecture

DCOM: Distributed Component Object Model

HTTP: Hypertext Transfer Protocol

JMS: Java Messaging Services

JVM: Java Virtual Machine

LAB: Look-ahead Buffer

LZ77: Lempel and Ziv 1977

LZ78: Lempel and Ziv 1978

LZW: Lempel–Ziv–Welch

MEP: Message Exchange Protocol

RMI: Remote Method Invocation

RPC: Remote Procedure Call

SOA: Software Oriented Architecture

SOAP: Simple Object Access Protocol

SB: Search Buffer

UDDI: Universal Description, Discovery, and Integration

WSDL: Web Service Description Language

WWW: World Wide Web

XML: Extensible Markup Language

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF APPENDICES

Appendix A: Java Implementation files, endpoints and addresses ………...………...109

Appendix B: Modified LZ77 compression algorithm codes .. 110

Appendix C: Sample raw data sent by the server ... 114

Appendix D: Sample raw data received by the client ... 115

Appendix E-1: Raw data for normal payload for SOAP over HTTP server execution 116

Appendix E-2: Raw data for normal payload for SOAP over HTTP received by the

client .. 117

Appendix F1: Raw data for compressed payload for SOAP over HTTP server execution

 ... 118

Appendix F2: Raw data for compressed payload for SOAP over HTTP received by

client .. 119

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Today we depend on the Internet for varieties of information and services. The

Internet has shaped human endeavor and simplified many challenges that seemed

impossible. Individuals and organizations have leveraged the Internet to obtain services

in order to maximize output, evade time waste or to reduce cost. Overwhelmingly, over

the time, the Internet not only shares information but also shares computer resources,

applications and provides services across communicating entities.

Services are provided by application services referred to as Web services. This is an

open standard summation of protocols for integrating applications and extending data

within the applications by leveraging the speed and reliability of the World Wide Web

(WWW) (Nitin, Paul, Davies, & David, 2016). This provides an avenue for machines or

applications on the web to effectively communicate with each other. The applications

process and communicate complex routine messages easily over the Internet targeting to

achieve reduced costs and increased delivery time within the constraint of fewer

resources.

Yu and Chen (2003) defined Web services as a collection of protocols comprised of

Simple Objects Access Protocol (SOAP), Web Service Description Language (WSDL),

Universal Description, Discovery and Integration (UDDI) and the Extensive Markup

Language (XML). Messages are formatted and tagged by the XML and use the SOAP

as a protocol to transport the XML message over the Hypertext Transport Protocol

(HTTP). The WSDL, then describes the SOAP conveyed XML as web services and

how it will be contained and transported to be used by applications. The process of

SOAP transport by wrapping and sending the XML messages over the HTTP has

resulted in high processing time and consumes network bandwidth. This always incurs

Univ
ers

ity
 of

 M
ala

ya

2

overhead at both application and network resources. The overhead cost has developed a

need to enhance the SOAP to perform well by maximizing the delivery speed (Tekli,

Damiani, Chbeir, & Gianini, 2012). Figure 1.1 shows the request/response cycle in Web

services.

Figure 1.1: SOAP request/response Web services (W3Schools, 2014b)

Various SOAP performance improvement techniques have been developed aiming to

reduce the XML size or the message size to be delivered (Mohamed and Zeki, 2017). In

spite of its hindered performance, SOAP has provided a promising platform by

leveraging the Internet to allow web services to communicate via its standardized

protocol using the loosely coupled implementation. Thus, it has become a focus for

software performance engineers to improve its performance for better and effective

output (Chow, Meisner, Flinn, Peek, & Wenisch, 2014).

In order to further improve the SOAP Web services performance, this research

intends to improve the performance of the SOAP by enhancing large-volume messages

performance. This will help in high-volume message delivery with minimal overhead

across web services.

Univ
ers

ity
 of

 M
ala

ya

3

1.2 Background of the study

The Web is witnessing an explosion of information rapidly and information

processing is taking a wider dimension. Information is processed on different machines

and stored on different machines for instance, in cloud computing and data centers.

Different middleware technologies have been used to send and receive information by

the communicating applications (Iqbal, Shah, James, & Cichowicz, 2013).

Figure 1.2: XML Web services (Mohamed and Wijesekera, 2012)

Mutange, Okeyo, Cheruiyot, Sati, & Kalunda (2014) accorded that among the

middleware technologies, Web Services are becoming the order of transactions in the

field of distributed applications, with growing number of domains involving in

composition of web services. This provides machine-to-machine interoperability

communication across the web using XML-based standards to create and consume

services by the provider and the consumer applications respectively (Juric, Rozman,

Brumen, Colnaric, & Hericko, 2006). Figure 1.2 shows the XML web services provider

as well the consumer and how the web services interact to produce the communication

by sending XML/HTML based contents.

Univ
ers

ity
 of

 M
ala

ya

file:///C:/Users/HP%20USER/Desktop/1%20Thesis%20corrections/Recent%20references.docx%23_ENREF_4

4

 SOAP as a major protocol in Web services, has been the vital building block in

distributed application development where its functionality is deployed as a service via

the Internet or intranet. SOAP XML-based implementation over HTTP is widely

accepted to be used in data transfer by giving access to services on the web to

communicate with each other with no constraint to any protocol, platform, operating

system or programming language (Perez-Castillo, Guzman, Caballero, & Piattini, 2013;

Zimmermann, Tomlinson, & Peuser, 2012).

Data are sent and received in formatted form as XML document in every transaction

across the communicating Web services, which are embedded and transported as part of

wordy XML (Pawar and Chiplunkar, 2017). As a result of its verbosity, XML has been

a major bottleneck in the SOAP performance when sending or receiving data and is

considered slower than its competing technologies like CORBA and DCOM (Isaac and

Devi, 2014; Tekli et al., 2012).

Many studies have been conducted on Web services at both server and client sides to

improve performance in order to minimize delivery time and enhance output quality

(Kalyani, 2012). As reviewed by Abbas, Bakar and Ahmad (2014) and Pavan, Sanjay,

Karthikeyan and Zornitza, (2013), SOAP performance improvement has been

conducted on variety of data to justify its significance. Approaches such as data

caching, serialization and deserialization as well as XML data compression

(Massimiliano, Filippo, Xiang, & Ingolf, 2013) have been implemented to cater for

XML’s shortcoming. Quality of Service performance metrics; response time,

throughput and payload on large scale enterprise are still not fully ascertained by

researchers (Bosin, Dessì, & Pes, 2011).

Univ
ers

ity
 of

 M
ala

ya

5

1.3 Problem Statement

Large number of data are increasingly deployed and exchanged over the Internet.

Applications and services over the web interact and communicate to share and transfer

messages (Mutange et al., 2014). Enterprises applications in data centers and the

emergence of Software as a Service (SaaS) in cloud computing has led to the continuous

transfer of high volume of data across applications on the web. Consequently, this

exchange demands speed and guarantee of delivery to the requesting

application/services (Val, Garcia-Valls, & Estevez-Ayres, 2009).

Web services provides an open standard protocol for interoperability among nodes

(Kumari and Rath, 2015). SOAP as a major protocol in the Web services, provides

inter-communication among applications using XML-based messaging over the HTTP

(Abbas et al., 2014). Despites its popularity as a web protocol, the XML in SOAP has

generated a lot of concern over its verbosity that affects the SOAP performance

(Mutange et al., 2014; Pavan et al., 2013). As such, XML is marked as the bottleneck in

effective SOAP Web services’ delivery (Isaac & Devi, 2014; Pirnau, 2010). The XML

verbosity generates communication overhead and high response time in communication.

Fu, Belqasmi and Glitho (2010) reported that HTTP is the basic SOAP Web services

transportation protocol but is traditionally not a suitable candidate for transmission of

high volume data in distributed applications. Nonetheless, SOAP over HTTP does not

guarantee delivery of message as such it is very difficult to attest the transfer of critical

and sensitive messages.

Hence, there is a need to address the issue due to the impending huge amount of

continuous growing data expected on the web. This research will explore the

performance of SOAP Web services on large payloads to improve the performance.

Univ
ers

ity
 of

 M
ala

ya

6

1.4 Research Questions

Three research questions were designed in order to meet the objectives of this

research accordingly.

RQ1: What is the performance effect of high payload on SOAP Web services’

response time?

RQ2: What is the response time to successfully deliver a high payload and the

overhead per transaction?

RQ3: Does the implemented approach improve the Web services response time and

overhead for the high payload messages?

1.5 Research Objectives

This research deliberates on enhancement of SOAP performance especially for high

volume messaging. To achieve the goal, the following objectives are set to accomplish:

RO1: To implement an approach for high payload exchange in SOAP Web services.

RO2: To determine the high payload response time and overheads in the

implemented approach.

RO3: To evaluate the performance of the implemented approach and prototype in

terms of response time and overhead.

Figure 1.3 shows the mapping of each research question to the research objective.

 Univ
ers

ity
 of

 M
ala

ya

7

Figure 1.3: Research questions and objectives mapping

1.6 Research Methodology

The aim of this research is to implement a compression approach to send/receive

high payload messages.

Web Services and Java based JMS is chosen as the framework. Two web services

were created; SOAP over HTTP as a benchmark web service and SOAP over JMS as

the experimental web service. LZ77 text compression algorithm is modified to

accommodate more encoding symbols and then integrate into the two web services. The

same message request is used for both SOAP over HTTP and SOAP over JMS web

services to study the effect of the modified algorithm. The message is generated and

increased and the response time, computing overhead and message size are monitored

and measured for each transaction. The metrics were collected by taking the average of

50 trials in each transaction. Appendices E1 – F2 provide the samples of the metrics and

how each metric was calculated.

1.7 Significance of Study

The approach proposed in this research will add to the approaches already discussed

in the literature. Hence, add to the efforts made by researchers in improving the

performance of SOAP. The proposed approach is expected to improve delivery time by

Univ
ers

ity
 of

 M
ala

ya

8

reducing the transaction response time and the computing overhead at both the service

producer and the service consumer.

The outcome of this study will provide developers, researchers as well IT analyst

with an insight of high-volume messaging across Web services standards.

1.8 Thesis Outline

The thesis is presented in six (6) chapters. Chapter 1 provides an overview of the

SOAP performance enhancement for high-volume message transaction. This comprises

of the introduction, study background, the statement of the study problem, significance

of the study, research questions, research objective, overview of research methodology,

significance of study and the thesis outline.

Chapter 2 of the thesis constitutes the literature review and basic theory of the

concept of the Web services. Approaches for improving SOAP; message caching,

differential serialization; differential deserialization and data compression are also

presented in this chapter.

Chapter 3 presents the research conception, the experimental setup, the modified

LZ77 algorithm, system implementation and execution. Chapter 4 provides the system

requirement analysis, system design, and system implementation. Chapter 5 offers the

results of the experiments and the discussion of the results. Chapter 6 concludes the

research by highlighting the research contributions, research limitations and

recommendations for future work.

Univ
ers

ity
 of

 M
ala

ya

9

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The aim of this chapter is to provide a thorough analysis of related references in the

literatures, to provide a clear understanding of the different approaches and the methods

used. Since SOAP is a major communication facilitator in web services architecture,

improving its performance has been a focal point of most researchers in web service

message deployment. SOAP performance improvement has been experimented on

variety of data to justify its significance in web services. Server-side and client-side

performance techniques are deployed with attempts to improve the performance

(Massimiliano et al., 2013). Message compression/decompression is also applied in the

sender/receiver exchange to improve the SOAP performance (Al-Shammary and Khalil,

2010).

The approaches, techniques and styles utilized by key contributing researchers in the

area are studied. Performance metrics; response time, throughput and workload on large

payload messaging are still not fully explored by researchers. Although, these literatures

cover different approaches and techniques to improve the SOAP performance, this study

is aimed to build on this body of knowledge by enhancing the SOAP performance on

large volume messages. This chapter is categorized in the following order: web services,

service-oriented architecture, SOAP implementation, SOAP performance improvement

approaches, message streaming process, limitation of existing approaches, data

compression, and types of data compression, data compression techniques and finally

the summary.

2.2 Web Services

Web services are collection of protocols for enterprise applications that include

programming, business logics and data that are communicated using HTTP protocol

Univ
ers

ity
 of

 M
ala

ya

10

over the Internet (Maya and Ugrasen, 2012). As a collection it provides a set of

principles for interacting between application components across different frameworks,

operating systems and platforms (Ahmad, Sarkar, & Debnath, 2014).

Web Service transforms web applications to the advanced level of its functionality

(W3Schools, 2014a). It provides a standard way to realize system integration effectively

using network (Vandikas, Quinet, Levenshteyn, & Niemöller, 2011). It provides

machine-to-machine interoperability communication across the web using an XML-

based standard to create and consume the services by the provider and the consumer

(Eugène and Fréjus, 2012; Vandikas et al., 2011).

Web Service is described as the boundary between the applications and the real

world serving as an interface with defined operations to implement the business logic of

an application delivered through a standard Internet protocols (Wagner, Roller, Kopp,

Unger, & Leymann, 2013). It uses XML-based protocol: the SOAP, WSDL and UUDI

to connect existing software applications (Hertis and Juric, 2014). Despite prevalent

advocacy of web services, there are challenges that require proficient considerations.

For instance, latency time during invocation may cause unpredictable result or even

eventually lead to loss of message (Aihkisalo and Paaso, 2012).

2.3 Service-oriented Architecture

A standard for defining the web services is the service-oriented architecture (SOA)

which is a technique that incorporates the interconnection between loosely coupled and

flexible software components that are meant to operate independently (Katsikogiannis,

Kallergis, Garofalaki, Mitropoulos, & Douligeris, 2018). The SOA supports the

implementation of component reuse, scalability and flexibility. According to Gerić and

Vrček (2009), generally, SOA is a set of standards for developing a unified and

interoperable services and a component model for defining web services architecture. It

Univ
ers

ity
 of

 M
ala

ya

11

has attracted popularity due to its architectural style in message-centric applications in

distributed systems. SOA is agile and flexible and has competitive advantage in various

context (Bu, 2011). It incorporates the relations among service provider, service

requester and service registry with their respective actions of publish, bind and find

Abhaya, Tari, & Bertok, 2012; Koulouzis, Cushing, Karasavvas, Belloum, & Bubak,

2012).

Figure 2.1: Service-oriented Architecture (Newcomer and Lomow, 2005)

Service provider creates the web services and to publish the services using the

WSDL descriptive content at the registry, and to be found and consumed by the service

requester. Figure 2.1 shows how the SOA is utilized by the service provider and service

consumer in the web services transaction.

A service requester uses the UDDI registry to find a published service description by

the registry and to bind or invoke the service provider.

Service registry is responsible for registering and arranging published service and

allows both the service requester and provider to interact with each other and establish a

transaction.

Univ
ers

ity
 of

 M
ala

ya

12

2.4 Web service layers

Web services layers is a collection of layers on protocol standards that support XML-

based communication across network. Banded together, these layers constitute a web

service for publishing, describing, finding and transferring data effectively among

services.

Figure 2.2: Web services layers (Newcomer and Lomow, 2005)

2.4.1 SOAP (Simple Object Access Protocol)

SOAP is an XML based protocol for accessing Web services (Maya and Ugrasen,

2012). It uses a set of XML information and HTTP over the network to exchange

information across (Katsikogiannis, et al., 2018). It serves as the standard format for

exchanging data in form of messaging over the HTTP. SOAP is the third layer of web

services as shown in Figure 2.2.

2.4.2 WSDL (Web Services Description Language)

The WSDL describes the overall information that is effective for transmission in a

request/response for a particular Web services (Hertis and Juric, 2014). As shown in

Figure 2.2, WSDL is the second layer of web services serving basically as a standard

Univ
ers

ity
 of

 M
ala

ya

13

XML file that contains well-defined information on all associated request/response

transactions in SOAP.

2.4.3 UDDI (Universal Description, Discovery, and Integration)

The UDDI serves as a register where firms worldwide can create their lists on the

Internet to publish and discover each other (Hertis and Juric, 2014). It provides a central

control of Web services components and streamlines services with each other to publish

and consume data effectively. UDDI is the first layer of web services as shown in

Figure 2.2.

2.4.4 HTTP (Hypertext Transfer Protocol)

HTTP is a strategy for encoding and transmitting data between a service provider and

service requester over the Internet (Iqbal et al., 2013; Mohamed and Wijesekera, 2012).

HTTP is fourth layer in the web services layer as seen in Figure 2.2. This is an

application level protocol following the request-response archetype where the requester

gets information from the provider based on the requester’s request.

2.5 Overview of SOAP

SOAP is a lightweight XML-oriented messaging protocol for sending encoded

information across the network (Asadollah and Chiew, 2011). Prior to their dispatch,

web services request and response messages are converted into a more portable format -

XML that can be sent across the network. SOAP is an effective way to access web

services and send information via the distributed systems. Although, DCOM and

CORBA are conventional object middleware of communicating messages in distributed

system but are not designed to work with HTTP. SOAP communicates XML messages

because of its platform, protocol and language independence.

Univ
ers

ity
 of

 M
ala

ya

file:///C:/Users/HP%20USER/Desktop/1%20Thesis%20corrections/Recent%20references.docx%23_ENREF_5
file:///C:/Users/HP%20USER/Desktop/1%20Thesis%20corrections/Recent%20references.docx%23_ENREF_2

14

SOAP as a messaging protocol coordinates programs operating on distinct

platforms and different environments to communicate and operate together across

multiple protocols such FTP, SMP and HTTP (Kalyani, 2012). Figure 2.3 shows the

SOAP messaging structure.

Figure 2.3: SOAP messaging structure (Newcomer and Lomow, 2005)

i. SOAP Envelope: Always use as <envelope> in the SOAP messaging, is the

core element in all SOAP messages. SOAP <envelope> is a highly flexible

basic unit of message exchange from one SOAP processor to another. It is

comprised of two parts: the non-compulsory <header> and a compulsory

<body>.

ii. SOAP Header: The <header> of the SOAP <envelope>, although optional

but is utilized in pushing application associated information along the

message path and to be processed by the SOAP. The associated information

is not payload related and are organized in Header blocks with individual

defined schema.

Univ
ers

ity
 of

 M
ala

ya

15

iii. SOAP Body: This carries the actual XML-encoded application’s vital

information. The <body> is a compulsory part of the SOAP envelope as it

carries the payload. The information encoded in <body> is the actual

information intended to reach the receiver. The WSDL document is used to

define the schema of the SOAP body.

iv. SOAP Fault: The SOAP <fault> as it implies, is a sub-element part of the

SOAP <body>. Its role is to track and report errors occurred during the

processing of any SOAP message. The <fault> is generally used for error

trapping and reporting. Major work of <fault> is to identify wrong formatting

or non-existing method call.

2.5.1 SOAP Message Binding

Binding is the real protocol and message formats for the operations and messaging

described for a specific port type. The SOAP binding composed of system components

that permit SOAP messages to be efficiently exchanged by means of the transport

protocol. These mechanisms define the format of the message and the underlying

protocol specifics to a web service. The SOAP binding element comprised of two

attributes; style attribute and transport attribute (Simon, Goldschmidt, & Kondorosi,

2014).

2.5.2 SOAP Message Binding Style

SOAP predominantly uses XML for web service messaging transmission. The SOAP

WSDL document is generally used to describe the web services. All web services

created by SOAP protocol use either document or RPC message style for data

serialization. Nonetheless two more modes: literal and encoded are also added to aid in

marshalling the application objects (Simon et al., 2014).

Univ
ers

ity
 of

 M
ala

ya

16

i. RPC – style: This style is well standardized and a less complex style in

message serialization. It uses method call to a remote object based on

parameter passing that makes calling a web service easier since the method

is part of the application code. It is a tightly coupled technique and changing

parameter generally influence the whole definition of the web service.

ii. Document – style: There is no standard rule on how SOAP message is

formatted which allow no restriction of how SOAP body will be constructed.

Its flexibility tolerates external XML as well as its schema to be simply

included to the body. Parameters and other part of application structure can

be altered without affecting the web service definition, for the fact that

document-style is loosely coupled.

iii. Encoded: It follows the SOAP rules of message encoding by wrapping the

message in the body element prior to dispatch to the host. Although, just like

document style, it does not have any definite standard of defining its schema,

it insures that body serialization is properly accomplished. This style uses

the XML to marshal its data.

iv. Literal: In this style the message is marshaled according to the schema that

is already defined by the WSDL document of the web service. This gives the

client knowledge of how the individual message is formatted. The schema

here is well defined and the abstraction defines how the input and output has

to contain the formatted message.

2.6 SOAP Performance Improvement

The SOAP performance improvement has been experimented on a variety of data to

justify its significance in web services. Server-side and Client-side performance

techniques are deployed in attempts to improve the performance (Massimiliano et al.,

Univ
ers

ity
 of

 M
ala

ya

17

2013). Also, performance is also targeted to be improved by compressing the message

exchanged across the network.

2.6.1 Client-side Approach

With the aim to increase the performance of Web services, some studies like Arteaga

and Zhao (2014), Banditwattanawong and Uthayopas (2013), Bonetta, Peternier,

Pautasso, and Binder (2012), Bzoch and Safarink (2013) and Sriwiroj and

Banditwattanawong (2015) tilted their studies to client side in their quest to decrease the

transaction response time. In client-side approach, the web services rely on the client

device to perform most of the computing operation. This approach is efficient when

similar SOAP messages are revisited by the client’s web services. The parsing and

calling of the SOAP messages always consume a lot of time and bandwidth (Du, Zhao,

Han, & Li, 2013). The client checks and acknowledge if the requesting message is in the

cache, else obtain it from the server. This process hugely reduces the response time and

network traffic. Here, client-side caching and differential serialization are the

approaches used in improving the SOAP performance.

To show the effectiveness of using caching in the client side, Kiran and Andresen

(2010) used HTTP as the transport layer, implemented an RPC-style rather than the

message based for the caching. This reduces the network traffic by reducing the number

of accesses by the client fetching same data from the server. The implemented result

was remarkably good as it improves the round trip (per second) by 800% less compared

to CORBA or Java RMI. In spites of its yielded overwhelming performance, this

method posed a challenge on how the data at the client side will be updated and how

frequent the updates should be performed. These challenges were not solved by the

authors and therefore the response time performance improvement cannot be completely

established.

Univ
ers

ity
 of

 M
ala

ya

18

Bzoch and Safarink (2013) conducted a research on client-side caching to compare

caching policies: LRD, LRU, LRU-K, MRU, LRUF-SS and LFU-SS in system

application and to choose the optimal one. The researchers developed algorithms

referred to as caching policies and used simulator to test and proof each policy using a

simulated environment with equally sized data blocks. The authors experimented set of

caching policies in order to identify and choose the best caching policy for adoption.

Experimenting with small (1MB – 5MB) and large (16MB – 512MB) files with

different number of requests, users access the files from the server and cache the files in

the data blocks and the hit count in each policy were documented. The result revealed

that the best caching policy is the LFU-SS. The implementation of this research is

primarily targeted for mobile systems. The study does not provide a method for garbage

collection or deletion of old unwanted cached data. This will lead to inconsistency of

data and computational error due to impending unwanted data.

A study by Juric et al. (2006) compared and evaluated the performance factors of

cloud and traditional services on web servers. In their studies, they subjected virtual

servers. More virtual machine in the cloud realized lower response time and better

throughput, but one virtual machine showed no difference with the physical server.

Nonetheless, their study found that increasing the number of physical servers does not

increase the throughput. The performance effect on the transaction of the SOAP

messages was not realized. More precisely, this study identified only the influence of

having more virtual machines as a factor to improve response time and throughput. The

author did not describe the implementation of the web services clearly.

Univ
ers

ity
 of

 M
ala

ya

19

2.6.2 Differential Serialization

Serialization is the method of translating an application object into series of

formatted SOAP/XML messages that can be transported through channel from the client

side to server side (Mallad, Murphy, and Deng, 2017).

In differential serialization, when services are exchanged from the server, the web

service in the client side tracks any changes in the data structure of the previous

exchange and acts only on the objects with new references. This process improves the

response time, round trip and computation load at the client side. Attempting to improve

the SOAP performance, Abu-Ghazaleh and Lewis (2005), Abu-Ghazaleh, Lewis and

Govindaraju (2004), and Suzumura, Takase and Tatsubori (2005) used the differential

serialization approach.

Abu-Ghazaleh et al. (2004) conducted a differential serialization study by developing

an algorithm that facilitates the reuse of SOAP message structure at the client side. The

algorithm creates a procedure for message templating. Message structure is determined

and saved as templates for reuse by remote web service with similar or closely similar

structure with the saved template. Contents, size and associated ID are matched to get

the similarity. The outgoing message uses the structure or part of the structure of the

saved template rather than generating its own structure. This process encourages reuse

of computational procedures and reduces the computation overhead due to regeneration.

The issue here is, at long run each remote web service will have its own templates and

continue to grow others as the structures gradually varies. This delimits the

applicability of using this style.

An improvement over the work by Abu-Ghazaleh et al. (2004), was carried out a

year after by Abu-Ghazaleh et al. (2005), adding to the previous work with an algorithm

for resizing message fields. In the situation when the client-side new message to be

Univ
ers

ity
 of

 M
ala

ya

20

differentially serialized is larger than the previously serialized/differentially serialized

message, the algorithm allows the borrowing of space from neighboring fields (stealing)

to accommodate the larger new data. The research was well implemented even though

failed to address a situation of sending several large messages simultaneously. The

authors acknowledged that stealing from neighbors can tend to cause unpredictable

error according to the authors. Also, the implementation lacks the economic ability to

downsize previously upsize field when accommodating smaller message, thus some

spaces will be redundant. From the implementation, it remains impractical to determine

the behavior of the sent message at the server side for the researchers excluded the full

utilization of the server side completely by creating only a dummy SOAP at the server.

2.6.3 Server-Side Approach

Research by Aali and Farkhady (2011) used the server to enhance the

communication performance of web services. Large portion of web services

computation is controlled by the server. The server web service bonds the

communication by sending messages to the client web service based on requests. In this

regard, research effort is vested at the server side to improve the SOAP performance.

Server-side caching and differential serialization are techniques used at the server side

in achieving the performance objective.

2.6.4 Server-Side Caching

The server-side caching is a process of temporarily holding the active computational

data at the server which can easily and repeatedly be accessed by the clients. This is

efficient in improving performance by avoiding computation at the remote web services.

In this approach, most computational costs are engaged at the server. The response time

is minimized with only processed and computed messages are transported to the client

Univ
ers

ity
 of

 M
ala

ya

21

web services. The response time perceived by the requester is faster and hence

minimized.

Aali and Farkhady (2011) demonstrated the application of server-side caching by

caching a compressed SOAP message. Messages were cached at the server and sent to

the requesting remote web service to be consumed. In this implementation, the clients

are physical computers connected by 10 MBPS hub. File size with different sizes

(0.2MB – 7.2MB) were sent to the client and corresponding time taken was recorded.

Taking into cognizance the result, when SOAP messages were sent with caching and

without caching, the former indicates faster response time. The overall result yielded

that the response time and the throughput improved as the cached and compressed

message size is increased. The authors did not provide details of their implementation,

hence is difficult to understand their assessment of the overall research. The

performance of this implementation was manually captured despite that the authors used

host and client machines for the implementation.

2.6.5 Differential Deserialization

Deserialization is the process of converting back the application object from

unformatted SOAP/XML messages that has been transported through channel from the

client side (Mallad et al., 2017). In differential deserialization, the web service in the

server side track any changes made to its data structure that made it differ from the

previous data structure and process the different region that is not previously available.

This process reduces the response time, round trip and computation to be performed at

the server side. An attempt on this method was made by Abu-Ghazaleh and Lewis

(2006). In the method, incoming message is deserialized and linked to the internal

automata. The message is also matched with existing to check for element similarity.

The SOAP engine will only process the dissimilar region of the linked application

Univ
ers

ity
 of

 M
ala

ya

22

object through partially deserializing and concatenating them and reset the fields. In the

experiment, the throughput was measured by running request threads 30,000 times and

results were obtained and recorded. Comparing the result for deserialization request

with and without differential technique, the former recorded 288% throughput than the

later.

From the experimental procedures, the web services application objects tend to have

repetition of some elements hence it will not give an optimal solution since the

repetition number can be different for each request. Nonetheless, problem may tend to

impede the web services as the size of the automata may grow as number of requests

increase and there was no procedure for garbage collection in the implementation.

In an effort to avoid absolute deserialization, Abu-Ghazaleh and Lewis (2005)

developed a strategy of using a checkpoint algorithm that checks the state of the

message deserializer at some points. The light-check-point method (LCP) applying to

the normal differential deserialization, uses checksum comparison to determine whether

an incoming message is the same with the previous or has some similarities with the

previous to facilitate the deserializer to avoid the portion with the similarity. Each LCP

has reference to the previous checkpoint that contains states it shares with others. The

one with the same previous checkpoints are then referred to as same group. With these

checkpoints, difference is calculated by identifying the changes that have been made to

the incoming message by mismatched.

The authors subjected message sizes (0.35MB – 3.5MB) and applied to the regular

differential deserialization and LCP and checkpoints were created at strategic point of n-

bytes message sizes. The memory usage by LCP indicates low usage which conversely

implies high performance in deserialization time over regular differential

deserialization. LCP needs only 3% of the memory needed by the regular differential

Univ
ers

ity
 of

 M
ala

ya

23

deserialization. This study experimented with low byte payloads. Besides, calculating

checksums is prone to error generation, especially when dealing with scientific data

from computations.

In summary, these techniques have their individual shortcomings, though, depending

on the performance trade-off they can be applied to different scenarios.

Serialization/deserialization requires encoding and decoding and this causes a lot of

computing overhead at both ends. XML parsing tends to be slow owing to high

processing overhead. Parsers in XML act heavily on the messages to process and this

demands a lot of resources.

Caching is not suitable if the XML message demands constant update or is not large

enough. It also tends to be slow if the resource is not found or initiated in the cache that

therefore need to be processed.

The trade-off in these techniques is that delivery time is more concerned than the

processing overhead.

2.6.6 Message Encoding/Compression Approach

Message compression is a technique for reducing the size of message required to be

stored or transmitted across by using an encoded method (Liu, Mei, Wang, O’Neill, &

Swartzlander, 2018). According to Nguyen, Nguyen, Duong and Snasel (2016), in text

compression, lossless methods are adopted to decrease the original XML message size.

Compressed message is decompressed at the other end of the network and this achieves

less transmission time and less hosting space.

Introducing a new approach in experimenting a SOAP XML compression, Al-

Shammary and Khalil (2010) adopted a combination of fixed length and Huffman

Univ
ers

ity
 of

 M
ala

ya

24

encoding in their approach. The encoding is supported by XML tree and binary tree to

remove the message closing tags. The messages were gathered in view of comparable

messages into element bunch structure. 160 XML records were utilized for the test. The

messages were isolated into 4 equivalent groups, containing 40 messages each and

sorted into small, medium, large and very large bytes individually.

The fixed-length and Huffman encoding algorithms were applied to these messages

groups and the results were observed. The compression ratios for small was 2.175,

medium was 3.15, large was 7.15 and very large was 11.125. The method proved to be

efficient for large and very large messages, but subjecting the method to very small and

small bytes tends to have no effect and sometimes incur computation overhead. The

problem with their approach is that it is always hard to predict absolute performance

because they used lightweight data for the experiments. This will reduce the ability of

the technique in identifying the compression ratio.

Complementing the work of Al-Shammary and Khalil (2010), a dynamic-clustering

based aggregation was implemented by Abbas et al. (2014). They used the common

Term Frequency-Inverse Document Frequency (TF-IDF) as the weighing factor with

Euclidean distance method for estimating the degree of similarity among SOAP

messages. The messages were grouped based on similar messages into dynamic cluster

form. After clustering the authors applied Huffman compression algorithm to compress

the XML messages clusters as one compact message. 160 XML documents were used

for the experiment. The messages were divided into 4 equal groups each containing 40

messages and categorized into small, medium, large and very large bytes respectively.

In order to obtain the compression ratio, the total size of the XML messages is

divided by compression size of the XML messages. The result revealed that the

compression ratio of the small bytes was 2.91, medium was 8.35 while large and very

Univ
ers

ity
 of

 M
ala

ya

25

large groups were 17.36 and 19.89 respectively. The conclusion is that the bigger the

message size, the better the compression. Therefore, having large size of XML message

yields a better compressed result. It is hard to know the capability, especially to

determine the compression ratio because they used lightweight data for experiments.

This will reduce the ability of the technique in identifying the compression ratio.

Besides, Huffman encoding is not suitable for long characters (Al-Shammary et al.,

2010).

By and large, compression always yields faster transmission time but the

compression application mostly adds overhead and take on part of the system memory.

Despite that, compression approach has more benefit than the other approaches.

Although the transmission was also successful, the researchers did not provide solutions

to avoid loss of data during transmission.

Lam and Rossiter (2013) proposed a framework for streaming compressed

multimedia contents. The authors implemented and simulated SOAP over HTTP web

services with compression to stream the multimedia data. The experiment was simulated

using nS-2 network simulator. The outcome of their study revealed that SOAP over

HTTP binding with binary XML scheme compression has produced best performance

compared to a basic multimedia scheme.

Closely related to this work is the study by Kadouh and Albashiri (2014). The

researchers developed an algorithm and deployed it to compare the effect of their

algorithm on request/response operations on SOAP over HTTP web services. The

authors applied calculator application with different operations and of sizes between

314 and 400 bytes against response times from 10503 to 19088 milliseconds. The

services also used image files of sizes between 1030 and 1993 bytes which yielded

response time between 121 and 285 seconds. The overall result revealed that the

Univ
ers

ity
 of

 M
ala

ya

file:///C:/Users/HP%20USER/Desktop/1%20Thesis%20corrections/Recent%20references.docx%23_ENREF_4

26

transmission with the algorithm yielded a better response time for both XML messages

and images.

Another research by Chiu, Devadithya, Lu and Slominski (2005) created a generic

schema for binary XML exchange called Binary XML for Scientific Applications

(BXSA). Unlike SOAP/HTTP which is not a suitable for transmitting binary data,

BXSA was bounded to TCP as the transport protocol. The authors compared the

performance of the BXSA against the normal HTTP, XML-HTTP and FTP binding.

The protocols where subjected to data size 1000 bytes shows that BXSA maintained a

constant linear response time of averagely 11,000 milliseconds throughout while Grid-

FTP is incredibly high with response time around 230,000 milliseconds through

irregular transition levels. But the same schemes subjected to large bytes revealed that

BXSA has response time of 205,128 milliseconds when the size is 1.4 MB. When the

data is as large as 56 MB, the response time is 175 milliseconds. The overall result

suggested the BXSA has better performance than the other schemes. Although the

BXSA has demonstrated the ability to exchange large data size, the authors did not

consider how data loss can be avoided. Nevertheless, the response time seems to be low

especially for the small data size.

2.7 Message Streaming

Message streaming is a technique for steady and continuous sending of message

from one point as provider to another point that receives (Isaac and Devi, 2014). This

involves the uninterrupted transfer of message from a provider to the receiver. Here, the

receiver application processes the message sent in a stream style where the excess

messages are buffered before processing. Transmission and continuous delivery of high-

volume message is always challenging and time demanding, hence it requires an

exchange protocol in the SOAP binding (Isaac and Devi, 2014).

Univ
ers

ity
 of

 M
ala

ya

27

Studies on streaming has been conducted by Bou, Amagasa and Kitagawa (2014),

Shams and Sarkar (2014), Isaac and Devi (2014), Kanoun and Schaar (2015),

Nakamoto and Akiyama (2015), Sarkas et al. (2008) and Zhang et al. (2008). The

studies traverse in the same vein to improve the quality of output message by leveraging

the application or the bandwidth. With the exception of Isaac and Devi (2014) that

worked on multimedia message streaming, all other authors primarily worked on

message-oriented streaming process. Limitation to their implementation holds that their

works rely in the ability that the site must have an installed application to connect to the

server or to handle the streamed message for processing. Appel, Frischbier,

Freudenreich and Buchmann (2012) and Isaac and Devi (2014) engaged the Web

Services to implement the message streaming.

In their work, Isaac and Devi (2014) argued that current standards were not sufficient

in handling large files streaming, especially multimedia message. Therefore, they

opined the use of SOA, which they implemented through the introduction of Message

Exchange Protocol (MEP) in SOAP over HTTP.

Another application of Web services in streaming was implemented by Appel et al.,

(2012). Series of occurring events are collected as message is relayed over the Internet.

Embedded message tends to be unpredictable in volume therefore needs a constant and

continuous procedure of delivering. To obtain solution for the cumbersome events

message, the authors used application and transport layer of SOA to capture process and

transport the message in form of streams. Though the final result performance was not

yielded but they guaranteed a secured streaming from denial of service.

Large message streaming was studied by Girtelschmid, Steinbauer, Kumar, Fensel

and Kotsis (2014). Their work forecast on the future delivery of mined message of the

emerging Big-message and cloud computing which are geometrically increasing. They

Univ
ers

ity
 of

 M
ala

ya

28

implemented a big message streaming platform in anticipation that the rule engine will

be able to lessen the workload of a high-volume message and hence improve the

performance and guarantee the delivery.

Message streaming simplifies the transmission of continuous message over the

Internet. Studies have been conducted to improve the performance in terms of

throughput and quality of delivered message. Different techniques and protocols were

used by different authors to improve the performance. In order to have a guaranty

delivery with improved performance, Web services was suggested by some authors like

Appel et al., (2012) and Isaac and Devi (2014) because of its reusability, growth and

security in request-response operation.

2.8 Limitations of the Approaches in the Literature

The study referenced in the literature have improvement on the performance of the

SOAP. But limitations associated with the approaches have been identified and need to

be solved to further improve the performance of the SOAP. Table 2.1 shows some

important research on the SOAP performance improvement approaches.

Generally, the approaches used in these studies experimented their implementations

on small SOAP payloads. Using lightweight message as the running data will decrease

the ability to identify effectively if these implementations can work well with large

payloads. The implementations were experimented using RPC over HTTP which is

absolutely synchronous in nature, hence, cannot work in general situation, especially

with the advent of big data and cloud computing.

Univ
ers

ity
 of

 M
ala

ya

29

Table 2.1: Some worthy works on SOAP performance improvement approaches

Title of research and
Author(s)

Approach Method and findings Limitations

Abu-Ghazaleh, N.,
Lewis, M. J., &
Govindaraju, M. (2004).
Differential serialization
for optimized SOAP
performance.

Client side
serialization

Developed an algorithm that
facilitates the reuse of SOAP
message structure at the client
side by creating templates.
Similar messages use the same
template.

The outgoing message
uses the structure or part
of the structure of the
saved template rather
than generating its own
structure.

Bzoch, P., & Safarink, J.
(2013). Simulation of
client-side caching
policies for distributed
file systems

Client side
caching

Developed an algorithm and
simulate and compare caching
policies; LRD, LRU, LRU-K,
MRU, LRUF-SS and LFU-SS in
system application and to choose
the optimal time. The result
revealed that the best caching
policy was the LFU-SS with 4%
and 2% respectively in lower and
higher caches.

The study does not
provide a method for
garbage collection or
deletion of old unwanted
cached data. This will
lead to inconsistency of
data and computational
error due to impending
unwanted data.

Abu-Ghazaleh, N., &
Lewis, M. J. (2005, 13-14
Nov. 2005). Differential
checkpointing for
reducing memory
requirements in
optimized SOAP
deserialization

Server side
deserialization

Developed a strategy of using a
checkpoint algorithm that checks
the state of the message
deserializer at some points. Uses
checksum to determine whether
an incoming message is the same
with the previous one, else the
deserializer will process the
dissimilar portion.

This study was
experimented with low
byte payloads. Also
calculating the
checksums is prone to
error generation,
especially when dealing
with scientific data from
computations.

Overhead is also a factor
to consider.

Aali, S. H., &Farkhady,
R. Z. (2011). A
Combination Approach
for Improvement Web
Service Performance

Server side
caching

These authors cached a
compressed message (7.2MB) and
sent to the client. The overall
result yielded that the response
time and the throughput improved
as the cached and compressed
message size increases.

The authors did not
provide details of their
implementation, hence is
difficult to understand
their assessment of the
overall research. The
performance of this
implemention was
manually captured
despite that the authors
used host and client
machines for this
implementation. This
might be error prone.

Univ
ers

ity
 of

 M
ala

ya

30

Abbas, A. M., Bakar, A.
A., & Ahmad, M. Z.
(2014). Fast dynamic
clustering SOAP
messages-based
compression and
aggregation model for
enhanced performance of
Web services

Compression

The messages were grouped
based on similar messages into
dynamic cluster of 4 groups and
applied Huffman compression
algorithm. In order to obtain the
compression ratio, the total size of
the XML messages is divided by
compressed size of the XML
messages. The result revealed the
compression ratio of the small
bytes as 2.91, medium as 8.35
while large and very large groups
has 17.36 and 19.89 respectively.

It is always hard to
predict absolute
performance when
lightweight data are used
for the experiments. This
will reduce the ability of
the technique in
identifying the
compression ratio.

2.9 Data Compression

Data compression is the compacting of information into smaller representative

without missing its quality (Sayood, 2002). The compressed data is represented in

digital form to save space or transported over a network (Hong, Zhang, Wang, Li, & Liu

2016; Kruse and Mukherjee, 1997). The data is converted back to its original form when

demanded. The process of converting the data back to the original form is termed as

decompression (Hong et al., 2016).

2.9.1 Types of Data Compression

Data compression is divided into two techniques; the lossy compression technique

and the lossless compression technique. Each technique has its advantages and

disadvantages, and suitability.

The lossy data compression techniques convert data to a set of digital bits while

ignoring the less important parts of the data. In these techniques, the exact replica of the

original data cannot be recovered. This type of compression is generally applied in

audio, video and image data. Widely used types are Huffman coding, LZW, JPEG and

MP3.

Univ
ers

ity
 of

 M
ala

ya

31

The lossless compression techniques convert data to a set of digital bits without

compromise to lose any part of the data. Hence, the reconversion of the data recovered

the exact copy of the original data. Example of lossless data compression are text files

and programs that hold every single bit as vital. Popular types of lossless compression

are Shannon-Fano, Huffman, Arithmetic Code, LRE, LZ77 and LZ78.

Lossless compression methods are used for text-based data compression (Sayood,

2002). Texts files such as documents and programs are very essential, and ignoring a

little part can distort the meaning and the content of such files (Kumawat and

Chaudhury, 2013). Hence, retaining the original content of the compressed file is

essential.

2.9.2 Text compression

Text, like other forms of data is compressed with intend to save space or to decrease

bandwidth consumption over a network. Text are compressed using a lossless method of

compression to avoid data loss (Oswald and Sivaselvan, 2017). Any part of the text data

is important in the compression/decompression, and therefore the decompression should

lose no piece of the original text data (Hansen and Lewis, 2018; Memon and Sayood,

1995). Widely used techniques in text compression are the statistical text compression

and the dictionary text compression (Bulus, Carus, & Mesut, 2017).

2.9.3 Statistical Text Compression

This type of compression is comprised of two fragments: the model and the coder.

The model part creates the statistical properties of the input sequence while the coder

part compresses the input sequence obtained by the model (Cao Dix, Allison, & Mears,

2007).). The method uses variable-size codes in which the shorter codes are allocated to

the symbols frequently appear, while the longer codes are assigned to the infrequent

symbols (Sayood, 2002).

Univ
ers

ity
 of

 M
ala

ya

32

The model is built in the form of a binary tree as probability distribution and the leaf

nodes are the symbols which probability values are sorted in ascending order. In the

process, two symbols that appear to have the two lowermost probability values are joint

to produce a new parent node as a composite symbol with the probability sum of the

two symbols as its new probability. The process is reiterated with the new list until the

composite node can no longer be reproduced. In the decompression, the same binary

tree is decoded to produce the symbols again.

In statistical method, the knowledge of the frequency of certain part of the data is

known in advance (Liu et al., 2018). The disadvantage of this method is that the tree

acts similar to a dictionary that at one time in the beginning is encoded and this creates

an initial overhead of the process.

Widely used statistical compression algorithms include the Arithmetic Coding, Run-

Length Encoding, Shannon-Fano Coding and Huffman Coding (Shanmugasundaram

and Lourdusamy, 2011).

2.9.4 Dictionary Text Compression

In dictionary text-based compression, the input is a set of symbols. The symbols are

compressed by using index to search and replace symbols with pointers referring to

previously encountered symbol contained in the dictionary. The variable length input is

substituted by a reference to the symbols existing in the dictionary. Using the indices to

substitute lengthy variable set of symbols provides an efficient and manageable

approach to compress large data (Ghosh, and Ganguly, 2015; Larsson and Moffat,

2000). There are two algorithms used in the dictionary compression, namely the static

and adaptive algorithms.

Univ
ers

ity
 of

 M
ala

ya

33

The static dictionary compression is applicable, in most cases to large and fixed set

of symbols. According to Bell et al. (1990), this type of compression is permanent and

the dictionary has a prior knowledge of text to be compressed which makes it to be

language specific.

On the other hand, in the adaptive compression, the dictionary is formed from the

previously encoded sequence of symbols. Then, further incoming symbols set are

compressed by the dictionary statically. Repeated symbols pattern is recognized and

represented in the dictionary efficiently by the encoder. The encoder indexes and

replaces the symbols by the index of similar symbols previously encoded. The adaptive

dictionary is built by addition of new incoming symbols and adjusts its size by

removing the leftmost encoded symbols from the dictionary. Most common adaptive

algorithms are the LZ77, LZ78 and LZW. Other variants like LZ4, LZSS, LZH and the

LZR are also applied in the text-based compression.

Considering the two lossless compression techniques, the disadvantage of statistical

compression is that the method incurs initial overhead due to the dictionary-like

advance input (Hansen and Lewis, 2018).

In the dictionary method, the decompression is faster and easy owing to the fact that

the encoded symbols are randomly accessed and retrieved from the dictionary based on

the relative positions. Using indices to represent variable length symbols provides an

efficient and manageable way of handling large number of symbols at the same time

(Abbas et al., 2014).

The adaptive dictionary compression method is more appropriate than the static

compression method. Adaptive compression compresses multiple symbols and encodes

Univ
ers

ity
 of

 M
ala

ya

34

the symbols on-the-fly. Contrarily, in the static dictionary method the symbols are

predefined and constant (Liv, Wang, & Zhong, 2015).

Considering the text-based input to be used in experimenting the SOAP Web

services, this research adopted an adaptive dictionary technique - the LZ77 (Ziv and

Lempel, 1977) algorithm for text compression. The LZ77 is the most popular adaptive

dictionary method and most widely used and effective text compression algorithm

(Policriti and Prezza, 2016). Study by Kumawat and Chaudhury (2013) and Policriti

and Prezza (2016) suggested that dictionary compression is effective in text

compression.

Williams (1991) modified an LZ77 algorithm based on Fiala and Greene (1989),

with fewer line of code but faster than the LZ77. The algorithm uses the Lempel

technique and a hash table for the data compression. It checks for a match of 3-byte

length by checking the dictionary throughout, and only copy a byte when it cannot get a

copy of 3 bytes. The hash table of 4096 pointers was used to map the 3-byte key to a

single pointer. The pointer can then point to any position in the Lempel for 3-byte

matched. The decompression processes item one by one which may be a byte or bytes

and adds to the output as a single byte by locating the offset and length pair for bytes.

To test the performance of the modified algorithm, the researchers tested it on high

level language using C by comparing it with the A1 algorithm. The result showed that

the modified algorithm is 10 times faster in execution time than the A1 algorithm. When

used on low level using 68000 assembly language by dividing each file in of block 16k,

the result showed that the modified algorithm running on assembly language is best for

data of small blocks

Univ
ers

ity
 of

 M
ala

ya

35

Unlike Williams (1991), a study on another variant of LZ77 was carried out by

Weimin, Huijiang, Yi, Jingbao and Huan (2008) to improve the decompression of data.

The authors proposed an algorithm that improve on the decompression of data. The

algorithm is a hybrid between LZ77 and Huffman codes with Adaptive Markov Chain

(AMC). The LZ77 search for a match of 3 bytes only and if found, a token is assigned

to it with an added bit of 1 unit. If no 3-bytes match found, the algorithm encodes the

byte without modification and a bit of 0 unit is added to the encoded byte. The bit

differentiates the token and the non-modified byte during decompression.

When decompressing the data, the bytes from the Huffman codes are converted to

bits by the AMC and its probability is checked. This reduces data redundancy and lower

memory overflow. The result revealed that the algorithm performed better for image

and video files.

Work on optimization of LZ77 performance by Kumawat and Chaudhury (2013)

uses double [l, c] instead triple [o, l, c] whenever the length of the match is equal to the

offset. This algorithm work exactly similar to the LZ77 except encoder must always

check and compares the length and the offset for similarity. If found, a delimiter is

added and the offset will be discarded. The length and the codeword will instead form

the entry [l, c]. This reduces the number of bits to be entered into the dictionary. The

decompression is slower compared to the LZ77 because the pointer has additional of

checking the triplets and the doublets entries during decoding. The overall performance

is slow but the algorithm produced a better compression ration better than the

conventional LZ77.

The asymmetrical deficiency of the LZ77 was countered by Mahmood, Islam, Nigatu

and Henkel (2014). The study proposed modification on the LZ77 algorithm by

introducing a bi-directional method of reading the algorithm. The encoding process is

Univ
ers

ity
 of

 M
ala

ya

36

very similar to the LZ77 except that when a match is found, the offset and the length of

the match in both the search buffer and the look-ahead buffer and the codeword in the

look-ahead buffer with a flag bit are output. The experiment used various file formats of

different sizes to compare the two algorithms. The result shows that the modified

algorithm has a good compression ratio, especially for symmetrical data.

2.10 Summary

The review of literary works in this chapter is predominantly concentrated on

improving SOAP performance. Different approaches such as caching at server and

client side, and differential serialization and differential deserialization as well as

message compression have been critically assessed and optimal results were analyzed.

 Researchers have made attempts to improve the web services performance through

reducing response time by decreasing the number of time message will be visited or

through the reuse of computational components. Some techniques were implemented to

compress the encoded message before sending to the receiver. The compression

technique makes the transmission to be lighter and utilizes low bandwidth, and

eventually increases the throughput of the web services.

The researchers while tracing their implementations and results did not address the

issue of improving the performance of SOAP when subjected to large payloads. To

qualify this assertion, it is significant to model an improved SOAP technique for high

volume message exchange capable of guaranteeing the delivery of the message with low

response time and less overhead.

Univ
ers

ity
 of

 M
ala

ya

37

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

The primary goal of this research is to answer the research questions that relate to

SOAP performance enhancement as stated in Chapter 1. This chapter explains the

methodology used in accomplishing the goal of the research. It discusses the hardware

and software arrangements for the experiment and how they are configured to answer

the research questions presented in Chapter 1. Web services were implemented and

transacted over two transport protocols: HTTP and JMS. The rest of the chapter

explains the process. This chapter is organized into seven (7) sections: research

conception, review of related literature, identification of research gap, system

requirement analysis and design, experimental setup, data compression algorithm

modification, and system implementation and execution.

3.2 Research Conception

The idea of this research "SOAP performance enhancement for high volume

messaging", was conceptualized from an interest in reading on various data exchange

techniques. The initial concept encompasses the knowledge acquired on data exchange

at the endpoints or over the network. After further reading, it came to light that very few

studies have been conducted on how data is processed and utilized at the transmission

endpoints. It is understood that a good knowledge of this area will support study in the

area of cloud computing, big data, and computing servers.

3.3 Review of Related Literature

The literature review formed the fundamental start-up of this research. Topics on

Web services were chosen and relevant keywords formulated for the search on reputable

journal databases. Several searches were performed in Web of Science, Association of

Computing Machineries and other high-quality databases. The articles relevant to the

Univ
ers

ity
 of

 M
ala

ya

38

topic were downloaded and read through. Figure 3.1 shows how the flow of the

literature review process for this research was conducted.

The topics were further narrowed and the relevant articles were filtered into

survey/review and technical/empirical papers for study. The survey/review articles were

studied to get a focal point for the research. Topics on SOAP Web services was chosen,

more precisely on the performance of the services. After getting the research direction,

quality related empirical articles were thoroughly studied. The procedures, methods,

approaches, and techniques used in the methodologies of the previous researches were

considered and comprehended. The methodologies were compared to the findings of

each research to understand the empirical evidences. The key findings were presented in

Table 2.1 in Chapter 2.

3.4 Identification of Research Gap

The research gap for this study was established based on the empirical findings of the

synthesized literature. The findings identified a key research area in web services that

seems to be useful but not much explored. The area is the performance of SOAP Web

services enhancement. Final stage of the literature review process is the identification of

research gap as shown in the last stage in Figure 3.1.

 Univ
ers

ity
 of

 M
ala

ya

39

Figure 3.1: Literature review process for the SOAP performance
enhancement for large volume messaging

3.5 System Requirement Analysis and Design

After identifying the research gap from the literature review process, this stage

proceeded to identify the way for achieving the improvement of the SOAP Web

services performance. To effectively obtain useful experimental results, system

requirements were carefully identified. The solution was obtained by analysing and

designing the requirements based on the research objectives. Unified Modelling

Language (UML) 2.0 was used to model the analysis and the design for the system

requirement as presented in Chapter 4.

3.6 Experiment Setup

This section presents and discusses the setting up of the experiment for the Web

services transaction. It provides detail procedures of hardware and software selection

and usage for the research.

Univ
ers

ity
 of

 M
ala

ya

40

3.6.1 Hardware Setup

To achieve the required goal, the experiment used a high specification personal

computer (core i7) as the machine for this research. The machine was used as a virtual

provider and consumer for both services in the experiment. Hence no external hardware

use in this research. Table 3.1 shows the hardware system requisites used in the

implementation of this research. The section, nonetheless gives the details of how the

system is set up and unified to work and address the problem statement of the research.

Table 3.1: Hardware requirements

Sno. Component Specification

1 Processor Core i7; Duo core @ 2.30ghz

2 Memory 8GB

3 Hard disk 1 terabyte

3.6.2 Software Setup

The software setup uses windows 10 as the operating system and J2EE with

Weblogic server as the programming environment and virtual server respectively. Table

3.2 shows the detailed components used.

Two SOAP Web Services were designed to run on two different transport protocols

namely HTTP and JMS. Hence the two systems - SOAP over HTTP as the benchmark

system and SOAP over JMS as the prototype system. Each system comprises two

communicating parties which are the web service server/provider and the web service

client/consumer. The client requests for service from the server, in turn the server

responds by providing the requested service. For each transport protocol, two data

formats: normal and compressed payloads were exchanged between the server and the

client. Figure 3.2 depicts the request/response communication scenario.

Univ
ers

ity
 of

 M
ala

ya

41

Table 3.2: Software system specifications used in the study

Sno. Component Specification
1 Operating System Windows 10 pro edition

2 Programming environment Jdeveloper (Java EE)

3 Application server Oracle WebLogic 12C,

version 12.1.3

Figure 3.2: Web services request/response. Services are provided by the server
based on client request

3.6.2.1 Benchmark System Setup

In the benchmark setup, two SOAP web services were created: the server web

service and the client web service. Table 3.3 shows the SOAP over HTTP web services

comprising the classes and the methods used in the implementation

The server contains the web service provider class, the compressor class and the

controller class for handling function call for normal and compressed methods. The

server establishes the proxy contract to bind the connection to the HTTP while the

compressor class encodes and compresses the input message.

On the other side, the client web service contains web service consumer class and

decompressor class. The methods in the client use the service and port name of the

server to establish the WSDL contract and invoke the web service for communication.

The decompressor class decodes and decompresses the input message received from

the server.

Univ
ers

ity
 of

 M
ala

ya

42

Table 3.3: Benchmark Client-Server SOAP web services with HTTP protocol

Web service server Web service client
Application name: WSProvider
Web service name WSProviderApp

Application name: WSConsumer
Web service name: WSConsumerApp

Class: WSProvider
Methods:
a) WSProviderPort
b) messageGenerate
c) timer

Class: compressor
Methods:
a) searchBuffer
b) appendBuffer
c) readBuffer
d) increaseBuffer

Class: controller
Methods:
a) compressedMessage
b) normalMessage

Class: WSConsumer
Methods:
a) WSReceiverProxy
b) WSPProviderService
c) onMessage
d) timer

Class: decompressor
Methods:
a) compareBuffer
b) appendBuffer
c) increaseBufferSize

The server provides the WSDL for the web
services’ contract.

The client lookup the service name and port name to
establish the contract of the WSDL and invoke the
Web service.
WSProviderService service = new
WSPProviderService();
WSProvider port = service.getWSProviderPort()

3.6.2.2 Prototype System Setup

The prototype consists of two SOAP web services: the server web service and the

client web service bounded over JMS. The SOAP over JMS is shown in Table 3.4

indicating the web services with the classes and the methods used for the

implementation.

Unlike HTTP, JMS is a message centric API hence the transport holds at the API

level (Al-Rassan and Alyahya, 2015). The JMS protocol allows connection, queue,

sender and receiver to be defined at the implementation level.

Univ
ers

ity
 of

 M
ala

ya

43

The server contains three classes: controller class, provider class and compressor

class. The controller class holds function calls for normal and compression message.

The server establishes the binding contract to bind connection to JMS using a

connectionFactory and queueSender inbuilt methods of the JMS. The compressor class

encode and compress the input message to be sent.

The client web service contains two classes; normal class and decompressed class.

The client uses connection factory created at the JMS protocol to invoke the server.

The client then uses the connectionFactory and the queueReceiverer to receive the

requested WSDL file to be consumed. The decopmressor class decodes and

decompresses the input message received from the server.

Univ
ers

ity
 of

 M
ala

ya

44

Table 3.4: Prototype Client-Server SOAP Web Services with JMS Protocol

web service server Web service client
Application name: WSProvider
Web service name WSProviderApp

Application name: WSConsumer
Web service name: WSConsumerApp

Class: WSProvider
Methods:
a) connectionFactory
b) queueSender
c) messageGenerate
d) timer

Class: compressor
Methods:
a) searchBuffer
b) appendBuffer
c) readBuffer
d) increaseBuffer

Class: controller
Methods:
a) compressedMessageHandler
b) normalMessageHandler

Class: WSConsumer
Methods:
a) connectionFactory
b) queueReceiver
c) onMessage
d) timer

 Class: decompressor
Methods:
a) compareBuffer
b) appendBuffer
c) increaseBufferSize

The server provides the WSDL for the
web services’ contract and remains
connected via;

msgQueue = (Queue)
ctx.lookup("jms/MainQueue")

connFactory = (QueueConnectionFactory)
ctx.lookup("jms/MainConFac")

msgSender =
queueSession.createSender(queue)

The client looks up the service name and port
name to establish the contract of the WSDL
and invokes the WS.

msgqQueue = (Queue) ctx.lookup("jms/MainQueue")
connFactory = (QueueConnectionFactory)

ctx.lookup("jms/MainConFac")
msgRecevier= queueSession.createReceiver(queue,

messageSelector)

3.7 Data Compression Algorithm Modification

This research modified the LZ77 compression algorithm to encode more symbols. A

frequency (2) is used in the look-ahead buffer (LAB) to tag any first two adjacent

symbols encountered in the LAB during encoding. The tagging reduces the number of

pointers in the dictionary while yielding the same output as the conventional LZ77.

3.7.1 The LZ77 Compression Algorithm

The LZ77 (Ziv and Lempel, 1977) is a lossless compression algorithm using an

adaptive dictionary method. The name LZ77 was formed from the research by

Univ
ers

ity
 of

 M
ala

ya

45

Abraham Lempel and Jacob Ziv in 1977. The algorithm compresses data on-the-fly by

constructing a data dictionary as the inputs are read (Oswald and Sivaselvan, 2018).

The LZ77 is a universal dictionary-based algorithm for sequential data compression.

The algorithm has a good compression ratio with good execution speed than statistical

compression method (Oswald and Sivaselvan, 2018; Policriti and Prezza, 2016). The

decompression is faster than the compression and starts immediately as the encoded

inputs are available at the decoding part of the algorithm (Priyatna, and Mantoro, 2018;

Hong et al., 2016). As such, most studies on LZ77 focus on the encoding to improve

the execution time or the compression ratio. Each requirement comes with a trade-off, a

better compression comes at the expense of execution time and vice versa.

The dictionary is a container in the form of a circular buffer for holding encoded

symbols (Salomon, and Motta, 2010; Barrington, and Dechev, 2015). In the LZ77, a

technique referred to as sliding window is used in a form of a window having two slides

with the left slide for the Search Buffer (SB) holding the encoded symbols and the

Look-ahead Buffer on the right slide containing symbols yet to be encoded (Mahmood

et al., 2014).

The SB is the dictionary containing the encoded symbols and the algorithm searches

the dictionary for a longest symbol match with the beginning of the LAB. When match

is found, instead of the symbol to be entered into the dictionary, a pointer to a location

for a similar symbol previously encoded in the dictionary is entered.

Univ
ers

ity
 of

 M
ala

ya

46

Table 3.5: LZ77 Data compression technique showing the search buffer of size
8, look-ahead buffer of size 9 and window size of 17.

The encoding consists of tuple <o, l, c> for any input. The length (l) is the maximum

length of the symbol found, the offset (o) is the distance of the found symbol from the

previously encoded symbol in the dictionary, and the codeword (c) is the next symbol in

the LAB waiting to be encoded (Ziv and Lempel, 1977). Table 3.5 illustrates the LZ77

algorithm with window size of seventeen (17), the SB size of eight (8) and the LAB size

of nine (9).

The LZ77 process begins by first entering the symbols into the LAB. The first

symbol from the left is considered for the search. The LAB searches left-wise for the

longest matching in the SB. If no match found, zero is entered against the offset (o) and

the length (l) while the search symbol is entered as the codeword (c). Otherwise, if

match is found the offset, the length and the next symbol as codeword are entered in the

form <o,l,c> as output. During encoding, SB always holds and stores the encoded

symbols, and discard the left most symbol anytime the window length is overflowed.

To demonstrate the algorithm modified in this research, consider ‘aataaaattatatat’ as

the input for the encoding and decoding using both LZ77 and the modified LZ77

algorithms. Here, the window size is fourteen (14) with eight (8) and six (6) for the size

of the SB and the LAB respectively.

Univ
ers

ity
 of

 M
ala

ya

47

Table 3.6: LZ77 process of symbol encoding for the input ‘aataaaattatatat’

Table 3.6 shows the encoding process of LZ77 and the corresponding output of each

encoding process. In the first encoding the dictionary of the SB is empty, as such zero

(0) is recorded for both the offset and the length and ‘a’ is entered as the codeword.

Thus, the output is <0,0,a>. The window slides and ‘a’ now formed the first entry of the

SB. For the second encoding process, the encoder will use ‘a’ in the LAB as the search

symbol to look for match in the SB. Match is found in offset 1 (1st position in the SB)

with length 1 (length of the symbol) and the next symbol ‘t’ as the codeword, thus the

output is <1,1,t>. The search symbol ‘a’ and the codeword ‘t’ now slides from the LAB

to the SB. Thus, the SB contains ‘aat’ as the new dictionary entries. For the third

encoding, the search symbols are ‘aa’, and match is found in the SB in offset 3 and the

length of 2 for the 2 symbols ‘aa’ with ‘a’ as the codeword. Hence the output is <3,2,a>.

The search symbol ‘aa’ and the codeword ‘a’ now slides from the LAB to the SB.

Therefore, the SB contains the previous symbols ‘aat’ and the new symbols ‘aaa’ to

form ‘aataaa’ as the new dictionary entries.

The fourth encoding using the search symbol ‘at’ of the LAB, found a match in

offset 5, length of 2 and codeword of ‘t’ forming the output <5,2,t> . The fifth encoding

found a match in offset 8, length 3 and codeword ‘t’, thus the output is <8,3,t>. The last

encoding has both the offset and length of 2 with no codeword. The absence of the

codeword is because there is no next symbol in the LAB to be encoded.

Univ
ers

ity
 of

 M
ala

ya

48

Decompression is the conversion of the encoded symbols to the original form. The

compress data is converted by decoding the encoded symbols. The process involves no

searching of any symbol.

To decode back the encoded outputs, the decoder only translates the symbols back to

the original input based on the dictionary positions. The symbols are decoded by

copying the positions already constructed during the encoding process. For matched

symbols, the dictionary copies the whole specified number of symbols based on the

offset, the length and the codeword. Table 3.7 demonstrates the decompression process

of the encoded output of Table 3.6 based on LZ77.

Table 3.7: LZ77 process of symbol decoding for the encoded input
‘aataaaattatatat’

Sno Encoded
output

Decoded
symbol(s) Decoded output

1 <0,0,a> a a1

2 <1,1,t> at a3a2t1

3 <3,2,a> aaa a6a5t4a3a2a1
4 <5,2,t> att a9a8t7a6a5a4a3t2t1
5 <8,3,t> atat a13a12t11a10a9a8a7t6t5a4t3a2t1
6 <2,2,*> at a a t a a a a t t a t a t a t

To decode the 1st encoded output <0,0,a>, the decoder entered only the codeword ‘a’

in positon 1 as ‘a1’ since both the offset (position) and the length are zero. The second

encoded output <1,1,t> is decoded based on the position of the entry in the first decoded

output. Therefore, for position 1, implies ‘a’ in position 1 with length of 1 and the‘t’ as

codeword. Hence, the second entry is ‘a’ and codeword ‘t’. Having the previous output

‘a’ with the new entry of ‘at’, this formed the decoded output (a3a2t1).

To decode the output <3,2,t>, the decoder takes from the previous decoded output

(a3a2t1) and count the position and the length of the new entry. Here, in position 3 and

Univ
ers

ity
 of

 M
ala

ya

49

length 2 is ‘a3a2’, with codeword ‘t’ thus forming the entry ‘aaa’. Having the previous

decoded output ‘aat’ and the new entry ‘aaa’, this formed a decoded output of ‘aataaa’.

Same process is applied to decode the 4th <5,2,t> and the 5th <8,3,t> encoded outputs.

The last encoded output <2,2,*>, has is no codeword, therefore only the position 2 and

the length 2 are recorded as the entry to produce (a2t1). As seen in the last decoding

process in Table 3.7, the final decoding returned back the original input ‘aataaaattatatat’

exactly as `a a t a a a a t t a t a t a t`.

3.7.2 Modified LZ77 Compression Algorithm

The compression process in the modified LZ77 is similar to the conventional LZ77.

But the difference is the use of frequency (2) in the modified algorithm. In the modified

algorithm, when match symbols are found in the SB during encoding, instead of

considering the search symbol(s) in the LAB, the algorithm moves one time and checks

the adjacent symbol(s) in the LAB for similarity with the current search symbol(s). If

the adjacent symbol(s) is/are similar with the search symbol(s), then the offset and the

length of the search symbol are entered, and frequency of 2 is added to the pointers’

variable. The added frequency implies that the match in that position is repeated twice.

Then, next symbol after the adjacent similar symbol(s) is considered as the codeword

while the adjacent symbol(s) is/are ignored hence not included in the part of the SB

dictionary.

The same input ‘aataaaattatatat’ was used to demonstrate the compression and

decompression of the modified algorithm. The Table 3.8 shows the compression

process indicating the frequency of the occurring similar symbols in the LAB,

Univ
ers

ity
 of

 M
ala

ya

50

Table 3.8: Modified LZ77 process of symbol encoding for the input
‘aataaaattatatat’

In Table 3.8, all outputs show that symbols have been matched except in the 1st

output; <0,0,a>, where zero (0) is recorded for both offset and length and the search

symbol ‘a’ as the codeword. The second encoding <1,1,t>, has one (1) as the entry for

respectively the offset and length with ‘t’ as codeword.

During the third encoding process, a matched symbol ‘aa’ is found at offset 3 in the

dictionary. Following the rule of this modified algorithm to tag frequency of 2 for

similarity of search symbol and the adjacent symbol, the encoder will move one more

step right wise to check for another similarity in the LAB. Here, the encoder found

another ‘aa’ directly adjacent to the previous one. Therefore, a frequency of two (2) is

entered into the dictionary as part of the pointers’ parameter and ignore the second

found symbols ‘aa’ without assigning any pointer to them. The sliding window will

move over two symbols ‘aa’ only instead of four symbols ‘aaaa’, because the location

of the second two symbols ‘aa’ is not recorded in the dictionary. The output will

therefore be recorded as the symbols ‘aa’ appeared twice with ‘t’ as codeword, thus

represented as <2[3,2],t>.

The same applied to the fourth encoding. A matched symbol ‘ta’ is found at offset 4

in the dictionary with the symbols ‘ta’ appeared twice in the LAB. Frequency of (2) is

attached to the pointer’s parameter and the sliding window moves over two symbols ‘at’

instead of four symbols ‘tata because the location of the second two symbols ‘ta’ is not

Univ
ers

ity
 of

 M
ala

ya

51

recorded in the dictionary. The output will thereby be recorded as the symbols ‘aa’

appeared twice with ‘t’ as codeword, thus represented as <2[4,2],t>. The last encoding

output <2,2,*> has both the offset and length of 2 with no codeword. This is because

there is no other symbol in the LAB to be encoded.

To decode the encoded output of Table 3.8, the frequency rule is applied. Table 3.9

shows the decoding process of encoded entries in Table 3.8. In the decoding process,

once frequency of 2 is found, the decoder repeats the decoding symbol(s) found at that

position.

Table 3.9: Modified LZ77 process of symbol decoding for the encoded input
‘aataaaattatatat’

Sno Encoded
Output

Decoded
symbol(s)

Search
frequency Decoded output

1 <0,0,a> a 1 a1
2 <1,1,t> a 1 a3a2t1
3 <3,2,t> aa 2 a6a5t4a3a2(aa)t1
4 <4,2,t> ta 2 a9a8t7a6a5(aa)t4t3a2(ta)t1
5 <2,2,-> at 1 a a t a a a a t t a t a t a t

The first encoded output is <0,0,a>. Therefore, the search symbol ‘a’ is decoded with

the offset and length are zero. The second encoded output <1,1,t> having both offset

and length of one (1) with ‘t’ as the codeword, counting from the offset of the previous

decoded output a1, symbol ‘a’ is entered with codeword ‘t’, thus symbols ‘at’ are

decoded. To decode the third encoded output <3,2,t>, the frequency (2) is utilized. The

decoder reads the encoded output as <2[3,2],t> signifying that the content of offset 3

and length 2 will be outputted twice with ‘t’ as codeword. Counting the offset from the

subsequent decoded output a3a2t1, two symbols ‘aa’ with ‘t’ as the codeword.

Considering the frequency (2), thus ‘aa’ is repeated and producing the decoded the

output as ‘aaaat’.

Univ
ers

ity
 of

 M
ala

ya

52

The same holds for the fourth output. The decoder reads the encoded output as

<2[4,2],t> indicating that the content of offset 4 and length 2 will be output with ‘t’ as

codeword. Counting the offset from the subsequent decoded output a6a5t4a3a2(aa)t1, the

decoder will not include the symbols (aa) since is not available in the encoding history.

As such only the offset of the existing symbols a3a2 will be referred to by the pointer,

thus the output will be symbols ‘ta’ with frequency (2) and codeword ‘t’. Based on the

rule, the symbols will be repeated and include the codeword at the end. The resulting

output will then be ‘ta(ta)t’.

 The last stage is the decoding of the encoded output <2,2,*>. The output has offset

and length of 2 with no codeword. The decoder simply counts the offsets of the previous

decoded output, without considering the repeated symbols (aa) and (ta). These repeated

symbols have no history in the encoder because they are not being referred during

encoding. Counting the positions from the previous decoding output

a9a8t7a6a5(aa)t4t3a2(ta)t1, the offset 2 and length 2 is a2t1 or precisely ‘at’. As it can be seen

in the last decoding in Table 3.9, the final decoded output is `a a t a a a a t t a t a t a t`,

which is exactly same with the original input ‘aataaaattatatat’.

The conclusion is that both the output from the LZ77 and the modified LZ77 are

exactly the same. But the modified LZ77 produced the result in five (5) stage while the

LZ77 produced the result in six (6) stages. This implies that the modified LZ77 use

fewer pointers to execute the same input. Fewer pointers in the encoding process,

implies more symbols can be accommodated in the SB’s dictionary. Table 3.10 shows

the pseudocode of the modified LZ77 compression algorithm.

Univ
ers

ity
 of

 M
ala

ya

53

Table 3.10: Pseudocode of the Modified LZ77 Compression Algorithm

1: begin

2: get input from server

3: while (input is not empty) do

4: begin

5: locate the longest prefix r of entry starting in coded part

6: locate the search symbol in non-coded part

7: check the adjacent symbol after search symbol for similarity

8: if no similarity then goto 11

9: if similarity found

10: then record the frequency (2) of occurring symbols

11: l:= position of r in window

12: m:= length of r

13: n:= first symbol after r in the input entry

14: output 2[(l,m,n)] as encoded goto 20

15: endif

16: l:= position of r in window

17: m:= length of r

18: n:= first symbol after r in the input entry

19: output 2[(l,m,n)] as encoded

20: move next symbol

21: endif

22: endwhile

23: end

3.8 System Implementation and Execution

The Web services were implemented using Oracle WebLogic Server in J2EE

environment. The implementation used a virtual client-server scenario to run and

execute the request-response service. The payloads are in normal and compressed

formats.

Each message format in both web services was executed 50 times and metrics

were monitored, measured and recorded. In order to effectively capture the desired

metrics: response time, overhead and payloads. The average of the executions is

captured and samples are shown in Appendices E1-F2. These metrics at the server and

client endpoints include payload generation overhead, payload size, server response

Univ
ers

ity
 of

 M
ala

ya

54

time, client response time, compression overhead, decompression overhead and

transaction response time.

Figure 3.3: The flow of the research methodology process for the SOAP
performance enhancement for large volume messaging

3.9 Summary

This Chapter explains how the research was conducted. It gives details of how the

research was initiated by identifying the research area and the research gap. The process

of identifying the system requirement and the design of the solution is explained in this

Chapter. The setting of the experiments and the implementation and execution of the

implementation were also explained.

The system requirements to perform the experiment of the research were carefully

identified. SOAP over HTTP and SOAP over JMS Web services were appropriately set

up for the experiment. Each system comprises of the server and the client web services

for the exchange of messages in two different formats: normal message and compressed

message. While normal message was executed without constraint, the compressed

version uses a modified LZ77 compression algorithm. Both web services were

Univ
ers

ity
 of

 M
ala

ya

55

implemented and executed 50 times and at every phase, metrics were monitored and

recorded. The metrics formed the results of this study. The results of the experimental

metrics calculations and the plot of the graphs are presented in Chapter 5.

Univ
ers

ity
 of

 M
ala

ya

56

CHAPTER 4: SYSTEM REQUIREMENT ANALYSIS, DESIGN AND

IMPLEMENTATION

This chapter presents how the research problem under study was analysed and

designed. To effectively obtain useful experimental results, the chapter carefully

provided the solution through identification of the system requirements. The solution

was obtained by analysing and designing the requirements based on the research

objectives. Unified Modelling Language (UML) 2.0 was used to model the requirement

analysis and the design for the system. The following representations of the UML; use

case, class diagram, activity diagram, sequence diagram and component diagram were

utilized in the design.

4.1 System Analysis

The purpose of meeting the research objectives was analyzed here in order to identify

the requirements and to model a system that will answer the research questions. The

problem is studied and analyzed to understand and identify the component to be used in

the implementation. UML Use case, Class diagram and Sequence diagram were used for

the analysis.

4.1.1 Use Case Diagram

The use case depicted the functional reality of how the solution will work between

two or more applications or machines in the web services transaction. It represents the

functional requirement of the Web services showing how graphically the services can be

requested and be consumed. Figure 4.1 shows the transaction between service provider

and the service requester in the Web services. The figure is a graphical generalization

for modelling Web service with any transport protocol.

Univ
ers

ity
 of

 M
ala

ya

57

Figure 4.1: Use case diagram for the SOAP performance Web services
enhancement showing the detailed use cases and the actors of the Web services

The use case diagram consists of three (3) actors and seven (7) use cases. The model

uses publish-subscribe pattern to provide and consume the services. The service

provider actor publishes the service by including the compress message use cases. The

provider web service includes the compress message use case to compress the message

if the message needs to be compressed. The service requester then subscribes via the

consumer web service use case to consume the provided service by the service provider

by including the decompress message use case to decompress the message provided by

the service provider.

Univ
ers

ity
 of

 M
ala

ya

58

4.1.2 Activity Diagram

The activity diagram describes the dynamic workflow of the Web service. It shows

the interaction between the provider and the consumer web services. This captured the

initiation of the request to the stage when the service will be provided and consumed.

Figure 4.2 illustrates the activities in the Web services indicating the activity flow in the

system. The figure is a generalization diagram for both HTTP and JMS web services.

Figure 4.2: Activity diagram for the SOAP performance Web services
enhancement showing the dynamic flow of activities of the Web services.

4.1.3 Sequence Diagram

A sequence diagram is utilized to model the dynamic behaviour of the objects in the

solution of the Web services. Here, the sequence diagram models the sequential flow of

Univ
ers

ity
 of

 M
ala

ya

59

objects participating in the Web services. It depicts how messages are exchanged in the

Web services communication over time.

Figure 4.3 shows the chronological procession of the objects from the requesting of

the service to its consumption.

:Requester :Provider:Publish:Decompress :Consume

1: Send reqiest

2: Acknowledge request

7: decompress
payload

4: compress payload

8: consume services

:Compress

3: generate payload

5: publish services

:Lookup

6: look for
services

Figure 4.3: Sequence diagram for the SOAP performance Web services

enhancement showing the objects involved in the request-response implementation

The requester makes a request for service and the provider responds by acknowledging

the request. The provider generates a message (payload) and compresses the message (if

there is a need to be compress). The provider then publishes the compressed payload for

consumption. The requester looks up for the services, if available the requester

decompresses the payload and finally consumes the service.

Univ
ers

ity
 of

 M
ala

ya

60

4.2 System Design

The system design deals with the creation of a solution from the requirements

analysis. It provides a static solution to the stated problem under study. It defines the

modules and the components needed for meeting the research objectives. Based on the

system analysis, the system is designed by defining all the elements involved in the

analysis and converting them to define the solution to the research problem. UML class

diagram and component diagram were used in this research for the solution design.

4.2.1 Class Diagram

The class diagram shows the stationary model view of the solution. It describes how

the classes and their elements are arranged to work in the entire Web services

experiment. As shown in Figure 4.4 and Figure 4.5, the classes, methods, operations and

constraints were related and modelled to capture and describe the responsibility of the

system. However, this diagram did not model the solution of the transport aspect. Figure

4.4 is the bench mark design consisting of controller class, web service provider class,

web service client class and their corresponding compressor and decompressor classes.

This model is designed to be transported via HTTP. Figure 4.5 is the prototype

comprising of controller class, web service provider class, web service client class and

their corresponding compressor and decompressor classes and additional class for

calling other functions of the prototype. This prototype model is designed to be

transported via JMS.

Univ
ers

ity
 of

 M
ala

ya

61

WSProvider

-inputMsg: String
-bufferSize: INT

+WSProvider()
+msgGenerate()
+timer:()

WSClient

-receivedMsg: String
-bufferSize: INT

+WSReceiverProxy:()
+WSProviderService:()
+onMessage:()
+timer:()

compressorClass

-inputMsg: String
-bufferSize: INT

+searchBuffer:()
+appendBuffer:()
+readBuffer:()
increaseBuffer:()

decompressorClass

-receivedMsg: String
bufferSize: INT

+compareBuffer:()
+appendBuffer:()
+increaseBufferSize:()

Controller class

-enable: boolean

+normalMsgHandler:()
+compresdMsgHandler:()

Figure 4.4: Class diagram for the SOAP performance Web services
enhancement showing the classes involved in the HTTP web services

implementation

WSProvider

-inputMsg: String
-bufferSize: INT

+connectionFactory:()
+queueSender:()
+msgGenerate()
+timer:()

WSClient

-receivedMsg: String
-bufferSize: INT

+connectionFactory:()
+queueReceiver:()
+onMessage:()
+timer:()

compressorClass

-inputMsg: String
-bufferSize: INT

+searchBuffer:()
+appendBuffer:()
+readBuffer:()
increaseBuffer:()

decompressorClass

-receivedMsg: String
bufferSize: INT

+compareBuffer:()
+appendBuffer:()
+increaseBufferSize:()

Controller class

-enable: boolean

+normalMsgHandler:()
+compresdMsgHandler:()

Figure 4.5: Class diagram for the SOAP performance Web services
enhancement showing the classes involved in the JMS web services

implementation

<<uses>>

<<uses>>

Univ
ers

ity
 of

 M
ala

ya

62

4.2.2 System Components

 Figure 4.6 and Figure 4.7 show the major component diagrams for the Web

services. The diagrams show how the entire provider/consumer services is modularized

for effective control and ease of reuse. Figure 4.6 depicts the component diagram for

SOAP web service over HTTP transport while Figure 4.7 depicts the component

diagram for SOAP web service over JMS transport.

Provider web service

<<service proxy>>
Service port

WSDL
Weblogic.jar

<<provider>>
service provider

<<provider>>
Message compressor

Consumer web service

<<consumer>>
Service consumer

<<invoker>>
service invoker

<<consumer>>
Message decompressor

HTTP

XML

Figure 4.6: Component diagram for the SOAP performance Web services
enhancement showing the major components for achieving the functionalities of

the implementation of HTTP web services

Provider web service

<<EJB >>
Jms-api.jar
WlClient.jar
Weblogic.jar

<<provider>>
service provider

<<provider>>
Message compressor

Consumer web service

<<consumer>>
Service consumer

<<invoker>>
service invoker

<<consumer>>
Message decompressor

JMS

XML

Figure 4.7: Component diagram for the SOAP performance Web services
enhancement showing the major components for achieving the functionalities of

the implementation of JMS web services

Univ
ers

ity
 of

 M
ala

ya

63

4.3 System Implementation

The implementation is the construction of the system for operational purpose. This

stage is a by-product of the system analysis stage. The system is built and put to use for

evaluation. J2EE (Kalin, 2013) was used to code the solution and the client-server used

a WebLogic server (Saab, Coulibaly, Haddad, Melliti, Moreaux, & Rampacek, 2012) to

handle the message exchange.

4.3.1 Web Services Implementation

Both experiments were conducted using top-down approach. The implementation

hardware and software environment are mentioned in Sections 3.6.1 and 3.6.2

respectively. In each exchange protocol, server and client web services were created and

their classes and methods were annotated to be bounded at run time during the

transaction.

In the SOAP over HTTP web services, the experiment was executed in order to

obtain the WSDL and extract the endpoint (the client-side linker). The WSDL is then

used to expose the web services to be available at the client side.

Unlike the HTTP version, the JMS version uses its connection properties to define

the sender, receiver, connections and sessions once. The wsimport annotation of the

SOAP over JMS web services creates the endpoint, bindings and the WSDL to be used

in the service consummation.

The development phase of the implementation in both web services was ran and

tested as the implementation progressed. Overall testing was achieved through

identifying logical and run time errors and then debugged. The final tested experiment

was then put to use for the analysis. Figure 4.8 shows the architecture of the web

Univ
ers

ity
 of

 M
ala

ya

64

services from adopted Oracle web services (Brydon and Singh, 2010) and modified to

suit the purpose of this research.

The experiment was performed using the Oracle WebLogic server as the run time

server. Data were generated by the message generator method in the WSProvider class

at the server side upon receiving a request from a client. Metrics such as the message

(payload), message size, response time and other overhead were captured and recorded

at both sides. Gradually, message size was increased and the metrics were consequently

monitored, measured and recorded. Figure 4.8 illustrates the flow of the process of

executing the two web services.

Figure 4.8: SOAP messaging architecture for large volume with modified LZ77
compression algorithm (Brydon and Singh, 2010)

Univ
ers

ity
 of

 M
ala

ya

65

Figure 4.9: Flowchart for the implementation of SOAP/HTTP and SOAP/JMS

4.3.2 System Execution and Evaluation

The exchange of XML input is performed for the two web services the: SOAP over

HTTP and SOAP over JMS. Each transaction is executed 50 times. The client requests

for services from the server and the server provides the services by generating the

payload. The server exchanges the generated payload via the exchange protocol (HTTP

or JMS). Figure 4.10 shows how individual metric was captured during the exchange

between the server and the client.

Univ
ers

ity
 of

 M
ala

ya

66

Figure 4.10: Workflow for the Web services showing how the endpoints interact
and how the metrics for the services were captured for the analysis

The metrics: server response time, client response time, payload overhead,

compression overhead and decompression overhead were measured and recorded for

every transaction. The metrics were automatically sent by the application and saved as

excel (.csv) file for each transaction, while the payloads for all transactions were

appended at every transaction and saved in notepad file which can be accessed for

further use. After running, measuring and recording the Web services for 50 times, the

excel data were collected into a single file with 10 sheets each containing 5 transactions.

The average for each metric except the payload was calculated using an excel formula

for average.

The average for the metrics were calculated by referring to the results in each of the

10 excel sheets. For instance, to calculate the average for a particular metric is;

Univ
ers

ity
 of

 M
ala

ya

67

 =AVERAGE(Sheet1!B2, G2, H2, K2, O2, Sheet2!B2, G2, H2, K2, O2, Sheet3!B2,

G2, H2, K2, O2, Sheet4!B2, G2, H2, K2, O2, Sheet5!B2, G2, H2, K2, O2, Sheet6!B2,

G2, H2, K2, O2, Sheet7!B2, G2, H2, K2, O2, Sheet8!B2, G2, H2, K2, O2, Sheet9!B2,

G2, H2, K2, O2, Sheet10!B2, G2, H2, K2, O2).

The result will produce average of all the values of that particular metric contained in

the 10 sheets.

Table 4.1: Performance metrics calculations shows the formulae used for calculating

the metrics and subsection 4.3.2.1 explains the metrics and how they are calculated.

Samples raw data of the metrics for both protocols (HTTP and JMS) are shown in

appendices E1-F2. The averages for the results are presented in Tables 5.1 – 5.7 in

Chapter 5. The results were copied and paste into a software (Origin lab, version 6.4)

for plotting engineering and scientific graphs. The graphs for the response times and

overheads were plotted against payloads for all the transactions in both SOAP over

HTTP and SOAP over JMS. The graphs are presented in Figures 5.1 – 5.7 in Chapter 5.

Table 4.1: Performance metrics calculations

Long name Formula

Payload overhead Tpgt = t pgt1 - t pgt0

Server response time Tsrt = tsrt1 -tsrt0

Client response time Tcrt = tcrt1 - tcrt0

Compression overhead Tc = tc1 - tc0

Decompression overhead Tdc = tdc1 - tdc0

Transaction response time Trt =∑Tcrt +∑Tsrt

4.3.2.1 The Web Services calculation for response time and overheads

a) Payload generation time: This is the time taken for the sender to generate the

payload. The payload is generated as a message and send to the client each time

the service is requested by the client. The payload generation time is calculated

Univ
ers

ity
 of

 M
ala

ya

68

automatically at the server as the difference between the time when the server

application triggers the module to generate the message and the time when the

message is generated. The payload is considered as overhead and is isolated

from the actual exchange time.

This is calculated as payload generation time = payload generation stop time -

payload generation start time and measured in milliseconds (ms) and is given as:

Tpgt = tpgt1 – tpgt0

b) Compression time: This is the time taken by the server to compress the

generated message before sending to the client. The payload compression time is

calculated automatically in milliseconds (ms), at the server as the difference

between the time when the server starts compressing the generated payload and

the time when the server finishes compressing the generated payload. This is

calculated as payload compression time = payload compression stop time -

payload compression start time. and given as:

Tc = tc0 – tc1

c) Server response time: Time taken by the server to successfully

exchange the payload. The server generates the payload and sends in normal or

compressed format as the case may be, through the Web services. The send time

is the time at the server to communicate with other server application services,

process and send the payload. Therefore, the send time is the total time taken at

the server to provide the required services. The send time is comprised partly the

payload generation time and the compression time (for compressed version),

which are regarded as overhead.

 Server response time is automatically calculated at the server as the time

difference when the server receives a request from the client and the time when

the server provides the request to the client. This is precisely the start and the

Univ
ers

ity
 of

 M
ala

ya

69

stop of the server for every exchange, measured in millisecond (ms) and given

as:

Ts = tsrt1 – tsrt0

d) Decompression time: Time taken by the client to decompress the received

compressed payload. The payload decompression time is calculated

automatically in milliseconds (ms), at the client side by the client application.

Decompression time is the difference between the time when the client starts

decompressing the compressed payload and the time when the client finishes

decompressing the compressed payload. This is calculated as payload

decompression time = payload decompression stop time - payload

decompression start time. and given as:

Tdc = tdc1 – tdc0

e) Client response time: This is the time utilized by the client to receive and

process the sent payload. This may include the decompress time (in case of

compression). Receive time is automatically calculated at the client side by

isolating the overhead. Receive time is an absolute time after the payload

received is decompressed. This is calculated as receive time = client side stop

time – client side start time and is given as:

Tr = (tcrt0 – tcrt1) for normal payload

Tr = (tcrt0 – tcrt1) - Tdc for compressed payload,

where Tdc is the decompression time.

f) Transaction response time: Is the total time taken at the server and the client

processes. This response time measure the request-response elapsed by both

endpoints to request, process and provide the required services. Transaction

response time or total response time is obtained as the time at the client side and

Univ
ers

ity
 of

 M
ala

ya

70

the time taken at the server side to produce the desired web service result. The

transaction response time involves server response time, client response time,

the compression overhead and decompression overhead.

Transaction response time = time taken by the server to process and produce

services + time taken at the client to receive and process the services. The

metric is measured in milliseconds (ms). The response time is calculated as:

Trt = ∑Tcrt + ∑Tsrt

Trt = (Ts + Tc) + (Tr + Tdc)

4.4 Summary

This chapter discusses the research problem requirement analysis, solution design for

the system and the implementation of the problem solution. Use case, sequence diagram

and activity diagram were used to model the requirements for the Web service. Class

diagram and Component diagram were used to design the logical solution to the Web

service. The implementation put the system into work by building a running Web

service. Finally, the web services were executed 50 times to evaluate the effectiveness.

Metrics for determining and fulfilling the research objectives were fetched and utilized

to form the result of this study. The results of the metrics calculations and the graphs for

the response times and the payloads are presented in Chapter 5.

Univ
ers

ity
 of

 M
ala

ya

71

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

The experimental results for each Web services protocol are presented and discussed

in this chapter. This chapter discusses the results of both implementations using the two

different message formats: normal and compressed. The results are presented in graph

and table form. The purpose of this study was examined by designing and implementing

a SOAP over HTTP and SOAP over JMS web services and incorporating a modified

LZ77 text compression algorithm for payload exchange.

The presentation of the findings is categorized as response times for normal

(uncompressed) and compressed payloads for the benchmark system (SOAP over

HTTP) and the experimental system (SOAP over JMS). The performance comparison

between the two systems is vis-à-vis presented and discussed here.

5.2 SOAP over HTTP Protocol

The SOAP web services with HTTP binding protocol experimental results are shown

in Table 5.1 and Table 5.2. The graphs of the experimental results are shown in Figure

5.1 and Figure 5.2. The following subsections 5.2.1 and 5.2.2 discuss the findings of

the results for SOAP over HTTP binding.

5.2.1 Normal Payload Response Time

Table 5.1 shows the response time for exchange of message with normal payload

using the SOAP over HTTP protocol. Figure 5.1 shows the graph of the payload

generation overhead and response time for server, client and the transaction for the

normal payload. As shown in the table, the transaction response time has the highest

response time of 1841ms for the highest payload of 22.2MB.

The transaction and the client response times between payload 1.3MB and 9.9MB

increase with the increment of the payload. However, as the payload increased to

Univ
ers

ity
 of

 M
ala

ya

72

11.9MB, the client response time decreased to 524.67ms, but then picked up again to

760.33ms when the payload was 14.2MB. Again both the transaction and the client

respose times fall to 796.67ms and 637ms respectively when the payload was increased

to 16.6MB. Then, the time picked up again for the last two points.

Table 5.1: Response time for normal payload (SOAP over HTTP)

Payload
size (bytes)

Payload
overhead
time (ms)

Server
response
time (ms)

Client
response
time (ms)

Transaction
response
time (ms)

1339772 2.00 6.67 176.00 184.67
2153205 3.00 9.33 172.33 184.67
3158034 5.00 19.00 209.00 233.00
4354259 13.67 38.33 252.33 309.33
5741880 15.67 39.33 299.33 354.33
7320897 12.67 49.00 355.67 417.33
9896768 16.00 72.67 531.33 620.00
11938326 21.00 98.33 524.67 644.00
14171279 24.33 141.00 760.33 925.67
16595628 15.00 144.67 637.00 796.67
19211374 15.67 473.67 1062.00 1551.33
22249785 20.67 610.67 1209.67 1841.00

Univ
ers

ity
 of

 M
ala

ya

73

Figure 5.1: SOAP over HTTP response time for normal payload transaction

 In contrast to the client response time, the server response time was steady and

maintained a low response time with the increasing payload as indicated in the server

response time trend in Figure 5.1. The time to respond for payloads between 1.3MB to

16.6MB were 150ms, but when the payload size was increased to 19.2MB, the response

time shot up to 473.67ms, almost 329ms increment from the previous response time of

144.67ms. The server response time increased to 610.67ms as the payload was

increased to 22.2 MB.

From the strartup of the transaction, the payload overhead time is increasing in

accordance with payload, but when the payload was 7.3MB, the overhead time

decreases to 12.67ms, but then the trend went 21.00ms when the payload is increased to

11.9MB. Again, the overhead decreases to 15.00ms when the payload was 16.6MB and

continued to slighlty go down before shooting up again the end of the process. The

trend in the payload overhead is sporadic and produces peaks in the transition.

Univ
ers

ity
 of

 M
ala

ya

74

Key findings:

The client response time, in comparison with the server response time revealed to be

high due to HTTP request. The client as the requesting service always repeatedly checks

the server for any interim message. As a result, the client monopolizes the transaction

thread.

The transaction response time indicates to be ascending with the payload as seen in

the pattern in Figure 5.1. This is possible due to the client response time that dominated

the entire web service transaction.

The server response time tends to increase gradually with the increase in the payload

but rises as the payload increases to 19.2MB. The possibility is that, the payload of

19.2MB might be regarded as huge at that level to the CPU process, therefore more

space is needed to continue processing more incoming messages. Peaks were noticed in

the payload overhead time. This surge might be due to memory swapping by the JVM to

allow space for an incoming message (Nakamoto and Akiyama, 2015).

5.2.2 Compressed Payload Response Time

Table 5.2 shows the response time for exchange of message with compressed

payload using SOAP over HTTP protocol.

Univ
ers

ity
 of

 M
ala

ya

75

Table 5.2: Response time for compressed payload (SOAP over HTTP)

Payload
(bytes)

Payload
overhead
time (ms)

Server
response
time (ms)

Client
response
time (ms)

Compre-
ssion time
(ms)

Decompre-
ssion

time (ms)

Transaction
response
time (ms)

6203 2.00 49.33 70.67 14.67 7.33 144.00

9802 3.33 61.33 86.00 16.00 10.33 177.00

14248 8.33 79.00 93.67 23.33 12.33 216.67

19552 8.00 112.00 140.00 31.67 21.33 313.00

25676 10.00 163.00 191.67 41.67 22.33 428.67

32642 17.33 236.00 298.00 55.00 59.00 665.33

42582 18.00 365.67 418.33 72.33 46.00 920.33

51448 26.00 482.33 544.67 89.33 54.67 1197.00

61175 20.33 747.67 731.00 104.00 62.33 1665.33

71737 27.00 963.67 1387.33 121.00 292.00 2791.00

83144 30.00 1276.33 2186.33 235.33 359.00 4087.00

95394 35.67 1457.00 2656.00 160.67 89.00 4398.33

Figure 5.2: SOAP over HTTP server, client, compression, decompression and
payload overhead for compressed payload transaction response times

Univ
ers

ity
 of

 M
ala

ya

76

Figure 5.2 shows the payload overhead, compression, decompression delay and

response times for the transaction, the server and client. From the figure, it can be seen

that the payload generation time for the web services was progressing with payload

increase. It moved almost smoothly parallel to the payload X-axis, except that when the

payload was 61.2KB, the overhead made a downrise to 20ms.

From the initial stage of the compression overhead time till the payload of 7.2KB,

the overhead increased accordingly with the payload. But then the overhead time went

up when the payload was 8.3KB and then come down at the final stage to maintain

linear transition. From the start, the decompression overhead time increased with the

increase in the payload but abruptly ascended when payloads were 7.2KB and 8.3KB

respectively.

The server and client response times both inclined to almost upward trend from the

beginning of the Web services start up until the payload of 6.12KB. Both response times

surged with client time rising significantly to 1387.0ms while server time increased to

963ms at payload of 7.2KB. Client response time continued to rise but the server time

grew modestly with the payload increase.

The transaction response tim e for the Web services is higher than all the response

times as seen in the figure. This transaction started and carried on with gradual upward

bearing throughout the transaction.

Key findings:

In this transaction, the client and server response time trend together exponentially

until the payload was 6.4 KB. As seen in Figure 5.2, there is a sudden drift by the client.

The possible cause of this might be due memory management such as paging or

memory swapping by the client JVM.

Univ
ers

ity
 of

 M
ala

ya

77

Compression and decompression overheads were shown to be low as they incur little

computation overhead of the total execution. In addition, compression is costly than the

decompression due to a large number of comparisons in finding match patterns during

encryption process in the LZ77 algorithm as mentioned by Kreft and Navarro (2010)

and Mouli and Rajendra (2012).

Payload overhead time ascending slowly throughout the transaction is an indication

that the overhead increases with the payload size. The payload generator is a method

that is always called to produce same string of XML, as such less execution time is

needed to commit the process.

It is noticed that in all the three overhead times, there is increase in one or two

transaction(s), this might be attributed to memory paging or resource sharing by the

CPU internal processes (H. Li et al., 2013).

5.3 SOAP over JMS Protocol

The SOAP Web services with JMS binding experimental results are shown in Tables

5.3 – 5.5. The graphs of the experimental results are shown in Figures 5.3 – 5.5.

JMS, unlike HTTP, is not a request-based protocol. It is an API with an abstraction

of some interfaces and classes required by a client to communicate with the server in the

messaging services. In JMS, server exposes shared services to the remote service client

for consumption. In essence, the server writes the message to the queue and the client

reads the data from the queue in a stateful mode. The following subsections 5.3.1 and

5.3.2 discuss the findings of the results for SOAP over JMS binding.

5.3.1 Normal Payload Response Time

Table 5.3 shows the response time for exchange of message with normal payload

using SOAP over JMS protocol. Figure 5.3 shows payload overhead and response

Univ
ers

ity
 of

 M
ala

ya

78

times of server, client and transaction for normal payload. As shown in the figure, the

server response time revealed to be the lowest time in the web services communication.

It started and continued upright with payload increase. Although there is a slight rise in

the trend when the payload was increased to 19.2MB but it went down and maitained

the movement.

 Table 5.3: Response time for normal payload (SOAP over JMS)

 Payload
overhead
time(ms)

Server
response
time(ms)

Client
response
time(ms)

Transaction
response
time(ms)

 Payload

Size(bytes)
1339772 25.75 4.00 46.86 76.61
2153205 47.75 8.86 71.29 127.89
3158034 74.50 3.00 77.86 155.36
4354259 91.38 12.43 128.57 232.38
5741880 107.63 8.14 131.71 247.48
7320897 165.75 13.14 223.71 402.61
9896768 260.88 10.86 233.43 505.16
11938326 387.63 8.71 269.43 665.77
14171279 402.63 11.00 299.71 713.34
16595628 493.63 11.57 341.71 846.91
19211374 594.63 44.71 388.71 997.05
22249785 763.63 9.14 453.29 1261.05

Univ
ers

ity
 of

 M
ala

ya

79

Figure 5.3: SOAP over JMS response time for normal payload transaction
comprising payload generation overhead time, server, client and overall

transaction response times

The transaction response time is revealed to be high as the payload increases as seen

in Figure 5.3. This is possible due to the payload overhead time that dominated the

entire web service transaction. The transaction response time varies accordingly at the

different payloads until the load was 11.9MB and caused the trend to rise slightly higher

at 665.8ms. It then maintained the bearing linearly, but this pattern changed when the

payload was 22.2MB when the trend shot up from 997.1ms to 1261.1ms.

The payload overhead time generally rises with the increment in the payload till the

end of the transaction. The overhead moves normal with the payload but have an

upward change when the payload was increased to 11.9MB and 22.2MB. Both the

transaction response time and the payload overhead were revealed to be high compared

to other metrics of the transaction.

Univ
ers

ity
 of

 M
ala

ya

80

This client response time trend indicates upward transition with the payload. The

response time continue to grow as the payload is increase. The transition formed a

perpendicular linear progression up to the end of the system transaction. Except in one

point of a payload of 7.3MB, the response time made a sudden slight change upward to

223ms but came down to maintain the course.

But for the server, the response time shows a linear progression as the payload is

increased. Here payloads are produced and queued, little effort is needed by the server,

specifically the payload queuing effort, in this case. JMS is stateful and connected hence

none of these requirements is needed after the initial connection.

Key findings:

The transaction response time reveals to be high as the payload increases as seen in

Figure 5.5. This is possible due to the payload overhead time that dominated the entire

web service transaction. The payload overhead time generally rises with the increment

in the payload. Possible cause is that the normal payload is not constraint by any format

during the exchange process as such the payload is not cached at the JVM. Any time the

client is reading the message, it has to start over and fetches and concatenate the

payload through the loop.

The client response time is higher than the server response time. This claim is

evident from client response time trend line that indicates upward transition with the

payload. The client starts the communication by obtaining a JNDI connection to the

messaging server which provides the access to the connection factory and the queue.

The server produces and place the payload on the queue while. The client always reads

the data from queue one by one. This process is time demanding for the messaging

client.

Univ
ers

ity
 of

 M
ala

ya

81

5.3.2 Compressed Payload Response Time

Table 5.8 shows the response time for exchange of message with compressed

payload using SOAP over JMS protocol.

Table 5.4: Response time for compressed payload (SOAP over JMS)

Payload
(bytes)

Payload
overhead
time (ms)

Server
response
time (ms)

Client
response
time (ms)

Compre-
ssion time
(ms)

Decomp-
ression
time (ms)

Transaction
response
time (ms)

6203 2.00 1.80 5.60 19.40 10.75 39.55

9802 8.40 1.80 9.20 33.40 13.25 66.05

14248 3.20 2.20 23.00 36.60 29.25 94.25

19552 15.20 2.00 44.40 50.60 46.25 158.45

25676 5.60 2.60 25.20 66.60 38.50 138.50

32642 6.20 3.00 25.60 100.80 33.75 169.35

42582 12.80 2.60 85.20 103.60 94.00 298.20

51448 9.80 2.40 39.60 151.80 95.00 298.60

61175 17.20 2.80 53.80 168.00 111.25 353.05

71737 27.00 21.20 153.80 217.40 167.50 586.90

83144 33.60 8.40 57.60 271.80 75.75 447.15

95394 13.60 3.20 148.40 235.00 176.00 576.20

Univ
ers

ity
 of

 M
ala

ya

82

Figure 5.4: SOAP over JMS response time for compressed payload transaction
comprising payload generation overhead time, server, client, compressed,

decompress and overvall transaction response times

 Figure 5.4 shows response times and overheads for SOAP over JMS compressed

payload. In the compressed payload, except payload overhead time and server response

time, all other metrics did not show a consistent pattern.

The client response time is higher than the server response time throughout the

transaction process. server response time maintained a low level with a smooth regular

trend except in two points when the payloads were 71.2KB and 83.1KB as it rises to

21.20ms and 8.40ms respectively. The payload overhead time on the other hand,

fluctuated throughout the transaction process. The overhead time in the trend rises,

especially at the payload of 9.8KB, 19.6KB, 72KB and 83KB with time as13.6ms,

8.4ms, 27ms and 33,6ms respectively.

Compression and decompression time are clearly not equal. The compression time is

higher than the decompression time throughout the transaction.

Univ
ers

ity
 of

 M
ala

ya

83

As can be seen from the figure, the transaction response time was irregular with peak

time of 586ms at the payload size of 71.7KB. The trend rose to 298.2ms, 298.6ms and

586.9ms at the payload of 42KB, 51KB and 71.7KB respectively. The response time

also rose to 576.2ms with payload of 95.4KB. The transaction response time showed

wide time disparity compared to all the other metrics.

Key findings:

Both compression/decompression processes take CPU resources during encoding and

decoding of the message. Compression is expensive due to a large number of

comparisons in finding match patterns during encoding process in the LZ77 algorithm

as proved by Kreft and Navarro (2010) and Mouli and Rajendra (2012), enforcing an

encoding overhead thus utilizes a lot of server resources. Decompression, even though

faster than the encoding it takes clients' resources. The spikes in the decompression

overhead might be a delay due to space allocation for new incoming messages or delay

by the messaging client JVM during garbage collection (Shams M. Imam, Vivek, &

Sarkar, 2014).

The communication process is mostly handled by the client runtime by making

request and accessing messages on the queue. The client invokes the send method of the

messaging server to trigger the compression algorithm, and then decompress the

message when upon received at the client side. This makes the client to have high

response time compared to the server. The spikes in the client response time are caused

possibly by the decompression activity to accommodate increasing memory loads by

reclaiming unused memory or garbage collection by the client JVM as suggested by Du

et al., (2013).

The server response time maintains a low linear transition indicating slight but

constant overhead. In JMS, the plain underlying principle is, messaging server, once

Univ
ers

ity
 of

 M
ala

ya

84

received an established a connection through the JNDI, it produces the message and put

it on to the queue and allow the rest of the process to the client. As such, the server

utilizes very little resources in the entire process.

Like server response time, the payload overhead time is low compare to other

metrics. Likely, the message is either cached at the server messaging provider or the

messaging client cache to avoid frequent request to the server. As such, less utilization

is expected from the server.

5.4 Comparison between SOAP over HTTP and SOAP over JMS

Compared experimental results of normal payload for SOAP with HTTP binding and

SOAP with JMS binding is shown in Table 5.5 and the graph of the compared bindings

is depicted in Figure 5.5. While comparison of payload overhead of SOAP with HTTP

binding and SOAP with JMS is shown in Table 5.6 and the graph is depicted in Figure

5.6.

Normal and compressed messages formats for both HTTP and JMS protocols were

compared based on the experimental findings and the results are discussed in the

following subsections 5.4.1 and 5.4.2.

5.4.1 Normal Payload for SOAP over HTTP vs SOAP over JMS

The following section shows the comparison of normal payload for the two

protocols: SOAP over HTTP vs SOAP over JMS.

Table 5.5 shows the normal payload transaction response time for the exchange using

SOAP over HTTP and the SOAP over JMS protocol. From Figure 5.5, both Web

services started with entirely different transaction response times and moved through

the transition. Although the SOAP over HTTP shows higher response time, But the

SOAP over JMS response time for was higher than the SOAP over HTTP at two points

Univ
ers

ity
 of

 M
ala

ya

85

when the payloads were 11.9MB and 16.6MB, with the differences of 21.8ms and

50.2ms respectively.

Table 5.5: Normal payload transaction response times for SOAP over HTTP vs
SOAP over JMS.

Normal
Payload
(bytes)

SOAP over
HTTP (ms)

SOAP over
JMS (ms)

1339772 184.67 76.61
2153205 185.33 127.89
3158034 233.00 155.36
4354259 309.33 232.38
5741880 354.33 247.48
7320897 417.33 402.61
9896768 620.00 505.16
11938326 644.00 665.77
14171279 925.67 713.34
16595628 796.67 846.91
19211374 1551.33 997.05
22249785 1841.00 1261.05

Univ
ers

ity
 of

 M
ala

ya

86

Figure 5.5: SOAP over HTTP vs SOAP over JMS response time for normal
payload transactions response times

The SOAP over HTTP transaction response time began to be irregular at a point

when the load size was increaed to 14.2MB. The time shot up to 925.6ms and then

recessed to 796.7ms against a load size of 16.6MB, but went up significantly to

1551.3ms against the payload of 19.2MB. The SOAP over JMS response time was also

irregular, though maintaned a steady movement between payload sizes of 1.3MB and

7.3MB. It then rose normally with the payloads were increased, but when the payload

size was increased to 22.2MB, the trend apparently shot up.

Key findings:

As seen from Figure 5.5, the response time of normal payload for SOAP over HTTP

revealed to be high in comparison with the SOAP over JMS. HTTP is a request-based

protocol and connectionless, the client request makes a request to the server and

disconnects once a request is made. The server processes and the client requests by re-

establishes the connection. The process of making request each time transaction is to be

Univ
ers

ity
 of

 M
ala

ya

87

made informed the SOAP over HTTP busy and resource-intensive (Massimiliano et al.,

2013).

JMS is an API with an abstraction of some interfaces and classes required by a client

to communicate with a server in the messaging services. Connection is established once

and endpoints stay connected in a stateful mode throughout the communication process.

The client establishes the request and reads the messages one by one from the queue.

This operation revealed to be expensive for the client and affects the performance of the

messaging web service. The client is the side that makes most of the process by reading

the payloads one at a time from the server.

Considering the effects of the two binding protocols, SOAP over JMS is better than

SOAP over HTTP. The response time in SOAP over JMS is low, and HTTP binding

incurs overhead as a result of message encapsulation and the constant check for

awaiting message by the client.

Univ
ers

ity
 of

 M
ala

ya

88

5.4.2 Compressed Payload for SOAP over HTTP vs SOAP over JMS

The following section shows the comparison for compressed payload for the two

protocols: SOAP over HTTP and SOAP over JMS.

Table 5.6: Compressed payload transaction response times for SOAP over

HTTP and SOAP over JMS

Compressed
payload (bytes)

SOAP over HTTP
(ms)

SOAP over JMS
(ms)

6203 144.00 39.55

9802 177.00 66.05

14248 216.67 94.25

19552 313.00 158.45

25676 428.67 138.50

32642 665.33 169.35

42582 920.33 298.20

51448 1197.00 298.60

61175 1665.33 353.05

71737 2791.00 586.90

83144 4087.00 447.15

95394 4398.33 576.20

Univ
ers

ity
 of

 M
ala

ya

89

Figure 5.6: Compressed payload transactions response times for
SOAP over HTTP vs SOAP over JMS protocols.

As seen in Table 5.6 and Figure 5.6, the SOAP over JMS compressed transaction has

low response time while the SOAP over HTTP is higher. Both trends appeared to be in

a regular transit throughout the web services communication. SOAP over HTTP

response time rose at a higher rate as the payload size was increased. On the other hand,

the SOAP over JMS response time grew slower along the transition with slight

differences in the response times. From the early stage of the transaction of payload size

between 6.2KB and 19.6KB, the disparity was small. The disparity was much widened

when the payload was increased to 51.4KB and continued to grow wider until the end of

the transaction.

Key findings:

Figure 5.6 shows the compressed payload for both binding protocols. It revealed that

the transaction response time for the SOAP over HTTP binding is significantly higher

than that of SOAP over JMS binding. The HTTP binding is almost four times higher

Univ
ers

ity
 of

 M
ala

ya

90

than the JMS binding at averagely around 26.6%. This reason might be related to the

stateless mode of HTTP request and the GET and POST methods that demands every

transaction to be connected again. In addition, HTTP constantly checks for awaiting

message by the client. This process utilizes a lot of CPU resources and causes

degradation on the entire performance of the messaging system, especially the client

side.

The trend of the SOAP over JMS binding protocol reveals to be good with almost

75.4% less response time than the HTTP binding. The major reason for the lower

response time is the fact that JMS is stateful and stay connected once the connection

services are established. The client establishes the request and reads the messages from

the queue in succession. This reduces amount of access to the CPU for a request.

Considering the effects of the two binding protocols, SOAP over JMS is better than

SOAP over HTTP. The HTTP binding incurs overhead as a result of message

encapsulation for the HTTP GET and POST (Butek, 2005) and the constant check for

awaiting message by the client.

5.5 Messaging Communication Delivery Analysis

Both messaging Web services were executed 50 times each and the numbers of

success message delivery were recorded. Table 5.7 shows the number of successful

deliveries of the messages from the messaging server to the messaging client for both

binding protocols.

Univ
ers

ity
 of

 M
ala

ya

91

Table 5.7: Normal and compressed payloads success rate for SOAP/HTTP and
SOAP/JMS

No. of success

No. of success

Normal Compressed
payload
(bytes) HTTP JMS payload (bytes) HTTP JMS

1339772 50 50 6203 50 50
2153205 50 50 9802 50 50
3158034 50 50 14248 50 50
4354259 50 50 19552 50 50
5741880 50 49 25676 50 50
7320897 50 50 32642 49 50
9896768 50 50 42582 50 49
11938326 50 50 51448 50 50
14171279 49 50 61175 49 50
16595628 49 50 71737 50 50
19211374 48 49 83144 48 49
22249785 48 50 95394 49 50

Figure 5.7: Normal payload successful delivery for SOAP over HTTP and
SOAP over JMS

Univ
ers

ity
 of

 M
ala

ya

92

Figure 5.7 shows the successful messaging services for a normal payload. The graph

reveals that the JMS binding on SOAP performed well as the trend indicates a smooth

transition except at two points missing to deliver the payload. HTTP binding delivered

successfully in the beginning but failed one time when the payload was 14.2MB and

16.6MB. And also, when the payload is 19.2MB and 22.4MB, the HTTP binding failed

to deliver the payload two times at each point.

Figure 5.8: Compressed payload success rates for
SOAP/HTTP and SOAP/JMS.

Figure 5.8 shows the successful messaging services for a compressed payload. The

graph revealed that the JMS binding on SOAP performed well as the graph indicates

that the exchange failed two times, one at the payload of 42.6KB and also one time at

the payload of 83.1KB. In the HTTP binding, the payloads were as well delivered but

failed 5 times. One time each at the payload of 32.6KB, 42.7KB, 61.2KB and 95.4KB

respectively. Also, the HTTP binding failed to deliver two times at the payload of

83.1KB.

Univ
ers

ity
 of

 M
ala

ya

93

Key findings:

Figure 5.7 shows that the highest number of failures recorded is from HTTP binding

normal payload for SOAP over HTTP failed to deliver 6 times. As revealed from

earlier analysis, HTTP is a request-based protocol as such it might be overloading the

server with a lot of requests. This might force the server to go out of resources as result,

the server could befall unresponsive when the JVM cannot withhold the produced

message due to memory allocation or swapping.

The normal payload for SOAP over JMS failed to deliver 2 times. This happens

likely when the CPU is overwhelmed by internal processes and breaks the I/O activity

for a long time and the JVM misses the track of its activity.

Figure 5.8 shows the compressed payload for the two binding protocols. HTTP

binding failed to deliver the payload 5 times. This failure is related with the fact that

HTTP always requests service from the server and overload the server with full of

request and increased message. This process will compel the server to be saturated with

demand and payloads and subsequently run out of computing resources and become

passive due to many garbage or swapping memory location or allocation.

The compressed payload for SOAP over JMS failed to deliver 2 times. This might be

caused by the client when allocating new memory for incoming messages. The client

may fail to register and acknowledge the message and will be sent to error destination.

Another possible cause of failure in the delivery is from the compression algorithm. The

algorithm is programed to increase the buffers of search and look-ahead on-the-fly.

However, modifying this parameter can cause the JVM to suddenly allocate memory

and this impromptu request can delay or cease the I/O activity (Hines, Gordon, Silva,

Da Silva, Ryu, & Ben-Yehuda, 2011).

Univ
ers

ity
 of

 M
ala

ya

94

5.6 Summary

In this chapter, the result of the research on the effect of high payload on the

performance of SOAP Web services is presented and discussed. Two message formats:

normal and compressed (modified LZ77 algorithm) SOAP payload were exchanged

using HTTP and JMS bindings protocols. The results for these formats were compared

and analyzed to observe the effect of the two binding protocols at different scenario.

Response time and overhead time were discussed and possible reasons were deduced

and explained. The assessment of number of delivered messages is discussed and

reasons of delivery failure in some transactions were discussed.

Univ
ers

ity
 of

 M
ala

ya

95

CHAPTER 6: CONCLUSION

6.1 Introduction

The previous chapter has discussed and analyzed the findings of the research. This

chapter concludes the study of the SOAP performance for high volume messaging Web

services by providing evidences from the previous chapters supporting the research

questions of this research. The chapter provides the main findings based on the related

researches and methods applied in implementation of this research and direction for

potential research in the future.

6.2 Research Aims and Objectives

In order to conclude the process of this research, the research objectives were

reviewed with respect to the findings of the research in Chapter 5.

6.2.1 Research objective 1

To implement an approach for high payload exchange in SOAP Web services.

With a view to examine the effect of SOAP payload on Web Services’ delivery

time in terms of response time, two web services were implemented: SOAP with HTTP

binding as the benchmark and SOAP with JMS binding as the experimental study.

Look-ahead buffer of LZ77 compression algorithm was modified to accommodate high

number of bits. The algorithm was introduced into the two web services. Figure 4.8,

Figure 4.9 and Figure 4.10 illustrate the Web services.

6.2.2 Research objective 2

To determine the high payload response time and overheads in the implemented

approach.

Univ
ers

ity
 of

 M
ala

ya

96

To assess the performance of payload on the web services, same amount of payloads

in normal and compressed format were transmitted using both web services. Payloads

from 1.3MB to 22.5MB were subsequently exchanged and the response time and

overheads time per each transaction were monitored and automatically recorded from

both ends. Figure 3.3 shows the flow of execution of the Web services and how the

results were captured for the analysis. The raw results collected from the exchange of

the two Web services are shown in Appendices E1 – F2.

While communicating the normal payload, the HTTP binding messaging client

constant requests cause the overall messaging response time to be high. In the exchange

with the JMS binding, the messaging client makes most of the transaction effort in

establishing connection and constantly reading queue messages. Thus, the client

overhead becomes high and eventually affect the overall execution time. Analysis of the

findings is an evidence for JMS binding on SOAP messages to performed better due to

less response time and overhead time.

JMS binding on compressed SOAP payload got some spikes in the client response

time and the decompression overhead time as seen in Figure 5.4. This might be due to

CPU process as the client side where JVM regularly claimed unused memory.

Messaging client connecting and requesting the server causes high overhead for the

client. Despite soaring compression time, the server overhead was still less than the

client time. Contrary to the HTTP binding, the JMS binding proved that

compression/decompression overhead takes more of the CPU resources than the server

and client processes. Compression is costlier due to search/match during compression

process. Server overhead is smooth and less in the messaging process. Spikes during

the compression affect the overall response time.

Univ
ers

ity
 of

 M
ala

ya

97

6.2.3 Research objective 3

To evaluate the performance of the implemented approach and prototype in terms of

response time and the overhead.

The Web services transaction was executed 50 times in order to determine the

successful delivery of the exchanged payloads. Acknowledgement was sent by the client

and recorded at the server after every successful delivery in all transactions.

From 50 trials of the message exchange process, in the HTTP binding normal

payload failed to deliver 6 times and compressed payload failed to deliver 5 times.

Reasons for the HTTP binding to record higher failure rate might be attributed to the

constant HTTP requests by the client that can lead the server to go out of resource and

become unresponsive.

For the JMS binding, normal payload failed to deliver 2 times and the compressed

payload failed to deliver 2 times. This might be due to server CPU out of resources and

JVM become unresponsive due to I/O delay. Other causes of this failure might be that

the messaging server was saturated with requests and paused. Conjointly, JMS binding

may miss delivery as a result of buffer delay by compression algorithm or JVM paused

due to I/O delay.

The overall findings of these results observe that using the modified LZ77 algorithm,

SOAP over JMS has proved to outperform the SOAP over HTTP. The JMS binding

protocol reveals to be impressive with almost 75.4% less response time than the HTTP

binding. Compressed version of 22.2MB was exchanged at 0.6 seconds. Improving the

Java heap size “USER_MEM_ARGS” of the server can improve the overall messaging

performance.

Univ
ers

ity
 of

 M
ala

ya

98

Compressing the SOAP message using the modified LZ77 algorithm over the JMS

binding has yielded a remarkable performance. This put together the combination to be

a good candidate for messaging when considering low response time and assurance for

delivery of high payload is needed.

6.3 Contributions

The findings of this study have vital contributions to numerous areas of Web services

engineering. This study has identified several requirements for improving SOAP

message performance delivery.

Very important finding that is beneficial to enterprises and business-to-business

solutions is the improvement in the performance of the messaging system. This finding

reduces the response time and assures the successful delivery of high payload. Research

objectives one and three demonstrated these assertions. This research is also valuable in

communicating critical mission payload with low and unreliable bandwidth.

The modified LZ77 compression algorithm has offered the capacity for large data by

reducing the number of checks by the search buffer during encoding while JMS offers

asynchronous and loose coupling in the implementation. This is established in research

objective one. This combination materialized a stable landscape that reduces network

influence on the communication system.

Programmers and performance analysts seeking to identify system performance will

find the evidence of CPU utilization in data compression, message parsing and

computing time analysis. This research provides an insight on how system resources are

utilized in the management of payload with normal and compressed message formats.

Univ
ers

ity
 of

 M
ala

ya

99

This research will also be of benefit to programmers and software architects

interested in analyzing and evaluating load performance and its general effect on both

server and client nodes. The web services have offered an intuition on how the

payloads are processed at both the server and the client ends.

6.4 Limitations

The main aim of this study is to improve SOAP performance. Two SOAP web

services were implemented to test the three research questions related to the main aim.

Findings were obtained and analyzed. The findings found to be significant but have

some limitations.

Performance degradation is high at the client side. Most of the computing activities

occur at the client end as such the response time and overhead are revealed to be high.

Spikes resulting from compression increase the latency of the communication system

and eventually degrade the overall performance. The implementation did not cover the

wire aspect of the communication system.

6.5 Future Work

Implementing a cache at the client end will aid in reducing the latency and increasing

the speed of request/response. Incoming payload will be compared with the first one and

similar parts of the payload will be used instead of processing as new. A procedure for

selecting message format by the client can also improve the performance at the client

endpoint.

Future research in this area should also take the compression algorithm into

cognizance. The algorithm needs to be optimized to make the search buffer more

effective during the search/compare process when compressing the payload. If

optimized, it will enhance the compression cost and the server-side response time.

Univ
ers

ity
 of

 M
ala

ya

100

Another area of further consideration is the implementation of this research using

different network strength. This will be vital to ascertain the system in different

scenarios to further identify the level of efficiency of these research findings. This could

include both WAN and LAN.

Univ
ers

ity
 of

 M
ala

ya

101

REFERENCES

Aali, S. H., & Farkhady, R. Z. (2011). A Combination Approach for Improving Web

Service Performance. Presented at the Proceedings of the International Multi
Conference of Engineers and Computer Scientists, Delhi, 2011, India: Prentice
Hall.

Abbas, A. M., Bakar, A. A., & Ahmad, M. Z. (2014). Fast dynamic clustering SOAP

messages based compression and aggregation model for enhanced performance
of Web services. Journal of Network and Computer Applications, 2(41), 80-88.

Abhaya, V. G., Tari, Z., & Bertok, P. (2012). Building Web services middleware with

predictable execution times. World Wide Web-Internet and Web Information
Systems, 15(5-6), 685-744.

Abu-Ghazaleh, N., & Lewis, M. J. (2005). Differential checkpointing for reducing

memory requirements in optimized SOAP deserialization. Conference on Grid
Computing, 2005, New Jersey: IEEE.

Abu-Ghazaleh, N., & Lewis, M. J. (2006). Lightweight Checkpointing for Faster SOAP

Deserialization. Conference on Web Services, New Jersey: IEEE.

Abu-Ghazaleh, N., Lewis, M. J., & Govindaraju, M. (2004). Performance of

Dynamically Resizing Message Fields for Differential Serialization of SOAP
Messages. Conference on Internet Computing, 2004, Madrid, Spain: IJCA.

Ahmad, F., Sarkar, A., & Debnath, N. C. (2014). Analysis of dynamic web services.

Conference on Computing, Management and Telecommunications, 2014,
Stockholm, Sweden: IEEE.

Aihkisalo, T., & Paaso, T. (2012). Latencies of service invocation and processing of the

rest and SOAP web service interfaces. Conference on Web services, (pp. 100-
107), Birmingham, UK: IEEE.

Al-Shammary, D., & Khalil, I. (2010). SOAP web services compression using variable

and fixed length coding. Conference on Network Computing and Applications
(NCA), , 2010, Athens, Greece: IEEE.

Appel, S., Frischbier, S., Freudenreich, T., & Buchmann, A. (2012). Eventlets:

Components for the integration of event streams with SOA. Presented IEEE
International Conference on service-Oriented Computing and Applications
(SOCA), (pp. 1-9), Lisbon: IEEE.

Arteaga, D., & Zhao, M. (2014). Client-side flash caching for cloud systems.

Proceedings of International Conference on Systems and Storage (pp. 1-11):
ACM.

Banditwattanawong, T., & Uthayopas, P. (2013). Improving cloud scalability, economy

and responsiveness with client-side cloud cache. Conference on Computer,
Telecommunications and Information Technology (ECTI-CON), Rome, Italy:
ECTI.

Univ
ers

ity
 of

 M
ala

ya

102

Barrington, A., Feldman, S., & Dechev, D. (2015). A scalable multi-producer multi-

consumer wait-free ring buffer. Proceedings of the 30th Annual ACM
Symposium on Applied Computing (pp. 1321-1328): Delhi, India.

Belazzougui, D., Kärkkäinen, J., Kempa, D., & Puglisi, S. J. (2016). Lempel-Ziv

Decoding in External Memory. International Symposium on Experimental
Algorithms (pp. 63-74), Springer: Cham.

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text compression 5(348), 79-90, US:

Prentice Hall Englewood Cliffs.

Bonetta, D., Peternier, A., Pautasso, C., & Binder, W. (2012): A Scripting Language for

High-Performance RESTful Web Services: ACM Sigplan Notices, 47(8), 97-
106.

Bosin, A., Dessì, N., & Pes, B. (2011). Extending the SOA paradigm to e-Science

environments. Future Generation Computer Systems, 27(1), 20-31.

Bou, S., Amagasa, T., & Kitagawa, H. (2014). Keyword search with path-based filtering

over XML streams. Symposium on Reliable Distributed Systems (SRDS) (pp.
337-338), Anakra, Turkey: IEEE.

Bu, H. (2011). Metrics for service granularity in Service Oriented Architecture.

Conference on Computer Science and Network Technology (ICCSNT), Vol. 1,
491-494, Toronto, Canada: IEEE.

Bulus, H. N., Carus, A., & Mesut, A. (2017). A new word-based compression model

allowing compressed pattern matching. Turkish Journal of Electrical
Engineering & Computer Sciences, 25(5), 3607-3622.

Brydon, S. P., & Singh, I. (2010). U.S. Patent No. 7,702,724. Washington, DC: U.S.

Patent and Trademark Office.

Bzoch, P., & Safarink, J. (2013). Simulation of client-side caching policies for

distributed file systems, Conference on Distributed systems, Rome, Italy :IEEE.

Cao, M. D., Dix, T. I., Allison, L., & Mears, C. (2007). A simple statistical algorithm

for biological sequence compression. Conference on Data Compression, Delhi,
India: IJCA.

Chakraborty, D., Ghosh, D., & Ganguly, P. (2015). A Dictionary based Efficient Text

Compression Technique using Replacement Strategy. International Journal of
Computer Applications, 116(16), 116-123.

Chow, M., Meisner, D., Flinn, J., Peek, D., & Wenisch, T. F. (2014). The Mystery

Machine: End-to-end Performance Analysis of Large-scale Internet Services.
Journal of Computing and Internet Services 23(6)217-231.

Dhore, S. R., Gangwar, H., Mishra, P., Sharma, R., & Singh, R. (2012). Systematic

approach for composing Web Service using XML. Conference Computing
Communication & Networking Technologies, Wolverhampton, UK: Springer.

Univ
ers

ity
 of

 M
ala

ya

103

Du, Y. N., Zhao, Y. L., Han, B., & Li, Y. C. (2013). Optimistic parallelism based on

speculative asynchronous message passing. Journal of the Chinese Institute of
Engineers, 36(1), 35-47.

Eugène, E. C., & Fréjus, L. A. (2012). Asynchronous Message Exchange System

between Servers based on Java Message Service API, IEEE letters, 35(3), 534-
542.

Fei, S., Ke, Y., Lin, Z., & Xiaofei, W. (2010). A performance evaluation method and it's

implementation for web service. Paper presented at the ic-bnmt Conference,
2010: Beijing, China.

Fiala, E. R., & Greene, D. H. (1989). Data compression with finite windows.

Communications of the Acm, 32(4), 490-505.

Fu, C. Y., Belqasmi, F., & Glitho, R. (2010). RESTful Web Services for Bridging

Presence Service across Technologies and Domains: An Early Feasibility
Prototype. Ieee Communications Magazine, 48(12), 92-100.

Gerić, S., & Vrček, N. (2009). Prerequisites for successful implementation of Service-

Oriented Architecture. Paper presented at the Information Technology
Interfaces, 2009. ITI'09. Proceedings of the 2009 31st International Conference
on Information Technology Interface, 2009, Ankara, Turkey: ITT.

Girtelschmid, S., Steinbauer, M., Kumar, V., Fensel, A., & Kotsis, G. (2014). On the

application of Big Data in future large-scale intelligent Smart City installations.
International Journal of Pervasive Computing and Communications, 10(2), 168-
182.

Hines, M. R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., & Ben-Yehuda, M. (2011).

Applications know best: Performance-driven memory overcommit with ginkgo.
Conference on Cloud Computing Technology and Science (pp. 130-137).
Athens, Greece: IEEE.

Hansen, A., & Lewis, M. C. (2018). Modified Huffman Code for Bandwidth

Optimization Through Lossless Compression Information Technology-New
Generations 4(3), 761-763.

Hong, Y., Zhang, S., Wang, R. Y., Li, Z., & Liu, D. X. (2016), Text Compression and

Decompression, US20160197621A1, EMC Corp: Google Patents.

Hu., S. X. (2006). Interoperability at the SOAP message level, retrieved on 17th January,

2016 from http://www.ibm.com/developerworks/library/ws-soa-intersoap/

Iqbal, R., Shah, N., James, A., & Cichowicz, T. (2013). Integration, optimization and

usability of enterprise applications. Journal of Network and Computer
Applications, 36(6), 1480-1488.

Isaac, S., & Devi, V. U. (2014). Isaac, S. G. C., & Devi, V. U. (2014). Efficient

Querying and SOAP Based Streaming of Multimedia Content Using WEB
Services. Conference on Intelligent Computing, 37-41, Toronto, US: IEEE.

Univ
ers

ity
 of

 M
ala

ya

http://www.ibm.com/developerworks/library/ws-soa-intersoap/

104

Jendrock, E., Cervara-Navarro, R., & Evans, I. (2017). Java EE 6 Tutorial.
https://docs.oracle.com/javaee/6/tutorial/doc/gijvh.html. 6th. Retrieved on
16/08/2017.

Juric, M. B., Rozman, I., Brumen, B., Colnaric, M., & Hericko, M. (2006). Comparison
of performance of Web services, WS-Security, RMI, and RMI–SSL. Journal of
Systems and Software, 79(5), 689-700.

Kalyani, K. (2012). Recent Trends and Challenges in Enterprise Application

Integration, International Journal of Application or Innovation in Engineering
& Management, 1(4), 62-71.

Kanoun, K., & Van der Schaar, M. (2015). Big-data streaming applications scheduling

with online learning and concept drift detection. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition, 1547-1550, EDA
Consortium: Shefield, UK.

Kärkkäinen, J., Kempa, D., & Puglisi, S. J. (2016). Lazy Lempel-Ziv factorization

algorithms. Journal of Experimental Algorithmics (JEA), 21, 2.4.

Kiran, D., & Andresen, D. (2003). SOAP optimization via parameterized client-side

caching. Conference on Parallel and Distributed Computing and Systems
(PDCS 2003), 785-790.

Koulouzis, S., Cushing, R., Karasavvas, K., Belloum, A., & Bubak, M. (2012).

Enabling web services to consume and produce large datasets. Internet
Computing, IEEE, 16(1), 52-60.

Kruse, H., & Mukherjee, A. (1997). Data compression using text encryption. Data

Compression Conference, 1997. DCC'97. (p. 447), UT, USA: IEEE.

Kumari, S., & Rath, S. K. (2015). Performance comparison of soap and rest based web

services for enterprise application integration, International Conference on
Advances in Computing, Communications and Informatics (ICACCI), 1656-
1660: IEEE.

Kumawat, H., & Chaudhury, J. (2013). Optimization of LZ77 Data Compression

Algorithm. International Journal of Computer Engineering and Technology, 4,
42-48.

Lam, G., & Rossiter, D. (2013). A web service framework supporting multimedia

streaming. IEEE Transactions on Services Computing, 6(3), 400-413.

Larsson, N. J., & Moffat, A. (2000). Off-line dictionary-based compression.

Proceedings of the IEEE, 88(11), 1722-1732.

Liu, W., Mei, F., Wang, C., O’Neill, M., & Swartzlander, E. E. (2018). Data

Compression Device Based on Modified LZ4 Algorithm. IEEE Transactions on
Consumer Electronics, 64(1), 110-117.

Liv, J., Wang, Y., & Zhong, Y. (2015). Efficient XML Document Compressing Method

Based on Internet of Things. Conference on Intelligent Systems Research and
Mechatronics Engineering, Zhengzhou, China: IEEE.

Univ
ers

ity
 of

 M
ala

ya

105

Mahmood, A., Islam, N., Nigatu, D., & Henkel, W. (2014). DNA inspired bi-directional

Lempel-Ziv-like compression algorithms. 8th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), 162-166, 2014,
Bremen, Germany. IEEE.

Malladi, S. K., Murphy, R. F., & Deng, W. (2017). U.S. Patent No. 9,852,116.

Washington, DC: U.S. Patent and Trademark Office.

Menarini, M., Seracini, F., Zhang, X., Rosing, T., & Krüger, I. (2013). Green web

services: Improving energy efficiency in data centers via workload
predictions. 2013 2nd International Workshop on Green and Sustainable
Software (GREENS), (pp. 8-15), May 2013,Warsaw, Poland: IEEE.

Mohamed, A. W., & Zeki, A. M. (2017). Web services SOAP optimization techniques.

Conference on Engineering Technologies and Applied Sciences (pp. 1-5),
Vienna, Australia: IEEE.

Mutange, K., Okeyo, G., Cheruiyot, W., Sati, A., & Kalunda, J. (2014). A Review of

SOAP Performance Optimization Techniques to Improve Communication in
Web Services in Loosely Coupled Systems. International Journal of Computer
Science Issues, 11(1), 142-158.

Nakamoto, Y., & Akiyama, S. (2015). A Proposal for Mobile Collaborative Work

Support Platform Using an Embedded Data Stream Management System. 23-28.

Nitin N., Paul J., Davies P., & David N. (2016). Native Web Communication Protocols

and Their Effects on the Performance of Web Services and Systems. Conference
on Computer and Information Technology (219-225), Nadi, Fiji: IEEE.

Oswald, C., & Sivaselvan, B. (2018). An optimal text compression algorithm based on
frequent pattern mining. Journal of Ambient Intelligence and Humanized
Computing, 9(3), 803-822.

Pahl, C. (2001). Components, contracts, and connectors for the unified modelling

language UML, International Symposium of Formal Methods Europe (pp. 259-
277), 2001, March, Berlin, Heidelberg: Springer.

Pavan Kumar, P., Sanjay, A., Karthikeyan, U., & Zornitza, P. (2013). Comparing

Performance of Web Service Interaction Styles: SOAP vs. REST. Journal of
Information Systems Applied Research, 6(1) 118-129.

Pawar, S., & Chiplunkar, N. N. (2017). Open source apis for processing the XML result

of web services. Conference on Advances in Computing, Communications and
Informatics (pp. 1848-1854). IEEE.

Perez-Castillo, R., de Guzman, I. G. R., Caballero, I., & Piattini, M. (2013). Software

modernization by recovering Web services from legacy databases. Journal of
Software-Evolution and Process, 25(5), 507-533.

Pinto, S. H., Anand, G., Truong, B., Sundaresan, S. R., & Vk, K. S. (2017). U.S. Patent

No. 9,594,846. Washington, DC: U.S. Patent and Trademark Office.

Univ
ers

ity
 of

 M
ala

ya

106

Pirnau, M. (2010). Implementing Web Services Using Java Technology. International

Journal of Computers Communications & Control, 5(2), 251-260.

Policriti, A., & Prezza, N. (2016). Computing LZ77 in run-compressed space.

Conference on Data Compression (DCC), (pp. 23-32). Houston TX, US: IEEE.

Saab, C. B., Coulibaly, D., Haddad, S., Melliti, T., Moreaux, P., & Rampacek, S.

(2012). An integrated framework for web services orchestration. In Innovations,
Standards and Practices of Web Services: Emerging Research Topics (pp. 306-
335): IGI Global.

Salomon, D., & Motta, G. (2010). Dictionary Methods. In Handbook of Data

Compression (pp. 329-441). Springer, London.

Sarkas, N., Das, G., Koudas, N., & Tung, A. K. (2008). Categorical skylines for

streaming data. In the Proceedings of the 2008 ACM SIGMOD international
conference on Management of data (pp. 239-250), 2008, Christchurch, New
Zealand: ACM.

Sayood, K. (2002). Lossless compression handbook: Elsevier.

Sha, F., Yu, K., Zhang, L., & Wu, X. (2010). A performance evaluation method and it's

implementation for web service. In Broadband Network and Multimedia
Technology (IC-BNMT), 2010 3rd IEEE International Conference on (pp. 218-
222). IEEE.

Shanmugasundaram, S., & Lourdusamy, R. (2011). A comparative study of text

compression algorithms. International Journal of Wisdom Based Computing,
1(3), 68-76.

Simon, B., Goldschmidt, B., Kondorosi, K. (2013), A Metamodel for the Web Services

Standards, Journal of Grid computing (11)4, 735-752.

Sriwiroj, C., & Banditwattanawong, T. (2015). An economic model for client-side cloud
caching service. 7th International Conference on Knowledge and Smart
Technology (KST), (pp. 131-136), Dublin, Ireland,: IEEE.

Stevens, P. (2001), On use cases and their relationships in the Unified Modelling

Language, International Conference on Fundamental Approaches to Software
Engineering (pp. 140-155), 2001, Berlin, Heidelberg,: Springer.

Suzumura, T., Takase, T., & Tatsubori, M. (2005). Optimizing Web services

performance by differential deserialization. Paper presented at the IEEE
International Conference on Web Services, 2005, Orlando, FL, USA: IEEE.

Tapang, C. C. (2001). Web Services Description Language (WSDL) Explained, 2001,

USA: Microsoft Developer Network.

Tekli, J. M., Damiani, E., Chbeir, R., & Gianini, G. (2012). SOAP Processing

Performance and Enhancement. Services Computing, IEEE Transactions, 5(3),
387-403. doi: 10.1109/TSC.2011.11.

Univ
ers

ity
 of

 M
ala

ya

107

Uemura, T., Kusumoto, S., & Inoue, K. (2001). Function‐point analysis using design

specifications based on the Unified Modelling Language. Journal of software
maintenance and evolution: Research and practice, 13(4), 223-243.

Val, P. B., Garcia-Valls, M., & Estevez-Ayres, I. (2009). Simple Asynchronous Remote

Invocations for Distributed Real-Time Java. Ieee Transactions on Industrial
Informatics, 5(3), 289-298.

Vandikas, K., Quinet, R., Levenshteyn, R., & Niemöller, J. (2011). Scalable service

composition execution by means of an asynchronous paradigm. A paper
presented at the 2011 15th International Conference on Intelligence in Next
Generation Networks (ICIN), (pp. 157-162), Berlin, Germany: IEEE.

Vasilakis, C., Lecznarowicz, D., & Lee, C. (2009). Developing model requirements for

patient flow simulation studies using the Unified Modelling Language
(UML). Journal of Simulation, 3(3), 141-149.

Vernadat, F. (2002). UEML: towards a unified enterprise modelling

language. International Journal of Production Research, 40(17), 4309-4321.

W3Schools, (2014a), Introduction to Web Services, Aug, 2015, retrieved from

http://www.w3schools.com/webservices/ws_wsdl_intro.asp.

W3Schools. (2014b). SOAP Introduction, Aug, 2015, retrieved from

http://www.w3schools.com/webservices/ws_soap_intro.asp.

Wagner, S., Roller, D., Kopp, O., Unger, T., & Leymann, F. (2013). Performance

Optimizations for Interacting Business Processes*. 210-216.

Williams, R. N. (1991). An extremely fast Ziv-Lempel data compression algorithm,

Data Compression Conference, (pp. 362-371), 1991, Snowbird, UT, USA:
IEEE.

Wilson, J. (2010). Using WSDL Generator and SOAP with Cloud Computing for

Enterprise Architectures, February 2010, Florida, US: Springer.

Yu, S. C., & Chen, R. S. (2003). Web Services: XML-based system integrated

techniques. The Electronic Library, 21(4), 358-366.

Zhang, W., Cao, J., Zhong, Y., Liu, L., & Wu, C. (2008). An integrated resource

management and scheduling system for grid data streaming applications. Paper
presented at the International Conference on Grid Computing, 2008 9th
IEEE/ACM, Tsukuba, Japan: IEEE.

Zimmermann, O., Tomlinson, M., & Peuser, S. (2012). Perspectives on Web Services:

Applying SOAP, WSDL and UDDI to Real-World Projects, 2012, 45-53:
Springer Science & Business Media.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEE transactions on Information Theory, 23(3), 337-343.

Univ
ers

ity
 of

 M
ala

ya

http://www.w3schools.com/webservices/ws_wsdl_intro.asp
http://www.w3schools.com/webservices/ws_soap_intro.asp

108

Zolfi, H., Lakdashti, A., & Vahidi, J. (2014), A Method for Performance Evaluation of
SOAP Protocol, Journal of Computing Academic Research, 6(4), 217-226.

Univ
ers

ity
 of

 M
ala

ya

