

DESIGN AND DEVELOPMENT OF AN ONLINE ROBOT

PROGRAMMING FRAMEWORK WITH ROBOT OPERATING

SYSTEM (ROS)

YEOH RU SERN

RESEARCH REPORT SUBMITTED TO THE FACULTY OF

ENGINEERING UNIVERSITY OF MALAYA, IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

(MECHATRONICS)

2019

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Yeoh Ru Sern

Registration/Matric No: KQF170007

Name of Degree: Master of Engineering (Mechatronics)

Title of Research Report (“this Work”): Design and Development of an Online Robot

Programming Framework with Robot Operating System (ROS)

Field of Study: Industrial Automation and Robotics

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and sufficiently

and the title of the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University

of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work

and that any reproduction or use in any form or by any means whatsoever is

prohibited without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action or

any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:

Designation: Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

In the Fourth Industrial Revolution, robotics technology plays an increasingly important

role in order to increase productivity through the use of cyber physical systems. However,

industrial robotic arms require expertise in fields such as mechanical and software

engineering in order to be used. Furthermore, modularity of robotic work cells could be

improved. In this project, an online robot programming framework is developed in Robot

Operating System (ROS). The framework includes a master and slave node that allows

for teleoperation of the intended robotic arm. A graphical user interface (GUI) is provided

on the master personal computer (PC) in order to receive a target coordinate point for the

robotic arm end-effector from the user. The EezyBotArm Mk2 3-dimensional (3D)

printed arm is used for control and testing. The kinematics study of the robotic arm is

performed and based on the equations derived is used to convert the coordinate point into

the corresponding joint variables. The joint variables are then transmitted from the master

PC to the slave Raspberry Pi. The Raspberry Pi interfaces with an Arduino Uno board in

order to control the servo motors on the robotic arm via pulse width modulation (PWM)

signal.

Univ
ers

ity
 of

 M
ala

ya

iv

ABSTRAK

Dalam era Revolusi Industri Keempat ini, teknologi robotik memainkan peranan yang

makin penting untuk meningkatkan produktiviti industri melalui penggunaan sistem

siber-fizikal. Namun begitu, penggunaan lengan robot perindustrian memerlukan tahap

kepakaran pekerja yang tinggi supaya sesuai digunakan. Tambahan pula, modulariti

lengan robot perindustrian juga boleh dipertingkatkan. Dalam projek ini, satu rangka

kerja pengaturcaraan robot atas talian diciptakan dengan menggunakan ROS. Rangka

kerja ini termasuk penggunakan noda tuan dan noda hamba bagi menyokong penggunaan

tele-operasi. Satu GUI juga disediakan di komputer noda tuan untuk mendapatkan

kordinat sasaran daripada pihak pengguna. Lengan robot EezyBotArm Mk2 yang

diperbuat menggunakan teknologi percetakan 3D pula digunakan untuk tujuan ujian dan

kawalan. Satu kajian atas kinematik lengan robot tersebut dibuat bagi menukarkan

kordinat sasaran ke pembolehubah sendi melalui kinematik inversi. Pembolehubah sendi

tersebut kemudiannya dihantar ke noda hamba Raspberry Pi yang mengawal motor servo

pada lengan robot melalui Arduino Uno.

Univ
ers

ity
 of

 M
ala

ya

v

ACKNOWLEDGEMENT/ DEDICATION

First and foremost, I would like to thank my supervisor, Dr Yap Hwa Jen for the

continuous support and feedback he provided throughout the course of this project. His

invaluable help has contributed much to the success of this project, and has helped me

gained much knowledge in the field of industrial robots. Secondly, I would like to thank

my parents for continuously being by my side, providing me support and strength to

pursue my studies. Also, I would like to thank the friends I have made throughout my

time University Malaya, from whom I have shared much joy, learned much from. Not

forgetting the many lecturers that have taught me, for making this learning experience an

enjoyable journey. Last but not least, I give all glory to God for the success of this project.

Univ
ers

ity
 of

 M
ala

ya

vi

TABLE OF CONTENTS

Contents
ABSTRACT ... iii

ABSTRAK ... iv

ACKNOWLEDGEMENT/ DEDICATION.. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS .. xiii

LIST OF APPENDICES .. xiv

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Objectives of Research ... 2

1.4 Scope of Research .. 3

1.5 Report Organization .. 3

CHAPTER 2: LITERATURE REVIEW .. 4

2.1 Anatomy of the Robotic Arm .. 4

2.2 Forward Kinematics .. 5

2.3 Inverse Kinematics .. 8

2.4 ROS Architecture .. 9

2.5 Arduino Interface .. 12

Univ
ers

ity
 of

 M
ala

ya

vii

2.6 Teleoperation... 13

CHAPTER 3: METHODOLOGY .. 16

3.1 Proposed Framework Block Diagram ... 16

3.1.1 Network Architecture Block Diagram ... 16

3.1.2 Software Architecture Block Diagram ... 17

3.2 Robotic Arm Model .. 19

3.3 Inverse Kinematic Analysis of Robotic Arm .. 21

3.4 Open-loop Chain Equivalent of Robotic Arm .. 27

3.4.1 Chain 1 ... 28

3.4.2 Chain 2 ... 29

3.4.3 Chain 3 ... 30

3.4.4 Chain 4 ... 31

3.5 HTM Derivation of Open-loop Chain by DH Convention 32

3.5.1 HTM of Chain 1 ... 32

3.5.2 HTM of Chain 2 ... 34

3.5.3 HTM of Chain 3 ... 36

3.5.4 HTM of Chain 4 ... 38

3.6 Electrical Wiring Diagram .. 40

CHAPTER 4: IMPLEMENTATION AND RESULTS .. 42

4.1 Implementation of Project ... 42

4.1.1 Overall Project ... 42

4.1.2 Organisation of Files .. 42

Univ
ers

ity
 of

 M
ala

ya

viii

4.1.3 System Boot-up .. 43

4.2 Results and Discussion .. 48

4.2.1 Experiment 1: Inverse Kinematics Computational Time 48

4.2.2 Experiment 2: Testing of Data Transmission across WLAN......................... 50

4.2.3 Experiment 3: Accuracy of Robot Actuation ... 54

CHAPTER 5: CONCLUSION .. 58

5.1 Summary ... 58

5.2 Further Improvements ... 58

REFERENCES .. 60

APPENDICES .. 1

Appendix A: eezybot.urdf ... A-1

Appendix B: printxyz.py ... B-1

Appendix C: rosserial.py ... C-1

Appendix D: servo_control.ino ... D-1

Univ
ers

ity
 of

 M
ala

ya

ix

LIST OF FIGURES

Figure 2.1: Anatomy of robotic arm ... 4

Figure 2.2: Comparison of open and closed loop kinematic chains 5

Figure 2.3: Separate coordinate frames ... 6

Figure 2.4: Illustration of DH parameters between coordinate frames 8

Figure 2.5: Geometric breakdown of the kinematics of a manipulator 9

Figure 2.6: Concept of communication in ROS .. 10

Figure 2.7: VR based rehabilitation robot ... 11

Figure 2.8: Architecture of 6 DOF robotic arm proposed by Megalingam et al. 12

Figure 2.9: Arduino interface .. 13

Figure 2.10: Robotic arm workcell server... 14

Figure 2.11: Client side block diagram ... 14

Figure 2.12: Distributed network of multiple robots, sensors and tele-operated devices

 ... 15

Figure 3.1: Block diagram of master-slave network architecture in project 16

Figure 3.2: Block Diagram of Software Architecture ... 17

Figure 3.3: Node Organisation of Master and Slave ... 19

Figure 3.4: CAD model image of EezybotArm Mk 2 ... 20

Figure 3.5: Exploded view of robotic arm .. 20

Figure 3.6: Robotic arm at home position ... 22

Figure 3.7: Joint variables for the robotic arm .. 23

Figure 3.8: Geometric analysis of robotic arm.. 23

Figure 3.9: Breakdown of geometric components .. 24

Figure 3.10: Derivation of variables in robot frame ... 25

Figure 3.11: Derivation of θ5 .. 26

Figure 3.12: Open-loop chain equivalent of closed-loop chain 28

Univ
ers

ity
 of

 M
ala

ya

x

Figure 3.13: Joint angles for Chain 1 .. 29

Figure 3.14: Joint angles for Chain 2 .. 30

Figure 3.15: Joint angles for Chain 3 .. 31

Figure 3.16: Joint variables for Chain 4 .. 31

Figure 3.17: Frame assignment for Chain 1 .. 33

Figure 3.18: Axis of frames for Chain 1 ... 33

Figure 3.19: Frame assignment for Chain 2 .. 35

Figure 3.20: Axis of frames for Chain 2 ... 35

Figure 3.21: Frame assignment for Chain 3 .. 37

Figure 3.22: Axis of Frames for Chain 3 .. 37

Figure 3.23: Frame assignment for Chain 4 .. 38

Figure 3.24: Frame assignment for Chain 4 .. 39

Figure 3.25: System-level connections ... 40

Figure 3.26: Connections on the Arduino Uno board ... 41

Figure 4.1: Actual project layout .. 42

Figure 4.2: Organisation of files in ROS .. 43

Figure 4.3: Launch new terminal .. 43

Figure 4.4: Sourcing configuration file ... 44

Figure 4.5: Starting the ROS Master ... 44

Figure 4.6: Initializing IK node ... 45

Figure 4.7: Initializing RViz visualization and slider GUI ... 45

Figure 4.8: Visualization tool and GUI ... 46

Figure 4.9: Initializing rosserial on slave .. 47

Figure 4.10: Summary of boot-up steps .. 47

Figure 4.11: Definition of computational time taken .. 48

Figure 4.12: Graph of frequency against computational time... 49

Univ
ers

ity
 of

 M
ala

ya

xi

Figure 4.13: Data transmission across multiple machines .. 50

Figure 4.14: Graph of frequency against time delay ... 53

Figure 4.15: Image of X-Y plane position 1 ... 54

Figure 4.16: Image of X-Y plane position 2 ... 54

Figure 4.17: Image of X-Y plane position 3 ... 55

Figure 4.18: Image of X-Y plane position 4 ... 55

Figure 4.19: Image of X-Y plane position 1, returned .. 55

Figure 4.20: Image of X-Z plane position 1 .. 56

Figure 4.21: Image of X-Z plane position 2 .. 56

Figure 4.22: Image of X-Z plane, position 3 ... 57

Figure 4.23: Image of X-Z plane position 4 .. 57

Figure 4.24: Image of X-Z plane, position 1 returned .. 57

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF TABLES

Table 1: 3D printed parts file list .. 20

Table 2: Table of standard parts .. 21

Table 3: Summary of joint variable equations .. 27

Table 4: Joint variables for Chain 1 .. 29

Table 5: Joint variables for Chain 2 .. 30

Table 6: DH parameters derivation for Chain 1 .. 34

Table 7: DH Parameters derivation for Chain 2.. 36

Table 8: DH parameters derivation for Chain 3 .. 37

Table 9: DH parameters derivation for chain 4 ... 39

Table 10: Tabulated results for computational time ... 48

Table 11: Table of comparison between outgoing and incoming messages 50

Table 12: Table of comparison between outgoing and incoming messages after rounding

down .. 51

Table 13: Tabulated results for time delay .. 52

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF ABBREVIATIONS

CAD : Computer Aided Design

CPS : Cyber Physical Systems

CSV : Comma-separated Values

DH : Denavit-Hartenberg

DOF : Degrees of freedom

FK : Forward kinematics

GUI : Graphical user interface

IIOT : Industrial Internet of Things

IK : Inverse kinematics

I/O : Input/output

LAN : Local Area Network

OS : Operating System

PC : Personal computer

PWM : Pulse Width Modulation

RasPi : Raspberry Pi

RC : Radio control

ROS : Robot Operating System

SCARA : Selective Compliance Articulated Robot Arm

STL : Stereolithography

URDF : Unified Robot Description Format

USB : Universal Serial Bus

Wi-fi : Wireless fidelity

WLAN : Wireless Local Area Network

XML : eXtensible Markup Language

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF APPENDICES

Appendix A: eezybot.urdf …...63

Appendix B: printxyz.py ……………………………………………………………….67

Appendix C: rosserial.py ……………………………………………………………….71

Appendix D: servo_control.ino ………………………………………………………...73

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

The idea of the fourth industrial revolution, or better known as Industry 4.0 was initially

proposed in Germany in the year 2011 (Roblek, Meško, & Krapež, 2016). The key

technological advancement in Industry 4.0 is the introduction of cyber physical systems

(CPS) in the production floor, which would help to improve the effectiveness and

efficiency of the industry. The nine key drivers in the ushering in of the fourth industrial

revolution and integration of CPS are autonomous robots, simulations or digital twins,

cloud computing, additive manufacturing, augmented reality, big data analytics,

Industrial Internet of Things (IIOT), cyber security and system integration (Posada et al.,

2015).

The use of autonomous robots will help to reduce manual labour costs, and increase the

productivity of any given industry. Robots are often employed in areas which involve

highly repetitive tasks, or involve great risk to human lives (Lawton, 2018). This is

because unlike human labour, autonomous robots are able to operate for long hours

without fatigue, and are easily replaceable when broken. Combined with the other key

pillars of Industry 4.0 such as digital twins and IIOT, the flexibility of autonomous robots

is further increased. With this, autonomous robots can be easily monitored remotely

through the visualization of the data collected remotely from the robots.

However, the field of robotics is complex and is situated at the intersection of core

engineering fields such as mechanical, electronics, control and software engineering.

Traditionally, this meant that robotics projects are inherently complex and require

expertise in multiple fields. Robot Operating System (ROS) is a popular open-sourced

platform that is enabling rapid research in the field of robotics. The availability of various

Univ
ers

ity
 of

 M
ala

ya

2

modules and development tools has allowed a fast prototyping of ideas and a decrease in

research costs (Barbosa et al., 2015). Also, ROS is available in many programming

languages such as C++, Python, Octave and LISP which further cements its position as a

flexible tool.

1.2 Problem Statement

Traditionally, industrial robot programming requires a trained programmer to reconfigure

the industrial robotic programming when deploying a robotic work cell or whenever there

is a change to the robotic work cell. The programmer is also required to be present near

the robotic work cell in order to have access to the industrial robot programming. Also,

programming for the robotic work cell is usually rigid, requiring that the robotic work

cell be taken offline whenever new modules are to be added or modified due to the

software structure being centralised and not distributed into modular nodes. This reduces

the ability of the robotic software framework to be changed and the flexibility for new

modules and features to be added. Besides that, a robotic platform that is closed source

discourages the reuse of software, prohibiting the fast development of new robotics

technology.

1.3 Objectives of Research

The objectives of this research are stated as below:

1. To derive the kinematics of an industrial robot.

2. To map an input from an input device coordinate space to the industrial robot end

effector coordinate space.

3. To develop a robot programming framework and control in Robot Operating

System (ROS).

Univ
ers

ity
 of

 M
ala

ya

3

1.4 Scope of Research

The scope of this research project is to design a framework for programming and

controlling an industrial robotic arm. A prototype industrial robotic arm is fabricated

using additive manufacturing. The robotic arm is actuated by hobby-grade servo motors.

Then, a software framework to program and control the robotic arm is designed using the

ROS platform and is written using the Python programming language. The control of the

robotic is achieved through the forward and inverse kinematics study of the robotic arm.

This thesis includes the theory underlining the design of the framework and an analysis

of the performance of the project.

1.5 Report Organization

This research report is organized into five chapters. In Chapter 1, a general introduction

and to the project and the objectives is given.

In Chapter 2, a brief literature review is presented, outlining the theory and past projects

that are related to this project. Namely, the literature review covers the manipulator

kinematics and software architecture that are related to the project.

Chapter 3 describes the methodology with which the overall system is to be developed,

along with relevant equations to be used.

Chapter 4 gives the actual implementation of the project, showing the actual process flow

and workings of the project. Also, experimentation is conducted to qualify the results of

the project and a discussion on the results is presented.

Finally, in Chapter 5 a conclusion to the overall project is given, and future

recommendations for the project are made.

Univ
ers

ity
 of

 M
ala

ya

4

CHAPTER 2: LITERATURE REVIEW

2.1 Anatomy of the Robotic Arm

Figure 2.1 shows the anatomy of a typical industrial robotic arm or also known as a

manipulator. In general, the robotic arm consists of a base that is rigidly attached to the

ground, moving links and joints, and an end-effector attached to the free end of the robotic

arm. It can be described through two main attributes: orientation and position(Craig,

2018). In order to fully describe the position and orientation of the robotic arm in space,

a coordinate frame is typically attached to the base of the robotic arm. This then becomes

the point of reference that describes the relative position and orientation of the robotic

arm. A robotic arm is typically modelled with a combination of rigid links and joints, as

shown in Figure 2.1. There are two types of joints that are used to allow relative

movement between adjacent links: prismatic joints and revolute joints. For prismatic

joints, the movement comes in the form of a sliding motion, which allows displacement

between the two adjacent links. This motion is known as a translation, or a joint offset.

With revolute joints, the joint becomes a pivot point for the adjacent links to revolve about

one another, and the movement is categorised in terms of joint angles.

Figure 2.1: Anatomy of robotic arm

Univ
ers

ity
 of

 M
ala

ya

5

The number of degrees of freedom(DOF) that the robotic arm has is equal to the amount

of independent position variables that are available(Lynch & Park, 2017). The degrees of

freedom is a representation of the flexibility of the type of movement that is able to be

achieved by the manipulator. The combination of joints and links that maps the robotic

arm from the base to the end-effector is known as the kinematic chain. Kinematics is used

to describe the position, velocity and the acceleration of the robotic arm in space. The

forward kinematics(FK) analysis is finding the position of the end-effector given all the

values of the joint variables, while the inverse kinematics(IK) analysis is to find the

required joint variables to be achieved by the robot joints in order to bring the end-effector

to a given point(Pandilov & Dukovski, 2014). There are two main types of kinematic

chains; open-loop and closed-loop kinematic chains as shown in Figure 2.2. In the open

loop configuration, the solution to the forward kinematics problem is relatively straight

forward, while for the inverse kinematics problem is more complicated. However, the

inverse is true for closed loop kinematic chains.

Figure 2.2: Comparison of open and closed loop kinematic chains

2.2 Forward Kinematics

In the forward kinematics analysis, all the joint variables are known, and the analysis is

conducted in order to derive the location of the end-effector relative to the base frame. In

a coordinate system, any point located in space can be identified through the use of a 3

Univ
ers

ity
 of

 M
ala

ya

6

x1 position vector as shown in equation (2.1). The position vector gives a location of a

point with the respect to the reference frame A, with displacements in the Px, Py, and Pz

unit vectors(Spong, Hutchinson, & Vidyasagar, 2006).

 𝑃𝐴 = [

𝑃𝑥

𝑃𝑦

𝑃𝑧

]
(2.1)

However, a complete description of a point in space also requires information of the

orientation of the point. In order to achieve this, a separate coordinate system is attached

to the point, and the description of the orientation of this point can then be given relative

to the reference plane as shown in Figure 2.3. With these two coordinate systems, the

orientation of the frame B can then be given relative to the frame A.

Figure 2.3: Separate coordinate frames

A rotation matrix is used in order to transform a point located in coordinate system B to

coordinate system A. The rotation matrix transforms the unit vectors of the three principal

axes in B to A as shown in equation (2.2).

 𝑅𝐵
𝐴 = [𝑋̂𝐴

𝐵 𝑌̂𝐴
𝐵 𝑍̂𝐴

𝐵] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]
(2.2)

Univ
ers

ity
 of

 M
ala

ya

7

Equation (2.3) shows a general equation that gives a transformation of a vector that is

described in frame B into a vector that is described in frame A. The combination of the

position vector and the rotation matrix in the right hand side of equation (2.3) yields a

4x4 matrix known as the homogeneous transformation matrix (HTM). With this, the FK

analysis of a robotic arm can be derived through successive multiplications of the

homogeneous transform of one coordinate frames from the base to the end-effector.

 [𝑃𝐴

1
] = [𝑅𝐵

𝐴

0 0 0
𝑃𝐴

1
] [𝑃𝐵

1
]

(2.3)

One popular method in performing the FK analysis is through the Denavit-

Hartenberg(DH) Convention. The procedures outlined through this procedure simplify

the process of transforming from one coordinate frame to a subsequent coordinate frame

through the use of DH parameters. Through this convention, each transformation Ti can

be represented as a product of four subsequent transformations as shown in equation (2.4)

(Spong et al., 2006). These transformations are a rotation θi around Zn-1 to align Xn-1 to

Xn, followed by a translation di along Zn-1, followed by a rotation αi around Xn to align

Zn-1 to Zn, and lastly a translation ai along Xn.

𝑇𝑖 = 𝑅𝑜𝑡𝑍𝑖𝜃𝑖
𝑇𝑟𝑎𝑛𝑠𝑍𝑖𝑑𝑖

𝑇𝑟𝑎𝑛𝑠𝑥𝑖𝑎𝑖
𝑅𝑜𝑡𝑥𝑖𝛼𝑖

= [

𝑐𝜃𝑖
−𝑠𝜃𝑖

𝑐𝛼𝑖
𝑠𝜃𝑖

𝑠𝛼𝑖
𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖
𝑐𝜃𝑖

𝑐𝛼𝑖
−𝑐𝜃𝑖

𝑠𝛼𝑖
𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖
𝑐𝛼𝑖

𝑑𝑖

0 0 0 1

]

(2.4)

Figure 2.4 shows an illustration of the application of the DH parameters between two

adjacent coordinate frames. In order to apply the DH convention for kinematic analysis,

there are two assumptions made. First, the axis x1 is perpendicular to z0. Secondly, the

axis x1 intersects z0.

Univ
ers

ity
 of

 M
ala

ya

8

Figure 2.4: Illustration of DH parameters between coordinate frames

2.3 Inverse Kinematics

Inverse kinematics (IK) analysis is the task of finding the combination of joint variables

that could bring the end-effector to a specific coordinate point. Depending on the number

of degrees of freedom of a given manipulator under analysis, the IK analysis may include

controlling the orientation of the end-effector. While the FK analysis has unique solutions,

the IK analysis may have no solutions, a unique solution or even multiple solutions. This

makes the IK problem generally harder to solve when compared to the forward kinematics

analysis.

The existence of a solution for the IK problems ties closely to the workspace of the robotic

arm. If a goal point lies within the workspace of the robotic arm, then the solution to the

inverse kinematics analysis exists. The workspace of a robotic arm is defined as the

amount of space that is reachable by it. A robotic arm that has less than 6 DOF will not

be able to fully control the orientation of its end-effector within its reachable workspace.

In general, there are two methods to solving inverse kinematics analysis: closed-form

solutions and numerical solutions. Numerical solutions are typically slower when

compared to closed-form solutions, thus more emphasis will be given to closed-form

solutions. One such form of numerical solutions to the inverse kinematics problem is

Univ
ers

ity
 of

 M
ala

ya

9

through the use of genetic algorithms where the solution to the IK problem is modelled

as search problem, and the solution is found through natural selection of successive

generations of different models (Bjorlykhaug, 2018). A closed-form solutions are

analytical methods, and can be obtained either algebraically or geometrically.

(Issa, Aqel, Albelbeisi, Elaila, & Mortaja, 2017) described one method of obtaining the

inverse kinematics of a manipulator, which is through successive inverse transformations

of the transformation Ti obtained originally in equation (2.4). Besides that, another

method of solving the inverse kinematics problem is described by (Tao, Chen, & Xiong,

2015) is through a geometric breakdown of the angles and lengths of the links and joints

of manipulator into its component, and then solving each term geometrically as shown in

Figure 2.5. A similar approach was also utilised by (Sarkar, 2018) and (Mohammed Abu,

Abuhadrous, & Elaydi, 2010).

Figure 2.5: Geometric breakdown of the kinematics of a manipulator

2.4 ROS Architecture

ROS is a software framework that is used for writing software for robotics application. It

provides a collection of tools that can aid in the process of creation of complex and robust

robotics systems across multiple platforms (Lentin, 2015). The ROS filesystem is

organized into packages, where each package contains important executables, libraries

and configuration files.

Univ
ers

ity
 of

 M
ala

ya

10

In the ROS architecture, the main data structure that is being used to through the ROS

frame work is through the use of messages. Each functionality in the robotic system can

be represented as a node in ROS as shown in Figure 2.6. This feature allows the ROS

framework to be distributed and modular. A ROS Master then manages the

communications between each ROS node, without which the ROS nodes would not be

able to send or receive messages. Communication between each ROS node then occurs

through the concept of publishing and subscribing, where a ROS node may make

information computed from the node public by publishing messages to a ROS topic, and

other ROS nodes may have access to the information by subscribing to the same ROS

topic.

Figure 2.6: Concept of communication in ROS

There are many projects that have been implemented through the use of the ROS

architecture. One such project is a limb rehabilitation robot that was proposed by (Du,

Sun, Su, & Dong, 2014) in Figure 2.7. The project involves a master and slave type of

architecture where a master personal computer (PC) is used to host the ROS software

framework that then interfaces with various peripherals such as the robot itself and input

devices. A simulation software called Gazebo is also run on the master PC in order to

simulate the movements of the patient and provide important metrics in the training

programme.

Univ
ers

ity
 of

 M
ala

ya

11

Figure 2.7: VR based rehabilitation robot

Besides that, another project by (Qian et al., 2014) made use of the Gazebo simulator in

ROS to run simulations on the manipulation task of a robotic arm. The robotic arm was

modelled in Gazebo using the Unified Robot Description Format (URDF), which is a type

of eXtensible Markup Language (XML) file used to provide information on the joints and

links of a manipulator. The URDF format makes use of stereolithography (STL) file

which are generated from computer aided design (CAD) models in order to provide

visualization of the robotic arm in Gazebo. Another simulation tool that is available in

the ROS framework is RViz. While Gazebo is able to simulate the physics involved in

the operations of a manipulator or robot, Rviz is a lighter weight tool that simply provides

visualization of the robot in the simulation.

(Megalingam et al., 2018) proposed a 6 DOF robotic arm that was also designed in the

ROS framework as shown in Figure 2.8. The system used the RViz tool for visualization,

and the Moveit package within ROS to solve the FK and IK problems. The developed

system makes use of a graphical user interface (GUI) for the user to give an input of the

desired point in the 3D workspace for the end-effector to move to. Then, the IK solver in

the Moveit package is used to compute the necessary joint variables need to bring the

end-effector of the robotic arm to the desired location. The motion planner is able to

generate the optimum trajectory and FK analysis is used to display the simulated path of

Univ
ers

ity
 of

 M
ala

ya

12

the movement of the robotic arm in RViz. Similar work was also conducted by (Ergur &

Ozkan, 2014) in designing a simulator for a 5 DOF Selective Compliance Articulated

Robot Arm (SCARA) used in deburring process. The proposed system utilized a linear

trajectory between desired end-effector locations, and performed trajectory generation

calculations in a customized ROS node.

Figure 2.8: Architecture of 6 DOF robotic arm proposed by Megalingam et al.

2.5 Arduino Interface

The Arduino microcontroller is a low cost input/output (I/O) board. (Kruthika, Kumar, &

Lakshminarayanan, 2016) proposed a robotic arm design that used an Arduino Mega2560

board as an interface to the motors and sensors on the robotic arm as shown in Figure 2.9.

The PC does not have I/O pins, and instead needs an intermediary device to handle the

connections to the sensors and motors for the robotic arm. In this project, the robotic arm

is actuated by stepper motors, and are controlled by pulse width modulation (PWM)

signals generated by the Arduino board. A PC is connected to the Arduino board through

a serial interface, and regularly sends the desired motor angles that are calculated through

IK to the Arduino board. Potentiometers are used as a feedback mechanism on the robot

joints in order to obtain the angles. (Bhargava & Kumar, 2017) took a slightly different

approach, replacing the combination of stepper motors and potentiometers at the robot

joints with radio control (RC) servos. This way, the closed-loop control of the position of

Univ
ers

ity
 of

 M
ala

ya

13

the motors becomes extracted away, and the angle of the motors could be controlled

directly through PWM signals corresponding to the desired servo angle. However, the

disadvantage is that RC servos typically have a limited range of actuation.

Figure 2.9: Arduino interface

The project proposed by (Megalingam et al., 2018) and (Hernandez-Mendez et al., 2017)

also made use of an Arduino board in order to handle the interface with the robot motors

and sensors. Simulation and the IK calculations were first done on the PC, and the

information on the desired joint angles were sent to the Arduino board through the

rosserial package. The rosserial package is a package within ROS that handles the

communication between the master node and the Arduino node within the ROS

environment.

2.6 Teleoperation

Teleoperation is the ability to remotely control or interface with a robotics system.

Robotics systems are often deployed in unstructured environments where human presence

may endanger human life (Mortimer, Horan, & Joordens, 2016). In the case of robotic

arms in the factory setting, production lines may prove to be inaccessible to operators and

engineers while they are in operation. Therefore, the incorporation of teleoperation as a

feature may help to increase accessibility to the robotics systems, while improving safety

measures on the production floor (Chen, Yan, Yuan, Yao, & Hu, 2018).

Serial
Communication

Arduino Mega

Potentiometer

Force sensor

DC motor

Stepper motor
Motor driver

Robot

Univ
ers

ity
 of

 M
ala

ya

14

Figure 2.10 and Figure 2.11 shows the server and client block diagrams of the client-

server architecture proposed by (Rozman, Luža, & Zbořil, 2014). The server side of the

system is responsible for IK computation, simulation, collection and processing of input

data from sensors, and sending control signals to the robotic arm. On the client side of the

system, an interface is presented in order to collect input commands from users. Also, the

high level path planning and image processing of the image data collected from the

cameras is conducted.

Figure 2.10: Robotic arm workcell server

Figure 2.11: Client side block diagram

On the other hand, (Araújo, Portugal, Couceiro, & Rocha, 2013) implemented a master-

slave type of network architecture in creating a distributed network to control mobile

robots. A PC served as the master in the system, while multiple mobile robots that were

modelled as the slave nodes were present in the system. Communication was achieved

across a wireless-fidelity (Wi-Fi) network, with the ROS framework being hosted on the

Univ
ers

ity
 of

 M
ala

ya

15

master PC while Xbee Shields that connected to the Wi-fi network were placed on

Arduino Uno boards that controlled the mobile robots. Once all the devices were

connected to the same Wi-fi network, a serial communication was used to establish

connection between the Arduino and the ROS/PC. Each device and component can then

be modelled as separate nodes as shown in Figure 2.12.

Figure 2.12: Distributed network of multiple robots, sensors and tele-operated devices

Univ
ers

ity
 of

 M
ala

ya

16

CHAPTER 3: METHODOLOGY

3.1 Proposed Framework Block Diagram

3.1.1 Network Architecture Block Diagram

In this project, master-slave type of network architecture will be implemented similar to

the model implemented by (Araújo et al., 2013). Figure 3.1 shows the illustration of the

implemented network. Only a single master and a single slave node is used. The entire

project will be built upon the ROS framework. It is possible to add additional slave nodes

 to be controlled, but due to the scope of the project only a single slave node with

a single robotic arm is used. The distributed network type of the master-slave model

allows teleoperation of the robotic arm, within the boundaries of the wireless local area

network (WLAN). It is also possible to expand the connection through the use of the

internet, but it is beyond the scope of this project.

Figure 3.1: Block diagram of master-slave network architecture in project

The master node hosts the ROS master node, provides a GUI for receiving a target

coordinate input from the user, performs calculation for the inverse kinematics, and

Network

User input

Master

Simulated model
PC Raspberry Pi

Arduino

Uno

Slave

Univ
ers

ity
 of

 M
ala

ya

17

visualization of the robot model. The master node is hosted by a PC which is running on

an Ubuntu operating system (OS). The installed ROS version is the Kinetic Kame.

The slave node is hosted by a Raspberry Pi embedded computer. The Raspberry Pi runs

on the Ubuntu Mate OS, and the ROS Kinetic Kame is also installed. The Raspberry Pi

is connected to an Arduino Uno board through the Universal Serial Bus (USB) connector

which is responsible for controlling the servo motors on the robotic arm.

3.1.2 Software Architecture Block Diagram

Figure 3.2 shows the block diagram of the software architecture employed in this project.

The rectangular boxes represent the topics, while the ovals represent the nodes where the

nodes publish and subscribe messages. An explanation of the structure of ROS nodes and

topics can be given below:

Figure 3.2: Block Diagram of Software Architecture

1. /GUI – Represents the GUI node that interacts with the user in order to obtain a

target coordinate in the form of a X,Y and Z-axis coordinate points which will be

published to the /xyz_coor ROS topic. The GUI to be employed here is a simple

slider where the user can control the X, Y and Z points individually.

/xyz_coor

/compute_IK

/joint_states

/Ard_angle

/robot_state_publisher

/serial_node

/tf_static

/tf

/GUI
RViz

Arduino

Univ
ers

ity
 of

 M
ala

ya

18

2. /compute_IK – The ROS node that receives the target coordinate point from the

GUI via the /xyz_coor topic. The computation for the inverse kinematics is

performed on this node using the equations derived in section 3.3 Inverse

Kinematic Analysis of Robotic Arm and section 3.4 Open-loop Chain Equivalent

of Robotic Arm. The output angles for the robot model control is published to the

/Ard_angle topic, while the output angles for the robot visualization in RViz is

published to the /joint_states topic.

3. /serial_node – The ROS node that is subscribed to the /Ard_angle topic and is

responsible for communication with the Arduino board.

4. /robot_state_publisher – The ROS node that is responsible for calculation of the

vectors to represent the robot model in RViz. Calculates the necessary

transformations needed based on the information on the URDF file and publishes

the information to RViz via the /tf and /tf_static topics.

Figure 3.3 shows the organisation of nodes between the Master and the Slave. All the

computation is performed on the master node, which is the PC, while the slave node

functions only to connect the Arduino board to the ROS environment and execute the

servo actuations on the robot model. The Master contains the GUI,

robot_state_publisher and the compute_IK nodes, while the Slave contains the

serial_node. However, all these nodes appear to be on the same environment due to the

use of the same ROS Master. When creating the nodes, the nodes are explicitly subscribed

to the ROS Master which is hosted on the Master by specifying the ROS_MASTER_URI.

This enables the ROS environment to be distributed across multiple machines but

functioning as a single environment.

Univ
ers

ity
 of

 M
ala

ya

19

Figure 3.3: Node Organisation of Master and Slave

3.2 Robotic Arm Model

In this project, the EezybotArm Mk2 robotic arm is selected for use. Figure 3.4 shows the

CAD model of the manipulator. The EezybotArm mk2 is an open source robotic arm

design that was modelled after the ABB IRB460 robotic arm. It has 3 DOF, and a gripper

end-effector. It uses a closed-loop kinematic design, and RC servo motors for actuation.

The robotic arm is designed to be fabricated by additive manufacturing or 3-Dimensional

(3D) printing. It consists of 19 3D printed parts, and 55 non-printed parts. A breakdown

of the parts is given below in Table 1 and Table 2. An exploded view detailing the 3D

printed parts is given in Figure 3.5.

Master node (PC)

/compute_IK

/GUI

/serial_node /robot_state_publisher

Slave node (PC)

ROS Master

Univ
ers

ity
 of

 M
ala

ya

20

Figure 3.4: CAD model image of EezybotArm Mk 2

Figure 3.5: Exploded view of robotic arm

Table 1: 3D printed parts file list

No Item Name Quantity

1 001_base 1

2 002_mainarm 1

3 003_VArm 1

4 004_link135 1

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

Univ
ers

ity
 of

 M
ala

ya

21

5 005_link135angled 1

6 006_horarm 1

7 007_trialink 1

8 008_link147 1

9 009_trialinkfront 1

10 010_gearservo 1

11 011_gearmast 1

12 012_base 1

13 013_lowerbase 1

14 014_clawbase 1

15 015_clawfingersx 1

16 016_gear 1

17 017_clawfingersx 1

18 018_clawgeardriven 1

19 019_cover 1

Table 2: Table of standard parts

No Item name Quantity

1 MG995 servo 3

2 SG90 servo 1

3 M6 selflocking nut 1

4 M6x25 screw 1

5 M3 selflocking nut 2

6 M3x20 screw 2

7 M2x10 hex recessed head screw 1

8 M4 selflocking nut 9

9 M4x40 screw 1

10 M4x30 screw 1

11 M4x20 screw 5

12 M4x60 threaded rod 1

13 M4x32 threaded rod 1

14 Φ6 mm ball sphere 25

15 606 bearing 1

16 M4 washer miscellaneous

3.3 Inverse Kinematic Analysis of Robotic Arm

In this project, the robotic arm should be able to bring the end-effector to a desired

location given a set of coordinate points as the input. In order to achieve this, the inverse

kinematics of the EezybotArm Mk2 must be analysed. This section explains in further

details the derivation of the inverse kinematics.

Univ
ers

ity
 of

 M
ala

ya

22

First, the home or default position where all the joint angles are at 0° is taken as shown

in Figure 3.6. The coordinate frame is then assumed as follows: x-axis points to the right

along the robotic arm, y-axis goes into the page, and z-axis points upwards with a

reference coordinate frame located at the position indicated in Figure 3.6. This follows

the ‘right-hand rule’ convention for the axis naming. Next, a geometric analysis of the

components is conducted.

Figure 3.6: Robotic arm at home position

Figure 3.7 shows the joint variables to be controlled in the robotic arm model. The joint

variable θ1 is a rotation of the robot base piece about the z-axis. The joint variable θ4 is

the rotation of the robot main arm piece about the y-axis. Lastly, the joint variable θ5 is

the rotation of the robot V-arm piece about the y-axis. Univ
ers

ity
 of

 M
ala

ya

23

Figure 3.7: Joint variables for the robotic arm

In order to simplify the analysis of the robotic arm, the model of the robotic arm can be

simplified geometrically into a set of equivalent lines as shown in Figure 3.8.

Figure 3.8: Geometric analysis of robotic arm

Given a desired coordinate point for the end-effector location, the coordinate point can

be broken down into several geometric components as shown in Figure 3.9. The

coordinate point is described by the projection in the X, Y and Z axis.

θ1 θ4 θ5

Univ
ers

ity
 of

 M
ala

ya

24

Figure 3.9: Breakdown of geometric components

Besides that, the point can also be described by a rotation θ1 about the Z-axis, and planar

projection entities c and s. The equations for c, s, and θ1 can be given as follows:

𝑐2 = 𝑥2 + 𝑦2

𝑐 = √𝑥2 + 𝑦2

(3.1)

𝑠2 = 𝑐2 + 𝑧2

 = 𝑥2 + 𝑦2 + 𝑧2

 𝑠 = √𝑥2 + 𝑦2 + 𝑧2

(3.2)

𝜃1 = 𝑐𝑜𝑠−1 (
𝑦

𝑐
)

(3.3)

𝜃2 = 𝑐𝑜𝑠−1 (
𝑐

𝑠
)

(3.4)

Coordinate point

θ1

c

s

θ2

Univ
ers

ity
 of

 M
ala

ya

25

Figure 3.10 shows the derivation of the s, c, z and θ2 variables in the planar robot frame.

θ4 and θ5 represent are two of the joint variables that are to be controlled, and θ3 is the

90° complement angle of the sum of θ2 and θ4. The last portion of the robotic arm remains

parallel to the ground in every configuration due to the parallel links being used in the

design. Therefore, the kinematic analysis is performed up to the end-effector wrist to

simplify the analysis.

Figure 3.10: Derivation of variables in robot frame

Given Figure 3.10, the variables can then be calculated by the following equations:

Using cosine rule,

1472 = 𝑠2 + 1352 − 2(𝑠)(135)(𝑐𝑜𝑠𝜃3)

 𝑐𝑜𝑠𝜃3 =
1472 − 𝑠2 − 1352

−2(𝑠)(135)

 𝜃3 = 𝑐𝑜𝑠−1 (
1472 − 𝑠2 − 1352

−2(𝑠)(135)
)

θ4 = 90° − θ2 − θ3

(3.5)

92.7mm

c

s z

θ2

θ3

θ4

θ5

θ6
θ7

End-effector

wrist

135mm

147mm

Univ
ers

ity
 of

 M
ala

ya

26

𝑠2 = 1472 + 1352 − 2(147)(135)(𝑐𝑜𝑠𝜃6)

𝜃6 = 𝑐𝑜𝑠−1 (
𝑠2 − 1472 − 1352

−2(147)(135)
)

θ7 = 90° − θ6

(3.6)

From the illustration shown in Figure 3.11, the joint variable θ5 can be derived through a

use of a series of solutions for complementary angles and parallel lines.

Figure 3.11: Derivation of θ5

The derivations will be further outlined in the equations below:

θ8 = 90° − θ7

θ9 = 180° − θ8

θ10 = θ9 − θ4

θ5 = 90° − θ10

θ5 = 90° − (θ9 − θ4)

θ5

θ7

θ8 θ9
θ8

θ10

θ4

θ8

Univ
ers

ity
 of

 M
ala

ya

27

θ5 = 90° − ((180° − θ8) − θ4)

θ5 = 90° − ((180° − (90° − θ7)) − θ4)

θ5 = θ4 − θ7

(3.7)

Table 3 shows the summary of the equations used to calculate the joint angles to be

controlled from the inverse kinematics analysis. With these joint variables, control is able

to be performed to bring the end-effector to any location within the robot workspace.

Table 3: Summary of joint variable equations

Joint variable Description Equation

θ1 Base rotation about the

z-axis

𝜃1 = 𝑐𝑜𝑠−1 (
𝑦

𝑐
)

θ4 Mainarm rotation

about the y-axis

θ4 = 90° − θ2 − θ3

θ5 Varm rotation about

the y-axis

θ5 = θ4 − θ7

3.4 Open-loop Chain Equivalent of Robotic Arm

The ROS visualization tool RViz does not support the mechanics of closed-loop chain

type manipulators. Therefore, in order to successfully visualise the EezybotArm Mk2

within RViz, the robotic arm model must be converted to an equivalent group of open-

loop chains. The joint angles from the open-loop equivalent chains will then be used back

to control the visualized model in RViz in order for it to properly display the correct

configurations given the joint angles θ1, θ4 and θ5. Figure 3.12 shows the open-loop

chain equivalent of the robotic arm model. Next, the 4 open-loop kinematic chains will

be analysed.

Univ
ers

ity
 of

 M
ala

ya

28

Figure 3.12: Open-loop chain equivalent of closed-loop chain

3.4.1 Chain 1

Figure 3.13 shows the joint angles needed for the visualisation of chain 1 within RViz.

The joint angles θ4 and θ7 have already been found in section 3.3 Inverse Kinematic

Analysis of Robotic Arm. The angle at the last joint of the end-effector can be found by

solving for parallel lines. Then, it can be seen that the angle is equivalent to the angle of

joint variable θ5. Table 4 shows a summary of the equations for the joint variables in

Chain 1.

Chain 1

Chain 2

Chain 3

Chain 4

Univ
ers

ity
 of

 M
ala

ya

29

Figure 3.13: Joint angles for Chain 1

Table 4: Joint variables for Chain 1

Joint variable Equation

θ4 θ4 = 90° − θ2 − θ3

θ5 θ5 = θ4 − θ7

θ7 θ7 = 90° − θ6

3.4.2 Chain 2

Figure 3.14 shows the joint angles needed for chain 2. From illustration, it can be seen

that the two joint variables that are governing chain 2 are variables θ4 and θ7. The first

link of the chain is the mainarm piece that rotates by the angle θ4. The joint variable for

the second link is then a counter rotation of θ4, and the last link rotates by joint variable

θ7. Table 5 shows a summary of the equations to be used in Chain 2.

θ4

θ7

θ5

θ5
θ5

Univ
ers

ity
 of

 M
ala

ya

30

Figure 3.14: Joint angles for Chain 2

Table 5: Joint variables for Chain 2

Joint variable Equation

θ4 θ4 = 90° − θ2 − θ3

θ7 θ7 = 90° − θ6

3.4.3 Chain 3

Figure 3.15 shows the joint variable needed to represent the open-loop chain 3. The first

link in the chain is fixed, and the second link is parallel to that of the robot mainarm due

to geometric constraints, therefore it can be represented by the joint variable θ4, as given

in equation (3.5) .

θ4

θ7

θ7

θ4

Univ
ers

ity
 of

 M
ala

ya

31

Figure 3.15: Joint angles for Chain 3

3.4.4 Chain 4

Figure 3.16 shows the joint variables used in Chain 4. The first link in the chain is

controlled by the joint variable θ5. The second link is then controlled by the joint variable

θ12.

Figure 3.16: Joint variables for Chain 4

θ4

θ4

θ5

θ12

θ6
θ11

Univ
ers

ity
 of

 M
ala

ya

32

The derivation for the joint variable θ11 can be described as:

θ11 = 180° − θ6

(3.8)

θ12 = θ11 − 90°

 = 90° − θ6

(3.9)

3.5 HTM Derivation of Open-loop Chain by DH Convention

The DH parameters can be derived for the open-loop chain equivalents in order to solve

the FK analysis. Implicitly in RViz, this analysis is done based on the configurations

provided in the URDF file. Then, based on the results of the FK calculations, RViz is able

to provide the correct visualization of the configuration of the robotic arm based on the

joint variables provided.

3.5.1 HTM of Chain 1

Figure 3.17 and Figure 3.18 and show the DH Convention analysis for Chain 1.

Coordinate frames 0 and 1 lie directly on top of one another, coordinate frame 2 is offset

from coordinate frame 1 along the Y1-axis, coordinate frame 3 is offset from coordinate

frame 2 along the X2-axis, and coordinate frame 4 is offset from coordinate frame 3 along

the X3-axis. The derivation of the DH parameters can be given in Table 6.

Univ
ers

ity
 of

 M
ala

ya

33

Figure 3.17: Frame assignment for Chain 1

Figure 3.18: Axis of frames for Chain 1

Chain 1

Coordinate frame 0, 1

Coordinate frame 2
Coordinate frame 3

Coordinate frame 4

X0, X1

Z1

Z0, Y1

Y0

X2

Z2

Y2

X3

Z3

Y3

X4

Z4

Y4

Univ
ers

ity
 of

 M
ala

ya

34

Table 6: DH parameters derivation for Chain 1

 θ α a d

1 θ1 90 0 0

2 θ4 0 0 0

3 θ7 0 0.147 0

4 θ5 0 0.0393 0

Based on the DH parameters found in

Table 6, the derivation of the HTM can then be given as:

𝐻𝑇𝑀4
0 = [

𝑐𝜃1
0 𝑠𝜃1

0

𝑠𝜃1
0 −𝑐𝜃1

0

0 1 0 0
0 0 0 1

]

[

𝑐𝜃4

−𝑠𝜃4
0 0

𝑠𝜃4
𝑐𝜃4

0 0

0 𝑠𝛼4
1 0

0 0 0 1]

[

𝑐θ7 −𝑠θ7 0 0.147𝑐θ7

𝑠θ7 𝑐θ7 0 0.147𝑠θ7

0 0 1 0
0 0 0 1

] [

𝑐θ5 −𝑠θ5 0 0.0393𝑐θ5

𝑠θ5 𝑐θ5 0 0.0393𝑠θ5

0 0 1 0
0 0 0 1

]

(3.10)

3.5.2 HTM of Chain 2

Figure 3.19 and Figure 3.20 and show the DH Convention analysis for Chain 2.

Coordinate frames 0 and 1 lie directly on top of one another, coordinate frame 2 is offset

from coordinate frame 1 along the Y1-axis, coordinate frame 3 is offset from coordinate

frame 2 along the X2-axis, and coordinate frame 4 is offset from coordinate frame 3 along

the X3-axis. The derivation of the DH parameters can be given in Table 7.

Univ
ers

ity
 of

 M
ala

ya

35

Figure 3.19: Frame assignment for Chain 2

Figure 3.20: Axis of frames for Chain 2

Chain 1

Coordinate frame 0, 1

Coordinate frame 2

Coordinate frame 3 Coordinate frame 4

X0, X1

Z1

Z0, Y1

Y0

X2

Z2

Y2

X4

Z4

Y4

X3

Z3

Y3

Univ
ers

ity
 of

 M
ala

ya

36

Table 7: DH Parameters derivation for Chain 2

 θ α a d

1 θ1 90 0 0

2 θ4 0 0 0

3 40.70 + θ7 0 0.043 0

4 -40.70 + θ7 0 0.147 0

Based on the DH parameters found in Table 7, the derivation of the HTM can then be

given as:

𝐻𝑇𝑀4
0 = [

𝑐𝜃1
0 𝑠𝜃1

0

𝑠𝜃1
0 −𝑐𝜃1

0

0 1 0 0
0 0 0 1

] [

𝑐𝜃4
−𝑠𝜃4

0 0

𝑠𝜃4
𝑐𝜃4

0 0

0 0 1 0
0 0 0 1

]

[

𝑐40.70 + θ7 −𝑠40.70 + θ7 0 0.043𝑐40.70 + θ7

𝑠40.70 + θ7 𝑐40.70 + θ7 0 0.043𝑠40.70 + θ7

0 0 1 0
0 0 0 1

] [

𝑐𝜃𝑖
−𝑠𝜃𝑖

0 0.147𝑐𝜃𝑖

𝑠𝜃𝑖
𝑐𝜃𝑖

0 0.147𝑠𝜃𝑖

0 0 1 0
0 0 0 1

]

(3.11)

3.5.3 HTM of Chain 3

Figure 3.21 and Figure 3.22 show the DH Convention analysis for Chain 3. Coordinate

frame 1 is offset from coordinate frame 0 along both the X0 and Z0 axis. Coordinate

frame 2 is offset from coordinate frame 1 along the Y1 axis. The derivation of the DH

parameters can be given in Table 8.

Univ
ers

ity
 of

 M
ala

ya

37

Figure 3.21: Frame assignment for Chain 3

Figure 3.22: Axis of Frames for Chain 3

Table 8: DH parameters derivation for Chain 3

 θ α a d

1 θ1 -90 -0.038 0.0202

2 θ4 0 0.135 0

Based on the parameters derived in Table 8, the HTM can be given as:

Chain 3

Coordinate frame 0

Coordinate frame 1

Coordinate frame 2

X0

Z0 Y0

X2

Z2

Y2

X1

Z1

Y1

Univ
ers

ity
 of

 M
ala

ya

38

𝐻𝑇𝑀2
0

= [

𝑐𝜃1
0 −𝑠𝜃1

−0.038𝑐𝜃1

𝑠𝜃1
0 𝑐𝜃1

−0.038𝑠𝜃1

0 −1 0 0.0202
0 0 0 1

] [

1 −𝑠𝜃4
0 0.135𝑐𝜃4

0 𝑐𝜃4
0 0.135𝑠𝜃4

0 0 1 0
0 0 0 1

]

(3.12)

3.5.4 HTM of Chain 4

Figure 3.23 and Figure 3.24 show the DH Convention analysis for Chain 4. Coordinate

frame 1 lies directly on top of coordinate frame 0. Coordinate frame 2 is offset from

coordinate frame 1 along the X1 axis. Coordinate frame 3 is offset from coordinate frame

1 along the Y2 axis. The derivation of the DH parameters can be given in Table 9.

Figure 3.23: Frame assignment for Chain 4

Chain 4

Coordinate frame 0,1

Coordinate frame 2

Coordinate frame 3

Univ
ers

ity
 of

 M
ala

ya

39

Figure 3.24: Frame assignment for Chain 4

Table 9: DH parameters derivation for chain 4

 θ α a d

1 θ1 90 0 0

2 θ4 0 0.057 0

3 90 + θ12 0 0.135 0

Based on the parameters derived in Table 9, the HTM can be given as:

𝐻𝑇𝑀3
0 = [

𝑐𝜃1
0 𝑠𝜃𝑖

0

𝑠𝜃1
0 −𝑐𝜃𝑖

0

0 1 0 0
0 0 0 1

] [

𝑐𝜃4
−𝑠𝜃𝑖

0 0.057𝑐𝜃4

𝑠𝜃4
𝑐𝜃𝑖

0 0.057𝑠𝜃4

0 0 1 0
0 0 0 1

]

[

𝑐90 + θ12 −𝑠90 + θ12 0 0.135𝑐90 + θ12

𝑠90 + θ12 𝑐90 + θ12 0 0.135𝑠90 + θ12

0 0 1 0
0 0 0 1

]

(3.13)

X0, X1

Z0, Y1
Y0

X3

Z3

Y3

X2

Z1

Y2

Z2

Univ
ers

ity
 of

 M
ala

ya

40

3.6 Electrical Wiring Diagram

Figure 3.25 shows the system-level connections in this project. The PC which acts the

master node is supplied with a 19V power supply. A mouse is attached as a peripheral to

the PC as an input device for the user. The PC also functions to provide the visualization

through RViz of the current configuration of the robotic arm. The PC is wirelessly

connected to the WLAN.

Figure 3.25: System-level connections

Besides that, there is a WLAN router that is connected with a 12V power supply. The

WLAN router provides the WLAN connection that allows communication between the

PC and the Raspberry Pi.

The Raspberry Pi is powered by a 5V power supply. It acts as the slave node in the

network and is connected to the Arduino board via a USB cable. Like the master node, it

is wirelessly connected to the WLAN. The Arduino Uno is then connected to the servo

motors on the robotic arm which are powered by 5V power supply.

PC

Mouse 19V

12V
WLAN router

5V Raspberry Pi Arduino Uno

5V

USB

Univ
ers

ity
 of

 M
ala

ya

41

Figure 3.26 shows the circuit connections on the Arduino Uno board. The Arduino Uno

board is connected to the Raspberry Pi via the USB cable. This USB connection allows

the Raspberry Pi to transmit the information on the desired servo motor angles to the

Arduino Uno board. Also, the Arduino Uno board draws the required power from this

USB connection. The Arduino Uno is connected to 4 servo motors that are located on the

robotic arm through the digital I/O pins 8, 9, 10, and 11. These digital I/O pins transmits

the control PWM signal to the servo motors. The servo motors are powered by a separate

5V power supply, and the neutral pin on the servo motors are grounded back to the GND

pin of the Arduino Uno board.

Figure 3.26: Connections on the Arduino Uno board

USB
Arduino

Uno
Raspberry

Pi

8

9

10

11

PIN

5V

Power

Supply

Servo 1

Servo 2

Servo 3

Servo 4

GND

Univ
ers

ity
 of

 M
ala

ya

42

CHAPTER 4: IMPLEMENTATION AND RESULTS

4.1 Implementation of Project

4.1.1 Overall Project

Figure 4.1 shows the implementation of the actual project. On the PC, there is a GUI that

allows the user to given an input of the desired coordinate point of the robot arm end-

effector. Then, a simulation of the configuration of the robot arm is presented to the user.

The data on the required joint angles to achieve the configuration is transmitted wirelessly

through the WLAN router to the Raspberry Pi. The Raspberry then interfaces with the

Arduino Uno board in order to control the servo motors at the robot arm joints. The robot

arm was fabricated using additive manufacturing and then assembled together manually.

Figure 4.1: Actual project layout

4.1.2 Organisation of Files

Figure 4.2 shows the organisation of files in the ROS system. The files on the ROS system

are organised using catkin workspaces. In Figure 4.2, the catkin workspace used is named

as catkin_ws. The under each workspace, it is further subdivided into different folders

PC Robot

arm

Arduino

Uno

Raspberry

Pi

WLAN

router

Univ
ers

ity
 of

 M
ala

ya

43

such as src, build, and devel. The src subfolder contains the different packages which are

make up the ROS project. The software package contains different modules that provide

additional functionality to the system. All developed code for the project is stored in the

packages.

Figure 4.2: Organisation of files in ROS

4.1.3 System Boot-up

This section outlines the procedure in booting-up the system. First, the master PC is

switched on. The PC is then connected to the LAN called ROSNetwork. Then, a new

terminal is launched, and the current directory is switched to catkin_ws which contains

all the project code as shown in Figure 4.3.

Figure 4.3: Launch new terminal

Univ
ers

ity
 of

 M
ala

ya

44

Next, the configuration files for the catkin workspace needs to be sourced by using the

command ‘source devel/setup.bash’. The setup.bash file provides all the necessary

information to locate the packages within the workspace. Every time a new terminal is

launched, the current directory needs to be changed to catkin_ws and the setup.bash file

be sourced again as shown in Figure 4.4.

Figure 4.4: Sourcing configuration file

When initializing the framework, the first piece of software that needs to be started is the

ROS master. Without it, all other ROS nodes would not be able to communicate with one

another. The ROS master is hosted on the Master PC, and can be initialized with the

roscore command as shown in Figure 4.5.

Figure 4.5: Starting the ROS Master

Next a new terminal is launched and the terminal with the ROS master is kept running in

the background. In the ROS architecture, each terminal is generally used to hold a

Univ
ers

ity
 of

 M
ala

ya

45

separate node. The ROS_IP of the master PC is exported, so that the node would become

discoverable by other nodes distributed across the slave. A static IP address of

192.168.1.148 is assigned to the master PC. The inverse kinematics calculator node is

launched from the printxyz.py file in the beginner_tutorials package using the rosrun

command as shown in Figure 4.6.

Figure 4.6: Initializing IK node

Next, another new terminal is launched. Then, the roslaunch command is used to launch

the RViz visualization tool and the slider GUI as shown in Figure 4.7. The display.launch

file is simply a collection of nodes and services to be launched simultaneously. The launch

file is located in the urdf_tutorial directory. The robot model data used in the visualization

is sourced from the eezybot.urdf file located in the eezybot_support package.

Figure 4.7: Initializing RViz visualization and slider GUI

Univ
ers

ity
 of

 M
ala

ya

46

Figure 4.8 shows the launched window containing the robot visualization and the slider

GUI to input the desired coordinate location of the robot end-effector and also to control

the actuation of the robot gripper. With these tools, the user is able to perform

teleoperation on the robotic arm.

Figure 4.8: Visualization tool and GUI

The boot-up of the master PC is now complete. Next, the Raspberry Pi slave is booted-

up. The slave is also connected to the ROSNetwork LAN. Then, a new terminal is

launched. Now, this terminal must explicitly subscribe to the ROS master node on the

master PC in order for communication between the master and slave to be established.

This is achieved through exporting the ROS_MASTER_URI as

http://192.168.1.148:11311 which is the static IP address of the master PC and the local

host at 11311. Next, the rosserial node is created in order to establish connection with the

Arduino Uno board. The node is created from the serial_node.py which is located in the

rosserial_python package. The serial connection is established on the /dev/ttyACM0 port

as shown in Figure 4.9.

Simulated

robot

model

Slider GUI

Univ
ers

ity
 of

 M
ala

ya

47

Figure 4.9: Initializing rosserial on slave

Figure 4.10 shows a graphical summary of the boot-up steps of the system.

Figure 4.10: Summary of boot-up steps

Start ROS master

Start IK solver

Start RViz with

slider GUI

Start rosserial

Start master PC

Connect to master to ROSNetwork WLAN

Start slave RasPi

Connect to slave to ROSNetwork WLAN

Master PC

Slave

Raspberry

Pi

Univ
ers

ity
 of

 M
ala

ya

48

4.2 Results and Discussion

4.2.1 Experiment 1: Inverse Kinematics Computational Time

Figure 4.11 shows the definition of the computational time of inverse kinematics taken.

In this experiment, the time from a coordinate point being published to the /xyz_coor to

the time the joint variables calculated from the inverse kinematics is published to the

/joint_states and /Ard_angle topics are taken. This is computational time required to

calculate the necessary joint variables through inverse kinematics.

Figure 4.11: Definition of computational time taken

In setting up the experiment, the printxyz.py file which creates the /compute_IK node is

modified. The system time is recorded when a message from the /xyz_coor topic is

received, and the system time is recorded again when calculated output is published to

the /joint_states and /Ard_angle topics. The two system times are compared and recorded

into a comma-separated values (csv) file. The data is collected for 1000 random

coordinate point calculations, and the results are plotted.

Table 10: Tabulated results for computational time

Time range (ns) Frequency

0 - 474930 1

474930 - 615514.5 192

615514.5 - 756099 241

/xyz_coor

/compute_IK

/joint_states

/Ard_angle

/robot_state_publisher

/serial_node

/GUI

Computational Time

Univ
ers

ity
 of

 M
ala

ya

49

756099 - 896683.5 119

896683.5 - 1037268 158

1037268 - 1177852.5 139

1177852.5 - 1318437 118

1318437 - 1459021.5 73

1459021.5 - 1599606 67

1599606 -1740190.5 35

1740190.5 – 1880775 6

Figure 4.12 shows the graph of frequency against the computational time being plot from

the data collected. The computational time in the experiment ranged from 474930

nanoseconds to 1880775 nanoseconds. The mean can then be calculated as 963706.47

nanoseconds, the mode as 741005 nanoseconds, and median as 915051 nanoseconds. This

shows that the average computational time is less than 0.001 second or 1 millisecond. In

the system, all the nodes are set to publish to the respective topics at a maximum

frequency of 10Hz. This ensures that there is ample time for the computation to be

completed between receiving coordinate inputs from the GUI.

Figure 4.12: Graph of frequency against computational time

Univ
ers

ity
 of

 M
ala

ya

50

4.2.2 Experiment 2: Testing of Data Transmission across WLAN

Figure 4.13 shows the transmission of data from the /compute_IK node to the /serial_node

that happens across the master and slave. The first part of this experiment is conducted in

order to ensure that there is no packet loss in the transmission of data across the master

and slave. In the second part of the experiment, the time delay between the message being

transmitted from the /compute_IK node to the /serial_node is recorded.

Figure 4.13: Data transmission across multiple machines

In setting up the first part of the experiment, the message being sent out of the

/compute_IK node and the message being received by the /serial_node are compared.

First, the system is set up. Then, both the outgoing and the incoming message are logged

into a csv file for comparison. The data log from both the outgoing and incoming

messages are compared for similarity, and the data is tabulated in Table 11.

Table 11: Table of comparison between outgoing and incoming messages

Similar 1530

Dissimilar 3698

From the 5228 data points collected, it can be seen that only 1530 of the messages being

sent and received are similar. The percentage of times where the sent and received

messages are dissimilar is:

/compute_IK
/Ard_angle

/serial_node

Master PC Slave RasPi

Transmission over

WLAN

Univ
ers

ity
of

Mala
ya

51

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

3968

5228
 𝑥 100% = 75.899%

(4.1)

Equation (4.1) shows that the percentage of times the sent and received messages are

different is 75.899%.

Next, the message data is rounded down to 4 decimal points and checked again. The

percentage of times dissimilar is calculated again, and it is found that the similarity

between sent and received messages is now:

Table 12: Table of comparison between outgoing and incoming messages after rounding down

Similar 5228

Dissimilar 0

This shows that there is a loss of transmission data due to the use of the floating point

numbers in the joint variable data. However, after rounding down to 4 decimal points, the

data being sent and received has become the same. This shows that the information in the

transmitted data is being preserved up to 4 decimal places.

In the second part of the experiment, the latency of the data transfer across the network is

measured. The message structure in ROS makes use of headers in order to embed some

metadata. One type of metadata that can be embedded is the time at which the message is

published to the topic. Using this, the header time can be compared to the system time

when the message is received by the /serial_node to determine the latency in the

transmission across the master and slave.

Univ
ers

ity
 of

 M
ala

ya

52

Table 13 shows the tabulated data from the experiment. Figure 4.14 show the histogram

that is plotted from the collected data. From the analysis being conducted, the mean delay

time is 47664370.6 ns, the median delay time is 44825077 ns and the mode delay time is

44711113 ns. This shows that the average delay time between the transmission of the

message from the /compute_IK node to the /serial_node node is about 0.045s. With a

computational time of 0.001s and a publishing frequency of 10Hz, this ensures that no

message that is published will be missed.

Table 13: Tabulated results for time delay

Delay time (ns) Frequency

0 – 40489912 1

40489912 – 61939621 1528

61939621 – 83389330 20

83389330 – 104839039 7

104839039 – 126288748 5

126288748 – 147738457 7

147738457 – 169188166 8

169188166 – 190637875 3

190637875 – 212087584 0

212087584 – 233537293 1

233537293 - 254987002 3

 Univ
ers

ity
 of

 M
ala

ya

53

Figure 4.14: Graph of frequency against time delay

Univ
ers

ity
 of

 M
ala

ya

54

4.2.3 Experiment 3: Accuracy of Robot Actuation

In this experiment, the accuracy of the robotic arm is inspected. In setting up the

experiment, a grid of 1cm boxes is used to track the movement of the robotic arm. Then,

the movement is compared to the visualized model on the Master PC for verification. The

robotic arm is made to trace a box. The image of the robotic arm at the four vertices of

the box is captured. The experiment is repeated for both the X-Z plane and the X-Y plane.

Figure 4.15 to Figure 4.19 shows the sequence of movements tested on the robotic arm

in the X-Y plane. The image of the physical robot arm is compared to the simulated

movement of the robotic arm. From the images, it can be seen that the physical robot arm

has poor accuracy. The robotic arm is unable to track a straight movement.

Figure 4.15: Image of X-Y plane position 1

Figure 4.16: Image of X-Y plane position 2

Univ
ers

ity
 of

 M
ala

ya

55

Figure 4.17: Image of X-Y plane position 3

Figure 4.18: Image of X-Y plane position 4

Figure 4.19: Image of X-Y plane position 1, returned

Figure 4.20 to Figure 4.24 shows the sequence of images tested on the robotic arm in the

X-Z plane. Once again, the movement of the physical robotic arm is compared to that of

the simulated robotic arm. Once again, the physical robotic arm shows a poor ability to

track the movement in a straight line. However, this is not due to the incorrect joint

variables being calculated by the IK. This is because the simulated robot is able to track

Univ
ers

ity
 of

 M
ala

ya

56

straight movements using the similar joint variables as shown. Therefore, the inaccuracy

is due to a physical limitation of the servo motors and the build of the robotic arm itself.

During the assembly of the robotic arm parts, some of the holes which held the pivot

joints of the robotic arm parts were too small due to the additive manufacturing process.

Therefore, they had to be manually drilled through with a hand drill, thus introducing

tolerance errors.

Figure 4.20: Image of X-Z plane position 1

Figure 4.21: Image of X-Z plane position 2

 Univ
ers

ity
 of

 M
ala

ya

57

Figure 4.22: Image of X-Z plane, position 3

Figure 4.23: Image of X-Z plane position 4

Figure 4.24: Image of X-Z plane, position 1 returned

 Univ
ers

ity
 of

 M
ala

ya

58

CHAPTER 5: CONCLUSION

5.1 Summary

As a summary, an online robot programming framework was developed in the ROS

environment (objective-3). The project used a PC as a master node, which provided a

GUI for the user to provide a target coordinate to move the robotic arm. The IK analysis

for the robotic arm model was obtained using the geometric approach to solve for the

closed-loop kinematic chains and verified visually through visualization of the robotic

arm movement (objective-1).The IK calculation was performed on the master PC in order

to obtain the required joint variables to bring the robotic arm end-effector to the desired

location (objective-2). A FK analysis of the robotic arm model was also performed using

the DH convention. A visualization of the configuration of the robotic arm was provided

in RViz to aid the use of teleoperation. A Raspberry Pi is used as the slave node, which

is connected to the master node through a WLAN connection. The Raspberry Pi

interfaced with and Arduino Uno board, which controlled the servo motors on the robotic

arm by PWM signals. In experimentation, the IK calculations was able to be performed

in under 1 millisecond. The transmission of data across showed some losses, but was able

to preserve the joint variables data with up to 4 decimal point precision. The transmission

speed per message took about 45 ms each. However, the physical robot could not be

controlled accurately due to physical limitations.

5.2 Further Improvements

1. The physical robot model needs to be improved. The RC grade servo motors used

are not accurate, and should be switched to stepper motors with encoders for better

accuracy.

Univ
ers

ity
 of

 M
ala

ya

59

2. In this project, the framework is only tested with one master and one slave node.

The number of slave nodes could be increased to test out multiple robot

teleoperation.

3. The framework built in this project did not include trajectory planning. A

trajectory planner could be developed in order to support robotic arms with more

degrees of freedom.

Univ
ers

ity
 of

 M
ala

ya

60

REFERENCES

Araújo, A., Portugal, D., Couceiro, M. S., & Rocha, R. P. (2013). Integrating Arduino-

based educational mobile robots in ROS. Paper presented at the 2013 13th

International Conference on Autonomous Robot Systems.

Barbosa, J. P. d. A., Lima, F. d. P. d. C., Coutinho, L. d. S., Leite, J. P. R. R., Machado,

J. B., Valerio, C. H., & Bastos, G. S. (2015). ROS, Android and cloud robotics:

How to make a powerful low cost robot. Paper presented at the 2015 International

Conference on Advanced Robotics (ICAR).

Bhargava, A., & Kumar, A. (2017). Arduino controlled robotic arm. Paper presented at

the 2017 International conference of Electronics, Communication and Aerospace

Technology (ICECA).

Bjorlykhaug, E. J. R. (2018). A Closed Loop Inverse Kinematics Solver Intended for

Offline Calculation Optimized with GA. 7, 7.

Chen, Z., Yan, S., Yuan, M., Yao, B., & Hu, J. (2018). Modular Development of Master-

Slave Asymmetric Teleoperation Systems With a Novel Workspace Mapping

Algorithm. IEEE Access, 6, 15356-15364. doi:10.1109/ACCESS.2018.2809860

Craig, J. J. (2018). Introduction to robotics : mechanics and control (Fourth edition. ed.).

Ny Ny: Pearson.

Du, Z., Sun, Y., Su, Y., & Dong, W. (2014). A ROS/Gazebo based method in developing

virtual training scene for upper limb rehabilitation. IEEE International

Conference on Progress in Informatics Computing, 307-311.

Ergur, S., & Ozkan, M. (2014). Trajectory planning of industrial robots for 3-D

visualization a ROS-based simulation framework. Paper presented at the 2014

IEEE International Symposium on Robotics and Manufacturing Automation

(ROMA).

Hernandez-Mendez, S., Maldonado-Mendez, C., Marin-Hernandez, A., Rios-Figueroa, H.

V., Vazquez-Leal, H., & Palacios-Hernandez, E. R. (2017). Design and

implementation of a robotic arm using ROS and MoveIt! Paper presented at the

2017 IEEE International Autumn Meeting on Power, Electronics and Computing

(ROPEC).

Issa, A. I., Aqel, M. O. A., Albelbeisi, M. M., Elaila, M. O., & Mortaja, M. A. J. I. C. o.

P. E. T. (2017). Palletizing Manipulator Design and Control Using Arduino and

MATLAB. 60-65.

Kruthika, K., Kumar, B. M. K., & Lakshminarayanan, S. (2016). Design and development

of a robotic arm. Paper presented at the 2016 International Conference on Circuits,

Controls, Communications and Computing (I4C).

Lawton, J. (2018). The Role Of Robots In Industry 4.0. Retrieved from Forbes website:

Lentin, J. (2015). Learning robotics using Python : design, simulate, program, and

prototype an interactive autonomous mobile robot from scratch with the help of

Python, ROS, and Open-CV! In Community experience distilled (pp. 1 online

resource (1 volume)). Retrieved from Knovel. Restricted to UCB, UCI, UCLA,

UCM, UCR, UCSB, and UCSD http://uclibs.org/PID/277475

Lynch, K. M., & Park, F. C. (2017). Modern robotics : mechanics, planning, and control.

Cambridge, UK: Cambridge University Press.

Megalingam, R. K., Sivanantham, V., K Sai Kumar, S. G., Teja, P. S., Gangireddy, R.,

M, S. K., & Gedela, V. V. (2018). Design and Development of Inverse kinematics

Based 6 DoF Robotic Arm Using ROS. International Journal of Pure and Applied

Mathematics, 118(18), 2597-2603.

Univ
ers

ity
 of

 M
ala

ya

http://uclibs.org/PID/277475

61

Mohammed Abu, Q., Abuhadrous, I., & Elaydi, H. (2010). Modeling and Simulation of

5 DOF educational robot arm. Paper presented at the 2010 2nd International

Conference on Advanced Computer Control.

Mortimer, M., Horan, B., & Joordens, M. (2016). Kinect with ROS, interact with Oculus:

Towards Dynamic User Interfaces for robotic teleoperation. Paper presented at

the 2016 11th System of Systems Engineering Conference (SoSE).

Pandilov, Z., & Dukovski, V. (2014). Comparison of the Characteristics between Serial

and Parallel Robots. Acta Tehnica Corviniensis.

Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., Amicis, R. d., . . .

Vallarino, I. (2015). Visual Computing as a Key Enabling Technology for

Industrie 4.0 and Industrial Internet. IEEE Computer Graphics and Applications,

35(2), 26-40. doi:10.1109/MCG.2015.45

Qian, W., Xia, Z., Xiong, J., Gan, Y., Guo, Y., Weng, S., . . . Zhang, J. (2014).

Manipulation task simulation using ROS and Gazebo. Paper presented at the 2014

IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

Roblek, V., Meško, M., & Krapež, A. (2016). A Complex View of Industry 4.0. 6(2),

2158244016653987. doi:10.1177/2158244016653987

Rozman, J., Luža, R., & Zbořil, F. V. (2014). ROS-based remote controlled robotic arm

workcell. Paper presented at the 2014 14th International Conference on Intelligent

Systems Design and Applications.

Sarkar, B. K. (2018). Modeling and validation of a 2-DOF parallel manipulator for pose

control application. Robotics and Computer-Integrated Manufacturing, 50, 234 -

241. doi:https://doi.org/10.1016/j.rcim.2017.09.017

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control.

Hoboken, NJ: John Wiley & Sons.

Tao, Y., Chen, F., & Xiong, H. (2015). Kinematics and Workspace of a 4-DOF Hybrid

Palletizing Robot. Advances in Mechanical Engineering, 6.

doi:10.1155/2014/125973

Univ
ers

ity
 of

 M
ala

ya

https://doi.org/10.1016/j.rcim.2017.09.017

