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ABSTRACT 

In the Fourth Industrial Revolution, robotics technology plays an increasingly important 

role in order to increase productivity through the use of cyber physical systems. However, 

industrial robotic arms require expertise in fields such as mechanical and software 

engineering in order to be used. Furthermore, modularity of robotic work cells could be 

improved. In this project, an online robot programming framework is developed in Robot 

Operating System (ROS). The framework includes a master and slave node that allows 

for teleoperation of the intended robotic arm. A graphical user interface (GUI) is provided 

on the master personal computer (PC) in order to receive a target coordinate point for the 

robotic arm end-effector from the user. The EezyBotArm Mk2 3-dimensional (3D) 

printed arm is used for control and testing. The kinematics study of the robotic arm is 

performed and based on the equations derived is used to convert the coordinate point into 

the corresponding joint variables. The joint variables are then transmitted from the master 

PC to the slave Raspberry Pi. The Raspberry Pi interfaces with an Arduino Uno board in 

order to control the servo motors on the robotic arm via pulse width modulation (PWM) 

signal.   
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ABSTRAK 

Dalam era Revolusi Industri Keempat ini, teknologi robotik memainkan peranan yang 

makin penting untuk meningkatkan produktiviti industri melalui penggunaan sistem 

siber-fizikal. Namun begitu, penggunaan lengan robot perindustrian memerlukan tahap 

kepakaran pekerja yang tinggi supaya sesuai digunakan. Tambahan pula, modulariti 

lengan robot perindustrian juga boleh dipertingkatkan. Dalam projek ini, satu rangka 

kerja pengaturcaraan robot atas talian diciptakan dengan menggunakan ROS. Rangka 

kerja ini termasuk penggunakan noda tuan dan noda hamba bagi menyokong penggunaan 

tele-operasi. Satu GUI juga disediakan di komputer noda tuan untuk mendapatkan 

kordinat sasaran daripada pihak pengguna. Lengan robot EezyBotArm Mk2 yang 

diperbuat menggunakan teknologi percetakan 3D pula digunakan untuk tujuan ujian dan 

kawalan. Satu kajian atas kinematik lengan robot tersebut dibuat bagi menukarkan 

kordinat sasaran ke pembolehubah sendi melalui kinematik inversi. Pembolehubah sendi 

tersebut kemudiannya dihantar ke noda hamba Raspberry Pi yang mengawal motor servo 

pada lengan robot melalui Arduino Uno.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

The idea of the fourth industrial revolution, or better known as Industry 4.0 was initially 

proposed in Germany in the year 2011 (Roblek, Meško, & Krapež, 2016). The key 

technological advancement in Industry 4.0 is the introduction of cyber physical systems 

(CPS) in the production floor, which would help to improve the effectiveness and 

efficiency of the industry. The nine key drivers in the ushering in of the fourth industrial 

revolution and integration of CPS are autonomous robots, simulations or digital twins, 

cloud computing, additive manufacturing, augmented reality, big data analytics, 

Industrial Internet of Things (IIOT), cyber security and system integration (Posada et al., 

2015).  

The use of autonomous robots will help to reduce manual labour costs, and increase the 

productivity of any given industry. Robots are often employed in areas which involve 

highly repetitive tasks, or involve great risk to human lives (Lawton, 2018). This is 

because unlike human labour, autonomous robots are able to operate for long hours 

without fatigue, and are easily replaceable when broken. Combined with the other key 

pillars of Industry 4.0 such as digital twins and IIOT, the flexibility of autonomous robots 

is further increased. With this, autonomous robots can be easily monitored remotely 

through the visualization of the data collected remotely from the robots.  

However, the field of robotics is complex and is situated at the intersection of core 

engineering fields such as mechanical, electronics, control and software engineering. 

Traditionally, this meant that robotics projects are inherently complex and require 

expertise in multiple fields. Robot Operating System (ROS) is a popular open-sourced 

platform that is enabling rapid research in the field of robotics. The availability of various 
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modules and development tools has allowed a fast prototyping of ideas and a decrease in 

research costs (Barbosa et al., 2015). Also, ROS is available in many programming 

languages such as C++, Python, Octave and LISP which further cements its position as a 

flexible tool.  

 

1.2 Problem Statement 

Traditionally, industrial robot programming requires a trained programmer to reconfigure 

the industrial robotic programming when deploying a robotic work cell or whenever there 

is a change to the robotic work cell. The programmer is also required to be present near 

the robotic work cell in order to have access to the industrial robot programming. Also, 

programming for the robotic work cell is usually rigid, requiring that the robotic work 

cell be taken offline whenever new modules are to be added or modified due to the 

software structure being centralised and not distributed into modular nodes. This reduces 

the ability of the robotic software framework to be changed and the flexibility for new 

modules and features to be added. Besides that, a robotic platform that is closed source 

discourages the reuse of software, prohibiting the fast development of new robotics 

technology.  

 

1.3 Objectives of Research 

The objectives of this research are stated as below: 

1. To derive the kinematics of an industrial robot. 

2. To map an input from an input device coordinate space to the industrial robot end 

effector coordinate space. 

3. To develop a robot programming framework and control in Robot Operating 

System (ROS). 
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1.4 Scope of Research 

The scope of this research project is to design a framework for programming and 

controlling an industrial robotic arm. A prototype industrial robotic arm is fabricated 

using additive manufacturing. The robotic arm is actuated by hobby-grade servo motors. 

Then, a software framework to program and control the robotic arm is designed using the 

ROS platform and is written using the Python programming language. The control of the 

robotic is achieved through the forward and inverse kinematics study of the robotic arm. 

This thesis includes the theory underlining the design of the framework and an analysis 

of the performance of the project. 

 

1.5 Report Organization 

This research report is organized into five chapters. In Chapter 1, a general introduction 

and to the project and the objectives is given. 

In Chapter 2, a brief literature review is presented, outlining the theory and past projects 

that are related to this project. Namely, the literature review covers the manipulator 

kinematics and software architecture that are related to the project.  

Chapter 3 describes the methodology with which the overall system is to be developed, 

along with relevant equations to be used. 

Chapter 4 gives the actual implementation of the project, showing the actual process flow 

and workings of the project. Also, experimentation is conducted to qualify the results of 

the project and a discussion on the results is presented. 

Finally, in Chapter 5 a conclusion to the overall project is given, and future 

recommendations for the project are made.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Anatomy of the Robotic Arm 

Figure 2.1 shows the anatomy of a typical industrial robotic arm or also known as a 

manipulator. In general, the robotic arm consists of a base that is rigidly attached to the 

ground, moving links and joints, and an end-effector attached to the free end of the robotic 

arm. It can be described through two main attributes: orientation and position(Craig, 

2018). In order to fully describe the position and orientation of the robotic arm in space, 

a coordinate frame is typically attached to the base of the robotic arm. This then becomes 

the point of reference that describes the relative position and orientation of the robotic 

arm. A robotic arm is typically modelled with a combination of rigid links and joints, as 

shown in Figure 2.1. There are two types of joints that are used to allow relative 

movement between adjacent links: prismatic joints and revolute joints. For prismatic 

joints, the movement comes in the form of a sliding motion, which allows displacement 

between the two adjacent links. This motion is known as a translation, or a joint offset. 

With revolute joints, the joint becomes a pivot point for the adjacent links to revolve about 

one another, and the movement is categorised in terms of joint angles. 

 

 

Figure 2.1: Anatomy of robotic arm 
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The number of degrees of freedom(DOF) that the robotic arm has is equal to the amount 

of independent position variables that are available(Lynch & Park, 2017). The degrees of 

freedom is a representation of the flexibility of the type of movement that is able to be 

achieved by the manipulator. The combination of joints and links that maps the robotic 

arm from the base to the end-effector is known as the kinematic chain. Kinematics is used 

to describe the position, velocity and the acceleration of the robotic arm in space. The 

forward kinematics(FK) analysis is finding the position of the end-effector given all the 

values of the joint variables, while the inverse kinematics(IK) analysis is to find the 

required joint variables to be achieved by the robot joints in order to bring the end-effector 

to a given point(Pandilov & Dukovski, 2014). There are two main types of kinematic 

chains; open-loop and closed-loop kinematic chains as shown in Figure 2.2. In the open 

loop configuration, the solution to the forward kinematics problem is relatively straight 

forward, while for the inverse kinematics problem is more complicated. However, the 

inverse is true for closed loop kinematic chains. 

 

Figure 2.2: Comparison of open and closed loop kinematic chains 

 

 

2.2 Forward Kinematics   

In the forward kinematics analysis, all the joint variables are known, and the analysis is 

conducted in order to derive the location of the end-effector relative to the base frame. In 

a coordinate system, any point located in space can be identified through the use of a 3 
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x1 position vector as shown in equation (2.1). The position vector gives a location of a 

point with the respect to the reference frame A, with displacements in the Px, Py, and Pz 

unit vectors(Spong, Hutchinson, & Vidyasagar, 2006).  

 𝑃𝐴 = [

𝑃𝑥

𝑃𝑦

𝑃𝑧

]  
(2.1) 

 

 

However, a complete description of a point in space also requires information of the 

orientation of the point. In order to achieve this, a separate coordinate system is attached 

to the point, and the description of the orientation of this point can then be given relative 

to the reference plane as shown in Figure 2.3. With these two coordinate systems, the 

orientation of the frame B can then be given relative to the frame A. 

 

Figure 2.3: Separate coordinate frames 

  

A rotation matrix is used in order to transform a point located in coordinate system B to 

coordinate system A. The rotation matrix transforms the unit vectors of the three principal 

axes in B to A as shown in equation (2.2).  

 𝑅𝐵
𝐴 = [ 𝑋̂𝐴

𝐵 𝑌̂𝐴
𝐵 𝑍̂𝐴

𝐵 ] =  [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] 
(2.2) 
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Equation (2.3) shows a general equation that gives a transformation of a vector that is 

described in frame B into a vector that is described in frame A. The combination of the 

position vector and the rotation matrix in the right hand side of equation (2.3) yields a 

4x4 matrix known as the homogeneous transformation matrix (HTM). With this, the FK 

analysis of a robotic arm can be derived through successive multiplications of the 

homogeneous transform of one coordinate frames from the base to the end-effector.  

 [ 𝑃𝐴

1
] =  [ 𝑅𝐵

𝐴

0 0 0
𝑃𝐴

1
] [ 𝑃𝐵

1
] 

(2.3) 

 

One popular method in performing the FK analysis is through the Denavit-

Hartenberg(DH) Convention. The procedures outlined through this procedure simplify 

the process of transforming from one coordinate frame to a subsequent coordinate frame 

through the use of DH parameters. Through this convention, each transformation Ti can 

be represented as a product of four subsequent transformations as shown in equation (2.4) 

(Spong et al., 2006). These transformations are a rotation θi around Zn-1 to align Xn-1 to 

Xn, followed by a translation di along Zn-1, followed by a rotation αi around Xn to align 

Zn-1 to Zn, and lastly a translation ai along Xn. 

 

𝑇𝑖 = 𝑅𝑜𝑡𝑍𝑖𝜃𝑖
𝑇𝑟𝑎𝑛𝑠𝑍𝑖𝑑𝑖

𝑇𝑟𝑎𝑛𝑠𝑥𝑖𝑎𝑖
𝑅𝑜𝑡𝑥𝑖𝛼𝑖

 

 

= [

𝑐𝜃𝑖
−𝑠𝜃𝑖

𝑐𝛼𝑖
𝑠𝜃𝑖

𝑠𝛼𝑖
𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖
𝑐𝜃𝑖

𝑐𝛼𝑖
−𝑐𝜃𝑖

𝑠𝛼𝑖
𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖
𝑐𝛼𝑖

𝑑𝑖

0 0 0 1

] 

(2.4) 

 

Figure 2.4 shows an illustration of the application of the DH parameters between two 

adjacent coordinate frames. In order to apply the DH convention for kinematic analysis, 

there are two assumptions made. First, the axis x1 is perpendicular to z0. Secondly, the 

axis x1 intersects z0. 
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Figure 2.4: Illustration of DH parameters between coordinate frames 

 

2.3 Inverse Kinematics 

Inverse kinematics (IK) analysis is the task of finding the combination of joint variables 

that could bring the end-effector to a specific coordinate point. Depending on the number 

of degrees of freedom of a given manipulator under analysis, the IK analysis may include 

controlling the orientation of the end-effector. While the FK analysis has unique solutions, 

the IK analysis may have no solutions, a unique solution or even multiple solutions. This 

makes the IK problem generally harder to solve when compared to the forward kinematics 

analysis.  

 

The existence of a solution for the IK problems ties closely to the workspace of the robotic 

arm. If a goal point lies within the workspace of the robotic arm, then the solution to the 

inverse kinematics analysis exists. The workspace of a robotic arm is defined as the 

amount of space that is reachable by it. A robotic arm that has less than 6 DOF will not 

be able to fully control the orientation of its end-effector within its reachable workspace. 

In general, there are two methods to solving inverse kinematics analysis: closed-form 

solutions and numerical solutions. Numerical solutions are typically slower when 

compared to closed-form solutions, thus more emphasis will be given to closed-form 

solutions. One such form of numerical solutions to the inverse kinematics problem is 
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through the use of genetic algorithms where the solution to the IK problem is modelled 

as search problem, and the solution is found through natural selection of successive 

generations of different models (Bjorlykhaug, 2018). A closed-form solutions are 

analytical methods, and can be obtained either algebraically or geometrically. 

 

(Issa, Aqel, Albelbeisi, Elaila, & Mortaja, 2017) described one method of obtaining the 

inverse kinematics of a manipulator, which is through successive inverse transformations 

of the transformation Ti obtained originally in equation (2.4). Besides that, another 

method of solving the inverse kinematics problem is described by (Tao, Chen, & Xiong, 

2015) is through a geometric breakdown of the angles and lengths of the links and joints 

of manipulator into its component, and then solving each term geometrically as shown in 

Figure 2.5. A similar approach was also utilised by (Sarkar, 2018) and (Mohammed Abu, 

Abuhadrous, & Elaydi, 2010). 

 

Figure 2.5: Geometric breakdown of the kinematics of a manipulator 

 

2.4 ROS Architecture 

ROS is a software framework that is used for writing software for robotics application. It 

provides a collection of tools that can aid in the process of creation of complex and robust 

robotics systems across multiple platforms (Lentin, 2015). The ROS filesystem is 

organized into packages, where each package contains important executables, libraries 

and configuration files.  
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In the ROS architecture, the main data structure that is being used to through the ROS 

frame work is through the use of messages. Each functionality in the robotic system can 

be represented as a node in ROS as shown in Figure 2.6. This feature allows the ROS 

framework to be distributed and modular. A ROS Master then manages the 

communications between each ROS node, without which the ROS nodes would not be 

able to send or receive messages. Communication between each ROS node then occurs 

through the concept of publishing and subscribing, where a ROS node may make 

information computed from the node public by publishing messages to a ROS topic, and 

other ROS nodes may have access to the information by subscribing to the same ROS 

topic.  

 

Figure 2.6: Concept of communication in ROS 

 

There are many projects that have been implemented through the use of the ROS 

architecture. One such project is a limb rehabilitation robot that was proposed by (Du, 

Sun, Su, & Dong, 2014) in Figure 2.7. The project involves a master and slave type of 

architecture where a master personal computer (PC) is used to host the ROS software 

framework that then interfaces with various peripherals such as the robot itself and input 

devices. A simulation software called Gazebo is also run on the master PC in order to 

simulate the movements of the patient and provide important metrics in the training 

programme.  
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Figure 2.7: VR based rehabilitation robot 

 

Besides that, another project by (Qian et al., 2014) made use of the Gazebo simulator in 

ROS to run simulations on the manipulation task of a robotic arm. The robotic arm was 

modelled in Gazebo using the Unified Robot Description Format (URDF), which is a type 

of eXtensible Markup Language (XML) file used to provide information on the joints and 

links of a manipulator.  The URDF format makes use of stereolithography (STL) file 

which are generated from computer aided design (CAD) models in order to provide 

visualization of the robotic arm in Gazebo. Another simulation tool that is available in 

the ROS framework is RViz. While Gazebo is able to simulate the physics involved in 

the operations of a manipulator or robot, Rviz is a lighter weight tool that simply provides 

visualization of the robot in the simulation.  

 

(Megalingam et al., 2018) proposed a 6 DOF robotic arm that was also designed in the 

ROS framework as shown in Figure 2.8. The system used the RViz tool for visualization, 

and the Moveit package within ROS to solve the FK and IK problems. The developed 

system makes use of a graphical user interface (GUI) for the user to give an input of the 

desired point in the 3D workspace for the end-effector to move to. Then, the IK solver in 

the Moveit package is used to compute the necessary joint variables need to bring the 

end-effector of the robotic arm to the desired location. The motion planner is able to 

generate the optimum trajectory and FK analysis is used to display the simulated path of 
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the movement of the robotic arm in RViz. Similar work was also conducted by (Ergur & 

Ozkan, 2014) in designing a simulator for a 5 DOF Selective Compliance Articulated 

Robot Arm (SCARA) used in deburring process. The proposed system utilized a linear 

trajectory between desired end-effector locations, and performed trajectory generation 

calculations in a customized ROS node.  

 

Figure 2.8: Architecture of 6 DOF robotic arm proposed by Megalingam et al. 

 

2.5 Arduino Interface 

The Arduino microcontroller is a low cost input/output (I/O) board. (Kruthika, Kumar, & 

Lakshminarayanan, 2016) proposed a robotic arm design that used an Arduino Mega2560 

board as an interface to the motors and sensors on the robotic arm as shown in Figure 2.9. 

The PC does not have I/O pins, and instead needs an intermediary device to handle the 

connections to the sensors and motors for the robotic arm. In this project, the robotic arm 

is actuated by stepper motors, and are controlled by pulse width modulation (PWM) 

signals generated by the Arduino board. A PC is connected to the Arduino board through 

a serial interface, and regularly sends the desired motor angles that are calculated through 

IK to the Arduino board. Potentiometers are used as a feedback mechanism on the robot 

joints in order to obtain the angles. (Bhargava & Kumar, 2017) took a slightly different 

approach, replacing the combination of stepper motors and potentiometers at the robot 

joints with radio control (RC) servos. This way, the closed-loop control of the position of 
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the motors becomes extracted away, and the angle of the motors could be controlled 

directly through PWM signals corresponding to the desired servo angle. However, the 

disadvantage is that RC servos typically have a limited range of actuation.  

 

Figure 2.9: Arduino interface 

 

The project proposed by (Megalingam et al., 2018) and (Hernandez-Mendez et al., 2017) 

also made use of an Arduino board in order to handle the interface with the robot motors 

and sensors. Simulation and the IK calculations were first done on the PC, and the 

information on the desired joint angles were sent to the Arduino board through the 

rosserial package. The rosserial package is a package within ROS that handles the 

communication between the master node and the Arduino node within the ROS 

environment.  

 

2.6 Teleoperation 

Teleoperation is the ability to remotely control or interface with a robotics system. 

Robotics systems are often deployed in unstructured environments where human presence 

may endanger human life (Mortimer, Horan, & Joordens, 2016). In the case of robotic 

arms in the factory setting, production lines may prove to be inaccessible to operators and 

engineers while they are in operation. Therefore, the incorporation of teleoperation as a 

feature may help to increase accessibility to the robotics systems, while improving safety 

measures on the production floor (Chen, Yan, Yuan, Yao, & Hu, 2018).  

  

Serial  
Communication 

Arduino Mega 

Potentiometer 

Force sensor 

DC motor 

Stepper motor 
Motor driver 

Robot 

Univ
ers

ity
 of

 M
ala

ya



14 

 

Figure 2.10 and Figure 2.11 shows the server and client block diagrams of the client-

server architecture proposed by (Rozman, Luža, & Zbořil, 2014). The server side of the 

system is responsible for IK computation, simulation, collection and processing of input 

data from sensors, and sending control signals to the robotic arm. On the client side of the 

system, an interface is presented in order to collect input commands from users. Also, the 

high level path planning and image processing of the image data collected from the 

cameras is conducted.  

 

Figure 2.10: Robotic arm workcell server 

 

 

Figure 2.11: Client side block diagram 

 

On the other hand, (Araújo, Portugal, Couceiro, & Rocha, 2013) implemented a master-

slave type of network architecture in creating a distributed network to control mobile 

robots. A PC served as the master in the system, while multiple mobile robots that were 

modelled as the slave nodes were present in the system. Communication was achieved 

across a wireless-fidelity (Wi-Fi) network, with the ROS framework being hosted on the 
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master PC while Xbee Shields that connected to the Wi-fi network were placed on 

Arduino Uno boards that controlled the mobile robots. Once all the devices were 

connected to the same Wi-fi network, a serial communication was used to establish 

connection between the Arduino and the ROS/PC. Each device and component can then 

be modelled as separate nodes as shown in Figure 2.12.  

 

Figure 2.12: Distributed network of multiple robots, sensors and tele-operated devices 
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CHAPTER 3: METHODOLOGY 

3.1 Proposed Framework Block Diagram 

3.1.1 Network Architecture Block Diagram 

In this project, master-slave type of network architecture will be implemented similar to 

the model implemented by (Araújo et al., 2013). Figure 3.1 shows the illustration of the 

implemented network. Only a single master and a single slave node is used. The entire 

project will be built upon the ROS framework. It is possible to add additional slave nodes 

 to be controlled, but due to the scope of the project only a single slave node with 

a single robotic arm is used. The distributed network type of the master-slave model 

allows teleoperation of the robotic arm, within the boundaries of the wireless local area 

network (WLAN). It is also possible to expand the connection through the use of the 

internet, but it is beyond the scope of this project.  

 

Figure 3.1: Block diagram of master-slave network architecture in project 

 

The master node hosts the ROS master node, provides a GUI for receiving a target 

coordinate input from the user, performs calculation for the inverse kinematics, and 

Network 

User input 

Master 

Simulated model 
PC Raspberry Pi 

Arduino 

Uno 

Slave 
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visualization of the robot model. The master node is hosted by a PC which is running on 

an Ubuntu operating system (OS). The installed ROS version is the Kinetic Kame.  

 

The slave node is hosted by a Raspberry Pi embedded computer. The Raspberry Pi runs 

on the Ubuntu Mate OS, and the ROS Kinetic Kame is also installed. The Raspberry Pi 

is connected to an Arduino Uno board through the Universal Serial Bus (USB) connector 

which is responsible for controlling the servo motors on the robotic arm.  

 

3.1.2 Software Architecture Block Diagram 

Figure 3.2 shows the block diagram of the software architecture employed in this project. 

The rectangular boxes represent the topics, while the ovals represent the nodes where the 

nodes publish and subscribe messages. An explanation of the structure of ROS nodes and 

topics can be given below: 

 

Figure 3.2: Block Diagram of Software Architecture 

 

1. /GUI – Represents the GUI node that interacts with the user in order to obtain a 

target coordinate in the form of a X,Y and Z-axis coordinate points which will be 

published to the /xyz_coor ROS topic. The GUI to be employed here is a simple 

slider where the user can control the X, Y and Z points individually. 

 

/xyz_coor 

/compute_IK 

/joint_states 

/Ard_angle 

/robot_state_publisher 

/serial_node 

/tf_static 

/tf 

/GUI 
RViz 

Arduino 
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2. /compute_IK – The ROS node that receives the target coordinate point from the 

GUI via the /xyz_coor topic. The computation for the inverse kinematics is 

performed on this node using the equations derived in section 3.3 Inverse 

Kinematic Analysis of Robotic Arm and section 3.4 Open-loop Chain Equivalent 

of Robotic Arm. The output angles for the robot model control is published to the 

/Ard_angle topic, while the output angles for the robot visualization in RViz is 

published to the /joint_states topic.  

 

3. /serial_node – The ROS node that is subscribed to the /Ard_angle topic and is 

responsible for communication with the Arduino board.  

 

4. /robot_state_publisher – The ROS node that is responsible for calculation of the 

vectors to represent the robot model in RViz. Calculates the necessary 

transformations needed based on the information on the URDF file and publishes 

the information to RViz via the /tf and /tf_static topics.  

 

Figure 3.3 shows the organisation of nodes between the Master and the Slave. All the 

computation is performed on the master node, which is the PC, while the slave node 

functions only to connect the Arduino board to the ROS environment and execute the 

servo actuations on the robot model. The Master contains the GUI, 

robot_state_publisher and the compute_IK nodes, while the Slave contains the 

serial_node. However, all these nodes appear to be on the same environment due to the 

use of the same ROS Master. When creating the nodes, the nodes are explicitly subscribed 

to the ROS Master which is hosted on the Master by specifying the ROS_MASTER_URI. 

This enables the ROS environment to be distributed across multiple machines but 

functioning as a single environment.  
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Figure 3.3: Node Organisation of Master and Slave 

 

3.2 Robotic Arm Model 

In this project, the EezybotArm Mk2 robotic arm is selected for use. Figure 3.4 shows the 

CAD model of the manipulator. The EezybotArm mk2 is an open source robotic arm 

design that was modelled after the ABB IRB460 robotic arm. It has 3 DOF, and a gripper 

end-effector. It uses a closed-loop kinematic design, and RC servo motors for actuation. 

The robotic arm is designed to be fabricated by additive manufacturing or 3-Dimensional 

(3D) printing. It consists of 19 3D printed parts, and 55 non-printed parts. A breakdown 

of the parts is given below in Table 1 and Table 2. An exploded view detailing the 3D 

printed parts is given in Figure 3.5. 

 

Master node (PC) 

/compute_IK 

/GUI 

/serial_node /robot_state_publisher 
 

Slave node (PC) 

ROS Master 
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Figure 3.4: CAD model image of EezybotArm Mk 2 

 

 

Figure 3.5: Exploded view of robotic arm 

Table 1: 3D printed parts file list 

No Item Name Quantity 

1 001_base 1 

2 002_mainarm 1 

3 003_VArm 1 

4 004_link135 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 
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5 005_link135angled 1 

6 006_horarm 1 

7 007_trialink 1 

8 008_link147 1 

9 009_trialinkfront 1 

10 010_gearservo 1 

11 011_gearmast 1 

12 012_base 1 

13 013_lowerbase 1 

14 014_clawbase 1 

15 015_clawfingersx 1 

16 016_gear 1 

17 017_clawfingersx 1 

18 018_clawgeardriven 1 

19 019_cover 1 

 

Table 2: Table of standard parts 

No Item name Quantity 

1 MG995 servo 3 

2 SG90 servo 1 

3 M6 selflocking nut 1 

4 M6x25 screw 1 

5 M3 selflocking nut 2 

6 M3x20 screw 2 

7 M2x10 hex recessed head screw 1 

8 M4 selflocking nut 9 

9 M4x40 screw 1 

10 M4x30 screw 1 

11 M4x20 screw 5 

12 M4x60 threaded rod 1 

13 M4x32 threaded rod 1 

14 Φ6 mm ball sphere 25 

15 606 bearing 1 

16 M4 washer miscellaneous 

 

3.3 Inverse Kinematic Analysis of Robotic Arm 

In this project, the robotic arm should be able to bring the end-effector to a desired 

location given a set of coordinate points as the input. In order to achieve this, the inverse 

kinematics of the EezybotArm Mk2 must be analysed. This section explains in further 

details the derivation of the inverse kinematics.  
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First, the home or default position where all the joint angles are at 0° is taken as shown 

in Figure 3.6. The coordinate frame is then assumed as follows: x-axis points to the right 

along the robotic arm, y-axis goes into the page, and z-axis points upwards with a 

reference coordinate frame located at the position indicated in Figure 3.6. This follows 

the ‘right-hand rule’ convention for the axis naming. Next, a geometric analysis of the 

components is conducted. 

 

Figure 3.6: Robotic arm at home position 

 

Figure 3.7 shows the joint variables to be controlled in the robotic arm model. The joint 

variable θ1 is a rotation of the robot base piece about the z-axis. The joint variable θ4 is 

the rotation of the robot main arm piece about the y-axis. Lastly, the joint variable θ5 is 

the rotation of the robot V-arm piece about the y-axis. Univ
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Figure 3.7: Joint variables for the robotic arm 

 

In order to simplify the analysis of the robotic arm, the model of the robotic arm can be 

simplified geometrically into a set of equivalent lines as shown in Figure 3.8.   

 

Figure 3.8: Geometric analysis of robotic arm  

 

Given a desired coordinate point for the end-effector location, the coordinate point can 

be broken down into several geometric components as shown in Figure 3.9. The 

coordinate point is described by the projection in the X, Y and Z axis.  

θ1 θ4 θ5 
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Figure 3.9: Breakdown of geometric components 

 

Besides that, the point can also be described by a rotation θ1 about the Z-axis, and planar 

projection entities c and s. The equations for c, s, and θ1 can be given as follows: 

 

𝑐2 = 𝑥2 + 𝑦2 

𝑐 =  √𝑥2 + 𝑦2 

 

(3.1) 

 

𝑠2 = 𝑐2 + 𝑧2 

   =  𝑥2 + 𝑦2 + 𝑧2 

  𝑠 =  √𝑥2 + 𝑦2 + 𝑧2  

 

 

 

(3.2) 

 

𝜃1 =  𝑐𝑜𝑠−1 (
𝑦

𝑐
) 

 

(3.3) 

 

𝜃2 =  𝑐𝑜𝑠−1 (
𝑐

𝑠
) 

 

(3.4) 

 

Coordinate point 

θ1 

c 

s 

θ2 
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Figure 3.10 shows the derivation of the s, c, z and θ2 variables in the planar robot frame. 

θ4 and θ5 represent are two of the joint variables that are to be controlled, and θ3 is the 

90° complement angle of the sum of θ2 and θ4. The last portion of the robotic arm remains 

parallel to the ground in every configuration due to the parallel links being used in the 

design. Therefore, the kinematic analysis is performed up to the end-effector wrist to 

simplify the analysis.  

 

Figure 3.10: Derivation of variables in robot frame 

 

Given Figure 3.10, the variables can then be calculated by the following equations: 

Using cosine rule, 

 

1472 = 𝑠2 + 1352  − 2(𝑠)(135)(𝑐𝑜𝑠𝜃3) 

 𝑐𝑜𝑠𝜃3 =  
1472 − 𝑠2 − 1352

−2(𝑠)(135)
 

     𝜃3 =  𝑐𝑜𝑠−1 (
1472 − 𝑠2 − 1352

−2(𝑠)(135)
) 

θ4 = 90° −  θ2 −  θ3 

 

 

 

 

(3.5) 

 

92.7mm 

c 

s z 

θ2 

θ3 

θ4 

θ5 
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θ7 

End-effector  
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𝑠2 = 1472 + 1352  − 2(147)(135)(𝑐𝑜𝑠𝜃6) 

𝜃6 =  𝑐𝑜𝑠−1 (
𝑠2 − 1472 − 1352

−2(147)(135)
) 

 

θ7 = 90° −  θ6 

 

 

 

 

(3.6) 

 

From the illustration shown in Figure 3.11, the joint variable θ5 can be derived through a 

use of a series of solutions for complementary angles and parallel lines.  

 

Figure 3.11: Derivation of θ5 

 

The derivations will be further outlined in the equations below: 

 

θ8 = 90° −  θ7 

θ9 = 180° −  θ8 

θ10 =  θ9 −  θ4 

 

θ5 = 90° −  θ10 

θ5 = 90° − (θ9 −  θ4) 

 

 

 

 

 

 

 

 

θ5 

θ7 

θ8 θ9 
θ8 

θ10 

θ4 

θ8 
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θ5 = 90° − ((180° −  θ8) −  θ4) 

θ5 = 90° − ((180° − (90° −  θ7)) −  θ4) 

θ5 = θ4 −  θ7 

 

 

 

(3.7) 

 

Table 3 shows the summary of the equations used to calculate the joint angles to be 

controlled from the inverse kinematics analysis. With these joint variables, control is able 

to be performed to bring the end-effector to any location within the robot workspace.  

Table 3: Summary of joint variable equations 

Joint variable Description Equation 

θ1 Base rotation about the 

z-axis 

𝜃1 =  𝑐𝑜𝑠−1 (
𝑦

𝑐
) 

θ4 Mainarm rotation 

about the y-axis 

θ4 = 90° −  θ2 −  θ3 

 

θ5 Varm rotation about 

the y-axis 

θ5 = θ4 −  θ7 

 

3.4 Open-loop Chain Equivalent of Robotic Arm 

The ROS visualization tool RViz does not support the mechanics of closed-loop chain 

type manipulators. Therefore, in order to successfully visualise the EezybotArm Mk2 

within RViz, the robotic arm model must be converted to an equivalent group of open-

loop chains. The joint angles from the open-loop equivalent chains will then be used back 

to control the visualized model in RViz in order for it to properly display the correct 

configurations given the joint angles θ1, θ4 and θ5. Figure 3.12 shows the open-loop 

chain equivalent of the robotic arm model. Next, the 4 open-loop kinematic chains will 

be analysed. 
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Figure 3.12: Open-loop chain equivalent of closed-loop chain 

 

3.4.1 Chain 1 

Figure 3.13 shows the joint angles needed for the visualisation of chain 1 within RViz. 

The joint angles θ4 and θ7 have already been found in section 3.3 Inverse Kinematic 

Analysis of Robotic Arm. The angle at the last joint of the end-effector can be found by 

solving for parallel lines. Then, it can be seen that the angle is equivalent to the angle of 

joint variable θ5. Table 4 shows a summary of the equations for the joint variables in 

Chain 1. 

Chain 1 

Chain 2 

Chain 3 

Chain 4 
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Figure 3.13: Joint angles for Chain 1 

 

Table 4: Joint variables for Chain 1 

Joint variable Equation 

θ4 θ4 = 90° −  θ2 −  θ3 

θ5 θ5 = θ4 −  θ7 

θ7 θ7 = 90° −  θ6 

 

3.4.2 Chain 2 

Figure 3.14 shows the joint angles needed for chain 2. From illustration, it can be seen 

that the two joint variables that are governing chain 2 are variables θ4 and θ7. The first 

link of the chain is the mainarm piece that rotates by the angle θ4. The joint variable for 

the second link is then a counter rotation of θ4, and the last link rotates by joint variable 

θ7. Table 5 shows a summary of the equations to be used in Chain 2. 

θ4 

θ7 

θ5 

θ5 
θ5 

Univ
ers

ity
 of

 M
ala

ya



30 

 

 

Figure 3.14: Joint angles for Chain 2 

 

Table 5: Joint variables for Chain 2 

Joint variable Equation 

θ4 θ4 = 90° −  θ2 −  θ3 

θ7 θ7 = 90° −  θ6 

 

3.4.3 Chain 3 

Figure 3.15 shows the joint variable needed to represent the open-loop chain 3. The first 

link in the chain is fixed, and the second link is parallel to that of the robot mainarm due 

to geometric constraints, therefore it can be represented by the joint variable θ4, as given 

in equation (3.5) . 

θ4 

θ7 

θ7 

θ4 
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Figure 3.15: Joint angles for Chain 3 

 

3.4.4 Chain 4 

Figure 3.16 shows the joint variables used in Chain 4. The first link in the chain is 

controlled by the joint variable θ5. The second link is then controlled by the joint variable 

θ12.  

 

Figure 3.16: Joint variables for Chain 4 

 

θ4 
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θ5 

θ12 
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The derivation for the joint variable θ11 can be described as: 

 

 

θ11 = 180° −  θ6 

 

(3.8) 

 

θ12 = θ11 −  90° 

         =  90° −  θ6 

 

(3.9) 

 

3.5 HTM Derivation of Open-loop Chain by DH Convention 

The DH parameters can be derived for the open-loop chain equivalents in order to solve 

the FK analysis. Implicitly in RViz, this analysis is done based on the configurations 

provided in the URDF file. Then, based on the results of the FK calculations, RViz is able 

to provide the correct visualization of the configuration of the robotic arm based on the 

joint variables provided.  

 

3.5.1 HTM of Chain 1 

Figure 3.17 and Figure 3.18 and show the DH Convention analysis for Chain 1. 

Coordinate frames 0 and 1 lie directly on top of one another, coordinate frame 2 is offset 

from coordinate frame 1 along the Y1-axis, coordinate frame 3 is offset from coordinate 

frame 2 along the X2-axis, and coordinate frame 4 is offset from coordinate frame 3 along 

the X3-axis. The derivation of the DH parameters can be given in Table 6. 
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Figure 3.17: Frame assignment for Chain 1 

 

 

Figure 3.18: Axis of frames for Chain 1 
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Table 6: DH parameters derivation for Chain 1 

 θ α a d 

1 θ1 90 0 0 

2 θ4 0 0 0 

3 θ7 0 0.147 0 

4 θ5 0 0.0393 0 

 

Based on the DH parameters found in  

 

 

Table 6, the derivation of the HTM can then be given as: 

 

𝐻𝑇𝑀4
0 = [

𝑐𝜃1
0 𝑠𝜃1

0

𝑠𝜃1
0 −𝑐𝜃1

0

0 1 0 0
0 0 0 1

]

[
 
 
 
𝑐𝜃4

−𝑠𝜃4
0 0

𝑠𝜃4
𝑐𝜃4

0 0

0 𝑠𝛼4
1 0

0 0 0 1]
 
 
 
 

[

𝑐θ7 −𝑠θ7 0 0.147𝑐θ7

𝑠θ7 𝑐θ7 0 0.147𝑠θ7

0 0 1 0
0 0 0 1

] [

𝑐θ5 −𝑠θ5 0 0.0393𝑐θ5

𝑠θ5 𝑐θ5 0 0.0393𝑠θ5

0 0 1 0
0 0 0 1

] 

 

(3.10) 

 

3.5.2 HTM of Chain 2 

Figure 3.19 and Figure 3.20 and show the DH Convention analysis for Chain 2. 

Coordinate frames 0 and 1 lie directly on top of one another, coordinate frame 2 is offset 

from coordinate frame 1 along the Y1-axis, coordinate frame 3 is offset from coordinate 

frame 2 along the X2-axis, and coordinate frame 4 is offset from coordinate frame 3 along 

the X3-axis. The derivation of the DH parameters can be given in Table 7. 
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Figure 3.19: Frame assignment for Chain 2 

 

 

Figure 3.20: Axis of frames for Chain 2 
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Table 7: DH Parameters derivation for Chain 2 

 θ α a d 

1 θ1 90 0 0 

2 θ4 0 0 0 

3 40.70 + θ7 0 0.043 0 

4 -40.70 + θ7 0 0.147 0 

 

Based on the DH parameters found in Table 7, the derivation of the HTM can then be 

given as: 

 

 

𝐻𝑇𝑀4
0 = [

𝑐𝜃1
0 𝑠𝜃1

0

𝑠𝜃1
0 −𝑐𝜃1

0

0 1 0 0
0 0 0 1

] [

𝑐𝜃4
−𝑠𝜃4

0 0

𝑠𝜃4
𝑐𝜃4

0 0

0 0 1 0
0 0 0 1

] 

[

𝑐40.70 + θ7 −𝑠40.70 + θ7 0 0.043𝑐40.70 + θ7

𝑠40.70 + θ7 𝑐40.70 + θ7 0 0.043𝑠40.70 + θ7

0 0 1 0
0 0 0 1

] [

𝑐𝜃𝑖
−𝑠𝜃𝑖

0 0.147𝑐𝜃𝑖

𝑠𝜃𝑖
𝑐𝜃𝑖

0 0.147𝑠𝜃𝑖

0 0 1 0
0 0 0 1

] 

 

(3.11) 

 

3.5.3 HTM of Chain 3 

Figure 3.21 and Figure 3.22 show the DH Convention analysis for Chain 3. Coordinate 

frame 1 is offset from coordinate frame 0 along both the X0 and Z0 axis. Coordinate 

frame 2 is offset from coordinate frame 1 along the Y1 axis. The derivation of the DH 

parameters can be given in Table 8. 
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Figure 3.21: Frame assignment for Chain 3 

 

 

Figure 3.22: Axis of Frames for Chain 3 

 

Table 8: DH parameters derivation for Chain 3 

 θ α a d 

1 θ1 -90 -0.038 0.0202 

2 θ4 0 0.135 0 

 

Based on the parameters derived in Table 8, the HTM can be given as: 

Chain 3 

Coordinate frame 0 

Coordinate frame 1 

Coordinate frame 2 

X0 
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𝐻𝑇𝑀2
0

= [

𝑐𝜃1
0 −𝑠𝜃1

−0.038𝑐𝜃1

𝑠𝜃1
0 𝑐𝜃1

−0.038𝑠𝜃1

0 −1 0 0.0202
0 0 0 1

] [

1 −𝑠𝜃4
0 0.135𝑐𝜃4

0 𝑐𝜃4
0 0.135𝑠𝜃4

0 0 1 0
0 0 0 1

] 

 

(3.12) 

 

3.5.4 HTM of Chain 4 

Figure 3.23 and Figure 3.24 show the DH Convention analysis for Chain 4. Coordinate 

frame 1 lies directly on top of coordinate frame 0. Coordinate frame 2 is offset from 

coordinate frame 1 along the X1 axis. Coordinate frame 3 is offset from coordinate frame 

1 along the Y2 axis. The derivation of the DH parameters can be given in Table 9. 

 

Figure 3.23: Frame assignment for Chain 4 
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Figure 3.24: Frame assignment for Chain 4 

 

Table 9: DH parameters derivation for chain 4 

 θ α a d 

1 θ1 90 0 0 

2 θ4 0 0.057 0 

3 90 + θ12 0 0.135 0 

 

Based on the parameters derived in Table 9, the HTM can be given as: 

 

𝐻𝑇𝑀3
0 = [

𝑐𝜃1
0 𝑠𝜃𝑖

0

𝑠𝜃1
0 −𝑐𝜃𝑖

0

0 1 0 0
0 0 0 1

] [

𝑐𝜃4
−𝑠𝜃𝑖

0 0.057𝑐𝜃4

𝑠𝜃4
𝑐𝜃𝑖

0 0.057𝑠𝜃4

0 0 1 0
0 0 0 1

] 

[

𝑐90 + θ12 −𝑠90 + θ12 0 0.135𝑐90 + θ12

𝑠90 + θ12 𝑐90 + θ12 0 0.135𝑠90 + θ12

0 0 1 0
0 0 0 1

] 

 

(3.13) 
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3.6 Electrical Wiring Diagram 

Figure 3.25 shows the system-level connections in this project. The PC which acts the 

master node is supplied with a 19V power supply. A mouse is attached as a peripheral to 

the PC as an input device for the user. The PC also functions to provide the visualization 

through RViz of the current configuration of the robotic arm. The PC is wirelessly 

connected to the WLAN.  

 

Figure 3.25: System-level connections 

 

Besides that, there is a WLAN router that is connected with a 12V power supply. The 

WLAN router provides the WLAN connection that allows communication between the 

PC and the Raspberry Pi. 

 

The Raspberry Pi is powered by a 5V power supply. It acts as the slave node in the 

network and is connected to the Arduino board via a USB cable. Like the master node, it 

is wirelessly connected to the WLAN. The Arduino Uno is then connected to the servo 

motors on the robotic arm which are powered by 5V power supply. 
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Figure 3.26 shows the circuit connections on the Arduino Uno board. The Arduino Uno 

board is connected to the Raspberry Pi via the USB cable. This USB connection allows 

the Raspberry Pi to transmit the information on the desired servo motor angles to the 

Arduino Uno board. Also, the Arduino Uno board draws the required power from this 

USB connection. The Arduino Uno is connected to 4 servo motors that are located on the 

robotic arm through the digital I/O pins 8, 9, 10, and 11. These digital I/O pins transmits 

the control PWM signal to the servo motors. The servo motors are powered by a separate 

5V power supply, and the neutral pin on the servo motors are grounded back to the GND 

pin of the Arduino Uno board. 

 

Figure 3.26: Connections on the Arduino Uno board 
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CHAPTER 4: IMPLEMENTATION AND RESULTS 

4.1 Implementation of Project 

4.1.1 Overall Project 

Figure 4.1 shows the implementation of the actual project. On the PC, there is a GUI that 

allows the user to given an input of the desired coordinate point of the robot arm end-

effector. Then, a simulation of the configuration of the robot arm is presented to the user. 

The data on the required joint angles to achieve the configuration is transmitted wirelessly 

through the WLAN router to the Raspberry Pi. The Raspberry then interfaces with the 

Arduino Uno board in order to control the servo motors at the robot arm joints. The robot 

arm was fabricated using additive manufacturing and then assembled together manually. 

 

Figure 4.1: Actual project layout 

 

4.1.2 Organisation of Files 

Figure 4.2 shows the organisation of files in the ROS system. The files on the ROS system 

are organised using catkin workspaces. In Figure 4.2, the catkin workspace used is named 

as catkin_ws. The under each workspace, it is further subdivided into different folders 
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such as src, build, and devel. The src subfolder contains the different packages which are 

make up the ROS project. The software package contains different modules that provide 

additional functionality to the system. All developed code for the project is stored in the 

packages. 

 

Figure 4.2: Organisation of files in ROS 

 

4.1.3 System Boot-up 

This section outlines the procedure in booting-up the system. First, the master PC is 

switched on. The PC is then connected to the LAN called ROSNetwork. Then, a new 

terminal is launched, and the current directory is switched to catkin_ws which contains 

all the project code as shown in Figure 4.3. 

 

Figure 4.3: Launch new terminal 
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Next, the configuration files for the catkin workspace needs to be sourced by using the 

command ‘source devel/setup.bash’. The setup.bash file provides all the necessary 

information to locate the packages within the workspace. Every time a new terminal is 

launched, the current directory needs to be changed to catkin_ws and the setup.bash file 

be sourced again as shown in Figure 4.4.  

 

Figure 4.4: Sourcing configuration file 

 

When initializing the framework, the first piece of software that needs to be started is the 

ROS master. Without it, all other ROS nodes would not be able to communicate with one 

another. The ROS master is hosted on the Master PC, and can be initialized with the 

roscore command as shown in Figure 4.5. 

 

Figure 4.5: Starting the ROS Master 

 

Next a new terminal is launched and the terminal with the ROS master is kept running in 

the background. In the ROS architecture, each terminal is generally used to hold a 
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separate node. The ROS_IP of the master PC is exported, so that the node would become 

discoverable by other nodes distributed across the slave. A static IP address of 

192.168.1.148 is assigned to the master PC. The inverse kinematics calculator node is 

launched from the printxyz.py file in the beginner_tutorials package using the rosrun 

command as shown in Figure 4.6.  

 

Figure 4.6: Initializing IK node 

 

Next, another new terminal is launched. Then, the roslaunch command is used to launch 

the RViz visualization tool and the slider GUI as shown in Figure 4.7. The display.launch 

file is simply a collection of nodes and services to be launched simultaneously. The launch 

file is located in the urdf_tutorial directory. The robot model data used in the visualization 

is sourced from the eezybot.urdf file located in the eezybot_support package.  

 

Figure 4.7: Initializing RViz visualization and slider GUI 

 

Univ
ers

ity
 of

 M
ala

ya



46 

 

Figure 4.8 shows the launched window containing the robot visualization and the slider 

GUI to input the desired coordinate location of the robot end-effector and also to control 

the actuation of the robot gripper. With these tools, the user is able to perform 

teleoperation on the robotic arm.  

 

Figure 4.8: Visualization tool and GUI 

 

The boot-up of the master PC is now complete. Next, the Raspberry Pi slave is booted-

up. The slave is also connected to the ROSNetwork LAN. Then, a new terminal is 

launched. Now, this terminal must explicitly subscribe to the ROS master node on the 

master PC in order for communication between the master and slave to be established. 

This is achieved through exporting the ROS_MASTER_URI as 

http://192.168.1.148:11311 which is the static IP address of the master PC and the local 

host at 11311. Next, the rosserial node is created in order to establish connection with the 

Arduino Uno board. The node is created from the serial_node.py which is located in the 

rosserial_python package. The serial connection is established on the /dev/ttyACM0 port 

as shown in Figure 4.9. 
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Figure 4.9: Initializing rosserial on slave 

 

Figure 4.10 shows a graphical summary of the boot-up steps of the system. 

 

Figure 4.10: Summary of boot-up steps 
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4.2 Results and Discussion 

4.2.1 Experiment 1: Inverse Kinematics Computational Time 

Figure 4.11 shows the definition of the computational time of inverse kinematics taken. 

In this experiment, the time from a coordinate point being published to the /xyz_coor to 

the time the joint variables calculated from the inverse kinematics is published to the 

/joint_states and /Ard_angle topics are taken. This is computational time required to 

calculate the necessary joint variables through inverse kinematics.  

 

Figure 4.11: Definition of computational time taken 

 

In setting up the experiment, the printxyz.py file which creates the /compute_IK node is 

modified. The system time is recorded when a message from the /xyz_coor topic is 

received, and the system time is recorded again when calculated output is published to 

the /joint_states and /Ard_angle topics. The two system times are compared and recorded 

into a comma-separated values (csv) file. The data is collected for 1000 random 

coordinate point calculations, and the results are plotted.  

 

Table 10: Tabulated results for computational time 

Time range (ns) Frequency 

0 - 474930 1 

474930 - 615514.5 192 

615514.5 - 756099 241 

/xyz_coor 

/compute_IK 

/joint_states 

/Ard_angle 

/robot_state_publisher 

/serial_node 

/GUI 
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756099 - 896683.5 119 

896683.5 - 1037268 158 

1037268 - 1177852.5 139 

1177852.5 - 1318437 118 

1318437 - 1459021.5 73 

1459021.5 - 1599606 67 

1599606 -1740190.5 35 

1740190.5 – 1880775 6 

 

Figure 4.12 shows the graph of frequency against the computational time being plot from 

the data collected. The computational time in the experiment ranged from 474930 

nanoseconds to 1880775 nanoseconds. The mean can then be calculated as 963706.47 

nanoseconds, the mode as 741005 nanoseconds, and median as 915051 nanoseconds. This 

shows that the average computational time is less than 0.001 second or 1 millisecond. In 

the system, all the nodes are set to publish to the respective topics at a maximum 

frequency of 10Hz. This ensures that there is ample time for the computation to be 

completed between receiving coordinate inputs from the GUI.   

 

Figure 4.12: Graph of frequency against computational time 
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4.2.2 Experiment 2: Testing of Data Transmission across WLAN 

Figure 4.13 shows the transmission of data from the /compute_IK node to the /serial_node 

that happens across the master and slave. The first part of this experiment is conducted in 

order to ensure that there is no packet loss in the transmission of data across the master 

and slave. In the second part of the experiment, the time delay between the message being 

transmitted from the /compute_IK node to the /serial_node is recorded. 

Figure 4.13: Data transmission across multiple machines 

In setting up the first part of the experiment, the message being sent out of the 

/compute_IK node and the message being received by the /serial_node are compared. 

First, the system is set up. Then, both the outgoing and the incoming message are logged 

into a csv file for comparison. The data log from both the outgoing and incoming 

messages are compared for similarity, and the data is tabulated in Table 11. 

Table 11: Table of comparison between outgoing and incoming messages 

Similar 1530 

Dissimilar 3698 

From the 5228 data points collected, it can be seen that only 1530 of the messages being 

sent and received are similar. The percentage of times where the sent and received 

messages are dissimilar is: 

/compute_IK 
/Ard_angle

/serial_node 

Master PC Slave RasPi 

Transmission over 
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𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  

3968

5228
 𝑥 100% =  75.899% 

 

(4.1) 

Equation (4.1) shows that the percentage of times the sent and received messages are 

different is 75.899%. 

 

Next, the message data is rounded down to 4 decimal points and checked again. The 

percentage of times dissimilar is calculated again, and it is found that the similarity 

between sent and received messages is now: 

  

Table 12: Table of comparison between outgoing and incoming messages after rounding down 

Similar 5228 

Dissimilar 0 

  

This shows that there is a loss of transmission data due to the use of the floating point 

numbers in the joint variable data. However, after rounding down to 4 decimal points, the 

data being sent and received has become the same. This shows that the information in the 

transmitted data is being preserved up to 4 decimal places.  

 

In the second part of the experiment, the latency of the data transfer across the network is 

measured. The message structure in ROS makes use of headers in order to embed some 

metadata. One type of metadata that can be embedded is the time at which the message is 

published to the topic. Using this, the header time can be compared to the system time 

when the message is received by the /serial_node to determine the latency in the 

transmission across the master and slave.  
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Table 13 shows the tabulated data from the experiment. Figure 4.14 show the histogram 

that is plotted from the collected data. From the analysis being conducted, the mean delay 

time is 47664370.6 ns, the median delay time is 44825077 ns and the mode delay time is 

44711113 ns. This shows that the average delay time between the transmission of the 

message from the /compute_IK node to the /serial_node node is about 0.045s. With a 

computational time of 0.001s and a publishing frequency of 10Hz, this ensures that no 

message that is published will be missed.  

Table 13: Tabulated results for time delay 

Delay time (ns) Frequency 

0 – 40489912 1 

40489912 – 61939621 1528 

61939621 – 83389330 20 

83389330 – 104839039 7 

104839039 – 126288748 5 

126288748 – 147738457 7 

147738457 – 169188166 8 

169188166 – 190637875 3 

190637875 – 212087584 0 

212087584 – 233537293 1 

233537293 - 254987002 3 
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Figure 4.14: Graph of frequency against time delay 
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4.2.3 Experiment 3: Accuracy of Robot Actuation  

In this experiment, the accuracy of the robotic arm is inspected. In setting up the 

experiment, a grid of 1cm boxes is used to track the movement of the robotic arm. Then, 

the movement is compared to the visualized model on the Master PC for verification. The 

robotic arm is made to trace a box. The image of the robotic arm at the four vertices of 

the box is captured. The experiment is repeated for both the X-Z plane and the X-Y plane. 

 

Figure 4.15 to Figure 4.19 shows the sequence of movements tested on the robotic arm 

in the X-Y plane. The image of the physical robot arm is compared to the simulated 

movement of the robotic arm. From the images, it can be seen that the physical robot arm 

has poor accuracy. The robotic arm is unable to track a straight movement.  

 

Figure 4.15: Image of X-Y plane position 1 

 

Figure 4.16: Image of X-Y plane position 2 
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Figure 4.17: Image of X-Y plane position 3 

 

 

Figure 4.18: Image of X-Y plane position 4 

 

 

Figure 4.19: Image of X-Y plane position 1, returned 

 

Figure 4.20 to Figure 4.24 shows the sequence of images tested on the robotic arm in the 

X-Z plane. Once again, the movement of the physical robotic arm is compared to that of 

the simulated robotic arm. Once again, the physical robotic arm shows a poor ability to 

track the movement in a straight line. However, this is not due to the incorrect joint 

variables being calculated by the IK. This is because the simulated robot is able to track 
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straight movements using the similar joint variables as shown. Therefore, the inaccuracy 

is due to a physical limitation of the servo motors and the build of the robotic arm itself. 

During the assembly of the robotic arm parts, some of the holes which held the pivot 

joints of the robotic arm parts were too small due to the additive manufacturing process. 

Therefore, they had to be manually drilled through with a hand drill, thus introducing 

tolerance errors. 

 

Figure 4.20: Image of X-Z plane position 1 

 

 

 

Figure 4.21: Image of X-Z plane position 2 
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Figure 4.22: Image of X-Z plane, position 3 

 

Figure 4.23: Image of X-Z plane position 4 

 

 

Figure 4.24: Image of X-Z plane, position 1 returned 
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CHAPTER 5: CONCLUSION 

5.1 Summary 

As a summary, an online robot programming framework was developed in the ROS 

environment (objective-3). The project used a PC as a master node, which provided a 

GUI for the user to provide a target coordinate to move the robotic arm. The IK analysis 

for the robotic arm model was obtained using the geometric approach to solve for the 

closed-loop kinematic chains and verified visually through visualization of the robotic 

arm movement (objective-1).The IK calculation was performed on the master PC in order 

to obtain the required joint variables to bring the robotic arm end-effector to the desired 

location (objective-2). A FK analysis of the robotic arm model was also performed using 

the DH convention. A visualization of the configuration of the robotic arm was provided 

in RViz to aid the use of teleoperation. A Raspberry Pi is used as the slave node, which 

is connected to the master node through a WLAN connection. The Raspberry Pi 

interfaced with and Arduino Uno board, which controlled the servo motors on the robotic 

arm by PWM signals. In experimentation, the IK calculations was able to be performed 

in under 1 millisecond. The transmission of data across showed some losses, but was able 

to preserve the joint variables data with up to 4 decimal point precision. The transmission 

speed per message took about 45 ms each. However, the physical robot could not be 

controlled accurately due to physical limitations. 

 

5.2 Further Improvements  

1. The physical robot model needs to be improved. The RC grade servo motors used 

are not accurate, and should be switched to stepper motors with encoders for better 

accuracy. 
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2. In this project, the framework is only tested with one master and one slave node. 

The number of slave nodes could be increased to test out multiple robot 

teleoperation. 

3. The framework built in this project did not include trajectory planning. A 

trajectory planner could be developed in order to support robotic arms with more 

degrees of freedom.  
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