NAME: NURUL AIN BT MAIZAN

MATRIK NUMBER: WEK020195

PROJECT TITLE:
WEB STIM (FLASH MEMORY SIMULATOR)

SUPERVISOR: En. NOORZAILY BIN MOHAMED NOOR

MODERATOR: En. MOHD YAMANI IDNA BIN IDRIS

NAME: NURUL AIN BT MAIZAN

MATRIK NUMBER: WEK020195

PROJECT TITLE:
WEB STIM (FLASH MEMORY SIMULATOR)

SUPERVISOR: En. NOORZAILY BIN MOHAMED NOOR

MODERATOR: En. MOHD YAMANI IDNA BIN IDRIS

ABSTRACT

Web STIM is a Web-sensor by means of interior data structure and communication
Junctionalities and a smart sensor able to interface itself with Internet through an
Ethernet network. Web STIM is designed to satisfy the requirements of low cost,
continuous acquisition and data processing, and wide remote communication
capability as describe in the IEEE 1451 standard. It is use HTTP interface that
replace the TII (Transducer Independent Interface) hardware, which has been
inspired by IEEE 1451.2 standard. This paper describes the Transducers Electronic
Datasheet (TEDS) directly interfaced to internet through an HTTP based procedure.
Web STIM is a web based system that can be access directly through internet

connection by diffuse sofiware on the world.

ACKNOWLEDGEMENT

First and foremost, I would like to thank Encik Noorzaily bin Mohamed Noor as my
project supervisor who has been giving advices and guidelines for every questions
and inquiries I asked to better understand the TEDS and STIM concept. I'm honestly
appreciates his comments and suggestions to my project development. Secondly, A
very big thanks to Encik Mohd Yamani Idna bin Idris as my project moderator that
spend her time to moderate my project. Her suggestion and opinion during

presentation give me more idea to build my project.

[would also like to thank to my parents that give a support and encourage me to do a
project. To all my friends especially Yogeswari Jayaraman, Syazana Suhatta, and
Marina Haryati Mohammad and also my fellow friends from FSKTM who directly

or indirectly helped me to complete my project, thank you very much for the never

ending support.

Last but not least I have to thank the creator and administrator of building a web site
that concern with my topic that I refer. I must admit that I got a lot of ideas referring

to their websites mostly regarding the understanding of a Smart Transducer Interface

Module (STIM).

TABLE OF CONTENTS

L T T O 0 UL G T O S BN S S

1.1 Project Scope and Expected Outcomecovveveeiiiiiiineinecee i,

1.2 Project Objectivecoovvvevaenee

O T s e e e R e

14 MOt YR O T I O s DT s 0t A R Es f Tl Bt ta s th s ras s ionn nhsiats ok

1.5 Conclusion

2.0 LIteTATUIE TEVICW ... vuseve e cue ee vusaee snsoesenn sessnn snsessassasssnsessonsnss seseecnsns
2 L T T O Ot 0N s st e s sas s san sannssasennsscenssasssense RuePedlsTVoe Feoesnnsassneess

2.2 0VEIVIEW OF 1451 11i truiiitinaessnansssnnnss TN o s suesnenss sns s sesasssans

2.3 Introduction of IEEE1451.2

2.4 Smart Transducer Functional Specificationooooou o0,
24.1 Typeof Transducer
2.4.2 Transducer Electronic Data Sheet14
PR S TN T 0 A ST T R0 Ty L PTTEL TPt S e

2.6 Chapter SUMMATY ...t e e e e e e e e s s vae s

3.0 M ethO0 O O R trv i 11 0 tr St eie.ssxd snass essxors

3.1 Object Oriented Paradigm ... e e e

3.2 Java Programming Platform and Languagec.c.ccooei ..

SRV SNAGE) B d R e e R
3.3 System ATCHIteCIUIE b U s it axiWras et oatbbs ane dasassoss s

3.3.1 Web-Based Applicationcovie .

b

k)

3.4 Chapter SUMMAIY (. i i it e aeteeaentes sanaesnanneecesassssnnnnns

4.0 System ANALYSISoiiiiiii it it iieiieeeceeeee et aeeaee e ces s s an aan tes san eae eaas
CHR IR ERE o e EEEEEEREE

4.1.1 Transducer Electronic Data Sheetc........
412 METATEDSdatablockooovir i e,

4.1.3 Channel TEDS data block

4.3 DevelopmentiR eqUI M Nt s s iie e ies tettnn csssssnnss asgedle P s esn

4.3.1 Hardware Requirement

5.0 SystemiDes] R BT ES MY EVIN T LI cinornars s AN 45 493 kanes 000 vas &

5.1 Data flow diagram of TEDS............cccivniii i e e e vt

5.2 TEDS block diagram...............c.. oo ...

53Pseudocode...................

5.4 Flow Chart of TEDS interface..............cc.veviveiisies veeseeeee ceeees e 71
5.5 Interface prototyPe.coovve i ittt e e e e
6.0 System Implementation
(RGO TY 5y e D T s o g A et P - Ut
6.2 Development EnVIronment oo

6.3 Development of the Systemiiiie e

6.4 Program Development and Codingocoocoiieeiiiiieceenn .

.24
26
.41
4.2 Non-Functional Requirement...coooi i ciiiie i e e
.63
.63
o
.66
i O

.70

.14

e 16

7.0 System Testing and System Evaluationooocoi oL,
28 L1 0 1 G G E Tt da e s Tk e s
Y TR e e T T 10 T Ty PR T o TR
53 S VAt Y O Uit O R e e 2 etr o R 1P ¢4 s £v 54 sk ot (s 4 b dnnnsns

8.0, ConCIUSI 0N ATC) S OIS O et f Ly y et St d0h saniats s snsnsasanssansss
8.1 Problem Encountered and Solutionscocco i,
T T R o T e T T e 11 T TTY | T PR e
8.3 System. Constraints s s esiess «: ves ity deseussbs s« hiponion el Prasss <
8.4 Future Enhancement oueeesvesiensessnnnrenne ssessdfie e

8.5 Knowledge and Experience Gained..................

8.6, CONCIUSION L s ke sl thess ive th wralonesss N e o oo Tinders

9.0 References
100 A DRe N A X e o

User Manual &

9

(IR,

i T

.82

...84

... 84

...86

....86

.87

.88

.89

.90

93

k]

Vi

LIST OF TABLES

Table 2.1: TEDS types...............

LR
Table 4.1: META TEDS Data StruCtUre. coe et vvnvin ceseeeveeiee e evneenees e 26
Table 4.2: Enumeration of TEDS Version Numbersooviviiieinn .. 28

Table 4.3: Enumeration of CHANNEL ZERO Industry Calibration TEDS Extension

KOVt it ssenii ATiR R o T vk ...29

Table 4.4: Enumeration of CHANNEL ZERO Industry Nonvolatile Data Fields

120 40 LY [G i Sk SR ST, IRSRCr SO ave st 40 . W00 YRR e ||

Table 4.5: Enumeration of CHANNEL ZERO Industry TEDS Extension Keys.....30

Table 4.6: Enumeration of End-Users’ Application-Specific TEDS Keys............31
Table 4.7: Enumeration of Group Types...............cooovv v38
Table 4.8: Data structure of Channel TEDS data block.................................41
Table 4.9: Enumeration of Calibration Keys.........................cocooiii44

Table 4.10: Enumerations of Channel Industry Calibration TEDS Extension Keys..46

Table 4.11: Enumerations of Channel Industry Nonvolatile Data Fields Extension

KeYS iy ionon iy Nasietes 47
Table 4.12: Enumerations of Channel Industry TEDS Extension Keys................48
Table 13: Enumeration of End-Users’ Application-Specific TEDS Keys.............48
Table 14: Enumeration of Channel Type Keys............ccooooveiiiiieeee ... 49
Table 4.15: Enumeration of Self-Test Keys...............ccooooeiiiiiiiiiiien .53
Table 4.16: Enumeration of Channel Data Models... 54

vii

Table 4.17: Event sequence Options...coveoeeoeeceeceeeeeieevie e 61

Table 4.18 Hardware Requirement for development side..............................63

vill

LIST OF FIGURES

Figure 1.1: STIM block DIiagramoooviiiie oo iee it ee e ot e e e e,

Figure 1.2: Web-STIM network architeCtureoovve s e e eeaee e

Figure 2.2 Web-STIM SYSTEMS. vee vt vee ot veecinvee senves seeses cenaes senvns sensns oa

Figure 5.1: Data Flow Diagram for TEDS............coocooiiiii i

Figure 5.3: Channel TEDS Block Diagram...............cooiivie it iiiine e i,
Figure 5.4: Flow Chart of TEDS Interface.............ccoeeviiiiiinnnnnnn.

Figure 5.5: INterface PrototYPe. cervesvisverus vinvns cesves snvesns eesaescrns

Figure 5.5: Interface prototype............ccoovviernnn.

I BUTE O 1 L i 8 D OV T R DOK T s g2 saas tXs oxs asesen sas vae abe ses atnsanasssns s snnsessinns

Figure 9.2: j2sdk-1 4 2 07box

Figure 9.3 : InstallShield Wizard boXocoov o oo oo,

Figure 9.4: Windows Installer

Figure 9.5aVa2 SDK; SE V1.4.2 06 DO0Xc0cervreeveneesensesosesansrasssseses
Figure 9.6 : Java 2 SDK, SE v1.4.2 06 — Maintenancec.ocoveveevennn.
Figure 9.7 : Java 2 SDK, SE v1.4.2 06 — Custom Setup...occeeeeeeenn.
Figure 9.8 : Java 2 SDK, SE v1.4.2 06 — Progresscc.ocoe oo ieeveonnnn.

Figure 9.9 : Java 2 SDK, SE v1.4.2_06 — Progressccceeeeveeeenenennnsn.

.10
s Ll
Figure 2.1: Smart SenSor SYStEIM ... vee v vervrscesveesvecenaessnncessesseneesvnsssnsessnesncl?
.18
o7
Figure 5.2:META TEDS Block Diagram.............c.oooiiiieeiiiine e iiiies o069

.. 70

YL
.. 14
Y3
... 86
by
87
.87
.. 38
.89
90

.91

Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15

Figure 9.16

ADILUDIETTT kL f R e R
: Setup.exe Completedoon it it e e e e e
HSEp R Sk Ve SN . mthaaint eadiiar o wdag. s
P CreatonliBiS etun wizard & (el sesaiion. Loyttentiy, el el
R Creatorli Bl CenSeA gTe e CIta STV JF STt It e
PIGreatoril B DirectoryAi s Ml ATk i N e ANk standnd.

#ICreator LB Seleotifolderusintin:: aei b oo /0. onsiass

Figure 9.17 : JCreator LE Additional Tasks

Figure 9.18
Figure 9.19

Figure 9.20

Figure 9.21: Flash Memory Animation frameccooeeeiiiieeinnn..

Figure 9.22

Figure 9.23

Figure 9.24 :

Figure 9.25
Figure 9.26
Figure 9.28
Figure 9.29
Figure 9.30

Figure 9.31

: JCreator LE Ready toinstallcoooiiiiii e
: JCreator LE setup completeoeeviin,

VAN WA O W s e A O I Lot Aiss I ot

: Flash Memory Animation frame
: Flash Memory Animation framecoo e viiiivee v 113
HiashiMemarmCalls. iovunvnidly, s sty ol sensncln. saan
RV riteREIRsTIVIemoryiCallwioenity fart ol Sbr wibemaesiude. L
: Read "Flash Memory Cellc..coveiiiiiivenincennesinees sanees
. View Edit Memory
aview RilliViemoryiaamess . siicsmo Bt Al L i

pClear ViewiMembOrviwuhs, «d. 06 AL Wahont 2, vt Ll

: View Memory in Hexadecimalccoooeveiiieveeiiiiee e

.92

ey

Y3

1293

.94

595

.96

97

sl07

.. 108

..109

..110

A1

0)

116

o 117

.. 118

1.0 INTRODUCTION

Sensor technology show that smart sensors are replacing traditional analog sensor
and it is arranged into networks to share information. Currently, internet is choosing
to share informatipn at any level, it is fully supported by the market than IEEE
1451.1 Network Capable Application (NCAP). THE IEEE 1451 standard aims at
simplifying transducer connectivity to existing networks, therefore the most essential

improvement that smart sensors recommend is the network ability.

IEEE 1451 comes out as a set of four complete sub-standards 1451.1, 1451.2, 1451.3
and 1451.4. Each standard focused on a detailed area of the smart networked sensor
signal path and be able to be used independently or as piece of an in general
IEEE1451 networked system solution. The aim of this standard which is composed
of four path are to enable plug and play at transducer level, standardizing data
structures and communication, and to simplify the creation of networked sensor over
a network independent system. Up to now, only two of the sub-standards, 1451.1 and
1451.2 have been properly adopted by IEEE, nevertheless P1451.3 and P1451.4 are
still under development, thus the prefix 'P' denoting a proposed document. The
1451.1, are defines a Network Capable Application Processor (NCAP) model and
also can adapt to a variety of networks. The 1451.2 is about the Smart Transducer
Interface Module (STIM), which includes the transducers and the signal conditioning

that may be required, a nonvolatile memory called Transducer Electronic Data Sheet

(TEDS), and the Transducer Independent Interface (TII) that enables communication
between the STIM and the Network Capable Application Processor (NCAP).

Based on IEEE1451 network architecture describe that the transducers are connected
to a STIM by its own port. TII (Transducer Independent Interface) joint the STIM

and NCAP by using the point-to-point connection. The STIM is not connected to the

internet instead of NCAP is connected.

Web STIM has become popular with the presence of cheaper, miniature and smart
sensors, abundant fast and ubiquitous computing devices, wireless and mobile
communication network, and autonomous and intelligent software agents. In brief it
is offers full dimensional, full scale and full sensing and monitoring of Earth at all
level. The web STIM is a revolutionary concept toward achieving collaborative,
coherent, and consistent and consolidates sensor data collection, fusion and
distribution. It is directly accessible by a browser such as Internet Explorer, Netscape
Navigator. More than one client can be reached and they can share information
easily if sensors are interfaced to internet. The characteristic of web STIM are
interoperable that allowed different kinds of sensor need to be linked, must be
intelligent that each sensor will communicate each other, and flexible that each

sensors will handle various modes of data transmission and easily added new

SeNnsors.

8o

The match of TEDS and STIM directive with powerful characteristics, simplicity

and cost-effectiveness of recent web STIM are the purpose of this work.

1.1 PROJECT SCOPE AND EXPECTED OUTCOME

The scope of this project is implementing the only two of TEDS field, namely the
mandatory Meta and Channel TEDS. The Meta-TEDS consists of common
manufacture and specification data related to the general operation of the STIM and
the Channel TEDS contain channel information specific to each of the implemented
channels on the STIM. TEDS are directly connected to internet, it does not

communicate with the true TII but through an HTTP based protocol.

The outcome of the project should be a web-based Java application. End users can
interact with Web-STIM from anywhere in the world without the need for special
equipment, communications facilities, or software where is the TEDS collected data

are displayed in a binary.

1.2 PROJECT OBJECTIVE

The main objectives of the web STIM are:-
i) Study the Smart Transducer Electronic Data Sheet (STIM).
ii) Two mandatory TEDS data block will be implement are Meta and
Channel TEDS.
iii) TEDS are directly connected to internet through HTTP based protocol.

1v) All the information that user require about transducer can access through

web server such as Internet Explorer.

1.3 MOTIVATION

Basically, there are two main factors that motivate the study in research of web
STIM. Firstly is to understand the concept of Smart Transducer Interface Module
(STIM) which is it replace the traditional sensor including how the smart transducer

process and also to find out why the smart sensors become smart compare to

traditional sensor.

Secondly is about to realize the advantage and profit by using smart sensor in the real
world. The advantages of smart sensors are a common transducer interface will
lower the cost to design transducer to a set standardized digital interfaces, and having
transducer electronic data sheet (TEDS) with the sensors will enable self-description
of sensors and actuators, and it also simplify field installation, upgrade, and

maintenance of sensors by simply “plug and play” devices to instruments and

networks.

1.4 MOTIVATION LIMITATION

The limitations of this project are only implemented the TEDS part in Smart
Transducer Interface Module, which is have another part are Signal Conditioning
and Address Logic. TEDS are divided into eight fields, but in this project only focus

on two mandatory fields are META and Channel TEDS.

1.5 CONCLUSION

In this Smart Transducer Interface Module (STIM) prototype implements the
Transducer Electronic Data Sheet (TEDS) functionality defined in the 1451.2
specification. It should also be noted that my aim was to develop a basic STIM

process. To this end, this project shows only the mandatory TEDS definitions are

META and Channel TEDS.

6

2.0 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter is divided into five parts, a brief introduction of IEEE1451 family, the
details of IEEE1451.2 which is sub-standards of IEEE1451, a specification of Smart
Transducer Functional Specification, Data type and the difference between IEEE

network architecture and Web-STIM network architecture.

2.2 OVERVIEW IEEE1451

The transducer market is very diverse, so that the transducer manufacturers are
looking for ways to build low-cost, networked smart transducers. The large number
of networks on the market today is one of the problems faced by transducer
manufacturer. It is too costly for transducer manufacturers to make unique smart

transducers for each network on the market. For that reason the IEEE 1451 standard

is proposed to be developed to tackle these issues.

The objective of the IEEE 1451 standard is to develop a smart transducer interface
which is to make it easier for transducer manufacturers to develop smart devices and

to interface those devices to networks.

The National Institute of Standards and Technology (NIST) and the Institute of
Electrical and Electronics Engineers (IEEE)'s Technical Committee on Sensor
Technology of the Instrumentation and Measurement Society are responsible to
discus about the standard that is proposed and response to establish a common

communication interface for smart transducer in September 1993.

IEEE 1451 is a family of standards and proposed standards for connecting smart
transducers to networks. IEEE 1451 is divided into four sub-standards. [EEE 1451.1
defines a network independent common object model for networked smart
transducers. IEEE 1451.2 defines a digital interface and communication protocol for
the connection of transducers and a microcontroller. Furthermore, IEEE 1451.2
defines transducer electronic data sheet (TEDS) that describe the smart transducer
(STIM) properties in a machine-readable format. The other two parts of the standard,
IEEE P1451.3 and IEEE P1451.4 are not yet ratified, the prefix 'P' denoting a
proposed document. IEEE P1451.3 specifies properties for distributed multi-drop
systems in hazardous environments, while IEEE P1451.4 covers a mixed-mode
service of analog and digital transducers, whereas analog transducers shall be

enhanced with self-identification and configuration capabilities.

2.3 INTRODUCTION OF IEEE1451.2

This was the first published standard in the family. However, it has not been widely
accepted in industry because of discontent with the digital communication interface

and the complex software features for its interface with an NCAP.

This standard defines a STIM, TEDS, and Transducer Independent Interface (TII) for
NCAP communication. Each Transducer is denoted in the STIM as a channel, and
there can be up to 255 channels within one STIM. Individual channels and the STIM
as a whole can be accessed by the NCAP. The different transducers that are
interfaced to the STIM are triggered (sampled or set) by a command that is sent from

the NCAP to the STIM. The STIM decodes this information and then sends the

results back to the NCAP.

The TII is a ten wire serial connection for NCAP/STIM communication and has been
widely criticized by industry because of its complexity, so as part of this standard’s
revision; the TII may be eliminated in HTTP based connection. Figure 1.1 shows the
structure of the STIM. The TEDS supports a variety of transducers and is accessed
by the digital interface (TII). The TEDS can be written by the NCAP or it can also be
set at manufacture time. It resides in non-volatile memory, and contains fields that
describe the type, attributes, operation, and calibration of the transducers. The TEDS

is the core of the standard since it provides a method for self-identifying transducers.

9

Transducer

frnart Tranaducer Indepandent
Interface Module (STIM) |nterface

NetworkCapable metwark
TEDS [Application Processor
(NCAP)
ZDCR ADC M F
laddress T
HDORk—| DAC gt = || Mterapwoeessor o e | =)
XDCR = DUJo [
Z # Application Firmware

YIOR 2 ¥ 1451.2 Interfaca Driver

* Correction Bngine

Figure 1.1: STIM block Diagram

Base on the STIM block diagram in figure 1 show that the STIM is connected with

network via Network Capable Application Processor (NCAP). A STIM is controlled

by a NCAP module by means a dedicated digital interface, and this interface is not a

network. Physically, STIM is connected with NCAP using Transducer Independent

Interface (TII) which is a 10 pin wire /0. Base on the STIM developers to build a

low cost smart sensor, they have several problems by using this communication such

as the NCAP is not fully supported by market and it is expensive. So, to overcome

this problem, the vendor introduces Web-STIM. Web-STIM is a Web-sensor

10

compatible with access procedures specified in the IEEE1451.2 standard, where
HTTP interface replaces the TII (Transducer Independent Interface) hardware. Web-
STIM is directly coupled with network where is STIM work as web server on the
network side and at the same time it has IEEE1451.2 architecture for the transducer
side. Web-STIM does not connect to the true TII but with emulated TII where is,
Ethernet as physical layer, IP as network layer, TCP as transport layer, and finally

implement HTTP. Below is about the web-STIM architecture.

Web-STIM
| TII Over
STIM : Internet
Register '
Transducer ; Web Server
STIM i HTTP
State Machine : TCP
TEDS : P
: Ethernet
Internet (Ethernet)

Figure 1.2: Web-STIM network architecture

11

2.4 SMART TRANSDUCER FUNCTIONAL SPECIFICATION

STIM is a module that consists of:-

« Transducer

« Transducer Electronic Data Sheet
o Interface logic / 1451.2 interfaces

» Signal conditioning and analog to digital conversion

2.4.1 TRANSDUCER

There are six general classes of transducers and subclasses within these classes. They

are as follow:-

« SENSOR :-

Take a number of samples of data, a data set, as the result of receiving a trigger. It

measures some physical parameter on demand and returns digital data representing

that parameter

+ ACTUATOR :-

A physical or virtual action occur causes by actuator that shall be related to the

data set sent to the actuator. The actuator state changes to match the data set most

recently sent to it when a triggering event occurs.

» BUFFERED SENSOR :-

A buffered sensor has a single level of data buffering on the output channel. A new
data set shall be sampled once for each triggering event. The data set available to
be read shall be the data set acquired on the second most recent trigger event. The
-number of data points in the data set shall be determined by the Channel Data

Repetitions field.

DATA SEQUENCE SENSOR :-
A data sequence sensor acquires data continuously, with sampling times under
control of the STIM. Triggering selects a data set from this stream of continuous

measurements and makes it available to be read by the NCAP.,

BUFFERED DATA SEQUENCE SENSOR :-
A buffered data sequence sensor acquires data continuously, with sampling times
under control of the STIM. Triggering selects a data set from this stream of

continuous measurements and makes it available to be read by the NCAP.

EVENT SEQUENCE SENSOR :-

.A signal produced by event sequence sensor whenever a specific event occurs.
The signal shall be the same signal used by sensors and actuators to acknowledge
triggering events. The event may be a digital signal transition or an analog signal

crossing a set point.

« GENERAL TRANSDUCER :-

It allows for the presence of channels that behave on it and shall implement the

same functions required for all channels

2.4.2 TRANSDUCER ELECTRONIC DATA SHEET

Transducer Electronic Data Sheet also known as TEDS. TEDS electronically
correspond to information about the sensors and actuators attached to a STIM. It s to
identify and describe itself to the network, thereby easing automatic system
configuration. The specific technical details for data acquisition, system deployment,
and on-going system maintenance are the reason why the transducer need for self-
identification. The goal in developing TEDS was to offer a generalized data sheet
representation of several key sensor and actuator features in a standard format that
users could retrieve electronically and upgrade remotely in some cases. TEDS are
divided into eight fields, each of which is used to describe different aspects of the
STIM and transducer channels. Only two of the eight TEDS data block are
mandatory and must remain with the STIM for the duration of its lifetime. The other
six are optional and are human readable and are store as strings in one of several
different character set. The two mandatory TEDS and two of the optional ones are

defined as binary data format and is machine readable only. The TEDS types are:-

Type of TEDS

Meta TEDS

Channel TEDS

Meta-Identification TEDS

Calibration TEDS

Table 2.1: TEDS types
TEDS Function

Contains the mandatory machine-readable data that
describes the entire STIM. The data may include
information such as the revision of the IEEE
standard, version of the TEDS, number of channels

and timing restriction.

Contains the mandatory machine-readable data that
describe each transducer channel in the STIM. The
data may include information such as the transducer
type, calibration model, physical units, limits range,
data format and the timing restriction for the relevant

transducer channel.

Provides the optional human-readable (Text/ASCII) |
data for the overall STIM. Data may include
information such as manufacturer’s name, model
number, serial number, version codes, date codes

and product description.

Contains the optional machine-readable data when a
correction engine is used in the STIM. The data may

include information such as the calibration

15

Channel-Identification TEDS

Calibration-Identification

TEDS

End-User’s Application-

Specific TEDS

Generic Extensions TEDS

coefficients, intervals, date and time for the each

transducer channel that requires calibration.

Provides the optional human-readable data similar to |
Meta-Identification TEDS, except that it is for an

individual channel. This data is used when a STIM is

built with multi-channel transducers from different

manufacturers.

Provides the optional human-readable data when a

correction engine is used in the STIM. The data may

include information such as the calibrator id and the

calibration standard used.

Provides the additional human-readable data not
covered by the specific TEDS described above, The
data may include information such as the location of
the STIM and the contact information for the

technical inquiry.

Allows an option for the future extension to the

TEDS described above

16

2.5 EXISTING SYSTEM

b I R T T T Y

Trend Chan

. Aralog Sewices
Moded: ADUGCESYE v

T L

CRRSLITT

Figure 2.1

b SO Ly e |Iu A it L ah =10 %]

B Mpdfrn Yevskezs Prefedi | Srumcti 2
| 4Indatia v J_j il ﬁma L4 Prataent Grane (3 N3 - EFA®

Ttz | hetpe\ebatin g unkas =] Ve | Collegament *

o opatentiad venwion of JEEEL 451 3 ST | Gt dogped

Web-STIM Dep. af Blwstranics for Avtomition T o ‘
' | _Lon| Log utl

o
Umumy of Baocin

COMMAND WINDOW |
Funskiomal. wdirope: | TS ducar data e o e ey
Functiomal wdrese: | Tranaduoar dein v] Chumt addenns: 0T Whim |

| Taansduont dapa(be): IM (littdn oo dine)

Triggertanaduoarnanl |

o] Opevmions camphtaty @ Ineenat

Figure 2.2

Figure 2.1 and figure 2.2 are the existing STIM system that can be view using
internet. The differences between these STIM systems are how they are connected
with the network. The STIM system in figure 2 use Transducer Independence
Interface (TII) to connect with Network Capable Application Processor then the
NCAP is connected to network, and the STIM system in figure 3 use the Web-STIM
concept to connect with internet. They also use the different language where s, the
figure 1 use the C language and the figure 2 use the JAVA language. Both of the
STIM system implements the mandatory Transducer Electronic Data Sheet are

META and Channel TEDS to develop a basic STIM process.

2.6 CHAPTER SUMMARY

Smart Transducer Interface Module provides the means to connect sensors and
actuators to a digital system, typically a network. It consists of transducer, signal
conditioning, transducer electronic data sheet and address logic. Each part have their

own function to make sure the functionality of STIM.

19

3.0 METHODOLOGY

3.1 OBJECT ORIENTED PARADIGM

Donald Firesmith in his book Dictionary of Object Technology (SIGS Books, 1995),
explain that Object Oriented analysis is "the discovery, analysis and specification of
requirements in terms of objects with identity that encapsulate properties and
operations, message passing, classes, inheritance, polymorphism and dynamic
binding." Firesmith also states that OO design is "the design of an application in

terms of objects, classes, clusters, frameworks and their interactions."

This project used Object Oriented Analysis and Design methodologies. The

methodologies has two basic types are ternary (three-pronged) and unary. The

ternary type is the natural evolution of existing structured methods and has three
separate notations for data, dynamics, and process, The unary type asserts that
because objects combine processes (methods) and data, only one notation is needed.
The unary type is considered to be more object-like and easier to learn from scratch,

but has the disadvantage of producing output from analysis that may be impossible to

review with users.

There are almost two dozen major object-oriented programming languages in use
today such as C++, Smalltalk, and Java. 1 prefer to use Java language. Object

otiented programming gives us a natural and intuitive way to view the programming

process, namely, by modeling real world objects, their attributes and their behavior.
It also provides for communication among objects. The main advantages of OO
programming is its ease of modification which is objects can easily be modified and
added to a system there by reducing maintenance costs. OO programming is also

considered to be better at modeling the real world than is procedural programming. It

allows for more complicated and flexible interactions,

3.2 JAVA PROGRAMMING PLATFORM AND LANGUAGE

Java is an object-oriented programming language with a built-in application
programming interface (API) that can handle graphics and user interfaces and that
can be used to create applications or applets.

The following are the version of Java:-

JDK 1.02 (obsolete)

JDK 1.1.x (obsolete)

J2SE v1.2.x (also called Java2 SDK, includes Swing)

J28E v1.4.x (the latest, no big changes vs. 1.2)

3.2.1 J2SE V1.4.2

The java 2 platform, standard edition is at the core of Java technology, and version
1.4 raises the Java platform to a higher standard. From client to server, from desktop

to supercomputer, improvements have been made to J2SE across the board. With the

version 1.4, enterprise can now use Java technology to develop more demanding
business applications with less effort and in less time.

Version 1.4 builds upon the current J2SE platform and provides even more features
for developers to build into their applications. More functionality in 1.4 developers
can now spend less time writing custom code to accomplish what is now part of the
core J2SE platform. The result is faster application programming with more
consistency for enterprise development initiatives. New features in J2SE 1.4 also
reduce the developer’s reliance on other technologies such as C, C++, PERL, or SSL
and DOM implementation in browsers. This allows the developers to use a single

technology to develop, test, and deploy end-to-end enterprise development

3.3 SYSTEM ARCHITECTURE

System architecture of this project is web-based application.

3.3.1 WEB-BASED APPLICATION

Web based applications are developed and being executed on the internet. It involves
the participations of servers and clients. Clients can access to permitted information

from the server even though he is in a distance using the World Wide Web.

Advantages of web-based applications are:-

1. accessible from almostanywhere with internet access

2)

&,

information updating is easy as it is done on the server side

3, requires common software on the client side, web browsers

4. various type of information can be stored with various methods
The advantages of web based applications are:-

1. hard to be maintained with complicated programming

7. have to maintain a Server

3. vulnerable to hackers even though password protected

4. information loaded to the web is very limited in term of size

3.3 CHAPTER SUMMARY

Object oriented approach offers a new and powerful model for developing web-
based which is objects is “plack box” which send and receive messages. This
approach speeds the development of new programs, and, if properly used, improves
the maintenance, reusability, and modifiability of software.

The Java language provides a powerful addition to the tools. Java makes
programming easier because it is object-oriented and has automatic garbage
collection. In addition, because compiled Java code is architecture-neutral, Java

applications are ideal for a diverse environment like the Internet.

4.0 ANALYSIS

4.1 FUNCTIONAL REQUIREMENT
Functional requirements are statements of services the system should provide, how
the system should react to particular inputs and how the system should behave in

particular situation. In some cases, it also stated what the system should not do.

4.1.1 TRANSDUCER ELECTRONIC DATA SHEET (TEDS)

The TEDS contains field that fully describe the type, operation, attributes, specific
technical details useful for data acquisition, system deployment, and on-going
system maintenance and stores all the information a user might need to know about a

particular transducer. A transducer must be self-aware to be really smart, and this is

where the TEDS come in.

Each STIM must have an area of memory written in a defined electronic format that

describes the STIM itself and any transducer channels associated with it.

TEDS are divided into eight fields, each of which is used to describe different
aspects of the STIM and transducer channels. In this paper, only the mandatory
TEDS are supported in this implementation (one META and two channel TEDS).

The channels are META TEDS and Channel TEDS for transducers (sensor and

actuator). The data type for each Channel TEDS is channel 1 for a sensor and

channel 2 for actuator. Thus the data model for each channel is integer.

4.1.2 META TEDS DATA BLOCK
META TEDS function contains an overall description needed to gain access to any
transducer and information common to all transducer such as version of the TEDS,

number of channels and timing parameters. The bytes of Meta-TEDS are constant

and read only.

Field types

U8, U16, U32 — are unsigned integers of length 8, 16, and 32 bits respectively.
F32 — is a single precision IEEE floating point number.
STRING ~ is an array of character bytes

UNITS - is the representation.

L is for length, E is for enumeration and C for counting.

The data structure of the META TEDS is shown in Table 4.1 based on IEEE

standard.

Table 4.1: META TEDS Data Structure

Field Description Type No. of
No. byte
TEDS version constant related data sub-block
1 Meta-TEDS Length U32L 4
2 IEEE 1451 Standards Family Working Group USE 1
Number
3 TEDS Version Number USE 1
Identification related data sub-block
4 | Globally Unique Identifier | uub | 10
Data structure related data sub-block
5 CHANNEL_ZERO Industry Calibration USE 1
TEDS Extension Key
6 CHANNEL_ZERO Industry Nonvolatile Data USE 1
Fields Extension Key
7 CHANNEL_ZERO industry TEDS extension USE 1
key
8 CHANNEL_ZERO End-Users’ Application- USE |
Specific TEDS key
9 Number of Implemented Channels U8C |
10 Worst-Case Channel Data Model Length U8C 1
11 Worst-Case Channel Data Repetitions Ul16C 2
12 CHANNEL_ZERO writable TEDS length U32C 4
Timing related data sub-block
13 Worst-Case Channel Update Time (twu) F32 4
14 Global Write Setup Time (tgws) F32 4
15 Global Read Setup Time (tgrs) F32 4
16 Worst-Case Channel Sampling Period (twsp) F32 4
17 Worst-Case Channel Warm-Up Time F32 4
18 Command Response Time F32 4
19 STIM Handshake Timing (ths) F32 4
20 End-Of-Frame Detection Latency (tlat) F32 4
21 TEDS Hold-Off Time (tth) F32 4
22 Operational Hold-Off Time (toh) F32 4
23 Maximum Data Rate U32c 4
Channel grouping related data sub-block
24 Channel Groupings Data Sub-block Length Ul6L 2
25 Number of Channel Groupings = G UsC 1

26

The following is about the explanations of each data field in the data structure of the
META TEDS. The first 6 bytes or the first three fields of the META TEDS data

structure shall never modify in any subsequent TEDS version. The data structure

consists of’-

4.1.2.1 META-TEDS LENGTH

Meta-TEDS data field number 1
Data type: unsigned integer used for field length (U32L, 4 bytes)

This field specifies the total number of bytes in the Meta-TEDS data block excluding

this field.

4.1.2.2 IEEE 1451 STANDARDS FAMILY WORKING GROUP NUMBER

Meta-TEDS data field number 2
Data type: unsigned byte integer used for enumeration (USE, 1 byte)

This field shall be set to two for devices conforming to this standard. This field shall
be used by other members of the IEEE 1451 standards family to indicate to an NCAP

that a different data structure follows.

4.1.2.3 TEDS VERSION NUMBER

Meta-TEDS data field number 3

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

The version number of the TEDS that corresponds to the particular IEEE 1451

standard of the working group that specifies the TEDS data structure as shown in

Table 4.2.

Table 4.2: Enumeration of TEDS Version Numbers

TEDS version IEEE 1451.2 standard version
0 Reserved
This will correspond to the first official
| version of the standard: IEEE Std
1451.2-1997.
2-225 Reserved

4.1.2.4 GLOBALLY UNIQUE IDENTIFIER

Meta-identification TEDS data field number 4

Data type: Universally unique identification (UUID, 10 bytes)

The UUID field is provided to allow better management of STIM components in a
distributed system (e.g., tracking and traceability of STIMs for operational and

maintenance purposes). The UUID must be guaranteed to be unique in the universe

of all STIMs.

4.1.2.5 CHANNEL_ZERO INDUSTRY CALIBRATION TEDS EXTENSION

KEY
Meta-TEDS data field number 5

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

28

The value in this field indicates the highest functional address for writing the
industry-implemented Calibration TEDS extension that is available in the STIM for

CHANNEL_ZERO. Acceptable values and their meanings are defined in Table 4.3.

Table 4.3: Enumeration of CHANNEL_ZERO Industry Calibration TEDS
Extension Keys

Key Value (K) Meaning
0 No extensions implemented in STIM
1-79 Invalid
Valid, TEDS extension(s) implemented
for:
80 - 95 « Functional addresses used for writing:

between 80 and (K); and
« Functional addresses used for reading:
between 208 and (K+128)

96 — 255 Invalid

4.1.2.6 CHANNEL_ZERO INDUSTRY NONVOLATILE DATA FIELDS
EXTENSION KEY

Meta-TEDS data field number 6

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

The value in this field indicates the highest functional address for writing the
industry-implemented nonvolatile data field extensions that is available in the STIM

for CHANNEL_ ZERO. Acceptable values and their meanings are defined in Table

4.4,

29

Table 4.4: Enumeration of CHANNEL_ZERO Industry Nonvolatile Data Fields

Extension Keys

Key value (K)

Meaning

0

No extensions implemented in STIM

1-111

Invalid

112 - 127

Valid, TEDS extension(s) implemented

for:

« Functional addresses used for writing:
between 112 and (K); and

« Functional addresses used for reading:
between 240 and (K+128)

128 - 255

[nvalid

4.1.2.7 CHANNEL_ZERO INDUSTRY TEDS EXTENSION KEY

Meta-TEDS data field number 7

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

The value in this field indicates the highest functional address for writing the

industry-implemented TEDS extensions that is available in the STIM for

CHANNEL_ZERO. Acceptable values and their meanings are defined in Table 4.5.

Table 4.5: Enumeration of CHANNEL_ZERO Industry TEDS Extension Keys

Key value (K) Meaning
0 No extensions implemented in STIM
1-175 Invalid
Valid, TEDS extension(s) implemented
176 - 191 for:
+ Functional addresses used for reading:
between 176 and (K)
192 - 255 Invalid

30

4.1.2.8 CHANNEL_ZERO END-USERS’ APPLICATION-SPECIFIC TEDS

KEY
Meta-TEDS data field number 8

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

This field indicates the presence of End-Users’ Application-Specific TEDS function

in CHANNEL_ ZERO as defined in Table 4.6.

Table 4.6: Enumeration of End-Users’ Application-Specific TEDS Keys

Key value (K) Meaning
0 End-Users™ Application-Specific TEDS is
not implemented on CHANNEL ZERO.
1 End-Users’ Application-Specific TEDS is
implemented on CHANNEL ZERO.
2-255 Reseryed. =

4.1.2.9 NUMBER OF IMPLEMENTED CHANNELS

Meta-TEDS data field number 9

Data type: unsigned byte integer used for counting (U8C, 1 byte)

Specifies the number of channels implemented in the STIM. If the number is one,
this shall be a single variable transducer. Numbers greater than one identify multiple
variable transducers, perhaps consisting of both sensor and actuator elements. There

can be up to 255 channels on a STIM, thus the value of this field shall be M such that

1 [IM [J255.

31

A STIM can give TEDS without having to produce data. This is specified by setting
the following Channel

TEDS fields:

« Channel Data Model to “N-byte”

« Channel Data Model Length to zero

« Channel Model Significant Bits to zero

« Channel Data Repetitions to zero

For details on these Channel TEDS fields, see channel data structure.

4.1.2.10 WORST-CASE CHANNEL DATA MODEL LENGTH
Meta-TEDS data field number 10
Data type: unsigned byte integer used for counting (U8C, 1 byte)

This field specifies the maximum value of the Channel Data Model Length for all the

implemented channels.

4.1.2.11 WORST-CASE CHANNEL DATA REPETITIONS

Meta-TEDS data field number 11
Data type: unsigned 16 bit integer used for counting (U16C, 2 bytes)

This field specifies the maximum value of the Channel Data Repetitions for all the

implemented channels.

32

4.1.2.12 CHANNEL_ZERO WRITABLE TEDS LENGTH

Meta-TEDS data field number 12

Data type: unsigned 32 bit integer used for counting (U32C, 4 bytes)

This field specifies the length in bytes available for each CHANNEL ZERO user-
writable TEDS. The only structure currently defined in this standard is the
CHANNEL_ZERO End-Users” Application-Specific TEDS. An entire writable

TEDS, including the length field and checksum, must fit within this maximum

length.

4.1.2.13 WORST-CASE CHANNEL UPDATE TIME

Meta-TEDS data field number 13

Data type: single-precision real (F32, 4 bytes)

This field specifies the maximum value of the Channel Update Time (twu) for all the
implemented channels in seconds. For a STIM without enabled event sequence
channels, this parameter is used to determine if a STIM is failing to respond to a
global trigger. If such a STIM is fully functional, the time between trigger and
trigger acknowledge shall never exceed this time. For a STIM with at least one
enabled event sequence sensor, this parameter indicates the additional time that must
pass after a global trigger acknowledgment before all other channels may be

assumed to have acknowledged the virtual triggering associated with the event.

33

4.1.2.14 GLOBAL WRITE SETUP TIME

Meta-TEDS data field number 14

Data type: single-precision real (F32, 4 bytes)

This field specifies the minimum time (tgws), in seconds, between the end of a

global write frame and the application of a global trigger.

4.1.2.15 GLOBAL READ SETUP TIME

Meta-TEDS data field number 15

Data type: single-precision real (F32, 4 bytes)

This field specifies the minimum time (tgrs), in seconds, between the receipts of a
global trigger acknowledge and the beginning of a global read frame. For STIMs

with enabled event sequence sensors, the NCAP shall wait for the duration of the

Worst-Case Channel Update Time plus the Global Read Setup Time before

beginning a global read frame.

4.1.2.16 WORST-CASE CHANNEL SAMPLING PERIOD

Meta-TEDS data field number 16

Data type: single-precision real (F32, 4 bytes)

This field specifies the maximum value (twsp), in seconds, of the channel sampling

period for all implemented channels,

34

4.1.2.17 WORST-CASE CHANNEL WARM-UP TIME

Meta-TEDS data field number 17

Data type: single-precision real (F32, 4 bytes)

This field specifies the minimum time, in seconds, that is necessary between

application of power to the STIM and instigation of the first transducer data transfer.

This is the maximum value of all the Channel Warm-Up Times.

4.1.2.18 COMMAND RESPONSE TIME
Meta-TEDS data field number 18
Data type: single-precision real (F32, 4 bytes)

This field specifies the longest time, in seconds.

4.1.2.19 STIM HANDSHAKE TIME
Meta-TEDS data field number 19

Data type: single-precision real (F32, 4 bytes)

This field specifies the longest time (ths), in seconds, for the STIM to remove the

trigger acknowledge signal after the trigger signal is removed by the NCAP, or for

the STIM to remove the data transport acknowledge signal after the data transport is

inactivated by the NCAP.

35

4.1.2.20 END-OF-FRAME DETECTION LATENCY

Meta-TEDS data field number 20

Data type: single-precision real (F32, 4 bytes)

This field specifies the longest time (tlat), in seconds, that a STIM shall take to detect

the removal of the data transport enable signal.

4.1.2.21 TEDS HOLD-OFF TIME

Meta-TEDS data field number 21

Data type: single-precision real (F32, 4 bytes)

This field specifies the maximum individual hold-off time, in seconds, imposed by
the STIM before the first byte, or between bytes, of any data transfer addressed to

TEDS functions, (i.e., functional addresses in the ranges of 32-127 or 160-255,

inclusive).

4.1.2.22 OPERATIONAL HOLD-OFF TIME

Meta-TEDS data field number 22

Data type: single-precision real (F32, 4 bytes)

This field specifies the maximum individual hold-off time, in seconds, imposed by
the STIM before the first byte, or between bytes, of any data transfer addressed to

operational functions, (i.e., functional addresses in the ranges of 1-31 or 129-159,

inclusive).

36

4.1.2.23 MAXIMUM DATA RATE
Meta-TEDS data field number 23
Data type: unsigned 32 bit integer used for counting (U32C, 4 bytes)

This field specifies the maximum data rate, in bits per second, supported by the

STIM interface.

4.1.2.24 CHANNEL GROUPINGS DATA SUB-BLOCK LENGTH

Meta-TEDS data field number 24

Data type: unsigned 16 bit integer used for field length (U16L, 2 bytes)

This field specifies the total number of bytes in the Channel Grouping data sub-

block. The Channel Groupings Data Sub-Block Length field shall not include the

length of the length field itself.

4.1.2.25 NUMBER OF CHANNEL GROUPINGS

Meta-TEDS data field number 25

Data type: unsigned byte integer used for counting (U8C, 1 byte)

This field specifies the number of discrete channel groupings defined in this STIM’s
Meta-TEDS. The subsequent fields in the channel grouping data sub-block shall be

repeated in that order for the Number of Channel Groupings.

37

4.1.2.26 GROUP TYPE

Meta-TEDS data field number 26

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

The relationship between the channels comprising the specific group shall be defined
by the enumeration in Table 4.7. The arbitrary relation, when the enumeration value
is equal to zero, shall be used to convey grouping semantics not specifically
enumerated but deemed necessary by the transducer manufacturer, for the correct
operation or interpretation of the data related to the channels that are members of the
group. The arbitrary relation may be used to redundantly convey, in a more compact
form than the Calibration TEDS fields. That correct behavior of channels with

coupling terms in the calibration assumes that all channels involved are triggered at

the same time.

Table 4.7: Enumeration of Group Types

Value Meaning

0 An arbitrary relation

1 X, ¥, z right-hand rectangular spatial
coordinates

2 r, f, z, right-hand cylindrical spatial
coordinates

3 r, q, f right-hand spherical spatial
coordinates

4 Latitude, longitude, altitude planetary
coordinates

5 In-phase, quadrature temporal
coordinates

6 Red, green, blue color coordinates
Analog event sequence sensor channel,
analog input sensor channel, upper

1) threshold virtual actuator channel,

38

hysteresis virtual actuator channel

Sensor channel (any type), high-pass
filter virtual actuator channel,

8 low-pass filter virtual actuator channel,
scale factor virtual actuator channel

9 Transducer (any type), sample mterval
virtual actuator channel
10 Digital event sequence sensor channel,

digital input sensor channel, event
pattern virtual actuator channel

11-127 Reserved for future expansion
128 — 255 Open to industry

To identify the virtual actuator channels, enumerations 7 and 10 may be used to set
up an event sequence sensor. Besides, they also identify a sensor channel that may be
used to read the level of the signal in an analog event sequence sensor or the current
pattern input to a digital event sequence sensor.

Enumeration 8 may be used to identify the virtual actuator channels used to set the
high-pass filter, low-pass filter, and scale factor associated with a sensor of any type.

Enumeration 9 may be used to identify the virtual actuator channels used to set the
channel sampling period in a data sequence sensor or buffered sequence sensor. It
may also be used to set the channel sampling period in sensors, buffered sensors, and
actuators with Channel Data Repetitions greater than zero and Series Increment and

Series Units indicating that a time sequence of samples is to be processed on a

trigger.

39

4.1.2.27 NUMBER OF GROUP MEMBERS

Meta-TEDS data field number 27
Data type: unsigned byte integer used for counting (U8C, 1 byte)

This field specifies the number of channels comprising the specific group.

4.1.2.28 MEMBER CHANNEL NUMBERS LIST

Meta-TEDS data field number 28

Data type: an array of unsigned byte integers used for enumeration (USE, 0 to 255
bytes)

This field specifies a one-dimensional array (list) of 1 byte elements. Each element is
the channel address for a member channel in the specific group. The values of the
elements in this list shall be in the sequence specified by the group type. An element
with value zero shall indicate that the transducer does not implement this particular
element of the enumerated relationship. For example, a two-axis vector measurement
implemented by channels 1, x, and 2, y, may be specified by designating the Group
Type (5.1.3.26) as 1 (x, y, z) with the Member Channel Numbers List (1, 2, 0). The
value zero shall not appear in the Member Channel Numbers List for a group of
group type “arbitrary relation”.

Note that a channel can be represented in multiple groups.

40

4.1.2.29 CHECKSUM FOR META-TEDS

Meta-TEDS data field number 29

Data type: unsigned 16 bit integer used for counting (U16C, 2 bytes)

This field contains the checksum for the complete Meta-TEDS data block. The
checksum shall be the one’s complement of the sum (modulo 216) of all the data
structure’s preceding bytes, including the initial length field and excluding the

checksum field.

4.1.3 CHANNEL TEDS DATA BLOCK

Channel TEDS function is to make available at the interface all of the information
concerning the channel being addressed to enable the proper operation of the

channel. Channel TEDS bytes are constant and read-only.

Table 4.8: Data structure of Channel TEDS data block

Field No. | Description] Type | No.of bytes
Data structure related data sub-block
| Channel TEDS U32L 4
Length
2 Calibration Key USE 1
3 Channel Industry USE 1

Calibration TEDS
Extension Key

4 Channel Industry USE 1
Nonvolatile Data
Fields Extension
Key

5 Channel Industry USE 1

| TEDS Extension

4]

Key

6 Channel End- USE 1
Users” Application-
Specific TEDS Key
7 Channel Writable U32C 4
TEDS Length
Transducer related data sub-block
8 Channel Type Key USE 1
9 Physical Units UNITS 1
10 Lower Range Limit F32 +
11 Upper Range Limit F32 4
12 Worst-Case F32 4
Uncertainty
13 Self-Test Key USE 1
Data converter related data sub-block
14 Channel Data USE 1
Model
15 Channel Data U8sC 1
Model Length
16 Channel Model U16C 2
Significant Bits
17 Channel Data Ul16C 2
Repetitions
18 Series Origin F32 4
19 Series Increment F32 4
20 Series Units UNITS 10
Timing related data sub-block
21 Channel Update F32 4
Time (tu)
22 Channel Write F32 4
Setup Time (tws)
23 Channel Read F32 4
Setup Time (trs)
24 Channel Sampling F32 4
Period (tsp)
25 Channel Warm-Up F32 4
Time
26 Channel F32 4
Aggregated Hold-
Off Time (tch)
4 Timing Correction F32 4
28 Trigger Accuracy F32 4

Event sequence options field

42

29 Event Sequence USE 1
Options
Data integrity data sub-block
30 Checksum for ul6C 2

Channel TEDS

Each data field in the data structure is describing below:-

4.1.3.1 CHANNEL TEDS LENGTH

Channel TEDS data field number 1

Data type: unsigned 32 bit integer used for counting (U32L, 4 bytes)

This field specifies the total number of bytes in the channel TEDS data block

excluding this field.

4.1.3.2 CALIBRATION KEY

Channel TEDS data field number 2.

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

Table 4.9 defined the calibration capabilities of the STIM

Table 4.9: Enumeration of Calibration Keys

Value Name Function
No calibration
0 CAL NONE information needed or

provided. No correction is
performed by the NCAP
on transducer data
associated with this
channel. If the value is
CAL_NONE, this implies
that there is no calibration

43

TEDS associated with this
block. If the Calibration
TEDS is accessed, the
Calibration TEDS Length
shall be zero.

CAL FIXED

Fixed calibration
information provided.
This information cannot
be modified. Correction is
performed in the NCAP
or elsewhere in the
system.

CAL_MODIFIABLE

Calibration information
provided. This
information can be
modified by writing to the
Calibration TEDS.
Correction is performed
in the

NCAP or elsewhere in the
system,

CAL_SELF

Calibration information
provided. Adjusted by a
self-calibration capability.
Correction is performed
in the NCAP or elsewhere
in the system.

CAL_CUSTOM

Calibration information is
provided through an
industry extension.
Correction is performed
in the NCAP or elsewhere
in the system.

STIM CAL FIXED

Fixed calibration
information is provided to
be applied in the STIM.
This information cannot
be modified. See 5.2.3.2.2
for additional details.

STIM_CAL_MODIFIABLE

Calibration information is
provided to be applied in
the STIM. This
information can be

44

modified by writing to the
Calibration TEDS.

See 5.2.3.2.2 for
additional details.

7 STIM_CAL_SELF

Calibration information is
provided to be applied in
the STIM. Adjusted by a
self-calibration capability.
See 5.2.3.2.2 for
additional details.

8-225 Reserved

Reserved for future
expansion.

4.1.3.2.1 NCAP CORRECTIONS

Calibration key enumerations CAL_FIXED, CAL_MODIFIABLE, CAL SELF, and

CAL_CUSTOM are to be used when the correction is performed in the NCAP or

elsewhere in the system.

4.1.3.2.2 STIM CORRECTIONS

Calibration key enumerations STIM CAL_FIXED, STIM CAL MODIFIABLE,

and STIM_CAL_SELF are to be used when the correction is performed in the STIM

using the correction method and information stored in the Calibration TEDS.

4.1.3.3 CHANNEL INDUSTRY CALIBRATION TEDS EXTENSION KEY

Channel TEDS data field number 3.

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

45

The value in this field indicates the highest functional address for writing the

industry-implemented Calibration TEDS extension that is available in the STIM for

this channel. Acceptable values and their meanings are defined in Table 4. 10.

Table 4.10: Enumerations of Channel Industry Calibration TEDS Extension

Keys
Key Value (K) Meaning
0 No extensions implemented in STIM
1-79 Invalid
80-95 Valid, TEDS extension(s) implemented
for:
Functional addresses used for writing:
between 80 and (K); and
Functional addresses used for reading;
between 208 and (K+128)
96-255 Invalid

4.1.3.4 CHANNEL INDUSTRY NONVOLATILE DATA FIELDS

EXTENSION KEY

Channel TEDS data field number 4

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

The value in this field indicates the highest functional address for writing the

industry-implemented nonvolatile data field extensions that is available in the STIM

for this channel. Acceptable values and their meanings are defined in Table 4.11.

46

Table 4.11: Enumerations of Channel Industry Nonvolatile Data Fields
Extension Keys

Key Value (K)

Meaning

0

No extensions implemented in STIM

1-111

Invalid

112-117

Valid, TEDS extension(s) implemented

for:

« Functional addresses used for writing:
between 112 and (K); and

« Functional addresses used for reading:
between 240 and (K+128)

128-125

Invalid

4.1.3.5 CHANNEL INDUSTRY TEDS EXTENSION KEY

Channel TEDS data field number 5

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

The value in this field indicates the highest functional address for writing the

industry-implemented TEDS extensions that is available in the STIM for this

channel. Acceptable values and their meanings are defined in Table 4.12.

Table 4.12: Enumerations of Channel Industry TEDS Extension Keys

Key Value (K) Meaning
0 No extensions implemented in STIM
1-175 Invalid

176-191 Valid, TEDS extension(s) implemented
for:
« Functional addresses used for reading:

between 176 and (K)
192-255 Invalid

47

4.1.3.6 CHANNEL END-USERS’ APPLICATION-SPECIFIC TEDS KEY

Channel TEDS data field number 6

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

This field indicates the presence of End-Users’ Application-Specific TEDS function

for this channel as defined in Table 4.13.

Table 13: Enumeration of End-Users’ Application-Specific TEDS Keys

Key Value (K)

Meaning

0

End-Users” Application-Specific TEDS
Function Is Not Implemented On This
Channel.

End-Users’ Application-Specific TEDS
function is implemented on this channel.

2-255

Reserved

4.1.3.7 CHANNEL WRITABLE TEDS LENGTH

Channel TEDS data field number 7

Data type: unsigned 32 bit integer used for counting (U32C, 4 bytes)

This field specifies the length in bytes available for each individual user-writable

TEDS associated with this channel, such as Calibration TEDS, Calibration

[dentification TEDS, or End-User’s Application-Specific TEDS. An entire writable

TEDS, including the length field and checksum, must fit within this maximum

length.

48

4.1.3.8 CHANNEL TYPE KEY

Channel TEDS data field number 8

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

This field specifies the channel transducer type. The values for Channel Type Key

are defined in Table 4.14.

Table 14: Enumeration of Channel Type Keys

Key Value (K) Meaning

0 Sensor

Actuator

Event sequence sensor

Data sequence sensor

Buffered sensor

|
2
3
4 General transducer
5
6

Buffered data sequence sensor

7-255 Reserved for future expansion

4.1.3.9 PHYSICAL UNITS

Channel TEDS data field number 9

Data type: Physical units (UNITS, 10 bytes)

This field defines the physical units that apply to the transducer data, however, if the
Calibration Key is CAL FIXED, CAL MODIFIABLE, CAL_SELF, or
CAL_CUSTOM the physical units apply only to the transducer data affer correction

for the case of sensors, or hefore correction for the case of actuators.

49

4.1.3.10 LOWER RANGE LIMIT

Channel TEDS data field number 10

Data type: single-precision real (F32, 4 bytes)

For sensors, this shall be the lowest valid value for transducer data after correction is
applied, interpreted in the units specified by the Physical Units field of the Channel

TEDS. If the corrected transducer data lies below this limit, it may not comply with

STIM specifications set by the manufacturer.

For actuators, this shall be the lowest valid value for transducer data before
correction is applied, interpreted in the units specified by the physical units field of
the channel TEDS. Writing corrected transducer data below this limit may result in
behavior outside the STIM specifications set by the manufacturer.

[n cases where no correction is applied and the data is expressed in a different format
than single-precision real, conversion to single-precision real is necessary before
making the comparison.

An example of this is data from a channel whose Calibration Key is CAL NONE
and whose Data Model is N-byte integer. Note that this conversion may limit the
practical range or precision of the converted transducer data.

When this parameter is not applicable it shall be NaN. An example of a number for
which Range Limits do not apply is N-byte data representing a bank of switches. In
this case the field shall be set to NaN. On the other hand, Range Limits may apply to
N-byte data that represents a 12 bit integer with no expressed units, such as raw

analog-to-digital convertor (ADC) output. In either case, the physical units will be

50

“digital data.” If the Channel Data Repetitions field of this channel is nonzero, then

the value of this field shall be interpreted to apply to all of the repetition instances.

4.1.3.11 UPPER RANGE LIMIT

Channel TEDS data field number 11

Data type: single-precision real (F32, 4 bytes)

For sensors, this shall be the highest valid value for transducer data after correction is
applied, interpreted in the units specified by the Physical Units field of the Channel

TEDS. If the corrected transducer data lies above this limit, it may not comply with

STIM specifications set by the manufacturer.

For actuators, this shall be the highest valid value for transducer data before
correction is applied, interpreted in the units specified by the Physical Units field of
the Channel TEDS. Writing corrected transducer data above this limit may result in
behavior outside the STIM specifications set by the manufacturer.

In cases where no correction is applied, and the data is expressed in a different
format than single-precision real, conversion to single-precision real is necessary
before making the comparison. An example of this is data from a channel whose
Calibration key is CAL_NONE and whose Data Model is N-byte integer. Note that
this conversion may limit the practical range or precision of the converted transducer
data. When this parameter is not applicable it shall be NaN.

An example of a number for which Range Limits do not apply is N-byte data

representing a bank of switches. In this case the fid shall be set to NaN. On the other

51

hand, Range Limits may apply to N-byte data that represents a 12 bit integer with no
expressed units, such as raw ADC output. In either case, the physical units will be
“digital data.” If the Channel Data Repetitions field of this channel is nonzero, then

the value of this fielshall is interpreted to apply to all of the repetition instances.

4.1.3.12 WORST-CASE UNCERTAINTY

Channel TEDS data field number 12

Data type: single-precision real (F32, 4 bytes)

The value of this field shall be expressed in the same units as the transducer data as

specified in the Physical Units field of the Channel TEDS, 4.1.3.9.

4.1.3.13 SELF-TEST KEY
Channel TEDS data field number 13
Data type: unsigned byte integer used for enumeration (USE, 1 byte)

This field defines the self-test capabilities of the transducer as shown in Table 4.15.

Table 4.15: Enumeration of Self-Test Keys

Key Value (K) Meaning
0 No self-test function needed or provided
| Self-test function provided
2-255 Reserved for future expansion

52

4.1.3.14 CHANNEL DATA MODEL

Channel TEDS data field number 14

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

This field describes the data model used when addressing read transducer data or

write transducer data for this channel as shown in Table 4.16.

There are two differences between N-byte-integer (enumeration zero) and N-byte-

fraction (enumeration three), as follows:

a) The radix point (which divides integer from fractional bits) is to the right

of the Isb for N-byte-integer.

It is immediately to the right of the msb for N-byte-fraction.

b) Justification of the significant bits differs (see 4.1.3.16).

The N-byte fraction type may be used to keep the multinomial coefficients within

represent able bounds.

Table 4.16: Enumeration of Channel Data Models
Value Model Length
0 N-byte integer (unsigned) | 0] N(] 255
| Single-precision real 4 bytes
2 Double-precision real 8 bytes
3 N-byte fraction (unsigned) | 0[] NI 255
4-255 Reserved for future -

expansion

53

4,1.3.15 CHANNEL DATA MODEL LENGTH

Channel TEDS data field number 15

Data type: unsigned byte integer used for counting (U8C, 1 byte)

This field specifies the number of bytes in the representation of the selected Channel
Data Model.

For N-byte integer the value in this field shall be N, where 0 £ N £ 255.

For N-byte fraction the value in this field shall be N, where 0 £ N £ 255.

For single-precision real the value in this field shall be 4.

For double precision real the value in this field shall be 8.

4.1.3.16 CHANNEL MODEL SIGNIFICANT BITS

Channel TEDS data field number 16

Data type: unsigned 16 bit integer used for counting (U16C, 2 bytes)

When the Channel Data Model is N-byte integer (enumeration zero) or N-byte
fraction (enumeration three), the value of this field is the number of bits that are
significant. The value of this field shall be between zero and 2040.

For example, if data from a transducer channel comes from a 12-bit ADC, then
Channel Data Model = N-byte integer (field enumeration value of zero)

Channel Data Model Length = 2 (the number of bytes to hold 12 bits)

Channel Model Significant Bits = 12

When the Channel Data Model is N-byte integer or N-byte fraction, the Channel

Model Significant Bits shall not exceed eight times the Channel Model Data Length.

54

When the Channel Data Model is N-byte integer, the significant data bits shall be
right-justified within the byte stream.

When the Channel Data Model is N-byte fraction, the significant data bits shall be
left-justified within the byte stream.

When the Channel Data Model is single- or double-precision real (enumerations one

or two), the value of this field is the number of bits in the STIM’s signal converter.

4.1.3.17 CHANNEL DATA REPETITIONS

Channel TEDS data field number 17

Data type: unsigned byte integer used for counting (U16C, 2 bytes)

The number L of repetitions of the transducer value produced or required by a single
trigger. Each repetition represents an additional measurement or actuation value
produced or consumed by the transducer at each trigger, which shall be spaced apart
from the initial value associated with the trigger along some axis (for example, time)
by an amount defined by the Channel TEDS fields Series Increment and Series
Units, respectively.

When L is zero, the values of Series Origin, Series Increment, and Series Units may
be ignored. The purpose of this structure shall be to enable the specification of
transducers that produce an array of data with the application of a single trigger such
as a time series or a mass spectrum. When reading or writing data with Channel Data
Repetitions greater than zero, the order of transmittal shall be with the Oth data

sample transmitted first, the first repetition transmitted second, etc.

55

4.1.3.18 SERIES ORIGIN

Channel TEDS data field number 18

Data type: single-precision real (F32, 4 bytes)

For the case where the Channel Data Repetitions is greater than zero, the Series
Origin represents the value of the independent variable associated with the first

datum returned in a data set. The Series Origin is expressed in units defined by the

Series Units field in the Channel TEDS, 4.1.3.20.

4.1.3.19 SERIES INCREMENT

Channel TEDS data field number 19

Data type: single-precision real (F32, 4 bytes)

For the case where the Channel Data Repetitions is greater than zero, the series
increment represents the spacing between values of the independent variable
associated with successive members of the data set. The series increment is

expressed in units defined by the Series Units field in the Channel TEDS, 4.1.3.20.

4.1,3.20 SERIES UNITS
Channel TEDS data field number 20
Data type: Physical units (UNITS, 10 bytes)

This field specifies the physical units associated with the series origin, 4.1.3.18, and

series increment, 4.1.3.19 fields in the Channel TEDS.

56

4.1.3.21 CHANNEL UPDATE TIME

Channel TEDS data field number 21

Data type: single-precision real (F32, 4 bytes)

This field specifies the maximum time (tu), in seconds, between the receipt of a
trigger and the issue of trigger acknowledge for this channel. This parameter allows
NCAPs to determine time-out values, if appropriate,

For data sequence and buffered data sequence sensors, this parameter only applies

when they are enabled. For event sequence sensors, this parameter shall be NaN.

4.1.3.22 CHANNEL WRITE SETUP TIME

Channel TEDS data field number 22

Data type: single-precision real (F32, 4 bytes)

This field specifies the minimum time (tws), in seconds, between the end of a write
frame and the application of a trigger. (For most devices this will be a setup time
characteristic of the transducer electronics. For more complex transducers,

particularly those with a microprocessor, there could be additional time needed that

can be specified by this constant.)

4.1.3.23 CHANNEL READ SETUP TIME
Channel TEDS data field number 23

Data type: single-precision real (F32, 4 bytes)

57

This field specifies the minimum time (trs), in seconds, between the trigger
acknowledge and the beginning of a read frame. (For most devices this will be a
setup time characteristic of the transducer electronics. For more complex

transducers, particularly those with a microprocessor, there could be additional time

needed that can be specified by this constant.)

4.1.3.24 CHANNEL SAMPLING PERIOD

Channel TEDS data field number 24

Data type: single-precision real (F32, 4 bytes)

The Channel Sampling Period (tsp) shall be the minimum sampling period of the
channel transducer unencumbered by read or write considerations (since there is no
requirement to read or write with each trigger). Typically, for sensor, buffered
sensor, and actuator channels this time will be limited by A/D or D/A conversion
times, STIM processor speed, etc., but in more complex transducers it may reflect
transducer or sample handling times as well (e.g., a pH sensor that on each trigger
extracts a new fluid sample using a pump). If reads or writes are involved, then the
actual sampling rates will be further limited by setup and data transfer times
depending on the transducer type.

In the case of data sequence and buffered data sequence transducers, this parameter
shall represent the sequence sampling time determined by the STIM implementation.

In the case of event sequence transducers, this parameter shall represent the

58

minimum event resolution time. The Channel Sampling Period shall be expressed in

seconds.

4.1.3.25 CHANNEL WARM-UP TIME

Channel TEDS data field number 25

Data type: single-precision real (F32, 4 bytes)

This field specifies the period of time, in seconds, in which the device stabilizes its

performance to predefined tolerances after the application of power to the transducer.

4.1.3.26 CHANNEL AGGREGATED HOLD-OFF TIME

Channel TEDS data field number 26

Data type: single-precision real (F32, 4 bytes)

This field specifies the maximum aggregated time (tch) that the STIM will spend
holding off the data transport during a complete data transfer addressed to read
transducer data or write transducer data and this channel, assuming the Maximum

Data Rate is used. This time shall include the time between the NCAP activating the

data transport and the STIM acknowledgment.
4.1.3.27 TIMING CORRECTION

Channel TEDS data field number 27

Data type: single-precision real (F32, 4 bytes)

59

This field specifies the time offset, in seconds, between the issue of global trigger

acknowledge and when this channel actually sampled the sensor or updated the

actuator.

4.1.3.28 TRIGGER ACCURACY

Channel TEDS data field number 28

Data type: single-precision real (F32, 4 bytes)

This field specifies the accuracy, in seconds, of the Timing Correction.

4,1.3.29 EVENT SEQUENCE OPTIONS

Channel TEDS data field number 29

Data type: unsigned byte integer used for enumeration (USE, 1 byte)

An event sequence sensor has the option of changeable pattern, upper threshold,

and/or hysteresis. It also has the option of detecting inconsistencies in settings of

these parameters as described in 4.6.9. This enumeration defines, for the NCAP, the

ability of the STIM to detect and report these inconsistencies. The options are

defined in Table 4.17.

Table 4.17: Event sequence options

Value Meaning
0 Not applicable
| Pattern/threshold/hysteresis not
changeable
2 Changeable and inconsistencies detected
3 Changeable and inconsistencies not
kS detected
N L] Reserved

60

4.1,3.30 CHECKSUM FOR CHANNEL TEDS

Channel TEDS data field number 30

Data type: unsigned 16 bit integer used for counting (U16C, 2 bytes)

This field contains the checksum for the complete Channel TEDS data block. The
checksum shall be the one’s complement of the sum (modulo 216) of all the data

structure’s preceding bytes, including the initial length field and excluding the

checksum field.

4.1.4 FLASH MEMORY

Flash memory is a type of constantly-powered nonvolatile memory that can be
erased and reprogrammed in units of memory called blocks. It is a variation of
electrically erasable programmable read-only memory (EEPROM) which, unlike
flash memory, is erased and rewritten at the byte level, which is slower than flash
memory updating. Flash memory is often used to hold control code such as the basic
input/output system (BIOS) in a personal computer. When BIOS needs to be
changed (rewritten), the flash memory can be written to in block (rather than byte)
sizes, making it easy to update. On the other hand, flash memory is not useful as

random access memory (RAM) because RAM needs to be addressable at the byte

(not the block) level.

61

4.2 NON-FUNCTIONAL REQUIREMENT

A non-functional requirement does not describe what a system or software will do or
process, but how it does. For example, software performance requirements, some
external interface requirements, software design constraints, and software quality
attributes. Non-functional requirements are difficult to test, they are usually, or most

of the time, evaluated subjectively. The non-functional requirements are listed

below:-

Availability is about the rate of hardware and software component failure (mean

time between failures)

Maintainability Ability of the support programming staff such as the web master

to keep the system in steady running state, including enhancement

Data integrity Tolerance for loss, corruption, or duplication of data

Extensibility is to accommodate increased functionality

Flexibility is to handle requirement changes, such as add new channel.

Functionality Number, variety, and breadth of user-oriented features

Portability Ability to move application to different platforms or operating systems

Quality Reduced number of severe defects

« Robustness Ability to handle error and boundary conditions while running
« Scalability Ability to handle a wide variety of system configuration sizes

« Install ability Ease of system installation on all necessary platforms

62

4.3 DEVELOPMENT REQUIREMENTS

HARDWARE REQUIREMENTS:-

Table 4.18 Hardware Requirement for development side

Hardware Requirement

Description

Processor

Pentium I 300 MHz or
equivalent

The minimum
requirements in order to
run Java

Operating System

Microsoft Windows XP

This platform is chosen
because most of the
computer in FSK'TM is
currently installed with
Microsoft Windows XP.

Memory

128 MB RAM

This amount required to
run
Java

Hard Disk space

500 MB Hard disk

This amount of hard disk
spacerequired to store the
database of the database,
documentation and the
entire system component,

External device

Printer

Printer needs to print all
the

documents that needs for
the system development

4.4.1 HARDWARE REQUIREMENTS:

« For Windows

32 MB RAM (128 MB is recommended)

« 20 MB of available disk space

Intel Pentium 200MHz processor or equivalent processor running

Windows 98, Windows ME, Windows NT, Windows 2000 or Windows XP

63

« Internet Connection

A 16-bit color monitor capable of 1024 x 768 resolutions

For Macintosh

Macintosh PowerPC with System 8.6 or later

Mac OS 9.1, Mac OS 9.2.1, or Mac OS X 10.1 or later

« 32 MB RAM (128 is recommended)

20 MB of available disk space

4.5 CHAPTER SUMMARY

When we make the requirements measurable, we have the basis for testing and
negotiating the solutions. Whenever we discover a new requirement, we test it to

ensure that it conforms to the minimum standard. That is:

It has an understandable, no ambiguous description.

It has fit criteria that will guarantee that the implemented solution conforms

to, or fits, the original requirement.
e It is correctly identified.

« It carries the appropriate cross-references.

64

5.0 DESIGN

5.1 DATA FLOW DIAGRAM OF TEDS

The data flow diagram is about how the TEDS data structure is write and read from
flash memory. The TEDS data structures begin with setup the TEDS data structure
first such as Setup META, Setup Channel 1 and Setup Channel 2 TEDS. It is
followed by loading TEDS data structure into random access memory (RAM) known
as buffer memory. The loading process is converting the data structures from text
structure into binary to store in buffer memory. After that the TEDS data structures

are write and read to flash memory using the same process. The data flow diagram is

shown in figure 5.1 below.

65

Channel 1 TEDS

META TEDS (¢ (sensor)
Setup META TEDS
Channel 1 TEDS DATA
META TEDS Data Setup Channel 1 TEDS
(* LED (sensor)
| TEDS
L) Setup Channel 2 TEDS
1 (actuator)
Loading TEDS Buffer
Read TEDS
RAM Channel 2 TEDS DATA
1 Channel 2 TEDS

Flas?h

FLASH

|

_ Read TEDS
Write TEDS to from Flash

A

Get TEDS
Handle

A

(actuator)

Figure 5.1: Data Flow Diagram for TEDS

66

5.2 TEDS BLOCK DIAGRAM

In the block diagram below, explain about META TEDS, where is Setup the META
TEDS data structure first and then the checksum is calculated during run time before
the TEDS are written into the flash memory structure. Before the META data
structure is write into FLASH memory, the flash memory must be initialize first to
make sure that the memory are not full and enough space to write the data structure.
If the flash memory is full, it will be erased. Then, the TEDS loaded into flash
memory. In the Get TEDS handle function is about select which channel to read the
information from, after make a selection and get the information back from the
TEDS, the information will be send out for user to read. The META and Channel

TEDS block diagram are shown below.

67

Setup the TEDS specification

The flash must be

initializing if it’s full

The checksum for each TEDS field
is calculated during run time before
the TEDS are written into the Data

Initialize
TEDS Flash

FLASH memory structure.
Setup META Calculate
TEDS P Checksum
y
Write TEDS to
flash
Get TEDS Select channel to read
Handle
y
Read TEDS Get the TEDS
from Flash information
Read META
TEDS
l User read the TEDS
information

Figure 5.2:META TEDS Block Diagram

68

Setup the TEDS specification

The flash must be

initializing if it’s full

The checksum for each TEDS field
is calculated during run time before
the TEDS are written into the Data

Initialize
TEDS Flash

FLASH memory structure.
Setup Channel Calculate
1/2 TEDS | Checksum
4
Write TEDS to
flash
Get TEDS Select channel to read
Handle
Read TEDS Get the TEDS
from Flash information
Read Channel
1/2 TEDS
l User read the TEDS
information

Figure 5.3: Channel TEDS Block Diagram

69

5.3 PSEUDO CODE

Setup TEDS

Setup META TEDS

Setup Channel 1 TEDS

Setup Channel 2 TEDS

Calculate checksum for all the channels

Write TEDS to Flash

Setup the start address for writing to the data Flash

Write all bytes (4 bytes pages at a time)

Increment start address in flash for the next 4 bytes

Increment the count pointer to the start of the next byte in memory
Read TEDS from Flash

Setup the start address for reading from the data Flash

Read the first 4 bytes from the TEDS specified

Read all bytes into the buffer

Increment the start address in flash for reading the next 4 bytes

Increment the count pointer to the start of the next byte in memory
Get TEDS Handle

Select Channel

Get Data from Channel

70

5.4 FLOW CHART OF TEDS INTERFACE

Select Channel

META TEDS

META or META TEDS Data
Channel TEDS
Channel TEDS
Channel 1
Channel 1 or Sensor Data

[

ChanV

Channel 2

Actuator Data

Figure 5.4: Flow Chart of TEDS Interface

5.5 INTERFACE PROTOTYPE

Smart Transducer Interface Module

META TEDS

Channel TEDS H

READ

READ

Result

il

-“f>“:>

Input TEDS
data structures

ﬂ

TEDS data
structures Output

=
ﬁ@a

Read

= <

FLASH
Memory

Ouput

O Button

"._.:> Representing Data in Binary

L____> Representing Data in Hexa and Text

72

6.0 SYSTEM IMPLEMENTATION

6.1 INTRODUCTION

System implementation is a process that converts the system requirements and
designs into program codes. In this chapter also describe the development
environment as well as the development of the system itself. Besides, it includes

system coding, coding style and approach and object oriented technique applied in

the Flash Memory Simulation.

6.2 DEVELOPMENT ENVIRONMENT

In this section, discuss about the hardware and software tools used to develop and
document the Flash Memory Simulation.
Below are the hardware configurations of the development environment:-

o Intel Pentium IV Processor 1.8 GHz

o Memory - 256 MB

o Storage — 4 GB of Hard Disk space is reserved
o Other standard desktop PC component
The software tools utilized in the development environment are listed as follow:-
o Operating System — Microsoft Windows XP pro Service Pack 1
o Web Browsers — Internet Explorer 6.0
o J2SE (J2SE1.4.2 07)

o Xinox software JCreator LE v2.50

73

6.3 DEVELOPMENT OF THE SYSTEM
First step taken before start develops the system is study and get the experiences with
the java programming language. Below is the explanation of Object Oriented

program approach, classes that are defined and created for the simulation system and

the related coding parts of the entire simulation program.

6.3.1 OBJECT ORIENTED PROGRAM

In this section will discuss about an object, class and also the relationship between
objects and class. Firstly, discuss about the HTML markup for Applets. In this code,
use the <APPLET> tag to include applets within HTML files. The syntax of the
<APPLET> tag is shown below;

<HTML> <TITLE>Flash Memory Simulation</TITLE>

<BODY> <H1><center>Flash Memory Simulation</center></H1>

<center><APPLET CODE = "Box.class" WIDTH = "500" HEIGHT ="450">

</APPLET></center>

</BODY></HTML>

The <APPLET> tag specifies where and how to display an applet within the HTML
document, The CODE, WIDTH, and HEIGHT parameters are required. Parameters
within the <APPLET> tag are separated by spaces, not by commas. </APPLET>
used for closes the <APPLET> tag. The following parameters may appear inside the

<APPLET> tag. ALIGN, alignment is optional which is specifies the applet’s

74

alignment on the Web page. Valid values are: left, right, top, texttop, middle,
absmiddle, baseline, bottom, absbottom, and center. CODE is about applet-filename.
This parameter or the OBJECT parameter is required. Name of applet .c/ass file. The
.class extension is not required in the <APPLET> tag but is required in the class’s
actual filename. The filename has to be a quoted string only if it includes whitespace.
WIDTH is applet-pixel-width, required. Initial width of applet in pixels. Many

browsers do not allow applets to change their width.

The AWT classes are about draw strings, images, and shapes via the Graphics class
in Java program. The Graphics class is an abstract class that provides the means to
access different graphics devices. It is the class that lets users draw on the screen,
display images, and so forth. Graphics is an abstract class because working with
graphics requires detailed knowledge of the platform on which the program runs.
Below are the lists for the graphics methods that used in flash memory system;
Drawing string - These methods allow draw text strings on the screen. The
coordinates refer to the left end of the text’s baseline.
Drawing shapes - The location of the object’s upper left corner, plus its width and
height.
The example of the code is shown below:-
/*1-3 rectadd vertica*/
g.drawRect(205,200,40,30);

g.drawLine(225,190,225,200);//line pendek atas ke rect beza 60

75

g.drawLine(225,230,225,240);//line bwh lepas rect
g.drawLine(190,215,205,215)://line kiri rect
g.drawLine(245,215,260,215);//line kanan rect
By using this method (AWT) also can create a simple animation that uses a thread to
run the application. Below is the example of code that using threads method;
for (x1 = 35; x1 <= 68; x1+=4)
{ try { Thread.sleep(10); }

repaint();
catch (InterruptedException e) { }

}

From the code shown above, show that the code creates a new thread to control the
animation. This thread calls sleep(10), followed by repaint(), to display a new image

every 10 milliseconds.

6.3.2 SYSTEM CODING

After studies the java language have been done, the development of the simulation
system which is able to run the simulation as a web-based application which can be
executed using any java enabled web browsers. The coding phase was done using the

Xinox Software’s JCreator Ligh Edition (LE) v 2.50 integrated development

environtment.

6.4 PROGRAM DEVELOPMENT AND CODING

In this section will discuss about the process of creating the programs needed to

satisfy an information system’s processing requirements.

76

Review the program documentation — the first and foremost step to be taken
in this chapter is to review the program documentation that was prepared
during the earlier phases.

Designing the program — for this phase, is about recognize how the program
can accomplish the features and functions that are described in the program
documentation and developing a logical solution to the programming
problem.

Coding approaches — there are two approaches in coding which is known as
top down and bottom up approach. For this simulation system was
developed using both the top down and bottom up approach.

Coding style — coding style is about how to manage the source code. It is
important because it will make the system easier to maintain and enhance.
Besides that, there are some elements must be consider such as standard
naming convention and standard graphical user interface for better
understanding. This can be done by using comments which is providing a

clear guide to programmers for future enhancement.

6.5 CHAPTER SUMMARY

System implementation is a process that translates a detail design representation of

software into a programming language realization. Coding convention is about

program labeling, naming, and comments. Besides that, each code must be easy to

understand and also must be easy to modify or corrected. The code also should be

77

able to handle user error by responding appropriately, perhaps with a diagnostic error
message and system failure should not result. In this chapter assures that the system

being developed is operational and then allowing the users to take over its operation

for use.

78

7.0 SYSTEM TESTING AND SYSTEM EVALUATION

7.1 INTRODUCTION

Software testing is an important activity to check either the Flash Memory
simulation system is operational based on its criteria. The objective of testing is to
detect the presence of errors in systems, which are the errors that have not been
discovered yet. In this case, a good test case is one that has a high probability of
finding an undiscovered error. A successful test is one that discovers error whereas
an unsuccessful test is one that discovers no errors. The goal of testing is to design
test that will uncover the greatest number of errors or classes or errors with the
minimum amount of time and effort. Successful testing will result in quality system
will less errors and which work according to specification and performance

requirements. It will lead to dependable and reliable system.

7.2 TESTING STAGES

The testing process is carried out in stages to suit the system, as the system itself is
composed of modules integrated together. System development usually involves

several stages of testing, consisting of unit testing, integration testing and system

testing.

79

7.2.1 UNIT TESTING

Unit testing is the first stage of testing where each program component is tested on
its own, isolated from the other components in the system. Unit testing verifies the
correctness of the smallest unit of the application. The testing is generally carried out
by programmers, and not the users, as detailed understandings of internal system
coding and design are required for the testing. It verifies that the component
functions work properly with the types of input and output expected from studying
the component’s design. After each component has been tested, the interaction

between these components can be integrated.

Five modules have been tested, in which the author is in charge of functionalities of

each module are tested for errors. Testing of each module is discussed as following:-

1. Interface and navigation

This testing to ensure that the each page of the system has a navigation menu for

users to return navigates in and round the system.

Users are clearly told which page they are in at the moment, such as a title on top

of each page to inform them that they are in which section.

80

2. Simulate the system

Testing performed to ensure that the users are able to enter input address and data

to simulate the system and ensure that the system simulate correctly.

7.2.2 INTEGRATION SYSTEM

After performing the unit tests, the modules are integrated or combined into a
working system. The testing is necessary because problems might occur only when
the modules are integrated together, although the modules have been individually
tested to be functioning properly. This integration is planned and coordinated so that

when a failure occurs, it can be solved immediately.

7.2.3 SYSTEM TESTING

System testing is the final stage, where the whole integrated system is tested as one
single unit, and it is to ensure that the whole system works according to user’s
specification. Developers will join the users to perform this stage of testing where
the system is checked against the users’ requirement description. If there is a need
for a change, system modification will then be carried out. If the users are satisfied

with the system’s performance, the system is ready to be deployed. There are several

81

steps in testing the proposed system, such as functional testing, performing testing

and acceptance testing.

Functional testing

Initially, functions performed by the proposed system are tested. This begins with
a set of components that were tested. This begins with a set of components that

were tested individually. Functional checks that whether the integrated system

performs its functions as specified in the requirement.

Performance Testing

System performance is measured using performance objectives set by potential

users as highlighted in the non-functional requirements section a guidelines.

Acceptance testing

The purpose of acceptance testing is to demonstrate that a system is ready for

operational use.
7.3 SYSTEM EVALUATION

System evolution is processes that encounter technical and non technical problems
during the development stage. The detected problems will be list out and recognize

and try to solve it. The most important part in this chapter is to determine whether

82

the expected output true or not. The strength and weakness of the system also will be
discussed in this chapter. So the system can be evaluated by the criteria that have
been list out. When all the testing mentioned above are complete, we are convinced

that the system meets all the requirements specified during the initial stages of

software development.

7.4 CHAPTER SUMMARY

In this chapter, all the testing carried out on this system which include unit,
integration, system, acceptance, performance, usability and security testing were
discussed and explained in detail. System testing is a process of executing a program
with the intent of finding errors and runtime program errors. System testing phase
aims to uncover as many errors as possible in the system. The objectives of a system
can only be achieved after a thorough testing is carried out. Afier test the system then

the system can be evaluate based on the criteria that have been mention in system

testing.

83

8.0 DISCUSSION AND CONCLUSION

8.1 DISCUSSION

8.1.1 PROBLEM ENCOUNTERED AND SOLUTIONS

There are various problems encountered during the development process of the
proposed system. The following section highlights the problems come across and the

solutions taken.

Lack of experience in programming language

Lack of knowledge in the new programming language has leads for a lot of
difficulties during the early stage of system coding. The programming language used
to develop the simulation system is Java programming language. Before this, I am
not familiar with this programming language so the first step taken to get the
knowledge and experience with this language is study the language. Besides that |
also refer to many sources such as from internet, e-books, and java book to expert in
this language. There are some problems encountered in this stage of system

development, whichis discussed below:-

Difficulty in coding

Problems were encountered when the languages had to be learning from scratch.
When errors occurred, it was hard to detect and spend much time to debug the errors.
Besides that, the main problem that I faced is to do the animation of the system. The

solution of these problems was seeking advices from course mates and friends.

Besides, many tutorials and references was being referred and downloaded from

internet. Programming books were in order to learn the basic concepts.

Difficulties in determining the system scope

The system scope is one of the main problem that I faced and also hard to determine.
It is because I am not very clear what actually the simulation system that will be
design. After get the guideline from the supervisor and moderator and they agree

with the scope that I must do, the development of the system begin.

Lack of time

The development of the simulation system is done in the limited time. It is because I
took other subjects that mostly are the third year course. In addition, each subject
that I took has their own assignment either by group or individual. The subjects are
quite difficult to understand and need more attention same as thesis project. Even
though I have many assignment or subject to learn but I still spend much time to
develop the simulation system. Easy to said that I try to develop the system

everyday. To settle down these problems, I have managed my time properly so that |

am able to finish my work on time.

When the system is done, I am satisfied with my system because the animation that I
should do succeed. Even though the systems are not good enough and may be it

looks easy for other people, I am happy with the system. It is because I start

85

developing the system using java language from the basic knowledge and I am able

to make it.

8.2 SYSTEM STRENGTHS

a) Web Enabled

The simulation system was built based on the web technology. It means that the
current implementation is deployable over the internet.

b) Informative Messages

The users will be prompted with appropriate message when trying to enter button
without enter address or data.

¢) Animation

Using this system for better understand about the flash memory rather than read

it from books because this system explains the concept with animation.

d) Help provided

In this simulation system provides a help function that will explain to the users

how to fully utilize the system.

8.3 SYSTEM CONSTRAINTS

The proposed system has a number of constraints, which are listed below.

a) Hard code

In this system, require user to enter address and data to be store in the flash

memory, but only certain address and data are allowed. The users are not allowed

86

to enter random address and data to view the animation of this system. The value
of the address and data can be view at main window. It is because, I have a

problem with “code too large™ while code the address and data.

b) Integer value

Only integer value both for address and data are allowed in this system. If the

user enters floating point or character value, the system does not perform for the

animation flash memory.

8.4 FUTURE ENHANCEMENT

Some functionalities of the system can be enhanced in order to improve the quality
of the system, as well as reduce its constraints mentioned previously. The following

section discussed about some enhancements that are possible to be incorporated into

the system.
a) Various types of input

This system allow integer input for address and data, for the future enhancement

the various of input such as floating point, hexadecimal, text and binary are

allowed in this system.

b) Dynamic code

The input of this system were program in hard code, it means that only data that
was program can be used. In the future, the data should be program in dynamic

code means that the system will auto generate the input of the data.

87

8.5 KNOWLEDGE AND EXPERIENCE GAINED

Throughout the whole period of this system development life cycle, a lot of exciting
and valuable experience was gained. There has been an improvement in searching
information and solving problems, being able to work cooperatively in a team, as
well gaining the capability to work independently. The benefit that gained
throughout this project is the chance to understand the concept of software
development process. There was a golden opportunity to learn additional
programming language, which are not familiar before. Besides that, skills in time
management were also improved when the system was compulsory to finish before
the deadline. The way to handle a project under time constraints was learn.

Indirectly, the experience to plan a system and solve a problem had been enriched.

88

8.6 CONCLUSION

System Overview

Finally the flash memory simulation system has achieved most of the aims and
objectives stated in the introduction of the report. Even though the system has a
number of constraints and limitation, but with the implementation further
enhancement, it can be a powerful version of the same system, which is more
efficient and effective. The system can be divided into three modules, first module is

about the structure of flash memory, and second module is about flash memory cell

and the last module is about view the flash memory.

Achieved Objective:-

After analyzing the project, objectives that have been met are listed below:-
1) Animate how the flash memory works.

2) The system can be view over internet.

89

9.0 REFERRENCE

9.1 Article and Journal Source:

[1] Ferrari P, Flammini A, Marioli D, Sisinni E, Taroni A, (Novembar, 2002), A
Low-cost Smart Sensor with Java Interface.

[2] Ferrari P, Flammini A, Marioli D, Taroni A, (2002), A Low-cost Internet-
enabled Smart Sensor.

[3] Institute of Electrical and Electronis Engineers, IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators - Transducer to Microprocessor

Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats,

1997.

6.2 Internet Source:

[1] http://www.sensorsmag.com/articles/0800/46/main.shtml), 02/08/2004

[2] http:/www.techonline.com/community/ed_resource/course/13399),

04/08/2004.

[3] www.telemonitor.com/doc/stim.pdf), 09/08/2004

[4]http://www-2.cs.cmu.edu/~sensing-sensors/S2004/1.2004-03-
data_acquisition/1.2004-03-IEEE_1451-Anna_Liao.pdf), 12/08/2004

[5]

http://www.analog.com/UploadedFiles/Application_Notes/4142732043878uC003

_The_ADuC812_as_an_IEEE_1451.2_STIM.pdf , 23/08/2004

[6] http://bsing.ing unibs.it/~label/activity/Web_Demo/How_to_use WebSTIM.htm

27/07/2004.

[7] http://jddac.labs.agilent.com/server/docs/transducer.htm, 18/18/2004

[8] http://ieee145 1.nist.gov/intro.htm, 05/09/2004

1]

http://www.google.com.my/search?q=cache: WTFdtktsJ 1 UJ:sensorsynergy.com/App

lication IEEE 1451 2.pdft1451.2+STIM&hl=en, 07/09/2004

[10] http://www.manufacturing.net/ctl/article/CA 191594, 08/09/2004

[11] http://www.big-dipper.com.cn/Network/STIM_Mobus/Ch2Data&Function.htm,

09/09/2004
[12] www.its. hk-r.se/staff/BLO/BT/BTreport MEE-99-10.pdf. 12/09/2004

[13] http://jas2.eng.buffalo.edu/applets/education/system/memory/index.html

[14] http://java.sun.com/docs/books/tutorial/

[15] http://www.ibiblio.org/javafag/javatutorial. html

[16] http://www.javacoffeebreak.com/tutorials/

[17] http://www. javaworld.com/javaworld/jw-03-1996/jw-03-animation html

[18] http:/www.rgagnon.com/javadetails/java-0262 html

[19] http://www.oberle.org/procsimu-index.html

[20] http:/media.pearsoncmg.com/aw/aw_carpinel_compsys_I/rscpu/web.html

[21] http://www.freehandsource.com/_frames/_tips/_archive/tip_week020.html

[22]

http://www.academicsol utions.com/workshop/animations/flash/animationflash.htm

91

[23] http://javaboutique.internet.com/javasource/

[24] http://java.sun.com/applets/jdk/1.1/demo/Animator/

[25] http://www.realapplets.com/tutorial/

[26] http://www.dgp.toronto.edu/~mjmeguff/learn/java/

[27]

http://www.her.itesm.mx/academia/profesional/cursos/fisica 2000/Fisicall/PHYSEN

GL/physengl.htm

[28] http://www-fp.mes.anl. gov/ote/Guide/CaseStudies/simplex/applet/source. html

6.3 Books reference:

[1] Daniel D. Gajski, University of California, , Principles of Digital Design,

Prentice Hall, 1997.
[2] Roger L. Tokheim, Digital Electronics Principles and Applications, McGRAW-

HILL International Editions, Fifth Edition, 1999.

[3] Deitel & Deitel, JAVA How To Program, Prentice Hall, Fifth Edition, 2003.

92

APPENDIX

USER MANUAL

This part is guidance for the first time user of this system. Below are the instructions

to install J2SE 1.4.2_07 SDK.

Stepl. Download and install the J2SE 1.4.2 07 SDK at http:/java.sun.com/ web

site.

Step2. Choose and click at DOWNLOAD WINDOWS J2SE SDK link and above

figure appear and then click open button.

Fvile Download

2

Some files can harm your computer. |f the file information below
save this file,

File name: ..,_4_2_07-windows-i586-p.exe
File type: Application
From: dic.sun.com

/AN This type of file could harm your computer if it contains
malicious code.

Would you like to open the file or save it to your computer?

looks suspicious, or you do not fully trust the source, da not open or

[T open || Save || cancel || More Info |

I
{
' ¢

Figure 9.1: File Download box

93

Step 3: After that the figure below appear.

Opening!
o4 2 07-windows-i586-p.exe from dic,sun.com

(»]
Estimated tme left 8 min 38 sec (B52 KB of 51.9 MB copied)

Download to: Temporary Folder

Transfer rate: 101 KB/Sec

[] Close this dialog box when download completes

(Open Folder Cancel

Figure 9.2: j2sdk-1 4 2 07 box

94

Step 4: Wait for the preparing to install

Preparing to Install...

Java 2 SDK, SE v1.4.2_06 Setup is preparing the
InstallShield \Wizard, which will quide you through the
program setup process. Please wait,

[TITITD

Figure 9.3 : InstallShield Wizard box

Step 5: Wait for the Windows Installer

E[ﬁl Preparing to install...

T)

s

Figure 9.4: Windows Installer

95

Step 6: Click Next for this box

157 Java 2 SDK, SE v1.4.2_ 06 - Maintenance Welcome

Welcome to the InstallShield Wizard for Java

2 SDK, SE v1.4.2_06
—

The InstallShield(R) Wizard will allow you to modify or remove
Java 2 SDK, SE v1.4.2_06. To continue, click Next,

[Next >] [Cancel

Figure 9.5 : Java 2 SDK, SE v1.4.2_06 box

96

Step 7: Select modify and click Next for this box

W;} Java Z‘SDK. s 4 e Mamtendnce e RS

Program Maintenance

Modify or remove the program,

(%) Modify

R Change which program featutes are installed, This option displays the
[@ Custom Selection dialog in whch you can change the way features are
installed.

() Remove

l@;] Remove Java 2 SDK, SE v1.4.2_06 from your computer,

[< Back J[Next >][Cancel]

Figure 9.6 : Java 2 SDK, SE v1.4.2_06 - Maintenance

97

Step 8: Click Next for this box

16 Java 2 SDK, SE¥1.42_06 - Custom Setup. g

Custom Setup
Select the program features you want installed.

Select optional features to install from the list below. You can change your choice of features after
installation by using the Add/Remove Programs utility in the Control Panel

e emsmsemee - Feature Description
i Development Tools ‘

)~ | Demos | The Java 2 SDK, SE v1.4.2_08,
including private j2rel.4.2_06,

) ~ | Source Code This will
— " Runtime Environment s will require 120 MB on your
(=)~ | Public Java hard drive.

[<Back || Next> || Cancel

Figure 9.7 : Java 2 SDK, SE v1.4.2_06 — Custom Setup

98

i@ Jaya IZFS_DK. SE v1.4._2,067P_rbgres§‘ de

Status:
Generating script operations for action:
(W NN |

Y PN | e M5 PR
!r.'vf";lui»!“:«.i B A AN TN S RSN EH A SET SRS VSN STV PO OERPIERARCLIGMADF=I0S. . Y00 . G5

Figure 9.8 : Java 2 SDK, SE v1.4.2 06 — Progress

99

Step 9: InstallShield Wizard complete

16 Java 250K, SEV1.4.2.08 - Complele. o i

InstallShield Wizard Completed

Figure 9.9 : Java 2 SDK, SE v1.4.2_06 — Progress

100

Below are the instructions to install Xinox software JCreator LE v2.50

Stepl. Download and install the JCreator LE v2.50.

P

File: Download - Security Warning,

Do you want to run or save this file?

Name: Setup.exe
Type: Application, 3.14 MB
From: 202.185.107.158

{ Run | [Save j [Cancel j

. While files from the Intemet can be useful, this file type can
potentially harm your computer.]f you do not trust the source, do not
What's the risk?

run or save this software.

o V51w AT OGRY AN A A1 RO Y S AT 0 e 1

Figure 9.10 : File Download

Step2. Run the file download and the file will download to computer

49% of Setup.exe Completed

® ' -

Opening:
Setup.exe from 202,185,107.158
(0]

Estimated time left 2 sec (0.99 MB of 3.14 MB copied)
Download to: Temporary Folder
Transfer rate: 0.97 MB/Sec

[7] Close this dialog box when download completes

Figure 9.11 : Setup.exe Completed

101

Step3. Click yes to install ICreator LE

-

? r/ This will install JCreator LE, Do you wish to continue?

[Yes j[Na j

Figure 9.12 : Setup

Step4. The wizard box appears and clicks next

Welcome to the JCreator LE Setup
Wizard

This will install JCreator LE 3.00 on your computer.

It is recommended that you close all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.,

[Next >—] [Cancel]

Figure 9.13: JCreator LE Setup wizard

102

Step5. Accept the agreement and click next

2 Setup - JCreatorLE.

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

END-USER LICENSE AGREEMENT FOR JCREATOR LE A

NOTICE TO ALL USERS:CAREFULLY READ THE FOLLOWING LEGAL
AGREEMENT, FOR THE LICENSE OF SPECIFIED SOFTWARE BY XINDX
|SOFTWARE. BY INSTALLING THE SOFTWARE, YOU [EITHER AN

INDIVIDUAL OR A SINGLE ENTITY) CONSENT TO BE BOUND BY AND

BECOME A PARTY TO THIS AGREEMENT. IF YOU DO NOT AGREE TO ALL

OF THE TERMS OF THIS AGREEMENT, CLICK THE BUTTON THAT

INDICATES THAT YOU DO NOT ACCEPT THE TERMS OF THIS AGREEMENT
AND DO NOT INSTALL THE SOFTWARE. v

(43| accept the agreement
(1 do not accept the agreement

[< Back j[Next >][Cancel]

Figure 9.14: JCreator LE License Agreement

103

Step6. Select the destination directory to store the software

£ Setup - JCreator LE

Select Destination Directory
Where should JCreator LE be installed?

Select the folder where you would like JCreator LE to be installed, then click Next.

IC:\Program Files\inox Seftware\Creatory'3 LE I o=
_J Program Files |

| @ Xinox Software ‘
i) JCreatorV'3 LE l

|

| |
! i
‘v e - - - o P——— D~ U= e J‘
| e windows o\ 5|

The program requires at least 7.3 MB of disk space.

[<BackJ[Next >][Cancel J

Figure 9.15: JCreator LE Directory

104

Step7. Click next for this box

@"’S"‘“P - ICreator LE i i

Select Start Menu Folder
‘Where should Setup place the program's shortcuts?

Select the Start Menu folder in which you would like Setup to cr ;
shortcuts, then click Next. R Ena oo
) Creator/d LE]

| Accessories = Rl
| Administrative Tools |
| Canon LASER SHOT LBP-1210
| Creative

| Dell Accessories

' Games

|JavaWeb Start

' Microsoft Office

NetBeans 4.0

' Network Associates
' PrakFPA Desinn St a\ v

[< Back][Next > 1 L Cancel 7

Figure 9.16: JCreator LE Select folder

105

Step8. Select Additional tasks and click next button

A N N T T T T

£ Setup - JCreator LE

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you wauld like Setup ta perform while installing JCreator LE,
then click Next.

Additional icons:
Create a desktop icon
[] Create a Quick Launch icon

[< Back][Next >][Cancel]

Figure 9.17 : JCreator LE Additional Tasks

106

Step9. JCreator is ready to install and click install button

e Y ST

#%Setup - JCreator LE

Ready to Install
Setup is now ready to begin installing JCreator LE on pour computer.

Click Install to continue with the installation, or click Back if you want to review or
change any settings.
Destination diectory:

C:\Program Files\Xinox Software' Creatory'3 LE

Start Menu folder:
JCreatory'3 LE

Additional tasks:
Create a desktop icon

[< Back][Install J [Cancel]

Figure 9.18 : JCreator LE Ready to install

107

Step10. JCreator LE Setup complete and ready to be used

Completing the JCreator LE Setup
Wizard

Setup has finished installing JCreator LE on your computer. The
application may be launched by selecting the installed icons.

Click Finish to exit Setup.

[“]iLaunch JCreator LE:

Figure 9.19: JCreator LE setup complete

108

Opening the Flash Memory Display

There are two ways to display this simulation system by using the web browser and

go to the http:/www.thesis3182.netfirms.com, or by using the Xinox software
JCreator LE v2.50 with open all filejava and file.html and run the html file. The

applet window will appear after run the html file. Then the simulation system is

ready to use.

At the main window, choose whether to click on the Flash Memory button, Cell

Flash Memory button or View Memory button.

”
] Website for thesis3102.netfirms.com - & - Microsoft Internet Explorer ® %)
Flo Edt View Fovortes Tooks Help P T e e i g, R 3 L R . ‘-,‘.'4.‘“_.‘]
. \ |
L) Back * » Jo-) Search Favorites Modia {41 . - e N
J|l.3 ’ !J] LU @ (* b VB 3’.’\\3{.3 % 1
f Akl |] http:ffwww.thesis3162.netfirms.com v e e :
R U AN PO LTl S o § (WA [N ST Il
All Clsoo Mamorty in stook ’21 umzew:zo $30 WS-06404 | Game Templates, Catoon Design n-n mcmovy solutions ™™
1600,1700 2600, 2000, 3600, 1 stock and we will ship today Yv:m'hhll- more Also fots of Flash | mobile devices & embedded
tutorlals systoms.

Catalyst, NPE

Flash Memory Simulation

*** Flash Memory Instructions *** ;

[“The Flash Memory Simulator is an Instructional aidfor A
teaching flash memory design. it allows the user to simulate

the flow of data within this memory as it fetiches, decodes,

and executes instructions.

At the main window, click on the Flash Memory button
The Flash Memory Display window will appear, displaying fl
the internal architecture and structure of the Flash Memory.

s+ READ Flash Memory ****

| 1 Enter the address In the text field
| 2.Click on the READ button.

I 3.The Flash Memory will then begin to execute the instructions
| starting at the specified address
I Examplo: Address 7
|

|

ws+ WRITE Flash Memory ****
1.Enter the address and data In the text field

Flash Momory | Col Flash Momary | Viw Memor |

) Aot Box storted L s

Figure 9.20 : Main window

109

Click on the Flash Memory button make a Flash Memory Display window appear

and displaying the internal architecture and structure of the Flash Memory.

3
=
&

o Flosh Memory Knimaton
pL dress:

—‘warre{ CLEAR | 8T

4

&
Z

T O
(O 1 T
T 0 O o s
PP |

o ICHENCCHEHHICH

0 o o e o
|

& B oo

h

-

ol O

o
£

Java Applot Window

Figure 9.21: Flash Memory Animation frame

110

Starting a Read Flash Simulation

1. At the Flash Memory Display window, enter the address from (0 to 7) in
the address text field to read the content of the flash memory.

2. Click the READ button. The animation will then begin to execute the

instructions starting at the specified address.

' Laxh Memory Animation,

H

L O 5 O

Z
i
i
B

Cheamancs
e o
e CEEErEy

|78
Y|

Eveveeesly |

N CEE e

o (I CH

Figure 9.22: Flash Memory Animation frame

111

3. The animation in the magenta color, show how the flash memory work. It

begins from decoder and moves to the each cell that stores the value either 0

in pink color or 1 in blue color.
4. The Read / Write select (RWS) status is 0 value means that the memory will

read its content at the location specified by the address lines and make it

available at its output ports.

5. The chip select (CS) status is based on the specified address that was

selected.

6. The data from the specified address shown at the bottom part in binary value
in red color.

7 The data in decimal value is shown at the right part also in red color.

Note: Starting a new simulation does not reset the content of the Flash Memory.

In addition, memory is not affected by this action.

Starting a Write Flash Memory Simulation

At the Flash Memory Display window, enter the address and the data in the

address and data text field to write new data on the flash memory.

Click the WRITE button and the animation will then begin to execute the

instructions starting at the specified address and data.

The animation in green color will start from decoder and move to the each

cell to store data.

112

4. The value of data that the user entered will start from processor in binary
value and move to the flash memory cell based on its value.

5. At this event, Read / Write select status is equal to 1 show that the memory
will write the content presented on its input ports into the location specified

by the address lines.

6. The chip select status is equal to the selected address.

Flash Memory Animation

E

8 0 1)) 3 e

z

f:u

H
B

Rl

g

N

g

.

Figure 9.23 : Flash Memory Animation frame

113

Overwrite the Existing Data

|. The existing data in the flash memory can be change by using the same

function read and write button.

2. Firstly, enter the address value to read the existing data in flash memory then
enter the same address and new data to change the value of flash memory

3. Finally, the existing data in flash memory will be change to the new data, as
shown below.
Stopping a Running Animation
At the Flash Memory Display window, click on the STOP button will immediately

stop animation.

Clear the Flash Memory Content
At the Flash Memory Display window, click on the CLEAR button will immediately

stop instruction execution and the contents of the flash memory will be cleared

immediately.

114

Opening the Flash Memory Cell Display
Click on the Flash Memory Cell button make a Flash Memory Cell Display appear

without any instruction.

;& Flash Memory Cell

| l
WL 1 Jﬁ‘
4
Q2

ZE‘
i {
i
HW

@1.MEMORY TRANSISTOR

22 PASS GATE
@3.8ECTOR SELECT

TJ ava Applet Window

Figure 9.24 : Flash Memory Cell

Starting a Write Flash Memory Cell Simulation

. Click WRITE button will show the animation how the flash memory cell

work.

2 The stored data that the value is equal to one

115

PR T —— e

.....................

(WRITE| ReaD| CLEAR| ag
BL
1 WL 1
I 1
@1 Q2
E R [
0 WL 2
1

Stored Data=1
Ward Line is in undefined state

YWard Line selected
Transistor turned on

Q1.MEMORY TRANSISTOR
22.PASS GATE
Q3.SECTOR SELECT

Java Applet Window

Figure 9.25 : write Flash Memory Cell

116

Starting a Read Flash Memory Cell Simulation

1. Click READ button will show the animation how the flash memory cell

work.

e i ™ [

BL 0 |
WL 1
1

j Q1 Q2

e =

WL 2
1

1

Stored Data=0
Word Line is in undefined state

Word Line selected
Transistor turned on

Q1. MEMORY TRANSISTOR
Q2.PASS GATE
@3.8ECTOR SELECT

Java Applet Window

Figure 9.26 : Read Flash Memory Cell

117

Opening the view Flash Memory

Click on the view Flash Memory button make a view Flash Memory appear without

data. Below are the figure shows that flash memory in database format in binary

value.

&2 Memory Display

e

Edit Type

0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 000D
000D 000D 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
nNNN_ANNN_NNNN_NNON

0000 0000
0000 0000
0000 0000
0000 0000
0000 000D
000D DODD
000D DDDO
0000 000D
0000 0000

0000 0000
nnnn_nnnn

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
nnnn_nnnn

"Iava Applet Window

Figure 9.27 : View Flash Memory

Editing a Byte of Memory

| At the Memory Display window, click Edit Memory on the Edit menu. The

Edit Memory dialog box will appear.

5 Enter the address of the byte in the Address and Data text field.

118

3. Click the OK button to continue with the change operation. Otherwise, click

the Cancel button.

~

&» Memory Display [;:]@
Ffiew Edit Type

0>> { EdltMemgw 100 00O 0000 0000 000D
> | Fill Memory 00 0000 0000 0000 000D
lg>> f Clear Memory 100 0000 0000 0000 000D
425> UUUU UUUU UUUU UUOO 0000 0000 0000 0000
465> 0000 0000 0000 0000 000D 0000 0000 0O
50>> 0000 0000 0000 00D 000D 00D 000D 000D
b4>> 0000 0000 0000 000D 00D DOOD 0000 0000
b8>> 0000 0000 0000 00O 000D 00O 00O 00O
Java Applet Window

& temory Display =150

View Edit Type

0> 0000 0OOD D000 OOOO ODDO 0000 0OOD 0DOO
4> 0000 OQQO 0000 0000 QOQQ__ ng OQOO 0000
&> | Edit Memory | booo
> oo | g
20>> | Data: r DO0O
20>> DO0O
205> ‘2*5__‘ Cancel 1 DOOD
32>> D000
36> Java Applet Window 000
Ewa Applet Window

Figure 9.28 : View Edit Memory

119

Filling a Region of Memory

1. At the Memory Display window, click Fill Memory on the Edit menu. The

Fill Memory dialog box will appear.

2. Enter the beginning address of the memory region in the From text field.
3. Enter the ending address of the memory region in the To text field.

4. Enter the byte pattern to be written in the Data text field.

5 Click the OK button to continue with the change operation. Otherwise, click

the Cancel button.

(é Memory Display [;j@
View Edit Type ,
0> Edit Memory 100 0000 000D 0000 0000
#> | FiilMemory 100 0000 0000 0000 0000
@> | ClearMemory '00 0000 0000 0000 0000
425> UUUU UUUU UUUU UUOO 0000 0000 0000 0000
46>> 0000 00CO 0000 0000 0000 0000 0000 0000
20>> 000D 0000 000D 000D 0000 0000 0ODO 000D
4> 000D 0ODO 0000 DODO 00D 00O DOOD DOOD
ag>> 0000 0000 0000 0000 0000 0000 D000 000D
325> 0000 0000 0000 0000 000D DODO 00O 000D
365> 0000 0000 0000 0000 0000 0000 00O 0000

Java Applet Window

Figure 9.30 : View Fill Memory

120

r

g

¥ ur s Buer g b oe s
- ®

View Edit Type

0> 0000 00O0 0000 0ODO OOOO O0DOO 0000 oooo
4> Ofes R 0000
Fill Memor o
§>> 0 ¥ 0000
12>> 0| Address Range 0000
>
16> 0 From: r 0000
200> O 0000
adss o To | 0000
28>> O D000
Data: !
32>> 0 0000
36>> 0 oK I Cancel ’ D000
40> 0 0ooo
44>> 0| Java Applet Window || 0000
{Java Applet Window

Figure 9.30 : View Fill Memory

Clearing the Entire Region of Memory

At the Memory Display window, click Clear Memory on the Edit menu.

’ 5
r é; Mdmory Display Q@
| view Edit Tyne

05> [EditMemory 100 0000 0000 0000 0000
4o> Fill Memory 100 0000 0000 0000 0000
> | Clear Memory :100 0000 0000 0000 0000
42>> UUUU UUUU UUUU UUOOD 0000 0000 0000 000D
46>> 0000 0000 0000 0000 0000 0000 0000 0000
20>> 0000 0000 0000 0000 0000 000D 000D 000D
la4>» 0000 0000 0000 OO0 0000 0000 OO0 0000
bg>> 0000 0000 0000 0000 0ODD OO0 ODOO 000D
42>» 0000 0000 0000 DOOD 0OOO 0000 DOOD DODO
l3g>»> 0000 0000 00D DODD DO0D 0000 000D 0000
Java Applet Window

Figure 9.31 : Clear View Memory

121

View the value of Memory in hexadecimal format

At the Memory Display window, click view memory in hexadecimal on the type

menu.

= Memory Display

B[]

{1 B

4>

go>

125>
16>
20>
24>
28>
325>
365>
405>
L e

View Edit Type

00 | Viewmemotyin HEX
|
00 | viewmemoryin BINARY

00 00 0o
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

0

0
0o
00
00
00
00
00
00
00
00

00

Java Applet Window

Figure 9.31 : View Memory in Hexadecimal

122

