

 SERVICE DISCOVERY IN A DYNAMIC OFFICE ENVIRONMENT

 OOI SOO TECK

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY UNIVERSITY OF MALAYA
KUALA LUMPUR

2007

Univ
ers

ity
 of

 M
ala

ya

SERVICE DISCOVERY IN A DYNAMIC OFFICE ENVIRONMENT

OOI SOO TECK

DISSERTATION SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR MASTER DEGREE OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY UNIVERSITY OF MALAYA

KUALA LUMPUR

2007

Univ
ers

ity
 of

 M
ala

ya

 iii

ACKNOWLEDGEMENTS

The motivation, encouragement, advice and support provided by many individuals are

appreciated in producing this thesis. To those individuals who directly and indirectly involve

in finishing this thesis are highly appreciated.

Firstly, I would like to thank my supervisor, Dr. Rosli Salleh who had helped me in

supervising this thesis. His guidance, enthusiasm and knowledge have contributed so much

in this research work. I would like to express my gratitude to him.

I would like to give my deepest thanks to my parents for their caring support, motivation and

being there for me during my most trying moments.

Univ
ers

ity
 of

 M
ala

ya

 iv

ABSTRACT

The raising of pervasive computing environments of heterogeneous network has provided a

major impact to replicate the network-based service discovery technologies in ad hoc

networks and mobile networks. The ability to interact and control network devices with

different modalities within the home and office environment could be very beneficial to

many users. The Service discovery in computers and handheld devices enabled them to

interact with one another through heterogeneous wired and wireless networks. These

services advertise their existence in a dynamic way and the devices may automatically

discover them together with their properties.

Service discoveries were used in home and office environment where the devices in homes

and offices can be monitored and controlled over the Internet by handheld devices such as

laptop and mobile devices. These devices which are based on different technologies are able

to communicate and be discovered over the internet with the service discovery technologies.

However, there are few issues that prevent these to be realized due to the complexities of the

ad hoc environment.

This thesis focuses and provides a preliminary study and analysis of the service discovery

technologies in an ad hoc network along with the requirements that need to be met. The

challenges are to communicate devices of different communication protocols in a

heterogeneous network and platform and the devices are able to be accessed over wide-area

network which currently are poor in support.

An architecture of devices interaction is proposed based on the analysis of requirements. A

new service discovery concept for dynamic office network is developed and presented in a

scenario where a salesman, bringing his pocket pc into his client office which was enabled

with UPnP support, able to discover a printer around and print his product details without

any network setup and configuration. The service-oriented OSGi (Open Service Gateway

Initiative) framework is proposed as the base platform of the architecture. A prototype is

partially deployed on the knopflerfish OSGi framework to evaluate the possibility of the

proposed architecture. This prototype demonstrates and satisfies the requirement that

services could be discovered over different networks and communication platform such as

UPnP and OSGi.

Univ
ers

ity
 of

 M
ala

ya

 v

TABLE OF CONTENTS

 Page

DECLARATION ………………………………………………………………………… ii

ACKNOWLEDGEMENT …………………………………………………………….… iii

ABSTRACT ……………………………………………………………………………… iv

TABLE OF CONTENTS ……………………………………………………..………… v

LIST OF FIGURES …………………………………………………………...………… ix

LIST OF TABLES …………………………………………………………….………… xi

ABBREVIATIONS ………………………………………………………….…..………. xii

CHAPTER 1 INTRODUCTION

1.1 Introduction ………………………………………………………….…………….. 1

1.2 Problem Definition and Motivation …………………………….……………….… 3

1.3 Objectives ……………………………………………………….………………… 4

1.4 Thesis Scopes ………………………………………………….…..…..………….. 4

1.5 Research Methodology ……………..….……………..….…….…………..…..….. 5

1.6 Thesis Organization ………………………………………….……….……….…... 6

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction ……………………………………………………….…………..…… 7

2.2 The Internet Alarm Clock …………………………….........................……….….. 9

2.3 Smart Home Network ………………………………………………….………….. 11

2.4 Introduction to Services …………………………………………….…………….. 13

 2.4.1 Background on Service Discovery ………………………………………….. 14

 2.4.2 Processes in Service Discovery …………………………………………….. 15

2.5 Wide-area Communication Technologies ……………………………………..….. 16

 2.5.1 Session Initiation Protocol (SIP) ……………………………………………. 16

 2.5.1.1 SIP Messages ……………………………………….….………..….. 17

 2.5.1.2 SIP Extension ……………………………………….….……….…… 18

 2.5.2 Hyper Text Transfer Protocol (HTTP) ………………………..…………..… 19

2.6 Gateway Server.……………………………………………………………..…….. 20

 2.6.1 Open Service Gateway Initiative (OSGi) ………………………………….... 21

 2.6.1.1 OSGi Framework ………………………………………………..….. 23

Univ
ers

ity
 of

 M
ala

ya

 vi

 2.6.1.2 OSGi Architecture …………………………………….………...…... 23

 2.6.1.3 OSGi Bundles ……………………………………….…………..….. 24

 2.6.1.4 The Bundle Life Cycle ………………………………………..…….. 25

 2.6.1.5 Type of OSGi …………………………………………..…………… 26

 2.6.1.6 Interoperability with other devices …………………..………….…... 26

 2.6.1.7 Knopflerfish OSGi ……………………………………..……………. 27

 2.6.2 Universal Plug and Play (UPnP) …………………………………………….. 28

 2.6.2.1 UPnP Protocol Stack …………………………………….………...... 31

 2.6.2.1.1 UPnP Specific Protocols ……………………….………….. 31

 2.6.2.1.2 UPnP Standard Protocols ……….………….………...…… 32

 2.6.2.2 UPnP Networking …………………………….……..………………. 33

 2.6.2.3 Standard Service in UPnP …………………………..………………. 35

 2.6.2.3.1 UPnP Service ID …………………………..………………. 36

 2.6.2.3.2 UPnP Service Type ……………………..…………………. 36

 2.6.2.3.3 UPnP Service Description …………………………….……36

2.7 Service Discovery Technologies …………………………..….……………….….. 37

 2.7.1 Bluetooth Service Discovery Protocol (SDP) …………………………….… 37

2.7.2 Jini …………………………………………………………..…………….…. 40

 2.7.3 Salutation ……………………………………………………………………. 42

 2.7.4 Service Location Protocol (SLP) …………………….……..……………..… 43

 2.7.5 Comparison of Service Discovery Protocol ………….……………………... 46

 2.7.6 Summary ………………………………………………..………………….... 48

CHAPTER 3 SYSTEM ANALYSIS

3.1 Introduction …………..….……………..….…….……………..………………… 49

3.2 Proposed Scenario Description ……………..….……………..….………………. 49

3.3 Functional Requirements ……………..….……………..….…….………………... 50

3.3.1 Service discovery and network communication …………………….………. 50

 3.3.2 Service discovery and interaction over Wide-area ………..................……… 51

 3.3.2.1 Naming and Addressing Requirements ……………………..…….… 51

 3.3.2.2 Wide-area Accessibility Requirements ……………………..…….… 51

 3.3.2.3 Communication Protocol Requirements ……..……………..……..… 51

 3.3.2.4 Protocol Transparency and Independence …...………………..…….. 52

 3.3.3 Service discovery within Personal Area Network ……..…………..…...…… 52

Univ
ers

ity
 of

 M
ala

ya

 vii

3.4 Non-Functional Requirements ……………..….……………..…..……………...… 53

 3.4.1 Security ……………..….……………..….………………..………………… 53

 3.4.2 Performance ……………..….……………..….……………………..………. 54

 3.4.3 Scalability ……………..….……………..….……………………………….. 54

3.5 Specification ……………..….……………..….………………...…………..…..… 54

3.6 Summary ………………………………………………………………………….. 58

CHAPTER 4 PROPOSED ARCHITECTURE DESIGN

4.1 Physical Design ……………..….……………..….……….……..………………… 59

4.2 Technologies and Protocols ……………..….……………..….……………..…….. 60

 4.2.1 Protocol used for Wide-area communication …………..…………...…..…... 60

 4.2.2 Deployment of the Resident Gateway ……………..…..………….…..…..… 61

 4.2.3 Protocol used for Personal Area communication ……………………..…..… 62

4.3 Scenario Architecture Design ……………..….……………..…...……………...… 63

 4.3.1 HTTP Service ……………..….……………..….………………………….…63

 4.3.2 SIP Proxy ……………..….……………..….……………….……….………. 64

 4.3.3 Authentication Service ……………..….……………..……………………… 64

 4.3.4 User Interface Registry ……………..….……………..…..……….………… 64

 4.3.5 Bridging Bundle ……………..….……………..….……………….………… 65

 4.3.6 Control Point ……………..….……………..….………………….…………. 65

 4.3.7 UPnP Base Driver ……………..….……………..….……………………..… 65

 4.3.8 Service Registry ……………..….……………..….……………………….… 65

4.4 Architecture Model for UPnP Control Point and UPnP device …….…………..… 66

4.5 General Design ……………..….……………..….……………..…..……….…..… 67

4.6 Summary ………………………………………………………………………..… 70

CHAPTER 5 IMPLEMENTATION AND EVALUATION

5.1 Overview ……………..….……………..….……………..….………………..…… 71

5.2 Environment ……………..….……………..….……………..….…………………. 72

5.2.1 Resident Gateway Module ……………..….……………..………..………… 72

 5.2.2 UPnP Pocket PC and Printer Module ……………..….……………..………. 74

5.3 Implementation ……………..….……………..….……………..….…………….... 75

 5.3.1 Resident Gateway Module ……………..….……………..………………….. 75

 5.3.1.1 Control Point Bundle ……………..….……………………..…….…. 76

Univ
ers

ity
 of

 M
ala

ya

 viii

 5.3.1.2 UPnP Base Driver Bundle ……………..….……………..…..……… 78

 5.3.1.3 Generic User Interface ……………..….………….…………..……... 78

 5.3.1.4 Service Registry ……………..….…………………………..……..… 79

 5.3.2 UPnP Pocket PC and Printer Device ……………..….………………..…..… 79

 5.3.2.1 Device Service Advertisement ……………..…….…………..…….... 79

 5.3.2.2 Device Discovery ……………..….…………………………..…….... 80

5.4 Testing ……………..….……………..………….……………..….………….….... 82

5.5 Summary……………..….……………..….……………..….………………..……. 89

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusion ……………..….……………..….…………………..….…………....... 91

6.2 Future Enhancement ……………..….……………...…....…………………........... 92

REFERENCES …………………………………………………....................................... 93

APPENDICES ………………………………………………….. 99

Univ
ers

ity
 of

 M
ala

ya

 ix

LIST OF FIGURES

Figure 1.1 Overview of the thesis scope ……………………..………………….………... 5

Figure 2.1 Internet Alarm Clock Functional Architecture ..……………………………….. 10

Figure 2.2 High-level view of Home Networking Architecture ……………………….…. 11

Figure 2.3 Service …………………………………………………………………………. 13

Figure 2.4 Service Lifecycle ………………………………………………………………. 14

Figure 2.5 Distributed and Heterogeneous Services ……..…….………….…………….… 14

Figure 2.6: Service discovery …..………………………………………………….……… 15

Figure 2.7 The OSGi Framework …..…………………….………………………………. 23

Figure 2.8 OSGi Architecture and Related Standards . …..……….………………………. 24

Figure 2.9 The OSGi Bundle Life Cycle …..……………………………….…………….. 25

Figure 2.10 UPnP Control Points, Devices and Services …..…….…………….………… 29

Figure 2.11 UPnP Protocol Stack …………………………………………………….…… 31

Figure 2.12 UPnP Service Descriptions …..………….…………………………………… 37

Figure 2.13 Bluetooth Protocol Stack …..……….………………………………………... 39

Figure 2.14 DSP Client-Server Interactions …..………….……………………………..… 39

Figure 2.15 Jini architecture …..………………………………….…………………..…… 41

Figure 2.16 Salutation Architecture …..…………………………….……………..……… 42

Figure 2.17 Active Discovery of DA using when SA and UA do not know location of

DA….……………………………………………………………………………………… 44

Figure 2.18 Active Discovery of DA when SA and UA know the location of DA……....... 45

Figure 2.19 Complete SLP Operations …..…………………….………………………….. 46

Figure 3.1 Proposed Scenario diagram …..……………………………………….……….. 50

Figure 3.2 Use case diagram for remote user …..……………….……………………..….. 55

Figure 3.3 Use case diagram for local user …..………………………….………………… 56

Figure 3.4 Use case diagram for Resident Gateway …..………………………….…..…… 57

Figure 4.1 Overview of the Physical Design of Service Discovery ….……….……...…… 59

Figure 4.2 OSGi Gateway …..……………………………………………….………….… 61

Figure 4.3 Proposed Architecture Design …..……………………….………………….… 63

Figure 4.4 Architecture Model of UPnP control point and device ….………..…………… 66

Figure 4.5 A Sequence diagram of a Remote User subscribing to an UPnP service……… 68

Figure 4.6 A Sequence diagram of a Local User accessing the UPnP service ………….… 70

Figure 5.1 Implementation components of the architecture …………………...………….. 71

Univ
ers

ity
 of

 M
ala

ya

 x

Figure 5.2 Knopflerfish OSGi Desktop …..…………………………………….………… 75

Figure 5.3 Sequence Diagram of Device Service Advertisement …..………..…………… 80

Figure 5.4 Sequence Diagram of Device Discovery …..………………………..………… 81

Figure 5.5 To run the simulated Remote Control …..………………………..…………… 82

Figure 5.6 Remote Control for Pocket PC and printer …..…………………..……………. 83

Figure 5.7 Simulated Printer on UPnP Platform (a) Off (b) On …..……………………… 83

Figure 5.8 To run simulated UPnP Pocket PC …..……………………………..…………. 84

Figure 5.9 Simulated Pocket PC on UPnP Platform (a) Off (b) On …………………….… 84

Figure 5.10 Simulated Printer and Pocket PC before Printer ON ………………………… 85

Figure 5.11 Simulated Printer and Pocket PC after Printer ON ………………………...… 86

Figure 5.12 Simulated Printer and Pocket PC after Printer OFF ………………………..... 86

Figure 5.13 To run OSGi Pocket PC using Knopflerfish ……………………………….… 87

Figure 5.14 Simulated OSGi Pocket PC (a) UPnP clock OFF (b) UPnP clock ON……..… 88

Figure 5.15 Simulated UPnP clock ………………………………………………………... 88

Figure 5.16 Simulated OSGi Pocket PC after UPnP clock ON ………………………….... 89

Univ
ers

ity
 of

 M
ala

ya

 xi

LIST OF TABLES

Table 2.1 Service Discovery Protocol Comparison ………………………………………. 48

Univ
ers

ity
 of

 M
ala

ya

 xii

ABBREVIATIONS

• API - Application Programming Interface

• DHCP - Dynamic Host Configuration Protocol

• DMP - Device Message Protocol

• DNS - Domain Name System

• GENA - General Event Notification Architecture

• GPRS - General Packet Radio Service

• GW - Gateway

• HTML - Hypertext Markup Language

• HTTP - Hypertext Transfer Protocol

• HTTPMU - HTTP Multicast over UDP

• HTTPU - HTTP Unicast over UDP

• IrDA - Infrared Data Association

• ISM - Industrial, Scientific, Medical

• J2SE - Java 2 Platform, Standard Edition

• JLS - Jini Lookup Service

• JVM - Java Virtual Machine

• L2CAP - Logical Link Control and Adaptation Protocol

• LMP - Link Manager

• LAN - Local Area Network

• OBEX - Object Exchange

• OSGi - Open Service Gateway Initiative

• OSI - Open Systems Interconnection

• PAN - Personal Area Network

• PDU - Protocol Data Unit

• PPP - Point-to-Point Protocol

• RF - Radio Frequency

• RFCOMM - Radio Frequency Communication

• RPC - Remote Procedure Call

• SD - Service Discovery

• SDDB - Service Discovery Database

Univ
ers

ity
 of

 M
ala

ya

 xiii

• SDK - Software Development Kit

• SDP - Service Discovery Protocol

• SIG - Special Interest Group

• SIP - Session Initiation Protocol

• SLM - Salutation Manager

• SLP - Service Location Protocol

• SOA - Service-Oriented Architecture

• SOAP - Simple Object Access Protocol

• SSDP - Simple Service Discovery Protocol

• UDP - User Datagram Protocol

• UPnP - Universal Plug and Play

• URL - Uniform Resource Location

• UUID - Universal Unique Identifier

• WAN - Wide Area Network

• WAP - Wireless Application Protocol

• XML - Extensible Markup Language

Univ
ers

ity
 of

 M
ala

ya

 1

CHAPTER 1 INTRODUCTION

1.1 Introduction

In this new modern era, the usage of various gadgets which equipped with computing power,

computer devices and network services at our homes or in offices becomes essential to

facilitate our daily tasks. Besides classical services, such as printers, scanners, fax machines,

there are others services at home such as television, air condition, radio and etc. This can be

expressed as “ubiquitous computing”. This term coined by Mark Weiser in 1988 [1], means

that computers are present everywhere in our daily environment.

Users should be able to choose and make use of the services that are available to them.

Ideally, they would like to obtain access to the right services immediately, without requiring

them to reconfigure their device. This function should not be noticeable by the user. He

should be able to interact with and manage all the devices and services whenever required

without any difficulties. Wireless communication with service discovery protocol is

important to achieve this goal because user prefers something that is user friendly.

In future, the ability to control home or office devices and appliances remotely using a single

user device will be an advantage to user. In home environment, Infrared (IR) remote control

is the traditional way to control devices wirelessly, while current technologies often use

radio frequency in wireless communication. Radio frequency in remote control does not

require line of sight to work and it is able to work both ways communication compare with

IR. Communication of devices in home environment become more advances with the user

interaction technology such as voice recognition and interaction, and hand gesture. Many

sophisticated products and protocols are designed to solve this dilemma in home and

enterprise environments.

Service discovery is also relevant in the car environment [2]. Passengers could bring enabled

devices such as mobile phone, pocket pc and laptop into the car, connect them to the car area

network and use the equipment that is installed inside the car such as CD player or amplifier.

Service discovery also play an essential role in ad hoc communications. The mobile phone,

pocket pc and laptop could form an ad hoc network via Bluetooth links. In such network

without administrative control, the device must be self organizing. For example, the laptop

Univ
ers

ity
 of

 M
ala

ya

 2

may offer a translation service to mobile phone and the phone may offer internet access

service via its General Packet Radio Service (GPRS) interface. Since this network is

dynamic, there is a need of dynamic and automatic service discovery functionality.

However, the existing service discoveries are limited to their own domains and specific

devices. Therefore, a service discovery solution to interoperate over different network

technologies and platforms is needed. This thesis presents a proposed solution of service

discovery over heterogeneous network.

In this thesis, a service discovery concept is presented in a scenario where a salesman

bringing his pocket pc which was enabled with UPnP support into his client office. The

pocket pc is able to discover printer service in the office and print the product details without

any network setup and configuration to be done. To implement this concept, there are few

issues which require our consideration:

• Service Discovery - Allows user to discover services within the range of the network

• Self-organization - Devices in the office network are able to be organized together

with trusted connection.

Univ
ers

ity
 of

 M
ala

ya

 3

1.2 Problem Definition and Motivation

There are few different service discovery technologies exist such as Bluetooth SDP, Jini,

Salutation, SLP and UPnP. Each service discovery technology forms a domain on a network

where the services of the same technology are available for clients of the same technology or

network [3]. However, there is a need for service discovery solution to interoperate over

different network technologies and platforms. If service discovery solutions are not deployed

on a multiple technology platform in a network, services which are available in a domain are

not visible to clients of the other domains. This problem becomes more obvious in an ad hoc

network.

The problem with current solution is that those service discoveries are restricted to specific

device, service or technology. It is necessary to have solution to enable multiple services to

be discovered over multiple communication networks. This should be allowed to be done in

home, office or vehicle network regardless of what type of underlying service discovery

technology. A resident gateway is needed in practice to integrate the communication.

There is a need to bring about a change in paradigm from dynamic discovery being purely

device-based to a service-based approach. This service referred to applications developed

using different computing models. Several directory-based discovery services are built

around the publish-subscribe model where the services publish their interfaces in a central

directory and clients discover the services by contacting the directories. However, almost all

these directory services do not assume the presence of other models and is limited to the

underlying hardware platform. The problem that needs to be solved is to provide a service

discovery model that is dynamic and encompasses services developed in diverse distributed

computing models. Univ
ers

ity
 of

 M
ala

ya

 4

1.3 Objectives

The objectives of this thesis are as follows:-

• To propose and illustrate an architecture design of interaction of devices and services

in heterogeneous environment.

• To specify the designed of service access scenario and a service discovery concept

for an office network. This service discovery is able to provide service availability

and service information to the requesting device. The process of service discovery

should be completely unknown to the user.

• To demonstrate a simulation of service discovery over different technologies,

Universal Plug and Play (UPnP) and OSGI platform as the proposed service

discovery model.

1.4 Thesis Scopes

The project scopes help to focus on the important part of the system implementation of this

thesis. The scopes of this thesis are to:

• Illustrate the architecture of the service gateway which runs on OSGi platform.

• Focus on the service discovery over different technologies, which are UPnP and

OSGi platform.

• Run a simulation of an UPnP device to discover another UPnP service and a

simulation of a OSGi device to discover an UPnP service.

After the scopes have been determined, the expected outcomes of the result were produced.

Not only the device in the UPnP network is able to discover a service in UPnP network but

also a device in the OSGi platform is able to discover services in the UPnP network. Figure

1.1 shows overview of the implementation scope.

Univ
ers

ity
 of

 M
ala

ya

 5

Figure 1.1 Overview of the thesis scope

1.5 Research Methodology

In order to achieve the objectives of the thesis and the solution to the problem statements, the

following methodology is adopted. First, a study of the current related technology was

carried out in three parts. They are the wide-area communication technology, gateway server

technology and the service discovery technology. Technology for the communication in the

wide-area was studied and two protocols were analyzed. Then, the suitable gateway designs

and technologies were studied and selected. OSGi and UPnP were discussed in Section 2.4.

The discovery technologies reviewed are the Bluetooth Service Discovery Protocol, Jini,

Salutation and Service Location Protocol.

Secondly, an architecture design of the service discovery was proposed according to the

requirements to meet the objectives. The design is used to illustrate the scenario of service

discovery in a dynamic office environment. Thirdly, some studies were carried out on the

tools to carry out the implementation. It was taken into account already at the time of the

literature search in order to find the right tools and interesting technologies for the prototype

implementation. Then, an implementation of the service discovery was carried out in a

simulated environment and some tests were conducted. Finally, the results are evaluated.

Univ
ers

ity
 of

 M
ala

ya

 6

1.6 Thesis Organization

This thesis is organized as follows:

Chapter 1 begins with introduction of service discovery technology and its limitation. It

also briefly introduced the reasons for proposing this research.

Chapter 2 explains the related technologies such as service discovery technologies, gateway

server, and wide-area technologies that are able to meet the defined requirement.

Chapter 3 illustrates the overview of the scenario, functional and non-functional

requirement for proposed architecture design.

Chapter 4 describes the proposed architecture design of service discovery in a

heterogeneous environment and the solution to the presented scenario.

Chapter 5 presents the implementation and evaluation of the scenario in a simulated

environment to fulfill the concept of the proposed architecture design.

Chapter 6 summarizes the conclusion and achievement of this research and discusses future

enhancement.

Univ
ers

ity
 of

 M
ala

ya

 7

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Traditionally, a network consists of electronic devices such as computers, printers, and

scanners. These devices are linked together with fixed local area network. The computer

would have a static network configuration or would have one using the DHCP protocol.

Once properly configured the computer would own a valid network address and able to

know and reach the available services.

In the present time, this is still true for many networks, but new highly dynamic

environments have appeared. A networked electronic device can be as well a mobile phone,

PDA, laptop or home devices. This could form a dynamic wireless ad hoc network to

discover available services.

Network devices should be able to advertise their services in the network while the user

device should be able to search for the available services. A user is not too interested in the

underlying protocols used to communicate with networked devices. What the user concern

are the services provided by the devices. The networked devices should be capable of

advertising their services automatically due to the lack of administration in home and car

network environment. In general, service discovery protocols function by advertising the

available service and providing information about the details and capabilities of the services

requested. After discovering the service, the user will register to use that service.

Some of the possible scenarios for ad hoc networks are as follows:

• The ability to discover all nearby restaurant and make food ordering using a wireless

mobile device.

• The ability to discover and use a nearby printer while in a hotel using a wireless

laptop.

• The ability to discover and share entertainment resources such as music and photos

on handheld device.

Univ
ers

ity
 of

 M
ala

ya

 8

There are some discovery protocols and products that provide service discovery mechanisms

in pervasive computing environments. Service discovery of available services becomes an

important requirement in such environments. The goal of all service discovery protocols

provider is to find needed services dynamically without manual configuration. Some of the

most important service discovery protocols including Bluetooth Service Discovery Protocol

(SDP)[6], Jini[7], Salutation[8], Secure Discovery Service (SSDS)[9], Service Location

Protocol (SLP)[10] and Universal Plug and Play (UPnP)[11]. They all allow a client to find a

server that provides the sought service. A client can be any device or software application

and a service can be any hardware equipment, function or application server. UPnP provide

discovery which targets in home network environments while Bluetooth SDP allows a

Bluetooth enabled device to discover services of another Bluetooth enabled device. SLP and

JINI provide discovery mostly for enterprise environments while both UPnP and Salutation

are device oriented protocols.

This chapter will discuss the meaning of services, the technologies for wide area network,

the technologies for resident gateway and the prominent discovery protocols. .

Univ
ers

ity
 of

 M
ala

ya

 9

2.2 The Internet alarm clock

Many studies have been carried out for several years on the idea of home devices

communication through a network. Telcordia Technologies has studied the market for this

type of devices and was one of the first to propose the idea of networked appliances. Their

first case study was on an Internet alarm clock. This study was based on the implications of

the networked devices had on the network design and requirement.

Telcordia Technologies identified two features that could be added to a traditional alarm

clock [39]. One of the improvements was on configuring rules on the alarm clock which the

device would use to program itself given a target time. For instance, the alarm clock

programs itself to manage the time given by the user for the user to wakeup, get dressed,

take breakfast and drive to office, if the user wants to reach work at a given time. The second

improvement was by providing external network connectivity to the alarm clock to use

external factors to calculate the suitable wake up time besides the configured rules.

The alarm clock was created with an Internet interface board with clock driver and clock

controller and a LCD display. The alarm clock was connected to web servers. These web

servers which contain user profile are used to interpret the service rules. The user just need

to key in the time for them to reach office, the system will then calculate the time to set the

alarm depend on the external condition such as traveling distance and weather.

Figure 2.1 below shows the entire network communication sequence to support the

transaction [39].

Univ
ers

ity
 of

 M
ala

ya

 10

Figure 2.1 Internet Alarm Clock Functional Architecture [39]

1. User presses one of the buttons on the clock to start the transaction. The Clock Driver

opens a communication session with the Clock Controller. Then, the driver and

controller interact with the user via the buttons and display.

2. The Clock Controller requests the Rule Engine for the default Alarm Time and

Check Time of event that the user selected.

3. The Rule Engine retrieves the user profile which contains all users’ alarm rules.

4. The Rule Engine retrieves service rule information and inserts user rule where

appropriate.

5. The Rule Engine calculates the Alarm Time and Check Time by executing the

service rules. Execution of these rules will issue in HTTP request to the web service.

6. The Rule Engine returns the calculated Alarm Time and Check Time to the Clock

Controller.

7. The Clock Controller sets the Alarm Time and Check Time on the Clock Driver.

Then, the clock display the current time and date.
Univ

ers
ity

 of
 M

ala
ya

 11

2.3 Smart Home Network

The diagram below describes a high-level view of a smart home network.

Figure 2.2 High-level View of Home Networking Architecture [58]

This architecture has an interaction between the Internet, a broadband local loop and the in-

home network. In the whole network, there is a residential gateway that links the outside

with the network of smart devices or appliances. The broadband local loop is provided by

technologies that give a permanent connection such as cable, satellite or xDSL. The

residential gateway with the OSGi specification has the LAN and WAN interfaces. The

important factor to use this architecture is the increase of the number of homes with

broadband access. The very obvious benefit of a home network will be to solve the problem

of sharing the Internet connection and the diverse computer peripherals in a household.

There are other benefits when others devices are shared in the home network.

There are other candidate technologies for the in-home network. There is the possibility to

mix those different home networks to get the complete network, a multi-layered home

network [58]. The house requires to be rewired with category 5 UTP (Unshielded Twisted

Pair) cable. High-speed powerline and phoneline technologies can act as a backbone

network. The wireless and Radio Frequency technologies, HomeRF, Bluetooth, IEEE

802.11b could solve the ubiquity requirement and be considered as a “mobility network

layer” [58]. Another type of layer should consist of the low-speed powerline automation

Univ
ers

ity
 of

 M
ala

ya

 12

technologies such as X10. This X10 technology communicates between transmitters and

receivers by sending and receiving signal. These signals involve short RF (Radio Frequency)

bursts which represent digital information. This is considered a low-speed control network.

Technologies such as infrared-based technology, old European home automation network

(Batibus), Japanese evolutionary system are technologies for controlling small appliances

not able to support a TCP/IP stack [58].

HAVi is another technology, which is based on the IEEE 1394 standard. It is also called

FireWire. HAVi is dedicated toward entertainment systems and high-level functionalities.

All this technologies rely on different service discovery protocols. The architecture above

presented a framework for a home network and they encompass more than a stand-alone

discovery protocol.

Univ
ers

ity
 of

 M
ala

ya

 13

2.4 Introduction to Services

Services are ubiquitous and there are many services use in our daily environment. These

services can be for instance physical services, social services and electronic services. There

are many different definitions for the term service [12, 13, 14]. “A service is a software

entity that performs an action on behalf of another entity.” [12].

Figure 2.3 Service

A Service has functional properties such as the person who perform the action and the action

it performs. Refer to Figure 2.3. It has non-functional properties such as cost, performance,

quality of service and security. These properties can be used to describe a service. A service

is also an entity provided by a Service Provider. It performs an action (input) on behalf of a

Service Requestor and provides a result (output).

A service has an operational lifecycle which consists of three phases as shown in figure 2.4.

These phases are Advertisement, Discovery and Delivery. The service requestor and service

provider are unassociated with each other before the delivery phase. In the advertisement

phase, the service provider creates a service description to advertise the service. This

description is based on the service properties. In the discovery phase, the requestor searches

for service that satisfies his need. When a service is found, it is provided in the delivery

phase. In the delivery phase, the service requestor and the service provider are associated

with each other.

Service Provider

Service

Input

Output

Service Requestor

Univ
ers

ity
 of

 M
ala

ya

 14

Figure 2.4 Service Lifecycle

2.4.1 Background on Service Discovery

A service has to be found before it can be used. This is often difficult for a service requestor

because services are distributed and heterogeneous. Services are offered by different

providers using different operating systems and transportation technologies.

Figure 2.5 Distributed and Heterogeneous Services [4]

Advertisement

Discovery

Delivery

Service

Service Requestor

Service provider

Univ
ers

ity
 of

 M
ala

ya

 15

There is no obvious link between the service provider and service requestor. Remote

Procedure Calls (RPC) may be one of the foundations of the vast majority of middleware

platform. It was introduced in the early 1980’s and provided a way to transparently call

procedures located on other machines [4]. First binding has to be established before an RPC

can be made. The association is hard-coded with static bindings. It is a simple and efficient

mechanism and it is tightly couples between server and client. However the flexibility is

reduced. To overcome this issue, naming and directory servers were created to enable client

to dynamically locate service location.

2.4.2 Processes in Service Discovery

Service discovery phase consists of three sub-processes. They are the Discovery request

handling, Matchmaking and Discovery result handling. Figure 2.6 shows these sub-

processes.

Figure 2.6: Service discovery [4]

• Discovery Request Handling

This process performs knowledge acquisition. It retrieves request of the service

requestor and formats it so that it can be used by the matchmaking process. In this

Univ
ers

ity
 of

 M
ala

ya

 16

step, contextual information like location and time of request, that cannot be handled

are ignored.

• Matchmaking

The matchmaking process compares service advertisements with a discovery request

and tries to match them. In this process, the most accurate match between

information from service provider and service requestor has to be provided.

• Discovery Result Handling

This process transfers the matchmaking result to the service requestor so that it can

associate with the service provider.

2.5 Wide-area Communication Technologies

Wide-area communication is needed to communicate devices over the Internet. There are

two most common solutions for communicating devices over the wide-area network. They

are the Session Initiation Protocol (SIP) and Hypertext transfer protocol (HTTP) [56, 57].

The following section explained the two protocols.

2.5.1 Session Initiation Protocol (SIP)

The Internet Engineering Task Force (IETF) defines the Session Initiation Protocol (SIP) as

An application-layer control that can establish, modify and terminate multimedia sessions

such as Internet telephony calls [40].

SIP works independently of the transport protocol and type of session established. It

supports name mapping and redirection services, which supports personal mobility [40]. SIP

should be used together with other protocols in order to provide complete services to the

user.

Univ
ers

ity
 of

 M
ala

ya

 17

SIP can works with existing protocols by enabling user agents to discover other user agents

and agree in the type of session they would like to share. The type of session is specified

using the Session Description Protocol. Session Description Protocol is not a true protocol

but a text-based description language. A user agent is the entity implemented on single

device which can be a SIP client or SIP server.

SIP provides primitives that may be used to implement different services. A single primitive

is typically used to provide several services depending on the type of session being

established. The facets used to establish and terminating multimedia communication are as

below [40].

• User location - Determination of the end system to be used for communication

• User availability - Determination of the willingness of the called party to engage in

communications

• User capabilities - Determination of the media and media parameters to be used

• Session setup - Establishment of session parameters at both parties

• Session management - Including transfer and termination of sessions, modifying

session parameters, and invoking services

2.5.1.1 SIP Messages

SIP is a text-based protocol with messages request and response. A SIP transaction consists

of one request, one or more provisional responses and a final response. SIP requests contain

field called method. IETF defines six types of requests.

• INVITE - Invite other user to participate in a session. It contains the description of

the session.

• ACK - Provides three-way handshake between user agents by acknowledge the

reception of a final response to an INVITE

• CANCEL - Cancels pending transactions

• BYE - Terminate a session between two parties.

• REGISTER - Indicate a SIP server the current location of the user agent.

• OPTIONS - Query a server about which methods and which session description

protocols it supports as well as other capabilities.

Univ
ers

ity
 of

 M
ala

ya

 18

SIP request and responses contain headers that provide information. Below are some of the

headers.

• From - Request sender with SIP address

• To - Recipient of the request

• Cseq - Command Sequence header consists of a numerical and a method name.

• Via - Routing mechanism.

• Content-Type - Provide information about the message contained in the body of SIP

message.

• Content-Length - Provide the length in bytes of the SIP message body.

The body of the SIP messages depends on the application. This type of flexibility makes SIP

an ideal protocol for controlling networked devices.

2.5.1.2 SIP Extension

The methods mentioned above are the foundation of SIP, but none of them has the capability

of carrying control messages to a networked device. To allow SIP to be used in the

networked devices it has been enhanced with the following modifications and extensions.

The extended version of SIP, designed for communicating with network devices [41]. There

are few methods added to Extended SIP. They are DO, SUBSCRIBE and NOTIFY methods.

Messages or requests for networked devices are carried in the body of the DO request and

are delivered to the PAN environment [42]. SUBSCRIBE enabled user devices to subscribe

to certain events within the network and NOTIFY allows devices to notify subscribers of

events occurring. The interaction of devices using the extended SIP solution is presented in

[44, 45]. LOCK and UNLOCK are to allow devices to interact with each other without

interference. These methods are useful for home alarm system.

An XML based format, Device Message Protocol (DMP) is a suitable format for the

message body. XML is independent of the transport protocol and it’s important for

communicating networked devices.

The advantages of using SIP for wide-area communication are presented below [43].

• Simplicity - New services can be deployed easily by service providers using SIP.

Univ
ers

ity
 of

 M
ala

ya

 19

• Scalability - SIP works well in LAN and WAN conditions and over variety of

transport protocols such as UDP and TCP.

• Flexibility - SIP allows extensions to be added to support new features. The protocol

is defined in a way that any providers can easily defined extensions to the existing

grammar to add features. SIP specification mechanisms ensure that any new

extension does not break an existing SIP aware node.

• Registration - A device can register its current location with its registrar. The exact

location will be resolved by the proxy in conjunction with the registrar.

• Personal Mobility - SIP provides the concept of personal mobility at no extra cost.

• Security - SIP able to perform authentication and encryption using schemes such as

Pretty Good Privacy (PGP) for security purpose.

• Transport Independence - SIP messages can be sent through various heterogeneous

networks.

• Event notification - Extended SIP introduce SUBSCRIBE and NOTIFY methods

which enable entities to subscribe to certain events and to be notified when occur.

• Addressing - SIP uses The Uniform Resource Identifier (URI) addressing scheme

which can encompass wide range of addressing requirements.

• Integration with existing SIP service mechanisms - SIP allows networked devices to

exploit the rich infrastructure that SIP provides

• Session based and non-session based communication - SIP provides session based

and non-session based communication which is ideal for networked devices with

different types of services.

2.5.2 HyperText Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) is a ubiquitous protocol for data connections between

Web browsers and servers. This protocol is the current standard for transferring HTML

documents, although it is designed to be extensible to almost any document format like

XML. HTTP version 1.1 is documented in RFC 2068 [46]. It operates using port 80 over

TCP connection. When the client request, a message is sent to the server, and a reply

message is send back. HTTP has some security features such as Secure Sockets Layer (SSL)

Univ
ers

ity
 of

 M
ala

ya

 20

There are few types of HTTP request like GET, HEAD and POST request. A client sends a

GET request for a specific document to the server. If the server does not respond, it is up to

the client to wait for the timeout and request the same document again. POST request are

used for HTML forms and other operations that require the client to transmit a block of data

to the server.

However, HTTP is not suitable for networked devices communication because HTTP does

not provide good support for mobility or notifications and HTTP must run over TCP, and a

TCP stack is larger and more complex than a UDP stack. This can be an issue in small

devices with stringent memory and processing power.

2.6 Gateway Server

Middleware is a software layer that stands between the networked operating system and the

application, providing well-known, reusable solutions to encountered problems like

heterogeneity, interoperability, security and dependability. Middleware were introduced in

the early 90s were based on the object-oriented infrastructures (eg. CORBA, Java-RMI and

DCOM). Using object-based middleware infrastructure, distributed application and higher-

level middleware functionalities may be developed in terms of distributed objects.

Although this significantly eases the development of distributed applications, developers still

need the solutions for the enforcement of non-functional properties like dependability and

persistence management.

Thus, this led to enforce of non-functional properties like transaction and security

management. Middleware technologies have further evolved towards service-oriented

computing in early 2000 to support open distributed application over the Internet. This

allows applications as services to be accessed with other applications over the Internet.

This section introduces the middleware architectures for the office environment, addressing

based service oriented architectures, discovery protocols and their interoperability. It will

provides an overview of software technologies complying with Service-Oriented

Architecture (SOA) such as OSGi, and UPnP architecture.

Univ
ers

ity
 of

 M
ala

ya

 21

2.6.1 Open Service Gateway Initiative (OSGi)

The OSGi Alliance [30] is an open standard organization formed by Sun Microsystems,

International Business Machines, Ericsson, IBM and others in March 1999. For past few

years, it has specified a Java programming language-based service platform that can be

remotely managed. The core part of the specifications is a framework that defines an

application life cycle model and a service registry. Based on this framework in figure 2.7, a

large number of OSGi services have been defined: Log, Configuration Management,

Preferences, HTTP Service running on servlets, XML Parsing, Device Access, Package

Admin, Permission Admin, Start Level, User Admin, Jini, and UPnP. Specifications are

developed by the members in an open process and made available to the public free of

charge and without licensing conditions. The OSGi Alliance has a compliance program that

is open to members only. Currently the available specifications are R1, R2, R3 and R4.

The original focus of OSGi was on Service Gateways. In 2003, the well known Eclipse IDE

selected OSGi as the underlying runtime for their plug-in architecture. The Equinox project

experimented with this idea, and built the runtime for Eclipse R3 that has been available

since December 2003 [30]. In October 2003, Nokia, Motorola and other OSGi members

formed a Mobile Expert Group (MEG) that will specify a service platform for the next

generation of smart mobile phones, addressing some of the needs that MIDP cannot manage

[30]. The application areas of the OSGi Service Platform are currently as various as service

gateways, cars, mobile telephony, industrial automation, building automation, PDAs, grid

computing, entertainment, and IDEs.

OSGi has established a set of principles, which are guidelines through the planning and

definition processes of the standard. The principles [24] are as follow:

• Platform independence - OSGi platform can be implemented in various different

platforms.

• Application independence - The capabilities of the available software can be used in

any computing environment through OSGi platform.

• Multiple service support - OSGi is capable of hosting different applications offered

by any service provider.

Univ
ers

ity
 of

 M
ala

ya

 22

• Service collaboration support - Services implemented on OSGi platform are able to

adapt, cooperate with and find other available services dynamically. This guarantees

easy expandability of the system.

• Security - Because OSGi supports concurrent execution of applications offered by

different service providers, taking care of security issues between the services is an

important task.

• Multiple network technology support - OSGi supports several networking

technologies both at Local Area Network (LAN) and at Wide Area Network (WAN)

levels.

• Simplicity - Service providers and gateway operator handle the most of the

complexity and the administration of the platform.

Networking at homes and offices is steadily speeding up. More personal computers are being

interconnected in the home. Also home appliances and devices, such as televisions, air-

conditional, refrigerators, alarm systems, electricity meters and lighting are interconnected

and control over the Internet. Such a smart home environment that contains the technology

that allows devices and systems to be controlled automatically and remotely, has been hot in

the research community [25]. There is a need of some kind of coordination due to the variety

of the home appliances, devices and network technologies. These different architectures can

be coordinated via a central control point or a gateway. OSGi provides a specification for

such service delivery.

Univ
ers

ity
 of

 M
ala

ya

 23

2.6.1.1 OSGi Framework

Figure 2.7 The OSGi Framework [30]

The OSGi organization is the leading standard for next generation Internet services to home,

cars, mobile phones, desktops, small offices, and other environments. The OSGi framework

forms the core of the OSGi Service Platform Specifications. OSGi provides a general-

purpose, secure, and managed Java framework that supports the deployment of extensible

and downloadable applications known as bundles. OSGi-compliant devices can download

and install OSGi bundles. The framework manages the installation and update of bundles in

an OSGi environment in a dynamic and scalable way.

OSGi framework manages the dependencies between bundles and services in detail. It

provides the bundle developer with the necessary resources of Java’s platform independence

and dynamic code-loading capability. This is for them to easily develop services for small-

memory devices that deployed in a large scale.

2.6.1.2 OSGi Architecture

OSGi architecture [26] and related standards are shown in figure 2.8. OSGi gateway has

obviously a key role in the architecture. It acts as a central point managed by the gateway

operator between local area and wide area networks. It is capable of supporting and

integrating variety of services. One of its main functions is to operate as an execution

environment for the services offered by service providers.

Univ
ers

ity
 of

 M
ala

ya

 24

Service platform [24] is an application server, which enables delivery of services much

better than normal plain Web browser could offer for the client. It acts as an execution

environment and service platform to facilitate operation of services for different service

providers in the customer home local networks. Interoperability of the services is also made

possible by the service gateway. OSGi service platform contains a specification [23] for a

service framework, which is the core of the environment. Specification portrayed APIs that

address life cycle management, services interoperability, data management, device

management, client access, resource management and security.

Figure 2.8 OSGi Architecture and Related Standards [29]

2.6.1.3 OSGi Bundles

A bundle is a Java JAR archive including Java class files and any other necessary data the

service might need, including possibly native code. A special Manifest File provides

information about resources needed or provided by the bundle. Bundles contain an Activator

which allows the bundle to be started and stopped as an application. A bundle without an

Activator must be considered as a library that provides list of packages. OSGi specifies a

strict class loading policy so that classes provided by a bundle cannot be used in another

bundle unless specified in the import-export clauses of both bundles. Life cycle management

Cable

xDSL

JINI

HomeRF

Bluetooth

802.11

Devices

Others

UPnP

Wireless

Others

Content
Provider

Service
Provider

Gateway
Operator

OSGi
Gateway

Public Network
Service
Delivery

Local Area
Network

Univ
ers

ity
 of

 M
ala

ya

 25

is one of the most prominent features of the OSGi framework. It provides the necessary

mechanisms to allow remote management in a wide variety of management models and is

also accessible via an API that allows bundles to manage other bundles.

Figure 2.9 The OSGi Bundle Life Cycle [29]

2.6.1.4 The Bundle Life Cycle

A bundle has a life cycle, where it can be installed, activated, updated, deactivated and

uninstalled. Figure 2.9 shows the OSGi bundle life cycle. The steps of the life cycle are as

below [50]:

1. Installed - The framework reads the contents of the bundle and assigns it a bundle ID.

Framework also caches its location and state persistently. A dedicated class loader is

created to access the bundle’s resources.

2. Activated - The framework checks whether the Java classes required by the bundle

have been exported by other bundles. If yes, the framework calls the start method and

registers the bundle’s services. Then, the service will start to run.

3. Deactivated - The framework calls the bundle’s stop method and unregisters the

service. Then the service will stop.

4. Uninstalled - The bundle is removed from the framework.

Installed

Resolved Uninstalled

Starting Stopping

Active

Install Update

Uninstall

Stop

Resolve

Start

Uninstall

Automatic transition

Explicit transition

Univ
ers

ity
 of

 M
ala

ya

 26

If an error occurs during the life cycle, the framework throws a BundleException, a standard

exception defined by OSGi specification in org.osgi.framework.

2.6.1.5 Types of OSGi

Oscar [31] is an open source (GPL) implementation of the OSGi framework specification,

currently compliant with a large portion of the R3 specifications. It proposes few interesting

features like Service Binder and the Oscar Bundle Repository.

The Knopflerfish project [32] is based on the Gatespace GDSP OSGi framework which has

been in development since 1999. Knopflerfish is absolutely R3 compliant. Moreover, it

comes with a visual desktop, which allows the management of the whole framework.

Knopflerfish is available under a BSD style license.

Physalis [33] is an OSGi implementation for the .NET (Compact) framework. This project

started its activities in August 2004, so the status is yet pre-alpha and there is no

documentation or download available. However, this is the fact of being the first open source

OSGi implementation for the .NET framework.

JEFFREE [34] stand for Java Embedded Framework Free. The last version 0.91 was

released on 3 March 2003 provides almost complete OSGi v2.0 specification. An interesting

feature is that JEFFREE is compatible with personal Java, whereas Oscar and Knopflerfish

require Java 2. This allows JEFFREE to be installed on a large variety of devices. However,

the project development seems to be stopped for the moment. JEFFREE is available under

the open source license.

2.6.1.6 Interoperability with other devices

The OSGi Service Platform and the UPnP Device Architecture specification provide

complementary functionalities. The OSGi Service Platform specifies an execution point and

does not define what protocols or media are supported. In contrast, the UPnP Device

Architecture specification is a data communication protocol that does not specify where and

how programs execute. That choice is made by the implementations. The UPnP specification

and the OSGi specifications are fully complementary and do not overlap. It is the same with

Univ
ers

ity
 of

 M
ala

ya

 27

JINI and OSGi. OSGi release R3 defines standard ways of incorporation UPnP and JINI

technologies on OSGi platforms.

For example, the JINI Driver module in the OSGi framework is responsible for the JINI-to-

OSGi and OSGi-to-JINI communication. Using this API, OSGi services from the framework

can be exported easily to the JINI network and JINI services from the JINI network can be

imported into the OSGi framework.

Concerning UPnP, the OSGi framework defines how an OSGi bundle can implement a

service that is exported to the network via the UPnP protocols and how to discover and

control UPnP devices that are available on the local network.

2.6.1.7 Knopflerfish OSGi

Knopflerfish OSGi [32] and Oscar OSGi are the open source active project OSGi

implementations with the same goals. Knopflerfish was chosen to in this thesis because it is

more actively developed and supported by Gatespace Telematics Inc. Gatespace Telematics

released a product called Ubiserv. The business concept behind Ubiserv is to make the freely

available Knopflerfish a fully supported product. Gatespace was previously selling its own

OSGi implementation, but now they provide a better concept of combining open source

software and commercial support services.

Knopflerfish includes the OSGi framework, the standard OSGi services and additional

components, such as graphical desktop and console utilities. The components that are

implemented in the OSGi R3 specification have passed in some tests defined by the OSGi

Alliance. However, Knopflerfish cannot claim to be OSGi R3 certified, because that is

granted only for the OSGi Alliance members. Some test was done shown that it is stable and

compliant with OSGi specification. Therefore, Knopflerfish OSGi is chosen to be used in

this implementation.

Univ
ers

ity
 of

 M
ala

ya

 28

2.6.2 Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) [20] is a technology and industry consortium driven by the

UPnP Forum, including more than 700 companies from consumer electronics, computing,

home automation, home appliances and related industries. The UPnP Forum defines UPnP

Device and Service Descriptions, which are based on open Internet-based communication

standards for interoperability, according to a common Device Architecture contributed by

Microsoft. Similar to the Internet, UPnP is based on wire protocols, not APIs. Therefore, it is

independent of the underlying OS, programming language and physical medium.

UPnP enables devices to join automatically to a network, find and use networked devices

and services provided by one another without manual configuration. It describes and

supports discovery and communication between devices to find and use services. The

communication specifically focuses on PCs, Internet gateways, consumer electronics and PC

peripheral devices.

Recently, UPnP has been gaining acceptance from consumer electronic and PC peripheral

makers, and is becoming the common way for these devices to interact with more powerful

computing devices such as PCs, servers or handhelds. There are also specific industry efforts

such as Digital Living Network Alliance (DLNA) that use UPnP as a base and ensure that

specific device interaction scenarios are reliable enough for the home market.

UPnP [20] has the following characteristics:

• Media and device independence - UPnP technology can run on any medium

including phone line, power line, Ethernet, RF, and 1394.

• Platform independence - Vendors can use any operating system and any

programming language to build UPnP products.

• Internet-based technologies - UPnP technology is built upon IP, TCP, UDP, HTTP,

and XML.

• UI Control - UPnP architecture enables vendor control over user interface and

interaction using the browser.

• Programmatic control - UPnP architecture also enables conventional application

programmatic control.

Univ
ers

ity
 of

 M
ala

ya

 29

• Common base protocols - Vendors agree on base protocol sets on a per-device basis.

• Extendable - Each UPnP product can have value-added services layered on top of the

basic device architecture by the individual manufacturers.

The UPnP architecture is composed of three elements: Control Points, Devices and Services

[55]. These elements are shown in Figure 2.10.

1. Device - is a container of services and characterized by a XML device description.

The description includes the device properties and a list of pointer URLs to the

services it contains.

2. Service - is the smallest unit of control in UPnP. It is modeled by state variables, and

allows executing actions. It consists of a state table that contains the state variables of

the service, a control server that receives and executes action requests, and an event

server that alerts subscribers when the state of the service changes.

3. Control point - is a controller capable of discovering and managing other devices. A

control point can discover a device, retrieve its description, invoke actions to control

a service within the device, and subscribe itself to the service's event source. To

enable true peer-to-peer connectivity, devices should incorporate control point

functionality.

Figure 2.10 UPnP Control Points, Devices and Services [20]

Univ
ers

ity
 of

 M
ala

ya

 30

UPnP Devices handle the discovery and control requests from Control Points and produce

events to inform Control Points. A device can host several services and other embedded

devices. For example, a printer/scanner built-in device would host a print and scan

embedded device, which in turn would consist of a print service, a scan service, a color type

service, and a picture resolution service. Services provided by a device are standardized by

different working groups. This information such as device manufacturer, device type and

version number as well as services provided by the device is stored in an XML device

description file.

UPnP Services are the smallest units in the UPnP network, which show actions and model

state through state variables. These actions and state variables are stored in an XML service

description file. The state of a service is modeled in the state table through state variables.

Action requests of the Control Points are handled by the Control Server, and status changes

are forwarded to interested Control Points through the Event Server.

A Control Point is used to discover and control the devices providing services on the

network. After discovering a device on the network, a Control Point can:

• Retrieve the device description and get a list of associated services

• Retrieve service descriptions for interested services

• Invoke actions to control the service

• Subscribe to the service’s event source. Anytime the state of the service changes, the

event server will send an event to the control point.

Univ
ers

ity
 of

 M
ala

ya

 31

2.6.2.1 UPnP Protocol Stack

Figure 2.11 UPnP Protocol Stack [21]

The figure above shows the UPnP protocol stack. Above the protocol stack is the vendor-

specific APIs where vendors can choose their own programming model on top of UPnP.

Below the protocol stack is the vendor-specific OS and hardware platform where vendors

can choose their own OS and hardware to implement UPnP. The UPnP protocol stack is

divided into two parts: UPnP-specific protocols and standard protocols.

2.6.2.1.1 UPnP Specific Protocols

UPnP Device Architecture Defined

It defines basic device architecture and is contributed by Microsoft.

UPnP Forum Working Committees Defined

The UPnP Forum is a group of companies and individuals from various industries. It defines

standards for describing device protocols and XML-based device schemas. Its goals are to

enable devices to connect seamlessly in the home and office network. The UPnP Forum

Working Committees are set up to define device-specific and domain-specific format of data

based on UPnP Device Architecture, such as service types and device types.

UPnP Vendor Defined

UPnP Forum Working Committee Defined

HTTPMU
(Discovery)

UPnP Device Architecture Defined

UDP

HTTPU
(Discovery)

TCP

IP

HTTP SOAP
(Control)

SSDP HTTP
(Description) SSDP

GENA
(Events) GENA

UPnP-specific
Protocols

Standard
Protocol
s

Univ
ers

ity
 of

 M
ala

ya

 32

UPnP Vendor

UPnP Vendors specify their own extensions based on what working committees define. The

vendor-specific information contains data specific to some kind of devices. Examples of data

specific are the device description URL and device identifier URL and argument values.

2.6.2.1.2 UPnP Standard Protocols

TCP/IP & UDP/IP

TCP/IP and UDP/IP networking protocol stack serves as the base on which the rest of the

UPnP protocols are built. UPnP leverages TCP/IP and UDP/IP protocol to enable network

connectivity over different physical media and interoperability over multiple UPnP devices.

UDP is used for discovery. TCP is used for description, control, eventing and presentation.

HTTP, HTTPMU, HTTPU

Hypertext Transfer Protocol (HTTP) is a core protocol of UPnP. HTTP Multicast over UDP

(HTTPMU) and HTTP Unicast over UDP (HTTPU) are the variant of HTTP. All aspects of

UPnP build on top of HTTP or its variants. The two variants are defined to deliver messages

on top of UDP/IP instead of TCP/IP. These protocols are used by SSDP. The basic message

formats used by these protocols are required for multicast and unicast communication.

GENA

Generic Event Notification Architecture (GENA) was defined to send and receive

notifications using HTTP over TCP and using HTTPMU over UDP. GENA also defines the

concepts of subscribers of notifications to enable events. GENA formats are used by the

devices to create presence advertisement by sending using SSDP, and also for the devices to

signal their changes of service state variables.

SSDP

Simple Service Discovery Protocol (SSDP) was built on top of HTTPU and HTTPMU.

SSDP defines methods on how network services can be discovered on the network in two

mechanisms; device advertises its presence by using ssdp:alive and Control point discovers

interest resources by using ssdp:discovery. SSDP also provides a way for devices and

services to leave the network gracefully; device leaves the network by using ssdp:byebye.

Univ
ers

ity
 of

 M
ala

ya

 33

Control point send SSDP search request to discover devices and services on the network.

UPnP devices listen to the multicast port. Upon receiving a search request and a match is

found, a unicast SSDP response is sent to the control point.

SOAP

Simple Object Access Protocol (SOAP) uses XML and HTTP to execute remote procedure

calls (RPCs). SOAP can also make use of Secure Sockets Layer (SSL) for security and use

HTTP’s connection management facilities. UPnP uses SOAP to invoke actions on devices

and return results or errors to the control points. Each SOAP request message contains the

action to be invoked and associated parameters. The SOAP response message contains the

status, return value and return parameters.

XML

Extensible Markup Language (XML) is the universal format for structured data on the Web.

UPnP selected XML to describe device and service descriptions, control messages, and

event messages because of its characteristic. XML place nearly any kind of structured data

into a text file. Tags and attributes are used in HTML to define the meanings globally.

However tags and attributes used in XML are within the context of their usage and are able

to develop schemas for document types.

2.6.2.2 UPnP Networking

There are six steps in the UPnP networking; addressing, discovery, description, control,

eventing, and presentation. The first three networking steps, addressing, discovery, and

description, should be done in order; while the last three are independent of each other.

Addressing

Addressing is the foundation for UPnP devices to be used to identify devices uniquely. IP

addressing is needed by UPnP control point and devices to obtain addresses to communicate

with each other. UPnP devices apply two addressing mechanisms, Dynamic Host

Configuration Protocol (DHCP) and Auto IP. Every device required to have a built-in DHCP

client. This device will require an IP address from DHCP server when it connects to the

network. If the DHCP server is unavailable, the device must use Auto IP to get an address.

Univ
ers

ity
 of

 M
ala

ya

 34

Discovery

When the device obtains address appropriately, discovery can take place. Devices advertise

their services and discovery enables control points to search for interesting devices. There

are two scenarios in discovery networking phase [53].

• When a new control point is plugged into the network, it multicasts a SSDP

discovery message in order to look for devices of interest. All devices must listen to

the standard multicast address (239.255.255.250:1900) and must respond directly to

the requester if they match the search criteria.

• When a new UPnP device is plugged into the network, it multicasts SSDP discovery

messages to a standard address and port (239.255.255.250:1900) to advertise its root

device, embedded devices and services. Control points must listen to the port 1900 so

that it can notice once new devices or services advertise their capabilities.

In the cases above, discovery processes are handled by the SSDP, and the exchange element

is the discovery message which contains essential information about the device or service.

Description

Description is carrying out after discovery. Control point can learn more about device

capabilities by retrieving the device description from the URL provided by the discovery

message and from the device description. The UPnP description for a device is expressed in

XML.

Control

When a control point gets the device description, it may control the device via the URL

contained in the device description. Control point controls by sending control message to the

control URL of the service provided in the device description and the service responds with

results or errors. Control point also queries the value of state variables of the service by

sending query message to the control URL. The service responds with the state value.

The state variables querying and actions invoking are the kind of remote procedure call

(RPC). This RPC mechanism used is the Simple Object Access Protocol (SOAP) which uses

XML as data representation and HTTP as the underlying transfer protocol to send messages.

Univ
ers

ity
 of

 M
ala

ya

 35

Eventing

When a control point gets the device description, it may subscribe for update information by

requesting to the eventing URL contained in the device description. Subscription initiated

from a control point to a service by sending a subscription message or a renewal message or

a cancellation message. Event initiated from a service to a control point for publishing

changes to a service state. A service has eventing if and only if at lease one of its state

variables is evented.

In the process of eventing, if the subscription is accepted, the service responds with an ID as

well as duration for this subscription. This Subscription ID is unique and its used for

renewing and canceling process. When the subscription is accepted, the service sends the

initial event message to allow the control point to initialize the model of service state. Then,

control point receives all events with latest status sent by the service. When the subscription

duration expires, the service will stop sending event messages. A renewal message is sent to

keep the subscription alive and a cancellation message to cancel the subscription. These

messages (subscription, renewal, cancellation and event message are delivered via HTTP

that has been extended using GENA methods. The HTTP messages are delivered via TCP.

Presentation

Control point may control the device and view device status via the presentation page from

presentation URL. This presentation page is a HTML based user interface and contain device

operational parameters, device statuses and actions on the services.

2.6.2.3 Standard Service in UPnP

UPnP Service Template [48] and UPnP Device Template [49] are defined by the UPnP

Forum to standardize service types. These templates defined that each UPnP service is

described by a service description which is written in XML by UPnP vendor. A standard

UPnP service is defined by UPnP Forum working committees and specify by a UPnP vendor

and A non-standard service is completely specified by a UPnP vendor.

The UPnP device is a container for UPnP services. Each service in an UPnP device may

contain any number of actions. Each action also has a name, a value and a direction.

Univ
ers

ity
 of

 M
ala

ya

 36

2.6.2.3.1 UPnP Service ID

UPnP device is uniquely identified by Universal Unique Identifier (UUID). The UPnP

service ID has the following format:

• urn:upnp-org:serviceId:serviceID

It is used in the standard UPnP service.

• urn:domain-name:serviceId:serviceID

It is used in the non-standard UPnP service.

2.6.2.3.2 UPnP Service Type

The service type is defined based on the device type. From the UPnP Forum, the printer

device could have PrintBasic:1 and PrintEnhancedLayer:1 service type. UPnP service has a

service type Uniform Resource Identifier (URI) that uniquely identifies the service. The

following are the kind of UPnP service type:

• urn:schemas-upnp-org:service:serviceType:v

It is used in the standard UPnP service.

• urn:domain-name:service:serviceType:v

It is used in the non-standard UPnP service.

2.6.2.3.3 UPnP Service Description

UPnP Service description is used to describe the service type. Service description allows

devices to list the functionality they provide. The device description document contains

device information such as manufacturer, make, model, serial number, a lost of services

provided by the device, and a list of embedded devices.

One service description exactly represents one UPnP device’s service. A device can have

one or more services, therefore one or more service descriptions are required. Each UPnP

service is made up of zero or more actions and one or more state variables. Below is the

sample of the Service Description [48].

Univ
ers

ity
 of

 M
ala

ya

 37

(Values in italics are placeholders for actual elements and values.)

Figure 2.12 UPnP Service Descriptions [48]

2.7 Service Discovery Technologies

Users usually are interested in the services provided by appliances or devices. They are not

too concerned on the underlying technologies used in communication. Therefore, network

devices should be capable of advertising their services to be discovered by user devices

automatically. Service discovery protocols work by advertising the available service and

providing information about the capabilities and details of the services. Then the users may

register to use the service. The following section discussed the type of service discovery

technologies.

2.7.1 Bluetooth Service Discovery Protocol (SDP)

Bluetooth [5] developed in Ericsson Mobile Communication Laboratory in 1994 and version

1.0 published by Special Interest Group (SIG) in 1999. The Bluetooth Special Interest Group

(SIG) includes companies like 3Com, Ericsson, IBM, Intel, Lucent, Microsoft, Motorola,

Toshiba, Nokia and more than 3000 associate member companies develop the specifications.

<?xml version=”1.0”?>
<scpd xmlns=”urn:schemas-upnp-org:service-1-0”>

<specVersion>
<major>1</major>
<minor>0</minor>

</specVersion>
<actionList>

<action>Description for action defined by the UPnP Forum or the Vendor </action>
Other UPnP-Forum-defined actions go here, if any.
Other vendor-defined actions go here, if any.

</actionList>
<serviceStateTable>

<stateVariable sendEvents=”yes”>
Desciption for state variables defined by the UPnP Forum or the Vendor

</stateVariable>
Other UPnP-Forum-defined state variables go here, if any.
Other vendor-defined state variables go here, if any.

</serviceStateTable>
</scpd>

Univ
ers

ity
 of

 M
ala

ya

 38

Bluetooth originally was used to communicate low-power wireless handheld device such as

mobile phones, laptops and personal digital assistants (PDA) and can be use to connect

wired devices like desktop computers and printers. Using this technology, several mobile

and wireless devices in addition to general-purpose computers can be connected together in a

small network in order to enable data transfer.

Bluetooth has the followings features:

• Low-cost - There is no fee for channel rent and cable consumption in Bluetooth

communication because Bluetooth uses 2.4GHz-ISM-Band (Industrial, Scientific,

and Medical) for communication. The ISM radio bands are reserved globally for the

non-commercial and unlicensed use of Radio Frequency (RF).

• Low-power consumption - Bluetooth uses a power control scheme to reduce the

power consumption of devices. The mechanism of the power control scheme is to

adjust the RF output power to the minimum level which is mandatory to maintain the

communication link.

• Short-range - The Bluetooth communicate two device in the range of 10 meters

without caring about obstacle in between.

• No cable connection - Bluetooth is a RF-based wireless communication technology

without the need of cable.

• Little configuration - There is not much need of configuration to be set for two

Bluetooth devices to communicate except for some security authentication before the

connection is established.

• Piconet - Two or up to eight active Bluetooth units form a piconet.

• Scatternet - Two or more piconets with overlapping coverage areas form a scatternet.

• Security Connection - Bluetooth defines three levels of security:

a) Secure Mode 1 – Non-secure. No security procedure is applied.

b) Secure Mode 2 – Service-level Security. Security scheme is initiated after

establishing a connection.

c) Secure Mode 3 – Link-level Security. Security scheme is initiated before

establishing a connection.

Univ
ers

ity
 of

 M
ala

ya

 39

Bluetooth Service Discovery Protocol

Figure 2.13 shows the Bluetooth protocol stack. The two physical layers of this stack are at

the button and can be accessed through the Host Controller Interface (HCI) which provides a

uniform interface method. The Link Manager Protocol (LMP) is the link layer and it

provides authentication and encryption functions. The Logical Link Control and Adaptation

layer Protocol (L2CAP) provide connection–oriented and connectionless data services with

the upper layers. Other protocols such as TCP/IP, OBEX, SDP, RFCOMM (which emulate

the RS-232 interface) can be set on the L2CAP layer, which is a proprietary protocol.

Applications can be built on top of these protocols.

Figure 2.13 Bluetooth Protocol Stack

The Bluetooth protocol stack contains a Service Discovery Protocol (SDP) [6] that is

designed to categorize and to advertise the services provided by each node. It enables the

retrieval of information that can be used to configure the task to support user’s application.

Discovering could be done via searching for service by service attributes, service type and

browsing without any service characteristics. SDP does not cover other mechanism such as

selection and accessing of services.

Figure 2.14 DSP Client-Server Interactions

Baseband

Link Manager (LMP)

Audio

L2CAP

SDP

RFCOMM

OBEX

Bluetooth Radio

AT-Command
TCS BIN

WAP

IP

PPP

WAE
VCard/vCal

TCP UDP

Host Controller Interface

SDP
Client

SDP
Server

SDP Request

SDP Response

Univ
ers

ity
 of

 M
ala

ya

 40

SDP enables a client application to discover services and service attributes by issuing an

SDP request to the server application refer to Figure 2.14. An SDP server maintains a list of

service attributes and records that describe the characteristics of services. There is a

maximum of one SDP server per Bluetooth device and there is no SDP server for Bluetooth

device that acts only as a client. Each service attribute describes a single characteristic of a

service. A Service Attribute consists of an Attribute ID which differentiates each service and

Attribute value where its length is determine by the Attribute ID. The server issues an SDP

response to the client. A client must open a separate connection to the service provider in

order to use the service.

2.7.2 JINI

The Jini networking system [16] is a distributed infrastructure built around the Java

programming language. The basic communication model is based on the semantic model of

the Java Remote Method Invocation (RMI) system. Objects in one Java Virtual Machine

(JVM) communicate with objects in another JVM by receiving a proxy object, which

implements the same interface as the remote object. This proxy object deals with all

communication details between the two processes, and it may introduce new code into the

process to which it is moved. This is possible because Java bytecode is portable. It is also

safe because of the built-in verification and security of the Java environment.

The Jini system adds some basic infrastructure and parts of a programming model to the

underlying communication model. The infrastructure provides a mechanism by which clients

and services can join into the Jini network, while the programming offers a mechanism to

build reliable and distributed systems.

Jini creates a collection of networked devices, which represents a group of services. Jini

service can be realized to represent hardware devices, software programs or combination of

the two. Jini consists of the following types of entities:

1. Service Provider - It provides service to requester. This can be hardware device

such as a printer, a disk space or projector. Services can be used by a user or

another service.

Univ
ers

ity
 of

 M
ala

ya

 41

2. Lookup Service - It displays available services and provides a mapping interface

indicate the functionality provided by services and their devices. It can also

contain directory services other than Jini by bridging mechanism.

3. Client - It looks up or request for services.

The interaction between various entities can be shown in Figure 2.15. The main purpose of

discovery process is to locate lookup services.

Figure 2.15 Jini architecture [17]

The architecture of Jini is based on the Jini Lookup Service component (JLS). The services

must locate a JLS server using the discovery protocol. Refer to step 1 in Figure 2.15. Then,

service provider registers their services in the JLS in step 2. The clients also discover a JLS

and query it about the available services. The matching between queries and services can be

made by comparing the list of characteristic attributes. Each service will be maintained by

the JLS only for a certain period of time. Those services that are not registered are

eliminated from the register.

When a client has discovered the desire service, it can communicate directly with the service

provider by using the necessary code that the server previously uploaded during its

registration. This is one of the main advantages of the Jini architecture. The clients do not

need to own the specific drivers for a service; they can download it directly from the JLS in

Service
Provider

Lookup Service
(JLS)

Client

Service Query

Service Object

Service Object

Service Object

Service
Object

Service
Object

1

4

2 3

Univ
ers

ity
 of

 M
ala

ya

 42

step 3 and then invoke the service as in step 4. Besides that, the mobility of this code

increases the traffic and latency of the transmissions.

Jini’s client and server require to run on a JVM. Jini is platform independent but it is java-

dependent. Therefore, everything involving Jini must be programmed in Java.

2.7.3 Salutation

The Salutation architecture [18] is an industry consortium's solution to the service discovery

and utilization problem. The Salutation Consortium is developing it. The architecture

provides a standard method for application, services and devices to advertise their

capabilities or request the desired ones. It is claimed to be processor, operating system and

communication protocol independent.

The Salutation architecture is presented in Figure 2.16. Its key piece is the Salutation

Manager (SLM). Every Salutation network has a SLM, or uses a remote SLM by means of

the Remote Procedure Call (RPC) protocol. The SLM provides services and clients with a

transport independent interface (SLM-API). The different SLMs communicate among

themselves using the Salutation Manager Protocol, which uses the Remote Procedure Call.

Figure 2.16 Salutation Architecture [18]

The SLM also presents a transport-independent interface (SLM-TI) to transport dependent

entities, called Transport Managers (TM). Each Transport Manager supports one kind of

transport, making thus the SLM independent of which one is used. The Salutation Manager

Univ
ers

ity
 of

 M
ala

ya

 43

and the Transport Manager together perform the service of a service broker. The main tasks

carried out by a service broker are the following:

• Service Registry - A SLM holds a registry of services. It hold the information about

the service connected to it and also can store information about other services on the

network. A SLM can act as a central directory for all Salutation equipment in a

network.

• Service Discovery - The SLM can discover other SLM and their services. This

discovery is based on the comparing of the service type and matching of specific

characteristics.

• Availability Check - The SLM can periodically check the availability of the

registered services.

• Service Session Management - SLM creates a service session between the client and

service for the client to use the service.

There are several commercial implementations of the Salutation protocol exist. The

Salutation architecture is rather mature and it can be used together with Bluetooth’s service

discovery protocol or SLP. When Salutation is used with SLP [19], Salutation obtains the

scalability of directory-based service discovery.

2.7.4 Service Location Protocol (SLP)

The Service Location Protocol [15] designed by the Service Location Group (SRVLOC) of

the Internet Engineering Task Force (IETF) for IP-based networks. SLP provides a scalable

framework for the discovery and selection of network service or devices. It uses service

URLs, which define the service type and address for a particular service. Based on a URL,

users or applications can browse, select and use the available services in their domain. The

SLP infrastructure consists of three types of agents: User Agent, Service Agent and

Discovery Agent.

1. User Agent (UA) - UA is a client of services. UA sends a request about the desire

service to DA or directly to SA to requests for services with particular characteristic.

2. Service Agent (SA) - SAs are services or resources that can be used by UA. These

services could be printers, projectors, camera, or scanner. SA advertises their

Univ
ers

ity
 of

 M
ala

ya

 44

presence by multicasting, broadcasting or unicasting and provides services. SAs

advertise and register their presence with DAs. SAs also intercept and reply to

request about the services they offered with an access point.

3. Discovery Agent (DA) - DAs are central databases for services. DAs intercept

advertisements from SAs, accept registration from SAs and reply UAs on behalf of

SAs.

Mode of Discovery [15]:-

• Static Discovery

SLP agent obtains an address to Discovery Agent via DHCP while connecting into

the network.

• Active Discovery

1. SA and UA do not know the location of the DA

SA and UA use multicast to send Service Request message with a service type set

to service:Directory-Agent. Every DA on the network replies to this request with

a unicast message called Directory Advertisement message (DAAdvert) that

contains the DA’s URL. This is depicted in Figure 2.17.

Figure 2.17 Active Discovery of DA using when SA and UA do not know

location of DA.

2. SA and UA know DA location

SA and UA send a unicast service request with a service type service:Directory-

Agent to the DA which replies with a DAAdvert message. This is depicted in

Figure 2.18.

SA/UA DA

Multicast Service Request

DA Advertisement

Univ
ers

ity
 of

 M
ala

ya

 45

Figure 2.18 Active Discovery of DA when SA and UA know the location of DA

• Passive Discovery

DAs send periodically multicast DAAdvert message to notify its presence to UA and

SA which listens to the advertisement message on port 427. Interested UA or SA

extract the URL from the advertisement message and use it to contact DA.

After discovery, SA can register the service they offer by sending unicast Service

Registration message to DA using UDP unicast. The DA responds by returning a Service

Acknowledgement message. UA can request a service by sending a unicast Service Request

message which contains the type of service, the predicate if the attributes and the scope to

DA. If the Service Request matches one of the registered services, the DA replies with a

Service Reply message, which contains the URL of the requested service.

UA requests for a service by sending a unicast Service Request message to DA. This

message contains a set type of service service:directory-agent. The DA respond with

DAAdvert message only if the predicate can be satisfied with the DA’s attributes. The

summary of the communication is depicted in Figure 2.19. The SA, UA and DA are member

of the same scope.

SA/UA DA

Unicast Service Request

DA Advertisement

Univ
ers

ity
 of

 M
ala

ya

 46

Figure 2.19 Complete SLP Operations

SLP messages use authentication mechanism through digital signature where it can be

generated by using cryptographic technique.

SLP defines eleven messages that UAs, SAs and DAs interchange with each other. Some of

them are required for every implementation and some are optional. All the messages in

SLPv2 have the same SLP header followed by a specific body.

2.7.5 Comparison of Service Discovery Protocol

Bluetooth SDP, JINI, Salutation, SLP and UPnP presented above have different approaches

for service discovery. They have different philosophy and discover resource or service in

Service Agent Directory Agent

Multicast SrvRqst

DAAdvert

User Agent

Service Registration

Service acknowledgement

DAAdvert

SrvRqst (type, pred, attrib)

Service Reply (URL)

SrvRqst (type)

Communication

Univ
ers

ity
 of

 M
ala

ya

 47

different ways. Therefore, it is need to make a comparison between them on some features

and issues that is related to the context of this thesis [22].

The Bluetooth Service Discovery Protocol is simple because it is designed to work in small

devices and in ad hoc environments. This makes the protocol rather limited. It lacks the

service agent’s functionality such as service registration or aggregation and the lease

mechanism, although clients may poll for the availability and estimated life time of services.

Bluetooth SDP do not provides access to services, but only information about them. SDP is

only restricted to the Bluetooth environment and not other platform. Thus, it is not expected

to have full functionality compare with other service discovery mechanisms. It is rather

collaborate with them.

JINI is a powerful architecture and able to interoperate with SLP using bridges. The main

achievement of JINI is the code mobility possibility, but that also produces more traffic and

the more latency of the transactions. It has a disadvantage that it needs the JINI Lookup

Server to be used even in ad hoc networks. JINI is platform independent but everything must

be programmed in Java and every device needs a JVM running on it. This is a drawback

because it can be too expensive for some small devices.

The Salutation architecture is rather mature and is supported by an important consortium. Its

major deficiency is defective scalability. This however, can be solved when interoperate with

SLP. The possibility of operating with SLP, and Bluetooth, and its platform and transport

protocol independency can make Salutation become the bridge that allows interoperability

between different protocols.

UPnP is supported by many companies and great industries. UPnP are compatible standard

for UPnP enabled Internet gateways. The drawback of UPnP are the possibility of having a

central repository of services that makes scalability worse and the absence of better

searching mechanism. Besides that, it allows some extra features, such as events notification,

remote services control and devices auto-configuration.

The SLP is the standard of the IETF. SLP accepted by many developers but on the other

hand not supported by any important company. The SLP architecture is very flexible

because it can work with or without a central register of services and many of its features are

Univ
ers

ity
 of

 M
ala

ya

 48

optional. The drawbacks of SLP are its dependency on TCP/IP and the lack of some added

functionalities. SLP does not directly provide access to services or any of the UPnP extras

such as events notification or remote devices control. These capabilities have to be provided

by other protocols or applications.

Table 2.1 shows a comparative study of the various technologies by some features.

Feature SDP JINI Salutation SLP UPnP

Developer Bluetooth Sun
Microsystems

Salutation
Consortium IETF Microsoft

License Open source

Open license,
but fee for
commercial
use

Open source Open source Open (only
for members)

Programming language Independent Java Independent Independent Independent

OS and Platform Dependent Independent Dependent Dependent Dependent

Code Mobility No Yes No No No

Security Java Based Authentication IP dependent IP dependent

Used in small devices Yes No Yes Yes Yes

IP Based No Yes Yes Yes Yes
To work without central
database Yes No No Yes Yes

Support Extended
Attributes Yes Yes No Yes Yes

Support Advertisement
Message No No No Yes Yes

Table 2.1 Service Discovery Protocol Comparison

2.7.6 Summary

From the comparison above, there are advantages and also drawbacks for each respective

service discovery. Therefore, not single protocol can be considered as the best service

discovery protocol for devices communication in home and office environment. Instead, the

used of service discovery protocol depend on the need of the environment, the middleware

software and related functionalities. These protocols will probably have to learn to

collaborate with each other in the near future.

Univ
ers

ity
 of

 M
ala

ya

 49

CHAPTER 3 SYSTEM ANALYSIS

3.1 Introduction

Chapter 3 describes the proposed scenario of the Service Discovery where services are

discovered over heterogeneous networks. Before the implementation of this scenario, the

requirements and specification of the design architecture are defined. This chapter discusses

on the functional requirement, non-functional requirement needed for the development of the

scenario.

3.2 Proposed Scenario Description

This scenario depicts that a salesman bringing his pocket pc into his client office. He needs

to present his company product to the client. However, the product details are contained in

the pocket pc. He uses his pocket pc to discover printer service in the office and send the file

for printing. One of the purposes here is to facilitate communication of devices over

heterogeneous network where the user able to discover and interoperate with devices with

different underlying technology. Therefore, a device gateway is needed to sit in between

these heterogeneous networks to do the translation. A resident gateway was proposed in this

design.

For the salesman to use his pocket pc to discover the printer service, there are three entities

involved performing the action. They are the user accessing the office network over the

Internet (pocket pc), the gateway (resident gateway), and services within the office network

(printer service). The proposed design for the above scenario is in Figure 3.1.

 Univ
ers

ity
 of

 M
ala

ya

 50

Figure 3.1 Proposed Scenario diagram

In this scenario, the gateway will discover the existence of the pocket pc. The pocket pc

sends a service request to the resident gateway. The resident gateway checks the availability

of the printer service and sends a result back to the pocket pc. If the gateway discovers the

printer service, the salesman is able to send the file over to the printer to print. Then, the

clients are able to get the product details in hardcopy format.

3.3 Functional Requirements

This thesis consists of three major categories of functional requirement. There are the service

discovery and network communication, service discovery and interaction over Wide-Area,

and service discovery within Personal Area Network.

3.3.1 Service discovery and network communication

There is a need of few different technologies to interoperate among themselves to allow

communication and services to be discovered over heterogeneous network. First of all, there

are a number of different discovery service protocols in use. These service discovery

protocols are like Service Location Protocol (SLP), Jini, Bluetooth SDP, UPnP, Salutation,

HAVi and etc. There is also little hardware, devices and transport medium operate among

each other for the message to transfer from one domain to the other. These include

Univ
ers

ity
 of

 M
ala

ya

 51

technology such as wired cable, wireless connection, Bluetooth, infrared, HomeRF, GPRS,

X10 with the powerline and etc. These varieties of technologies with different capabilities

and characteristics offer and enable devices to interact among each other.

3.3.2 Service discovery and interaction over Wide-Area

The second functional requirement is to enable remote access from Internet to the internal

devices. The same discovery mechanisms for local devices to interact should apply here,

where user outside the domain is able to browse and search services in the local domain.

Therefore, a potential wide-area network solution should be used. The requirements for

devices to interact over wide-area network are listed below [35].

3.3.2.1 Naming and Addressing Requirements

The naming and addressing scheme is one of the requirements that must be able to support

both location and device independence [54].

• A networked device must be assigned a generic globally unique name so that any

communicating entity can refer to it.

• There must be support for classification of addresses and selection between multiple

instances.

• It must be possible to search for particular capabilities and to identify which devices

possess those capabilities.

3.3.2.2 Wide-area Accessibility Requirements

• Network devices in the PAN environment (eg. home or office) must be accessible

from outside.

• Only a subset of the devices within a domain may need to be addressable from

outside. It should be able to query the domain and to discover the externally

accessible devices.

3.3.2.3 Communication Protocol Requirements

• The communication protocol must provide a flexible payload that will allow the

transport of commands to, and responses from, individual network devices.

Univ
ers

ity
 of

 M
ala

ya

 52

• The communication protocol must support efficient control of messaging. It is

expected that control messages for devices will be short and may or may not form

part of an ongoing dialogue.

• The communication protocol must be able to encapsulate various network devices

characteristics. For example, some device may act and respond immediately, while

others may only respond after a non-determine amount of time.

• The communication protocol must able to support event notification of the status of

the device.

• Support for the following communication modes is required:

- Control - Turn on or off the light.

- Queries - Request the temperature of the air conditioner.

- Asynchronous events - Notify when the security alarm goes off.

- Discovery - Find the device that can meet specific requirement.

- Media streaming - view the babysitter camera.

3.3.2.4 Protocol Transparency and Independence

It is important that the wide area communication is independent of any particular or specific

protocol implementation. It must be also able to work with different in-domain networking

technologies transparently. This requirement applies to both physical networking and

application networking technologies [35].

3.3.3 Service discovery within Personal Area Network

User interfaces should be made available to be retrieved by devices so that different devices

are able to interact among themselves. The efficient and sensible approach is to use a generic

user interface format. The generic user interface format can then be either transcoded on the

server or in the client. The requirement for service discovery and communication between

different model devices for the generic user interface format are as follow [36].

• The generic user interface representation should be independent of the technology

transport protocols used over the network.

• There should be a natural separation of user-interface and non-user-interface code.

Univ
ers

ity
 of

 M
ala

ya

 53

• The interface representation should be extensible. Adding new features will not affect

the existing features.

• The control should be able to control the device remotely via provided connections.

There should be no dependence on the actual connection technology. This means that

there should be a way to communicate (user) events to the controlled device.

• The interface representation should independent from target format.

• The generic user interface should be able to be used to interact with the networked

device internal and over the Internet.

Additional to that, another important requirement is the coordination and synchronization of

different model devices. Below are the requirements for synchronizing multi-modal user

interface [37].

• Services should be able to interact in parallel with the same networked services via a

multiplicity of user and networked devices.

• Networked devices should present across user devices in a unified, synchronized and

coordinated view.

• Devices should be able to interact in uniform and behaviors independent with other

model of devices.

• There should be coordination of the user interfaces, behaviors and services.

3.4 Non-Functional Requirements

Because of the dynamic nature of home and office network with different network devices

and appliances, the networked devices architecture is necessary to be scalable and robust and

secure in real-time communication.

3.4.1 Security

Security is an important concern in these different technology networks. All communications

require authentication, authorization, privacy, and replay protection. All the contents of the

messages must be kept private to avoid eavesdroppers.

Univ
ers

ity
 of

 M
ala

ya

 54

Security threats are divided into three main classes; availability, confidentiality, and integrity

[38]. Availability is an assurance that the systems may carry out their intended functions

when needed. Confidentiality is an assurance that services information is shared only among

authorized person and Integrity is an assurance that information is authentic, complete and

accurate for its purpose.

3.4.2 Performance

It is a requirement that all the messages sent within network devices are sent efficiently and

without any delay. This protocol should work equally well in connection-oriented mode

(TCP) as well in connectionless mode (UDP).

3.4.3 Scalability

The PAN network can be expended with the increase of new network devices. The gateway

need to do most of the intensive processing to enable many devices with low memory and

processing power able to communication among each other. As the number of clients and

services in an environment increases, so the burden due to dynamic service discovery and

interaction increases.

3.5 Specification

The requirements outlined above are described in the specification provided below.

Basically, it describes the behaviors of the proposed architecture design include the

processes involved.

The main purpose of the system is to realize the service discovery and interaction between

devices over heterogeneous network. Three entities are involved in the process to carry out

the functionality. They are the remote user accessing the local domain over the Internet, local

user interact with devices and the residential gateway to control the communication between

domains. Figure 3.2, figure 3.3 and figure 3.4 illustrate the use case diagram of the behaviors

of the functionality of the modules.

Univ
ers

ity
 of

 M
ala

ya

 55

Figure 3.2 Use case diagram for remote user

In figure 3.2, the remote user starts the request for remote communication to the resident

gateway. The resident gateway discovers the user device when the user device announces its

presence. The resident gateway will request the user to provide password for authentication.

The remote user submits the password. If the password is correct, the remote user able to

join the domain and receive a list of available services.

Then the remote user sends a request of the selected service for user interface representation.

The resident gateway return with the user interface description. The remote user device

receives the user interface representation and invokes the selected service by sending a

command to the resident gateway. The Resident gateway processes the command and sends

it to the selected service. The service will respond to the user device and both interact.

Connect to
Local domain

Invoke
service list

Query type of
Service

Interact with
network device

Update service
list

Provide
Interface

Download
interface

Remote User

Pocket PC

<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

Univ
ers

ity
 of

 M
ala

ya

 56

Figure 3.3 Use case diagram for local user

In figure 3.3, the local user starts by sending request to the resident gateway. The resident

gateway discovers the user device when the user device announces its presence. Then, local

user joins the domain and receives a list of available services.

Then the local user sends a request of the selected service for user interface representation.

The resident gateway return with the user interface description. The local user device

receives the user interface representation and invokes the selected service by sending a

command to the resident gateway. The Resident gateway processes the command and sends

it to the selected service. The service will respond to the user device and both interact.

Join domain

Invoke
service list

Query type of
Service

Interact with
network device

Update service
list

Provide
Interface

Download
interface

Local User

Local User

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Univ
ers

ity
 of

 M
ala

ya

 57

Figure 3.4 Use case diagram for Resident Gateway

In figure 3.4, the resident gateway discovers services and devices and registers them in the

service registry. It also maintains the service list with the update statuses of the services. If

there is new service, it will add them into the service registry. If the service unavailable or

move out from the network, it will remove it from the service registry.

The resident gateway accepts request from remote user and local user. If accept request from

remote user, it will send authentication process and the user interface description. When it

accept request from local user, it will send the user interface description. Then it sends the

list of services to the users.

When the users select the service, the resident gateway will send a command to the specific

service. The service will respond and both the user and the service interact.

Discover
service

Maintain
service list

Accept remote
user request

Search query
process

Add new
service

Authentication

Accept local
user request

Retrieve user
interface

description

Resident
Gateway

Resident GW

<<include>>

<<include>>

<<include>>
Translate command to

understand format

Send command
to service

Update
service list

Register generic
interface description

<<include>>

<<include>>

<<include>>

<<include>>

Send list of
services

Univ
ers

ity
 of

 M
ala

ya

 58

3.6 Summary

Resulting on the analysis done throughout this chapter, a scenario of the service discovery is

defined and all the related functional and non-functional requirements are listed in details.

The specifications of the system are defined with the flow of the data in different module.

Univ
ers

ity
 of

 M
ala

ya

 59

CHAPTER 4 PROPOSED ARCHITECTURE DESIGN

Chapter 4 illustrates the detailed explanation of the proposed architecture design of services

discovery and devices interaction in a heterogeneous environment. This designed is based on

analysis of requirements and available technologies. The proposed architecture will meet the

objective of this thesis and it is part of the research contribution.

4.1 Physical Design

As discussed in Chapter 3, there are three physical entities involve. They are the remote user

accessing the office network over the Internet, the resident gateway and services in the

personal area network of an office.

Figure 4.1 Overview of the Physical Design of Service Discovery

Univ
ers

ity
 of

 M
ala

ya

 60

4.2 Technologies and Protocols

4.2.1 Protocol used for Wide-Area Communication

As discuss in the previous chapter, there are few requirements to be met for wire-area

communication protocol. These requirements need to be addressed by the potential protocol

solution. Below are some requirements to be addressed:

• Limited address capabilities

• Security that prevent unauthorized access to PAN devices

• Simple protocol which is suitable for small devices

• Resource limitation

The most suitable technology as part of the solution for wide-area communication is the SIP

protocol. SIP technology was chosen based on the functionality provided compared with the

suggested requirements. Below provide some rationale for this decision [43].

• Interoperability - Enables communication between devices in the PAN independent

of the type of local device communication protocol being used.

• Security - Provide authorization, authentication and encryption when the requested

function is executed. Beside that, it also provides encryption to the payload for end-

to-end privacy.

• Scalability - SIP is a very scalable protocol. It works well in both Local Area

Network and Wide Area Network environments. It has the characteristics that are

independent of the transport protocol; it works with the Transport Control Protocol

(TCP) as well as with the User Datagram Protocol (UDP).

• Mobility - SIP support mobility concept. A user agent can move from one

environment to another and still be discovered. This is possible because of the

REGISTER method defined in section 3.3 which informs a SIP server of the user

agent new location.

• Extensibility - It allows new methods, new message types, new type or address forms

and it supports the four types of communication modes (control, query, event

notification, and multimedia session) identified for network devices.

• Service Convergence - It uses existing infrastructure which makes it easier to

administer and maintain wide range of services.

Univ
ers

ity
 of

 M
ala

ya

 61

4.2.2 Deployment of the Resident Gateway

The Resident Gateway plays an important role because it is the central control of

communication of user device from Internet and the PAN networked devices. The resident

gateway accepts wide-area requests from remote users and discovers and manages services

in the PAN.

The OSGi platform is the better choice for a services gateway platform in the home or PAN

network environment. OSGi is a Java-based framework for delivering services to residential

user over network. Services can be configured dynamically by activation and de-activation

service or application packages (bundles). OSGi service gateway is able to support services

component deployment in a dynamic way. Services can be managed remotely allowing

service providers to adapt their products to customer needs.

OSGi provides a very flexible environment for the device management mechanism where

devices and services can be installed or uninstalled dynamically. Device services can

represent different levels of abstraction. Example, a single device can be seen by various

OSGi entities as a UPnP device, as a printer or as a USB device.

OSGi provides a middleware layer that can accommodate different network technologies and

it is independent of them. For example, an OSGi platform can interconnect UPnP devices

and SIP devices or Bluetooth devices and TCP/IP devices. Figure 4.2 show services install

as bundle in the OSGi Gateway.

Figure 4.2 OSGi Gateway

OSGI Framework

Se
rv

ic
e

A

Resident Gateway

U
Pn

P
Se

rv
ic

e

SI
P

Se
rv

ic
e

Wide Area Local
Network

Service Management

Univ
ers

ity
 of

 M
ala

ya

 62

In OSGi gateway, all devices and services categories are recorded in the OSGi device

service registry. Device service is then responsible for device discovery and registration with

the OSGi device registry. OSGi is able to perform inter-gateway bridging over different

gateways. Devices registered with one OSGi service registry are exported by bridging and

imported into another service registry of other gateway. With OSGi cross-framework device

and service mobility is achieved.

OSGi was proposed as the technology to be implemented in the resident gateway has the

following features:

• Connecting PAN networks to Internet with broadband access

• Providing routing and address translation

• Bridging various PAN such as home network.

• Enabling secured remote access and data exchange of home devices

• Remote service and device management

• Allowing technologies in WAN and PAN evolve independently

4.2.3 Protocol used for Personal Area Network

There are many service discovery technologies available nowadays for PAN such as

Bluetooth Service Discovery, Jini, UPnP, Salutation, SLP, X10 and etc. UPnP was selected

out of all these service discovery protocol to communicate devices in the proposed PAN

network environment. UPnP is a standard with XML format description for its device.

Therefore, it provides rich service description for the device. UPnP is supported on many

operating systems and able to deploy application from multiple devices.

UPnP was selected to be the solution for PAN because it is independent of the physical

communication medium such as Bluetooth USB and WLAN. Besides that, UPnP also

realized the zero-configuration setup and interoperate over multi range of devices. When a

new UPnP-enabled device is online, it can be noticed and controlled by a other UPnP device

or UPnP Control Point without driver installation.

Univ
ers

ity
 of

 M
ala

ya

 63

One of the important reasons, UPnP was chosen because UPnP able to be translated to OSGi

method calls. An UPnP service is possible to be imported into OSGi framework and appear

as a valid OSGi entity. The installed service is completely accessible by other OSGi entities.

UPnP provide pervasive peer-to-peer network connectivity. There are no registries in the

UPnP peer-to-peer network. Users discover services through broadcast and multicast. In the

peer-to-peer architecture, network traffic flow increases and single point of failure can be

avoided.

4.3 Scenario Architecture Design

This section describes a propose solution for the scenario illustrated in section 3.2.

Figure 4.3 Proposed Architecture Design

4.3.1 HTTP Service

This bundle communicates Remote User with Authentication Service and interacts with User

Interface Registry and Service Registry to retrieve the suitable interfaces and services. This

module allows users to interact with the networked devices using the universal user

OSGI Framework

A
ut

he
nt

ic
at

io
n

Se
rv

ic
e

Resident Gateway

U
Pn

P
B

as
e

D
riv

er

H
TT

P
Se

rv
ic

e

Wide
Area

Devices /
Services

Service Registry

U
se

r I
nt

er
fa

ce
 R

eg
is

try

C
on

tro
l P

oi
nt

SI
P

Pr
ox

y

Local User

Remote
User

Remote
User

Personal Area
Network

B
rid

gi
ng

 B
un

dl
e

Univ
ers

ity
 of

 M
ala

ya

 64

interface, web browser. Images, resources and other files can be made available through the

HTTP service.

4.3.2 SIP Proxy

This bundle similar to the HTTP service which communicate the remote user to local

devices. The typical MIME payload type for networked devices is called Device Message

Protocol (DMP). This DMP is in XML-based specification. SIP Proxy receives messages

from remote user and translates the SIP message payload from Device Massage Protocol

format to the OSGi method. It also translates the user interface format to the suitable format

for the remote device. SIP Proxy accesses the Authentication Service for authentication, User

Interface Registry for generic user interface and the Service Registry for available services.

4.3.3 Authentication Service

This bundle provides authentication and authorization to remote user before accessing to the

PAN devices. Authorized remote user is only able to interact with the devices. After the user

is authenticated, Authentication Service will allow SIP and HTTP service to setup session

with Service Registry.

4.3.4 User Interface Registry

This bundle provides generic user interface descriptions for all the devices and services

available in the PAN. The generic user interface description is translated by HTTP Service

and the SIP Proxy. User Interface Registry also responsible to update the version of the user

interface representation.

Univ
ers

ity
 of

 M
ala

ya

 65

4.3.5 Bridging Bundle

Bridging bundle is introduced to perform application layer bridging to translate between

diverse device frameworks. Bridging between UPnP and SIP frameworks will utilize both

UPnP and SIP OSGi services. The bridging bundle can instantiate UPnP and SIP device

objects and translate UPnP events into SIP based event notifications or vise-versa. It can

encapsulate UPnP SOAP control message into SIP messages with appropriate message

payload and header translations. [47]

4.3.6 Control Point

The Control Point is a bundle that provides the controller function. This function enable user

device to interoperate with devices and services available. Control Point is capable of

discovering and controlling other devices. Control Point retrieves the device and service

description which are register in the service registry. It also can accepts action invocation

request and invoke actions to control the service by sending SOAP message. After Control

Point subscribe to the event, it will receive event message of any changes of the device state

variable. More about Control Point were describe in Chapter 3.

4.3.7 UPnP Base Driver

The UPnP Base Driver bundles translate the messages from UPnP device to the OSGi

method calls. It is an OSGi bundle that implements the UPnP protocols. UPnP Base Driver

also manages the interaction of devices using UPnP protocol. The responsibilities of UPnP

Base Driver are to import UPnP devices from network to the OSGi framework, register them

to the Service Registry and export UPnP device from OSGi framework to the network.

4.3.8 Service Registry

Service registry allows bundles to cooperate by registering the service object and search for

the requested matching objects. It also receives notification when services become registered

Univ
ers

ity
 of

 M
ala

ya

 66

or unregistered. Network devices and services interact with Service Registry using UPnP

Driver. Service Registry stores every registered devices and services available in the

network. Services are always registered with an interface name and a set of properties. It has

the property details such as names, addresses, user interfaces and etc.

Discovering services is done with notifications or by actively searching for services with

specific properties. A simple and powerful filter language is used to select exactly the

services that are needed. The OSGi framework supports LDAP query syntax, with operators

such as and (&), or (|), not (!), less (<=), greater (>=), approximate (~=), equals (=),

substring (*) and etc.

4.4 Architecture Model for UPnP Control Point and UPnP Device

Figure 4.4 Architecture Model of UPnP control point and device

Figure 4.4 describes the architecture model of the design of the UPnP control point and the

UPnP device. In this model, there are 5 layers. The top layer is the application which is built

on top of the API layer. Layer 2, the API layer is the collection of several classes. The API

for both control point and device are implemented in Java on top of the standard protocol.

The API is target to embedded systems. Layer 3 is the layer with three components of

protocols SSDP, SOAP and GENA. Component in layer 3 are started by the API. Layer 4

represents two protocols UDP and TCP. The SSDP component uses UDP protocol to

Application (Control Point, Device)

API (Control Point, Device)

UDP TCP

IP

SOAP

SSDP GENA
XML
Parser

WEB
server

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Univ
ers

ity
 of

 M
ala

ya

 67

implement the discovery, and uses TCP protocol for the controlling (SOAP) and eventing

(GENA) function. Layer 5 is the IP layer; therefore all the elements must be IP-enabled.

XML Parser and WEB server do not belong to any of the layer. XML Parser can be invoked

by any component in layer 3 to parse XML content. The WEB server is the HTTP server

running in the device and handles device and service descriptions.

4.5 General Design

In general, the proposed architecture design consists of three main entities of interaction

which are the User (Pocket PC), Resident Gateway (OSGi Gateway) and Local Service

(Printer). However, there are two possible scenarios; the user may access the resident

gateway as a remote user using SIP or as a local user using UPnP service.

Scenario A: Remote user accessing the Print Service

In this scenario, the interaction between a remote user with SIP-enabled Pocket PC and the

local Print Service is proposed with the following processes:

1. SIP enabled pocket pc sends a message to register with the local SIP Proxy (in the

Resident gateway) to determine its location and availability.

2. SIP Proxy will resolve the address of the user device and will refer to

Authentication Service to authenticate user.

3. After the user is authenticated, SIP Proxy will acknowledge the user.

4. Then the SIP enabled pocket pc will send request for user interface for the device.

5. User Interface Registry returns the generic user interface.

6. SIP enabled pocket pc request to register with the Service Registry.

7. SIP enabled pocket pc request for available services in the Service Registry.

8. Service Registry will discover local UPnP services using the UPnP based driver.

Service Registry will return the list of available services.

9. The pocket pc selects the wanted service from the list and sends a request to the SIP

Proxy for invoking the service.

10. SIP Proxy will send the invocation request to the service registry.

Univ
ers

ity
 of

 M
ala

ya

 68

11. Then, the Bridging Bundle will perform the bridging between the pocket pc with the

requested service which is the print service.

Figure 4.5 A Sequence diagram of a Remote User subscribing to an UPnP service.

:SIP enabled
Pocket PC

:SIP Proxy :Authentication
Service

2. AuthenticateUser(id)
1. DO(rqstConnection)

:User Interface
Registry

:Service
Registry

:UPnP based
Driver

:Bridging
Bundle

3. AcceptUser(id)
4. DO(acceptUser)

6. RqsttUserInterface()

7. TranscodeUserInterface()

5. DO(rqstUI)

8. DO(userInterface)

13. SUBSCRIBE(srv)

14. Rqst(invokeSrv)

19. Ack(srvState)

20. Do(ack)

17. Rqst(stateVariable)

18. Ack(srvState)

24. UPnPEvent(event)

10. RqstRegister()

11. Ack()

9. DO(rqstRegister)

12. DO(ack)

15. Rqst(invokeSrv)

16. Ack(srv)

21. SUBSCRIBE(srv)
22. Rqst(srv)

23.Rqst(Srv)

25. Ack(event)
26. NOTIFY(event) Univ

ers
ity

 of
 M

ala
ya

 69

Scenario B: Local user accessing the Print Service

In this scenario, the interaction between the local user with UPnP-enabled Pocket PC and the

local Print Service is proposed with the following processes:

1. When the UPnP-enabled printer is turn on, it will send a message to the Gateway

and register under the uniform interface UPnPDevice in the OSGi Service Registry

as standard OSGi UPnPDevice service.

2. The Control Point discovers the UPnP printer service in the Service Registry.

3. UPnP base driver export the service to the network.

4. When the UPnP Pocket PC is turn on, it is also registered in the Service Registry.

5. The Pocket PC discovers all the UPnP services available in the network including

the UPnP printer service.

6. The Pocket PC send SOAP message to the printer service to invoke action.

7. The UPnP base driver will deliver the action instruction to the device.

Univ
ers

ity
 of

 M
ala

ya

 70

Figure 4.6 A Sequence diagram of a Local User accessing the UPnP service.

4.6 Summary

In this chapter described the physical design of the system together with the layout of the

design. All the related technologies and protocols were described in details. This includes the

protocol for wide area environment and personal area network. Technologies for the

Resident Gateway are also elaborated in details. Besides that, all the modules for the

architecture design are described. Finally, the flow of the communication methods was

elaborated with sequence diagram.

:UPnP enabled
Pocket PC

2. RqstRegister(id)
1. Rqst(register)

:Control Point :Service
Registry

:UPnP based
Driver

:UPnP Device

3. Ack()
4. Ack()

6. Rqst(invokeSrv)

9. Ack(srvState)

5. Request Service

10. Ack(svr)

13. Rqst(deviceID)

14. Ack(serviceID)
15. Ack(serviceID)

11. Rqst(SOAP)

16. Ack(serviceID)

7. Rqst(invokeSrv)

8. Ack(srv)

12. Rqst(serviceID)

Univ
ers

ity
 of

 M
ala

ya

 71

CHAPTER 5 IMPLEMENTATION

Chapter 5 describes the implementation of service discovery concept to prove the

functionality of the proposed proof-of-concept architecture designed in Chapter 4. This

implementation was carried out with the technologies, standards and justification described

in Chapter 3 and reusing many existing software components as possible.

5.1 Overview

This implementation requires proving the Scenario B explained in Chapter 4 where a user

enters into the local personal area network accessing the print service. It is required to prove

the device’s (Pocket PC) action of subscribing and invoking a service (Print Service). It also

proved that the resident gateway able to discover services and perform the UPnP service

discovery mechanism.

To realize the proposed scenario, the diagram below outlines the highlighted component to

be implemented.

Figure 5.1 Implementation components of the architecture

OSGI Framework

A
ut

he
nt

ic
at

io
n

Se
rv

ic
e

Resident Gateway

U
Pn

P
B

as
e

D
riv

er

H
TT

P
Se

rv
ic

e

Wide
Area

Service /
Printer

Service Registry

U
se

r I
nt

er
fa

ce
 R

eg
is

try

C
on

tro
l P

oi
nt

SI
P

Pr
ox

y

Local User/
Pocket PC

Remote
User

Remote
User

Personal Area
Network

B
rid

gi
ng

 B
un

dl
e

Univ
ers

ity
 of

 M
ala

ya

 72

As highlighted in figure 5.1, these components will be implemented to prove the proposed

Scenario B. The resident gateway, a simulated pocket pc (device) and a simulated printer

(UPnP service) will be implemented. For the function in resident gateway, they will be

implemented as bundles on the OSGi Framework.

5.2 Environment

5.2.1 Resident Gateway Module

As justified in Chapter 3 and Chapter 4, OSGi based platform was chosen to implement the

Resident gateway. There are few organizations provide OSGi framework in the market.

However, there are two freely available OSGi implementations which are the Oscar OSGi

framework and the Knopflerfish OSGi framework. Both of these frameworks are based on

the OSGi standard, therefore it is not an issue to select which one. However, Knopflerfish

OSGi was chosen as the framework because of its friendly user interface.

The service components are written in Java code. After the service component is written, it

needs to be packaged and installed as bundle and run on the OSGi framework. All the

resource and code needed to run the bundles are contained in the JAR files. The JAR file

also contains a manifest and some combination of Java class files and native code. The

bundles implement its own service and provide services to other bundles in the form of

interface APIs.

A bundle can only be used after it is installed into the Knopflerfish framework. An installed

bundle is uniquely identified by its location or its bundle identifier. The location string which

is a unique URL is used to retrieve the bundle JAR. The framework provide bundle

management mechanisms which allow installation, activation, deactivation, update and

removal of bundles.

When a bundle is installed, it deploys a BundleActivator class and a bundle Manifest file. A

BundleActivator class is a Java class that implements org.osgi.framework.BundleActivator

and defines logic for the start() and stop() methods. The BundleActivator attach a set of

attribute value pairs to the service when registering a service. A BundleActivator use the

Univ
ers

ity
 of

 M
ala

ya

 73

fully qualified service name and an optional selection filter in LDAP query syntax over the

service properties to look for a service.

A bundle Manifest is a descriptor, which are used to declare bundle native features.

Examples of native features are like name, version, manufacture information and interaction

relationship with other bundles. Both BundleActivator and Manifest receive the

BundleContext and are called when the bundle is started and stopped.

A BundleContext object enables the bundle to access the OSGi framework functionality. The

methods in the BundleContext object allow the bundle to install itself, register services, get

information about other installed bundle, retrieve references to services, get and release

service objects, get and release file object, and subscribe to events published by the

framework.

Below are the steps that are needed to create a bundle [50]:

1. Step 1: Write a bundle Activator class

2. Step 2: Create a bundle Manifest file as a text file

3. Step 3: Build a JAR file that contains the compiled Activator class and the Manifest

file

4. Step 4: Start the OSGi framework and install, run and stop the bundle

After a bundle is created, it will be installed into the OSGi framework. The framework

creates a BundleContext object when it starts a bundle and passes the object to the start()

method in BundleActivator. When a bundle is stop, BundleContext object is deleted and the

stop() method in the BundleActivator is invoke. Therefore, the start and stop of the bundle

depend on the method in the BundleActivator. Below are the mechanisms to start and stop a

bundle.

Start bundle

• OSGi framework create the BundleContext object

• Manifest file refers BundleContext object to the method in BundleActivator

• BundleActivator invoke the start() method contained in the class and the bundle is

started.

Univ
ers

ity
 of

 M
ala

ya

 74

Stop bundle

• BundleActivator invoke the stop() method contained in the class

• The BundleContext is deleted and the bundle is stopped.

5.2.2 UPnP Pocket PC and Printer Module

In this simulation, a user interface running on a Pocket PC to control the printer using two

services that are to turn on the printer power and to select the printer print quality. An UPnP

system consists of a pocket PC and a printer is constructed. The UPnP Pocket PC and the

UPnP printer are simulated in an UPnP network, while the resident gateway running on the

OSGi platform as a control point. The control point will discover both the Pocket PC and the

printer and the Pocket PC will discover the printer services.

These devices are developed using UPnP API in Java using Eclipse 3.1.1 SDK. This UPnP

API which is based on the sample code from CyberLink [52] is able to simulate the UPnP

device as describe in the scenario requirement in Chapter 3.

Univ
ers

ity
 of

 M
ala

ya

 75

5.3 Implementation

5.3.1 Resident Gateway Module

To implement the resident gateway, firstly the Java2 SDK 1.4.2 was installed. Then the

Knopflerfish OSGi 1.3.4 framework is installed on top of the Java SDK. Knopflerfish OSGi

can be installed and started by double-clicking on the executable jar file framework.jar in

knopflerfish.org/osgi directory. This will starts the Knopflerfish OSGi Desktop and a set of

bundles as in Figure 5.2. This desktop displays the graphical view of the OSGi framework.

The Knopflerfish OSGi desktop able to perform operation such as Install, Start, Stop, and

Update on the bundles. Eclipse 3.1.1 with the Knopflerfish Eclipse Plug-in is used in the

coding.

Figure 5.2 Knopflerfish OSGi Desktop

The section below discuss on the implementation of the bundles on the resident gateway

OSGi framework. It will also explain the services offered and used by the bundle.

Univ
ers

ity
 of

 M
ala

ya

 76

5.3.1.1 Control Point Bundle

An instance of ControlPoint class is created. ControlPoint::start() is used to activate the

control point. When the control point is activated, it multicasts discovery message to the

UPnP network automatically searching for all devices.

 public static void main(String args[]){

 CtrlPoint ctrlPoint = new CtrlPoint();

 ctrlPoint.start();

 }

When a UPnP device is added or removed from the network, the control point receives

notify event from device. This notification alert is helpful to know the status of the device.

Below is the sample code.

 public class MyCtrlPoint extends ControlPoint implements NotifyListener {

 public MyCtrlPoint() {

 addNotifyListener(this);

 start();

 }
 public void deviceNotifyReceived(SSDPPacket ssdpPacket) {

 String uuid = ssdpPacket.getUSN();

 String target = ssdpPacket.getNT();

String subType = ssdpPacket.getNTS();

 String location = ssdpPacket.getLocation();

 }

}

To get the discovered device list, ControlPoint::getDeviceList() is used. Below is the

example of the code.

 ControlPoint ctrlPoint = new ControlPoint();

 ...

 ctrlPoint.start();

 ...

 DeviceList rootDevList = ctrlPoint.getDeviceList();

 int nRootDevs = rootDevList.size();

 for (int n=0; n<nRootDevs; n++) {

 Device dev = rootDevList.getDevice(n);

 String devName = dev.getFriendlyName();

 System.out.println(“[“ + n + “] = ” + devName);

 }

Univ
ers

ity
 of

 M
ala

ya

 77

Write a bundle Activator class for Control Point

The BundleActivator is the main class of the application. For a bundle to start, register or use

other service, must have a BundleActivator implementation and reference to the

BundleActivator’s class name in its manifest file. The codes below are modified from the

Domotics Software [51]. More complete code Control Point is shown in Appendix A.

Control Point bundle Manifest file

The Manifest.mf file was created in the folder named META-INF. Manifest.mf describes

bundle metrics and its interfaces with other bundles.

public class Activator implements BundleActivator {

public static BundleContext context;

private ControlPoint cp;

public void start(BundleContext context) throws Exception {

 Activator.context = context;

 cp = new ControlPoint();

 }

public void stop(BundleContext context) throws Exception {

 cp.close();

 Activator.context=null;

 }

}

Manifest-Version: 1.0

Bundle-Description: OSGi Generic Control Point to control UPnPDevice services

Bundle-Name: Generic Control Point 2.1.0

Bundle-Version: 2.1.0

Bundle-Activator: org.osgi.framework.controlpoint.Activator

Import-Package: org.osgi.framework, org.osgi.service.upnp,

org.osgi.upnp.extra.util, org.osgi.upnp.extra.controller Univ
ers

ity
 of

 M
ala

ya

 78

5.3.1.2 UPnP Base Driver Bundle

UPnP base driver bundle is first installed on the OSGi framework, then it is started to allow

UPnP devices to interact with OSGi framework. UPnP base driver bundle is used to export

the UPnP devices on OSGi framework to the other network and to import the UPnP services

from other network to the OSGi framework. Any other bundles need the UPnP API specified

by the OSGi Alliance to interact with UPnP base driver. UPnP base driver bundle was

recently made available open source by Domotics Software [51]. The BundleActivator and

the Manifest code for UPnP Base Driver is shown in Appendix A.

UPnP base driver consists of the device discovery function which contains the related main

class that is RootDeviceListener. This class responsible to listen for any available device in

the network. It is used to discover device. The complete code for this class is shown in

Appendix A.

public class RootDeviceListener implements ServiceListener {

 private ArrayList devices;
 private DeviceNodeListener listener;
 public RootDeviceListener(){
 devices = new ArrayList();
 }
 public void setDeviceNodeListener(DeviceNodeListener listener){
 this.listener = listener;
 }

}

5.3.1.3 Generic User Interface

Generic User Interface or the device servlet has two main functions. These functions are to

respond to service description request from device and respond to function invocation

request. It is implemented using standard javax.servlet API. It uses the HTTPRequest and

HTTP Response object to communicate between devices. Generic User Interface also

interacts with the service registry to retrieve the proper service object and interact with them.

Univ
ers

ity
 of

 M
ala

ya

 79

5.3.1.4 Service Registry

The service registry [32] contains and manages multiple service instances. Bundles that are

installed on the OSGi framework will register in the service registry. These registered

bundles are giving the Configuration Admin service the ability to create and configure

instances of services that the bundle can provide. Each of the service instances is represented

by a factory configuration object in the persistent storage of the Configuration Admin

service. When the configuration is updated, the Configuration Admin service calls the

ManagedServiceFactory method to update with the new properties [32]. A new factory

instance is created by the managed service factory when updated is called.

5.3.2 UPnP Pocket PC and Printer Device

To create the device or service, there are two things that need to be done. First, the XML

description file is written using the service description language. Second, the service is

implemented. The service description includes name of the service, service type, a list of

keywords, a list of functions available, and a list of properties. The description type are

related and influenced by the service function offered. Therefore, the description type will be

taken into consideration when create the service device.

As describe in the scenario, for the pocket pc to be able to discover the printer and connect to

it, the discovery process has two steps; pocket pc announces it’s present to be discovered by

the control point in the resident gateway and the control point sends out a discovery message

to discover the printer device.

5.3.2.1 Device Service Advertisement

The UPnP Pocket PC will announce its presence once it is switch on. When the UPnP Pocket

pc is started it sends out ssdp::alive message automatically to a fixed multicast address. The

control point sends a search request to the UPnP network, the active Pocket PC send the

search response to the control point. Then, control point register this Pocket PC in the

service registry with a uniform interface.

Univ
ers

ity
 of

 M
ala

ya

 80

When Pocket PC is stopped by sending out ssdp::byebye message, control point delete it

from service registry. Below show the Sequence diagram of the device service

advertisement.

Figure 5.3 Sequence Diagram of Device Service Advertisement

5.3.2.2 Device Discovery

First, the Control Point is plugged into the network and started. Then, the SSDP sends out

multicasts search request to search for any UPnP services that are connected to the network.

If there is any UPnP device available on the network, it will respond to the request. Then the

newly discovered Printer service will be registered by the Control Point in the OSGi

framework org.osgi.service.upnp.upnpDevice as a uniform interface. The Service Registry

bundle sends a service listener addServiceListener() object to listen to any service update.

This service will be added and registered in the service registry. When there is any change of

service state variable, the service references, getServicereferences() object is invoke and

update the service registry. Below show the Sequence diagram of the discovery request.

:Service
Registry

:Control Point :Pocket PC

2. ssdp::alive

3. SSDPSearchReq()

5. Register with an
interface

6. ServiceEvent:REGISTER

7. getServiceReferences()

1. Start()

8. addNewDevice()

4. Ack()

Univ
ers

ity
 of

 M
ala

ya

 81

Figure 5.4 Sequence Diagram of Device Discovery

:Service
Registry

:Control Point :Printer

2. SSDPSearchReq()

3. SSDPSearchResp()

4. Register with an
interface

6. addServiceListener()

7. getServiceReferences()

1. Start()

8. addNewDevice()

5. Start()

Univ
ers

ity
 of

 M
ala

ya

 82

5.4 Testing

This section describes the testing that was performed during the implementation. These tests

were done according to the defined requirements as in Section 3.3 and 3.4. The results are

obtained, evaluated and presented in detail.

Scenario A: Pocket PC user on UPnP platform discover printer service on UPnP

platform

In this scenario, both the pocket pc and the printer service were simulated on UPnP platform.

Firstly, the remote control for printer and pocket pc was simulated using Eclipse on UPnP

platform as in Figure 5.5 and Figure 5.6.

Right click on the PrinterRmtCtrlFrame.java file and select Run As Java Application. Then

the remote control of the pocket pc and the printer will be displayed as in Figure 5.6.

Figure 5.5 To run the simulated Remote Control

Univ
ers

ity
 of

 M
ala

ya

 83

Figure 5.6 Remote Control for Pocket PC and printer

Then the printer was simulated on UPnP platform as in Figure 5.7 (a). When the power on

the remote control is click, the printer is turn on as in Figure 5.7 (b).

Figure 5.7 Simulated Printer on UPnP Platform (a) Off (b) On

The pocket PC was simulated on UPnP platform as in Figure 5.8 and Figure 5.9. Right click

on the PpcFrame.java file and select Run As Java Application. Then the pocket pc will be

displayed as in Figure 5.9 (b).

 Univ
ers

ity
 of

 M
ala

ya

 84

Figure 5.8 To run simulated UPnP Pocket PC

Figure 5.9 Simulated Pocket PC on UPnP Platform (a) Off (b) On

Univ
ers

ity
 of

 M
ala

ya

 85

Figure 5.10 shows the three simulated UPnP components.

Figure 5.10 Simulated Printer and Pocket PC before Printer ON

Figure 5.11 shows that the printer was switch on by clicking on the printer power on the

remote control. The pocket pc discovered the printer service and the text “UPnP Printer: on”

displayed on the pocket pc.

Univ
ers

ity
 of

 M
ala

ya

 86

Figure 5.11 Simulated Printer and Pocket PC after Printer ON

The printer was off by clicking on the remote control. Then the text on the pocket pc

changed to “UPnP Printer: off”.

Figure 5.12 Simulated Printer and Pocket PC after Printer OFF

Univ
ers

ity
 of

 M
ala

ya

 87

Scenario B: Pocket PC on OSGi platform discover clock service on UPnP platform

In this scenario, the pocket pc service was simulated on OSGi platform and the clock service

was simulated on UPnP platform. The pocket pc discovered the clock device and displayed

the current time on the screen.

Figure 5.13 displayed the steps to run the simulated Pocket PC using Knopflerfish. At the

Knopflerfish desktop, click on the Simulated OSGi Pocket PC and run. When the Pocket PC

was simulated, the Pocket PC will display as in figure 5.14 (a). Then the UPnP clock was

simulated and displayed as in figure 5.15. The OSGi Pocket PC was able to discover the

service from clock and displayed the current time on the Pocket PC screen in figure 5.14 (b).

Figure 5.13 To run OSGi Pocket PC using Knopflerfish

Univ

ers
ity

 of
 M

ala
ya

 88

Figure 5.14 Simulated OSGi Pocket PC

(a) UPnP clock OFF (b) UPnP clock ON

Figure 5.15 Simulated UPnP clock

Univ
ers

ity
 of

 M
ala

ya

 89

Figure 5.16 displayed the simulated OSGi Pocket PC and UPnP clock after UPnP clock is

switched on.

Figure 5.16 Simulated OSGi Pocket PC after UPnP clock ON

5.5 Summary

From the implementation above, the proposed component are implemented and tested. The

result shows that the chosen technologies and tools are competent to implement the scenario.

It proved the architecture reasonably well and the concept of UPnP service discovery in

office personal area network. The service discovery is able to provide service availability

and service information to the requesting device. The whole process of the discovery was

unknown to the user. The services were displayed on the screen of the user’s device.

After the simulation was tested, the performance of the implemented architecture was

analyzed. The latency of the commands and requests sent between the devices was almost

instantaneous in almost all the situations. The messages were also passed through the

framework almost instantaneous. During the implementation, a big number of bundles were

installed and started on the OSGi framework to test the performance. This may proved that

Univ
ers

ity
 of

 M
ala

ya

 90

in such a scenario, it can still cope with large number of user devices and services. There

was no degradation in performance with the load.

The implementation and the testing were tested with some java clients and they were

connected to the gateway server simultaneously. There was no significant difference in

performance with the implementation. All the Java clients were subscribed to receive UPnP

notifications.

However, the service discovery solution for the external wide area communication with SIP

technology was not implemented because it is beyond the scope of this thesis. This

development with the expected tools which is SIP can be carried out as part of the future

work.

There are no major issues that arise from the implementation. Lately, there are efforts being

carried out to develop driver bundles in the OSGi platform with other protocols such as

HAVi, Bluetooth, Jini and other communication protocols. This will surely solve many

connectivity issues with other various scenario implementations.

Univ
ers

ity
 of

 M
ala

ya

 91

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This thesis describes the proposed architecture design of service discovery in heterogeneous

environment and implementation of service discovery using UPnP over OSGi platform in an

office personal area network. The technology envisioned for this thesis has turned out to be

feasible, flexible and future-proof. It achieves this flexibility by being open rather than

proprietary standards. It is absolutely not because that the chosen technologies will remain

the main solution in the future, but it is likely they will be strong candidates to provide

personal area network service discovery solution.

Resulting from the implementation and testing done, this thesis has fulfilled the objectives

and goal of the research which is to illustrate an architecture design of interaction of devices

and services in a heterogeneous environment. A detail studied had been done on all the

related technologies required. A scenario was implemented in a simulation way to

demonstrate the service discovery concept for an office environment. This service discovery

is able to provide service availability and service information to the requesting device. All

the processes of discovery are completely unknown to the user and it’s carry out behind the

communication. The contribution of this thesis is the architecture design for the service

discovery over different environment.

The technologies used in this prototype have worked well together. The Java tool was a good

solution to implement the functions and work well on UPnP and OSGi framework. An

environment with the functional components has successfully implemented. A scenario was

presented where the printer service can be discovered via resident gateway by a pocket pc

when it is turn on. Any changes to the status of the printer service were updated on the

pocket pc.

Many existing service discovery protocols have been surveyed. In this thesis, UPnP and SIP

has been studied and justified as the PAN and WAN communication technology

respectively. Although there is no exact description on how to do translation between the

UPnP and SIP protocols, some studies and explanations has been done on both protocols.

Univ
ers

ity
 of

 M
ala

ya

 92

OSGi standard was selected technology to deploy the resident gateway. Therefore, some

research was carried out on it. The standardized OSGi gateway specification is supported by

many famous companies and developers so that it can become the standard for service

gateways in the near future.

Much effort was spent on the implementation of the OSGi framework resident gateway, the

UPnP base driver, control point and UPnP pocket pc and printer. Based on this

implementation, it is suitable for any possible extension by adding OSGi bundles for other

functions in the future.

6.2 Future Enhancement

This thesis describes the service discovery in heterogeneous environment and demonstrated

the UPnP technology to discover services. Future work that could be enhanced on the

architecture would be the SIP service. SIP service enables device and service mobility. The

SIP proxy is possible to be implemented by installing on the proposed architecture. The

implementation of the SIP Service for the wide area communication will improve the

functionality of the remote user. Currently, there are groups of expert carrying out studies on

the details of the SIP service API.

Another option of enhancement is on the security aspect of the whole architecture.

Authentication and authorization can be added when the user device trying to access to the

personal area network services. This is to prevent unauthorized access to the services and to

protect the confidentiality of the services.

 Univ
ers

ity
 of

 M
ala

ya

 93

REFERENCES

[1] MarkWeiser. (1991). The Computer for the 21st Century, Scientific American.

[2] Christian Bettstetter. (September 2000). Toward Internet-based Car Communications: On

Some System Architecture and Protocol Aspects. In Proceedings EUNICE 2000, Sixth

EUNICE Open European Summer School, Twente, Netherlands.

[3] M. Satyanarayanan. (August 2001). Pervasive Computing: Vision and Challenges. IEEE

Personal Communications.

[4] Tom Broens. (July 2004). Context-aware, Ontology based, Semantic Service Discovery.

Master’s thesis, University of Twente, The Netherlands.

[5] Bluetooth Special Interest Group (SIG). “Bluetooth Protocol Architecture version 1.0”,

White Paper.

[6] Bluetooth Special Interest Group (SIG). “Service Discovery Protocol”. SIG Specification

version 1.0, Volume 1.

[7] Jini™ Architecture Specification, Sun Microsystems, Version 1.2, (December 2001).

Retrieved 20 August 2006, from http://wwws.sun.com/software/jini/specs/.

[8] Salutation Architecture Specification, Salutation Consortium, Version 2.0c, (June 1

1999). Retrieved 15 June 2006, from ftp://ftp.salutation.org/salute/sa20e1a21.ps.

[9] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and R. Katz. (1999). An Architecture

for a Secure Service Discovery Service, Fifth Annual International Conference on Mobile

Computing and Networks (MobiCom '99), Seattle, WA.

[10] E. Guttman, C. Perkins, J. Veizades, and M. Day. (June 1999). Service Location

Protocol, Version 2, IETF, RFC2608. Retrieved 16 June 2006, from

http://www.ietf.org/rfc/rfc2608.txt.

Univ
ers

ity
 of

 M
ala

ya

http://wwws.sun.com/software/jini/specs/
http://wwws.sun.com/software/jini/specs/
ftp://ftp.salutation.org/salute/sa20e1a21.ps
ftp://ftp.salutation.org/salute/sa20e1a21.ps

 94

[11] Universal Plug and Play Device Architecture. Microsoft Corporation, Version 1.0, (08

June 2000). Retrieved 30 July 2006, from

http://www.upnp.org/download/UPnPDA10_20000613.htm.

[12] J. O’Sullivan et al. (April 2002). Service Description: A survey of the general nature of

services.

[13] D. Chakraborty et al. (December 2000). “Service discovery in the Future Mobile

Commerce”, ACM crossroads volume 7 Issue 2.

[14] R. Hull et al. (June 2003). “E-services: A Look Behind the Curtain”.

[15] E. Guttman, C. Perkins, J. Veizades, M. Day. “Service Location Protocol, Version 2”.

Retrieved 20 July 2006, from http://ietf.org/rfc/rfc2608.txt.

[16] Retrieved 22 July 2006, from Sun's Jini Homepage: http://www.sun.com/software/jini

[17] Cristoph Renner. (April 2000). Diplomarbeit: Service Discovery and Profile Mobility in

a Car Environment. Master’s thesis, Institute of Communication Networks, Munich

University of Technology.

[18] Salutation Consortium. Salutation Architecture Specification 2.0c. Retrieved 22 July

2006, from http://www.salutation.org.

[19] P. St. Pierre and T. Mori. Salutation and SLP. Retrieved 22 July 2006, from

http://www.salutation.org/techtalk/slp.htm.

[20] Universal Plug And Play (UPnP) Forum, 2001. Retrieved 22 July 2006, from

http://www.upnp.org.

[21] Universal Plug and Play Device Architecture, Version 1.0 1999-2000 Microsoft

Corporation. Retrieved 23 July 2006, from

http://www.upnp.org/download/UPnPDA10_20000613.htm

Univ
ers

ity
 of

 M
ala

ya

 95

[22] C. Bettstetter and C. Renner. (2000). A Comparison of Service Discovery Protocols and

Implementation of the Service Location Protocol. Institute of Communication Networks,

Munich University of Technology.

[23] Open Services Gateway Initiative, (August 2005). “OSGi Service Platform Core

Specification, Release 4”.

[24] D. Marples, P. Kriens. (December 2001). “The Open Services Gateway Initiative: An

Introductory Overview”, IEEE Communications Magazine.

[25] D. Valtchev, I. Frankov. (April 2002). “Service Gateway Architecture for a Smart

Home”, IEEE Communications Magazine.

[26] P. Dobrov, D. Famolari, C. Kurzke, B. Miller. (August 2002). “Device and Service

Discovery in Home Networks with OSGi” , IEEE Communications Magazine.

[27] S. Chemishkian. (January 2002). “Building Smart Services for Smart Home”,

Workshop Proceedings of 4th IEEE International Workshop on Network Appliances.

[28] R. Anderson. (2001). “Security Engineering: A Guide to Building Dependable

Distributed Systems”, John Wiley & Sons.

[29] Mikko Ahola. (6th May 2003). “Machine-to-Machine Communications for Enhancing

E-Commerce Logistics”, Master’s thesis.

[30] OSGi alliance homepage. Retrieved 2 August 2006, from http://www.osgi.org

[31] Oscar- OSGi framework implementation. Retrieved 2 August 2006, from

http://oscar.objectWeb.org

[32] Knoplerfish project. Retrieved 2 August 2006, from http://www.knopflerfish.org

[33] Physalis project homepage. Retrieved 3 August 2006, from

https://developer.berlios.de/projects/physalis

Univ
ers

ity
 of

 M
ala

ya

http://www.osgi.org/
http://www.osgi.org/
http://oscar.objectweb.org/
http://oscar.objectweb.org/
http://www.knopflerfish.org/
http://www.knopflerfish.org/
https://developer.berlios.de/projects/physalis
https://developer.berlios.de/projects/physalis

 96

[34] Jeffree homepage. Retrieved 3 August 2006, from http://jeffree.objectWeb.org

[35] Stan Moyer, Simon Tsang et al. (September 2000). “Requirements for Networked

Appliances: Wide-Area Access, Control, and Interworking”, Internet Draft draft-tsang-

appliancesreqs-01.txt.

[36] J Plomp. (January 2001). UIML in future home environments. Submitted to the first

UIML conference held in Paris.

[37] SH Maes et al. (2000). Multi-modal interaction in the age of information appliances.

IEEE International Conference on Multimedia and Expo.

[38] Stajano F. et al. (2002). Security issues for internet appliances. IEEE Symposium on

Applications and the Internet (SAINT) Workshops.

[39]. Moyer, S. and Marples, D. (2000). The Internet Alarm Clock – A Networked

Appliance Case Study. Telcordia Technologies.

[40]. Rosenberg, J, et. al. (2002). SIP: Session Initiation Protocol. IETF RFC 3261.

[41] Moyer S. et al. (October 2001). A protocol for wide-area secure networked appliance

communication. IEEE Communications Magazine, 39:52-59.

[42] Moyer S. et al. (2002). SIP Extensions for Communicating with Networked Appliances.

IETF Draft.

[43] A Roychowdhury et al. (2001). Instant Messaging and Presence for SIP Enabled

Networked Appliances.

[44] Marples D. et al. (2002). Feature interactions in services for internet personal

appliances. IEEE International Conference on Communications.

Univ
ers

ity
 of

 M
ala

ya

 97

[45] Tsang S. et al. (2001). Accessing networked appliances using the session initiation

protocol. IEEE Conference on Communication, pages 1280-1285.

[46] Network Working Group. Hypertext Transfer Protocol (HTTP 1.1). Retrieved 5 August

2006, from ftp://ftp.rfc-editor.org/in-notes/rfc2068.txt

[47] Bushmitch D. (2004). A sip-based device communication service for osgi framework.

IEEE.

[48] UPnP Service Template Version 1.01. Retrieved 7 August 2006, from

http://www.upnp.org/resources/documents.asp

[49] UPnP Device Template Version 1.01 Retrieved 7 August 2006, from

http://www.upnp.org/resources/documents.asp

[50] Sun Microsystems. (October 2000). How to Write Your First JES Service version 2.

[51] Domoware software. Retrieved 28 July 2006, from http://domoware.isti.cnr.it/.

[52] UPnP development package provider - CyberLink, Satoshi konno. Retrieved 29 July

2006, from http://www.cybergarage.org/net/upnp/java/index.html

[53] Wu Lan et al. (December 2004). Service discovery for personal networks. Master's

thesis, University of Stuttgart.

[54] Darragh O' Sullivan. (September 2005). An Advanced Appliance Interaction

Architecture. Master’s thesis, University of Dublin, Trinity College.

[55] Microsoft Technet website. Retrieved 9 August 2006, from

http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/upnpxp.mspx

[56] Simon Tsang, Stan Moyer, Dave Marples. (November 2000). SIP Extensions for

Communicating with Networked Appliances. Telcordia Technologies.

Univ
ers

ity
 of

 M
ala

ya

 98

[57] Sumit Khurana, Ashutosh Dutta, Provin Gurung. XML based Wide Area

Communication with Network Appliances. Telcordia Technologies, Columbia University.

[58] Jean-Marc Seigneur. (2001). House-Keeper a vendor-independent architecture for easy

management of smart homes. University of Dublin.

Univ
ers

ity
 of

 M
ala

ya

